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ABSTRACT 

A large rectangular industrial duct consists of plates stiffened with parallel wide flange sections. 
The plates along with stiffeners acts to resist the pressure loads and to carry other loads to the 
supports. The behaviours of the components of large industrial ducts are significantly different 
from the behaviours on which the current design methods are based on. Investigation presented 
herein deals with the design methods for spacing stiffeners, proportioning stiffeners and 
calculating shear resistance of side panel. 
 
Current method of spacing stiffeners is based on large deflection plate theory. A parametric 
study was conducted on dimensionless parameters identified in order to benefit from membrane 
action in partially yielding plate for spacing stiffeners. Design equations were established in 
terms of dimensionless pressure, plate slenderness and normalized out-of-plane deflection for 
three cases namely; 0%, 16.5% and 33% of through thickness yielding of the plate. Results show 
that approximately 50% increase in stiffener spacing when yielding of 16.5% of thickness is 
permitted. 
 
Under suction type pressure load, the unsupported compression flange and restrained tension 
flange lead to distortional buckling of the stiffeners. The current methods do not address 
distortional buckling adequately. A parametric study on dimensionless parameters governing the 
behaviour and strength of stiffened plat panels was conducted. The study indicated that the 
behaviour and strength of the stiffened panels could be a function of web slenderness and 
overall slenderness of the stiffener. The study also identified the slenderness limit of stiffener 
web for which the stiffener reaches the yield moment capacity.  This study demonstrated the 
conservatism of current method. Finally a method was established to calculate the strength of 
stiffened plate panel subjected lateral pressure. 
 
Side panels adjacent to the supports transfer large amount of shear to the supports and, in 
addition, resist internal pressure. Currently the design of side panels for shear is based on the 
methods used for the web of fabricated plate girders. The behaviour and the characteristics 
between the web of plate girder and the thin side panels are significantly different. A parametric 
study was conducted on dimensionless parameters identified. It was concluded that the plate 
slenderness dominates the normalized shear strength of stockier side panels. The aspect ratio 
and plate slenderness influence the normalized shear strength of slender side panels. Design 
methods to calculate the shear strength of side panels were proposed. 
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Chapter 1:      Introduction 
 

 

1.1 Introduction 

Many industrial processes such as coal power stations, industrial boiler applications and 

furnace off-gas systems, require a series of large rectangular duct system to transport 

large amount of air and flue-gases. Recent flue-gas emission reduction measures by 

national governments raised the requirements of the large duct systems for many existing 

and new industrial processes. As flue gas emission requirements add large precipitators 

and scrubbers to become part of duct systems, the design pressure increases significantly 

and large duct design becomes more complicated. In the last ten years, several large duct 

systems have been constructed. This unique structure is formed by plate surfaces 

stiffened with often parallel stiffeners. 

 

The investigation presented herein deals with the design methods for components of the 

large rectangular duct systems. The design of large industrial ducts is not covered by any 

design standard. In addition, very little technical information has been published 

describing suitable analysis and design techniques for such structures. Current design 

methods commonly used for the duct components are adapted from other standards and 

limited previous publications. The major difficulty for an engineer in the analysis and 

design procedures of this unique structure is the uncertainty as to how the components 

should be designed. The behaviours of the components of large industrial ducts are 

significantly different from the behaviours on which the current design methods are based 

on.  
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The purpose of this chapter is to briefly describe the large rectangular duct system and the 

analysis and design methods currently used to design its components. The main chapters 

present the details associated with the investigations of the each component. 

 

1.2 Large Rectangular Industrial Duct System 

Large industrial processes require to transport large volume of hot air and flue gases in 

controlled manner between process equipments through a series of ducts system.  Figure 

1.1 illustrates the arrangement of a sample large rectangular duct structural system for an 

industrial process. The duct structural system associated with industrial applications are 

significantly large and in some ways unique structures. Though ducts having circular or 

rectangular cross sections are feasible, the large industrial ducts are often rectangular. 

The cross sectional dimensions of such industrial ducts may be in the range of 5m to 

15m, sometimes even larger. Figure 1.2 shows an industrial duct during fabrication. 

 

The large rectangular ducts are air tight conduits to transport air or flue gases under 

positive or negative pressure. The ducts are sometimes exposed to high temperature as 

well as the air or flue gases are transported at elevated temperature. In order to 

accommodate the expansion due to the temperature, expansions joints are introduced 

along the duct length. This creates independent pieces of ducts with own floating 

supports. Figure 1.3 illustrates a typical piece of large rectangular duct between two 

expansion joints. 
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A segment of rectangular duct is formed by welding together four flat side plate panels. 

Each side duct panel consists of a thin steel plate generally stiffened with stiffeners as 

shown in Figure 1.4. The thin plates that are stabilized in one direction by the stiffeners to 

form an integral part of large rectangular system in which a high strength-to-weight ratio 

is important. The plates of those large industrial ducts are generally stiffened with wide 

flange stiffeners in parallel configuration by wrapping around the duct as shown in Figure 

1.3. The stiffeners are generally oriented perpendicular to flow direction. The typical 

connection between stiffener and plate is generally made by intermittent fillet welds that 

are staggered on either side of the stiffener as shown in Figure 1.5. 

 

The duct system is designed to resist the following loads: (1) internal positive or negative 

pressure, (2) weight of the duct, insulation and lugging, (3) live loads such as wind, snow, 

seismic and ash loads (4) other loads such as thermal expansion or support reactions. The 

internal pressure load consists of two components; operating pressure, which is the 

expected pressure continuously acting on the wall, and transient pressure, which is the 

very high pressure for relatively very short period of time during an abnormal event.  

 

The duct side panels are often joined longitudinally with angles or bent plates at the 

corner of the duct as shown in Figure 1.6. Corner angles provide air tight seal in addition 

to strength and stiffness. The stiffener and the plate act as one composite section to 

jointly resist the loads. In order to be a complete composite section, the attachment 

between the stiffener and the plate must have adequate strength enough to transfer 

horizontal shear arising between them due to bending. End connections of the wrapping 
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stiffeners on each ring are either pinned or fixed. The most common end connection 

would be pinned. There are many alternative ways to make a pinned connection and 

Figure 1.6 shows the typical end stiffener pinned connection. The large industrial duct 

should be able to transfer lateral loads to supports and keep the shape of the cross section. 

This can be achieved by internal bracings and struts members. Figure 1.7 shows the 

details of the bracing connection at support ring.  

 

The support system of the duct should be able to accommodate the thermal expansion and 

contraction. Therefore, the supports associated a duct segment generally consist of pinned 

support, guide supports and roller support. Figure 1.8 shows typical support arrangement 

for a rectangular duct. The pinned support and the guide supports resist the lateral loads 

while maintaining the lateral stability and accommodating the thermal expansion. Figure 

1.9, Figure 1.10 and Figure 1.11 show the typical pinned, guided and roller supports used 

in large industrial ducts. 
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1.3 Current Design Methods 

The design process of the large rectangular ducts and their supports generally involves 

local structural analysis (stiffener and plate level) and global analysis (entire structure 

level) to predict their performance and verify their structural integrity. Determining the 

duct plate thickness, stiffener spacing, and proportioning of stiffener section are done 

based on local structural analysis. The global analysis of the large rectangular ducts is 

related to the methods of transferring all external and system loads to the supports by 

flexural behaviour. The duct cross section provides flexural stiffness in resisting bending 

stresses. The side panels of the duct segment transfer the gravity loads to the supports by 

shear. Therefore, the global analysis involves with flexural stiffness and strength of the 

duct cross section and shear resistance of the side panels. 

 

In large rectangular ducts, the side plates act along with stiffener to resist the pressure 

forces and to carry gravity and external loads to the supports. The plate between parallel 

stiffeners is assumed to span and be supported by those stiffeners as shown in Figure 

1.12. The stiffener spacing and plate thickness are determined by considering allowable 

stress and deflection of a unit width of plate strip between stiffeners subjected to the 

pressure load. The transient pressure load governs the plate design. The stress and 

deflection of the strip of the plate is generally calculated by considering large deflection 

plate theory to include the bending stress and diaphragm stress. Based on previous 

analytical studies, Roark’s Formulas for Stress and Strain by Young (1989) provide 

simplified design tables which are currently used in the industry to establish stiffener 

spacing and plate thickness. 
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Having defined the stiffener spacing, the stiffener member is chosen to resist the 

governing load. The pressure inside the ducts may be positive or negative. The stiffener 

design is generally governed by the combination of transient internal pressure and wind 

load.  The beam section is chosen by determining the capacity of the stiffened plate panel 

in composite action. In large industrial duct, the long stiffener span (5m to 15m or even 

larger) due and high internal pressure generally result in wide flanged beam stiffeners. As 

noted earlier, the pressure inside the duct may be positive or negative. Negative pressure 

acts to pull the stiffeners in, resulting in tension to flange attached to the plate and 

compression in outstanding flange. As the compression flange is not braced, the full span 

of the beam length is taken as unsupported length in the current design practice. On the 

other hand, under the positive pressure, the flange not connected to plate will be in 

tension and the plate in compression.  

 

In the current design practice, a certain portion of plate and the corresponding stiffener is 

considered to act together as one composite section to resist pressure. The typical 

combined section due to the composite action between the plate and stiffener is shown in 

Figure 1.13. The design methods commonly used in industry for proportioning stiffeners 

are based on the steel structural member design method adapted from the standards. The 

method are somewhat modified to account the composite action between the stiffeners 

and plate and other unusual service conditions. 

 

 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 7

The global bending behavior of large rectangular duct is related to the cross sectional 

strength and stiffness of the duct to resist mainly the longitudinal stresses. Because of 

high slenderness ratio (height to thickness ratio) of the plate in rectangular duct, only 

portion of the plate at the corners would be effective in providing stiffness for the global 

behavior of the cross section. As mentioned before, the side panels are connected at 

corners usually with embedded longitudinal angles. Therefore, the effective area of the 

plate and the area of the angles are used to calculate the axial and flexural cross sectional 

properties for the global analysis. For this purpose, in industry, the effective section is 

usually assumed to be a plate width of certain times of plate thickness from the edge of 

the corner angles as shown in Figure 1.14. 

 

Duct side walls consist of thin plate panels between parallel stiffeners. The vertical and 

other system related loads must be transferred to the side walls and then to the supports.  

The side panels transfer the loads to the supports by shear. For a long span duct, 

significant shear accumulates near the supports. In the current design method, the side 

plate panel between the stiffeners is considered as the web of a large fabricated plate 

girder with transverse stiffener in resisting shear. Therefore, the shear capacity of the side 

plate panels is calculated using the methods in the structural steel building design 

standards for the web of large fabricated plate girders. In this method, the contribution of 

shear buckling and diagonal tension field of the plate between stiffeners is considered in 

resisting shear. 
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1.4 Motivation 

The questions arose during practical experiences gained in designing large rectangular 

industrial duct gave rise to the scope of this study. Although the large industrial duct has 

been designed for many years, the behavior and strength of its elements are still not 

understood well. Current analytical methods and provisions used to design large 

rectangular duct were found to be inadequate, inconsistent and very conservative in many 

cases. When working on some of the mega projects, it was found that many questions 

remained unanswered. 

 

During the recent design of ducting for Ohio Sammis Coal Power plant in OH, USA, 

being the largest duct retro-fit known to date, tipping the scales at 44 million lbs of 

structural steel, reaching 2.8 km (1.75 linear miles) across Ohio’s horizon and consisting 

ducts with the cross sectional dimensions up to 12.8 m (44 feet) in height and 6 m (20 

feet) in width, it was observed proper understanding the behavior of the elements of large 

industrial duct may lead optimum design resulting huge capital savings in future mega 

projects.  

 

The main drawback deterring engineers from using available design methods is 

uncertainty as to how the components of the large industrial rectangular ducts should be 

analyzed and designed. It is because the behaviours of the components of large industrial 

ducts are significantly different when compared to the behaviours on which the current 

design methods from the building design and bridge design standards are based on. The 

structural design and analysis of the components of large industrial duct system is not 
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covered by any specific standard. In addition, very little research studies has been 

published describing suitable analysis and design methods for large rectangular ducts. In 

short, the overall motivation of this research is to increase the understanding of the 

behavior of the components and to develop comprehensive methods to estimate their load 

carrying capacities. 

 

1.5 Scope and Objectives 

The primary objectives of the study are to understand the behaviour of the components of 

large rectangular industrial ducts and to propose effective design and analysis methods 

for such systems. Although the components of large rectangular industrial ducts have 

been designed over past several years, the stability aspects of the components are still not 

well understood. The structural analysis and design of these large industrial duct systems 

is not governed by any design standard and a little publication on structural analysis and 

design procedures is available. Number of parameters that dictate the behaviour of the 

components is too large to do limited tests. Therefore, there is a need to do large scale 

parametric study for each component. With the current finite element tools, more precise 

modeling of the components can be achieved. The residual stresses, initial geometric 

imperfections, boundary conditions, nonlinearities and other factors can be explicitly 

incorporated into numerical models. In this study, experimentally verified finite element 

modeling techniques will be used to perform extensive parametric studies for the 

behaviour of the components of industrial ducts and to derive method to calculate their 

strength. In this study, ADINA 8.5 has been selected to model and analyze the 

rectangular stiffened steel plate duct. 
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In this study, the scopes of the work include: 

• Investigate the method of spacing stiffeners and the design of plating 

• Investigate the behaviour and strength of plate stiffened with general steel 

sections by parametric studies 

• Derive a method to calculate the flexural capacity of stiffened plate panels 

under negative pressure 

• Study the behaviour of the side plate panels subjected to support shear and 

to propose a comprehensive method of estimating shear capacity of plate 

panels between stiffeners 

 

The verified finite element modeling techniques are to be used extensively to study the 

behaviour and strength of the components of large rectangular industrial duct through the 

parametric studies. In order to assess all the parameters involved and reduce the number 

of parameters for the parametric studies, dimensional analysis will be done. However, the 

parametric studies would require hundreds of finite element analysis models. Therefore, 

in addition to above primary scopes, there are number of secondary scopes. 

• Verify the finite element modeling techniques with the experimental and 

theoretical results available in literature. 

• Develop external programming tools that will generate the numerical 

models instantly with basic information such as physical dimensions, 

material model  type, analysis type , residual stress and initial geometric 

imperfection patterns, etc. 

 

These studies considered only the static pressure loading conditions and the components 

are assumed to be at ambient temperature. 
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1.5 Organization of Thesis 

 
This section provides an overview of the remaining thesis. The thesis consists of six 

chapters. Chapter 2 presents the details of study on the strength of plate and stiffener 

spacing and describes the proposed optimum method of spacing stiffeners. An example 

on stiffener spacing based on the proposed method is also presented. These results are 

valid for plate  

 
Chapter 3 provides the review of the previously published researches in a chronological 

order and evaluates the methods for stiffener capacity in the literature and describes the 

nonlinear finite element modeling techniques applied for the model of stiffened plate 

panel. Finally, the modeling techniques are verified with full scale experimental results. 

 
Chapter 4 presents the method of dimensional analysis in order to do a manageable 

parametric study. Two dimensionless parameters are identified to be dominant in 

affecting the behaviour of the stiffened plate panel subjected to lateral pressure load. 

Based on the results of the parametric study, a method to evaluate the bending capacity of 

the plate panel is presented. 

 
Chapter 5 firstly describes a chronological review of earlier researches on plate subjected 

uniform shear, secondly presents the finite element model developed and the  

dimensionless parameters affecting the behaviour of the side panel subjected to shear and 

finally provides design methods to evaluate the shear capacity of the side panel based on 

the parametric study. 

 
Chapter 6 provides a summary of the research conducted and presents the conclusions. 
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Figure 1.2 Large Rectangular Industrial Duct During Fabrication 
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Figure 1.5 Typical Plate-Stiffener Welds 
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Figure 1.6  Typical Corner Detail 
 
 
 
 

Stiffener 
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Figure 1.7 Corner Detail at a Support Ring Including Bracing 
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Figure 1.9 Typical Fixed Support 
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Figure 1.10 Typical Guide Support 
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Figure 1.11 Typical Roller Support 
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Figure 1.12  Plate between Stiffeners 
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Figure 1.13 Composite Action between Plate and Stiffeners 
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(a) Physical Cross Section                                           (b)  Effective Cross Section 
 
 
Figure 1.14 Effective Corner Elements on Cross Section of Duct 
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Chapter 2: Strength of Plate and Stiffener Spacing of Large Rectangular 
Industrial Duct 

 
Abstract 

A large industrial duct is often rectangular and consists of stiffened plates, where the 

plates along with stiffeners act to resist the pressure loads and carry other loads to the 

supports. The plates of these ducts are generally stiffened with wide flange stiffeners in a 

parallel configuration. The plate between parallel stiffeners is assumed to span and be 

supported by those stiffeners. The load carrying capacity and the serviceability of the 

plate determine the plate thickness and the stiffener spacing. The current method of plate 

design and spacing of stiffeners are based on the large deflection plate theory in which 

bending and membrane actions contribute to elastic strength and deflection of the plate 

between stiffeners. The purpose of this study is to determine how partial yielding of the 

plate can result in economical stiffener spacing by benefiting from membrane action.  

 

A numerical parametric study was conducted on the dimensionless parameters identified 

to characterize the behavior of laterally loaded long plates. The results were established 

for dimensionless pressure versus plate slenderness, and normalized out-of-plane 

deflection versus plate slenderness relations for three yielding cases namely; 0%, 16.5% 

and 33% of through thickness yielding of the plate. Design equations were established for 

the three cases above. Results show that approximately 55% and 110% increase in load 

carrying capacities when 16.5% and 33% yielding is permitted. However, such yielding 

results in 30% and 40% increase in deflections as well.  Partially yielding plates can 

easily satisfy the serviceability limits states and lead to economical stiffened plate 
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systems for large industrial ducts. Also, results show approximately a 50% increase in 

stiffener spacing when 16.5% yielding is permitted. This study proposes design equations 

for plating and for spacing stiffeners for three different scenarios namely; 0%, 16.5% and 

33% of through thickness yielding of the plate.  

 

Keywords: Rectangular industrial duct, Stiffened plate, Finite element analysis, Large 

deflection, Partial yielding 

 

2.1    Introduction 

Many heavy industrial processes require transport of large amounts of air or flue gases 

through series of steel ducts.  The duct systems in industrial applications are significantly 

large and, in some ways, are quite unique structures. Ducts with rectangular cross section 

are commonly used in large industrial applications. The cross sectional dimensions of 

industrial rectangular ducts are in the range of 5 to 15 m, sometimes even larger. The 

rectangular cross section is formed by welding together relatively thin steel plates. 

Stiffeners should be added to a plate to reinforce the thin plate. The plate is generally 

stiffened with stiffeners in a parallel configuration as shown in Figure 2.1.  Figure 2.2 

shows a similar industrial duct during fabrication. 

 

The plate and the stiffeners act together as one composite section to resist the pressure 

loads. The plate is the most important structural element in a duct, but it could not 

economically function without its stiffeners. The plate between two parallel stiffeners is 

assumed to span between the stiffeners and be supported by those stiffeners. Thus, the 
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duct structural system develops the load path from the plate to the stiffeners. The load 

carrying capacity of the plate element is obviously determined by the plate thickness, i.e., 

the stiffener spacing.   

 

In the past, the analysis and design of the plate thickness, i.e., the stiffener spacing, was 

done in accordance with pure plate bending behavior known as elastic small deflection 

theory. The small deflection theory generally leads to a thicker plate or smaller stiffener 

spacing. Currently, engineering firms have adopted the design process of determining the 

spacing of stiffeners based on elastic large deflection plate theory. Based on previous 

analytical studies for uniformly loaded rectangular plates with large deflections, various 

publications, such as Roark’s Formulas for Stress and Strain (Roark’s Formula) by 

Young (1989), provide simplified design tables which are widely used in the industry. 

For example, Young (1989) has provided tabulated numerical values for dimensionless 

coefficients for the relations among pressure load, deflection and stresses for rectangular 

plates under uniform load producing large deflections.  

 

A close observation of the numerical values in the table mentioned above (Young 1989) 

and the practical experience gained in designing large industrial ducts raised the scope of 

this study. The range of the dimensionless coefficients does not cover the cases of 

laterally loaded slender plates with large pressure loads. Furthermore, these 

dimensionless coefficients were derived for the elastic state of analysis of rectangular 

plates subjected to transverse pressure and are not valid at the onset of yielding in plates. 
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In that sense, these approximate elastic solutions do not establish the true limit state 

capacity of the plate element. 

 

Also, the pinned edge support condition leads to a larger stiffener spacing compared to 

the fixed edge support condition for a given pressure load and plate thickness. This is due 

to the fact that the deflection of a pinned edge plate is larger than the deflection of a fixed 

edge plate. This larger deflection causes higher membrane stresses and a higher 

proportion of the pressure load is supported by membrane stress rather than by bending 

stress. This illustrates that membrane action requires some deflection. Therefore, it is 

anticipated to benefiting from the partial yielding which rises the deflection. The 

structural analysis and design of the large rectangular duct systems is not governed by 

any design standard and very little publication on structural analysis and design 

procedures is available. Therefore, there is a need to conduct a study to derive a 

comprehensive method for plating and spacing stiffener for large industrial ducts. 
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2.2 Objectives 

The primary objective of this part of the study is to establish relations between loads, 

plate thickness and stiffener spacing, recognizing the benefit of yielding and the true 

capacity of steel plates associated with large industrial ducts. In order to achieve this 

primary objective, a nonlinear finite element model was developed to accurately simulate 

the plate behavior in the inelastic range. The model was validated using results from 

theoretical solution and the values from “Roark’s Formulas” by Young (1989). Another 

objective was to identify the fundamental parameters that dictate the behavior of laterally 

loaded plates for the numerical study. The final objective was to obtain dimensionless 

parameters to conduct a manageable parametric study to achieve the primary objective. 

The plate subjected to static pressure loading and under ambient temperature was only 

considered in this study. 

 

Section 2.3 provides the background theory on the bending of long rectangular plates 

undergoing large deflection. Section 2.4 describes the finite element model developed for 

this study. Section 2.5 describes the determination of the dimensionless parameters that 

completely simulate the response of a long plates subjected to lateral pressure. Section 

2.6 describes the parametric study conducted and presents the summary of study and the 

proposed method of plating or stiffener spacing for large industrial ducts. Section 2.7 

presents an example for applying the proposed method to space the stiffeners. Section 2.8 

provides recommendations for future studies. 
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2.3. Bending of Long Rectangular Plate 

The classic theory of laterally loaded plate bending is often classified into small and large 

deflection plate theory, based on the out of plane deflection as compared to the plate 

thickness. Regardless, the out of plane deflection is small compared with other plate 

dimensions. The small deflection theory does not consider the membrane (diaphragm) 

stress that arises when deflection becomes large and when the edges are prevented from 

pulling in. If the deflections are sufficiently smaller than 10-20 % percent of plate 

thickness, the stretching of the plate can be negligible. The relationship between pressure 

and deflection will be linear during small deflection. The linear small deflection theory is 

generally attributed to Kirchoff  (Ugural 1981).   

 

Large deflection behavior occurs when the magnitude of the out of plane deflection 

becomes equal to or greater than half the thickness of the plates subjected lateral pressure. 

The large out of plane deflection causes stretching of the plate resulting in membrane 

stresses in addition to bending stresses. If the edges are prevented from pulling in, 

membrane action becomes significant. The plate behavior when carrying lateral load by 

bending and membrane action is referred to as nonlinear large deflection plate theory, as 

the relationship between pressure, stresses and deflection becomes nonlinear due to 

membrane action. 

 

The use of small deflection theory leads to excessive thickness or smaller stiffener 

spacing. Solutions based on the small deflection theory are readily available. The 

solutions for large deflections theory in plate design are complicated.  However, the 
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analysis of rectangular plates subjected to uniform lateral pressure and undergoing large 

out of plane deflection, received increasing attention in the 1940s ( Levy 1942a, 1942b, 

Levy et al 1944). In large industrial ducts, the plate between stiffeners can undergo large 

deflection while performing safely and satisfying the serviceability limit. This leads to a 

need for a method of analysis that can trace the behavior of plates after undergoing large 

deflection.  

 

The nonlinear differential equations for large deflection plate theory were developed by 

von Karman (Ugural 1981).  The differential equations, namely the compatibility and 

equilibrium equations, are as follows: 

 

డర׎
డర௫

൅ 2 డర׎
డమ௫డమ௬

൅ డర׎
డర௬

 ൌ ܧ ൤ቀ డర௪ 
డమ௫డమ௬

ቁ
ଶ 
െ డమ௪ డమ௪

డమ௫డమ௬
൨                                                         (2.1) 
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൅ డమ׎ డమ௪
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డ௫డ௬
డమ௪ 
డ௫డ௬

ቃ                                 (2.2) 

 

Where ݓሺݔ, ,ݔሺ׎ ,ሻ = Out of plane deflectionݕ ሻݕ ൌ Stress function which defines in-

plane forces  ௫ܰ, ௬ܰ ܽ݊݀  ௫ܰ௬, ܧ ൌ Young’s modulus, ݌ ൌ Pressure load and ܦ ൌ 

Flexural rigidity of the plate. There were several attempts to solve these differential 

equations (Levy 1942a., Levy et al 1944), which resulted in lengthy mathematical 

procedures for limited boundary support cases. The approximate solutions were derived 

in terms of Fourier series for the von Karman equations (Levy 1942a., Levy et al 1944).  

Some of the other methods for limited cases are based on the energy method that assumes 
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a deflection in advance. To solve these two fourth-order and second-order partial 

differential Von Karman equations relating the lateral deflection and applied load, a 

lengthy mathematical solution for this long standing plate problem of simply supported 

plate was presented by Wang et al (2005). This solution was facilitated by benefiting 

from current computing facilities in solving equations. 

 

In order to obtain a solution for the plates of large industrial ducts, the width of the plate 

between stiffeners can be assumed to be small compared to the length of the plate. The 

plate analysis can, therefore, be assumed to be bending of a long plate that is subjected to 

transverse load. The deflected shape of the plate can then be assumed to be cylindrical.  

Therefore, the investigation of the plate bending can be restricted to bending of an 

elemental strip cut from the plate by two planes perpendicular to the stiffener direction as 

shown in Figure 2.3. The ݔ axis is perpendicular to the stiffener direction and the ݕ axis 

is parallel to the stiffener direction. In this case, ݓሺݔሻ,  డ
మ׎

డమ௫
  and డ

మ׎
డమ௬

  are constant along 

the ݕ axis. Therefore, ௬ܰ ܽ݊݀  ௫ܰ௬ can be taken as zero. 

 

Currently in the design of duct plating, the stiffener spacing is determined by considering 

the allowable stress and the allowable deflection of a strip of plate between the stiffeners. 

The stiffener spacing is the distance between the centre lines of the stiffeners. However, 

the length of the strip of the plate under consideration is distance which is equal to the 

stiffener spacing minus one flange width as shown in Figure 2.4.  
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The bending of an elemental strip of the long plate can be assumed to be one way 

bending. For an elemental plate strip of length ܾ, thickness ݐ and having a unit width, the 

governing Equation 2.1 is satisfied identically while Equation 2.2 can be reduced to: 

 

ܦ ௗర௪
ௗర௫

െ ௫ܰ
ௗమ௪
ௗమ௫

ൌ  (2.3)                                                                                                       ݌

 

Because, in stiffened duct plating, the elemental plate strip is attached to the stiffeners 

and its edges are not free to pull in,  a tension in the plate is produced depending on the 

magnitude of lateral deflection ݓሺݔሻ. The tensile forces in the plate carry part of the 

lateral loading through membrane action.  The relative magnitude of membrane forces 

depends on two factors: the degree of lateral deflection due to lateral pressure and the 

degree of lateral restraint from pulling in. 
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 2.3.1. Fixed Plate Strip 

Assure the edges of the elemental strip to be fixed in such a manner that they cannot 

rotate and pull in. Considering an elemental strip with a bending moment ܯ௢ per unit 

length along the fixed edges, the forces acting on the strip are shown in Figure 2.4.  

  

The bending moment ܯ at any cross section of the strip is 

ܯ ൌ ௣௕ 
ଶ
ݔ െ ௣௫మ 

ଶ
െ ௫ܰݓ ൅ܯ௢                                                                                        (2.4) 

Substituting this bending moment into, ௗ
మ௬

ௗమ௫
ൌ െெ

஽
 , the modified Equation 2.2 in terms of 

moment,   Equation 2.3 becomes: 

ௗమ௪
ௗమ௫

െ ேೣ
஽
ݓ ൌ െ௣௕ 

ଶ஽
ݔ ൅ ௣௫మ 

ଶ஽
െ ெ೚

஽
                                                                                   (2.5)                               

Observing the symmetrical deflection curve and other boundary conditions, the general 

solution for this equation given in Timeshenko (1959) is: 

ݓ ൌ ௣௕ర

ଵ଺௨య஽ ୲ୟ୬୦ ሺ௨ሻ
ቊ
ୡ୭ୱ୦ ቂ௨ቀଵିమೣ್ ቁቃ

ୡ୭ୱ୦ ሺ୳ሻ
െ 1ቋ ൅ ௣௕మሺ௟ି௫ሻ௫

଼௨మ஽
                                                       (2.6) 

Where ݑ is defined as: ݑଶ ൌ ேೣ
஽
௕మ

ସ 
. Thus, the deflection of elemental strip depends on ݑ, 

which is a function of the membrane stress. This stress can be determined from the 

extension of the elemental plate strip produced by the membrane stress. The extension 

due to the deflection curve and the strain in the ݔ direction can be equated as shown 

below: 

ଵ
ଶ ׬ ቀௗ௪

ௗ௫
ቁ
ଶ௕

଴ ݔ݀ ൌ ேೣ൫ଵିఔమ൯௕
ா௧

                                                                                             (2.7) 

Substituting the above in Equation 2.6 for ݓ and performing integration, the following 

equation for calculating u can be obtained: 
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ாమ௧ఴ 
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ସ௨ఴ
൅ ଽ
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                                                (2.8)    

Having calculated u, the membrane stress ߪ௠ at any point and the bending stress ߪ௕ at 

edge point can be obtained as follows. 

  

௠ߪ ൌ ேೣ
௧
ൌ ସ௨మ஽

௧௕మ
ൌ ா௨మ

ଷሺଵିఔమሻ
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                                                                                      (2.9) 
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଺ெబ
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ଶ
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௧
ቁ
ଶ
ቂ ଵ
௨మ
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௨
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The current method used to space the stiffeners is based on the numerical values of 

coefficients in the table found in “Roarks’ Formula” by Young (1989).  The relations 

among pressure load, deflection, plate characteristics and stresses are expressed by 

numerical values of dimensionless coefficients. Those dimensionless coefficients are  

ఙ௕మ 

ா௧మ
,  

ఙ೘௕మ 

ா௧మ
 and  ∆

௧
 . These dimensionless coefficients were obtained from the 

approximate elastic solution of uniformly loaded rectangular plates (Levy 1942a, 1942b, 

Levy et al 1944). Also, it is evident from Equations 2.6, 2.9 and 2.10 that the relations 

among pressure load, deflection, plate characteristics and stress can be expressed by the 

same dimensionless coefficients.  

 

From our observation during recent design of large industrial ducts and review of these 

dimensionless coefficients from “Roark’s Formula” by Young (1989), it can be noted that 

the calculated membrane stress ߪ௠ for pinned edge plate is significantly higher than the 

membrane stress ߪ௠  in a similar fixed edged plate. Nevertheless, the total stress, the 
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summation of the membrane stress ߪ௠ and the bending stress ߪ௕, is significantly lower 

for pinned edge plate. This is due to the fact that at a given pressure the out-of-plane 

deflection of pinned edge plates is higher than the deflection of fixed edge plates. This 

higher deflection of pinned edge plates causes higher membrane stress, indicating that a 

high proportion of the pressure load is supported by membrane stress ߪ௠ rather than by 

bending stress ߪ௕. This means that the design of large industrial duct plates allowing for 

large deflections would lead to economical design.  

 

One approach to reduce the edge rotational restraint and to increase the membrane action 

would be to permit yielding of the plate element at the supported edges. The edge 

condition of the plate between stiffeners is generally taken as fixed edge because the 

stiffeners are welded on a continuous plate and the plate thickness generally is smaller 

than the thickness of stiffener flange. In addition, the uniform pressure load acting on 

adjacent plate panels prevents any rotation of the stiffeners and leads to a fixed boundary 

condition. Therefore, yielding first occurs at the boundaries of the plate as the pressure 

load increases. This marks the beginning of the transition from fixed edge boundary to 

pinned edge boundary conditions. Furthermore, it can be argued that it is not mandatory 

to prevent local yielding of the duct. As the load is further increased, the yielding 

gradually penetrates through thickness. At the same time, a higher portion of the 

increased load will be taken by the increasing membrane stress ߪ௠. Therefore, the use of 

membrane stress can lead to economical design. Also the pressure load that results in the 

onset of yielding does not represent the limiting load. The plate can be further loaded 

until the serviceability becomes a governing factor. The purpose of this study is to 
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determine how the plate can take the advantage of yielding beyond the elastic range and 

the membrane stress ߪ௠ for spacing the plate between stiffeners. 

 

To continue, the properties that characterize the plate behavior should be identified. The 

bending of the plate usually occurs in two orthogonal directions. The plate between 

stiffeners is a very long and narrow rectangular plate. A plate that is infinitely long in one 

direction will bend in one direction. Therefore, the unit width of a plate strip 

perpendicular to the stiffener direction can be used to represent the behavior of the plate 

between stiffeners as shown in Figure 2.3. From the plate stress Equations  2.9 and 2.10, 

it is clear that stresses depend strongly on the ratio 
௕
௧
. The ratio 

௕
௧
 is measures the 

slenderness of the plate strip. The dimensionless coefficients in “Roark’s Formula” by 

Young (1989) further prove that the deflections and the plate stresses depend strongly on 

plate slenderness  
௕
௧
. Other fundamental properties that characterize a plate strip are yield 

stress ܨ௬ and Young’s modulus ܧ. While the yield stress ܨ௬ defines the elastic range of a 

plate, Young’s modulus ܧ characterizes its elastic flexibility. For the purpose of this 

study, the parameters that characterize the behavior of the plate strip are the plate 

slenderness  
௕
௧
,  the yield stress ܨ௬ and Young’s modulus ܧ. 

 

The purpose of this study is to derive a comprehensive method that estabilishes the plate 

thickness ݐ and the stiffener spacing ܾ of rectangular long plates subjected to a uniform 

lateral pressure ݌. Equations 2.9 and 2.10 are based on the elastic theory in which 
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materials do not yield. However, the lateral pressure load applied to the plate which 

results in the onset of yield does not represent the limit of the lateral pressure load that the 

plate can support. The plate can withstand a lateral load several times greater than the 

elastic load before it fails in limiting stress level or in acceptable deformation. When the 

lateral load becomes very large, the edge of plate strip gradually yields. The elastic large 

deflection plate theory is somewhat complicated. The theories relating the behavior of the 

plate following the onset of yield is then quite complicated due to the different sources of 

nonlinearities such as yielding, large deflections and restraint from the edge pulling in. 

Therefore, it is not so easy to derive  closed form solutions when the plate is partially 

yielding due to difficulties associated with the incorporation of nonlinearities. An 

accurate and general solution requires the use of numerical techniques such as the 

incremental finite element method. Several numerical studies for plate problems have 

been done satisfactorily. Therefore, the powerful finite element analysis can be used to 

study the solution of large deflections of thin plates beyond the elastic range, as several 

commercially available finite element programs now have material and geometric 

nonlinear analysis capability.  

 

 

 

 

 

 

 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 40

2.4. Finite Element Model  

The nonlinear finite element method is applied to determine the stresses and maximum 

deflection of a long rectangular plate subjected transverse pressure in the inelastic range. 

The aim of this portion of the study is to develop a reliable finite element model to trace 

the stresses and the deflection of a long plate under uniform pressure. The model will be 

validated using theoretical results after the mesh density is refined so that it can be 

analyzed for the rest of the study. 

 

A numerical model for the long plate was developed using the commercial multi-purpose 

nonlinear finite element program ADINA (2009). In this investigation, since the 

nonlinearity may come from the material properties and the kinematic assumption of 

large deflection, nonlinear static analysis was performed using the structural analysis 

module of ADINA. ADINA contains an extensive element library that can model variety 

of geometry and boundary conditions.   

  

The large deflection of a laterally loaded plate involves in-plane and out-of-plane 

displacements. Therefore, a shell element was used to study the behavior of the laterally 

loaded plate. Figure 2.6 shows a 4-node rectangular shell element with the shell mid-

surface nodal points.  In addition, the 4-node rectangular shell element makes it easier to 

obtain the stresses in the direction of the plate edges for this nonlinear plate analysis. The 

shell element is formulated with the assumptions used in the Mindlin/Reissner plate 

theory and can be employed to model thick and thin general shell structures. 
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This shell element can be used with elastic-isotropic, plastic-bilinear and plastic-

multilinear material models. It can also be used in a large displacement/small strain 

problem. This type of element is suitable for the present application since the magnitudes 

of the strains are generally not very large. To predict material behaviour under multi-axial 

loading, a yield criterion, that indicates for which combination of stress components 

transition from elastic to plastic deformations occur occur, should be used. The applicable 

yield criterion for metal plasticity is the von Mises yield criterion. The von Mises yield 

criterion has been interpreted physically as implying that plastic flow occurs when shear 

strain energy exceeds a critical value. The von Mises criterion is often used to estimate 

the yielding of ductile materials. Also, this criterion is largely based on the experimental 

observation that most polycrystalline metals are isotropic. Steel is an isotropic and ductile 

material. A flow rule relates the plastic strain rates to the current stresses and the stress 

increments subsequent to yielding and a hardening rule specifies how the yield condition 

is modified during the plastic flow. ADINA’s metal plasticity model is characterized as 

an associated flow plasticity model with the isotropic hardening rule being used as the 

default hardening rule. An associated plasticity model is a plastic flow rule. It is observed 

experimentally that metals such as steel obey the associated flow rule. Also, in other 

numerical studies on the behaviour of steel structural members, it is common practice to 

use the isotropic hardening rule to track the yield surface. Therefore, the default ADINA 

metal plasticity features were used in the present study. These features are based on an 

associated flow plasticity model that uses the von Mises yield criterion as the failure 

surface. Evolution of this failure surface was restricted in the current study to the 

isotropic hardening rule.  
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In this study, it is necessary to obtain the nonlinear equilibrium path in order to study the 

laterally loaded plate beyond the elastic limit. When the response is nonlinear, the 

equilibrium path should be obtained by incremental methods. In this study, the increment 

is done by automatic step increment. This automatic increment can be carried out by the 

Automatic Time Stepping (ATS) method to obtain a converged solution. The basic 

approach used in ADINA to solve for the nonlinear equilibrium path is the  Modified 

Newton iterative method applied at each incremental load. In this iterative method, the 

solution seeks the equilibrium through a horizontal path at a constant load vector. In this 

method, the stiffness matrix is updated at the end of every iteration. It should be noted 

that this method fails to converge in the neighborhood of unstable response as this ATS 

method uses the load-control iterative method. 

 

2.4.1. Numerical Integration through Thickness 

This study attempts to capture the behavior of steel plates beyond the elastic limit. 

Therefore, it is necessary to capture the onset and spread of the material yielding 

accurately. In finite element analysis, material yielding is established at the integrations 

points of the elements. In members subjected to bending, yielding occurs first at the 

surface of the elements and it may spread through the thickness. Thus, it is necessary to 

perform through thickness integration to trace the partial yielding. In addition the 

integration points should preferably lie on the top and bottom surfaces of the element. 

Therefore, a Gauss quadrature rule for numerical integration is inappropriate because its 

sampling points lie within the thickness of the plate and no integration point is at either 

surface, where yielding begins first. This consideration leads to conclude that the 
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Newton-Cotes integration scheme, simply the Simpson rule, is very effective to perform 

through thickness integration because this method has integration points on the 

boundaries.  Figure 2.7 shows the integration points. The number of integration points 

through the thickness was chosen to be available was a maximum of seven for this study 

in order to trace the yielding of plate through thickness. 

 

2.4.2.   Statement of the Problem 

This part of the study attempts to establish the maximum possible stiffener spacing based 

on the allowable stress and the allowable deflection of a long plate supported between 

stiffeners.  To simplify the modeling and computation, only a portion of the long plate 

can be used for the satisfactory solution. With respect to the symmetry of the deflected 

shape of a long plate, a strip of plate can be modeled. Figure 2.3 shows the overview of 

the strip of the plate under consideration. This is a strip of plate of length, thickness  ݐ and 

having a unit width. 

 

Figure 2.8 shows the finite element model and the coordinate system for the strip of plate 

considered. The x-y plane coincides with the middle plane of the plate. The z-axis is 

perpendicular to the plate. Unless otherwise shown, all nodal degrees of freedom for all 

nodes were set to freely displace and rotate. The strip of the plate should satisfy the 

artificial boundary formed when it is cut from the long plate. This artificial boundary 

represents the symmetric continuous edges that link the adjacent strips of plate. In order 

to provide the symmetric continuous edges (ܮଵ and ܮଷ), the rotations about the x direction 

and the translation along the y direction are restrained. This edge condition represents the 
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situation of the strip of plate cut from long plate. The strip of plate is assumed to be fixed 

along the edges (ܮଶ and ܮସ) connected to stiffeners in such a manner that it cannot rotate 

or pull in from the two edges along the stiffeners.  The boundary edges and the 

corresponding boundary conditions for the model are shown in Figure 2.8. The plate is 

subjected to uniform lateral pressure. 

 

This nonlinear analysis involved material nonlinearity in association with yielding and 

plasticity. For the current practice of ultimate limit state design, the effects of strain 

hardening are not often considered. The simplified elastic-perfectly plastic material can 

be satisfactorily used for this study. The plate material is chosen to be carbon steel Grade 

A36. The Grade A36 carbon steel has an Elastic modulus ܧ of 200,000 MPa, Poisson 

ratio ݒ of 0.3 and yield strength ܨ௬ of 250 MPa. However, it should be noted here that the 

parametric study will be conducted on dimensionless parameters that are independent of 

geometric and material characteristics. 

 

2.4.3 Validation of Modeling Techniques 

Before the analysis of the strip of plate begins, it is necessary to verify that the proposed 

finite element modeling techniques are adequate. This can be accomplished through 

comparison of theoretical and experimental results available.  However, a convergence 

study should be done before the validation study in order to establish a suitable mesh 

density. 
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Figure 2.8 shows the plate model used in this convergence study. In this convergence 

study, a 200 mm wide and 1000 mm long strip ሺܾሻ of plate was used. A thickness ݐ of 

5mm, i.e., a width to thickness ratio 
௕
௧
 = 200, was chosen to perform this mesh validation 

analysis. The convergence study was based on an elastic analysis. In order to do an elastic 

analysis, the elastic material model with a Young’s modulus of 200 GPa was assumed. 

The load control increment method with a 60 kPa total pressure load was applied. The 

percentage change in total stresses at the top side of the clamped edges was compared as 

the mesh was being refined. The mesh validation was performed on five different runs 

with the same physical and material plate properties and the same uniform pressure 

loading condition. The only variable was the mesh size. Table 2.1 shows the mesh detail 

and the results from the analysis. Five different finite element mesh configurations were 

considered in this convergence study. The coarse mesh contained only 40 shell elements, 

whereas the most refined mesh contained 800 elements.  

 

In order to find the suitable mesh density, the percentage change in total stresses between 

different mesh refinements was compared. The total stresses were obtained at top surface 

of the fixed edge. The percentage change in total stress from mesh density of 1 to 2, 2 to 

3 and 3 to 4 were 8.87%, 5.91% and 3.61%, respectively. The percentage change in the 

total stress between mesh densities of 4 and 5 was only 1.14%. In general, a percentage 

change of less than 5% may be considered acceptable. Thus, mesh densities 4 and 5 may 

be acceptable. However, due to the severe nature of the material and geometric 

nonlinearities involved in later analyses, a very dense mesh of shell elements was 

desirable in order to trace the nonlinear equilibrium path. Thus, mesh 5 was selected as 
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the most suitable mesh and its mesh density 50x16 was used for rest of the studies 

presented in this chapter. In physical dimensions, each element is of size 20 x 15 mm.  

 

As found in the above convergence study, the accuracy of the finite element model 

increases with the number of elements used. In this study, the stresses across the 

thickness at different depth are to be obtained in order to calculate the diaphragm stresses 

and to trace the partial yielding of plate through its thickness. Therefore, smaller elements 

are desired at the clamped edges when compared to the size of the element at the middle 

of the plate model. A graded mesh is then adopted to provide more elements at the 

clamped edges as shown in Figure 2.9. 

 

In order to verify the accuracy of the final finite element model, the same model with the 

refined mesh used for the convergence study was used for the comparisons with 

theoretical results found in the literature. The pressure load was reduced to 10kPa for this 

validation study as the available dimensionless coefficients in “Roark’s Formula” by 

Young (1989) is limited for lower pressure loads. The bending stress ߪ௕ and the 

membrane stress ߪ௠ of a laterally loaded elemental strip of plate were compared in order 

to determine the validity of the current finite element model. The theoretical results were 

calculated from the method explained in Section 2.2 and from the values in the book by 

Young (1989). 

 

 

 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 47

2.4.4 Comparison of the Bending Stress, Membrane Stresses and Deflection  

The bending stresses ߪ௕, the membrane stresses ߪ௠ and the deflections ∆ from the 

theoretical and the numerical analysis are presented in Table 2.2. Two cases with 

clamped edge and pinned edge boundary conditions were considered for this comparison.  

The stresses and the deflections obtained for both boundary conditions were in very close 

agreement to the theoretical values. However, the membrane stress of numerical results 

shows around 4% less than theoretical and the results of “Roark’s Formula” (Young 

1989). Also, the bending stress is around 2% higher than theoretical and the results of 

“Roark’s Formula”. Despite these minor differences in the stresses, the deflection agrees 

well as the deflection generally converges faster than stresses in numerical analysis.  

From the above observations, it can be concluded that the accuracy of the finite element 

model developed in this study to analyze the laterally loaded strip of long plate is 

reasonable. 
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2.5   Dimensionless Parameters 

Before a parametric study can be carried out, it is necessary to identify the dimensionless 

parameters that influence the bending stress ߪ௕, the diaphragm stress ߪ௠ and the out-of-

plane deflection ∆ of laterally loaded long plates. Ideally these parameters should be 

independent of scale and material characteristics. First the fundamental parameters that 

govern the strength and the out-of-plane deflection of laterally loaded plates are defined.  

Then, a set of dimensionless parameters are identified. Finally, these dimensionless 

parameters will be used to perform a parametric study.  

 

The geometric parameters that affect the strength and deformation of laterally loaded 

long plate are the plate length ܾ and the plate thickness ݐ. The material parameters for the 

plate are Young’s modulus ܧ, Poisson ratio ݒ and yield strength ܨ௬. The Poisson ratio ݒ 

is dimensionless. The lateral pressure ݌ is the loading parameter and the maximum lateral 

deflection ∆ , the total stress ߪ௧, the diaphragm stress ߪ௠ are other parameters measuring 

the response . Therefore, a total of 8 fundamental parameters, ܾ, ܨ ,ܧ ,ݐ௬, ߪ ,∆ ,݌௧ and ߪ௠, 

affects the behavior of laterally loaded plate. This is a complete and independent set. The 

above set of fundamental parameters with the practical range of each parameter will 

result an unmanageable number of finite element models. Therefore, it is necessary to 

reduce the number of variables to do a manageable parametric study. Dimensional 

analysis offers a method for reducing the number of variables that must be specified for a 

physical problem. This can be done by using Buckingham  Pi-theorem (Harris 1999). 
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If the behavior of a physical problem can be defined by a set of ݊ complete and 

independent variables, the relationship among them can be expressed by a homogeneous 

function of ݊ variables. Then, Buckingham  Pi-theorem is stated as (Lanhaar 1951) 

 

When a complete relationship between dimensional physical quantities is expressed in 

dimensionless form, the number of independent quantities that appear in it is reduced 

from the original n to n-k, where k is the rank of the dimensional matrix of the n physical 

quantities 

 

These parameters have the dimensions: ܯ ൌ mass, ܮ ൌ length and ܶ ൌ time. To apply 

the Buckingham Pi-theorem, the matrix by the fundamental parameters and their 

dimensions is formed as shown below. 

 

Fundamental 
Parameters 

 ௠ߪ ௧ߪ ܧ ௬ܨ ݌ ∆ ݐ ܾ

M 0 0 0 1 1 1 1 1 

L 1 1 1 -1 -1 -1 -1 -1 

T 0 0 0 -2 -2 -2 -2 -2 

 

 

The rank of above matrix is 2. Therefore, the number of dimensionless parameters 

expected in this case would be 6. 
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The Buckingham Pi-theorem simply identifies the number of dimensionless parameters 

and does not form the dimensionless parameters.  From the theoretical method in Section 

2.2 and the “Roark’s Formula” by Young (1989), It can be shown that the surface stresses 

and the deflections for such long plates strongly depend on the 
b
t
  ratio which measures 

the slenderness of the long plates.  The material parameter Young’s modulus ܧ governs 

the elastic flexibility and the other material parameter that characterizes the elastic range 

is yield strength ܨ௬.  Therefore, another dimensionless parameter  
ி೤
ா

 can be defined. 

Similarly, the total stress ߪ௧ and the diaphragm stress ߪ௠ can also be normalized by yield 

stress ܨ௬ of the plate material.  

 

A preliminary study was carried out to identify other dimensionless parameters that can 

be used to study a laterally loaded long plate beyond the elastic range. First, the basis for 

the selection of the parameters is explained below as per Hughes (1981).  

 

In order to determine the dimensionless parameters that govern the strength of the long 

plate, the pure bending of a laterally loaded strip of plate with unit width between 

stiffeners is considered. The edge surface stress along the strip length is σxൌ
1
2
݌ ቀb

t
ቁ
2
 

(longitudinal stress). In the long plate, a transverse deformation due to the longitudinal 

stress does not occur, i.e.  εy ൌ 0. The zero transverse strain causes a transverse stress 

௬ߪ ൌ ௫  as seen from the strain equation εyߪ ݒ ൌ
ఙ೤
ா
െ ݒ ఙೣ

ா
ൌ 0. The third principal 

stress is zero at the free surface and ݌ at the loaded surface. The third principal stress ݌ at 
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the loaded surface is very small compared to the principal stresses σx and σy. Therefore, 

the ߪ௫ at yielding as per the von Mises yield criterion is σxൌ
Fy

ට1‐υ൅υ2
. The bending 

moment at initial yielding My would be Myൌ
Fy

ට1‐υ൅υ2
  t
2

6
. Therefore, the pressure at which 

the initial yielding occurs is 

݌  ൌ ଶி೤
√ଵିజାజమ

 ቀ௧
௕
ቁ
ଶ
                                                                                                        (2.11) 

 

In the above case, it was assumed that only pure bending of long plate occurs without 

stretching of plate.  

 

In order to make the plate slenderness b
t
 material independent, a dimensionless parameter 

that combines the b
t
 and ி೤

ா
 can be derived by defining a dimensionless load parameter 

௣ா
ி೤మ

  

from Equation 2.11. Therefore Equation 2.11 can be rewritten as follows 

 
௣ா
 ி೤మ

ൌ ଶ
√ଵିజାజమ

 ቆ௧
௕ ට

ா
ி೤
ቇ
ଶ

                                                                                      (2. 12) 

From Equation 2.12, 
௣ா
 ி೤మ

  and  
௕
௧
ටி೤
ா

  can be identified as dimensionless parameters that 

make the laterally loaded long plate independent of material characteristic when first 

yield occurs by pure bending only.  In the literature, ߚ ൌ  ܾ
ݐ
ටݕܨ
ܧ   was defined as the plate 

slenderness parameter. Also, it can be shown from the deflection equation of the long 
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plate under pure bending that the normalized deflection 
∆
௧
  depends on the plate 

slenderness ߚ ൌ  ܾ
ݐ
ටݕܨ
ܧ .  Therefore, the dimensionless parameters that define the behavior 

of laterally loaded plates are named as follows: 

ܳ ൌ ௣ா
 ி೤మ

ൌ Load parameter 

ߚ ൌ  ௕
௧
ටி೤

ா
ൌ Plate slenderness  

∆
௧
ൌ Normalized deflection 

ఙ೟
ி೤
ൌ Normalized total stress  

ఙ೘
ி೤
ൌ Normalized diaphragm stress  

 

Before a parametric study can be carried out, it is important to determine that these 

dimensionless parameters are still independent from scale and material characteristics 

when the long plate undergoes stretching in addition to pure bending beyond the elastic 

range. In order to establish the independence of these dimensionless parameters for the 

above mentioned case, a numerical study was performed. In this investigation, two 

models each having the same plate slenderness ߚ ൌ 8.367 from two different 

combinations of geometric and material parameters were analyzed. The first, Model-1,  

was a 200 mm wide, 1000 mm long and 5 mm thick plate with elastic perfectly plastic 

material with yield strength of 350 MPa. The second, Model-2, was 200 mm width, 1000 

mm long and 4.22 mm thickplate with elastic-perfectly-plastic material with yield 

strength of 250 MPa. The results for each of above two models were presented in Figure 
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2.10. The normalized total stress 
ఙ೟
ி೤

 versus the dimensionless loading history ௣ா
 ி೤మ

 of the 

analysis results is presented. The plot of normalized total stress 
ఙ೟
ி೤

 versus dimensionless 

load parameter ௣ா
 ி೤మ

 showed the independency of the dimensionless parameters ߚ and 
௣ா
 ி೤మ

 

even for the case of stretching and bending of the plate in the inelastic range. The other 

useful information that is extracted from the results was the load parameter 
௣ா
 ி೤మ

 at the 

onset of yielding, at yielding of 16.5% and 33% of plate thickness for both models. Those 

load parameters were also found to be same for all three cases of both models as shown in 

Table 2.3. Therefore, it can be concluded that these dimensionless parameters ߚ and 
௣ா
 ி೤మ

 

are independent of any scale and material characteristics.  

 

Similarly, the normalized diaphragm stress ఙ೘
ி೤

 versus the loading history ௣ா
 ி೤మ

 of the 

analysis results is presented in Figure 2.11. The graph of the normalized diaphragm stress 

ఙ೘
ி೤

 versus the dimensionless load parameter ௣ா
 ி೤మ

 showed the independency of 

dimensionless parameters ߚ and 
௣ா
 ி೤మ

 even for the case of stretching and bending of the 

plate in the inelastic range. 

 

Further, the results of same models were used to verify the independency of the 

normalized centre deflection.  The normalized deflection 
∆
௧
 against the dimensionless 
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pressure 
௣ா
 ி೤మ

 for both models were plotted in Figure 2.12.  The graph showed the 

independency of the normalized deflection 
∆
௧
 with respect to the dimensionless 

parameters ߚ and 
௣ா
 ி೤మ

 even for the case of stretching and bending of the plate in the 

inelastic range. 

 

It can be concluded from the analysis above that the dimensionless parameters   ௕
௧
ටி೤

ா
 , 

௣ா
 ி೤మ

 , ∆
௧
 , ఙ೟

ி೤
 and  ఙ೘

ி೤
 can be used to define the behavior of a laterally loaded long plate 

beyond the elastic range and have no scale effect. Therefore, these parameters can be 

used for the parametric study. 
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2.6   Parametric Study  

To determine the plate thickness or the stiffener spacing, it is evident that plate can be 

loaded beyond the elastic limit. However, the inelastic plate theory is more complex than 

the elastic plate theory. The stiffener spacing or the plate thickness for industrial ducts is 

generally governed by serviceability rather than limit states. Therefore, it will be helpful 

to study how much lateral pressure can be applied beyond the elastic range while 

satisfying the serviceability requirements. The boundary condition of the long plate 

between stiffeners is considered to be clamped and restrained to pull in. Therefore, 

yielding will first occur at the boundaries of the plate along the stiffeners. As the load is 

further increased, the yielding gradually penetrates through the thickness of plate.  In 

order to determine the basic relations between the lateral pressures loads, the plate 

characteristics, the spread of yielding through the thickness and the deflection, a 

parametric study was conducted in this portion of this study. 

 

In practice, the ratio of stiffener spacing to plate thickness ௕
௧
 is generally in the range of 

125 to 350.  For these slender plates, the deflection will be large and hence membrane 

effects may become significant. It will be seen that as the pressure increases for slender 

plates, the bending causes more deflection, thus membrane effects become significant.  

 

Figure 2.9 shows the model of the strip of long plate used for this parametric study. The 

plate is assumed to be made of carbon steel Grade A36, which is the common steel 

material used in the ductwork. An idealized elastic perfectly plastic material model was 

used for plate material. Young`s modulus, Poisson ratio ݒ and yield strength ܨ௬  of the 
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material were taken as 200 GPa, 0.3 and 250MPa, respectively. Since the concern with 

this study is the load carrying capacity of the plate in the inelastic range for spacing the 

stiffeners, plate models with different slenderness ratios ranging from 125 to 350 were 

considered. Strip of plate models having 
௕
௧
ൌ 125, 150, 175, 200, 225, 250, 275, 300, 325 

and 350 were analyzed. Therefore, these plate models have dimensionless plate 

slenderness: β ൌ  ௕
௧
ටி೤

ா
ൌ 4.419, 5.303, 6.187, 7.071, 7.955, 8.839, 9.723, 10.607, 11.490 

and 12.374. In this study, an incremental nonlinear static analysis was done, as it was 

necessary to trace the yielding of the plate through its thickness. From the results of the 

analysis, the x -directional stresses and strains at the support for each time step and for all 

integration points through the thickness were obtained. The maximum deflections for 

each time step at the middle of the plate models were also obtained. From the results, the 

time step for the first yielding was identified. The corresponding lateral pressure and 

deflection for that time step were then obtained. The membrane stresses for each time 

step were calculated from the stresses obtained at seven integration points through 

thickness.  The membrane stress will be the resultant stress obtained by adding all the 

stresses at seven integration points through thickness as the algebraic summation of 

bending stresses become zero.  In order to estimate the possible load increments beyond 

the elastic limits, the time steps for the first yield stress at the first, second and third 

integration points through thickness from the top were identified.  The yield stresses at 

the first, second and third integration points from the top indicate the yielding of 0%, 

16.5% and 33% of plate thickness. The corresponding pressure, deflections and 
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membrane stresses were identified for each model. The results obtained were tabulated in 

Table 2.4. 

 

As shown in Table 2.4, it is demonstrated that higher lateral loads can be carried by the 

plate if partial yielding is permitted. It can be observed that, as the slenderness increased, 

the membrane stress became significant. As the load is further increased, the yielding 

gradually penetrates through thickness. It should be noted that the percentage increment 

of the load to yield one sixth of the thickness (16.5% of the thickness) was approximately 

50% of the load required for onset of yielding. At the same time, the percentage 

increment in the out-of-plane deflection was approximately 20%. Similarly, the 

percentage increment of the load to yield one third of thickness (33% of the thickness) 

was approximately 100% of the load required to begin yielding and the percentage 

increment in the deflection is approximately 35 to 40%. Therefore, the rate of increase in 

deflection compared to the rate of increase in loading as yielding penetrates through the 

thickness is not significant enough to affect the serviceability design requirement. 

Generally the allowable limit for out-of-plane deflections of a plate between stiffeners is 

one hundredth of the length ܾ of the plate. Nevertheless the forgoing analysis showed that 

for a long plate, the load can be even doubled from the load at first yield without 

affecting the serviceability design requirement.  

 

In this section, the results obtained from the parametric study for the selected range of 

slenderness of plates made of carbon steel Grade A36 have been analyzed in order to 

study the relations between the lateral pressure load, deflection, plate thickness , stiffener 
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spacing and partial yielding. In order to analyze the results, the results in Table 2.4 were 

converted into dimensionless parameters identified in Section 2.5 and that are 

independent of the geometric and the material characteristics. Table 2.5 summarizes the 

values of the dimensionless parameters obtained from the finite element analyses for the 

range of plate slenderness considered.  

 

To derive the relationship between the plate slenderness  ௕
௧
ටி೤

ா
 and the dimensionless load 

parameter 
௣ா
 ி೤మ 

, the dimensionless load parameter was plotted against the plate 

slenderness as shown in Figure 2.13 for the cases of onset of top fibre yielding and 16.5% 

and 33% of plate thickness yielding. The horizontal and vertical axes are associated with 

the plate slenderness  ௕
௧
ටி೤

ா
 and the dimensionless load parameter 

௣ா
 ி೤మ 

 , respectively. This 

graph is useful in illustrating, in a general way, how the dimensionless load parameter 

varies with the plate slenderness when 0%, 16.5% and 33% of plate thickness yields. 

From Figure 2.14, it is obvious that the percentage of the pressure load  increment from 

the onset of yielding to the yielding of one sixth (16.5%) of the thickness for the whole 

range of slenderness under consideration is nearly constant at about 55%. Similarly, an 

additional 33% increase in load carrying capacity can be observed between 16.5% of the 

thickness yielding and 33% of the thickness yielding.  

 

At the same time, to check the serviceability of the plate between stiffeners, the 

normalized deflection  ∆
௧
 was plotted against the plate slenderness  ௕

௧
ටி೤

ா
 as shown in 
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Figure 2.14. The generally accepted deflection limit for these types of duct plate is one 

hundredth of the stiffener spacing ቀ  ௕
ଵ଴଴
ቁ. Figure 2.14 indicates that the deflections satisfy 

the serviceability limit of the plate between stiffeners even for the case of 33% of the 

plate thickness yielding. On the other hand, the increments of deflection for the cases of 

yielding of 16.5% and 33% of plate thickness are within the serviceability requirement. 

Therefore, the design of plates between stiffeners for higher pressure loads will not be 

governed by serviceability limit but would be by the strength limit. Even though the 

above general conclusions can be reached, it will be meaningful and useful to establish 

practical design equations incorporating the degree of yielding. These design equations 

should be able to quantify the stiffener spacing and deflection for a given plate thickness 

and design pressure. The graphs provided herein can be used for manual calculation. 

Also, it is necessary to derive some relations that can be used in spreadsheet applications.  

 

A close inspection of these plots reveals that the trend of each line in Figure 2.13 

represents a portion of a power law distribution.  Therefore, three power equations for 

each line on the graph were established such that each line would represent all the data 

points. The power equations represent the relations between the plate slenderness  ௕
௧
ටி೤

ா
  

and the dimensionless load parameter 
௣ா
 ி೤మ 

 for the following cases: the onset of top fibre 

yielding, 16.5% plate thickness yielding and 33% plate thickness yielding. Similarly, 

another three linear equations were established for the relation between the normalized 

out-of-plane deflections  ∆
௧
 and the plate slenderness  ௕

௧
ටி೤

ா
 for the cases of top fibre 
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yielding, 16.5% percent and 33% percent of plate thickness yielding. The proposed 

equations are shown in each graph. The summaries of the proposed equations to obtain 

the limiting lateral pressure load and lateral deflection for various plate slenderness are 

provided in Table 2.6. It should be noted that these results are valid only for the plate 

subjected to static pressure loading and ambient temperature. 

 

2.6.1   Forces due to Membrane Stresses 

The plating or the spacing of stiffeners based on the large deflection plate theory 

considers the contribution of the membrane stresses ߪ௠ in addition to the contribution of 

bending stress ߪ௕ in carrying lateral pressure ݌. The membrane stresses ߪ௠ develops in-

plane reactions at the plate edges. The in-plane forces due to the membrane stresses ߪ௠ 

are balanced by the adjacent plates on either side of the plate considered. Thus, the plate 

is prevented from pulling in by the in-plane forces. However, the membrane stresses ߪ௠ 

of the plates adjacent to the end stiffener-rings are not restrained as the plates discontinue 

at the end stiffener-rings. Therefore, in the current design practice, the stiffener spacing 

for the end panels are closely spaced based on the small deflection plate theory. The in-

plane forces developed in the middle plate panels are expected to be transmitted to the 

end panels and resisted by the deep beam action formed by the end plate panels and the 

adjacent end ring stiffeners. In this deep beam action, the end plate panel acts as a web 

and the stiffeners act as flanges in resisting the in-plane forces developed by the 

membrane stresses ߪ௠. The in-plane forces are transferred by shear ௠ܸ to the duct corners 

by this deep beam action as shown in Figure 2.15.  
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In large rectangular ducts, as a consequence of the larger plate height to thickness ቀ௛
௧
ቁ 

ratio, only a portion of the corner duct becomes more effective and is considered in 

contributing to the stiffness for global bending. The four effective corner elements of the 

duct at corners experience compressive and tension force due to the global bending of the 

duct. Therefore, the shear ௠ܸ due to the membrane stresses ߪ௠ causes additional 

compressive force on the effective corner elements. Thus, the equilibrium between in-

plane forces due to the membrane stresses ߪ௠ and the additional compressive forces on 

the effective corner elements is maintained. 

 

The analysis method proposed in this study is also based on large deflection plate theory, 

while benefiting from partial yielding of the plate edges. This method increases the 

contribution of diaphragm stress ߪ௠ in carrying the lateral pressure ݌. Therefore, the 

additional compressive forces on the effective corner elements are also increased.  From 

the parametric study, the relations between the normalized membrane stresses  ఙ೘
ி೤

 and the 

plate slenderness  ௕
௧
ටி೤

ா
  were established for the cases namely; 0%, 16.5%  and 33% of 

through thickness yielding as shown in Table 2.5. Therefore, for an industrial duct with 

given plate slenderness  ௕
௧
ටி೤

ா
 and height ݄, the additional compressive force due the in-

plane forces can be calculated for above cases using the corresponding normalized 

diaphragm stress  ఙ೘
ி೤

 from Table 2.5. The effective corner elements should be designed 

for the compressive force due to the global bending and the additional compressive force 

due to increased diaphragm stresses ߪ௠ from the proposed method of spacing stiffeners. 
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2.7 Design Example  

An example calculation is done to verify and compare the proposed design method for 

spacing stiffeners. This example uses  only a single pressure load. It is assumed that this 

pressure load is the result of combinations of primary load cases. The first step in the 

design process of industrial ducts is to determine the stiffener spacing. The stiffeners are 

spaced to minimize the plate stress and deflection. In the conventional design process, 

generally the maximum stress and the deflection of the plate for a given pressure and 

predetermined plate thickness are calculated for an assumed stiffener spacing ܾ.  If the 

maximum stress and the deflection of the plate are within allowable limits, the assumed 

stiffener spacing will be accepted. The design parameters used for this calculation are: 

  Pressure load     ݌ ൌ    ܽܲܯ 15

  Plate Thickness      ݐ ൌ 5 ݉݉       

Modulus of elasticity    ܧ ൌ    ܽܲܩ 200

  Yield stress of plate material    ܨ௬ ൌ  ܽܲܯ 200

Initially the maximum stress and the deflection were calculated from the large deflection 

plate theory described in “Roark`s Formula”  by Young (1989) where the relation among 

the load, deflection and stresses are expressed by numerical values of normalized 

parameters 
ఙ௕మ 

ா௧మ
,  
ఙ೘௕మ 

ா௧మ
 and  

∆
௧
  in a table form. The variables ߪ௠, ߪ௧ and ∆ represent the 

membrane stress, the total stress found by adding the membrane stress and the bending 

stress and the deflection respectively.  These parameters are tabulated for  different 

pressure coefficients 
௤௕ర 

ா௧ర
  ranging from 0 to 250 in step of 25. Therefore, the pressure 
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coefficient 
௤௕ర 

ா௧ర
 for the above design parameters was first calculated for a trial stiffener 

spacing ൌ 1005 ݉݉ . 

௤௕ర 

ா௧ర
ൌ 122.42              Pressure coefficient 

The corresponding values for 
ఙ೟௕మ 

ா௧మ
 and 

∆
௧
  were obtained by interpolating the values of the 

coefficients in the table linearly. The obtained values are: 

ఙ೟௕మ 

ா௧మ
ൌ 40.38  

∆
௧
ൌ 1.38   

Therefore, the maximum total stress and deflection are: 

௧ߪ ൌ  Maximum total stress    ܽܲܯ 199.9

∆ൌ 6.92 ݉݉    Maximum Deflection 

The trial stiffener spacing ܾ ൌ 1005 ݉݉ was purposely selected in order for the total 

stress ߪ reach the assumed yield stress of the material ܨ௬ ൌ  Hereafter, the .ܽܲܯ 200

relations derived in this study will be used to compare the results from the conventional 

method and the method (derived) in this study.  Therefore, the corresponding 

dimensionless parameter  ߚ ൌ  ௕
௧
ටி೤

ா
  defined in this study was calculated for the design 

parameters. 

ߚ ൌ  ௕
௧
ටி೤

ா
ൌ 6.92  

Using the obtained relations when the top fiber yields as given in Table 2.6, the 

corresponding load parameter ܳ ൌ ܧ݌
 2ݕܨ 

 can be calculated. 
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ܳ ൌ 0.580. ቆ ܾ
ݐ
ටݕܨ

ܧ
ቇ
ିଵ.ଵ଴

  

ܳ ൌ ௣ா
 ி೤మ 

ൌ 0.08  

∆
௧
ൌ 0.288ቆ ܾ

ݐ
ටݕܨ

ܧ
ቇ െ 0.399 ൌ 1.38  

Therefore, the required pressure load and maximum deflection when top fiber yields: 

ܲ ൌ ொ ி೤మ

ா 
ൌ 15.17݇ܲܽ              Required pressure 

∆ൌ 6.9 ݉݉                   Maximum deflection 

It is now clear through the examination of the proposed design method that it predicts the 

same pressure load and maximum deflection when the top fiber of the plate begins to 

yield. 

However, the pressure load that results in onset of yielding does not represent the limit of 

the pressure load that the plate can withstand. As stated in the purpose of the study, the 

plate beyond the elastic range can be exploited the benefits of yielding and membrane 

action in spacing the stiffeners.  To take these benefits, the required plate slenderness 

ߚ ൌ  ௕
௧
ටி೤

ா
 was calculated for the same load parameter ܳ ൌ ௣ா

 ி೤మ 
ൌ 0.08 for the case of 

16.6% of plate thickness yielding. Using the obtained relations for the case of 16.5% 

thickness of top fiber yielding as given in Table 2.6. 

ܳ ൌ 0.864. ቆ ܾ
ݐ
ටݕܨ

ܧ
ቇ
ିଵ.଴଼

  

Therefore, the ߚ ൌ  ௕
௧
ටி೤

ா
 is computed for the known Q as: 

ߚ ൌ ݁
೗೙ሺబ.ఴలరሻషౢ౤ ሺೂሻ

భ.బఴ   
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ߚ ൌ  ௕
௧
ටி೤

ா
ൌ 9.49  

Therefore, for the same pressure load ܲ ൌ 15݇ܲܽ and the same plate thickness ൌ 5݉݉ , 

the stiffener spacing ܾ for which 16.5% plate thickness yields can be computed as: 

ܾ ൌ ටݐߚ
ா
ி೤
ൌ ටݐ9.49

ா
ி೤

  

ܾ ൌ 1500 ݉݉   Stiffener spacing 

The corresponding maximum deflection, when 16.5% of the plate thickness yields, can be 

computed for the case of a laterally loaded plate with the same pressure load ܲ ൌ

15 ݇ܲܽ, the same plate thickness ݐ ൌ 5݉݉ for the stiffener spacing ܾ ൌ 1500݉݉. 

∆
௧
ൌ 0.330ቆ ܾ

ݐ
ටݕܨ

ܧ
ቇ െ 0.356 ൌ 2.77  

∆ൌ 13 ݉݉    Maximum Deflection 

The span to deflection ratio is ଵହ଴଴
ଵଷ

ൌ 115. This is within the allowable limit of one 

hundredth of the span (Span/100) (ASCE 1995). 

Therefore, the example calculation presented in this portion of the study indicates that the 

stiffener spacing obtained from conventional method can be increased by 50% for just 

yielding one sixth of plate thickness while satisfying the serviceability limit.  
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2.8  Recommendations for Further Research  

This parametric study focuses only on geometric and material parameters alone. The 

scope of this study should be extended to include other parameters affecting the capacity 

of plates subjected to lateral pressure beyond the elastic limit. 

 

There will be a geometric imperfection in the plate between stiffeners as the welding of 

stiffeners to steel plates affects the geometry of the plate. Generally, the distribution of 

imperfection due to welding is some degree of inwards dishing of the plate bound by the 

stiffeners. It is obvious that even a small initial deformation allows membrane effects to 

occur as soon as the load is applied. Therefore, it is better to incorporate the effects of the 

initial geometry imperfections for further study. 

 

During the process of welding the stiffeners on the plate, significant residual stresses are 

introduced into the plate between the stiffeners. If the plate has already acquired some 

residual stress, the pressure may cause initial yielding earlier than with a residual stress 

free plate. Therefore, it is important to incorporate the effect of the residual stress in the 

future study. 

 

The effects of other loading conditions such as compression, shear, lateral pressure and 

their combinations need to be investigated. 
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Table 2.1   Mesh Density and Convergence Study 

Total Stress (σT ) for Different Trial Meshes

Mesh Number Mesh Density Number of 
Elements 

σT (MPa) Percentage 
Change / (%) 

1 10x4 40 424  
    8.87 
2 15x6 90 465  
    5.91 
3 25x8 200 494  
    3.61 
4 40x12 480 513  
    1.14 
5 50x16 800 519  

 

 

Table 2.2   Comparison of Bending Stress, Membrane Stress and Deflection 
 

Clamped Edged Elemental Strip of Plate  

  
Membrane Stress σm 

(MPa) 
Bending Stress σb 

(MPa) 
Max. Deflection 

(mm) 
Roark’s Formula (Young 1989) 17.45 129.05 5.52 
Method in Section 2.3 17.94 131.18 5.78 
Present Study 16.70 132.00 5.84 

Pinned Edged Elemental Strip of Plate  

  
Membrane Stress σm 

(MPa) 
Bending Stress σb 

(MPa) 
Max. Deflection 

(mm) 
Roark’s Formula (Young 1989) 29.35 35.65 7.36 
Method in Section 2.3 27.96 37.73 7.80 
Present Study 27.57 35.06 7.53 
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Table 2.3 Dimensionless Load Parameters 

Dimensionless Load 
Parameter 

ܧ݌
௬ଶܨ

൘  

Model-1 Model-2 
Onset of yielding 0.0552 0.0556 

16.5% of thickness yielding 0.0855 0.0851 

33.0% of thickness yielding 0.1151 0.1151 
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Width to Thickness Ratio                                                    (b/t) 125 150 175 200 225 250 275 300 325 350 

Pressure at onset of top fibre yielding                                 (kPa) 36.4 28.6 23.8 20.4 18.0 16.0 14.6 13.4 12.4 11.5 

Deflection at onset of top fibre yielding                             (mm ) 6.90 7.50 7.90 8.23 8.50 8.67 8.80 8.90 8.94 9.01 

Membrane stress at onset of top fibre yielding                   (MPa) 22.0 25.0 29.3 31.8 33.9 35.2 36.6 37.8 38.6 39.4 

Pressure at which 16.5% of  thickness yields                      (kPa) 55.4 44.2 36.8 31.7 27.9 25.0 22.8 20.8 19.3 18.0 

Percentage Increment in Load to yield 16.5% of thickness 52.2% 54.5% 54.6% 55.4% 55.0% 56.3% 56.2% 55.2% 55.9% 56.5% 

Deflection at which 16.5% of  thickness yields                  (mm) 8.70 9.28 9.68 9.93 10.15 10.29 10.43 10.52 10.55 10.63 

Membrane stress at which 16.5% of thickness yields         (MPa) 32.5 37.5 41.2 43.6 46.0 47.7 48.3 50.5 51.6 52.7 

Pressure at which 33% of  thickness yields                         (kPa) 74.6 60.0 50.0 43.3 38.2 34.4 32.0 28.7 26.7 24.9 

Percentage Increment in Load to yield 33% of thickness 104.9% 109.8% 110.1% 112.3% 112.4% 115.0% 119.2% 114.2% 116.2% 116.5% 

Deflection at which 33% of  thickness yields                      (mm) 10.30 10.78 11.10 11.34 11.54 11.68 11.78 11.91 11.96 12.01 

Membrane stress at which 33% of  thickness yields           (MPa) 52.9 57.7 60.9 63.3 65.6 67.4 68.4 70.4 71.6 72.4 

 
 

Table 2.4 Loads and Deflections of Yielding Long Plates 
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ߚ ൌ  ௕
௧
ටி೤
ா

 4.419 5.303 6.187 7.071 7.955 8.839 9.723 10.607 11.490 12.374 

Dimensionless Load at onset of top fibre yielding                     ௣ா
ி೤మ

  0.116 0.092 0.076 0.065 0.058 0.051 0.047 0.043 0.040 0.037 

Normalized Diaphragm Stress at onset of  yielding      ఙ೘
ி೤ 0.088 0.104 0.117 0.127 0.136 0.141 0.146 0.151 0.154 0.158 

Normalized Deflection at onset of top fibre yielding                    ∆
ݐ  0.86 1.13 1.38 1.65 1.91 2.17 2.42 2.67 2.91 3.15 

Dimensionless Load at which 16.5% of  thickness yields              ௣ா
ி೤మ

   0.177 0.141 0.118 0.101 0.089 0.080 0.073 0.067 0.062 0.058 

Normalized Diaphragm Stress at which 16.5% of  thickness yields   ఙ೘
ி೤

   0.130 0.150 0.165 0.176 0.184 0.191 0.193 0.202 0.206 0.211 

Normalized Deflection at which 16.5% of thickness yields                  ∆
௧
 1.09 1.39 1.69 1.99 2.28 2.57 2.87 3.16 3.43 3.72 

Dimensionless Load at which 33% of thickness yields                     ௣ா
ி೤మ

   0.239 0.192 0.160 0.139 0.122 0.110 0.102 0.092 0.085 0.080 

Normalized Diaphragm Stress at which 33% of  thickness yields     ఙ೘
ி೤

   0.212 0.231 0.244 0.253 0.262 0.270 0.274 0.282 0.286 0.290 

Normalized Deflection at which 33% of thickness yields                ∆
௧
 1.29 1.62 1.94 2.27 2.60 2.92 3.24 3.57 3.89 4.20 

           

Table 2.5  Dimensionless Strengths and Deflections of Yielding Long Plates 
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Cases 
Limiting Load Parameter 

ܳ ൌ
ܧ݌
௬ଶܨ

 

Normalized Deflection 
∆
ݐ  

Onset of yielding 
 

ܳ ൌ 0.580. ቌ
ܾ
ݐ
ඨ
ݕܨ
ܧ
ቍ

ିଵ.ଵ଴

 
∆
ݐ ൌ 0.288ቌ

 ܾ
ݐ
ඨ
ݕܨ
ܧ
ቍ െ 0.399 

16.5% of thickness yields 
 

ܳ ൌ 0.864. ቌ
ܾ
ݐ
ඨ
ݕܨ
ܧ
ቍ

ିଵ.଴଼

 
∆
ݐ ൌ 0.330ቌ

 ܾ
ݐ
ඨ
ݕܨ
ܧ
ቍ െ 0.356 

33% of thickness yields 
 

ܳ ൌ 1.112. ቌ
ܾ
ݐ
ඨ
ݕܨ
ܧ
ቍ

ିଵ.଴ହ

 
∆
ݐ ൌ 0.367ቌ

 ܾ
ݐ
ඨ
ݕܨ
ܧ
ቍ െ 0.328 

Table 2.6 Summary of Proposed Equations for Dimensionless Pressure and Deflection 
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Figure 2.1 Typical Large Rectangular Industrial Duct 
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                 Figure 2.2 Large Rectangular Industrial Duct During Fabrication 

 

 

Closely spaced 
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Plate subject to 
internal pressure
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internal pressure
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Figure 2.3 Elemental Strip of Long Plate 
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Figure 2.4 Long Plate between Stiffeners 

 

 

 

 

         Figure 2.5 Free Body Diagram of Strip of Plate 
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Figure 2.6 Four Node Shell Element for Thick and Thin Shells 
 

 

 

 

Figure 2.7 Newton-Cotes Integration Points in the Thickness Direction 
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Figure 2.8 Elemental Strip of Long Plate -Convergence Study 
 

 

Figure 2.9 Finite Element Model   -Plate Analysis 
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Figure  2.10  Normalized Total Stress versus Dimensionless Pressure 
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Figure  2.11  Normalized Diaphragm Stress versus Dimensionless Pressure 
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Figure 2.12  Normalized Deflection versus Dimensionless Pressure 
 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Model-2 Model-1

ܧ݌
2ݕܨ

൘  

∆  ݐ

ߚ ൌ
ܾ
ݐ
ඨݕܨ
ܧ ൌ 8.367 

Model 1: b=1000 mm, t=5.00 mm, Fy= 350 MPa, E=200000 MPa
Model 2: b=1000 mm, t=4.22 mm, Fy= 250 MPa, E=200000 MPa 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 
81 

 

 

Figure 2.13 Dimensionless Load Parameter versus Plate Slenderness 
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Figure  2.14  Normalized Deflection versus Plate Slenderness 
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Figure 2.15  In-Plane Forces Due to Membrane Stresses 
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Appendix 2. 1  Notations  

 

The following symbols are used in this chapter 

ܾ ൌ Stiffener spacing 

ܦ ൌ Flexural rigidity of plate 

ܧ ൌ Young’s Modulus 

௬ܨ ൌ Yield stress of plate material 

݄ ൌ Height of duct 

ܮ ൌ Length 

ܯ ൌ Mass 

௢ܯ ൌ Bending moment at end of fixed plate 

݌ ൌ Pressure load 

ܳ ൌ ௣ா
 ி೤మ

ൌ Load parameter 

ݐ ൌ Thickness of plate 

ܶ ൌ Time 

ݑ ൌ Function of membrane stress 

௠ܸ ൌ Shear forces due to membrane stress 

,ݔሺݓ  ሻ = Out of plane deflection of laterally loaded plateݕ

ߚ ൌ  ܾ
ݐ
ටݕܨ
ܧ ൌ Plate slenderness 

∆ൌ Mid span lateral deflection 

,ݔሺ׎ ሻݕ ൌ Stress function which defines in-plane forces 

௠ߪ ൌ Membrane stress 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 85

௕ߪ ൌ Bending stress 

௧ߪ ൌ Total stress 

ݒ ൌ Poisson’s ratio 
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Chapter 3:  Literature Review and Finite Element Modeling Techniques 
Applied to Stiffened Plate Panels 

 
Abstract 

In large rectangular industrial ducts, parallel stiffeners are attached to outside of the plate 

in order to maintain the structural integrity and to increase the plate strength in the out of 

plate direction. High pressure loading conditions and the length of the stiffener dictate the 

use of wide flange steel sections as stiffeners. Under a suction type pressure load, the 

flange not connected to the plate will be in compression whereas the tension flange is 

restrained by the plates. The unsupported compression flange may lead to lateral 

distortional buckling of the stiffeners. The current methods of practice to proportion the 

stiffeners are derived from standard beam instability design methods. Considering the 

differences in the instabilities between the general beam and the stiffened panels, the 

current method is not applicable and very conservative. A better understanding of the 

parameters associated with the behavior and strength of stiffened plate panels is therefore 

necessary. A parametric study may be conducted to determine the behavior and strength 

of laterally loaded stiffened plate panels. An extensive literature review on the buckling 

behavior of beams with different restraint conditions was completed. The finite element 

modeling techniques used to simulate the stiffeners in large rectangular industrial duct 

were compared to experimental results. It was concluded that the bahaviour and strength 

of laterally loaded stiffened plate can be predicted very well with the proposed modeling 

techniques. Subsequently, a parametric study, presented in Chapter 4, was conducted 

using the finite element techniques.  

Keywords: Stiffener, Plate, Initial Imperfection, Finite Element, Distortional Buckling 
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3.1 Introduction 

As heavy industrial processes, such as in industrial furnace and boiler applications and 

power plants, require a large supply of air and gas, duct systems in industrial applications 

are significantly larger compared with those in residential and HVAC applications.  Ducts 

with rectangular cross sections are commonly used in large industrial applications. A 

typical rectangular duct with stiffeners is shown in Figure 3.1. The width and the length 

of the duct are labeled as  ݓ and ݄, respectively. 

 

Common sizes of industrial rectangular ducts are in the range of 5m to 15 m in cross 

sectional dimensions, sometimes even larger. As flue gas emission requirements become 

more stringent over the years, and as the use of precipitators, fabric filters and scrubbers 

becomes part of a duct system, the design pressure magnitudes have increased 

considerably. Therefore, additional reinforcements that stabilize thin steel plates are 

necessary  in order to minimize the plate thickness and increase the strength-to-weight 

ratio. A stiffener functions as a plate reinforcement. In large rectangular ducts, the plate is 

generally stiffened with stiffeners in a parallel configuration. The plate and stiffeners act 

together as one composite section to resist the loads. The plate is probably the most 

important structural element in duct, but it could not economically function without its 

stiffeners.  

  

The design process of ducts generally consists of global and local structural analyses.  

Determination of the stiffener spacing, as shown in Figure 3.2, and the selection of the 

stiffener section are the local structural analysis. The stiffener spacing is determined by 
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considering the allowable stress and the allowable deflection of a unit width of a plate 

strip between the stiffeners. The allowable stress and deflection of the strip of  plate is 

generally calculated by considering large deflection plate theory which includes the 

bending stress and diaphragm stress. If the maximum deflection of plates exceeds half the 

plate thickness, the plate changes to shallow shell and withstands much of the lateral load 

as a membrane member, rather than as a flexural member. A method of spacing stiffeners 

using the large deflection plate theory and partial yielding was proposed in Chapter 2. 

 

Once the stiffener spacing is defined, the stiffener member is chosen to resist the 

governing load. The pressure inside the ducts may be positive or negative. The transient 

negative and positive pressures are often in the range of 10 to 15 kPa. The stiffener 

design is generally governed by the combination of transient internal pressure and wind 

load.   The critical load combination of transient pressure, wind load and other loads will 

be in the range of 15 to 20 kPa. The beam section is chosen by determining the capacity 

of the stiffened steel plate in composite action. The long stiffener span (5m to 15m or 

even larger) due to the quite large size of industrial ducts and high internal pressure 

generally result in using wide flanged steel section stiffeners. Under negative pressure 

(suction), the flange not connected to the plate is in compression and the plate is in 

tension. As the compression flange is not directly braced, the full span of the stiffener 

length is taken as an unsupported length. On the other hand, under the positive pressure, 

the flange not connected to plate will be in tension and the plate in compression. In the 

current design practice, a certain portion of plate and the corresponding stiffener is 

considered to act together as one composite section to resist positive pressure.  
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Although the design of stiffened steel plates has been done over the past several years, 

some of the stability aspects are still not understood. The structural analysis and the 

design of these large duct systems are not governed by any design standards and little 

publication on structural analysis and design procedures is available. Therefore, there is a 

need to conduct a study on the behavior and the strength of stiffened steel plates 

subjected to a lateral pressure load. This chapter focuses on the behavior of stiffened steel 

plates subjected to a negative pressure load. In this case, the flange not connected to the 

plate will be in compression and the whole tributary area of plate will in tension. The 

width of tributary area is the distance between centerline of adjacent stiffeners. Therefore, 

a representative stiffened plate panel consists of a stiffener and the tributary area. A 

typical cross section of stiffened plate panel is shown Figure 3.2.  
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3.2 Objectives 

In this part of the study, a nonlinear finite element model is to be developed in order to 

accurately simulate the behavior of a stiffened plate panel subjected to a negative 

pressure load. The finite element model was built using the commercially available 

software ADINA (2009). ADINA is chosen because of its ability to perform geometric 

and material non-linear bucking analysis. The modeling efficiency is also evaluated 

against the accuracy of the solution with the experimental results.  

 

In order to achieve this objective, it is necessary to incorporate the initial imperfections in 

the form of initial geometric imperfections and residual stresses. A comprehensive study 

of this plate panel requires an analysis of hundreds of finite element models which cover 

all the parameters affecting the behavior and capacity of stiffened plate panels. Each 

model would take a considerable amount of time to build. Therefore, it is necessary to 

develop an external computer program that can create a model based on values of the 

basic parameters provided. 

 

This chapter is also to review and evaluate extensively the existing experimental and 

analytical work performed in the earliest work of Timoshenko (1961) on the buckling 

behavior of beams for different restraint conditions.  

 

This chapter consists of three parts. In the first part, an extensive literature review related 

to the capacity of stiffener sections for which the tension flange is restrained is presented. 

In the second part, the numerical modeling techniques used to develop the finite element 
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model, including initial conditions and methods of analysis, are discussed. In the third 

part, the numerical analysis results are compared with the experimental test results to 

validate the modeling techniques used in the finite element models. 
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3.3 Literature Review 

The current methods used to proportion the stiffeners are applications of standard code 

formulae used to design regular steel beams. These formulae are somewhat modified to 

accommodate the composite action formed by the stiffener and the duct plate. In standard 

design practice, the capacity of steel beams depends on the unbraced length of the 

compression flange. If the unbraced length of the beam is kept below the critical 

unbraced length, the section will fail by yielding rather than buckling.  Bracing is 

therefore specified at certain intervals in order to maximize the beam capacity.  

 
The failure of a beam by overall buckling is generally called lateral torsional buckling. At 

this failure mode, lateral movement and twist of the cross section occur. The closed form 

solution (Timoshenko and Gere 1961) for lateral torsional buckling of a simply supported 

doubly symmetric beam bent about strong axis by uniform moment ܯ௢ is: 

                                                                                         

௢ܯ ൌ
ߨ
௕ܮ
ඨܫܧ௬ܬܩ ൅ ൬

ܧ ߨ
௕ܮ

൰
ଶ

 ௪                                                                                            ሺ 3.1ሻܥ௬ܫ

        

 

Where ܮ௕ ൌ distance between braced points; ܧ ൌ Young’s modulus; ܩ ൌ shear modulus; 

௬ܫ ൌ weak axis moment of inertia; ܬ ൌ  torsional constant and ܥ௪ ൌ  warping constant. It 

should be noted that Equation 3.1 was derived using no twist but free to warp conditions 

at each end of the doubly symmetric beam. However, the lateral torsional buckling of a 

beam is a failure mode that involves lateral movement and twist of the cross section, but 

the cross section does not distort as shown in Figure 3.3. This means the flanges still lie 
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in parallel planes and the web remains straight and lies in the plane perpendicular to 

flanges at the buckling mode. However, it should be noted the flanges may twist at 

different angles and the web may involve distortion on its length during buckling as 

shown in Figure 3.3. In this mode of failure, the cross section of the beam gets distorted 

during buckling. 

 

Bracing a beam is more complicated mainly due to the fact that the lateral torsional 

buckling of a beam involves both flexure and torsion. Effective beam bracing should 

resist the twist and lateral movement of the cross section.  In general, bracing is divided 

into two categories; lateral and torsional bracings. The lateral and torsional bracings can 

restrain the twist and lateral movement fully or elastically. The lateral bracing restrains 

lateral movement. The effectiveness of a lateral brace is related to the degree of cross 

sectional twist prevented. For an I-beam subjected to uniform moment, the centre of twist 

is located at a point outside the tension flange; the lateral movement of the top flange is 

much bigger than that of the bottom flange. Therefore, a lateral brace restrains the twist 

best when it is located at the top flange (compression).  Lateral bracing attached to the 

bottom flange (tension) is totally ineffective (Yura 2001).  A torsional bracing can be 

different from a lateral bracing as the twist of the cross section is restrained directly. An 

example of a torsional bracing system is the twin beams with cross frame. 
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Generally, the span of a stiffened plate panel is the width ݓ or the height ݄ of the 

industrial duct. Therefore, the unbraced length of the compression flange of the stiffener 

of a duct under a negative transient pressure is assumed to be the span of the stiffened 

plate panel. However, the duct casing provides lateral restraint to the tension flange. The 

web of the stiffener and the duct casing may also provide some rotational restraint to the 

compression flange of the stiffener. Therefore, assuming the unbraced length of the outer 

compression flange to be the full span of the stiffened plate panel is uneconomical.    

Taylor and Ojalvo (1966) addressed the use of torsional restraint as bracing. The authors 

gave the following exact equation for the critical moment of a doubly symmetric beam 

under uniform moment with continuous torsional bracing
           \                                                                      

௖௥ܯ ൌ ටܯ௢
ଶ ൅ ௬                                                                                                                ሺ3.2ሻܫܧߚ

  

Where ߚ is the torsional stiffness of the bracing per unit length.  Equation 3.2 also 

assumes no cross section distortion. It should be noted that cross section distortion causes 

poor agreement with this equation (Yura 2001).  In the case of a duct stiffener, the web of 

the stiffener and the plate attached to the stiffener will provide similar torsional restraint 

causing distortion of the cross section. Milner (1977) showed that cross section distortion 

could be approximated by considering the rotational stiffness of the web.  Milner (1977) 

proposed the effective stiffness of bracing ߚ௧ in place of the ߚ in Equation 3.2. The 

effective stiffness of the bracing ߚ௧   is defined by: 

 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 96

1
௧ߚ
ൌ

1
௕ߚ

൅
1
௦௘௖ߚ

                                                                                                                         ሺ3.3ሻ 

    

Where ߚ௕ is the rotational stiffness of the external bracing and ߚ௦௘௖ is the rotational 

stiffness of the web stiffener.  Milner (1977) defined the rotational stiffness ߚ௦௘௖of the  

web as below: 

 

௦௘௖ߚ ൌ
ݓଷݐܧܥ
݀                                                                                                                           ሺ3.4ሻ 

           

Where ܥ ൌ a constant, ݐ ൌ thickness of the web, ݀ ൌ height of the web and ݓ ൌ width of 

the web beneath the support. This rotational stiffness ߚ௦௘௖ was derived by assuming that a 

section of the web acts like a cantilever beam with height equal to the stiffener depth. 

This stiffness is equal to the end-moment of the cantilever divided by the end rotation. It 

should be noted that Equation 3.3 which is for discrete torsional braces could be adapted 

for continuous torsional braces. For continuous bracing, a unit width of web instead of 

the width of the web ݓ beneath the support can be used.  

 

In stiffened plate panels, the rotational stiffness provided by the duct casing can be 

considered as the rotational stiffness of the external bracing member ߚ௕ in Equation 3.3. 

According to Equation 3.3, the total effective stiffness ߚ௧  will be less than the rotational 

stiffness of the stiffener web or the duct plate. However, the application of this effective 

brace stiffness ߚ௧  into Equation 3.2 is based on the assumption that no cross section 

distortion occurs.  In the case of a torsional restraint of the web to the compression 

flange, the web may bend to accommodate lateral movement of the compression flange 

and cause distortion of the cross section.  
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Since the stiffener section is welded to the duct plate, a singly symmetric composite 

section is created as shown in Figure 3.5. The lateral torsional formulae for doubly 

symmetric beams given in Equation 3.1 or Equation 3.2 cannot be used for a singly 

symmetric section where the smaller flange is in compression as in the case of stiffened 

plate panels.  For the singly symmetric sections where bending is in the plane of 

symmetry, the shear centre and centroid do not coincide and the general formula for the 

lateral torsional buckling moment is given by Galambos (1968) as follows: 

                             

 

௖௥ܯ ൌ
௫ߚ௬ܫܧଶߨ௕ܥ
2ሺܭ௬ܮ௕ሻଶ

቎1 േ ඨ1 ൅
4
௫ߚ

ଶ ൥
௬ଶܭ௪ܥ

௭ଶܭ௬ܫ
൅
௕൯ܮ௬ܭ൫ܬܩ

ଶ

௬ܫܧଶߨ
൩቏                                            ሺ3.5ሻ 

     

Where ܭ௬ and ܭ௭  are the effective length factors for the end restraint and  ߚ௫ ൌ  

coefficient of monosymmetry. The general expression for ߚ௫  is: 

                                                 
 

௫ߚ ൌ
1
௫ܫ
නݕሺݔଶ ൅ ܣଶሻ݀ݕ െ ௢ݕ2                                                                                              ሺ3.6ሻ 

        

Where ܫ௫ ൌ major axis moment of inertia, ݕ௢ ൌ shear centre distance which is positive 

when the smaller flange is in compression, ݔ and ݕ are centroidal coordinates and 

integration is over the whole sectional area ܣ.  For practical purpose ߚ௫ of the section can 

be approximated by ( Kitipornchai and Trahair 1980) 

 

௫ߚ ൌ 0.9݀ᇱ ቆ
௬௖ܫ2
௬ܫ

െ 1ቇቆ1 െ ൬
௬ܫ
௫ܫ
൰
ଶ

ቇ                                                                                    ሺ3.7ሻ 
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Where ݀ᇱ ൌ distance between the centres of areas of the flanges, ܫ௬௖ ൌ minor axis 

moment of inertia of the compression flange and ܫ௬ ൌ minor axis moment of inertia of 

the whole cross section.
  

For torsionally braced singly symmetric girders, Yura (2001) showed that effective 

moment of inertia, ܫ௘௙௙ of Equation 3.8 should be substituted for ܫ௬ in the bracing term of 

Equation 3.2, where ܫ௬௧ ൌ second moment of inertia of the tension flange and ݐ and ܿ are 

distances from the centroidal axis to the tension and compression flanges respectively as 

shown in Figure 3.5.  

    

௘௙௙ܫ ൌ ௬௖ܫ ൅ ൬
ݐ
ܿ൰  ௬௧                                                                                                                  ሺ3.8ሻܫ

                                               

Equation 3.2 shows that the buckling load increases without limit as the continuous 

torsional brace stiffness increases. When enough bracing is provided, yielding will 

control the beam strength, and therefore ܯ௖௥ cannot exceed the yielding or plastic 

strength of the section.  

 

In the case of the industrial duct stiffener under consideration, the stiffener is fully 

restrained against translation and elastically restrained against twist. Therefore, the closed 

form solution (Timoshenko and Gere 1961) for lateral torsional buckling which assumes 

no cross section distortion is not applicable, since the stiffener will not buckle in a global 

mode as a lateral torsional buckling. In reality, the stiffener will buckle by distortion of 

web in either elastic or inelastic mode depending on its slenderness.  
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Whereas the distortion of the web was identified in some of the relatively early work on 

lateral stability (Cherry 1964, Bradford et al. 1984, Svensson 1985 and Bradford 1992), 

however, it was not able to derive any closed form solutions similar to Equation 3.1 or 

Equation 3.5 because of complexity of distorted cross sections.  This problem is 

compounded by many effects which have a significant influence, including those of 

moment distribution, member slenderness, cross-section slenderness, continuity, 

restraints and interaction of local and global buckling. Therefore, a solution does not 

become itself to a closed form.  It should also be noted that the concept of bi-moment-

induced warping during buckling arises from the derivation of closed form solution for 

lateral torsional buckling by Timoshenko and Gere(1961). The bi-moment is formed from 

a pair of equal and opposite flange moments which lie in parallel to the flange planes. In 

distortional buckling, the flanges twist at different angles during buckling, so that the 

planes in which these flange moment are, are no longer parallel. Because of this, the 

concept of a bimoment has questionable meaning when applied to distortional buckling, 

although warping displacement occur during this mode of buckling. 

 

Distortional buckling in a beam is characterized as a simultaneous occurrence of lateral 

deflections and a cross sectional distortion which arise only from the web distortion as 

shown in Figure 3.6 (Bradford 1997). It is assumed that the rigid top and bottom flanges 

displace by ்ܷ and ܷ஻  and twist by ்׎ and ׎஻, respectively and that the web distorts into 

a cubic curve(ܷௐሻ, and that all deflections and twists vary sinusoidally along the length 

of the member. When the wave lengths of both the lateral torsional and local buckling of 

the compression flange are the same, then the mode is defined as lateral distortional 
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buckling. Early methods of analyzing web distortion were based on the assumption that 

the compression flange is a uniformly stressed strut restrained by a continuous 

translational restraint corresponding  to the web, for which the elastic critical load can be 

calculated quite easily. This method was used in design codes as a U-frame approach, 

especially for distortional buckling of half-through girders. In this approach, the 

uniformly stressed flange is translationally restrained by a continuous restraint of web 

stiffness, ߙ, per unit length. Then, the elastic buckling load ௖ܰ௥  was given as: 

 

௖ܰ௥  ൌ  
ிܫܧ ଶߨ
  ଶܮ ൅

 ଶܮߙ

ଶߨ                                                                                                                  ሺ3.9ሻ 

                                                                 

Where ܫܧி = flexural rigidity of compression flange and L = length of the strut. The 

minimum value of ௖ܰ௥ may be obtained by differentiating Equation 3.9 with respect to L.  

The elastic buckling load of the strut (compression flange) can then be used to determine 

the elastic critical moment ܯ௢. Finally this critical moment is used to calculate the 

bending strength  ܯ௕ for the limit state of overall buckling using standard code formula. 

This method was revised by Svensson (1985) to include a varying axial force on the 

compressed flange, which corresponds to the moment distribution on the beam. This 

method was proposed for deep bridge girders which have slender webs and very stocky 

flanges. However, this method had been shown to provide inaccurate predictions of the 

elastic critical loads of general rolled beams (Bradford 1997). 
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An approximate solution for the distortional buckling of I-sections which have 

comparatively stocky flanges and slender webs was presented by Hancock et al. (1980). 

During the distortional buckling the web distorts when flanges buckle as rigid bodies. 

Figure 3.6 shows a wide flange beam which buckles in such a fashion. During buckling, 

the plate elements of the section deflect and twist and a strain energy associated with the 

curvatures and twists of these elements is stored. These curvatures and twists can be 

derived from the assumed deformations and the strain energies can be obtained by using 

usual energy expressions. To simplify the calculation, some terms were neglected to get 

the modified energy expression. During buckling, as the energy is conserved, the 

determination of the stiffness matrix is zero. This yields a quadratic equation in terms of 

uniform bending moment applied and stiffness of the plate element. However, this was 

based on the assumption that stocky flanges rotate as rigid body. Therefore, it does not 

predict the local flange buckling behaviour, which accompanies global buckling during 

the distortional buckling. 

 

The above method was extended to obtain a beam type finite element for a linear 

eigenvalue problem  by Bradford and Trahair (1981). This element has six nodal out of 

plane buckling degrees of freedom, comprising the two flange translations UT and UB, 

two flange rotations ்ܷ ′  and ܷ஻ ′ with respect to longitudinal axis and two flange twists 

about vertical axis  ்׎ and ׎஻. Thus, this beam type finite element has six degrees of 

freedom at each longitudinal node.  
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(Bradford 1988)   was able to extent this method to monosymmetric beams as top and 

bottom flange strain energies due to the warping and twisting of flanges were calculated 

separately. This method predicts the buckling strength for longer and slender members 

adequately, but inaccuracy arises in shorter and stockier beams for which the interaction 

between elastic buckling and yielding becomes significant (Bradford 1988).  The 

inelasticity also becomes significant due to the level of residual stress.  

 

Therefore, the above elastic method was extended to incorporate the inelasticity using an 

incremental and iterative solution of the buckling equation to determine the lowest load 

factor. In this extended method, a tri-linear stress-strain curve was assumed for the 

structural steel, in addition to linear a residual stress pattern.  

 

The inelastic method of analysis of the distortional buckling of I-beam sections was later 

modified to include the effects of continuous elastic restraints against translation, minor 

axis rotation, torsion and warping (Bradford 1997). In this method, a model of elastic 

restraints appropriate to chosen displacement fields was introduced. These restraints for 

top and bottom flange were two translational restraints, two rotational restraints, two 

torsional restraints and two warping restraints. This method yielded a beam type finite 

element that incorporates eight degree of freedom at each longitudinal node that is 

augmented to handle elastic restraints. The vectors of buckling displacements are ்ܷ, ܷ஻  , 

்ܷ ′, ܷ஻ ்׎ ,′ ்׎ ,஻׎ , 
′
  and  ׎஻

′, where prime indicate the rate of change with respect the 

longitudinal axis.    
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In the case of stiffeners in industrial ducts, a stiffener can be considered as a beam fully 

restrained against lateral displacement and twist along its tension flange. The 

compression flange is restrained elastically by the stiffness of the web. The effect of 

elastic restraint, particularly the torsional restraint, on the buckling mode of the stiffener 

is obviously distortional as shown in Figure 3.6. To include the full translational and 

elastic twist restraint of the tension flange, the inelastic method presented by Bradford 

(1988) was modified by Bradford (1998a). Here, it was assumed that a continuous 

restraint of stiffness per unit length inhibits the twist of the tension flange, while a 

continuous restraint of stiffness per unit length inhibits the rate of change of twist. The 

latter stiffness is related to a warping type restraint. The top flange is assumed to be 

completely free from restraint. These restraints against twist and rate of change of twist 

correspond to the torque per unit length and warping bi-moment contribution per unit 

length.    

 

In a recent study by Udall (2007), a method to calculate the flexural capacity of a 

stiffened panel was proposed. Udall’s (2007) proposal was based on standard elastic 

lateral torsional buckling beam formula; Equation 3.1. Udall (2007) considered test 

results on six stiffened plates panels and a parametric study for twelve stiffened panels. 

The parametric study was an Eigen value elastic buckling analysis. The proposal was a 

modification of the elastic solution (Equation 3.1) of the lateral torsional buckling of a 

doubly symmetric beam. The primary requirement in the development of Equation 3.1 is 

that the cross section should involve a lateral translation, while remaining a rigid body 

when the beam buckles. As a result of that lateral displacement, the applied bending 
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moment gives a torsional component which causes torsional buckling. The twisting of the 

beam occurs when the compression of flange become unstable as a result of its being 

subjected to a flexurally induced axial stress. To the contrary, the bottom flange of the 

stiffener that is connected to duct plate is in tension and the top flange is in compression 

when the duct is under negative pressure. The duct plate provides lateral restraint to the 

tension flange. Because of this lateral restraint, the lateral torsional buckling theory 

predicts that the beam should reach its plastic moment capacity. Stiffeners with full 

restraint in the tension flange, however, buckle in a lateral distortional mode, in which the 

web distorts in order for the compression flange to displace and twist during buckling.   

 

Udall (2007) proposed that the effective width of a duct plate is equal to 128 times of the 

duct plate thickness on either side of stiffener flange edge. However, less than half of this 

effective width provides the second moment of area about weaker axis nearly equal to 

second moment of area about stronger axis. According to derivation of beam elastic 

buckling Equation 3.1, the second moment of area of the stronger axis must be large 

compared to second moment of area about weak axis so that the lateral displacement ܷ is 

not linked to twist. This is clearly the case for general beam sections. But, this is not the 

case for stiffened plate panels with the proposed effective width.  Udall’s (2007) 

modified lateral torsional buckling Equation 3.1 to calculate the section properties of 

composite section ignored the tension portion of composite section. Udall (2007) used an 

equivalent section whose depth is equal to twice the distance between the neutral axis and 

compression flange of the stiffened plate panel. It was supported by the fact that the terms 

Af and rt of the compressive portion are employed by AISC ASD (1989) in calculating 
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bending stresses. In the codification of elastic beam buckling in AISC ASD (1989), the 

warping stiffness
 
 in Equation 3.1, neglecting the uniform torsional stiffness GJEI y  in 

Equation 3.1, was only used to derive the bending stress. During the simplification of this 

warping stiffness, it was assumed that   ்ݎ ൌ  .௬ݎ1.2

 

This design method by Udall (2007) only focuses on the peak strength of a stiffened 

panel and does not correctly predicts the behavior of stiffened plate panels. Grondin et al. 

(1999) did a numerical analysis to investigate the strength and behaviour of a plate panel 

stiffened with a T-section and identified the conditions that may lead to failure by 

tripping of stiffeners. Stiffener tripping is characterized by the rotation of the stiffener 

about the stiffener plate junction. Compared with other modes of failure, stiffener 

tripping generally results in a sudden drop of load carrying capacity (Grondin et al 1999). 

The dominant force in their study was longitudinal compression as they investigated 

stiffened plate panels that form the hull of a ship or a box girder of a bridge. But, the 

dominant force in stiffened plate panels of industrial duct is bending moment. The 

ultimate and post buckling strength depend on the failure mode of stiffened plate panels 

(Grondin et al. 1999).  Therefore, it is necessary to identify the behaviour of stiffened 

plate panels that dictates their strength. 
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The methods of designing steel beams use a conversion of the beam’s resistance to elastic 

buckling strength that allows for the effects of residual stresses and initial imperfections. 

Thus, when the influence on the elastic buckling resistance of the brace stiffness can be 

included with those effects of beam geometry, moment distribution and load height, then 

the conversion allows the beam design strength to be estimated (Valentino and Trahair 

1998). 

  

The review of literature has indicated that the parameters that dictate the behaviour and 

strength of stiffened plate panels are cross sectional slenderness, stiffener overall 

slenderness, support restraint conditions, load height and location relative to the shear 

centre and material characteristics (Bradford 1997). In a duct, the critical loading for the 

stiffened plate panel is the lateral negative pressure. Then, the load height and type of 

load will be out of focus from the list of parameters. Also, the stiffened panel is generally 

designed and detailed for construction as a simply supported beam. The material 

characteristics can also be out of focus as industrial ducts are constructed using general 

structural steel members that are made of general steel grade. However, the material 

characteristics will be considered. The geometric parameters that affect the behaviour and 

strength of stiffened plate panels are cross sectional slenderness and member overall 

slenderness.  The effect of these factors on stiffened plate panels subjected negative 

pressure load, however, did not receive much attention in research studies. Therefore, the 

effect of these parameters on the behavior and strength of stiffened plate panels needs to 

be investigated.  
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With the current analysis tools and computing power, more precise modeling of stiffened 

steel plate panels can be achieved. Factors such as residual stresses and initial 

imperfections can be explicitly incorporated into numerical models.  Grondin et al (1999) 

showed that the magnitude and distribution of initial imperfections have an influence on 

the capacity of stiffened plates failing by plate buckling, but little influence on failing by 

overall buckling. Grondin et al (1999) also showed that residual stresses have an 

influence on the compressive strength of stiffened plates failing by plate buckling.  
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3.4 Finite Element Model 

A review of the literature indicated that number of tests conducted on stiffened plate 

panels subjected to negative pressure load is very limited. To fully understand the 

behavior of stiffened plate panels, a large number of tests are required in order to 

incorporate a wide range of the parameters that affect the behavior of stiffened plate 

panels. However, it is uneconomical to conduct a large experimentally based 

investigation. At the present time, one of the most popular methods used to analyze a 

structural problem is the finite element method. The finite element method has been 

proven to offer an efficient analytical approach while providing reliable results (Bathe 

1996). In order to cover all the parameters, a finite element method based numerical 

model was used to investigate the full range of parameters.  

 

The numerical modeling techniques employed should be adequate in simulating the 

stiffened plate panel subjected to lateral pressure load. The accuracy of the model 

depends on the ability of the modeling techniques to simulate the material and geometric 

properties, loading, boundary conditions and initial imperfections. Therefore, this chapter 

focuses on the techniques used to build the model and analyze the numerical model 

successfully. The performance of this model was first verified by comparing the predicted 

strength with corresponding tests results. 

 

In this numerical simulation, finite element analysis software ADINA (2009) has been 

used. ADINA is a commercially available multi-purpose finite element software package. 

The structural analysis module of ADINA was used for this study. In this investigation, 
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since the nonlinearity comes from the material properties and buckling behavior of 

stiffened panels, the nonlinear finite element method was done using ADINA. ADINA 

contains an extensive element library, material models and modeling capabilities.   

 

The large deflection of laterally loaded thin-walled stiffened plate panels involves in-

plane and out-of-plane displacements. Therefore, a shell element was used to study the 

behavior of the laterally loaded stiffened plate. Figure 3.7 shows a 4-node nonlinear shell 

element with the shell mid-surface nodal points. In order to simulate the nonlinear 

buckling behaviour, the flanges and the web were modeled with the shell element. The 4-

node shell element is based on the updated Lagrangian formulation (Bathe 1996). The 

nodal coordinates are updated to reflect the current position in space and all the shape 

functions and derivatives are updated based on current updated coordinates.  Each node 

has six degrees of freedom: three translations and three rotations. The 4-node shell 

element used in this study can be employed to model thick and thin general shell 

structures. The shell element is formulated with the assumptions used in the 

Mindlin/Reissner plate theory. This shell element can be used with elastic-isotropic, 

plastic-bilinear and plastic-multilinear material models. This shell element can also be 

used in a large displacement/small strain problem. This type of element is suitable for the 

present application since the magnitudes of the strains are generally not very large. In 

order to capture the onset and spread of material yielding accurately, the Newton-Cotes 

rule, also known as the Simpson rule, was chosen with seven integration points. Further 

information was given in Chapter 2, 
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In order to study the laterally loaded plate panel beyond the elastic limit, it is necessary to 

obtain the nonlinear equilibrium path even into the unloading region. In the nonlinear 

finite element analysis, the equilibrium along the loading and unloading path can be 

obtained by incremental methods. In order to obtain the equilibrium path after each 

increment, an iteration technique is needed. In this study, the increment is done by 

automatic step increment  by Load Displacement Control (LDC) method. The LDC 

method can be used to solve for the nonlinear equilibrium path of a model until its 

collapse. In the LDC method, a prescribed displacement for the first solution step and an 

expected maximum displacement have to be defined. The main feature of this method is 

that the level of the externally applied loads is adjusted automatically by the program 

even during the iteration process to eliminate unbalanced forces. This method uses the 

arch length method for the iteration to solve highly nonlinear problems including snap-

through response problems. This method will terminate at the solution that satisfies the 

user defined displacement. In spite of computational challenges arising from incremental 

nature of the solution process and the highly refined finite element models, a personal 

computer was used to satisfactorily carry out this study. 

 

An experimentally verified finite element model will be extensively used in a parametric 

study to investigate the behaviour and strength of stiffened plate panels subjected to 

lateral pressure loads. This parametric study would require hundreds of different models. 

In the finite element program ADINA, the model can be built either by entering the 

model parameters through the ADINA User Interface (AUI) dialog boxes or by entering 

the commands into the AUI command window. These commands can be a text batch file 
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containing all commands and parameters needed for constructing the model. Then, this 

text batch file, with file extension “.cmd”, can be entered through standard input. This 

batch file contains the commands to create the geometry including initial geometric 

imperfection, to create the residual stress pattern, and to define the material model, 

loading information, boundary conditions, analysis options and post processing options. 

Each batch file may contain thousands of command lines. Each model takes a 

considerable amount of time to build. An effective way of creating the finite elements 

models for a parametric study must utilize quick and effortless manipulation of the input 

data. The analyst must be capable of altering the model quickly without any costly 

changes in all model parameters. Also, it is important to guarantee the accuracy of 

models and solutions for each parametric model by keeping general parameters 

unchanged. Therefore, it was decided to automate the process of creating the command 

batch file. An external program using Visual Basic for Application was developed for this 

automation. All the general basic data for the model, such as the stiffener’s dimensions, 

plate width, plate thickness, material information, boundary types, analysis options, 

element sizes and density, amplitude of geometric imperfection and residual stress, etc, 

will be entered in a table form. The external program will generate the necessary 

coordinate points and the geometry of the stiffened plate panel and then the batch file 

containing thousands of command lines is generated instantly, based on the above basic 

data in the table. This automation helps keeping  the similarities between models by 

avoiding accidental error during manual modeling. Also, this automation enables quick 

post processing as the user can identify the element and node numbers easily anywhere in 

the model to obtain results. 
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3.4.1 Initial Geometric Imperfections 

The initial geometric imperfections may exist in the plate elements of stiffened plate 

panels. The geometric imperfections arise during the production of stiffeners and the 

fabrication of stiffened plate panels by welding. It may also be noted that in order to 

initiate the buckling response, the finite element buckling analysis needs some 

disturbance. This disturbance may be a geometric imperfection or a load disturbance. It 

should be noted that both the magnitude and shape of the initial geometric imperfections 

play an important role in buckling behavior. An initial geometric imperfection similar to 

expected buckling mode or the shape of existing geometric imperfection is generally 

applied on finite element models. In this study, the shape of the buckling mode was 

assumed to be the initial geometric imperfection as this imperfection will lead to lower 

bound until and after the ultimate limit state is reached. The stiffened plate panel under 

consideration may experience local buckling on its plate elements and overall distortional 

buckling in its stiffener. Therefore, each local buckling type and overall buckling mode of 

initial geometric imperfections should be included and amplified by the maximum 

amplitude and the resulting pattern should be superimposed to incorporate the complete 

initial geometric imperfection.  

 

In order to incorporate the local buckling modes on the plate elements of the stiffened 

plate panel, in the current study, a double sine wave distribution of the initial geometric 

imperfection was assumed. Carlsen and Czujko (1978) studied the distribution of post- 

welding initial geometric imperfection in the plates used in ship structures and suggested 

that the initial deformed shape could be expressed by a double trigonometric function. To 
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incorporate the initial imperfections in the flanges, the lines along the flange-to-web joint 

and the lines along both ends of the member were defined to be straight, but the free 

edges of the flanges were defined to form a number of half sine waves along the member 

length.  For the web, all edges were defined to be straight, but the middle line along the 

member length was defined to form a number of half sine waves. To incorporate the 

initial imperfections in the flanges, web and plate, the lengths of the half sine waves were 

taken as the half the width of the flanges, the depth of the web, and half the width of the 

flange respectively. Therefore, the distribution of such assumed imperfection in the 

flanges, the web and the plates can be calculated using the following curved line 

equations: 

 

For the geometric imperfection of the flanges and the plate:
 

ߜ ൌ ௢ߜ sin ൬ߨ
ݔ2
ܾ ൰ ݊݅ݏ ൬ߨ

ݕ2
ܾ ൰                                                                                                ሺ3.10ሻ 

 

For the geometric imperfection of the web:
 

ߜ ൌ ௢ߜ sin ቀߨ
ݔ
݄ቁ ݊݅ݏ ቀߨ

ݖ
݄ቁ                                                                                                     ሺ3.11ሻ 

 

Where ߜ௢ is the maximum imperfection amplitude, and ܾ and ݄ are the width of the 

flange and the web respectively. The exaggerated initial imperfection for the local 

buckling of the plate elements is illustrated in Figure 3.8. ݔ,  axes are along the ݖ and ݕ

longitudinal, transverse and vertical directions, respectively.  
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In order to incorporate the overall distortional buckling mode of the stiffeners, the initial 

geometric imperfection of the stiffener can be modeled with following sinusoidal wave 

(Paik at el. 1998) : 

 

ߜ ൌ ௢௦ߜ
z
h sin ቀߨ

ݔ
 ቁ                                                                                                                ሺ3.12ሻܮ

 

Where ߜ௢௦ ൌ maximum amplitude of the sinusoidal sweep of the stiffeners and ܮ ൌ 

length of the stiffener. Figure 3.9 illustrates the exaggerated shape of sinusoidal sweep 

applied to the stiffener. 

 

The amplitudes of the imperfections such as the cross sectional geometry and sinusoidal 

sweep, based on standard mill practice, are outlined in CSA (2010) and AISC (2005). The 

maximum amplitudes of the imperfections used in this present study are limited to those 

values associated with the cross sectional geometry and the sinusoidal sweep. The 

maximum permissible variation in the cross sectional geometry of the flanges is 3mm to 

4mm depending on the width of the flange as  given in CSA (2010) and AISC (2005). For 

the inelastic failure of high strength steel wide flange beams, Earls(1999) used the 

maximum amplitude for the plate elements based on the mill practice as outlined in AISC 

(2005). Thus, the present study also assumes the maximum imperfection magnitude ߜ௢ of 

3 mm for plate elements.   

 

The maximum amplitudes of the permissible sinusoidal sweep are 0.001 times the length 

of the W shape with flange width greater than 150mm and 0.002 times the length of the 
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W shape with flange width less than 150 mm CSA (2010) and AISC (2005). Paik at el. 

(1998) investigated numerically the characteristics of tripping failure in flat bar stiffened 

plate panels subjected to an axial compressive force. In their study, the amplitude of the 

global initial deflection was taken in the flat bar stiffener as 0.0015 times the stiffener 

length. Therefore, the maximum amplitude ߜ௢௦  of the sinusoidal sweep was assumed to 

be 0.001 times the length of the stiffener. In the current study, the above mentioned initial 

imperfections were superimposed into the numerical model as illustrated in the 

exaggerated Figure 3.10. 
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3.4.2 Residual Stresses 

Structural wide flange shapes are manufactured by hot rolling where hot steel is shaped 

by being forced through a system of rollers. When the structural shape is allowed to cool 

in the air, the tips of the flanges and the centre portion of the web cool more rapidly than 

the areas adjacent to the flange-to-web junction. Then, when the central portion of the 

flanges is restrained by already cooled stiffer areas near the flange tips and centre portion 

of the web, this causes a self equilibrating stress pattern, known as the residual stress. In 

W-shaped steel sections, it is typical for the tips of the flanges and the web centre to be in 

compression while the flange-to-web junction areas are in tension.  The residual stress in 

structural shapes varies along the width of the web and flanges, but not significantly 

across the thickness of the plate. The distribution of the residual stress across the flange 

and web of the stiffener can be idealized linearly as shown in Figure 3.11. The magnitude 

of the compressive and tensile residual stress was assumed to be equivalent to 0.3F୷ 

(Arasaratnam 2008 and Grondin et al 1999). 

 

The presence of residual stress in stiffened plates is primarily attributable to the welding 

of stiffener elements to the plate. The distribution of residual stress due to welding is 

generally quite different from that due to hot rolling. During welding, metal reaches the 

plastic range. Due to the different cooling rates and the interaction between different plate 

fibres, the area nearest to the weld is in tension. Faulkner (1975) measured the residual 

stress in stiffened plates and proposed a tension block vicinity of weld region. The 

tension block is extended to three to six times thickness of the plate on either side of the 
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weld. The following relationship was proposed for the maximum compressive residual 

stress on the plate. 

 

௥݂

௬݂
ൌ

ߤ2
ܾ
ݐ െ ߤ2

                                                                                                                               ሺ3.13ሻ 

 

Here ௥݂= magnitude of compressive residual stress in the plate, ௬݂= yield strength of the 

plate, ܾ= width of the plate, ݐ= thickness of the plate and, ߤ = constant that depends on 

type of welding. The recommended ߤ  was 4.5 to 3. The welding of stiffeners to the plate 

introduces tension residual stresses close to the yield stress.  As these residual stresses are 

self equilibrating, residual stresses generally have little effect on the ultimate strength of 

compressive elements (Grondin et al 1999).  

 

In industrial ducts, the typical connection between the stiffener and the plate in order to 

have composite action fully is made by using intermittent fillet welds that are staggered 

on either side of the stiffener. The intermittent welding adds less heat to the plate, thus it 

reduces the amount of residual stress in the plate.  Therefore, the maximum welding 

tensile residual stress was assumed to be 0.5 ௬݂.  The welding residual stresses in the plate 

and the bottom flange are accounted for in this numerical study by assuming an idealized 

linearly varying residual stress pattern as shown in Figure 3.11. The resultant residual 

stress on the bottom flange due to forming and welding was incorporated in the finite 

element model. The residual stress was applied at the nodal points as initial strains in the 
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finite element models. ADINA (2009) provides facilities for allocating the initial stresses 

and strains in the nodal points of the finite elements.  

 

3.4.3 Material Models 

The stiffened plate panels subjected to a negative pressure loads involves material 

nonlinearity beyond the yielding. Therefore, for the nonlinear finite element analysis, 

characteristics of the material behavior should be defined precisely in terms of stress 

versus strain. The realistic relationship between stress and strain can be estimated through 

the standard tensile coupon testing which covers linear elastic region, yielding, yield 

plateau, strain hardening, ultimate strength and necking effect.  

 

In the experimental test (Udal 2007), the plate was made of mild carbon steel 44W and 

the material of the wide flange stiffeners was mild carbon steel A992. During the 

experiment, the stress-strain relationships were not established for the material of the 

stiffeners and the plates through the tensile coupon test. Numerical analysis found in the 

literature generally employ simpler idealized material models as the effects of strain 

softening  and necking for the ultimate limit state of structural limit state design are often 

unaccounted for.  However, numerical simulations of structural steel require accurate 

yield stress and ultimate tensile stress in order to predict the ultimate strength of the 

structural member. Generally, ASTM specification provides one minimum yield stress 

and one minimum ultimate tensile stress for all available grades of structural steels, 

except for steel grade A992.  The steel grade A992 has a range of minimum yield stress 

from 345 MPa to 450 MPa. Therefore, it is necessary to use realistic yield stress and 
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ultimate tensile stress for the stiffener material (A992) used in the experimental tests. 

Recently, Arasaratnam (2008) established stress-strain relation for steel grade A992 using 

specimens obtained from plate elements of wide flange structural shape. The average 

yield stress  ܨ௬ of flange coupons was established to be 444 MPa.  

 

In this verification study, therefore, the material model was assumed to be an idealized 

tri-linear representation of mild carbon steels A992 and 44W. The tri-linear elastic-

plastic-strain hardening models are shown in Figure 3.12. These material models are 

idealized considering three distinct material stress-strain relationship features; initial 

linear portion, presence of a yield plateau, magnitude of strain hardening. The Young 

Modulus E of all three models was taken as 200 GPa. The nominal yield stresses of mild 

carbon steel A992 and 44W were assumed to be 440 MPa and 300 MPa, respectively. 

The nominal strain at yield ߝ௬ is  ி೤
ா

. The strain hardening is anticipated at strains that are 

somewhere between 10 to 20 times ߝ௬. The strain hardening slope Est was considered to 

be ா
ଷ଴

. The minimum specified ultimate stress for the steel A992 and 44W are 540 MPa 

and 400 MPa respectively. The values of the strain-stress relation of mild carbon steel 

A992 and 44W were presented in Figure 3.12. These relationships will be applied in the 

material models. For both of mild carbon steels, the value of ultimate strain is specified to 

be large so that it can never be reached in the analysis. The other parameter considered 

herein is Poisson’s ratio, υ. Τhe accepted Poisson’s ratio values for steel in generally 0.3.  
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To predict material behaviour under multi-axial loading, a yield criterion that indicates 

the combination of stress components for which transition from elastic to plastic 

deformations occur should be used. The applicable yield criterion for metal plasticity is 

the von Mises yield criterion. The von Mises yield criterion has been interpreted 

physically as implying that plastic flow occurs when shear strain energy exceeds a critical 

value. The von Mises criterion is often used to estimate the yielding of ductile materials. 

Also, this criterion is largely based on the experimental observation that most 

polycrystalline metals are isotropic. Steel is also an isotropic and ductile material. A flow 

rule relates the plastic strain rates to the current stresses and the stress increments 

subsequent to yielding, and a hardening rule specifies how the yield condition is modified 

during plastic flow. ADINA metal plasticity model is characterized as an associated flow 

plasticity model with the isotropic hardening rule being used as the default hardening 

rule. An associated plasticity model is a plastic flow rule. It was observed experimentally 

that metals such as steel obey the associated flow rule. Also, in other numerical studies on 

the behaviour of steel structural members, it is common practice to use the isotropic 

hardening rule to track the yield surface. Therefore, the default ADINA metal plasticity 

features were used in the present study. These features are based on an associated flow 

plasticity model that uses von Mises yield criterion as the failure surface. Evolution of 

this failure surface was restricted in the current study to isotropic hardening rule.  

 

The finite element analysis method can be used accurately to trace the nonlinear 

equilibrium path, even into the unloading region, in the buckling behaviour of stiffened 

plate panels. Thus, the finite element method can be used to obtain the applied pressure 
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load and corresponding deformations and stresses of stiffened plate panels, in addition to 

obtaining their buckling and collapse modes. In this portion of the study, finite element 

models for stiffened plate panels were developed to verify the accuracy of the model 

techniques with available experimental results in literature. This model incorporates 

initial imperfections in the plate elements forming the cross section and in overall length 

of the stiffener and an idealized distribution of residual stresses for the cross section.  

 

3.5 Statement of Problem 

Nonlinear finite element methods are powerful tools in analyzing nonlinear structural 

responses that involve geometric and material nonlinearities. Current nonlinear finite 

element methods are widely accepted for their ability to predict structural behaviour and 

strength accurately. However, the numerical modeling techniques employed should be 

able to idealize adequately the structural problem under consideration. Therefore, it is 

necessary to verify the modeling techniques used. This is generally accomplished through 

comparison with experimental or existing theoretical results. Before the verification 

study, first a convergence study is usually carried out to identify the best size of mesh in 

order to achieve this verification. Therefore, in this portion of the study, an experimental 

verification study, followed by a convergent study, is done. 
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3.5.1 Mesh Density and Convergence Study 

In order to get a sufficient level of accuracy with less computational cost, generally 

similar nonlinear finite element models with a variety of element mesh densities are 

analyzed to obtain the best mesh density. However, due to the local and global 

distortional buckling in the flange and the web, which arise during the analysis of 

stiffened plate panels, it is required to reflect the deformation behavior. The element size 

should be able to represent the geometry and the deformation behavior. Although a 

coarser mesh can generally yield the required degree of accuracy, the initial imperfection, 

specially the residual stress pattern, dictate the finer element sizes in this study in order to 

incorporate them into the model.   

 

However, in this numerical study, a convergence study was performed in order to 

establish a suitable mesh density. Figure 3.13 shows the geometry of the stiffened plate 

panel model used in this mesh size convergent study. The thickness of the plate in the 

stiffened plate panel was 5mm and the plate was assumed to be made of steel grade 44W 

having 300MPa nominal yield strength. The depth of the stiffener was chosen to be 

240mm as shown in Figure 3.13. The stiffened plate panel was subjected to a lateral 

negative pressure. The stiffener section was assumed to be made of steel grade A992 

having a yield strength of 440 MPa. The stress-strain relation of both material were 

idealized to be tri-linear as described in Section 3.3.3. The geometric imperfection for 

plate elements and the stiffener was incorporated as described in Section 3.3.1. The 

residual stress was not applied for this convergent study. The percentage change in 

ultimate load was compared as the mesh was being refined. The mesh validation was 
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performed on five different runs with the same physical properties of stiffened plate 

model and the same loading conditions. The only variable changing was the mesh size. 

Table 3.1 shows the mesh detail and the analysis results. As shown in this Table 3.1, four 

different finite element mesh configurations were considered in this convergence study. 

The coarse mesh contained only 441 shell elements, whereas the most refined mesh 

contained 1201 elements.  

 

The results from the convergence study are also shown in Table 3.1. Table 3.1 also shows 

the percentage change associated with ultimate moment capacity between different mesh 

refinements. The percentage change in ultimate moment capacities from a mesh density 

of 1 to 2 and 2 to 3 were 2.65 % and 1.5 %, respectively. The percentage change in the 

ultimate moment between mesh densities of 3 and 4 was only 0.75 %. In general, the 

percentage change less than 5 % may be considered acceptable. Thus, mesh densities 1, 

2, 3 and 4 may be acceptable. As seen from the above results, a reasonable degree of 

accuracy can be obtained with a coarse mesh. However, due to the severe nature of the 

material and geometric nonlinearities involved in later analyses, a very dense mesh of 

shell elements was desirable in order to trace the nonlinear equilibrium path into the 

unloading region. Thus, mesh 3 was selected as the most suitable mesh and this mesh 

density was used for rest of the studies presented in Chapter 3 and Chapter 4. In Physical 

dimensions, each element is of size 50 x 30 mm. Although this mesh density results in 

more accurate solutions, a further finer mesh was required to incorporate the residual 

stress pattern considered for this study. 
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3.5.2 Verification of Numerical Modeling Techniques 

The finite element model developed herein would be used to study the buckling strength 

of stiffened plate panels. As part of this study, before performing the analysis, it is 

necessary to validate the finite element modeling techniques used in the present study. 

This can be accomplished through the application of above developed element modeling 

techniques and the comparison of the results obtained from these finite element models 

with available experimental results. This portion presents a comparison between test 

results and the predictions from the finite element numerical analysis. It is interest of  

here to determine the behaviour and strength of a stiffened plate panel subjected to lateral 

pressure load. Therefore, the applied load versus displacement along with the buckling 

modes of the experimental results and the numerical results will be compared. 

 

Description of Experiment: Due to the severe nature of both material and geometric 

nonlinearities involved, the finite element model should be able to adequately trace the 

nonlinear equilibrium path of a laterally loaded stiffened plate. Therefore a similar 

experimental tests are needed so as to compare the validity of the finite element model. 

Because of the very limited research study in this area, it was difficult to find 

experimental results to validate the numerical model.  The experimental test results on 

stiffened plates subjected to lateral pressure by Udall (2007) were selected as a basis of 

comparison with the numerical results. The scope of Udall (2007) experimental test was 

to estimate the capacity of the stiffened plate panel. To simulate the loading and the 

boundary condition of stiffened plates of a large industrial duct, a shallow box with a 

removable top was made. The removable top contained the plate with a stiffener attached. 
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The box was made reasonably air tight and the pressure load was applied by vacuum 

pump. This arrangement simulated a single stiffener and plate between two adjacent 

stiffeners subjected to lateral pressure. The vacuum pressure was increased until the 

stiffener collapsed. The test results from these tests (Udall 2007) were used to validate the 

finite element techniques employed in this study.  

 

A schematic diagram of the test specimen is shown in Figure 3.14. In his study, the size 

of the box was 4572 x 2438 mm in plan area and 152 mm in depth. A 76X76X7.9 angle 

frame around the perimeter of the box acted as flange for the removable stiffened plate 

panel. As reported by Udall (2007), the plate thickness of stiffened panel was 4.76mm 

and made of ASTM 44W steel with the nominal yield strength of 300MPa .  The test 

stiffeners were W310X21 (W12X14) and W200X27 (W8X18) wide flange sections made 

of steel grade A992 with the nominal yield strength of 440 MPa. The W310X21 

(W12X14) and W200X27 (W8X18) stiffeners were slender and compact sections 

respectively. Therefore, different failure modes were expected. The experiment consisted 

of six test specimens using three W200X27 (W8X18) stiffeners and three W310X21 

(W12X14) stiffeners. 

 

Description of Numerical Model: Based on the investigation by Udall (2007), two finite 

element models for the stiffened plate panels, for each W310X21 (W12X14) and 

W200X27 (W8X18) stiffeners, were developed to determine how accurately the proposed 

modeling techniques are able to predict the buckling behavior and the strength of 

stiffened plate panels. The modeling techniques used to develop the models were 
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presented in Section 3.3. The geometrical details are shown in Figure 3.14. The geometry 

of the finite element models was created incorporating the geometric imperfection as 

described in Section 3.3.1. The initial imperfections were modeled at the time of defining 

mesh. This enabled incorporating the known magnitude and distribution of imperfections 

in the models. Several thicknesses were specified in each model corresponding to the 

plate, stiffener flange, stiffener web, angle frame and box. A tri-linear elastic-plastic-

strain hardening material model with a von Mises yield criterion was used to model the 

material’s constitutive behavior. Since large out of plane deformations and finite strains 

were expected in the model during analysis, particularly after buckling, the large 

displacement and small strain formulation was used. The yield strengths of the plate and 

the stiffener were assumed to be 300 MPa and 440 MPa, respectively. The yield stress of 

stiffener obtained by Arasaratnam (2008) was used for this nonlinear numerical analysis 

as no material characteristics were established by Udall (2007) for his experiments or 

numerical studies.  In this verification study, the modulus of elasticity of 200 GPa was 

assumed for both plate and stiffener. The only residual stress introduced in the model was 

the longitudinal stress arising from cold forming and welding process as described in 

Section 3.3.2. The residual stresses were incorporated into the model as initial strains at 

nodal points. ADINA uses automatic step increment to carry out the nonlinear 

incremental analysis for predicting the load-displacement path into unloading region.  

 

In order to simulate the stiffened plate panel edges supported by the angle frame and the 

box, the vertical faces of box including the angle frame were modeled. Figure 3.15 shows 

the finite element model of the stiffened plate panels including the angle frame and 
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support box. The boundary conditions along the plate boundary are now realistically 

represented by the stiffness of the box with angle frame flange. The bottom edges of the 

box vertical faces were fixed. Although out-of-plane and in-plane lateral translation of the 

flange and the web of the stiffeners are not prevented during the experiment as it is 

usually the case in an actual stiffener of the industrial duct. It should be noted, unless 

otherwise shown, all degrees of freedom for all nodes were set to freely translate and 

rotate.  

  

The automatic step incrementing was carried out by the Load Displacement Control 

(LDC) method in which a prescribed displacement for the first solution time step and 

expected maximum displacement are defined. The maximum displacement (50mm) was 

specified at the middle of bottom flanges. The main feature of this method is that the 

level of the externally applied pressure load is automatically adjusted by ADINA. The 

Load Displacement Control method was used to follow the nonlinear equilibrium path of 

the model until and after its collapse. 

 

The characteristics of the stiffened plate panel behavior which were used to compare the 

results of finite element model were obtained from the numerical analysis. The 

characteristics were the failure deformation shapes of stiffened plate panels and the 

applied pressure versus vertical deformation. A quick observation indicates that the 

failure deformation shapes and the associated load versus deformation patterns are clearly 

similar. 
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It should also be noted that the ability of the finite element models to predict the failure 

modes are consistent with buckling modes observed during the experiments. A 

comparison of the buckling modes between experimental and numerical results is shown 

in Figures 3.16, 3.17, 3.18, 3.19, 3.20 and 3.21. The web of the stiffeners got distorted to 

accommodate the lateral movement of the compression flanges. This mode is clearly 

similar to the buckling mode seen in numerical results. 

 

Figures 3.16 and 3.17 compare the failure modes of a plate panel with stiffener W200X27 

(W8X18) obtained from the test and the numerical simulation respectively. The deformed 

shape obtained from the finite element analysis is very similar to the one observed during 

the test. Both have same configuration and web distortional buckling wave at the middle 

of the plate panel. Also, it should be noted the wave lengths of the distortional buckling 

modes for the test and numerical simulation are same. 

 

Figure 3.18 and Figure 3.19 depict the deformed configurations numerically predicted 

and experimentally obtained for the steel plate panel stiffened by W310X21 (W12X14). 

Both have the same configuration and similar distortional buckle waves. During the 

deformation in both numerical and experimental tests, the both ends of the top flanges 

move slightly in opposite direction with respect to the original location of the centre line 

the top middle flanges. This is because the wave lengths of the case with stiffener 

W310X21 (W12X14) is higher than that of the case with stiffener W200X27 (W8X18). It 

should be noted that the cases with stiffener W200X27 (W8X18) do not experience the 

opposite movement of top end flanges because of the shorter wave length of their 
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distortional buckling mode. The buckling deformation shapes between the numerical 

analysis and experiments are in good agreement. Also, it can be concluded that higher 

web depths lead to higher wave lengths of the distortional buckling mode. 

 

For further comparison, close up views of the middle portion  of the stiffened plate panel 

with stiffeners W310X21 (W12X14)  from both the test and the finite element analysis 

are also depicted in Figure 3.20 and Figure 3.21. Both experience local buckling type 

deformations in the flanges following the distortional buckling of the stiffener. This 

indicates that the numerical model is able to predict the behavior of the stiffener correctly 

even after the collapse. 

 

The next step in the validation process was to compare the predicted pressure load-

vertical displacement response with the reported test results. The analytical and 

experimental results for stiffened plate panel with stiffener W200X27 (W8X18) was 

presented in Figure 3.22. The vertical and horizontal axes represent the pressure load in 

kPa and mid-span vertical deflection in mm, respectively. It could be observed that the 

numerical analysis results agree well with the experimental results. The following 

observations can be made. The shapes of the curves are similar and the measured and the 

predicted peak strengths are almost the same. The differences between the predicted 

capacities and measured capacities are only 1.5% for the case of stiffener W200X27 

(W8X18). 
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Although the finite element models successfully predicted the failure modes for both 

stiffeners and the model with stiffener W200X27 (W8X18) very closely matched the 

experimental load versus deformation response, comparison of the load versus 

deformation response from numerical result of the model with stiffener W310X21 

(W12X14) does not closely matched that of the test as shown in Figure 3.23. The 

numerical model of the stiffener W310X21 (W12X14) predicted 12% smaller strength 

than predicted by experimental analysis. However, the numerical model of stiffener 

W310X21 (W12X14) buckles when the mid-span vertical deflection reaches around 

20mm, while buckling in one of the experiments also occurs gradually after the mid-span 

vertical deflection passes the same 20mm, even though the numerical model of stiffened 

plate penal for the stiffener W310X21 (W12X14) predicts the strength 12% less. In order 

to explain the difference between the observed and predicted strength of the stiffened 

plate penal with stiffener W310X21 (W12X14), the following observations were made. 

Firstly, it should be noted that minimum yield stress of A992 steel has a range of values. 

The actual yield stress of the stiffener W310X21 (W12X14) may not be truly 

representative of the material model used. Since the slopes of the elastic portion of the 

response curves are predicted accurately, the lower strength can reasonably attributed to 

the difference in material properties, mainly yield strength, between finite element model 

and the test specimen. Secondly, it is important to remember that both magnitude and 

shape of initial geometric imperfections dictate the ultimate strength in buckling collapse 

behaviour. Considering the uncertainty involved in fabrication related initial 

imperfections, average magnitudes are often assumed for initial geometric imperfections. 

In numerical simulations, generally the shape of the geometric imperfections is assumed 
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to be the expected buckling modes, which lead lower bound of ultimate strengths. 

Therefore, it is reasonable to assume that the higher strength observed in experiment of 

stiffened plate panel with stiffener W310X21 (W12X14) may have unfavorable 

imperfections in the stiffener. This is further strengthened by the reported fact that the 

stiffened panels with stiffener W310X21 (W12X14) experienced sudden collapse, instead 

of progressive collapse as expected.    

 

The finite element modeling techniques are employed successfully to simulate the 

buckling behavior and predict the strength of the stiffened plate panels, despite the 12% 

difference between measured and predicted strength of stiffener W310X21 (W12X14). 

The finite element models were able to exactly capture the failure modes. The finite 

element model for the stiffener W200X27 (W8X18) predicted exactly the load versus 

deformation response of the experiment. In addition, the slopes of elastic portions and the 

shape of response curves were identical. The finite element models could be relied on the 

response of loading and unloading branch very well. Therefore, it can be concluded that 

the behavior and strength of the stiffened plate panels subjected to negative pressure can 

be reliably predicted with the proposed modeling techniques developed in Section 3.4. 

These validated modeling techniques will be applied in Chapter 4 for an extensive 

parametric study.  

 
 
 
 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 132

 
 
 
Figure 3.1 Typical Large Rectangular Industrial Duct 
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Figure 3.2  Stiffened Plate Panels

 

Figure 3.3  Lateral Torsional Buckling 
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Figure 3.4  Web Distortion  of  a Cross Section 
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Figure 3.5 Cross Section of Singly Symmetric Beam 
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Figure 3.6 Lateral Distortional Buckling 
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Figure 3.7 Four Node Shell Element for Thick and Thin Shells 
 
 

 
 
 
 
Figure 3.8 Exaggerated Initial Geometric Imperfection in Plate Elements 
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Figure 3.9 Exaggerated Initial Geometric Imperfection in Stiffeners 
 
 

 
 

 
 
Figure 3.10 Exaggerated Combined Initial Geometric Imperfections for Models 
 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 139

 
 
 

 
 

 
       Figure 3.11 Exploded Residual Stress Pattern 
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             Table 3.1    Results of Mesh Convergence Study 
Mesh Number Element 

Physical Size 
Pult (kPa) Percentage 

Change / (%) 
1 100x60 69.8  
   2.65 

2 80x60 68.0  
   1.50 

3 50x30 67.0  
   0.76 

4 30X15 66.5  
             
 
 

 
 
    Figure 3.13 Geometry of Model for Convergence Study 
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Figure 3.16  Buckling Mode of Stiffener W200X27 from Experiment 

 

Figure 3.17 Buckling Mode of Stiffener W200X27 from Numerical Analysis 
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Figure 3.18  Buckling Mode of Stiffener   
W310X21 from Experiment 

Figure 3.19  Buckling Mode of Stiffener 
W310X21 from Numerical 
Analysis 
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Figure 3.20  Buckling Mode of Stiffener W310X21 from Experiment 

 

Figure 3.21 Buckling Mode of Stiffener W310X21 from Numerical Analysis 
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Figure 3.22 Lateral Pressure versus Vertical Deflection of Stiffened Plate Panel  
(W200X27) 
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Figure 3.23 Lateral Pressure versus Vertical Deflection of Stiffened Plate Panel 
(W310X21) 
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Appendix 3.1 Notations  

The following symbols are used in this chapter 

ܾ ൌ Width of flange  

ܥ ൌ  A constant 

௪ܥ ൌ  Warping constant 

݀ ൌ  Height of web 

݀ᇱ ൌ Distance between centers of areas of flanges, 

ܧ ൌ   Young’s modulus 

௦௧ܧ ൌ Strain hardening slope 

 ி = Flexural rigidity of compression flangeܫܧ

௥݂= Magnitude of compressive residual stress 

௬݂= Yield strength of plate 

ܩ ൌ  Shear modulus 

݄ ൌ Depth of web  

௬ܫ ൌ Weak axis moment of inertia 

௫ܫ ൌ Second moment of inertia about major axis 

௬ܫ ൌ Second moment of inertia about minor axis 

௬௖ܫ ൌ Minor axis moment of inertia of the compression flange 

௘௙௙ܫ ൌ Effective moment of inertia 

௬௧ܫ ൌ Second moment of inertia of tension flange 

ܬ ൌ  Torsional constant 

௬ܭ ൌ  Effective length factor about minor axis 
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௭ܭ ൌ  Effective length factor about major axis 

L = length of strut 

௕ܮ ൌ  Distance between braced points 

௖௥ܯ ൌ Critical moment  

௢ܯ ൌ Lateral torsional moment 

௨ܲ௟௧ ൌ Maximum pressure load 

௖ܰ௥  ൌ Elastic buckling load 

ݐ ൌ  Thickness of web 

ܷ஻ ൌ Lateral Displacement of bottom flange 

்ܷ ൌ Lateral Displacement of top flange 

ܷ஻ ′ ൌ Rate of Lateral displacement of bottom flange with respect to longitudinal axis 

்ܷ ′ ൌ Rate of Lateral displacement of top flange with respect to longitudinal axis 

ݓ ൌ  Width of web beneath support 

௢ݕ ൌ Shear centre distance 

ߚ ൌ Torsional stiffness per unit length  

௕ߚ ൌ Torsional stiffness of external bracing  

௦௘௖ߚ ൌ Torsional stiffness of stiffener web  

௧ߚ ൌ Effective Torsional stiffness  

௭ߚ ൌ Coefficient of monosymmetry  

௬ߝ ൌ Yield strain 

௦௧ߝ ൌ Strain at strain hardening 

்׎ ൌ Twist of top flange 
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஻׎ ൌ Twist of bottom flange 

்׎
′ ൌ Rate of twist of top flange 

஻׎
′ ൌ Rate of twist of bottom flange 

௢ߜ ൌ Maximum imperfection amplitude 

ߜ ൌ Geometric imperfection  

௢௦ߜ ൌ Maximum amplitude of the sinusoidal sweep 

 A constant = ߤ
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Chapter 4:        Parametric Study on Stiffened Plate Panels  

 

Abstract 

A stiffened plate panel subjected to a lateral pressure load, which causes bending, was 

investigated using a finite element model. Experimentally verified finite element 

modeling techniques were used to develop the models. The emphasis of work presented 

in this chapter is to first identify the fundamental parameters that characterize the 

behavior and strength of the stiffened plate panels. The dimensionless parameters that 

govern the behavior and strength of stiffened plate panels were then identified in order to 

conduct a parametric study with a manageable number of models.  

 

The parametric study was conducted using typical geometric and material parameters of 

general rolled stiffener sections used in an industrial duct. The numerical study indicated 

that the behavior and strength of the stiffened panels could be a function of web 

slenderness and overall slenderness of the stiffener. Also the lateral distortional buckling 

was identified as a dominant instability in laterally loaded stiffened plate panels.  The 

study also identified the stiffener web slenderness limit for which the stiffener reaches the 

yield moment capacity.  This parametric study demonstrated the conservatism of current 

methods used to proportion the stiffeners. Finally a method was established to calculate 

the moment capacity for wide flange beam stiffened plate panels subjected to lateral 

pressure. 

 

Keywords: Stiffener, Plate, Finite Element, Distorsional Buckling, Dimensional Analysis  
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4.1. Introduction 

The steel plates used in large rectangular industrial ducts are reinforced by stiffeners in 

one direction in the plane of the plate. The simplicity of their fabrication and their high 

strength-to-weight ratio make the stiffener attractive construction system in industrial 

ducts. The stiffened plate panels of industrial ducts are mainly loaded under internal 

lateral pressure. The lateral pressure might be positive or negative. This study is focused 

on the behavior and strength of stiffened plate panels under negative pressure.  

 

The stiffeners of large industrial ducts are, in general, W-shaped steel sections, which 

have high flexural rigidity and low torsional rigidity due to their thin webs. The lateral 

distortional buckling of stiffeners will cause a drop in the loading capacity of stiffened 

panels due to loss of stiffener rigidity. However, the current method of proportioning the 

stiffeners is based on the use of standard steel code (AISC 2005, CSA 2001) lateral 

torsional buckling formula. A stiffened panel subjected to a negative (suction) pressure 

load experiences compressive stress on the flange that is not connected to plate. In current 

design practices, the unsupported length of the compression flange is assumed to be the 

span the stiffened panels. Due to this loading condition and the large unsupported length 

of the compression flange, lateral distortional instability usually governs the design of 

stiffened plate panels subjected to negative pressure loads.  

 

The lateral distortional buckling of a stiffener consists of the twisting of the web and 

compression flange about the bottom portion of the web connected to the plate. The 

lateral distortional buckling is defined as the state of instability of the stiffener for which 
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the wavelength of the web buckling and the wavelength of flange buckling are the same, 

as illustrated in Figure 4.1. This occurs when the tension flange is restrained laterally and 

the compression flange is free. 

 

Although the design of stiffened plate panels of large rectangular industrial ducts has 

been done for many years, their instability aspects and load carrying capacity are still not 

well understood. In a recent limited experimental study, Udall (2007) observed the 

instability of stiffened plate panels subjected negative pressure load. However, there are 

many aspects of the behavior and capacity of stiffened plate panels to be studied. Also, 

the range of parameters that might define the practical stiffened plate panel is too large to 

do experimental investigations.  Thus, there is a need to conduct a large scale computer 

analysis parametric study in to order to discover the behavior and strength of stiffened 

plate panels subjected to negative pressure loads. 
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4.2 Objectives 

In this part of the study, an extensive finite element method based parametric study will 

be conducted for the analysis of stiffened plate panels. The nonlinear finite element 

modeling techniques developed in Chapter 3 will be used in order to accurately simulate 

the behavior of the stiffened plate panels. The first objective of the work reported in this 

chapter is to identify the possible geometric and material parameters that govern the 

behavior and strength of stiffened plate panels and a method of determining capacity of a 

stiffened plate panel subjected to lateral a negative pressure load. The objectives are 

categorized as follows: 

 

• To identify the fundamental parameters governing the bahaviour and capacity of 

stiffened plate panels 

• To identify dimensionless parameters that dictate the behavior and strength of 

stiffened plate panels 

• To understand the behavior of stiffened plate panels subjected to negative 

pressure loads 

• To conduct a parametric non-linear finite element study to derive a method to 

calculate the capacity of stiffened plate panels 

 

The stiffened plate panels subjected to static pressure loading and under ambient 

temperature were only considered in this study. 
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Section 4.3 identifies the dimensionless parameters affecting the behavior and strength of 

the stiffened plate panels. Section 4.4 describes the finite element model and also 

explains the method used to obtain the buckling moment in this parametric study. Section 

4.5 proves the completeness of the dimensionless parameters identified in Section 4.3. 

Sections 4.6 and 4.7 analyze the effect of plate slenderness and stiffener flange 

slenderness. In section 4.8, the influence of the dimensionless parameters on the behavior 

and strength of a stiffened plate panel and its capacity are investigated through a 

parametric study. Conclusions and recommendations for future research are presented in 

Section 4.9.  
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4.3 Dimensionless Parameters Characterizing Stiffener Behaviour and Strength 

Before a parametric study can be carried out on the laterally-loaded stiffened plate panels 

in rectangular industrial ducts, it is imperative to determine the dimensionless parameters 

that characterize the behavior and instability of the stiffeners. Theoretically these 

parameters should be independent of any effects of scale or material characteristics. As 

these parameters are a function of the governing instability and the corresponding loading 

condition, it is necessary to first identify the parameters for the instability. The first goal 

of this chapter is to identify the various dimensionless parameters that are influencing the 

behavior and instability of laterally loaded stiffened plate panels. These parameters will 

then be used to conduct a parametric study for the behavior and strength of the stiffened 

plate panels under negative pressure.  

 

The instability of a stiffener with a restrained tension flange, and under lateral pressure, 

was identified as the lateral distortional buckling (Bradford 1998, Udall 2007). The 

distortional buckling is characterized by the simultaneous buckling of the stiffener 

compression flange and web while the tension flange remains straight. The instabilities of 

the flange and web of the stiffened plate panel depend on the geometric and material 

characteristics. The geometric parameters affecting the behavior and strength of a 

stiffener in a rectangular industrial duct consist of cross sectional dimensions and the 

length of the stiffener. These parameters namely ܾ௣, ,௣ݐ ݄௪, ,௪ݐ ௙ܾ, ,௙ݐ  are illustrated in  ܮ

Figure 4.2. The material parameters of the plate and stiffener are the elastic modulus, 

Poisson’s ratio and the corresponding yield stresses. In addition to these geometric and 
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material parameters, the applied bending moment is also a parameter which measures the 

distortional buckling.  

 

The fundamental parameters that are considered in the behavior and strength of laterally 

loaded stiffened plate panels are ܾ௣ ൌ width of the plate (stiffener spacing), ݐ௣ ൌ plate 

thickness, ݄௪ ൌ stiffener web height, ݐ௪ ൌ stiffener web thickness, ௙ܾ ൌ stiffener flange 

width, ݐ௙ ൌ stiffener flange thickness, ܮ ൌ stiffener length, ܨ௬௦ ൌ yield stress of the 

stiffener material, ܨ௬௣ ൌ yield stress of the plate material, ܧ ൌ Young’s modulus of steel 

and ܯ௔ ൌ applied bending moment. The Poisson’s ratio was taken as constant 0.3. The 

full factorial parametric study of the above fundamental parameters would results in 

several hundreds of runs even when only three or four values are used for each of the 

fundamental parameters. 

 

It is apparent from the list of fundamental parameters above that the number of 

parameters is too large to run a combination of reasonable number of analysis. Therefore, 

it is important for the number of parameters to be reduced to do a manageable parametric 

study. A method of deriving dimensionless parameters from the list of governing 

fundamental parameters is called dimensional analysis (Harris 1999). This method can be 

used to reduce the number of parameters. The dimensional analysis can yield 

dimensionless parameters which are combination of fundamental parameters listed above.  

 

The purpose of using a dimensional analysis is to reduce the number of parameters and to 

choose parameters that are scale independent and dimensionless for a manageable 
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parametric study. The next step is to identify the dimensionless groups of variables, i.e. 

the combinations of fundamental parameters. In order to identify a proper set of 

dimensionless parameters that characterize the behavior of laterally loaded stiffened plate 

panels, the Buckingham Pi-theorem can be used (Lanhaar 1951). The Pi-theorem is stated 

that: 

 

 “Any physical meaningful relation ׎ ൫ࡾ૚ , ࢏ࡾ… ൯  ࢔ࡾ… ൌ ૙, with ࢏ࡾ ് ૙ expressed 

in terms of r independent dimensions, is equivalent to a relation of the form 

, ૚ࢼ൫ ࣒  ࢐ࢼ… ൯  ࢘ି࢔ࢼ… ൌ ૙ involving maximum set of independent dimensionless 

combinations ࢐ࢼ .”   

 

The important fact to notice is that the new relation involves ݎ fewer variables than the 

original relations; therefore this simplifies the theoretical and experimental analysis to 

save significant effort and computational cost. Also, this transformation of the 

fundamental parameters into a set of meaningful dimensionless parameters helps not only 

control the scale effects in numerical analysis but also to simplify the parametric study 

into a manageable number of analyses. 

 

Even though the Pi-theorem identifies the number of dimensionless parameters needed, 

the number of independent dimensionless combinations might be an infinite number of 

possibilities. The dimensionless parameters chosen should be useful in the experiment or 

the numerical response analysis. However, it is in fact easier to find meaningful 

dimensionless combinations by considering the instabilities that may arise in laterally 
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loaded stiffened plate panels.  When the stability of a structural shape subjected to 

compressive stress is considered, the instability of its plate element components under 

compression must be first considered.  Because this plate instability is limited to localized 

regions and does not affect the entire length of the member, this type of instability 

referred to as the local buckling and must be distinguished from an overall type of global 

buckling, such as slender column Euler buckling. The length of plate component of 

structural shapes can be viewed as infinite with respect to its width; therefore it is 

unlikely that boundary conditions of the loaded edge will affect the compressive load the 

plate may sustain. Consider a flat plate element of length a, width b and thickness t 

simply supported along the unloaded edges. During the instability of the plate element, 

the critical stress due to the applied load can be written as follows: 

 

௖௥ܨ ൌ
݇

ቀܾݐቁ
ଶ  ቈ

ܧଶߨ
12ሺ1 െ  ଶሻଶ቉ߥ

 

The term ݇ is identified as a function of the aspect ratio ୟ
ୠ
 and the number of sine waves 

m that occur between loaded edges. Since the concern is the instability of long plates, the 

number of sine waves has no significance. The term k can be replaced for each boundary 

by lower bound value of ݇. Therefore, the slenderness of plate can be measured by a 

dimensionless parameter obtained by rearranging the above equation as shown below. 

 

ߚ ൌ
ܾ
ݐ
ඨܨ௬
ܧ  
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The square root of  ி೤
ா

 makes this dimensionless parameter material independent.  The 

plate slenderness is well known to be one of the important factors affecting stability of 

plate components that are in compression. The strength of a section generally increases as 

the plate slenderness decreases. Therefore, the following plate slenderness can be defined 

for the plate components of a stiffened plate panel as listed below. 

 

Stiffener flange flexural slenderness: 

ଵߚ ൌ
௕೑
௧೑
ටி೤ೞ

ா
         

Stiffener web flexural slenderness: 

ଶߚ  ൌ
௛ೢିଶ௧೑

௧ೢ
ටி೤ೞ

ா
         

Plate slenderness: 

ଷߚ   ൌ
௕೛
௧೛
ටி೤೛

ா
            

 

Generally the unbraced length of a stiffener in a large rectangular duct under negative 

transient pressure is assumed to be the span of the stiffened plate panel. The stability of 

the compression flange and the portion of web under compression can be assumed to be 

an elastically supported column with a varying axial force. The shape of the varying axial 

force is similar to shape of the moment diagram of the stiffened plate panel. The web of 

the stiffener and the duct casing may also provide some rotational restraint to the 

compression portion of the stiffener. However, the axial load carrying capacity will be a 

function of the flexural rigidity of the compression portion of the stiffener, length of the 
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compression flange L and the rotational stiffness provided by web of the stiffener. 

Therefore, the load carrying capacity of the stiffener can be shown as a function of the 

dimensionless overall slenderness of the compressive portion of the stiffener as given 

below 

 

ସߚ ൌ
ܮ
ݎ
ඨܨ௬௦
ܧ  

 

In which ݎ is the radius of gyration of the compressive portion of the stiffener about a 

vertical axis parallel to the stiffener’s web. The derivation of the radius of gyration is 

explained in Figure 4.2. 

 

The response of a physical system through dimensional analysis should be measured by a 

dimensionless output parameter. Therefore for this study, the applied moment ܯ௔ is 

normalized relative to yield moment   capacity ܯ௬ of the stiffened plate panel. The 

normalized moment ெೌ
ெ೤

 will be the output dimensionless parameter for this parametric 

study and will be the control parameter used to monitor the response of laterally loaded 

stiffened plate panels. It is quite clear that the dimensionless parameters found are 

independent, since each of them contains at least one fundamental parameter which is not 

present in other dimensionless parameters. 

 

As the Buckingham Pi-theorem requires, the behavior of the physical system is defined 

by a complete set of dimensionless parameters formed by relevant fundamental 
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parameters. This fact suggests that if two systems have same numerical values for all 

dimensionless parameters and have different scales for all fundamental parameters, then 

the two systems respond the same way. In order to test the suitability of the suggested 

dimensionless parameters, scales of the fundamental parameters can be varied while 

keeping the dimensionless parameters constant and checking whether the capacity and 

response remain the same. If the behavior and capacity are unchanged, it can be 

concluded that these dimensionless parameters truly characterize the laterally loaded 

stiffened plate panels.  
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4.4 Finite Element Model 

As described in Chapter 3, the modeling techniques used to develop the finite element 

model were able to predict the behavior and strength of laterally loaded stiffened steel 

panels with reasonable accuracy. The same modeling techniques were applied to build the 

finite element models and to conduct an extensive parametric study in order to identify 

the behavior and capacity of stiffeners in large rectangular industrial ducts. 

 

A large rectangular industrial duct consists of flat plates with equally spaced parallel 

stiffeners. Because of the symmetry in stiffener arrangement and loading condition, a 

portion of the plate of width ܾ௣ and one stiffener centered on that portion of plate can be 

modeled to represent a stiffened plate of a large rectangular duct.  Figure 4.3 illustrates 

the extent of the typical stiffened plate panel modeled for this numerical study. In this 

case, it should be noted that an artificial boundary is formed along the symmetric edges 

(longitudinal edge of the plate). Therefore, the solution will be satisfactory if appropriate 

boundary conditions are used along these symmetric edges. In order to idealize the 

symmetry, rotation about the longitudinal direction and translation along the transverse 

direction were restrained for the symmetric edges to simulate the continuity of the plate. 

(In Figure 4.4, ߠ௫=0 and ܷ௬=0 along the longitudinal edges).  

 

The boundary conditions were introduced for the plate’s other edges as the stiffener 

would be welded to the plate and the plates are welded to corner angles along the duct 

longitudinal axes. This plate –corner angle weld prevents the rotations and translation 

along the weld. Therefore, the translation ܷ௬ and rotations ߠ௫,  ௭ of the plateߠ ௬ andߠ
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edges about the transverse direction were suppressed. In order to study the bending 

behaviour of stiffened plate panels subjected to lateral pressure load, the vertical supports 

were provided along the transverse directions by restraining vertical translation ௭ܷ and by 

fixing the longitudinal translation ܷ௫ along one transverse direction and by freeing along 

other transverse direction.  All the stiffener edges that are not connected to plate were set 

free to simulate the one flange of the stiffener welded to the plate. The boundary 

conditions are illustrated in Figure 4.4.  

 

Idealized elastic-plastic-strain hardening tri-linear material models were used to represent 

mild carbon steel to model the material constitutive behavior of the stiffener and the 

plate. The typical yield strengths of  ܨ௬௦ ൌ ௬௣ܨ and ܽܲܯ 350 ൌ  were used to ܽܲܯ 250

define the stiffener and the plate material respectively. The actual stress-strain values and 

the description of the stress versus strain curve adopted for this parametric study are 

shown Figure 4.5.  

 

The magnitude and pattern of initial geometric imperfection as described in Chapter 3 

were used during modeling. The residual stress pattern as described in Chapter 3 was also 

incorporated into the model as initial longitudinal strains.  
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4.4.1 Estimation of Distortional Buckling Moment 

This section provides the method of obtaining the distortional buckling moment from the 

finite element analysis results. The buckling loads of axially loaded plates and columns 

are often obtained by examining the lateral deflection versus axial loading plots. The load 

versus lateral deflection plots of a perfectly straight column subjected to axial load has a 

well defined bifurcation point. This bifurcation point has a unique value. However, for a 

column with imperfection, the load versus lateral deflection plot does not have a well 

defined bifurcation point. Therefore, it is difficult to distinguish between the pre-buckling 

and post-buckling paths of an axially loaded imperfect column.  However, various 

techniques have been developed in order to experimentally determine the buckling loads 

of columns. These techniques approximately establish the buckling load from 

experimental data. Since both the experimental techniques and the current finite element 

study are response type problems, the techniques derived for experimental tests should be 

applicable here for the numerical study. 

 

In one of those experimental techniques, the inflection point on the load-lateral deflection 

curve has been used to define the buckling load of an imperfect column. The important 

physical significance of this method is that the inflection point is a point of maximum rate 

of increase of lateral deflection with respect to load. However, this inflection point is very 

difficult to obtain from the experimental and numerical results. Thus, it becomes 

necessary to make use of methods such as the Southwell plot, which modifies the axial 

load ܲ versus lateral deflection ∆ into a linear relationship between ∆
௉
 and ∆. The 

reciprocal of the slope of the Southwell plot represents the critical buckling load and the 
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∆-intercept represents the apparent imperfection. Southwell’s method can be extended to 

the distortional buckling of beams. As well, there are other extrapolation techniques 

which may be used to obtain a beam’s elastic critical load from its load-lateral deflection 

curve. Among these techniques are the Massey method and the Modified Plots, in 

addition to Southwell Plots (Trahair 1969). Although these methods were developed for 

the elastic buckling load, these methods can be used to extrapolate the inelastic buckling 

load which represents the strength of beams (Bradford and Wee 1994). 

 

Zirakian (2007) tested the applicability of the aforementioned extrapolation techniques on 

lateral distortional buckling of W-shape beams undergoing web distortion. The prediction 

provided by Sothwell, Modified and Massey Plots were compared with maximum test 

loads. It was found that the agreement between maximum test loads and the extrapolated 

loads using Southwell and Massay Plots was very good. Therefore, it was decided to use 

Southwell Plots for this study to obtain distortional buckling moments ܯ௖௥. 

 

In order to obtain the buckling moments for the parametric study, it is necessary to check 

Southwell Plots used to obtain the distortional buckling moments. Two models named 

Model-1 and Model-2, each having the same dimensionless parameters from two 

different combinations of geometric and material parameters, were analyzed. Figure 4.6 

shows properties of the two models and the results of applied moment ܯ௔versus mid span 

vertical deflection ∆௓ of bottom plate. The result of Model-1 indicates the linear slope up 

to around 100kN.m and reaches the ultimate moment at around 113 kN.m. Therefore, the 

distortional buckling moment of Model-1 is expected in between 100 kN.m and 113 
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kN.m. Similarly, the distortional buckling moment of Model-2 is expected in between 

160 kN.m and 172 kN.m.  

 

Figure 4.7 illustrates the Southwell plots of Model-1 and Model-2 for the lateral 

deflection ∆௒ at mid top flange of the stiffeners. The distortional buckling moment can be 

obtained from relevant straight lines of best fits from the plots (Zirakian 2007). The 

reciprocal of the slope of linear relationship between 
∆೤
ெೌ

  and ∆௬  is the distortional 

buckling moment  ܯ௖௥. The buckling moments obtained using the Southwell Plots were 

also included in Figure 4.7. The predicted distortional buckling moments 110.2 kN.m and 

167.0kN.m were found to be within the expected ranges for Model-1 and Model-2, 

respectively. Therefore, the Southwell Plot can be used to predict the distortional 

buckling moments ܯ௖௥ of stiffened plate panels subjected to lateral pressure load and has 

been used in the current study as well. 

 

The other useful information that are extracted from this analysis are the normalized 

distortional buckling moments 
ெ೎ೝ
ெ೤

 and normalized ultimate moments 
ெೠ
ெ೤

.  The applied 

moment ܯ௔ versus mid span vertical deformation ∆௓ histories of both analysis results 

(Model-1 and Model-2 have same dimensionless parameters) are presented in Figure 4.8 

in dimensionless form such as applied moment divided by yielding moment ܯ௬ versus 

mid span vertical deflection ∆௓.  It can see from Figure 4.8 that the 
ெೠ
ெ೤

 for both Model-1 

and Model-2 are to be same  1.14. In addition, the 
ெ೎ೝ
ெ೤

  were also to be same 1.11.  
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Therefore, the 
ெ೎ೝ
ெ೤

 and ெೠ
ெ೤

 can be used to measure the performance of stiffened plate 

panels under lateral pressure. 

 

4.5 Complete Set of Independent Dimensionless Parameters 

The Buckingham Pi-theorem requires that all fundamental parameters that describe the 

mechanics of the problem are included in the set of dimensionless parameters. In this 

study, the dimensionless parameters were defined as ߚଵ, ߚଶ, ߚଷ and ߚସ. To assess whether 

all of the essential variable that play a role in the behavior of laterally loaded stiffened 

plate panel are represented in these dimensionless parameters, a preliminary investigation 

is carried out. For this preliminary investigation, the dimensionless parameters ߚଵ, ߚଶ, ߚଷ 

and ߚସ were kept identical while choosing different scales for the fundamental 

parameters. If the output dimensionless parameter ெೌ
ெ೤

 results are found to be the same, 

then it can be concluded that the entire set of variables that are required to define the 

mechanics of laterally loaded stiffened plate panels have been included. Therefore, this 

analysis needs to be repeated for all fundamental parameters used to define the 

dimensionless parameters ߚଵ, ߚଶ, ߚଷ and ߚସ.  

 

Eight models of stiffened plate panels each having identical dimensionless parameters ߚଵ, 

 ,௪ݐ ,௣, ݄௪ݐ ,ସ with different scales of ܾ௣ߚ ଷ andߚ ,ଶߚ ௙ܾ, ݐ௙, ܨ ,ܮ௬௦ and ܨ௬௣ were analyzed. 

The similar initial geometric imperfections and residual stresses as described in Chapter 3 

were incorporated in all models. The results of each model are presented in Table 4.1. It 
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should be noted that one fundamental parameter can not be changed at a time because all 

fundamental parameters are inter-related through the dimensionless parameters. 

 

The Southwell Method explained in Section 4.4.1 was used to obtain the distortional 

buckling moment ܯ௖௥ for the rest of the study. The input dimensionless parameters 

selected to verify the parameters’ completeness were ߚଵ ൌ ଶߚ ,0.654 ൌ ଷߚ ,1.749 ൌ

7.701 and ߚସ ൌ 7.889. The first model was used as a reference for the seven other 

models. The seven other models were obtained by changing each of the fundamental 

parameters and adjusting the rest of the parameters to obtain the same dimensionless 

parameters mentioned above. The results of this study on scale effect are presented in 

Table 4.1. Table 4.1 presents the value of each of the fundamental parameters that were 

changed for this study. The last two columns of Table 4.1 presents the normalized output 

moments 
ெ೎ೝ
ெ೤

 obtained using Southwell Plots and the normalized ultimate moments  
ெೠ
ெ೤

 .  

The mean and standard deviation of normalized moments 
ெ೎ೝ
ெ೤

 for all analysis models 

were found to be 1.138 and 0.002, respectively. Similarly, the mean and Standard 

deviation for 
ெೠ
ெ೤

 of all models were found to be 1.159 and 0.002.  The normalized 

moments 
ெ೎ೝ
ெ೤

 and 
ெೠ
ெ೤

 for all models, which have different scales while keeping constant 

dimensionless parameters, are within an average range and the responses also remain the 

same. Therefore, it can be concluded that the dimensionless parameters identified 

completely represent the behaviour of stiffened plate panels. 
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The applied bending moment ܯ௔versus mid span vertical deflection ∆௓ responses for all 

models were plotted in Figure 4.9. The responses ܯ௨ of the models are different since 

different scales have been used. These applied moments ܯ௔ were normalized by diving 

the corresponding yield moments ܯ௬ and presented in dimensionless form in Figure 4.10. 

The comparison normalized ultimate moments 
ெೠ
ெ೤

 in Figure 4.10 indicates to be nearly 

same and reveals that the change of scale did not have effect on the dimensionless 

response 
ெೠ
ெ೤

 of the models as well.  

 

In this portion of the study, the four dimensionless parameters ߚଵ, ߚଶ, ߚଷ and ߚସ that 

characterize the behavior and strength of the stiffened plate panels were identified. The 

validity of these dimensionless parameters was established from the results of the 

analysis where the dimensions of the stiffened panel were changed by keeping the 

dimensionless parameters identical.  

 

The selected dimensionless parameters ߚଵ, ߚଶ, ߚଷ and ߚସ were found to be able to predict 

the behavior and capacity of laterally loaded stiffened plate panels. These parameters 

were also found to be independent of geometric and material effects. 
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4.6 Effect of Plate Slenderness:   ߚଷ ൌ
௕೛
௧೛
ටி೤೛

ா
 

The stiffeners are usually oriented transverse to flow direction, spanning from one edge 

of panel to other and effectively wrapping around the duct. The typical stiffener spacing 

of a large rectangular duct varies from 0.75m to 1.5m.  The design of the stiffener section 

is generally governed by the negative pressure load. Under the negative pressure load, the 

flange not connected to plate is in compression and the plate is in tension. The depth of 

neutral axis ݕ௢ from tension side becomes small compared to depth of stiffener for this 

range of stiffener spacing as wider plate is welded to the stiffener. Thus, the section 

modulus of the stiffened plate panel relative to its compression flange becomes nearly the 

same for this range of stiffener spacings. Therefore, the elastic section modulus for the 

range of stiffener spacing was compared in Table 4.2. The plate and tension portion of the 

stiffener provide enough tension before and after the instability of the compression 

portion of stiffener as the smaller depth of neutral axis ݕ௢ from the tension side keeps the 

tension very much below the yield strength. For these reasons, the effect of plate 

slenderness ߚଷ on the instability of stiffened plate panels under negative pressure was 

investigated.  

 

In order to determine effect of plate slenderness ߚଷ, five analyses of stiffened plate panels 

each having identical values for ߚଵ, ߚଶ and ߚସ but with different values for ߚଷ were 

tested.  The five  model cases were obtained by changing the stiffener length ܮ and plate 

width ܾ௣ for each model systematically and by keeping other fundamental parameters the 

same in order to keep ߚଵ, ߚଶ and ߚସ identical and to change ߚଷ only.  
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The test model input parameters and the results for the effect plate slenderness ߚଷ are 

presented in Table 4.3. The last columns of the table presents the normalized distortional 

buckling moment ெ೎ೝ
ெ೤

 and the normalized ultimate moments  ݑܯ
ݕܯ

. The normalized applied 

moment versus mid span vertical deflection history for all models are presented in Figure 

4.11. The variation of the normalized moments  ெೌ
ெ೤

 and  ெೠ
ெ೤

 for all analyses is less than 

2%. This indicates that the effect of plate slenderness ߚଷ on the capacity of stiffened plate 

panels subjected to negative pressure is very much minimal.  
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4.7 Effect of Stiffener Flange Flexural Slenderness:   ߚଵ ൌ
௕೑
௧೑
ටி೤ೞ

ா
 

Generally the plate components of a structural section should be capable of sustaining the 

stresses required to develop the capacity of the section. Plate slenderness plays a 

significant role in sustaining the required stress levels. The adopted method of 

establishing the slenderness parameter is expressed in the form of the width-to-thickness 

ratio of the section’s plate components. Maximum width-to-thickness ratios are 

prescribed for plate components that make up a section. These ratios are functions of the 

presumed boundary conditions of the plate and the design stress to develop the required 

capacity of the section.  

 

The general rolled W structural shapes are typically proportioned so as to prevent the 

elastic buckling of the plate components of a structural section (Class 3 or better). Thus, 

only plate component stresses are expected to be in plastic and inelastic states at the 

capacity of those sections. If a flange plate component is capable of attaining the strain 

associated with strain hardening without buckling prior to the plastic capacity of the 

section, the section can be considered as Class 1 section. Although the limiting width-to-

thickness ratio for Class 2 section is less restrictive, the moment resistance developed by 

Class 2 section (Compact section) is equal to that of Class 1 section.  The ratio of width-

to-thickness ratio associated with flange of a Class 2 section is ௕೑
ଶ௧೑

൏ ଵ଻଴
ி೤

 (CSA 2010). 

Similarly the ratio of width-to-thickness for Compact section limit for the flange of a 

beam is limited as ௕೑
௧೑
൏ 0.76 ൬ ா

ி೤
൰
଴.ହ

 (AISC 2005). The limiting width-to-thickness ratios 
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are 21.6 and 18.3 for A36 and Gr50 steel respectively. When the flange width-to-

thickness ratio exceeds 0.76 ൬ ா
ி೤
൰
଴.ହ

, it is presumed that the section is non-compact.  

However, it is yet capable of attaining strain in excess of yield strain i.e., the capacity of a 

rolled section is not limited by elastic instability of the plate components. Also, inelastic 

behavior is understood to exist as a result of the existence of residual stresses.  Most 

rolled sections qualify to be compact as the quantities of ௕೑
௧೑

 are provided for each 

structural shape in Table B4.1 of AISC (2005) and section properties table of CSA 

(2010). 

 

Therefore, it can be questioned from the facts above whether the stiffener flange 

slenderness ߚଵ ൌ
௕೑
௧೑
ටி೤ೞ

ா
 dictates the capacity of stiffened plate panels of practical rolled 

sections or not. To find the effect of dimensionless parameter ߚଵ ൌ
௕೑
௧೑
ටி೤ೞ

ா
, five analysis 

of stiffened plate panels each having identical dimensionless parameter ߚଶ, ߚଷ and ߚସ 

with different scales of fundamental parameters were tested, while changing the 

dimensionless parameter ߚଵ for all five analyses. The parameter ߚଵ for Compact section 

of  Gr50 steel is 0.76, the highest ߚଵ for available rolled section is around 0.9. Therefore, 

the parameter ߚଵ ൌ
௕೑
௧೑
ටி೤ೞ

ா
  was changed from 0.6 to 1.4 in increments of 0.2. The results 

for each of test analyses are presented in Table 4.4. As shown in Table 4.4, the 

normalized moment  ெ೎ೝ
ெ೤

  and ெೠ
ெ೤

 for the first three cases of ߚଵ=0.6, 0.8 and 1.00 were 

nearly same. Also, the same distortional buckling mode was observed for these three 
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values of ߚଵ. The normalized moments for the cases of ߚଵ=1.2 and 1.4 were found to be 

different from that above and the buckling modes were flange local buckling. The applied 

moments versus mid span vertical deformations history were presented in normalized 

form for the test cases in Figure 4.12. The differences in ultimate normalized moments 

and the pattern of the responses clearly show that the cases of ߚଵ=1.2 and 1.4 were 

different from other three cases. Therefore, this indicates that the dimensionless 

parameter does not affect the capacity of stiffened plate panels with compact sections and 

where ߚଵ ൑ 1.00.  All rolled W shapes sections have compact flanges for ܨ௬௦ ൌ  ܽܲܯ350

with exception of W530X72 (W21X48), W360X147 (W14X99), W360X134 (W14X90), 

W310X97 (W12X65), W200X46 (W8X31) and W200X25 (W8X10). However, the 

flexural flange slenderness ratios ߚଵ for these sections are very well below 1.00. 
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4.8 Parametric Study  

The dimensionless parameters that characterize the strength and behavior of stiffened 

plate panels subjected to lateral pressure loads were established in Section 4.5. The main 

objective of this chapter is to carry out a detailed parametric study of the primary 

dimensionless parameters to find the relation among them in determining the behavior 

and capacity of the stiffened plate panels subjected lateral pressure load. As the number 

of analyses needed for the four dimensionless parameters ߚଵ, ߚଶ, ߚଷ and ߚସ would result 

in 54 (625) analysis when only five values are used for each of the parameter, it became 

necessary to restrict the scope of the dimensionless parameters ߚଵ, ߚଶ, ߚଷ and ߚସ. 

Therefore, the dimensionless parameters ߚଵ and ߚଷwere identified in the finite element 

analyses in Sections 4.6 and 4.7 to have a very minimal effect on the behavior and 

capacity of stiffened plate panels subjected to lateral pressure loads. The magnitude and 

initial distribution of geometric imperfections and the distribution of residual stress in the 

stiffened plate panels were applied as described in Chapter 3. The negative pressure load 

was applied incrementally so as to increase the applied bending moment ܯ௔ in the 

stiffened plate panel. The results of this parametric study will be used in this chapter to 

study the behaviour plate panels and derive a method to evaluate the capacity of stiffened 

plate panels subjected to lateral negative pressure.  

 

A further study was conducted to identify the reasonable ranges for dimensionless 

parameters ߚଶ ൌ
௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

 and ߚସ ൌ
௅
௥
ටி೤ೞ

ா
.  It should be noted that it was not possible 

to change the fundamental parameterݏ ݄௪, ݐ௪ and ܮ alone to achieve the matrix for the 
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parametric study as the fundamental parameters are interrelated through the parameter 

ସߚ ൌ
௅
௥
ටி೤ೞ

ா
. The radius of gyration ݎ depends on all other cross sectional geometric 

properties of the stiffened plate panel. A review of the geometric dimensions of rolled 

sections from design manuals (AISC 2005 and CSA 2010) was conducted to determine 

reasonable ranges for the dimensionless parameters ߚଶ and ߚସ.   A parametric study was 

then conducted using values of ߚଶ and ߚସ within that range. The matrix for this 

parametric study was obtained by examining the range of available rolled section in steel 

design handbooks (AISC 2005 and CSA 2010). 

 
 
An examination of the slenderness of standard rolled sections indicated the possible range 

of web slenderness ߚଶ. The upper limit of web slenderness ߚଶ  was set to 2.719 which 

corresponds to the highest web slenderness found in the available rolled sections having a 

yield strength of 350MPa.  The minimum value of ߚଶ considered was based on the lowest 

value found in the available standard rolled sections.  The lowest value of ߚଶ was 0.834.  

Ten web slenderness ߚଶ values were considered ranging from 0.834 to 2.719 in 

increments of 0.109, i.e. the ratio  ௛
௧ೢ

  of the stiffener made of steel with yield strength of 

௬௦ܨ ൌ 350MPa is changed systematically from 20 to 65 in increments of 5. The other 

dimensionless parameter under consideration was ߚସ ൌ
௅
௥
ටி೤ೞ

ா
. The selected ௅

௥
 ranging 

from 120 to 300 in increments of 20 for the stiffeners which result in ten ߚସ values ranged 

from 5.020 to 12.550. The other two dimensionless parameters ߚଵ ൌ
௕೑
௧೑
ටி೤ೞ

ா
 and  ߚଷ ൌ
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௕೛
௧೛
ටி೤೛

ா
  were kept constant as they have minimal impact on the strength of laterally 

loaded stiffened plate panels. The selected constant dimensionless parameter  ߚଵ and  ߚଷ 

were 0.654 and 7.071 respectively. The matrix of selected dimensionless parameters for 

this parametric study is shown in Table 4.5.  

 

The finite element modeling techniques developed for the stiffened plate panels in 

Chapter 3 can be used to develop a finite element model that correctly traces the 

equilibrium path of a laterally loaded stiffened plate panels until it collapses. Thus, this 

model can be used to obtain the applied bending moment versus deformation 

relationships even in unloading region of the response of laterally loaded stiffened plate 

panels. This normalized moment versus the lateral deformation of the unsupported flange 

of the stiffener can be used to determine the distortional buckling moment  ܯ௖௥ of 

stiffened plate panel as explained in Section 4.4.1. In this section, the results obtained 

from the parametric study for the range of dimensionless parameters  ߚଶ and  ߚସ have 

been extensively analyzed in order to study how the strength and behavior of laterally 

loaded stiffened plate panels depend on the dimensionless parameters  ߚଶ and  ߚସ. The 

applied moments ܯ௔ versus mid span vertical deflections, normalized with stiffener 

lengths, history for one set (# 5) of the analysis results (Cases with  ߚଶ ൌ 1.673 and 

all ߚସ) are presented in Figure 4.13. Figure 4.14 shows the corresponding buckling modes 

for above cases. 
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 The failure modes observed were lateral distortional bucking with a few exceptions in 

which the local instability occurred in the web at the support locations. This local 

instability was observed for the cases of stiffeners which have higher web slenderness 

and smaller spans of stiffened plate panels. As observed in Chapter 3, both ends of the 

top flanges move slightly in opposite direction with respect to the original location of the 

centerline of the top middle flange when the stiffened plate panel has a higher web 

slenderness  ߚଶ and smaller span ܮ. Movement of the top flange triggers local web 

instability at the support locations as shown in Figure 4.14. Also, close observation of the 

buckling modes indicates that both ends of the stiffener act like a support against the 

lateral deformation of middle the flange and web due to the lateral distortional buckling 

occurring at the middle of the stiffener. The web and flange that are not connected to the 

plate for the cases of stiffeners with higher web slenderness  ߚଶ and smaller spans ܮ do 

not provide enough support against this distorsional deformation of the web and flange. 

This can be observed from the change in buckling modes occurring from smaller span to 

higher span of stiffeners. The ends of the unsupported flange and web get twisted 

laterally in the opposite direction of flange distortion at the middle of the stiffener. This 

twisting of the ends of the unsupported flange and the web disappears as the length of the 

stiffener increases. This is due to the fact that the ends of the stiffener act as a support for 

the distortional buckling at the middle of the stiffener.  This local instability results in a 

sharp decrease in the load carrying capacity as shown in Figure 4.13. However, this type 

of stiffener with higher web slenderness  ߚଶ and smaller span ܮ is not practical. 

Therefore, the results due to this local instability are omitted from the rest of the analysis. 
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Table 4.6 summarizes the distortional buckling moments ܯ௖௥ obtained from the 

parametric study. The distortional buckling moments are non-dimensionalized relative to 

the corresponding yield moments. The normalized distortional buckling moments ெ೎ೝ
ெ೤

 are 

tabulated in Table 4.7. For a particular web slenderness  ߚଶ, despite the drops in strength 

prediction at beginning, the predicted distortional buckling moment remained the same 

with the increase in overall slenderness ߚସ. The strength drops at beginning was due to 

the twist of end top flanges for stiffened plate panel with small overall slenderness ߚସ. 

However, the normalized distortional buckling moments drop progressively as the web 

slenderness  ߚଶ increases. The normalized ultimate moments ெೠ
ெ೤

 are also reported in Table 

4.8.  As there was no significant post buckling strength, the predicted normalized ultimate 

moments ெೠ
ெ೤

 were closer to respective normalized distortional buckling moments ெ೎ೝ
ெ೤

. 

 

The current design methods used to proportion the stiffener in industry are adapted from 

structural steel codes such as CSA (2010). In order to evaluate the current method using 

the results obtained from the parametric study, the capacities of the matrix of stiffeners 

considered in this study were estimated based on the beam design method in CSA (2010). 

The current design practice assumes the unbraced length of the outer compression flange 

to be the full span of stiffener. In order to calculate the section properties, a portion of the 

plate welded to the stiffeners is considered to contribute for a composite action. The 

widths of the plate involved in this composite action are between 12 to 42 times of plate 

thickness (ASCE 1995). In this evaluation, 16 times of plate thickness (32ݐ ) on either 

side of flange legs, as in general practice, is considered to be effective. The bending 
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capacity of the composite section, assuming full span of the stiffener as the unsupported 

length of the compression flange, are estimated based on code formulae (CSA 2010). The 

code evaluation results are presented in Table 4.9 in order to compare with the results of 

parametric study. The comparison suggests that the code results do not predict the finite 

element analysis results. The code predictions are conservative as the overall slenderness 

increases.  

 

Figure 4.15 graphically summarizes the normalized buckling moments obtained from the 

parametric study of laterally loaded stiffened plate panels. The graph shown in Figure 

4.15 is three-dimensional in nature and is intended to indicate how normalized buckling 

moments depend on both dimensionless parameters  ߚଶ and  ߚସ. The two horizontal axes 

are associated with the web slenderness  ߚଶ and overall slenderness ߚସ. The vertical axis 

represents the output dimensionless parameter ெ೎ೝ
ெ೤

 that corresponds to any given 

combination of dimensionless parameters  ߚଶ and  ߚସ. The coordinates points of  ெ೎ೝ
ெ೤

 and 

the associated slenderness  ߚଶ and  ߚସ were then connected in a linear fashion to provide 

the continuous surface as shown in Figure 4.15. The three-dimensional graphs are useful 

in illustrating, in a general way, how the output dimensionless parameter ெ೎ೝ
ெ೤

 is influenced 

by variations in the dimensionless parameters  ߚଶ and  ߚସ. It can be observed from Figure 

4.15 that the normalized moment ெ೎ೝ
ெ೤

 does not change significantly as the overall 

slenderness  ߚସ  increases for a particular web slenderness ߚଶ. However, the normalized 

moment ெ೎ೝ
ெ೤
  decreases as the web slenderness  ߚଶ increases. Also it should be noted that 
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the applied moment ܯ௖௥ reaches the yield moment ܯ௬ of the cross section indicated by 

ெ೎ೝ
ெ೤

ൌ 1 for the web slenderness of practical wide flange stiffeners used in industry. This 

can be explained by the fact that symmetrical loading, loading height and the smaller 

height of the tension side of the web (height of neutral axis from tension side) provide 

enough rotational resistance to the compression portion of laterally loaded stiffened plate 

panels to reach the yield stress before experiencing elastic buckling. The symmetrical 

negative pressure loading with respect to an axis parallel to the web create a fixed support 

condition of the web connected to the plate as shown in Figure 4.16. Also, the height of 

the applied load with respect to a beam centroid is known to affect the buckling capacity 

of the beam in flexure. The general lateral torsional buckling formula was developed 

without considering any external torsional forces on the beam. Such forces can be 

presented by a load applied away from the centroid of the beam section. When the 

unsupported flange remains vertical, the load applied away from centroid does not 

provide any torsional forces. As the unsupported flange begins to distort, the load no 

longer acts through the centroid and the load height up or down with respect to centroid 

of the section increases or decreases the torsional forces leading to buckling. The SSRC 

guide (Galambus 1998) addresses the load height by incorporating it within the moment 

gradient factor in calculating the lateral torsional buckling moment of a section. In the 

case of laterally loaded stiffened plate panels, the load is applied below the centroid, 

therefore the negative pressure load also provides restorative forces against distortional 

buckling.  
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In an industrial duct stiffener, the tension flange is held rotationally fixed about its 

longitudinal axis, and the compression portion of the stiffener is also held rotationally 

fixed through the tension portion of the web. Thus the torsional restraint for the 

compression portion of stiffener is provided by the tension portion of the web. If the 

rotational restraint provided by the tension portion of the web is effective enough, this 

can restraint the unsupported compression portion of the stiffener until yielding. To act 

effectively as a rotational bracing, the tension portion of the web must have enough 

strength and stiffness. The rotational stiffness of web is inversely proportional to the 

height of the tension portion of the web. This can be derived assuming that the height of 

tension portion of web acts like a cantilever beam supported at the plate. The height of 

tension portion of stiffened plate panels is very small compared with depth of stiffeners. 

This small height of the tension portion of the web may provide high torsional restraint 

for the compression portion of the stiffener.  Therefore, the fixed support condition of the 

web due to symmetrical loading, smaller height of the tension portion of web that 

provides higher rotational stiffness and the load height that provides a restorative force 

against twisting of the unsupported compression flange provide substantial resistance for 

the distortional buckling. Therefore, these factors lead the laterally loaded plate, stiffened 

with general rolled wide flange shape structural steel sections, to reach the yielding 

moment before buckling. 

  

The three-dimensional graphs provide a general summary of the available normalized 

moment ெ೎ೝ
ெ೤

 for laterally loaded stiffened plate panels. However, in order to obtain a 

method to evaluate the strength of laterally loaded stiffened plate panels, the results must 
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be presented in a different way. It is generally desired to obtain the available normalized 

moment ெ೎ೝ
ெ೤

 for various values of the dimensionless parameters  ߚଶ and  ߚସ. With this in 

mind, Figure 4.17, which illustrates the normalized distortional buckling moment, was 

presented in two dimensional contour plots. The contours of normalized distortional 

buckling moments and ultimate moments are plotted as shown in Figure 4.17 and Figure 

4.18, respectively. These contours were taken from the three dimensional surface plot. An 

inspection of the contour plots also reveals that the normalized moment for a particular 

dimensionless parameters  ߚଶ does not change significantly when  ߚସ changes. This may 

be explained by the shape of the buckling mode. The wave length of the distortional 

buckling of the flange seems to be nearly the same as the overall slenderness 

parameter ߚସ increases for particular web slenderness ߚଶ. The same wavelength indicates 

that the compression portion of the stiffener undergoes the same mode of buckling and 

requires the same amount of energy. Therefore, it is reasonable to conclude that the 

buckling moment capacity of an industrial duct stiffener was not significantly affected by 

the overall slenderness parameter ߚସ, except the cases with higher web slenderness and 

smaller spans.  

 

Even though the above conclusions can be reached, it is anticipated to propose a useful 

and practical design method of quantifying the available capacity of the stiffened plate 

panel subjected to negative pressure loading. An inspection of the contour of the 

available capacity of a stiffened plate panel as depicted in Figure 4.17 shows clearly that 

the normalized moment capacities depend mainly on the dimensionless web slenderness 

parameter ߚଶ. Also It can be concluded from the results that the general rolled stiffeners 
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used in rectangular large industrial duct can reach their  top flange fibre yielding moment 

 ଶ is less than or equal to 2.0. However, thisߚ  ௬, if their dimensionless slendernessܯ 

should satisfy one condition to avoid local web instability at the support for stiffeners 

with high depth to span ratio. A boundary between lateral distortional buckling and local 

web instability was established. The proposed boundary for the lateral distortional 

buckling can be described as: 

ସߚ  ൒ ଶߚ 3.33 ൅ 0.145                                                                                                   (3.1)   

This proposed boundary can also be written as 

௅
௥
ටி೤ೞ

ா
൒ 3.33 ௛ೢିଶ௧೑

௧ೢ
ටி೤ೞ

ா
൅ 0.145                                                                                (3.2)     

The applied bending moment  ܯ௔ can reach the cross sectional yield moment  ܯ௬ for the 

stiffener section of which the dimensionless parameter  ߚଶ is less than or equal to 2.0. 

௖௥ܯ  ൒ ଶߚ  ݎ݋݂  ௬ܯ  ൑ ସߚ  ݀݊ܽ  2.0 ൒ ଶߚ 3.33 ൅ 0.145                                               (3.3)   

This rule can also be written as 

௖௥ܯ  ൒  ݎ݋݂  ௬ܯ 
௛ೢିଶ௧೑

௧ೢ
ටி೤ೞ

ா
൑ 2.0  ܽ݊݀  ௅

௥
ටி೤ೞ

ா
൒ 3.33 ௛ೢିଶ௧೑

௧ೢ
ටி೤ೞ

ா
൅ 0.145            (3.4)   

 

A close inspection of these results and contours reveals that the trend of normalized 

distortional buckling moment capacity  ெ೎ೝ
ெ೤

 can be a function of   ߚଶ ൌ
௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

 . 

Therefore, approximate values of  ߚଶ ൌ
௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

 for each contour line of the 

normalized moment ெ೎ೝ
ெ೤

 were established in order to drive a relation between the 

normalized moment capacity  ெ೎ೝ
ெ೤

 and dimensionless web slenderness ߚଶ ൌ
௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

.  
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In order to propose this relation, the data points corresponding to each contour line were 

derived from the contour plots and plotted in scattered form as shown in Figure 4.19. 

Then, a linear line was established so that the line included all data points in order to 

derive a best approximate relation in between the normalized moment capacity  ெ೎ೝ
ெ೤

 and 

dimensionless web slenderness ߚଶ ൌ
௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

 . In this derivation, the points due to 

local instabilities were exempted. Therefore, this relation can be applicable if it satisfies 

the condition that excludes the local instability. The summary of proposed relation is: 

ெ೎ೝ
ெ೤

ൌ 1.51 െ   ݎ݋݂         ଶߚ 0.275
௅
௥
ටி೤ೞ

ா
൒ 3.33 ቆ௛ೢିଶ௧೑

௧ೢ
ටி೤ೞ

ா
ቇ ൅ 0.145           

This rule also can also be written as: 

                                                          

 

 

 

 

It should be noted here that these results are valid only for the stiffened plate panels 

subjected to static pressure loading and ambient temperature.  

 

 

 

 

 

ெ೎ೝ
ெ೤

ൌ 1.51 െ 0.275ቆ௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா
ቇ ݎ݋݂    

ܮ
ݎ
ඨܨ௬௦
ܧ ൒ 3.33ቌ

݄௪ െ ௙ݐ2
௪ݐ

ඨܨ௬௦
ܧ ቍ ൅ 0.145 

(3.6) 

(3.5) 
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4.9 Conclusions and Further Recommendations  

This study has shown that the standard beam method used to estimate the capacity of 

stiffened plate panel was inappropriate for this type failure mode of the stiffeners. The 

standard beam method leads to excessive conservatism in designing stiffener sections. 

The failure mode observed for the stiffened plate panels subjected to bending was the 

lateral distortional buckling of the stiffener. The lateral distortional buckling is 

characterized as simultaneous buckling of the web and flange with same wavelength. 

This type of failure mode does not result in progressive loss in buckling strength of the 

stiffened plate panels as overall slenderness ߚସ ൌ
௅
௥
ටி೤ೞ

ா
 increases. 

 

The stiffener web slenderness  ߚଶ ൌ
௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

 was found to be the most influential 

dimensionless parameter affecting the strength and behavior of stiffened plate panels 

under bending. The stiffener overall dimensionless slenderness ߚସ ൌ
௅
௥
ටி೤ೞ

ா
 did not show 

a significant effect on the capacity of stiffened plate panels due to distortional buckling. 

However, stiffeners with higher web depth slenderness ߚଶ and smaller span ܮ lead to 

local web failure at support locations. A local failure of the web is triggered when the 

web slenderness is higher and the span of stiffener is small. The boundary between the 

local web crippling was defined in order to provide a design guideline that can predict the 

lateral distortional buckling capacity of stiffened plate panels.  Based on the parametric 

study, the design equation was provided in terms of stiffener web slenderness  ߚଶ ൌ

௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

 .  
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The flange slenderness ߚଵ ൌ
௕೑
௧೑
ටி೤ೞ

ா
  of a rolled section stiffener has no effect on the 

behavior and strength the stiffened plate panel. The practical range of the plate 

slenderness affected neither the behavior nor the strength of the stiffened plate panel 

subjected to lateral pressure loading.  

 

The practical range of plate slenderness ߚଷ ൌ
௕೛
௧೛
ටி೤೛

ா
 also does not affect the behavior 

and strength of the stiffener. 

 

4.9.1 Further Recommendations  

Through this numerical parametric study, a significant progress in understanding the 

behavior of stiffened plates has been achieved. However, there are several items that need 

further investigation: 

1. This parametric study concentrates only on the negative pressure loading that 

causes bending on the stiffened panel. Although, the lateral pressure load is the 

significant loading, the stiffened panel can be subjected to compression arising 

from negative pressure on top and bottom panels, self weight, dust weight, 

refractory weight etc. Therefore, the effect of additional compression should be 

investigated. 

2. Although wide flange beam stiffeners are widely used in large rectangular 

industrial ducts, there are rectangular duct for which the plates are stiffened with 

other shapes such as channels and angles. The shear centers of these shapes are 
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offset from their centeroid.  The effect of this offset shear center for these shapes 

stiffeners should be investigated.  

3. This study assumed the temperature of the stiffened plate panel to be ambient. 

However, generally, industrial ducts transport flue gases at elevated temperatures. 

These elevated temperatures may introduce a temperature gradient across the 

depth of the stiffened plate panel. The centre of temperature gradient and the 

location of the neutral axis are offset. This offset will introduce additional 

stresses. Therefore, the combining effect of the temperature gradient and the 

lateral load need to be investigated. 

4. The dimensionless parameters proposed should be tested experimentally for the 

scale effects. 

5. The dimensionless parameters with material independent were established for the 

idealized elastic-plastic-strain hardening tri-linear material model representing 

mild carbon steel. The material independency of the dimensionless parameters for 

the material models representing high strength steel should be established. 
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Table 4.1  Completeness of Dimensional Parameters 
 
ଵߚ ) ൌ 0.654, ଶߚ ൌ 1.749, ଷߚ ൌ 7.889, ସߚ  ൌ 7.071 ) 

Model 
# 

௙ܾ   ௙ݐ ݄௪   ௪ݐ  ܮ ܾ௣   ௣ݐ  ܧ  ௬௦ܨ  ௬௣ܨ  ௬ܯ
(kN.m) 

௖௥ܯ

௬ܯ
௨ܯ 

௬ܯ
 

1 
125.00 8.00 225.00 5.00 5000.00 1000 5 200000 350 250 99.7  1.138  1.160 

                  

2  150.00 9.60 210.00 4.56 6710.47 1000 5 200000 350 250 118.5  1.134  1.158 

                  

3  160.00 10.23 250.00 5.49 6905.36 1000 5 200000 350 250 166.5  1.136  1.158 

                  

4  109.44 7.00 230.00 5.17 4010.44 1000 5 200000 350 250 86.3  1.137  1.158 

                  

5  187.60 12.00 224.94 4.81 8818.00 1200 6 200000 350 250 188.3  1.135  1.158 

                  

6  168.86 10.00 242.97 4.94 8101.89 1000 5 200000 300 250 139.2  1.141  1.157 

                  

7  166.48 9.00 319.39 6.09 7728.30 1000 5 200000 250 250 155.6  1.139  1.164 

                  

8  132.89 8.50 202.45 4.44 5727.34 1000 5 200000 350 250 93.4  1.140  1.159 

                              Mean   1.138  1.159 

Std. Dev  0.002  0.002 
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Table 4.2  Section Modulus for Various Plate Widths 
 

 ܾ௣ሺ݉݉ሻ  ܫ௦ሺ݅݊ସሻ  ݕ௢ሺ݉݉ሻ  ܵ௦ሺ݅݊ଷሻ  % ݄݁݃݊ܽܥ
500 103.54 62.65 17.26 

1.37% 
750 112.44 51.80 17.50 

0.85% 
1000 118.62 44.26 17.65 

0.57% 
1250 123.17 38.72 17.75 

0.41% 
1500 126.64 34.48 17.82 

0.31% 
1750 129.40 31.13 17.87 

0.24% 
2000 131.62 28.41 17.92 

0.20% 
2250 133.46 26.17 17.95 

0.16% 
2500 135.01 24.48 17.98 
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Table 4.3 Effect of Plate Slenderness  ߚଷ ൌ
௕೛
௧೛
ටி೤೛

ா
 

 
ଵߚ ) ൌ 0.784, ଶߚ ൌ 2.029, ସߚ ൌ ௬௦ܨ  ,7.880 ൌ ,ܽܲܯ350 ௬௣ܨ ൌ ,ܽܲܯ250 ܧ ൌ  (ܽܲܯ200000

 ଷߚ ௣ݐ ௣ܾ ܮ ௪ݐ ௙ ݄௪ݐ ௙ܾ ݈݁݀݋ܯ
 ௬ܯ

(kN.m) 

௖௥ܯ

௬ܯ
 

 

௨ܯ

௬ܯ
 

1 150 8 210 4 6512 1750 5 12.374  102.6  1.117  1.132 

   

2 150 8 210 4 6535 1500 5 10.607  102.2  1.108  1.118 

   

3 150 8 210 4 6565 1250 5 8.839  101.8  1.103  1.112 

   

4 150 8 210 4 6605 1000 5 7.071  101.2  1.096  1.109 

   

5 150 8 210 4 6660 750 5 5.303  100.4  1.098  1.108 
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Table 4.4  Effect of Stiffener Flange Flexural Slenderness  ߚଵ ൌ
௕೑
௧೑
ටி೤ೞ

ா
 

 
ଶߚ ) ൌ 1.527, ଷߚ ൌ 7.071, ସߚ ൌ 7.524, ௬௦ܨ ൌ ,ܽܲܯ350 ௬௣ܨ ൌ ,ܽܲܯ250 ܧ ൌ   ሻܽܲܯ200000

 ଵߚ  ௣ݐ ௣ܾ  ܮ  ௪ݐ  ௙  ݄௪ݐ  ௙ܾ  ݈݁݀݋ܯ 
 ௬ܯ

(kN.m) 

 
௖௥ܯ

௬ܯ
 

௨ܯ

௬ܯ
 

1 125 8.72 200 5.00 5000 1000 5 0.600 91.2  1.163  1.189 

   
2 150 7.84 215 5.46 5904 1000 5 0.800 108.5  1.167  1.187 

   
3 160 6.69 225 5.80 6002 1000 5 1.000 109.6  1.168  1.187 

   
4 175 6.10 230 5.97 6477 1000 5 1.200 113.9  1.081  1.160 

   
5 200 5.98 240 6.25 7472 1000 5 1.400 131.9  1.085  1.097 

 
  
Flange Slenderness of Compact Section as per AISC LRFD 2005 
 

ଵߚ  ൌ
௕೑
௧೑
ටி೤ೞ

ா
ൌ ௬௦ܨ  ݎ݋݂ 0.76 ൌ    ܽܲܯ350

 
 
Flange Slenderness of Class 2 Section as per CSA 2010 
 
 
௙ܾ

௙ݐ2
൏
170
ඥܨ௬௦

 

 
 
For  ܨ௬௦ ൌ  :ܽܲܯ350
 
 

ଵߚ  ൌ
௙ܾ

௙ݐ
ඨܨ௬௦
ܧ ൌ 0.76 
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Table 4.5  Matrix of Dimensionless Parameters 

Set  # 
௬௦ܨ ൌ ௬௣ܨ  ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ  ,ܽܲܯ200000

ଵߚ ൌ ଷߚ  , 0.654 ൌ 7.071 
௙ܾ ൌ 125, ௙ݐ  ൌ 8,  ܾ௣ ൌ 1000, ௣ݐ ൌ 5, ݄௪ ൌ 250     in mm 

 (ሺmmܮ
ܮ
௙ݎ
   ସߚ

1 
  
  
  
  
  
  
  
  

1  2491 120  5.020 

2  2906 140  5.857 

3  3322 160  6.693 

4  3737 180  7.530 

5  4152 200  8.367 

6  4567 220  9.203 

7  4982 240  10.040 

8  5397 260  10.877 

9  5813 280  11.713 

10  6228 300  12.550 

2 
  
  
  
  
  
  
  
  

1  2649 120  5.020 

2  3090 140  5.857 

3  3532 160  6.693 

4  3973 180  7.530 

5  4415 200  8.367 

6  4856 220  9.203 

7  5298 240  10.040 

8  5739 260  10.877 

9  6181 280  11.713 

10  6622 300  12.550 

3 
  
  
  
  
  
  
  
  

1  2782 120  5.020 

2  3245 140  5.857 

3  3709 160  6.693 

4  4172 180  7.530 

5  4636 200  8.367 

6  5099 220  9.203 

7  5563 240  10.040 

8  6027 260  10.877 

9  6490 280  11.713 

10  6954 300  12.550 

 
 
 
 
 
 
 

ଶߚ ൌ 1.255 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,30 ൌ 7.80݉݉  

 
 
௬ܯ ൌ ௣ܯ ,݉.129.3݇ܰ ൌ 171.3݇ܰ.݉* 

ଶߚ ൌ 1.046 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,25 ൌ 9.36݉݉  

 
 
௬ܯ ൌ ௣ܯ ,݉.137.5݇ܰ ൌ 187.0݇ܰ.݉* 

ଶߚ ൌ 0.837 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,20 ൌ 11.70݉݉  

 
 
௬ܯ ൌ 149.5݇ܰ.݉ ௣ܯ , ൌ 210.6݇ܰ.݉* 
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Table 4.5  Matrix of Dimensionless Parameters continues.. 

4 
  
  
  
  
  
  
  
  

1  2894 120  5.020 

2  3377 140  5.857 

3  3859 160  6.693 

4  4341 180  7.530 

5  4824 200  8.367 

6  5306 220  9.203 

7  5788 240  10.040 

8  6271 260  10.877 

9  6753 280  11.713 

10  7235 300  12.550 

5 
  
  
  
  
  
  
  
  

1  2991 120  5.020 

2  3490 140  5.857 

3  3988 160  6.693 

4  4487 180  7.530 

5  4985 200  8.367 

6  5484 220  9.203 

7  5982 240  10.040 

8  6481 260  10.877 

9  6979 280  11.713 

10  7478 300  12.550 

6 
  
  
  
  
  
  
  
  

1  3075 120  5.020 

2  3588 140  5.857 

3  4101 160  6.693 

4  4613 180  7.530 

5  5126 200  8.367 

6  5638 220  9.203 

7  6151 240  10.040 

8  6663 260  10.877 

9  7176 280  11.713 

10  7688 300  12.550 

7 
  
  
  
  
  
  
  
  

1  3149 120  5.020 

2  3674 140  5.857 

3  4199 160  6.693 

4  4724 180  7.530 

5  5249 200  8.367 

6  5774 220  9.203 

7  6299 240  10.040 

8  6824 260  10.877 

9  7349 280  11.713 

10  7874 300  12.550 

ଶߚ ൌ 1.464 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,35 ൌ 6.69݉݉  

 
 
௬ܯ ൌ ௣ܯ ,݉.123.3݇ܰ ൌ 160.0݇ܰ.݉* 

ଶߚ ൌ 1.673 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,40 ൌ 5.85݉݉  

 
 
௬ܯ ൌ ௣ܯ ,݉.118.8݇ܰ ൌ 151.5݇ܰ.݉* 

ଶߚ ൌ 1.882 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,45 ൌ 5.20݉݉  

 
 
௬ܯ ൌ ௣ܯ ,݉.115.2݇ܰ ൌ 144.9݇ܰ.݉* 

ଶߚ ൌ 2.092 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,50 ൌ 4.68݉݉    

 
 
௬ܯ ൌ ௣ܯ ,݉.112.3݇ܰ ൌ 139.6݇ܰ.݉* 
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Table 4.5  Matrix of Dimensionless Parameters continues.. 

8 
  
  
  
  
  
  
  
  

1  3215 120  5.020 

2  3751 140  5.857 

3  4287 160  6.693 

4  4822 180  7.530 

5  5358 200  8.367 

6  5894 220  9.203 

7  6430 240  10.040 

8  6966 260  10.877 

9  7502 280  11.713 

10  8037 300  12.550 

9 
  
  
  
  
  
  
  
  

1  3274 120  5.020 

2  3819 140  5.857 

3  4365 160  6.693 

4  4910 180  7.530 

5  5456 200  8.367 

6  6001 220  9.203 

7  6547 240  10.040 

8  7093 260  10.877 

9  7638 280  11.713 

10  8184 300  12.550 

10 
  
  
  
  
  
  
  
  
  

1  3326 120  5.020 

2  3880 140  5.857 

3  4435 160  6.693 

4  4989 180  7.530 

5  5543 200  8.367 

6  6098 220  9.203 

7  6652 240  10.040 

8  7207 260  10.877 

9  7761 280  11.713 

10  8315 300  12.550 

 
 

*Plastic moments are based on elastic-perfectly plastic material models. 
 
 
 
 
 
 

ଶߚ ൌ 2.031 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,55 ൌ 4.25݉݉  

 
 
௬ܯ ൌ ௣ܯ ,݉.109.9݇ܰ ൌ 135.2݇ܰ.݉* 

ଶߚ ൌ 2.510 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,60 ൌ 3.90݉݉  

 
 
௬ܯ ൌ ௣ܯ ,݉.107.9݇ܰ ൌ 131.6݇ܰ.݉* 

ଶߚ ൌ 2.719 
 
 
௛ೢ
௧ೢ
ൌ ௪ݐ    ,65 ൌ 3.60݉݉  

 
 
௬ܯ ൌ ௣ܯ ,݉.106.2݇ܰ ൌ 128.6݇ܰ.݉* 
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  Table 4.6  Distortional Buckling Moments of Parametric Study 
 
௬௦ܨ)    ൌ ௬௣ܨ , ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ  ( ܽܲܩ200

௖௥ܯ  

௅
௥೑

  

120  140  160  180  200  220  240  260  280  300 

 
݄௪
௪ݐ

 

20  190.1  203.0  204.9  203.2  188.5  197.5  191.2  197.2  196.0  187.8 

25  171.6  175.3  173.9  169.0  172.1  171.0  170.6  167.8  167.1  165.9 

30  149.3  153.8  153.8  154.2  151.9  152.5  151.1  150.7  148.3  147.5 

35  166.7  177.7  182.0  183.6  183.5  183.4  178.9  177.7  179.6  174.9 

40  xxx  123.1  125.8  128.5  127.8  127.9  127.7  125.6  125.7  125.1 

45  xxx  104.0  114.4  118.0  120.0  118.2  118.5  118.8  117.2  117.4 

50  xxx  xxx  99.2  108.2  112.1  113.7  111.9  112.5  111.3  111.6 

55  xxx  xxx  xxx  93.8  103.2  105.7  105.5  106.4  105.3  105.2 

60  xxx  xxx  xxx  xxx  88.7  98.9  101.9  101.9  102.0  101.3 

65  xxx  xxx  xxx  xxx  81.8  92.2  94.0  96.3  97.8  97.7 

 
 
 
 
 Table 4.7  Normalized Distortional Buckling Moments of Parametric Study 
 
௬௦ܨ)  ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ  ( ܽܲܩ200

ெ೎ೝ
ெ೤

  

 ସߚ

5.020  5.860  6.690  7.530  8.370  9.200  10.040  10.880  11.710  12.550 

 
 ଶߚ

0.837  1.201  1.358  1.371  1.359  1.261  1.321  1.279  1.320  1.311  1.256 

1.046  1.248  1.275  1.264  1.229  1.252  1.243  1.240  1.220  1.215  1.207 

1.255  1.155  1.190  1.190  1.193  1.175  1.179  1.169  1.165  1.147  1.141 

1.464  1.042  1.111  1.137  1.147  1.147  1.146  1.118  1.111  1.122  1.093 

1.673  xxx  1.037  1.059  1.082  1.076  1.077  1.075  1.058  1.058  1.053 

1.882  xxx  0.902  0.993  1.025  1.042  1.026  1.029  1.031  1.017  1.019 

2.092  xxx  xxx  0.883  0.964  0.998  1.012  0.996  1.001  0.991  0.994 

2.301  xxx  xxx  xxx  0.854  0.939  0.962  0.960  0.968  0.958  0.957 

2.510  xxx  xxx  xxx  xxx  0.822  0.917  0.944  0.945  0.945  0.938 

2.719  xxx  xxx  xxx  xxx  0.770  0.868  0.885  0.907  0.921  0.919 
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Table 4.8  Normalized Ultimate Moment of Parametric Study 
 
௬௦ܨ)  ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ  ( ܽܲܩ200

ெೠ
ெ೤

  

 ସߚ

5.020  5.860  6.690  7.530  8.370  9.200  10.040  10.880  11.710  12.550 

 
 ଶߚ

0.837  1.218  1.382  1.383  1.380  1.366  1.354  1.340  1.332  1.322  1.316 

1.046  1.268  1.286  1.290  1.271  1.271  1.261  1.252  1.241  1.236  1.230 

1.255  1.183  1.196  1.209  1.204  1.195  1.186  1.180  1.172  1.160  1.158 

1.464  1.063  1.121  1.152  1.163  1.159  1.154  1.146  1.138  1.131  1.121 

1.673  xxx  1.048  1.071  1.093  1.093  1.096  1.087  1.086  1.083  1.078 

1.882  xxx  0.912  1.011  1.038  1.053  1.056  1.051  1.044  1.036  1.039 

2.092  xxx  xxx  0.899  0.976  1.006  1.020  1.018  1.015  1.004  1.004 

2.301  xxx  xxx  xxx  0.863  0.950  0.975  0.987  0.987  0.982  0.980 

2.510  xxx  xxx  xxx  xxx  0.834  0.925  0.951  0.956  0.957  0.954 

2.719  xxx  xxx  xxx  xxx  0.781  0.874  0.903  0.923  0.928  0.928 
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Table 4.9  Normalized Stiffener Capacity Based on CSA 2010 
 
௬௦ܨ)  ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ  ( ܽܲܩ200

ቆ
௖௥ܯ

௬ܯ
ቇ
ௌଵ଺

 
 ସߚ

5.020  5.860  6.690  7.530  8.370  9.200  10.040  10.880  11.710  12.550 

 
 ଶߚ

0.837  1.41  1.34  1.28  1.21  1.14  1.07  1.01  0.93  0.85  0.79 

1.046  1.33  1.26  1.18  1.11  1.04  0.96  0.88  0.80  0.73  0.68 

1.255  1.27  1.20  1.12  1.05  0.97  0.89  0.80  0.73  0.66  0.61 

1.464  1.23  1.16  1.08  1.00  0.93  0.84  0.75  0.68  0.63  0.58 

1.673  1.20  1.13  1.05  0.97  0.90  0.81  0.72  0.66  0.60  0.55 

1.882  1.18  1.10  1.03  0.95  0.87  0.78  0.70  0.64  0.58  0.54 

2.092  1.16  1.08  1.01  0.93  0.86  0.77  0.69  0.62  0.57  0.53 

2.301  1.14  1.07  0.99  0.92  0.84  0.75  0.68  0.61  0.56  0.52 

2.510  1.13  1.05  0.98  0.91  0.83  0.74  0.67  0.61  0.56  0.51 

2.719  1.11  1.04  0.97  0.90  0.82  0.73  0.66  0.60  0.55  0.51 
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Figure 4.1 Distortional Buckling of Stiffened Plate Panel 
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Area of stiffener: 

௦ܣ ൌ 2 ௙ܾݐ௙ ൅ ൫݄௪ െ             ௪ݐ௙൯ݐ2

Depth of neutral axis from the bottom plate:     

௢ݕ ൌ
௦ܣ ቀ

݄௪
2 ൅ ௣ቁݐ ൅ ܾ௣ݐ௣

௣ݐ
2

௦ܣ ൅ ܾ௣ݐ௣
 

Second moment of area of compression portion with respect to vertical axis:                 

௦௙ܫ ൌ
ଵ
ଵଶ ௙ܾ

ଷݐ௙ ൅
ଵ
ଵଶ
൫݄௪ ൅ ௣ݐ െ ௙ݐ െ   ௪ଷݐ௢൯ݕ

Area of compression portion: 

௙ܣ ൌ ௙ܾݐ௙ ൅ ൫݄௪ ൅ ௣ݐ െ ௙ݐ െ  ௪ݐ௢൯ݕ

Radius of gyration of compression portion with  respect to vertical axis:  

Figure 4.2 Fundamental Parameters
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ݎ ൌ ඨ
௦௙ܫ
௙ܣ

 

Second moment of area of stiffener with respect to major axis:   

௦ܫ ൌ
ଵ
଺
௙ଷݐ ௙ܾ ൅ 2 ௙ܾݐ௙ ቀ

௛ೢ
ଶ
െ ௧೑

ଶ
ቁ
ଶ
൅ ଵ

ଵଶ
൫݄௪ െ ௙൯ݐ2

ଷݐ௪       

Second moment of area of stiffened plate panel with respect to neutral axis:       

௦௣ܫ ൌ ௦ܫ ൅ ௦ܣ ቀ
௛ೢ
ଶ
൅ ௣ݐ െ ௢ቁݕ

ଶ
൅ ଵ

ଵଶ
௣ଷܾ௣ݐ ൅ ܾ௣ݐ௣ ቀݕ௢ െ

௧೛
ଶ
ቁ
ଶ
 

Section modulus with respect to top compression flange:  

ܵ௧ ൌ
௦௣ܫ

൫݄௪ ൅ ௣ݐ െ ௢൯ݕ
 

Moment at which top flange begins to yield:  

௬ܯ ൌ ܵ௧ܨ௬௦ 

                                        

 

 

 

 

 

 

 

 

 

Figure 4.2 Fundamental Parameters Continues 
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  Figure 4.3 Typical Stiffened Plate Panel 
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Figure 4.4 Boundary Conditions 
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Stiffener 

Strain 
 ௟ߝ ௨ߝ ௦௧ߝ ௬ߝ

0.00175 0.0175 0.033 0.1 

Stress (MPa) 
 ௨ܨ ௨ܨ ௦௧ܨ ௬ܨ

350 350 450 450 

Plate 

Strain 
 ௟ߝ ௨ߝ ௦௧ߝ ௬ߝ

0.0025 0.025 0.035 0.1 

Stress (MPa) 
 ௨ܨ ௨ܨ ௦௧ܨ ௬ܨ

250 250 400 400 

          

Figure 4.5 Idealized Material Models 

 

Fu 

Fy 

E=200,000 MPa 

Est = E/30 

      εyp = 9εy 

εy = Fy/E   εst=εy+ εyp  εu = εy + εyp+ (Fu- Fy)/ Est 

Strain 

St
re

ss
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࢒ࢋࢊ࢕ࡹ െ ૚:  ௙ܾ ൌ 125, ௙ݐ ൌ 8, ݄௪ ൌ 225, ௪ݐ ൌ 5, ܾ௣ ൌ 1000, ௣ݐ ൌ 5, ܮ ൌ 5000 
࢒ࢋࢊ࢕ࡹ        െ ૛:  ௙ܾ ൌ 150, ௙ݐ ൌ 9.6, ݄௪ ൌ 250, ௪ݐ ൌ 5.52, ܾ௣ ൌ 1000, ௣ݐ ൌ 5, L=6284 
      Units are in mm 
       
Figure 4.6  Applied Moment versus Mid Span Vertical Deflection 
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           Figure 4.7 Lateral Deflection over Applied Moment (ΔY/Ma) versus   Lateral Deflection 
(Y) 
 
 
 
 
 

y/Ma = 9.074y

y/Ma = 5.975y

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35


y/
M

ax
1
0
3

y  (mm)

Model‐1 Model‐2 Slope‐1 Slope‐2

Reciprocal of slopes

1/9.074 x 103 = 110.2kN.m

1/5.975 x 103 = 167.0kN.m



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 212

 
 
 
Figure 4.8   Normalized  Applied Moment versus Mid Span Vertical Deflection (Δz) 
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Figure 4.9   Applied Moment versus  Mid Span Vertical Deflection (Δz) Histories of 
Models 
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Figure 4.10   Normalized Applied Moment versus Mid Span Vertical Deflection (Δz) 
Histories of Models 
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Figure 4.11   Normalized Applied Moment versus Mid Span Vertical Deflection (Δz) : 
Effect of ߚଷ 
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Figure 4.12   Normalized Applied Moment versus Deformation : Effect of ߚଵ  
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Figure 4.13  Applied Moment versus Deformation History: ࢼ૛ ൌ ૚. ૟ૠ૜ 
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Figure 4.14  Buckling Modes of Stiffened Plate Panels 

௬௦ܨ) ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 5.020  ( ௅
௥೑
 =120)) 

௬௦ܨ) ൌ ௬௣ܨ  ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 5.860  ( ௅
௥೑
 =140)) 

Web local buckling 
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Top end flanges move in 
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௬௦ܨ) ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 6.690  ( ௅
௥೑
 =160)) 

௬௦ܨ) ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 7.530  ( ௅
௥೑
 =180)) 

Distortional Buckling 

Top end flanges movement 
becomes staple 

Top end flanges move less 
in opposite direction to top 
middle flange movement 

Figure 4.14  Buckling Modes of Stiffened Plate Panels (cont’d) 
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௬௦ܨ) ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 8.370 ( ௅
௥೑
 =200)) 

௬௦ܨ) ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 9.200 ( ௅
௥೑
 =220)) 

Distortional Buckling 

Wave length of 
Distortional Buckling  

Wave length of 
Distortional Buckling 
becomes constant 

Staple flange supports 
distortion at middle 

Staple flange supports 
distortion at middle 

Figure 4.14  Buckling Modes of Stiffened Plate Panels (cont’d) 
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௬௦ܨ) ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 10.040 ( ௅
௥೑
 =240)) 

௬௦ܨ) ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 10.880 ( ௅
௥೑
 =260)) 

Wave length of 
Distortional Buckling 
becomes constant 

Wave length of 
Distortional Buckling 
becomes constant 

Staple flange supports 
distortion at middle 

Staple flange supports 
distortion at middle 

Figure 4.14  Buckling Modes of Stiffened Plate Panels (cont’d) 
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௬௦ܨ) ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 11.710 ( ௅
௥೑
 =280)) 

௬௦ܨ) ൌ ௬௣ܨ ,ܽܲܯ350 ൌ ,ܽܲܯ250 ܧ ൌ ,ܽܲܩ200 ଶߚ ൌ 1.673, ସߚ ൌ 12.550 ( ௅
௥೑
 =300)) 

 
 
 
 
 
 

Wave length of 
Distortional Buckling 
becomes constant 

Wave length of 
Distortional Buckling 
becomes constant 

Figure 4.14  Buckling Modes of Stiffened Plate Panels (cont’d)
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 Figure 4.16 Deformed Shape of  Stiffened Plate Panel 
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Figure 4.17  Contours of  Normalized Distortional Moments versus  Slenderness 

Proposed Boundary 
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Figure 4.18  Contours of  Normalized Ultimate Moments versus  Slenderness 

Proposed Boundary 
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Figure 4.19 Proposed Normalized Moment Capacity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mcr/My = 1.51‐ 0.275β2

0.75

0.85

0.95

1.05

1.15

1.25

1.35

0.5 1 1.5 2 2.5 3

M
cr
/M

y

β2

Data Point Obtained from Contours



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 228

 
Appendix 4.1    Notations  

The following symbols are used in this chapter. 

ܣ ൌ Cross sectional area of stiffener  

௙ܣ ൌ Area of compression portion of stiffener 

ܾ ൌ Width of Plate under compression 

௙ܾ ൌ Stiffener flange width 

ܾ௣ ൌ Width of the plate (stiffener spacing) 

ܧ ൌ Young’s modulus of steel 

௖௥ܨ ൌ Plate buckling stress 

௬௣ܨ ൌ Yield stress of plate material 

௬௦ܨ ൌ Yield stress of stiffener material 

݄௪ ൌ Stiffener web height 

௦ܫ ൌ Second moment of area of stiffener with respect to major axis 

௦௙ܫ ൌ Second moment of area of compression portion with respect to vertical axis 

௦௣ܫ ൌ Second moment of area of stiffened plate panel with respect to neutral axis 

ܮ ൌ Stiffener length 

௔ܯ ൌ Applied bending moment 

௖௥ܯ ൌ Distortional buckling moment 

௬ܯ ൌ Yield moment  

௣ܯ ൌ Plastic moment 

௨ܯ ൌ Ultimate moment 

ݎ ൌ Radius of gyration of compressive portion of stiffener 
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ܵ௧ ൌ Section modulus with respect to top compression flange 

ݐ ൌ Thickness of Plate under compression 

௙ݐ ൌ Stiffener flange thickness 

௣ݐ ൌ Plate thickness 

௪ݐ ൌ Stiffener web thickness 

௢ݕ ൌ Depth of neutral axis from bottom plate 

ߚ ൌ ௕
௧
ටி೤
ா 
ൌ Slenderness of a plate 

ଵߚ ൌ
௕೑
௧೑
ටி೤ೞ

ா
ൌ Stiffener flange flexural slenderness 

ଶߚ ൌ
௛ೢିଶ௧೑

௧ೢ
ටி೤ೞ

ா
ൌ Stiffener web flexural slenderness 

ଷߚ ൌ
௕೛
௧೛
ටி೤೛

ா
ൌ Plate slenderness 

ସߚ ൌ
௅
௥
ටி೤ೞ

ா
ൌ  Slenderness of compressive portion of stiffener 

∆௭ൌ Mid span vertical deflection 

∆௬ൌ Lateral deflection at mid top flange 

ߥ ൌ Poisson’s ratio 
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 Chapter 5:       Shear Capacity of Side Panel of Large Rectangular  
Industrial Ducts 

 
Abstract 

Side panels of a large rectangular industrial duct transfer the gravity loads to the supports 

by transverse shear and, in addition, carry internal pressure. Currently the design practice 

of plate panels for shear load is based on the methods used for the web of the plate 

girders. The behaviour and the characteristics between the web of plate girder and the 

thin side panels are significantly different. The large aspect ratio of the side panels 

develops multiple bands of tension fields, whereas the methods for plate girders are based 

on one tension field. In addition to shear, the side panels are subjected to internal pressure 

which in turn produces membrane action. Minimal research has been done dealing with 

industrial duct plate panel subjected to shear load. Therefore, a study was undertaken to 

review current methods of analysis and design and to propose a comprehensive method of 

designing industrial duct side panel for shear resistance.  

A nonlinear finite element model was developed to simulate the behavior of industrial 

duct side panel subjected to transverse shear. In order to carry out a parametric study, six 

scale independent dimensionless parameters that govern the behavior of plate panel were 

identified. An extensive parametric study was then done. It was concluded that the plate 

slenderness dominates the normalized shear strength of stockier side panels. The aspect 

ratio and plate slenderness influence the normalized shear strength of slender side panels. 

Design equation and aids for estimating the shear strength of industrial duct side panels 

subjected to shear were proposed. 

Keywords: Plate, Shear, Diagonal Tension Field, Finite Element, Dimensional Analysis 
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5.1 Introduction 

Large rectangular industrial duct and its supports are unique structures which require 

local and global analysis to predict their performance and to verify the safety in 

preventing catastrophic failure. The paramount importance of the analysis and the design 

of this unique rectangular duct system for an engineer is to apply available analytical and 

design tools.  The fundamental in this analytical process is the need to verify the strength 

of every element in the path of transferring all loadings down to supports. The vertical 

loads such as dead load, weight of insulation, dust load, etc., must be transferred to the 

side walls (which act as web) and then to the supports. These side walls consist of thin 

plate panels between parallel stiffeners. The plate panels transfer the loads to the supports 

by shear. The plate panels of the side walls adjacent to the support legs are subjected to 

large shear loads. In addition these panels are under internal pressure. 

 

Currently, the plate panels of rectangular ducts for carrying shear loads are designed 

based on methods used in plate girder web design. The side walls of the large industrial 

rectangular duct can be considered to be similar to the web of a large fabricated plate 

girder with transverse stiffeners. The plate girder web design is often based on a 

combination of both web shear buckling and tension field action between stiffeners (post 

buckling strength). The web of the plate girders, however, may have relatively thicker 

plate compared to the side panel of the large rectangular duct. The large aspect ratio of 

the side panels develops multiple bands of tension fields, whereas the methods for plate 

girders are based on one tension field. Furthermore, plate girders are not subjected 

concurrent pressure load. For a thin plate panel, the web shear buckling capacity will be 
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lower; as a result, the proportion of tension field action will be higher in carrying the 

shear. There are several theories available to estimate the shear capacity of the girder 

web. However, it is necessary to examine the applicability of these theories for the side 

walls of the large rectangular duct and to provide analysis and design guides for such 

panels.  Note that the design of the large industrial duct is not covered by any design 

standards. Therefore, it is necessary to conduct a detailed study of the behavior and to 

quantify the capacity of the industrial plate panels subjected to shear load so that relevant 

design standards may be established. In order to include all the parameters that affect the 

behavior of the plate panels and to avoid the expenses involved with the experiments, a 

numerical parametric study based on the finite element model may be done. 

 

In the study described herein, firstly, a nonlinear finite element model for the industrial 

duct plate panel subjected to uniform shear was developed and validated. Secondly, 

dimensionless parameters that affect the behavior of the plate panel were identified. 

Thirdly, an extensive parametric study was done to establish the impact of above 

parameters on the shear resistance of such plate panels. 
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5.2 Objectives 

The objectives of this part of the study presented in this chapter are to study the 

behaviour of the industrial duct plate panels subjected to uniform transverse shear and to 

propose a comprehensive method of estimating their shear capacity.  In order to achieve 

these objectives, a suitable finite element model that includes material and geometric 

nonlinearities was developed in order to capture the shear buckling and the diagonal 

tension field action of plate panel when the panels are under uniform pressure load. It is 

also necessary to do a detailed parametric study.  This phase would identify the 

dimensionless parameters those dominate the behavior of the plate panel subjected to 

transverse uniform shear. The side plate panels subjected to static loading and under 

ambient temperature were only considered in this study. 

 

Section 5.3 reviews the available literature on the plates subjected to uniform shear. This 

review examines the available theories and their applicability for the industrial duct side 

plate panels. Section 5.4 describes the nonlinear finite element analysis model developed 

and validated to study the behaviour of the thin plate panels. The current method in 

design practice is evaluated in Section 5.5.  In Section 5.6, the dimensionless parameters 

are identified in order to conduct the parametric study. The influence of the identified 

dimensionless parameters on the behavior and strength of the plate panels are 

investigated in Section 5.7. The conclusions and further recommendations are presented 

in Section 5.8. 
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5.3 Literature Review 

Analytical and experimental researches on this topic have been conducted for more than 

last fifty years in order to improve the understandings of the behavior of the plate 

subjected to shear load. Consider a thin plate panel with width  ܾ , height ݄ and thickness 

-Such a plate panel when subjected to shear stress ߬ as shown in Fig 5.1 experiences in .ݐ

plane tensile and compressive stresses ߪ.  This compressive stress ߪ is equal to the 

applied shear stress ߬ and acts at 45o to the shear axis. This compressive stress ߪ can 

causes buckling of the plate when the applied shear stress ߬ reaches the shear buckling 

load  ߬௖௥. Therefore, it could be expected that the resulting formulae for critical shear 

stress ߬௖௥ would closely resemble the critical load for the in-plane compression.  The 

critical shear buckling stress ߬௖௥ for a long rectangular plate with height  ݄, width ܾ and 

thickness ݐ, when subjected to uniform shearing stress was provided by Timoshenko and 

Gere (1961) as follows 

 

߬௖௥ ൌ
ܧ ଶߨ ݇

12ሺ1 െ ଶሻݒ ቀܾݐቁ
ଶ 

                                                                                                         

Where  ܧ ൌ elastic modulus ,  ݒ ൌ Poisson`s ratio and ݇ ൌ shear buckling coefficient. In 

this derivation, ܾ is the width of short dimension of the long plate.  The following 

formulas can be used to establish approximate values of the  ݇ in Equation 5.1 when  

௛
௕
 ൐ 1 (Timoshenko and Gere (1961)).  

 

(5.1) 
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݇ ൌ 5.35 ൅ 4 ቀ௕
௛
ቁ
ଶ
  for the simply supported plates                                                     (5.2) 

݇ ൌ 8.98 ൅ 5.6 ቀ௕
௛
ቁ
ଶ
  for the clamped plates                                                                (5.3) 

 

It can be seen that the critical buckling stress ߬௖௥ is a function of the plate slenderness  
௕
௧
 

and the aspect ratio ௕
௛
 for a plate with given material properties and boundary conditions. 

Theoretically, the critical buckling stress ߬௖௥ can be as high as the shear yield stress  ߬௬ 

for a perfectly elastic-plastic material. The buckling stress ߬௖௥ increases as the plate 

slenderness 
௕
௧
 decreases. When the plate is stocky, it is considered to fail by yielding in 

shear equal to the theoretical shear yield stress  ߬௬ ൌ
ݕܨ
 √3. The limiting plate slenderness 

௕
௧
 for the shear yielding can be obtained by substituting ߬௬ into Equation 5.1 for the ߬௖௥.  

 

ܾ
ݐ
ൌ ඨ

ܧ ଶߨ ݇
12ሺ1 െ ଶሻ߬௬ݒ

 

 

Therefore, the plates will yield first before it buckles if the plate slenderness 
௕
௧
 is less than 

the limiting plate slenderness given in Equation 5.4. Substituting Poisson’s ratio ݒ ൌ 0.3 

and  ߬௬ ൌ
ி೤
√ଷ

, the Equation 5.4 becomes: 

(5.4) 
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ܾ
ݐ ൌ ඩ

ܧ ଶߨ ݇

12ሺ1 െ 0.3ଶሻ
௬ܨ
√3

ൎ 1.25ඨ
݇ܧ
௬ܨ

 

 

The limiting ௕
௧
 for a simply supported plate with material properties of elastic modulus 

ܧ ൌ 200,000 MPa and yield strength of ܨ௬ ൌ 350 MPa and with the aspect ratio  ௕
௛
ൌ 1 

will be  90. However, for the plate of a side wall of large industrial duct, the ratio of the 

stiffener spacing to the plate thickness 
௕
௧
  will be much higher than this value. In actual 

large rectangular duct, the plate slenderness   ܾݐ  may be in the range of 125 to 350.  The 

applied shear stress will cause elastic buckling for these slender plates. However, beyond 

buckling, the plate has the capacity to carry additional shear load because stable tensile 

stresses may be generated in diagonal direction. Therefore, the plate can carry additional 

shear load until yielding occurs in the plate. This is referred to as tension-field action. 

Even though, the tension field action in a web carrying shear was identified by Wagnar 

(1939), Basler (1961) first introduced this tension field theory for civil engineering 

applications.  

 

Based on the extensive studies on the post buckling behavior of the web panels by Basler 

(1961), AISC (1963) first included the post buckling strength in addition to elastic 

buckling shear capacity in its specification. In Basler (1961) tension field idealization of 

the post buckling contribution to the strength, the flanges were assumed to provide no 

(5.5) 
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anchorage to the tension field. In later stages of Basler’s derivation  (1963), the web of 

the plate girders bounded by flanges and by the transverse stiffeners on each side was 

assumed to be capable of carrying load in excess of buckling load. In the latest approach 

used by Basler (1963), equilibrium of section taken vertically midway between two 

adjacent stiffeners and horizontally at mid-depth was considered (See Figure 5.2). The 

additional post buckling strength ௧ܸ௙ was given as follows: 

 

௧ܸ௙ ൌ
ሺ1ݐ௬݄ܨ െ ௩ሻܥ

2ට1 ൅ ቀܾ݄ቁ
ଶ

 

                             

Where  ܥ௩ ൌ
ఛ೎ೝ

ி೤ √ଷ⁄ ൌ web shear coefficient.  The angle of the tension field providing 

maximum vertical shear component from the tension field was given by: 

 

tanሺ2ߠሻ ൌ
݄
ܾ 

                             

Therefore, the tension field contribution to the shear strength is based on uniform 

yielding throughout the web panel. The shear strength of web panel in the current AISC 

(2005) is based on this Basler’s model. The ultimate shear strength for the slender web 

panel in the current AISC (2005) is given by: 

(5.6) 

(5.7) 
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௨ܸ ൌ ݐ௬݄ܨ0.6

ۏ
ێ
ێ
ۍ
௩ܥ ൅

ሺ1 െ ௩ሻܥ

1.15ට1 ൅ ቀܾ݄ቁ
ଶ

ے
ۑ
ۑ
ې
 

                                       

The first term in the bracket represents the relative contribution of the buckling strength 

௖ܸ௥. The second term in the bracket represents the increase of the plate shear strength due 

to the diagonal tension field action. Equation 5.8 is the same fundamental form for the 

ultimate shear strength of the slender web panel in the current CSA (2010).  

 

Numerous models for the diagonal tension contribution have been developed. Another 

model developed by Porter et al. (1975) was adopted in the British standards. In this 

model, a similar tension field was assumed for only limited portion of the web.  However, 

the flanges were assumed to contribute to the post buckling strength by absorbing normal 

stresses from tension field. As a result, girder collapses when plastic hinge is formed in 

the flanges. However, both models assume that the compressive stresses that developed 

perpendicular to the diagonal tension field do not increase after the elastic buckling. 

 

In current design practice in heavy industries, the side wall of the duct is assumed to be 

the web of the large fabricated girder. The panel stiffeners are serving as the girder web 

stiffeners. The current methods in AISC (2005) and CSA (2010), which are based on 

Basler’s model (1963), is then used to design the plate panels of the side wall for shear 

(5.8) 
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resistance. In this model, the tension field contribution to the shear strength as per 

Equation 5.8 is based on uniform yielding throughout the web panel. 

 

In large industrial rectangular ducts, the width of the plate ܾ  between the stiffeners is 

smaller compared with the length of the plate ݄.  The plate panel under consideration is a 

long rectangular plate with the aspect ratio ௛
௕
 higher than 2. The diagonal tension field 

depends on the wave length and other details of buckled shape. The wave length and the 

buckled shape will depend on the aspect ratio and the boundary conditions. In the case of 

plate with higher aspect ratio ௛
௕
 and simply supported boundary condition, the buckled 

shape is illustrated in Figure 5.3 (Bruhn 1973). This buckled shape consists of a half 

wave in the transverse direction ሺܾሻ and a series of half waves in the longitudinal 

direction ሺ݄ሻ. The long plate subjected to uniform shear will develop internal 

compressive stresses on the plane 45o with the edge and thus these compressive stresses 

cause buckling pattern at an angle to the plate edges as shown in Figure 5.3(a). The 

buckled pattern has a half wave length of 1.25ܾ (Bruhn 1965). As the shear load 

increases, the long plate buckles between the stiffeners in above manner with the 

remaining load being resisted by the tension field action.  For this buckled shape, the long 

plate subjected to uniform shear develops several bands of tension fields across the length 

of the plate as illustrated in Figure 5.3(b). In contrast, the current AISC (2005) method 

based on Basler (1963) model represents only one band of uniform tension field across 

the web between stiffeners. This raises the concern of the applicability of the current 
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AISC (2005) or CSA (2010) methods to the plate panel of side wall of the duct when 

designing for shear load. 

 

In the derivation of the second term of Equation 5.8 by Basler (1963), the contribution of 

tension field action was limited by the failure state of the plate element subjected to shear  

߬ in combination with the inclined tension  ߪ௧ . The actual state of stresses considered in 

this derivation was only the shear  ߬௖௥ and the inclined tension  ߪ௧ as shown in Figure 5.4. 

There are two assumptions involved in determining this inclined tension  ߪ௧. The ߬௖௥ was 

assumed to be constant from buckling load to post buckling strength and therefore the 

inclined tension  ߪ௧ acts in addition to the principal stresses ߬௖௥. Also, the angle  ߠ , the 

inclination of the tension  ߪ௧ , was conservatively taken as 45o . At this state of stress, the 

principal stresses are ሺ߬௖௥ ൅  ௧ሻ and ሺെ߬௖௥ሻ. Then, the von-Mises yield criterion wasߪ

used to determine the inclined tension  ߪ௧ when a yield zone develops. The vertical 

component of this inclined tension  ߪ௧ contributed to the post buckling strength ௧ܸ௙. 

 

The contribution of buckling shear depends mainly on the plate slenderness ௕
௧
. The plate 

slenderness ௕
௧
 of side panels of large industrial ducts are very high (in the range of 125 to 

350). Therefore, the relative contribution of buckling shear will be minimal. 

 

In large industrial duct, the plate panel between stiffeners is subjected to lateral pressure 

load in addition to the shear loads. The current industrial practice of designing the plate, 

thus the spacing the stiffeners, is based on large deflection plate theory. The plate 
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between stiffeners can be assumed as one way bending of a long plate subjected to lateral 

pressure load because the typical aspect ratio ௛
௕
 for a plate panel of industrial duct is more 

than 2. As explained in Chapter 2, a strip of the long plate that is perpendicular to the 

stiffeners and restrained by the stiffeners, when analyzed with large deflection plate 

bending theory, produces the bending stresses ߪ௕ and the diaphragm stresses 

 ௠ perpendicular to the stiffener direction. The second term in the brackets of Equationߪ

of 5.8, the contribution of the tension field action, does not account for these bending 

stresses ߪ௕ and diaphragm stresses ߪ௠ in its derivation. Lee and Yoo (1998) suggested 

that the Basler’s model does not consider bending stresses of the web developed 

perpendicular to the tension line of web due to out of plane deflections of web panels. 

However, the bending stresses vary across thickness of the plate. i.e, while one side is 

tension, the other side is in compression. Therefore, the effect on the effective tension 

field due to bending stresses will be minimal.  White et al. (2008) noted the flaws in the 

Lee and Yoo’s suggestion. 

 

However, the uniform diaphragm stress ߪ௠ which is perpendicular to the stiffener 

direction and in the plane of the plate will affect the diagonal tension field.  Basler’s 

model can be extended to include the effect of diaphragm  ߪ௠. The state of the stresses at 

shear buckling is shown in Figure 5.5.  Before the shear buckling occurs, the state of the 

stresses contains the applied shear ߬, horizontal diaphragm stress ߪ௠ and the transverse 

stress ߪݒ௠. The application of Mohr’s circle for this state of the stresses is shown in 

Figure 5.5(b). It can be noted that the horizontal diaphragm stress ߪ௠ and the transverse 

stress ߪݒ௠ change the principal stresses and the principal plane. ߪଵ and ߪଶ represent the 
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tensile and the compressive principal stresses. Compared to the Mohr’s circle of pure 

shear (Figure 5.5(a)), the introduction of diaphragm ߪ௠ stress lowers the compressive 

principal stress ߪଶ and the inclination of the principal plane associated with the principal 

stress  ߪଶ becomes less than 45o. Therefore, the applied shear ߬ should be increased to ߬௖௥ᇱ   

in order raise the ߪଶ to the buckling shear stress ߬௖௥. From the above facts, it is obvious 

that the diaphragm stress ߪ௠ increases the contribution of buckling shear ௖ܸ௥ to the 

ultimate shear strength  ௨ܸ.  After the web has buckled, the bands of inclined tensile forces 

from the tension field action develop. The equilibrium is maintained between these 

applied shear force, the bands of tensile forces and the compressive forces (ߪଶ) at 

buckling. As the load increases, the angle of the bands of tension forces changes to 

accommodate the greatest carrying capacity. At the ultimate state, the angle of the bands 

of the tension forces ߠ for a long plate is unknown. The current method for shear capacity 

of web girder (Basler’s method) does not include the effects of the diaphragm stress ߪ௠ 

and is based on one complete tensile band between the stiffeners. 

 

The Basler’s work  (1963) and Porter’s work (1975) have been widely accepted and have 

formed the basis for estimating the shear capacity of the web of the plate girder in North 

American and European standards, respectively. Both models assumed that the web panel 

was simply supported at the edges. The actual boundary condition in the web of plate 

girder will most likely be intermediate between simply supported and clamped condition.  

Kuhn et al. (1952) proposed a correction factor based on their test data of thin web with 

different vertical structural angle stiffeners. This correction factor was applied to the 

buckling coefficient ݇ of the simply supported boundary condition. The correction factor 
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was function of the aspect ratio of the plate and the relative thickness of the plate and the 

leg of the angle stiffeners. Lee et al. (1996) studied the influence of the end restraint of 

the web plate between the stiffeners using finite element models. Two equations were 

proposed by them to be used to determine the shear buckling coefficient for plate girder 

web. These equations addressed the fixity of boundary between the flange and the web, 

based on the relative thickness of the web and the flange.  

 

It is recognized that the frame action of flanges also contributes to the shear resistance of 

transversely stiffened large plate girders (White et al. 2008). The model from Porter’s 

work (1975) highlights the contribution of the frame action of flanges. Large plate girders 

with heavy flanges develop larger shear strengths as the girder flanges, in addition to 

transverse stiffeners, also provides substantial anchorage to the tension field developed 

(White et al. 2008). The anchorage provided by heavy flanges for one tension field 

developed in large plate girders will be significant. The multiple tension fields developed 

along the duct side plate panel will be mostly anchored by the stiffeners. The vertical 

components of the tension fields in industrial ducts are transferred at the stiffeners. The 

wide flange stiffeners have enough capacity to carry the necessary compressive forces. 

Therefore, there will be minimal effect by the stiffeners on the shear capacity of side 

plate panel. 

 

To date, the shear capacity of the plate panel of large rectangular industrial duct is based 

on the numerous researches on the behavior of the web panel of the large plate girder. 

Also there are no codified design guidelines for the design of elements of the large 
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industrial rectangular duct. Considering the cost associated with large scale experiments, 

a parametric study became necessary. 

 

5.4   Finite Element Model 

Most of the researchers, Lee et al. (1995, 1998, 2002, 2003, 2008, 2009), Yoo et al. 

(2006), White et al.(2008), Marsh et al. (1998), Shanmugam et al.(2003) and Alinia et 

al.(2009, 2011), successfully carried out finite element analysis on the buckling behavior 

of the plate girder web panel with the transverse stiffeners. The review of these research 

studies indicated that the finite element method is able to accurately predict the behavior 

and the ultimate strength of the plate panel. To the author’s knowledge, no finite element 

study has been attempted for shear resistance of a plate panel of the large rectangular 

duct. Furthermore, the limited number of experiments does not cover all the practical 

cases. Therefore, a finite element based parametric study is necessary to study the 

behavior of the industrial duct plate panel with all possible parameters. In this section, a 

nonlinear finite element model to capture the shear buckling and the diagonal tension 

field action of a long rectangular plate subjected uniform shear was developed. The finite 

element model will be validated with available theoretical results.  

 

A schematic of duct side panel selected for the parametric study presented in Section 5.7 

is shown Figure 5.6. The duct side panel consists of a plate panel bounded by two 

adjacent stiffeners and the corner angles at its top and bottom. Typical angle 

L76X76X7.9 (3X3X5/16) and stiffener W200x27 (W8X18) were selected for this study. 
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To simulate the behaviour of the plate panel with shear, the finite element model was 

developed using a commercial general purpose nonlinear finite element program 

ADINA(2009). It has an extensive element library, material models and modeling 

capabilities of any nonlinear problem. As the shear load increases on the plate panel, 

initially the shear buckling creates local instability, then the diagonal tension field 

develops at an angle, which is considered to be optimum, and the equilibrium path goes 

beyond the ultimate capacity. These nonlinear changes require the finite element model to 

be able to trace the equilibrium path beyond the shear buckling state up to and beyond the 

ultimate state. Therefore, the solution should be obtained incrementally. To reach the 

convergence of the equilibrium of the nonlinear load-displacement path, a displacement 

control analysis method was used. For each increment of displacement, the solution 

process needs an iterative process to obtain the equilibrium load vector. The arc length 

iterative method used for these analyses was able to reach the convergence throughout the 

nonlinear equilibrium path.  

 

In order to capture the out-of-plane movement due to instabilities and the nonlinear 

equilibrium path, a 4-node shall element from ADINA element library was used to model 

the entire plate panel. The 4-node shell element is based on updated Lagrangian 

formulation (Bathe 1996). The nodal coordinates are updated to reflect the current 

position in space and all the shape functions and derivatives are updated based on current 

updated coordinates.  Also, this element can be used for large displacement and small 

strain problems.  Each node has six degrees of freedom: three translations and three 

rotations. The 4-node shell element can be used to model for both thick and thin shell 
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problems that require the Mindlin plate theory to describe their behaviour.  The available 

maximum of seven integration points through thickness were used for this analysis in 

order to capture the stress variation across the thickness, and thus to ensure accurate 

initiation and development of tension field across the plate.  

 

5.4.1   Initial Geometric Imperfection 

Geometric imperfections such as out-of-flatness of the plate and camber or sweep of 

structural members exist in their unloaded condition. The behavior of plate panel 

subjected to in plane forces is affected by initial out-of-flatness. In finite element 

analysis, the perfectly flat plate will not make buckling response as its in-plane stiffness 

is high. Therefore, some form of disturbance should be introduced on a perfectly flat 

plate in order to evoke the buckling response. In this finite element analysis, the initial 

geometric imperfection was introduced to the plate panel. The magnitude and shape of 

initial geometric imperfection play a significant role in response behavior. Generally the 

initial geometric imperfection is either similar to that of buckling mode shape or shape of 

existing out of flatness measured on the plate panel. The shape of the buckling mode is 

generally assumed because it gives lower bound even after collapse.  

 

A long rectangular plate subjected to pure shear buckled in a pattern as illustrated in 

Figure 5.3(a). Incorporating this buckling pattern into the finite element models was not 

practical. A pattern consisting of a half sine wave in transverse direction and a series of 

half waves in the longitudinal direction was introduced in order to initiate the buckling. 
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Therefore, a double sine function is used to represent the out of flatness of the plate 

panel. The double sine function is as follows: 

 

∆௜௠௣ൌ ∆௢sin  ቀߨ
ݔ
ܾቁ ቀߨ

ݕ
ܾቁ 

                             

Where ∆௜௠௣= initial geometric imperfection distribution,  ∆௢ൌ maximum amplitude of 

the initial geometric imperfection,  ܾ ൌ width of the plate panel, ݄ ൌ height of the plate 

panel, ݔ ൌ coordinate in the transverse direction of  the plate panel and ݕ ൌ coordinate in 

the longitudinal direction of  the plate panel. The maximum permissible variation of out 

of flatness of a steel plate for fabrication related initial imperfections was given in Paik et 

al. (2003) as follows: 

 

∆௢
ݐ ൌ 0.025൮൬

ܾ
൰ݐ
ඨܨ௬
൲ܧ

ଶ

 

                             

∆௢
ݐ ൌ 0.005 ൬

ܾ
 ൰ݐ

                             

Equation 5.10 gives better representation of the plate characteristics. Equation 5.11 is a 

function of plate width ܾ only. The use of latter does not represent the slenderness of the 

plate. Therefore, the present study used the maximum values of imperfection given by 

Equation 5.10. 

(5.9) 

(5.10) 

(5.11) 
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In a large industrial duct, the deflected shape of the plate panel subjected to transverse 

pressure load should be incorporated as the plate panel considered is subjected to in plane 

shear and transverse pressure load as well at the ultimate states. The deflected shape of 

the long plate panel due to transverse pressure can be assumed to be cylindrical. The 

relation between the plate slenderness ௕
௧
ටி೤

ா
 and the normalized deflection ∆

௧
 ,when the 

top fibre yields due to lateral pressure, was established in Chapter 2.  Therefore, the 

pattern of initial geometric imperfection assumed for this study was the summation of the 

cylindrical deformation due to lateral pressure and the double sine function of out of 

flatness. This pattern was then mapped onto the finite element mesh in order to model 

accurately the plate panel. The initial geometric imperfection pattern used for this study is 

depicted in Figure 5.7. 

 

5.4.2   Material Model 

The coupon test gives the relationship between stress and strain, covering elastic, 

yielding, ultimate and necking states. However, often the current industrial practice for 

the ultimate limit state of the structural members uses idealized material model.  The 

Idealized elastic-plastic-strain hardening tri-linear material model representing mild 

carbon steel was used to model the material constitutive behavior of the plate panel. The 

yield strength of 250MPa (ܨ௬ሻ and modulus of elasticity of 200000MPa (ܧሻ were used to 

define the material of the plate panel. This represents the most common structural steel 

for plates, ASTM A36.  The strain and the stress values are listed in Figure 5.8. In order 

to describe the various features of steel, the strain values are presented in terms of 
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characteristic stresses in Figure 5.8. The nominal strain at yield, ߝ௬, is ி೤
ா
  or 0.00125 for  

A36 steel. The strain hardening can be anticipated at a strain of around 10 times the ߝ௬. A 

constant proportionality is also presumed in the strain hardening range. The accepted 

strain hardening modulus  ܧ௦௧ for mild carbon steels is ா
ଷ଴

. The minimum tensile strength, 

 ௨, for A36 steel is 400MPa. The plate, stiffener sections and corner angles are assumedܨ

to be made by A36 steel for this study. 

 

The material models in ADINA (2009) are based on incremental theories in which the 

total strain increment is decomposed into an elastic strain increment and a plastic strain 

increment. An incremental plasticity model is formulated in terms of yield surface, flow 

rule and a hardening rule. The von Mises yield surface is used to specify the state of 

stresses corresponding to start of plastic flow. The von Mises yield surface assumes that 

yielding metal has the form of a cylinder in three dimensional principal stress space. The 

von Mises criterion uses the associated flow rule for the development of plastics stress-

strain relations of metals. The associated flow is the plastic flow developed along the 

direction normal to yield surfaces. A hardening rule specifies the yield surface during 

plastic flow. In this study, the isotropic hardening rule was selected. In the isotropic 

hardening rule, the size of the yield surface changes uniformly in all directions as plastic 

straining occurs. The isotropic hardening rule is more suitable for a static nonlinear 

analysis of this plate panel subjected to shear.  
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5.4.3   Loading and Boundary Conditions 

It is very important that the boundaries must be incorporated realistically in numerical 

simulation. The boundary conditions of a plate in large rectangular duct may be taken as 

restrained against rotation and restrained against pulling in along longitudinal direction 

(edges with stiffeners). As discussed in Chapter 2, the plate between stiffeners is designed 

based on bending of large deflection plate theory. Such a plate design is governed by 

transient pressure. These boundary conditions are reasonable as the plate is welded to 

thick flange of stiffener and symmetrical uniform transient pressure load prevents any 

relative rotation of plate panel with respect the flange edge.  

 

However, the rotational stiffness of the longer edges of the plate panel depends on the 

rotational stiffness of the flange of the stiffener connected to the plate. Therefore, the 

edge boundary condition of plate panel at its ultimate shear capacity can be expected to 

be between fixed and simple. In order to represent the rotation stiffeners of the flange of 

practical stiffeners, typical stiffener W200X27 (W8X18) was modeled on along the both 

longer edges of the plate panel for this study. The opposite transverse edges were not 

restrained against the rotation along the transverse direction. 

 

In large industrial duct, side plate panels, adjacent to the support stiffener ring transfer 

large amount of shear. During the ultimate state, the horizontal components of tension 

fields could not be anchored by the adjacent side panel that is outside of support rings as 

one support ring in industrial duct is allowed to slide toward the duct longitudinal axis. 

Also the panel on outside of the support has lesser shear load, thus no tension field to 
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anchor the horizontal components. Therefore, the translations of longer edges along the 

transverse direction are not restrained. In addition, this translation of longer edges will be 

uniform as the plate is continuous on either side of the side panel considered. 

 

In order to simulate plate panel between the stiffeners, the following boundary conditions 

were incorporated into the model. Figure 5.9 shows the geometry of the plate panel, the 

loadings applied and the boundary conditions considered.  The ݔ െ  plane coincides ݕ

with the middle plane of the plate panel. The ݖ-axis is perpendicular to the plate and 

originating from the centre of the plate panel. In this figure, ݑଵ, ݑଶ, and ݑଷ are the 

translations along the  ݕ ,ݔ, and ݖ directions, respectively and ߠଵ, ߠଶ, and ߠଷ are the 

rotations about the ݕ ,ݔ, and ݖ directions, respectively. The edges of the plate panel are 

labeled ܮଵ, ܮଶ, ܮଷ and ܮସ the four corners of the plate panel are marked as  ଵܲ, ଶܲ,  ଷܲ and 

ସܲ as shown in Figure 5.9. In order to provide the rotational stiffness along the plate and 

flange juncture, the rotation about the ݕ direction and the translation along the ݖ direction 

were restrained along the edges ܮଵ and ܮଷ. In order to simulate the uniform translation of 

longer edges due to continuous plate, the translation along the ݔ direction were 

constrained to be the same along the edges  ܮଵ and ܮଷ. The translation in ݖ direction was 

restrained along the all edges. The translation along ݔ direction was restrained at the point 

ଵܲ while the translation along ݔ and ݕ directions were restrained at the point ଶܲ to avoid 

any rigid body rotation. The boundary conditions are indicated in Figure 5.9. To simulate 

shear loading, uniformly distributed line loads are applied along plate edges as shown in 

Figure 5.9.  
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5.4.4   Validation of Modeling Techniques 

To determine how accurately the proposed modeling techniques applied to a nonlinear 

finite element model are able predict the behavior of plate panel subjected to shear, the 

modeling techniques will be applied to a square plate in this portion of the study. Then, 

the results of the analysis are compared to theoretical results of the square plate subjected 

to uniform shear.  

 

Before the validation study is done, a convergence study is usually carried out to 

determine the best size of finite element mesh. Therefore, a convergence study was 

performed. In this convergence study, one meter length of square plate with different 

mesh density was subjected to a uniform shear load.  

 

The geometry, the loadings and the boundary conditions for the model are as shown in 

Figure 5.11. The dimension of the plate are: b ൌ 1000݉݉, ݄ ൌ 1000݉݉ and ݐ ൌ 5݉݉. 

The plate is subjected to uniform shear load. The plate material is assumed to be the 

material model descried in Section 5.4.2. The initial geometric imperfection imposed to 

the model was only the shape of the buckling mode as described in Section 5.4.1, with the 

amplitude of initial imperfection calculated as per Equation 5.10.  The amplitude of 

double sine function of out of flatness of the plate is 6.25mm. 

 

The analysis includes 5 identical plate models with different mesh densities. The density 

of the coarse mesh is 5x5, while the density of the finer mesh is 26x26. The ultimate 

strength for corresponding mesh densities are tabulated in Table 5.1. The percentage 
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changes in ultimate strength of each model were compared and included in the Table 5.1 

as the mesh was being refined. The percentage change in ultimate strength between mesh 

density of 1 to 2, 2 to 3, 3 to 4 and 4 to 5 were 7.4%, 3.0%, 2.2% and 1.1%, respectively. 

It can be noted here that a reasonable degree of accuracy can be attained with coarser 

mesh density. In general, the percentage change less than 5 % may be considered 

acceptable. Therefore, mesh density 2, 3, 4 and 5 may be acceptable. However, due to the 

severe nature of the material and geometric nonlinearities involved the plate panel 

subjected to shear, a very dense mesh of shell elements was desirable in order to trace the 

nonlinear equilibrium path into the unloading regime. Thus, mesh density 3 was selected 

as the most suitable mesh and this mesh density was used for rest of the studies presented 

in this chapter. In Physical dimensions, each element size is approximately 62.5 mm x 

62.5 mm. 

 

The finite element model developed for the convergence study was used for the 

comparison of theoretical buckling strength with results of analysis. The square plate with 

ܾ ൌ 1000݉݉, ݄ ൌ 1000݉݉ and ݐ ൌ 5݉݉ was subjected to uniform shear load. The 

mesh density was 16x16. The material model and the boundary conditions were same as 

in the convergence study. The theoretical buckling load calculated for the plate from 

Equation 5.1 and 5.2 was 211kN.  

 

The applied shear and the out of plane deflection at the middle of the plate were obtained 

from the results of the analysis for each time step. The graph of the applied shear versus 

the out of plane deflection was plotted as shown in Figure 5.11. It is difficult to 
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distinguish between the pre buckling and post-buckling response paths of an imperfect 

plate subjected to uniform shear. However various techniques have been developed in 

order to obtain buckling load from experimental and numerical results. In one of those 

techniques, two tangent lines are drawn from two points where the slope changes with 

maximum rate and the intersection of the two tangents gives the buckling load. The 

buckling load obtained from Figure 5.11 was around 210kN which was in very close 

agreement to the theoretical results. From the above comparison, it can be concluded the 

finite element modeling techniques applied to simulate the plate panel subjected to shear 

load will predict an accurate buckling behavior. 
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5.5   An Evaluation of Current Method  

Before a parametric study on side plate panel subjected shear was carried out, an example 

calculation was done to compare the results from the method in current design practice 

and the nonlinear finite element model. The intent of this comparison was to evaluate the 

method in current design practice and demonstrate the inconsistency of the current design 

method for the side panel of large ducts. The current design practice in heavy industries 

uses the method based on plate girder web design. This calculation uses the provisions in 

AISC (2005) for the design of web of large plate girders. This method accounts the 

enhanced strength of webs of built-up plate girders due to tension field action. 

 

The following design parameters were used for this comparison: 

  Width of plate panel    ܾ ൌ 1000 ݉݉   

  Height of plate  panel    ݄ ൌ 4000 ݉݉   

  Thickness of plate     ݐ ൌ 5 ݉݉       

Modulus of elasticity    ܧ ൌ    ܽܲܩ 200

  Yield stress of plate material    ܨ௬ ൌ  ܽܲܯ 250

The actual panel aspect ratio: 

ܾ
݄ ൌ 0.25 

 

Hence, the panel plate buckling coefficient given by AISC-05 Section G2.1(b) (ii): 

݇௩ ൌ 5 ൅
5

ቀܾ݄ቁ
ଶ ൌ 85 
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When the panel depth to thickness ratio is greater than the limiting ratio; 

݄
ݐ ൌ 800  ൐   1.10 ቆ݇௩

ܧ
௬ܨ
ቇ
଴.ହ

ൌ 69.6  

The nominal shear capacity is then given by Equation ASIC-05 G3.2. 

Therefore, the shear coefficient  ܥ௩ is: 

 

௩ܥ ൌ 1.51
݇௩

ܧ
௬ܨ

ቀ݄ݐቁ
ଶ ൌ 0.16  

The normalized nominal ultimate shear capacity as given by Equation AISC-05 G3.2 is: 

 

௨ܸ

ݐ௬݄ܨ0.6
ൌ

ۉ

ۈ
ۇ
௩ܥ ൅

ሺ1 െ ௩ሻܥ

1.15ቆ1 ൅ ቀܾ݄ቁ
ଶ
ቇ
଴.ହ

ی

ۋ
ۊ
ൌ 0.9  

 

As noted earlier in Section 5.3, the slender plate panels have less contribution from shear 

buckling (ܥ௩ሻ compared with the contribution of tension field action.  

 

In order to compare this current design practice with the nonlinear finite element model 

developed in Section 5.4, a test run was done for the design parameters mentioned above. 

The result of normalized ultimate shear capacity obtained from the test run was 0.63.   

The current method estimates around 42% greater than the strength predicted by the finite 

element model.  
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A close observation of this Equation 5.8 raises the concern on the applicability of this for 

large rectangular industrial duct. Equation 5.8  is a more fundamental form of design 

guide line in AISC (2005) and CSA (2010) to establish the shear strength of web or plate 

(between stiffeners) with large depth to thickness ratio ௛
௧
. The total ultimate shear 

capacity ௨ܸ will be additive of the web shear buckling ௖ܸ௥ and tension field action ௧ܸ௙ 

represented by the first and second term of Equation 5.8, respectively. The contribution 

of the web shear buckling ௖ܸ௥ (ܥ௩ሻ is minimal for a plate with large slenderness. 

Therefore, the larger contribution to the estimated shear capacity of the side panel of 

large rectangular ducts comes from the second term referred to the tension field action 

௧ܸ௙. The second term in the bracket of Equation 5.8 is 

௧ܸ௙

ݐ௬݄ܨ0.6
ൌ

ሺ1 െ ௩ሻܥ

1.15ට1 ൅ ቀܾ݄ቁ
ଶ
 

The aspect ratio ௛
௕
 of the side panels of large rectangular ducts are generally in the range 

of  2 to 10   ( ௕
௛
  .ሻا

For the smaller  ௕
௛
 ratio of the side panels, 

ඨ1 ൅ ൬
ܾ
݄൰

ଶ

ൎ 1 

Therefore, the second term referred to the tension field action ௧ܸ௙ becomes 

approximately: 

௧ܸ௙

ݐ௬݄ܨ0.6
ൎ
ሺ1 െ ௩ሻܥ
1.15  
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Taking the minimal contribution of ܥ௩ of the side panels of large industrial duct, the total 

normalized ultimate shear ௨ܸ approximately becomes: 

௨ܸ

ݐ௬݄ܨ0.6
ൎ ௩ܥ ൅

ሺ1 െ ௩ሻܥ
1.15 ൎ

1
1.15 ൎ 0.9 

This indicates that the current method based on the design of large plate girder web 

always predicts nearly the same normalized shear capacity for the side plate panels with 

all practical range of plate slenderness and aspect ratios. Therefore, it is imperative to 

study all the parameters that uniquely characterize the behaviour and strength of plate 

panel subjected to shear load.  

 

As described in Section 5.4, a precise modeling of side plate panels can be achieved. 

Factors such as pattern of geometric imperfections and initial stresses can be incorporated 

into finite element model in order to accurately simulate the side panels subjected to 

shear. The finite element models can be used to perform an extensive parametric study of 

the behavior of side panels.  
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5.6   Dimensionless Parameters 

The finite element model was developed in Section 5.4 for the analysis of the plate panel 

subjected to uniform shear load. The main objective of this section is to identify the 

fundamental parameters that affect the behavior and the ultimate strength of the plate 

panel. To do a parametric study, dimensionless parameters that define the behavior and 

ultimate strength will be identified and then be used to conduct a parametric study. 

 

Before a parametric study of plate panel subjected to uniform shear is done, it is 

important to determine the parameters that characterize the behavior and the shearing 

capacity of the plate panel. These parameters should be independent of any scale and 

material characteristic.   

 

The fundamental parameters that affect the behavior and ultimate shear capacity of the 

side plate panel can be geometric parameters, loading parameters, output parameters and 

material characteristics. The fundamental geometric parameters of plate panel are 

illustrated in Figure 5.12. The geometric parameters are: ܾ ൌ width of the side plate 

panel, ݄ ൌ height of the side plate panel , ݐ ൌ thickness of the plate , ∆ൌ deflection and 

௠ߪ  ൌ diaphragm stress. The loading parameter is the applied shear  ܸ. The output 

variable is selected as the in-plane drift ߜ. The material parameters are: ܧ ൌ modulus of 

elasticity, ܩ ൌ elastic shear modulus ,  ݒ ൌ  Poisson ratio and  ܨ௬ ൌ yield strength of the 

plate material.  It should be noted here the ∆ is the algebraic sum of magnitude of initial 

geometric imperfection ∆௢  and the deflection ∆ due to pressure. 
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It can be seen from the above list of 11 fundamental parameters that the numbers of 

combinations of analysis models for practical range of each parameter would be very 

large. It is therefore necessary to reduce the number of parameters for a manageable 

parametric study, in the same time to cover all the practical range of each parameter. The 

suitable tool to reduce the number of the parameters into manageable number of 

dimensionless parameter is dimensional analysis which would yield number of 

dimensionless parameters (Harris 1999). The independent scale effect should be checked 

later.  

 

This can be done by using the Buckingham Pi-theorem (Lanhaar 1951).  The Pi-theorem 

is stated as:  

 

“The number of independent dimensionless parameters arising from n fundamental 

independent parameters in m dimensions is n-r, where r is the order of largest non-zero 

determinant of a matrix which is formed from the fundamental parameters and their 

dimensions.”  

 

The independent dimensionless parameters are defined as those which can be formed by 

combinations of any number of fundamental parameters, but none of them can be formed 

by any combination of others. Rank of a matrix is order of the largest non-zero 

determinant. 
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The behavior of the plate panel subjected to uniform shear is a function of 11 

fundamental parameters: ܾ, ݄, ,ݐ ܸ, ,ߜ ∆, ,௬ܨ ,ܧ ,ܩ  are dependent ݒ and ܩ ,ܧ ௠. Theߪ and ݒ

on each other and ݒ is dimensionless. Therefore, only one of these three parameters 

should be independent. The modulus of elasticity ܧ is generally considered as an 

independent fundamental parameter. Therefore the behavior of the side plate panel is a 

function of 9 independent fundamental parameters:   ܾ, ݄, ,ݐ ܸ, ,ߜ ∆, ,௬ܨ  ௠. Theseߪ and ܧ

parameters have the dimensions: ܯ ൌ mass, ܮ ൌ length and ܶ ൌ time. To apply the 

Buckingham Pi theorem, the matrix by the fundamental parameters and their dimensions 

is formed as shown below. 

 

Fundamental 
Parameters 

 ௠ߪ ܧ ௬ܨ ∆ ߜ ܸ ݐ ݄ ܾ

M 0 0 0 1 0 0 1 1 1 

L 1 1 1 1 1 1 -1 -1 -1 

T 0 0 0 -2 0 0 -2 -2 -2 

 

 

The rank of above matrix is 2 i.e., the highest order of determinant would be second 

order. Therefore, the number of dimensionless parameters expected in this case would be 

7. 

 

Having determined the number of dimensionless parameters as described above, the next 

step is to combine the fundamental parameters to form the desired dimensionless 

parameters. Even though the Pi-theorem identifies the number of dimensionless 
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parameters, the independent dimensionless parameters might be an infinite number of 

possibilities. However, the dimensionless parameters should be useful choice for an 

experiment or for a parametric study or for design perspective.  

 

As described in Section 5.3, the slender plate panels subjected to a uniform shear, as per 

Equation 5.8, have the contribution for the shear capacity from the pre buckling strength 

of plate and from the diagonal tension field.  Therefore, the dimensionless parameter  
௕
௧
  

can be a variable to measure the contribution of pre buckling strength.  This 

dimensionless parameter is termed as plate slenderness:  

 

ܾ
ݐ ൌ Plate Slenderness 

 

By inspection of Equation 5.2, 5.3 and 5.1, the aspect ratio ௛
௕
 can also be a variable to 

measure the contribution of the pre buckling strength. The aspect ratio  ௛
௕
  influence not 

only the inclination of the diagonal tension field as per Equation 5.7. but also the number 

of bands of tension fields. Therefore, the aspect ratio ௛
௕
 is an important dimensionless 

parameter to measure the both pre buckling and diagonal tension field contribution. 

 

݄
ܾ ൌ Aspect ratio of side plate panel                       

  

(5.12) 

(5.13) 
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The shear loading parameter ܸ can be normalized by the yielding capacity of whole cross 

section of the plate panel. By applying the von Mises yield criteria for uni-axial and pure 

shear yielding, the yielding shear capacity of the cross section can be obtained as 

ி೤
√ଷ
ݐ݄ ൎ  :௬. Therefore, the normalized shear loading parameter is defined asܨݐ0.577݄

 

ܸ
௬ܨݐ0.577݄

ൌ Normalized shear 

 

The response of the side plate panel subjected to uniform shear can be measured by the 

normalized drift obtained by dividing the in plane drift ߜ by the width ܾ of the plate 

panel. Therefore, the output parameter is defined as 

 

ߜ
ܾ ൌ Normalized drift                               

  

The plate panel subjected to shear loading is also resisting the lateral pressure load which 

causes the plate to undergo large deflection. The maximum deflection ∆ of this long plate 

panel subjected to lateral pressure is measured at the middle of the cylindrical deflected 

shape.  The relations between the plate slenderness ௕
௧
ටி೤

ா
  and the normalized deflection  

∆
௧
 , when the plate edges begin to yield, have been derived in Chapter 2. Therefore, the 

dimensionless parameter ∆ normalized with the plate thickness  ݐ can be another 

dimensionless parameter.  

(5.14) 

(5.15) 
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∆
ݐ ൌ Normalized deflection                               

  

The yield strain of the plate is important because they affect the capacity of the plate 

panel under shear. Therefore normalized yield stress  ி೤
ா

 will be another dimensionless 

parameter. Equation 5.4 for the contribution of the pre buckling strength can be re-

arranged as: 

 

ܾ
ݐ
ට
߬௬
ܧ
ൌ ඨ

 ଶߨ ݇

12ሺ1 െ ଶሻݒ
 

                                             

Also, by substituting the  ߬௬ ൌ
ி೤
√ଷ

  into Equation 5.17: 

 

ܾ
ݐ
ඨܨ௬
ܧ
ൌ ඨ

 ଶߨ 3݇

12ሺ1 െ ଶሻݒ
 

Therefore, the geometric plate slenderness ௕
௧
  and the normalized yield stress ி೤

ா
  were 

combined into  ௕
௧
ටி೤

ா
  to make it material strength independent. 

(5.16)

(5.17) 

(5.18) 
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ܾ
ݐ
ඨܨ௬
ܧ ൌ Plate slenderness                                      

 

The diaphragm stress ߪ௠ can also be normalized by yield stress ܨ௬ of the plate material.  

 

௠ߪ
௬ܨ

ൌ Normalized diaphragm stress                      

 

The application of the dimensional analysis to an experiment or to a parametric study 

requires an understanding of significance of the dimensionless parameters identified. In 

this case, the dimensionless parameters that affect the behavior of the plate panel 

subjected to shear were ௕
௧
ටி೤

ா
,  ௛
௕
, ௏
଴.ହ଻଻௛௧ி೤

, ఋ
௕
, ∆
௧
   and  ఙ೘

ி೤
.  In Chapter 2, the relation 

between  ௕
௧
ටி೤

ா
 and the dimensionless load parameter ௣ா

 ி೤మ
 were developed for the strip of 

plate subjected lateral pressure load when the top fibre of plate at support begins to yield. 

Similarly, the relation between ∆
௧
  and ௕

௧
ටி೤

ா
  was established in Chapter 2. In the 

meantime, the diaphragm stress ߪ௠ was also known for a particular ௕
௧
ටி೤

ா
 when the top 

fibre begins to yield. Therefore, for a particular plate slenderness ௕
௧
ටி೤

ா
, the ∆

௧
 and ఙ೘

ி೤
 are 

known quantities from the studies in Chapter 2. Therefore, the dimensionless parameters 

∆
௧
 and ఙ೘

ி೤
 are constant for a plate panel with particular ௕

௧
ටி೤

ா
 when it is subjected uniform 

(5.19) 

(5.20) 
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shear, the parameters ௕
௧
ටி೤

ா
 and  ௛

௕
 are the input parameters,  ఋ

௕
  is the output parameter and   

௏
଴.ହ଻଻௛௧ி೤

 will be the loading parameter applied to measure the response of the plate panel 

subjected to the shear load.  

 

5.6.1 Completeness of Dimensionless Parameters 

To verify the completeness and the scale independent of the dimensionless parameters 

identified, the Buckingham Pi-theorem requires all the fundamental parameters should be 

included into the dimensionless parameters.  Therefore, a preliminary study was 

conducted to determine that all the fundamental parameters that govern the behavior of 

the plate panel subjected shear are included in the dimensionless parameters. This will 

confirm scale independency of the dimensionless parameters chosen. The preliminary 

study contains three plate panels having same dimensionless parameters  ௕
௧
ටி೤

ா
 and  ௛

௕
 but 

with different scale. The corresponding dimensionless parameters ∆
௧
 and ఙ೘

ி೤
 were applied 

for this analysis even though these would be constant for the plate panels with the same 

௕
௧
ටி೤

ா
.  If the plots of the dimensionless parameters  ௏

଴.ହ଻଻௛௧ி೤
 versus  ఋ

௕
 are identical for the 

three plate panels chosen, then it can be concluded that the dimensionless parameters are 

complete and scale independent. 

 

Table 5.2 presents the three plate panels considered for this analysis. All three cases 

contains different scales, however the dimensionless plate slenderness and aspect ratio 

are same for three cases. The applied shear versus the vertical drift was plotted in Figure 
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5.13 for the three cases. These plots are different as the scale of fundamental parameters 

the shear and the vertical drift are not dimensionless. However, the plots of normalized 

applied shear versus normalized drift became identical as shown in Figure 5.14. 

Therefore, it can be concluded that the change of scale fundamental parameters does not 

affect the response if the models have same dimensionless parameters.  

 

It can be concluded from the above study that the dimensionless parameter chosen fully 

govern the behavior of plate panel subjected shear and have no scale effect. Therefore, 

these parameters can be used for this parametric study. 
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5.7 Parametric Study 

The dimensionless parameters identified in Section 5.6 can be used to simulate the 

behavior of the side plate panel subjected to shear. The primary objective of this study 

was to carry out a detailed parametric study to establish a comprehensive method for 

estimating ultimate shear capacity of the side plate panels. 

 

The reasonable ranges of input dimensionless parameters ௕
௧
ටி೤

ா
 and  ௛

௕
 for large 

rectangular industrial duct were established here to complete the matrix of analysis 

models. As identified in Chapter 2, the range of the plate slenderness ௕
௧
 for the side plate 

panels considered were from 125 to 350 in steps of 25. As the yield strength ܨ௬ ൌ

ܧ and the modulus of elasticity ܽܲܯ250 ൌ  were chosen for the idealized ܽܲܯ200000

material model, the dimensionless parameters ௕
௧
ටி೤

ா
 for this study were 4.419, 5.303, 

6.187, 7.7071, 7.955, 8.839, 9.723, 10.607, 11.490 and 12.374 to complete the analysis 

matrix. An examination of the aspect ratio  ௛
௕

 of the practical duct reveals that the range of 

the aspect ratio  ௛
௕
 is approximately from 3 to 10. However, a lower bound of the aspect 

ratio of 2 was assumed in addition to 3 to 10. Therefore, the dimensionless parameters  ௛
௕

 

selected for this study were from 2 to 10 in step of 1.  

 

The complete set of input dimensionless parameters  ௕
௧
ටி೤

ா
 and  ௛

௕
 are summarized in 

Table 5.3.  In addition to ௕
௧
ටி೤

ா
 and  ௛

௕
, the corresponding dimensionless parameters ∆

௧
 and 
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ఙ೘
ி೤

 were also included in Table 5.3.  Therefore, the total number of analysis models 

needed for this parametric study will be 90.  

 

The finite element models developed for the analysis of industrial duct side panels 

subjected to shear was presented in Section 5.4. This model can be used to simulate the 

behaviour of the side panel and to obtain the equilibrium path beyond its ultimate state. 

The intention of this simulation was to obtain ultimate strength of the side panels 

subjected to shear load. The shear load  ܸ versus in plane drift ߜ history of each analysis 

was obtained from the analysis results. For each analysis model, the load versus drift 

history was converted into dimensionless form of normalized shear ௏
଴.ହ଻଻௛௧ி೤

 versus 

normalized drift  ఋ
௕
  history. The normalized ultimate shear capacity ௏ೠ

଴.ହ଻଻௛௧ி೤
 was taken as 

the peak load point from the normalized shear versus normalized drift history plot.  

 

A typical representative finite element model of the side plate panel with ௕
௧
ටி೤

ா
ൌ 7.071 

and  ௛
௕
ൌ 5 is shown in Figure 5.15. Figure 5.16 represents the deformed shape of the 

corresponding finite element model at the peak shear load.  

 

Figure 5.17 shows the normalized shear versus normalized drift history plots of the side 

plate panels with  ௕
௧
ටி೤

ா
ൌ 7.955 and aspect ratios  ௛

௕
 considered. For each panel aspect 

ratio, the slope of the linear portion of the responses represents a non-dimensional 
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stiffness. The initial non-dimensional stiffnesses were same. As the aspect ratio increases, 

the predicted normalized ultimate shear strength  ௏ೠ
଴.ହ଻଻௛௧ி೤

 slightly decreases.  

 

In order to explain how the number of bands of tension fields on a side panel varies with 

the increase in aspect ratios  ௛
௕
, the stress vector plots of the side panels with 

dimensionless slenderness ௕
௧
ටி೤

ா
ൌ 7.071 were chosen. The representative stress vector 

plots of the side panels chosen were illustrated in Figure 5.18. These vector plots show 

how the number of bands of tension fields developed in resisting the shear applied as the 

aspect ratio  ௛
௕

 increases from 2 to 10. It can be observed that the angles of the tension 

field within the stiffeners are same. However, the top and bottom tension fields incline 

towards the intersection of the angle and stiffener. This is because the boundary members 

should have enough flexural stiffness to anchor the tension fields. The low flexural 

stiffness of the angles at top and bottom of side panel does not provide enough rigidity to 

anchor the tension fields. 

 

It should noted that the current methods in AISC 2005 and CSA 2010 are based on the 

model representing one band of inclined uniform tension field (across the side panel) 

extending  from top to bottom of the web between stiffeners (one wide band of tension 

field). The current methods in AISC (2005) and CSA (2010) use the vertical component 

of the one wide band of inclined uniform tension field to make the additional contribution 

to the ultimate shear resistance. The one wide band of tension field resulted high shear 
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resistance. However, in a narrow and long side panel (with large aspect ratios  ௛
௕

 ), the 

tension field contribution comes from several bands of inclined tension fields as shown in 

Figure 5.18. The vertical component of the several band of tension field reduced the 

contribution to ultimate shear resistance significantly less than that of predicted by 

Equation 5.8.   

 

The results of the finite element analysis for the side plate panel subjected to shear were 

tabulated in Table 5.4. The peak normalized ultimate shear strengths  

௏ೠ
଴.ହ଻଻௛௧ி೤

 obtained from shear load ܸ versus in plane drift ߜ plots were tabulated with 

respect to the dimensionless parameters ௕
௧
ටி೤

ா
 and  ௛

௕
. The normalized ultimate shear 

strengths ௏ೠ
଴.ହ଻଻௛௧ி೤

 were observed to decrease slightly with the increase in aspect ratio   ௛
௕

 

for a particular plate slenderness of stockier side panels ቆ௕
௧
ටி೤

ா
  ൑ 6.187ቇ. However, the 

decrease in  ௏ೠ
଴.ହ଻଻௛௧ி೤

 with the increase in  ௛
௕

 was more gradual for slender side panels 

ቆ௕
௧
ටி೤

ா
  ൐ 6.187ቇ. The stockier side plate panels show gradual loss in normalized shear 

capacity ௏ೠ
଴.ହ଻଻௛௧ி೤

 with the increase in the plate slenderness  ௕
௧
ටி೤

ா
 for a particular aspect 

ratio   ௛
௕

.  However, the ௏ೠ
଴.ହ଻଻௛௧ி೤

 became approximately constant for slender side panels 

for a particular aspect ratio   ௛
௕

. The mean and standard deviation of normalized shear 

capacities  ௏ೠ
଴.ହ଻଻௛௧ி೤

 for each plate slenderness are presented in the last column. The 
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values of standard deviation indicate that the mean normalized ultimate shear 
௏ೠ

଴.ହ଻଻௛௧ி೤
 

for the side panels with plate slenderness ௕
௧
ටி೤

ா
 up to 6.187 are reasonable values to 

predict the shear capacities of those side panels ቆ௕
௧
ටி೤

ா
  ൑ 6.187ቇ.  

 

The ultimate shear strength ௨ܸ will be additive of the web shear buckling strength ௖ܸ௥ and 

the contribution from the tension field action ௧ܸ௙. The former is simply the capacity 

attained at the point of theoretical plate (web) buckling. This shear buckling strength for 

slender plates was established well. Therefore, the contribution of the shear buckling 

strength for the side panels considered in this study can be estimated using the first part 

of the Equation 5.8.  

 

Using the first part of Equation 5.8, the shear buckling strengths ௖ܸ௥ are calculated and 

tabulated in Table 5.5 with respect to the corresponding dimensionless parameters ௕
௧
ටி೤

ா
 

and  ௛
௕

. Therefore, the additional contribution provided by the tension field action can be 

calculated for the each analysis model by subtracting the shear buckling strength ௖ܸ௥ in 

Table 5.5 from the corresponding ultimate shear strength ௨ܸ in Table 5.4. The additional 

contributions from the tension field action ௧ܸ௙ are tabulated in Table 5.6.   

A closed observation of the normalized contribution of the tension field action ௏೟೑
଴.ହ଻଻௛௧ி೤

 in 

Table 5.6 indicates that ௏೟೑
଴.ହ଻଻௛௧ி೤

 are nearly constant with the increase in the aspect ratio  ௛
௕
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for each plate slenderness  ௕
௧
ටி೤

ா
 up to 6.187. However, the normalized contribution of 

tension fields ௏೟೑
଴.ହ଻଻௛௧ி೤

 gradually increases with the increase in plate slenderness ௕
௧
ටி೤

ா
 . 

The aspect ratio has minimal effect on the normalized contribution of the tension fields 

for plate slenderness up to 6.187.  

 

The last columns of Table 5.6 indicate the average normalized contributions of the 

tension field ௏೟೑
଴.ହ଻଻௛௧ி೤

 and corresponding standard deviations for the each plate 

slenderness considered in this study. The standard deviations indicate that the normalized 

contributions of the tension field ௏೟೑
଴.ହ଻଻௛௧ி೤

 can be considered as the average values for 

each plate panel with plate slenderness up to 6.187. The normalized contributions of the 

tension field ௏೟೑
଴.ହ଻଻௛௧ி೤

 for each plate panel with plate slenderness above 6.187 can be 

expressed function of aspect ratio and plate slenderness. Therefore, by modifying 

Equation 5.8, a simple relation to estimate the ultimate shear capacity of the side plate 

panels can obtained by adding the first term in Equation 5.8 for the contribution of the 

shear buckling and the corresponding contribution of tension field action. Approximate 

normalized ultimate shear for the side panels considered in this study can be obtained 

from the modified Equation 5.8 as follows: 

 

௨ܸ ൌ  ௩ܥ௬൫ܨݐ0.577݄ ൅  ௧௙ ൯ܥ

 

 

(5.21) 
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Where ܥ௧௙ is: 

௧௙ܥ ൌ 0.033 ௕
௧
ටி೤

ா
൅ 0.236        ݂݅   ௕

௧
ටி೤

ா
 ൑ 6.187   

 

௧௙ܥ ൌ 0.013 ௕
௧
ටி೤

ா
൅ 0.351 െ 0.01 ቀ௛

௕
െ 7ቁ       ݂݅   ௕

௧
ටி೤

ா
 ൐ 6.187   

 
 

The first term in Equation 5.8 is based on the simply supported boundary conditions for 

all four edges. However, in this numerical analysis, the longitudinal edges are provided a 

rotational stiffness by the flange of the stiffeners and the transverse edges are modeled to 

be simply supported. This support conditions along the longitudinal edges of the side 

panels will most likely be intermediate between the simply supported and clamped 

condition. Kuhn(1952), based on experiments with angle stiffeners, showed that the 

boundary conditions can be assumed to be simply supported for shear buckling when the 

leg thickness of the angle stiffeners are at least the thickness of the side plate panels.  In 

addition, the shear buckling coefficients ݇ (Equation 5.2 and 5.3 that account the 

boundary conditions) are not influenced by the large aspect ratio  ௛
௕

.  These facts make it 

difficult specify the exact boundary conditions of the industrial duct side panel under 

shear. However, Equation 5.21 can be applicable to obtain the ultimate normalized shear 

buckling strength 
௏ೠ

଴.ହ଻଻௛௧ி೤
 of the side plate panel with plate slenderness up to 6.187, 

even though the relation does not fully represents the rational behind the ultimate 

strength. Therefore, in order to study the relation between the normalized ultimate shear 

(5.22) 

(5.23) 
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௏ೠ
଴.ହ଻଻௛௧ி೤

, plate slenderness ௕
௧
ටி೤

ா
 and aspect ratio  ௛

௕
, the results of ultimate strengths 

(Table 5.4) obtained directly from the numerical analysis models were considered. 

 

The aim of the parametric study was to investigate the influence of dimensionless 

parameters on ultimate shear strengths and to propose a method for estimating ultimate 

shear strength of given duct side plate panel. It should be noted here that the plate 

slenderness ௕
௧
ටி೤

ா
 is the dominant dimensionless parameter that affects the normalized 

ultimate shear strength 
௏ೠ

଴.ହ଻଻௛௧ி೤
 of the industrial duct side panels with lower plate 

slenderness up to 6.187. However, the aspect ratios  ௛
௕

 have minimal effect on the 

normalized ultimate shear strength of plate panels with plate slenderness up to 6.187. For 

side plate panels with plate slenderness more than 6.187, the normalized ultimate shear 

strength depends on both aspect ratios  ௛
௕

 and plate slenderness ௕
௧
ටி೤

ா
.  Therefore, it is 

intended to derive relation between the normalized shear strength ௏ೠ
଴.ହ଻଻௛௧ி೤

 , aspect ratio  ௛
௕

 

and plate slenderness ௕
௧
ටி೤

ா
 in order to propose a useful and practical design method. 

 

It was obvious from above facts that the trend between ௏ೠ
଴.ହ଻଻௛௧ி೤

,  ௕
௧
ටி೤

ா
  and  ௛

௕
 can be 

used to develop a set of graphs for different ultimate shear levels in order to aid the 

design. A set of such design curves would enable the designer to calculate the ultimate 

shear capacity of industrial duct side panels. In order to develop a complete set of design 
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curves, the ultimate normalized shear strengths ௏ೠ
଴.ହ଻଻௛௧ி೤

 with respect to ௕
௧
ටி೤

ா
  and  ௛

௕
 were 

plotted in a three-dimensional plot as shown in Figure 5.19. Figure 5.19 graphically 

illustrates how the normalized shear capacity ௏ೠ
଴.ହ଻଻௛௧ி೤

 varies with respect to the plate 

slenderness  ௕
௧
ටி೤

ா
 and aspect ratio  ௛

௕
. The horizontal axes are associated with the plate 

slenderness  ௕
௧
ටி೤

ா
 and aspect ratio  ௛

௕
. The vertical axis represents the normalized shear 

strength ௏ೠ
଴.ହ଻଻௛௧ி೤

. This three-dimensional graph illustrates how the dimensionless 

parameters ௕
௧
ටி೤

ா
 and  ௛

௕
 influence the normalized shear ௏ೠ

଴.ହ଻଻௛௧ி೤
. It is obvious that the 

normalized shear strengths are influenced by both aspect ratio and plate slenderness for 

slender side panels (with higher ௕
௧
ටி೤

ா
 ). The aspect ratio  ௛

௕
 has minimal effect on the 

normalized shear strengths for stockier side plate panel (with lower ௕
௧
ටி೤

ா
 ). 

 

Although the three-dimensional graphs provide the general pattern how the normalized 

shear strength is influenced by dimensionless parameters ௕
௧
ටி೤

ா
 and  ௛

௕
, the contours of 

௏ೠ
଴.ହ଻଻௛௧ி೤

 should be generated in order to obtain the different level of normalized shear 

strengths’ curves with respect to parameters ௕
௧
ටி೤

ா
 and  ௛

௕
. With this in mind, Figure 5.20, 

which provides the contours of normalized ultimate shear strengths, was generated from 

the three-dimensional plot.  The pattern of the contour indicates that the normalized 
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ultimate shear strength ௏ೠ
଴.ହ଻଻௛௧ி೤

 with values more than 0.65 is not influenced by the 

aspect ratio and depends on plate slenderness ௕
௧
ටி೤

ா
. For the normalized ultimate shear 

strength ௏ೠ
଴.ହ଻଻௛௧ி೤

 up to 0.65, it is influenced by both aspect ratio and plate slenderness.  

 

In order to calculate the ultimate shear capacity ௨ܸ of a side plate panel with given plate 

slenderness ௕
௧
ටி೤

ா
 and aspect ratio  ௛

௕
, the set of design curves (contours) in Figure 5.20 

can be  used. Above set of design curves, in addition to Table 5.4, can be used to 

calculate the ultimate shear strength ௨ܸ of a large industrial duct side panel subjected 

shear for the range of plate slenderness and aspect ratios considered in this study. It 

should be noted here that these results are valid only for the side plate panels subjected to 

static loading and ambient temperature.  

 

5.8 Conclusions and Further Recommendations 

The ultimate shear resistance ௨ܸ of the slender side plate panels of large rectangular 

industrial ducts consists of plate shear buckling and contribution of the tension field 

action. In order to estimate the ultimate shear resistance in the current industrial duct 

design practice, the methods used to design the web of large plate girder from the design 

standards such as AISC (2005) and CSA (2010) are used. These methods are based on 

Basler’s theory (1963) in which the contribution of the tension field is assumed to form 

one wide band of tension field. In contrast to this method, it has been demonstrated that 

several bands of tension fields contribute to the ultimate shear strength of the side panel 
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with large aspect ratio. In addition, it was observed that the methods based on the web of 

large girder design predict higher and approximately same ultimate shear capacity for all 

practical geometric dimensions of the side panels of large industrial ducts. However, it 

has been shown that the side plate panel have less shear resistance compared to the results 

of current design method. The dimensionless parameters affecting the behaviour of the 

side panel subjected to shear were identified. A parametric study was conducted for all 

the practical range of the dimensionless parameters. The plate slenderness ௕
௧
ටி೤

ா
 was 

found to be dominant dimensionless parameter dictating the normalized ultimate shear 

capacity ௏ೠ
଴.ହ଻଻௛௧ி೤

  of the large industrial duct stockier side panels. The dimensionless 

aspect ratio  ௛
௕

 and plate slenderness ௕
௧
ටி೤

ா
 influenced the normalized ultimate shear 

capacity of slender side plate panels. Design aids for estimating the ultimate shear 

capacity of the industrial duct side plate panel were proposed. 

 

5.8.1 Further Recommendations 

Considerable understanding of the behaviour of the side plate panel subjected to shear has 

been made through this parametric study. The scope of the current study can be 

broadened to include the following further investigations: 

1. Although, in Chapter 2, the relations between  ௕
௧
ටி೤

ா
  and  ∆

௧
 and ௕

௧
ටி೤

ா
  and  ఙ೘

ி೤
 

were derived when top fibre begins to yield and 16.5% and 33% of the thickness 

of plate yield, only the values of  ∆
௧
 and ఙ೘

ி೤
 for the case of top fibre beginning to 

yield were considered in this study. This was because these relations were 
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obtained to design the plate (thickness or spacing) for the excursion internal 

pressure load and the operating pressure load are very low. Therefore, the effects 

of  ∆
௧
 and ఙ೘

ி೤
 ,when 16.5% and 33% of the thickness of plate yield, should be 

investigated. 

2. In the industrial duct slender side panel with large aspect ratio  ௛
௕

, the majority of 

the shear capacity comes from several band of tension fields. The vertical 

component of tension fields is anchored by stiffener and effective corner 

elements. Most of the tension fields will be anchored by stiffeners. In this study, a 

practical corner angle L76XL76X7.9 (L3X3X5/16) was modeled. Therefore, the 

effect of corner angle should be investigated. 

3. In this parametric study, the completeness and scale effect of dimensionless 

parameters were established by numerical analysis. The completeness and  scale 

effect should be investigated experimentally. In addition, the results obtained 

from the numerical study should be compared with experimental results for one or 

two random cases. 

4. The bands of tension fields may cause additional forces and moments of 

stiffeners. This effect should be investigated. 

5. The dimensionless parameters with material independent were established for the 

idealized elastic-plastic-strain hardening tri-linear material model representing 

mild carbon steel. The material independency of the dimensionless parameters for 

the material models representing high strength steel should be established. 
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  Table 5.1 Ultimate Strengths of Different Mesh Densities 

Mesh Density Total Elements Ultimate Load (kN) % Difference 
6x6 36 490.5 

      7.4 
10x10 100 456.7 

      3.0 
16x16 256 434.04 

      2.2 
20x20 400 424.69 

      1.1 
26x26 676 420.12 

 

 

 

 
 
Table 5.2 Plate Panels for Completeness and Scale effect 
 
 ܾ ሺ݉݉ሻ ݐ ሺ݉݉ሻ ݄ ሺ݉݉ሻ ܾ

ݐ
ඨܨ௬
ܧ  

݄
ܾ ௨ܸ

௬ܨݐ0.577݄
 

Case 1 1000 5 4000 7.071 4 0.64 
Case 2 1250 6.25 5000 7.071 4 0.63 
Case 3 1400 7 5600 7.071 4 0.63 
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Table 5.3  Matrix of Parameters 

#  ( ܾ ൌ 1000݉݉, ௬ܨ ൌ ,ܽܲܯ250 ܧ ൌ  ( ܽܲܯ200000 ݄ 
݄
ܾ 

1  2000 2 

2  3000 3 

3  4000 4 

4  5000 5 

5  6000 6 

6  7000 7 

7  8000 8 

8  9000 9 

9  10000 10 

10  2000 2 

11  3000 3 

12  4000 4 

13  5000 5 

14  6000 6 

15  7000 7 

16  8000 8 

17  9000 9 

18  10000 10 

19  2000 2 

20  3000 3 

21  4000 4 

22  5000 5 

23  6000 6 

24  7000 7 

25  8000 8 

26  9000 9 

27  10000 10 

28  2000 2 

29  3000 3 

30  4000 4 

31  5000 5 

32  6000 6 

33  7000 7 

34  8000 8 

35  9000 9 

36  1000 10 
 
 
   

∆
ݐ ൌ 0.86,    ∆଴ൌ 3.91݉݉, ௠ߪ ൌ ܽܲܯ22.0  

௕
௧
ටி೤

ா
ൌ ݐ  ,4.419 ൌ 8݉݉ 

 
 

 

ܾ
ݐ
ඨܨ௬
ܧ ൌ 5.303, ݐ ൌ 6.667݉݉ 

∆
ݐ ൌ 1.13,    ∆଴ൌ 4.69݉݉, ௠ߪ ൌ ܽܲܯ25.0  

 
 

ܾ
ݐ
ඨܨ௬
ܧ ൌ 6.187, ݐ ൌ 5.714݉݉ 

∆
ݐ ൌ 1.38,    ∆଴ൌ 5.47݉݉, ௠ߪ ൌ ܽܲܯ29.3  

 
 

ܾ
ݐ
ඨܨ௬
ܧ ൌ 7.071 , ݐ ൌ 5݉݉ 

∆
ݐ ൌ 1.65,    ∆଴ൌ 6.25݉݉, ௠ߪ ൌ ܽܲܯ31.8  
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37  2000 2 

38  3000 3 

39  4000 4 

40  5000 5 

41  6000 6 

42  7000 7 

43  8000 8 

44  9000 9 

45  10000 10 

46  2000 2 

47  3000 3 

48  4000 4 

49  5000 5 

50  6000 6 

51  7000 7 

52  8000 8 

53  9000 9 

54  10000 10 

55  2000 2 

56  3000 3 

57  4000 4 

58  5000 5 

59  6000 6 

60  7000 7 

61  8000 8 

62  9000 9 

63  10000 10 

64  2000 2 

65  3000 3 

66  4000 4 

67  5000 5 

68  6000 6 

69  7000 7 

70  8000 8 

71  9000 9 

72  10000 10 

 

 
 
 
 
 
 

 

ܾ
ݐ
ඨܨ௬
ܧ ൌ 7.955, ݐ ൌ 4.444݉݉ 

∆
ݐ ൌ 1.91,    ∆଴ൌ 7.03݉݉, ௠ߪ ൌ 33.9  ܽܲܯ

 
 

ܾ
ݐ
ඨܨ௬
ܧ ൌ 8.839 , ݐ ൌ 4.0݉݉ 

∆
ݐ ൌ 2.17,    ∆଴ൌ 7.81݉݉, ௠ߪ ൌ 35.2  ܽܲܯ

 
 

ܾ
ݐ
ඨܨ௬
ܧ ൌ ݐ   ,9.723 ൌ 3.636݉݉ 

∆
ݐ ൌ 2.42,    ∆଴ൌ 8.60݉݉, ௠ߪ ൌ 36.6 ܽܲܯ  

 
 

 

ܾ
ݐ
ඨܨ௬
ܧ ൌ 10.607, ݐ ൌ 3.333݉݉ 

∆
ݐ ൌ 2.67,    ∆଴ൌ 9.38݉݉, ௠ߪ ൌ ܽܲܯ37.8  

 
 

Table 5.3 Matrix of Parameters Continues…. 
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73  2000 2 

74  3000 3 

75  4000 4 

76  5000 5 

77  6000 6 

78  7000 7 

79  8000 8 

80  9000 9 

81  10000 10 

82  2000 2 

83  3000 3 

84  4000 4 

85  5000 5 

86  6000 6 

87  7000 7 

88  8000 8 

89  9000 9 

90  10000 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ܾ
ݐ
ඨܨ௬
ܧ ൌ 11.490, ݐ ൌ 3.077݉݉ 

∆
ݐ ൌ 2.91,    ∆଴ൌ 10.16݉݉, ௠ߪ ൌ ܽܲܯ38.6  

 
 

ܾ
ݐ
ඨܨ௬
ܧ ൌ ݐ   ,12.374 ൌ 2.857݉݉ 

∆
ݐ ൌ 3.15,    ∆଴ൌ 10.94݉݉, ௠ߪ ൌ  ܽܲܯ39.4

 
 

 

Table 5.3 Matrix of Parameters Continues…. 
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  Table 5.4  Results of Parametric Study 
 
௬ܨ )    ൌ ,ܽܲܯ250 ܧ ൌ  ( ܽܲܩ200

௨ܸ

௬ܨݐ0.577݄
 

݄
ܾ 

 

2  3  4  5  6  7  8  9  10 
Average  Std Dev 

ܾ
ݐ
ඨܨ௬
ܧ  

4.419  0.85  0.82  0.81  0.81  0.80  0.80  0.79  0.79  0.79  0.81  0.02 

5.303  0.75  0.73  0.73  0.72  0.71  0.71  0.71  0.70  0.70  0.72  0.02 

6.187  0.71  0.68  0.67  0.66  0.65  0.64  0.63  0.63  0.64  0.66  0.03 

7.071  0.67  0.66  0.63  0.62  0.61  0.60  0.60  0.57  0.56  0.62  0.04 

7.955  0.65  0.64  0.61  0.59  0.58  0.57  0.56  0.56  0.55  0.59  0.04 

8.839  0.65  0.62  0.59  0.58  0.56  0.55  0.54  0.53  0.53  0.57  0.04 

9.725  0.66  0.63  0.59  0.57  0.55  0.54  0.53  0.52  0.52  0.57  0.05 

10.607  0.65  0.63  0.59  0.58  0.55  0.54  0.52  0.52  0.51  0.56  0.05 

11.490  0.66  0.63  0.60  0.58  0.55  0.54  0.52  0.52  0.50  0.56  0.05 

12.374  0.66  0.64  0.60  0.58  0.55  0.52  0.52  0.52  0.50  0.56  0.06 
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     Table 5.5  Shear Buckling Strengths 
 
௬ܨ )      ൌ ,ܽܲܯ250 ܧ ൌ  ( ܽܲܩ200

௖ܸ௥

௬ܨݐ0.577݄
 

݄
ܾ 

2  3  4  5  6  7  8  9  10 

ܾ
ݐ
ඨܨ௬
ܧ  

4.419  0.50  0.45  0.43  0.42  0.41  0.41  0.41  0.41  0.41 

5.303  0.36  0.31  0.30  0.29  0.29  0.28  0.28  0.28  0.28 

6.187  0.26  0.23  0.22  0.21  0.21  0.21  0.21  0.21  0.21 

7.071  0.20  0.17  0.17  0.17  0.16  0.16  0.16  0.16  0.16 

7.955  0.16  0.14  0.13  0.13  0.13  0.13  0.13  0.13  0.13 

8.839  0.13  0.11  0.11  0.11  0.10  0.10  0.10  0.10  0.10 

9.725  0.10  0.09  0.09  0.09  0.09  0.09  0.09  0.09  0.09 

10.607  0.09  0.08  0.08  0.07  0.07  0.07  0.07  0.07  0.07 

11.490  0.07  0.07  0.06  0.06  0.06  0.06  0.06  0.06  0.06 

12.374  0.06  0.06  0.06  0.05  0.05  0.05  0.05  0.05  0.05 
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Table 5.6  Contributions from Tension Field Actions 
௬ܨ )    ൌ ,ܽܲܯ250 ܧ ൌ  ( ܽܲܩ200

௧ܸ௙

௬ܨݐ0.577݄
 

݄
ܾ 

  

2  3  4  5  6  7  8  9  10 
Average Std Dev 

ܾ
ݐ
ඨܨ௬
ܧ  

4.419  0.35  0.37  0.38  0.39  0.39  0.39  0.38  0.38  0.38  0.38  0.01 

5.303  0.39  0.42  0.43  0.43  0.42  0.43  0.43  0.42  0.42  0.42  0.01 

6.187  0.45  0.45  0.45  0.45  0.44  0.43  0.42  0.42  0.43  0.44  0.01 

7.071  0.47  0.49  0.46  0.45  0.45  0.44  0.44  0.41  0.40  0.45  0.03 

7.955  0.49  0.50  0.48  0.46  0.45  0.44  0.43  0.43  0.42  0.46  0.03 

8.839  0.52  0.51  0.48  0.47  0.46  0.45  0.44  0.43  0.43  0.47  0.03 

9.725  0.56  0.54  0.50  0.48  0.46  0.45  0.44  0.43  0.43  0.48  0.05 

10.607  0.56  0.55  0.51  0.51  0.48  0.47  0.45  0.45  0.44  0.49  0.04 

11.490  0.59  0.56  0.54  0.52  0.49  0.48  0.46  0.46  0.44  0.50  0.05 

12.374  0.60  0.58  0.54  0.53  0.50  0.47  0.47  0.47  0.45  0.51  0.05 
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  Figure 5.1 Rectangular Plate with Uniform Shear 
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        Figure 5.2 Complete Tension Field 
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Figure 5.3 Buckling Shape of Long Plate and Bands of Tension Fields (Bruhn 1973) 

 
 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 293

 
 

 
 
Figure 5.4 Stresses at Buckling and Ultimate State (Charles 1997) 
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Figure 5.5 Effect of Diaphragm Stresses 
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Figure 5.6  Schematic of Duct Side Panel 
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Figure 5.7 Exaggerated Initial Geometric Imperfections 
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Grade 
A36 
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Stress (MPa) 
 ௨ܨ ௨ܨ ௦௧ܨ ௬ܨ

250 250 400 400 

Figure  5.8    Idealized Material Model  
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Figure 5.9  Boundary Conditions 
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Figure 5.10 Model for Verification Study 
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Figure 5.11  Bucking Strength of Square Plate 
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Figure 5.12 Fundamental Parameters 
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  Figure 5.13 Applied shear versus drift 
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Figure 5.14 Normalized shear versus normalized drift 
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Figure 5.15  Finite Element Model of  ௛
௕
ൌ 5 and ௕

௧
ටி೤

ா
ൌ 7.071 

 
 

 

Figure 5.16  Deformed Shape of Model of  ௛
௕
ൌ 5 and ௕

௧
ටி೤

ா
ൌ 7.071 
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       Figure 5.17  Normalized Shear versus Drift of  Cases with  ௕
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ටி೤

ா
ൌ 7.955 
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Figure 5.18  Bands of Tension Field Action of Side Panel with  ௕
௧
ටி೤

ா
ൌ 7.071 
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Figure 5.18  Continues…. 
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Figure 5.18  Continues…. 
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Figure 5.18  Continues…. 
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Figure 5.18  Continues…. 
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Figure 5.19  Normalized Shear versus Dimensionless Parameters 
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Figure 5.20  Contour of Normalized Shear versus Dimensionless Parameters 
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Appendix 5.1  Notations 
 
 
The following symbols are used in this chapter 

ܾ ൌ Width of plate panel 

௩ܥ ൌ Shear coefficient 

ܧ ൌ Young`s modulus 

௦௧ܧ ൌ Modulus of strain hardening 

௬ܨ ൌ Yield stress 

௨ܨ ൌ Tensile stress 

ܩ ൌ Modulus of shear 

݄ ൌ height of plate panel 

݇ ൌ Shear buckling coefficient 

ݐ ൌ Thickness of plate 

ܸ ൌ Applied shear 

௖ܸ௥ ൌ Shear buckling strength 

௧ܸ௙ ൌ Tension field post buckling shear strength 

௨ܸ ൌ Ultimate shear strength 

௬ߝ ൌ Nominal strain at yield 

ߜ ൌ In-plane drift 

ߪ ൌ Compressive stress 

௧ߪ ൌ Inclined tension 

௠ߪ ൌ Diaphragm stress 

ଵߪ ൌ Major principal stress 
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ଶߪ ൌ Minor principal stress 

ߠ ൌ Inclination of tension field 

∆௜௠௣= Initial geometric imperfection distribution 

∆௢ൌ Maximum amplitude of the initial geometric imperfection 

∆௭ൌ Out of plane deflection 

߬ ൌ Shear stress 

߬௖௥ ൌ Buckling shear stress 

߬௬ ൌ Yield shear stress 

߬௖௥ᇱ ൌ  Shear stress increased 

ߥ ൌ Poisson’s ratio 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 315

Appendix 5.2  References 
 

ADINA , (2009), “ADINA 8.5 User Manual.” ADINA R & D Inc, Watertown, MA, USA. 

ASCE, (1995), “The structural Design of Air and Gas Ducts for Power Stations and Industrial 
Boiler Applications.” Air and Gas Structural Design Committee of the Energy Division 
of the ASCE, Reston. 

AISC ASD, (1989), “Manual of Steel Construction- Allowable Stress Design, 9th edition.” 
American Institute of Steel Construction ,Chicago. 

AISC LRFD, (2005), “Manual of Steel Construction- Load and Resistance Factor Design.” 
American Institute of Steel Construction, Chicago. 

Alinia, M. M. and Dastfan, M. (2006), “Behavior of Thin Steel Plate Shear Walls Regarding 
Frame Members.” Journal of Constructional Research, 62 (2006), 730-738. 

 
Alinia, M. M. , Habashi, H.R. and Khorram, A., (2009), “Nonlinearity in the postbuckling 

behaviour of thin Steel Shear Panels.” Thin Walled Structures, 47, 412-420. 
 
Alinia, M. M. , Gheitasi, A. and Shakiba, M., (2011), “Postbuckling and Ultimate State of 

Stresses in Steel Plate Girders.” Thin Walled Structures, 49, 455-464. 
 
Alinia, M. M., Shakiba,M. and Habashi, H.R., (2009), “Shear Failure Characteristics of Steel 

Plate Girders.” Thin Walled Structures, 47, 1498-1506. 
 
Azizinamini, A. , Hash, J.B., Yakel, A.J.and Farimani, R., (2007), “Shear Capacity of Hybrid 

Plate Girders.” Journal of Bridge Engineering, 12(5), 535-543. 
 
Basler, K. (1961), “Strength of Plate Girders in Shear.” Journal of the Structural Division, In 

Proceedings of the American Society of Civil Engineers 87 (ST7), 151-180. 
 
Basler, K. (1963), “Strength of Plate Girders in Shear.” Trans. ASCE 128, pp. 683-719. 
 
Bathe, K.J (1996), “Finite Element Procedures.” Prentice Hall, 5th Edition. 

Bleich, F., (1952), “Buckling Strength of Metal Structures.” New York: McGraw-Hill. 

Bradfored, M. A. , (1996), “Improved Shear Strength of Webs Designed in Accordance with the 
LRFD Specification.”  Engineering Journal , 33(3), 95-100. 

Bruhn, E.F., (1973), “Analysis and Design of Flight Vehicle Structures.” Jacobs Publication. 

Charles, G.S., John, E.J.,(1997)  “Steel Structures: Design and Behaviour”, 4th Edition, Prentice 
Hall,  Newyork. 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 316

CSA, (2010), “Handbook of Steel Construction.” Canadian Institute of Steel Construction, 
Willowadale, Ontario 

Daniel, V., Nicolau, M., Dimache, A. and Modiga, M. (2004), “Ultimate Strength of Plate Girders 
in Shear.” University of Galati. 

 
Dawson, R. G. and Walker, A. C.,(1972), “Post-buckling of Geometrically Imperfect Plates.” 

Journal of the Structural Division. ASCE, 98(1), pp. 75-94. 

Galambos, T.V., (1998), “Guide to Stability Design Criteria for Metal Structures.” 5th edition. 
Structural Stability Council, Rolla. 

Harris, H.G. and Sabnis, G., (1999), “Structural Modeling and Experimental Techniques.” 2nd 
edition. CRC Press, New York. 

Hagen, N. C. (2005), “On the Shear Capacity of Steel Plate Girders with Large Web Openings, 
Doctoral Thesis.” Norwegian University of Science and Technology. 

 
Hagen, N. C. and Larsen, P. K ,(2009), “Shear Capacity of Steel Plate Girders with Large Web 

Openings, Part 1: Modeling and Simulations.” Journal of Constructional Steel Research, 
65, 151-158. 

 
Hoglund, T. (1997), “Shear Buckling Resistance of Steel and Aluminum Plate Girders.” Journal 

of Thin-Walled Structures, 29 (14), 13-30.  
 
John, W. and Sons, New York (1979), “Thin Plate Design for in-Plane Loading.” 
 
Kuhn, P., Peterson, J.P., Levin, I.R., (1952), “A Summary of Diagonal tension”, Part 1 and Part 2, 

U.S. National Advisory Committee for Aeronautics, Technical Notes 2661, 2662. 
 
Larson, M. A. and Shah, K. N., (1976), “Plastic Design of Web Openings.” Journal of Structural 

Division, 102 (ST5, May), 1031-1041. 
 
Langhaar, H.L., (1951), “Dimensional Analysis and Theory of Models.” John Wiley, N.Y 
 
Lee, S. c., Davidson, J. S. and Yoo, C. H., (1996), “Shear Buckling Coefficients of Plate Girder 

Web Panels.” Computer and Structures, 56 (5), 789-795. 
 
Lee, S. C. and Yoo, C. H., (1998), “Strength of Plate Girder Web Panels under Pure Shear.” 

Journal of Structural Engineering, 124 (2), February, 1998, 184-194. 
 
Lee, S. C. and Yoo, C. H. (1999), “Experimental Study on Ultimate Shear Strength of Web 

Panels.” Journal of Structural Engineering, 125 (8), 838-846. 
 
Lee, S. C., Lee, D.S. and Yoo, C. H. (2008), “Ultimate Shear Strength of Long Web Panels.” 

Journal of Constructional Steel Research, Volume 64, 1357-1365. 
 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 317

Lee, S. C., Yoo, C. H. and Yoon, D. Y. (2002), “Behavior of Intermediate Transverse Stiffeners 
Attached on Web Panels.” Journal of Structural Engineering ASCE 2002; 128 (3), 337-
345. 

 

Lee, S. C., Lee, D.S., Yoo, C. H. and Park, C. S. (2009), “Further Insights into Postbuckling of 
Web Panles. 11: Experiments and Verification of New Theory.” Journal of Structural 
Engineering ASCE 2009; 135 (1), 11-18. 

 

Marsh, C., Ajam, W., and Ha, H. K., (1988), “Finite Element Analysis of Postbuckled Shear 
Webs.” Journal of Structural Engineering ASCE; 114 (7), 1571-1587. 

 

Olaru, V. D., Nocolau, M., Dimache, A. and Modiga, M. (2004), “Ultimate Strength of Plate 
Girders in Shear.” The Annals of 'Dunarea De Jos' University of Galati, pp. 59-64. 

 
Paik, K. J., Thayamballi, A.K., (2003), “Ultimate Limit State Design of Steel-Plated Structures.” 

Wiley, Edition 1. 
 
 
Pellegrino, c., Maiorana, E. and Modena, C. (2008), “Linear and Non-Linear Behavior of Steel 

Plates with Circular and Rectangular Holes under Shear Loading.” Thin-Walled 
Structures (2008) 

 
Porter, D. M., Rocket, K C. and Evans, H. R. (1975), “The Collapse behavior of Plate Girders 

Loaded in Shear.” The Structural Engineer. Vo1.53. 

Salmon, G.C., Johnson, E.Y., Malhas A.F., (2008), “Steel Structures: Design and Behaviour.” 5th 
edition. Prentice Hall, New York. 

Shanmugam, N. E. and Basker, K., (2003), “Steel-Concrete Composite Plate Girders Subjected to 
Shear Loading.” Journal of Structural Engineering , 129(9), 1230-1242. 

 
Stein, M. N. (1947), “Buckling Stresses of Simply Supported Rectangular Flat Plates in Shear.” 

NACA Tech. Note No. 1222. 

Timoshenko, S. and Krieger, S.W.,(1959), “Theory of Plates and Shells.” McGraw-Hill, Tokyo. 

Timoshenko, S. P., Gere, J. M., (1961), “Theory of Elastic Stability.” 2nd Edition. McGraw-Hill, 
New York. 

 
Ugural, A. C., (1981), “Stresses in plates and shell.” Mcgraw Hill Companies. FL. USA. 
 

Wagner, H. (1931), “Flat Sheet Metal Girders with Very Thin Metal Web.” Washington, DC, 
NACA TM. 

 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 318

 
White, D. W. and Barker, M. G., (2008), “Shear Resistance of Transversely Stiffened Steel I-

Girders.” Journal of Structural Engineering ASCE 134 (9), 1425-1436. 

Young, W.C., (1989), “Roark’s Formulas for Stress & Strain, 6th edition.”  McGraw Hill, New 
York. 

Yoo, C. H  and Lee, S. C., (2006), “Mechanics of Web Plate Postbuckling Behaviour in Shear.” 
Journal of Structural Engineering, ASCE 132 (10), 1580-1589. 

 



Ph.D Thesis- Tharani Thanga                               McMaster University-Civil Engineering 
 

 

 319

Chapter 6:       Summary and Conclusions 
 
It should be noted that a considerable progress has been made towards understanding of 

the behaviours of the components of large rectangular industrial ducts through these 

studies. The components considered in these studies were stiffener spacing and strength 

of plate, behaviour and strength of stiffened plate panels and shear capacity of industrial 

duct side panels. The following sections provide the summary and conclusions drawn 

from the studies for each component mentioned above. Further recommendations for 

future studies for each component were provided at the end of each respective chapter. 

Also, it should be noted here that these finding were valid for the components subjected 

static loading conditions and at ambient temperature.  

 
6.1 Stiffener Spacing and Strength of Plates 

Large industrial duct system is often rectangular and consists of stiffened plates, where 

the plates along with stiffeners act to resist the pressure loads. Since the parallel stiffeners 

are often closely spaced, the plate element between the pair of parallel stiffeners is often 

idealized as a long plate spanning between and fixed supported by those stiffeners. The 

internal pressure and serviceability limit determine the plate thickness and the stiffener 

spacing. Currently, the engineers determine the plate thickness and the stiffener spacing 

based on elastic large deflection plate theory in which bending and membrane actions 

both dictate the strength and deflection of the plate. This study postulates that the plate 

design allowing for partial yielding may result in economical and efficient duct system. 

The objective of this study is to establish relations between loads and stiffener spacing 

recognizing the available ductility and the true capacity of steel plates associated with 
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large industrial ducts. Since, large displacement analysis of plates beyond yielding is 

quite complicated due to nonlinearities; this investigation is based on finite element 

analysis of long plates made of elastic-plastic steel. A numerical parametric study was 

conducted. The model uses a four-node nonlinear shell element based on 

Mindlin/Reissner plate theory. Newton-Cotes integration scheme with seven integration 

points through thickness was chosen in order to trace the yielding of plate through 

thickness. 

 

In order to do a manageable parametric study and to have parameters that are independent 

of material characteristics, a dimensional analysis was performed. Through the 

dimensional analysis identified the meaningful dimensionless parameters that 

characterize the behaviour of plate laterally loaded even into the plastic range. The 

dimensionless parameters selected were plate slenderness ߚ ൌ  ௕
௧
ටி೤

ா
, load parameter 

ܳ ൌ ௣ா
 ி೤మ

, normalized deflection ∆
௧
, normalized total stress ఙ೟

ி೤
 and normalized diaphragm 

stress ఙ೘
ி೤

. The independency of any scale and material characteristic of the dimensionless 

parameters was established by conducting sample analysis.  

 

The parametric study considered the plates having various slenderness values, and the 

results were established for pressure ௣ா
 ி೤మ

 versus slenderness  ௕
௧
ටி೤

ா
 relations and out-of-

plane deflection ∆
௧
  versus slenderness  ௕

௧
ටி೤

ா
 relations for three cases namely; 0%, 16.5% 

and 33% of through thickness yielding of the plate. Design equations were established for 
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the above three cases. Results show that approximately 55% and 110% increase in load 

carrying capacities when 16.5% and 33% yielding is permitted. However, such yielding 

results in 30% and 50% increase in deflections as well. Partially yielding plates can easily 

satisfy the serviceability limit states and lead to economical stiffened plate system for 

industrial duct. The study established the design equations for industrial plates for three 

design scenarios namely; 0%, 16.5% and 33% of through thickness yielding of the plate 

as indicated below. 

Cases 
Limiting Load Parameter 

ࡽ ൌ
ࡱ࢖
૛࢟ࡲ

 
Normalized Deflection 

∆
࢚  

Top fiber yields 
 ܳ ൌ 0.580 ቌ

ܾ
ݐ
ඨܨ௬
ቍܧ

ିଵ.ଵ଴

 
∆
ݐ ൌ 0.288ቌ

 ܾ
ݐ
ඨܨ௬
ቍܧ െ 0.399 

16.5% of 
thickness yields 

 
ܳ ൌ 0.864 ቌ

ܾ
ݐ
ඨܨ௬
ቍܧ

ିଵ.଴଼

 
∆
ݐ ൌ 0.330ቌ

 ܾ
ݐ
ඨܨ௬
ቍܧ െ 0.356 

33% of 
thickness yields 

 
ܳ ൌ 1.112 ቌ

ܾ
ݐ
ඨܨ௬
ቍܧ

ିଵ.଴ହ

 
∆
ݐ ൌ 0.367ቌ

 ܾ
ݐ
ඨܨ௬
ቍܧ െ 0.328 

    

 

Chapter 2 addressed the additional in-plane forces developed due to the membrane 

stress ߪ௠. The in-plane forces at end panels will be transmitted by shear to the duct 

effective corner elements. This shear causes additional compressive forces on the duct 

effective corner elements. The effective corner elements should be designed to this 

additional compression together with the forces due to the global bending. 
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An example calculation was carried out to verify and compare the proposed design 

method of spacing stiffeners. 

 

6.2 Behaviour and Capacity of Stiffened Plate Panels 

Large rectangular industrial duct wall panels often require regularly spaced parallel 

stiffeners which strengthen the thin wall plates in one direction. In the design, an 

appropriate stiffener member and its spacing are chosen to achieve adequate overall 

capacity of stiffened plate panel. In view of enormous size and the loadings associated 

with such duct work, generally wide flanged steel beam sections are used as stiffeners. 

One flange is welded to the steel plate and other flange is unsupported and unbraced. 

Under negative pressure loading, the unconnected flange is in compression and the other 

flange and duct panel are in tension. In theory, the bending capacity of wide flanged 

section depends on the unbraced length of compression flange. However, the web and 

duct plate may provide a rotational stiffness to the compression flange. This may lead to a 

web distorational buckling. Current design codes do not adequately address the capacity 

of the distortional buckling of the stiffeners. The objective of this study concerns with the 

behaviour, bending capacity and the design of such stiffened plate panels. 

 

In the first step in achieving this objective, nonlinear finite element modeling techniques 

for stiffened plate panel were developed using finite element software ADINA. The 

material model selected was elastic-plastic-multilinear material model with von Mises 

yield criterion, associated flow plasticity based on isotropic hardening rule. The model 
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included the pattern of geometric imperfections and residual stresses. The Load 

Displacement Control incremental method was used to capture the pressure load versus 

displacement history even into unloading regions. Based on the comparison of the 

corresponding full scale test results, it was concluded that modeling techniques applied 

can reliably establish the behaviour and response of the stiffened plate panel subjected 

lateral pressure load. 

 

In the next step in order to do a parametric study, a dimensional analysis was performed 

to identify the meaningful dimensionless parameters that characterize the behaviour and 

strength of the stiffened plate panel subjected to lateral pressure load. The dimensionless 

parameters include all geometric details, material characteristics, applied loading and 

deformation response. The dimensionless parameters were stiffener flange slenderness 

ଵߚ ൌ
௕೑
௧೑
ටி೤ೞ

ா
, stiffener web slenderness  ߚଶ ൌ

௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

, plate slenderness ߚଷ ൌ

௕೛
௧೛
ටி೤೛

ா
, stiffener overall slenderness ߚସ ൌ

௅
௥
ටி೤ೞ

ா
 and normalized moment capacity ெೌ

ெ೤
. 

The completeness of the dimensionless parameters was established. Thus, the selected 

dimensionless parameters were found to characterize the behaviour and strength of 

stiffened plate panel without scale effect. 

 

The practical range of the dimensional parameters resulted in one hundred finite element 

analysis models for this parametric study. As each model took considerable amount of 

labour to build and taking into account that manual modeling may lead accidental error 
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during the modeling, an external computer program that creates finite element models 

based on scales of fundamental parameters was developed. 

Before the parametric study was done, the effect of selected dimensionless parameters 

was analysed. It was found that the plate slenderness ߚଷ ൌ
௕೛
௧೛
ටி೤೛

ா
 and stiffener flange 

slenderness ߚଵ ൌ
௕೑
௧೑
ටி೤ೞ

ா
 has very minimal effect of on the strength of the stiffened plate 

under bending. Then the matrix of the models was analyzed and the behaviour of the each 

model was observed. The failure mode observed for the stiffened plate panels subjected 

to bending was lateral distortional buckling of the stiffener. This type of failure mode did 

not result in progressive loss in buckling strength of the stiffened plate panels as overall 

slenderness ߚସ ൌ
௅
௥
ටி೤ೞ

ா
 increases.  

 

The stiffener web slenderness  ߚଶ ൌ
௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

 was found to be the most influential 

dimensionless parameter affecting the strength and behavior of stiffened plate panel 

under bending. The stiffener overall dimensionless slenderness ߚସ ൌ
௅
௥
ටி೤ೞ

ா
 has minimal 

effect on the capacity of stiffened plate panel due to distortional buckling. However, the 

higher ratio of web depth to stiffener span leads to some local web failure at support 

locations. A local failure of web was triggered when the span of stiffened plate panel with 

higher web slenderness becomes small. The boundary between the local web crippling 

was defined in order to provide a design guideline that can predict the lateral distortional 

buckling capacity of stiffened plate panel.  Based on the parametric study, design 
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equation was provided in terms of stiffener web slenderness  ߚଶ ൌ
௛ೢିଶ௧೑

௧ೢ
ටி೤ೞ

ா
 . This 

study has shown that the standard beam method used to estimate the capacity of stiffened 

plate panel was inappropriate for this type failure mode of the stiffeners. The standard 

beam method leads to excessive conservatism in designing stiffener sections. 

 

It was found that the applied bending moment  ܯ௔ can reach the cross sectional yield 

moment  ܯ௬ if stiffener web slenderss ௛ೢିଶ௧೑
௧ೢ

ටி೤ೞ
ா

 is less than or equal to 2.0. 

This rule can be written as 

௔ܯ  ൒  ݎ݋݂  ௬ܯ 
௛ೢିଶ௧೑

௧ೢ
ටி೤ೞ

ா
൑ 2.0  ܽ݊݀  ௅

௥
ටி೤ೞ

ா
൒ 3.33 ௛ೢିଶ௧೑

௧ೢ
ටி೤ೞ

ா
൅ 0.145               

The proposed relation between applied bending moment and stiffener web slenderness is 

as follows. 
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6.3 Shear Capacity of Side Panel of Large Industrial Ducts 

In large rectangular ducts, the plate acts in conjunction with stiffeners to balance the 

pressure loads and to carry the dead loads and external loads to the supports. The duct 

side panels transmit the gravity loads to the supports by shear. Currently the plate panels 

for shear load are designed based on the methods used for the web of the plate girders. 

The behaviors and the characteristics between the web of plate girder and the plate panels 

are significantly different. The large aspect ratio of the side panels develops multiple 

bands of tension fields, whereas the methods for plate girders are based on one tension 

field action. In addition to carrying shear, the slender side panels are subjected to 

congruent pressure load. Very little research has been done dealing with industrial duct 

plate panel subjected to shear load. A study therefore was undertaken to review current 

methods of analysis and design and to propose a comprehensive method of designing 

industrial duct side panel for shear resistance. 

 

A nonlinear finite element model was developed to simulate the behavior of industrial 

duct side panel subjected to transverse shear. Geometric and material nonlinearity, initial 

imperfections and initial stresses were incorporated into the model. To reach the 

convergence of the equilibrium of the nonlinear load-displacement path, a displacement 

control analysis method was used. The idealized elastic-plastic-strain hardening tri-linear 

material model representing mild carbon steel was used. 

 

In order to carry out a manageable parametric study, a dimensional analysis was 

performed to identify the dimensionless parameters describing the behaviour of the 
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industrial side panel subjected to uniform shear. The identified dimensionless parameters 

were plate slenderness ௕
௧
ටி೤

ா
 , aspect ratio  ௛

௕
, normalized shear ௏

଴.ହ଻଻௛௧ி೤
 , normalized drift 

ఋ
௕
, normalized out of plane deflection  ∆

௧
  and normalized diaphragm stress  ఙ೘

ி೤
.  The 

completeness and scale independent of the parameters identified were established through 

a preliminary finite element analysis. The reasonable ranges of input dimensionless 

parameters ௕
௧
ටி೤

ா
 and  ௛

௕
 for practical large rectangular industrial duct were established to 

complete the matrix of analysis models. The dimensionless parameters ∆
௧
 and ఙ೘

ி೤
 

established in Chapter 2 with respect to plate slenderness ௕
௧
ටி೤

ா
 ,when the top fibre begins 

to yield, were used for the range of  ௕
௧
ටி೤

ா
 and  ௛

௕
.  

 

The analysis matrix considered for this study contained total of ninety analysis models. 

Considering the amount of labour to build each model and the possibility of accidental 

error during the modeling, an external computer program that create a finite element 

model based on scales of fundamental parameters was developed. 

 

From the vector plots of the results, the increase in the number of bands of tension fields 

on the side panels were observed as the aspect ratio ௕
௛
 increases. This observation proved 

that the ultimate shear capacity of the side plate panel depends on the number of inclined 

tension fields; however on the other hand, the current method for web of large plate 

girder is based on one band of uniform inclined tension field. Therefore, the vertical 
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component of the number of bands of tension field results in contribution to the ultimate 

shear resistance significantly less compared to the contribution predicted by one band of 

tension field. 

 

The current method used to design the web of large plate girder was modified and a 

method was proposed to calculate normalized ultimate shear for the side panels 

considered in this study.   

  

In order to obtain the ultimate shear strengths, the peak load points from the normalized 

shear versus normalized drift history plots were obtained for each analysis model. The 

plate slenderness ௕
௧
ටி೤

ா
 and aspect ratios 

 ௛
௕
 were found to be the influential dimensionless 

parameter dictating the normalized ultimate shear capacity 
௏ೠ

଴.ହ଻଻௛௧ி೤
  of slender side 

panels. The plate slenderness ௕
௧
ටி೤

ா
  dominates the normalized shear strength of stockier 

side panels. 

 

In order to calculate the ultimate shear capacity ௨ܸ of a side plate panel with given plate 

slenderness ௕
௧
ටி೤

ா
 and aspect ratio  ௛

௕
, the set of design curves (contours) were proposed. 

The set of design curves can be used to calculate the ultimate shear strength ௨ܸ of a large 

industrial duct side panel subjected shear for the range of plate slenderness and aspect 

ratios considered in this study.  
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