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Abstract 

The purpose of this thesis is to develop a practical receiver for Rayleigh fadin?; channels. 

which does not exhibit the error floor found for conventional receivers in this channel. .-\ 

model of a general time and frequency-selective channel is developed, and the opt.imal re­

ceiver structure for a time-selective channel is derived for general signalling. The theoretical 

performance of a standard and maximum likelihood receiver is analyzed for the case of f\I­

ary differential phase shift keying. A recursive, channel adaptive version of the optimal 

receiver is derived, and through simulation, its performance is compared to theoretical ex­

pectations . Results indicate that such a receiver will reduce the receiver error floor severnl 

orders of magnitude at typical channel signal-to-noise ratios. 
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Chapter 1 

Introduction 

1.1 General Introduction 

The traditional communications channel that is first studied by communications engineers, 

and customarily used as a measure against all other channels for performance, is the additive 

white Gaussian noise (AWGN) channel. This model of a channel can then be extended by 

assuming the additive noise is coloured, or that the channel has a time-invariant frequency 

response. The corresponding optimal receivers may then be derived, either by appealing 

to intuition (e.g. spectral whitening), or through a more rigorous maximum likelihood 

derivation. Examples are found in Wozencraft and Jacobs [1] and Van Trees [:2]. 

This analysis assumes completely deterministic signalling waveforms, which allows 

the conventional signal space interpretation of reception. Although a signal source always 

transmits deterministic signals, there exist channels which, in addition to the AWG N, will 

transform the signal itself into a random Gaussian process [3]. A further extension to signal 

reception then is the detection and estimation of stochastic Gaussian signals in additive 

Gaussian nOIse. The information used to modulate the original signals will be seen to 

impart a structure to the second order statistics of the received process. This is just a 

generalization of the AWGN or whitened coloured noise case, where the information in 

the received random process is contained in the mean, or first order statistics. The mobile 

communications channel, with its time-selective fading, is an example of this type of channel. 

In practice, however, receivers used with this channel are conventional receivers 

designed to be optimal for the AWGN channel. Although these receivers have the advantage 

of simplicity, they also exhibit undesirable performance characteristics when used in the 

1 



CHAPTER 1. INTRODUCTION 2 

fading channel, which are not found in the AWGN channel. The random modulation of 

the signal by the channel, when viewed as a continuous random process, induces a limit of 

performance in the conventional receiver. As the transmitted signal-to-noise power ratio is 

increased, the receiver error rate tends to level out to a constant value, or floor, above a 

certain SNR, typically at 10-2-10-3 error rates and at SNR's usually found in the mobile 

channel. This limitation found in conventional receivers seriously restricts the use of the 

mobile channel for data transmission, and in fact, it is barely acceptable for digital voice 

communications. 

The mobile communications channel has recently given a new emphasis on non­

AWGN channels. Although mobile radio has existed almost from the very beginning of 

radio technology [4], it is only within the last decade that practical digital modulation 

schemes have been considered for widespread commercial application. vVith the rapidly 

expanding mobile cellular and future mobile satellite services [.5, 6], there is expected to be 

greater emphasis on compensating for the channel impairments found in these applications. 

A common viewpoint, however, is that the error floor is an inherent characteristic of the 

fading channel. Based on previous work in this area, we will show that this is not entirely 

accurate. Just as the error floor due to inter-symbol interference in a frequency-selective 

channel may be substantially lowered by suitable adaptive compensation, an analogous 

approach may be applied to random time-selective fading channels. 

1.2 Background 

This section gives a general historic survey of work on communications in fading channels. 

In this thesis, we will concentrate on receivers for purely random time-selective fading. 

Channels may also exhibit a second form of fading which is randomly frequency-selective, 

with both types often found in conjunction. The term "fading channel" alone should be 

understood as being vague, and does not fully define the characteristics of the channel. 

Although the attention on mobile communications channels is fairly recent, effort 

into understanding fading and its effects on communications has been an active area for 

several decades. The original motivation for the study of fading channels occurred in the 

1950's as the military came to increasingly rely on long distance radio, via ionospheric 

and tropospheric scatter, for digital data communications. The boom in space exploration 

during the 1960's, with the required global network of transceivers, also greatly increased 
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the need for reliable data communications between distant points [7]. As well, coun tries wi th 

distant and isolated regions of population such as Canada, required reliable long distance 

radio communications. 

The physics of transmission through scattering media was well understood at this 

time, and there existed a large number of propagation studies characterizing the statistics 

of the channels [3, 8]. Moreover, communications through the AWGN channel had also 

been put on a firm mathematical, and intuitively elegant foundation with the idea of signal 

space, as discussed in Arthurs and Dym [9], and it would be expected that the fading 

channel would soon also be put on such a footing. However, no consistent approach to 

fundamentally understanding communications through fading channels can really be said 

to have developed; at least not at the same level as the AWGN channel. 

The simplest analysis of communications in time-selective fading makes the assump­

tion of "fast fading", i.e. the amplitude and phase of the random channel modulation is 

assumed to be zero mean, complex Gaussian random variable, ii, which is constant over 

each symbol and independent from symbol to symbol. The average probability of symbol 

error for a conventional receiver is just the probability of error conditioned on the random 

multiplicative factor, P[E I ii], averaged over all possible values of ii [10]. I.e. 

P[E] P[E I ii] 

1 P[ £I ii]p( ii) dii 

where p(a) is the probability density function of complex random variable ii, dii is a differen­

tial area in the complex plane, and the integral is performed over the entire complex plane. 

Evaluating this for the case of binary orthogonal signalling gives the error expression, 

P[E]- 1 
- 2 + Es/No 

where Es is the average received signal energy, and No/2 is the full bandwidth AWGN 

power spectral density. 

This inverse relation of symbol error probability with SNR for fast Rayleigh fading 

is in contrast to the negative exponential relation for AWGN. However, the inverse relation 

is seen to bottom out in an error floor in practical systems, implying that the assumptions 

made in this analysis are too restrictive and simplistic. Physical channels will modulate the 

transmitted signal with a continuous complex Gaussian process, where there is correlation 
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of the process across symbol intervals. This is loosely known as "slow", or "correlated 

fading" . 

Note that there is some confusion in the literature on the terminology used to 

describe time-selective fading channels, with the terms "fast" and "slow" fading seeming to 

be almost interchangeable. In this work we will consistently refer to a narrow bandwidth 

fading process as being slower and more correlated than a process with a relatively broader 

bandwidth. Thus, the model of the previous process is considered fast since its sampled 

values are independent from symbol to symbol, and the jumps in value are completely 

unrestrained. Introducing correlation between the symbol intervals will slow the rate of 

change of the process between samples, and the fading is considered to be slower, with 

the magnitude of the transitions between symbols more restrained by the process' narrow 

band characteristics. This can be seen in Figure 2.3 of the next chapter, which shows the 

trajectory of a simulated complex channel process in time. It was generated by filtering a 

zero mean, complex white Gaussian noise sequence with a filter corresponding to a channel 

process's power spectrum. If the filter bandwidth were narrowed, the trajectory would not 

loop around the time axis as violently, and would be more correlated between samples. As 

the filter bandwidth is broadened, the higher frequency components introduced into the 

process spectrum would create much faster twisting of the process in time, and the process 

would be less correlated between samples. 

One of the first clear analysis of correlated fading was done by Voelcker [11] for differ­

ential binary and four phase shift keying using conventional differential receivers. However, 

for simplicity he used an assumption intermediate between fast fading and a full continuous 

fading process. He assumed that the process was still a constant, zero mean, complex Gaus­

sian random variable in each symbol interval, but was correlated between symbol intervals. 

The process was characterized by a single parameter, p = R(T), representing the correlation 

of the fading process between symbol intervals. Here R(·) is the correlation function of the 

actual fading process, and T is the symbol period. He derived formulae for the error floors 

for both types of signalling using conventional receivers, and for the optimal combining of 

an arbitrary number of independently received signals, i.e. diversity. 

Several papers by other authors followed, notably by Bello and Nellin [12], Lindsey 

[13], and Hingorani [14], with similar assumptions on the fading process, but with more 

complete analysis. As well, the "duality" between random time and frequency selectivity 

[15], and the optimization of transmission rates for channels that were jointly time and 
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frequency-selective was examined [16]. 

During this time people were also examining fading channels at a slightly more 

general and theoretical level, using the maximum likelihood approach to analyzing the 

transmission of information through random channels. This was spurred as much by de­

velopments in radar and sonar signal detection as it was from the communications field, 

although each area is dealing with the same physical problems of delay and Doppler spread 

of signals[17]. 

In 1960, Kailath [18] published a classic paper that fully defined the random chan­

nel in discrete form, and examined the various configurations of optimal receivers for the 

channel. The ideas in this paper were then extended by others to transmitted reference 

systems for binary signalling [19, 20, 21], where a second transmitted signal (e.g. a pilot 

tone) is used to form an estimate of the channel state. This additional information is then 

used to perform optimal demodulation of the information bearing signal. Although these 

derivations used the full covariance matrix for the fading process, as opposed to Voelcker's 

truncated form, they gave no evaluation of the error performance. 

An interesting paper by Walker [22] extended this analysis for the case of a binary 

DPSK system using a transmitted reference phase. He considered the full structure of the 

fading process, which clearly cannot be represented by a single parameter, such as p, by using 

the Karhunen-Loeve expansion of the received random process over one symbol period. This 

continuous time analysis is in contrast to the discrete time approach, although a discrete 

set of random variables, the eigenfunction coefficients, is still used in the calculations. In 

addition, he assumed that the cross-correlation, R tn of the process between the transmitted 

and reference symbols was Rtr ( T) = pR( T). Although his p was the correlation between 

the frequency bands of the transmitted and reference signals, this can also be considered as 

p = R(T) for a DPSK system. That is, it is a measure of the correlation between adjacent 

symbol intervals. The covariance function across two symbol intervals is thus assumed to 

have the form: 

R2(T) = { R(T) 
pR(ITI- T) 

Two important consequences of Walker's work are: 

ITI < T } 
T < ITI < 2T 

(1.1 ) 

• The full statistical structure of the Gaussian fading process IS used to analyze the 

performance of a conventional DPSK receiver. 
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• An optimal receiver structure for this particular fading covariance function is derived 

which does not exhibit an error floor. 

Suboptimal receivers using only a limited set of eigenvalues and eigenfunctions of 

the K - L kernel can be designed which will exhibit a greatly reduced error floor over 

a conventional receiver. Walker's analysis, however, assumed full prior knowledge of the 

channel statistics, and required the calculation of the K - L expansion within the receiver. 

In addition, (1.1) will generally have a discontinuity at delay T = T, and tends to be a poor 

approximation to a physical process having a continuous correlation function. 

The continuous time maximum likelihood approach was also examined by others, 

[23, 17]. However, virtually all of these analyses examined only the case of binary signalling, 

and solutions to the resulting integral equations were analytically tractable only for special 

forms of the channel covariance function, again assumed to be completely known. The 

performance evaluation of these systems generally required bounding techniques. Although 

of significant theoretical interest, this work did not lend itself directly to practical real time 

application. 

During the early seventies, a Kalman filtering approach to transmission through 

fading channels was taken [24, 25], where complete prior knowledge of the statistics of the 

additive and multiplicative noise processes was again assumed. Their simulations using 

pure amplitude modulation gave excellent results, with reduction of the error floor of '" 

10-1 to the 10-4 limit of the simulation. However, when the noise and fading statistics 

were unknown and the filter parameters were simply fixed, performance was significantly 

degraded. Including simple estimators of the fading process' mean and the additive noise 

variance improved the performance somewhat, but as the authors point out, any practical 

implementation would require some form of estimator of the fading statistics. As well, no 

theoretical analysis of the optimal and suboptimal performance of the receiver was provided. 

A pair of papers in the mid-80's re-examined the general case of receivers in time 

and frequency-selective fading [26, 27], using a more modern development and analysis 

of the discrete problem in matrix form. Barrett [28] recently published a concise letter 

describing the discrete maximum a posteriori binary receiver for Rayleigh fading channels. 

He also provides a method for calculating the binary error performance of general quadratic 

form receiver structures, operating in a channel with a given channel correlation matrix. 

Essentially, the optimal receiver forms the log likelihood decision variables, 

R. = _zHK-1z· a 1 L, m , m = , (1.2 ) 
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where Km is the covariance matrix of the channel, assuming symbol i was transmitted, and z 

is the received data vector. His analysis explicitly shows a fundamental relationship between 

the fading statistics and the receiver structure, with respect to the error performance. 

Recently, Lodge and Moher [29, 30] have examined a ma.ximum likelihood receiver 

for continuous phase modulation (CPM) in Rayleigh fading channels. They consider a 

multi-symbol, sequence estimation approach, where only a few samples per symbol are 

taken, but a string of several symbols are considered simultaneously in determining the 

received message. As well, they give an interesting interpretation of the optimal receiver as 

minimising a process prediction error in forming its decisions. Although they state that the 

receiver may be made adaptive, they provide simulation results only for a receiver that has 

been optimally preset for a specific channel. As well, no theoretical performance evaluation 

is given. 

The discrete maximum likelihood formulations of the receivers discussed by the 

above [18, 19, 20, 21, 22, 23, 17, 26, 27, 28, 29, 30] all involve equations similar to Equa­

tion (1.2). The limitation to actually implementing these receiver structures has been the 

required estimation of the channel statistics. This thesis will examine the efficient esti­

mation of the channel's fading and additive noise statistics, and the integration of these 

estimates into a maximum likelihood receiver structure. The behaviour and limitations of a 

particular adaptive implementation will be examined, as well as the theoretical evaluation 

of the conventional and optimal receiver's performance. 

1.3 Scope of Thesis 

Chapter 2 of this thesis will give an overview of the physical origin of fading communications 

channels, including both time and frequency-selectivity. A detailed statistical and analytical 

description of fading channels will then be given. The application of the Karhunen-Loeve 

expansion to random processes will be reviewed, and its discrete form briefly examined. 

In Chapter 3, the theory of maximum likelihood receivers for random fading chan­

nels will be briefly surveyed using both continuous and discrete time formulations. 

In Chapter 4, the extension of Walker's analysis [22] to conventional and optimal 

M-ary DPSK receivers sampled data will be discussed. Barrett's [28] analysis of fading 

channels will be extended from binary to general complex symbols, including a specular 

(Rician) component. The theoretical results will then be discussed and an interpretation 
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of the effective operation of the optimal receiver on the received channel process presented. 

In addition, a geometrical view of a receiver operating in a fading channel is suggested. 

Chapter 5 will describe a real time, channel-adaptive implementation of the maxi­

mum likelihood receiver, using decision feedback. The results of a simulation for a constant 

amplitude M-ary DPSK will be presented and compared to theory. 

Chapter 6 will summarize the results from this thesis and suggest possible future 

study, both theoretical and applied. 



Chapter 2 

Modelling General Fading 

Channels 

In this chapter the physical assumptions used in modeling fading channels are described, and 

a statistical model for the general time and frequency-selective fading channel is developed. 

The channel scattering function and its relation to a tapped delay line model of the channel 

will also be examined. The interrelationships between the shape and extent of the two­

dimensional scattering function and the signalling waveforms will be briefly discussed, as 

will the Karhunen-Loeve description of random processes and its application to fading 

channels. 

As mentioned previously, simply describing a channel as fading is incomplete and 

requires a much more specific characterization. The effect the channel has on the transmit­

ted, digitally modulated waveform, in terms of symbol dispersion and random modulation, 

depends on both the duration of the digital symbols and the rate of variation in the chan­

nel fading process. A particular channel may exhibit various forms and degrees of fading 

depending on the signals transmitted through it. Rather than developing the completely 

general fading channel at once, it will be described first as completely time-selective, with 

frequency-selective behaviour treated as a natural extension. 

2.1 Pure Time Selective Fading 

In an idealized sense, the channel can be imagined as many point reflecting particles, which 

could really be clouds of ionized atoms and molecules in the upper atmosphere, or buildings 

9 



CHAPTER 2. lvIODELLING GENERAL FADING CHANNELS 10 

~ Transmission-Time Contours J 

Figure 2.1: Physical model of a time-selective fading channel. 

and vehicles in a city. This is illustrated in Figure 2.1. It is assumed here, however, that the 

propagation time through the reflecting layer is much less than the duration of one symbol, 

and the overall delay via reflection by the layer is identical for all points in the layer. That 

is, on the time scale of a symbol, the particles appear as a thin quasi-reflecting sheet in 

the shape of a section cut from an ellipsoid. This physical configuration does not directly 

correspond to the case of mobile channels, but the important point is that the greatest 

difference in delay, over the entire set of particles, is negligible compared to a data symbol 

period, but significant compared to the carrier wavelength. This assumption will be relaxed 

later for the case of frequency-selective fading. Note it is assumed here that there is no 

direct, unscattered path from the transmitter to the receiver, so that we will be dealing 

with the case of Rayleigh rather than Rician fading. An unscattered, deterministic signal 

component in the received signal may be included straightforwardly in the final model, and 

will be excluded here. 

Each reflecting particle will introduce a delay Tj(t) in the received signal about some 

nominal propagation delay, which, without loss of generality, may be set to zero. This delay 

will be taken here to be the average delay time of all the scattering paths from the layer. 
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Note that the individual delays themselves are a function of time because of the Illotion of 

the particles. Under the assumption that the particles will not move significantly during a 

symbol period, a linear expansion of the unknown delay function about the nominal time 

t = 0, gives l 

(2.1 ) 

where Tj is the initial delay at t equal to zero, and Tj is the rate of change of the delay with 

respect to time, which is proportional to the relative radial velocity of the particle. From 

the previous assumptions, we must have Tj and Tj small, such that Tj(T) = Tj + TjT ~ T. 

The transmitted signal, s(t), is assumed to be a general complex envelope modulated 

carrier, with the carrier frequency, W o , much greater than the bandwidth of the complex 

envelope, u( t), 

s(t) = u(t)eiwot (2.2) 

Using the delay in (2.1), the received signal from scatterer j has the form, 

(2.3 ) 

where Pj is the unknown real reflectivity of the particle. However, since the delay Tj is 

assumed to be much less than a symbol period, the envelope u( t) will not vary appreciably 

from its delayed version, u(t - Tj(t)), as it is scattered from the j'th particle, and the delay 

may be ignored for this portion of the expression. Defining Wj = TjWo as the Doppler shift 

due to the relative motion between the receiver and the scattering particle, the received 

signal can be written in the form, 

( 2.4) 

Taking this to baseband, where for simplicity we neglect to relabel r(t), we have the received 

complex envelope from the j'th scatterer, 

(2.5 ) 

(2.6) 

where pj == pje-iWo7J is an unknown complex constant value. Thus, the j'th component of 

the baseband received signal is simply the original signal envelope, modulated by a scaled 

1 Assuming a zeroth order approximation results in "fast fading", which will be a special case of the 
present analysis. For an example see Wozencraft and Jacobs[l]. Higher order expansions apparently do not 
offer any more advantages for the model[3]. 
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complex sinusoid, with a frequency given by the Doppler frequency Wj. The constant pj 

may be taken to be a random variable with some unknown distribution. For a given Doppler 

frequency Wj, then, the sinusoid pje- iwJt is a random process in time. By summing over all 

the scattered signals, the total base band received signal may then be written as, 

r(t) u(t) LPje-iw)t (2.7) 
J 

u(t)a(t) (2.8) 

where a(t) is defined as the channel fading process. 

It is seen that the complex received baseband waveform, r(t), is just the transmitted 

complex envelope, u(t), modulated by a sum of complex sinusoids, each with an unknown 

frequency Wj and complex amplitude Pj. This sum itself represents a randomly time varying 

waveform, a(t), which, in (2.7), is decomposed explicitly into its frequency components. 

Picking a particular frequency, Wk, from the virtually infinite set of frequencies in the 

waveform, and summing over alllpjl2, such that j = k, will give the power in the waveform 

represented by frequency Wk. If the frequency range of the process is divided into bins of 

size 2.6., then this may be written as a power spectral density function, where the total 

power in each bin is divided by the bin size. That is, 

1 -
aU) = 2.6. L Ipjl2 

{jl(! -tl)<w) /(271')«! +tl)} 

(2.9) 

where a(f) is the power spectral density, as a function of freq uency, averaged over all possi ble 

realizations of the channel process. As well, the complex amplitude of the resultant sinusoid 

with frequency Wk will be given by, 

L pj (2.10) 
{jlw)=wd 

Although the statistical distribution of the complex scalars pj is unknown, it is 

reasonable to assume on physical grounds that they are statistically independen t. Then, 

by the central limit theorem [1], the distribution of their sum will be a complex Gaussian 

random variable, and each term of the sum in (2.7) for a(t) is a complex Gaussian random 

process. Thus, the modulating waveform, a(t), being the sum of Gaussian random processes, 

is itself a Gaussian random process. The correlation function of a( t) is given by, 

a(t)a*(r) (2.11) 
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Figure 2.2: Single tap baseband model of a time-selective fading channel with additive noise. 
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Ra(t - r) 

(2.12) 

(2.1:3 ) 

(2.15 ) 

where in the last line we have assumed the scatterers are independent, and we are summing 

over each individual particle. The channel process is seen to be stationary. However, this 

means that the correlation function of a( t) is also the Fourier transform of its power spectral 

density, as given by the Wiener-Khintchine relation [31]. That is, 

:Fj{ a(f)} 

l a(f)e- 21ri!(t-T) df 

(2.16 ) 

(2.17 ) 

Assuming there are enough particles so that f may be treated as continuous, it is seen that 

the integral of (2.17) is identical to the sum of (2.15) to within an arbitrary scaling, via the 

definition (2.9). 

to give, 

The correlation function of the total received signal, r( t), can be similarly expanded 

u( t )u*( r) l a(f)e- 21ri!(t-T) elf 

u(t)u*(r)Ra(t - r) 

(2.18) 

( 2.19) 

where Ra (·) is the autocorrelation function of the channel fading process derived previously. 

As well, the mean of a(t), being simply the sum of sinusoids, is seen from (2.8) to be zero. 
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The received signal from the scattering channel may then be descri bed ill baseband 

as the transmitted envelope modulated by a stationary zero mean Gaussian process, a( t), 

as shown in Figure 2.2. The autocorrelation function Ra(t - T), or equivalently the power 

spectrum, O"(f), completely characterizes the channel. The width of the power spectrum, 

and, through the Fourier transform, its autocorrelation function, is determined by the 

largest Doppler shift present in the scattering media. For the case of the mobile channel, 

the greatest Doppler shift is due mainly to the vehicle motion, and occurs when the vehicle 

is moving directly toward or away from an oncoming radio wave. The Doppler shift will be 

determined by the vehicle's velocity and the frequency of transmission. We have. for vehicle 

velocity, v, and carrier wavelength, A, 

v 
fd =­

A 
(2.20) 

For a vehicle velocity of say 50 km/h and 30 cm wavelength (at a carrier frequency of 109 

Hz), /d ~ 50 Hz. The fading modulation will typically have a narrow bandwidth compared 

to that of the baseband signal. 

Figure 2.3 (a) shows a simulated complex Gaussian time- selective fading process 

as a function of time, where the fading time-bandwidth product is 0.08 and 4 samples 

per symbol are taken. This is typical of the mobile channel. The process was generated 

by filtering a sequence of independent, unit-variance complex Gaussian random variables. 

Based on the FIR filter coefficients used, the variance of the filtered process is l.6812e-2. 

Note that a Rician or deterministic component of the signal may be included in this model, 

and simply shifts the mean of the process away from the origin. This occurs, for example, 

in a mobile satellite system with shadowing [32J. Although this shift is itself a function of 

time, i.e. it will trace out a trajectory of its own in time, in practical situations it changes 

very slowly compared to the symbol rate. 

Figure 2,4 (a) and (b) show the magnitude and phase of the process respectively, 

illustrating the extreme magnitude nulls, and rapid phase shifts that are periodically ex­

perienced. The phase plot includes the received phase decision boundaries for BDPSK 

signalling for a relative comparison with the channel's phase modulation. Figure 2.3 (b) 

gives a view of the process projected down the time axis onto the real and imaginary plane 

with the symbol intervals shown. As the real and imaginary components of the sampled 

Gaussian process are independent Gaussian random variables, the time averaged density 
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Figure 2.3: An example complex Gaussian fading process (a) in perspective view, and (b) 
projected down the time axis onto the complex plane. Symbol intervals are indicated. 
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Figure 2.4: (a) Magnitude and (b) phase of the fading process of a complex Gaussian fading 
process. Symbol intervals are indicated in (b). 
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function of the projection is a two-dimensional Gaussian distribution, with the two com­

ponent variances equal to the received signal power. The magnitude of time salllpies of 

the two-dimensional process will then be Rayleigh distributed, and the phase will have a 

uniform distribution. This is why time-selective fading is often referred to as Rayleigh 

fading. 

It is seen that the "slow fading" approximation, where the phase and amplitude is 

reasonably constant over a symbol interval, is almost always valid. However, during the 

occasional rapid excursions of the signal, the receiver is virtually guaranteed to make errors. 

Intuitively, the approximate periodicity of these excursions means the guaranteed error will 

occur at a fairly fixed rate, generating a fundamental error rate independent of the additive 

noise. From techniques developed later in this thesis, a BDPSK receiver operating in the 

channel of Figure 2.3 would experience an error floor rate of 3.13e-:3, or one error in every 

320 symbols. The phase swing involved in such an error event is seen occurring at about 

the 50'th symbol. Without knowledge of the fading process's statistics, and the use of some 

kind of predictive compensation of the random channel modulation, a conventional receiver 

will inherently experience an error floor in its performance curve. 

2.2 Time and Frequency Selective Fading 

In the previous section, it was assumed that the scattering media incurred delays of the 

transmitted signals on the order of the period of the carrier, with no measurable delay 

distortion of the symbol waveform, u(t). However, if the transmitted symbol rate is high 

enough, the range of propagation delays of the scattering layer may become comparable to 

the symbol period. The previous section's analysis may then be extended by assuming a 

multilayered media. Each individual layer will scatter the signal independen tly of the others, 

producing separate realizations of the modulating random processes, (lk(t), and each will 

have a characteristic layer delay, Tk, where the delay is now comparable to the symbol 

period. The variable k is used to index the layers, and will approximate a continuum in the 

limit as the layer separation approaches zero. The received signal is seen to be the sum of 

the individual layers' signals, rk(t), each delayed by Tk. We have, 

r( t) = L rk(t) (2.21 ) 
k 

= L r(t - Td (2.22) 
k 
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L u(t - Tk)ak(t) 
k 

lfi 

(2.:23) 

Note that the random process, ak(t), was not shifted in time since stationary Gaus­

sian random process' are equivalent under an arbitrary time translation. That is, the 

statistics of ak(t - Tk) are the same as ak(t), and are given by Rk(llt) = ak(t)a'k(t + 6.t). If 

we consider a sampled data system, this may be written in discrete time form, 

M 

r( i) = L ak( i)u( i - k) ( 2.24) 
k==O 

where k corresponds to the delay index, i to the time, and j\1 is the number of layers 

considered. This may be viewed as a tapped delay line filter, where each tap gain, (lk(')' is 

an independent zero mean, complex Gaussian random process, with the correlation function, 

Rk(6..t), given above, and a tap delay, 6.T, given by the difference in delays between adjacent 

media layers. 

This is seen to correspond to the continuous time filter equation, 

ret) = 1 aCT, t)u(t - T) dT (2.25 ) 

where t is the time variable, T is the delay, and aCT, t) is the time variant impulse response 

of the channel. This response is a random process in the time variable, t, with the delay 

T, effectively indexing the individual, time-selective fading processes from the scattering 

media. The impulse response is the output response of the channel, at time t, to an impulse 

input to the channel T seconds before t. These two methods of representing the general 

fading channel are shown in Figure 2.5. For bandlimited signals, the delays are the inverse 

of the Nyquist sampling rate for the baseband signal. 

The tap autocorrelation function may be forma.lly written a.s, 

M 

Ra( T, 6.t) == L 8( T - 6.T . k )Rk(6.t) (2.26) 
k==O 

where IlT is a delay increment. For infinite bandwidth signals, we let 6.T -+ 0 such that 

Ra( T, 6..t) approaches a continuous function. The function Ra( T, Ilt) represents the autocor­

relation function of the channel in time at a constant delay of T. This is usually represented 

by the channel scattering junction, a( T, j), which is the power spectrum of the random 

Gaussian tap weight process existing at a delay of T, 

(2.27) 
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Figure 2.5: Model of a time and frequency-selective fading channel. (a) Continuous time­
variant channel impulse model, (b) tapped delay line model. The tap delays, D, correspond 
to 6.r in the text. 
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Figure 2.6: Two-dimensional scattering function of a time and frequency-selective fading 
channel. 

where F b.t is the Fourier transform with respect to the time variable. An example of a 

scattering function is shown in Figure 2.6. This tapped delay lille 1l1Odcl or the fading 

channel, where each multiplicative tap is an independent random Gaussian process, has 

a great deal of intuitive appeal for visualizing the effect of a general fading channel on a 

signal. 

2.3 Pure Frequency Selective Fading 

In Section 2.l.1 we started with a purely time-selective fading channel, and then extended 

it in Section 2.1.2 to include frequency selectivity. We ma.y now specialize our general 

model again to the case of a purely frequency-selective channel, also known as "time-flat" 

or "time-dispersive". Its scattering function is given by, 

er(T,!) = er(T)8(J) (2.28) 

as shown in Figure 2.7. This type of channel may be interpreted as a series of taps, each 

with a delta function power spectral density, i.e. a constant DC bias. The tap with a 

delay To has a power er( To), and is an independent complex Gaussian random variable with 

variance er( To). In effect, er( T) is the ensemble averaged, impulse power response of the 

channel. The RummJer fading model for digital microwave radio [33J is similar to this type 

of channel, where its channel scattering function is assumed to be of the form, 

(2.29) 
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Figure 2.7: Scattering function of a purely frequency-selective fading channel. 

The parameters {ad and {T;} are taken to be random variables from some empirically 

measured distribution. Note that the RummIer model also takes h - T21 to be much less 

than the Nyquist period, and the first two taps are usually lumped into one. By changing 

the frequency delta functions to have some breadth in f, i.e. with a form a( T, f), the 

time dynamics of the channel (i.e. time-selective behaviour) are also modeled. Note that 

no physical channel will be purely frequency-selective without time variation, since any 

macroscopic scattering object, because of its physical extent, will have some range of delays 

on the scale of a carrier wavelength. 

An interesting characterization of the frequency-selective channel may be made that 

points out the duality between time and frequency-selective fading [15]. It is well knowll, 

through the vViener-Khintchine relation, that the time correlation function of a random 

process may be represented by its power spectral density, via the Fourier transform. To 

measure the power spectrum for the time-selective channel, a single frequency is transmitted, 

which is then Doppler broadened by the channel. The spectrum of the fading process is 

thus just the spectrum of the Doppler broadened signal i.e. the frequency domain power 

impulse response of the channel. 

It is seen that a( T) for the frequency-selective channel above represents a power 

"spectrum" in the delay variable T. Consider a stationary random Gaussian process defined 

in the frequency variable, f, rather than in time. Although a random process is usually 

considered to evolve sequentially in time as a filtered sequence of independent, identically 

distributed random variables, frequency may be used to index the process values just as well. 

This process would then have an autocorrelation function as a function of 6.f. Moreover, a 
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corresponding power spectrum of the process could be defined, again via a Fourier transform, 

that would be a function of a conjugate time variable. Conversely, if a power spectrum as 

a function of time exists, such as <7(t), then it must correspond to a correlation function 

in frequency of a frequency domain Gaussian random process. Thus, a purely frequency­

selective fading channel may be thought of as a channel with a frequency response that is 

a random Gaussian process in f. This is discussed further in Bello [34] where he explicitly 

breaks out the various Fourier transform relationships between the time and frequency 

variables and their corresponding delay variables. 

In (2.8), the signal received from a time-selective fading channel was shown to be, 

ret) = u(t)a(t) (2.:30) 

where aCt) is a stationary Gaussian random process. But from the above discllssion, it is 

seen that the signal received from a frequency-selective fading channel can be representeu 

in the frequency domain as, 

R(J) = U(J)A(J) (2.31 ) 

where A(J) is also a stationary Gaussian random process in frequency, with a power spectra 

<7( T). An example of this, measured in an indoor radio environment [35], is shown in 

Figure 2.8. In (a), the impulse response, which may be taken as a measure of the delay power 

spectrum2 , is narrow, and is analogous to a narrow spectrum signal with a correspondingly 

broad correlation function in frequency. This results in a slowly varying random process in 

frequency, which is shown in (b), a single time snap shot of the channel frequency response. 

In Figure 2.9(a), the delay spectrum is much broader, and analogously to a broad-spectrum 

signal, corresponds to a much more rapidly varying frequency response process. There is a 

striking similarity of (b) to the simulated time selective process of Figure 2.4. 

2.4 Time Dynamics of the Channel Frequency Response 

From the above, if a purely frequency-selective channel had its spectra broadened to some 

finite width, then the time dynamics of the channel frequency response could be modeled. 

This is simply the time and frequency fading channel again. For this channel, the frequency 

response will now be a random process in both time and frequency. At a particular time 

2The true delay power spectrum would be an ensemble average of impulse responses. 
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Figure 2.8: Slow frequency-selective fading channel measurements. (a) Impulse power re­
sponse, (b) Measured instantaneous channel frequency response. 
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sponse, (b) Measured instantaneous channel frequency response. 
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instant, to, where to is treated as a parameter, the frequency response of the channel is the 

Fourier transform of its impulse response, or tap weights, in the delay variable 7. That is, 

(2.32) 

where A(f, to) is a random process in f, as discussed in the previous section. It becomes 

reasonable to ask what is the correlation of the channel response at a particular frequency, 

between two time instants. Defining this correlation as RAU, .6.t), and assuming uncorre­

lated scatterers, we find, 

RAU, .6.t) AU, t)A*U, t + .6.t) 

= r a(71,t)e-21fiJTld71 r a(72,t+.6.t)e21fiJT2d72 
JTl JT2 

r r a(71,t)a(72,t+.6.t)e-21fiJ(TI-T2)d72d71 
JTl JT2 

r r Ra(.6.t, 7t}o( 71 - 72)e- 21fiJ(TI-T2) d72 d71 
JT)T2 

1 Ra(.6.t, 7) d7 

(2.33) 

(2.:34) 

~.' 0 ( 'J '3-) 

(2.:36 ) 

(2.37 ) 

which is independent of the particular frequency one is interested in. That is, RAU, .6.t) = 
RA(t~.t). The above shows that the frequency response of the channel, at a particular 

constant frequency, is a random process in time, with the autocorrelation function given 

in (2.37). However, the previous section also showed that the frequency response is a 

random process in frequency as well. Extending the analysis to include the correlation of 

the frequency response between two frequencies, gives the straightforward result, 

(2.:38 ) 

Hence, the frequency response of a time and frequency-selective channel is a random 

process in both time and frequency, i.e. a two-dimensional Gaussian random process. Al­

though the correlation properties of general fading channels tend to be exclusively thought 

of in terms of time or frequency, its two-dimensional correlation function means that the two 

characteristic correlation variables (time and frequency) are coupled intimately. Figure 2.10 

3 shows an example of this, where in 2.10-(a) the channel scattering function, a(7,f), is 

3The sample random processes in this figure and the next were generated by masking a 128 x 128 two­
dimensional field of independent complex Gaussian random variables. The masks were 2 x 10 and 10 x 10 
samples in size respectively. The two-dimensional Fourier transform was taken of the masked spectra to give 
a sample realization of the channel transfer process in time and frequency. 
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Figure 2.10: An example of an asymmetric two-dimensional channel fading process. (a) its 
rectangular scattering function, (b) a sample realization of the magnitude of the complex 
process. Note that (b) has a log vertical scale. 
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assumed to be a rectangular box. Here, the channel delay is several times the extent of the 

Doppler bandwidth. Figure 2.10-(b) shows a sample realization of this process, where it 

is seen that the channel's frequency response varies several times faster in the ffeq uency 

direction than along the time direction. This example also shows how the frequency nulls in 

a random channel evolve in time, experiencing significant variations in position and depth. 

The rate and magnitude of these variations are determined by the statistical description of 

the channel- its scattering function. In Figure 2.11 the scattering function is now a square 

box, with its width in Doppler spread comparable to the channel delay in Figure 2.10. It 

is seen in 2.11-(b) that the time variations in the channel frequency response are much 

more severe. The units in these examples are arbitrary and are not intended to represent 

any particular channel. They should be used only to help to visualize the dynamics of a 

fading channel, and are useful to keep in mind when analyzing channel measurements and 

characteriza tions. 

Note that although these channels vary in time, they are still stationary random 

processes. Where channels are truly dual fading, any optimal signal processing would have 

to include joint, two-dimensional, processing of the signals [31]. 

2.5 Coherence Measures of the Channel 

In the previous sections it was discussed how a fading channel will distort a signal, and 

how this may be statistically characterized. However, the importance of the fading and 

its effect on a receiver's performance depend primarily on the period and bandwidth of 

the signal in relation to the channel process' statistics. This is seen in Figure 2.3 (b) for 

a time-selective, frequency fiat channel, where symbol periods are superimposed on the 

single tap's fading process. Clearly, for an extremely short symbol period the channel 

would closely approximate the slow fading channel. Moreover, if the symbol period were 

considerably lengthened to include several "loops" of the process, the multiplicative fading 

process would completely scramble the signal and appear as "fast fading". There would be 

enough time between the symbols (or samples) for the process to be considered uncorrelated. 

This may be quantified by defining the coherence time of the channel process, Tel as 

the delay for the covariance function of a time-selective channel, Ra( t:.t), to equal 0.0. As the 

mobile channel produces a strictly bandlimited fading spectra for vertical'dipole antenna 

[4], the oscillating correlation function is guaranteed to have zeros. For non- oscillatory 
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Figure 2.11: An example of a symmetric two-dimensional channel fading process. (a) its 
cubic scattering function, (b) a sample realization of the magnitude of the process. Note 
that (b) has a log vertical scale. 



CHAPTER 2. kIODELLING GENERAL FADING CHANNELS 29 

decaying covariance functions, a suitable measure of the support (i.e. non-zero extent) of 

the covariance function would be acceptable. 

A relative measure, then, between the rate of envelope fading and symbol trans­

mission rate, is given by T lTc, where T is the symbol period. As the coherence time, Te, is 

inversely related to the bandwidth of the fading process, B, this is usually expressed as the 

fading time bandwidth product, BT. For typical mobile communications symbol and fading 

rates, this value ranges from about 0.01 to 0.10. As the frequency bandwidth occupied by 

the signalling waveforms is typically much less than the corresponding frequency coherence 

bandwidth, the channel also appears to have fiat frequency fading. However, these typical 

channel characteristics are very data rate dependent. See Proakis [10J for a more complete 

discussion. 

2.6 Diversity Representation of a Time-Selective Fading 

Channel 

For a Rayleigh fading channel, the continuous-time received channel process, r( t). may be 

represented as a set of independent waveforms, as given by the Karhunen-Loeve expansion 

and described in Appendix A. That is, 

00 

r(t) = L ri¢)i(t) ; ° ::; t ::; T (2.:39) 
i=l 

where T is the observation interval, usually of one symbol. The orthogonal eigenfunctions, 

(/>i(t), are solutions of the eigenvalue equation, 

(2.40) 

where Rr(t, T) is the correlation function of the received channel process, which was given 

previously as, 

Rr(t,T) = u(t)u*(T)Ra(t - T) (2.41 ) 

and Ra( t - T) is the fading channel correlation function. The coefficients of the K-L expan­

sion of the received process are given by, 

ri == loT r(t)¢i(t) ( 2.42) 
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Figure 2.12: Diversity representation of a time-selective fading channel. 

Any receiver with knowledge of the transmitted waveforms and channel fading statistics may 

decompose the received signal into its component orthogonal eigenfunctions, each weighted 

according to (2.42). The weights, or coefficients, will be independent complex Gaussian 

random variables with variances equal to their corresponding eigenvalues. That is, 

(2.43) 

Although the received signal is the sum of these weighted eigenfunctions, their 

independence and the ability of the receiver to decompose the signal in terms of them 

allows the channel to be visualized as a set of independent parallel paths. Each path 

corresponds to a particular eigenfunction, and is weighted by a complex Gaussian random 

variable with a variance equal to its corresponding eigenvalue. When there is an A\VGN 

source in the channel as well, the variance is then equal to the sum of the noise variance 

and the eigenvalue. This is shown in Figure 2.12. Note that this representation is identical 

to a diversity system[3, 1], and that a receiver operating with knowledge of the channel 

statistics may form decisions using optimal diversity combining techniques [3, 21]. The 

implications of this for the performance curves of the optimal receiver will be demonstrated 

in the following chapters. 



Chapter 3 

Optimal Demodulation of Fading 

Signals 

This chapter will review optimal receiver structures for random Gaussian processes buried 

in additive Gaussian noise, giving developments for both continuous and discrete time rep­

resentations of signals. Each appears to lead to a different approach to solving the problem. 

The continuous time problem requires manipulating involved integral equations, while the 

discrete time approach uses more common matrix operations and decompositions. However, 

it should be realized that both approaches are equivalent, in the exact same way discretiz­

ing the K-L expansion leads to the standard eigen-decomposition of matrices. Each may be 

converted into the other. 

3.1 Continuous Time Optimal Demodulation 

Given the strictly analogue nature of radio communications in the first half of this century, 

it is not surprising that the continuous time approach was the first to be developed [36]. 

However, it uses the less familiar techniques of integral equations, and results in rather 

formidable looking equations, few of which may be analytically solved. The discrete time 

approach, discussed in the next section, was developed shortly after and offers an alternate 

view of channel effects and the demodulation of signals [18, 21]. 

To start, we assume the channel is the general random, time variant, linear filter 

discussed in the previous chapter, and shown in Figure 2.5. For a transmitted signal, s(t), 

31 
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the received signal is given by, 

1·(t) = 1 aCt, T)8(t - T) dT + net) (:3.1 ) 

where aCt, T) and net) are assumed to be Gaussian zero mean, and stationary in t. The 

covariance function of the received signal is given by, 

r( u )r*(v) 

r j a( u, Td8( U - T1 )a*( v, T2)S*( v - T2) dTl dT2 + n( u)n*( v) 
J7"1 7"2 

(3.2) 

(3.3) 

r j a( u, T1 )a( v, T2)S( u - T1)8*( V - T2) dTl dT2 + J( n( 1l - v) (3A) 
J7"1 7"2 

r j J(a(T1' U - v )8( T1 - T2)S( U - Tt)S*(U - T2) dTl dT2 + J(,,( u - v p.,}) 
J7"1 7"2 

1 K a (T, U - v )s( u - T )8* (v - T) dT + I( n ( U - v) (:3.6) 

where T is the channel delay variable. Here, Ka( T, .6.t) is the time and frequency-selective, 

channel covariance function discussed in the previous section. It is relabeled from Ra (·) 

to emphasize its role as an integral kernel, in keeping with the literature. For a purely 

time-selective channel, with only a single modulating tap, J(a(T, .6.t) = Ka(.6.t)8(T) and the 

received signal covariance function is, 

(:3. i) 

Note that although the channel covariance function, J(a( u-v), and additive noise, J(,,( u- u l. 
are stationary, the covariance function of the received signal will not be in general. However, 

it is Hermitian in 1l and v. 

Formally writing the K - L expansion of the channel correlation kernel (see Appendix 

A), J(a (u - v )s( u )s*( v), we obtain the set of orthonormal functions {q)i( t)} and eigenvalues 

{A;}. Because the additive noise is white and independent of the channel's tap process, the 

eigenfunctions of the total received process will also be {q)i( t)}, and the eigenvalues Pi + 
No}. This method of breaking up the received signal's covariance kernels and eigenvalues 

serves only to make the role of the additive noise explicit. The received signal, I'(t), may 

be expanded in terms of the eigenfunctions, 

co 

ret) = L rjq)i(t) (3.8 ) 
i=l 
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with the coefficients, ri, given by, 

ri = foT r( t)4Yi( t) dt (3.9) 

As discussed in the previous chapter, only the first M "significant" eigenvalues of the 

channel, Ai, will be used, in practice, giving a finite expansion. This corresponds to the usual 

orthogonal expansion of deterministic signals in a finite number of dimensions. Although 

the additive white noise is effectively infinite dimensional, only the finite number of relevant 

orthogonal functions containing components of the signal need be considered. The infinite 

energy white noise is always bandlimited to the signal bandwidth at some point, forcing the 

truncation of its otherwise arbitrary orthogonal expansion [17J. 

With the assumption of complex Gaussian processes, the coefficients will be inde­

pendent complex Gaussian random variables, with zero mean and variance /\i + .,Va . Thus, 

the two dimensional probability density function of each 1'i, over the complex plane, will be, 

(:3.10 ) 

Because of the independence of the random variables 1'i, the pdf of the complex vector r, 

for the first M terms, may be written as, 

(3.11 ) 

The above analysis assumes a known covariance kernel, J(r( U, v), which depends on the 

specific message signal, s( t), transmitted. Making the assumption of multiple messages, the 

covariance kernel is now indexed by the particular signal, sk(t), that was transmitted. That 

is, each message signal produces a random process with the unique second order statistic 

J(~k) (u, v). Substituting the eigenvalues of the indexed covariance kernel into (3.11), gives 

the pdf ofthe received signal vector conditioned on the particular signal transmitted, namely 

p(rlsk(t)) == p(rlk). Taking the logarithm of the conditional form of (3.11), gives the k'th 

decision variable to be maximized over all messages in the signaling alphabet, 

n () -1 ~{l \k Ar) h1
2

} ~k r = M ~ n(Ai +)V a + \k v: 
7r i=1 / i +) 0 

(3.12 ) 

where the eigenvalues have been explicitly indexed to their corresponding covariance kernel. 

Note that the sum of the log terms in the bracket above may be also expressed as a logarithm 
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of a product of eigenvalues. The product of eigenvalues is recognized as a determinant of a 

matrix, known as the Fredholm determinant [36, 17], and is a commonly occurring quantity. 

It is defined as, 
00 

D;:(z) = II(1 + zA;) (3.13) 
i=l 

for all values of z, where the {Ai} are the eigenvalues of the given kernel function. This term 

will act as a bias value in (3.12), independent of the received signal, but may vary between 

the decision branches. In the next section, the discrete form of this analysis will show that 

signal sets may be chosen to make this bias invariant to the decision branch. This term 

will then have no bearing in comparing the various decision variables, and will be ignored 

here, as can the constant l/tr M scaling. Substituting the K-L expansion of (3.9) into (3.12), 

where (3.9) gives the random coefficients in terms of the original continuous time signal, 

results in, 

£k = 1:o1:o r(U){f; Ar:Noc/Ji(U)c/Ji(v)}r*(V)dUdV (:3.14) 

Defining the bracketed term above as Q(k)( u, v), one obtains the k'th decision vari-

able as, 

(3.15) 

which is an integral quadratic form of the received signal waveform. This expression defines 

the operations of a maximum likelihood receiver for the general, fading random channel. 

However, it involves a defined quantity, and the role and interpretation of the kernel-like 

function, Q(k)(u, v), still needs to be examined. 

Recalling that the eigenvalues of the kernel J(~k)(u,v) are >'7 + JVo, and from the 

properties of the K-L expansion, the kernel may be represented by, 

M 

J(~k)(u,v) = 1:(-\7 + No)c/Ji(U)c/Ji(v) ( 3.16) 
i=l 

It is seen from the definition ofQ(u,v) in (3.14) that Q(k)(u,v) is fundamentally related to 

the original received signal's correlation kernel. This is shown explicitly by considering the 

expression, 

(:3.17) 
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where the k indexing has been dropped for convenience. Substituting the eigenfunction 

expansion of the two kernels into the above and simplifying, one finds, 

loT ](r(u,t)Q(t,v)dt = 
T M M ¢ .(t)¢"(v) r L(Ai + No)¢i( u)¢i(t) L J j dt 

10 . . 1 Ai + No .=1 J= 

L~'+~¢i(U)¢;(V) (T ¢i(t)¢j(t)dt 
.. J + 0 10 
I,) 

'" Ai + No () *( ) ~ Aj + No ¢i u ¢j v Oi,j 
I,) 

L¢i(U)¢i(V) 

5(u - v) 

(3.18) 

(3.19) 

(:3.20) 

(:3.21) 

(3.22 ) 

It is seen that Q( u, v) can be interpreted as a form of inverse kernel of ]( r(n, v). When the 

original integral of (3.17) is discretized, the matrix form of the relationship is, 

(:3.23) 

where I is the identity matrix. So, Q is the inverse of the discrete time covariance matrix 

of the received signal, K", and the continuous time kernel Q(u, v) is, in a valid sense, the 

inverse of ](,,(u, v). 

Although this is a simple and elegant relationship, there is still the question of the 

physical significance of the integral quadratic operation performed by the optimal receiver. 

This is best answered by considering the optimal receiver as if we knew exactly the channel's 

impulse response, a( t, T), for all time, i.e. it is deterministic. This is a simple generalization 

of the additive coloured noise receiver, and similarly involves a whitening type of filter, 

which is now time-variant. Figure 3.1 shows that the k'th decision branch of the receiver 

will predistort the k'th known message signal, to give Zk(t), before correlating it with the 

received signal. This correlation is then used as the k'th decision variable. 

In Figure 3.1, it is seen that the received signal, ret), is simply zk(t)+n(t), assuming 

that the k'th message was transmitted. For the case of a true random channel, we don't know 

what Zk(t) is in particular, except that it is a zero mean random process with a correlation 

kernel ](:(u, v) - ](n(u, v). However, assuming signal Sk(t) has been transmitted, and with 

its known correlation kernel, we may estimate from ret) what Zk(t) would have been, before 

the additive noise. 

This is made clearer in the simplified example, shown in Figure 3.2. Here, we 

have a zero mean random process, z(t), with a known correlation kernel, ](z(u,v), which is 
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r(t) I ( ) dt 

Figure 3.1: Optimum receiver for k'th message signal for a known deterministic linear 
channel. 

z(t) r(t) ---~~I h(t, 't) f----.~ i(t) 

n(t) 

Figure 3.2: Estimation of a random process with known statistics, corrupted by additive 
noise. 
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corrupted by additive noise, again with a known correlation kernel, J(n( u, v). The problem 

is to derive a time-variant linear filter, h(t, u), that will estimate z(t) from the received 

signal with minimum mean squared error. That is, from 

r(t) = z(t) + n(t) (3.24) 

form the estimate, 

z(t) = loT h(t,u)r(u)du (:3.25 ) 

This is a standard linear estimation problem whose solution is given in [2]. The 

solution for h( t, u) is given implicitly by the integral equation, 

(3.26) 

where, 

(3.27) 

assuming the additive noise is white and independent ofthe process z(t). Multiplying (3.26) 

by the inverse kernel of J(r( u, v) and integrating gives, 

J(z( t, u)Qr( u, w) 

1:0 1(z( t, u )Qr( U, w) du 

1:0 h( t, v )J(r( v, u )Qr( U, w) dv 

1:0 h(t,v) 1:0 J(r(v,1t)Qr{u,w)ciudv 

1:0 h(t, v)8(v - w) dv 

Thus, the optimum time-variant filter is given by, 

However, from (3.27), this is simply, 

h( t, w) l:o(J(r(t,u) -No8(t - u))Qr(u,w)du 

8(t - w) - NoQr(t, w) 

(:3.28 ) 

(3.29) 

( 3.30) 

(3.31 ) 

( :3.32) 

( 3.33) 

since Qr( u, v) is the inverse kernel of J(r( u, v). Thus, the inverse kernel of a received signal 

process is directly related to the optimal estimator of the process prior to the addition of 

noise. That is, 
1 1 

Qr(t,w) = -V 8(t - w) - -V h(t,w) 
J 0 J 0 

(:3.3.±) 
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r(t) -----,.-.,.-----~ x J ( ) dt 

z(t) 

Figure 3.3: Optimal continuous receiver for a random linear channel with known statistics. 

However, this Qr( U, v) has the same formulation as the inverse kernel for the original optimal 

receiver of a faded signal, given in Equation (3.15). Substituting (3.34) into (3.15), one finds, 

(:3.35 ) 

where the first term of (3.34) is dropped since it is independent of the particular symbol 

transmitted. It is straightforward to show that hk ( U, v) may be written in terms of the 

channel kernel's eigenvalues, 

(:3.36) 

The k'th branch of the optimal receiver is shown in Figure 3.3. The lower branch 

may be interpreted as forming the estimate of Zk (t), assuming that the k'th message was 

transmitted. This estimate is then correlated with the actual received signal to form the de­

cision variable. This intuitively corresponds to the optimal receiver of a known deterministic 

linear channel. 

Some important points should be noted here: 

1. The derivation of the optimum receiver's general structure made extensive use of 

eigenvalues and integral equations. However, these were applied only formally, and at 

intermediate steps. At no point did the eigenvalues or equations need to be explici tly 

solved for. This is not the case when the performance of the receiver is to be evaluated 

[17]. 

2. Although the interpretation of the optimum receiver as an estimator-correlator is 

intuitively satisfying, in practice there is no need to really calculate hk ( U, v) for a 

receiver; the inverse kernel of the channel correlation function, Qk(ll, v), will suffice. 
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3. The above analysis assumed known statistics of the channel and additive noise. In 

practice they must be estimated somehow from the received signals, and the K-L 

expansion performed within the receiver 

3.2 Discrete Time Optimal Demodulation 

In this section we assume that all signals are time sampled, and the model of the channel 

fading is taken as the M tap, delay line shown in Figure 2.5. The N -sample snapshot at 

time i of the input signal is written in the matrix form, 

s= 

s(i - N + 1) 

s(i-N+2) 

s( i) 

( 3.37) 

with the corresponding channel output vector, z, similarly defined. The tap vectors are 

defined as, 

aj(i-N+1) 

aj(i-N+2) 
j=O ... M-1 (3.38) 

The relationship between the input vector, the channel tap vectors, and the output 

vector may be expressed in matrix form. However, the time dependence of the channel 

filter coefficients (regardless of their being random processes), results in a formulation that 

is slightly different from the more familiar definitions used in spectrum estimation and 

adaptive filtering [37, 31J. This is seen best by first considering a channel with a single 

time-variant tap. Setting i = N for simplicity, the channel matrix is then defined as, 

A = [aoJ = 

ao(l) 
ao(2) 

ao(N) 

(3.:39 ) 
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and the signal input matrix as, 

s( 1) 0 

S = diag(s) = 
o s(2) 

o 
o s(N) 

The channel output vector may then be written, 

z = SA 

= 

s(l) 0 

o s(2) 

ao(l)s(l) 

ao(2)s(2) 

flo(N)s(N) 

o 
o s(N) 

The channel correlation matrix, KA, may be expressed as, 

KA = AAH 

ao(l) 

CLo(2) 

ao(N) 

~----~---------------------

ao(l) 

ao(2) 
= [ao(l) ao(2) ... ao(N) J* 

ao(N) 

= Kao 

The correlation matrix of the channel output is seen to be, 

Kz = zzH 

= SAAHSH 

SKaoSH 

(3 AO) 

(3A1) 

(;3A2) 

(3A3) 

(:3A.5 ) 

( :3A6) 

(:3.4 7) 

(:3.48 ) 

(3A9) 

Noting that the S matrices are diagonal, it is easy to see that the element (u, v) of the 

channel output correlation matrix is simply s( u )Kao (u, v )s"'( v) , which corresponds to the 
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contin uous time covariance function of (3.7). Generalizing to an 111 tap channel, we HOW 

have for the signal matrix, SM, the (N + M - 1) X (M N) matrix, 

S 0 0 0 

0 S 0 0 

SM = 0 0 S 0 (3.50) 

0 0 0 S 

where 0 is an N element null row vector, and S is the N X N signal matrix defined for 

the case of a single channel tap. In each successive column, the S matrices are staggered 

(down) by one row. The channel matrix, A, is defined in turn as, 

ao(1) 

ao(2) 

ao(N) 

al(l) 
ao 

al(2) 

A= 
al 

(3.51 ) 

al(N) 
aM 

aM(l) 

aM(2) 

aM(N) 

An example where we have NI = 2 channel taps, and N = 3 input signal samples, giving 

N + M - 1 = 4 channel output samples, is shown below. 

8(1) 0 0 0 0 0 

0 8(2) 0 8(1) 0 0 
S2 (3.52) 

0 0 8(3) 0 8(2) 0 

0 0 0 0 0 8(3) 
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A 

ao(l) 
ao(2) 
ao(3) 
al(l) 
al (2) 
al(3) 

From these, we have the output vector as, 

s(l)ao(l) 
s(2)ao(2) + s(l)al(l) 
s(3)ao(3) + s(2)al(2) 

s(3)al(3) 

The channel correlation matrix, K A , is similarly expressed as before in the form, 

KA = AAH 

ao 

al 
[ ao H al H H] ... aM-l 

aJH-l 

Kao 0 0 

0 Kal 0 

0 

0 0 K aM _
1 

42 

(3 .. 5:3) 

(:3.54) 

(3.55) 

(3.56) 

(:3 .. 5 I) 

( 3.58) 

The diagonal structure of the matrix occurs because the channel tap processes are assumed 

to be mutually uncorrelated. Again, the correlation matrix of the channel output is given 

by, K z = SMKAS~. It is seen that this expression also corresponds directly to the contin­

uous time covariance function (3.6) derived in the previous section for a general time and 

frequency-selective channel. 

If the transmitted signal is indexed on the particular message vector, Sk being sent, 

then the channel output correlation matrix is given as, 

(3.59) 
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where we have dropped the lVl indexing. The received signal is, 

r z+n 

The received signal correlation matrix is given by, 

(k) 
Kr = Kz + Kn 

(3.60) 

(:3.61) 

(3.62) 

Since the received signal vector, conditioned on Sk, is the sum of two complex Gaussian 

processes, it also will be Gaussian, and its distribution is an N variate complex normal pdf 

[38, 39], 

p(rlsk) = Nil (k)1 e_rHK~.k)-lr 
7r Kr 

(3.6:3 ) 

If the probabilities of transmission for the messages are assumed to be equal, the decision 

variable may be derived from the a priori probability directly. Taking the logarithm of (3.63), 

and neglecting the scaling, the decision variable for the k'th message may be written, 

(k) H (k)-I 
Ck = -In IKr I - r Kr r (:3.64) 

The first term plays the identical role to the Fredholm determinant in the previous section. 

However, it can be shown that the value of the determinant is independent of the signalling 

waveforms if only the phase of the waveforms is used to encode the message. This can be 

seen straightforwardly by expanding the received signal correlation matrix, Ki·k ) , 

where Ke is defined as, 

(k) Kr 

SkKAS{! + SkSkIKnS{!-1 S{! 

Sk (KA + SkI KnS{!-I) S{! 

SkKe S {! 

(3.6.5 ) 

(:3.66 ) 

( :3.67) 

(:3.68 ) 

(3.69) 

and is a modified channel correlation matrix. The determinant of Ki.k) is then given by, 

ISkIIKeIIS{!1 

ISkIlS{!IIKel 
ISkS{!IIKel 

(:3.70) 

(:3.71) 

(:3.72) 
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r 

Figure 3.4: Optimal discrete receiver branch for a random linear channel with known statis­
tics. The 8 symbol represents the vector inner product. 

where we note that SkSf[ = I for PSK signals and a single channel tap. Thus, if the 

k dependence of the signal matrices exists only in the phase of the signal samples, the 

Fredholm determinant will be independent of the signal transmitted. 

The k'th decision variable may then be simplified to, 

(3.73 ) 

This quadratic form corresponds directly to the integral form of the continuous time optimal 

receiver, given in Equation (3.15). As shown by Kailath [18], when the additive lloise is 
(k)-l 

white, the matrix Kr may be written in the form, 

(3.74) 

where H, as defined above, is the least mean squares estimator of the fading channel output 

process, Z, in additive noise. Thus, H(k) corresponds directly to the time-variant filter 

impulse response, hk( U, v), of the previous section, and we have the discrete time hranch for 

the optimal receiver as shown in Figure 3.4. Again, the optimal receiver first estinwtes from 

the received signal the k'th faded signal (before the additive noise), and then correlates the 

estimate with the actual received signal vector. 

Adding the effects of a specular (i.e. deterministic) component to the received signal 

is done by including a non-zero mean signal vector, r, in the pdf of received signal vector. 

Modifying (3.63) appropriately and solving again for the decision variable gives, 

_ H (k)-l _ 
€k = -(r - r) Kr (r - r) (:3.75) 
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Like the inverse signal correlation matrix, however, this receiver structure requires either 

knowledge of, or an estimate of the specular component. As well, the effects of non-white 

additive noise may be considered, with Kailath [18J and Hancock and Wintz [21J providing 

a thorough treatment and interpretation of the problem. 

This chapter has briefly surveyed the design of optimum receivers for general time 

and frequency-selective fading channels. Two important points that still require analysis 

are: 

1. Evaluation of the theoretical performance of an optimal-receiver and a conventional 

differential receiver in fading channels. 

2. Integration of estimators of channel statistics into the overall receiver structure. 

These will be examined in detail in the following chapters. Although the discussion 

until now has been for general time and frequency-selective fading channels, in the following 

we will consider the specific case of purely time-selective fading. This is done as an initial 

step toward analyzing the general random channel communications problem. In addition, 

there has been a great deal of work accomplished on receivers for frequency-selective fading 

channels. Although most make the assumption of an unknown but deterministic selectivity 

that is fixed in time, the adaptive nature of the receivers allow them to track slow temporal 

variations of the channel, and provide suboptimal performance that is generally adequate 

for practical applications. Random time selectivity, however, still carries something of a 

mystique, although the duality that exists between the two forms certainly suggests that 

the frequency selective approach may be applied to the time-selective channel. 

In the conventional differential receiver, where the channel statistics are unknown 

and no attempt is made to estimate them, the decision variable calculated may be written 

in a form similar to (3.73), 

e = _rH Ar (:3.76) 

where A has the form, 

A=[~ ~l (:3.77 ) 

Here 0 and I have dimensions (N) x (N) where N is the number of signal samples taken 

per transmitted symbol interval. Note that the conventional receiver must still form some 

estimate of the second order statistics of the received signal, which contains the transmitted 
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information. Although the conventional differential receiver does not use the optimal kerneL 

K~k)-l, in its quadratic form receiver, A has the advantage of being independent of the 

particular channel in use. As previously mentioned though, the suboptimal receiver also 

has an error floor as a fundamental performance limitation when used in a fading channel 

environment. This limitation is entirely owing to the inappropriate kernel being chosen for 

the receiver, and not to some inherent characteristic of the channel. Unfortunately, the error 

floor is usually attributed to the fading alone, and the receiver structure is not considered. 



Chapter 4 

Performance Analysis of DPSK 

Fading 

• 
In 

The previous chapter examined the form of optimal receivers for the random, fading chan­

nel. This chapter will examine the performance of DPSK forms of these receivers for two 

cases - one in which the channel has a special form of its correlation function, and one 

where a completely general channel correlation function is allowed. Although the first case 

is not useful for a practical system, due to its assumptions on the channel statistics, it is 

interesting since it provides a fully analytic solution for the case of M-ary DPSK, using com­

plex signalling. As well, its assumptions on the correlation function are plausible as a first 

approximation, and provides a "toy" channel that an optimal receiver may be designed for 

and its operation interpreted. M-ary DPSK performance for general time-selective fading 

channels may also be evaluated, but requires much less satisfying Monte-Carlo methods to 

estimate the receiver performance. The performance of the optimal receiver will be evalu­

ated for binary as well as general M-ary DPSK signalling, and a geometric interpretation 

of the operation of receivers in fading channels will be given. 

4.1 Analysis of Receiver Performance for a Special Case of 

Correlation Function 

This section will examine the performance of conventional and optimal continuous time 

receivers for time-selective fading with a special form of channel covariance function. Cf. 

47 
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Figure 4.1: A sample realization of the magnitude of the time variation of the fading 
channel's frequency response. Note that a log vertical scale is used. 

Chapter 2. This is based on the work by Walker [22] for a transmitted reference scheme for 

binary signals. He suggested using two separate frequency bands, one for the data signal and 

one for a reference phase tone, where each band experiences time selective fading, as well as 

fading between the frequency channels. That is, the random time-selective fading processes 

in each channel are not independent, but have some measure of correlation between them. 

Figure 4.1, taken from Figure 2.10, can be used to illustrate this case, where the frequency 

bands are imagined to be two lines on the surface, running parallel to the time axis. For 

two channels relatively close to each in frequency, the time variations in the two channels 

will follow I., ;1 other closely in step. As the the two channels are further separated, there 

is less correlation in their time variations. 

The form of frequency selective fading is assumed to be characterized by a single 

decorrelation parameter between the transmitted and reference slots, an approximation 

which is often used even in present-day analysis. This concept may be straightforwardly 

applied to a time-differential form of signalling, where the reference and data signals occupy 

two consecutive slots in time, rather than in frequency. Within each slot, the full continuous 

time random process will be characterized statistically through the K - L expansion. In PSK 

signalling, frequency-selective behaviour of the channel may be ignored due to the narrow 
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bandwidth of the signalling band. Here, Walker's analysis is extended to complex signalling 

for M-ary DPSK. 

From the discussion of Appendix B, the channel is assumed to have a correlation 

function over two symbol intervals of the form, 

R2 ( T) = { R( T ) 
pR(ITI- T) 

ITI < T } 
T < ITI < 2T 

(4.1 ) 

where R( T) is the actual channel correlation function. A Karhunen-Loeve expansion [38], 

described in Appendix A, is performed on each of the fading signals over one symbol inter­

val, where the eigenfunctions, {<Pi( t)}, and eigenvalues, {A;}, satisfy the Fredholm integral 

equation, 

( 4.2) 

The kernel J( (t, T) is given by, 

J((t,T) = s(t)R(t - T)S*(T), (4.3 ) 

where set) is the modulating waveform. In practice, this equation would be solved nu­

merically, and the number of eigenvalues resolved will equal the number of samples over a 

symbol interval used in evaluating the integral. 

From the eigenvalue spectrum of the combined channel correlation function and 

signal waveform, the probability of correct detection of a conventional continuous time 

QDPSK receiver may be shown to be, 

1
00 N 1 

Pc = C N L --;-( ---C-) --'-( -----,-) 
8=-00 j=l it} + s2 t} - t; 

( 4.4) 

where CN and t},2 are defined as, 

( 4 . .5) 

(4.6 ) 

and N is the number of "significant" eigenvalues found from (4.2). Note that the relatively 

slow rate of the fading process makes the covariance kernel J( (t, T) very nearly singular. 
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Figure 4.2: The asymptotic error floor for a conventional receiver in a fading channel with 
two significant eigenvalues, as a function of the eigenvalue ratio, >"2/ Al and intersymbol 
correlation, p. 

and the eigenvalue spectrum quickly decays to zero. The error expression above, may be 

numerically evaluated for an arbitrary number of eigenvalues and values of p. 

Figure 4.2 shows the asymptotic error floor for the case of two significant eigenvalues 

as a function ofthe symbol correlation factor, p, and the ratio of the two eigenvalues. Setting 

>"2 to zero corresponds to the single eigenvalue result given by Voelcker [11]. It is seen that 

for a given p, the error floor of a conventional receiver is dependent on the spectrum of 

the eigenvalues, which is determined from the fading correlation function and waveform 

shape through (4.2) and (4.3). This is somewhat surprising, since virtually all analyses of 

receivers in fading make the assumption of a single significant eigenvalue; that is, correlated 

staircase fading. The best performance that may be achieved for a given p occurs for equal 

eigenvalues, and can result in significant decreases in the error floor. 

Extending the above to additional eigenvalues gives the same general results, where 

the asymptotic error experienced by the receiver is a function of both the channel's in­

tersymbol correlation, and the eigenvalue spectrum of the received signal process. Again, 

the minimum asymptotic error occurs for the case of equal eigenvalues. This is discussed 
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Figure 4.3: Asymptotic error performance of the optimal receiver as a function of the 
number of channel eigenvalues and intersymbol correlation. 

further in Appendix B. It is seen that even in a conventional receiver, the asymptotic er­

ror floor is not an absolute or irreducible quantity, and, may vary over several orders of 

magnitude, depending on the values of p and {Ai} from the combined channel fading and 

signalling waveforms. Using fixed signal pulse shapes, performance is constrained only by 

the channel's p, number of resolvable eigenvalues, and their spectrum. The latter may still 

be determined in part by the chosen pulse shape, s(t), as given in (4.2) and (4.3). 

From Appendix B, it can then be shown that the statistics of the decision variables 

for an optimal, or maximum likelihood receiver are equivalent to those of the conventional 

receiver, operating in a channel where all ofthe eigenvalues equal one. This is independent of 

the actual channel eigenvalue spectrum. The optimal receiver is seen to perform something 

of a whitening of the eigenvalue spectrum. 

Equation (4.4), for a conventional QDPSK receiver, was numerically evaluated in 

the limit as all eigenvalues approach 1. The results are shown in Figure 4.3, where the 

asymptotic error floor is given as a function of the number of resolved eigenvalues and the 

correlation parameter, p. It is seen that for a given channel correlation between symbols, 



CHAPTER 4. PERFORMANCE ANALYSIS OF DPSI< IN FADING 52 

the error floor decreases exponentially with an increasing number of resolved eigenvalues. 

4.2 Form of an Optimal DPSK Receiver for General Cor­

relation Functions 

In the previous section, receivers for detecting M-ary DPSK transmitted through a specially 

correlated Rayleigh fading channel was examined. However, in the extension of \Valker's 

scheme [22] to time-differential signalling, it was seen that this imposed the form given by 

(4.1) on the autocorrelation function of the channel fading process. This autocorrelation 

function is a poor approximation to the actual fading process, since it discards second order 

statistical information about the process available in the second symbol interval. The results 

suggest, however, that similar, maximum likelihood improvements in performance may be 

possible for DPSK in an arbitrary channel. 

From Chapter 3, for the case of a single channel tap and equi-energy signalling, the 

optimal calculation of the m'th decision variable is given by, 

H -1 
lm = r K~ r; m = 0 .. . lvf - 1 ( .J.i) 

where r is the received sampled signal vector, K~ is the correlation matrix of the received 

sampled signal vector, assuming symbol m was transmitted, and M is the number of symbols 

in the signalling alphabet. The inverse of K~ is often termed the "decision kernel" and is 

assumed to be precomputed or known. It may be expanded as, 

K~ K~+Kn 

SmKaSm H + Kn 

( -1.8) 

(4.9 ) 

where Sm is the diagonal matrix of the time samples of the m'th message envelope, Ka is 

the estimated or known correlation matrix of the channel tap over two symbol intervals, 

and Kn is the correlation matrix of the additive noise. Assuming the noise is white with 

variance (72, then we have Kn = (721 where I, here, is an (2N) x (2N) identity matrix. 

We now assume the signals are constant amplitude DPSK, with the form, 

(.J.IO) 
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where I, here, is an N X N identity matrix. The correlation matrix of the received signal 

vector, K~, may then be expanded as, 

K m- I 

r 
( H )-1 SmKaSm + a 21 ( 4.11) 

( H H)-l SmKaSm + a 2SmSm ( 4.12) 

[Sm (Ka + a 2I) S:.;:]-l ( 4.13) 

( ) -1 H Sm Ka + a 21 Sm ( 4.14) 

S K- 1SH 
m c m (4.15) 

where Kc is defined as the channel correlation matrix, and is the correlation matrix of the 

received signal when 8m = O. Note from the above that the dependence on m of the receiver's 

decision kernel may be conveniently factored out of the decision variable expression. The 

expression for K~ -1 may then be written as, 

-I 1 [ 1 K~ = K;;- ® . 
e,Bml 

( 4.16) 

where ® is the Hadamard product, giving element by element multiplication, and 1 is 

an N X N square matrix with elements all of 1. The second matrix is seen to act as a 

multiplicative mask on the inverse channel covariance matrix. Once the inverse covariance 

matrix of the channel is given or estimated, the M individual decision variable kernels may 

be computed straightforwardly. 

Comparing the above to the analysis of Appendix B for the specialized receiver, we 

see that we are performing an almost identical inversion of the received signal's covariance 

matrix in calculating the optimal decision variables. However, we previously assumed that 

the channel process had already been decomposed into its K-L components over one symbol 

interval. This leads to the simplified structure of the decision kernel given in (B.64), with 

the upper and lower diagonal bands arising from the single symbol decomposition, and the 

use of a single correlation coefficient, p, between symbols. Although the simple structure 

of the covariance matrix leads to closed form expressions for the receiver performance, the 

calculation of the K-L coefficients is left implicit in the analysis. Here we will work directly 

with the time sampled received data vector, r, and its covariance matrix, K;;'. As shown 

in Chapter 3, the conventional receiver may be placed in a similiar quadratic form. 
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4.3 A Theorem Useful in Evaluating Receiver Performances 

In order to analyze the performance of general receivers in Rayleigh fading channels, we 

make use of a theorem given in [40], which allows the simultaneous diagonalization of two 

Hermitian matrices, one of which must be positive definite. Given an indefinite Hermitian 

quadratic form of the complex Gaussian vector, u, 

(4.17) 

where u has the positive definite covariance matrix, 

( 4.18) 

there exists a transformation matrix, T, with v = Tu, such that, 

(4.19) 

and, 

(4.20) 

where r is an indefinite real diagonal matrix, which from the following, is shown to be a 

function of the eigenvalues of the correlation matrix, 'E. 

Forming the eigen-decomposition of the positive definite matrix 'E, one obtains, 

(4.21) 

where cP is the unitary matrix of eigenvectors, and A is the diagonal matrix of real, positive 

eigenvalues. Defining P = cpA -1/2, it is seen from the eigen-decomposition above that, 

pH'Ep = I (4.22) 

Then forming the eigen-decomposition of pH QPH-l , results in, 

(4.23) 

where E) is the matrix of eigenvectors and r is a diagonal matrix of positive and negative 

eigenvalues. Now define the transformation matrix T = E)HpH, and let v = Tu. It is 

straightforward to show then that the above theorem holds with the definitions given. 

It is seen that the general quadratic form decision variables may be reduced to a 

canonical form, given by (4.19) and (4.20), which is a weighted sum of independent Chi­

Square variables, each with 2 degrees of freedom. 
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4.4 Performance of Binary DPSK Receivers 

This case was also analyzed by Barrett [28] where he derives a convenient algebraic expres­

sion for the binary receiver error performance through the use of residues. The approach 

taken here will yield identical results, but requires a numerical integration for its solution. 

However, this approach offers a route to calculating the performance of M-ary DPSK, which 

does not appear to be possible with Barrett's method. 

In the optimal binary receiver, we form the two decision variables, 

( 4.24) 

(.f.2.5) 

where the minimum variable is the maximum likelihood decision, and 0 corresponds to 

zero phase shift between symbol intervals, and 7r to a phase shift of 1800 between symbol 

intervals. Thus, the receiver decision kernels are given by, 

K 1I"-1 
r Kc -1 @ [ 1 -1 1 

-1 1 

( 4.26) 

(4.27 ) 

Assuming a zero phase shift was transmitted, the covariance matrix of r is given by K c , 

and an error occurs when the random variable 6.£ == (£11" - £0) < O. The receiver may then 

be cast in the form, 

( .f.28) 

where we define, 

K - K1I"-1 _ K O- 1 
~ - r r ( .f.29) 

Note that although K; and K~ are positive definite Hermitian matrices, as are their inverses, 

the difference between their inverses, K~, will generally not be positive definite, although 

it will be Hermitian. Its eigenvalues will be real, but be allowed to be negative as well as 

positive. It is these negative eigenvalues of the decision variables kernel that correspond to 

errors in the receiver's decisions. 

In order to evaluate the performance of the optimal receiver, the theorem of Sec­

tion 4.3 is used, where we identify, 

Q 

(4.30 ) 

(4.31) 
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Then a statistically equivalent quadratic form to (4.28) is given by, 

where, 

I 

o 

56 

(4.32) 

( 4.33) 

(4.34 ) 

Since r is a real diagonal matrix of positive and negative values, the decision variable 6,.£ 

is reduced to a weighted sum of i.i.d. unit variance complex Gaussian random variables. 

The conventional receiver may be put into an identical form, where we now use the decision 

kernel, 

A=[~ ~l (4.35 ) 

rather than Kc., and an error similarly occurs when the decision variable is less than zero. 

Once the diagonal matrix r has been evaluated, the pdf of the canonical form may be 

numerically integrated, as described by Imhof [41], to calculate the error performance of 

binary receivers. Note that the binary case leads to a single, real decision variable, whose 

sign determines whether an error has been made or not. The general M-ary case will be 

examined in the next section. 

4.4.1 A Geometric Interpretation of Binary Receivers in a Fading Chan­

nel 

The previous section's discussion on reducing the decision variable of a binary D PSK recei ver 

in Rayleigh fading to a canonical form may also be interperated geometrically. Note that 

(4.32) defines a boundry, 6,.£ = 0, between an error and no error in the space of transformed 

random variables. This boundary has the shape of a 4N dimensional cone, where N is 

the number of samples per symbol. Although this is similar to the signal space description 

of a conventional receiver in AWGN, i.e. error regions are defined and the probability 

of error is the integral of a Gaussian distribution within that region, Equation (4.32) is 

based entirely on the theorem of Section 4.3 and the analogy between the two should not 

be examined too closely. This view of the receiver's operation, however, does make the 

analysis of the previous section more plain, as simple cases may be solved for analytically, 

and the qualitative behaviour of the receiver follows clearly as the channel parameters are 
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varied. An example is given here for a conventional binary differential receiver. The optimal 

receiver may be similarly evaluated, with the matrix A below replaced by the optimal kernel 

(K1\" - Ko). 

Assuming 1 sample per symbol, the receiver uses a quadratic kernel of the form, 

( 4.36) 

for its decision variable, with the sign of the calculated variable determining the decision of 

the receiver. Assuming no phase shift between symbols, so that !:lC < 0 corresponds to a 

receiver error, the received signal has a correlation matrix of the form, 

( 4.37) 

where O"~ is the additive white noise variance, O"J is the fading channel variance, and p is the 

correlation between symbol intervals. In addition, we assume that the received signal has 

a non-zero mean, specular component of magnitude K. Performing the diagonalization of 

the decision variable as described in (4.17) -( 4.20) results in an expression for the decision 

variable in terms of independent, unit variance complex Gaussian random variables, 

(4.38) 

where we have the correlation, 

(4.39) 

and the corresponding mean values are given by, 

Note that each v may be decomposed into its real and imaginary parts, so that 

Ivl 2 = (Rv)2 + (SSv)2. In order to illustrate the basic geometry, we suppress one component 

of each of the two v's, to give a 2 dimensional view, shown in Figure 4.4. The decision 

boundary of the receiver, corresponding to !:l£ = 0, forms a 2 dimensional cone centred on 
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Figure 4.4: Sketch of the decision boundries of a differential binary receiver in a fading 
channel with a receiver sampling rate of 1 sample per symbol. 

the origin, with sides of slope, 

m cone = ± 
0''; + (1 + P )O'J 

0''; + (1 - p)O'J 
(4.41) 

The random variables VI and V2 form a unit variance, non-zero mean, spherical Gaussian 

cloud of possible signal realizations. 

This somewhat abstract view of a receiver operating in a fading channel demon­

strates the essential behaviour of a conventional receiver as the channel parameters are 

varied. For example, setting J( = a places the center of the Gaussian cloud at the ori­

gin and corresponds to a purely Rayleigh fading channel. As the noise variance, 0';, is 

then decreased for a fixed channel variance, the slope of the cone's sides is seen to increase, 

decreasing the area corresponding to an incorrect decision. As O'~ -+ 0, we reach the asymp­

totic slope, ± )(1 + p) / (1 - p), leaving a finite error area. This corresponds to the error 

floor in a conventional receiver, and its value may be calculated by integrating the Gaussian 

cloud over the full 4-dimensional error cone. As well, varying p is seen to change both the 

error area and the Gaussian cloud's mean. Letting p -+ 1, corresponding to a perfectly 
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correlated channel with no time selectivity, is seen to eliminate the asymptotic slope as 

a; --+ 0, with mcone --+ ±oo. Letting p --+ 0, corresponding to completely uncorrelated 

fading between the symbols, leads to an error cone with sides of slope ±1 which takes up 

half of the signal plane. For a channel with no specular component, this gives an error rate 

of 1/2, as would be expected in differential signalling. 

As well, setting a; = 0 and keeping a specular component, which is just the standard 

AWGN channel, the error cone again occupies half of the signal plane. For a fixed X, then, 

the position of the unit variance Gaussian cloud is dependent on the variance of additive 

noise, so that the amount of overlap between the fixed size Gaussian cloud and constant 

error areas changes only with the position of the cloud. This is different from, but still 

equivalent to, the standard signal space view where the position of the Gaussian cloud is 

fixed and its variance changes with the additive noise power. Again, these examples are 

intended more to illustrate the principle behind the canonical reduction and how it agrees 

with the known operation of receivers in fading channels. 

Although generalizing to N samples per symbol and including the imaginary com­

ponents of the Gaussian cloud to yield a 4N dimensional cone, will change the particulars 

of this example, it should not change the overall behaviour. 

As well, this figure is curiously similar to the light-cone of special relativity, where 

SRVI and SRV2 correspond to the time and space coordinates, the diagonalized kernel of (4.38) 

corresponds to the Lorentz metric, and 6.£ is the proper distance from the origin [42]. It 

is unclear if viewing a decision variable as a distance in a non-Euclidean plane offers any 

advantages, however, it is somewhat surprising to see it arise in the analysis of fading 

channels. 

4.4.2 Example Calculations of Binary DPSK Receiver Performance 

This section provides an example calculation and typical tlleoretical performance curves 

of conventional and optimal binary DPSK receivers. In the following examples, time­

bandwidth products of BT = {0.16, 0.08, 0.04} will be used for the fading channel process, 

and the number of baseband samples per symbol period will be set to values of 2, 4, or 

8. Finite duration, square pulses are assumed, with no bandlimiting due to the channel 

considered. As well, the receiver is assumed to have perfect symbol timing. 

After generating an appropriate set of L FIR filter taps, corresponding to the chan­

nel fading process, the theoretical correlation function of the sampled channel process, across 
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two symbol intervals, is calculated using the formula, 

L-k 

r(k) = l: bibi+k; k = 0,1, ... (4,42 ) 

where k is the correlation delay, {b;} is the set of filter taps, and L is the number of filter 

taps, typically chosen here to be a few hundred in size. The symmetric, Toeplitz correlation 

matrix of the fading process, K a , is then generated from the correlation vector, with the 

±k'th diagonal having the value r( k), where k = 0 corresponds to the main diagonal. 

The total channel correlation matrix, K c , is given as described before as, Ka + 0";;1, 

where 0"; is the variance of the additive white Gaussian noise. The correlation function of 

the additive noise is thus assumed to have the form, 

Rn(T) ( 4,43) 

(4A4) 

where No is the double sided (i.e. positive and negative frequencies included) power spectral 

density of the additive noise, in units of [W /Hz]. Assuming unit amplitude transmitted 

pulses, i.e. unit transmitted power, the average received signal energy per symbol is given 

by nsbO"], where nsb is the number of samples taken over one symbol interval, and O"J = 7'( 0) 

is the variance of the stationary fading process. The additive white noise power spectral 

density, in units of (Energy/Time)/ Hertz = Energy, is No = 0";. Thus, the average­

received-signal-energy-to-noise-power-spectral-density ratio is defined as (3], 

(4,45) 

Assuming equiprobable binary signalling and using the conventional and optimal receiver 

kernels described in the previous section, the probability of symbol error may be straight­

forwardly calculated using the techniques described previously. 

Figure 4.51 shows the theoretical performance curves of a conventional BDPSK 

receiver operating under the various time-bandwidth products and sampling rates. Qual­

itatively the behaviour is as expected. The larger BT products, corresponding to faster, 

less correlated fading processes, yield larger error floors. As well, it is observed that as the 

fading process becomes more correlated, the closer the initial slope in the performance curve 

1 Note that in this chapter and the next, all performance curves were evaluated at SNR intervals of 5 dB. 
with linear interpolation used between the data points. 
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Figure 4.5: Performance of a conventional BDPSK receiver in a fading channel under various 
channel fading rates and receiver sampling rates. 

approaches the expected of -1 decade/l0 dB. A less correlated channel process decreases 

the magnitude of the initial slope. 

The observed error floors also agree closely with the theoretical one-sample-per­

symbol formula, Pe = l;p [4]. The values of p for the different channels and the expected 

asymptotic error rates are shown in Table 4.1. There is a very close agreement with 

the theoretical multi-sampling results derived in this chapter, and the more approximate 

one-sample-per-symbol values. 

BT p Pe 

0.16 0.96410 1.80e-2 
0.08 0.98830 5.85e-3 
0.04 0.99268 3.66e-3 

Table 4.1: Theoretical asymptotic error floors at 1 sample per symbol for BDPSK under 
various channel fading rates. 
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The sampling rate is also seen to playa role in the performance of the receiver, with 

two observable regimes. At high SNR's where we are operating in the error floor, increased 

sampling yields a slightly lower error floor, which appears to reach an asymptotic limit. 

This is consistent with the theoretical evaluation of Section 4.3, where the spectrum of the 

eigenvalues of the fading process was seen to determine the asymptotic performance of a 

continuous time receiver. The floor was seen to decrease as more of the eigenvalues were 

included in the evaluation, with the exponential tailing of the spectrum to zero producing a 

similar asymptotic limit in the error floor as a function of the number of resolved eigell values. 

At lower SNR values the relationship between sampling and the error performance 

seems to be reversed, with higher sampling rates yielding slightly worse performance. This 

may be due to numerical precision problems. In the numerical procedures described in 

the previous section, the low additive noise is seen to create a large portion of eigen values 

closely equal in magnitude, but opposite in sign. In order to obtain reasonable results with 

the numerical precision available, a judicious number of the smallest balancing positive 

and negative eigenvalues are simply zeroed. The remaining set of eigenvalues provide a 

reasonable performance curve, but the truncation required at the higher sampling rates 

may distort these curves somewhat. 

Figure 4.6 shows the theoretical performance of an optimal BDPSK receiver, operating 

with knowledge of the the statistics (i.e. correlation matrix) of the fading channel process, 

for a fixed fading time-bandwidth product of BT = 0.08 and number of samples per symbol 

interval equal to 2,4, and 8. It is seen that within the SNR range shown, the error floor for 

a conventional receiver, exhibited in Figure 4.5, has been eliminated. Again, increasing the 

sampling rate is seen to slightly improve the receiver performance asymptotically. This was 

examined closer for the case of a channel with a fading rate of BT = 0.16, and sampling 

of nsb = {2,4,8, 16,32,64}. It was found that nsb = 8 provides virtually the full sampling 

gain. The gains in going from nsb = 2 to nsb = 16 at a symbol error rate of 10-4 are given 

in Table 4.2. The incremental gains for nsb = 32 and nsb = 64 are negligible. 

Figure 4.7 shows the performance curves of an optimal BDPSK receiver sampling 

at 4 samples per symbol, at various fading channel time-bandwidth products. Although 

there are some differences in the curves, the receiver is seen to be fairly invariant to the 

channel fading characteristics. This is further seen in Figure 4.8, where all 9 of the evaluated 

performance curves are superimposed on the same graph. 

Although the optimal receiver performance curves show the elimination of the error 
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Figure 4.6: Theoretical performance of an optimal BDPSK receiver in a fading channel at 
various sampling rates. BT = 0.08, nsb = {2, 4, 8}. 

nsb Gain(dB) 
2-+4 1.15 
2-+8 1.38 
2 -+ 16 1.44 

Table 4.2: Gains in SNR at Pe = 10-4 for various sampling rates in a fading channel with 
BT=0.16 
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Figure 4.7: Theoretical performance of an optimal BDPSK receiver in a fading channel at 
various fading rates. nsb = 4, BT = {0.16, 0.08, 0.04} 
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Figure 4.8: Superposition of the performance curves of an optimal BDPSK receiver at 
various channel fading rates and receiver sampling rates. BT = {0.16, 0.08, 0.04}, nsb = 
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Figure 4.9: Extended performance curves of optimal BDPSK in a fading channel. nsb 

{2,4}, BT = 0.16. Also shown are its diversity regimes and maximum slopes. 

floor at reasonable SNR values, an error floor still exists for finite sampling, or equivalently 

a finite number of resolved eigenvalues. Figure 4.9 shows the extended performance curves 

of an optimal receiver, at sampling rates of 2 and 4 samples per symbol, and with a channel 

time-bandwidth product of BT = 0.16. As expected, a higher sampling rate lowers the error 

floor, although this is not apparent until extremely high signal-to-noise ratios. Figure 4.10 

shows the relation between the asymptotic error floor and the number of samples taken per 

symbol interval, again for a channel with BT = 0.16. An asymptotic leveling off in the 

performance curve is seen. A comparison of this curve, normalized to the error floor at 1 

sample per symbol, is made with the normalized eigenvalue spectrum of the fading process 

in Figure 4.11. The spectrum is evaluated from the correlation matrix of the process over 

two symbol periods, at 16 samples per symbol. Since each sample per symbol yields two 

eigenvalues, the spectrum contains 32 eigenvalues in total. 

There appears to be a close relation between the asymptotic error and the eigen value 

spectrum of the fading channel. This is not unexpected, since as discussed in Chapter 2, and 

noted by Kennedy [3], the optimal receiver is exploiting the diversity implicit in the fading 
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Figure 4.10: Asymptotic error floor of an optimal BDPSK receiver in a fading channel with 
BT = 0.16, as a function of the sampling rate. 

channel. Although higher sampling rates provide more of the implicit diversity paths, these 

paths have much smaller energies - proportional to the higher order eigenvalues. It seems 

reasonable that if the incremental energies of additional diversity paths are progressively 

smaller, their incremental contributions to the receiver performance will likewise be smaller. 

This is the pattern shown in Figure 4.11. This behaviour is also consistent with that seen 

in Section 4.1 for the specialized channel. 

As discussed in [4], higher order explicit diversity will also steepen the symbol­

error-rate performance curves of a conventional receiver which combines the independently 

received signals optimally. Application of this to the implicit diversity of a fading channel 

is also discussed in [3J. For the logarithmic plots used here, the slope of a fully correlated 

channel's performance should be -M decade/10 dB, where lvi is the order of the diversity. 

As an example, Figure 4.12 shows the theoretical performances of a conventional receiver 

with no diversity, operating in a perfectly correlated channel, and in a channel with a 

correlation between symbols of p = 0.9555. This corresponds to a time bandwidth product 

of BT = 0.16 in the calculations. Although the perfectly correlated performance curve is 
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Figure 4.11: Plot of the normalized relationship between the the asymptotic error fioor of 
the optimal BDPSK receiver and the eigenvalue spectrum of the channel fading process. 

seen to achieve its expected asymptotic slope of -1 decade/10 dB, the partially correlated 

curve only manages to achieve a slope of -0.65 decade/10 dB before leveling out in the error 

fioor. 

Figure 4.9 shows the optimal performance curves for 2 and 4 samples per symbol 

in the same channel. Note that the 2 sample per symbol curve shows two distinct linearly 

sloped segments with increasing SNR before tailing into the error fioor, while the 4 sample 

per symbol curve shows four. For the optimal receiver, the number of samples per symbol 

corresponds to the number of implicit diversity paths resolved by the receiver, with each 

path having a signal energy equal to an eigenvalue of the correlation function over one 

symbol interval. The additive white Gaussian noise is simply a second random variable, 

with a constant variance equal to 0';, added to each path. At very low SNR's, the large 

additive noise energy submerges the higher order diversity paths with very low energies 

(i.e. small eigenvalues), and there is effectively only a single path. The other paths supply 

only irrelevant AWGN. As the SNR is increased, the other paths will emerge from the noise 

one by one as the eigenvalues increase in value relative to the noise variance. The point of 
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Figure 4.12: Error performance curves of a conventional, one sample per symbol, differential 
receiver operating in perfectly correlated and partially correlated fading channels. 

emergence may be loosely defined as the point at which the energy of the noise equals the 

fading energy of the diversity path, i.e. 2a;, = Ai. The total received SNR is given by, 

SNRtot = 
LiAj 

(4.46 ) 
2a~ 

Ao 
(4.47) ~ 

2a~ 

where it is reasonably assumed that the eigenvalue spectrum rapidly falls off. This is valid 

for the fairly slow, narrow bandwidth correlated fading of mobile channels. The SNR of the 

i'th diversity path is similarly given by, 

(4.48 ) 

The value of the total received SNR at the point of emergence of the i 'th path, is then simply, 

SNRi = Ao 
tot Ai (4.49) 

As an example for the 4 sample per symbol curve, the normalized eigenvalue spec­

trum of the fading process over one symbol, and the corresponding path emergence SNR's, 
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,,\, 
I SNR'tot (dB) 

1.0000e+00 a 
7.358ge-3 21.3 
1.5360e-5 48.1 

1.1436e-8 79.4 

Table 4.3: Estimated sequence of SNR's where the optimal receiver switches to a higher 
order of effective diversity operation. 

BT = 0.16 BT = 0.08 BT = 0.04 
Turnover SNR 22.5 dB 27.4 dB 29.4 dB 

Table 4.4: Estimated values of SNR where the optimal receiver switches from first to second 
order effective diversity operation. 

are given in Table 4.3. These expected values of the total received SNR at which each ad­

ditional diversity path should manifest itself, shows very good agreement with Figure 4.9. 

As well, the eigenvalue spectra of the fading process' over one symbol period at 

4 samples per symbol were calculated for each of the three channels of Figure 4.7. As 

discussed in the previous section, the second eigenvalues give the values of SNR where the 

2'nd order diversity manifests itself, and are given in Table 4.4. These curves and their 

expected breakpoint SNR's are also shown in Figure 4.13 as vertical lines. It is seen that 

the curves for each fading rate turnover in the expected order and reasonably close to the 

tabulated SNR's. Note that the definition of the breakpoint signal-to-noise ratio is rather 

arbitrary, and really only defines a region of expected increase in received diversity. The 

exact placement of the lines is intended mainly for illustration. The thresholding effect 

exhibited here does not seem to have been mentioned previously in the literature [4:3]. 

The fraction of the diversity utilized by the receiver is also interesting. The maxi­

mum magnitude of the slope achieved for 2 samples per symbol is -1.39 decade/10 dB, at 

about 35 dB, while for 4 samples per symbol, it is -2.84 decade/10 dB, at about 90 dB. For 

1, 2, and 4 samples per symbol, this corresponds to the receiver achieving 0.65, 0.70, and 

0.71 of the total available diversity respectively, before tailing off into the error floor. 

The ability of the optimal receiver to resolve the implicit diversity of a time selective 

fading channel is made apparant in the above, and results in measurable effects on the 
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Figure 4.13: Expected breakpoint SNR's in the performance curves of an optimal BDPSK 
receiver at a fixed sampling rate and various channel time-bandwidth products. The vertical 
lines correspond to the breakpoint SNR's for each BT product. 
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performance curves of the receiver. However, the very high SNR's at which this occurs, 

at least for square pulse shapes, does not make these effects noticeable beyond the second 

order diversity regime for typical mobile channels. Nonetheless, we are in the position of 

being able to choose the pulse shapes for the signalling, and from (4.9), this is seen to affect 

the eigenvalue spectrum of the received signals, and thus the receiver's performance. It may 

be possible to select a pulse shape that will sufficiently whiten the eigenvalue spectrum of 

the received process for a range of channels to force the higher diversity regimes down to 

realistic SNR's [3,44]. This will also affect the receiver error floor, as well as the transmitter 

spectrum, and needs to be examined more closely in order to balance conflicting design 

requirements. 

4.5 Performance of M-ary DPSK Receivers 

4.5.1 Conventional M-ary Receivers 

The conventional M-ary DPSK receiver generates a complex decision variable from the 

received signal vector, which will be binned into one of the allowable signal sectors. The 

decision variable is given by, 

£ 

where A is given by, 

XiYl + X2Y2 + ... + X'NYN 

rHAr 

( 4.50) 

(4.51) 

(4.52 ) 

and the covariance matrix of the received signal, assuming zero phase shift between symbols, 

is given by Kc as before. Unlike the binary case, the receiver kernel is not of full rank and 

the previous theorem cannot be directly applied. However, the kernel A may be broken 

into the sum of a symmetric and antisymmetric matrix, 

A (4.53) 

~ [0 I 1 + ~ [0 -I 1 
2 I 0 2 I 0 

(4.54 ) 

and the decision variable £ may be written, 

(4.55 ) 
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The theorem of Section 4.3 is then used to find a transformation matrix which will simul­

taneously diagonalize Kc and As. This will not diagonalize A a, but will be seen to still 

put it in a useful form. The matrix P is generated from the eigen-decomposition of Kc as 

before, and the eigen-decomposition, 

(4.56) 

is performed. Forming the transformation matrix T = e~pH and defining z = Tr, then 

the decision variable may be expressed as, 

(4.5/) 

where 

( 4.58) 

Note that the second term in the expression for e is not, in general, diagonal. However, 

it is antisymmetric, as can be shown by expanding the sum of the second term with its 

Hermitian conjugate, giving a null matrix. The decision variable has been effectively split 

into its real and imaginary parts, corresponding to the symmetric and antisymmetric terms 

of (4.55) respectively. 

Recall in the binary case, where the decison variable was purely real, the pdf of the 

random variable, e, could be integrated numerically [41]. However, in the case of M-ary 

DPSK, where e is now complex, there does not seem to be available a method of calculat­

ing the pdf of the complex random variable, except for certain special cases. The utility 

of the above transformation, however, is that the quadratic form of the decision variables 

is now in terms of an uncorrelated, unit variance signal vector, z. Thus, the pdf of the 

decision variable may be efficiently estimated through Monte Carlo techniques by generat­

ing a suitably large ensemble of decision variable realizations. The error rate is estimated 

by suitably binning the simulation results. Note that the effects of the pulse shape and 

spectrum of the channel fading process are considered only once in the evaluation of the 

eigen-decompositions. After the receiver decision variable has been reduced to its canonical 

form, sample realizations of the receiver's decisions are straightforward to generate, and 

the random Gaussian variables need only be generated once and stored for future calcula­

tions. The symmetry and sparseness of the form can also be used to reduce the number of 

calculations required by 25% over the full evaluation of the matrix products. 
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4.5.2 Optimal M-ary Receivers 

The procedure used in evaluating the performance of optimal receivers is very similar to 

that for the conventional receivers described in the previous section. For the conventional 

receiver, we had a singular kernel which was broken into its two symmetric and asymmetric 

matrix components. One of these components was then diagonalized in conjunction with 

the correlation matrix of the received signal vector. Here we now have a set of decision 

variable kernels, where, again, one kernel will be diagonalized in conjunction with the 

signal correlation matrix. The set of decision variables over which we choose the minimum, 

is given by, 
o H m- 1 
t-m = r Kr r; m = 0, ... , M - 1 (4.59) 

If we assume zero phase change, the decision kernel corresponding to the symbol trans­

mitted, has the form K~l. Using the canonical reduction of the decision variables, it is 

straightforward to show that the decision variables are given by, 

ZHp-1K~-lpH-1Z 

zHp-1S K -lSHpH-1z 
m c m 

zHQm z 

( 4.60) 

(c!.61) 

(4.62) 

where Qm is defined as the m'th canonical receiver kernel. Assuming m = 0 corresponds 

to zero phase shift, then Qo simplifies as, 

Qo P-1Kc-1pH-1 (4.63) 

r 1/ 2 <pH Kc -1 <p r 1/ 2 (4.64 ) 

r 1/ 2r- 1 r 1/ 2 (4.65 ) 

I (4.66 ) 

Again, the correlation matrix of the transformed received signal vector, z, is the identity 

matrix. As in the conventional M-ary receiver, this canonical transformation allows an 

efficient Monte Carlo determination of the receiver performance. 
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Figure 4.14: Theoretical performance curves of a conventional QDPSK receiver operating 
in various channel fading and receiver sampling rates. 

4.5.3 Example Calculations of M-ary Receiver Performance 

In this section we will show some typical theoretical performance curves for Q D P S K sig­

nailing in a Rayleigh fading channel, using both conventional and optimal receiver struc­

tures. This will parallel Section 4.3 for the most part, using the same channels and conclud­

ing with the same general results. After the receiver has been reduced to canonical form, 

as described in the previous section, the theoretical performance is evaluated using Monte 

Carlo simulation to estimate the decision variables' probability distributions. Between 1,000 

- 10,000 error events per data point were used to be able to accurately resolve differences 

between the error curves. Because of the extent to which the error floors in the optimal 

receiver are lowered, they were not able to be resolved within reasonable computation time 

here. However, the theoretical performance curves are evaluated over the range of SNR's 

found in realistic channels. 

Figure 4.14 shows the theoretical performance curves of a conventional QDPSK 

receiver under various channel operating conditions. The same general performance as in 

BDPSK is observed, with the error rates shifted slightly higher for QDPSK due to the closer 
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BT p Pe 

0.16 0.96410 6.16e-2 
0.08 0.98830 2.0ge-2 

0.04 0.99268 1.32e-2 

Table 4.5: Theoretical asymptotic error floors at 1 sample per symbol for QDPSK under 
various channel fading rates. 

spacing of the signalling constellation. The observed error floors can be checked against the 

theoretical value calculated in Appendix B for one sample per symbol QDPSK, 

3 p p ~ 
Pe = - - + arctan ----

4 -)2 - p2 7r-)2 _ p2 P 
( 4.61) 

As shown in Table 4.5, there is good agreement between the theoretical multi-sampling 

results and the single sample per symbol values. 

Figure 4.15 shows the performance of optimal receivers for BDPSK and QDPSK 

in a channel with BT = 0.16 and with varying number of samples per symbol. Again the 

error floor is greatly reduced, and the two performance curves parallel each other closely, 

with", 6 dB separation between them. Asymptotic performance gains with the sampling 

rate are observed to be similar to those for BDPSK. The slight variations in the theoretical 

QDPSK curves, due to the Monte Carlo estimation technique used, prevented investigating 

the sampling gain as was done for the binary signalling case. However, the gains seen in 

the QDPSK curves seem to be roughly comparable to those of the binary curves. The 

gains reported earlier appear to be typical, regardless of the fading rate and order of DPSK 

modulation. 

Figure 4.16 shows the performance curves of the optimal receivers for BSPSK and 

QDPSK at a fixed sampling rate of 4 samples per symbol, and under varying channel fading 

rates. The QDPSK curves again parallel the previously computed BDPSK curves quite 

closely, showing the same general perturbations of the curves with fading rate. Although it 

would be interesting to continue the curves to sufficiently high SNR's so as to resolve the 

residual error floor, as in the BDPSK analysis, the error rates involved would be far too low 

to be evaluated by the proposed Monte Carlo scheme. However, the close correspondence 

between the results of the two signalling schemes at the SNR's considered here lead one to 

expect similar behaviours for the asymptotic error floors. 
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Figure 4.15: Theoretical performance of optimal BDPSK and QDPSK receivers in a fading 
channel at various sampling rates. BT = 0.16, nsb = {2, 4, 8} 
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Figure 4.16: Theoretical performance of optimal BDPSK and QDPSK receivers in various 
fading channels, at a fixed sampling rate. BT = {O.16,O.08,O.04}, nsb = 4. 
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4.6 Interpretation of the Operation of Optimal Receivers 

4.6.1 Analytic Development 

The previous sections examined the performance of conventional and optimal DPSK re­

ceivers in a fading channel, where Kaila th's estimator-correlator interpretation of the op­

timal receiver's operation follows directly from the discussion of Chapter 3. In brief, the 

optimal receiver generates from the received signal a set of minimum mean squared er­

ror estimates of the possible faded transmitted signals. These are based on the (assumed 

known) statistics of the fading process. The optimal decision is then the estimated message 

signal that is closest to, or most correlated with, the actual received signal process. Lodge 

[30, 29], in his discussion of optimal CPM receivers in Rayleigh fading channels, has made 

a similar interpretation where the optimal receiver minimizes the process prediction error 

of the various possible received signals based on the channel statistics. 

However, the previous section's analysis of the optimal receiver's performance shows 

basically an inverse power relation of the error rate with SNR. This is curiously similar to 

the inverse relation shown by a conventional diversity receiver operating in a perfectly 

correlated fading channel. It is, therefore, interesting to transform the optimal receiver 

kernel and received signal correlation matrix into the form of an equivalent conventional 

receiver operating with a transformed signal correlation matrix such that the error rate is 

the same. This transformation would give us the effective statistics of the received signal 

using a conventional receiver, but with the performance of an optimal receiver. It may 

show the connection between the performance curves of the optimal receiver in partially 

correlated fading, and the conventional receiver in perfectly correlated fading. The effective 

correlation properties of the optimal receiver are separate from its ability to resolve and 

exploit the diversity implicit in the fading channel, as demonstrated in the previous section. 

Here, we will examine only the binary case since it is tractable for analysis, and 

should still give the same general results as for higher order DPSK. From Section 4.-1, the 

decision kernel is given by, 

K - K 7r - 1 _ Ko- 1 
tJ. - r r ( 4.68) 

'vVe then partition the correlation matrices, 

KO - [R U 1 
r - UH R (4.69 ) 
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[ 
R -u 1 K7r-

r - _uH R (4.70) 

where R is the (N) x (N) correlation matrix of the channel over one symbol period, and 

U is the (N) x (N) cross-correlation matrix of the channel between adjacent symbol in ter­

vals. Using the partitioned matrix inversion lemma [31], the inverses of the kernels may be 

written, 

where, 

K~-l = [ R-I + R-IU~-IUHR-I 
_~-IUR-I 

[ 

R-I + R-IU~-IUHR-I 
K 7r - 1 _ 

r -
~-IUR-I 

Thus, the receiver decision kernel may be written, 

_R-IU~-I 1 
~-I 

(4.71) 

( 4.72) 

(4.73) 

where the two non-zero anti-diagonal partitions are the Hermitian conjugate of each other. 

Now, writing the kernel in terms of the eigen-decomposition of the upper right 

partition, we have formally, 

KCJ. = [ e-1ll:HeH eA:-'l ( 4.7.5 ) 

[ e ][ r '/' 
e- IH rHI/2 ][ ~ ~ 1 [rlll/2 r1/'][ ell e-1 

} 4.76) 

WH[O rj- (4.77 ) = eI> r reI> 
I 0 

Defining the transformation z = reI>r, then the optimal receiver decision variable may be 

written, 

(4.78) 

( 4. 79) 
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where As is the symmetric conventional binary receiver kernel previously defined. The 

correlation matrix of the transformed received signal vector, z, is given by, 

( 4.80) 

where it is assumed that no phase shift was transmitted. 

It is seen that the optimal receiver has been cast into the form of a conventional 

receiver, with the received signal vector similarly transformed such that the performance is 

equivalent. The statistics of the equivalent received signal vector are given by (4.80). Note 

that the above derivation is simply a recipe for transforming the receiver into a desired 

equivalent form. In the following, the matrix inversions and eigen-decompositions will be 

evaluated numerically for specific channel correlation matrices. 

4.6.2 Examples 

We will first examine the case of extremely fast fading with no additive noise, with a time­

bandwidth product of BT = 1.5, and nsb = 2 samples per symbol interval. An appropriate 

set of FIR filter taps corresponding to the low pass fading process is generated, and gives 

the correlation vector over 2 symbols as, 

111.0000e+00 I 3.0415e-Ol I -2.1295e-Ol 9.7453e-02 II 

The eigenvalues of the corresponding normalized correlation matrix of the process are given 

by, 

1.0000e+00 

9.9096e-Ol 

7.9407e-Ol 

2.0310e-Ol 

Note that over the period of a symbol interval, the channel fading process has a very 

low correlation, reflecting the very fast rate of the fading. This is also indicated in the 

eigenvalue spectrum, where the four eigenfunctions are excited with almost equal energies 

by the process. This is similar to white noise, where all of the eigenfunctions are equally 

excited. 

Performing the transformation of the optimal receiver for this channel to the equiv­

alent conventional differential receiver, the correlation matrix of the corresponding received 

signal vector is given by, 
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5.878ge-02 9.1598e-02 -l.0515e-03 

9.1598e-02 1.9031e+OO -5.6525e-02 

-l.0515e-03 -5.6525e-02 6.3114e-02 

5.6525e-02 1.2097e+OO -9.8337e-02 

and the eigenvalues of the correlation matrix by, 

l.OOOOe+OO 

2.391ge-Ol 

1.8412e-02 

1.6821e-02 

5.6525e-02 

1.2097e+OO 

-9.8337e-02 

2.0432e+OO 

82 

N ate that the correlation matrix of the equivalent process is no longer Toeplitz, 

and corresponds to a non-stationary Gaussian process. The eigen-decomposition of the 

equivalent transformed process shows a significant change from the original channel process 

in its implicit diversity; the normalized eigenvalue spectrum of the equivalent process is 

considerably sharpened or peaked around the first eigenvalue. This corresponds to a much 

more correlated process, as fewer modes of the process are excited, and to a lesser degree. 

If the above is repeated for the same channel except that 8 samples per symbol are 

now taken, the eigenvalue spectrum of the original channel process is, 

l.OOOOe+OO 

9.6542e-Ol 

6.988ge-Ol 

2.1835e-Ol 

2.2835e-02 

l.OO71e-03 

2.1775e-05 

2.8092e-07 

while the spectrum of the equivalent transformed process is, 
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1.0000e+00 

1.6471e-03 

1.3092e-05 

5.4093e-07 

3.3247e-07 

2.7431e-07 

1.036ge-07 

2.2878e-08 

It is seen that the sharpening of the eigenvalue spectrum for the equivalent con­

ventional receiver is greatly enhanced over the 2 sample per symbol case. Although this 

could be continued for higher sampling rates, the filter used to model the channel fading 

process does not support enough significant eigenvalues in its output process to prevent 

the matrices involved in the calculations from approaching singularity. At sampling rates 

higher than 4 samples per symbol, numerical precision begins to be a problem in evaluating 

the matrix operations. However, the previous results suggests that the optimal receiver acts 

as though it were a conventional receiver operating in a fading channel which is much more 

correlated than the original channel. As more samples of the process are taken in infinite 

precision, the effective eigenvalue spectrum sharpens to a delta function, and corresponds 

to a perfectly correlated channel process. This needs to be shown rigorously, however. 

A second example is shown here for a more realistic, much slower fading case of 

BT = 0.08 at 2 samples per symbol. The normalized correlation function of the process is 

now, 

111.0000e+00 I 9.9093e-Ol I 9.6410e-Ol I 9.2056e-Ol II 

The process is seen to be much more correlated across a symbol interval than in the previous 

example. The corresponding eigenvalue spectrum of the process is, 

l.OOOOe+OO 

2.262ge-02 

1.0286e-04 

1.4906e-07 

As expected, this slower, more correlated fading process has a much narrower eigenvalue 

spectrum than the fast process examined previously. Solving for the equivalent conventional 
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receiver fading process, we find an eigenvalue spectrum of, 

l.OOOOe+OO 

3.2137e-05 

5.2937e-07 

5.9025e-07 
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Again, the spectrum is narrower and the fading process for the equivalent conventional 

receiver is seen to be much more correlated than the original channel fading process. 

The above provides a useful interpretation of the optimal receiver's actions on the 

received signal process. In performing the maximum likelihood detection of the transmitted 

symbol, the receiver is effectively making the multiplicative random fading process much 

more correlated, or deterministic. As shown in formulae derived by Voelcker [11] and in the 

previous chapter, the more correlated the fading, i.e. as p --+ 1 in the previous cha.pter, the 

lower the error floor becomes in a conventional receiver. 

This doesn't mean that in the limit of a single effective eigenvalue the fading trajec­

tory is straightened out to a constant line in time; only that is it now a constant function -

the first eigenfunction of the channel - scaled by a complex random variable, with a vari­

ance equal to single eigenvalue of the fading process. However, the receiver has knowledge 

of this function, and the multiplication by the constant (non-zero) function is reversible. 

This is in contrast to usual narrow band random processes, where, as they become perfectly 

correlated in the limit, their eigen-spectrum narrows to a delta function. The first eigen­

function of these low pass processes is always the DC offset, i.e. a constant value in time. 

In general, it may be any arbitrary function. 



Chapter 5 

Simulation Results 

5.1 General Form of a Practical System 

The maximum likelihood receiver discussed in the previous chapter utilizes the decision 

variables, 

where m = 0, ... , lv! - 1, and the channel correlation matrix, K c , is given by, 

(.5.1 ) 

(.5.2) 

(.5.3) 

This defines the optimal receiver structure, shown in the dotted box of Figure .5.1, where the 

correlation matrix of the channel, K c , is assumed to be known a priori. Although the optimal 

DPSK receiver has significant theoretical performance advantages over conventional DPSK, 

as discussed in the previous chapter, it requires knowledge of the (Gaussian) statistics of the 

fading channel process. The conventional receiver, on the other hand, utilizes no knowledge 

of the channel, and correspondingly has a much simpler structure. 

Knowledge of the channel statistics is not an uncommon req uiremen t III op timal 

systems, however. A receiver operating even in a simple additive Gaussian noise channel 

requires similar knowledge to make optimal decisions. If the additive noise is coloured, 

the correlation function is no longer a delta function and the optimal receiver structure, 

formulated in terms of the eigenvalues of the correlation function of the noise, is seen to 

8.5 
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Figure 5.1: Structure of the adaptive maximum likelihood receiver. The dotted box denotes 
the non-adaptive, a-priori maximum likelihood portion of the receiver. 

perform a simple whitening of the spectrum [2]. Thus, optimal decisions require knowledge 

of the noise spectrum, or equivalently the correlation function of the noise, or channel. 

A similar problem occurs in linear minimum mean squared error (MSE) or \Veiner 

filtering, which has application in channel equalization [45, 37]. In brief, an adaptive equal­

izer recursively solves the equation, 

Rw=p (5.4 ) 

for the unknown tap weight vector w, where R is the covariance matrix of the received 

signal, and p is the cross correlation vector between the desired signal and the received 

signal vector. That is, w = R-lp. The solution requires the channel correlation matrix, 

R, which is generally unknown to the receiver in advance. 

By defining a dummy variable y for the Rayleigh receiver, such that KmY = r, and 

then solving for y, the decision variable e may be placed in the form e = rH y, where the 

inverse of Km is used implicitly in the solution for y. Note the similarity of the equation 

defining y and Equation (5.4) defining the optimal tap weights of an adaptive equalizer. 
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Both the equalizer and the Rayleigh receiver use the inverse of an estimated channel co­

variance matrix to calculate a quantity that may may interpreted as a tap weight vector. 

Lodge[30, 29J has carried this approach further to show that the y above is essentially act­

ing as a set of predictor filter taps, and em is the predictor error, assuming symbol Tn was 

transmitted. Although this work is specific to continuous phase modulation (CPM), the 

resulting optimal receiver has many similarities to the optimal DPSK case. 

The previous discussion assumes the receiver has prior knowledge of the channel 

correlation matrix. However, a practical system must be able to estimate this matrix 

from the received signals, perhaps with an initial training sequence. In order to provide 

the adaptivity of the system necessary in non-stationary, but slowly varying channels, the 

symbol decisions may be used in a feed-back loop to undo the transmitted signal's phase 

shifts on the received signal vector. These unshifted vectors of 2N sample snapshots may 

then be used to update the estimate of the channel correlation matrix. The general structure 

of the receiver is shown in Figure 5.l. 

In practice, the required inverse of the correlation matrix may be updated directly 

by recursion, as in a recursive least squares (RLS) algorithm [37J. Although the conventional 

O(N2) version based on the matrix inversion lemma [45J may be used, it is susceptible to 

numerical stability problems when the correlation matrix is nearly singular [46, 47J as it is 

in slow fading channels. This holds as well for certain "fast" O(N) forms of the algorithm. 

However, algorithms based on Givens-QR decompositions and singular value decompositions 

have been shown to have improved stability in these situations [47J. The condition number 

(i.e. ratio of the largest and smallest eigenvalues) of the matrix involved in these algorithms 

is the square root of that used in the conventional algorithm. In addition, a fast, O(N) 

version of the numerically stable Givens algorithm has recently been developed [48J. 

Note that at the expected mobile channel data rates of less than 10 kilo- baud and 

sampling rates of 8 samples/symbol, the receiver should be able to be implemented using 

commercially available DSP technology. The initial convergence time of the RLS algorithm 

at moderate SNR's is approximately twice the snap shot size [37J, or 4 symbol periods, 

allowing very short initialization and retraining sequences. In addition, a conventional 

differential receiver may have a sufficiently low error rate to initially allow a decision fed­

back estimate of Kc to be made. If a conventional receiver experiences an asymptotic error 

of 10-2 , for example, then the probability of having 5 consecutive symbols demodulated 

correctly is 0.95. After the estimate has been generated, the maximum likelihood algorithm 
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could be engaged. A single error event in the sequence of 5 may still provide an estimate 

of the correlation matrix inverse close enough to true matrix to allow convergence. This 

would be a useful fall back or restart mode of operation in the case of a temporary loss of 

signal, or when training sequences are not available. 

The least squares implementation of the receiver adaptivity also suggests the use 

of slower converging, but simpler to implement gradient descent algorithms[37]. However, 

their sensitivity to the eigenvalue spread of the correlation matrix, and in particular, their 

very slow convergence rates for nearly singular channels [37], may make them unsuitable 

for the mobile channel. 

The detailed description of the ML receiver is deliberately left somewhat open here 

since there are several possible algorithmic approaches to implementing it, depending on the 

specific design constraints. The situation is quite similar in the design of adaptive equalizer 

structures. The important point is that in order to perform maximum likelihood reception 

the optimal receiver requires only the channel correlation matrix, which may be estimated 

from the received signals, and then must use this matrix in the solution of a linear set of 

equations. This chapter is intended to demonstrate the feasability of a practical, adaptive, 

real- time system using this approach. The next sections describe the particular form of 

receiver used in the simulations and its performance compared to theoretical expectations. 

5.2 Description of the Simulation 

This section briefly describes the simulation used to check the theoretical calculations of 

performance for conventional and optimal receivers derived in the previous chapter. Only 

binary and 4-phase DPSK are simulated, which should be sufficient to suggest the system's 

general behaviour for higher order DPSK. All simulations were performed in single precision 

floating point arithmetic on a NUMERIX 432 array processor, rated at :30 ?vIFLOPs. For 

the range of error rates evaluated, run times of typically a few minutes to a day were 

required to generate a performance curve, depending on the sampling rate and form of 

receiver simulated. 
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Figure 5.2: Power spectral density of phase shift keying modulation. 

5.2.1 Description of the Transmitter 

The baseband pulse shapes, u(t), used in the DPSK signalling are assumed to be square 

pulses, 

lu(t)1 #;O"5:. t "5:. T 

o ; otherwise 

(5.5 ) 

where E is the symbol energy, and T is the symbol period. The power spectral density of 

equi-probable symbol, general M-ary PSK, is given by [49], 

S(J) 
2E sin2(1fT J) 

(1fT J)2 

2Esinc2(T J) 

( .5.6) 

(5.7) 

and shown in Figure 5.2. The transmitted signals were sampled at a fixed rate of 8 samples 

per symbol. By the Nyquist theorem, the spectrum of the sampled signals are folded over at 

twice the sampling rate. Examining Figure 5.2 shows that this should lead to an acceptable 

overlap of the duplicated spectra, which is supported by the simulation results. The actual 
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baseband pulses transmitted are thus of the form u(t) = .jE/Te iBm , where em E {0,7r} or 

em E {0,7r/2,7r,37r/2} for binary and QDPSK respectively. 

5.2.2 Description of the Channel 

The channel was simulated as a single multiplicative tap followed by an additive white 

Gaussian noise source as discussed as in Chapter 2. The multiplicative random process 

was generated by low pass filtering a sequence of i.i.d. random Gaussian variables, with 

the characteristic bandwidth of the filter chosen according to the fading time-bandwidth 

parameter being investigated. This was done by convolving the random sequence with 

a set of 257 FIR filter taps. The filter size was chosen to balance the need for acceptable 

computation time and a reasonably sharp 3 dB low pass cutoff at the Doppler frequency. The 

original transmitted signal pulses were chosen to have unity amplitude, with the variance 

of the additive Gaussian noise set according to the level of SNR being simulated. Dynamic 

changes in the fading rate were not considered. 

5.2.3 Description of the Receiver 

In the previous analyses it was assumed that the receiver has perfect symbol timing. This 

is continued into the simulations and although it is less than realistic, it should still demon­

strate the basic feasibility of the receiver structure. When the 8 sample-per-symbol signal is 

received from the channel portion of the simulation, it is sub-sampled at a receiver rate of 2, 

4, or 8 samples per symbol. Using a fixed channel sampling rate, rather than adjusting it to 

match the receiver rate allows a single channel fading filter to be used for all of the receiver's 

sampling rates. This provides a fair comparison of the effects of the receiver sampling rate 

on performance for the same fading channel. 

The general form of the receiver is shown in Figure 5.1, where it is assumed that 

the receiver has some form of estimate of the inverse of the channel correlation matrix, 

K.;-l. This estimate is initially formed from a cold start of the receiver through the use of a 

known training sequence. Once a channel estimate has been made, a set of AI quadratic form 

kernels corresponding to the set of M possible received message signals is generated, as per 

Equation 5.1. The received signal vector, i.e. the set of samples of the received process over 

two symbol intervals, is then folded into each of the M quadratic operators simultaneously. 

The minimum of the M decision scalars is then used to select the corresponding symbol as 

the message that was received. Based on this decision the assumed phase shift between the 
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two symbol intervals is then reversed on the actual received signal vector, and the unshifted 

version of the vector is used to update the channel correlation matrix. 

The inverse of the channel correlation matrix is updated recursively, on a sample 

by sample basis using the conventional RLS algorithm - an update algorithm based on 

the matrix inversion lemma [45]. This was chosen since it is well known and can provide 

a standard bench-mark against other algorithms. It's known instability for nearly singular 

correlation matrices also provides a worst-case comparison against other more robust algo­

rithms, as discussed previously. These more desirable algorithms were not tested in this 

thesis, however, due to time constraints. 

Designating the unshifted version of the received signal vector as r = sI;/ r, where 

n is the maximum likelihood symbol decision, the direct recursive update of the correlation 

matrix itself may be written as, 

( 5.8) 

where .x is an exponential "forgetting factor" useful in non-stationary environments, and set 

to 1 for these simulations. Here, the variable i stands for the sample instant, and the length 

of the vector rei) is 2N. Defining the inverse of the correlation matrix as P(i) = K,;-l(i), 

the update of the inverse of the correlation matrix may be written [45], 

k( i) 

P(i) 

.x-1P(i - l)r(i) 
1 + .x-1r(i)HP(i - l)r(i) 
.x-1p(i - 1) - .x-1k(i)r(i)HP(i - 1) 

(5.9 ) 

(5.10) 

where k(i) is an intermediate vector, often termed the Kalman gain vector. The initial state 

of the inverse correlation matrix, P(O), is set to, 

(.5.11 ) 

In the simulations, 8 was set to 10-10 . Each update in the conventional algorithm takes 

16N2 + 4N multiply and divides, and 12N2 - 2N + 1 additions and subtractions. 

Note that the update of the correlation matrix inverse is about one symbol behind 

the current received symbol since a full symbol must be received, and a decision on the 

received message made, before the required phase shifting is performed on the received 

signal. Only then can the correlation matrix inverse be updated. Although the recursion 

was performed on a sample by sample basis in the simulations, such a fast rate should not 
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be necessary in practice once reasonable convergence has been achieved. Only one update 

per symbol may be required, for example. 

A training sequence of 5 symbols was used at the start of each of the following sim­

ulations to allow the estimate of the inverse correlation matrix to converge before switching 

to the decision feedback mode of the matrix update. The steady state error performance of 

the receiver was then estimated by comparing the transmitted messages and the receiver's 

decisions. Periodic initialization and retraining of the receiver's inverse correlation matrix 

estimate was not performed since the receiver seemed to maintain an accurate estimate of 

the kernel throughout the simulation. This only becames a consideration at high SNR's 

and low sampling rates, and is discussed further in the following results. 

5.3 Simulation Performance Curves 

Figure 5.3 shows the theoretical and simulated results for a conventional QDPSK receIver 

under fading time-bandwidth products of BT = 0.04 and BT = 0.08 for:2 and 4 samples per 

symbol. The simulated data points are in reasonably good agreement with the theoretical 

curves. The theoretical QDPSK curves used 104 error events in their evaluation, while the 

simulated points used 103 events. Similar results are observed for the binary case and are 

not shown here. 

Figure 5.4 shows the results of the simulations for adaptive, maximum likelihood 

reception of BDPSK and QDPSK at a fixed channel time-bandwidth product of BT = 0.08, 

and sampling rates of 2 and 4 for QDPSK, and 2,4, and 8 for BDPSK. The number of error 

events counted for each point ranged from 100 at low SNR's, to 10 at the higher SNR's 

1. This figure corresponds to the theoretical curves in Figure 4.15 of the previous chapter, 

and while the simulated curves show the expected statistical variation, they generally follow 

the theoretical curves. Higher sampling rates lead to modest improvement in SNR's at a 

fixed symbol error rate, agreeing with the previous analysis. Figure 5.S shows the sim ulated 

performance curves of optimal BDPSK and QDPSK under a fixed number of samples per 

symbol, set to 4, and varying channel time-bandwidth products. Again, the simulated 

results are reasonably close to the theoretical results of Figure 4.16. 

1 Results for this section are shown only for steady state (i.e. converged) receiver error rates, which were 
observed for all channels and sampling rates up to SNR's of::::: 45 - 50 dB. Beyond this, some simulations 
exhibited a non-stationary error rate that appeared to increase in time. This instability is due to the adaptive 
algorithm implemented in the simulation, and suggestions for improved performance are discussed in the 
next section. 
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Figure 5.3: Theoretical (curves) and simulated (points) performance of a QDPSK con­
ventional receiver in a fading channel with a fixed BT and varying samples per symbol -
nsb = 2: Solid curve, open points; nsb = 4: Dashed curve, starred points. (a) BT = 0.04 
(b) BT = 0.08 
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Figures 5.6 and 5.7 show plots of the theoretical and simulated performance curves 

for optimal BDPSK and QDPSK under varying fading and sampling rates. The simulated 

data points fall reasonably close to the theoretical curves, except for the circled, low SNR 

data in Figure 5.6 (a)-(c). These points will also be discussed in the next subsection, and 

may be eliminated by allowing a longer initial training sequence than the 5 symbols used 

here. The turnover SNR points at which the receiver switches from first order to second 

order diversity operation are also clearly seen in the simulated results. 

These curves demonstrate the validity of the theoretical analysis of the previous 

section and show that an adaptive M-L receiver is feasible. The next section discusses 

briefly some of the performance limitations due to the training sequence length and update 

algorithm used in the simulated receiver. 

5.4 Discussion of the Operation of the Simulated Receiver 

5.4.1 Performance at Low SNR's 

The simulated adaptive, maximum likelihood receiver generally shows good agreement with 

the theoretical analysis, except for a few anomalous points at low SNR's, which were ex­

hibited intermittently in the simulations. It was noted that the receiver seemed to fail to 

converge within the 5 symbol training sequence at these times, and when it was allowed to 

begin the decision feedback mode of operation, it lost all ability to estimate the channel 

statistics and make proper symbol decisions. This behaviour is known for RLS- type algo­

rithms, where the initial convergence is less rapid when the additive noise power becomes 

comparable to the signal power [50]. Unfortunately, there seems to be almost no analysis on 

this point in the literature, perhaps since most of the practical operations involving these 

algorithms occur at much higher SNR's. However, the requirement of low SNR operation 

could be expected for the mobile or indoor channel for en vironmen ts where line-of-sigh t is 

not available. 

The reason for this convergence failure may be intuitively understood by imagining 

the case of an extremely small signal level in strong additive white noise. The theoretical 

correlation matrix of the received process is just the correlation matrix of the signal plus 

a large diagonal constant, equal to the white noise variance. A long term estimate of the 

matrix from the received signal vectors, based on (5.8), can be expected to converge to the 

theoretical value. However, during the initial estimates of the matrix, little more than white 
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Figure 5.6: Theoretical (lines) and simulated (points) performance curves of an optimal 
BDPSK receiver at various channel fading rates and receiver sampling rates. (a) BT = 0.04, 
nsb = 2 (b) BT = 0.04, nsb = 8 (c) BT = 0.16, nsb = 2 (d) BT = 0.16, nsb = 8 
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Figure 5.7: Theoretical (line) and simulated (points) performance curves of an optimal 
QDPSK receiver at various channel fading and receiver sampling rates. (a) BT = 0.04, 
nsb = 2 (b) BT = 0.04, nsb = 4 (c) BT = 0.16, nsb = 2 (d) BT = 0.16, nsb = 4 
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Figure 5.8: Plots of the dynamic error rates of a successfully and unsuccessfully con verged 
optimal receiver. 

noise is being used to form the correlation matrix. From the first few additive noise vectors. 

being entirely uncorrelated random variables, the estimated correlation matrix may have 

almost any form. It seems reasonable that for very low signal powers, it would take longer 

for the statistics of the signal to emerge from the additive noise and impose its structure on 

the correlation matrix estimate. If the training sequence used in the recei ver is too short. 

then the decision feed-back mode will be engaged before any useful estimate of the true 

channel correlation matrix has been made, which is seen to lead to catastrophic failure of 

the receiver. Note that this problem should be expected to occur in a receiver using any 

form of a recursive update algorithm, and is not due to finite precision effects in the receiver 

or ill-conditioning of the signal correlation matrix. 

Examples of a successful convergence and a failure event are shown in Figure 5.S, 

which shows the time variation of a BDPSK receiver's Pe in a Rayleigh channel. The fading 

time-bandwidth product is BT = 0.16, at a received SNR of 5 dB, and the receiver is 

sampling at 2 samples/ symbol. An initial training sequence of 5 symbols is used for both 

series. For the successful series, the number of incorrect symbols in consecutive slots of 
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II Event No. Symbols Symbols in Error I Symbols Correct Mean Pe 

II Success I 55125 I 4513 50612 8.187e-2 
[ Failure I 46000 I 41487 4513 0.9019 

Table 5.1: Statistics of an adaptive receiver's symbol decisions for a successful convergence 
and a failure event for a Rayleigh fading channel. 

approximately 250 symbols were counted and converted into a probability of error. For 

the failed curve, the number of correct symbols in similarly sized consecutive slots \vere 

counted and a probability of error evaluated. The statistics are given in Table .5.1. This 

method allowed comparable sized symbol slots and number of events per slot for comparison 

between the curves. 

It is seen that both series converge rapidly to their steady state values and exhibit 

similar variations about their mean. Included in the figure is the measured mean of each of 

the curves. The theoretical probability of error for this channel is 8.28e-2, and cannot be 

distinguished from the mean of the convergent series with the graph's scale. The receiver 

kernel of the failed sequence seems to have converged to some stable form which is near to 

the "true" decision kernel form, in a space of inverse correlation matrices. The dynamics of 

the receiver's adaptive operation is interesting, and should be investigated further. 

In order to more fully characterize this behaviour for practical implementation, 

simulations were run in order to estimate the failure rate as a function of various system 

parameters. For a given SNR, sampling rate, channel fading rate, and training sequence 

length, a simulation trial was run and allowed to accumulate 100 errors. If the error rate 

for this particular trial was above the arbitrarily chosen threshold of 0.4, then a failure-to­

converge event was declared. This was repeated for 100 independent trials and the number 

of failure events accumulated. SNR values of 0-9 dB, training sequence lengths of .5-60 

symbol periods, and sampling rates of 2, 4, and 8 samples per symbol were examined. Two 

channels with fading time-bandwidth products of BT = 0.16 and BT = 0.04 were examined, 

with the results are shown in Tables 5.2 to 5.5. Note that the results are based on a fixed 

number of trials, rather than failure events, so that comparisons are not strictly valid due 

to the statistical variation. These results are intended more for general comparison and to 

motivate the explanation of the convergence failures at low SNR's. 

For the binary case, it is seen that the receiver generally requires longer training 
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/I 
5 55 54 42 28 30 21 17 13 12 11 
10 41 27 23 16 11 4 12 7 1 1 

nsb = 2 15 16 16 8 3 4 1 0 0 2 0 
20 10 4 4 1 0 1 0 0 0 0 
30 5 1 1 0 0 0 0 0 0 0 

5 77 77 64 43 40 33 34 18 22 17 
10 68 57 48 30 20 29 15 8 6 3 

nsb = 4 15 32 23 15 3 8 0 0 0 1 0 
20 9 6 2 4 0 0 0 0 0 0 
30 2 0 0 0 0 0 0 0 0 0 

5 92 95 88 82 65 64 49 45 34 26 
10 85 71 71 76 58 49 31 28 24 20 

nsb = 8 15 43 54 24 20 14 7 3 5 4 0 
20 33 15 7 5 1 0 1 0 0 0 
30 2 0 0 0 0 0 0 0 0 0 

Table 5.2: Table ofthe number of convergence failures in 100 trials for BDPSK, in a Rayleigh 
fading channel with BT = 0.16, under varying sampling rates and received SNR. 
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/I 
5 50 47 35 18 20 12 11 12 11 5 
10 35 26 25 16 8 10 3 5 2 1 

nsb = 2 15 18 13 8 4 3 2 0 1 3 1 
20 10 3 1 1 2 a 1 0 0 0 
30 1 3 3 0 a 0 0 0 0 0 

5 81 74 61 52 36 31 22 19 20 11 
10 66 56 42 37 18 13 5 6 5 5 

nsb = 4 15 25 14 5 6 2 6 3 4 1 0 
20 16 11 5 0 6 0 0 0 0 0 
30 3 3 1 1 0 1 0 0 0 0 

5 95 89 84 81 72 57 49 42 32 21 
10 88 78 75 66 59 47 33 23 13 10 

nsb = 8 15 48 38 25 15 6 4 3 3 1 0 
20 31 18 7 3 4 1 1 1 1 0 
30 10 4 4 3 0 0 1 1 0 0 

Table 5.3: Table ofthe number of convergence failures in 100 trials for BDPSK, in a Rayleigh 
fading channel with BT = 0.04, under varying sampling rates and received SNR. 

/I 
5 100 100 99 100 100 97 83 62 65 55 
10 100 100 100 99 87 78 63 38 30 23 

nsb = 2 15 100 100 100 91 67 44 21 5 1 .:1 

20 100 100 93 76 52 21 7 2 0 a 
40 100 95 73 35 6 1 0 0 0 a 
60 91 66 37 14 0 0 0 0 0 0 

5 100 100 100 100 100 100 96 98 91 90 
10 100 100 100 100 100 100 94 85 67 62 

nsb = 4 15 100 100 100 98 92 69 49 32 9 
.., 
I 

20 100 99 97 95 79 52 18 12 2 a 
40 99 98 87 46 19 2 a a 0 a 
60 95 83 47 17 a a a 0 0 0 

Table 5.4: Table of the number of convergence failures in 100 trials for QDPSK, in a Rayleigh 
fading channel with BT = 0.16, under varying sampling rates and received SNR. 
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/I 
5 100 100 100 100 95 86 79 66 57 30 
10 100 100 100 92 83 60 49 22 16 14 

nsb = 2 15 100 99 95 78 65 30 16 7 2 3 
20 100 99 84 62 41 20 4 2 2 1 
40 96 90 62 25 10 3 1 a 0 0 
60 80 64 37 11 a 0 a a a 0 

5 100 100 100 100 100 99 95 92 83 71 
10 100 100 100 98 98 88 81 65 41 33 

nsb = 4 15 100 100 100 95 76 52 23 19 5 1 
20 100 99 97 82 61 30 19 6 2 1 
40 99 93 78 42 19 3 1 1 0 0 
60 95 78 44 19 3 0 1 a 0 0 

Table 5.5: Table of the number of convergence failures in 100 trials for QDPSK, in a Rayleigh 
fading channel with BT = 0.04, under varying sampling rates and received SNR. 

sequences at low SNR's than the 5 symbols used in the general simulations. For a given 

training sequence length, however, the convergence failure rate tends to drop off rather 

rapidly with SNR, up to the 9 dB SNR evaluated. In addition, increasing the training 

sequence to 30 symbols virtually eliminates the convergence failures, although only a few dB 

decrease in the received SNR can result in a significant increase in the failure rate. Holding 

all of the other parameters constant, increasing the sampling rate tends to moderately 

increase the failure rate. The failure rate also seems to be slightly sensitive to the channel's 

fading time-bandwidth product. For short training sequences, a slower fading channel 

(BT = 0.04) seems to perform slightly better than a fast fading channel (BT = 0.16). 

However, for the longer training sequences, the fast fading channel is seen to have a slightly 

lower failure rate than the slow fading case. This is exhibited for all of the sampling rates 

examined. 

Similar observations are seen for QDPSK signalling, except that the failure rates 

are larger overall, and can be expected to extend to higher values of SNR. As well, the 

transition across SNR's from high to low convergence failure rates seems to be relatively 

sharper than in the binary case. The convergence failures can again be alleviated by using 

longer training sequences, although they appear to require several times the length of that 
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used in the binary signalling case. These general trends should be expected to extend to 

S-DPSK and higher phase modulations. Note that at a typical transmission rate of 4.S 

kilo-bits/sec, 30 symbols corresponds to a delay of 6.25 ms for BDPSK and 12.5 ms for 

QDPSK, representing reasonable delays for digital voice communications. 

5.4.2 Performance at High SNR's 

When the simulations were run at SNR's greater than 45-50 dB, the symbol error rate 

for 2 sample/baud receivers would occasionally be approximately an order of magnitude 

greater than expected from theory. After following the steady decline of the theoretical 

steady state performance curve, an increase of 5 dB in SNR would show an increase in 

the simulated error rate by approximately an order of magnitude. When the error events 

were followed dynamically in the simulation, it was found that the receiver operated with 

virtually a zero error rate up to approximately 250,000 symbols. After this, it appeared to 

fail catastrophically, similarly to the low SNR events described previously. This initially 

lead to misleading error rates as the simulations only counted the first 10 or so error events 

and then exited, calculating what was assumed to be a steady state rate. 

The exhibited divergence is not unexpected, however, since the channel process 

correlation matrix, K a , is generally very ill conditioned at the fading rates of a mobile 

channel. This can be observed from the typical channel eigenvalue spectra of the previous 

chapter. Although the additive noise simply adds a constant equal to the noise variance 

to the spectra, at sufficiently large SNR's the eigenvalues of the overall channel correlation 

matrix, K c , approach those of K a , and the channel correlation matrix becomes ill corldi­

tioned. This creates well known, although still not clearly understood, numerical stability 

problems in the conventional RLS algorithm implemented in these simulations [47]. Use 

of the more numerically stable versions of these algorithms, described earlier, should ap­

proximately double the SNR range in dB's before stability problems are encountered. This 

follows from the matrix conditioning of the improved algorithms being the square root of 

the conventional algorithm's. 

Sampling at 4, and presumably higher, samples per symbol appeared to solve the 

divergence problem, with simulations carried out to 4.5 million symbols at SNR's ranging 

from 56 to SO dB. In all cases except one, no symbol errors were detected, the exception 

being a single symbol error. The increased sampling appears to average out the numerical 

rounding noise, and to increase the stability of the conventional RLS algorithm. It is not 
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known if this actually solves the divergence problem, or if the point of divergence has simply 

been pushed past the number of symbols used in the simulation. 

Note the simulations were mainly intended to validate the theory of the previous 

chapter and investigate the feasibility of implementing such a maximum likelihood receiver 

for real time communications. Any practical implementation would need to carefully ex­

amine the detailed form of the recursive algorithm used. 



Chapter 6 

Summary 

In this thesis, we have examined a model of a general time and frequency-selective fading 

channel. It was seen that this form of channel may be described as a two dimensional, 

complex Gaussian random process, in both time and frequency. The statistical description 

of this this process is given by the channel scattering function. From this, the channel 

was specialized to a purely time-selective fading channel, which, in addition to the AWGN, 

acts as a random multiplicative modulation of the transmitted signal. This modulation is 

completely characterized by its mean, which is zero for Rayleigh channels and non-zero for 

Rician channels, and its correlation matrix, or function. The form of optimal receivers for 

this channel were then examined for the cases of continuous and sampled waveforms. 

A Rayleigh channel was then examined with a special form of correlation function. 

It may be treated as a plausible, simplified model of a general channel which still exhibits 

the essential behaviour of a real channel. The advantage of this model is that it allows an 

analytical expression to be derived for the performance of conventional and optimal receivers 

for M-ary DPSK. It was found that the asymptotic error rate of a conventional receiver 

for this channel depends on an eigenvalue spectrum derived from the combined signalling 

waveforms and channel correlation matrix. Moreover, the optimal receiver performs as 

though it were operating in a channel with a constant eigenvalue spectrum i.e. as if the 

fading where white. It was seen that the optimal receiver effectively breaks the fading signal 

into its independent eigenfunction components, and combines them as an optimal diversity 

receiver would. In effect, it utilizes the diversity implicit in a random process to make its 

decisions. The optimal receiver was found to lower the error floor by orders of magnitude, 

depending on the number of eigenvalues resolved by the receiver. 
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The performance of sampled DPSK receivers was then evaluated for general fading 

channels, leading to an analytical expression for the case of binary signalling. General 

M-ary DPSK was found to require Monte Carlo methods to evaluate and integrate the 

probability distiribution functions of the decision variables. However, the performance 

of both conventional and optimal receivers was again found to depend on the eigenvalue 

spectrum of the combined signalling and channel correlation matrix. Again, the error 

floor was significantly lowered in the optimal receiver. The analysis used in evaluating 

the receiver performance was interpreted geometrically, and the effective operation of the 

optimal receiver on the correlation of the received process examined. It was found that the 

optimal receiver effectively makes the channel process more correlated, reducing the rate of 

magnitude nulls and phase swings in the channel process. 

Finally, an adaptive receiver was developed which uses a short training sequence 

to estimate the channel correlation matrix. From this initial estimate, it performs optimal 

demodulation of the received signals and uses its decisions in updating the channel matrix 

estimate. This allows it to track slow changes in the statistics of the channel. The receiver 

was simulated and found to perform close to theoretical expectations at typical channel 

SNR's. However, longer training sequences were required at very low SNR's (typically 

0-15 dB). At high SNR's, when sampling at 2 samples per symbol, the receiver becomes 

unstable after approximately 250,000 symbols. Higher sampling rates appeared to eliminate 

this problem. This behaviour can be explained as an averaging out of the round-off errors 

in the update algorithm by the larger number of samples. 

6.1 Future Research 

During the course of this work a number of points were raised that were not within the 

original scope of the thesis, or could not be completed in a reasonable amount of time. 

One item is the inablitiy to put the performance of M-ary DPSK for Rayleigh fading 

channels in a closed analytic form, as was done for the channel with the special correlation 

function of Equation (1.1). The correspondence between the two channels strongly suggests 

that it is possible, using techniques similar to those used for the special channel. There 

seems to be very little literature on general quadratic forms of complex Gaussian random 

vectors, however, which would be very useful here. 

The analysis should also be extended for conventional and optimal receivers to the 
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case of general time and frequency-selective fading, where the channel is modelled as a series 

of random multiplicative taps. As well, the nature of the coupling within the optimal receiver 

between the time and frequency selective portions of the process should be examined. This 

may justify splitting the receiver into independent time and frequency-selective portions 

while still providing an acceptable, though sub-optimal, performance level. 

The adaptive version of the optimal receiver described in Chapter 5 should also be 

evaluated more closely. In particular, the use of more numerically stable update algorithms 

should be examined, as well as a more realistic simulation, using shaped envelopes and/or 

phase modulation, and symbol timing derived from the received signals. The use of an 

initial estimate of the inverse channel correlation matrix which is "close" to a typical fading 

channel, rather than the scaled identity matrix used in the simulations, should also be 

examined. This may help reduce the required training sequence lengths. 

For the expected symbol rates of approximately 10 kilo-baud, it is expected that this 

receiver may be implemented using commercially available DSP technology. A hardware 

prototype of receiver design, using a fading channel simulator or recorded channel data, 

would be a valuable next step in proving the algorithm for more realistic situations. 

The use of codes was also not examined in this thesis, and provides a very broad 

range of possibilities to further improve performance. For example, see [32]. 

It also seems that the model of a Rayleigh fading channel as a multiplicative tap 

may be refined further, into a picture similar to that of the signal space representation 

of the AWGN channel. The interpretation of a conventional receiver in a fading channel, 

given in Section 4.4.1, is similar to this, but a much more satisfying description should be 

possible. One possible approach is the recent application of differential geometry to statisti­

cal inference[5l, 52]. Distance measures between different distributions of Gaussian vectors 

may be defined, which for the case of different means and constant correlation matrices, 

yields the same results as in classical detection problems [2]. For the case of equal means, 

but different correlation matrices, which is the case for Rayleigh fading channels, then the 

analysis yields distances which correspond to geodesics on a manifold, or a generalized sur­

face with curvature. The ability to define meaningful distance measures between signal 

points is required if signal-space, or U ngerboeck codes [53] are to be used in an insightful 

way in this channel. Here, the "signal-space" may become a generalized manifold, rather 

than the conventional Euclidean space of AWGN. To date, these signal-space codes seem 

only to have been applied with the transmited signals in mind [32], with no consideration 
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given to the action of the channel on the signals. 

Although the analysis of a fading channel uses techniques which have existed for 

decades, there still appears to be much effort required in fundamentally understanding the 

channel. Most of the work to the present seems to treat it as a modified AvVGN channel, 

with the practical techniques used in overcoming the channel interference reflecting this 

viewpoint. This thesis demonstrates that there may be advantages in treating the fading 

channel in its own right, providing a different perspective on the AWGN channel, perhaps, 

in return. 



Appendix A 

The Karhunen-Loeve Expansion 

The notion of expanding a deterministic waveform in a senes of orthogonal functions is 

very common in applied mathematics, and has been used to develop the signal space de­

scription of communications in additive Gaussian noise [9]. In this appendix we describe 

the extention of this approach to stochastic processes for both continuous and discrete time 

representations. 

A.I Continuous Time Representation of Random Processes 

Assume that we are given a zero-mean, generally non-stationary, complex stochastic process, 

x(t), with a covariance function Kx(t, 'I), Hermitian in t and 'I, and that we have a set of 

N orthonormal functions, {<PI (t), <P2( t), ... <PN( t)} over the interval [0, T]. In a mean square 

sense, we may expand x(t) such that, 

l.i.m N 
x(t) =N -- 00 LXi<Pi(t) ; 0:::; t:::; T 

i=1 

for some particular realization of the process x (t), and where we have defined, 

Xi == faT x(t)<pi(t) dt ; i = 1, ... , N 

(A.l) 

(A.2) 

The symboll.i.m. stands for limit in the mean. It is seen from (A.2) that the coefficients Xi 

will be zero mean random variables, with their values depending on the particular realization 

of the random process x(t). 

We have not as yet specified or constrained the orthogonal expansion function func­

tions, and and the higher order statistics of the expansion coefficients will depend on the 

llO 
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particular set of waveforms chosen. However, it is generally convenient to have the complex 

random variables Xi statistically uncorrelated. That is, we require, 

XiX; 

o 
(A.3) 

(A.4) 

for some unknown set of constants {Ad. The functions, {¢i(t)}, and corresponding con­

stants, {Ad, that produce this condition are given by the Karhunen-Loeve theorem [54]. It 

states that the {¢i(t)} and the {Ad are solutions of the homogeneous Fredholm integral 

equation, 

(..1..5) 

This is an integral form of an eigen-equation, with a kernel Rx( t, r), where the {1;i( t)} are 

the normalized eigenfunctions, and the {Ai} are the corresponding eigenvalues. From the 

theory of integral equations it can be shown that if the kernal is Hermitian in its arguments, 

I.e. 

(A.G) 

then we have the following properties: 

1. The eigenvalues are real. 

2. The eigenfunctions corresponding to distinct eigenvalues, with Ai t= Aj, are orthogonal. 

3. If the kernal is square integrable, that is, 

(..1..1) 

then each eigenvalue Ai t= 0 has a finite number of corresponding eigenfunctions. 

4. If Rx(t, r) is positive definite, its eigenfunctions form a complete orthonormal set. 

5. If the kernal is non-negative definite, it may be expanded in the form, 

00 

Rx(t, r) = L Ai¢i(t)¢i(r) (A.8) 
i=l 

This is also known as Mercer's Theorem. 
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A wide sense stationary process, with Rx(t, r) = RAlt - rl), will have the above 

properties when it is expanded in terms of its eigenfunctions. The eigenvalues, IXil2 = Ai, 

will correspond to the energy of the process contained in the i'th eigenfunction. If the 

random process is Gaussian as well, then the expansion coefficients will also be statistically 

independent random Gaussian variables. 

A trivial, but interesting example of applying the K - L expansion to the AWGN 

channel can be used to suggest how this technique may be applied to more general cases. 

Although communication through the AWGN channel is usually thought of in terms of 

deterministic signals, it should still be recognized that the receiver is actually detecting a 

Gaussian process. In this case the mean of the process is the original transmitted signal, 

and the covariance function of the process is just a delta function with magnitude N'o/2. 

Solving the Fredholm integral equation for the received process gives, 

Arp( t) N o/2 h 8(t - r)rp(r) dr 

No /2 rp(t) 

(A.9) 

(A.I0) 

(A.11) 

where the integral is performed over one symbol period. It is seen that any complete 

orthonormal set offunctions will satisfy the integral equation, with all eigenvalues equal to 

N o /2. If the deterministic portion of the signal is expanded in some finite set of orthonormal 

waveforms, the the relevent additive Gaussian noise may also be represented in the same set, 

with each independent component of the noise represented as a random Gaussian variable 

of variance of JVo /2. This is just the usual signal space approach to analyzing the AWGN 

channel. 

When the additive Gaussian nOIse is no longer white, it will have a covarIance 

function with a non-zero width. This will result in a "preferred set" of eigenfunctions when 

solving the Fredholm equation. A set of orthonormal functions originally used to specify 

the deterministic, unfaded transmitted signals may no longer be appropriate when forming 

the independent Gaussian random variables used in the maximum likelihood receiver. It 

can be shown [2] that employing the channel eigenfunctions in a M-L receiver is equivalant 

to the heuristic whitening filter approach to receivers in this channel. It can be seen that 

this more fundamental approach to analyzing channels and receivers is extremely powerful 

in the fading channel case, where the received information is encoded in the second order 

statistics of the received process, rather than the mean as in the additive noise channel. 
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A.2 Discrete Time Representation of Random Processes 

The previous section described a representation of continuous time second order random 

processes, which involved the solution of an integral equation using the assumed known 

covariance function of the process. U nfortuantely, in real channels, the covariance function 

is generally unknown. Moreover, exact analytical solutions of the integral equation exist 

for only a very few known correlation kernals, notably the sinc function for boxcar ban­

dlimited processes, which results in the prolate spheriodal set of orthogonal wavefunctions, 

and rational spectra [2]. These are in any case extremely tedious to calculate. Although 

much of the early work concentrated on continuous time analysis and implementation of 

these systems, most signal processing today is based on discrete time sampling and digital 

processing of signals. 

When the covariance kernel is a known continuous function, the Fredholm integral 

may be solved numerically for its eigenvalues and eigenfunctions (evaluated at discrete time 

intervals). Although there are several methods available, the most straightforward is to 

evaluate the integral of (A.5) numerically by converting it into an appropriately weighted 

discrete summation (depending on the integration rule being used, e.g. trapezoidal or 

Simpson's )[55] in T. In addition, the variable t is discretized, and without loss of gener­

ality, we assume unit time sampling. By taking the weights to be unity, i.e. a staircase 

approximation to the kernel, we have, 

).¢(ti) = LR(ti,Tj)¢(Tj) (A.12) 
J 

Indexing the discrete function evaluations with subscripts then gives 

).¢i = L Rij¢j (A.13) 
J 

This may then be placed in matrix form, 

).ep = Rep (A.14) 

where 

(A. IS) 



APPENDIX A. THE KARHUNEN-LOEVE EXPANSION 114 

This may also be written in an expanded matrix form, 

~A=R~ (A.IG) 

where 

~ [4>14>2 ... J (A.17) 

[ ¢l(tl) <p2(td 
o oj 

<Pl(t2) <P2(t2) ... (A.18) 

Note that in the limit of an infinitesimal sampling period, these matrices may become 

seminfinite. 

It is seen from (A.13) and (A.16) that numerically evaluating the K - L expansion 

directly corresponds to the eigendecompostion of the sampled covariance kernal. Because 

of the stationary assumption on the random process, this kernel will be Toeplitz. i.e. each 

matrix element is a function only of the difference of its indices, and the matrix appears 

diagonally banded and Hermitian. 

Corresponding to the numerical evaluation of the K - L eigen-decomposition of the 

random process, we see from (A.I) that the time samples of a random process may be 

similarly evaluated. We have, 

N 

x( tj) I:X";4>;(tj) 
;=1 

N 

x' J I:X'<p" , 'J 

i=1 

X ~X 

where the Xi are the discrete expansion coefficients, 

and, 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 
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Similarly, the coefficients of (A.2) may be numerically evaluated as, 

x = q,Hx (A.24) 

It is apparant that if a given continuous time random process is sampled, then the above 

matrix relations for the sampled data will correspond directly with the continuous time 

K - L expansion of the original process. 

A physical channel with a non-degenerate kernel will theoretically require an infinite 

expansion of (A.S), and will have an infinite number of eigenvalues. However, the spectrum 

of the eigenvalues will generally remain at a constant value only for a finite number of 

eigenvalues, before decaying away to zero. Therefore, only a finite number need to be 

considered as significant, for a given machine accuracy. A practical question is the sampling 

rate that is required in order to capture the relevant statistical information of the process 

through a K - L expansion. For N samples over the time period of interest, i.e. one symbol 

period, one may evaluate N eigenvalues and eigenfunctions. However, it is known that 

a process which is band limited in frequency to between -Wand W, has;:: 1 + 2WT 

eigenvalues, or degrees of freedom [56], where T is the observation time. Defining N.\ to be 

the number of significant eigenvalues of the process, and Ts to be the sampling period, we 

have, 

N>. > 2WT (A.25) ~ 

> 2WNTs (A.2G) ~ 

;:: N 
(A.27) 2W-

is 

where is is the sampling frequency. If is is chosen to equal 2W, the Nyquist sampling rate, 

then N>. ;:: N, and we will capture most of the significant eigenvalues. If we sample faster, 

at say is = 4W, then we have N>. ;:: N/2 and the N eigenvalues we evaluate should almost 

certainly contain all of the significant eigenvalues. The Nyquist sampling rate is seen to 

form a lower bound on the sampling rate required to resolve the significant eigenvalues of 

the random process. 

This appears to be the best estimate of the required sampling rate that can done 

without explicit knowledge of the the fading process and its statistics. Note that practical 

mobile channels generally only exhibit a single significant eigenvalue. In practice, a prudent 

oversampling of the signal should be used in order to capture the transition region of the 

eigenvalue spectrum, down to the available measurement or machine accuracy. 



Appendix B 

Performance Analysis for Time 

Selective Fading 

This appendix analyses the performance of conventional and optimal continuous time re­

ceivers for time-selective fading with a special form of covariance function. This analysis 

is based on the work by Walker [22J for a transmitted reference scheme for binary signals. 

This is extended here to complex signalling for M-ary DPSK. 

B.1 Performance of Standard Differential Receivers 

In the classical AWGN receiver, the decision variable is computed by cross-correlating the 

received signal, x(t), with some reference signal, r(t). The r(t) is either derived from the 

received carrier, for coherent demodulation, or from the previous symbol, as in differential 

demodulation. Here we take r(t) and x(t) to be two consecutive symbols in the signal y(t), 

with x( t) having a relative phase shift of () with respect to r( t). See Figure B.1. The decision 

variable, Z, is given by, 

Z = loT x(t)r*(t) dt (B.1 ) 

A Karhunen-Loeve expansion is performed on each of the fading signals over one symbol 

interval, providing uncorrelated Gaussian random variables in the expansion coefficients. 

The random channel is assumed to have a correlation function R(t - r) for its single tap 

process. The expansion functions, {<Pi(t)}, will satisfy the Fredholm integral equation, 

Ai<Pi(t) = loT K(t,r)<pi(r)dr (B.2) 
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x(t) 

Figure B.l: Form of the DPSK signal used in the text. 

where the kernel is given by, 

K(t,T) = s(t)R(t - T)S(T), ( B.:3) 

and s(t) is the purely real modulating waveform. Here we assume that within a single 

symbol interval, a modulating pulse's shape may be taken to have zero phase. The relative 

phase offset between symbolss, which carries the signalling information, will be introduced 

explicitly in the following. Performing the expansion on the signal waveforms, one obtains, 

and, 

x(t) = L Xi¢i(t) ¢::::::> Xi = loT x(t)¢i(t) dt 

r(t) = L ri¢i(t) ¢::::::> ri = faT r(t)¢i(t) elt 

(BA) 

(B . .5 ) 

(B.G) 

which is seen by substituting the waveform expansions into (B.l) above. From Figure B.l 

we have for T < T, 

x(t)x*(t + T) 

x(t)r*(t + T) 

r(t)r*(t+T) 

K(t,t+T) 

y(t)y*(t + T + T) 

K(t, t + T + T)e ilJ 

(B.t) 

(B.8) 

(B.9) 

(B.lO) 

Without loss of generality, we may assume constant amplitude modulation. That is, Is(t)1 '= 

1 and the kernel K(t, T) is simply R(t - T). If the modulating waveforms are shaped, then 
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R(-) is simply replaced by the K(-) of (B.3) in the following, with the eigenvalues determined 

by (B.2). For the constant amplitude case we have, 

x(t)x*(t + T) r(t)r*(t+T) (B.ll) 

R(T) (B.12) 

x(t)r*(t + T) R(T + T)e iO (B.13) 

~ R(T)eiO R( T) (B.14) 

The last approximation is often used in the literature [57], where it is assumed that the 

fading process may be characterized by a single decorrelation parameter, p == R(T), be­

tween symbol intervals. The analysis here uses a somewhat hybrid approach, where a single 

parameter is used to characterize the fading between symbol intervals, but the full struc­

ture of the fading statistics is considered within the symbol interval (by way of the K - L 

expansion). The correlation function across two symbol intervals is thus taken to have the 

form: 

R2(T) = { R(T) 
pR(T - T) 

T < T 

T < T < 2T 
(B.15) 

where R2( T) is the extended correlation function, and T is the time-difference variable. Al­

though the discontinuity implied in the correlation function across a symbol period is not 

accurate in the description of the channel statistics, this approach does provide an interest­

ing analysis and interpretation of a continuous time receiver. Moreover, it is necessary here 

for the analysis to give results in a tractable closed form. 

Using the above correlations between waveforms, we find for the K - L coefficients, 

--* } XiXj 
Aibij 

rirJ (B.16) 

xir* 
J 

peiO Aibij 

where 0 ::; p ::; 1. It is seen then that Z = Li Zi = Li xiri is the sum of products of two 

complex Gaussian random variables, where each individual product term is independent of 

the others. The probability distribution function of the decision variable, Z, will be the 

convolution of the individual pdf's of each of the Zi. It should be noted that the pdf of the 

the product of two Gaussian distributed random variables is not in general Gaussian. From 

Miller [38] the pdf of each of the Zi may be evaluated as follows. Define the vector wand 
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the correlation matrix R of was, 

w [ :; 1 (B.17) 

R (B.18) 

[ 

/Xi/2 Xiri 1 
x*r' /r·/ 2 
t' t 

(B.19) 

We now define the inverse of R to be S == R-l, and the element (1,2) of the Hermitian 

matrix S to be in the complex form, 

(B.20) 

In addition, a particular product, Zi, is decomposed into its real and imaginary components l , 

Zi = Xiri' = u + iv. The joint characteristic function of (u,v) is given by [38], 

4/S/ 
7f;(t,s) = t2 + s2 + 4i/5d(tcosx12 + ssinX12) + 4/S/ 

(B.21) 

The corresponding joint pdf of the real and imaginary components of Zi is then given by, 

p(u,v) = 2~S/e-2IS121(tcosX12+ssinX12)J(o (2)511 5 22 (U2 + v2)) , 

where J( 0(') is the zero'th order modified Bessel function of the second kind. 

(B.22) 

From the the correlations between the Xi and ri given in (B .16) above, the correla-

tion matrices are, 

R = Ai [1 s 1 ; where 8 == pe iB 

8* 1 

S = 1 [_18* -IS 1 ===> Ai(l - p2) 

lSI 
/5121 
X12 

(B.23 ) 

(B.24) 

For zero phase shift between two symbols, i.e. () = 0, the pdf for an individual Zi is given 

as, 

P (u v) - e )'j(1-p2) J( 2 2p u (2JU2 + v2
) 

Zj , - A?(l _ p2)7r 0 Ai(l _ p2) (B .25) 

An example of this pdfis given in Figure B.2 for Ai = 1 and p = 0.8. Note that the Ai acts as 

lThe use of the imaginary constant i and the index i should be clear from its context. 



APPENDIX B. PERFORMANCE ANALYSIS FOR TIME SELECTIVE FADING 120 

}. = 1.0 
fJ I = 0.8 
9 = 0.0 

e -. 

....... 

Figure B.2: Probability distribution function of the complex product z = xf, where x and 
f are correlated, zero mean complex Gaussian random variables. 

an overall scaling factor in the coordinates u and v, while p determines the extent to which 

the function is stretched along the v = 0 plane of symmetry. The angle B determines the 

angle the overall function is rotated about the z-axis. This is reasonable since the quantity 

pe iB is simply the expected value of the product, as given in (B.16), and is thus also the 

mean of the pdf. 

From the particular correlations between the Xi and Ti given in (B.16), the joint 

characteristic function of one term of the sum (B.6) is found from (B.21) to be, 

1 
'tPi(t, 8) = ~2----------

~(1 - p2)(t2 + 82) - Aipti + 1 
(B.26) 

The characteristic function of the decision variable, Z, is then the product of the individual 

characteristic functions of the independent Zi. That is, 

(B.27) 
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v 

u 

Figure B.3: Correct decision region in QDPSK for the symbol Ok = O. 

where N is the number of significant eigenvalues used to expand the original signal wave­

forms. Taking the inverse Fourier transform of (B.27) gives the pdf pz(u, v) of Z. 

1 ;00;00 . pz(u,v) = -2 \]i(t,s)e-i(ut+vs) dsdt 
471" -00-00 (B.28) 

In a four signal DPSK scheme, the decision variable, Z, will be computed and 

binned into one of the four complex plane quadrants. For the 0 = 0 pdf given above, we 

have for the probability of a correct decision, 

(B.29) 

This is shown in Figure B.3. Although the individual pdf's of the Zi, given by (B.25), may 

be con volved together to form the overall pdf of the decision variable, the approach does not 

easily yield a closed form analytical solution for the receiver perfomance. Computing this 

numerically is also difficult due to the infinite extent of the pdf functions. The "tails" of 

these two dimensional functions must be accurately considered when calculating low proba­

bilities of error. An alternative method is to evaluate Pc in the transform domain of W (s, t), 

the characteristic function of pz( u, v). Although this is still somewhat involved analytically, 

it will provide a systematized approach that allows fast and accurate calculations for com­

puting the error performance for an arbitrary set of channel and signal eigenvalues. This is 

just a generalization of Walker's approach [22J. 

This method may be used to calculate the receiver performance at any finite SNR. 

However, we will only calculate the asymptotic, or infinite SNR performance limit. Al­

though the performance behaviour at a finite SNR is also important, this thesis is primarily 
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concerned with understanding and lowering the error floor found in receivers, and will con­

centrate on this fundamental limitation of performance. As well, this analysis is a useful 

model that allows relative comparisions of receivers in different channels, and suggests the 

design of an optimal receiver for DPSK signalling. However, the previous analysis only 

applies exactly for the transmitted refrence scheme, and the approximations involved in 

using it to model a time-differential scheme do not yield accurate predications of the per­

formance for realistic channels. In the following chapter we will develop a much more 

realistic and accurate approach to predicting the error performance for conventional DPSK 

in time-selective fading channels. 

Substituting the characteristic function expansion given by (B.28) into (B.29) gives, 

l L lu 1 100 100 

. Pc = lim 2 -2 lJ!(t, s )e-,(ut+vs ) ds dt dv du 
L-+oo u=o v=o 471" -00-00 

(B .30) 

By switching the order of the integral pairs and then expanding the inner integral over u 

and v, one obtains, 

. 1 100 100 lJ!(t,s) (1- e-
iLt

) 
hm - dtds 

L-+oo 271"2 -00 -00 it . is 

1 100 100 lJ!(t,s) (1- e-iL(t+
s
)) 

-- dtds 
271"2 -00 -00 i(t+s)·is 

(B.:31) 

1 
271"2 (h - I 2 ) = (B.32) 

where hand I2 are defined by their corresponding integrals in (B.32). This forms the basic 

formula for a conventional receiver's asymptotic performance. Its solution will be calculated 

and examined first under the assumption of a single significant channel eigenvalue, and then 

under a multi-eigenvalue assumption. This provides some insight into how this analysis 

corresponds to previous analysis of so called "slow fading" channels. 

B.1.l Single Eigenvalue Analysis 

It is instructive to first evaluate Pc for a single eigenvalue, A. This furnishes the basic 

approach to be used for a general number of eigenvalues, and provides an analytical ex­

pression that may be checked against previous work. Note that a single channel eigenvalue 

in addition to the intersymbol decorrelation, p, corresponds to the case of "slow fading". 

In brief, it can be shown that an integral equation kernel, such as the Fredholm integral 

equation of (B.2), may be approximated by a Taylor series expansion in two variables (see 
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Jerri [55]). The number of terms used in the series is equal to the number of eigenvalues 

that are approximately resolved by the expansion. A single significant eigenvalue would be 

seen to correspond to a zero'th order, or constant level approximation of the correlation 

function. The complex random Gaussian process corresponding to this approximation will 

simply be a random variable over one symbol period, with a variance, or signal power, equal 

to the eigenvalue '\. This approximation of the random process alone corresponds to the 

fast fading approximation. The additional parameter p, would still be used as a measure 

of the correlation of the random variables between symbol periods, and gives the slow or 

correlated fading approximation of a Rayleigh channel. 

Evaluating h above we have, 

II = 100 
1- :-iLt roo 1/;(~,s) dsdt 

t=-oo zt Js=-oo zs 
(B.33) 

where 
1 

1/;( t, s) = -:-:2::----------

).4 (1 - p2)(t2 + s2) - '\pti + 1 
(B.34) 

However, since the inner integral is seen to be odd in s, it will evaluate to zero, and II = 0 

identically. Thus, the probability of correct detection is given by h, which can be written, 

-1100 1100 1/;(t,s) [1- e- iL
(t+8 J] 

-2 2 -:- .() dt ds 7l' s=-oo ZS t=-oo Z t + s 
(B.35) 

-1 100 
1 -2 -:-I(s) ds 

27l' 8=-00 ZS 
= (B.36) 

where I( s) is the corresponding inner integral as defined. Factoring 7jJ( t, s) in t gives, 

4 1 
7jJ(t, s) = ,\2 (1 _ p2) (t - t6) (t - t6) (B.37) 

where, 

(B.38) 

Performing the inner integral of (B.35) over t by residues, in the limit L ---+ 00 (see Fig­

ure B.4), we find that, 

I(s) = 4 . { 1 I} -27l'z Res 
,\2(1_p2)( ) (t-t6)(t-t6)i(t+S)_1 

t-to 

(B .39) 

47l'i (1 _ p2) 
(B.40) 
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and 

3( t) 

• 
t!( s) 

t!( s) 

9\( t) 

Figure B.4: Path of integration in evaluating Pc. 

P _ -1 100 
I ( s) d 

e - 2 . s 
2;r s=-oo zs 

(B.41) 

Substituting the evaluated I( s) of (B.40) into the expression for Pc above, and performing 

the following substitutions, 

} Comp,e"e, Exp,e"ion Somewhat (B.42) 
b 

a 

J S 2 + 4/a2 1. secu 
a } Standard nigonomet,ic Sub,titutiom 

s 1. tan u 
a 

one finds for Pc, 

p = _ (1 - p2) 100 
sec u du 

C ;r -00 tan u (-2 tan u + 2i sec u - bi) 
(B.44 ) 

Solving this integraP and writing Pe = 1 - Pc, one finds, 

3 p P ~ 
Pe = - - + arctan ----

4 ~ ;rJ2- p2 P 
(B.4S) 

This result agrees with the analysis by Voelcker and Proakis [11, 10J in their analysis of 

QDPSK in slow, correlated fading. Note that the single channel eigenvalue assumed here, 

A, does not enter into the error expression. This should be expected since it corresponds to 

the received signal energy. Under the random phase modulation of the fading channel, the 

signal energy for DPSK will not affect the receiver performance in the asymptotic limit of 

infinite SNR. 

2 An algebraic manipulation package, such as Maple or Mathematica, is quite useful when evaluating or 
simplifying integrals and expressions like these. 
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B.1.2 Multi-Eigenvalue Analysis 

Any signalling which uses a finite symbol period will have higher order, non-zero eigenvalues, 

as determined from the Fredholm equation of (B.2). The assumption of a constant fading 

modulation over each symbol ignores many extra degrees of freedom in the channel process. 

These will change the performance of the receiver compared to the slow fading (single 

eigenvalue and correlation parameter) approximation, and are also perhaps available to be 

exploited. Suitable, non-constant amplitude pulse shaping may also be used to deliberately 

introduce extra significant eigenvalues. This is closely related to Baggeroer's examples of 

the effects of pulse shape on receiver performance in additive coloured noise[44]. 

Note that for square, constant amplitude signalling, the eigenvalue spectrum and p 

will be strictly related through the shape of the channel correlation function, R( T), and the 

signalling period, T, as given by (B.3). For example, the mobile channel, using a vertical 

polarized monopole antenna, has a correlation function of the form [4], 

R(T) = Jo(27rBT) (BAG) 

where B is the fading process' bandwidth. The correlation factor, p, is given by p = 
Jo(27r BT), and the eigenvalues are evaluated from the correlation kernel R( t - T) over the 

period of a symbol. The eigenvalue spectrum and p are jointly determined by the fading 

bandwidth and the signalling period. However, for general, non-square, pulse shapes, the 

Fredholm kernel will not be R( t - T), as given in (B.3). The actual pulse shape will serve to 

decouple p and the eigenvalues, and intoduce some freedom in selecting the eigenvalues and 

p independently. With this in mind, the asymptotic error performance will be evaluated 

for completely arbitrary p, number of eigenvalues, and their spectrum. In calculating the 

performance of a system with a particular pulse shape and a particular channel correlation 

function, the Fredholm equation (B.2) must first be solved for the set of eigenvalues corre­

sponding to this system. Generalizing the characteristic function in (B.37) for the case of 

N eigenvalues (i.e. number of terms in the sum for Z), the characteristic function, W N( t, s), 

is given by, 
N 1 

WN(t,S) = eN IT ( ) ( ) 
·-1 t - t 1 t - t2 
J- J J 

(B.47) 

where 

( 
4 )N N 1 

1- p2 )] )../ 
( BAS) 
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12 . 2p =f vi Ai S2 (1 - p2? + 4 
t' = z (BAg) 
J Aj (1 _ p2) 

Substituting the above into the characteristic function expansion for Pc, given in (B.32), 

one finds as before that II = O. Evaluating the inner integral of (B.35) again by residues 

gives, 

1
00 'l1(t,s) (1- e-iL(Hsl) 

------''-:--.,---~ dt 
t=-oo i(t+s) 

Residues In Negative } 

Argand Plane 
(B.50) 

(B.51) 

which is a function of s only. Evaluating the residues results in, 

1 
(B.52) 

(t; - tJ) 

Therefore, the probability of correct detection is given by, 

(B.53) 

( 1 ) ds{B.54) 
1 2 tj - i j 

where the pure imaginary t1 have been rewritten as explicitly imaginary, i.e. it -+ itt 
in going from (B.52) to (B.54). From inspection, it is seen the above expression has its 

integrand's real part even in s, and its imaginary part odd in s. Thus, only the real part 

of the integrand will contribute to the integral. This results in the expression for the 

probability of correct detection, 

(B.55) 

where eN and t? are as defined previously, and p = Jo(27r BT) for the typical mobile chan­

nel. This expression may be evaluated numerically for an arbitrary number of eigenvalues 

and values of p. 

Figure B.5 shows the asymptotic error floor for the case of two eigenvalues as a 
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Figure B.5: Asymptotic error floor for a conventional receiver with two significant eigenval­
ues, as a function of the eigenvalue ratio and intersymbol correlation. 

function of the symbol correlation factor, p, and the ratio of the two eigenvalues. Figure B.G 

shows the same information, but with selected slices of the surface, parameterized by p, 

projected onto the same plane. Note that it is the ratio ofthe eigenvalues that will determine 

the asymptotic performance. Recalling that the error floor is independent of the signal 

energy, and that the sum of the eigenvalues equals the signal energy, then Pe is invariant to 

a constant scaling of the eigenvalues. For simplicity, we assume the normalizing constant 

AI, i.e. the first eigenvalue is set to 1, with the other eigenvalues normalized with respect 

to AI. The curves of Figure B.G beyond A2/A1 = 1, are simply reflected about the abscissa 

of 1 and stretched in the x direction to infinity. 

As seen in these figures, for a given eigenvalue ratio, the error floor drops away to 

zero as p -+ 1. This corresponds to perfect correlation of the random variables multiplying 

each of the two symbols. That is, both symbol intervals are multiplyed by the same (albeit 

random) complex variable, which will lead to no errors in a differential scheme. Note that 

an eigenvalue ratio of 0, that is, Al is some finite value and .\.2 is zero, corresponds to the 

single eigenvalue result given in (B.45). 



APPENDIX B. PERFORMANCE ANALYSIS FOR TIME SELECTIVE FADING 128 

~ 

.... 
0 
0 -~ 
.... 
0 
!:: 
~ 
u ...... -0 -
~ 
~ 

u 
10'2 

10-3 

1cr 

10'5 

10~ 
0.00 

~"-'-'--""'-'''''~--''='''''-''''''''''''''''''''p=O~J9""""'" 
p=O.9~5 

: ----~:------~ +-----+' ....... --.------+.-...... ---............. i ..... -.-....................... . 

0.20 0.40 0.60 

A fA 
2 1 

Figure B.6: Projected view of the asymptotic error floor for a conventional receiver with 
two significant eigenvalues, as a function of the eigenvalue ratio and intersymbol correlation. 

It should also be noted that for a given p, which is dependent on the channel alone, 

the error floor of a conventional receiver may be varied by manipulating the spectrum of the 

eigenvalues. This is somewhat surprising, since virtually all analyses of receivers in fading 

channels make the assumption of a single significant eigenvalue, that is, fast fading. As 

was derived previously, the performance floor in this case is a function of the correlation 

parameter, p, alone. It is seen that the best performance that may be achieved for a given p 

occurs for equal eigenvalues, and can result in quite significant decreases in the error floor. 

For the mobile channel environment, the time bandwidth product, BT, is typically of the 

order 0.01-0.10, and from the correlation function given in (B.46), p has a typical range 

of approximately 0.999 - 0.905. 

Figure B.7 is a continuation of the above to the case of three eigenvalues. Because of 

the extra parameter, the second and third normalized eigenvalues are used as coordinates for 

the error floor surface, and p is used to parameterize the different surfaces. Each surface will 

correspond to a particular channel's fading correlation. Setting one of the the eigenvalues 

to zero, and moving along the surface at an axis plane, is equivalent to the two eigenvalue 
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Figure B.7: Asymptotic error floor for a conventional receiver with three significant eigen­
values. 

case shown in Figure B.6. The z-axis, parameterized by p, is simply the one eigenvalue, 

fast fading case. The surface corresponding to p = 0.99 is also shown in Figure B.8 with an 

expanded axis scale to give a greater perspective. 

The general results here are similar to the two eigenvalue case, where the asymptotic 

error experienced by the receiver is again a function of both the channel's intersymbol 

correlation, and the eigenvalue spectrum of the received signal process. Again, the minimum 

asymptotic error occurs for the case of equal eigenvalues. The error floor, as a function of 

the number of eigenvalues considered, is seen to roughly follow a power law form, Pe(N) "" 

Pe (1)N. It is reasonable to expect similar results for higher order eigenvalue spectra. 

It is seen that the asymptotic error floor is not such an absolute or irreducible 

quantity, and depending on the parameter values chosen, may vary over several orders of 

magnitude of Pe. Thus, a transmitter, with knowledge of the channel correlation function, 

R( T), may select the appropriate pulse shapes to give virtually any desired eigenvalue spec­

tra, and place the receiver operating point at a minimum asymptotic error rate. However, 

this scheme is impractical for two reasons, 
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Figure B.8: Perspective view of the asymptotic error floor for a conventional receiver with 
three significant eigenvalues. 

1. Any real channel has bandwidth restrictions, imposed by physical limitations and 

government regulation. As well, pulse shaping is generally used to help control inter­

symbol interference. This will limit the ability to arbitrarily vary the pulse shapes to 

control the error floor, although further concrete analysis would be necessary here. 

2. Inherently, a transmitter has no way of estimating the correlation function of a chan­

nel. It would need to rely on some sort of channel probing signals, such as signals 

previously received at the transmitter site. This could severely limit performance if 

typical times between reception and transmission between sites are long enough to 

allow significant variation in the channel statistics. 

The following section will examine a maximum likelihood receiver, whose the per­

formance corresponds to the desirable equal eigenvalue operating point of a conventional 

receiver described previously. This performance will be seen to be independant of the ac­

tual eigenvalue spectrum of the the channel. Using fixed signal pulse shapes, performance 

is constrained only by the channel's p and the number of resolvable eigenvalues. The latter 

may still be determined in part by the chosen pulse shape. 
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B.2 Structure and Performance of an Optimal Receiver for 

DPSK Signals 

In this section, it is assumed that the autocorrelation function of the fading process, R( T), 

is known or has been estimated from the received signals. From this, the variables p, {/\}, 

and the additive white noise power spectral density, .Ma, have been calculated. The K-L 

coefficients, which are random complex Gaussian variables, are also assumed to have been 

extracted. The vector of coefficients, z, is given by, 

(B.56) 

From the Gaussian nature of the K - L coefficients, the pdf of z is given by [38], 

(B.57) 

where, 

Am = zzH (B.58 ) 

is the correlation matrix of the K-L coefficients over two symbol periods, x and r, assuming 

that symbol m was transmitted, i.e. a relative phase shift of em between symbols. For 

the case of equal energy symbols, the determinant of Am is independent of 117" and the 

maximum likelihood symbol is that for which, 

(B .59) 

is a minimum. In this case we have the correlations, 

XiX; } ("\ + No) Dij 
rirj 

xirj peiBm AiDij 
(B.60) 

= SmAiDij 

For the case of N = 3 eigenvalues, say, we have the correlation matrix, 

Xl 

X2 

Am 
X3 

[ Xl r3 r (B.61) X2 X3 rl r2 
rl 

r2 

r3 
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)'1 +No 0 0 Sm Al 0 0 

0 A2 + )Vo 0 0 Sm/\2 0 

0 0 A3+No 0 0 Sm A3 
(B.62) 

S~Al 0 0 Al +No 0 0 

0 S~A2 0 0 A2 + )Vo 0 

0 0 S~A3 0 0 A3 +No 

Inverting the matrix and defining ai == Ai + No, we find, 

<Tl 
<T12_p2AI2 

0 0 -Sm A l 
<Tl 2 _p2 A12 

0 0 

0 <T. 0 0 -SmA? 0 
<T22_p2A22 <122_p2A22 

0 0 <T~ 0 0 -sm'\~ 

A-I = <T3 2 -p2A 3
2 <T3 2 _p2 '\3 2 

(B.63) m -S:UAI 0 0 <T] 0 0 
<112_p2AI2 <T12_p2A12 

0 -S~'\2 
<T22_p2A22 

0 0 <T2 
<T22 _p2 '\2 2 0 

0 0 -S~'\3 0 0 <11 

<T3 2 -p2A 3
2 <T32 _p2 '\3 2 

Expanding the decision variable expression in (B.59), and making the obvious generalization 

to N eigenvalues, gives the likelihood function, 

£ = ~ (Ai +No)(lxiI2 + !ri1 2
) - Ai(S;"'Xi1'i + Sm Xi1'i) 

m ~ (" Ar)2 2'.2 i=l A, + )V o - P A, 

(B.64) 

Subtracting the first term in the numerator since it is independent of the symbol, m, being 

considered, gives, 

" = t -Ai(S;"'X;1'i + Sm Xi1'i) 
m i=l (Ai+No)2-p2Ai2 (B.65 ) 

as the optimum receiver's decision variable. To evaluate the asymptotic error performance, 

one lets )Vo -+ 0, which gives, 

(B.66) 

(B.67) 

U sing the definitions, 

Xi 
Xi 

A 
-+ (B.6S) 

r' , 
ri, 

A 
-+ (B.69) 
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the decision variable which we are trying to minimize may be written in the form, 

N 

£ - -2 "" e-iBmx'r~ + eiBmx*r· m- ~ t 1 1 'l (B.70) 
i=l 

where the constant p have been dropped, and we have the correlations, 

1 

(B.71) 

For the conventional DPSK receiver analyzed in the previous section, a decision variable Z 

was calculated from the received signal vector and "binned" into one of the four complex 

quadrants. For general M - ary signalling, this is done by forming the dot product of Z 

with the !vI message signals arranged uniformly around the unit circle, forming AI separate 

decision variables. The chosen message is that which maximizes the decision variable. When 

two dimensional vectors are expressed as complex numbers, we have the real scalar identity, 

a·v ( - -)* U·V 

uv* + u*v 

So, for the conventional receiver we have the decision variables, 

e iBm Z* + e-iBm Z 

N 
"" eiBmx*r' + e-iBmx·r* 
~ 1t 11 

i=l 

where we have the correlations given in (B.16). 

(B.72) 

(B.73) 

(B.74) 

(B.75) 

(B.76) 

Comparing this expression for the conventional receiver with (B.70) it is seen that 

the decision variables for the optimal receiver have an identical form with those of the 

conventional receiver. Moreover, the statistics of the random independent variables Xi and 

ri of the optimal receiver, given in (B.71), corresponds to those of the conventional receiver 

given in (B.16), when all of the eigenvalues equal one. That is, the asymptotic error of 

the optimal receiver, independent of the actual eigenvalue spectrum, will have the same 

performance as a conventional receiver when all the eigenvalues are equal. The optimal 

receiver is seen to perform something of a whitening of the eigenvalue spectrum. 
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Figure B.9: Performance of the optimal receiver as a function of the number of channel 
eigenvalues and intersymbol correlation. 

Equation (B.SS) was numerically evaluated in the limit as all eigenvalues approach 

1. The results are shown in Figure E.9 where the asymptotic error floor is given as a 

function of the number of eigenvalues, and the correlation parameter, p. It is seen that 

for a given channel correlation between symbols, the error floor decreases exponentially 

with the increasing number of eigenvalues. The magnitude of the exponent is also seen to 

increase as p -+ 1, where the error floor disappears to zero as expected. 
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