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ABSTRACT
The behaviour of certain non-linear oscillatory
systems are studied analytically. These systems are of
the "separable” t&pe i.e. thoy can be modelled using {
linear frequency-dependent networks, frequency 1ndepen-r

dent non—linear resiative networks, and non-linear

react}ve networks,

When the time—lags in an oscillatory system are
negligibly small, the system may be described by a
non-linear differential equation. If the time-lags -
cannot be’ ignored, the syatem may be. desoribad by ﬁ
non-linear difference-differential equation.

The eiacf'anolytical solutions of . non—linear
dirferential or difference-dirferential equationu are
not known, except 1n rare cases, However, with approp-
riate reatrictiona, analytical approximations may be

found._
Lﬂ

In this work, analytical approximations are’
developed for treating second-order, forced or;unforced

weakly non-linear oscillatory systems, as well as a

reutrioted class of unforced highiy non-=linear systenms, .

Those systems may be of the degenerative or fegener-
ative type. Also, the case when time-lags exist in
the system, has been atudied analytically.

The analytical results ave verified either
" experimentally or by numerical simulation.
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CHAPTER 1

Introduction o e
1.1 Preface ‘ ‘

LY

Most -if not all- phys1ca1 systems are inherently non—hneor.

In son&appl1catlons, the effect of non~1inear1ty may be d15regarded

\

over a spec1f1c range of operation and. the system may_ be analysed

el

*as a linear one. In many others, 1gnoring,thc role of non-linearity’

% in the analysis may ‘either result in gross quantitative errors or in
. ] P . )

" completely falsifying the analysis. This.can be true even for very

"Weahﬂfnon-linearities. : -

T

The ;most attractive-property of “liﬁear" sjstems.ig—the

property of supcrposition. Most of the progress in the analysis".I

and synthesis of electrical circuits and control systems,for example,

has been based 4n this property. It may be noted houever, that the

non-linearity in a system is not necessarily an umdcsirable_property.

For example, the proper functioning of the'regenerative oscillator -

an essential'element in a modern-cormunication system - is possiblef

only due to the existence of non-hneor regulation in the oscillator

rl

»

circuit. In this case, and in very many others the non-hneorny

in the systenm plays a favourable role.

]
-

When time-lags in a dynamic systen are negligxblg smoll the

system may be satisfactorily characterited by a non-hneordxfferent1al

»

equation. In the cases where the non-hnecrﬂy can be ignored the

system may be cha;;EfEfIfe/ d by a linear d1fferential eduation which

‘may be time—invariant or t1me-varinnt. \

1 )

.”‘\J



An exact solution of a linear time-invariant differential Y
cquation is always possible. The solution is greatly simplified by

the fact that it can be constructed as a linear sum of independent

Al§1mp1ér solut}gps. This is often done, convenien}iy, throught the
use of lincarﬁiransforhs.l‘ )

The analfgis-of,linpar'timc-variant systems is complicateo.”
We are not fortunate in finding exact explicit soiutions‘to linear
timc-variaot equations .except for first-order eouations nod_specific
olassos of higher o;der equations. -HoweVer,,sinoe the superposition

principle still holds, we have the advantage that once the solution

of the n-dimensional homogeneous differential equation: a ‘)

w

S X =A@ X , . Q.

is known, then the solution of the n-dimensional inhomogeneous

equation:
_\ _%;;t’f‘- M) X+ £, e

2

) can readily be obtained. = . . ‘,ﬁ

Several techn;ques for. obtaining approximate solutions of eqn. (1.1)

" are known [see for example D'Angelo, 1970]

" When the existence of non—hneorﬂy must be ‘admitted, the analysis
15 furth;r complicated by the fact that the superposztion principle

does not hold. It is only in rare cases that exact analytical solutions

s . . v
2 . .-

L8



to non-linear differential equations can be found. One is therefore
forced to resort to various means of approximation. Rigorous

nnalysis usually fails to yicld a solution of practxetrl Use, al-
though it may provide valuable information about the existence and "
uni.queness of t;hc solution. 'Anal'ytic ingenuity must then be combined
with physical intuiticn in an attempt to obtain an adequate ‘approxi-
mation.. Aithough one may escape the anclytic difficulty by resorting to numerical
solutions, it should'l.ae.remembered that a numerical solution provides little insight
into the behaviour of the system. A numerical solution is not @ subsmute for an

onolyhcol solution. It can however serve as a useful experiment.

1.2 Scope of Work /
o “This work is primarily concerned with the prob‘lem of finding
analytical approxmations to the non-stationary rcsponse of the class

of non-lincar osc;llatory syst.ems described by:

A\

X + P(x,et) + ef(%,x,t) = 0 j Ocecc 1 and () é%-t- i

This equation arises in diverse areas and has attracted wids-spread
attention. . Most of the pertinent litcrfture, however, has been focused
.on the study éf ﬁériodic oscillations in autonomous or non-autonomous *
| syséeus.; fhe condiiion of periodicify, in fact, simplifies the analysis
to q'grea; extent. The analytical methods for studying the non-
st;tionary behavioug of oscillatoxy systems are not well expléred.T
Some.of”tﬁe methods devéloped in the literature will be discussed or
rofer%ed to in the introductions of Chapters 2, 3 and 4 and in

a\pper_ldices Band C.



In Chapter 2, we study a ;lass of weakly nbn—“neor
oscillatory systems with emphasis on the case of the self-oscillator
with delayed ampiitude regulation.

In Chapter 3, & simple procedure for anafytically determininé‘
the transient response of a class of highl} non-linear oscillatory
systems is developed. ‘ |

In Chapter 4, theltransient response \of a forced weakly
non-linear systeﬁ is studied. The frequency content of the forcing
“function is restrictéd to be outside the resonance zones of the
system. _The magnitude of‘ihe forcing function c;n be relatively
large.

In Chapter 5, n‘non—ﬁneor convolution method is developed
for.stqﬂiing the effect of_e;ternal d%ﬁturbances on the behaviour
of a self-oscillatory systen,

In Chapter 6,.the frequency pulling and.the frequency
wodulation of a self-oscillator &ue to the présence of external"
disturbances are studied experimentally. |

Numerical simulations have also been carried out to verify

some of the analytical results obtained in Chapters 2 to 5.



CHAPTER 2

el

Analysis of unforced weakly

non-linear oscillatory systems

2.1 Introduction

P

The behaviour of a broad class of physical oscillatory systems
can be described by a second order weakly nondinear differential

_ equation which can be written in the normalized form: '

Xx+x+e£x,x) =0 - ‘2.1.1)

P

where 0<|é|<<l, (%) 8 %E-and f is generally a non-linear function with.
réspect to x and x with fif] = 0(1) in the region of finterest in the
xr; planc. '

When eqn. (2.1.1) represents agon-linear conservative system,
then jts solution is pcriddic'. This is,the case when f=f(x)
or when f satisfies the conditions of existence of at least one s;able\\
limit cycle where thg system becomes conservative as the transients due
to the initial departure from the prospectivé limit cycle fade away. The
periodic solution in this casc can be determined in a systematic fashion
to any desired degree Jf accuracy?ﬁxusing the well known bqincaré- ‘
Lindstedt method. . .-;

When eqn. (2.1.1) represents a non-conservative systen, where/

the behaviour is ;;z—sfationary, or when it is desired to obtain the

5



“transient behaviour of a system which is conservative in the limit, the
,.Poincaré-Lindstcdt method cannot be used and a more general technique
which enablés us to predict with accuracy the transient and the
steady state behaviour .is desirable. .

- The general behaviour (stationary or non-stationary) of a
system described‘ﬁy cdﬁ. (2.1.1) was studied by v.d. Pol  [1934].
Along partly intuitive lines he developed an approxination technique
which he used for thé study of both free and fbrced oscillations in a
regenerative oscillatory system. The method can also be used for the
study of degenerative oscillatory systems. N

A variant of the methpdkt;?-:.d. Pol, which is in many cases
simplcr to apply, was developed by Krylov and Bogoliubov  [1937]. .The-
. method was later extended to higher order approkimations by Bogoliubov
and Mitropolsky .[i961].

The problem of-determining the higher order approximation of
the genéral solution of eqn. (2.1.1) has attractéd considerable in-
terest. Struble [1962].used successive iteration where the first
approximation oBtained by the Krylov-Bogoliubov (K-B) method is reused
to obtain a better approximation. Kévorkian and Cole [see Kevorkian:

1960 and Cole, 1968] used a perturbation method which follows closely ‘the
% 3

" Poincare-Lindstedt method with the additional use of the concept of the

fast and slow time scales originated by v.d. Pol and Krylov and Bbgoliubov.

Nayfeh[1964,65,67,68] developed the so called derivative expansion wethod

which extends the concept of double time scaling to mitiple time scaling.




1

This method not only complichtes the analysis to a great extent )but
also introduces more arblg{?r1ness into the problem thah is nee;ed
(in the Poincarc-Lindstedt ;Ense) for the elimination of the unbounded
terms in the perturbation solution. This could falsify the evaluation

of the higher order approximations. Although the method was mainl;
devised for determining the higher qfé;r non-stationary solutlon of

eqn.s (2.1.1), only the first order non stat1onary solutzon (i e. the

v.d. Pol or K-B solqtion) was obtained in the various cases that Nayfeh
studied using this method. Davis and Alfriend [1967] used the method
for determining the second approximation of the non-stationary Eehcviour
of v.d. Pol's equation and obtained & resul; which contains spurious
terms. Their anaiysis will be discussed in Appendii B.

In section (2.2), a variant of the asymptotic method of

lBogoliubov and Mitropolsky is describgd. In section 2.4 the method

is used to study the behaviour of a self-oscillator with delayed amplitue

~ -

regulation. K .

2.2 The method of analysis

We shall consider a system described by:
X+ x+c f(x,x, et) =0 , T (2.2.1)

where £ is a non-linear function with respect to x and x. The



restrictions imposed on € and f are the same &s in eqn.'(2.1.1)3
The only difference between equations (2.1.1) and (2.2.1) is the
pogsible explibit dependence of’t»in the latter on the slow time
et. Thus eqn. (2.2.1) may represent a slowly time-variant system

or a time- invariant system which is forced by a small slowly varying

function. o

.

The solution of eqn. (2.2.1) will be sought in the form:

LY

x = x(1,€) = Acost + e[C ] (€ cos nt + D sin'nn)}  (2.2.2)

~n>l
where
E e et '
and  SLA (e =14 ea () v et Ay0E) (2.2.3)
dt 1 2 . B ' LA ]

A(E) being the instantaneous frequency of oscillation..

The coefficients A, Co’ Cn are assumed to be

and D
) n

n>1

n>1

functions of the slow time £.

We note here that when f takes the form:
£(x,x,£) -z\_.fi(x_.x) + G(8) £,(x,x)

vhere f1 and f2 are anti-symmetric functions with respect to x and

x, then only odd values of n need be considered. 7



Now .
dx 9x dr - ax ax '
T at e x(g) ar € 3% (2.2.4)
e
' 2 2, 2 - 2
and d ax d Ix 2 ax
1 (5) ———-+ 2e A(E) _— - (2.2.5)
a2 N veg At 262

where from expression (2.2.2):
-

i
I

x

T A sint”+ e[ In(- C, sinnt + D cos nt)])
. K} n>1
't -
aZX . . )
~— = -A cost - €] Zn_z(cn cos nt + D gin n1)] (2.2.6)
a
n>1 .
k BkC akc . BkD
and ak 2 A cOST '+ CE—‘E- + I (= COS nNT *+ ——EB-sin nt)]
— }'
ack o8 n>1 ag ' ok

k:].’z’.....
Thus ; and x will take the form of Fourier series with slowly

varying coefficients. Also using expression (2.2.2) and the rcsulting

. e
expression for x, the non-linear function f can be written as:

cf(x,;,g) = 3 cm[Pln cosT + Q,, sint]

w1
. (2.2.7)

I ¥ cn[Pnln cos nt + Q__ sin nt]
o 2
n;l
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r_rhere an and Qm:n are, slowly varying functions of time.

. r

Furthermore, we shall make use of the series expansions:

‘;ker+eA1+ezA2*

8 2

ch chl + € an + ... _ . o (2.2.8)
4 20 .
ch = l:l)n1 + £ Dn2 + ..

- ’
.
Thge “ .
. cx

Now substituting the expressions for x, x and ef in egn.
(2.2.1) and equating the coefficients of sin nt and cos nt (n=0, 1,2,...)

.separately to zero we obtain a system of equations which will gencrally » “

take the form:

dy 2 YA Ay
CH].(-(E- » AOI E) + € Hz('a'é'_ * Alv E_E— » Aop Al’ Cnl' D 1? E)

+II
- Ay dA)
dg-

| | )
B (g Ags B+ €709 Ay 5

2
€ AY(C 1y Ags B) * € Ay(Crpy 0 ) # el = 0

€ Ty ), Ags ©) + €Ty 5, oo0) + oee =0

‘rs"
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A
Finally, based on their order of smallness, the terms cH1(°),

eEl(-), ehl(-), erl(-), ézﬂz('), czEz('), ... are equated separately
to zero. Thus we obtéin a system of equations which can be solved

sequentially to yield‘ﬂ', Al’ Cnl’ Dnl' Al' 12, ... as functions of .

the slow time £ and hence the solution for x (expression (2.2.2))

is obtaired.

37 I1f only a second approximation is required, the following

'exprcssions_[which are obtained from expressions (2.2.2), (2.2.4) and

&

(2.2.5) with the use of (2.2.8)] will be needed:

2 dA

d x 0 _.
7t X = - ef2 ac sint + ZAIAO cost] + cCo
dt
y o *
- € ] (n°-1)(C  cos nt + D sin n1) . (2.2.10)
. n22 ’
dA dA di
2., 1 0 1, .
- e {{2 v 23, T Ay = }sin 1]
'PIA.():*'ZQZ’ +2).|A, - C_‘_:é_‘i-'ifa.'r]
-6
+ 0(23)
. ‘ dA
dx . 2 . 0
€t =" € A, sint + € [-(A1+A1A0) sint + g~ COST)
+ c2 hI ntu Cn sin nt + Dn cos nt} ' (2'2'11}.
n»2
+j0(£3)



2.3 The scif-oscillator with delayed anplitude regulation.

-

The basic self-oscillator can be represented by a dissipative
tuned cirquit coﬁnected in parallel with‘a voltage controlled non-
linear T | . resistance exhibiting local differential
negative resistivity. The equivalent circuit of such an oscillator is
shown in Fig. 2.1-a ,/and a typical characteristic of the non-linear

negative resistance is shown in Fig. 2.1-b . The (differential)

. ~
negative resistivity is necessary for regeneration and the non-

linearity is necessary for amplitude regulation.

In the study of this oscillator, it is customary to assume
that the non-linear negative resistance is of zero-memory i.e. that

the current in the resistance is a single-valued function of the

voltage actoss it. In a feedback oscillator [Fig. 2.l-c], the

above assumption implies a zero-phase-shift feedback circuit.

The oscillator with phase-shifted amplitude ¥egulation has
been studied by Golay [ 1964}. The oscillator is represented by a
dissipative tumed circuit connected in parallel with a“negative
resistance the value of which depends upon the square of the oscillator
voltage phase-shiftéd by a first‘order R-C filter. The ci}cuit of
this oscillator is shown in Fig.‘JZ.Z;. The squaring device in Fig. 2.2 ;
is assumed to be of infinite input impedance and zero output 1m§cdancc. Qu
The oscillator can be described by the normalized equations:.
dz 2

.'r.a_a-rz:v . | . (2.%’:.1)
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Fig. 2.1 (a) Equivalent cifcuit of m basic oscillator
(b) Typical characteristic of the non-linear

negative .resistance .

-

(c) Feedback Oscillator .

)
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"1k

o

and
2 - i oy
4y .y =2€9-—-[V[1-Z)] . (2.3.2)
2 dt . .
dt
AV Az A s }1& ‘d 6 T d
where v = ¢ , 2 5 = , € =-§—/: >0, T = ‘a'{‘ﬁt
0 Vo | IiE 3 dt
V is the voltage across the tuned circuit, Z is the output voltage of Q

the Rl—C1 circuit, t is the actual time variable and t is the normalized

time variable. L, C; R, Rl, Cl,‘g and Vo are the parameters of the tuned

circuit and the feedback circuit as shown in Fig. 2.2 .

¥hen T + 0, equations (2.3.1) and (2.3.2) tend to v.d.Pol's

equation.

¥

Golay studied the casc when £<<1 and T>>1. Assuming the

oscillator voltage to be almost sinusoidal:
vaA cos(wt+d) ,

then for T>>1 the second harmonic component of the voltage across
Cl is negligibly small. To a first approximation, the steady state

solution of equatiohs (2.3.1) and (2.3.2) obtained by Golay is:
vy Y 2 cos(t+$) , ¢ being a constant.

Later, Scott [ 1966] obtai: a first approximation of the

steady state amplitude of oscillation . :r arbitrary values of T and
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o

Nayfeh [ 1967] obtained 2 first épproximation'of the transient and
steady state amplitude and frequency. - ’

‘The method used by Scott [2] is somewhat complicated and the -
transient solutlon obtained by Nayfch [4] is in erxror as will be
shown be105. Actually, a first-order approx1mat1on of “the steady-

state solution can be obtained in quite an elcmcntary panner:

Let
&

vaA COS(w,iW) E \ o (2..3_._:’;)

‘where A and ¢ are constants, then the steady statec solution of eqn.

(2.;.1) is:
% | 26T
z=—1[1+ cos 2(ut+¢) + — 5 sin 2(mt+¢)] - (2.3.4)
2 1+:,J-r Loha T B

Using expressions (2.3.3) and (2.3.4), eqn. (2.3.2) becomes:
‘ L

2 ’ 2 2

A[m2 -1- 59155—5] coswt - 2ewA[l - A A 5 ] s1nmt ~0
144" T 2 4(1+Lm2T .
where the ghir? harmonic component has been neglected. - L

Hence, in accordance with the principle of harmonic balance:

cTA2
YegdT? A 144T

2
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JZA[1aTY) 4L+4T ] : |
(2.3.5)
3+8m2T2 v {3+8T ] :

and

2
w1 e —STA e 2T (2.3.6)

2(1+LT2) ~ 3+8T

The transient bchaviour. of this oscillator is chy difficult to
determine analyt1cally, except for the spec1al case when T + 0 where
equations (2.3.1) and (2.3.2) reduce to v.d. Pol's equation, The as-
sumpt1on of s}owly wvarying coeff1czcnts can only be made hhcn T~+0

-
or when T>>1 but not for intermediate values of T since fast varying

Ly

transients will appear at the output of the R,-C, circuit.
Let' us consider the case when T>>1.
tet 2 = 0(c) # € x where & = O(1).

Eqn. (2.3.1) is then rewritten as:

. dz 2 :
aE +x 2T EKY " | (2.3.7?

To a first approximation:

vy A (E) cost with 91 A1+ e A (E)

" The r.h.s. of eqn. (2.3.7) becomes:

1,2 : ,
3% AQ[E) 1« cos\Zr] O
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In this case the second harmonic component in z is negligibly

‘small, thercfore equations (2.3.7) and (2.3.2) may be written as:

»

dz ) N | ‘ _
* LI AO{E] x = 0(1) , (2.3.8) v/\/
and
4,y .2 L va-2)] ;.2 by & 9
. v = <€ dt z)] p2e(l-z) ¢ , (2.3. )
. dz _ 2 dz _ 2
[ since egp=e gr~ 0(e™)]

Considering only the first @rdqr terms in expressions (2.2.10)

and (2.2.11) and following the procedure—dcscribed in section {2.2)

then A. and A, are related by:

0 1 .
L
dAO . o
3 ® Ao(l-z) ‘ (2.3.10)
and | AIAO = 0 | (2.3.11)
For a non-trivial solution, Al = 0, pu

Equations (2.3.8) and (2.3.10) must then be solved sirultaneously

to xieid Ao and z. The eqn. for Ay is: .

(2.3.12)

¥



Using the derivative-expansion method, Nayfeh[1C6.7] obtained
cquations for AO and z which, when T>>1, become equiva]eni to equations

(2.3.8) and (2.3.10). However, in Nayfeh's analysis, the assumption
b
of slowly varying coefficients was indiscriminately made for all values

of T. Furthermore, eqn. (2.3.8) was solved, as though AO was in-

dcpeﬁdent of £, to yicld
33

z=ce o 2a2(6) , where c is a constant. (2.3.13)

The first term in eqn. (2.3.13) was ignored. Thus eqn.

(2.3.10) reduces to:

da, A

We note that although the steady state solutions of equations
(2.3.12) and 12.3.14) are identical, their transient solutions are not
in agreement, even qualitatively. -‘ 7

In a paper published later by Nayfeh {1968 ] , forced oscillations
in the above system were studied. However, the same mistakés, pointed
out above, were repeated and the results given in that paper are

doubt ful.

It may be noted that Golay's model appears to be
a rather crude representation of a real system. In fact, a
thorough theoretical analysis of a more general class of

oscillators has beeﬁ\developed earlier (Gladwin [19551). -

'

‘In this section, wec shall study an oscillator with delayed

amplitude regulation. The circuit of this oscillator is shown- in
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The non-linear negative resistance [realized by the feed-

Fig. 2.3 .
in

2.3 ] is of the v.d.Pol type, i.e. i r

»

back circuit in Fig.
Fig. 2.3 1is related to the'oscillator voltage v by:

i 3 . o
r =-av + bv~ , where a and b are positive constants .

LY

"The oscillator can be described by fhc normalized differential-

difference equationy
a .

k]

X+ x+c [ox - Bx(t-h) + 3 x> (t-h)] = 0 (2.3.15)
where
() f'%f , t = %E:- T [t and t are the actual and nommalized
time variable rcspectivelyi, b <eg= (a—.%ﬁ J[g-<<1; ca u-% /?g R

eB 3 ¢ (1+a) = av %— and h = %%:<his the normalized time-delay in the
Lc~ .
feedback loop. It is assumed that a, B and'h are 0(1).

x and x represént the normalized current in the inducter L and

¥

the voltage across the tuned circuit respectively. They are related to

the actual inductor current i and the oscillator voltage v by:

_—

when h + 0, eqn. (2.3.15) becom:s Rayleigh's differential equation.
ved u%ing the procedure described in

Eqn. (2.3.15) will be
" These will be discussed

section 2.2 with some special considerations.

below.
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2.4 Solution of a difference-differential equation representing
a weakly non-linear oscillatory system .,
Consider an oscillatory system described by :
X + X+ cfl(x,x) + ef(x(t-h) , x(t-h)) =0 (2.4.1)

where |¢|<<1 and !flu ,1lfl{, and h are 0(1) . f1 and f are generally

non-linear functions of their arguments .

Let it be specified that x(t) = u(t) and x(t) = v(t) in the time
. -+ . .

interval -hgt < 0 . Let us first consider the case when fl is

a linear function , denoted by L(x,%) . Thus eqn.(2.4.1} becomes :
X+ x + eL(x,x) = - ef(x(t-h) , x(t-h)) (2.4.2)

Eqn.(2;4}2) can be considered as a piece-wise linear differen--
tial equation for which an exacf solution can be obtained . Since x
and X can be specified as initial conditions in the time interval
—h:;:.'tso'+ b eqn.(2.4.2) can be solved to determine the behaviour of
the system in the time interval Ogts h . Tﬁis in turn is used to set
the initial conditions for the subsequent interval hg t¥2h , and to
update the r.h.s. of eqn. (2.4.2) which will then detennine,tpé.behav-
jour in the interval h<ts2h . One can proceed in this ﬁanner
updating the values of the initial conditiohs and the function f
from one interval to ihe néxt . Such a procedure is of course
impractically Jabourious and in addition - like mumerical solutions-

it lacks the prediction power of a sound analytical solution .
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This fact can best be demonstrated by considering the sirmpler

case of a first order linear difference-differsntial equation:

-

x + ex(t-1) =0 S (2.4.3)

&

with the initial conditions x = 1 for -1<t<0" .
The exact solution of this equation, obtained by the above

procedure, 1is:

l - et ' N O«<t<l

c2 2 |
1 - ¢t + 57-(t -1) 1<t<2
:2 2 53 2
x= 1 -¢t+ 3T (t7-1) + 3T (t+1)7(2-t) 2<t<3
. - 3
m : n .
A1+ I (_l}n t:!14-1 LF_!_':_})__ (1 - .1111‘_) Ofmftfm’l

+

n+

n-0 m being an integer

~

This form is too cumbersome to be useful in deriving in-
formation about the ﬁaturc of the solution as t increases. It
should be remermbered that the terms cnfn, n=l,2,... are "secular"
terms that cannot be neglected.

The-éxact piece-wise linear solution of éqn. (2.4.2) is
much more complex. Moreover, it might not be possible to find a
general formulé as in the above case. One must then scek some

=
form of approximation.
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We shall seek an approximate solution of eqn. (2.4.2) in the
form of expression (2.2.2). Llet x, and X, denote the exact and

approximate solutions respectively. Thus:

ne

Xy * X, * cL(xe,xe) e - cf(xe(t—h), xe(t-h)) - Efeh (2.4.5)
and o

- - - ) A

x, + xg + cL(xa,xa) E - cf(xa(t—h), xa(t-h)) = - Cfah (2.4.6)
where x_ is chosen to approximate the solution Vt20. “ /

Note that X, (t-h) is determined before x (t) while x (t h) is the
backward extrapolation of xa(t).

1t is assuméd that:

bl levl
and

- for -hs-t:<_=0‘+ are of the order of unity

bl bl o

(or smaller). Thus

N

= 0(1) - Ost<h . (2.4.7)

Now with the initial values of the ipproxinate solution chosen

such that:



s
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xa(0+) = u(O*) anq\xa(0+) = v(0+), and since h=0(1)}, then in

view of (2.4.7), the relative errors:

lx, - % b Ik, - %l
—2 % and —2—2—are 0(e) for Ostch - (2.4.8)
™ x| .
e, - £l . :
and consequently —-E?I———ﬁ$—- = 0(e) for hectc2h (2.4.9)
£ : .
W "eh

which indicates that the large error due to the initial discontinuity at
t=0 will have lcss influence on the accuracy of the solution as t in-
creases. However due to a relative error of 0O(e) at t=h (in view of
(2.4.8)), the approximate solution must be limited to thc‘first order.

Now if we set

x,01) = (1 + ev)) u(0")

and ) /,—H\EAEE:) = (1 + svz) V(D*)

where vl and vz are constants, chosen such that:

xaa{) = x(h) and X (h) = %,(h) (2.4.10)

. . 2,
then the relative error will be 0(e) in the interval Os<t<h and 0(ec™)
in the next interval. Equivalently, if the exact solution is de-

]

3

termined for Os<t<h, and letting 3 approximate the solution for t>h

.
v

N
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. . : E
using the initial conditions in (2.4.10), then by taking sufficient

terms in yﬁé series expansion of X, [expression (2.2,2)] the entire
solution can be determined to the 5econd.approximatioﬁ.

By the same reasoning, if we obtain the exact solution in
the interval O<t<2h and let-xa approximate the solution for t22h

using the initial conditions.

| x,(2h) = x (Zh)  and x_(2n) = k_(2h) ,
then by choosing sufficient terms in the §eries'expansion of X, the
third order solution can be obtained, However we shall limit the b
solution to the sccond'approximation.

The above argument can be extended to the case when fl(-) is
non-linear {eqn. {2.4.1)] except that in this case it is not generally
feasible to obtain thcrrequired exact solution over the interval
O<t<h. This does nﬁt, however, add much difficulty since an ac-
curate solution of eqn. (2.4.1) valid over a period of 0(1) can be
obtained by straightforward iteration.

' The importance of properly choosing the initial point for the
approxigate solution i$ demonstrated by the simple example below:

Let us consider the linear equation:

’(2.4.11)

L.

X+x+ex(th) =0

3

An approximate solution is sought in the form: -



x, = A(t) cost

-

A . dr 2
vhere £ = Ft and 3{ =1+e Al(g) + € 12(5)

In this case it will not be necessary to use a series

expansion for A,

PO LRI fii
Now X, = A dt sint + ¢ 9T COST

~ '
dA
a = ‘(Ej)‘j; COST + EE

2, .d%A

[L——— - A(A + 2)0.)) cost
dEZ | 2

-

x + X sint)
a

dr '

Ah —— sin

+ € —— COsT
[ 13 h

- {A

2
dg

1

dA
+ ZAI EEJ

where a variable subscripted by h denotes its value at the

)
instant t-h.

Ye shall pake use of the following exﬁansions:

2 2
. . dt
‘A-ch—-—'rczhz dZA
- dE 2 dEz
2 ;2
dt h” dx
Thtt(t-h)t'r-h'—""z —5 * e

26

(2.4.i2)

sint]

(2.4.13)

~

(2.4.14)
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2 di
2 h™ 2 71 3
T-h(l*ﬁll*C)«z)"’-z—-C -&-E—*U(E)

eosTy cos(z-h) + ¢ h ll sin(t-h) - ...

sinfﬁ = sin(r-h} - € h 11 cos{t-h) + ...
Thus

ciah = cA[sin h cost - cos h sint]

2
-

t
B e

+ cz[(m1 %%-+ mzAll) cost + (m, %%5- mlAAI)sinr]

where m, = cos h - h sin h and hz =h'cos h+sinh
Using expressions (2.4.13) and (2.4.15) in eqn. (2.4.11) and

equating the coefficients of cost and sint separately to zero we get:

2 .
- . d"A dA 2
(- 23, + sin h) A‘+ c[;zi + ml,af'+ A(szl.' Ay - ZAZ)] = 0 (2;4.16)
and
dA %y
[2 - c(nz - 211)] EE'* Alcos h + e(m\, + HE—)] = 9 ' | (2.4.17)

The terms of similar order of smallness in eqn. (2.4.16) may be

separately equated to zero, while-after kl is determined - eqn. (2.4.17)

I

/

7
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can be solved in its present form. Thus:
€ e? - :
1=[1+~2—sin h+-g—(2hsin2h-cos2h)]t+1(0),

and : . " (2.4.18)
A= A(0) M '

"herc, cos h - -;—l—‘- sin2 h + % sin 2Zh
v n=e 2 - ¢h cos h | L
\ .
Let the inifial conditions be:
x{t) = s5(t)
. xo ~h<t<0 .
and x(t) = Yo 6(t) >

1f we select the initial point of the approximate solution to

be at t = 0, then the constants A(0) and t(0) are given by:

AN

2
2 ot ™ -1 [Yo ' ™o
0 +[_A—_'— ] and T{0) = tan = - [ Axo

A(0) =[x ],(2.4.19)

where Az Jpéreed = 1+€ smh v £ (2h sn2h - corzh} -

The exact solution of eqn. (2.4.11) in the interval O<t<h
is: x, = xo: cost + yd sint. Therefore if we select the initial point of
x, to be at tc=h, then t in expressions (2.4.18) should be replaced by

(t-h), A(0) and 1(0) should be replaced by: A(h) and t(h) given by:

x,(h) + nx,(h)

A(h) = X:(h) *[ie(h) + fixe(h)

2
. | ang vy @ el -

- (2.4.20)

\

-
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In Figs. (2.4) and (2.5), the above solution is plotted
against the "exact" numerical solution for specific values of
Xy» Yo» h and €. It will be seen that significant improvement is

obtained by choosing the ipit}al point of the approximate solution

at t=h rather than at t=0.

Now we turn to eqn. (2.3.15). The solution of this equation
is sought in the form (2.2.2). Owing to the bdd—symmctry of the
non-linear term in eqn. (2.3.15), ohly the odd harmonics in expression
(2.2.2) need be considered.

From expressions (2.2.11), (2.2.8) and (2.4.14) we get:

.

dA

€A, sin{r-h) + 52[(da0 + hA A ) cos{t-h)

ex(t-h) = 0

A , .
o oy, .
+ (h‘aE— - Al - AIAO) sin(t-h)}

and .
) A3

eX°(t-h) = - 3 cA sin(r-h) + € —% sin 3(c-h) (2.4.21)

ENI®

2

&Hﬂ

AD[(-——-+ hi A - 3031) cos(t-h)

dAO

+ 3(h T Al - AIAO + 031) sin(t-h)]

2 . '
»In expressions (2.4.21), the terms 82 cos nt and ¢ sin nv
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n23 which do not contribute to the first or second order solution,
have been omitted.
Substituting expressions (2.2.10), (2.2.11) and (2.4.21) in

eqn. (2.3.15), and using the identity: -

\ .
s sin nh _; ¢os nh
.. n(t-h) = sin nt + _. cos n
sin ( _) cos nh sin nh T -
' \

the céuations that determine the solution to the second approximation

are [section 2.2]:

dAD ’ .
- 1 1 2 -
T Az cos h Ay - p] —‘0 ,- (2.4.22)
2
1 .
* A= 5 sinh [~ - 8], (2.4.23)
" _sin 3h .3 cos 3h .3
Cyy™ - T N (2.4.24)

dA ' AU AO
1 1.3 2 . 5
ac tplgeosh Ay - pl A =M -+ M (z)*" )
_ (2.4.25)
1 . 2 4 ‘
A, = g sin b AgA) NoAy + NAS (2.4.26)

wvhere
p=Bcosh-a

M, = ={h cos 2h + % sin 2h]+pa(sin h + h cos h)

S
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”2 = —f sin zh + %B h(l + 3 cos Zh) - %a h.cos h

E-R%)

M. = -

=

- %sin Zh - h cos zh - % sin 4h

*

o’ 1.2 1.2 a8 '
N1 = -5 - EB cos 2h + 38 h sin 2h + 3 {cos h - h sin h) |

4
"

, = 3clah sin h - gh sin 2h - & sin® h]
and

3 ho, 1 " 1
| N3 = gt 37 sin 2h - €7 ©°5 2h - J5g COS 4h

Eqn. (2.4.22) integrates into:

*‘3 . dp sec h (2.4.27)

"1 + K e PE
where K = Ap.sec h
AZ(0)
0
Thus, the first order solution is given by:
2
1. (5 M ’
XN AO cos [t +‘_§ sin h 0 (T-B) dE + 1(70)] (2.4.28) |
l b

where Ao is given by eqn. (2.4.27).
'The golution will be evaluated to the second-order
of approximation, hence the initial conditioys are chosen to

'correspond to the state of the system at .t=h.

From eqn. (2.4.27) it is scen that for o>0 a stable limit cycle
-results if cos h > %- " -. If cos h ¢ —§-, the oscillations will

decay or grow indefinitely according to the initial'conditions.
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¥hen cos h -+ —g— , P+ 0 and '

2
2 A (0)
R C (2.4.29)
%o 1+ £95 h A;[O)E

Now we recall that when expressions (2.2.10), (2.2.11) and

(2.4.21) were substituted in eqn. (2.3.15), the coefficient of sih 1

R
in the resultingjcxprcssion took the form:

*

dA N
. o 1, ,1 2 _ N
€ [E— + ] AO(I CO.S h A.O - p)] ) -
dA A A X

2.1 1.3 2 0 0.3 0
vl G eosh A - P) AL - M) - M) - M) (2.4.30)

-and the terms of order e and 52 were equated separately to zero to

yield equations (2.4.22) and (2.4.25).

Alternatively, if expression (2.4:30)'i5 rewritten as:

.

-d A ' :
c[agg-- ;9-(p + € Ml) + (§2J3 {cosh - € Mé)]
dA 1 . A
+ czl__g_l__ + 3‘ (%. cosh Ag - ‘p) Al - M3 (_2__0_)5] (2.‘4.31)

L

and the terms in each bracket are equated separately to zero, we get:

* * . 03
dAy A, |
i (p+¢ Hl) ‘e (cosh - ¢ Mz) = 0 (2.4.32)

.//;

-



and
Al A
1 1 .3 *2 * 0.5
! 7 (G cosh A" - p) A = MG ) . (2.4.33)
|

*

where the supc?script (‘) is used to distinguish the solutions of
the above cﬁuations from Ehose of equations }(2.4.22) and (2.4.25).

Let A & A; + ¢ A; and A= Ay + €A\, e ndtz that Afﬁand‘I'are not
identical, but to the second oraer of approximation they are equivalent.
Eqn. (2.4.32) has the ‘same form as eqn. (2.4.22), however, eqn. (2.4.33)
is $simpler to integrate than eqn. (2.4.25). L ;hall therefore choose

*
A to approximate A and hence the expressions ‘for A, and A, becone :

*2
A =-l—sinh(-A0—--B) . (2.4.34) ,
172 3 -9

and

L Y
Yo = g sirh AgAy + Ry ¢ N ¢ N5hy

1 * 2 4 '
x z-sin h AOAI + hl + NZAD + N3A0 (2.4.35)
Eqn. (2.4.32) integrates into:
4p"/(cos h -e-M))
P cos - _
A2, 2 (2.4.36)
~+ 0 v p*E . '
' 1+K e
7 o2 y
- {o
where p. =p+e Hl and X = o5 :P_ g‘Hz -1 . (2.4.37)

1f K‘ and %(0) are chosen such that the initial conditions

(at‘tsh) are satisfied gxactly,-or to the ﬁecond order of approximation,

r

[
v
L



* .
then AI(O) can be chosen to be equal to zero. Since the solution is
limited to the second approiimation, A; in eqn. (2.4.33) may be
3/2
replaced by Ay Hence, using the integrating factor: ¥ = ep€(1+Kc'pE)

eqn. (2.4.33) integrates into:

_ «"PEy _ K + &P
3/ [A-e"7) - ¢ "n(—T(_TT")]
* . ,
Ay =sechb My 373 (2.4.38)
[1 + ke P5) . .
where b = B - a sec h,
Therefore, - )
t £ . ’
{t) - 1(0) = J A dt R T J (11 + 512) dg ’ .-
0 0 ) :
o !
=1 - Vi sin h[B - ]eg
cos h - gM
e ) . 2
+* -
1 sinh 1 +KeP®
"Tosh-oe, W )
Z cos e, 1+ K
ep"- 1 1
N Ead
¢ el + &y f-r—r'J”‘ S TR
) .
- . K+ epE K+ 1
. {1 + n (———r) I + &n (_F—J
+ Kb M, tan h - }
4 3 K+ apE KH
‘ - (2.4.39)

where the coﬂ;tants Al and Az are given by:

b ' ‘
A = 4[N, + 4bN;] + 7 My sec h tan h



39

and

M,b
"3 1
A2 = - 16 N3 b sec h - - [1 + - tn G—S—J] sec h tan h

'Finally,_ given the initial conditions x(0) and %(0), the

. ‘
constants A (0) and t(0) are determined from:

fl

Ay(0) cos t(0) = x(0) - ¢[Cy,(0) cos 3t(0) + Dy, (0) sin 3t(0)]

and

a" A
- x{0) - e[l (0) A (0 sin 1(0) - ':r“‘ | cos 1(0)

n

A;(O) sin 1(0)
t -
<+-3c$1(03 sin 31(0) - 3D, (0) cos 31(9)1

. (2.4.40)
The constant K. is then determined from (2.4.37).

When cos h > Tu_ ; 0< h< -;- » the stcady state response is given by:

' M .
x=+b [2+ e(sl-+ M2 + sz) sec h] cos 1

+ % sin 3(z-h) + 0(52)] (2.4.41)

with t = Ot + IT(O), where the constant frequency Q is given by:

1=1-~ %a tan h + s:z[l\l1 + 41-3(N2 + 4bN;) sec h
- - %— {Ml + p(M2 + sz)' sec H} tan h]

(2.4.42)

N
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Inspecting expressions (2.4.36), (2.4.41) and (2.4.42), it '
14

is seen that the effect of délay is to slow down the build up of

oscillations and to reduce the stéady state amplitude and frequency,

When h + 0 , then:

‘ : 1 "1 1
Ml -+ 0, Mz + 0, M3 -0, Nl -+ - Y N2 + 0, N3 oy s P 1, b+ 1, Al * T

and A2 -+ - %3-, and we obtain the well-known result:

* -4 .4 ! o

®
o % EA = ———  with K= 5x-1= -1,

. 1+Ke® A A% (0)

AxA

C,, =0Vt ,

31

3 ]
031 = A0/96 , and :

_ o . £ |
K 1 1
T(t) - 1(0) =t + €]- %{ + %B ‘nG'K:IEI )+ TB(1 1 e

1+ Ke ®

3,

(2.4.42)

and in the steady state:

x = 2 cos(at + 1(0)) + 55 sin 3(at + T(0)) + 0(e) ,
e2 |
In Figs. (2.4.3) and(2.4.4) below, the numerical and analytical

; ] oe .

approximations to the transient solution of eqn. (2.3.15) are shown.

L3
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'CHAPTER 3
The non-stationary behaviour of a class of oscillatory

systems.exhibiting gross non-linearity

3.1 Introduction

Iﬁ chapter 2, the ﬂon-stationary behaviour .of a class of auto-
nomous and slowly time-vﬁriant weakly'hdn-linear oscrilatory ;ystgms
was discussed. In such systems, due to the snmall non-linearify, the
. . ,
instantaneous frequency of oscillation remains close to the Vaiiﬁ it
would assume had the non-linearify been absenf. khen the=noﬁ-1inearityv
. is large, significant variations-in the instantaneous “frequency Ta;
take place and_the'hethoés developed for analysing weakly non-linear
" systems cannot bec used. G
The periodic behaviour of a system with a large non-linearity
canlbc determined analytically in specific cases. For example, the
periodic Behcvunn of a freevrunnlng v.d.Pol oscillator with large
non-linear damping can be obta1ned u51ng the well-known asymptotic method
of Dorodnitsint The frec or forced per10d1c behaviour of certain
systems with large non-linear reactxve.forces can be determined to the ;
flrst order by using the describing function method. Howévcf, searching
through the extensive literature concerned with the theory of non-linear
" oscillations, one finds that most investigations of tle non-stationary

behcvlour of osc111ating systems are restricted to those with small

non-linearity, although there have been few attempts to deal with the

Dorodnitsin's asyﬁptotic.sblution contaihs errors
. which were corrected by Cartwright .

43



case of large non-linearity.
BN
. .

‘The cquatlon

X + P() + af(x,X) =0 , Ogac<l : (3.1.1)

where P is not ncccssarilyla quasi-linear function of. x, describes a
class of non-linear feedback oqéillatory systcmé; and has been sfgaiga
by .a nurber of authors. ' o »

Coppel [lgbé] studied the cése when Pix) £ sinx and-ffx,i) = x.
He transformed the ab;vé equation by introducing elliptic fﬁnciions

then’ applying. the K-8 avcrag1ng method Morrison [1966] considered a

more general form of the restor1ng force P(x) and the "perturhlng“

function f(x,x). He used transfbrmat1ons which do not involve c111ptiq,

funct1ons 1although e111pt1c functions and e111pt1c 1ntegrals ar:sc
.in the analysis. His results for the spec1f1c case cons:dered by
Coppel are similar to_thoseuof COppel. ;

Rasmussen and Kirk [1966] obtained an. approximate solution of

egn. (3.1.1) which is valid only for short periods of time. Their

method was later modified by Rasmussen [1970] to give a uniformly valid

first order approxlmatlon. -The modified method of Rasmussen y1elds

!
fairly accurate results, however, it necessitates performlng numerical,
integration,

An'opiimization procedure was used by.Wagner and Ludeke [see ™

* Wagner (1967) Ludeke and Kagner (1968)] where two péramcters of an

- _,_—',
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s
assumed form of -the sqlutipn were chosen to minimize a ée;tain error
fuﬁction. The imposifion of weak non-linearity was first made, then
relaxed without any justification. We note that caréfulEexamipatiOn
of their proccéhie shows that the chosen error function is quite in-
sensiti;; to Qariations in the parameters and that its minimum value
is considerably large. Indeed, although there are few ex;eptions, the
validity of the approach of introducing 6ptimization methods to find
'approx1mate solut1ons to differential equatlons is very doubtful.

Very often the solutxon of the unperturbed equation:’
x + P(x) = 0 can be obtained in terqs of hlgher functions. One might
then be tempted to use such a solut1on as a generatﬁng solutlon for
the perturbed equation (3.1.1) by replacing certain constant c0eff1c1ent5'
bf slowly varying ones ‘and using the v.d.Pol or K-B éveraging-method.
Such a procedure cannot lééd té uniformly valid solutions unless it
can be established beforehand that only slight variations in ;he i;f
stantaneous frequency of.bscillation'will.iékérplacq‘as_time increases.
This approach was adopted by, Barkham and Soudack - [1569] who studicd
the transient responsc of a system with a large CUblC non-11near1ty
Their analy51s follows closely the K-B averaging method with the tri- ‘
gonometric functions.used iﬂgthe X-B meEhod replaced by elliptic fPMCtIOHS.
The solution was theﬁ constructed by a grapho-analytical p;ocedure.
In what follows we shall compare the K-B method and the modification

suggested by Barkham and Soudack.

The normalized quasi-linear equation:
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x + x + of(x,x) = 0; D<a<<l
has an_cxact solution:

x = A cos(t+f) when o = 0

.

where A and @ are constants.

For the case a # 0 an approximation may be sought in the form:
) -

“x = Alat) cos {t+f(at)},

and the well known K-B averaging method yields:

S © o
A:-Z—_;A(A) and @ -7211 $(A)

2n .

where A(A) = I (sin u) £(A cos u, -A sinﬂzfau
0
1 2w '

and $(A) = x I (cos u) f(A cos u, -A sin u) du

0 ' -

—

A basic requirement for such a broccdure to'be valid Vt is
that the instantanequs £ 'guency (here defined as %;(t+¢) ) for a # 0
should not depart apprec?ibly from its value (of wnity) when o = 0.
—_
This requirement can often be met in the so-called quasi-linear systems
and hence the approximation remains uniformly valid Vt {except for
slight corrections which can be‘easily evaluated using a suitable -

perturbational procedure).

Now. considering the system:

-

e
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X+ X+ Yx3 + af(x,i) e 0
0<a<<l, x(0) =1, x(0) =0,

it has an exact solution when a 0 in the form:

x = A Cn(wt+6) ° for v > 0 o

A-and © bcinggconsfants and w = ¢ 1+y

For large y, with a # 0 and if for example f(x,x) £ x the
frequency of osciliations.will approach a value near unity a$ t e
and thus departs appreciably from its initial large value. .1f one then
seeks an approximation in the form:
x = A(at) Cn{wt + & (at)} and an averaging schemc as in the K-8 method
is used, as suggested by Barkham and Soudack, the approximation will
Abe valid for short durations depending on a. In order to ge able to
cvaluate the solution at large values of t one is tﬁen forced to usc
the approach of graphical or numerical techniques where a solution Valié
over a short period of time is evaluated, the end. conditions then used
as initial conditions for a subsequént short interval and so on.

1f vy is 0(1) and with moderately small values of a, (a = 0.2
say), the oscillations fade awa} after a smali nunber of cycles and
constructing the solution can be done without much effort. However, as
y increases, the interval of validity of the apbroximation gradually
becomes shortcr and such a proceduré,beééﬁéitoo cunbersome. Also the

accuracy is then seriously impaired. o
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.

A variant of the above method, used later by Soudack and
Barkham [ ° 1970, 1971] eliminates the piece-wise integr;tion'
process igntiéned above. The method h?fever ignores the non-linear
interaction between the time-varying amplitudé and frequency. It
will be shown in Appendix C  that theAsolutions obtained by this
method are inferior to those obtained by the K-B method, despite the
fact that the latter i; applicable only to weakly non-linear systenms.

In a recent paper, Spasov et al [1972] used a non-linear

transformation which reduces egn. (3.1.1) to a quasi-lincar equation.

g

Using the transformation: '

— . A

\\ -
dx _d y &
- el e = = = d.
&y "% TP W) | (3-1.3)
Eqn. (3.1.1) can be written in the form: ' -
" L t _ d )
y +y= u.ci>(y, Y,) » () =gp _ (3.1.4)
where from eqn. (3.1.3): ‘ ' -
' b S 1/2 14
y = [2 I ‘P(x)dx] sgnx , t= I G(y)dg
0 0
and -
x = J G(y)dy N
0 .
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Unfortunately, the functionc?usually takes a formidable form which

prohibits further analytical progress. For example if:

. P(x)=x+yx3, y> 0} nnd_fr-ii-y.
then -
{__- 1
Gly) = YY SERY
-/;4-27)’2/-/14-27)'2-1
and

C{)z-y' G(y) g

The .approxin‘ﬂte solution of eqn. (3.1.4) according to the K-B

rethod takes the form:

~y = A(ag) cos(g + 8{ag))

1n order to be able to obtain expressions for A and & as functions of ¢,
the cocfficicnts of cos(f + 6) in the Fourier secries expansion of

CiD(A cos(g + 8), -A sin(g + 8), £) should be deterrined as explicit
funct_ions of A and r. Uenoting these coefficients by Cibc[A,C) and C;(:DS(A,;)

respectively, the 'shortened equations™:

-

-~

dA _ e & de - ' ich i
a2 Ci:‘s and da 2A q)c must then be solv.ed, wh1ch in

this case is a rather difficult task.

’

In control systems, it is often desirable to deternine the effect
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of a certain.parameter or the form of non-limearity on the settling
time, and uniformly valid expressions for tzz System response are

therefore required.

3.2 Prescnt analysis

- v e e me v A A

Let us first consider the equation:
x + P(x) = 0 (3.2.1)

Khen P(x) = x + Yxs, and with the initial conditions ;(to) = 1
and i(to) = 0, the solution of cqn.‘(3.2.1) is ﬁounded for -l<y<e,

_For y2> 0 , eqn. (3.2.1) has the exact solution:

[

x=Cn/ 1+ 3t (t,%0)

The modulus k of the Jacobian elliptic function is given by:

thus for 0 < y<e=
we have 0<k<:—l
, V2
and 0%qc< 0.043214...

q being the NOME of the Jicobian elliptic function.
Therefore, if x is expressed as a Fourier series (which in this

cace will contain odd harmonics only), then the ratio of the amplitude
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‘ . ‘
of the (2n+l)th‘harmonic to the amplitude of the fundamental will be

given by:

R2n+1 - o8 1+

q
R1 l4q2n+l

n=1,2,3

i.e.,, the ratios of the amplitudes of the 3rd, 5th 7th, ... harmonics

»
i

to the amplitude of the fimdamental have maxicum values of 0.0451,
L4

0.0019, 0.00008, ....

For -1 <y <0 , and with to f 0 chosen such that x(0) = 0, the exact

olution of eqn. (3.2.1) is:

x=5n/ 1+ = t

2

and the modulus k of thl Jacobian elliptic function is given by:

k2 I |
1+2/ vy
thus for -0.9 < y< 0

, 2
0.81g1818--- > kK 2 0

eee>2q20

and when x is expressed as a Fourier series, the ratio of the amplitude

of the (2n+1)th harmonic to the amplitude of the.fundanental is:

T——!:q Il= phpFy s

2
1 . 1-q n+l
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[
1

i.e. the ratios of the amplitudes_of the 3rd, Sth, 7th, ...+harmonics

to the amplitude of the fundamental have maximum values of :
0.0941 , 0.0099 , 0.,0010., .....

It is thercby seen that for -0.9 < y < = the fundamental frequency
is ‘the dominant one, L

It may also be noted that the frequency of oscillations obtained

by the first harmonic approximation is:

{
\ <
Qa =71+ % Y for vy> 0 (3.2.2)

vhile the exact frequency is:

w1+ vy ¥ 9 .4 25 .6

g = & LI £
“e”ﬁ(_kr'm‘) 7 L+ g+ gk * 5kt .-)

Hence: ' 9

2

. 3 Y . '
a9, = na{l - 356 (-1—;-? + much smaller terms}

and a similar result can be bbtained for -0.9 < y< 0.
Thus the first harmonic approximation is indeed an excellent
one and very little is gained by the use of the elliptic functions.

Now consider the case when P(x) fakes the more general form:
' 3
P(x) = ax-+ bx" + cx

' . . . A -
and let for example x(0} = 1 and x(0) = 0. Then writing: y = X, eqn.

d ~-P . R A
(3.2.1) becomes 3% = __)S_::)_ , from which we obtain: |
+h‘h + -1 + 1 and the above ratios -+ 111
en vy ] q 3 » 5., 7 » "-'
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J" dx ==rdt
4

2 b c b c..2 ¢
0 /1-'1‘ /(a+-2—+-§)+(5+3)x +-§x 0

( ' . : (3.2.3)

with the change of variables: x{(t) = cos ¢(t), eqn. (3.2.3) is rewritten

as:

é
| z

¢ 71+ €, €OS 26 + €, cos 4%

]
I+

ot (3.2.4)

[The negative sign must be ignored since solutions for positive time

only arc desired]. - -

where

e = 6b + 8¢ and g':- c
1 - 3[8a + 6b + 5c] 2  3[8a+ 6b + 5c]

The integral in eqn. (3.2.4) can be written in the standard
form of an-elliptic or hyperelliptic integral and evaluated as such.

However, when ¢, and ¢, are smd}l [for example if |51] + le,| »0.6],

1

then using the series expansion:

2

Yl ¢+ u =\1 + %-- %— + ...

Eqn. (3.2.4) becomes:



sk
€ € '
$ - — sin 2¢ .- —z-sin 44 ~ Ot
4 © 8B "
hence
ﬁ” €y £,
x % cos[t + 5= sin 2at.+ == sin 4qt]
€ €, €, £,
~(1- E—J cos It + (E“" TEJ cos 30t + 16 €0 50t
(3.2.5)

When a, b and c are ﬁositive, then |51| + |€2| has a maximum value of
0.6 which occurs when %-+ L %—* = and §-+ o, Th; amplitudes of the:
higher harmonics are, therefore, of much smailcr values than the
amplitude of the fundamental.

If either or both of the parareters b and ¢ are negative, con-
siderable cautionfmust be exercised in order to ascertain the existence
of stable oscillations. The order af smallness of the higher harmonics
which depends on the value of\lell + |52|, can’“then be estimated.

For example, consider the system:

x + sin{px) = af(x,x} 3 x(0) =1 and x(0) = O.
When f(x,X) represents positive damping Vx and x, it is known that the

system is stable, and with proper initial conditions the response is

i : 2 .3 2 5
oscillatory. For p=2 say, sin px } 2[x -5 x  +qgx] and le | + le |
= %%E , which indicates that the magnitude of the higher harmonics is

puch smaller than that of the fundamental frequency.
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As a further exarple, considér the case when P(x) = vysgn x,

0 < y<<e. In this case eqn. (3.2.1} has the exact periodic solution:

1 - ({—)2 ' for © 5.%-5 1
o 0
t t Y t
X = ﬁ (—t— - 4n-1) (-E— -4m - 3) for 4mtl < = 4me3
0, 0 ' 0
: ' . (3.2.6)
t 2 . t
1 - (&— - 4(m+1) ) for 4me3 < — < 4m+S
T . -1, -
L 0 0
form = 0,1,2,... and wherce to = /%
wvhich can be expanded in the Fourier series: ‘
32 1 - 1
X = == [cos wt - 77 €0s Jut + 135 €03 Swt - ...] ,
w 2 %— , which shows that the term of fundamentul frequency is dominant.

0
In the general case, it is not apparently feasible to determine

upper bounds for the ratio of the magnituﬂe of the higher harmonics
,._/ to the magnitude of the first harmonic in the periodic solution of éﬁh.

(3.2.1). However, it seens that this rat'io\\i:f» considerably small whenever

. o .
x P(x)2 0 ¥x and %{_x) > 0 Yx ( and in this case the solution
is periodic for arbitrary initial conditions ) . The solution of

cqn.(3.2.1) can often be obtained analytically for specific forms
. ;

of P(x) and the order of smallness of the above ratic may be deter—

9

mined in each case .
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¢
3 ‘
Whenever it can established, qualitatively ég;ﬁi;htitativcly,
that the first harmonic is dominant in the solution of the un-
.- perturbed eqgn. (3.2.1). it is plausible to assume that this will'
also hold true for the perturbed eQn; (3.1.1).

In view of the above discussion, we shall seek an approximate
i

solution to eqn. (3.1.1} in the form: %

x = A cos(1+8) + ctco + [ {Cn cosn(t+8) + Dn sin n(x+08)}] (3.2.7)
n>l1
where 6 is a comstant, 1(0) = 0, O<e<<l (cf?) and O<a<0(e).
e will serve as a durmy small paramcter. Its introduction here

is not strictly necessary and is done purely for mathematical con-

]

venience. Thus one can obtain a solution to eqn. (3.1.1) in the for
of cxpression (3.2.7) whether or not the term af(x,X) is ?resent.

1f f(x,i) is anti-syrmetric wifElfCSpect to x=0 and x=0
i.e., if f(x,ij = - f(-x,-x) and f(tx,+').§ - f(#x,*x), then only =
odd values of n need be considered. Othcrwise even values of n
mist be considered as well.

Since o is small, then the amplitude and hence the amplitude-

dependent frequency will vary slowly with time. Thus the coefficients

A, C., C |E and D I in expression (3.2.7) are functions of the
C LIPS LIPS )
slow time E 2 et, and g—::- e AME). - .

The mapgnitude of A is not restricted, 3t could assume any

pdsitive finite value. However, it is assumed that
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dA,
= a2 “
EE" = 0(a) , i-e-. "aEl" = ol I i=0,1,2,...

We also require that Ihillz o(fhglh i=1,2,3,... -

It follows that

Il-p‘l - O(Il———H) Vi.j.

in ideas in this method without '

In order to display the ma

gctt1ﬁg teo anolved with lcngthly algebralc exprcss1ons the analysis

from this po:nt anwards witl proceed for the case vhen f(x x) is an

énti-symmetxic function. Thus:.
W
x = A cos{1+8) + £[C; cos 3(1+0) + Dg sin 3(t1+8)

b
.

¥3 Cg cos 5(1+8) *+ Dy sin 5(t+8) = (3.2.8)

T |

. As a first approximation, let:

dr A
-d—szxlO"cAl

hcncéf L :
)

- . ‘ dA . .
x= - A.lo_51n(1f9) + {a EE—cos(1+0) -eA 11.;in-1+6)}

b

I

- {7

¢



S
+ & dy{- 3C; sin 3(r+6) + 3D cos 3(+0) " (3.2.9)

- ) N ' ty
- 5Cg sin 5(1+0} + 5D, cos S(1+0)}

+ ...
I
and ,
: ; = - A lz cos(t40) - 2¢ A A A cos (1+6) \\
S d,
. dA 0,- .
- B(ZXO E—E + A -&-E—) Plﬂ(l’“’ﬂ)

(3.2.10)
€ 13{9C3 cos 3(t+8) + 9D X

5 5in 3(1+6)

+ 25C, cos 5(1+68)¥25 D

5 sin S5{1+0)}

5

Now using expression (3.2.8), P(x) takes the form:

-
P(x) = } G (A) cos n(v+6)
n 3
{{cn.(A, C» D) cos n(rfa) + G (A,C,,D,) sin n(1+8)}
n ' o S )
. .’ Kl @
+ guch smaller terms , (3.2.11)

n=1,73, S. cer 3 k = 3 S, -
Jand f takes the form in (2.2.7).
Subst1tut1ng the expressions for X, x P and f in eqn. (3.1.1)

and equating the cocfficients of cos n(t+6) and sin n(y+8), n=1,3,5,...

a

scparately to zero then separating the temms of similar order of

magnitude, a system of perturbational equations is obtained.

<

It should be nqgg& that, in accordance with the discussion in

3 ) s 2 C . ' N .
section (3.2.a), the coefficjents of sgz n(z+e) , n>1 jp expression
: | ' e
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pd

-

(3.2.11) must be associated with the terms of higher order of

smallness.

- * //\ )
3.3‘\ﬁpplication to a time-invariant system

Let us consider:

X+ X+ Y'xm + ax =0 , m=3,5 (3.3.1)

For m_=_3
3 . 1 '
Tixs o QA3 c&é(i+a) + % A3 sin 3(t+8)-
¢ 2 : :
+ e QA [C3 cos 1 + Dy sin ] _ (3.3.2)
+e) (Eﬁ,tos n(r+0) + %; sin n(t+6) )
n ' -
vhere Q 4 %-7.

The terms under the summation will not be included in the first

%ppronmatlpn. | e

Following the procedure described'above, we obtain the system

of equations:

-

, - xg) A+ QA3_ = O ' . (3.3.3)
Q- 9g) C3'+ S35~ = 0 . . (3.3..4) -
¢l ep, =0 | | (3.3.5)
Dy = € = D¢ = _ 3.
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!
2., A+ Qa%C, = 0
- 2A5), QA Cy | (3.3.6)
dx ' :
dA 0
Do qEtAge t h = O : (3.3.7)
tience
2 2
Ag =1+ QA (3.3.8)
and from eqns. {3.3.8) and (3.3.7) we obtain:
2 ’
& __9553 g%-z -1 . (3.3.9)
1+Qa° g
Define: p 4 A2
Eqn. (3.3.9) integrates into:
p> 4+ é-pz cme?E >0 C(3.3.10)

_where M is a.constant to be determined from the initial cenditions .

Define: n = %3-Q3Me'25 -1 | (3.3.11)

>
1t can'easily'be~verified that egn. (3.3.10) has one real

-

root for l<n<= and one positive and two negative roots for -lgnfl.
L 1 27 3
For l<n<e, i.c. for 0 <t < 5= In(z=Q'M),

the real root is given by :

p = %5{34 ne /' n°-1 + 3y n-v n!vl -1} (3.3.12)

~
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For -1 ¢ n <1, i.e. for 1 (§7 Q3M) < =, the positivé Toot
" is given by:
p = l-—-[2 cosEl B) -1] (3.3.13)
ql? 3 3.
with B=cos n;0<B<nx

Note that as a -+ 0, expression (3.3.12) is valid Vt > 0.

From eqns. (3.3.8), (3.3.4} and {(3.3.6): <

2 .2
o, - e OV

7 = 2
61 (9g-1)  6Xg(92g-1)

From eqns. {3.3.8) and (3.3.9):

2
& (310—1)
B T WE TS
hence
t 1 lo
T = I (A, + €};)dt = ;-'I (Ag * €A ) dlo
0 Ap(0)

2 2.
-1 (3,-1) (A1)

Z, 2
-1 A (9%g-1)

0 '
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Thus *
= 1,55 1.1 1
T =5l Gl - X)) + g Gy - 1)
. 0 0
) ln(xo-l . x0(0)+1j ] 5-1n(310-1 . 3x0(0)f1)]
P T W ()1 Sl A W3 S YW (O 1

(3.3.14)
2 - 3,2
where from (3.3.8) 10(0) =1+ Qp(0) =1+ Z'YAI(O)

L=

It should bec noted that 10(0) is not the same as Q in (3.2.2).
.
alo-n? -
]t

fhena+0, T+ {AO(O) + 7 -
61,(0) (9A5(0) = 1)

To determine the constants 6 and M, giwen ihe initial conditions
x{0) = 1 and i(O) = 0, we have from eqns. (3.2.8), (3.2.9) and

(3.3.5):
AI(O) cos 8 + C'CS(O) cos 38 = 1 ~
C dA : .
- 10(0) A(D) sin 6 + < I l cos 8 - € A{O) 11(0) sin
£=0
- 3¢ CS(O) 10(0) sin 386 = 0

A

From equation (3.3.9): _ ‘.

Ml Lo e 10))
dg 2+ SQAZ(O)

£=0



*,

A, (0)

- and using ean. (3.

Mz AS0) +

[

S SN
24+427Q 32420y

.10} we get:

ar® (0
3y

Thus, to a first approximation, x is given by:

3

x = A cos (1+8) + A cos 3(1+8)

“where % = p and T are given py eaqn. (3.3.12) LSE,(3.3.13)] and (3.3.14)

respectively.

5
Yx

t

+

32+427yA

» . . N "

QAS[cos(1+e) + %—cos 3(t+0) + %3 cos 5(t+8)]
%-cQA4[(SC3+C5)‘cos(t+B) + (3D#D;) sin(r+8))

€ Xiﬁh cos n(t+8) + G sin n(x+0)}, n=3,5,7,...

n




e

where Q & %7.'

The cquaticns that determine the approximagé solutien are:

-

2
ag =1+ ol © T (3.3.16)
5 ™~
€C, = - (3.3.17)
2(9%5-1)
- I o S |
eCy = — = > (3.3.18)
10(2510-115_~42501
—-%%
=D e 3
D, = D= 0 N (3.3.19)
N | .
s 3 . S5
Ah =7 T(Cg + D) , (3.3.20)
" da - : a
. dA o .
and D TE* Age * Moh =0 (3.3.21)
~. o
-
pefine & 2 A%, then from equations (3.3.16) and (3.3.21).
} dg ' ‘
—_— - . s 2
E*Toqp % 2 : :(3 3 2 )
/"‘—l-._._—,.—//
vhich integrétcs into:
@l + 1= Me2E | (3.3.23)

5
\Q\’ .
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M being a constant. Hence:

L= %’Q" -1 /1 + 4QM e_ZE) . (3.3.24)
The negative sign in front of the radical should be ignored

since: £>0 for finite £ and ¢ + 0 as £ = =,

From equations (53.3.16) and (3.3.24), we have:

] _ Cram

(7 _ Ao = 17__/ 1+ /1« ague?® 51 (3.3.25)
7

and from eqns. (3.3.16), (3.3.17), (3.3.18) and (3.3.21):

a2-n?
0 5 1
ey =~ == 7}
0 8(9)0-1) 100010
From eqns. (3.3.16) and {3.3.20): .
de _ (210—1)
da 2 .
0 10(10-1) )
t : (%
T ™ I (10+c11) dt = 5 (10+cli) dlo dlo
0 10(0)
R IV 1 B GHP: B USRS S \
o 2250 ~ 250,252, 81 ltzfili 00003 ©
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/ ] !
Thus _ ‘
1, 317 157 11
T =512 7350 (ol®) - A9 * 35 (10(03 "X
R NS SN U, R N (A -1 x0(0)+1)
R AR SEENOR

55 STl 33p(0)+]

57 SAO(O)-I)] | . (3.3.26)

-

¥hercas from ecquatjon (3.3.25)

2o (0) = L /e v/arag=171 4+ /T+ 30
V2 ‘ %3
N\
Note that in the limit as a f)O:
2 2
(24(0)-1)
'\ 1T+ [AU(O) + 0,\ ) : 2 + 12 )] t
' 0 8(925(0)-1), 100047 (0)
§F . :
I
4

Kith the mormalized initial conditions x(0) = 1 and x(0) = 0, the

constants © and M are determined from:

. : J
—q -
_ ~ x(0) = A(0) coso + eC,(0) cos 38 ¢+ €Cc(0) cos 56 = 1 \
and- . ‘ ‘ . _ '

x(0) = - 2 (0) A(0) sing + a ff_

| cos8 - €A, (0) AéO) sind
dE £=0

. 4

- 35C3(0) 10(0) T;n 36 - SECS£0) AO(O) sin 58 = 0
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From eqn. (3.3.22)
)
4 :
dA L = A0) (1+QAT(0)) o
. 9 lreo 201 + 208%(0) ) N\
Thus, to a first approximation:
AN ‘
6 = -a¥ 1+Q _ ¢ B8y
R 5
2 + 3y
2
-1 - _ Q
A(0) =1 2(8+9Q) ~ 250(1+Q)
=1 - Eh - Y 1
) ‘ ’ 128+90y 50(8+5y)
and using eqn. (3.3.23):
M= %7 AB(O) + Ad(O)
Thus to a first approxfﬁntion, x.is given by:
- W5
. x = A cos(1+90) + YA 3 cos 3(t+86)
I 128+907A
‘ . ‘ &
A5
5 : | + —1°—— cos 5(1¥0) 1 (3.3.27)
. SO(8+5yA) ,

where A4 = £ is given by:

g = g—{[- 1+ /1 + 3 Me-zut]
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r

and ¢ is given by equation (3.3.26).

4

Numerical soluticns of eqn; (3.3.1) -werc obtained for several
S

values of y and a with m = 3 and 5. Algo, the procedure proposed by
Barkham and Soudack (1969) for cubic non-linearities was simmlated
on.a CDC 6400 digital computer (elliptic functions accurate to six

decimal placés were used).

Figs. (3.1) and (3.2) show the solutions of:

" t ‘
X + 5x + 10x3 + 0.3x =0 (3.3.28)
" ]
and x 4 5x + 10x° + 0.5x =0 - (3.3.29
with
. d t
(") E‘?Ff , X(0) =1 and x (0) = O
These two exarples were considered by Barkham-and Soudaék
{1969]}.

Hhendg?written in the normalized form of eqn, (3.3.1), eqns.

(3.3.28) and (3.3.29) become:

|
\

X+ x4+ 2 +0.0675x¢e0 | (3.3.30)
and x+x+2x0+0.1Y5%x=0 (3.3.31)
!
with
() =S, %@ =1, X(0) = 0 and ¢ = /5T



_
Figs. (3.3) to (3.7) show the solutions of:

- 3 - - f!j
xX+x+yx +ax=0, x(0) =1, x(0) =0

! {

h“.

for values of v in the range from 5 to 400 and for values of a in
the range from 0.25 to 1.
Figs. (3.8) to (3.10) show the solutions of:

“
|\ s

X+ X+ Yxs +ax =0, x(0) = 1, x(0) = 0

fory:ZOandu=o.s,y=mOandu:lmﬁKmmoo;md'u=1
rcspectively.

Théugh the cases uith‘vcfy large values of y may not be of
practical interest, their introduction herc is done to demonstrate

the versatility of the present method.
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(8
3.4 _Application to a slowly time-variant system

The method described in section (3.2) éhn also be applied to

a syvstem described by: . X B ‘ ' 1 -
;o - _ ’ |
X +'P(x,£) + of(x,X,€) = 0 (3.4.1)
O<a<<] and £ 4 at , - | .

Where the solution of the unperturbed equation: X + P(x) = 0 is.
assuped ts be periodic with a aoﬁinant first harronic. We shall
consider the case when P(x,£) and f(x,x,£) take the forms: j
PI(E)Pz(x) and fl(a) f2(x,i).respcbtively; where P, aﬁd fz are anti- L;H
gymmetric functions of their argurents. In this case P2 takes the form
in (3.2.11) and f takes the form in (2.2.7) with odd valu;s of ﬁ.

fhe application of the methpdjfb the above case is deronstrated

‘by the exarples below. The first example was studied by Barkham and

Soudack-(1970) using a different approach.

, o ]
Example 3.4.1 ' v 4 _— .
Cosnider a system described by:
“ .
.. 3 - ’ . N
X + x(1 +at) + yx" =0 (3.4.2)
‘D<a<<land0<y<w.
The solution is determined from:
- - r ‘ . &
: A . 3
Ag =14+ £+ QA2 7 E=z=at=and Q= 7Y | (3.4.3)



3 L
Q A
ec, = 2 . Dy=Comb. =0 (3.4,0)
K BAO . QA_Z 3 5 S /
s b
&
QA C
A, = 3 |
R (3.4.5)
di
and 210 -0? + A H-E_ =0 . . (3'46) .

Egn. (3.4.6) intcgraics into:

AOAZ = K ' ©(3.4.7)

K Bcing a constant given by:
K = 2, (03A°(0) = a%(0) /1 + né(0) .
Define

QIR .

N ! 1
Notipp that both }0 and Az should be real positive quantities,” the only,

adrnissible solution of ean- (3-4¢3) and(j-uo?l iss

2,1/3 K2/3

A2 - T (3.418)




for n<l i,e. for 05“§{3(§592/3 -1

and

ot

£

/3 . sec(r/3 - S
Az = -_3 K .‘-:L(Bli)_ where cos B8 = .1—.. ; 058<l‘. (3-419)
| 4T3 - o 2 ,.

for n>1 i.e. for %[3(85‘)2/3 - 1] e

| < \
From eqns. (3.4.4), (3.4.5) and (3.4.7):- -
- \
1 Y 2.2 ' .
- QK7 /6
"klo.*ell“*o[l*xs-sl3+ - \ .
From eqns. (3.4.3) and (3.4.7):
S‘l_E_ = 21 + .Q_K_
0 0,2
0
'
llence
£ X L
r=| at =l g0 2o (3.4.10)
a a. _ dlo 0
0 0 200 | |
. .
1.2, 3 .3 %2 1 X 8"3 * ok
= 3503 - g+ g (=9 ¢ Ty o)
Ag(0) A 835(0) + QK
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-

vhere from eqn. (3.4.3): 10(0)~= / 1+ QAZ(O) .

o’x%/6

2 3 S A
HONCHORED

When a+ 0, 1 +'[l0(0) + jt

]

For the initial conditions x(0) = 1 and x(0) = 0, the constants

A (0) and © are given by:

. Q . > ‘.G

Figs. 3.11,3.12,and 3.13 show the solutibns of eqn. (3.4.2)

for different values of vy and a.

Exanple 3.4.2

3 c :
X+ X+ yx + T+t x =0 (3.4.11)

- v
The solution is detcermined from:
5 .
L 1{‘;=1+QA2 ’ Qegv — (3.4.12)
QA ‘
= = - . .4.13
€Ay = 3 —3—— » Dy=Cg=D5=0 (3.4.13)
. 930 -1
N
QA Cy -
A w (3.4.14)
1 2%0 :

e
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da, - Ax
e | dA o Mo - s .
G and 2’\0 E-E- + A a'g—— + I+€ =0 (3.4.15)
Eqn. (3.4.15) integrates into:
2 K o
AOA = -14-—5 5 ) . ) (3"4.16J

A
T

K being a constant given by:

r

K = 2,(0) 22(0) = A2(0)

pefiné

n = o (1ep)?
27K i

The admissible solution of eqns. (3.4.12) and (3.4.16) is

~given by:

‘ AZ . 2 1 '
3!‘]1/3 Q + m)1/3 . (1 - /lTn)]TS

:.-(3.4.17)

for n<l i.e. for 05t<%(3§3-x - 1)

2 /3 K ' 1 ¥
A" = — —— sec{f/3) where cos B = -—-;t053<5—
.2 1+g , /n -

’ .
for n21 i.e. for (3K - 1)st<e (3.4:18)

From eqns. (3.4.12), (3.4.13) and (3.4.14)

-

~
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, a2 - 12
AV A+ Ed, = A ——
o 1 ] 2
- 6xg (97 - 1
‘Frpm eqns. (3.4.12) and (3.4.16):‘
. B 2
‘ g WIBG -1
dr, - ~ 2.2 2
0 Ag(g --1) J
Hence
| -
_1 |7 df, )
TS A o, 4 S
10(0)
Al
s 2 2
] 9 - 1 AS(0) - 1
' ' e T ) . ¢ - o
- 95(0) -1 ag -1 Rt Ao
A {
P Y2 SN | (3.4,19)
12 %2 22(0) ,
0 0

W¥here from eah. (3.4.12): k )
13(0) = 1+ A%(0)

when -
02 - n?

2 .
61,(0) (9A2(0) - 1)

a~+0, T+ [10(0j + ]t

Given the initial conditions x(0) = 1 and x{0) = 0, then A(0) » 1 -

Q a vl +Q
3(8+9Q) v~ T2+ 3Q
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r

Figs. 3.14,3315,&nd|3.16 show the s%lutions of cqn; ( 3.4.&1)

-

for different values of Y and.u. "

r

It should be noted that in some cases the assumﬁtion off relatively
slow variation of the amplitude and. frequency of oscillatdion may be

only locally valid. For example, consider the case when eQn. (3:4.1)

{ 5 "

takes the form:

- 3 . . - !
X+ yx = uf-l(E)x : (3.4.20)
with £ (£)> 0 Vg, Oca<<e and y >> ”af1(€)|>0 and with the initial
conditions x(0) = Xo and i(O) = 0. The solution of the unpert%rbed

- - 3 . - s Ty
equation: X ¥ yx = 0 is periodic and has the exact frequency:
I ’ 7

N "
s 0 == where K is the complete elliptic integral of
% 2 K(i—
the first kind. #EJ
’ —

Now considering the perturbed equation (5.4.20), if the res-

x

ponse is oscillatory,'the maximum value of its frequency will be equal
to 2. If x, is smail such that 2 is of the same order as laf, (831,
then relatively fast decaying oscillations or an over-damped response
may result. If x; is 0(1)? the same situation may be reached if the
amplitude of bscillation.decays to a sufficiently small value with

the passage of time. This is the case in examplc (3.4.3) below:

Example 3.4.3 _ | i

Lo
Considér the system:



I —

- X+ 7x3,+ a{l + cos ﬁ)‘i =0
- ! - ’

-

o

(3.4.21)

where 0 < a << 1,°0(1) <y <= and with™the :initial conditions

x{(0) = 1 and x(0) = 0. '

<

In the region where the assunptlon of relat1vely slow Wariation

of the amplitude and frequency of oscill@itions is valid, the solution

is determined from:,

I3

0
: -
3
€C3=27 =37 » Dy=Cg=1

A.
0

) 02A4 J\O

€ A1 = 3 )

542
~and
dx
22 ﬂé_+ A 0., AAD(I +cos E£) =0

0 dg dg

Eqn. (3.4.25) integrates into:

@

AzAO - X e—(&isin £)

X being a constant given‘by:

K = 2 ()A%(0) = Qx*(0)

Py

(3.4.22)

(3.4.23)

»

(3.4.24)

(3.4.25)

(3.4.26?

o



From cqns. (3.4.22) and (5.4.26):

v 4
A = A(0) ¢"1/3(5esin &) (3.4.27)
and _
= /Q A'(O) e—l/3(£+sin £)
A \.
From eqn. (3.4.24):
- - , 0
55
l.x 10 + C)tl = -STAO
Using the series expansion:
. 2 2 2 3
chmr, (l*~B——) + B(1+-B—) sin £ - %— cos 2f - % sin 3£ + ... .
1
where B = - 3 then:
: . -
rzj Adt.-:-—-J Adg
4
0 0 =~
e TN

=--—/"A[O)[ U?’ -i?-%-+;20 (cos£+%—sm E)

. 13
1 . -1 1 ‘ 1.
L -ﬁ(SIH 2&- 3 cos 2£) - m(cos 3£ + g sin 3£)}

+ 2.7774)]

(3.4.28)



\

Tl

From the given initial conditions, x(0) 1 and:i(o) =.0 we have:

T
]

27 a '
A(0) X 5% and ,e 2.

Q

ee
]
| B

-

Solutions of eqn. (3.4,21) are shown in Figs. 3,17 , 3,18, and

3.19 for different yvalues of Yy and a.

7

Example 3.4.4 (Discontinuous non-linearity)

e
L. e )

. X+ ysgnx+a(l -cos £) x=0 (3.4.29)

where 0 < a <<1, 0(1) <y <@ , x(0) = 1 and x(0) = 0
In this case the unperturbed eqn.: x + Y sgn x = 0 has the

exact periodic solution given by expression (3.2.6). It is obvious
that this solution cannot practically be used as a generating solution
for the perturbed eqn. (3.4.29). The solution will be sought in the

form of cxpression.(3.2.2) (with odd values.of n).

From the Fourier series of a square wave of unit amplitude:

v

. . ' 1
sgn x{1) = %—[cos (v+8) - %—cos 3(v+8) + T ¢os S(t+0) + ...]

and considering the first and third harmonics only, the solution is

then determined from:

o

"‘:5“
2 8 4y (3.4.30)
A0 %' » Q x (3.4 )
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' = -~ -3—2 - 5_—_ L3 -
;CS ¥ 27)C520’D3=DLS_0 (3.4.31)
27
0
11 =.0 ' __— . (3.4.32)
and
‘ -
0
2A0%+AW+A10 (1-cosg)=0 (3.4.33)
From eqns. {3.4.30) and (3.4.33):\
b
g -2 —sinf
A = A(0) o 2/3(8-sint). (3.4.34)
and .
LS 1 [
. /9 1/3(£~sing) - : <
10 '\(0) e _7(3.4.35)
Therefore: '
R L (/33 3 Btcost, - L sine) /
= ~ o RO 12 * 24p1°0St - 3 sing
0 W .
. C. . : (3.4.36)
- l-—(sin 2E + l-co:-; 25) - —l——(cos 3 - 1 sin 3£)} - 3.3847]
P 74° 6 “°> <~ ” Toc8 9 :

The constants A(0) and 6 are given by: . : “

A(0) iy zz-and Cy

Solutions of eqn. (3.4.29) for two dlffcrent values of y and o are

shown in Figs. 3,20 and 3.21



fa

s

W
[S

TN

. . R . -]
Comparison with the results of numerical simulation:

. Equations (3.4.2),'(3.4.11), (5.4.21) and (3.4.29) were, solved
numcrlcallv for specific values of a and Y and with the 1n1t1a1 conditions
x{(0) =1 and x(O) 0. The results, are compared with the analytlcal
épprox1mat10ns. The r.m.s. value of the error is calculated in each‘

case 6ver ﬁ'ﬁeriod of 10'normalizéd time units. -[The error is defined

as the dlffercnce between thc analyt1cal solution and the “exact"
nurcr1cal solution], -

o p

Fig. (3.'11)-show5 the solution of: _

. . B dzx 3 Lot . .
- —5 5x + 10x™ + 1:.118Tx = Q- (3.4.37)
dT “ - ‘
!
@ where T é-.l— t .
. ‘Jg .

e .
' This case is taken from the paper of Barkham and Soudack
: . _ Tol : - ane
{1970, p. 112]. When eqn. (3.4.37) is normalized as in eqn. (3.4.2),
w e . ) . - ' -
it takes the form: I .

- o P » I
X + X + 2x3 +0.1tx=0

Actuallyin noﬁ-linear analysis it is élways-rewarding to'fulij
exploit norma11zaf10n technxques, not only to aVOld unneccssary
ted1ousness butralso to. make it convenient to examine the flnal resulhk

..and single out the effect of non-linearity. = u.
Othcf ex;mples of modefaiély and ﬂighly non-linear non—nd;onomous

‘ . | —~ _
systers are shown in figures 3,12 to 3,21 Tha\analyt1cal 3“d

-t

N
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numerical solutions and the r.m.s. value of the error (denoted by o), d

4
calculated over ‘the solution period indicated, are shown on each graph.

'It.will be seen that in every ¢ase the analytical solution approximates

the "exact" solution. very closely.

a
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CHAPTER 4
THE NON-STATIONARY RESPONSE OF A FORCED

WEAKLY NON-LINEAR OSCILLATORY SYSTEM

4.1 INTRODUCTION o

The stationary response of a forced system described by:

X+ x+ e[x H(x,X} + N(x)] = £(t), () = gf. (4.1.1)

where 0 < e.< < 1, N(x) and H(x,Xx) afc non-linear functions of their
arguments, and f(t) is a periodic function of time has been the
subject of exfcnsive study. When f(t) is periodic, the .response is
composed of the natural frequency of the system and its harmonics,
the imﬁresscd frequency and its harmonics and their cross—modulétion
products, When H{x,Xx) is positive ¥x and X, the component of the
natural frequency fadES,aﬁay as time increases and the respdnse is
then mcrely‘composed of thé impressed frequency and its harmonics.
In a quasi-linear system, the amplitu&es of the higﬁer harmonics are
relatively small and the analysis.of the system in the steady state
becomes a fairly easy task. In many cases, it is of interest to

study the behaviour of the forced system in the transient state.

The transient response of the above system with H(x,X) = 0

T

has been studied by Bauer (1966,68,71). In.the method presented by

Bauer a linearized equation (with e set equal to zero) is subtracted

?

111



from the original equation and the resulting equagion is solved

using Lighthill's perturbation method. The method of ‘Bauer has

certain limitations which will be_dignuﬁscd bclow.
. - ) o [
A remark is noteworthy. In his paper, Lighthill [1949]lpfe-

sented a general perturbation technique; which he applied to various

non-linear ordinary and partial differential equatibns that occur

in problems of physics. Vhen he used i&\:o study the equation:

X+ x4+ gf(x,i) =0 -

¥ e

Lighthill cautioned that the question whether his"tcchﬁique can be

used to determine motions other than the limit cycle remains un-

-

elucidated.

[

Before we proceed with the present anﬁlysis, the method of

S f

Bauer will be examined.

The Method of Bauer: : _ ) ‘

- -

Consider the damping-free system:

X + x + eR(x) = £(t) Y (4.1.2).
.yith o | o '
S x(0), = x(0) =0
wrifing.

xeyfg : ’
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- where g satisfies the linearized equation:

S ‘ { . -
g+g=1(t) . (4.1.3) -
one obtains: ' IS i - )
Y, B ) '. i .
y +y +eR(ysg:) =0 o (4.1.4) #
. wit}_\ - .P
. - . t . &
y(0) = -g (0), and y(0) = -g (0) . (4.1.5)

L ] . -
g (t) being the particular solution of eqn. (4.1.3).

Now y and t arc written in the form of the series expansions:

9 ) .
Yy =Ygt eyt ey, i © (4.1.6)
and .
t el + €T, + c2T, + (4.1.7)
: i -1 2 " - Lo
‘where ' £
oy ty @ neoa2,.
:'_ n n ! ‘l ] :-—-'
1 .‘/
T 2T (@, T() =0, n=12,...
n n » n » l‘.’
. :
g (t) is then expanded in a Taylor series: T

i

BURCERFE R SRS S

-5 (2) + e'rlg"(-:) * *:2.(T2 +—;-Ti) g () MRS

. R R ’ ‘
« - (4.1.8) '

e



J. ’—‘Vf_' - 11’4‘

i
:‘ ) .
where ( ) denotes differentiation with respect to r. For brevity,
: * : i
from this point onwards g will denote g‘{c).

Now, '
P

L3

. N "
eR(y+g ) = CR(Y0*€y1+g +eTyg + ...)

PR

-

dR -
-
d(y,*2 )

' * 2 e :
= eRlyp*g ) + " (y*Tie ) + ... (4.1.9)

From expressions (4.1.6) and (4.1.7) we have:

L L)
L=n-eredm? -y

dt 1

and
d2 n rn n [ |
L=y -e[2Ty +T,y)
I AN

2 "2 1 n [ ] n " [ ]
+ T[3T7 - 2Ty (3qu&fT2)y 1+ ... (4.;.10)

+

Using the expansion (4.1.6) in (4.1.10) and substituting expressions

’

(4.1.6), (4.1.9) and (4.1.10) in eqn. (4.1.4) then separating the terms

of similar order of smallness, one obtains the follogihg system of

equations:
L
Yo * Yo =0 S (4.1,11)
‘ n" rn T n » )
Yy * ¥y =Yg ¢ YTy - Rlygte) (4.1.12)
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If, for example, £€t) = F, sin vt and R(x) = x°, then: '

. F '
g =Ksinvg ; K=

l-v

The solution of (4.1.11) subject to the initial conditions

in (4.1.5) is therefore:
Yo ™ -vK sin

- The right hand side of equation (4.1.12) then takes the form:

- -

bt 3 03 204 .: o ; .
[29KT) - 2 VK7(2 + v9)] sin ¢ - VKT, cos g+ ) L, sin vt

LY 1-

vhere mi;! 1vi,

The conditions for boundedness of " is therefore:

| B
T, = 3 2 2, A
17 F K2+ v 50 -

and

These two equations in one unknown are fortunately satisfied

-simultaneousunction le = nlc.

. .
Now we turn to the expansion of g (t) of eqn. (4.1.8). In
' t'll

order that the term ||T1g | be one order smaller than "8." and- the

second term in expression (4.1.9) can thereby be associafegl with terms

\/

-
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of 0(52), the product f;g*' must be uniformly equal to 0(1). However,
T, increases linearly with the 1ime %, and the perturbational pro-
cedure will therefore be uniformly valid if, and only if, g‘ decays
at a rate faster than or equal to %n

In the above example:

*1
Tlg = Ql vK £ cos v
This secular term will appear inthe subsequent perturbational equation
and it cannot be eliminated. The range of validity of the approximate
solution if therefore limited to very short intervals.

However, if f(t) is chosen to be the step function:
£(t) = F, U(t)

where Fy is a constant and U(t) is the unit step 'function, then
. . v
g (t) =g (g) = Fo .t 0

« .
the term T.G l will vanish and the method will be uniformly valid

1
Ye.
- Difficulties will also arise if damping is to be considered.

For example, if one seeks a solution of the equation:
@

y+y+ey=0
with q?

y(©0) =1 and y(0) = O, 7 ,
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using the above method; the following perturbational equations result:

-

Yo * Yo = O

n 1] 1 | 2 1)
Yy typ= (T - 1y, + 2Ty,
Then yo = éos T

L]

and the conditions for boundedness of Yy become:

o L1

t
X T1;= 1 and T1 =0

which is an impossible situation.

¥

4.2 .Prescnt analysis - A system with a non-linear reactance.

!
Consider for-example the forced system:

X+ x+e[x+B] = £(8) , () $ e (4.2.1)

-~

with 0 < e < <1, 8 and [[f(t)]} are 0(1).
Lot .- \

n+u : : ‘({.2.2)

[}



where n represents the component of the system's frequency and its
harmonics and u represents all othef components having frequencies
different from the system's frequency and its harmonics.

Let n be expressed in a Fourier series as in (2.2.2). The

expressions for n and n + n will be the same as'in (2.2.10) and (2.2.11).

Due to the interaction betwcen n and the “particular rcSponsc"‘
u, u will also be slowly wodulated,

Thus

u = u(t,f)

The first and second derivatives of u are given by:

du _2u, _2u
dt ot 3
and :
5 5 5 (4.2.3)
O
dzuz—-—alzl+2::—-——gtg£+cz-—-—ag R g"'e—t‘
dt2 ot 3
sing the expansion
- 2 | (4.2.4)
UEuy ey ey, .. -2.
then
2 2%y 32u '32u
d—;-+u=(ﬂ2£+u)+g[——2}-+u102-ﬁ-a—g-]
dt at 0 ot
2 32“} azul azuo ' 2.5)
. 4.2,
vl 2t T ¢
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and _
Ju Ju u
du o, 2.°"1 0
L T Fratad v | (4.2.6)
‘Using expression (2.2.2) and (4.2.4) then:
,
e B x = eBl{n+ u]3

"

3 2 2 '
cB[AO cos 1+u0] + 3Be [A0 cos T +u0] [A1 cos 1 +Cy, cos 3t

+ D, sin 3t + ul] + ...

31
~which Qill take the form:

3
EEX = c[Plcl(E) COsS T + Plél(E) sin v + Pscl(g) cos 3t-+ P351(E)sin 3t+...)
+ €Q(t,6) + cz[plcz(gjcos T+ Py, (E)sin T + Py ,(E)cos 3t

* Pyp(@sin 1] ¢ 2,0 + 0(eD) ' (4.2.7)

where the frequency content of the functions Qil is different
‘ i=1,2,3...

from kA, k=1,2,3... yhere A is the instantaneous frequency defined in (2.2.3) .

Now cxpressions (2.2.10), (2.2.11) and (2.2.4) to (2.2.7) are
substituted in eqn;;(d.z.l) Lith the use of eqn. (4.2.2). Equating
the coefficients of similar powers of ¢ separately. to zero then
separ;ting the tefms representing ﬁhe component of the systems frequency,
the following system of equations is obtained which can be solved |

sequentially to yield the approximate solution:
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-l :
3%y,
—— * u, = f(t) ' (4.2.8)
at
dAD
2 'd"E- + Ao - Plsl 0 . (4.2.9] |
. L\
22 Ay - Py =0 - (4.2.10)
8Cgy = Pyeyr 8Dz = Prgy (4.2.11)
32u 3u0 32u0
i Ul T T T , (4.2.12)
3t _ '
dA, ;
, i TSI S TS TR P I (4.2.13)
a?a, dn 5
212 AO o -;2—' + -a——é-— - ZAhAl - AOAI + Plcz (4.2.14) LA
I1f for example
f(t) = F(et) cos (vt + ¢(et) ) ' ]

F(E) cos.(vt + ¢(¢) ), v being a constant,

4

then the approximate solution of eqn.(4.2.B) is :

Uy = © F cos (vt + ¢) (4.2.15)

“

J
/
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where

From eqns. (4.2.7) and (4.2.15):

3.3 3 2 2 -
Plaa = Blg 89 + 5 0° FIAGT, Py =0
B .3 .
Pacl =7 % - Pis1 =0
and
3 .2 3 33 o F>
Q1 = 8[50 FA70 + 7O F) cos (vt + ¢) + 57— cos 3{vt +.¢)

+ -:i o] FAg {cos (2t-vt-¢) + cos (2r+vt+¢)}

+ %-ozeAD {cos (2vt+24-1) + cos (23}+2¢+t)}

Therefore from eqns.” (4.2.9), (4.2.10) and (4.2.11):

3.2 .22 '
A; = 5 BlAg * 20°F°) - C (4.2.16)
1 _ |
2 | :
AU =Le , L being a constant, :”(4.2.17)
o, 4.2.18)
C3p = 53~ and Dy =0 | (4.2.

From equation (4.2.15): 1

A epandd
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Bzu

sre = - volF Shcos (v e 9 ¢ Fosin (vt + 9))

The solution of eqn. (4.2.12) is therefore:

u, = N(E) sin (vt + ¢) + M (§) cos (vt + ¢) + M,(E) cos (3v+4)

+ MS(E) [pl cos(21-vt->¢) *+ Py cos{Zt + vt + $))

Nt

), + M4(£) [q‘,l cos{2vt + 2¢ - 1) + q, cos(rzvtf 26 + 1))

// .
4
( - (4.2.19)
\ .
with o~
N(\) = g?uF + 2 9E
E\\/‘{ de-
\
d¢ 3 2.3 -3 2 2
M (€) = o Ziou S8 g "7 BOF ] - 580" FA
-0 33
B o F 3
Mz(E)z'z 2!“(5)“""80]’-"%
1-9v

' 3 2.2
. }-14(5) B - T'BU F A(]

and

1-(2v+1)°

s
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From equations (4.2.7), (4.2.15), (4.2.17) and (4.2:19):

5
2.2 BA 2.2
o F 3 2 o F
Picz = 3BIA =+ T A * 13 * 7 (ay*a),

P1*Py
+ oFAG (M) + —5—=M,)]
and
plsl = 0.
Eqn. (4.2.13) now becomes:
-5
ffl.+ l.A = - E.e Eil .
dg 271 2 dg
vhich integrates into:
‘ '%ﬁ-x “%{ :
( L L oa =Ee poo -
Ay -A40) = -5 By =g G0 -y
2,(®

If we let the constants L and 1(0) sétisfy the initial conditions
to the desired degree of accuracy , then AI(O) may be chosen to be equal . %®

to zero. Hence:.
1
2

13
A =3l (L2075 + 262(F2(0) - F)]  (4.2.20)

!

From eqn. (4.2.14)

' 2 s1 .2,4
"2"‘0(;)"“1(5)“0'53'6'“‘0
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with

1 3.2dp 9 244
AO(E) =- g+ SvBo” F x* - 37 80 F (1+40+ q) *+ q,)
and

9 2.2 2.2 9 222
Ay (8) = g7 87[L +20F(0)]-I—G-Bos(1+4o+p1+p2)

Thercfore, T is determined from :

-2
+ Az)dt

t t .
T - 1(0) = I Adt I (1 + 511

0

-
-

‘ 4.2.21
. £ _ { )
=t + I (11 + clz)da
D -
The constants L( in equation (4.2.17) and t{0) will be de-
termined from‘the initial conditions. l

Thus for

f(t) = F(et)(cos vt + ¢(et) ), x is approximately given by:
. 8 3. .

X = kAO + €A)) cos T 4 € 33— €05 3T + yp + ey (4.2.22) .

where A(J’ Al, Uy and u, are given by equations {4.217), (4.2.20),

(4.2.15) and (4.2.19) respectively, and t is given by (4.2.21).

For the special case f(t) = E e ™% cos vt and with x(0) = 0
and x(0) = 0, expression (4.2.21) becomes:

e
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2 i -2
e 3.2 9¢ . 2.2 - 3 - %%E
TE (- g) v 2L+ £ Bo%E) (1078 o 3.30252(1_52___3
1+4g+p_+ 9(1+40+q. + 4 -
2 4.4 5] -2, 9 P1'Pa o _(le2n)g 979, 3 g4%E
IR S PAS LS I Ty v~ B A

and the constant L is given by:

Lr—oE+cBo353[l—-+g + 1

] 3 o
32°3° %% T o7 qlryrymatay))

Eqn. (4.2.1) has been solved numerically for € = 0.2 and for \

~

values of B in the range 0 < g 5 4 The forcing term is takeﬁgas:

~

£(t) = 1.5 e %% cos 2¢, k =0, 0.25

)
p—

The analytical solutions are cormpared with the mmerical .

solutions in Figs. (4.1)to (4.4).

i
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CHAPTER 5
A non-linear convolution approach to the
problem of forced non-stationary oscillations

in self-oscillatory systems

5.1 Introduction
__The response of a non-lincar dynamic system to excitation by a

pulse of infinitcsimal duration depends on the magnitude (i.e. area)

of the pulse as well asthe. state of the system at its instant of

application,

Yhen a second order self-oécillatofy system, opera-
ting in its steady gfaﬁe mode, 1s disturbed by a weak pulse,
then at any fhstant of time the representative point in a
suitably chosen phase—plane will be found near the 1limit
cycle trajectory in that _plane, When the system is distur-
bed t7 a continuoﬁs‘signél which is one order of magnitude
emaller than, that s@rficient to phase-lock or suppress the
self~oscillation, then it is plausible that the representa-
tive point in the phase-plane-rcmains close to tbc limit
‘cycle trajecfory. The system's output may be répresented‘
by a non-linear convolution integral which can be evaluated
"by a simple iteration procedure.

We shall study the oscillator shown in Fig. 5.1 where the

trapsfer characteristic of the negative non-linear resistance is given

by: 3
\ v v .
Lmayvrayg iz

v being the oscillator voltage.
- t
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Fig.5.1 Circuit representing a disturtbed self-oscillator

NOr maliration -
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The oscillator is described by:

P 2 4. dv d

dv + 1 ' 3k
C.(_l_?_z, ry+(al+azv +asv)3-€--a-{id() (5.1.1)

-

where t is the time variable in seconds, L and C are inductance and
capacitance of the tumed circuit in Henrys and Farads respectively,
and id is the distqrbing current in.Anperes. The units of a;, a,
and a, are: mho, nho/volt2 and mho/volt‘ respectively. .

The derivaiion of e&n. (5.1.1) is done in quite an eleﬁentary
manner by using Kirchoff's law and need not be elaborated here.

In the absence of the forcing term, eqn. (5.1.1) has a unique

limit cycle in the following cases:

a,. >0 a_ =0
al“ 0 2 3

3230 a3>0 5
a = 0 a2< 0 83> 0

Let us use the change of variables:

t= t

and v =« }

/E b

where

- ’2 + o nz - 4a. 2

- 2 173
x = the real square root of

4a
-'l .
whereas xk -+ —_— as 13 +0 .

3
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Eqn. (5.1.1) is then rewritten in the dimensionless form:
oo 2 4, - d
Yty ey tey cexy)y=qiy (5.1.2)
< . d | /L ¢
\flth()éa-{ » id Y T id » ] | !
AT
/1 Ny 4 //ri
<, =8 T * € ™ Arx C and €3 = 3;K T
L . AN
- Eqn. (5.1.2) may also be written as:
€ €
c 2 =2 3 -4, -
X+ X+ (fl tx X+ ) x = id(t) , "(5.1.3)

vhere x 2 I ydt

Using standard npthods (the Poincare-Lindstedt method for
example), it can easily be shpuh that in the autonomous case (i.e. when
i&-o vt} the limit cycle of eqn. (5.1.2) has dimensionless amplitude
and period of approximately 2 and 2x respectively when cié<1,
i.= 1,2, and 3. The normalizaiion of oﬁn. (5.1.1) in the form of

eqn. (S.I.é) is thus in comformity with the usual normalizipion of

v.d. Pol's equation in the form:

| y+y-eQy=grem
» or its equivalent: )
Xx+x- €(x - i3/3)'- g(t)
which has a Emit cycle (when g(t) = 0 ¥t) of dimensionless alp{}tudé
and frequcﬁcy of approximately 2 and 2x respectively when 0 <e<<1.

In section (5.5) it will be clear that this analogy is bemeficial.
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5.2 The variational response of the v.d.Pol oscillator

equation:

which

Consider the v.d.Pol oscillator described by the differential

X+ x-¢(x - i3/3) =0, 0< g<< ]

is a special case of eqn. (S.I.ﬂwith
. 3

3

=0, € = - tz = -cand e, =0 . W

Assume that the oscillator has been “free-running'" for a.suf-

ficiently large period of time before t=0 so that at t=0 it may be

assumed that the limit cycle has been reached.

: N .
Let x=x denote the periodic steady-state response with a specific

: o ,
phase-reference. Let the representative point in the x-x phase plane

[Fig.

t=t.>
i=

where

5.2 ] be displaced from thé linit cycle trajectory at the instant
0 such that:
»
re *
x(ti +0)=x (ti) + B,
, (5.2.2)
and . + -
x(ti +0)=x (ti) + €Y
Bi and Y; are 0(1). \
'ﬁgr tzti+0+, we may write:
- N
x(t) = x (t) + eu (5.2.3)

and x(t) = i‘(t) + cu

From eqns. (5.2.1) and (5.2.3), it is

the variational equation:

[4

‘straightforward to derive

(5.2.1)

r*-.,‘

L
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- o - LRl -
u+u-e(l-x 2) u + t:zxwu2 + %_ 23u3 = 0 (5.2.4)

-,

which satisfies the initial conditions:
(t.+0") = g and u(t.+0"
u(t, Bi an u(t.i ) = Y3 . (5.2.5)

. *
The steady-state response x may be obtained by the standard per-

turbation method (Poincaré-Lindstedt). With the condition of periodicity:

x.(t+T) = x.(t)g »

where T is the period of the limit cycle, and with the phase reference

.t
chosen such that: x (0) = 0, then:

* 1:2 € . €
x {t) = (2 + -8——) cos Qt - 3 sin-Qit + -i-z—sin k3tsd
cz e2
+ -1—6-cos nt - 9—60:05 50t +« ..
\
A 2ir ez 4
where Q=T=1-E+0(c)
thus
ol € € 3&:2 X '
x (t) = - 2 sin Qt - 7 €Os At .+ z cos At - J-— sin 3at
, (5.2.6)
) .
Se
+ Wsin sﬂt + uao'

-~

Let us for convenience use the change of variable:

1

T =0t , thus g—; = 'ﬁg't' . Then using eqn. (5.2.6), eqn. (5.2.4) is

Tewritten as:
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n ! 2 3
U + Ku+eQ(r)u =¢E+ 0( ) (5.2.7)
L, A d
wﬁere () = T’
AL - 1 .
Q(r) =1 --2 cos. 21 + e(sin 21 - 7 sin 41) ,
., 2 , ]
Kél_2_=‘1+-§-— . h
1 .
eE
and E 4 x u2 ‘

In order to obtain a second order approximation of the solution

of eqn. (5.2;7), we shall first solve the lincar time-variant equation:

n N | )
up + Kuz + eQ(1) up = o, (5.2.8)
+ 1 + I . + .Yi
with the initial conditions u, (v +0 ) = 8; and U, (1,407) =5 u,(1.407) = T

then take into consideration the effect of the terms in the r.h.s. of
eqn. (5.2.7).
We shall transform eqn. (5.2.7) to the standard form of Hill's equation

which has well-known well-tabulated solutions, Nriting
uy g, el ' (5.2.9)

4 ¢, B
where n = n(T,Ti) 3Ty Qti
and I 4 {(T)TQ - %-I Qdr

E - %—t + %-sin 21 + 0(52) . (5.2.10)
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thence eqn. (5.2.8) ;educe:l. to Hill's equation:

el m +POM=0 : (5.2.11)
where
1 ¢ 1 .n
P@ =Kk-3q -3¢
2
=a ¢ 2 Xuk cos (2kt - ek\)\
- . k=1
with
% 5¢? 3 3
0031-—8—_'—."‘0(6)‘, 0138"'0(6),
cz 3 w 3 3
a2=-‘i—+0(c),Blt-E*O(c)andB:Z:O(c) (5.2.12)

Following standard methods, the 501'ut10n of eqn. (5.2.8) is sought

in the form:

T T

) N
n=c¢C, el F(r,3)) + Cpe ° F(-c,'iz) (5.2.13)
- rd

1

where

A 5 A
cl = cl(‘i'Bi’Yi) md cz = cz(TilBi’Ti)

|
. . A ~n LS
are constants, the parameters Py Pos ll.and Az are real and F(x, 1‘1) and
F(r,‘iz) are periodic functions with respect to T.
Hakiné use of the tabulated solution of egn. (5.2.11) [see for

example Hayashi, 1964] and remembering that the value of P is near unity
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o
Vr>ri, then our problem is confined to the first resonance zone of Hill's

equation and the solution for n in the form (5.2.13) is then determined

as follows:

N =
First we determine AI and 12 from:

a =1+ a, cos 2; + (- l—+ l—cos 4; ) 02 (5.2.14
o ! 1 T3 1 9 (5.2.14)

2 2

<

then Py and }, are determined from:

. .‘A B
By = -;—ai sin 23] ) (5.2.15)
2 2

A
The periodic functions F(T'al) and F(r,xz) are then given by: \
a IS

~ . 1 A ) 3
F(T,Al) = sin(tr - 5-61 - 11) + §—-51n(3t - 5—61 - Al) (5.2.16)

2 2 ‘ 2

From eqns. (5.2.12) and (5.2.14) we have:

A € [ 3c
cos 211 * E-cos 4, + T " 0

1
2 2
which has the solution:
/’
g N " % . € 2
j Ay = dymgtgt 0e)

-

Thus from‘eqn..(S.Z.IS):

R L R A
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Now evaluating F(T,Al) and substituting in expression (5.2.13) we get:

2
- y
' o= C, e 2 [sin T jf%-cos T + %—cos 31)
. | (5.2.17)
+ C, er 2 [cos 1 - %—sin T - %—sin 3]

From expressions (5.2.9) and (5.2.17), and the expansions

€ET € _. €T
1 > sin 21 -3 c 2
e =e e%\\\ = e [1+ i-sin 2t + 0(e7)] ,
\- ’ -
we got:
: - -E(T—Ti] _
. up = C1 Gl(T) + e CZGZ(T) E (5.2.18)
where
' 1
Gl(t) = e F(t,ll) )
= sin 1 + %{cos T - co0s 31)
and
: { .
GZ(T) =& F(T)*z)
T = COosS T + %{sin T + sin 31)
o
Then .
o welrTy) 5.2.19
W, =CH () +e C, Hy(1) (5.2.19)
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where .
£ . Je . '
Hl "cos T-gsint+ g sin 3t
and
H, = - sin 1t - z—c cos T +'§E-cos 3t
2, 3 i
Using the initial conditions in (5.2.8), then C1 and C2 are
B y
given by: ' ‘
. ~ 8 Ho(x,) v+ G,(x.) '
. i - . s
c, = 2 4 - 4204 : (5.2.20)
Hy(rg) Gy(r5) - 6, (1,3 Hy(x))
=Gt €y
where ]

C11 = Bi sin 1,-+ y; cos T,

a?d €2 =

0] =

o 3 . i )
ai(s cos 1, + cos 31;) -'g-yi{szn T; + sin STi)

B; Hi(x) -'v. G (x;)
Cz o 1 17 i1 (5.2.21)
Hl(Ti] Gz(Ti) - Gl (Ti) HZ(Ti)

| : =t ey ‘
v R :
where
Cz1 = Bi cos 1, = Y; sin 1y
'. . 1 W3 ) '
and sz n - §-Bi(s sin T, + sin 311) *3 Yi(COS LY cos-3ti)

. ‘ 5
Let us now take into consideration the effect of the term ¢'E in
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T

eqn. t5.2;7),€where
| E=E - 02
= (T,ti? = X (Ti),u [T,Ti) .

The function czﬁ(r,ji) may be viewed as a sequence of infinites-

imal pulses: .

2 - -f
pj 5 g E(rj,ti) Arj ;o OT. 2 T - (5.2.22)

) . 1

.exc1t1ng the linear t1me-varxant system descr1bed by eqn. (5.2.8). The

< A4

inmediate effect of.an ind1V1dual pulse of (normal:zed) area P; is to

cause a sudden variation ‘in u equal to pJ whlle no immediate varlatlon

1
in u takes place. Thus, if Au and Au denote the variations in u and u

respectivelyat t > T due to a pulsé of area pj a&pliéd at the instant

., then: ’ o l
.' J . * N -
~e{r-1.) #-” :
Au = P; [n c (T) + e J D, 6,(1)] (5.2.23)
and ' ' ‘ s T>T, = Qt.
. ) -e(t- TJ) ‘ . J )
Au = pj[Dl "l(t)_+ e D HZ(T)] (5.2.24)
where , ‘ .
: ‘ 3C (t.,8, Y ) . .
Dy = D,(x)) = S R hal P35 | '
. ayj
- H, G, - G, H
"2 7172 TF‘j

= cos T, ——{sin T + Sin'Sjj)

W
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L
Yy
and .
aC, (r.,B.,7.)
2 .
D, = D,(r.) = 2 ). (5.2.25)
j
_ : 3y .
j
H, G, - G H,
Tﬂfj

. . 3¢,
= -~ sin 1. + ——{Cc0s T. - cos 3r.
- i 8 j *5)

Now as A*rj + 0, we pass to the continuous case and the effect of

the forcing term € E(T,Ti) is given by:

b .
.« u, = ¢l IT E(x.,t.) I(t,1.) d. (5.2.26)
-t . 1 (P M :
- 4 J
where ‘
' : —E(Tftj) ,

;(;,xj) = Dl(tjlgﬁi[T) + e Dz(rj) 6,(v)  (5.2.27)

A - _ o

anqr u=s u( + un{ . o _

Since the integral in (5.2.26) has‘c2 as a coefficient, it is suf-

’ |
ficient to retain only the terms of first order of magnitude in the inter-

. . - . 2
grand. Thus, in eqn. (5.2.26), we thall use the approximations:

. i .2
‘. E;rj,ri) = - X (Tj) u (Tj,fi)
- : . —c(t.-t.j 2
~ 2'sin tj[Cn cos 1, - C, e - sin th
and . -e(t-1.)}
I(T,tj) x cos T sin 1- e Siérrj cos T

f ~
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Hence
Une ¥ - 402 €)1 Cyy sin +_cf1 cos 1) (1 - e-e(T'Ti))
2 ;E(T-ti). ‘25(1%11)
+ 3G, (e, - e Jcos 1] 5.2.28)
with - | |

.

Ch C)l(fi'si'Yi) and  Cyy = Cpy(v4,8;,v;)

Thereforé, the soluﬁion of éqﬂ. (5.2#§) is given to the second
- - i1

order of approximatioq byf:

where

~—

- E 2 .
= = - R C 3
Yy U¢(Ti+¢i.ﬁi-Yi) C1 Gl(r) E{CII €os T +,2C11 21 Sin 1)
and .
. -s(t—ri) . _ . .
Uy = ¥ (T 5 TyriaBeay;) = Gy Gy(v) e

~ L

-c(r-ri) 2 ~2e(1~1.)

€ 2 2 ) T . 1 .
+ 3{{FC11-3C21) COos T + ZFIIC21 sin t}e + 3C21 e cos:g]
(5.2.30)
With €) = C(74,85,7;) and €y = Cpy(74,84575) - i
2 2 21 21
Defining:

+An alternative derivation is given in appendix D.

*

y o
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it is straightforward to verify that the amplitudes of the fundamental,

third and fifth harmonics of x are the same as those of.x‘ and that:

~

X = X (1+9)

) oy € 2
where ¥ = 9(1;,8;,v;) 5 G 5 €11 S
€ e |
= - 7% - 7€y ~30; 6 (5.2.31)

The non-decaying component u, in the variational response arises

: ¢
from the phase shift caused by the displacement from the limit cycle

trajectofy. If the displacement is radial, i.e. if:

s %
_ x (t.) '_ Y. , L
tanl-;—l-—cttanl-é-l—, . , 3
x. (‘l’i) i )

then ¢(*) = 0 and only a transient amplitude variation, given by expression
(5.2:30), takes place. -

| Before we proceed with the analysis,.it may be u;eful tb refer to
the phase plane repfesentation.‘ In Fig. (5.2), the phasor end is assumed

~ to be at point a on the limit cycle trajectory x. - i* at the jinstant t = t..
The circular ph;se, which is defined here as the argument of the fundamental
component of thé Fourier series éxpansion of x is-equal to 1, = Q..

The angle ¢(Ti) of the phasor : is in Een&ral a non-linear function of ri.‘

+
When the phasor end is displaced to point c at the instant t = t. ¢ 0, the

circular phase becomes LFIEAS where ¥ is given by expression (5.2.31),. and

i
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the angle of the phasor r becomes ¢(x; + ¥). The radial displacement
'\' .

Hnrﬂ will then decay so that the phasor end é;will eventually reside on
N ) .

%

the Iimit cycle trajectory as t - ti <+ =, The horizontal and vertical

projections of the radial displacement, at any instant t > ti, are equal
du :

a X . . .
to u and T respectively, where u, 1s.g1Ven by expression (5.2.30).
<

2

-

5.3 The pulse response of the disturbed oscillator and the response to

continuous disturbance

In section {5.2) we have dérived cxpressidhs for the variational
rcspohse of the v.d.Pol bscillator. In this section it will be shown how
this ;esult cgﬁ be used to study the behaviour of the oscillator in the
prcsenéc of a wcak disturbing force, the cillator being then described by:-

. : : s |

X+ x - __E(i - -_f,;‘-) = i,(t) (5.3.1)
where id(t)'rcprcsents a disturbing current [Fig.(5.1)].

Let us assume that the oscillator has been free-running for
-=< t< t, and that it is in the.steady-statc at t = tof Let us consider

" the effect of disturbing the oscillator by a sequence of infinitesmal pqlsés

of areas q_, q;, .:. at the instants ts ty, Ty, ..., where t, 50 2t

+These pulscs may be considered as samples of the disturbing function-id(t)
in eqn. (5.3.1). The effect of an individual pulse Q. i>0, depends on the

cumulative effect of the previous pulses'qi, 0<j<i. Suppose that due to

the pulses 9 » ql; coesly v the representative point in the
Phase-plane has been brought to point ¢ in Fig.5.3,where its

»
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phase of 1. +¢ correspondlng to the angle &(t, +¢ ) of the phasor r. The

pulse q; will then result in variations in the phase and amplltude

of x given by:

Phase variation 4 A = q; aY ¢(1 Bi,yi)
= qllrll(ri+¢i} tec r12(Ti+¢i:BinYi)] . '(5.3.2)
and
amplitude variation 4 A8 =-q.-jL-u (t,t.4d..8 Y 5 -
‘ i aTi a‘? 171750y -
-E(T-Ti)
- -E(T-Ti)
tE Tpp(T,Ti4e;,Bs,y, e (5.3.3)
= . EZe(t-ri)
t e Ty(r,1+45,8,,7,)e I
where
aC
1 11
I(T +¢ ) E - ? aY 1
1 3 1 )
T12(75%85085575) = - 35— T €12 -5C1 6 »
aC
21
rzl(r,ri+¢i) = 3, Cos T

= ' IS ) 2
r220€'1i+¢i’81'71) = 3?;-[35(C11 - 3C5,) cos t + C,, cos T

1 ‘ .1
"7 Cy Gy IR T R (sin T + sin 31)]
and .

= 3 3 2
F22(07;%05,85,7;) = T, Cyy cos 7

i
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. ‘
Xew using the expressions for Cll’ C12’ C21 and sz given in (5.2.20) and

(5.2.21) then:

aC

32 11 _ . 2
9‘ri cll = 2C11 3Y_1— = Bi sin Zri + Zyi cos T
aC
3 2 21 _ . . 2 .
By, 21 " 2C21_?{'i"" =7 By osin 2ty 4 2y, sinfy
:‘md : ¥
aC aC
3 - 21 11 .
3Yi CZHC21 = C11 __3Yi + CZI-‘_aYi = Bi cos 2r:.L - ¥; sin Zri )
Therefore, \
1 b
I‘n(ri) = - 'c‘:‘os T. , .
le(rlri) = - sin 1; cos 1

_ 3 . . 1 .
I‘Iz(ri,Bi,vi) * 18 (sin T; + sin Sri) ‘T (Bi. cos ZTi - v; sin 211) ,

lair L}

B

Zz(r,r{,ﬁi,Yi) = [%(cos T, - cos 3ri) + Bi sin 2'ri + Yi(Z cos Zri « 1)) cos t

. 1 5 : :
+ 'f[Bi cos 21, - y; sin Zti] sin t
) G S
- § sin ti(sm T + sin 3t) ,

45}
=3
%

[

3 .2 .
zz(r,ti,si,yi] = T[zYi sin"r; - B. sin 2_'ri] cos T
i
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1f q; =Eid(ti) Ati, then in the limit as Ati + 0 we have:

t .
$(t) = J 1g(e) [ry, (a0 + ) + e T (% + 4,8,7)] & (5.3.5)
: _
o

and . I

’ t
B(t) = j 13(R) [Ty, (A, Qz+4) + e T, (at,00+3,8,v)

t
o

+ € T, (0t,00+4,8,v)] dt : (5.3.6)

where the values of ¢, B and y in the integrands in (5.3.4) and (5.3.5)

are:

6= 6(2) , B =8() and v = y(z) = 53 B(Z)

B

It is plausible to assume that the me¥h frequency of oscillation, measured
over a sufficiently large period of time is time-invariant. Thus for a weak

disturbing current, we may write:
¥

!\’
$(t) = eo + AQt + ed(t)

4" . ’ .
where'eo and At are constants and e¢(t)(¥epresents zero-mean phase fluctuations.

: Using the Taylor expansions:

] o
rllcnc+¢) = rll(nc +8, 0+ e$(z))
P A
- ar., (fic+8 ) o
~ rp(gr 6) e 1" o §in)

1104
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&

and . N

Lo - " - ar,, (at,fic+e )

£,y (R5,00+8(c)) = Ty (9t Geed ¢ e0(8)) = T, (At,fge0 Jv ¢ —21 0" Yoy,
' aag
1
whore
Q=0+ , (5.3.7)

thon egqns. (5.3.5) and (5.3.63 are rewritten as:

t _ ) (@z+e ) o
6(t) = J ig(@) Ir,@g+e ) + ¢ { ———T 4(3)
' ang

r+

* r12(§C+9°,B(1)E§). yP ) a (5.3.8)

ana
‘ eE -cﬂft %)
B(t) = J 1d(CJ[r21(Qt,QC+ao) e

t =

o _ .
. ar,., (at,fr+8 ) . :
v e 21 . 0 8 (5) e—cﬂ(t-c) -

: M- . L

+ T, (at, 058, s @, vM ) é'en(t")'\

- .
1

+ B tat,deve, 30 @), v ) 2B ya
| (5.3.9)
Eqns, (5.3.8) and g?.S.%C maf be theﬁ‘solved by a simple iteration proce&ure,
Trhe first approximatioqs,of'¢(t) and 8(t), éenoted by ¢€El(t) an B(I)(t) are given
b ' t
| ¢(1)(t3 = Jt i (z) r,,(fz+e )dz - ; (5.3.10)
. d 11 0

t
o]
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and

€3 DY -
BT () = | i,(2) P (et,fz+6 ) do (5.3.11)
t
o , :
The second approximations of ¢(t) and B(t), deroted by ¢(2}(t) and 8(2)(t)
are given by:

t ar., (fz+s ) .
t 1714
0

+ 1, sM iy, v (M ggq,

and .
. t - . ar (Qt,ﬁcq.e ) o ;
8Py - Wy 4 e J 1) [ o vy
t ang
ey .
+ T, (at, 80 _,8(0),v(c)) e SR(E-E)
* letﬂt-ﬁizﬁo.ﬁ(c).Y(c))e“zcnft")]d;
with o
AMORS THSION - (5.3.12)

Finally, uéing expressions (5.3.4) and (5.3.?), the first and second approx-

izations of ¢(t) and B(t) (and hence y(t)) are given by:

t ) .
4oy = - %-J i3(z) cos(fz+e ) dt (5.3.13)

t
[+

[Note that when the frequency content of the disturbing current 1; is different
. >(1) _ (1)
fron the oscillator frequency then ¢/ (t) = ¢ /()]
(1) : . . ~eR(t-z)
B " (t) = - cos(at+é(t)) 1d(c} 51n(ﬂcf8°)e dg , (5.3.14)
’ t

0

e
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’

YWy <L eWyyy

2 1 t
¢ = s Wy + ¢ j 1@ 1 7 0@ sin@izee )

t A1
(o] .
+ %E-{sin(§c+80) + sin 3(ﬁc+8°j}
+ %—{8(1)(C) cos 2(ﬁc+80)
V- v o) sin 2aee )14
. | (5.3.15)
8P =8By 4 J 1@ [ cos (atsgycos aree ) 5D (r)
t
o)

» Tpptotes,cve 80 (0),y M (03

+ 'e-z‘Eﬂ (t-r)=

PR O R G LT

{5.3.18)

and
Py - P .

The above expressions give the fluctuations in the phase, and amplitude

[P B Sy

t

of oscillation due to-the disturbing curre;?“id. The state variables x and x, ~
v .

representing the normalized inducter current and oscillator voltage respectively

(Fig. 5.1), are determined from:

x(t) = x e+ By +« 6@y,

-~

and : ' . (5.3.18)
xt) = x @@ ) + vy,

. - - 2 2
Llere x*(t) and x‘(t) are given by expressions (5.2.6), and ¢( )(t), 3( )(t). and —

r )
y‘z)(t) are determined from (5.3.16) and {5.3.17).
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5, 4 Exgggl S
. Let 1d(t) * g sin(mt+e) . - ‘ , o (5.4.1).

where a, o and 0 are constants.

It is we11 known that the self-?scillations may be either synéhron-
i;cd or quenched by the external frequency, i.e. a station;ry response |
results, ghcn the amplitude a exceeds a critical value depending;on
théAexternal frequency w and the parameter .

) If lw n| = 0(5 ), the cr1t1cal value of a is O(E ) k=1,2,...
we are 1nterested in studying the non-stationary- osc1llat10ns due to
srall disturbance and we shall therefore restrict the magnitude of

a to be one order smaller than its critical valve,

Let -

o

. - and i, = %A sinfutee) ; - (5.4.2)
then using eqns (5.3.13) to t5.3.16), we obtain exprfssions (5.4.3)
and (5{3.4) below for the phase aﬁd amplitude fluciuations. In these
cipressions, the transient ferms':'whiéh_are in this case of littlg

impbrtance, have been omitted.

o N U 3.
$(t) » % cos (ot+p) + ‘C_BA [cos R t40 + o sin({ot+6)]
- N (5.4.3)
2,2 . 2 .
+ LA [cos 2(ot+8) + 2°0+1 sin 2(ot+8)]

oo™ +l) Lo~

3

{7



B(t) "¢ _ag.g cos(§f+00+:(t)) [

]

‘\

~

cos (ot+0) + 0 sin(at+0)

g +]1
- g-sin¢m+ﬁ)t0e)] i

-

&

+ cz @os(§i+eo) [KI{sin(ot+B) -0 cos((é#ﬁ)t+a)}

A\

+ X, cos 2(ot+8) + Ks sin 2(ot+0)]

K
3

2 PP | -
4+ ¢ sin(ntteo) [—1-{cos(dt+a) - 0 sin(ot+8)}

L,

+ l(4 cos 2(gt+6) + KS sin Z(thﬁ)]

2

. €

“

czAz -

Kl sin(S(ﬁf#e)) [cds(ot+a) -0 sin(bt+e}]

- — [%-cos(ﬁ%+a°) +0 sin(§i+eo)]l-

9 a16(c?+1)

where
. _'-352 2,2
o 320

.

K:é.._A

1 6.—-.02+1 | -

o)

+

Asing-EA [(0+lg cos 6 +
, 4 S 2

, 20°41
[4)

a0
l6o(c™+1)

sin 20}]

a

[‘ 2
462+1

Ne
L
. g‘:-w

s

'3 25%1
2 { 2 2
o7+l 407+l 2(c"+1)

2
G;_-l .}]

— {cos 28 -

155



156

- {’/
-A2 1 3g 3 1
Ky=—g ——*5-(—5—--5—1 ,
o(do +1) o+l 4c¢7+1 o +1
K = L 0A2
4 »

16 (5241) (40%+1)

2 2

K = AT 20 -1
s 1 (02+1) (402+1).

The frequency pulling i§ given by:

A . 3 2 2
- etA” . 1 8 1
A = Q-0 = o = (5.4.5)
32 2, 32— -
a(1+0“) (v-0) [1+(E_§;2]

€

4

t,
It is of interest to compare this eipression with the result
. Sy
obtained by Outram (1967). Outram studied the frequency pulling of
the v.d.Pol oscillator experimentally and, for the case of sinusoidal

forcing functions, obtained the empirical result:

2
B

(u-1)°

89 o
We note that for the cases studied by Outram, the condition:

Lm-—l‘2 .
=1 >»>1,

holds true, in which case expfession (5.4.5) reduces to:

c2 a2 cz aZ .
AQ v — N o »
i A~ 32 .. (m-a)z ~ 32 (w_l)S

" which is in qualitative agreement with Outram's result.

;
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“The-spectrum

The oscillator voltage is given by:

X(2) = X (te4(2) + y(t) | (5.4.6)

- i'(ﬁ% + 0, + HOIE, Y(t)

. ' o
where y{t) = g? B(t) and x (-) is given by (5.2.6).

) 4"
Using the expressions for ¢(t) and B(t) in (5.4.3) and (5.4.4),

* then:
' 2
x(t) = AO cos(nt+e ) + Bo s1n(nt+eo) + ? cos 3(9t+e +§-— sin 5(9t+80)
+ A) cos(ut+8) + B, sin(ut+o) d

+ A, cos((M-w)t-e) + B, sin((Zf-u)t-0)

+ Ay cos((2u-R)t+20) + B sin((2w-7)t+28)

3

+ A, cos ((3n-2u)t-206) + B, sin({30-2uw)t-28)

4 A cos((2fru)ten) + B, sin((2f+w)t+e)
+ Ay cos((4T-u)t-0) + B, sin((4R;w)t-6) (5.4.7)
. o P .
where X : —Z
e - E, ezf\z (l-c ) B = %ZAZ (40 +1)
b -3 TE By 32 ’
o(1+o ) o (u +1)
eA 1 20%1 € . 2 \ia4
(c7+1)
2
B = =4 7o [1+ %‘100-1] ’
4(1+07) a '

Az'ﬁ[3+5(°7)] &
B, = 3 — [1 ‘% ) . R




s -

2,2

e’A’ (20%-1) (76%1)

o(oz+1)2(402+1)

. eA% (2% 8021y

32 (1009210409

A = 352A2 I204 + 902 +]

A T T T

B = - c2A2 [206 - 404 + 402 -1

4 2 0?02 1) (40201 -

2
€A 3 1
AsnTIIQE.T_] .

o +1

B .. 3¢%A 208
S~

A = - 352A 1
6 32 c2+1

= L e A
6 32 0(02+1)

Now

, ' 2 ' 2
Ai + 52 = 2+ %Eg[l - 2A2 L%E-%ll—ﬂ
-0 6% (as1) .
i.e. the change in the amplitude of the fundamental component of

self-oscillation due tothe disturbing force is:

A - - CZAZ 1+402
N 25,

bt ]
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(5.4.8)
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Now if
N

2 .
id = € Z Ah sxn(mnt + en)

n=}

where Imn-n| = 0(e) Yn, and ”id||- 0(52) » then it can be verified

N
that the first approximations of ¢(t) and B(t) take the form:

N

"'(1) € Al'l | ) . )
. ¢ _(t)_-;‘- ) o os(ont.; o) (5.4.9)
nel . ;z
"\
and %)) c _ ‘\'(l) N An
B 7(t) = - 7 cos(at + ¢ 77 (1)) z [ 2+1 {cos(ont+en)+unsin(ont+en)}],-
~n=l 9y
L ‘
* (5.4.10)

and that expressions (5.4.5) and (5.4.8) becomes:

_ 3 N Afl o
AR = G-Q = §-2- ) 5 N (5.4.11)
n-l'on(l‘on) ~, o S
\J
and ' B
: 2 N Az(l*"ai)
sAx - .;.2. 5 5 (5.4.12)
n=] on(1+o“) : '

Numerical verification

Eqn. (5.3.1), with iy = a sin wt, has been solved numerically

.on a digital computer for e=0.1 and for different values of a and w.

v :
The solution was carried out for a period of 450 cycles after the
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initial transients have faded away. The instants of positive-going
zero-crossings, denoted by Ti' i=1 to 451, were then determined by

high order interpolation. The average frequency over each cycle,

defined as:

2%
Qi-?——:?. ’ 1'1,2,.-.,450 »
i+l i

were then determined. The fluctuations in ni, due to the frequency
modulation were filtered out to obtain the mean frequency over the
entire solution period and hence the f}equencyipulling. The numerical
Tesults thus obtained are compared with the analytical results given
by equation (5.4.5) [which is solved by one itération].

The Fourier series coefficients éf x(which represents the
normalized oscillator voltage) were also calculated numerically
o;er a period of 128 cycles and fhe results are compared with those
given by expres;ion (5.4.7).

The numerical and analytical resdlts are tabulated below.
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f\
+ \AQ Al
a8
a - 1
a
Analytical Numerical
-3 -3
0.025 0.190 0.58 x 10 0.61 x 10
0.025/3 | 0.268 1.19 x 10°3 1.28 x 1073
0.05 0.379 2.49 x 1073 2.37 x 10~°
0.05v2 0.536 5.46 x 10> 5.60 x 10°°
N
1
4

I

Ta is the am-plitude of the forcing sinusoid

and 3 is the critical value of a gt which the

self—oscillations are suppressed"'?

- lytical versus
Table 5.3 The frequency pulling sznn ytical v
mumerica]l results, v = 3T . \

}\
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5.5 The case of the oscillator regulated by a negative non-linear

‘reésistance charcterized by a fifth order polynom&al.

In the above analysis, the amplitude stabilizing element of

"y

~-r

thc_self-oscillator“(the negative non-linear resistance) is assumed

to have the -characteristic:

i_=avs+a v
r

with a, < 0 afid a, >0 [See Fig. 5.1].

1
In some cases the cubic polynomial approximation is not an adequate
one and a higher order polynomial must be used. For example,

Hester (1968) has shown that specific classes of self-oscillators

utilising bipolar transistors can be described by:
x + x + u[k sinh(a+b) % - sinh ax] + ax = 0 (5.5.1)

wherc y, k, a, b and a are positive constants. The auivalent negative
non-linear resistance, when using the configuration in Fig. 5.1, is

characterized by:
: ¥ _
ir = u[k sinh(a+b) v - sinh av] +av , (5.512)

- “ L
where v & x is the oscillator voltage and if is the current in the

negative non-linear resistance.
Hester used'topological methods to solve eqn. (5.5.1). In its present

form, eqn. (5.5.1) does not lend itself easily to analytical solutions.
’ )
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The solution can be somewhat simplified if thecharacferistic in
(5.5.2} is adequately approxipated by a polynomial with a small number
di“terms For typical values <«of the parameters in (5.5.2), i can

be adequately approximated by an odd fifth order polynomial in v.

The osillator's behaviour is then described by the differential
‘Equation in (5.1.1). When eqn. (5.1.1) is normalized in the form in

(5.12) or (5.1.3), then the steady state soiution is given approximately

by:

[ ]
X =2c¢Cos T

where t & at + k,ﬁz 1+ O(cz) and k is"a constant.
The variational response is then given to the first approximation by:
u = (Bi sin v, + Y; cos Ti) sin 1
' -
Lo - (1-1.)
+ (Bi‘cos LR £ Sin ji) e . cos T ,
where B Y3 and u are as defined in (5.2.2) and (5.2.3), Ty = A+ k

and:

where €, ¢, and €, are defined in (5.1.2).

Following the same procedure de;g%;bed in Sections 5.3 and 5.4,it

can be shown that expressions (5.4.9) to (5.4.12) for ¢(1)(t), (I)It),
42 and Aﬁ&respectively hold t;ue in‘this more general case with ¢

-
replaced by ¢ .



CHAPTER 6 <

Experimental investigation

6.1 Introduction

Some of thé theoretical results obtained in the previous
chapters have been verified by numerical solutions of the pertinent
differep;ial ecquations. rIn this chapter, the frequency variation
of a self-oscillator due to distu:E;nce by an external sinusoidal
signal is studied experiﬁentally.

We are interested in meésuring the effect of the external
signal on the instantaneousrapd mean freqeuncy of self-oscillation.

“In this expcriment,tihc mean'f££Quency is measured by counting
the nuzber of zcro—cro;sings of the oscillator voltage during a
pcfiod'of 10 seconds. The oscillator frequency is approximately
50 KHZ, thus each test sample contains approximately.500000 cycles.
The results thus obtained are thérefore more satisfying than those.
;;tained in scction 5.6 by nume?ical simulaticn and averaging over
a period of approximately 450 cycles (which consumed an excessively
large computatignél tiﬁe). '

The frequency fluctuations about the mean value are measured
by a phase-loc;k'ed loop (PLL) F-N detector.

The test oscillator approximates closely the v.d.Pol oscillator.

The experimental circuit is shown schematically in Fig. 6.1 . Beforé

i 166
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Fig.6.2. Circuit of the oscillator under test,

4

. (a) The Osc111ator Circuit , ‘
(b) The Non-Linear Resistance -

(S) The "Linear" Negative Resistance
. g t
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any measurements are taken, the amplitude scale of oscilloscope ¢
was calibrated against the digital .voltmeter., Also counter B was

calibrated against counter A, by applying a sinusoidal signal of ,

approximately SD-KHZ'simultaneouSIy to both, to account for a
: Q : o o

possible discrepancy between their gating periods. The readings
. ¥ - _ ,

of the two coumters were found to be equal, within a random error

- [ad

of + 0.1 HZ over a gating period of 10 seconds.

‘6.2 The experimental circuit - {S

" The oscillator circuit is shown in Hg. 6.2a ..kghe tuned
circuit is a simple parallel resonant L-C circuit (shielded). The
non-linca® resistance is realized as shown in Fig. 6.2b where the

.vzrizble linecar resistances are used to adjust the il-v characteristic

(displaycd on a.calibrated Bscilloscopc) so as to approximate closcly

v

the desired cubic characteristic:
]

_il Vv

-

The "linear" negative resistance is redlized by the feedback networtk
£ ‘ Yy

13

of Fig. 6.2c . It should be noted that the oscillator frequency i;
sensitive to vééiafions in the negative resistivity anﬁ therefore

considérable care ﬁﬁst be taken in implcmenting this §tagé. Aithpugh,'
with cﬁreful compensation-against'drift,ltransistors may be used to
impiemqnt this stage, it w#é}@c;}ded to use the "out-modedﬂiyécuﬁm
tubes due to their excelléﬁi sfébility after a sufficient warm-up‘

period (a few hoﬁrs).
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The F-M detector circuit [Figs. 6.1 and 6.3 ] is
corposed of a limitef,'a éhase locked loop, a D-C difference‘amplifier

end a simple R-C filter.

-

b

6.3 Mcasurement, of the parameters of the oscillator circuit

. _ /
The values of L and C of the tuned circuit [Fig. (6.2)] are:

L2 0.95mH and C » 10200 pF .

The Q-factor (not needed) of the tuned cifcuit, when disconnected
from the oscillator circuit, was found to be: Q b 42, .

The dynamic characteristic of the negative non-linear resistance

- is/closely approximated by:
. 3
i = -av+ bv {6.3.1)

The parameters a and b must be measured when the oscillator

is connected to the rest. of the experimental circuit,
It is well known that the, amplitude Al of the free-oscillation
is given to the second order of approximation by: _
A =2 /2 - | . (6.3.2)
1 3b -
¥ ' ‘

The value of A, measured by the digital voltmeter, was

found to be 0.607 volts. Hence:

/ gh'= 3.3 volt™}

3

1

. 2
where a is in mhos and b is in mhos/volt™.

NV

)

c
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The well-known theoretical value of the frequency of free-
oscillation is: . N

/".‘2
€ .
- 16 ) % (6.3.3)

. L ,.. . . '
wherq.s = a//r% {dimensionless}, and fo is the resonance frequency %

i

of the tuned circuit under working conditions. The value of £0 is

slightly hifferent }rom the resonance frequency of the isolated tuned
circuit due to thé effect of-the input and output capacitances of~
the fecdgack network in the oscillator circuit as well as.;he.input
capacitanées of rhe buffer amplifier (Fig. 6.1).

From (6.3.3): 0

e = 4 _T__.__-' . | . (6.3.4)

The values of £y and fo . differ Vc;§ sliphtly, and since it is ‘
very difficult to'méasuge the valuewéf'fowith a sﬁfficicntly higﬁ ‘Qﬁi
accuracy, it is not suitable to determiﬁe ¢ from (6.3.4). Co T

If a resistance R(Ohms) is connected in parallel with the -

tuned circuit, and if %uc 2, so that the self-oscillations are not

destroyed, then the free frequency becomes:

L

' L 1.2, .
foee=l-Te@-RI1%

free
chcer
Af, Tefe. - £, =—f-9!:'(a-3-)>0 ‘
free free  ~free = 8RC 2R

and the value of ¢ can be determined with sufficient accuracy from:
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Af . .

_ L _1 L C ® free
€=a/f c*z—af"c*“*/"—ff (6.3.5)
' free .

Several values of R, in the range.from 6.8 to 24 Kﬂ,lwere A

connected separately across the tuned circuit and the relative

increase in the frequency of free oscillation was measured in each

w2

case.  The value of € was taken as the average of the slightly differing

valucs obtained in each case from eqn. (6.3.5).

-

The value of ¢ thus determined is:

e 0.21 _ ) (6.3.6)

—

As a test of the accuracy of the above neasurements, we shall

comparc the experimental values of the amplitude of the forcing sinusoid

which is just sufficient to lock or quench the sclf-oscillations
with those obtained from well established theoretical analysis.
I

| ' a o
In the normalized equation (5.3.1), lect . ' {

( . '
id = ¢F cos(ut + &) (dimensionless),
where F, w and ¢ are constants. For valugs of w close to the frec j
1 " ) . -
frequency 2, the well-known conditions of stability of theentrained

pericdic oscillation are:

A% > 2
and )
2 % 2 | :
(-;:iA g -0 (6.3.7)
+ w and O are dimensionless frcquehcies dcfined as :

= - ' ‘is the fre of the
f-u f&,,/f() and (2 ffree/fo where- f2 .1s ‘the frequency

injected cﬁf;gnt in Hz , ffree is the free frequency of oscillation in

) i - . A .t d
Hz , and f; is the resonance! frequency in Hz of the tuned circuit under

working conditions . Lo \
' ‘ \ .
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where A is the amplitude of the periodic response and o is the

detuning defined as:
R

2 - 2 ;
‘\\ lw -0 ~
) (] =E'——l‘un—— . (6.3.8)

To a first approximation, A is determined from:
.w.“ 2 . X
4 2, A 2 '
A/o s G-0° =F -, (6.3.9)

where A is subject to the constraints in (6.3.7).

From (6.3.7) and (6.3.9), the amplitude F sufficient to lock

or quench the self-oscillation is determined from:

8 2 2.3/2 1
! F’I,/.'f;'“ *%’7\[1?1*1\30)/] for |o|<5 (6.3.10)
L

/.2 1 »‘ 1 ) '
F > 20° + - for |o| > —, |o| = 0(D) (6.3.11)
2 5 ,

or

In the narrow range of detuning-%f. la] < , the -

Al

'ﬁump phenomenon® takes place and-either of expressions (6.3.10) or
, ; ‘

(6.3.11) apply; This range has been avoided in the experimental

measurcments.

o

1I£1 is.thé peak value of the forciﬁg sinusoidal current in

d

amperes, then. . : ‘ : 3
= -/ /3L '
' = — : 6.3.12
\ Id Es// a C : ( g )
Thg eritical value of Id’ determined from the equalities in (6.}.10)

f\' | X
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and (6.3.11) with the use of the denormalizing felation {6.3.12),
‘are compared with the experimental value in table 6.1,
ereing Free - R.M.S. Amplitude of the forcing
requeney Frequency . veltage of . sinusoidal current in
“ c Q c g external . Az milli Amperes
- f = - .1 ——
D Zi_.0 free 2n "o oscillator /3 Experimental | Theoretical
Hiz Hz volts mA © mA
243, - 49738, -0.695 17.84 0.257 0.253
7335. 49737. -=0.472 13.58 0.196 0.191
020, 49740, -0.335 ¢ - 9,65 0.139 0.138
5759, 49784, 'l -0.192 5.72 " 0.082 0.080
300, 49786. -0.093 2.80 "0.040 0.039
0247 .- 49752. _ 0.094 2.73 0.039 0.039
0322, 49767. | 0.200 5.89 0.085 0.083
L1350, 49760, 1 0.290 B.44 0.122 0.120
1769, 49760. 0.377 10.80 0.156 ' 0.154
L1287, 49753, 0.473 -13.16/.,_. . 0.190 0.191
53271 49749, 0.652 16.15 \ 0.233 0.243
P r—
1

, :
!

- * \' . :
Table 6.1  Comparison of the experimental and theoretical values of
- the critical amplitude of the. forcing sinusoid at which frequency
entrainment takes place. The theoretical values are determined from

the well-known expressicns (6.3.10) or (6.3.11),
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We may note that a simpler method for measuring the parameter a in
(6.3.1)J and hence £, is to connect different resisrors across the tuned

circuit and measure the corresponding amplitude of "free™ oscillation.

The amplitude A (Volts) is then given to the second order of approxim-

ation by :

where R is the shunt resistance in Ohms .
AN .
2 . .
Plotting A” versus 1/R , then the best fitted straight Iine gives the
intercept on the I/R_axis as a . However s due to an dvcrgight s thi

method wis not used at the time the experiment was performed .
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6.4 Measurement of the transfer characteristic of the F-M detector

Refer to Fig. 6.1 . The output level of the external oscillator

02 is chosen such that the frequency of the oééillator under test 0
Y :
is entrained by the frequency of 0, in the frequency range from 48

1

to 52 KHz (the free running frequency’of 01 is approximately 49.8 Klz).
The occurrence of the frequency entrainmcnf is checked by observing -
the outputs of 01 and 0, on oscilloscope 1 and also by cnsu?ihg |
that counters A and B give similar readings.

| The tuning eapacitor-of the PLL is adjusted so that the
tracking range is centred at approximatecly 50 Kliz, The parameters
of thcipLL have been chosen to yield a wide tracking ranée of |

approximately S KHz. The DC level at input 2 of the difference

amplifier is adjusted such. that the output DC level is approximately

at zero voltage when the PLL is locked at approximately 50 KHz.
The frequency of 02 is then varied in steps in.the range frﬁm
48 to 52 KHz. The frcqueﬁ;y of 01 (or 02) and the output of the
- difference amplifier are measured to obtain the static.transfcr
characterist&c shown in Fig. 6.4 .

- The input impedance at terminal 10 in Fig. (6;3) is
f'aﬁproximafely 8000 th (resistive). The magnitude o; the transfer
function Qf the low pass filter composed of LPF, and LPF, [Figs. 6.1

and 6.3 ] is give;'by:

. T - (6.4.1) v
H(iY)| = E
I I / (1+T21f3(1+TZT§)

where T < 54 pysec and T, . 33 usec. ¥ {s the angular frequency in

radions/second of the frequency modulating function and is given by :

L
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B |
¥y = angular frequency of the disturbing current - meaﬁl- . J
angular frequency of the oscillator under test
The 510p of the transfer charactcr1st1c of Fig, (6 4) is:

. . <
780 Hz/volt. i

Note that the ‘output voltage of the F-M detcctor f

must be rnuultiplied by the corfectiop factor 1/ H(; )

—~— L

6.5 The cxperimental nrocedure*

*

A suff1c1ent period of time (a few hours) is allowed till

high frcqucncy stab111ty of the oscillator under test 01 is attained.

With the output of the external oscillator 02 at zero voltage, the

'h

amplitude of the free runnimp-gscillation of 0, is meqsured by the
digital voltmeter. This me::::Ekené 1s needed for determining the

//’ratio b/a [eqn. (6.3.2)]. .

i For a specific forcing frequency (of 0 ), close to fhc frequency

of free oscillation of 01, the qutput level of 02 is increased in small

steps then the external frequcncy and the mean frequency of 01 are

measured by counters A and B Tespectively. After each measurement, the

6utput level of 02 is reduced to zero anq'the free running frequency

of 01 is measured to ensure Fhat only smal; {andom variations in the

free frequency take place. The procedure is repeated for different

N
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values of the forcing frequency.

The measurements of the frequercy modulation were carried
out scpafateiy. The amplitudcs of the almost sinusoidal frequency
fluctuation§ wvere measurgd for different values of the amplitude

and frequency of the forcing sinusoid.

€.6 Comparison of the experimental and theoretical results

The frequency pulling:

-

Let A, and f2 be the amplitude and frequency of the output

of 02 in volts and Hz respectively..

- .

The auplitude of the disturbing current = - Amperes,
_ - 4 c
vhere Rf [Fig. 6.1 ] is in Ohms.
/
In eqn. (S.4S):u
£ ' £ £i-f
W = f2 -~ , Q= —17 -, Af = ;l?_;_fIEE and
: free free free
A, | '
2 3» L .
a=g2 /.2__ : . (6.6.1)
f | .
Using the measurcments in section (6.3), then: . '
-6 .2 ;
3.275 x 10 6 f Az
F ¢y pulling = f, - £, free 2 (6.6.2)
rcquen u = - = bt
T PR T T e A Y
!

The value -of f,

by\ffrcc and the solution is then improved by an iteration.

in the r.h.s. of eqn. (6.6.2) may be approximated
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" The frequency pulling determined from expression (6;6.2) is

compared with the experimental values in Tables 6.2 to 6.8 .

The frequency modulation _ L

—

From eqn. (5.4.3), the normalized phasé fluctuation is giﬁen
to the first approximation by:
" 2

: c F-
ed (t) n EE—-cos(ot+8) =

a
4g

cos{ot+8)
Hence, the normalized frequency modulating function is given bf:

4"
- d a .. .. .
‘Af = 1T ed (t) no- 3-51n\ct+e)

= - 2.56 x 10°> A, sin(ot+6)  (dimensionless) =

-

The peak value of the frequency modulating function in liz is

given by:

Af =:2.56 x 107> A, f

beak ) frec.x 128A. Hz . (6.6.3)

2

-

The values of Afpe determined from (6.6.3) arc compared with the

ak

experimental values in Tables 6.9 - 6.11 .
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’ Summary o©

L

" 'CHAPTER 7

The behaviour o

'nd.gontlzluding Remarks B ' o

§ certain second crdér non-linear autononous

and non-autonorous OSC1liatory systems has been studied analytically.

These systems are dcscr
or difference-diffirent
of these equations do n

rcstrictions, anmalytica

ibed by second ovder ncn—l:n:ar diffﬂrential
izl equations. The exact an‘lytica] solutions
ot scem to be possible. However, with appra“riatcg}

1 npprox:mations can be obtainzd.

In Chapter 2, a method has been describcd for deteraining the

non- stat1onary (or stat

systems in which small varzat1ons in the instantancous frequency of

oscillation take place

. In the Bogoliutov

lobtained in the samc mna

method. The solution 1

ionary)behaviour of a class of oscillatory

during the perlod of Jnterest. The method is

.& variatica of the asywptotic method of Bogol1ubov -Mitropolsky ._

- Mitropolsky pethod a first. approx1mat1on is
nner as in the well-kuown Krylov-Eogliubov

s then improved gxadually by an iteration A
NN

procedure. In the pethed described in Scction 2. 2, the solutxon is

asswmed in the fora of

a harronic series in some variable T whxch

represents the total phase. The rﬁaf of change of T with respect to,

¥

the time t is the jnstantaneous frequency of oscillation. The

awplitude of cach harmo

hic and the instantanccus frequency are expressed

in the form of series expansions in a seall parsmeter.; The teras

in the expansions_are'then de.crmzncd by .a sicple straightforward per-

turbational procedure.

‘We note that this method is casior to apply tham

192
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\ S

| the Bogoliubov-Mitropolsky meEhod. ‘We not'-E,héwev"erithot t-he difference
between the two metﬁods is only proﬁedural and no claim of originali;y‘
.is mode as'far_as the work des;ribed*}n Section 2.2 is concerned.
E In section 2.3a self-osciliato£ with delayed amplitude
regulation has been discussed. The oscillator can be described by
a dxfference-diffcrential ;quation. An analyt1cal approximation to -
the solution of this equation is given in Section 2 4 using a modification
of the method of Section 2.2,

In Chaptef 3 a method has bccﬁ-dcveloﬁe&cto study the non-

statlonary behaviour of a class of strongly non- Iinear oqr}llatory

systems In these systems significant variations in the instantaneous

frequency of oscillation may take place. The method requires that
- the higher harmonics in the response be of cons1derab1y smaller
magnitude than that of the fundamental frequency. A

In Chapter 4. the method of Section 2.2 has been modified to
‘deal with the cdse of non-stationary forced oscillations in weakly
non-linear systems The frequency content of the forcing function
is resgricted to be outside.the resonance frequencie; of the system.

In Chapter S we studied the case of a self-oscillator disturbed
by an external signal the frequency content of which is not necessnrily‘_
far away from the frequency of self-oscillat1on. We do however impose
_ the restriction that the'disturbances be weak'hmough so as not to
result in suppression of the self-oscillation. A\non-lincar convblution
pethod has been developed in sections 5.2 and-5;3. The method allows
us to predict with accuracy the spectrum spread and other non-linear
effects such as the frequency pulling and the variatiqn in the amplitude

i
/
i

|
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of self—osciilation due to the presence of disturbances. . In tﬁe

‘analysis, the magnitude of the disturbing signal is assumed to be

one. order smaller than that sufficient to suppress the self-oscillations.

In Chapter 6, the frequency bulling and the frequency fluctuations
: N _

in a self-oscillator Eﬁe to an injected sinusoidal current are'determined

experimentally.. The experimental oscillator approximates the v.d. Pol

- oscillator closely. The frequency of the injected current is chosen
. ‘# \\'! -
to be close to the free-frequency. The experimental resplts weré’

found to be, in good agreement with the analytical results obtained

—

in Chapter S.

) |

In conclusion, the main objective of(%his work was to augment

and extend the existing analytical methods

L

for treating non-linear

/
oscillatory systems so'as to embrace a wider class »f systems. Towards

.\

this end, the following has been achieved:
1. dgveloping a procedure forﬁobtaiﬁing approximate solutions to
non-linear difference-differential equations describing a classjszeakly

non-linear oscillatory systems with "retarded actions?. : ) -

o

2. developing a simple procedure for obtaining approximate solutions to a

. r -
class of strongly non-linearstime-invariant or slowly time-variant,

) \
oscillatory systems.

S

L d

3. developing a non-linear convolution solution to the problem .of

disturbed oscillations in a self-oscillatory system.

-
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o Appendix A

~

Entrainsent of frequency in a self-oscillatory system
vith heléy?d amplitude regulation;
Al - Introduction | 7 | .',*

The phenomenon of frequency entréinmcnt of a self;OSCillatqry
systen with instaﬁtaneéus amplitude reghlation bf’an external periodic
force is well knoﬁn;' Consider for éxampié the.casg when a.sé¢lf-
ostillator is disturbed by an external sinusoidal. force whose frequency |
is_near to the fréquency of freegoscillatipg. VWhen the eternal

-

force is of a sufficiently small amplitude, it results inismall -

fluctuations in the amplitude. znd phase as well as slight variations in
the mean amplftudc and frequency of éelf-OSC1llat1on The ‘oscillator
spectrum is ‘then prcdomxnantly contained in a -narrow band close to*

the frequency of free oscillation., As the‘amplitudc of the eXternal ,

- v

force is increased, the fluctuations in the émplitude and phasc of
Self—OSC1llat10n become more violent, thexr t1me rate becomes smaller,
and the mean frequency &s pulled towards the external frequency

The oscillator spectrum thgn gradually clusters in a ve;y narrow band

., /
1

‘ ) " T I .
near the external frequency. ‘When the amplitude of the external force \\g;\
reaches a cr1tica1 value, the se1f3b5c1llgt10n is’ Fsuddenly en- .

trained and the system srresgpnse is periodic at the forC1ng frequency.

v

The amplmEEHE—EIF;§c1llat1on at the transxt1ok’?rom aperlodlc slowly

-~ .L
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: inodulated oscillation- to en'train'ed periodie.oscitlation, can be de-
termined analytlcally using vanational met;;ods.

v | . A similar phenomenon may arise when, the external frequency is
not 61950 "td’ the free-frequency but is close to one’ of its-harmonics
or su.'l)}g%'mon_ics:. However, ;n this case, ttxe sel}f-oscillation is
s‘ul&)pressed rather. than frequen,cf-puiled towards the external frequency.
Suppression of the self‘-frequency may &lso occut if the exterr;al frequency

is not close to one of the harmonics or subharmonics of the free-

frequency, howeVer, th'15 requ1res a cons1derab1y large external force.
In general the self-oscillation can be_vsupressed ( not phase-—

Tocked) by a sufficiently" strong extemal force which is aeeriodic

.and of arbmrary frequency content , although ‘this case has not

L

apparently been studled in the literature .

- -

In’ ection p,2 , we shall study the entrainment of frequency

in a ‘self-oscillétor with ‘delayed amplitude regulation.

r

v

A.2 The v. d Pol osczllator with delayed amplltude-"!‘eguiation

Let us consider the oscillator of Fig. (2 2 1) when it is driven

\.

P
e

‘ by a ;inusoidal current:

i. =1

. - d d cos(mdt + qp_) o ‘ (A.1)

where 1, w, and y are constants.

e
&

" . Tne oscillator is described by the normalized equation: o
- 0O " -

]
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A

) x + x + e[ax - BX(t-h) + -15 i:‘(t-h)] -

£ -,

(1.2}

= ¢ Fcos{wt +¢) , () = g?

where ¢, a, B and h are as defined in equations (2.3.19, w = ©

v LC

aqd cF = g ‘;??% < and it is assumed that o ~ 1. ‘ , _
Let X, denote the periodic {entrained) solutioé of eqn.(A.2). |

To ﬁ f;;st approximation: .

A : o '
Yo = xo e A cosut + ¢) , - {(A.3)

whcrc A and ¢ are constants,

A

2 wz -1
Dcflne P & AY, 8. = mh and 0 . —

, then using the principle of

1

harmonic balance we obtaln'
i p[(%--kB)2 + 2(%-- 8)(a cos 6 - ¢ sin 8) + az + 02] = F2 (A 4)

In order to determine the vﬁlue'(or values) of p and hence
the value (or values) of F, at which transition from the- aperlodzc '
slowly modulated oscxllat1on to the per10d1c entrained osc1llat10n takes
place we must study the stab1111ty ‘of the periodic solut1on in (A.3).
We shall consider the response of the Just entrained oscillator to a
small d1splacement from the per10d1c solut1on.

Let x 8 Xg * cu, then the variat1on equation- dcrlved from eqn. (A. 2) is:

' Seé_sectioﬁ 2.3 .



e u+cfon+u(e-h)  {xo(t-h) - B} =0

Let u = a(f) cos(ut+d) + b(F) sin(ut+e) , & ¢ ct,

then '
;.;-ru = em[(2 rT ga) cos(ut+¢) - (2 E + ’ob) sinﬂut+¢)],
cu = culb cos(ut+d) - a sin(ut+d)] \

and |

2

198

(A.5)

(A.6)

@.n

(A.8)

eu(t-h) {iz(t-h) - B} = cm[{b(—'i AZ-B)cos B+a(ﬁ— -8)sin Blcos (wt+$)
: 0 4 4

2

+ {b(%— A%.8) sin @ - a(-i—— B)cose }sin(ut+$)]

# S

Substituting -expressions (1.7) to (A9) in eqn. (A5)

(&9).‘

then

equating the coefficients of cos{ut+¢) and sin{wt+é) in the resulting

-

_expression separately to zeTo, W€ obtain:

-

: 3
“al® 1 a + (%-- B)'cos B [ (-3- p-8) sin 6
i 3

f’w b ) - * (%- g) sin @ o+ (% p-B) cos B b

(A.'IO)

which is a linear time-invariant equation. The characteristic equation

for eqn. (A1l0) is:

- p———p—
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St i it DO .3

-

2 P ‘ 1,3 2
s° ¢ [(-i- -B) cos & +a] s * ?[Tgp + (a cos 8-B-0 sin 8)p

+ (B cos e-u)2 + (B sin é_+c)2] =0

(A.11)

ey
»

The roots of eqn. '(A,ll) will have negative real parts, and

hence the small dislil'acemeht cuG;ll decay as time increases, if:

p > 2(B-a sec 8) , coS 8 >% (A-12)
( . . ’
and
32 s ‘ 2, o 2
16 ° + (a cos 6-B-0 s1n 8)p + (B cos 8-a)  * (B sin 8+0) 20
' (A13)
The stability boundary of the periodic solution is determined
from the equalities in (A.12) and (A.13). ‘ ™~

In Figs. ‘A1 to A3}, the stability boundaries for specific

values of a, § and & are plotted in the p-o plane.
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When 8=0, eaqn. (A.2) Teduces to the forced van der Pol
equation, and (A.12) and (A.13).reduce to ' -

P72

and :
(-0 (f0) et 20

which are the well-known conditions of stability of the
‘entrained oscillations in the van der Pol oscillator with
instantaneous amplitude regulation
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'v—.__—-——‘-

Fig. A .l Stability boundaries of the entrained oscillations in a

van der Pol oscillator with delayed amplitude regulation .

\.
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Fig. A .2 Stability boundaries of the entrained oscillations in a

van der Pol oscillator with delgyed amplitude regulation -.
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Fig. A.3. Stability boundaries of the entrained oscillations in a ~ l‘
|

van der i’ol oscillator with delayed amplitude regulation .
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APPENDIX B

On the evaluation of the transient solution of v.d. Pol's

y

equation using the derivative expansion method -

The transient response of the.unforceﬁ.y.d.?ol oscillator
has been obtained to tlie second order of approximation by‘Davis and
Alfrieﬁd [1967] ﬁsing the so called 'derivative expansion method! developed
by Nayfeh [1964)}In what follows we shall outline their analysis
and point out certain difficulties that arise.

We shall use the same notation as in Davis and Alfriend's paper.

Consider the v.d.Pol equation:

%x- - 8(1 - xz)%_:_ +x=10 . ’(B.l)
dt !

Define the slow time:

E = gt
eqn. (B.1) is then rewritten as: .
2 a2x 2, “2.dx, . | |
2 LX . fa-x)Fpex=0 (B.2)
Z 3 |
dg
Defining:
. “ +
y 8,(6) ‘ :
n = glEe) = ———*+ g (8) "+ egy(8) *.en (B.3)

where the functions gn(z) , n=0,1,2,.. , will Dbe determined

by elimiﬂatihg the secular terms from the solution ,

4 ?K 204

i
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then
g_.x 3—-} |‘E_. .
X T T
and . (B.4)
a? % +g"a +2gt 22 12 92
I an —
de 3 on ofan anz
where
L] ' d
O) =& ‘
\-’.
lience eqn. (B.2) is rewritten ‘as: )
|
gsz£+Fzg"xn+252g‘;En+czg'2xnn - ez(l-xz)(x5+g'xn) f x=0 (B.5)

where the terms of the order of 53 have been omitted. "The subscripts . "

in (B.5) denote differentiation.

.
Writing:

Z
-3 + + + LN
X Io 611 € Xz

and substituting in eqn. (B.5) then equating the terms of similar order

of smallness separately to zero, the following equations result:

2 o . - (B.6)
: gO xonn * x0 0 . _ . (

t " t

vt ’ ’
= i -2p- - + X X {B.7)
(1} xlnn * xl : 8oxon 28oxot;n zgoglxom) (- ) go on

L N "7 [ I
"2 Nk gtx -2g'x -2glglx, -(gi%2g.8)) %
8o X 2nn X" o£§/ o ln 17on 2o 1£n "%0"171nn **1 0”2’ “on

| (B.8)
T+ (1- ;2](xoe‘glx +g° ln) 2x xlgo on Zgl oEn

\\_5\_ )
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The solutioix of (B.6) is assumed to be:

x = A (£) sin [-—-—+ $ (E)} I ) (B.9)
. 18
_‘\‘\F
Hence .e'qn/. (8.7) takes the form:

_—
-

A
12 ~ " } v By n_ _
o *1nn" %1 (- L 2go(;") * A - Zg_]cos SORN
° ° (8.10)
1" 3

5 ', T n 5 £, . N Ao n o)
— - - — —
+ 2A (4 +g B )sin(= + ¢,)-2R, —Tp M sin(=7 +¢_)4zc0s 3(55 + ¢,

- % g, . Bg

‘The coeffictent of n sin("y + ¢ ) in the r.h.s. of eqn. (B.10)

g

is equated to zero thus:

"

Ag

°,‘;=o t.e. 'g"-O for A_F£.0 ™~
o (]

31

B ]
hence go = constant and 'go=goE +C1

(:1 being a constant.

Imposing the restriction: (0) = 0, then CI-O

Setting the coefficient of sin(C5+4, ) in the r. h.s. of eqn- (B. 10)
2o

equal to zero then:

L |

o 24 = 0 N

’,r-\_
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AN

é- iqggwgg-is a constant, then eqn. (B.11) integrates into:
A ' ) .

=

™

¢

¥ - .
ot 23081 = constant N (B.12)

$
Now one is faced with one equation in the two wunknowns ¢o\\

and 8- In Davis and Alfriend's paper g, was chosen arbitrarily to

be equal to zero and hence

Y ¢6_= ¢°7 b being a constant

[ ] ) .
The' valuc of g, was then chosen to be equal to unity. Now setting’

the coefficient of cos(ﬂr + ¢°) in the r.h.s. of eqn. (B.10) to be

. go
equal to zero then:
A A‘z’ B.13
Ao =7 11 - e (B.13)
1 S
-~ .

which integratés into:

y _ a ect/2 - ‘

A = 0 (B.14)

° 4 et - 1}

where a is a constant of jntegration.

!
The first approximation is thus giveq by:

a eetlz- .
ry B.15)
x = 3 sin(t + ¢°) (
° f1+ alaet - 1)
Now eqn. (B.10) takes the form:
‘ 3 .
P A,
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'

which has the solution: _
_A3 ' (’ffgb :
AI(E) sm{n +6,(8)) - gz cos 3(n+d)  (F.16)

. Substituting X, and Xy in eqn. (B.8), then:

\ 3,2 + P —
X, +X, = I(—2A1+A1— EAOAI)CDS(¢1-¢°)+2A1¢151n(¢1-¢0)]cos(n+¢o) %

2nn
v Af)Al . — ' — .
+ [(ZAI-AI + 4 )Sln(¢1-¢'o) + 2A1¢1 C05F¢1'¢0)
, 5
n ] 1 3 2 A
+ (- Ao+2ng6+Ao - —AOA1+ 128)] 51n(n+¢ ) (B.17)
+ 382, cos 3(n + 6 ) cos(é, -~ ¢)
401l o 1 [¢]
N .
" 5 .2, 3.2 3.3 3.5 . -
+ - gghohe - Fhoh sintey - 0 ot 3o " Gatol sin 3(ma,)
°5 .5
+ ﬁgﬂ sin 5(n+¢. )

Now in order that X, be bounded, the coefficients of cos(n ¢ ¢°) and

sin(n + ¢0) in the r.h.s. of eqn. (B.17) must be equated to zero. Thus:

-

(- 2, + Af- 3 A cos(s,-F,) + ZAp | sin(4,-8,) = 0 (B.18)

-
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- ? ‘J
and .
. A?A q
(2 Al + ) s1n(¢1-¢ ) + 24 ¢ cos{rbl ¢ o ot
5 ‘ h (B.19)
n " ' ' 3.2 AD ) ’ -
t A A A Rt R0

J At this point'one.iﬁ faced with t equations in the three .
unknowns A;, ¢, and g,. In Davis. and Alfriend’s paper egn. (B.19)
. ' ) )

vas separated, without any justification, into:

s T S .
(20 - Ay + GAgAD sin(h;F) + 2818y cos(@y3) =0, (8.20)
and A? | o
PSR AP S P | S XY
28R m At AL T g oo 128 . : o T

Equat1ons (B 18), (B.20) and (B 21) are then solved for {1, A and g2

Finally the second order solutlon of eqn. (B.1) is g1ven_by

o

A (t) .

—_ 2
x = K (t)sin(n+d )+ € (A (t)sinn+e, ()] - —35—-605 3(n+¢ )} + 0(e7)

.-

Qhere
ect/Z

A(t) = = ,
f e a:ﬂ(éct - 1)]1/2_

i

. N ’
- .

Al(t) = alAb(t) cosec[¢1(t) - 3;] p. . L

(8.22) |
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1 et .
¢(t)=¢ +tm'T— ,
G A | ‘
and B & ®
:‘iJ‘ . "1 A(t) 2
n=t+e(- *E-Ct - g Inl ‘ ] + gz{ (t) - A (0)]) + 0(c%)

A _(0)
o

v

where a s al, ;m and 3} are'constants determined by the initial conditions.

4

We note that.the above solutlon would be in a%Beement
‘wlth the second-order solution obtsined by other methods
(see for example Struble [19621 ) after the omission of _
the term Al sin(.). This term results from the arbitrary
splitting of eqn.(B.l9) 1nt9 eqns.(B.EO) and (B.21),

£,

.
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Appendix C

COMPARISON OF THE K-B METHOD AKD

THE REFINED ELLIPTIC FUNCTION METHOD

c.1 Introductioﬁ:
It will be shown that, contrary to the claims made by Soudack
an? Barkham (1971), the K-B method of approximating the solytion of

the Duff1ng type equation' : ~

Ly

X 4 x4+ px3 + Bi =0, () 4 %{ (€.2)

-

n

y1e1ds rcsults superlor to those obtained using the refined elliptic
function method developed by the above authors. In what follows we
will give the approximate solutions obtalned by both methods, and then
will show by means of numerical examples, the superiority of the K-B

¢

method of solution.

C.2 The Krylov-Bogoliubov (K-B) Solution:

The solution of the equation

T

; + x ¢+ ef(x,i) =0

where ¢ is a small parémeter is given by Krylov and BogoliuboV a5

211 : -
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-

x(t) = A(t) cos(t + #(t) )

where A and ¢ are the solutions of the first order differential

equations:

and

dA ¢ 2% : |
"% .sin'u f(A cos u, - A sin u) du
0
2n .
dé £
" R I cos u f(A cos u, - A s.in u) du
3 .

In the case of the Duffing type equation [ eqn. (C.1}]

L. 3 .
ef(x,x) = px  + BX,

and thercfore.equation.s (C.2) and (C.3) become

and

dh _ _BA
dt 2 N
de _ 3,2
T g PA

!

A = CoBt/?

(C.2)

(C.3)

(C.4)

. (C.5)

These two equan be solved simultaneously to yield

.$)
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and
2

¢ -00) =3 B - €.7)

where C and ¢(0) are constants of integration. Then using equations

(C.6) and (C.7), we obtain the K-B solution in the form

2

cos[t + %- I%%— (a - e+ o0] (C.8)
{

We note that the-same result is obtained if the equivalent van der Pol

= Ce-Bt'/2

method of solution is used.

Now the constants of in;egration C and ¢(0) must be determined

»

. f¥om the initial conditions. For the initial conditions x(0) = 1 and

x(0) = 0 we have:

x(0) = C cos ¢(0)7= 1 . (C.9)

and -

2 8 3.2 . _

x(0) = - i—C cos $(0) - C[1 + g-pc ] sin ¢{0) =
and hence | ‘ )

C sin #(0) = 'B/ 5 (C.10)
pC '
%

From cquations (C.9) and (C.10) we Teadily obtain the equation’
~ . AN
2 *
R b — , (C.11)
4{1 + pC1]
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This last equatigp is cubic in C2 and it can be readily verified that
for p>0 the only real root (when solving for C2} is very close to
unity for p <2 and for values of 8 up to approximately 1.

Hence we may write an approximate solution of equations (C.9) and

(C.10) as '
N 3]
)
C = /1 +[—ﬂ§——— ] (€.12)
. PrEe
and
6(0) = - tan’} —B/2 . =B/2 (C.13)

3 3
1+3p 1+3P

-~

1t is of interest to compare the K-B solution of eqn.(C-1) as
given by expression (C.8) with the expression

X = e-t’/2 cos(1.75t)  (B=1, p=2)
/ - -
referred to by Soudack and Barkham (1971} as the K-3 solution of
eqn. (C.1). NWe note that the non-linear phase term which is required

~—

in the correct K-B solution has been omitted here.

C.3 The Refined Elliptié Function Method:

Using this method, the solution of eqn. (C.1) is given by

Soudack and Barkham in the form



e | | 215

Bt ‘Bt

2 B 2
2(1+k%) (14k°)
x=e tn{[l+pe ]1/2t

} (C.14)

wherc-the modulus k of the elliptic cosine Cn{ *} is given by

T 20

C.4 Numerical Corparison of the X-B and Refined Elliptic Function Methods:

In order to compare numerically the results- obtainedsusing the
. two methods of solution, we have obtained both solutions for various
valucs of B and p. These have been plotted'in Figs. (C.1) to (C.6)
for p = 1 and 2 and for different‘valucs of B in the range 0 < 8< 1.40.
ke have also plotted in each case, for purposes of compari$on, the "exact"
solution as obtained using numerical integrﬁtion techniques. In order
to obtain a numerical measure of the relative accuracy of the two
rethods, we have also computca‘for a range of values of B and p, the
absolute and relative .r.m.s.errors of the approximate solutions obtained
using each method. These are shown in Table C.1 . .

From the figures‘we note that for the case p = 2, 8 = 1, which
was computed by Soudack and Barkham, the two methods appear to be of
comparable accuracy, althoﬁgh in the other cases the K-B method appears-

superior. Furthermore, we see from. Table C.1 that the r.m.s. errors are

<maller for the K-B method than for the refined elliptic frunction method.
o ' 3
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In fact, based on the r.m.s. error values, it appears that for smaller

values of p the K-B method is superior to theNrefined elliptic function
nethod for any value of the damping B. lbreover contrary to the
claims made by Soudnck and Barkham, it appears that only for moderate
values 'of B and p do the two methods become comparable, and even then
the K-B method yields somewhat better results than the refined elliptic

function method. In addition, the K-B method has the advantage of being

a verysirple method to apply.




Absolute r.m.s. value Relative r.m.s. error
of error Q r.m.s. of error
_ r.m.5. of x
| ] f
P B The K-B The refined The K-B The refined
method elliptic method el}iptic ~
function method function method
.40 .0272 .1223 .0721 .3241
.60 .0276 .0617 0855 1934
.80 .0293 .0476 .0999 .1623
,
1.0 1.00 .0316 .0609 L1133 .2186
1.20 .0368 .0785 .1350 .2879
1.40 .0463 .0961 .1696 .3523 [
F
. .
.40 .0546 L2263 L1440 .5964
.60 .0424 .1302 .1319 .4052
.80 .0392 .0711 - 1365 " .2474
e,0 | 1.00 .0383 .0430 .1435 .1609
1.20 .0374 .0422 .1468 1653 -
1.40 .0386 .0534 .1550 .2141
LY
‘Table C.1 : Absolute and relative r.m.s. error

of the K-B and the refined elliptic
function approximations, calculated
over a solution period of 10 normalized
time wnits. . )
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Appendix D
On the variational 'reéponsg of the .
"v.d.Pol oscillator

The variational response of the v.d.Pol osicllator which
has been derived in section (5.2) is obtained here using a
procedure similar to that described in chapter 2. The variational

cquation under consideration is:-

‘ - S ) L Ad |
H u+u+;u(x0-l)+cx0u=0,()fa-t— (D.1)
" where- - AR '
s e £ - ez'
X = - 2 sin 1t - 7 cos. T + j €OS 3t, “QTTE”
with
e . du = T:
u(t,) = 8; ‘and 7| i
t‘-"‘bi

Let o h ' /

u=a; cos T+by sin T * c[ai cos tfb, sin 1+cyg cos 3t+d, sin 31

| + ¢ cos St+d5 sifi 51+ ...] ‘_ (D.Z)Q

1

where the coefficients of the trigonometxic functions are functions of

the slow time £ e €T s X 4I_..
' ‘.'77'(3,_‘"

>y

- 224 o
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- Hence : '
- N . db : da_, -
utu = 25535— cos T - EE-sin 1} :
-c[8(c3 cos 3t + d3 sin 3t) + 24(cS - cos 51 + dS sin 51)+...]
2 dza0 a, db dzb.0 b0 da1
+e{( + = =2 =—J)cos T+{—5— + -2 ) sin T}
al B dE el 8 @
. +¢;2 I (G, o T 3
. . G, cos nt + Gn sin nt) + 0(c”) , (D.3) .
. ne3,5,... '
c[%g-l)ﬁ = - cho sin T + e(a, sin 31 - by cos 31)

!

2, dv, . 0
+ € [ChZal + 3c3 + 2 EE—-+ bo)‘s1n 1-05— + 3d3)cos f]

2 ¢ = 3 f‘
+ ¢ J(I cos nt + H sin n1) + 0(e7) , (D.4)

n
(the terms under the summations in expressions (D.3)- and (D.4)

are not needed for the evaluation of the second approximation )

and

<22 1,,.2 . 2y . (DS
€Xgu” = € [aob0 cos T - 5{330 + bo) sin 1] (D.S)

b .
Substituting expressionéw(D.S), (D.4) and (D.5) in eqn. (D.1)

‘ -
then equating the coefficients of cos nv and sin nt, n=1,3,5,...,

separately to zero, we obtain the following perturbational equations:

]

—F

i~
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)
: ) !
dbo - ‘ - : ‘
- o e o
| :
_ dao , ' _ I
T+ ag =0 | “(D.7)
N
i
Cy = - b0/8 s d3 = dO/S and c = ds =0 (D.8) ;
dy 13 ag . 1 |
5 = 3l5% * 393 - %P - wZ 1 = - g 8p{1+4by) (D.9)
and ' . l
' . 2.2
By _3§0+b0+db0+2db0+.5_b]
dc 1 2 3 2 d 2 daf 8 0
'3
2
3a
1 1,2 0.
=7 Y f'z‘bo -T2 (D.10)
Therefore by ={ and éo ket . ‘\\\ ~(D.11)

i

where x and & are éonstants.

1f we choose x and % spéh that the initial conditions (at
t=£i)=are satisfied exactly or to th? second order of approximation,
then al(cti) and bl(cti) can be cho;en ;o be cqua} to zexo. Thus,
cquationsq(D.Q) and (D.10J iniegrates into: |

-E. e

by - leged @™ < (0.12)
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2 -(8-¢,) -28;  -2(g-8.) -(£-£.) .
a1=(-’§--§—)(1-e yezle e Yle Yy a3 o

Now we deternine the constants x and L. We have from equations .

(D.2) and (D.8):
i € _. .
u(ti) & B, r-xe {cos T; + g sin 311)-+ £(sin T - %-cos 311) (D.14)

and from equations (D.2), (D.6), (D.7) and (D.8):

du &5 3e
rea Zy;v-xe {sin T, +€COS T+ E—-cos 3T, ) + £ (cos Tt E"'Sln 37, )
t=t, )
: i
: , (D.IS)
where T gcnotes the value of t at t=ti.
Hence
xe-Ei = By (cos T.-%S = sin 3 i - (sin 1, - 5 cos 7, + 3= cos 3t,)
?‘ in Ty - 8 sin 3t Y T 7- ST+ g 5
-,>,,¥;,—~_ (D.16) -
and
. ' 3e . :
| (51n T i-cos T ¢ E-cos 31, ) + Yi(°°5 T, - 5—51n T; g sin 311)

Def1n}ag\F1 and C2 as in section (5.2), namely:

= C + ¢C

1 11 12 )

with
C11f= Bi sin Tt Y; ©0s T4 1

1

' ) P 3 - .
012 = E’Bi(s cos T; + cos 311) - g-yi(sin T; + sin 3ri) K

t

~
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and C,=C,, + €C

and

_ ) . . 3
C22 = - E‘Bi(s sin 1, + sin Sti) + g-yi(cos T; - COs 3Ti)’

[

then expressions (D.16) are rewritten as:

:=(L+EC)eEi d 2=¢C, +&¢C
2 '3 an Ftfa et (0.17)
‘ 3
Hence from (D.11):
'c l -(E"Ei)
by =€ ¢ E’Czl and a, = (C 8 12) e , (v.18)
and from (D.12), (D.13) and (D.17) we have:
-(E-£.) '
‘ _E 1 it _ : -
eby =7 Cy €y * PCe = (0.19)
and ® ,
. -GB-8) - -2(5-€.)  -(5-%.)
€ 2 3 2 . i i
€a, = §{C11 - 2C11)(1 -e ) + z-cCZI(e - e )
Defining:

G1 = sin T +'%{cos T - ¢Os 31) and G2 = COoS T + %{sin T + sin 31),
a !

as in section (5.2), then from expressions (D.2), (D.18), (D.8) and (D.19)
we obtain:
u=u G -3-(C11 cos T + 2011C21 sin. 1)

.

S -{e-¢; ) 2 | -(8-85)
+ C,G, e +J§{[(C11 3C5,) cos T + ZCHC21 sin 1 le

= '1; -2(5=%) '
. 3G e ??i’r] : (p.20) .

which is expression (5.2,28).



. Appendix E {

”

On the mean amplitude and frequency of a weakly non—lineﬁr self-

-oscillator in the presence of a small disturbing force.

E.1 Introduction:
Thé variations of thec mean values of ‘the amplitude and frcﬁuency
of a weakly non-linear self-oscillator disturbed by a small forcing
signal rcpresenied as a sum of sinusoids have been studied in Chapter
5. In what follows, expressiong (5.4.5) and,(5.4.8).for the mean
frcquenfy and amplitude variations due to the external disturbance

arc. derived by using a different approach. The first will be obtained

by making use of Grosikowski-Gladwin's formila and the second by

requiring conservation of the reactive encrgy in the oscillator circuit. ¢
The oscillator under consideration is that of Fig. {5. i ),

where it is a§§umed that the non-lincar negative resistance tdenoted_

by SR] is a single-valued function of the voltage aéross it. The

distrubing current id is represented bxﬁ k

iy = I cosut+v,) (E.1)

n

i

constants.
where In’ w and *n are

- 229
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E.2. The variation of'the mean-frequency (frequency pulling).
Let the free-running oscillator voltage, denoted by y., be

expressed as a Fourier series:

A

L 3 k L ]
y = § Vpcos(kft+e) (E.2)
. k=1

- - N\
where Vk. 1 and ¢k are constants. Let the output voltage in %hn

presence of disturbances be: -

/ . ' v

. A . .
Y= Ys + 2z ' [E.3)

where y_ represents the component of self-oscillations and z represents

the fluctuations due_to the disturbing current.

A

- ’ - _ . -
Let 4 LY ™ ¥ v, cos(k 2 v+ 4y (E.4) ,
B k=1
-
and z = {‘En cos(w t + a) ¢ 3 K, cos(vt + B) (E.S) )

n ® e

(S

vhere Vk, Q, ¢ En’ L Km,'um ang B, are const?nts.

Note that f is the frequency of free-oscillations while @
is the mean frequency of the disturbed oscillator. ﬁ’“? denote

those frequencies, other than {wn} and {k@}, resulting from non~linear

mixing.



o .

Let B(w) be the susceptance of the linecar network in Fig. (5.1 )
.at any frequency w. For free-oscillations\(idEO), Groszkoﬁski (1933)

had shown that:

[ Z

1 ka v; B(knj)-o T (R
- k=l )

This formula has been extended by Gladwin (1967) to admit the
presence of a distprﬁing\fgrce represented by the series in (E.1).
Gladwin has shown that, ﬁhen none of the frequencies {whi_bears a
rational ratio to the frequency of self-oscillations, the fo}iouing
relation holds:

) ks‘z‘vi B + m; B2 Bw) + v, K2 B ,)
k=1l "n mn

(E.8)

+ I W, In En sin(an - ¢n) = {
n

However, since the ratios betwecn the disturbing frequencies

and the ffequency of self-oscillations are not in general rational
ratios, the above relation holds as.long as the self-oscillations
are not suppressed by the disturbing current. Nq_shall use this formula

to determine the mean frequency Q.
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A
Let us consider for éiamplethc v.d.Pol oscillatoff/;;; for
convenience let the amplitudes and frequencies in the foregoing be
the normalized values as in Chapter 5. The oscillator is described
by:.

- -3
. x -
x+x=¢g(x - -3—) + id , UO<ex<l _ (E.9)

In this case, the linear network (Fig. (5.1 ) )} is a simple

parallel resonant circuit. Its susceptance is given by:

T uz- 1
Bw) = =

Equaiions (E.7) and (E.8) are now rewritten as:

e

2 2

fata?-nvi=o | (E.10)

and k ‘

2,2 2 T2 2 2

}Z(kﬁ-l)Vi+z(mn-1)En+1(vm-l)k‘ ,

X n - (E.11)

+ Z o In En sin(un - #n) =0 k=1,3,5,...
n
N _ . .

We 'shall study the case when “idl is such that xlhdl, where

X = 0(6—1), is just sufficient to suppress the self~oscillation. When

the freqﬁencies {un} are pear to @ , a disturbing current of small

-




233

magnitude may suppress the self-oscillation. In the following anélysis,
we shall assume that |w_ - 1}"= 0 () ¥ n and restrict [li ] to be
0(52). Thus the self-oscillations coexist with the forced and inter-
modulation‘components and is.dominant, which is the case of practical
interest. ' g

Now we may rewrite expression (E.1) as: -

i, ec?JF cos(ut+¥) (E.12)

d n n. 'n e

n .
wherc 1_=¢2 £ and § |F | = 0Q) |

n n n ‘ ¢

"o \

Let

-

where X, represents the self-excited component of the inductor current

and cu represents small fluctuations due to the disturbing current,

z gv  wherc v = u’ (E.13)

o .
-
-
%]
It
» e
=N
™~
1"

The variational equation derived from eqn. (E.9) is ‘therefore:

t - :

; «u=cu(l - yi) + € [ Fn cqs(mnt'% bn) (E.14)

n

1

To a first approximation, the solution of eqn. (E.14) may be
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assumed in the form: .
r

A ° M ‘ o
vzurx Z " cos(mnt + un) LN cos(vnt + Bn) (E.15)

where v 4 20-- o and ‘_{(ni + :i) = 0(1)

n

{Thus in expression(E.9) En = eny and K =ex m=n]

with proper phase reference, the free oscillator voltage is

given by:
- € . ) »
y =2cos §t- 5 Sin Ints+ ... (E.16)
2
*
where 8 =1 - %€-+ 0Sc4)
A = -
Let w, = l+eco_, A =0 =0, then. Vo Q- eo
2 =2 = 2,2 1 _—
Therefore w° -1 =80 -1 ¢ 2eflo_ =€ (0 - =) + 240 + 2eflo
n n n 8 n
2 2,2 1 =
d - = - — -2 E.l?
an vn 1 € (on 8) + 2500 s?on ( )

Using eqn. (E.10),

* . *2
J %% -1 Vi v JaZR - vl =8,

k . K . . I
; (E.18)

and eqn. (E.11) becomes:
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: 2 2 2 :
aa[8 + 2¢” J(n + x ) % 820 |
n ‘ (E.19)

3 2 2 .
- -2 ] f2o g - k) ¢ By sinGe, - 4 ¢ 0(e"y .
n

Now rewritting expression (E.15) as:

A - .
v=us cos w t + + K + i
i{nln s ot +n, sinet I €95 Vpt * Ky sin vt} ,
o :

(E.20)
and approximating Y in eqn. (E.14) by 2 cos Qt, since only a first
order “solution for u is needed, then using the method of undetermined

coefficients we obtain:

L

=
P
[+

" 2 3 ! i
[on cos Y + (1 + 2qn) sin vn] Fn/Dn

3
)
Y

2, . -
- ‘ E.2
(1 + 20n) cos ¢ - o 'sin ¢n] Fn/Dn | . (E.21)

X1n [an cos wn - sin wn] Fn/Dn l‘ and
Kyn = [ cosy ~+oq Sl'ﬂ?{‘]ﬁs/Dﬂ

wheres D = 40 (1 + 02)
o n n n

- 2
4
Hence n2 = n2 + n2 = n ( i—:—:lﬂ ;
n in 2n 1603 1+ ui ’
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. 2
2 2 2 In
2 2
lﬁcntl + un)
q , 1+ 202
and ann sm(un - ¢n) o - Fn —_—
40 (} +0))
n-; n

Hence from eqn. (E.19):

an = o ¥ Fi
32

_ + 0™ "(E.22)
o_(1 +0))
n nh n’.

- which is expression (5.4.5)

\

y .

E.3 The variation of the mean amplitude,

Referring to the circuit in Fig. (5.1 ), the linear network

-

can be treated as a conservative one if its losses are accounted for

in the KR branch.
' .
We note that expression (E.8) has bcen derived [sce Gladwin
(1961)] by requiring that:, -
9 5.0 -
< ir dt >. 0

o

where <.> dJenotes averaging over an infinitely large. period of time .

Likewise, by requiring that the power loss in the conservative linear

network be zero, then:
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< (iy-idy>=0 ' "'(é.zs)‘

Eqn. (E.23) can be-used to obtain an approximate value for
the variation of the amplitude of self-oscillation, due to thé

external distrubances, as will be shown below: S .

Let -i_%eg(y) = e gy, + )

: Y 1 32 ' N -
=€£()’5)+£Vg-(ys)+§evg(ys)+... ._ &

v

. N } d
where { ) = W

) Eqn; (E.23) is then rewritten as:

- R SR
. 2 . | 2 "
< ligregly)+eve ) +5 Vg r)Hy v evl>=0  (E.20)

Since the frequency content of id is different from that of

y
ys, then<A ldys > = 0
L E .

. : L
and similarly < v g(ys) > = <VYyCSE (ys) > = 0, and eqn. {E.24)

red_uces to:

N t 1 ” .
< y Blyd> = - <wvige St (r)) *+ 57, 8 ()12 (E:25)

Vs



€onsidering the v.d.P_gi non-linecarity,
\ r
/} )
3
gy) =y -y /3

' " 2 )
then g +%—yg =1-2y° -

a

Now using equatjons (E.12), (E.20) and (E.21)

FZ
n . .
. < Vi > = E—-E > ‘ (5-26]
d 8
l+o l
n n X . .,

1

i A

. L ran . 2 2 7 2 ,
e AP ) Sy, £ gl =e V-2 5

_ . . P
=-<-c2v2(3+4cos 2Qt) > + 0(c™)

2- F(1+60)
- - E[—r——lwtc)
(r+0). o

In the f:_‘ce-nﬁming case, eqn. (E.23) becomes: o .

* -
< yz-ly4l3>=0

i

Let AA denote the variation in the amplitude of the fundamental component
. k9 - \ , . )
of the os'cillatoz_f voltage, then: ' _ : N
< y2 oy e V2. Mz oape - 2aa 0 (E28)
< Y 'Ys/3> X © Y . Y /3 ZAAS A .

e
4

!
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Hence, from egns. (E.2S5) to (E.28) , we obtain:

2
2 1 3
AAs - = § [F. (—+ )] (E-29)
s 32 n 02 1+ -02
n n n S : | .
which is expression (5.4. 8).
o

-
=,
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