
 

 

 

 

 

 

QUANTIFICATION OF OXYGEN SATURATION 

OF VENOUS VESSELS 

USING SUSCEPTIBILITY MAPPING 

 

 

 

  



 

 

 

 

  



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- i - 
 

 

 

QUANTIFICATION OF OXYGEN SATURATION 

OF VENOUS VESSELS 

USING SUSCEPTIBILITY MAPPING 

 

 

BY 

JIN TANG, M.A.Sc 

A Thesis 

 

Submitted to the School of Graduate Studies 

in Partial Fulfillment of the Requirements 

for the Degree of 

PhD 

in Biomedical Engineering 

McMaster University 

© Copyright by Jin Tang, June 2012  



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- ii - 
 

 

 

 

PHD (2012)                                                                    McMaster University 

(Biomedical Engineering)                                             Hamilton, ON, Canada 

TITLE: Quantification of Oxygen Saturation of Venous Vessels Using 

Susceptibility Mapping 

AUTHOR: Jin Tang, M.A.Sc. (McMaster University) 

SUPERVISOR: Professor E. Mark Haacke 

NUMBER OF PAGES: ix, 119  



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- iii - 
 

Abstract 

The regulation of oxygen supply and consumption by the brain is a complex and dynamic 

process. The determination of the oxygen saturation of venous blood is an indirect means 

to assess local tissue oxygen saturation. Quantitatively measuring oxygen saturation is 

important to characterize the physiological or pathological state of tissue function. 

Noninvasive and reliable measurements can help to better understand the changes in 

cerebral hemodynamics due to neuronal activation or to improve the characterization and 

monitoring of treatment of cerebral pathologies, such as stroke, multiple sclerosis (MS) or 

tumors. There are several methods available to quantify blood or tissue oxygenation. 

Most methods are invasive requiring the insertion of a catheter into the jugular vein or 

using radioactive isotopes, such as positron emission tomography (PET). Near-infrared 

spectroscopy (NIRS), a noninvasive method, can only access surface cortical structures of 

the brain due to the limited penetration of light into the tissue. MRI has the potential to 

estimate the blood oxygen saturation level because of the difference of the magnetic 

properties of oxygenated and deoxygenated blood. Deoxygenated blood in veins is less 

diamagnetic than oxygenated blood, and relative to the surrounding tissue it appears to be 

paramagnetic, which makes it possible to detect venous oxygen saturation levels using 

either susceptibility weighted MRI or susceptibility mapping. 

In this thesis, we demonstrate the possibility of using susceptibility mapping to 

noninvasively estimate the venous blood oxygen saturation level. Accurate susceptibility 

quantification is the key to oxygen saturation quantification. Two approaches are 

presented in this thesis to generate accurate and artifact free susceptibility maps (SM): a 

regularized inverse filter and a k-space iterative method. Using the regularized inverse 

filter, with sufficient resolution, major veins in the brain can be visualized. The usual 

geometry dependent phase dipole effects can be removed leaving basically images of the 

veins. We found that different sized vessels show a different level of contrast depending 

on their partial volume effects; smaller vessels show smaller values due to errors in the 

methodology and due to partial volume effects; larger vessels show a bias toward a 
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reduced susceptibility approaching 90% of the expected value. Also, streaking artifacts 

associated with high susceptibility structures such as veins are obvious in the 

reconstructed susceptibility map.  

To further improve susceptibility quantification and reduce the streaking artifacts in 

the susceptibility maps, we proposed a threshold-based k-space/image domain iterative 

approach that used geometric information from the susceptibility map itself as a 

constraint to overcome the ill-posed nature of the inverse filter. Both simulations and in 

vivo results show that most streaking artifacts inside the susceptibility map caused by the 

ill-defined inverse filter were suppressed by the iterative approach. In simulated data, the 

bias toward lower mean susceptibility values inside vessels has been shown to decrease 

from around 10% to 2% when choosing an appropriate threshold value for the proposed 

iterative method. Typically, three iterations are sufficient for this approach to converge 

and this process takes less than 30 seconds to process for a 512 × 512 × 256 dataset. 

Generally, this new iterative method improves quantification of susceptibility inside 

vessels and reduces streaking artifacts throughout the brain for data collected from a 

single-orientation acquisition. This approach has been applied to vessels alone as well as 

to vessels and other structures such as the basal ganglia with lower susceptibility to 

generate whole brain susceptibility maps with significantly reduced streaking artifacts. 

In summary, susceptibility maps based on the regularized inverse filter can 

successfully create venograms of the brain with varying levels of contrast-to-noise 

depending on the size of the vessel. These venograms have the potential to map oxygen 

saturation, especially when the resolution is high enough that there are several pixels 

across a vessel. The k-space iterative approach reduced the streaking artifacts and 

improved the accuracy of the calculated susceptibility maps bringing us one step closer to 

a practical means to map out oxygen saturation in the brain.  
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1.1 Background and Significance 

The brain represents only 2% of the body weight; however, it receives 15% of the cardiac 

output and consumes 20% of the total body oxygen (1). This highlights the critical 

dependence of brain function on continuous, efficient usage of oxygen, and the organ’s 

heightened vulnerability and sensitivity to alterations in oxygen supply. Accurate 

methods of measuring hemodynamics and oxygen metabolism in the brain and 

cardiovascular system have been important areas of study for neurological and cardiac 

diseases for decades (2–11). Many of the most common disorders of the brain, such as  

Alzheimer’s, Parkinson’s, Huntington’s, multiple sclerosis (MS) and others, have been 

found to be associated with alterations in cerebral oxygen metabolism(12–15). 

Measurement of the cerebral metabolic rate of oxygen (CMRO2) consumption will further 

enhance our understanding of normal cerebral physiology during rest, sleep, anesthesia, 

aging, functional brain tasks, and physiologic challenges, and will be useful for 

evaluating the effect of systemic disease processes such as hypertension and diabetes on 

cerebral oxygen metabolism.  

The regulation of oxygen supply and consumption by the brain tissue for its metabolic 

processes is a complex and dynamic process. The amount of oxygen delivered is 

dependent on the tissue metabolic requirement and on physiologic parameters such as the 

arterial oxygen content, blood flow rate and hematocrit (Hct). The difference in oxygen 

content between the afferent arterial blood and the efferent venous blood reflects the 

amount of oxygen utilized by the tissue for its metabolic processes; therefore, CMRO2can 
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be estimated by combining venous and arterial oxygen saturation and CBF measurements 

using Fick’s principle (16), CMRO2=CaO2 × CBF × OEF    [1] 

where CaO2 indicates the arterial oxygen content, CBF indicates cerebral blood flow rate 

and OEF denotes the oxygen extraction ratio defined as (Ya-Yv)/Ya. Here, Ya and Yv 

denote the oxygen saturation values of arteries and veins, respectively. Oxygen saturation 

refers to the fraction of hemoglobin that is saturated by oxygen. There is debate as to 

what is the normal range of Yv, but most authorities assume 50-54% to be the lower limit 

of normal and 75% the upper limit (17).For arterial oxygen saturation, Ya, the normal 

values are 97% to 99% in the healthy individual (18). In most studies, Ya is assumed to 

be 98% or even 100%. If Ya is assumed to be 100%, then OEF could be defined as 1-Yv. 

Therefore, Eq.[1] can be replaced by  

CMRO2=CaO2 × CBF × (1-Yv)                 [2] 

Under various physiological challenges, the body maintains a balance between oxygen 

supply and consumption by modulation of the CBF and OEF / Yv (19, 20). Dynamic 

susceptibility perfusion-weighted imaging (DSC-PWI) provides cerebral blood volume 

(CBV), cerebral blood flow (CBF), time of arrival (TOA) and mean transit time (MTT) 

maps. The picture is almost complete, but it misses the key ingredient to calculate the 

OEF and CMRO2: the venous oxygen saturation, Yv. If we can monitor the venous 

oxygen saturation, then we would have a complete picture of the tissue hemodynamics in 

the brain from MRI. This would be a major step forward for in vivo diagnostic imaging of 

disease and tissue function. 
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1.2 Approaches to Measure Oxygen Saturation 

Currently, oxygen metabolism is not routinely measured clinically, in that several 

practical limitations have prevented its widespread application.  

 Non-MRI Approaches 

1) Positron Emission Tomography (PET) 

Positron emission tomography provides the most direct measurement of oxygen 

metabolism through imaging of the accumulated inhaled 15O-labeled radiotracers in the 

brain, which, after distribution into the tissue, are converted into 15O-labeled water (21). 

Positron emission tomography is, however, restrictive in terms of its utility because of the 

high radiation dose, relatively complex setup required for the constant delivery of radio-

labeled gases, high associated expenses, and long scan times, during which it is assumed 

that no change in physiologic state occurs. 

2) Jugular Vein Oximetry 

Another method for quantifying oxygen saturation is to use jugular vein oximetry 

involving catheterization and measuring flow through optical measurements or Doppler 

ultrasound (22). However, because of the invasiveness of the technique, it is prone to 

complications such as carotid artery puncture (incidence 1% to 4.5%), hematoma 

formation, jugular vein occlusion, thrombosis, risk of bacteremia, and other infections 

(23). In addition, the accuracy of the method is highly dependent on personnel skill and 

experience. 

3) Near-infrared spectroscopy 



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 5 - 
 

Near-infrared spectroscopy has been proposed as a non-invasive alternative for 

assessing cerebral oxygenation during cardiac operations (24). Near-infrared 

spectroscopy is relatively inexpensive, has excellent temporal resolution, and is less 

hampered by subject motion. This technique measures regional oxygen saturation in 

cerebral tissue by analyzing the spectrum of reflected near-infrared light. It only requires 

a portable device, and thus can be easily implemented. However, due to the poor 

penetration of tissue by light, this technique is limited to superficial capillary sampling. 

Moreover, the localization of the reflected signal is uncertain and there is controversy 

regarding possible contributions to the signal from arteries and veins. The measurement 

obtained correlates with venous oxygen saturation. However, the relatively poor 

agreement suggests that it may not be possible to obtain absolute values of venous oxygen 

saturation with this technique, other than to predict trends in cerebral oxygenation status 

in individual subjects (25). 

 MRI Approaches 

1) T2, T2* or T2’ approaches  

Attempts have been made to noninvasively assess blood oxygenation using MRI, 

based on the blood oxygen level dependent (BOLD) effect. These have involved either T2, 

T2* or T2’ approaches since relaxation rate T2, T2* and T2’ decrease along with an 

increase of the deoxyhemoglobin concentration. The dependence of T2 relaxation time of 

blood on the oxygenation state of hemoglobin was first demonstrated in blood samples 

(26, 27). Graham Wright and others (28-30) have made pioneering efforts to use T2 of 

major blood vessels and blood in the heart and brain as a means to extract the blood’s 
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oxygen saturation.T2 methods rely on an in vitro calibration curve to translate T2 

measurements to venous oxygen saturation levels (28). T2* based methods have been 

tried by Debaio Li and others (31-33). A similar T2* approach for small partial volumed 

vessels has been proposed by Sedlacik et al (34,35).Both static spin dephasing and spin 

diffusion through the field inhomogeneity caused by the presence of paramagnetic 

deoxyhemoglobin cause blood signal loss in gradient-echo imaging. This suggests that 

blood T2* measured using a gradient-echo sequence is potentially more sensitive to 

hemoglobin oxygen saturation changes than T2, measured using a spin-echo sequence, 

because spin diffusion is the only major contributor to signal loss in spin-echo imaging 

(32). Weili Lin (36-38) and Yablonskiy (39,40) have used the theory from Yablonskiy 

and Haacke (41) to extract oxygen saturation and blood volume of the underlying 

capillary network using T2’ from a special multi-echo gradient echo/spin echo sequence 

(42,43). In the T2-approach, the relaxation rate is quantified with a Carr-Purcell-

Meiboom-Gill (CPMG)-based pulse sequence and it is assumed that 1/T2 scales as(1 – 

Yv)
2
(44). T2*, the time constant for signal decay from static dephasing due to local spatial 

magnetic field variations within and in the vicinity of erythrocytes, is typically obtained 

with a multi-echo gradient-echo (GRE) sequence. 

2) MR susceptometry-based oximetry 

MR susceptometry-based oximetry first proposed by Haacke et al (45) and later used 

by other groups (44,46-49) has also been applied to single vessels in an attempt to extract 

venous susceptibility and oxygen saturation from small veins in the brain (45,46)and 

major veins in the neck(44,47-49). Specifically, venous blood oxygen saturation is 
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estimated by quantifying the intravascular bulk magnetic susceptibility relative to the 

surrounding tissue by exploiting the inherent paramagnetism of deoxyhemoglobin in 

erythrocytes. In MR susceptometry-based oximetry, a vessel is approximated as a long 

paramagnetic cylinder (length >> diameter) surrounded by a uniform medium. More 

detailed discussions about this method will be provided in Chapter 2. 

3)
17

O MR 

 
17

O MR may be the sole MR approach available currently for direct measurement of 

CMRO2in vivo. 
17

O is the only stable oxygen isotope that can be detected by MR. The 

quadrupolar moment of 
17

O spin (I = 5/2) can interact with local electric field gradients, 

resulting in extremely short T1 and T2 relaxation times which are in the range of several 

milliseconds.
17

O MR determines the cerebral metabolic rate of oxygen utilization 

(CMRO2) through monitoring the dynamic changes of metabolically generated H2
17

O 

from inhaled 
17

O-labeled oxygen gas in the brain tissue. However, the natural abundance 

of 
17

O is only 0.037%, which is almost 30 times lower than that of 
13

C and 2700 times 

lower than that of 
1
H. Moreover, the magnetogyric ratio ɤ of 

17
O, which is proportional to 

the Larmor frequency, is 7.4 times lower than that of 
1
H. This low inherent MR 

sensitivity and the expense in obtaining 
17

O are the main reasons for its infrequent use for 

in vivo MR studies, especially at relatively low magnetic fields, despite its great potential 

for providing unique and vital biological information (50). 
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1.3 Motivation of the Study 

Measuring venous blood oxygen saturation (Yv) in the brain is very important for 

monitoring the oxygen extraction fraction (OEF) and the amount of oxygen getting to the 

tissue. Therefore, Yv provides important information on the physiological and 

pathological state of the brain. If we could provide a rapid noninvasive method for 

quantifying oxygen saturation, it would have profound impact on both neuroscience 

studies and clinic practice.   

The sensitivity of the phase to the local susceptibility of the tissue makes it possible to 

estimate oxygen saturation using phase. Yv can, in theory, be extracted from the phase of 

a vessel making any angle to the field if it is large enough relative to the pixel size and the 

pristine phase information is not distorted. Hemoglobin is the primary blood oxygen 

carrier, and is composed of four protein (“globin”) subunits. Each protein subunit 

contains a heme molecule that consists of an iron atom (Fe 2+). When the iron atom is 

bound to oxygen, no unpaired electrons exist, and therefore oxyhemoglobin is 

diamagnetic. When the oxygen dissociates from the iron atom it leaves behind 

deoxyhemoglobin which has four unpaired electrons and is paramagnetic relative to the 

surrounding tissue. Therefore, the iron in deoxyhemoglobin in venous blood acts as an 

intrinsic contrast agent, causing T2*-related losses in the magnitude image and a shift in 

the phase relative to surrounding tissues in the phase image caused by susceptibility 

differences. The oxygen in oxyhemoglobin shields the iron so the T2* and susceptibility 

effects are only seen in venous blood. Therefore, susceptibility can be investigated to 

reveal information about oxygen saturation levels in blood. Hence, there has been a major 
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interest in quantifying susceptibility in MRI in general, as it could lead to a unique 

quantitative tool and provide a novel contrast mechanism. 

Mapping susceptibility from field perturbation data (which is directly related to the 

MR phase images) is a difficult inverse problem. There are a variety of approaches to 

tackle this problem, all with their own artifacts and reconstruction advantages and 

difficulties (51-69). One method (62) approached this issue by using a multiple 

orientation data acquisition approach to remove the singularities. Most methods involve a 

mathematical regularization. Simple threshold based regularization methods (56,60,63) 

have led to quantitative measurements that fall within 10% - 20% of the true 

susceptibility values (56) despite the fact that reconstruction artifacts remain. Generally, 

constrained regularizations (59,65,69) have shown good overall results, but they require 

longer reconstruction times and assumptions about the contrast in or near the object to be 

detected.  

In this thesis, we propose a novel method, i.e. a regularized inverse filter, which 

combines thresholding and weighted smoothing to help alleviate the ill-posed problem of 

the inverse filter and which therefore can provide susceptibility maps of the whole brain 

efficiently. Based on this method, we also considered a key refinement, a k-space iterative 

approach to overcome problems which threshold-based methods have, i.e., severe 

streaking artifacts and underestimated susceptibility values, in order to produce improved 

accuracy for susceptibility maps. The regularized inverse filter plus the k-space iterative 

method will provide an almost artifact free susceptibility map (SM) with accurate 

susceptibilities. Since susceptibility reveals the information about the oxygen saturation 
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level in blood, with an accurate SM, in theory, we should be able to quantify the oxygen 

saturation level in blood. 

1.4 Overview of Thesis 

In this thesis, we propose two algorithms related to susceptibility quantification which are 

the key to measuring the oxygen saturation level accurately. Each algorithm which we 

developed will conquer several particular issues in susceptibility quantification. These 

two algorithms can be merged to measure the oxygen saturation.  

There are five chapters in this thesis. Chapter 1 gives the motivation for measuring 

oxygen saturation and its associated problems. Chapter 2 provides the background 

knowledge associated with this thesis, for instance, susceptibility, phase, the relationship 

between susceptibility and phase and the concept of susceptibility mapping. The main 

body of the thesis consists of Chapter 3 and Chapter 4. Each chapter addresses one 

algorithm, i.e. the regularized inverse filter and the k-space iterative method, which we 

developed. At the end, Chapter 5 provides conclusions and points out future directions. 

In Chapter 3, we look into how to create an orientation-independent, 3D 

reconstruction of the veins in the brain using susceptibility mapping. High-resolution, 

high-pass filtered phase images usually used for susceptibility weighted imaging (SWI) 

were used as a source for local magnetic field behavior. These images were subsequently 

post-processed using a regularized inverse filter, we proposed, to generate SMs of the 

veins. Regularization and interpolation of the data in k-space of the phase images were 

used to reduce reconstruction artifacts. To understand the effects of artifacts, and to fine-
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tune the methodology, simulations of blood vessels were performed with and without 

noise. With sufficient resolution, major veins in the brain could be visualized with this 

approach. The usual geometry-dependent phase dipole effects are removed by this 

processing, leaving basically images of the veins. Different sized vessels show a different 

level of contrast depending on their partial volume effects. Smaller vessels show smaller 

values due to errors in the methodology and due to partial volume effects. Larger vessels 

show a bias toward a reduced susceptibility approaching 90% of the expected value. 

Limitations of the method and artifacts related to different sources of errors are 

demonstrated. 

In Chapter 4, we propose a k-space iterative approach using geometric information as 

a constraint to overcome the ill-posed nature of the inverse filter in calculating local 

susceptibility and to improve susceptibility quantification of veins in the brain. 

Simulations are used to study the resulting accuracy of the method and its robustness in 

the presence of noise. In-vivo data are processed and analyzed using this method. Both 

simulations and in-vivo results show that most streaking artifacts inside the susceptibility 

map caused by the ill-defined inverse filter have been suppressed by the iterative 

approach. The bias toward lower mean susceptibility values inside vessels has been 

shown to decrease from around 10% to 2% when choosing an appropriate threshold value. 

This iterative method allows for quantification of susceptibility maps from a single-

orientation acquisition. This method can be applied not only to veins but also other in vivo 

structures to generate potentially whole brain susceptibility maps without streaking 

artifacts.  
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Chapter 2: Susceptibility, MRI Phase and Susceptibility 

Mapping1 
 

 

 

 

 

 

 

 

 

 

 

 

 

1 Most of the contents of this chapter have been adapted from Haack et al, Magnetic Resonance Imaging: Physical 

Principles and Sequence Design. 1st Ed. Wiley-Liss;1999, and Haacke et al, Susceptibility Weighted Imaging in MRI: 

Basic Concepts and Clinical Applications. 1st  Ed. Wiley-Blackwell, 2011.  
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2.1 Introduction of Susceptibility 

Magnetic susceptibility is a basic material property that measures the ability of a 

substance to get magnetized when placed in an external magnetic field. It may also be 

characterized as being the measure of the extent to which a substance modifies the 

strength of the magnetic field passing through it. The internal susceptibility differences 

between tissues can cause image distortion and loss of signal, especially T2* losses in 

gradient-echo imaging. On the other hand, susceptibility is also another intrinsic tissue 

property and local variations in susceptibility can be useful in identifying special 

properties or states of the tissue of interest. Quantifying magnetic susceptibility of 

biological tissues could have very important clinical implications, such as differentiating 

a hemorrhagic lesion as acute or chronic, identifying calcifications, or measuring oxygen 

saturation in the blood which is the focus of this thesis.  

2.1.1 Bulk Magnetic Fields 

When an external uniform magnetic  ⃗ 0 = μ0 ⃗⃗ 0 is applied to a substance, the actual field  ⃗  

inside the material is given by  

 ⃗        ⃗⃗   ⃗⃗              [1] 

where  ⃗  is the magnetic field measured in Tesla (T),  ⃗⃗  is the applied magnetic field 

measured in Ampere/meter (A/m),  ⃗⃗  is the permanent magnetization or the induced 

magnetization measured in Ampere/meter (A/m) and μ0is the absolute permeability of 

free space (4π× 10
-7

) with units of T m/A. When a material is not permanently 
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magnetized, i.e.,  ⃗⃗  is not a constant, the induced magnetization  ⃗⃗  inside the material is 

related to the  ⃗⃗  field by a constant susceptibility χ through 

 ⃗⃗  = χ ⃗⃗ [2] 

Thus, equation [1] can be rewritten as 

 ⃗ = μ0(1+χ) ⃗⃗      or     ⃗ =(
   

 
) μ0 ⃗⃗ [3] 

The field distribution outside the material will also be perturbed due to the fact that 

the object has an induced magnetization. The solution for field perturbation outside the 

object is a vector function of the induced magnetization  ⃗⃗  and depends on the shape and 

volume of the object: 

 ⃗ out(r) =  ⃗ 0 + f( ⃗⃗ , object shape, object size,   )         [4] 

Where f denotes “function of”,  ⃗ 0 is the external magnetic field, and  ⃗ out is the field at a 

point   outside the object.  

MR measurements are sensitive to the magnetic field manifested in frequency through 

the Larmor equation (a right handed system) 

ω= - ɤ·B                        [5] 

where ω is the precession angular frequency, ɤ is the gyromagnetic ratio of the proton, 

and B is the actual field experienced by a proton. This change in frequency caused by 
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changes in susceptibility and changes in the local magnetic field are what provide us with 

the ammunition to measure susceptibility information with MR. 

2.1.2 Diamagnetism, Paramagnetism and Ferromagnetism 

Based on the macroscopic behavior under the influence of an external magnetic field, 

various substances are broadly classified into diamagnetic, paramagnetic, and 

ferromagnetic materials (1). From equation [3], if the susceptibility χ is positive (χ>0), the 

material or the object is considered as paramagnetic. If χ is negative (χ<0), the material is 

diamagnetic. In the ferromagnetic case, χ >>1. For permanent magnetic or ferromagnetic 

substances, equation [3] is not suitable, so the original equation [1] should be used. The 

value of χ is given in ppm (parts per million). Water is diamagnetic and has a 

susceptibility value of χwater  -9.05 ppm. Human tissues tend to be mostly water by 

weight. As a consequence, almost all soft tissues in the body are diamagnetic in nature. 

For most biological tissues, χ << 1.In MRI, the term “paramagnetic” or “diamagnetic” is 

used relative to the susceptibility of water. For instance, fully deoxygenated whole blood 

(assuming Hct=0.45) has a magnetic susceptibility of -7.9ppm.When it compared to water 

(χwater  -9.05 ppm), it is paramagnetic.  

2.2 Susceptibility and Oxygenation Level 

As the oxygen content in blood changes, the local susceptibility in the blood changes 

accordingly. The source of this dependence has been shown to be the unshielded iron in 

hemoglobin (red blood cells). Blood can be approximated as a two-compartment system 

containing both plasma and red blood cells (they together constitute about 99% of whole 
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blood by volume). Hematocrit (Hct) is the fraction of the volume of packed red blood 

cells in the blood. Typically, Hct is about 0.4 for women and 0.45 for men. Much of the 

iron in the blood is in the hemoglobin in one of two states: oxyhemoglobin or 

deoxyhemoglobin. Oxyhemoglobin is formed during physiological respiration when 

oxygen binds to the heme component of the protein hemoglobin in red blood cells. 

Deoxygenated hemoglobin is the form of hemoglobin without bound oxygen. 

Oxyhemoglobin is diamagnetic due to the lack of unpaired electrons and 

deoxyhemoglobin is paramagnetic due to unpaired electrons.  

Susceptibility of a red blood cell depends on the oxygen saturation of hemoglobin 

within it. If we neglect the slight paramagnetic susceptibility contribution of dissolved 

oxygen in plasma, we can model the susceptibility of whole blood as: 

χblood = Hct (Yv χoxy + (1- Yv) χdeoxy) + (1-Hct)χplasma                  [6] 

where Hct stands for hematocrit, χplasma is the susceptibility of plasma, and χoxy and χdeoxy 

are susceptibilities of a red blood cell with 100% (Yv=1) and 0% (Yv=0) oxygen 

saturation. 

The change in blood susceptibility from fully oxygenated to deoxygenated blood has 

been measured to be χdo  = χdeoxy - χoxy = 4π·(0.27) ppm per unit Hct (2). It has been 

observed that arterial (oxygenated) blood appears to have the same susceptibility as the 

surrounding tissue. Then, if χplasma is close to χoxy, equation [6] leads to the practical form 

χblood,relative = χblood – χsurr = χblood – χoxy = 4π·(0.27) ·Hct (1- Yv) ppm      [7] 
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The dependence of magnetic susceptibility of blood on its oxygenation state could 

help us to measure the oxygen saturation level (Yv) and therefore metabolic state of the 

underlying tissue.  

2.3 MRI Phase and Its Relationship to Susceptibility 

2.3.1 Introduction of MRI Phase 

In MRI, phase can be defined as the changing orientation of the magnetization vector in 

the transverse plane. Quantitatively, it depends on the product of time and angular 

velocity of the transverse magnetization vector, as well as on an initial phase constant φ0 

that defines the value of phase at the time origin. Hence, phase can be defined by the 

following expression: 

φ(t) = ω· t + φ0                  [8] 

Assuming x-y to represent the coordinates of the transverse plane, the transverse 

magnetization vector M can be written as 

 ⃗⃗ = |M|· e
iφ(r,t)

 = |M|·(cosφ + i sinφ)                [9] 

where|M| = √      is the modulus or magnitude of the vector (x, y) and φ is the phase, 

that is, the angle between the x axis and the vector (x, y) measured counterclockwise and 

in radians. The phase angle φ can be given by the inverse tangent 

φ = tan
-1

 (y/x)                   [10] 
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2.3.2 Relationship between Phase and Susceptibility 

Different tissues and substructures may have different magnetic susceptibilities. In the 

magnetic field of an MRI scanner, these susceptibility differences cause variations in the 

local magnetic field strength. This leads to small changes in the resonance frequency of 

the spins excited and detected by MRI and results in phase differences in gradient-echo 

MR images. Phase at a given point in an MR image is sensitive to the local field 

perturbation (with respect to the uniform applied field Bo), rather than the absolute field. 

So phase φ is given by  

φ (t) = -ɤ·ΔB·t                    [11] 

where ΔB is the field perturbation in Bo and t is the time at which signal is acquired. 

Under the situation of structures with different susceptibilities embedded within each 

other, it is the difference in their susceptibility, Δχ, that becomes the important parameter 

determining the field perturbation. In other words, ΔB = Bo·Δχ·g where g is a constant 

depending on the object's geometry. Within the human body, small relative susceptibility 

differences between adjacent tissues cause a unique phase signature in the MR signal. 

2.3.3 Limitation of Phase 

Phase images of the brain generated using gradient-echo techniques at high field strength 

show excellent contrast related to the variation of magnetic susceptibility across tissues 

(3–8). However, extraction of accurate anatomic information from phase data is made 

difficult by the nonlocal relationship between the field perturbation that gives rise to the 
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phase changes and the associated susceptibility distribution (9), which means that phase 

variation occurs remotely from underlying anatomic structures (7). Additionally, in brain 

imaging the measured phase variation depends on the angle that the head makes with 

respect to the applied magnetic field (7, 9). These limitations provide a strong motivation 

for attempting to map directly the magnetic susceptibility variation underlying the 

induced field and phase variation. 

2.4 Susceptibility Mapping 

2.4.1 Introduction of Susceptibility Mapping 

A novel technique, referred to as quantitative susceptibility mapping, overcomes the non-

local relationship between magnetic field perturbation and susceptibility. Here, phase data 

are processed to extract the underlying magnetic susceptibility distribution, resulting in a 

novel quantitative anatomical contrast of an intrinsic physical tissue property. 

Susceptibility maps (SM) are expected to enable quantitative examination of changes in 

magnetic tissue properties in vivo due to, e.g., elevated iron storage or local blood oxygen 

saturation. In general, the key feature for susceptibility mapping is to use phase 

information (which is linearly related to the local field changes) for enhanced contrast and 

for local susceptibility information. SMs overcome the major disadvantages of phase 

images, whose contrast vary with orientation and are non-local. In SMs, the contrast of 

cortical layers is more consistent than in the phase images and is independent of the 

structures’ orientation relative to Bo. Non-local contrast variation in phase images, caused 

by regions with different susceptibility values, is also mitigated by susceptibility SMs. 
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Accurate MR-based susceptibility quantification would have many applications, beside 

quantification of blood oxygen saturation, it could be used to investigate the relationship 

between tissue iron content and progression of neurodegenerative diseases such as 

Parkinson’s disease, Huntington's disease and multiple sclerosis as well as to accurately 

measure the concentration of contrast agents in vivo. 

2.4.2 Susceptibility Map Calculation 

According to Equation [3], the magnetic induction  ⃗  determines the local precession 

frequency and is given by  ⃗ = μ0(1+χ) ⃗⃗ , any spatial variation in χ is also reflected in the 

spatial variation of the Larmor frequency (see Equation [5]). Therefore, it should be 

possible to relate directly the spatial variation of susceptibility to the expected field. This 

is indeed readily possible for objects with simple geometries, such as cylinders, spheres, 

or plates. The problem, however, becomes more intricate for more complex susceptibility 

distributions, for which it is usually necessary to use numerical methods. Quite recently, 

efforts have been undertaken to calculate magnetic field perturbations via Fourier analysis 

of heterogeneous magnetic susceptibility distributions (9, 10). Based on these approaches, 

it may become possible to calculate tissue susceptibility from phase images, which, in 

turn, would be highly beneficial since magnetic susceptibility is an intrinsic tissue 

property that reflects tissue composition more closely than the phase image. In this 

section, a susceptibility calculation using a Fourier transform approach will be discussed 

based on the simple geometry for a cylinder. 
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2.4.2.1 SM Calculation Using a Numerical Model 

Using the boundary conditions for the induced magnetization distribution (which factors 

in the object’s shape and size), solutions for the fields inside and outside the object can be 

obtained (11). Analytically solving these equations for objects with some structural 

symmetry like a sphere or a cylinder is relatively easy. It is instructive to look at field 

perturbation solutions for uniform materials taken in certain standard symmetric 

geometrics like a sphere or a cylinder to get a feel for the nature of the field 

distortions/perturbations that we can expect in MR imaging. For example, sinuses might 

be modeled as spheres and blood vessels as long cylinders. Here, we only focus on a 

cylindrical model, since the model of an infinitely long, homogeneous magnetic cylinder 

is often used to describe a straight section of a single vessel.  

Since the external uniform magnetic field, Bo, is applied along the z-direction, the 

objects primarily get magnetized along the z-direction,  ⃗⃗ z, with  ⃗⃗ x and  ⃗⃗ y, being 

negligible. Furthermore, since χ<<1 for most biological tissues, from Equation [3], we 

can approximate  ⃗⃗ z as (χ/μo) ⃗ o. Given these conditions, assuming that the objects are in 

vacuum, solving for  ⃗  inside and outside by applying the proper boundary conditions (11) 

then yields the expressions for the magnetic field inside and outside an infinitely long 

cylinder as following (1).  

 ⃗ in =  ⃗ o + 
  ⃗  

 
           [12] 

 ⃗ out =  ⃗ o + 
  ⃗  

 
 
  

| |  
          [13] 
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where θ is the angle that the long axis of the cylinder makes with the main magnetic field 

 ⃗ o, φis the polar angle subtended by r on the plane perpendicular to the long axis of the 

cylinder; r is the position vector of the point of observation; and a is the radius of the 

cylinder. 

If a cylinder is embedded in some external medium or compartment that has a finite 

shape and susceptibility value, these field equations are slightly modified. The term χ is 

replaced by Δχ = (χcylinder – χoutside compartment) and an additional field term that is dependent 

on the global geometry of the outer compartment is added. 

We know φ (t) = -ɤ·ΔB·t (Equation [11], phase is sensitive to the local field 

perturbation. Thus, from Equation [12], the susceptibility Δχ can be obtained from phase 

and Yv values. This method is also called magnetic resonance oximetry (12) which was 

proposed by Haacke et al in 1997 and later used by other groups(14–18) to calculate the 

oxygen saturation level Yv where: 

Yv = [   
 |  |

       (   
   

 

 
)   

]  × 100%                   [14] 

and Δφ here is the average phase difference between intravascular blood and surrounding 

tissue.  

In theory, phase variations can be used as a source of information about oxygen 

saturation level (Yv). If we know the individual susceptibilities (Δχ) of the hemoglobin 

components and the Hct, we can determine the absolute oxygen saturation Yv from the 

phase (Δφ).  
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2.4.2.2 SM Calculation Using Field Maps 

As mentioned above, for complex susceptibility distributions, it is usually necessary to 

use numerical methods. Efforts have been undertaken to calculate magnetic field 

perturbations via Fourier analysis of heterogeneous magnetic susceptibility distributions 

(9,10). Based on these approaches, it may become possible to calculate tissue 

susceptibility from phase images.  

When an object with a certain magnetic susceptibility distribution, χ(r), is placed in an 

external magnetic field o, the resulting magnetic field,  ⃗      at any position   isgiven by: 

 ⃗        ⃗   
  

  
∫ {

  ⃗⃗ (   ) (      )

|      |   
          

 ⃗⃗ (   )

|      | 
}                       [15] 

where ⃗⃗      is the induced magnetization distribution ofthe object. In the case of MR 

experiments, the externalapplied magnetic field  o is many orders of magnitude larger in 

one direction, assumed to be the z direction, than in the other two orthogonal directions. 

Taking this into account, and observing that the second term in Equation[16] is a 

convolution(9,18,19), this term can be Fourier-transformed into a simple product relation 

in the spatial frequency domain(generally referred to as k-space) to give: 

 ⃗   ( ⃗ )     ⃗⃗  ( ⃗ ) (
 

 
 

  
 

  )                              [16] 

Here kx, ky, and kz are the coordinates in k-space and K
2
 = kx

2
 +ky

2
+kz

2
, Mz(k) is the 

Fourier transform of the magnetization distribution of the object along the z direction and 

this spatially varying field Bdz(r), which is the Fourier transform of Bdz(k), gives rise to 

the spatially-varying phase seen in a gradient echo MR experiment. Since the 

susceptibilities of biological tissues are typically much less than unity, the magnetization 
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of the object is Mz(r) =χ(r)·Bo/μo and hence Mz(k) =FT(χ(r))·(Bo/μo), where FT stands for 

Fourier transformation. Thus the phase due to a spatially-varying field Bdz(r), which itself 

arises from the presence of the susceptibility distribution Bdz(r), can be calculated from: 

          ⃗                       [  (     )  (
 

 
 

  
 

  
)]         [17] 

Equation [17] offers a simple, fast, and powerful means for calculating the field deviation 

due to the presence of a known χ(r) in an otherwise uniform field Bo. It is important to 

note here that Equations [16]and [17] are derived under the assumption that Bo is the 

predominant magnetic field and that the Bdz field does not affect the magnetization of the 

object. The amazing element of this transformation is that it appears to require no a priori 

knowledge of the shape of the object.  Now if an inverse relation between susceptibility 

and phase could be obtained, that is, if it were possible to predict the susceptibility 

distribution from phase images, it would be of great scientific and clinical significance. A 

crude but straightforward approach to predict the SM is given by the inverse of the above 

filter in Equation [17](20) 

           [  (
     

      
)(

 

 

 
 
  
 

  

)]                [18] 

The main challenge in creating SMs from phase data is the ill-posed nature of the 

process of inversion. The reason for using the Fourier-based method is that the 

relationship between the field perturbation and the magnetic susceptibility distribution 

becomes simple and local in the Fourier domain. However, when inverting this 

relationship to obtain the susceptibility in terms of the field variation a problem arises, 

since the denominator, 
 

 
 

  
 

  
, of the resulting expression (Equation [18]) tends to zero 
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over two conical surfaces in k-space. These surfaces lie at the magic angle to the direction 

of the main magnetic field and its reflection. Without careful conditioning the resulting 

division-by-zero gives rise to artifacts in the calculated susceptibility distribution.  

In Chapter 3 and Chapter 4 in this thesis, a regularized inverse filter and a k-space 

iterative method will be proposed to deal with the ill-posed problem of the inverse filter 

to provide improved accuracy and almost artifact free SMs.  
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Chapter 3: Susceptibility Mapping as a Means to Visualize 

Veins and Quantify Oxygen Saturation
2
 

 

 

 

 

 

 

 

 

 

 

 

 

2Most of the contents of this chapter have been adapted from Haacke EM, Tang J, Neelavalli J, Cheng YC. 

Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 2010; 32: 

663-676. 
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3.1 Introduction 

Susceptibility weighted imaging (SWI) has been used for some time as a means to 

enhance venous signal using high pass filtered phase images (1,2). The special image 

created by SWI processing relies on an asymmetric voxel aspect ratio. Therefore, when 

SWI is collected with high resolution isotropic data, the conventional processing will fail. 

To overcome this problem, we propose using a form of susceptibility mapping to produce 

an image of veins from SWI phase data (1).  Such a map would make it easier to image 

venous vessels independent of their size and orientation, which we refer to here as 

susceptibility mapping of veins. 

The ability to quantify local magnetic susceptibility is tantamount to being able to 

measure the amount of calcium or iron in the body whether it is calcium in breast (3)or 

iron in the form of non-heme iron (such as ferritin or hemosiderin) or heme iron (de-

oxyhemoglobin). In the last few years, there have been a number of papers discussing 

different methods for doing this using a fast Fourier transform approach (4-10).  All of 

these methods are based on the simple expression in k-space for analyzing distant dipolar 

fields from a given source of susceptibility distributions first given by Deville et al (11) in 

1979. One of the methods utilizes the inverse of the Green’s function (8). This is, 

however, fraught with difficulties as it is an ill-posed problem due to singularities in the 

inverse of the Green’s function. To this end, different groups have tried regularization or 

multiple scans acquired with the object being rotated between scans (8, 9). In this chapter, 

we show that good quality magnetic source images or susceptibility maps (SM) of the 
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veins in the brain can be obtained when the inverse is regularized and other sources of 

phase noise are removed. 

3.2 Materials and Methods 

Inverse Filter Regularization 

To reconstruct the susceptibility distribution, a regularized inverse filter, g
-1

(k), was 

applied to the Fourier transform of the high pass filtered phase image. The forward filter 

is defined by: 

g(k) = 1/3 – kz
2
/|k|

2
    [1] 

where kx,ky,kz denote the coordinates in k-space and |k|
2
 = kx

2
 + ky

2
 + kz

2
. The filter g(k) 

goes to zero when 2kz
2
 = kx

2
 + ky

2
, making g

-1
(k) undefined (we refer to these kz values 

which satisfy this equation as kzo). Hence, to reconstruct the susceptibility distribution, a 

regularized version of the inverse filter g
-1

(k) is applied to the Fourier transform of the 

unwrapped and background removal/high pass filtered phase image, φ(k). It should be 

noted here that “k-space” in this chapter refers to the Fourier or frequency domain of 

unwrapped/high pass filtered phase images (i.e., obtained by directly taking their discrete 

Fourier transform), rather than the usual acquired k-space data in MRI.  

In our approach to this problem, we regularize g
-1

(k) as follows. First, we restrict g(k) to 

have a minimum value a so that its inverse remains well defined. That is, for any k where 

| g(k) | <a, g(k) is set to –a or a depending on the sign of g(k) (i.e., g
-1

(k) is set to a 

minimum of -1/a or a maximum of 1/a). This first step prevents g
-1

(k) from becoming too 
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large and enhancing noise points near singularities. Second, the inverse, g
-1

(k), is brought 

smoothly to zero as k approaches kzo such that the discontinuity at kz = kzo is removed. 

This smoothing is accomplished by multiplying  g
-1

(k) by α
2
(kz) where α(kz) is defined as: 

α(kz) = (kz – kzo)/(bΔkz)    [2] 

for | (kz – kzo) | <bΔkz and  

α(kz) =1 when | kz – kzo | >= bΔkz 

where kz is the z component of that particular point in k-space, kzo is the point at which 

the function g
-1

(k) becomes undefined andΔkz is the k-space sampling interval along the z 

direction.  

This filter starts to reduce the maximum of g
-1

(k) starting b pixels away from the 

singularity and rapidly brings it to zero at the singularity. The choice of b is discussed 

below. Denoting the regularized inverse filter by g
-1

reg(k),the susceptibility map for the 

3D data set is calculated via: 

χ(r) = FT
-1

(g
-1

reg(k) φzf-proc(k))/(γBoTE)  [3] 

where φzf-proc(k)is the Fourier transform of the high pass filtered phase φzf-proc(r). The 

subscript “zf-proc” refers to the high pass filtered, zero filled phase images as described 

in references (1,2). Note that, we impose the condition g
-1

reg(kx=0, ky=0, kz=0) = 0 in the 

regularized filter. This in-turn implies that the quantification is only valid for relative 

susceptibility differences, i.e. only Δχ, and not for absolute χ values. 
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Selection of a and b 

The choice of threshold value is particularly important in determining the quality of the 

susceptibility map (SM). The choice of threshold a for g(k) determines to a large degree 

the amount of streaking that will occur. The reason for this is based more so on the 

discretization errors and ill-posedness of this inverse approach. To find an appropriate 

threshold value, phase due to a cylinder of diameter 8 voxels perpendicular to the main 

magnetic field, was simulated (for simulation details see the next section). A Δχ of 0.45 

ppm, B0 of 3T and TE of 5ms was assumed. Susceptibility maps were generated using g
-

1
reg(k) in Eq. [3] for varying a values. In the resultant SM, mean and standard deviation 

(SD) of susceptibility values inside the vessel were measured. The mean squared error of 

the values outside the vessel was also used to measure artifact levels in the background. 

The value of a was varied from 0.05 to 0.30 in steps of 0.05.  

Although setting the threshold value, a, prevents g
-1

(k) from becoming ill-defined, it 

creates an abrupt step-like discontinuity in the behavior of g
-1

(k) in the neighborhood of 

kz = kzo. To avoid these abrupt transitions, we use α(kz), defined with a parameter b, to 

bring the inverse filter smoothly to zero. When | g(k) | <a, the filter smoothly reduces the 

value of g
-1

(k) starting b pixels away from the singularity and rapidly brings it to zero at 

the singularity. The value of b in turn depends on the value of a since: 

b=|kza – kzo|/ (Δkz)             [4] 

where kza is the kz coordinate value where |g(k)| = a, for a given kx and ky coordinates. 

One can now rewrite Eq. [2] as  
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α(kz) = (kz-kzo) / | kza-kzo | [5] 

Simulations 

To study the effects of partial-voluming, noise, phase aliasing and high pass filtering of 

phase on the susceptibility mapping process, we simulated the phase of cylinders of 

varying size, oriented perpendicular to the main magnetic field. The susceptibility maps 

of these cylinders were generated using the regularized filter g
-1

reg(k) with an a value of 

0.1. In these simulations, instead of calculating the phase of each of the cylinders on 

discrete grid points directly using the analytic formula for an infinitely long cylinder, we 

performed a process analogous to the MRI image acquisition. We start by simulating the 

cylinder and its phase on a large grid consisting of a 4096×4096 matrix. We then obtained 

the lower resolution version of the phase by taking the central part of its Fourier 

transform and applying an inverse Fourier transform to this central k-space matrix, say 

512×512 for isotropic voxel size. So, for example for a cylinder that is 64 voxels wide in 

a 512 matrix size; this started out as a 512 voxels wide cylinder in the 4096 matrix. In that 

sense, if the 512×512 matrix represents 0.5×0.5 mm resolution, then we are using a 

resolution of 62.5μm to first sample the object discretely and by taking the central k-space, 

we mimic a more analytic Fourier transform representation of the final resolution’s k-

space signal. Data generated in this manner exhibits the usual experimental artifacts such 

as Gibbs ringing and partial volume effects not seen with an analytical solution. We refer 

to these input phase images in this chapter as the ‘simulated phase’ images. All 

simulations assumed a Bo value of 3T and Δχ of 0.45 ppm and a cylindrical geometry 

perpendicular to the main magnetic field is considered.  
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To estimate the effect of partial voluming, cylinders with different radii (r = 0.25, 0.5, 

1, 2, 4, 8, 16 and 32 voxels), perpendicular to the main magnetic field were simulated, 

each with voxel aspect ratios of 1:1, 1:2 and 1:4. For example, a phase image with a voxel 

aspect ratio of 1:2 is generated by inverse Fourier transforming only the central 512×256 

points of the original 4096×4096 point k-space (and for 1:4 aspect ratio, it is the central 

512×128 points). Subsequently, their corresponding susceptibility maps were generated 

and the mean and standard-deviation of the resultant susceptibilities were measured. Two 

echo times, TE=5ms and TE=20ms, were considered for this simulation to study the 

effect of phase aliasing on the estimated susceptibility values. While TE=5ms does not 

lead to any phase aliasing, the phase image at TE=20ms has considerable phase aliasing. 

Different voxel aspect ratios here are meant to represent the ratio between in-plane to 

through-plane voxel dimensions for typical transversely orientated SWI data.   

The effect of high pass filtering the phase data on the susceptibility maps was also 

simulated and studied. Again, simulated phase images of cylindrical geometry with radii 

of 0.25, 0.5, 1, 2, 4, 8, 16 and 32 were considered. Homodyne high pass filters (1, 2) of 

size 16, 32 and 64 were applied on these phase images before being used for 

susceptibility mapping process. The mean and standard deviation of the susceptibility 

value for each simulated case were measured. 

To study the effect of noise in phase images on the noise in the resultant susceptibility 

map, we simulated a complex data set for a cylinder of diameter 8 voxels with Gaussian 

noise added. Noise was added to both real and imaginary channel images such that the 

resultant signal-to-noise-ratio (SNR) in the magnitude image was 40:1, leading to a 



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 42 - 
 

standard deviation in the phase image of 0.025 radians. After performing the process 

outlined in Eq.[3] to get the susceptibility map, this phase noise will be altered in some 

manner by the susceptibility mapping process. We measure the noise mean and standard 

deviation outside the object in the SM map.   

In vivo MR Data Collection and Processing 

To reconstruct a susceptibility map of venous vessels with minimal artifacts, the 

following steps were carried out: i) collect an isotropic high resolution SWI data set, ii) 

high pass filter the phase images, iii) interpolate k-space, iv) remove spurious phase noise 

sources from the phase images and v) regularize the data. These steps are described in 

more detail below.  

i) Susceptibility weighted imaging sequence, which is a high resolution 3D gradient 

echo sequence with velocity compensation in all 3 directions was used for data collection. 

The sequence parameters used were TR=26 ms, flip angle 11
o
 and bandwidth 80 Hz/pixel 

in the read direction. We collected images with 0.5mm isotropic resolution at 4T field 

strength at three echo times of 11.6ms, 15ms, and 19.2 ms and with a matrix size of 352 × 

512 (phase x read directions respectively). A total of 88 slices were collected. The k-

space data were then truncated in the slice select direction to mimic 1mm and 2mm thick 

slices and zero filled to interpolate the images to 0.5mm slice thickness in order to create 

maximum intensity projections (MIPs) that would match when comparing MIPs over the 

different resolution reconstructions. The images were acquired in absolute transverse 

orientation without any angulation to coronal or saggital direction. 



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 43 - 
 

ii) Phase data were high pass filtered using an n × n central low pass filtered image (1, 

2) divided into the original complex image. This gives a homodyne or effective high pass 

filtered phase image, φ(x), which removes most of the low spatial frequency phase. 

iii) To keep the field of view in x, y and z directions at the aspect ratio of 1:1:4, k-

space was interpolated by zero filling the phase images, φzf-proc(r), in all three directions 

to a 512 × 512 × 128 matrix size. This 3D image set, φzf-proc(r), was then Fourier 

transformed to create a k-space data set φzf-proc(k). Zero filling the initial input phase 

images to a larger matrix also helps in reducing the pseudo ghosting that gets introduced 

in the SM due to artifacts associated with the Fourier transform and application of the 

inverse-filter. Note that ghosting referred to here, is a form of structural-aliasing and in 

this sense refers to the replication of information in the image domain when the data are 

under-sampled. Elsewhere in this chapter we use the term aliasing to refer to phase 

information that has aliased back into the interval [-π,π). 

iv) Noise in the non-tissue region in the phase images was removed, by using a 

complex thresholding (12) approach on the magnitude image, followed by a skull 

stripping algorithm to separate the brain from the skull. 

v) The regularized inverse filter discussed earlier was applied to the Fourier transform 

of the high pass filtered phase image. 

To assess the sensitivity of SM maps to changes in venous oxygenation levels, we 

compare the susceptibility map data before and after ingestion of 200 mg caffeine 

(NoDoz, Bristol-Myers Squibb, NY, NY) for a normal healthy male volunteer. The data 
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was acquired at 3T on a Siemens VERIO system with a voxel size of 0.5×0.5×2mm, flip 

angle of 15
o
 and a bandwidth of 100Hz/pixel at an echo time of 20ms. SWI images were 

acquired before the ingestion of caffeine and about 50 minutes after the ingestion of 

caffeine. All human data was collected in accordance with the local institutional review 

board guidelines.  

3.3 Results 

Simulations 

There are six major sources of error in creating venous susceptibility maps: i) errors in the 

inversion process, i.e. those due to g
-1

reg(k) itself; ii) voxel aspect ratio effects (i.e., partial 

voluming); (iii) aliasing in input phase images caused by longer echo times; (iv) errors 

caused by high pass filtered phase data; v) errors due to discrete sampling in MRI and vi) 

thermal noise in the phase data. We consider each of these in the following paragraphs.  

(i) Even with regularization, and with no thermal noise considered, the inversion 

process is not perfect. In this case, it depends on the choice of a. In Table 1, we show the 

root mean squared error (RMSE) both inside and outside the cylinder along with the 

percent error of the quantified susceptibility with respect to the input value of 0.45 ppm. 

RMSE outside the cylinder is taken only from an annular region centered around the 

cylinder with a thickness of 20 voxels (i.e., an annular region defined by a n inner-radius 

of 4 and an outer-radius of 24 voxels (beyond which the error is small)). The errors inside 

the object seem to be minimized with at a=0.15. Practically, a choice of a anywhere 
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between 0.05 to 0.2 appears to provide a reasonable estimate for the susceptibility without 

causing much noise or ghosting artifacts outside the object. Nonetheless, for the sake of 

consistency, we have used an a value of 0.1 for all the results presented in this manuscript. 

To appreciate the distribution of errors we show the phase of a cylinder perpendicular to 

the field and its corresponding susceptibility map in Fig.1a & b respectively. As we can 

see, within the susceptibility maps, the errors can be divided into three regions: a) within 

the object itself, b) errors along the streak artifacts corresponding to the cone of 

singularity in g
-1

reg(k) in k-space, i.e points in the neighborhood of kz=kzo where  | g
-1

(k) | > 

1/a. and c) errors outside these regions. Notice that while the cone of singularity in g
-1

(k) 

is defined in k-space at kz = kzo (i.e., where 2kz
2
 = kx

2
+ ky

2
), the streak artifacts in the 

image domain occur along z
2
 = 2x

2
+2y

2
.  

Table 1:Root Mean Squared errors in susceptibility values, measured within and outside 

a cylinder of 8voxels diameter, for different threshold values a. 

 

Errors outside the cylinder were measured within a concentric annular ring with an inner 

radius = 4 and outer radius = 24 voxels. Also shown is the corresponding % error in 

quantified mean Δχ with respect to an expected 0.450 ppm (the error defined as (0.45 - 

χ)).Errors outside the cylinder decrease with increasing a value where as for the error 

within the cylinder, an a value of 0.15 seems to be optimal. However, in general a 

threshold value of 0.05to 0.2 could be used depending on the contrast needed in the SM 

map. 
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Figure 1: The original phase at TE = 5msec (a), high pass filtered phase (c) and their 

corresponding susceptibility maps (b) and (d) for a cylinder with a diameter = 8 pixels. 

Streak artifacts are clear in both (b) and (d). The arrow in (a) indicates the direction of Bo. 

(ii) Errors outside the object, along the streak artifacts: Along the streak artifacts, (see 

Fig. 2a), the error in the susceptibility map measured in a region of interest the size of the 

vessel (near the boundary of the object) is within -5% of the input susceptibility value in 

voxels close to the boundary of the cylinder and drops off quickly within the next few 

voxels to less than -2% (see insert in Fig. 2a) and then slowly after that to less that -0.25% 
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at the edge of the field of view. Since the errors outside the object scale with the input 

susceptibility value of the vessel, the errors here are quoted as its percentage. However, if 

we observe plots Fig.2c and Fig.2e, it is clear that the error profile along the streak also 

depends on Gibbs ringings. The plots in Fig.2a and b were generated assuming no 

magnitude signal difference between the vessel and the surrounding background region. 

This provides us the minimal Gibbs ringing artifacts (arising only due to phase 

differences between inside and outside the vein). However, practically magnitude signal 

from the veins is usually different from the surrounding tissue, either lower or higher, 

depending on the data acquisition parameters. For example, signal from veins can be 

higher than the parenchyma at shorter echo times and usually at isotropic resolution 

where partial voluming effects are minimal; and venous signal is usually lower than the 

surrounding tissue at longer echo times when there is increased T2* loss (this can also 

happen at shorter echo times in the presence of a exogenous T2* based contrast agent) or 

when there is intra-voxel signal dephasing (due to partial voluming). Both these 

circumstances lead to additional Gibbs ringing contribution from magnitude signal 

differences and lead to slightly different behavior in the susceptibility maps as illustrated 

in Fig.2c and Fig.2e. 

Errors outside the object and the streak artifacts: Outside of these two regions, the 

errors in the susceptibility maps (basically the systematic ‘noise’ generated outside the 

object due to the susceptibility mapping process) is again close to -25% in the immediate 

boundary of the object and drops off rapidly to less than -0.25% for most of the field-of-

view (see Fig. 2b). Again, this error in the immediate neighborhood of the object is 
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further modified by Gibbs ringing due to magnitude signal differences. However, one 

important point to note is that this near vessel error is negative so that when maximum 

intensity projections of the susceptibility maps are taken to display the veins as 

contiguous objects, this error is not visually apparent.  

Figure 2: Susceptibility profile plots illustrating the quantitative nature of artifacts under 

different vessel-background signal conditions. Susceptibility profile plots along the streak 
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artifact (a, c) and along the x-axis (b, d) plotted for the central 64×64 pixels of the 

512×512 image. The insert in (a) shows the profile across the full length of the streak 

artifact. Source phase data for all the plots here was generated from a high resolution 

4096×4096 complex data set containing a magnitude and 2D phase representation of the 

cylinder. For plots in (a) and (b) a magnitude image for the cylinder was simulated in 

which the signal from cylinder and the surrounding background was taken to be the same, 

i.e. 1 arbitrary unit (a.u.). For plots in (c) and (d), a signal of 4 a.u. was assumed inside 

the cylinder and a signal of 1a.u. for the background outside. Conversely, for plots in (e) 

and (f) a signal of 1 a.u. inside the cylinder and 4 a.u. outside the cylinder was assumed in 

the magnitude. The difference in the susceptibility map profiles from (a, b) through (e, f) 

can be clearly seen. This difference in profiles is a direct result of Gibbs ringing that 

arises in the simulated data due to magnitude signal differences between the vessel and 

the background. In general, the errors near the boundary of the object are large but decay 

quickly to zero, away from the object. The gray lines show errors in the susceptibility 

maps from the high-pass filtered phase images (filter size 32×32). The diameter of the 

cylinder considered here is 8 pixels. 

Errors within the cylinder: Fig.3a plots the mean and standard deviation of the 

measured susceptibility values across different radii cylinders and different voxel aspect 

ratios, for an input phase at TE = 5ms. With an isotropic resolution and a vessel diameter 

greater than 8 pixels, the susceptibility is underestimated by roughly 11% (with respect to 

the input Δχ value of 0.45 ppm). For objects smaller than 4 pixels, again the estimated 

susceptibility drops but this time more drastically as the error here depends on partial 

volume effects. For a diameter of two pixels, the susceptibility is already down to two 

thirds of its expected value and after that, it heads rapidly toward zero with the amount of 

signal in the susceptibility map depending on the volume of the vessel occupying the 

pixel. Furthermore, since through plane resolution is often less than in-plane resolution, it 

is interesting to look at the results for different voxel aspect ratios. It is not surprising to 

find that as the slice thickness to vessel diameter ratio increases, the estimates for 

susceptibility get worse due to increasing partial voluming. With a voxel aspect ratio of 
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in-plane to slice thickness of 1:1 or 1:2, the susceptibility is estimated reasonably well 

(Fig.3a), but for an aspect ratio of 1:4, even for an object that is 4 pixels in diameter, the 

estimated susceptibility is beginning to significantly deviate from the actual susceptibility 

value. 

 (iii) Longer echo times can lead to signal loss and aliasing in the phase data. This 

leads to an effective increase in the size of the vessel and hence a reduction in the 

predicted susceptibility. Comparing the TE = 5ms susceptibility data in Fig.3a with the 

TE = 20ms data in Fig.3b, we can see that all the susceptibility values are lower in the 

latter case and this reduction becomes more dramatic as the vessel size decreases. This is 

caused by the phase aliasing that occurs at the longer echo time of 20ms which in turn 

affects the expected diameter of the vessel and the susceptibility. Furthermore, with 

aliasing, the effect of vessel partial voluming due to non-isotropic voxel dimensions 

follows a more drastic trend than that seen at TE 5 ms.  

 

Figure 3: Plots of the measured susceptibility as a function of both diameter of a vessel 

and   the aspect ratio for TE = 5ms (a) and TE = 20ms (b). The 512 × 512 simulation 

(created from the original 4096 × 4096 data) represents a voxel aspect ratio for an in-
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plane resolution to slice thickness of 1:1. The 512 × 256 simulation represents an aspect 

ratio of 1:2 and the 512 × 128 simulation represents an aspect ratio of 1:4. Note that the 

susceptibility values are multiplied by 1000 for display purposes. Errors bars are shown 

for the isotropic case to demonstrate the systematic error. The errors in the 1:1 and 1:2 

aspect ratios are similar and the errors in the 1:4 case are somewhat larger. Mean and 

standard deviation of susceptibility values were measured by zooming objects twice for 

cylinders with diameter 2, three times for a diameter of 1 and four times for diameter of 

0.5 voxels. While no phase aliasing is present for (a), aliasing at TE 20 ms leads to an 

additional effect on the susceptibility quantification in (b). The input susceptibility value 

for all simulations was 0.45 ppm (i.e., 450 in the plot). 

iv) High pass filtering: Fig. 4 shows the effect of phase high-pass filtering on the 

measured susceptibility values within the cylinders of different size. Effects of filter sizes, 

16×16, 32×32 and 64×64 are plotted. As expected, different errors are seen for different 

filter sizes. Generally, the larger the filter size, the greater the quantitative error in the 

susceptibility value. However, in values from very small objects, about 10 voxels across 

or smaller, there is little variation with filter size with error being within -15% for filter 

sizes up to 32×32. Only at the filter size of 64×64, the error increases to -28% for an 

object 10 pixels wide. In fact, at a filter size of 16×16, mean susceptibility values for 

objects up to 20 voxels wide can be quantified with an error less than -12%. As a rule of 

thumb, applying a high-pass filter of a given size, Nf, along a particular direction leads to 

loss of phase information varying over a spatial extent defined by the ratio N/Nf or greater, 

where N is the matrix size in that direction. Thus, filtering out phase from smaller 

structures needs larger filter sizes. It has to be noted here that the values presented here 

will be slightly influenced by the Gibbs ringing introduced due to magnitude signal 

differences between the vessel and the background. This Gibbs ringing effect will have 

lesser influence in a larger objects compared to smaller objects. The gray lines plotted in 
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Fig. 2 show the effect of high-pass filter on the “noise” (errors) outside the object and 

along the streak artifacts. Apart from influencing the susceptibility value inside the 

cylinder, high-pass filtering also causes a proportional change in the error around the 

boundary of the object. In general, it is seen that the susceptibility profile from unfiltered 

phase data, clearly illustrating the effect of loss of phase information. As noted earlier, the 

error at the edge of the vessel is negative so that when MIPs are taken of the veins to 

display them as contiguous objects, this error does not contribute to the final MIPped 

image of the veins. 

 

Figure 4: Plot shows the effect of high-pass filtering on the quantified susceptibility 

values. Results for four filter sizes Nf (8×8, 16×16, 32×32, and 64×64) along with ‘No 

filter’ case are shown here for different object sizes. Error bars are only shown for ‘No 

filter’ case for visual clarity in the plot. Standard deviation measures (i.e error bars) for 

the other curves are also on the same order of magnitude and follow the same trend 

shown here. It is seen that quantitative error in susceptibility values increases with 

increasing filter size. However, for very small objects, typically smaller than 10 voxels 
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across, the error is less than -15% for filter size 32×32 or smaller. Applying a high-pass 

filter of a given size leads to a major loss of phase information in objects that are larger 

than (N/Nf) voxels, where N is the matrix size and Nf is the filter size along a given 

direction. 

v) The discretization errors can lead to improper representation of the object in the 

phase images because of partial volume effects. This explains in part the errors seen in 

Fig.3 as object size decreases. In principle, if the measured diameter of the object (dm) is 

compared to the actual input value (da) and used to predict the area change, then we can 

predict the magnetic moment rather than the susceptibility. Since the magnet moment is 

related to the cross sectional area of the vessel times the susceptibility, the corrected value, 

Δχactual, can be calculated from Δχmeasured (dm/da)
2
.  

vi) The systematic errors described above are distinct from the effects of thermal 

noise. There we see that an SNR of 2.5% in the magnitude image leads to a thermal noise 

or error in the phase image of 0.025 radians. If the inverse filter did not affect the phase 

noise at all, the noise error in the susceptibility map would be expected to be around 

0.0063ppm. However, the inverse filter amplifies the noise near the streak artifacts and 

this leads to noise outside the magnetic source (the cylinder) of 0.035 ppm in the 

susceptibility map in regions outside the streak artifacts (Fig.5).  This systematic error 

from thermal noise is independent of the object susceptibility value and hence errors are 

quoted in ppm rather than as percentage of the object susceptibility. 
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Figure 5: Thermal noise added to the simulated phase of a cylinder with diameter = 8 

voxels, oriented perpendicular the main magnetic field (a). Following parameters were 

assumed: susceptibility = 0.45 ppm, Bo = 3T, and TE = 5 ms. Gaussian noise was added 

to the real and imaginary channels such that magnitude SNR was 40:1 resulting in 

thermal noise in the phase image of 0.025 radians. Corresponding susceptibility map (b). 

The SNR in this image is measured outside the streak artifacts. The noise in these areas 

increases to 0.035ppm (instead of the expected 0.0063ppm corresponding to a phase 

standard deviation of 0.025 radians) independent of the susceptibility of the cylinder. The 

susceptibility value inside the cylinder is 0.42 +/- 0.067ppm. High pass filtered phase 

image (64 × 64 central filter) (c) and the corresponding susceptibility map (d). The 
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susceptibility value inside the cylinder is now increased to 0.46 +/- 0.075 ppm. This is 

caused by the high pass filter effect on the phase. Note there is a negative error in 

susceptibility around the cylinder as seen in Figs 1 and 2.  

Susceptibility Maps of the in vivo Dataset 

In the following material, we review the results of the implementation of the 

susceptibility mapping process as applied to an in vivo data set. First, we show how a 

vessel changes its phase behavior as it courses through the brain making different angles 

to the main magnetic field (Fig.6a). Using the conventional SWI processing here would 

enhance the veins parallel to the field but would incorrectly enhance the outside of the 

veins perpendicular to the field. After the susceptibility mapping process (Fig.6b), the 

vein appears as one contiguous object. A second example of this is given in the simpler 

in-plane case where larger veins show a clear dipole effect (Fig.7a). Again the 

susceptibility map shows a bright vessel along the entire path (Fig.7b), and the negative 

Gibbs ringing effect can also be seen. 
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Figure 6: A sagittal cut demonstrating the change in phase at TE = 19.2ms, as a vein 

courses through the brain (a). For proper visualization of the whole vessel section, phase 

from 2 saggital slices (i.e., total thickness 1mm) was combined. In the phase image, the 

dipole effect is clearly seen with the vessel appearing dark in the phase image when 

perpendicular to the field and bright when parallel to the field. The distance from the top 

of the vessel (upper arrow) to the bottom of the vessel (lower arrow) is 7 slices (3.5mm). 

The fact that the phase is clearly seen in one slice with the correct sign suggests that the 

vein is on the order of one or two pixels in diameter (i.e., 0.5mm to 1mm). The same vein 

shown from the corresponding susceptibility map (b). Clearly, most of the dipolar phase 

around the vessel is removed and susceptibility of the vessel is highlighted throughout, 

independent of its orientation with the main magnetic field.  
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a  b  

Figure 7: High pass filtered phase image showing the dipole effects for the TE = 19.2ms 

case (a). Corresponding susceptibility map (b). Note there is a small negative band at the 

edge of the major vessels as also seen in the simulations, but overall the vessels are 

clearly highlighted without a varying dipole effect obscuring vascular information.  

Since we are interested in displaying the susceptibility map of the veins, we present 

next an example set of susceptibility maps to compare with the original phase data. In 

Fig.8a, we show an MIP of the phase (from a right handed system) with 0.5mm isotropic 

resolution with an echo time of 19.2ms. The vessels are clearly shown with reduced 

intensity. The dipolar effect with the opposite polarity in phase can be seen on the outside 

of the vessels. In Figs.8b-8d, we show the corresponding susceptibility maps for TEs of 

11.6ms, 15ms and 19.2ms respectively. From the venous vessel perspective, these images 

from different echo times are almost identical to each other.  
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a b  

c d  

Figure 8:mIP (minimum Intensity Projection) over 16mm (32 slices) of the phase images 

collected at TE = 15ms (a) along with the corresponding susceptibility maps from TE = 

11ms (b), TE = 15ms (c) and TE = 19.2ms (d) phase data. Phase data were filtered with a 

64 × 64 central filter. The image in a represents minimum intensity projection (mIP) over 

16mm for a right handed system and all the corresponding susceptibility maps are 

MIPped over the same 16mm.   
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There are a few key observations to be made here. First, the image with the shortest 

echo time is the most noisy as it has much less phase information i.e., less phase-SNR. 

The phase-SNR here refers to 
phase

TEB



 
 where, γ is the gyromagnetic ratio, ΔB is the 

field perturbation and σphase is the phase standard deviation for a given imaging 

experiment which relates to magnitude SNR as σphase=1/SNRmagnitude. Second, the contrast 

between gray matter and white matter improves at longer echo times. Third, the smaller 

vessels become more visible and better defined at longer echo times because there is more 

phase information available outside the vessel. Quantitatively speaking, all of the above 

points are related to the initial SNR in the phase image (unlike magnitude SNR, phase 

SNR actually increases initially with increasing TE, so long as T2* loss is not significant 

and there is no phase aliasing). The higher this phase SNR, the better the corresponding 

susceptibility map image. Fourth, the heavy air/tissue interface artifacts present in normal 

SWI data are also present in the susceptibility map data. This can be seen from the very 

bright area in the right frontal part of the brain which could have been manually removed, 

but it is left in the figure to demonstrate this potential problem. Fifth, the original phase 

MIP shown in Fig.8a sometimes shows small vessels better than the susceptibility map 

data and sometimes the susceptibility map data shows better images of the vessels.  

To validate that the results for the vessels were almost independent of TE, we 

measured the susceptibility in three large veins (Table 2). The largest vein had a 

susceptibility close to the normal expected value for the venous blood’s susceptibility of 

0.45ppm. For display purposes, the susceptibilities are scaled by 1000, so the numbers 
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quoted in the figures and tables should be on the order of 450. A susceptibility of 

0.45ppm corresponds to an oxygen saturation of 70% when assuming a hematocrit of 

0.45 and a susceptibility difference between fully oxygenated and deoxygenated blood, 

χdo, of 2.26ppm is 0.45ppm in SI units (13). The mean oxygen saturation value of 70% 

measured from a large vein (Vein of Galen) agrees with many literatures. The 

susceptibility value of the thalmostriate vein is around 0.3ppm which may be caused by 

the partial volume effects. For smaller vessels, partial volume effects will lead to the 

underestimated susceptibility values. According to Eq. 7 in Chapter 2, oxygen saturation 

is inversely proportional to the susceptibility; therefore, underestimated susceptibility 

value leads to an overestimate of the venous oxygen saturation. 

The mean values for the different echo times lay within ten percent of the means 

despite the large variance. The large variance for each individual measurement was 

caused, in part, by a broad distribution of values since the region of interest was drawn to 

cover the entire vessel. When only the central part of the vessel was used, the standard 

deviations were much smaller.  

Table 2: Susceptibility values of left and right thalmostriate vein and the vein of Galen 

TE\Vein V1 V2 V3 

11.6 ms 278/78 289/62 435/70 

15 ms 331/98 303/85 461/163 

19.2 ms 323/90 280/64 434/119 

Mean and standard deviation for the susceptibility values of three veins (in ppm × 1000) 

chosen from the 0.5 × 0.5 × 0.5 isotropic voxel data shown in Fig.8. V1 is for the left 
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thalmostriate vein, V2 for the right and V3 for the vein of Galen. There is not much 

variation of susceptibility value with echo time, as would be theoretically expected. 

Practically these isotropic scans take a long time to collect and have limited coverage. 

If parallel imaging is used it would be possible to reduce the scan times by a factor of 2 to 

4. Therefore, the next step is to see if reasonable susceptibility maps can be derived from 

slices that are 1mm thick (Fig.9a) or 2mm thick (Fig.9b) as are acquired today in most 

SWI applications.  Fig.9 shows that the thicker slices have better SNR but poorer contrast 

for displaying the veins. Although a few vessels have begun to become less defined with 

1mm thick slices, there is a much greater loss of small vessel information in the 2mm 

slices. However, the thicker the slice, the better the gray-matter/white-matter contrast. For 

the vein of Galen, the susceptibility values remain essentially unchanged close the 

expected value of 0.45 ppm. As shown in Fig.3, as the slice thickness increases (i.e., the 

aspect ratio changes from 1:1, to 1:2 to 1:4) relative to the cylindrical objects, a reduction 

in the effective susceptibility is expected. For the thicker slices, the peak susceptibility 

drops to 0.41ppm for 1mm thick slices, and to 0.30 ppm for the 2mm thick slices showing 

that the partial volume effect is degrading the contrast in the images.  
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a b  

Figure 9: Thicker initial slices of 1mm (a) or 2mm (b), projected (MIP) over the same 

thickness as in Fig. 8, show the pros and cons of susceptibility mapping for lower 

resolution images. The thicker slice images were created from the original 0.5mm 

isotropic data so there is no misregistration between the images in Fig.8 and here. Note 

that the thicker the slice the better the SNR (especially for the gray matter and white 

matter) but the less clearly small vessels are seen.  This is because the phase information 

in the voxel is now corrupted by integration of the complex signal across the slice. 

As another example, we compare the susceptibility maps before and after ingestion of 

200 mg caffeine (NoDoz, Bristol-Myers Squibb, New York, NY) to examine the changes 

in oxygenation levels in the veins and to see if any obvious changes are visible in other 

parts of the brain such as the basal ganglia. It has been suggested that iron content in the 

basal ganglia are revealed by SWI data or susceptibility map may have some contribution 

from the BOLD (blood oxygen level-dependent) effect and if that is the case there should 

be some change in oxygen saturation after ingestion of caffeine. Caffeine will affect both 

blood flow and neural activity. Caffeine is a member of the methylxanthine family of 
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drugs that are adenosine antagonists. Vasoconstriction due to caffeine is thought to 

primarily reflect the antagonism of adenosine A2 receptors. As binding of adenosine to 

A2 receptors is associated with vasodilation, caffeine-related antagonism may reduce the 

ability of adenosine to contribute to functional increases in cerebral blood flow (CBF). 

Since brain activity remains constant or even increases, the decrease of CBF in the 

presence of caffeine should thus increase the oxygen extraction fraction (OEF) in order to 

maintain CMRO2 (20). The increased OEF leads to the increase of the concentration of 

deoxyhemoglobin in the blood; therefore, we expect to see higher susceptibility values in 

post caffeine administration case. Fig. 10 shows the projection of the data over 4 slices (8 

mm), for both before and after ingestion of 200 mg of caffeine. There is a clear increase 

in the susceptibility of venous blood, as can be seen from the brighter venous vessels in 

Fig. 10d, indicating an increase in deoxyhemoglobin levels post caffeine administration. 

The susceptibility values in the thalamostriate vein increased from 0.121 ± 0.007 to 0.166 

± 0.008 ppm while that in the smaller veins increased from 0.095 ± 0.006 to 0.122 ± 

0.007 ppm (Fig. 11). Fig. 10c and 10d indicate the vessels from which measurements 

were made. For the thalamostriate vein, the susceptibility value increases 37% which 

corresponds to venous oxygen saturation decreased 16% (according to Eq. [7] in Chapter 

2). No change in basal ganglia iron content was measured. 
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Figure 10: Minimum intensity projections (mIP) of SWI images pre (a) and post (b) 

caffeine administration (8mm thick sections). Corresponding susceptibility maps pre(c) 

and post (d) caffeine. A thalamostraiate vein and a small vein are shown within the circles. 

It is in these regions where the oxygen saturation measurements were made. Note that 

images (c) and (d) are set to the same intensity-window levels to have a fair comparison. 
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We can clearly see the overall enhancement of the venous structures in the post-caffeine 

image (d). Similarly, window levels for images (a) and (b) are also set at the same values 

for appropriate visual comparison. 

 

Figure 11: Histogram of the susceptibility in the thalamostriate vein showing a clear shift 

to the right post caffeine administration. The susceptibility values are 1000 times the 

actual value (so a value of 200 represents 0.2 ppm in SI units). The susceptibility value 

increases 37% which is corresponding to venous oxygen saturation decreased 16%. 

3.4 Discussion 

Effects of Inverse Filter Regularization 

The basic concept of using a simple Fourier transformation method to predict the 

magnetic field distribution from a given susceptibility distribution was described first by 

Deville at al (11). Since then a number of papers have used this simple k-space filter to 

predict the magnetic field perturbation in MR (4-7). However, the inverse problem, i.e., 

obtaining the source susceptibility distribution from magnetic field measurements, is 

more complicated. Provided that the shape/geometry of the susceptibility source is known, 

this problem can also be tackled as a forward problem approach by fitting the predicted 
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field to the measured field (6, 7). Another way to solve this problem is by taking the 

direct inverse of the k-space kernel function. However, this inverse filter has a singularity 

at all points that satisfy the equation 1/3 = kz
2
/k

2
, and only regularization methods (8) or 

multiple acquisition methods (9) have heretofore been used to remove most of these 

artifacts.  

In our approach, we have regularized the signal based on the proximity of the sampled 

point in k-space to the cone of singularity. The closer a k-space point is to the point of 

singularity, the more rapidly it is set to zero. This creates a smooth approach to zero from 

either side of the singularity where the function jumps rapidly from very small numbers to 

very large numbers. This appears to work fairly well in simulations giving systematic 

errors that depend on the object size. The signal-to-noise ratio in the final susceptibility 

maps appears to be reasonably well behaved with an error of 7.8% for 0.45 ppm (i.e., 

0.035ppm) at 3T and TE = 5ms (assuming an initial 40:1 SNR in the magnitude images). 

As susceptibility increases, the effective SNR for the susceptibility map data will also 

increase. The SNR as a function of echo time is a bit more complicated. If there were no 

T2* effects and no phase aliasing, then the SNR would be expected to vary linearly with 

phase, i.e. increase with phase. However, since the signal decays according to exp(-

TE/T2*), it is well known that this gives an optimal echo time of TE = T2*. Practically, 

images acquired at longer echo times (such as TE 25 ms at 3T, which is roughly the T2* 

value for normal venous blood) suffer from serious problems associated with signal loss 

and aliasing at the edge of the vein and also at air/tissue interfaces.  
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Susceptibility maps from a human brain data set with different threshold values are 

shown in Fig.12. The ‘noise’ outside the brain in the SMs is significantly decreased with 

increasing threshold value, a. Table 3 presents mean and standard deviation of 

susceptibility values for three different sized veins with different threshold values. 

Quantitatively, the smaller the threshold value, the more accurate the susceptibility values. 

However, smaller threshold values also have more serious ‘noise’/artifacts (see Table 1). 

Therefore, when we choose a threshold value, we must compromise between the 

susceptibility values and artifacts/noise to get an acceptable susceptibility map. The 

threshold values between 0.05 to 0.2 seem to provide good choices depending on the 

application. If a more accurate estimate of oxygen saturation is needed, the lower value of 

0.1 or 0.15 might be best, while, based on our experience, if it is overall CNR and the 

ability to evaluate the gray matter and white matter contrast in the susceptibility map, 

then 0.2 might be best, as suggested by Fig.12. 

a  b  c  0.02 0.05 0.1 
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d e  

Figure 12: Susceptibility maps from the 0.5 × 0.5 × 0.5 isotropic voxel human brain data 

with threshold value (a) 0.02, (b) 0.05, (c) 0.1, (d) 0.2 and (e) 0.3. The ‘ghosting’ artifact 

is seen to reduce with increasing a.  

Table 3: Susceptibility values for different threshold values 

Vein\Threshold a = 0.02 a = 0.05 a = 0.1 a = 0.2 a = 0.3 

V1 321 / 95 299 / 82 271 / 63 225 / 53 174 / 48 

V2 324 / 94 315 / 87 289 / 75 227 / 61 177 / 41 

V3 457 / 98 446 / 92 418 / 77 358 / 52 282 / 43 

Mean and standard deviation of susceptibility values (in ppm × 1000) measured from the same 

three veins as in Table2, obtained for different threshold values a = 0.02, 0.05, 0.1, 0.2 and 0.3. 

Phase data from TE=11.6ms was used for susceptibility mapping. Increasing a values lead to 

more and more under estimation of the susceptibilities, in agreement with results in Table 1.  

Effects of Echo Time on the Susceptibility Maps 

A major feature of the susceptibility map is its theoretical independence of susceptibility 

to the choice of echo time. This is indicated in Fig. 8 and Table 2. If the magnitude SNR 

and the phase information in the short echo time images were good enough, one would 

not need to use the long echo times that we do today for SWI for example. If a 

susceptibility map could be obtained from an echo time of 11ms and a repeat time of 

15ms, it would be a much more efficient sequence and one which could also be used as an 

0.02 

0.2 0.3 



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 69 - 
 

MRA sequence as well. Nevertheless, as also shown in Fig.8, there is indeed a 

susceptibility map-SNR (SM-SNR) dependence with echo time. We expect the SM-SNR 

to increase for TE approaching T2*. However, the effect of echo time is complicated 

since longer echo times will lead to aliasing around the vein. This aliasing coupled with 

partial volume effects creates a non-physical phase at the edge of the object. (By non-

physical, we mean that there is no geometry or susceptibility distribution that can act as a 

physical source for this type of phase and therefore the inverse process will produce 

artifacts.) The expected dipolar phase without aliasing occurs outside this area and 

because of this the susceptibility map will have two parts to it. The first part is the correct 

reconstruction of a widened object based on the fact that the vessels exhibit the expected 

dipole behavior. The second part will be the systematic artifacts associated with aliasing 

and non-physical phase effects. These will lead to systematic noise and ghosting (or 

structural aliasing) associated with non-physical phases in the susceptibility maps. 

However, if the area in question has complete signal dephasing, setting the phase in this 

region to zero will give a magnetic moment close to the correct value in the widened 

object without much concern as to this non-perfect choice of central phase. In fact, that is 

why these images tend to reconstruct quite well despite all the potential problems. 

However, in closing this discussion, it should be realized that this is also the reason why 

we do not at this point try and use the quantified results of susceptibility maps to extract 

oxygen saturation. Finally, ghosting (or structural aliasing) remains even with no noise, 

creating a negative ring around the vessel. Larger objects suffer more from this error, and 
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it is for this reason that objects larger than 16 pixels tend to have a nearly 10% systematic 

drop than the expected susceptibility.  

Methods to Improve Quality of Susceptibility Map 

Regularization is not the only means necessary to reconstruct good quality susceptibility 

maps. There are also key signal processing and image reconstruction concepts that need 

to be applied to the data to remove other types of artifacts. The first is a more finely 

sampled k-space. This avoids serious ghosting in the reconstructed susceptibility map. 

The second is spatial resolution high enough to allow for as many pixels as possible to 

give useful phase information outside the source. The third is echo time long enough for 

phase development so as to achieve sufficient phase SNR. The use of all these methods 

has led to the high quality images presented in this chapter. In principle, one could 

actually collect higher resolution data in the read direction at the possible expense of 

signal-to-noise without an increase in acquisition time, while it would increase data 

acquisition time in either the phase or partition encoding direction. However, zero filling 

in the image domain to interpolate in k-space seems to suffice to remove much of the 

Gibbs ringing effects. 

Moreover, reducing the presence of noise in the phase images is crucial in obtaining a 

high quality susceptibility map. Not only should the noisy pixels from the magnitude 

image be thresholded, but also areas of wildly varying phase coming from, for example, 

the skull where out-of-phase fat can cause a serious problem. Setting the phase inside 

spherical or cylindrical regions to be a constant also helps avoid phase noise effects. 
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Areas of constant phase jumps will also generate a new type of structural ghosting artifact 

that we refer to as the inverse dipole rippling effect. That is, if the phase appears as a 

constant without the expected concomitant external phase behavior, then this rippling 

effect emanating from the source will permeate the image in a non-local fashion. A 

similar effect can be caused by remnant phases that survive the high pass filter. This 

leaves a non-physical phase at the edge of the brain. This could be tackled either by 

simply eliminating that tissue (and hence not obtaining useful susceptibility images in that 

part of the brain) or by using the forward model from the magnitude geometry constraints 

in an attempt to remove air/tissue interface phase effects (14). The better that this job is 

done, the less errors will permeate other parts of the brain from the rippling/ghosting 

effects described above. 

Partial volume effects can cause a complete loss of phase information when the vein 

is much smaller than the slice thickness (13). For example, an aspect ratio of 1:4 appears 

to give the best cancellation effects and turns the phase inside small vessels from positive 

to negative for a right handed system. This leads to the issue of the reduced measured 

susceptibilities. There are a few causes for the reduced values: partial volume effects, 

phase aliasing and loss of signal due to spin dephasing around the magnetic source. In 

each of these cases, it is necessary to use the estimated size of the source larger than its 

actual value. For veins (cylinders), this means a reduction in the susceptibility by the ratio 

of the original area to the enlarged area, and for spheres a reduction in the susceptibility 

by the ratio of the original volume to the enlarged volume. Again, forcing the phase 

inside the object to be zero has little impact on the actual estimate for the magnetic 
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moment (which is directly related to the product of the area times susceptibility for the 

veins or the volume times the susceptibility for a spherical microbleed for example). On 

the other hand, the partial volume effect can lead to smoothing effects. Although we do 

see the negative ring around the vessels in the in vivo data, the expected large dip in the 

center of the vessels is to a large degree absent.  

The choice of how many slices to process to create a venous susceptibility map 

depends not so much on regional and global structural variations (as it does if one is 

estimating the effects of air/tissue interfaces (14)), but rather on how many slices the 

vessel phase appears in. This means that one can reconstruct the susceptibility map image 

with an arbitrary number of the acquired slices if one is interested only in local vessels 

and if this process removes more noise, it can lead to further improvement in the 

susceptibility maps.  

Susceptibility mapping offers a means to study BOLD effects in an entirely different 

light. Although phase has been used in BOLD fMRI experiments, susceptibility values 

can be used to quantify changes in oxygenation levels and then infer changes in flow as 

well (15). In Fig. 10, there is a clear increase in signal after ingestion of caffeine 

indicating an increase in deoxyhemoglobin levels. Measurements in other smaller veins 

together show an overall 30 to 40% increase in the susceptibility value after caffeine 

administration. This increase corresponds to a reduction in blood flow of close to 30% 

which is larger than what is usually observed for caffeine. This particular person was a 

non-coffee drinker and so the large amount of caffeine may have had an abnormally large 

effect. In this particular subject, no change in basal ganglia iron content was measured pre 
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and post caffeine. Some small shifts in GM iron content could be found. These 

measurements may eventually help separate out the fractional contributions to phase from 

ferritin and deoxyhemoglobin.  

In conclusion, we have shown that despite the problems in obtaining consistent 

susceptibility values for all vessels, it is possible to remove phase variations caused by 

major vessels in SWI high pass filtered phase images. This should be useful in creating 

SWI processed data without the associated non-local, long distance dipole effects. In the 

future, it may be possible to use this approach to evaluate quantitatively microbleeds and 

calcifications (16) and to map oxygen saturation from veins throughout the brain (rather 

than with the single vessel approach proposed initially in (17) and used more extensively 

in recent years (18, 19)). Finally, the images shown here present a new form of MR 

venography and can serve as a quantitative means to distinguish potential oxygen 

saturation abnormalities in SWI data. Future applications of susceptibility mapping may 

include iron measurements in tissue. 
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EM. Improving Susceptibility Mapping Using a Threshold-Based K-space/Image Domain Iterative Fourier Transform 

Reconstruction Approach, Magn Reson Med 2012; In Press. 



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 77 - 
 

4.1 Introduction 

Susceptibility weighted imaging (SWI) using phase information has become an important 

clinical tool [1-3]. However, the use of phase information itself has stimulated great 

interest both as a source of contrast [4-6] and a source for producing susceptibility maps 

(SM) [7-24]. The impetus for solving the inverse problem from magnetic field 

perturbation came from the work described in Deville et al. [25]. This was noted by 

Marques and Bowtell in 2005 [26]. Salomir et al. [27] were the first group to utilize this 

concept in MRI.  Unfortunately, this inverse process is ill-posed and requires a 

regularization procedure to estimate the susceptibility map. There are a variety of 

approaches to tackle this problem [7-24]. One unique method uses a multiple orientation 

data acquisition to remove the singularities [17]. Constrained regularizations [14,20,22,23] 

have shown good overall results, but they require longer reconstruction times and 

assumptions about the contrast in or near the object to be detected. Threshold-based, 

single-orientation regularization methods (TBSO) [11,15,18,24] provide the least 

acquisition time and the shortest computational time to calculate SM. However, their 

calculated SMs lead to underestimated susceptibility values (Δχ) and display severe 

streaking artifacts especially around the brain areas with large Δχ, such as veins.  

Based on TBSO approaches, we propose an iterative method to overcome the 

singularities in the inverse filter and produce improved accuracy for susceptibility 

mapping. In this approach, we iteratively replace k-space values associated with the SM, 

χ(k), near the singularities to obtain an almost artifact free SM, χ(r). Values used for 

substitutions are estimated using structural information from the masked version of χ(r). 
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Simulations using two dimensional cylinders and full 3D models of the brain were 

performed to examine the efficacy of this iterative approach. High resolution human data 

are also evaluated. 

4.2 Materials and Methods 

Briefly, the expression for the susceptibility distribution [26,27] derived from the phase 

data can be written as (for a right handed system[28]):  

χ(r) = FT
-1
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and Φ(r) is the phase distribution, TE is the echo time, γ is the gyromagnetic ratio for 

hydrogen protons, B0 is the main field strength, kx, ky and kz are coordinates in k-space, 

and g(k) is the Green’s function or filter. Clearly, the analytic inverse filter g
-1

(k) = 1/g(k), 

is ill-posed when g(k) is equal or close to zero, i.e., points on or near two conical surfaces 

in k-space at the magic angles of 54.7° and 125.3° from the Bo axis. This ill-posedness 

leads to severe artifacts (including severe streaking) in χ(k)  and noise amplification [29]. 

Thus, for a proper pixel-by-pixel reconstruction of χ(r), recovering the correct values of 

χ(k) near the region of singularities is critical. 

K-space Iterative Approach 
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If the shapes of the structures of interest are known, then one can use this information in 

the SM to create a more accurate k-space of said SM in the conical region. The structure 

of the vessels is obtained directly from the first pass susceptibility map χi=0(r). The 

detailed steps of the iterative method are discussed below and shown in Fig. 1.  

Step-1: An initial estimate of the SM, χi=0(r), is obtained by applying a regularized 

version of the threshold-based inverse filter, greg
-1

(k) [18], in Eq.[1] using the suggested 

threshold value, thr=0.1. The subscript “i” denotes the SM after the i
th

 iteration (“i=0” 

denotes the initial step before doing the iterative method and i=1 for the first iteration).  

Step-2: The geometry of the structures of interest is extracted from χi=0(r) using a binary 

vessel mask, i.e. outside the veins, the signal in the mask is set to zero, and inside it is set 

to unity. Since streaking artifacts associated with veins in the SM are usually outside the 

vessels, after multiplying the  χi(r) map by the mask, little streaking remains in the SM. 

This leads to  χvm, i(r) as shown in part (b) of Fig.1. Vessel mask generation will be 

addressed in the next section. 

Step-3: χvm, i(k) is obtained by Fourier transformation of  χvm, i(r) (part (c) in Fig. 1).  

Step-4: The pre-defined ill-posed region of k-space in χvm, i(k) is extracted (part (d) in Fig. 

1). These extracted k-space data are denoted by  χvm, cone, i(k). The size of χvm, cone, i(k) is 

decided by a threshold value, a, which is assigned to g(k). For the matrix size 

512×512×512, the percentages of cone region in k-space for a given a, are 2.4% (a=0.01), 

24.1% (a=0.1), 47.1% (a=0.2) and 70.6% (a=0.3), respectively. As can be seen, when a 

increases, the size of χvm, cone, i(k) increases too. 
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Step-5: Data from  χvm, cone, i(k) and  χi=0(k) (part (e) in Fig. 1) are merged. This means 

part of χi=0(k) has been replaced by  χvm, cone, i(k). The merged data are denoted by  χ'merged, 

i(k) (part (f) in Fig. 1).  

Step-6: Inverse Fourier transformation of  χ'merged, i(k) gives the improved SM,  χi+1(r) 

(part (g) in Fig. 1).  

Step-7:χi(r) in step-1 is replaced by χi+1(r) from step-6 and the algorithm is repeated  

until 

2( ( ) ( )) /
1

r r N
i i

                           [3] 

where N is the number of pixels in χi(r) and ε is the tolerance value chosen here to be 

0.004ppm.  

 

Figure 1: Illustration of the iterative reconstruction algorithm to obtain artifact free χ(r) 

maps.  
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Binary Vessel Mask Generation 

The binary vessel mask was generated using thresholding from the  χ(r) map itself. The 

detailed steps are discussed below and shown in Fig. 2.  

Step-1: A threshold, th1, is applied to χi=0(r) to create an initial binary vessel mask, M0. 

The pixels whose susceptibility values are lower than th1 will be set to zero while those 

greater than or equal to th1will be set to unity. In this study, a relatively low susceptibility 

of 0.07 ppm is used for th1 to capture most vessels. However, doing this inevitably 

includes many other brain structures in M0.   

Step-2: Morphological operation i.e. closing operation is performed to fill in holes in M0 

to generate an updated mask M1.  

Step-3: A median filter is applied to remove noise in M1 and create M2. 

Step-4: False positive data points from M2 are removed as following: First, the χ(r) map 

is Mipped over 5 slices centered about the slice of interest to better obtain contiguous 

vessel information, as seen in χMIP(r). Second, another threshold, th2 = 0.25ppm, is 

performed on χMIP(r) to create a newχMIP_vm(r) and binary mask MP, which only contains 

vessels. 0.25 ppm was chosen to isolate the major vessels in the MIP image. Third, each 

slice from M2 is compared with MP on a pixel by pixel basis to create M3. If a data point 

from M2 does not appear onMP, this data point will be treated as a false positive and 

removed from M2. This process can be equally well applied to extract other tissues by 

choosing appropriate threshold values, th1and th2.  
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Figure 2: Illustration of the binary vessel mask generation process.  

2D Cylinder Simulations 

Simulation of a two dimensional cylinder and its induced phase was started on a 8192 × 

8192 matrix. A lower resolution complex image was obtained by taking the Fourier 

transform of this matrix and applying an inverse Fourier transform of the central 512 × 

512 matrix in k-space. This procedure is to simulate Gibbs ringing effects caused by the 

finite sampling which we usually see in the actual images. Gibbs ringing also comes from 

discontinuities in the magnitude image. To avoid this form of Gibbs ringing, we used a 

magnitude image with a uniform signal of unity. Cylinders with diameters 32, 64, 128, 

256, 512, and 1024 were simulated on 8192 x 8192 matrices and their effective diameters 

were 2, 4, 8, 16, 32, and 64 on 512 × 512 matrices. All phase simulations were using a 
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forward method [8,26,27,32] assumed Bo= 3T, Δχ =0.45 ppm in SI units, TE = 5 ms, and 

the cylinder perpendicular to the main magnetic field. 0.45ppm is the susceptibility value 

for venous blood when the hematocrit (Hct) = 0.44, Δχdo = 4π·0.27ppm [30] and the 

oxygen saturation level = 70%, where Δχdo is the susceptibility difference between fully 

deoxygenated and fully oxygenated blood [31]. A relatively small echo time was chosen 

to avoid phase aliasing that can affect the estimated susceptibility values.  

Selection of a TBSO Method to Generate the χi=0(r) Map 

Threshold based single-orientation (TBSO) methods [11, 15, 18, 24] use a truncated g(k) 

to solve the singularity problem in the inverse filter g
-1

(k) when g(k) is less than a 

predetermined threshold value, thr. When g(k) <thr, g
-1

(k) is either set to zero [11, 24]; or 

to 1/thr [15]; or to set g
-1

(k) = 1/thr first and then bringing  g
-1

(k) smoothly to zero as k 

approaches kzo. This smoothing is accomplished by multiplying g
-1

(k) by α
2
(kz) withα(kz) 

= (kz-kzo) / | kzthr-kzo | where kz is the z component of that particular point in k-space, kzo is 

the point at which the function g
-1

(k) becomes undefined, and kzthr is the kz coordinate 

value where |g(k)| = thr [18].  

SMs using methods [11,15,18] were calculated based on Eq. 1 using the 2D cylindrical 

model. Equation 1 can be used to calculate the SM for the simulated 2D cylinder model 

perpendicular to the main field since the 2D perpendicular model is a special case of the 

3D model with 1 slice [10]. Streaking artifacts are obvious in all three SMs (figures are 

not shown). The calculated mean susceptibility values inside the cylinder are around 

0.40±0.01ppm for all SMs. The background noise levels, (i.e., standard deviation of the 
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susceptibility values measured from a region outside the streaking artifact in SM using ref 

[18] are around 1/2 to 2/3 of the other two using ref [11,15] using thr = 0.06, 0.07 and 0.1, 

which are the optimal threshold values suggested in [11, 12, 18]. Given this, the method 

in [18] was chosen to generate a χi=0(r) map.  

Finding an Optimal Threshold Value 

To find the optimal threshold, a series of χ(r) maps were reconstructed by the iterative 

method using threshold value a = 0.01, 0.03, 0.07, 0.1, 0.15, 0.2, 0.25 and 0.3. The larger 

this threshold, the closer χ(r) will be to χvm(r). The optimal threshold value was found by 

comparing the accuracy of the estimated susceptibility values as well as the effects on 

reducing streaking artifacts in the reconstructed χ(r) maps. To study the effect of noise in 

χ(r) maps due to the noise in phase images, complex datasets for cylinders of diameter 2, 

4, 8, 32 voxels, respectively, were simulated with Gaussian noise added to both real and 

imaginary channels. Noise was added in the complex images to simulate an SNRmagnitude 

of 40:1, 20:1, 10:1 and 5:1 in the magnitude images. Since σphase = 1/SNRmagnitude, this 

corresponds to σphase = 0.025, 0.05, 0.1 and 0.2 radians.  

To estimate the improvement in the SM by the iterative method, we used a root mean 

squared error (RMSE) to measure streaking artifacts outside the cylinder. Background 

noise in the SM is measured in a region away from all major sources of streaking artifacts 

to compare to the noise measured in the phase image (i.e., so we can correlate noise in the 

phase with the expected noise enhancement from the inversion process).  

Effect of High-Pass Filter 
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The effect of high-pass (HP) filtering the phase data on the χ(r) map generated by the 

iterative method was also studied. Phase images of a cylindrical geometry with diameters 

of 2, 4, 8, 16, 32, and 64 voxels were simulated. Homodyne HP filters [33] with a 2D 

hanning filter (full width at half-maximum, FWHM = 4, 8, 16, and 32 pixels) were 

applied on these phase images in both in-plane directions. SM reconstructions were 

stopped based on the criteria in step 7 of the iterative process.  

Three Dimensional Brain Model Simulations 

To address the potential of the iterative technique to improve SM of general structures 

such as the basal ganglia, a 3D model of the brain was created including the: red nucleus 

(RN), substantia nigra (SN), crus cerebri (CC), thalamus (TH), caudate nucleus (CN), 

putamen (PUT), globus pallidus (GP), grey matter (GM), white matter (WM), cerebro-

spinal fluid (CSF) and the major vessels. Susceptibility values in parts per million (ppm) 

for each structure were taken from the literature review [12] and from measuring the 

mean susceptibility value in a particular region from SMs using ref. [18] from real human 

data: RN = 0.13, SN = 0.16, CC = -0.03, TH = 0.01, CN = 0.06, PUT = 0.09, GP = 0.18, 

vessels = 0.45, GM = 0.02, CSF = -0.014 and WM=0. All structures were set inside a 

512×512×256 matrix of zeros. The phase of 3D brain model was created directly 

applying the forward method [8,26,27,32] to the 3D brain model with different 

susceptibility distributions using imaging parameters: TE = 5ms and B0 = 3T. A 

comparison between the phase maps from this brain model and a real data set with the 

imaging parameters: B0=3T and TE=18ms is shown in Fig. 3. 
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Figure 3: a) A transverse view of the 3D brain model. b) The simulated phase map from 

the model using parameters: Bo=3T and TE=18ms which are consistent with imaging 

parameters in the real data c). Images b) and c) have the same window level setting.  

In Vivo MR Data Collection and Processing 

A standard high-resolution 3D gradient echo SWI sequence was used for data acquisition. 

A transverse 0.5 mm isotropic resolution brain dataset was collected at 3T from a 23-

year-old healthy volunteer. The sequence parameters were: TR = 26 ms, flip angle = 15
o
, 

read bandwidth = 121 Hz/pixel, TE = 14.3 ms, 192 slices, and a matrix size of 512 × 368. 

To reconstruct  χi=0(r) with minimal artifacts, the following steps were carried out:  

1) The unwanted background phase variations were removed using either: a) a homodyne 

HP filter (FWHM = 16 pixels) [33] or b) Prelude in FSL [34] to unwrap the phase, 

followed by the process of Sophisticated Harmonic Artifact Reduction for Phase data 

(SHARP) [35] with a filter radius of 6 pixels. To reduce artifacts in the calculated SMs, 

regions with the highest phase deviations due to air/tissue interfaces were removed 

manually from the HP filtered phase images and the phase in those regions were set to be 

zero. 
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2) A complex threshold approach [36] was used to separate the brain from the skull.  

3) The phase image with an original matrix size of 512 × 368 × 192 was zero filled to 512 

× 512 × 256 to increase the field-of-view and to avoid streaking artifacts caused by the 

edge of brain to alias back to the reconstructed SM.  

4) The regularized inverse filter, greg
-1

(k) [18] was applied to obtain  χi=0(r), followed by 

the iterative process using a = 0.1. For in vivo data, the iterative program was terminated 

at the third iterative step. 

4.3 Results 

Selection of threshold level based on simulations: To find the optimal threshold value, 

SMs were reconstructed using a= 0.01, 0.03, 0.07, 0.1, 0.15, 0.2, 0.25 and 0.3, 

respectively, with different noise levels (Fig. 4). The streaking artifacts shown in 

χi=0(r)(the first column in Fig. 4a) have been significantly reduced by the iterative method 

and fall below the noise level when a>= 0.1. Also, when a>= 0.1, the mean susceptibility 

value inside the cylinder was found to increase to 0.44ppm when the diameter of the 

cylinder was larger than 8 pixels (Fig. 4b) and this trend is independent of the object size 

and the noise in the phase image. The optimal result in terms of obtaining the true 

susceptibility value was with a threshold of 0.1. Fig. 4c shows a plot of RMSE of the 

susceptibility values from the whole region outside the 32-pixel cylinder using different a. 

The RMSE of the susceptibility values decreases as a increases. Therefore, for vessels, a 

value of 0.3 would be the optimal value. However, a large threshold value means 

replacing more original k-space with the k-space only consisting of vessel information 

which will saturate the signals from other brain structures and blur these structures. Since 
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the SM using a = 0.1 already reveals the optimal susceptibility value for the vessels and 

an acceptable RMSE, it is appropriate to choose 0.1 for more general applications to 

study the entire brain.  

Fig. 4a compares the converged χi=b(r) map with the χi=0(r) map, where b is the iterative 

step required to reach convergence. In this data, b = 2 when a = 0.01 and 0.03, b = 3 when 

a = 0.07, 0.1 and 0.15 and b = 4 when a = 0.2, 0.25 and 0.3 when σphase = 0. When σphase 

becomes bigger, more iterative steps were required to reach convergence. For instance, 

the maximum iterative step is 9 when σphase = 0.2 radians. Using a noise level of 0.025 

radians in the phase image as an example, greg
-1

(k) [18] leads to a susceptibility noise of 

roughly 0.025 ppm in the χi=0(r) map. The iterative approach leads to a slight decrease in 

background noise, 0.021 ppm, in χi=3(r) map when a= 0.1. The background noise was 

measured in a region outside the streaking artifact indicated by the black circle in Fig. 4a. 

The overall decrease in RMSE in the background (Fig. 4c) is a consequence of both a 

decrease in streaking artifacts and a reduction in thermal noise contribution.  



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 89 - 
 

 

Figure 4: Simulations showing the comparison of the calculated susceptibility 

distributions for a cylinder perpendicular to Bo at different threshold values (a) applied to 

g(k) as well as the initial χi=0(r)map. The direction of Bo is indicated by a black long arrow. 

The susceptibility, Δχ, inside the cylinder is 0.45 ppm. a) The comparison of the 

converged χi=b(r) map with the χi=0(r) map for a diameter of 32-pixel cylinder, where b is 

the iterative step required to reach convergence. In this data, b = 2 when a = 0.03, b = 3 

when a = 0.1 and b = 4 when a = 0.2when σphase = 0. The top row of images shows 

simulations with no phase noise. The second and the third row show simulations with 

added phase noises σphase = 0.025 and 0.05 radians, respectively. The first column of 

images show initial χi=0(r)maps for reference. b) The variation of the mean calculated 

susceptibility inside the cylinder with different threshold value, a, for diameter (d) = 2, 4, 

8 and 32 pixels cylinders. The mean susceptibility value is independent of the noise level; 

therefore, only mean values from σphase = 0 were provided. c) The variation of the RMSE 

of the susceptibility values outside the cylinder as a function of the threshold value, a, and 

the noise level. The d=32 pixels cylinder was used to generate (c). 
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Selection of the Optimal Iterative Step: The inverse process [18] was applied to the 

dipole field in Fig. 5a to give χi=0(r) map shown in Fig. 5b with prominent streaking 

artifacts. Streaking artifacts are significantly reduced at each step of the iterative method 

quickly reaching convergence (Figs. 5c to 5e). The largest improvement is seen in the 

first iterative step, which is verified by Fig. 5f, showing the difference between Fig. 5c 

(χi=1(r) map) and Fig. 5b (χi=0(r) map). After the second iteration, we can see some minor 

streaking reductions (Fig. 5g, the difference between the χi=1(r) map and χi=2(r) map). The 

mean susceptibility value approaches 0.44ppm in a single step. Similar results (not shown) 

are also obtained when the iterative method is run with different aspect ratios between the 

in-plane resolution and the through plane resolution (such as 1:2 and 1:4). The iterative 

results always lead to higher final susceptibility values compared to the initial value in 

χi=0(r). Finally, even when an HP filter is applied, up to a 10% increase in the 

susceptibility is realized (Fig. 5i). The SMs of large vessels benefit from a low order HP 

filter (FWMH = 4 pixels) and small vessels up to 8 pixels benefit from a HP filter 

(FWMH = 16 pixels).  
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Figure 5: a) Phase images from a cylinder with a diameter of 32 pixels are simulated with: 

Δχ=0.45ppm, Bo=3T and TE=5ms. The cylinder is perpendicular to the main field.  No 

thermal noise was added in these images. b) The initial χi=0(r) map. c) The SM from the 

first iteration, χi=1(r) map, d) χi=2(r) map and e) χi=3(r) map using threshold value a = 0.1. 

The SM has converged at χi=3(r) map. The streaking artifacts are reduced as the number of 

iterative steps increases. f) The difference image of c) subtracted from b) illustrates that 

the streaking artifacts were reduced by the iterative procedure and the largest 

improvement happens in this first iterative step. g) The difference image of the χi=1(r) map 

subtracted from the χi=2(r) map indicates that the streaking artifacts were further reduced 

by the second iterative step. h) The difference image of χi=2(r) map subtracted from χi=3(r) 

map shows much less improvement at the third iterative step. Thus it indicates a 

convergence of the iterative procedure. All images were set to the same window level 

setting for direct comparisons and for enhancing the presence of the streaking and the 

remnant error. i) The effect of the iterative approach on the changes in susceptibility 

values from HP filtered phase images. Differences between the values in iterative and 

non-iterative susceptibility map reconstruction (i.e. χconverged(r) - χi=0(r)) from HP filtered 

phase images are plotted for different filter sizes. Results for four filter sizes (FWHM = 4, 

8, 16 and 32 pixels) are shown here. Applying an HP filter leads to an underestimation of 
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Δχ [18]. The iterative approach helps to improve the accuracy of the estimated 

susceptibility values. 

Effect of the Iterative Approach on Surrounding Brain Tissues in the 3D Brain Model:  

a) SM Reconstruction using a vessel mask only 

Figs. 6a and 6d represent χi=0(r), without noise and with 0.025 radians of noise in phase 

images. Fig. 6f is the vessel map. Streaking artifacts (pointed by black arrows) are 

obvious in Figs. 6a and 6d and completely disappeared in the χi=3(r) maps (Figs. 6b and 6e) 

using a = 0.1. Fig. 6c is the χi=3(r) map using a = 0.2. As can be seen, when a increases, 

the iterative method still works for vessels, but brain tissues become more blurred. Fig. 7a 

plots the mean susceptibility values inside the vessel (vein of Galen), GP, SN, RN, PUT 

and CN from χi=3(r) maps generated by using a=0.1, 0.15, 0.2, 0.25 and 0.3, respectively. 

The susceptibility value in the brain model and χi=0(r) map are also provided in the plot as 

references. Generally, the susceptibility values of brain tissues except vessels decrease as 

a increases while, for vessels, the susceptibility value is 0.41ppm in the χi=0(r) map and 

increased to 0.45ppm in the χi=3(r) maps. 

b) SM Reconstruction using a mask including vessels and brain structures  

Besides veins, the iterative method can be also applied to brain tissues. Figure 6g shows a 

coronal view of the χi=0(r) map for the brain model. The χi=3(r) map using a mask keeping 

all major structures (GP, SN, RN, PUT, CN) and vessels is shown in Fig. 6h. In practice, 

this is equivalent to setting thresholds in the χi=0(r) map to be greater than 0.09ppm to 

extract all these high susceptibility structures from the χi=0(r) map to create the mask. Fig. 
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6h reveals that streaking artifacts associated with veins as well as all major structures 

have been reduced. Fig. 6i shows the difference between Fig. 6g and 6h. In addition, 

streaking artifacts sometimes cause the appearance of “false” structures. For instance, 

there is no internal capsule (IC) included in the model (Fig. 6l), yet we see a IC like 

structure in the χi=0(r)map (Fig. 6j) (indicated by a dashed white arrow in Figs. 6j to 6l). 

The iterative method removes the streaking artifacts and the “false” IC (Fig. 6k). 

Figure 6: Results before and after the iterative method using a region of interest map 

which consists of either only vessels or specific brain structures (in this case the basal 
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ganglia) plus vessels. a) The initial χi=0(r) map without noise added in the original 

simulated images. b) χi=3(r) map of (a) using threshold value a=0.1. c) Similar to (b), 

a=0.2. d) The initial χi=0(r) map with noise added in original images, resulting a standard 

deviation of 0.025 radian in phase images. e) χi=3(r) map of (d) using a=0.1. f) The 

associated vessel map. g) The χi=0(r)map in the coronal plane as a reference. The 

streaking artifacts are clearly shown in every structure. h) The χi=3(r)maps created by 

using a region of interest map which consists of GP, SN, RN, PUT, CN and vessels. i) 

The difference image of (g) and (h). j)The initial χi=0(r) map in the transverse plane has 

“fake” internal capsule (IC) (pointed by an arrow) around GP; k)  The χi=3(r)map shows 

no “IC.” This matches the originally simulated model (l). No noises were added to images 

from (g) to (l). 

 

Fig. 7b shows susceptibility values in each structure in the brain model for χi=0(r)and 

χi=3(r)when the mask includes vessels and all major structures. The underestimated 

susceptibility values of all major structures and vessels in the χi=0(r)map have been 

recovered by the iterative method in the χi=3(r)map.  

 

a  
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b  

Figure 7: The plots of mean susceptibility values inside the vessel (vein of Galen), GP, 

SN, RN, PUT and CN from χi=3(r) maps. The first two data points of each curve is the 

value inside each structure from the brain model and the χi=0(r) map, respectively. a) χi=3(r) 

maps generated by applying a region of interest map which consists only vessels using 

a=0.1, 0.15, 0.2, 0.25 and 0.3, respectively. b) χi=3(r) maps generated by applying a region 

of interest map which consists of the GP, SN, RN, PUT, CN and vessels using a=0.1.  

Effect of Errors in the Vessel Map: Accurately extracting vessels from χi=0(r)is critical 

for the iterative method. Figs. 8b-8d and the corresponding enlarged views (Figs. 8f-8h) 

from the rectangular region indicated in Fig. 8a, show the χi=3(r) maps using an accurate 

(Fig. 8j), a dilated (Fig. 8k) and an eroded (Fig. 8l) vessel map to show the effect of errors 

in the vessel mask on χi=3(r)map. The dilated and eroded vessel maps were generated 

using Matlab functions based on a 3-by-3 square structuring element object. The 

susceptibility values measured from a vein indicated by a white arrow in Fig. 8e are 

0.40±0.03ppm (Fig. 8e), 0.45±0.03ppm (Fig. 8f), 0.45±0.03ppm (Fig. 8g) and 

0.40±0.07ppm (Fig. 8h), respectively. The iterative method still works if the vessel is 

slightly enlarged but does little if the vessels are not present. As we just discussed, 

streaking artifacts produced “fake” vessels indicated by a dashed black arrow in Fig. 7e 
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since these vessels are not in the model (Fig. 8i). These fake vessels disappeared in Fig. 

8f.  

Figure 8: Comparison of the reconstructed χi=3(r) maps using j) accurate, k) dilated and l) 

eroded vessel maps. Their corresponding vessel maps and the enlarged views from the 

rectangular regions are provided in b) – d) and f) – h). a) and e) The initial χi=0(r)maps 

and i) the original brain model as references. The circle in the midbrain in the χ(r) maps 

represents the red nucleus (RN) and is indicated by a black arrow in i). Other hyper-

intense regions in SMs are vessels. 

Results from the in vivo Dataset: In the in vivo example, we compare the differences 

between SHARP (Figs. 9a to 9d) and a homodyne HP filter (FWHM = 16 pixels) (Figs. 

9e to 9h). Compared to the transverse view, streaking artifacts are more obvious in the 

sagittal or coronal view. Fig. 9a shows χi=0(r)map with severe streaking artifacts. The 

streaking artifacts were significantly reduced in χi=3(r)map (Fig. 9b) using a=0.1. The 

streaking artifacts associated with the superior sagittal sinus vein (indicated by two black 

arrows in Fig. 9a) were significantly decreased in Figs. 9b and 9d. The subtracted image 

(Fig. 9c), of Fig. 9b from Fig. 9a, reveals the removed streaking artifacts. These streaking 

artifacts are one of the reasons why the χi=0(r) maps appear noisy. In the χi=3(r) map, the 
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reduction in streaking artifacts from individual veins leads to a decrease of noise therefore 

an increased SNRs of veins. If veins are the only interest, even a threshold of 0.2 can 

work reasonably well (Fig. 9d). Two relative big veins, V1 and V2, indicated by a white 

dashed and a white solid arrow, respectively, in Fig. 9b, were chosen to measure the 

susceptibility values. Results are provided in Table 1. The susceptibility values of these 

two veins have been improved by roughly 16% by the iterative method. The standard 

deviation of the susceptibility values measured from a uniform region inside the white 

matter decreased from 0.042 ppm in χi=0(r)map to 0.035ppm and 0.023ppm in the 

χi=3(r)map with a=0.1 and 0.2, respectively. The baseline susceptibilities of the major 

structures are higher with SHARP than with an HP filter. Iterative method works for brain 

structures also when the structure is included in the mask. For instance, the mean 

susceptibility values of GP and SN have been increased from 0.155±0.058 ppm and 

0.162±0.067ppm in χi=0(r) map to 0.163±0.070ppm and 0.186±0.083ppm in χi=3(r) map, 

from the dataset processed using SHARP. The result after the HP filtering (Fig. 9e) shows 

more edge artifacts indicated by a left arrow in Fig.9e. Much of this error was reduced by 

the iterative method (Fig. 9f). It seems that the iterative method compensated for the 

worse first guess (Fig. 9e) and ended up with almost the same result (Figs. 9f and 9h) as 

having started with SHARP (Fig. 9b and 9d) from image perspective. Since a small size 

of HP filter cannot remove rapid phase wrapping at air-tissue interfaces; we have to cut 

out the region near the sinuses in the phase images. 
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Figure 9: Comparisons of SMs using SHARP or a HP filter (FWHM = 16 pixels) to 

remove the background field. The iterative method with a = 0.1 and 0.2 is applied after 

the background is removed. a – d) and e - h) are results after the application of SHARP 

and the HP filter, respectively. a) and e) the initial χi=0(r) maps. b) and f) The χi=3(r) maps 

generated from the iterative method with a = 0.1. c) and g) The differences of images 

between (a) and (b), and between (e) and (f), respectively. These two images show the 
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successful reduction of the streaking artifacts.  d) and h) The χi=3(r) maps generated from 

the iterative method with a = 0.2.  

Table 1 

Δχ measured in vivo in two veins in χi=0(r) maps and χi=3(r) maps with different threshold 

values 

 χi=0(r) map χi=3(r) map / a=0.1 χi=3(r) map / a=0.2 

V1 (SHARP) 0.32 ± 0.07 0.37 ± 0.08 0.38 ± 0.09 

V1 (HP) 0.24 ± 0.05 0.28 ± 0.06 0.28 ± 0.06 

V2 (SHARP) 0.35 ± 0.04 0.40 ± 0.05 0.41 ± 0.05 

V2 (HP) 0.25 ± 0.05 0.31 ± 0.06 0.30 ± 0.06 

 

Mean and standard deviation for the susceptibility values (in ppm) of two veins processed 

using SHARP and a HP filter (FWHM = 16 pixels), respectively, were chosen from the 

0.5 mm isotropic resolution data. V1 and V2 are shown in Fig. 9. The susceptibility 

values of these two veins have been increased by the iterative method. There is not much 

variation of the susceptibility value with different threshold values. 

 

4.4 Discussion 

In this article, a threshold-based k-space/image domain iterative approach has been 

presented. Simulations and in vivo results show that the ill-posed problems of streaking 

artifacts and biases in the estimates of susceptibilities can be significantly reduced. The 

replacement of theχ(k) values near the singularities by χvm(k), which is obtained from the 

geometric information from the χ(r) map itself, obviates many of the current problems 

seen in the TBSO methods. Since χvm(r) contains little streaking artifacts itself, the values 

used inside the thresholded regions in χ(k) now contain no artifacts either. In this sense, 



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 100 - 
 

we obtain an almost “perfect” k-space without “bad” data points in the region of 

singularities anymore. This explains why this method converges very fast and the major 

improvement is in the first iterative step (Fig. 5).  

The proposed iterative approach is different from the other threshold based methods 

[11,15,18,19,24] which fill pre-defined conical region using an constant, zero or 1/thr [11, 

15, 24] or the first-order derivation of g
-1

(k) [19]. The iterative method uses full geometry 

information from the SM (vessels or pre-defined structures and not edge information) to 

iteratively change k-space values in the conical region using the forward model. This is 

also quite different than other currently proposed solutions [9, 12, 20, 22]. Even though 

spatial priors such as gradients of the magnitude are used [9, 12, 20, 22], in those methods, 

the meaningful values of the singularity regions in k-space are obtained through solving 

the complex cost function problem. However, the iterative method uses priors not from 

the magnitude image but from the SM. The missing data in the singularity regions are 

obtained through iterating back and forth between the SMs and their k-space. The 

advantage of cost function approaches is that they do not need to pre-define the 

singularity region in k-space which is solved by the optimization process automatically 

(although the optimization process itself is usually quite time-consuming). On the other 

hand, the iterative method is the time-efficient. It is fast enough to reconstruct SMs for a 

512 × 512 × 256 data set using an Intel Core i7 CPU 3.4GHz processor in less than 30 

seconds, since in practice usually 3 iterations are good enough to generate decent results.  
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The threshold value also plays a key role. A threshold value of 0.1 is a reasonable 

choice since a lower threshold value leads to an increase in noise and a higher threshold 

value leads to a blurring of the object (Fig. 6c, Figs. 9d and 9h).  

It is known that the ill-posedness of the inverse filter will increase the noise level from 

the phase to the SM. Based on both simulations and real data, we find that there is a factor 

of 4 increase in noise in the SM relative to the original phase data. This result and the fact 

that at Bo = 3T, TE = 5ms and σχi=0(r) = 0.025ppm, make it possible to write the total noise 

in the background regionin χi=0(r) as 0.025·4·(3/Bo)·(5/TE) in ppm. The noise error in 

χi=3(r)will be less than this value since the iterative method will reduce streaking artifact 

in SM.   

The iterative method can be used to remove streaking artifacts associated with not only 

vessels but also other brain structures as well. Fig. 6h shows a reduction in artifacts 

associated specifically with iron-rich regions such as the GP and CN.  

Accurately extracting vessels from the χi=0(r) map is critical for the iterative method 

(Fig. 8). In this study, vessels were segmented directly from the SM (Fig. 2). It may also 

possible to segment veins from original magnitude images [9,12,20,22], phase images 

and/or SWI images. Extraction of accurate anatomic information from phase data 

sometimes is difficult since phase is orientation dependent and phase changes are 

generally nonlocal. SWI images work better for an anisotropic dataset rather than an 

isotropic dataset since phase cancellation is needed to highlight vessel information. 

Therefore, we may consider combining SMs with magnitude images, phase images and/or 
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SWI images together to segment the veins, since different types of image can compensate 

for missing information.  

The iterative method appears to help even in the presence of non-isotropic resolution 

with partial volume effects and to a minor degree when an HP filter is applied. A smaller 

sized HP filter would be better, since a larger HP filter will significantly underestimate 

the susceptibility value (Table 1). SHARP gave us better results compared with HP filter 

(FWHM=16 pixels) (Fig. 9), but SHARP requires phase unwrapping which can be time 

consuming and noise dependent [19]. From this perspective, an HP filter has the 

advantage since it does not need unwrapped phase. If the forward modeling approach of 

Neelavalli et al [37] can be used to reduce air/tissue interface fields, then it may be 

possible to use a small size HP filter (FWHM=8 pixels) which may provide similar 

results to SHARP.  

Severe streaking artifacts associated with structures having high susceptibility values 

such as veins can lead to major changes in the appearance of the brain structures with low 

susceptibility. Practically, the susceptibility of the veins is a factor of 2.5 to 20 times 

higher than other structures in the brain. Therefore, even a 10% streaking artifact can 

overwhelm the information in the rest of the brain and create false appearing structures as 

in (Fig. 6j) and in (Fig. 8e). The reduction of these artifacts makes a dramatic difference 

in the ability to properly extract the susceptibility of other tissues. 

In conclusion, both simulations and human studies have demonstrated that the 

proposed iterative approach can dramatically reduce streaking artifacts and improve the 

accuracy of susceptibility quantification inside the structures of interest such as veins or 



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 103 - 
 

other brain tissues.  Given its fast processing time, it should be possible to expand its use 

into more daily clinical practice. With the improved accuracy of the susceptibility values 

inside veins, this method could potentially be used to improve quantification of venous 

oxygen saturation [18]. 
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Chapter 5: Conclusions and Future Directions 
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5.1 Conclusions 

Knowledge of the oxygen saturation of venous blood is important to characterize the 

physiological or pathological state of blood supply or oxygen consumption in tissue. This 

is especially true in the human brain where there is a strong clinical demand for 

noninvasive and reliable oxygenation quantification. The clinical need is to better 

understand the changes in cerebral hemodynamics due to neuronal activation and/or 

improve the characterization and monitoring of treatment of cerebral pathologies, such as 

stroke or tumors (1). Several methods are available for quantification of cerebral oxygen 

saturation. These methods, however, either have low spatial resolution (near infrared 

spectroscopy – NIRS), or are invasive by inserting a catheter; or the technique is quite 

expensive and not ubiquitously available (
15

O-PET). In contrast to these methods, which 

measure tissue oxygen saturation, the MR method introduced here relies on the 

oxygenation level of venous blood due to the difference of its magnetic property in the 

oxygenated and deoxygenated state. The smaller the veins that can be probed, the closer 

one comes to a more local estimate of tissue oxygen saturation.  

The basic concept of using a simple Fourier transformation method to predict the 

magnetic field distribution from a single acquisition approach given the susceptibility 

distribution was described first by Deville at al. (2). However, the inverse problem, i.e., 

obtaining the source susceptibility distribution from magnetic field measurements, is 

more complicated. Of course, one of the major advantages of this approach is that we can 

make these measurements independent of the body’s position in the magnet. A primary 
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difficulty is that high values of the inverse filter, 1/g(k) where g(k)= 
 

 
 

  
 

  
, lead to 

streaking artifacts and noise amplification in the images reconstructed by the inverse filter. 

Such problematic high values of 1/g(k) occur where  g(k) is close to or equal to zero, 

namely, on or near a conical region in k-space at the magic angles (i.e., 54.7° and 125.3° 

from the Bo axis).  

In Chapter 3, we proposed a regularized inverse filter, 1/greg(k) to solve the ill-posed 

problem associated with 1/g(k). The regularized form of 1/greg(k) that we proposed 

appears to work fairly well in simulations. Generally, the systematic errors depend on the 

object size (Figs. 1 and 3 in Ch. 3) with smaller vessels showing smaller values due to 

partial volume effects. Larger vessels show a bias toward a reduced susceptibility 

approaching 90% of the expected value. We found that there are six major sources of 

error in creating venous susceptibility maps which are: i) errors in the inversion process, 

i.e., those due to g
-1

reg(k) itself; ii) voxel aspect ratio affects and partial voluming; (iii) 

aliasing in input phase images caused by longer echo times; (iv) errors caused by high 

pass filtered phase data; v) errors due to discrete sampling in MRI and vi) thermal noise 

in the phase data. These errors affect the susceptibility quantification. For instance, high-

pass filtering the phase has a strong influence on the quantitative accuracy of the 

susceptibility values (see Fig. 4 in Ch. 3). Fortunately, for vessels that are on the order of 

5 mm wide or less (i.e., 10 voxels or less), the error is only 15% for a filter size of 32 × 32. 

Most of the veins in the brain lie close to or less than this diameter. For a filter size of 64 

× 64, the error increases to 28%. This prediction is close to what we see from the real data 
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where we used a 64 × 64 filter size. The typical value measured in veins in vivo is around 

0.3 ppm (Table 3, Ch. 3) which is about 67% of the physiologically expected normal 

value of 0.45 ppm. Partial volume effects can cause a complete loss of phase information 

when the vein is much smaller than the slice thickness(3). This leads to the issue of lower 

than expected susceptibilities. The susceptibility map theoretically is independent of the 

choice of echo time (See Fig. 8 and Table 2 in Ch. 3). However, the effect of echo time is 

complicated since longer echo times will lead to aliasing around the vein. This aliasing 

coupled with partial volume effects creates a nonphysical phase at the edge of the object 

which will cause errors in the estimated susceptibility values.  

To reconstruct a susceptibility map of venous vessels in an in vivo dataset with 

minimal artifacts, we proposed the following steps: i) collect an isotropic high resolution 

SWI data set, ii) high pass filter the phase images, iii) interpolate k-space, iv) remove 

spurious phase noise sources from the phase images and v) regularize the data. Each step 

is to improve the quality of SMs. For instance, using a high resolution dataset (step i) 

reduces partial volume effects and Gibbs ringing. This should help in improving 

quantitative accuracy of the susceptibility values for small vessels and make it possible to 

probe a more local region of tissue to understand tissue function. With the advent of high 

fields such as 7T, imaging resolution can be reduced in plane to 200μ quite practically. 

Using shorter echo times may be viable with high resolution and the subsequent image 

quality improvement. The imaging time can also be reduced thanks to the shorter TRs 

available with the TEs. This should open the door to studying veins on the order of 1mm. 

Finally, shorter echo times also reduce aliasing effects. 
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To improve the accuracy of SM and reduce the streaking artifacts in SM, a k-space 

iterative method was proposed in Chapter 4. This method replaced the values near the 

singularities in k-space by the corresponding values from the geometric information from 

the SM itself. The missing data in the singularity regions were obtained through iterating 

back and forth between the image domain, i.e., the SMs, and their k-space domain. The 

iterative method is the most time-efficient approach. It is fast enough to reconstruct SMs 

for a 512 × 512 × 256 data set using an Intel Core i7 CPU 3.4GHz processor in less than 

30 seconds, since in practice usually 3 iterations are good enough to generate decent 

results. According to simulations, the bias toward lower mean susceptibility values inside 

vessels has been shown to decrease from around 10% to 2% when choosing an 

appropriate threshold value for the proposed iterative method (Fig. 4 in Ch. 4). The 

proposed iterative method can not only improve quantification of susceptibility inside 

vessels but also reduce streaking artifacts throughout the brain (Figs. 5, 6 and 9 in Ch. 

4).Severe streaking artifacts associated with structures having high susceptibility values 

such as veins can lead to major changes in the appearance of brain structures with low 

susceptibility. Practically, the susceptibility of the veins is a factor of 2.5 to 20 times 

higher than other structures in the brain. Therefore, even a 10% streaking effect can 

overwhelm the information in the rest of the brain and create false appearing structures as 

in (Figs. 6j and 8e in Ch. 4). The reduction of these artifacts makes a dramatic difference 

in the ability to properly extract the susceptibility of other tissues. Although, in this thesis, 

we focus on vessels, the iterative methods can be applied to other brain tissues, for 

instance basal ganglia, as well which could help to better quantify iron contents inside 
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these structures. With the improved accuracy of the susceptibility values inside veins, this 

iterative method could potentially be used to improve quantification of venous oxygen 

saturation. Following up on the comments regarding shorter echo times, faster imaging 

and higher resolution, with the resulting need for reduced high pass filter matrix sizes and 

subsequent improvement in baseline phase values, it would seem that susceptibility 

mapping would benefit most from a combination of all three of these approaches. 

Errors in the susceptibility value are directly related to the errors in the quantified 

oxygen saturation. As aforementioned, factors such as phase aliasing, partial voluming 

and high pass filtering will increase the errors in the quantified susceptibility value. Fig. 

1a plots the Yv versus susceptibility value. As can be seen, if the measured susceptibility 

value is less than 0.37ppm (i.e. an error of 18% with respect to an expected value of 

0.45ppm), then the calculated oxygen saturation value will be greater than 75% (i.e., an 

error of 7% with respect to an expected oxygen saturation level of 70%). This value 

exceeds the upper limit of venous oxygen saturation for a healthy person. This example 

shows the importance of obtaining an accurate susceptibility value. If the error in 

susceptibility exceeds 18%, its corresponding oxygen saturation of greater than 75%, 

could be meaningless for a healthy person. Fortunately, the proposed iterative method 

helps to increase the underestimated susceptibility, and avoid the overestimated venous 

oxygen saturation to a certain degree (Table 1 in Ch.4). We also notice that, in the above 

example, the error of 7% in oxygen saturation is less than half of the error of 18% in the 

susceptibility. For instance, if we could conquer the problem of the underestimated 

susceptibility value caused by phase aliasing, partial voluming and high pass filter and 
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control the error of susceptibility value within 10%, then we would reduce the error of 

oxygen saturation to less than 5%, a clinically acceptable value for quantification of 

oxygen saturation.  

a  

b  

Figure 1: a) Venous oxygen saturation Yv as a function of susceptibility. b) Error in both 

oxygen saturation and Yv as a function of the measured susceptibility. The error (in 

percentage) is defined as |estimated value – expected value|/expected value. Here 

0.45ppm and 70% are the expected values for the susceptibility and oxygen saturation, 

respectively. The plot shows the errors in oxygen saturation is less than half of the error 

in susceptibility. 
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5.2 Future Directions 

Improving the accuracy of measuring the susceptibility of veins using a correction 

factor method 

Mapping susceptibility from field perturbation data often uses a high pass filter to remove 

the low spatial frequency phase. The problem of doing this is that the high pass filter will 

result in a concomitant loss of important local phase information (4) and lead to decreases 

of susceptibility values inside vessels, especially for large vessels. In addition, with an 

increase of the filter size, the estimated susceptibility value will be decreased accordingly 

(Fig.4 in Ch. 3). According to an earlier filter size evaluation (Fig. 4 in Ch. 3), for a large 

vessel such as the superior sagittal sinus, when a 64×64 high pass filter is applied, the 

susceptibility value will decrease to only around half of the value without using the high 

pass filter. If this susceptibility value is used to estimate oxygen saturation, we will obtain 

a totally wrong answer. Fig. 4 in Ch. 3 gives us a hint that we can estimate the loss the 

susceptibility value using simulations; therefore, it should be possible to compensate for 

the loss of susceptibility values (due to using a high pass filter) pixel by pixel inside the 

vessels using a correction factor (CF) obtained from forward modeling of the veins. If the 

problem of the underestimated susceptibility values due to using a high pass filter can be 

solved using this CF approach, it would help to improve the accuracy of susceptibility 

quantification and oxygen saturation quantification of veins. 

Building a vessel phantom to verify these algorithms 

The proposed algorithms, i.e., the regularized inverse filter and the k-space iterative 

method, have been verified using simulations. We could build a vessel phantom to further 
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verify these two algorithms and building a vessel phantom could also prove useful for 

validating the newly developed algorithms. We could build a vessel phantom containing 

tubes of different radii, coiled in a tortuous configuration. The coiled phantom can have 

no flow, flow and be doped with contrast agent to allow us to mimic a variety of vascular 

situations to accurately create SMs and ensure that flow effects (which often create phase 

problems) do not interfere with the susceptibility estimates. By filling the tubes in the 

phantom with Gd-DTPA solution of known susceptibility, we could verify the 

quantitative accuracy the susceptibility quantification algorithms under various 

experimental conditions. The multiple windings surrounded by gel in the phantom make 

various angles to the main field throughout the course of their length and would provide 

an excellent test scenario of veins making different angles to the main magnetic field. The 

orientation of the vessels can also be changed by changing the phantom’s orientation with 

respect to the main magnetic field. Both these situations allow us to verify that the SMs 

are independent of vessel orientation. This phantom could be used to evaluate 

modifications in the imaging parameters such as the use of shorter echo times mentioned 

above for SM. If this approach were to prove viable, then this would have a major clinical 

impact on the use of SM to evaluate oxygen saturation in the clinical domain. 

Measuring oxygen saturation in the Superior Sagittal Sinus (SSS) 

Measuring oxygen saturation in SSS is meaningful since the SSS drains the outer tissue 

including gray matter and provides a global estimation of oxygen consumption (5).  Many 

of the most common disorders of the brain, such as Alzheimer’s, Parkinson’s, 

Huntington’s and multiple system disorder have been found to be associated with 



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 116 - 
 

alterations in cerebral oxygen metabolism(6). The SSS is likely to be preferred over the 

internal jugular vein (another major draining vein) in light of the often severe 

susceptibility artifacts caused by the proximity of air spaces such as the oral cavity and 

trachea. The internal jugular vein by C2/C3 collects blood from the brain. Starting at the 

superior bulb, it runs down the neck in the vertical direction and ends at the inferior bulb. 

Monitoring oxygen saturation in jugular venous blood gives an estimate of the balance of 

global oxygen delivery and cerebral oxygen consumption. Xu et al (7) have previously 

shown that the oxygen saturation levels in the SSS are comparable to those in the internal 

jugular vein. Phase measurement in the SSS is convenient and robust in the absence of 

major tissue interfaces with markedly different susceptibilities (6). As introduced in 

Chapter 2, magnetic resonance oximetry (8) was used in studies (9–13) to calculate the 

oxygen saturation level (Y) based on a cylindrical model. With improved accuracy of 

susceptibility maps using the proposed regularized inverse filter, 1/greg(k), and the k-space 

iterative method, we would be able to calculate Y in SSS using susceptibility mapping. 

Then, we can do compare the result from using susceptibility mapping with the one from 

magnetic resonance oximetry. However, one major problem may be the fact that the SSS 

sits on the surface of the brain and it may not be possible to give full phase information 

on the external side. This will need to be investigated in any future study. The next two 

biggest veins are the straight sinus and the inferior saggital sinus but they drain the medial 

aspects of the brain (including the deep gray matter). Still they are of equal interest and 

are surrounding by tissue where phase information external to the brain is available for 

SM.  
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Combining with CBF to calculate the cerebral metabolic rate of oxygen utilization 

(CMRO2) 

As discussed in Chapter 1, CaO2 indicates the arterial oxygen content, CBF indicates 

cerebral blood flow rate and OEF denotes the oxygen extraction ratio defined as (Ya-

Yv)/Ya. Here, Ya and Yv denote the oxygen saturation values of arteries and veins, 

respectively. Perfusion weighted imaging (PWI) offers an approach to quantify relative 

cerebral-blood volume (rCBV), cerebral blood flow (CBF) and time-of-arrival (TOA) of 

local blood flow. Using CBF from the PWI data along with the oxygen saturation from 

SM, would make it possible to calculate CMRO2. This will help us to understand the 

hemodynamics of the whole brain. This is one of the main directions we see the use of 

susceptibility mapping going in the next few years. 

 

  



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 118 - 
 

References: 

1.  Haacke EM, Reichenbach JR. Susceptibility Weighted Imaging in MRI: Basic 

Concepts and Clinical Applications. New Jersey: John Wiley & Sons, Hoboken; 2011. 

2.  Deville G, Bernier M, Delrieux JM. NMR multiple echoes observed in solid ^{3}He. 

Phys. Rev. B. 1979 Jun 1;19(11):5666–88.  

3.  Xu Y, Haacke EM. The role of voxel aspect ratio in determining apparent vascular 

phase behavior in susceptibility weighted imaging. Magn Reson Imaging. 2006 

Feb;24(2):155–60.  

4.  Haacke EM, Ayaz M, Khan A, Manova ES, Krishnamurthy B, Gollapalli L, et al. 

Establishing a baseline phase behavior in magnetic resonance imaging to determine 

normal vs. abnormal iron content in the brain. J Magn Reson Imaging. 2007 

Aug;26(2):256–64.  

5.  Ge Y, Zhang Z, Lu H, Tang L, Jaggi H, Herbert J, et al. Characterizing brain oxygen 

metabolism in patients with multiple sclerosis with T2-relaxation-under-spin-tagging 

MRI. J. Cereb. Blood Flow Metab. 2012 Mar;32(3):403–12.  

6.  Jain V, Langham MC, Wehrli FW. MRI estimation of global brain oxygen 

consumption rate. J. Cereb. Blood Flow Metab. 2010 Sep;30(9):1598–607.  

7.  Xu F, Ge Y, Lu H. Noninvasive quantification of whole-brain cerebral metabolic rate 

of oxygen (CMRO2) by MRI. Magn Reson Med. 2009 Jul;62(1):141–8.  

8.  Haacke EM, Lai S, Reichenbach JR, Kuppusamy K, Hoogenraad FGC, Takeichi H, et 

al. In vivo measurement of blood oxygen saturation using magnetic resonance 

imaging: A direct validation of the blood oxygen level‐dependent concept in 

functional brain imaging. Human Brain Mapping. 1997 Jan 1;5(5):341–6.  

9.  Liu Y, Pu Y, Fox PT, Gao J. Quantification of dynamic changes in cerebral venous 

oxygenation with MR phase imaging at 1.9 T. Magnetic Resonance in Medicine. 

1999 Feb 1;41(2):407–11.  

10.  Fernández‐Seara MA, Techawiboonwong A, Detre JA, Wehrli FW. MR 

susceptometry for measuring global brain oxygen extraction. Magnetic Resonance in 

Medicine. 2006 May 1;55(5):967–73.  

11.  Wright GA, Hu BS, Macovski A. Estimating oxygen saturation of blood in vivo with 

MR imaging at 1.5 T. Journal of Magnetic Resonance Imaging. 1991 May 

1;1(3):275–83.  



PhD Thesis – Jin Tang         McMaster – School of Biomedical Engineering 
 

- 119 - 
 

12.  Langham MC, Magland JF, Epstein CL, Floyd TF, Wehrli FW. Accuracy and 

precision of MR blood oximetry based on the long paramagnetic cylinder 

approximation of large vessels. Magnetic Resonance in Medicine. 2009 Aug 

1;62(2):333–40.  

13.  Langham MC, Magland JF, Floyd TF, Wehrli FW. Retrospective correction for 

induced magnetic field inhomogeneity in measurements of large‐vessel hemoglobin 

oxygen saturation by MR susceptometry. Magnetic Resonance in Medicine. 2009 

Mar 1;61(3):626–33.  

 

 

 

 


