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Abstract

Background: Through unprecedented advances in technology, high-dimensional

datasets have exploded into many fields of observational research. For example, it is

now common to expect thousands or sometimes millions of genetic variables (p) with

only a limited number of study participants (n). Determining the important fea-

tures, in whatever context, proves extremely difficult from a statistical point of view,

as multivariate analysis techniques become flooded and mathematically insufficient

when n < p. Principal Component Analysis (PCA) is a commonly used multivariate

method for dimension reduction and data visualization but suffers from these issues.

A collection of Sparse PCA methods have been proposed to counter these flaws and

obtain insight to variable grouping structure but have not been tested in comparative

detail. This thesis will compare three of the latest Sparse PCA methods, exposing

the optimal choices under a variety of scenarios.

Methods: Performances of Sparse PCA methods were evaluated through simu-

lations. Data was generated for 56 different scenarios, ranging various properties of

the variance structure from which PCA output depend on; p
n
, the number of under-

lying groups, and the variance structure between and within them. Prediction-based
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cross-validation methods were used to tune the level of sparseness. Closeness of

true underlying loading vectors and estimated loading vectors was evaluated based

on the angle between, classification, and sparseness, while adjusted percentage ex-

plained variance and orthogonality was also captured. Sparse PCA methods were

also applied to a real gene expression dataset from SickKids hospital.

Results: All Sparse PCA methods showed improvements upon classical PCA in

most criteria, especially classification. Some methods are best at obtaining an accu-

rate leading principal component (PCs) only, whereas others are better for obtaining

accurate subsequent PCs. There exist different optimal choices of Sparse PCA meth-

ods when ranging within-group correlation and across-group variances; thankfully,

one method repeatedly works well under the most difficult scenarios. When applying

methods to the real data, concise groups of gene expressions were detected with the

most sparse methods.

Conclusions: Sparse PCA methods provide a new insightful way to detect im-

portant features amidst complex high-dimension data but simulation results, such

as the ones given in this thesis, should be used to ensure they will accurately reflect

the underlying variance structure.
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Chapter 1

Introduction

Over the last decade or so, a collection of sparse applications to principal compo-

nent analysis (PCA) have been proposed in hopes to offer statisticians a superior

dimension reduction procedure and an interpretable gateway to variable selection,

especially when confronting high-dimensional data. After demonstrating the frame-

work and theories, this thesis will attempt to deliver a compact guide to using Sparse

Principal Component Analysis (Sparse PCA) in both synthetic and realistic atmo-

spheres; exposing its power and pitfalls.

After this Chapter brings some motivation for why Sparse PCA is needed, Chap-

ter 2 will cover the methodology behind Sparse PCA, including three specific methods

found in recent literature. Chapter 3 will contain the innovative contribution of this

thesis; a rigorous simulation study that will expose the three Sparse PCA methods

and find out where they succeed and where they fail. Chapter 4 will demonstrate a
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hands-on application of Sparse PCA to a real-world high-dimensional gene expres-

sion dataset, giving the reader an idea of how to make use of the simulation findings

during their analysis. We will also outline some problems one might face, along with

possible solutions, while implementing Sparse PCA.

So, on to some motivation to align the the reader with the statistical problems

we face, the research fields that generate them, the already existing solutions, and

how exactly Sparse PCA can be the superior answer.

1.1 Motivations

It is of utmost importance to understand where a problem begins before attempting

to solve it. The roots from which trouble stems will lead to a well of insight and

motivation. A moment to reflect on why we, as statisticians, are here in the first

place.

1.1.1 Personal Motivations - Answering the research ques-

tions

Statistical analysis is required in every research-oriented field that generates data.

You will find people passionate towards an unimaginable number of areas; a never-

ending source of data that compromises our understanding of material and road-

blocks many experts from confirming their discoveries. As statisticians, we get the

chance to walk along-side a well-earned (and funded) mission towards an answer

of which, usually, we have no theoretical understanding. We “hop the line”, so to

2
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speak, with our unique skills and become part of the latest research. Whether joining

a project or working on our own methodological discoveries, we must always draw

motivation from the questions at hand because they mean something to somebody.

Health research exemplifies this, receiving heart-felt attention from the public

masses. Donations pour in to help fund research towards finding cures for diseases

that affect the population; cancer, diabetes, multiple sclerosis, lupus, scleroderma,

and many other expressions of chronic disease. Each dollar represents trust that us-

able results are on the way and this puts incredible responsibility on the statisticians

to perform appropriate analyses. There will never be a lack of interest in discovering

the mechanisms that cause and fuel disease. It seems cliche to announce that every-

one is affected by health problems, but it’s true. Relationships will emotionally tie

anyone down to an unfair diagnosis of a loved one, and even if there is no personal

connection, any level of empathy will allow one to relate. It’s no wonder why there

is so much devotion towards these biological research questions, but the amount of

data collected is perhaps becoming unmanageable. Which questions will be solved?

The most interesting datasets today will be the ones where least is known. Hy-

potheses dealing with the human genome and its relation to many biological functions

have always been of significant interest but, with technology and computing power

on the rise, it may become the main focus for many more professions. Only within

the last decade have technological advances allowed the abundant collection of ge-

netic information. Front-line companies in genetic data collection and research, like

Affymetrix, have endorsed the microarray chip and propelled genetic data into an

unthinkable dimension. This allows for a new but complicated approach to attaining

3



M.Sc. Thesis - Ashley Bonner McMaster - Mathematics & Statistics

answers to why and who diseases attack. With the increased quantity of data, statis-

ticians must play a crucial role in the chase towards such incredible discoveries. In

other words, we now battle ‘high-dimensional’ data! Lots and lots of variables and

often, little sample size. It is from these types of motivations that we have work; new

statistical methods are often ensued because of the problems encountered during the

search for application-based answers.

A beautiful realization of statistical developments is that they are often transfer-

able to other fields of interest. As long as parallels can be made between research

questions and data structure in respective fields, the works and intuition of a statis-

tician can be beneficial to many. In this light, the Sparse PCA talked about in this

thesis need not be strapped down to massive datasets in genetic research. It is simply

a very nice platform to show where the methods are useful; keep this in mind.

1.1.2 Statistical Motivations - Technical challenges of vari-

able selection

Statistics are simply a set of tools to aid someone in understanding a phenomenon

when they cannot put the pieces together. Forget data for a second and let’s build

a little perspective; data is simply an attempt to track what we observe. Through

observing the process we build a hypothesis and through repeated observation stack

evidence in favour of or against our claims. We try to lock down indisputable reasons

to why things might occur but, unfortunately for us, most mechanisms under study

are affected by so many factors, that there will never be indisputable reasons. A child,

for example, does not have all the answers to differentiate the subjective ‘right’ from

4



M.Sc. Thesis - Ashley Bonner McMaster - Mathematics & Statistics

‘wrong’. At home they observe how their parents behave, at school they observe how

their teacher disciplines, and at birthdays they observe how their friends interact.

As the child grows up, it seems clear that to be ‘right’ depends on who is the judge -

possibly the biggest factor. However, it also depends on your own beliefs, how much

sleep the judge had, as well as a million other arguably important circumstantial

factors. How on earth can the child grow to fully understand ‘right’ from ‘wrong’?

He or she probably never will.

“Aha, but we humans don’t give up!” If there were a way to obtain every single

bit of information surrounding the phenomenon under study, perhaps we could find

that indisputable reason after all. With this goal in mind, our senses and memory are

clearly not able to be solely depended on so, to track everything, data is collected.

Enter numbers, modelling, error, statistics, and individuals who are interested in

these subjects; statisticians. The more observations, the more evidence. The more

relevant factors captured, the more error explained. A remarkable effort that has

transcended previous discovery and pushes us to learn more.

With this in mind, a statistician puts on their hard-hat, picks up their tool-box

(“I hope you’ve got your Pearson wrench!”), and attempts to follow the blueprints

that come along with each new inquiry; if the wrong tools are chosen or blueprints

ignored, a research question will never be answered with accuracy.

The importance of Variable Selection

Every research question requiring data analysis will usually employ some sort of

regression model, targeting an outcome of interest, and focus on one of two distinctly
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fundamental goals (these thoughts are shared by at least [1, 22]).

The first goal is driven by the need for insight into relationships ; the ability to

detect, or select, important explanatory variables related to an outcome of interest.

The second goal is driven by the need to accurately predict a process ; the ability to

predict the outcome with minimal error. The two goals can be thought of or focused

on disjointly but are almost always desired together.

For example, imagine a fishing company whose financial success heavily relies

on securing subscriptions to their monthly magazine - how else to advertise the

great deals on bait. Hitting the new year, they are about to launch their January

2012 magazine and might be interested in a targeted marketing plan this time, as

randomly sending subscription fliers to a percentage of local residents generated a

measly 5% subscription-rate last year. Since they have access to public demographic

and socio-economic information, such as gender and household income, perhaps they

could use this database to build a logistic regression model from the sample they

sent to last year. They would be predicting the probability of subscription to last

year’s magazine and could use their model to forecast which people will be most

likely to subscribe in 2012. With a strictly money-driven mindset for 2012, there

would be no care for understanding relationships (i.e. selecting causal variables); as

long as the person will subscribe to the magazine, the company is happy. However,

one could argue, if the fishing company does not understand the ‘type’ of people who

are buying their products, i.e. the company simply reaches out based on a predictive

model and doesn’t understand the causal factors, they might lose touch with their

product line and be surpassed by competitors who understand how to cater their
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products to their audience in the creation stage.

In the context of more scientific fields, the need to meet both goals is also appar-

ent. In our fight against scleroderma, a terrible connective tissue disease for which

the cause is unknown, we hope the end result of our efforts will be a cure, though, in

the mean time, early diagnosis is imperative to treatment. With abundant genetic

information arriving on the scene, an excellent predictive model might be obtained

by a step-wise procedure to detect who is likely to be diagnosed in their future. How-

ever, it would not reveal the complex causal relationships that may exist between

genetic markers and scleroderma, thus limiting our efforts to treatment, not cure.

It is natural to expect a good predictive model to hold some insight to relation-

ships and a simple, insightful model to have decent predictive power; in fact this is

often the case. But these examples also demonstrate how a change in research ques-

tion can shift and narrow down a statistician’s focus to one of the two goals. With

the vast amount of easy-to-access data these days, prediction might have become

the easier mission as it is achieved easily with lots of variables. Granted that more

information is better, insight to relationships becomes difficult. Prediction is a very

powerful tool, but gaining insight to relationships may be the more sought-after goal

in terms of driving science and it hinges on variable selection.

High-Dimension Data poses an issue

The challenge of selecting the ‘important variables’ can be relatively easy for

datasets with a single response variable, few explanatory variables, and a sufficiently

large number of observations (n) to accurately estimate model parameters (p). A
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less fortunate scenario involves a small number of observations and an increasing

number of explanatory variables; specifically, p > n. The techniques used for estima-

tion and inference, once mathematically convenient, now become a nightmare. This

environment of so-called high-dimension (referring to the large number of variables)

is typically found when building models from our previously discussed genetics data.

Here, there are few participants and many unfamiliar genetic variables; if we were

familiar with the variables, perhaps we could exclude some based on prior knowledge

of relationships to the response.

When p > n, there are not enough degrees of freedom to simultaneously estimate

all of the parameters, let alone infer about their significance or about model ade-

quacy. Furthermore, with any large number of unfamiliar variables, multicollinearity

is inevitable, leading to ill-conditioned data from which sensitive estimates and un-

reliable, non-robust models are built [8, 22]. These issues have forced invention of

modelling procedures that simultaneously determine important factors while discard-

ing pesky non-factors. Debates upon which procedures are most appropriate for a

variety of environments are ongoing.

Possible solutions

Subset and step-wise selection procedures, though ideal for prediction-based mod-

elling, have been proven greedy and unreliable in circumstances when variable se-

lection is at the heart of interest [8, 19, 22]. With a high-dimensional dataset,

response-associated explanatory variables will be cast aside on a very random basis,

sensitive to correlation amongst predictors and the order of entry. We are looking

8
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for something new.

The growing class of penalized regression techniques might offer a more com-

plete package to capture important variables, especially when battling in a high-

dimensional data environment. Along with the ability to obtain superior estimates

through something called the bias-variance trade-off, they can introduce sparseness

to parameter estimation, i.e. are able to obtain a solution set with only a few (sparse)

non-zero parameter estimates [19, 5, 22].

Moving out from under the umbrella of regression, principal component analy-

sis (PCA) offers a supplementary, pre-regression approach that focuses on variance

structure within a set of continuous variables. Disregarding the response variable,

principal components hold insight to natural groups of explanatory variables and

their expression in variance relative to the rest of the data. Furthermore, transfor-

mation of the original dataset via these principal components can offer a reduction in

dimensionality as a prior step to regression. Unfortunately, though, the benefits from

the transformation are scarred by the lack of one’s ability to interpret the resulting

data. An altered PCA method is called for to alleviate these issues.

Enter Sparse PCA

Through much hard work and deliberation, a combination of penalized regression

and PCA was born and eventually named ‘Sparse Principal Component Analysis’

(Sparse PCA). It now pushes the boundaries of statistical exploration in the land

of high-dimensional data. Since these methods are new to many statisticians, some

may be reluctant to use them; justifiably so, especially for those who want to work

9
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out all the details for themselves. To push these methods along, more work and

exploration should be done. The ideas, works, and contributions of this thesis arise

from all of these motivations.

10



Chapter 2

Methods

By introducing the issues a statistician encounters when faced with high-dimensional

data, especially when n < p, it appears there is no unifying strategy to battle the

unfortunate situation. However, by adding a class of interpretable (sparse) PCA

approaches to the arsenal of a statistician, there may be more hope. This Chapter will

begin by introducing the crucial foundations of Classical PCA, the well-established

Penalized Regression techniques that it absorbs, and finally the resulting Sparse

PCA. Since Sparse PCA has been mathematically formulated differently over the

past few years, we have chosen three methods to focus on in this thesis.

2.1 Principal Component Analysis

Since its invention in 1901 by Karl Pearson, Principal Component Analysis (PCA)

has been used repeatedly across many fields as a data visualisation and dimension

reduction technique. An example of a very useful application is image compression.

11
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Made efficiently possible by the foundations of PCA, image compression allows us

to save storage space while preserving image quality; something extremely crucial in

this new technology-driven age. With any general dataset, from the original variables

it finds uncorrelated linear combinations, called principal components, that express

maximal variation in the data and provides the statistician with a choice to transform

the original high-dimensional dataset into one of much lesser dimension at the cost of,

1) Information loss (variance), and 2) Ability to interpret new variables and analysis.

These drawbacks present themselves in varying amounts dependent on the data

and must be understood in order to confidently use PCA. The second expense is

the thorn in the side of this amazing technique. If one had the ability to interpret

results from PCA, they would have a go-to technique to battles both high-dimension

and collinearity. Although many textbooks and papers have covered the theory and

computational techniques behind PCA, it is worth while to freshly cover its details

here as it is the foundation for all Sparse PCA methods encountered in this thesis.

In this section, we first embrace the mathematical foundations of PCA, then show

the related importance of the Singular Value Decomposition (SVD) and the rank-K

approximation, and conclude with an R-based computational example of PCA.

2.1.1 Mathematical Foundations for PCA

LetX ∼ Np(µ,Σ), i.e. X = (X1, X2, . . . , Xp)
′ is a p-dimensional random vector with

a multivariate normal distribution. The mean vector, µ, is of little importance. The

main focus of PCA is to investigate data patterns through the variance-covariance

structure, dictated by Σ, which is undisturbed by specification of the mean vector.

12
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In fact, most applications and theories using PCA will use centred data for simplicity

in notation and calculation; we will abide by this. Computations in PCA require no

distributional assumptions on the data matrix, however further inferential techniques

rely on the multivariate normality assumption to an extent [11, p. 431].

The theory behind PCA is inspired by the search for a simpler way to describe

the variation in the data. Currently, there are p variables that may be correlated

with one another; for a researcher interested in variable selection via a regression

technique (to predict a variable, say Y ), this is not a fortunate scenario. If, for

example, X1 and X2 were highly correlated, one could argue that either X1 or X2

could be excluded from the analysis as the other sufficiently represents it. In other

words, redundant variables might be excluded [11, p. 431]. However, there are often

far too many explanatory variables to eye-ball the correlation structure and argue

this out without terrible mistakes. Another technique might be to exclude variables

with very little variation, i.e. if V ar(X1) < chosen threshold, since they would

not have a sufficient range of values to detect coinciding changes in the response

anyway. PCA introduces a way of characterizing the variation in the data via linear

combinations of the original variables with nice and convenient properties. In other

words, it introduces a change in basis from the original variables to a more efficient

set. In the general p-dimensional case, this amounts to finding a candidate set of

13



M.Sc. Thesis - Ashley Bonner McMaster - Mathematics & Statistics

new variables,

Z1 = v11X1 + v12X2 + · · ·+ v1pXp = v1
′X

Z2 = v21X1 + v22X2 + · · ·+ v2pXp = v2
′X

...

Zp = vp1X1 + vp2X2 + · · ·+ vppXp = vp
′X (2.1)

The linear combinations Z1, Z2, . . . , Zp are called principal components (PCs), the

coefficient vectors v1,v2, . . . ,vp are called loading vectors, and the coefficients within

each vector vj are called the loadings for that vector. The loading vectors are of

primary interest as they are our only way of relating the principal components back

to intuitive measures, i.e. the original variables. In classical PCA, the principal

components are successively chosen with the following step by step process:

Principal Component 1

Z1 = v1
′X chosen to maximize V ar(Z1) = v′1Σv1

subject to v1
′v1 = 1.

Principal Component 2

Z2 = v2
′X chosen to maximize V ar(Z2) = v′2Σv2

subject to v2
′v2 = 1 and Cov(Z1, Z2) = 0.

...

Principal Component j

Zj = vj
′X chosen to maximize V ar(Zj) = v′jΣvj

14
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subject to vj
′vj = 1 and Cov(Zj, Zm) = 0 ∀ m < j.

...

Principal Component p

Zp = vp
′X chosen to maximize V ar(Zp) = v′pΣvp

subject to vp
′vp = 1 and Cov(Zp, Zm) = 0 ∀ m < p.

The sum of squared loadings constraint assures that variance for the respective PC

cannot be increased without bound. With each PC successively attaining maximum

variance while being mutually uncorrelated with the rest, the following facts can be

established formally:

Important Properties of PCA:

1. Maximized Variances: V ar(Z1) ≥ V ar(Z2) ≥ . . . ≥ V ar(Zp) ≥ 0.

2. Orthogonal Loading Vectors, Uncorrelated Principal Components:

v′jvm = 0 and Cov(Zj, Zm) = 0 for j 6= m.

3. Total Variance preserved:
∑p

j=1 V ar(Zj) =
∑p

j=1 V ar(Xj).

In words, these facts state that the full set of PCs contain an equal amount of

information (variance) as the original set, but now in a structure that is potentially

beneficial for analysis. Fact 1 is extremely important to dimension reduction. If, for

instance, the first 3 PCs explained 95 percent of the variation found in the data, we

could throw away the rest with little worry about losing important information. Fact

2 ensures the resulting variables are uncorrelated; no more worries about the effect
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of collinearity on our analysis. The only downfall from a regression standpoint is the

interpretation. For a particular PC (linear combination), the loadings (coefficients)

represent the contribution of each original variable but if there are a large number

of variables, it could be very hard to determine exactly what the PC represents.

Ideally, the PCs should reveal underlying features to enable easy interpretation. For

this reason, PCA is often used as an exploratory approach towards understanding

the data; a visible grouping of variables can aid in understanding a simpler structure.

Obtaining linear combinations that satisfy all of the above conditions is quite

easy as they are directly connected to the eigen-structure of the variance-covariance

matrix, Σ. Let the eigenvalues for Σ be λ1, λ2, . . . , λp and let their respective (normal-

ized) eigenvectors be e1, e2, . . . , ep. It can be shown, through the Cauchy Schwartz

Inequality, that the desired true linear combinations are:

Z1 = e11X1 + e12X2 + · · ·+ e1pXp = e′1X

Z2 = e21X1 + e22X2 + · · ·+ e2pXp = e′2X

...

Zp = ep1X1 + ep2X2 + · · ·+ eppXp = e′pX (2.2)

with V ar(Z1) ≥ V ar(Z2) ≥ . . . ≥ V ar(Zp) ≥ 0 equalling λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

and
∑p

j=1 V ar(Zj) =
∑p

j=1 λj =
∑p

j=1 V ar(Xj) =
∑p

j=1 σjj, where V ar(Xj) = σjj

(the diagonal elements of Σ). Orthogonality amongst loading vectors is inherently

satisfied by the fact they are made up of eigenvectors.

In application, we do not have the true variance-covariance matrix. We are
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usually given an n × p data matrix X with rows xi, for i = 1, . . . , n, and rely on

its sample variance-covariance matrix S to carry out PCA. Let the eigenvalues for S

be λ̂1, λ̂2, . . . , λ̂p, and let their respective (normalized) eigenvectors be ê1, ê2, . . . , êp.

Then the sample linear combinations satisfying the same above conditions are:

z1 = ê11x1 + ê12x2 + · · ·+ ê1pxp = ê′1x

z2 = ê21x1 + ê22x2 + · · ·+ ê2pxp = ê′2x

...

zp = êp1x1 + êp2x2 + · · ·+ êppxp = ê′px (2.3)

with V ar(z1) ≥ V ar(z2) ≥ . . . ≥ V ar(zp) ≥ 0 equalling λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0,∑p
j=1 V ar(zj) =

∑p
j=1 λ̂j =

∑p
j=1 V ar(xj) =

∑p
j=1 sjj, where V ar(xj) = sjj (the

diagonal elements of S) and orthogonality again met. Here, x represents any obser-

vation generated from the true underlying distribution. If referring to a specific obser-

vation xi = (xi1, xi2, · · · , xip)′, a subscript i is simply added to obtain zi1, zi2, . . . , zip.

Therefore, with a sample size n, a dataset Xn×p = (x1 | x2 | · · · | xn)′ is constructed
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and the sample PCs for each observation can be calculated as

z1 =



z11

z21

...

zn1


=



ê11x11 + ê12x12 + · · ·+ ê1px1p

ê11x21 + ê12x22 + · · ·+ ê1px2p

...

ê11xn1 + ê12xn2 + · · ·+ ê1pxnp


= Xê1

z2 =



z12

z22

...

zn2


=



ê21x11 + ê22x12 + · · ·+ ê2px1p

ê21x21 + ê22x22 + · · ·+ ê2px2p

...

ê21xn1 + ê22xn2 + · · ·+ ê2pxnp


= Xê2

...

zp =



z1p

z2p

...

znp


=



êp1x11 + êp2x12 + · · ·+ êppx1p

êp1x21 + êp2x22 + · · ·+ êppx2p

...

êp1xn1 + êp2xn2 + · · ·+ êppxnp


= Xêp, (2.4)

or, more conveniently represented as

Zn×p = Xn×pVp×p, (2.5)

where V holds the loading vectors of the PCA solutions in its columns.

From this information, we could leave with enough tools to compute classical

PCA; as long as we have the sample variance-covariance matrix we can obtain the

sample eigenvalues and eigenvectors, giving us the linear combinations we desire.
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However, many sparse extensions to classical PCA were uncovered by using the

connection between PCA and a well known matrix decomposition.

2.1.2 Connection to SVD and the rank-K approximation of

a Matrix

Since PCA is an optimised realization of a change in basis, it’s no wonder it is

connected to the Singular Value Decomposition (SVD) of a matrix. SVD is a one-

shot calculation in many software packages and is often used to obtain PCs and their

loading vectors. Also, using only a portion of the resulting solutions from SVD, one

can obtain something called the rank-K Approximation for their matrix. This is

analogous to the dimension-reduction benefit of PCA, where keeping only the first

few PCs can represent the original matrix well enough to justify throwing away the

rest. These two topics are embedded in the Sparse PCA methodology. We will first

introduce the mechanics of SVD and make the connection to PCA, then we’ll show

the simplicity of a rank-K approximation.

SVD

The SVD of any matrix Xn×p with full rank R = min(n, p) is the result from

finding an orthonormal basis in the row-space of X and an orthonormal basis in the

column-space of X that are related in the following manner (the less than full rank

case, where X has rank R ≤ min(n, p) is simply introduced later):

Xn×pVp×p = Un×nDn×p (2.6)
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That is, X transforms the orthonormal basis for its row-space, the p × p matrix

V, into the orthonormal basis for its column space, the n × n matrix U, times an

n × p scaling matrix, D. How these three matrices are found leads directly to the

connection between PCA and SVD. If we right-multiply Equation (2.6) by V′, we

arrive at the SVD of X itself:

X = UDV′ (2.7)

The matrix X is decomposed into two orthonormal bases and a diagonal scaling

matrix. In full detail:

U = (u1 | u2 | u3 | · · · | un) =



u11 u21 u31 · · · un1

u12 u22 u32 · · · un2

u13 u23 u33 · · · un3

...
...

...
. . .

...

u1n u2n u3n · · · unn



V = (v1 | v2 | v3 | · · · | vp) =



v11 v21 v31 · · · vp1

v12 v22 v32 · · · vp2

v13 v23 v33 · · · vp3
...

...
...

. . .
...

v1p v2p v3p · · · vpp
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D =



d11 0 · · · 0

0 d22 · · · 0

...
...

. . . 0

0 0 0 dpp

0 0 0 0

...
...

. . .
...

0 0 0 0


The extra rows of zeros in D are simply there to fulfill its dimensional requirements

during matrix multiplication with U and V; this is for the case when n > p, whereas

extra columns of zeros are required for when n < p.

Currently, there are too many unknown matrices but a couple of tricks will get

us to a solution. To aid further explanation, let us assume n > p, thus rank(X) = p;

the case where n < p and rank(X) = n can easily be understood by taking X = X′

and the square matrix case can fit under either. The unknown U can be eliminated

by dealing with X′X instead of X:

X′X = (UDV′)′UDV′

= VD′U′UDV′

= VD′DV′

= VD2
p×pV

′

Since X′X is a positive definite matrix (a′X′Xa = (Xa)′Xa ≥ 0 for all p×1 vectors

a), the end result is a real, positive-valued Eigenvalue Decomposition (EVD) for
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the matrix X′X. This means V contains the normalized eigenvectors of X′X in

its columns and D2
p×p contains the eigenvalues of X′X along its diagonal, largest to

smallest, with 0’s elsewhere. Likewise, V can be eliminated by dealing with XX′:

XX′ = UDV′(UDV′)′

= UDV′VD′U′

= UDD′U′

= UD2
n×nU

′

With similar reasoning as before, XX′ is a positive semi-definite matrix, thus a real,

positive-valued Eigenvalue Decomposition is realized. This means U contains the

normalized eigenvectors of XX′ in its columns and D2
n×n contains the eigenvalues

of XX′ along its diagonal, largest to smallest, with 0’s elsewhere. Note that since

rank(X) = p we expect only p eigenvalues along the diagonal with 0’s running out

the n×n matrix, thus Dn×n is equivalent to Dp×p but has extra 0s. Indeed, matrices

X′X and XX′ share the same eigenvalues but have different eigenvectors. To ease

terminology, the terms singular values and singular vectors bring everything together

in the following summary.

The columns u1, . . . ,un of matrix U are the left-singular vectors of X, the

columns v1, . . . ,vp of matrix V are the right-singular vectors of X, and the diagonal

elements d11, . . . , dpp of matrix D are the singular values of X. The terms singular

and eigen are very related here. The left-singular vectors are the eigenvectors for

XX′, the right-singular vectors are the eigenvectors for X′X, and the singular values
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are simply the square roots of the eigenvalues shared by both XX′ and X′X. The

connection to PCA will now become apparent.

Without loss of generality, since the data sample used is usually centered along

the columns, the unbiased sample variance is simplified to S = 1
(n−1)

X′X. This

means V is derived from the eigenvectors of (n− 1)S, but the constant (n− 1) does

not disturb the vectors, meaning V from SVD holds the desired sample eigenvectors

(loading vectors) for the classical PCA solutions. Also, the singular values of X,

found in D, being square-rooted eigenvalues of X′X, give us a direct way to find the

variance of each PC. The variance for each component is simply
d2
jj

(n−1)
. Furthermore,

since the sample PCs, z1, z2, . . . ,zp, can be obtained as shown by Equations (2.4)

and (2.6), we can make use of relation (2.6) to note that Z = XV = UD. In fact

each PC can be separately expressed as zj = ujdjj. So upon computing the SVD

of a matrix X, we can quickly collect information for classical PCA; the PCs from

UD, the loading vectors from V, and the variances from the p diagonal elements

of D′D
(n−1)

. If rank(X) = R < p, there will simply be R singular values instead of p

and, by looking at how the SVD matrix multiplication is handled, this requires the

calculation of just R left-singular and right-singular vectors.

Before wrapping up with an example, we introduce a very important result of

SVD that will be the pathway for a Sparse PCA method to come.

rank-k approximation

As mentioned before, if a significant amount of information (variance) is held
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within the first few PCs, we can dump the rest and trust these to be a sufficient rep-

resentation of the original data. A similar concept exists for approximating the data

matrix X with the SVD and it’s called the ‘rank-k approximation’. If rank(X) = R

and k < R, the idea is to find a rank-k matrix X̂ such that it is the best possible

approximation to the matrix X over all possible rank-K matrices. The closeness of

X̂ to X is evaluated by the Frobenius Norm of their difference. The Frobenius Norm

of the matrix X is defined as

‖X‖F =

√√√√ n∑
i=1

p∑
j=1

x2
ij.

Applying to the difference gives

‖X− X̂‖F =

√√√√ n∑
i=1

p∑
j=1

(xij − x̂ij)2. (2.8)

Solved by Eckhart and Young in 1936, minimizing Equation (2.8) requires setting X̂

to X(k), where

X(k) = U
(k)
n×kD

(k)
k×kV

(k)
p×k
′. (2.9)

As the notation and dimensions suggest, X(k) is a lower-rank version of SVD, where

U(k) holds just the first k left-singular vectors of X in its columns, D(k) is a diagonal

matrix with just the first k singular values, and V(k) holds the first k right-singular
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vectors of X in its columns. In fact, Equation (2.9) can be rewritten in simpler terms:

X(k) =
k∑
j=1

djjujv
′
j. (2.10)

This rank-k approximation lays foundation for a sparse method to come in Section

2.3. To further help visualize the connection between the SVD and a rank-k approx-

imation of a matrix X, see Figure 2.1.

Figure 2.1: Visualizing the SVD and rank-k approximation of a data matrix X

2.1.3 Example of PCA with R

Consider a University looking to give scholarships to hopeful soccer players coming

out of high-school. Both grades and playing ability are important, so the University

makes each of the n = 100 players take a series of three academic-level tests and

then sends them out to the field for a scrimmage to assess their ability on the pitch.

After considering their Age as well, they are faced with six variables that will help
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them decide who to accept: Test1, Test2, Test3, Offence, Defence, Age. The data is

displayed in Table 2.1. We will use R to carry out a PCA on this data. The data is

Table 2.1: Example Dataset: n = 100 Soccer Players judged on p = 6 variables.

Player T1 T2 T3 Off Def Age
P1 62.7 64.6 54.8 78.4 75.1 19
P2 64.2 64.6 61.5 81.6 83.5 16
P3 54.1 66.8 48.8 74.9 79.3 19
P4 48.9 62.1 60.8 87.3 86.4 19
P5 60.1 73.8 71.8 85.2 69.7 17
P6 53.5 66.1 57.8 77.3 81.7 19

...
...

...
...

...
...

P100 58.6 66.2 57.1 71.1 78.4 17

entered into R as and looks like:

> head(data)

T1 T2 T3 Off Def Age

P1 62.7 64.6 54.8 78.4 75.1 19

P2 64.2 64.6 61.5 81.6 83.5 16

P3 54.1 66.8 48.8 74.9 79.3 19

P4 48.9 62.1 60.8 87.3 86.4 19

P5 60.1 73.8 71.8 85.2 69.7 17

P6 53.5 66.1 57.8 77.3 81.7 19

Centering this data along the columns, we obtain our data matrix X:

> X <- scale(data,center=T,scale=F)
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> round(head(X),1)

T1 T2 T3 Off Def Age

P1 3.3 -5.0 -4.5 -1.0 -5.3 1.2

P2 4.8 -5.0 2.2 2.2 3.1 -2.0

P3 -5.3 -2.8 -10.5 -4.5 -1.0 0.5

P4 -10.5 -7.6 1.5 7.9 6.1 1.2

P5 0.7 4.2 12.5 5.8 -10.6 -1.4

P6 -5.9 -3.5 -1.5 -2.1 1.3 0.7

The sample variance-covariance matrix S is computed:

> S <- var(X)

> round(S,2)

T1 T2 T3 Off Def Age

T1 26.63 11.27 11.40 -2.35 -1.73 -0.72

T2 11.27 26.90 12.90 -1.01 -1.78 0.76

T3 11.40 12.90 25.86 -0.41 1.87 0.54

Off -2.35 -1.01 -0.41 21.92 -6.60 0.91

Def -1.73 -1.78 1.87 -6.60 18.81 0.74

Age -0.72 0.76 0.54 0.91 0.74 2.18

Looking at the variances for each variable first, it seems there is much greater vari-

ation in the Test and Playing Ability variables compared to Age. This makes sense

because the players are all coming from high school at a similar age. Looking for

correlation, it seems that the Test variables hang together quite well, but are mini-

mally related to Playing Ability as measured by Offence and Defence. Likewise, there
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seems to be a correlation between Offense and Defense, but it tends to be of lesser

strength and negative. All of this seems natural since academic ability and playing

ability seem to be rather unrelated subject matters and one can expect Offensive

players to lack in Defensive abilities, and vice versa. Age does not seem related to

anything. Let’s move on to see what PCA can do with this data.

We know that PCA can be found through S by finding eigen vectors and eigen

values, or through X by finding its SVD. Starting with S, we find its eigen structure

by using the function ‘eigen()’:

> eigen(S)

$values

[1] 50.362055 27.229215 17.287780 14.812789 10.630359 1.991187

$vectors

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.563635203 0.01207102 0.60771207 0.47383063 0.29328498 0.04820934

[2,] -0.590204050 0.10086834 -0.14153840 -0.71736000 0.32254973 -0.05299009

[3,] -0.573171348 -0.03618956 -0.51024890 0.31847040 -0.55518092 -0.01271738

[4,] 0.072024731 0.76689150 -0.37929919 0.30960320 0.40334986 -0.06539670

[5,] 0.015140928 -0.63255111 -0.44339913 0.25143902 0.57891638 -0.06842012

[6,] -0.005686262 0.01125630 -0.09913788 -0.01949482 0.06232541 0.99284850

This output gives the variances λ̂1, λ̂2, λ̂3, λ̂4, λ̂5, λ̂6 for each PC in the $values com-

ponent and their loading vectors ê1, ê2, ê3, ê4, ê5, ê6 as columns in the $vectors com-

ponent. Therefore, the $vectors component is our desired matrix V. As one can
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check, this set of vectors are orthonormal:

> V <- eigen(S)$vectors

> round(t(V)%*%V,1)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 0 0 1 0 0

[5,] 0 0 0 0 1 0

[6,] 0 0 0 0 0 1

From this, we have the linear combinations from (2.3) as:

z1 = −0.56x1 − 0.59x2 − 0.57x3 + 0.07x4 + 0.02x5 − 0.01x6 = ê′1x

z2 = 0.01x1 + 0.10x2 − 0.04x3 + 0.77x4 − 0.63x5 + 0.01x6 = ê′2x

z3 = 0.61x1 − 0.14x2 − 0.51x3 − 0.38x4 − 0.44x5 − 0.01x6 = ê′3x

z4 = 0.47x1 − 0.72x2 + 0.32x3 + 0.31x4 + 0.25x5 − 0.02x6 = ê′4x

z5 = 0.29x1 + 0.32x2 − 0.56x3 + 0.40x4 + 0.58x5 + 0.06x6 = ê′5x

z6 = 0.05x1 − 0.05x2 − 0.01x3 − 0.07x4 − 0.07x5 + 0.99x6 = ê′6x (2.11)

This is for a general observation. The PCs for our dataset of n = 100 can be

calculated as in (2.4) by taking XV:

> Z <- X%*%V
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> colnames(Z) <- paste("PC",1:6,sep="")

> round(head(Z),1)

PC1 PC2 PC3 PC4 PC5 PC6

P1 3.6 2.2 7.6 2.0 -1.5 2.1

P2 -0.8 -0.8 0.5 8.1 1.2 -1.9

P3 10.4 -2.8 4.6 -5.5 1.0 0.8

P4 10.2 1.3 -11.9 4.9 0.5 0.1

P5 -9.8 11.1 -3.9 0.5 -9.3 -1.4

P6 6.1 -2.8 -2.2 -1.1 -2.0 0.7

The variance-covariance matrix of the PCs will reveal the uncorrelated property for

the PCs:

> round(var(Z),1)

PC1 PC2 PC3 PC4 PC5 PC6

PC1 50.4 0.0 0.0 0.0 0.0 0

PC2 0.0 27.2 0.0 0.0 0.0 0

PC3 0.0 0.0 17.3 0.0 0.0 0

PC4 0.0 0.0 0.0 14.8 0.0 0

PC5 0.0 0.0 0.0 0.0 10.6 0

PC6 0.0 0.0 0.0 0.0 0.0 2

As one can see, the variances for each PC match the eigen values presented above

and are in decreasing order, meaning the first PC contains the most variance, or,

information from the data. The total variance can be calculated by taking the sum
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of the eigen values and one can see that it will equal the total variance of the original

data X. As well, the proportion of explained variance for each PC can be obtained:

> TotVAR <- sum(eigen(S)$values)

> TotVAR

[1] 122.3134

> sum(diag(S))

[1] 122.3134

> pev <- eigen(S)$values/TotVAR

> round(pev,2)

[1] 0.41 0.22 0.14 0.12 0.09 0.02

So within the first two PCs, about 63% of the variation is contained. If some form

of regression analysis was in order, using the soccer player variables as covariates for

example, perhaps taking these two PCs and moving forward would be beneficial for

analysis purposes, since it would reduce the dimension of the dataset from p = 6 to

p = 2 and we would no longer have collinearity amongst covariates. However, the

resulting analysis, though statistically simple, would become a bit more complicated

to explain because there is no tangible meaning to ‘PC1’ and ‘PC2’; the major

downfall to PCA as a pre-regression tool. In an attempt to alleviate this flaw, we

look to the loading vectors, as they hold the coefficients to the linear combinations

that make up the PCs.

Looking at the linear combinations in (2.11), PC1 seems to be made up almost

entirely of the Test variables from the original data and PC2 has heavier weights
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for original Playing Ability variables. Although there is some residual contribution

from the other variables, we have justification to label PC1 as ‘Test Scores’ and PC2

as ‘Playing Ability’; underlying features of the original data. Note that these two

features were realised when we first investigated the variance-covariance matrix of the

original data, suggesting that PCA was able to concisely summarize our exploration

in one shot. This could prove extremely useful in the presence of a high-dimensional

data, where we have a large amount of variables, especially if we don’t have any

natural understanding of them. A good example of this would be for gene expression

data, for which we may not have any prior insight into groupings and have a variance-

covariance matrix that is very hard to wade through. However, since all loading

coefficients are non-zero there may be little hope in identifying grouping structure

via PCA in a high-dimensional scenario; in this p = 6 case with natural groups, PCA

has little problem.

Instead of using ‘eigen()’, R has the ‘prcomp()’ function that accepts the data

matrix X and offers an option to return the PCs themselve. Alternatively, we can

find the SVD of X by using the ‘svd()’ function in R and arrive at the same results:

> svd(X)

$d

[1] 70.61051 51.92006 41.37016 38.29447 32.44080 14.04021

$u

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0502778 0.0431806 0.1843513 -0.0531399 -0.0471695 0.1501405
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[2,] -0.0113824 -0.0158614 0.0110987 -0.2111601 0.0355552 -0.1358298

[3,] 0.1467968 -0.0542793 0.1121912 0.1439645 0.0306401 0.0598677

[4,] 0.1446338 0.0246531 -0.2870746 -0.1273186 0.0140584 0.0087701

[5,] -0.1389678 0.2141765 -0.0937469 -0.0120624 -0.2857343 -0.1016618

[6,] 0.0863849 -0.0546677 -0.0522702 0.0287650 -0.0631722 0.0498199

[7,] -0.1614037 -0.0294642 0.0062763 0.0409927 -0.0213736 -0.0867430

[8,] -0.0755085 0.1297164 0.0015820 -0.0230388 0.1277839 -0.0073414

... ... ... ... ... ...

[100,] 0.0440410 -0.1054557 0.1265398 0.0434240 -0.1414936 -0.0106330

$v

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -0.563635203 0.01207102 0.60771207 -0.47383063 0.29328498 0.04820934

[2,] -0.590204050 0.10086834 -0.14153840 0.71736000 0.32254973 -0.05299009

[3,] -0.573171348 -0.03618956 -0.51024890 -0.31847040 -0.55518092 -0.01271738

[4,] 0.072024731 0.76689150 -0.37929919 -0.30960320 0.40334986 -0.06539670

[5,] 0.015140928 -0.63255111 -0.44339913 -0.25143902 0.57891638 -0.06842012

[6,] -0.005686262 0.01125630 -0.09913788 0.01949482 0.06232541 0.99284850

The $u component has been shortened to save space. As seen by comparing to

the eigen vectors in the first computation method, the $v component of the output

holds the loading vectors for the PCs (right-singular vectors of X) in its columns,

together forming V. The $d component holds the diagonal elements of the D matrix

(the singular values of X) and so taking their square and dividing by (n − 1), as
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explained at the end of the SVD section, will return the variance of each PC. Also,

the $u component holds the left-singular vectors in its columns, together forming U.

Making the use of the relations at the end of the SVD section, we arrive at the same

results as using the ‘eigen()’ function:

> svd <- svd(X)

> U <- svd$u

> D <- diag(svd$d)

> V <- svd$v

> diag(D%*%D/(100-1))

[1] 50.362055 27.229215 17.287780 14.812789 10.630359 1.991187

> TotVAR <- sum(diag(D%*%D/(100-1)))

> TotVAR

[1] 122.3134

> Z <- U%*%D

> colnames(Z) <- paste("PC",1:6)

> round(head(Z),1)

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

[1,] 3.6 2.2 7.6 -2.0 -1.5 2.1

[2,] -0.8 -0.8 0.5 -8.1 1.2 -1.9

[3,] 10.4 -2.8 4.6 5.5 1.0 0.8
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[4,] 10.2 1.3 -11.9 -4.9 0.5 0.1

[5,] -9.8 11.1 -3.9 -0.5 -9.3 -1.4

[6,] 6.1 -2.8 -2.2 1.1 -2.0 0.7

Many papers that highlight the troubles one encounters with PCA can be found in

literature. See Jolliffee’s dual papers in 1972 and 1973 [13, 14] and Jeffer’s paper in

1967 [10] for a few classic demonstrations.

2.2 Sparseness in Statistics: Regularization Meth-

ods and Penalized Regression

Described in this section are the crucial ‘Regularization’ methods that help turn

PCA into Sparse PCA. Keep in mind that although PCA has nothing to do with

regression or predicting response variables, these methods happen to come from a

regression framework, meaning a response variable y is introduced. It also means

that our usual X notation will be representing the design matrix for this Section, i.e.

the data matrix for predictor variables but with a leading column of ones. How PCA

links to this set of methods will be introduced in the next Section; for now, we take a

detour from PCA, put on our regression-hats, and explore this topic independently.

In mathematics, regularization is an approach to obtain a unique solution to

an ill-posed problem by first adding a constraint. An ill-posed problem is defined

as one without a unique solution and is found frequently in statistics. An obvious

example occurs while trying to calculate OLS estimates for the true parameters of

an ordinary univariate linear model when fitting p > n parameters. Given data from
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an experiment in which n participants contributed to a targeted response variable,

y, and each of p predictor variables, the linear model including all predictors would

then be:



y1

y2

...

yn


=



1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...
. . .

...

1 xn1 xn2 · · · xnp





β0

β1

β2

...

βp


+



ε1

ε2
...

εn


or,

y = Xβ + ε

where ε ∼ N(0, σ2I) are the error terms. To obtain OLS estimates, β̂
ols

, one must

minimize the sum of squared errors (SSE) with respect to β. Mathematically speak-

ing, this means

β̂
ols

= argmin
β

{
n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2

}
.

Note that there are no restrictions on the possible values β̂
ols

may take on. The

solution to this minimization problem is given by the well-known normal equations:

β̂
ols

= (X′X)−1X′y.

Solving the set of normal equations requires the matrix X′X to be invertible, which
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is impossible when n < p. At this stage, a generalized inverse can be used to obtain

a solution but, unfortunately, does not provide a unique solution; hence recognizing

the ill-posed problem. An alternative to using a generalized inverse could be the

regularization approach. This involves introducing a constraint, or penalty, on some

function of the βj’s which results in a unique solution and, possibly, some other nice

qualities. It’s also worth mentioning that X′X is not always innocent while it is

neatly invertible, either. When p is comparable in size to n, or when there exists

high correlation amongst predictor variables, βj’s become very sensitive to slight

fluctuations in data; with next years data, very different βj’s might be calculated.

In other words, the βj’s have high variance in these cases.

The general way to introduce a constraint, or penalty, to the usual OLS regression

situation is through Lagrange multipliers during the minimization of the SSE. When

reading any paper on a penalized regression method, the standard notation is as

follows [1]:

β̂
pen

= argmin
β

{
n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2

}

subject to P (β) being constrained by t (2.12)

with the constraint mathematically imposed via a Lagrange multiplier,

β̂
pen

= argmin
β

{
n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2 + λP (β)

}
, (2.13)

Here, P (β) is the penalty function and will generally be forced below a maximum
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value t, i.e. P (β) ≤ t. Simultaneously, t and λ are referred to as the tuning parameter

since they control, or tune, the impact of the constraint on the solution. Together,

the penalty function being restricted by the tuning parameter creates the constraint.

Some types of constraints will merely shrink the magnitude of the parameters,

whereas others will force some parameters to exactly 0. In the latter case, a solution

of lower dimension is achieved; a very attractive feature for researchers interested in

variable selection. Furthermore, the bias-variance trade-off has revealed that OLS

estimates might not be the ‘best’ ones out there. The OLS estimates achieve a bias

equalling 0 but at what cost? To minimize the mean squared error (MSE), the

commonly accepted criteria to assess parameter estimates, one must consider both

the bias and the variance of the estimate. Perhaps sacrificing the unbiased property

for a significant decrease in variance will provide a superior set of estimates. A

typical visual displaying the bias-variance trade-off can be found in Figure 2.2. We

will now introduce a variety of constraints along with their pros, cons, and technical

details. The literature available on regularization in statistics is far more extensive,

but the following will suffice in preparation for the Sparse PCA methods considered

in this thesis. It is interesting to note that the constraint functions hinge around

the Lq-norm of β. Setting different values of q will determine the properties of the

resulting penalizing method.

2.2.1 Ridge and LASSO penalties

In 1970, Arthur Hoerl introduced an L2-norm constraint on β [8]. This formed

what is called Ridge regression, where the penalty is called the Ridge penalty. His
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Figure 2.2: Visualizing the Bias-Variance Trade-off: drastically lower variance may
be achieved by sacrificing the unbiased property of an estimate. The MSE is a more
fair representation of how ‘good’ an estimate is as it takes both variance and bias into
account. [Source: retrieved from Rudy A. Gideon’s presentation “Regularization:
Ridge Regression and the LASSO”, found online at http://www-stat.stanford.edu/
owen/courses/305/]

intent was to provide a biased estimation procedure to attain superior parameter

estimates via the bias-variance trade-off. It was specifically aimed to handle the case

where X′X was severely non-orthogonal, i.e. there was much collinearity amongst

the predictors. The penalty function is P (β) =
∑p

j=1 |βj|2 and is constrained by a

maximum of t. Taking on the notational conventions of Equations (2.12) and (2.13),

β̂
ridge

= argmin
β

{
n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2

}
subject to

p∑
j=1

β2
j < t,

(2.14)
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with the constraint mathematically introduced via a Lagrange multiplier, giving

β̂
ridge

= argmin
β

{
n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2 + λ

p∑
j=1

β2
j

}
. (2.15)

To get familiar with a quicker notation, Equation (2.15) can be written as

β̂
ridge

= argmin
β

{
‖y −Xβ‖2

2 + λ‖β‖2
2

}
. (2.16)

As t → 0 (λ → ∞), the magnitudes of the parameters are increasingly restricted,

shrinking estimates towards 0. As t→∞ (λ→ 0), the magnitudes of parameters be-

come unconstrained and the solution for Equation (2.16) becomes the OLS estimates.

Specifically, if t ≥
∑p

j=1 |βolsj |2, the OLS estimates are the solution. Since this acts

as an upper-bound for allowing sparseness, a convenient notation of s = t∑p
j=1 |βolsj |2

provides a scaled way of referring to the constraint; s ranging from 0 to 1 instead of

some scenario-dependent value.

Not only do the ridge solutions take advantage of the bias-variance trade-off, but

they also provide a unique solution even in the n < p case; thus offering a work-

around to the ill-posed problem encountered at the normal equations. In fact, the

solution can be written out in closed form:

β̂
ridge

= (X′X + λI)−1X′y.

However, researchers with a desire for variable selection and model interpretation

realize an unattractive property. Ridge estimates shrink as the tuning parameter
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constrains the estimates, but they are not forced directly to 0. Thus a sparse solution

is not attained.

In 1996, Robert Tibshirani successfully introduced an L1-norm constraint on the

βj’s [19]. This formed what is called LASSO (Least Angle Shrinkage and Selection

Operator) regression, where the penalty is called the LASSO penalty. In the usual

notation,

β̂
lasso

= argmin
β

{
n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2

}
subject to

p∑
j=1

|βj| < t

(2.17)

is spun mathematically as

β̂
lasso

= argmin
β

{
n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2 + λ1

p∑
j=1

|βj|

}
, (2.18)

or equivalently as

β̂
lasso

= argmin
β

{
‖y −Xβ‖2

2 + λ1‖β‖1

}
. (2.19)

This unleashed a new weapon for researchers interested in variable selection in high-

dimensional data. The LASSO method is able to send some of the β̂j’s directly to 0,

thus attaining a sparse solution. In the same paper, Tibshirani provides some visuals

in the p = 2 dimensional case to show how Ridge regression and LASSO regression

obtain differing qualities. Figure 2.3 shows possible solutions to the minimization

problem along with Lasso (a) and Ridge (b) constraint regions. The ellipses are level

curves for the function to be minimized in the original SSE but the solution must
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lie within the shaded region if enforcing the constraint. One can readily see how the

LASSO will allow for estimates equalling exactly to 0 (when the level curves touch the

axes). Another handy visual for sparse regression procedures is a plot of the entire

Figure 2.3: 2-dimensional example of LASSO (a) and Ridge (b) constraints. The
solutions obtained with the LASSO constraint can produce 0-valued estimates, not
the case with the Ridge constraint. [Source: retrieved from Robert Tibshirani’s paper
[19].]

solution path. Figure (2.4) displays that all parameters will be forced to 0 when

s → 0 and how solutions become less sparse when s → 1, eventually achieving the

non-sparse OLS solutions when s = 1. The image exemplifies the impact that tuning

parameter selection has in dictating how sparse the solution is and which variables

will be concluded as important. All this said, the LASSO is not a perfect option

for variable selection. For starters, the solution cannot be expressed in closed form.

Instead, algorithms have been employed in attempt to efficiently solve the entire

LASSO path. The Least Angle Regression (LARS) algorithm, originally intended to

develop an improved forward step-wise selection procedure, conceptually applied to

solving the LASSO problem in an efficient way [5]. This made the LASSO technique
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Figure 2.4: The solution path as the tuning parameter s is ranged from 0 to 1.
Selecting the tuning parameter is of primary importance. [Source: retrieved from
Robert Tibshirani’s paper [19].]

more computationally feasible. Another drawback of the LASSO is that it can only

offer min(n, p) parameters in its solution. Unlike the Ridge, it does not thrive when

n < p; a major downfall for researchers with very high-dimensional data.

Swiftly following the attraction of the LASSO method came a more flexible and

beneficial procedure.

2.2.2 Elastic Net penalty

The Ridge and LASSO penalties have their respective benefits; they can indepen-

dently generate improved analyses. However they also have their respective flaws,

as discussed. In 2005, Zou and Hastie introduced the Elastic Net penalty which was

simply a combination of Ridge and LASSO penalties [22]. It draws the benefits from
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both sources and mathematically generalizes the formulation as

β̂
en

= argmin
β

{
n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2 + λ

p∑
j=1

β2
j + λ1

p∑
j=1

|βj|

}
,

(2.20)

or, equivalently,

β̂
en

= argmin
β

{
‖y −Xβ‖2

2 + λ‖β‖2
2 + λ1‖β‖1

}
. (2.21)

Now, not only can one obtain a sparse solution with the LASSO penalty, but they

can also battle the n < p scenario with the help of the Ridge penalty. The Elastic

Net is now widely being explored in developing procedures, including generalized

linear model extensions; see R package ‘glmnet’ in the CRAN repositories.

2.2.3 Selecting the tuning parameter

With a continuous-scale tuning parameter, there becomes infinitely many choices for

the value. Since it controls the level of sparsity and, in turn, the parameter esti-

mates, their MSE, and the conclusions we draw, it is of great interest to examine

how results behave in reaction to its variation. Because sparsity and improved es-

timation (via introducing bias) are at the heart of these methods, it seems natural

to obtain a justified choice of the tuning parameter based on these criteria. If in-

terested in sparsity, one could increase the Lagrange form parameter(s) to a point

where desired sparsity is realized. If interested in improved estimation, one could

choose the parameter based on the MSE of the estimates produced. However, as with
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most cases in statistics, there is most likely a balance that will be of preferred choice.

For example, selecting the most sparse solution possible will probably suffer from

a large MSE; perhaps sacrificing a little sparsity for significant gains in estimation

is justified. Likewise, selecting the solution with lowest MSE might not be sparse

enough; variable selection is a tough task here. This tug-of-war has been named the

‘variance-sparsity’ trade-off [23]. Since this topic is strongly dependent on the sce-

nario, various methods have been suggested to select a balance. They do, however,

mesh together with a similar tool.

Cross-validation is a technique used across many areas in statistics when one is

interested in determining how well a model built from the sample at hand will apply

to new data. Typically, the given sample is partitioned into a training sample and

validation sample. The model is built from the training data and its performance

is checked with the validation data; if the model performs as well on the validation

data as it did with the training, then we believe it is a stable model. The measured

performance is usually based on some criteria involving prediction. A spin-off to

traditional cross-validation is ‘K-Fold Cross-validation’. This involves partitioning

the original sample into K samples. Each sample takes a turn being the validation

data for a model built from the remaining K − 1 samples (cumulatively acting as

the training sample). After retrieving K performance measures, they can be sum-

marized and therefore trusted more than the single one obtained from a traditional

cross-validation technique. Of course, sample size must be sufficiently large to allow

for more folds and the more folds chosen, the more computationally expensive the

procedure.
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This general method to select tuning parameters will be employed in the Sparse

PCA methods to come.

2.3 Sparse PCA methods

Classical PCA introduced in Section 2.1 and the regularization methods introduced

in Section 2.2 have very promising applications; their extensive use in many fields a

testament to their performance. PCA seems to fall short when attempting to inter-

pret its output, especially in high data-dimensions. Imagine PCA output where the

first few PCs are derived from linear combinations of small and distinct groups of the

original variables. In other words, imagine most of the loadings, that usually have

negligible residual contribution, were to be sent directly to 0. This would enable

amazing data exploration and give meaning to the dimension-reduction steps; per-

haps we could truly associate each PC with an underlying feature in the data. There

has been a track-record of attempts to make the resulting PCs more interpretable

(examples: [15, 20]) but only with the latest efforts has a new class of Sparse PCA

methods hit the scene by making use of regularization methods.

Simply put, Sparse PCA methods adjust the PCA method to inject sparseness

to the loading vectors just as the regularization methods inject sparseness to the

parameter estimates in the regression setting. This means that PCs will now have

a chance to be meaningful. Furthermore, it seems more realistic for variables called

principal components to have latent meaning via distinct groups of the original vari-

ables rather than a nameless presence due to a conglomerative mess. After surveying
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the literature, we have decided to compare three of the well-established methods that

come along with R-packages and R-code necessary to implement their procedures.

They will be compared in Chapter 3, but for now the methodology is laid out in a

format compatible with the original papers but with notation to match this thesis.

2.3.1 SPCA formulation by Zou et al.

In 2006, Hui Zou, Trevor Hastie, and Robert Tibshirani published a paper intro-

ducing their new method of imposing sparseness to PCA [23]. For simple reporting,

we give their method the name ‘SPCA’. Sparseness, as we’ve seen so far, is intro-

duced through a regression equation when attempting to predict response variable

Y from a set of predictors X1, . . . , Xp. PCA, however, forgets about the response

variables and only deals with the predictors. The methods from their paper bridge

the gap between a regression scenario and a PCA scenario; they reform the PCA as

a regression problem.

First, the authors introduce a very intuitive way to impose constraints through a

regression-based formulation. Later on, they provide a one-shot, efficient algorithm

for solving the entire fit which outclasses the intuitive way, but it is worth starting

from the ground up to provide a clear foundation to how PCA is spun as a regression

problem.

Based on the SVD of a data matrix X, the jth principal component can be ex-

pressed as zj = ujdjj, as shown in Section 2.1.2. Realizing these zj’s are linear

combinations of the original variables, the coefficients (loadings) of the linear combi-

nations may be estimated through a regression procedure. This, in turn, allows the
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addition of constraints to the estimation procedure and the opportunity to obtain

sparseness amongst the loadings vectors; a chance to achieve an interpretable format

of PCA. To begin, the authors introduce a theorem that shows the link between PCA

and regression:

Theorem 1. For each j, denote by zj = ujdjj the jth principal component. Consider

a positive λ and the ridge estimates β̂
ridge

given by

β̂
ridge

= argmin
β
‖zj −Xβ‖2

2 + λ‖β‖2
2. (2.22)

Let v̂ = β̂
ridge

‖β̂ridge‖2
, then v̂ = vj.

Without the ridge penalty this theorem shows the regression way of approximat-

ing PCs; already explored by at least Cadima and Jolliffe in 1995 [3]. The ridge

penalty that Zou et al. introduce now allows the reconstruction of PCs even when

n < p. Naturally following this, they suggest to add the LASSO penalty to inject

sparseness to the loadings, resulting in an elastic net formulation from Section 2.2.2:

β̂
enet

= argmin
β
‖zj −Xβ‖2

2 + λ‖β‖2
2 + λ1,j‖β‖1. (2.23)

However the flaw to this technique is that we require the original PCs, z1, . . . ,zp, to

get this approximation. The authors then introduce their primary method, namely

the SPCA criterion, which derives their sparse PCs without the need for the original

PCs. Again, some Theorems are declared:

With xi representing the usual ith row vector of a data matrix X,
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Theorem 2. For any λ > 0, let

(
α̂, β̂

)
= argmin

α,β

{
n∑
i=1

‖xi −αβ′xi‖2
2 + λ‖β‖2

2

}

subject to ‖α‖2
2 = 1. (2.24)

Then β̂ ∝ v1.

Theorem 3. Suppose we are considering the first k principal components. Let

Ap×k = (α1, . . . ,αk) and Bp×k = (β1, . . . ,βk). For any λ > 0, let

(
Â, B̂

)
= argmin

A,B

{
n∑
i=1

‖xi −AB′xi‖2
2 + λ

k∑
j=1

‖βj‖2
2

}

subject to A′A = Ik×k (2.25)

Then β̂ ∝ vj for j = 1, 2, . . . , k.

Proofs for the above Theorems are provided by Zou et al. in their paper. With the

same motivations as proceeding Theorem 1, the authors propose to add a LASSO

penalty to (2.25), injecting sparseness to the resulting PCs. This concludes their

SPCA criterion:

(
Â, B̂

)
= argmin

A,B

{
n∑
i=1

‖xi −AB′xi‖2
2 + λ

k∑
j=1

‖βj‖2
2 +

k∑
j=1

λ1,j‖βj‖1

}

subject to A′A = Ik×k. (2.26)

Note that the same ridge penalty tuning parameter, λ, is used all loading vectors
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but different LASSO penalty tuning parameters, λ1,j, may be chosen for each of the

k specified loading vectors.

In order to minimize this criterion, the authors provide an alternating algorithm

that will converge to a solution.

B given A:

For each j, let Y ∗j = Xαj. From some initial insights in their paper, Zou et al.

establish that B = [β̂1, . . . , β̂k], where each β̂j is an elastic net estimate:

β̂j = argmin
βj

{
‖Y ∗j −Xβj‖2

2 + λ‖β‖2
2 +

k∑
j=1

λ1,j‖βj‖1

}
(2.27)

A given B:

With B is fixed, we can ignore the penalty part in 2.26 and just minimize∑n
i=1 ‖xi−AB′xi‖2

2 = ‖X−XBA′‖2
F , subject to A′A = Ik×k. The authors show

that the solution is obtained by using the reduced rank form of the Procrustes

rotation, which is given in their paper. We then compute the SVD

(X′X)B = UDV′ (2.28)

and set Â = UV′.

A direct algorithm more compatible with coding languages is then provided:

Algorithm for obtaining solutions to SPCA criterion:
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1. Let A start at V[, 1 : k], the loadings of the first k ordinary principal compo-

nents.

2. Given a fixed A = [α1, . . . ,αk], solve the following elastic net problem for

j = 1, . . . , k

βj = argmin
β

{
(αj − β)′X′X(αj − β) + λ‖β‖2

2 + λ1,j‖β‖1

}
. (2.29)

3. For a fixed B = [β1, . . . ,βk], compute the SVD of X′XB = UDV′, then

update A = UV′.

4. Repeat Steps 2-3, until convergence.

5. Normalization: v̂j =
βj
‖βj‖2

, j = 1, . . . , k.

Zou et al. provide a useful summary of preliminary findings that suggest how to

choose values for the tuning parameters, λ and λ1,js. For the LASSO penalty tuning

parameters λ1,js: higher choices of the λ1,js produce more sparse loading vectors, but

perhaps at the cost of estimation accuracy. This could be referred to as the variance-

sparsity trade-off. The authors suggest to use a K-fold cross-validation method to

select appropriate values based on sustaining good estimation of PCs from classical

PCA by the original data; as per Equation (2.23). For the ridge penalty tuning

parameter λ: the algorithm returns similar results when ranging λ. Since the ridge

penalty is usually needed to handle datasets of larger dimension, specifically n < p,

it is not needed that much for the simpler case of n > p. Following this, they suggest

to keep the ridge penalty at a very small number (e.g. 10−6) to still enable handling
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of collinearity problems in the n > p dataset. For n << p datasets, they provide an

adjustment to the algorithm above that reflects choosing λ → ∞; they specifically

mention high dimensional gene expression arrays as an example case to employ this

adjustment. A theorem is needed.

Theorem 4. Let v̂j(λ) =
β̂j

‖β̂j‖2
, for j = 1, . . . , k, be the loadings derived from the

SPCA criterion. Let (Â, B̂) be the solution of the optimization problem

(Â, B̂) = argmin
A,B

{
−2tr(A′X′XB) +

k∑
j=1

‖βj‖2
2 +

k∑
j=1

λ1,j‖βj‖1

}

subject to A′A = Ik×k. (2.30)

When λ→∞, v̂j(λ)→ β̂j

‖β̂j‖2
.

The second step to the algorithm is simplified since it achieves closed form when

λ → ∞. The following algorithm incorporates this adjustment as seen in Equation

(2.31) below.

Algorithm for obtaining SPCA solutions when n << p:

1. Let A start at V[, 1 : k], the loadings of the first k ordinary principal compo-

nents.

2. For j = 1, . . . , k

βj =

(
|α′jX′X| −

λ1,j

2

)
+

Sign(α′jX
′X). (2.31)
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3. For a fixed B = [β1, . . . ,βk], compute the SVD of X′XB = UDV′, then

update A = UV′.

4. Repeat Steps 2-3, until convergence.

5. Normalization: v̂j =
βj
‖βj‖2

, j = 1, . . . , k.

Equation (2.31) is referred to as soft-thresholding, where the (.)+ operation takes the

inside value if it is positive, but 0 otherwise. In this case, λ1,j/2 acts as the threshold.

Unfortunately, adding sparseness to the loading vectors involves sacrificing the

uncorrelated property of the resulting PCs. Zou et al. propose that the usual additive

property of their variances is no longer a viable option for calculating the total

variance; part of the variance of zj+1 will be explained in the previous j PCs if they

are correlated with it. With this said, the authors provide a alternative method

for calculating the variances. It employs regression projections to remove linear

dependence between PCs and therefore handles the correlation issues. Details can

be found in their paper.

R-package: ‘elasticnet’

The authors provide an R-package named ‘elasticnet’ that can be installed through

CRAN. With regards to the SPCA methods just explained, the most relevant func-

tion within this package is ‘spca()’. It carries out the solutions to the SPCA criterion

in Equation (2.26) and delivers the sparse loading vectors along with the variance

explained for each successive PC. The ‘arrayspc()’ function employs the altered al-

gorithm suggested for when n << p. The ‘cv.enet()’ function allows us to perform
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the K-fold cross-validation method described above to collect an appropriate set of

LASSO penalty tuning parameters.

It is handy to point out that, although they never discussed this option in their

paper, Zou et al. include an argument in the ‘spca()’ function that allows specifi-

cation of the number of non-zero loadings to have in each resulting sparse loading

vector. This specification could be very subjective in practice, but would certainly

be direct if prior knowledge of the dataset gives reason to select certain numbers.

2.3.2 PMDSPCA formulation by Witten et al.

In 2009, Witten et al. introduced Penalized Matrix Decomposition (PMD); a method

transcribed from the relationship between the Frobenius Norm approximation of

a matrix and SVD components by Eckart and Young’s 1936 paper. For simple

reporting, we give their method the name ‘PMDSPCA’. PMD is a very general

framework that shows how to impose constraints (“Penalized”) when approximating

a matrix via the rank-k approximation derived from the SVD of a matrix X (“Matrix

Decomposition”). The constraints can apply to the set of K left-singular vectors,

U(k), as well as the set of k right-singular vectors, V(k), of X which is why this PMD

method is a more general framework that has more applications than just Sparse

PCA. We’ll start by sharing the PMD method of Witten et al in its entirety but

then focus on the Sparse PCA application.

For our usually centered data matrix X of rank R ≤ min(n, p), let the SVD

be UDV′ and rank-k approximation be X(k) =
∑k

j=1 djjujv
′
j, as established in

Section 2.1.2. Then we know that X(k) is the best rank-k approximation of X when
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judged by the Frobenius norm of the difference. The authors begin with the rank-1

approximation and consider the optimization problem:

minimize
d,u,v

{
1

2
‖X− duv′‖2

F

}
subject to ‖u‖2

2 = 1, ‖v‖2
2 = 1, P1(u) ≤ c1, P2(v) ≤ c2, d ≥ 0.

(2.32)

The penalty functions, P1(u) and P2(u), can be of any form but the authors focus

on two types: the LASSO and the Fused LASSO. The LASSO penalty is familiar to

us now and the Fused LASSO is simply an extension to the LASSO that attempts to

force loadings from grouped variables to a single value to enforce group recognition

[7]. It is not used when PMD is applied to Sparse PCA. The values of c1 and c2 are

the tuning parameters, analogous to the role of t in Section 2.2.

Attempting to solve (2.32), Witten et al make use of a theorem.

Theorem 5. Let U(k) and V(k) be n× k and p× k orthogonal matrices and D(k) a

diagonal matrix with diagonal elements dk. Then,

1

2
‖X−U(k)D(k)V(k)′‖2

F =
1

2
‖X‖2

F −
k∑
j=1

u′jXvjdjj +
1

2

k∑
j=1

d2
jj. (2.33)

Applying this theorem to the rank-1 case, the values of u and v that solve (2.32)

also solve:

maximize
u,v

{u′Xv} subject to ‖u‖2
2 = 1, ‖v‖2

2 = 1, P1(u) ≤ c1, P2(v) ≤ c2, (2.34)

with d = u′Xv. By tweaking the L2-norm constraints on u and v, they arrive at
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the rank-1 PMD:

maximize
u,v

{u′Xv} subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2, (2.35)

This is now a biconvex function of u and v, which means an iterative algorithm can

be obtained to provide solutions; leading to the following algorithm.

Algorithm for Computing a Single-Factor PMD model:

1. Initialize v to have an L2-norm of 1.

2. Iterate until convergence:

(a) u← argmin
u
{u′Xv} subject to P1(u) ≤ c1 and ‖u‖2

2 ≤ 1.

(b) v ← argmin
v
{u′Xv} subject to P2(v) ≤ c2 and ‖v‖2

2 ≤ 1.

3. d→ u′Xv.

To obtain multiple factors, the authors provide a simple framework that is dependent

on finding iterative residuals:

Algorithm for Computing a Multiple(k)-Factor PMD model:

1. Let X1 ← X.

2. For j = 1, . . . , k:

(a) Find uj, vj, and djj by applying the Single-Factor PMD algorithm to

data Xj.
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(b) Xj+1 → Xj − djjujv′j.

These two algorithms are for a general case. The authors introduce a few special

cases, but we will only cover the ones necessary for preparing the Sparse PCA method

to come. As stated before, they are interested in adding LASSO constraints. The

notation PMD(L1,L1) refers to setting both P1(u) and P2(v) from the rank-1 PMD

(2.35) to LASSO penalties. Therefore, the PMD(L1,L1) criterion is

maximize
u,v

{u′Xv} subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, ‖u‖1 ≤ c1, ‖v‖1 ≤ c2. (2.36)

Witten et al. provide visual evidence that the tuning parameters, c1 and c2, are

restricted to specific ranges under this combination of penalties; 1 ≤ c1 ≤
√
n and

1 ≤ c2 ≤
√
p. The solution to the PMD(L1,L1) criterion requires knowledge of a

Lemma involving the soft thresholding operator S, such that S(a,c)=sign(a).

Lemma 1. Consider the optimization problem

maximize
u

{u′a} subject to ‖u‖2
2 ≤ 1, ‖u‖1 ≤ c. (2.37)

The solution satisfies u = S(a,∆)

‖S(a,∆)‖22
, with ∆ = 0 if this results in ‖u‖1 ≤ c; otherwise,

∆ is chosen so that ‖u‖1 = c.

Algorithm for Computing a Single-Factor PMD(L1,L1):

1. Initialize v to have an L2-norm of 1.

2. Iterate until convergence:
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(a) u← S(Xv,∆1)

‖S(Xv,∆1)‖22
, where ∆1 = 0 if this results in ‖u‖1 ≤ c1; otherwise, ∆1

is chosen to be a positive constant such that ‖u‖1 = c1.

(b) v ← S(X′u,∆2)

‖S(X′u,∆2)‖22
, where ∆2 = 0 if this results in ‖v‖1 ≤ c2; otherwise, ∆2

is chosen to be a positive constant such that ‖v‖1 = c2.

3. d→ u′Xv.

The Sparse PCA method that arrives comes from removing the penalty from u,

leaving only a penalty on v; naturally, since the connection between PCA loadings

and SVD come through the matrix V. The so-called ‘SPC criterion’ is equivalent to

an PMD(.,L1) criterion as follows:

maximize
u,v

{u′Xv} subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, ‖v‖1 ≤ c2. (2.38)

The solution to the SPC criterion is achieved by relaxing the soft-thresholding during

the update step for u in the algorithm for solving the PMD(L1,L1).

Algorithm for Computing a Single-Factor PMD(.,L1) - The Sparse PCA

method:

1. Initialize v to have an L2-norm of 1.

2. Iterate until convergence:

(a) u← Xv
‖Xv‖22

.

(b) v ← S(X′u,∆2)

‖S(X′u,∆2)‖22
, where ∆2 = 0 if this results in ‖v‖1 ≤ c2; otherwise, ∆2

is chosen to be a positive constant such that ‖v‖1 = c2.
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3. d→ u′Xv.

The PMD methods, in general, can also work in the presence of missing data.

Letting C represent the set of indices where data is present, the criteria can be

written as:

maximize
u,v

 ∑
(i,j)∈C

xijuivj

 subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2.

(2.39)

This means PMD can be used for data imputation. As well, this leads directly to

a type of cross-validation method for determining optimal tuning parameters c1 and

c2 based on prediction criteria; it can be used for the Sparse PCA application.

Selecting Tuning Parameters:

1. From the original data matrix X, construct 10 data matrices X1, . . . ,X10, each

of which is missing a nonoverlapping one-tenth of the elements of X, sampled

at random from the rows and columns.

2. For each candidate value of c1 and c2:

(a) For i = 1, . . . , 10:

i. Fit the PMD to Xi with tuning parameters c1 and c2 and calculate

X̂i = duv′, the resulting estimate of Xi.

ii. Record the mean squared error of the estimate X̂i. This mean squared

error is obtained by computing the mean of the squared differences
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between elements of X and the corresponding elements of X̂i, where

the mean is taken only over elements that are missing from Xi.

(b) Record the average mean squared error across X1, . . . ,X10 for tuning pa-

rameters c1 and c2.

3. The optimal values of c1 and c2 are those which correspond to the lowest mean

squared error.

Of course, as with the Sparse PCA method by Zou et al., principal components

lose their uncorrelated property, thus calling for a new way to calculate the explained

variance. The authors reach out to a method proposed in a 2008 paper by Shen and

Huang [18], who have a Sparse PCA method very similar to Witten et al. Shen

and Huang state how Zou et al. account for the correlated PCs in their adjusted

explained variance calculation but do not account for the lack of orthogonality among

loading vectors. The new method proposed involves a projection of X onto the k-

dimensional subspace spanned by the k loading vectors being considered; details are

given in their paper.

Also nice to note, Witten et al. provide an alternate method to their SPC Crite-

rion. The alteration attempts to enforce orthogonality amongst the loading vectors;

one of the nice properties of classic PCA that is often lost during Sparse PCA meth-

ods.

R-package: ‘PMA’

The authors provide an R-package named ‘PMA’ that can be installed from a
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CRAN repository. Since the PMD method introduced by Witten et al. covers a

wide range of applications, only a couple functions prove useful for Sparse PCA

with PMD. The ‘SPC()’ function will carry out the algorithm for solving the SPC

criterion in (2.38) and return the left singular vectors, the sparse right singular vectors

(loadings), and the singular values. The ‘SPC.cv()’ function allows one to select

tuning parameters based on the cross-fold validation technique described above; via

best MSE. Within this function, the authors provide an option to select tuning

parameters that achieve a slightly worse MSE than the best pair, thus attaining a

more sparse solution set while sacrificing little prediction of the matrix X. Embedded

as an argument in both ‘SPC()’ and ‘SPC.cv’ functions is the orthogonality option,

‘orth=’, that, when set to TRUE, adapts the calculations in an attempt to enforce

orthogonality.

2.3.3 SSPCA formulation by Lee et al.

In 2010, a paper by Lee et al entitled “Super-sparse principal component analy-

ses for high-throughput genomic data” emerged [16]. For simple reporting, we give

their method the name ‘SSPCA’. The title is certainly exciting; ‘Super-sparse’ pack-

ing quite the punch, and to an appropriate area of high-throughput genomic data.

The authors introduce a method called Super-Sparse Principal Component Analysis

(SSPCA) that is intended to impose more sparseness to the principal components

than prior methods have. Its proposed usefulness is geared towards scenarios where

n << p. The methodology and results are fully described in their paper and sum-

marized below.
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Instead of introducing sparseness through SVD algorithms, Lee et al made use

of the NIPALS algorithm, introduced by Hoskuldsson in 1988 [9]. The NIPALS al-

gorithm allows one-at-a-time calculation of eigen value - eigen vector pairs, greatly

reducing the computation cost compared to the methods above which use SVD and

thus require simultaneous calculation of all k eigen value - eigen vector pairs.

NIPALS Algorithm for first k PCs:

Let X1 = X. For j = 1, . . . , k:

1. Initialize zj as the first column of Xj.

2. Find vj: vj ← Xj ′zj
z′jzj

.

3. Normalize vj: vj ← vj
‖vj‖2 .

4. Find zj: zj ← Xjvj.

Repeat steps 1 to 4 until convergence.

5. Let Xj+1 = Xj − zjv′j.

As with the previous methods, the induction of regularization techniques are

couriered by realizing a regression formulation. The second step of the algorithm can

be recognized as OLS solutions to a set of linear regression problems [16]. Considering

the leading PC for now, by rewriting the second step relationship, we obtain

v̂OLS1 = (z′1z1)−1X′z1,
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which are the combined solutions from k linear regressions; the jth being

Xj = z1v1j + εj,

where Xj represents the jth column of X and v1j represents the jth loading of the

loading vector v1. By connecting a regression format to the NIPALS algorithm,

the authors now have the ability to introduce sparseness through the usual penalty

functions. However, Lee et al. bring forth a random-effect model approach, enabling

access to new penalties that potentially result in more sparse solutions. This method

was originally proposed in a paper freshly submitted by one of their co-authors with

the intent to assist general regression problems; this new paper deals with its appli-

cation to Sparse PCA. The random-effect is assumed for the loadings. Continuing

the explanation with the leading PC, for the jth loading,

v1j|uj ∼ N(0, ujθ),

where θ is the dispersion parameter and uj follows a gamma distribution with pa-

rameter w and density

fw(uj) = w−
1/w 1

Γ(1/w)
u

1/w−1

j e−
uj/w.

This results in a complex marginal distribution for v1j, having a density function
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that is computationally troublesome:

fw,θ(v1j) =

∫
fθ(v1j|uj)fw(uj)duj =

w−1/w

Γ(1/w)
√

2πθ

∫
u

1/w−3/2

j e−
v2
1j/2ujθ−uj/wduj.

Usual maximum likelihood estimation thrives with a nice convex likelihood function,

but in this case, − log fw,θ(v1j) is non-convex. To provide a work-around to this

issue the authors make use of the hierarchical likelihood form, commonly named

‘h-likelihood’, introduced by Lee and Nelder in 1996 [17]. The connection to the h-

likelihood is seen by reforming v1j as a double hierarchical generalized linear model:

v1j =
√
τjej,

where τj = ujθ and ej ∼ N(0, 1). By expressing τj with a log link function:

log τj = logθ + loguj

the authors relate this to a general h-likelihood formulation of

h = h1 + h2,
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where

h1 =

p∑
j=1

{log fφ(Xj|vj)}

h2 =

p∑
j=1

{log fθ(v1j|uj) + log fw(loguj)}

log fφ(Xj|vj) =
n

2
log(2πφ)− 1

2φ
(Xj − z1v1j)

′(Xj − z1v1j)

log fθ(v1j|uj) = −1

2
(log(2πθ) + loguj + v2

1j/θuj)

log fw(loguj) = − logw/w − log Γ(1/w) + loguj/w − uj/w.

The authors estimate v1 by accessing something called the ‘profile h-likelihood’,

proposed by one of their co-authors in a neighbouring paper submission. Then, by

fluctuating parameter w, they obtain different penalty functions. Ridge regressions

are realized when w = 0, LASSO when w = 2, and what the authors call the

‘HL’ method when w = 30. On this note, they focus on LASSO and HL methods

from their SSPCA paper; hence we name them SSPCA.h and SSPCA.l for simple

reporting.

Lee et al. propose to select tuning parameters via a K-fold cross-validation

procedure that judges performance based on sample variance of the resulting PCs.

R-Package: ‘SSPCA’

The authors provide an R-package for SSPCA that can be downloaded from
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Prof. Yudi Pawitan’s website: http://www.meb.ki.se/ yudpaw/. The function used

to compute Sparse PCA via imposing random effect assumptions on the loadings

through the NIPALS algorithm is ‘sspca()’. Within it, you may specify the option

‘penalty=’ to be “HL” or “Lasso”, accessing the different penalty types dictated by

parameter w, as described above. You may also choose to select tuning parameters

manually or via the K-fold cross-validation procedure. The cross-validation way

takes an exceedingly long time in comparison to specifying tuning parameters rather

arbitrarily.
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Chapter 3

Simulation Studies

The problem has been presented in detail and the possible solutions have been dis-

cussed theoretically. The next step is to discover the best Sparse PCA method for

a variety of scenarios that might be encountered in the real-world. For adequate

testing grounds, simulation is an absolute must [2]. From generating the data our-

selves, we have control over the true parameters of the underlying distribution from

which the data arises. In the context of Sparse PCA methods, this means completely

specifying the variance-covariance structure in the multivariate normal distribution

from which a dataset is generated. This specification is rather simple to implement

with the help of R software and packages; this is not the problem. The challenge is to

rigorously test the Sparse PCA methods for suitable choices of variance structure in

a regulated and meaningful way. In this Chapter, the structure of how the methods

will be evaluated and compared will be laid out, the simulation scenarios will be

presented, and their results will be summarized to the point of conclusion.
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3.1 Constructing the Simulations

In this section, we will guide the reader through how we generate the data and

obtain different simulation settings, as well as how the Sparse PCA methods were

implemented and judged. The main sub-categories we focus on are: Parameters to

Vary, Criteria to Test, Simulation Settings Considered, Tuning Parameter Selection,

and Number of Simulation Iterations. The R-code used to carry out the simulations

under this structure was created from scratch to enable a flexible, user friendly coding

environment to test many varieties of the settings considered in this thesis. The code

is available upon request.

Parameters to Vary

The variance-covariance structures that will provide both simplicity and flexibility

when testing method performance will be of the following block-diagonal form:

Σ =



Σ11 0 · · · 0 0

0 Σ22 · · · 0 0

...
...

. . .
...

...

0 0 · · · Σkk 0

0 0 · · · 0 Σelse


Here, k represents the number of proposed groups in the underlying distribution

and Σjj, j = 1, . . . , k, is the variance-covariance matrix for the set of variables in

the jth group. Σelse represents the variance-covariance matrix for all non-grouped

variables, i.e. extra noise in the dataset, and in turn will have no correlation amongst
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its components. The block-diagonal form assumes no correlation between groups.

This allows for a simple specification during simulation and emulates the hopeful

situation for researchers who would use PCA or Sparse PCA.

For the block-diagonal form above, a single groups variance-covariance matrix

could be defined as

Σjj =



σ11 ρ12
√
σ11σ22 · · · ρ1pj

√
σ11σpjpj

ρ12
√
σ11σ22 σ22 · · · ρ2pj

√
σ22σpjpj

...
...

. . .
...

ρ1pj
√
σ11σpjpj ρ2pj

√
σ22σpjpj · · · σpjpj


,

where pj represents the number of variables in proposed group j; thus
∑k

j=1 pj +

pelse = p.

The diagonal elements are the variances for each variable within the group. The

larger they are in comparison to other groups, the more noticeable this list of variables

will be to a PCA method. The off-diagonal elements are the covariances between each

pair of variables within the group. The closer the correlations are to 1, the more likely

the set of variables will stick together during the PCA analysis. However, to simplify,

a single variance and single correlation for each group will be used to represent each

of the variables in the group. Generally, if we want a group to stand out over the

rest, we just want the variances to be higher in that group and don’t need to specify

each and every one; likewise we want the correlations to be stronger and don’t need

to micro-manage. The resulting variance-covariance matrix for a single group that
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we will be using is defined as:

Σjj =



σ2
j ρjσ

2
j · · · ρjσ

2
j

ρjσ
2
j σ2

j · · · ρjσ
2
j

...
...

. . .
...

ρjσ
2
j ρjσ

2
j · · · σ2

j


,

Clearly, specifying these parameters will categorize how the data will be produced.

Also, since data is generated based on a probability distribution (multivariate nor-

mal), we expect the resulting dataset to have a perturbed sample variance-covariance

structure compared to the true variance-covariance structure. We could control the

amount of perturbation with sample size n alone, but since the highlight of these

methods are their performance when p gets bigger in relation to n, the p to n ratio

will the sole dictator of data dimension. We have locked the sample size at n = 100

for all simulations to standardize results; the more parameters we vary, the harder

it will be the draw conclusions.

A list of parameters that will be varied during the simulations is displayed in

Table 3.1. Note that two quantities in the table do not vary and are just their for

completion: n, which is always 100, and ρelse, which is always 0 since it marks the

correlation amongst the non-grouped variables. The R-codes built to execute the

simulations require values for each of these parameters so the naming-scheme in the

code is found in the last column of this table. The choices for these parameters

will be introduced and justified shortly but, generally speaking, scenarios of varying

difficulty will be tested. A possible visualization of this is presented in Figure 3.1 by
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Table 3.1: Parameters Varied during Simulations

Description Parameter R-code

Sample Size n = 100 n = 100

Number of Variables p p

Number of Groups k k

Number of Variables in each Group p1, p2, . . . , pk, pelse pg = (pg1, pg2, . . . , pgk, pgelse)

Variance within each Group σ2
1 , σ

2
2 , . . . , σ

2
k, σ

2
else vg = (vg1, vg2, . . . , vgk, velse)

Correlation within each Group ρ1, ρ2, . . . , ρk, ρelse = 0 cg = (cg1, cg2, . . . , cgk, celse = 0)

making use of heatmaps. A heatmap is a data visualization technique that simply

replaces numbers with a color gradient [6]; similar numbers share similar colors, or

shades. If a group of highly correlated variables are ordered in a dataset, you will

see it stick out on the heatmap via a more monotone block of colour. Usually, data

will not be organized into groups so clustering algorithms will be used in conjunction

with the coloring scheme, but in Figure 3.1 we have generated the data with the

block-diagonal variance-covariance structure and have attained an ordered set of

variables. Heatmaps and clustering algorithms prove important to tying real data

situations to the simulation results to come; Chapter 4 will have a demonstration of

this. Heatmaps are often used for genetic data and, by convention, plot the variables

along the rows and samples along the columns. The figure suggests that a larger p to

n ratio, more groups, less distinction between group variances, and less correlation

to bind each group together make for the toughest of situations.

To demonstrate how the ‘difficulty’ of a simulation setting presents itself in the

variance-covariance structure, Figures 3.2 (a), (b), (c), and (d) help visualize the

grouped ‘signals’ (green) that might be hard for the PCA method to pick up or
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Figure 3.1: An attempt to categorize datasets into levels of difficulty, when using PCA
and Sparse PCA methods, based on underlying variance structure and dimension

distinguish amongst the ‘noise’ (black).

Strategies to generate the data are now clear. We can range any of the parameters

in Table 3.1 to develop a situation we deem worth testing, but how will we assess

which methods do well. To establish the criteria that are best to use, we should have

a look at small-scale example of true vs. estimated loading vectors.

Consider generating n = 100 samples from a multivariate normal distribution
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(a) Easiest (b) Harder

(c) Harder (d) Harder

Figure 3.2: True variance-covariance matrices for simulation settings of varying dif-
ficulty. (a) large distinguishable groups with high correlations. (b) introducing low
correlations. (c) balancing group variances . (d) more, smaller groups.

with the variance-covariance matrix

Σ =



5 4 4 0 0 0

4 5 4 0 0 0

4 4 5 0 0 0

0 0 0 2 1 0

0 0 0 1 2 0

0 0 0 0 0 1


.
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As described in Section 2.1, we center the resulting dataset and call it X100×6. Keeping

in mind that only k = 2 blocks of correlated variables exist in Σ, we obtain the SVD

of X and extract necessary information for the first two PCs; the PCs themselves,

z1 and z2, their loading vectors, v1 and v2, and the singular values, d11 and d22,

to be able to obtain percentage explained variance. Of course, since we only have

p = 6 variables, the sample variance-covariance matrix of X has a small dimension

so we might want to just obtain this same information directly from its eigen values

and eigen vectors instead of using the SVD. The sample variance-covariance matrix

is slightly off from the underlying truth:

S =



4.6 3.4 3.8 −0.2 0.2 −0.5

3.4 4.5 3.6 −0.1 0.5 −0.5

3.8 3.6 5.1 −0.4 0.2 −0.5

−0.2 −0.1 −0.4 1.6 0.8 0.4

0.2 0.5 0.2 0.8 2.2 0.3

−0.5 −0.5 −0.5 0.4 0.3 0.9



Criteria to Test

Given the true and sample variance-covariance matrices above, the true and esti-

mated loading vectors are shown in Table 3.2 (using the SPCA method, for example):

Having a look, we can think about properties of the estimated loading vectors that

would represent a good job done by the Sparse PCA method. Generally speaking,

we want the estimated loading vectors to be as close to the true vectors as possible.
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Table 3.2: How ‘close’ are the True and the Estimated Loading Vectors?

(a) The true loading vectors from Σ.

PC1 PC2 · · ·
0.577 0 · · ·
0.577 0 · · ·
0.577 0 · · ·

0 0.707 · · ·
0 0.707 · · ·
0 0 · · ·

APEV 65.0% 15.0% · · ·

(b) The estimated loading vectors by
using a Sparse PCA method.

PC1 PC2 · · ·
0.565 0 · · ·
0.555 0 · · ·
0.610 0 · · ·

0 0.549 · · ·
0 0.830 · · ·

-0.026 0.100 · · ·
APEV 63.9% 15.4% · · ·

Many similarity measures can do the trick here, but since we are mostly interested

in the vectors capturing the underlying group structure, proper classification of zero-

valued loadings and non-zero-valued loadings will be the main focus. Of course, even

if all loadings are classified perfectly, the weights associated with each might still

differ from the truth, thus relaying distorted PCs. This suggests us to track how

different the true and estimated non-zero loadings. Another important criterion to

test is orthogonality amongst the loading vectors, which dictates how much corre-

lation amongst the resulting PCs has been introduced through using a Sparse PCA

method in place of Classical PCA. This is especially important if planning to use

the PCs in future analysis. To capture these desired properties, we have judged the

estimated loading vectors with a list of six criteria. The criteria are presented as

follows, beginning with bolded abbreviations in order to link the reader to the table

headers in the Results section:

NZ - The number of non-zero-values in the expected loading vector.
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TRUENZ - The number of loading-entries that are non-zero in both the true and

estimated loading vectors. Ideally, the estimated loading vector picks up all

true non-zero loadings.

TRUEZ - The number loading-entries that are zero in both the true and estimated

loadings vectors. Ideally, the estimated loading vector picks up all true zero-

loadings.

ANGLE - A value between 0 (perfect) and 1 (worst-possible) that measures the

distance between true and estimated loading vectors as they lie in p-dimensional

space. Suggested by [12] and endorsed by the authors of SSPCA in their paper.

Calculated as:

dist (vk, v̂k) =

√
1− (v′kv̂k)

2

APEV - The Adjusted Percentage Explained Variance. Calculated as suggested by

Shen and Huang in 2008 [18] and employed by the authors of PMDSPCA in

their paper (explained in PMDSPCA methodology section of Chapter 2).

ORTH - The number of unique pairs of loading vectors that are NOT roughly

orthogonal with each other. A pair of vectors was considered as roughly or-

thogonal when their dot-product was less than 0.003.

Many of the Sparse PCA methodology papers have tested the sparseness (NZ) and

classification criteria (TRUENZ, TRUEZ); this is nothing new. Adjusted percentage

explained variance (APEV) has also been a go-to criteria, however the formula has

not been consistent; the one used here has been argued to have the most appropriate
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adjustment. Only a few have tested the specific loading (weight) differences (AN-

GLE) and there has been little attention to how much orthogonality (ORTH) is lost

by using Sparse PCA methods. We feel these six criteria to be crucial to determine

the fate of Sparse PCA methods. Lastly, we have chosen to judge the first k loading

vectors. This is because k represents the number of unique groups specified in the

true variance-covariance matrix and is the number of loading vectors we would ex-

pect to pick up the unique groups. Up until now, most Sparse PCA literature with

simulation results provide specs from only the leading PC, making the subsequent

PCs very interesting here.

Simulation Settings Considered

A total of 56 simulation settings of varying difficulty were chosen by taking dif-

ferent combinations of parameters from Table 3.1. The list of the 56 simulation

settings considered is given in Table 3.3. A quick naming scheme for the simulation

settings was assigned to try and simplify reporting; make sure to read the footnotes

of the table to understand how to read it. These simulation settings were chosen in

attempt to provide a gradient of difficulty, from easiest to hardest, with regards to

not only the suspected ability for a Sparse PCA method to capture the true underly-

ing structure, but also with regards to how stressful the data will be to a researcher

(data-dimension, especially). As suggested in Figures 3.1 and 3.2, a more ‘diffi-

cult’ scenario is considered to have more groups, smaller groups, less distinguishable

variances across groups, and lower within-group correlations.
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Table 3.3: Simulation Setting Descriptions: 56 total, or-
dered easiest to hardest

Setting p k pg vg cg

Sim1aaaa 10b 2c 4, 4, (2)d 10, 5, (1)e 0.9, 0.6, (0)f

Sim1aab 10 2 4, 4, (2) 10, 5, (1) 0.7, 0.5, (0)
Sim1aac 10 2 4, 4, (2) 10, 5, (1) 0.5, 0.4, (0)
Sim1aad 10 2 4, 4, (2) 10, 5, (1) 0.3, 0.2, (0)
Sim1aba 10 2 4, 4, (2) 8, 6, (4) 0.9, 0.6, (0)
Sim1abb 10 2 4, 4, (2) 8, 6, (4) 0.7, 0.5, (0)
Sim1abc 10 2 4, 4, (2) 8, 6, (4) 0.5, 0.4, (0)
Sim1abd 10 2 4, 4, (2) 8, 6, (4) 0.3, 0.2, (0)
Sim2aaa 50 2 20, 20, (10) 10, 5, (1) 0.9, 0.6, (0)
Sim2aab 50 2 20, 20, (10) 10, 5, (1) 0.7, 0.5, (0)
Sim2aac 50 2 20, 20, (10) 10, 5, (1) 0.5, 0.4, (0)
Sim2aad 50 2 20, 20, (10) 10, 5, (1) 0.3, 0.2, (0)
Sim2aba 50 2 20, 20, (10) 8, 6, (4) 0.9, 0.6, (0)
Sim2abb 50 2 20, 20, (10) 8, 6, (4) 0.7, 0.5, (0)
Sim2abc 50 2 20, 20, (10) 8, 6, (4) 0.5, 0.4, (0)
Sim2abd 50 2 20, 20, (10) 8, 6, (4) 0.3, 0.2, (0)
Sim2baa 50 2 5, 5, (40) 10, 5, (1) 0.9, 0.6, (0)
Sim2bab 50 2 5, 5, (40) 10, 5, (1) 0.7, 0.5, (0)
Sim2bac 50 2 5, 5, (40) 10, 5, (1) 0.5, 0.4, (0)
Sim2bad 50 2 5, 5, (40) 10, 5, (1) 0.3, 0.2, (0)
Sim2bba 50 2 5, 5, (40) 8, 6, (4) 0.9, 0.6, (0)
Sim2bbb 50 2 5, 5, (40) 8, 6, (4) 0.7, 0.5, (0)
Sim2bbc 50 2 5, 5, (40) 8, 6, (4) 0.5, 0.4, (0)
Sim2bbd 50 2 5, 5, (40) 8, 6, (4) 0.3, 0.2, (0)
Sim3aaa 200 2 50, 50, (100) 10, 5, (1) 0.9, 0.6, (0)
Sim3aab 200 2 50, 50, (100) 10, 5, (1) 0.7, 0.5, (0)
Sim3aac 200 2 50, 50, (100) 10, 5, (1) 0.5, 0.4, (0)
Sim3aad 200 2 50, 50, (100) 10, 5, (1) 0.3, 0.2, (0)
Sim3aba 200 2 50, 50, (100) 8, 6, (4) 0.9, 0.6, (0)
Sim3abb 200 2 50, 50, (100) 8, 6, (4) 0.7, 0.5, (0)
Sim3abc 200 2 50, 50, (100) 8, 6, (4) 0.5, 0.4, (0)
Sim3abd 200 2 50, 50, (100) 8, 6, (4) 0.3, 0.2, (0)
Sim3baa 200 3 10, 10, 5, (175) 10, 8, 5, (1) 0.9, 0.6, 0.5, (0)
Sim3bab 200 3 10, 10, 5, (175) 10, 8, 5, (1) 0.7, 0.5, 0.4, (0)
Sim3bac 200 3 10, 10, 5, (175) 10, 8, 5, (1) 0.5, 0.4, 0.3, (0)
Sim3bad 200 3 10, 10, 5, (175) 10, 8, 5, (1) 0.4, 0.3, 0.2, (0)
Sim3bba 200 3 10, 10, 5, (175) 8, 7, 6, (4) 0.9, 0.6, 0.5, (0)
Sim3bbb 200 3 10, 10, 5, (175) 8, 7, 6, (4) 0.7, 0.5, 0.4, (0)
Sim3bbc 200 3 10, 10, 5, (175) 8, 7, 6, (4) 0.5, 0.4, 0.3, (0)
Sim3bbd 200 3 10, 10, 5, (175) 8, 7, 6, (4) 0.4, 0.3, 0.2, (0)
Sim4aaa 2000 3 100, 100, 50, (1750) 10, 8, 5, (1) 0.9, 0.6, 0.5, (0)
Sim4aab 2000 3 100, 100, 50, (1750) 10, 8, 5, (1) 0.7, 0.5, 0.4, (0)
Sim4aac 2000 3 100, 100, 50, (1750) 10, 8, 5, (1) 0.5, 0.4, 0.3, (0)
Sim4aad 2000 3 100, 100, 50, (1750) 10, 8, 5, (1) 0.4, 0.3, 0.2, (0)
Sim4aba 2000 3 100, 100, 50, (1750) 8, 7, 6, (4) 0.9, 0.6, 0.5, (0)
Sim4abb 2000 3 100, 100, 50, (1750) 8, 7, 6, (4) 0.7, 0.5, 0.4, (0)
Sim4abc 2000 3 100, 100, 50, (1750) 8, 7, 6, (4) 0.5, 0.4, 0.3, (0)
Sim4abd 2000 3 100, 100, 50, (1750) 8, 7, 6, (4) 0.4, 0.3, 0.2, (0)
Sim4baa 2000 4 20, 15, 10, 5, (1950) 10, 10, 5, 5, (1) 0.9, 0.6, 0.5, 0.4, (0)
Sim4bab 2000 4 20, 15, 10, 5, (1950) 10, 10, 5, 5, (1) 0.7, 0.5, 0.4, 0.3, (0)
Sim4bac 2000 4 20, 15, 10, 5, (1950) 10, 10, 5, 5, (1) 0.5, 0.4, 0.3, 0.2, (0)
Sim4bad 2000 4 20, 15, 10, 5, (1950) 10, 10, 5, 5, (1) 0.4, 0.3, 0.2, 0.1, (0)
Sim4bba 2000 4 20, 15, 10, 5, (1950) 8, 8, 6, 6, (4) 0.9, 0.6, 0.5, 0.4, (0)
Sim4bbb 2000 4 20, 15, 10, 5, (1950) 8, 8, 6, 6, (4) 0.7, 0.5, 0.4, 0.3, (0)
Sim4bbc 2000 4 20, 15, 10, 5, (1950) 8, 8, 6, 6, (4) 0.5, 0.4, 0.3, 0.2, (0)
Sim4bbd 2000 4 20, 15, 10, 5, (1950) 8, 8, 6, 6, (4) 0.4, 0.3, 0.2, 0.1, (0)
a Labeling system for Simulation Settings: [1][a][a][a] means easiest difficulty in each of

[(p,k)], [pg], [vg], and [cg] parameters, respectively. Sim1aaa is the easiest scenario,
Sim4bbd is the hardest.

b p=10 means 10 variables in simulated data.
c k=2 means 2 specified groups in simulated data.
d 4, 4, (2) means 4 variables in the first group, 4 variables in the second group, and 2 residual

variables.
e 10, 5, (1) means variables in the first group have a variance of 10, variables in the second

group have a variance of 5, and the residual variables have a variance of 1.
f 0.9, 0.6, 0 means variables in the first group are correlated with 0.9, variables in the second

group are correlated with 0.6, and residual variables have no correlation.
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Tuning Parameter Selection

Cross-validation methods aimed at maintaining good predictive qualities of the

underlying dataset were explained for each of the Sparse PCA methods in Section

2.3. They were implemented to determine the tuning parameters used in respective

Sparse PCA methods for each of the simulated datasets (with exception for the SPCA

methods at the highest dimension; see results). This means that iterations within

the same simulation setting could have used different tuning parameters, although

they were chosen based on the exact same criteria. These are perhaps the most

calculation-intensive ways to select tuning parameters. We could have just examined

fixed range of tuning parameters, or validated based on APEV or NZ (sparseness),

but since the cross-validation methods are built into the software packages, these are

most likely to be used in practice and therefore are most likely to be of importance.

Number of Simulation Iterations

For PCA, SPCA, and PMDSPCA methods, 1000 simulated datasets were gener-

ated for each simulation setting and used to obtain estimated loading vectors. For

SSPCA.h and SSPCA.l methods, a limit of 100 datasets were used, due to the com-

puting time needed to churn through the cross-validation method within the sspca()

function.
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3.2 Simulation Results

We will now deliver a concise yet complete summary of our simulation results. Focus

will be placed on comparing the Sparse PCA methods with one another and creating

a set of guidelines regarding which method to pick under different circumstances.

Not all results will be shown since the point is not to bombard the reader with

numbers, but to highlight the take-home messages. Full tables for every scenario are

available upon request. The Figures and Tables to come will be presenting the mean

values across all simulation iterations within a given simulation setting. Within most

simulation settings, the distribution of each calculated criteria across the simulated

datasets appeared to be centered and approximately normally distributed with very

few outliers, making the mean a representative statistic.

n = 100, p = 10 (n >> p): Sim1aaa - Sim1abd from Table 3.3

This ratio of p to n is 0.1 and, with only p = 10, is probably not of much practical

interest to researchers. Most of the time, 10 variables will not pose many issues and

PCA methods will not be called for. For this reason, we will spend little effort

scrutinizing these results and just brush lightly over the comparisons to familiarize

the reader with some Tables and Figures that reflect the larger-scale inspection to

come.

For now, have a look at Table 3.4, which displays a summary of the results from

the easiest environment, Sim1aaa (see Table 3.3 for parameters). The column headers

are each of the criteria we tested, split by PC number and the rows are the different

PCA methods, starting with the True (or expected) values in each of the criteria.
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Comparing the True row with any of the methods, one can quickly determine if the

method is performing as it should, or in other words, if the estimated loading vectors

are close to the true loading vectors.

Table 3.4: Results from Sim1aaa (presented as means): n = 100, p = 10, k = 2, pg
= c(4, 4, 2), vg = c(10, 5, 1), cg = c(0.9, 0.6, 0)

Method
NZ TRUENZ TRUEZ ANGLE APEV

ORTH
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

TRUE 4 4 4 4 6 6 0 0 59.68 22.58 0
PCA 10 10 4 4 0 0 0.11 0.14 60.08 22.46 0

SPCA 8.52 9.47 4 4 1.48 0.53 0.1 0.13 60.06 22.46 0.46
PMDSPCA 7.91 8.41 4 4 2.09 1.59 0.06 0.09 59.72 22.61 0.85

SSPCA.h 4.29 5.37 4 3.81 5.71 4.44 0.04 0.16 59.31 21.77 0.4
SSPCA.l 5.62 6.58 4 4 4.38 3.42 0.04 0.09 59.37 22.67 0.7

Under this easiest setting, there are only 2 groups of large size, relative to our

small dimension of p = 10, that have distinguishable variances and high within-

group correlations. With the lowest ANGLE values and most TRUEZ captured, the

SSPCA.h method estimates the true loading vectors with the most accuracy. Both

SPCA and PMDSPCA methods have a hard time capturing the true zero loadings,

making them only marginally more useful than Classical PCA.

As we decrease the within-group correlations, we arrive at Sim1aac (see Table

3.3), with results displayed in Table 3.5. It seems that SPCA and SSPCA methods

lose true zeros, especially in PC2, whereas PMDSPCA becomes the most success-

ful method by correctly classifying almost all true zeros and non-zeros. It should

be noted that although classification was excellent, ANGLE values suffer; meaning

loading weights were distorted from the true combinations.

To summarize findings across this data dimension, SPCA was only fractionally

better than Classical PCA. (Keep in mind that we are using cross-validation methods
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Table 3.5: Results from Sim1aac (presented as means): n = 100, p = 10, k = 2, pg
= c(4, 4, 2), vg = c(10, 5, 1), cg = (0.5, 0.4, 0)

Method
NZ TRUENZ TRUEZ ANGLE APEV

ORTH
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

TRUE 4 4 4 4 6 6 0 0 40.32 17.74 0
PCA 10 10 4 4 0 0 0.16 0.28 41.08 18.12 0

SPCA 9.4 9.93 4 4 0.6 0.07 0.16 0.28 41.08 18.12 0.07
PMDSPCA 4.53 4.45 3.96 3.95 5.43 5.5 0.35 0.37 37.93 16.93 0.19

SSPCA.h 4.41 7.33 4 3.56 5.59 2.23 0.11 0.37 40.22 17.02 0.6
SSPCA.l 5.83 7.28 4 3.89 4.17 2.61 0.13 0.25 40.33 17.85 0.74

to select the tuning parameters; as described in Section 2.2.1, the spca() function

is able to select a specified number of non-zero loadings for each PC - perhaps this

would be best to use for this data dimension). The SSPCA.h method shows the

best performance in all categories for the leading PC and, in easier scenarios, PC2

as well, but the PMDSPCA becomes the method of choice when injecting difficulty

via making the variances less distinguishable or lowering within-group correlations,

especially if you care about subsequent PCs.

n = 100, p = 50 (n > p): Sim2aaa - Sim2bbd from Table 3.3

This is where using Sparse PCA methods become more crucial. The p to n ratio

is 0.5 and still won’t cause many issues, but there is a need for interpretable PCs.

Since there are more variables to work with, the size of the groups will be fluctuated

here.

For large-group cases (Sim2a..), at high within-group correlations, the SSPCA.l

and PMDSPCA methods are the best to use since they classify almost every loading

correctly. The SSPCA.h method perfectly classifies the leading PC, but it fails to

inject enough sparseness to the loading vector of PC2 for it to be interpretable. Once
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lower within-group correlations are present, PMDSPCA rises to the occasion while

the SSPCA methods fall off due to over-sparseness; in some cases they return loading

vectors holding just one or two non-zero loadings. SPCA always captures all non-

zero loadings, but only attains a maximum of mid-level sparseness at the easiest of

scenarios, from which it quickly depreciates.

For small-group cases (Sim2b..), at the highest within-group correlations and

distinguishable between-group variances, the SSPCA.l method is clearly best to use,

as PMDSPCA seems to struggle at obtaining sparseness in this setting; contrary

to PMDSPCA’s good qualities when large groups were present. But as soon as

within-group correlation is dropped here, SSPCA methods become over-sparse; an

amplified version of what was seen in the large-group case. In fact, when between-

group variances become less distinguishable, SSPCA methods never achieve more

than one non-zero loading in the loading vector of their leading PC, making them

completely impractical. The extent of this issue is shown in Table 3.6.

PMDSPCA experiences minor drops in true non-zero classification and large in-

creases in true zero classification when within-group correlation decreases and usually

only sees large differences in the lowest of within-group correlation scenarios. The

SPCA method never gains sparseness in its estimated loading vectors, thus not im-

proving interpretation upon Classical PCA.

n = 100, p = 200 (n < p): Sim3aaa - Sim3bbd from Table 3.3

The p to n ratio is 2 and now poses a threat to usual statistical analyses. Sparse

PCA methods can serve great purpose under this data dimension, since 200 variables
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Method
NZ TRUENZ TRUEZ ANGLE

ORTH
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Sim2baa

TRUE 5 5 5 5 45 45 0 0 0/1
PMDSPCA 27.24 23.21 5 5 22.76 26.79 0.09 0.12 0.98

SSPCA.h 5 13.85 5 3.69 45 34.84 0.11 0.47 0.67
SSPCA.l 5 5.66 5 4.9 45 44.24 0.04 0.12 0.05

Sim2bab

TRUE 5 5 5 5 45 45 0 0 0/1
PMDSPCA 25.63 20.37 5 5 24.37 29.63 0.11 0.15 0.97

SSPCA.h 4.02 6.46 3.57 1.51 44.55 40.05 0.5 0.89 0.84
SSPCA.l 2.37 3.85 2.19 1.26 44.82 42.41 0.75 0.83 0.21

Sim2bba

TRUE 5 5 5 5 45 45 0 0 0/1
PMDSPCA 18.2 15.08 4.99 4.99 31.8 34.91 0.11 0.16 0.88

SSPCA.h 1 4 1 0 45 41 0.89 1 0
SSPCA.l 1 1 1 0 45 44 0.89 1 0

Table 3.6: It is clear to see that under the easiest of small-group simulation set-
tings, Sim2baa, the SSPCA.l method does exceptionally well in every category, even
maintaining orthogonality amongst its loading vectors. SSPCA.h attains a great
leading PC, but PC2 lacks sparseness. But as we slightly decrease the within-group
correlations and move to Sim2bab, SSPCA.l becomes over sparse; this effect is ex-
tremely amplified when balancing the group variances in Sim2bba and is realized by
SSPCA.h too. Meanwhile, PMDSPCA actually improves sparseness under the more
difficult settings.

are not pretty to work with. Since there are more variables to work with here, smaller-

group cases have employed a third underlying group and therefore we will examine

PC3.

For large-group cases (Sim3a..), at high within-group correlations, the SSPCA.l

method returns very accurate and orthogonal loading vectors with barely any nega-

tive characteristics to report. SSPCA.h also does very well but, as seen previously,

still fails to capture true zeros in subsequent PCs. However, like in the previous data

dimensions, the SSPCA methods both become over-sparse and lose the majority of

true non-zero loadings when within-group correlations are reduced, making them not

viable in these environments. Not indicative of the lower-dimensional scenarios thus

far, the SPCA method does very well in all aspects, except orthogonality preserva-

tion. The SPCA results show a natural decline of accuracy and classification while
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decreasing within-group correlations or merging between-group variances, whereas

PMDSPCA again steps up as the best method in these more difficult scenarios. It

seems that PMDSPCA is continuously the go-to method under difficult scenarios

but only sometimes sparse enough in easier scenarios.

For small-group cases (Sim3b..), only in the easiest variance structures and for

the leading PC do the SSPCA methods properly classify non-zero loadings while

being very sparse. Otherwise, they experience over-sparse and unreasonable repre-

sentations. The SPCA method still performs as well as it did with the large-group

settings, but with reduced sparseness. However, its performance is robust to bal-

ancing group variances and decreasing within-group correlations; from 69% to 54%

true zero loadings captured in the loading vector of the leading PC over the range

of settings, with only fractional changes in ANGLE and APEV. The PMDSPCA

method begins slightly less sparse than SPCA at the highest within-group corre-

lations and differing variances, but improves in the more difficult scenarios. SPCA

maintains almost perfect capture-rate of the true non-zero loadings for all PCs across

all small-group settings in this data-dimension, whereas PMDSPCA loses some at

lower within-group correlations with balanced group variances.

n = 100, p = 2000 (n << p): Sim4aaa - Sim4bbd from Table 3.3

This data has a p to n ratio of 20 and demonstrates an extremely troublesome

dataset for researchers. Under this very high-dimensional setting we expect realistic

datasets to hold more natural underlying groups. Noting this, we have built scenarios

to include either three large groups or four small groups and captured PC3 and PC4
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as well; PC3 for large group cases and both PC3 and PC4 for small group cases.

The cross-validation method for SPCA was extremely time-consuming as it is not

clear as to which tuning parameters to try and some choke the process. Instead of

using this prediction-based cross-validation approach, we selected tuning parameters

that resulted in the most sparse solution while not losing much APEV from the try

before. If the APEV for any PC dropped by more than 50%, we chose the tuning

parameter from the prior attempt. Also, here we took advantage of the arraysp()

function that the authors specifically made for very high-dimensional data.

For large-group cases (Sim4a..), this altered approach to the SPCA method out-

performs any of the more recent methods in all criteria while tested under the sim-

plest variance-covariance conditions; when the group variances are distinguishable

with high within-group correlations. The SPCA method remains the best method

until the lowest within-group correlations are present or until between-group vari-

ances are less distinguishable, at which point sparseness is greatly lost. In these

more difficult cases the PMDSPCA method returns the most sparse loading vectors

that also maintain a better angle to the true loading vectors (ANGLE) at only a

slight expense of explained variance (APEV) loss; it still achieves larger-than-true

explained variance (APEV). In fact, the true APEV is exceeded on most occasions

by all methods. The SSPCA methods do not have any troubles with over-sparseness

under any of the large-group settings in this high data dimension. The SSPCA.h

method is able to extract leading PCs that have sparse and accurately estimated

loading vectors, but subsequent PCs greatly lack these desired qualities. If one cares

only about the leading PC, the SSPCA.h method will suffice. The SSPCA.l method
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perfectly classifies the true non-zero loadings but fails to inject enough sparseness to

out-do the performance of SPCA and PMDSPCA methods.

For small-group cases (Sim4b..), the SSPCA.h method returns the best classified

and most sparse loading vector for the leading PC under all within-group correlation

levels while group variances are distinguishable. When group variances are balanced

up, it loses sparseness in its leading PC, and already present ANGLE inefficiencies

are severely increased; the loadings might be classified decently, but wrong weights.

Following prior trends, it still cannot provide subsequent loading vectors with enough

sparseness to surpass the other competing methods. With distinguishable group

variances, SSPCA.l and PMDSPCA methods generate excellently classified loading

vectors that also possess good ANGLE criteria for all four PCs; especially good

compared to SPCA and SSPCA.h methods. However, when group variances are

balanced, PMDSPCA loading vectors remain sparse while ones from SSPCA.l lose

sparseness. To this end, the ANGLE from PMDSPCA is superior and we recognize

that it is probably the only method to return interpretable PCs; the SPCA method

practically reduces to Classical PCA in terms of sparseness.

Figure 3.3 shows a series of graphics that emphasize the continued theme that

has been shown yet again in these very high-dimensional cases; PMDSPCA working

in the presence of more difficult settings.
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Figure 3.3: Showing the continued trend from our simulation results; how the PMD-
SPCA method is grows superior in sparseness under more difficult variance struc-
tures. The top graph is the easiest case, the bottom graphs represent more difficult
cases.

3.3 Conclusions, Extra Information, and Limita-

tions

Conclusions by Sparse PCA Method

The simulation results are delivered in the above organization for good reason.

They are first partitioned by data dimension, and then partitioned by large-groups

vs. small-groups. Within these categories, the effects of ranging the across-group

variances and within-group correlations are discussed. This organization might help a

researcher with a real dataset find the simulation results to the general scenario they

are dealing with. The data-dimension of a dataset is obvious in practice and detecting
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if there are large groups or small groups might be relatively easy to do with the sample

variance-covariance matrix (see Chapter 4 for this demonstration). But determining

if the groups are distinguishable and their specific within-group correlations might

be more difficult; hence we have not discussed these in immense detail. Perhaps, a

more concise set of conclusions, organized by the methods themselves, will benefit.

While using cross-validation methods, SPCA rarely improves upon Classical PCA

when n > p but becomes useful and, in easier cases, perhaps optimal when n < p.

However, we experienced the cross-validation methods proposed by the paper to be

troublesome and time-consuming when n << p, forcing us to choose tuning param-

eters based on other criteria; a compromise between sparseness and APEV. When

doing so, SPCA performed exceptionally in the presence of large groups with dis-

tinguishable variances and high within-group correlations (easiest cases), but gradu-

ally depreciated when shrinking group size, balancing group variances, and lowering

within-group correlation (harder cases).

While using cross-validation methods, PMDSPCA was very successful in surpris-

ing ways. It was the only method to continually perform well for all PCs, in the

more difficult scenarios across all data dimensions. This makes it the go-to choice

when there is a low amount of signal in your dataset.

While using cross validation methods, SSPCA.h was excellent at correctly clas-

sifying the leading PCs loading vector and was generally a good choice, but subse-

quent PCs are always less sparse than other methods and have worse ANGLE. The

SSPCA.l method strongly asserted itself as the optimal method under easier settings

and, contrary to the SSPCA.h method, was able to extract accurate subsequent PCs
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as well as the leading PCs. Even in the highest data-dimensions, this method is a

competitor, but sometimes it falls to over-sparseness.

Extra Attempts and Errors

The PMDSPCA option ‘orth=TRUE’ was tried in all 56 simulations but only

realized marginal gains in orthogonality and returned results in estimation criteria

that were only slightly different, if at all, from those returned by regular PMDSPCA.

Some NAs were contracted in one of the simulation settings. For simulation

setting Sim1abd, both SSPCA methods returned an error message, possibly to do

with failure to converge, for some of the generated datasets (approximately 1 out of

7 datasets for SSPCA.h, and potentially more frequent for SSPCA.l).

Limitations

The simulation settings chosen spanned a broad range of possible data-types that

may be encountered in practice. However, some of the most challenging datasets in

today’s research can have millions of variables. Since this thesis employed time con-

suming cross-validation based tuning parameter selection, p = 2000 was the highest

number of variables used in simulation. In some of our p = 2000 settings, the SSPCA

methods, where only 100 datasets were generated, took over 400 hours to run on a

12-core work station.

Since generating datasets with millions of variables was not computationally fea-

sible, we suggest that the p to n ratio is the way to match our simulation results

to real data problems. The gene expression dataset in Chapter 4 will be compared
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to the simulation settings via this matching criteria as it exemplifies the very high-

dimensional data-type.

The variance-covariance matrices that define the simulation settings in this thesis

involve only positive correlations. This guarantees a positive definite matrix and

therefore all eigenvalues are non-negative. If negative correlations were introduced,

as could be seen in practice, there is a chance to experience negative eigenvalues.
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Chapter 4

Real Data Application of SPCA

With simulation results in hand, applying Sparse PCA methods to real-world datasets

becomes less scary. Instead of blindly computing sparse loading vectors that might

not translate the underlying grouping structure, we can review our simulation results

to determine which methods might lean closer to the truth. Of course, this requires

a careful matching of the real-data scenario to a simulation scenario via the variance

structure. In this Chapter, we will demonstrate how to use the information gath-

ered from the simulations in Chapter 3 to choose an appropriate Sparse PCA method

when confronted with a high-dimensional dataset in practice and follow through with

an analysis.
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4.1 Gene Expression Dataset from SickKids Hos-

pital

The dataset we will use to demonstrate the use of Sparse PCA was graciously lent to

us from SickKids Hospital (Toronto, ON); principal investigator Dr. Yigal Dror. It

contains p = 54675 probsets (variables) with only n = 22 patients (observations), ex-

emplifying the ‘small n, large p’, high-dimensional case that most researchers fear. Of

the 22 patients, 9 have a condition called Shwachman-Diamond Syndrome (SDS), 5

have a condition called Fanconi Anemia (FA), and the remaining 8 are deemed as con-

trols since they do not have any conditions of interest (CONTR). Both Shwachman-

Diamond Syndrome and Fanconi Anemia are very rare diseases that are primarily

linked to bone marrow failure. Bone marrow is responsible for producing the red

and white blood cells in charge of carrying oxygen throughout the body and fighting

off infections, and the platelets that helps our blood clot when we bleed. With these

major functions failing, both SDS and FA are very serious and often fatal conditions.

The variables captured from the 22 participants are called probsets; continuous mea-

sures representing the amount of biological expression coming from parts of their

genes. Increased expression (higher value of the probset variable) means a more ac-

tive part of the gene. Perhaps determining the probsets more active in these diseases

compared to the control group will help researchers understand the cause of SDS

and FA from a genetic level. Or maybe there is some interest in finding out which

genetic variants separate the two conditions, ignoring the control.

To determine the important probsets, we could run many t-tests and determine
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individual ones with significant differences across groups; something known as search-

ing for differentially expressed genes (DEGs). But perhaps uncovering an underlying

genetic structure in terms of variances and correlations with a Sparse PCA method

will allow for a more concise analysis. Regardless, we are faced with 54675 probsets;

an overwhelming number from which even Sparse PCA methods might have a dif-

ficult time providing insight. Thankfully, it is common to do some pre-processing

on a gene expression dataset. Before analysis we remove probsets that have very

little variation to begin with, since they wont provide much chance for difference

detection anyway. This process is referred to as ‘filtering’ and can be done via any

reasonable criteria that judges variation. We chose to filter out probsets that had

an inter-quartile-range (IQR) below a threshold such that less than 500 of the orig-

inal probsets remained (we also tried filtering by mean absolute deviation but did

not realize much difference). This helps us demonstrate how to connect simulation

results to a real data problem since, with n = 22 observations, the resulting dataset

would have a p to n ratio of approximately 20, matching our simulation scenarios of

n = 100 and p = 2000. The resulting dataset has n = 22 and p = 436 can be seen in

Table 4.1. It should also be noted, for those educated in how gene expression data is

usually handled, GCRMA normalization was used on the original data; this has no

significant bearing on how to apply Sparse PCA.

To connect it to a specific simulation scenario, we need to explore the sample

variance-covariance matrix. How many underlying groups do there appear to be?

How large are the variances and strong are the correlations within the groups? Are

the groups distinguishable? With the conclusions from wide range of simulations
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Table 4.1: Gene Expression Data from SickKids Hospital.

1552316 a at 1552318 at 1552480 s at . . .
SDS.1 8.09 7.53 4.63 . . .
SDS.2 7.96 9.16 2.83 . . .
SDS.3 6.70 6.84 5.53 . . .
SDS.4 8.89 8.62 4.45 . . .
SDS.5 5.80 7.04 3.67 . . .
SDS.6 7.02 7.50 5.50 . . .
SDS.7 8.14 7.90 3.56 . . .
SDS.8 9.57 9.94 6.30 . . .
SDS.9 7.89 6.33 2.63 . . .

FA.1 9.34 9.18 4.10 . . .
FA.2 9.38 9.26 5.95 . . .
FA.3 6.54 6.28 2.84 . . .
FA.4 6.97 6.20 4.25 . . .
FA.5 9.70 9.49 2.85 . . .

CONTR.1 5.44 6.33 5.49 . . .
CONTR.2 8.78 7.96 6.02 . . .
CONTR.3 7.77 7.13 2.92 . . .
CONTR.4 9.04 8.21 2.31 . . .
CONTR.5 8.67 8.01 2.41 . . .
CONTR.6 4.71 4.21 2.80 . . .
CONTR.7 5.85 5.86 5.02 . . .
CONTR.8 4.59 6.03 4.55 . . .

being a bit more generally targeted to how ‘difficult’ the scenario, perhaps a simpler

exploration is sufficient. The sample variance-covariance matrix is displayed in Figure

4.1. Quickly, one realizes that the probsets are not in a nice order as were the variables

in our simulated datasets (Figure 3.2 from Section 3.2 is an example of a nice order).

In attempt to visualize some block-structure, we use a clustering algorithm to align

the variables as would be needed to draw a dendrogram. Clustering algorithms
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Figure 4.1: The sample variance-covariance matrix for the normalized and filtered
gene expression data from SickKids Hospital. p = 436 variables.

will systematically group (cluster) variables based on similarity measures, like the

correlation matrix or euclidean distance, and a dendrogram is simply a tree and leaf

visual that shows us the protruding clusters of variables. A clustering algorithm to

organize variables together with overlaying color on the dataset makes for an excellent

visualization tool that precedes many analyses of gene expression data. The visual

applied to our gene expression data is shown in Figure 4.2 and is referred to as a

‘heatmap’, as already introduced while discussing simulations. Heatmaps that use

clustering will show patterns of color where samples and variables are associated and

therefore attempt to accomplish one of the missions Sparse PCA sets out to do; find

natural groupings of variables. It is important to note that the similarity measures

they are based on are not tied down to any statistical foundations. By constrast, this

is a quality that Sparse PCA benefits from and therefore it might be the superior tool.
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Figure 4.2: A heatmap for the gcrma-normalized and filtered gene expression data
from SickKids Hospital. p = 436 variables. A clustering algorithm was used on the
variables but not on the samples.

We will proceed with the Sparse PCA analysis example by borrowing the cluster-

based ordering of variables, as mentioned before. The ordered sample variance-

covariance matrix is shown in Figure 4.3. To further highlight potential blocks of

variables, the same image strategy is used on the sample correlation matrix and a

more intensifying color scale is attempted. The same sample correlation matrix can

be found plotted twice, the second with a more revealing color scale, in Figures 4.4a

and 4.4b.

It is now rather obvious that there are tightly compact groups of variables in the

436 top-most variable probsets, as dictated by their correlation. But things are not

as clean-cut as they were in with the simulation data. There is a surprising amount

of lower-level (r = 0 to 0.5) correlation amongst the variables in this dataset, as seen
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Figure 4.3: The sample variance-covariance matrix for the normalized and filtered
gene expression data from SickKids Hospital. p = 436 variables ordered by clustering
algorithm.

by the difference between sample correlation images in Figures 4.4 (a) and (b). Now

here comes the leap of faith. Although educated by our imaging techniques, we hope

to tie the sample variance structure directly to a similar one used in the simulation

settings. There seems to be a relatively small group with very high variance and high

within-group correlation right in the mid-section of the sample variance-covariance

matrix. Apart from this, there are a few larger groups with lower variance and lower

within-group correlations. Perhaps this suggests we are dealing with a less ‘difficult’

scenario for PCA method performance. Looking to some of the simulation settings

in the n = 100, p = 2000 category that had larger, more distinguishable groups, with

high within-group correlation might prove most successful.

Results from these simulations dictate that the PMDSPCA method by Witten et
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(a) Regular black to green color scale. (b) Color scale adjusted to focus on high
correlations

Figure 4.4: The sample correlation matrix on different color scales; trying to reveal
variance structure of the SickKids Gene Expression dataset.

al. shows the least misclassification (TRUENZ, TRUEZ) and most accurate loading

values (ANGLE). Initially, we chose tuning parameters based on the cross-validation

method as suggested in their paper and exercised in our simulations, but quickly

realized a flaw to this design. The resulting loading vectors were not very sparse;

PC1 had 382 non-zeros, PC2 had 436 non-zeros, and PC3 had 399 non-zeros. In gene

expression data analyses, it is often more beneficial to narrow down only a few genetic

variants to aid researchers in further exploration; it would be nice to give them a

very concise list before relaxing the tuning parameter. To deliver small subsets of

probsets in the loading vectors, we take advantage of the computational efficiency of

the PMDSPCA method to systematically try a sequence of tuning parameters and

judge APEV and NZ along the way. We choose the tuning parameter that maintains

a concise set of probsets in each loading vector while not losing much APEV. The

first three PCs are considered when selecting a tuning parameter from this strategy.
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APEV and NZ values for the first three PCs over a sequence of specified tuning

parameters are given in Table 4.2. We chose λ = 2.7, where PC1 has 9 non-zero

loadings, PC2 has 13, and PC3 has 11. Selecting this was rather arbitrary without

consulting a researcher with specific needs. These concise groups of variables are

very nice for exploration but sacrifice APEV; PC1 explains 9.71% of the variance,

PC2 explains 2.63%, and PC3 explains 2.82%. As seen during simulations, we realize

a slightly higher variance in the third component as compared to the second. The

non-zero elements of the loading vectors are presented in Tables 4.3a, 4.3b, and 4.3c;

note that they are presented anonymously since genetic findings must be confirmed

with the principal investigator before being displayed. To verify that these probsets

are indeed grouped by some standard, we show their sample variance-covariance

matrices in Figures 4.5a, 4.5b, and 4.5c. As one can see, the probsets from PC1

comprise a tightly-packed, high-variance group of variables and the probsets from

PC2 and PC3 comprise groups of lesser variance. It would now be convenient for

researchers to use these PCs to try and detect differences between diseases and

control groups. If a PC is found to be associated with disease outcome, the benefits

as opposed to finding DEGs from the original dataset is two-fold. The process

for finding these relationships involves looking at just 3 variables instead of the

mass amount presented before and the resulting relationships can be attributed to

a group of variables, since Sparse PCA provides this information through exploring

their covariance, thus allowing the researchers to possibly attribute associations to

a network of variables. Of course, the analysis should not simply conclude that a

group of variables are ‘definitely’ cohesive and ‘definitely’ jointly associated with
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Table 4.2: Selecting Tuning Parameter for Sparse PCA analysis of SickKids Gene
Expression data by judging APEV and NZ values as we range λ. We chose λ = 2.7.

λ
APEV NZ

PC1 PC2 PC3 PC1 PC2 PC3
1.5 3.60 2.73 0.57 3 4 4
1.6 4.04 2.99 0.64 4 3 4
1.7 4.49 3.32 0.71 5 3 4
1.8 4.96 3.48 0.79 6 4 4
1.9 5.44 3.56 0.87 6 5 5
2.0 5.95 3.56 1.81 7 5 6
2.1 6.46 3.52 1.96 7 8 6
2.2 7.00 3.54 2.10 7 7 6
2.3 7.54 3.65 2.25 7 7 7
2.4 8.09 3.75 2.39 8 10 9
2.5 8.64 2.35 2.53 8 12 10
2.6 9.18 2.49 2.68 8 13 10
2.7 9.71 2.63 2.82 9 13 11
2.8 10.21 2.68 2.96 9 19 12
2.9 10.69 2.83 3.11 12 19 14
3.0 11.16 2.99 3.25 12 20 15
3.1 11.60 3.15 3.39 13 20 17
3.2 12.03 3.31 3.54 13 22 18
3.3 12.43 3.48 3.68 16 22 18
3.4 12.81 3.64 3.82 18 24 21
3.5 13.17 3.81 3.97 18 26 21
3.6 13.51 3.99 4.11 19 26 23
3.7 13.84 4.17 4.25 19 28 25
3.8 14.13 4.34 4.38 20 29 27
3.9 14.40 4.53 4.51 21 30 28
4.0 14.64 4.71 4.64 21 31 30
4.1 14.85 4.90 4.73 27 31 33
4.2 15.04 5.09 4.82 33 33 35
4.3 15.21 5.28 4.89 39 36 38
4.4 15.37 5.47 4.97 40 36 38
4.5 15.53 5.66 5.06 46 39 38
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Probset PC1
Probset 1 0.544
Probset 2 0.440
Probset 3 -0.392
Probset 4 -0.320
Probset 5 0.292
Probset 6 -0.279
Probset 7 0.256
Probset 8 0.161
Probset 9 0.017

(a) 9 non-zero loadings

Probset PC2
Probset 1 -0.696
Probset 2 -0.519
Probset 3 -0.251
Probset 4 -0.212
Probset 5 -0.201
Probset 6 -0.147
Probset 7 -0.140
Probset 8 -0.134
Probset 9 -0.134

Probset 10 -0.112
Probset 11 -0.064
Probset 12 -0.047
Probset 13 -0.044

(b) 13 non-zero loadings

Probset PC3
Probset 1 0.568
Probset 2 0.504
Probset 3 0.356
Probset 4 0.303
Probset 5 0.302
Probset 6 0.271
Probset 7 0.124
Probset 8 0.098
Probset 9 0.092

Probset 10 0.081
Probset 11 0.001

(c) 11 non-zero loadings

Table 4.3: The non-zero loadings from loading vectors for PC1, PC2, and PC3;
Sparse PCA analysis of the Sick Kids Gene Expression dataset.

the disease outcome; exploring each contributing variable within the associated PC

would be more confirmatory. Nonetheless the power of Sparse PCA is realized in

this real data situation through its classical claims to fame; dimension reduction and

superior exploration.

4.2 Struggles with Real Data Analysis

It is worth pointing out some of the struggles that a researcher with real data will

go through while using a Sparse PCA method. Some of the more ‘hazy’ decisions

and statements occurring in the analysis of the gene expression data above are so

for good reason. They are: 1) Choosing the tuning parameter, and 2) Concluding

results.
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(a) 9 probsets had non-zero loadings

(b) 13 probsets had non-zero loadings (c) 11 probsets had non-zero loadings

Figure 4.5: The sample variance-covariance matrices for variables that make up PC1,
PC2, and PC3 from the Sparse PCA analysis of the Sick Kids Gene Expression
dataset.

The first dilemma of choosing the tuning parameter can be handled more easily

by properly defining what it is you want out of the analysis to begin with. If you

care purely about exploring the dataset and finding groups of variables to better

summarize your data, then you will want to consult the variance-covariance and

correlation matrices, as we did in Figures 4.3 and 4.4, more seriously. They will

provide insight into how large the groups are along with how many, giving you

an approximate number of non-zero loadings to aim for while adjusting the tuning

parameter. In the example given with the gene expression data above, this was not

the overall focus. Yes, it would still be nice information to capture, but ultimately
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we were interested in finding smaller groups first to provide a quicker look. In this

case, choosing the tuning parameter is not as difficult as it depends on how small

you want the final groupings to be. The choice of tuning parameter will also affect

the second dilemma of concluding your results.

If you are simply looking to explore the data, then concluding results is not diffi-

cult at all; just report which variables were grouped together. But if you are looking

to use the Sparse PCs in a regression procedure, as we contemplated with the gene

expression data, then having loading vectors that are more sparse will make it easier

to explain the results. This ties back to the original issues of classical PCA which

are not completely alleviated by Sparse PCA methods when the tuning parameter

is not forcing that much sparseness into the loading vectors. Interpreting the PCs

will still be quite difficult if there are too many non-zero loadings, so convincing

a colleague or journal that the resulting PC has underlying meaning might require

a more strict tuning parameter. This is how we handled the gene expression data

example. Keeping a concise list of probsets in each loading vector means further

research and conclusions become easier, especially to report.
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Chapter 5

Discussion and Future directions

We’d like to take a moment to summarize this thesis and reflect on its discoveries.

We’ll start by discussing the findings and take-home messages and then conclude

with some ideas for future work in this field.

5.1 Discussion

Under the presence of high-dimensional data the Sparse PCA methods explored in

this thesis may be the smartest approaches to simplifying some of today’s most

high-dimensional data related questions. They can give focus to a blurry dataset

by highlighting important features in a way that drastically reduces complexity of

analysis. Applied to very high-dimensional datasets where variable selection is im-

portant, the sparseness of these methods can help ‘pull the needle from the haystack’,

so to speak. However, are the methods confusing a common piece of straw for the

needle?

105



M.Sc. Thesis - Ashley Bonner McMaster - Mathematics & Statistics

Misclassification is a dangerous and possible by-product of Sparse PCA which

can stray researchers from the main variables of interest. Apart from classification

issues, hitting similar loading weights is important to accurately represent a PC

by appropriate contributions. Through simulations in this thesis, we’ve discovered

that some methods become over-sparse with prediction-based cross-validation tuning

parameter selection, while others are remain not sparse enough. The most exciting

cases are where the Sparse PCA methods get things just right. Unfortunately, these

seem to rarely occur and so, under most circumstances, we can expect to either miss

some important information or pull in some unimportant information. Since the

easier data-structures are more likely to have a Sparse PCA method work well, it

was exciting to find that one method (PMDSPCA) works very well under the more

difficult settings. This means that it does matter which method is chosen to obtain

sparse PCs and that simulations, like the ones in this thesis, should be consulted to

understand which method to use.

For the times where over-sparse results are obtained, one could argue that simply

relaxing the constraint amongst loading vectors would solve the problem. However,

who is to say we will know the true number of non-zero loadings to aim for? What if

we go too sparse and miss a crucial genetic marker? It is certainly more time consum-

ing to use cross validation procedures, but perhaps they are most viable since they

attempt to relieve the tuning parameter selection process of some human error while

optimizing criteria of interest. Under several accounts, the SSPCA methods experi-

enced over-sparseness to the point of having only one loading in each loading vector.

In this case, a researcher must explore other ways to choose tuning parameters in
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order to draw a more useful picture from the original data.

Ultimately, if computing power is not restrictive, trying all three of the Sparse

PCA methods could be the most beneficial. Finding groups of variables that repeat-

edly show up together would be an ideal indicator of importance.

5.2 Future directions

Sparse PCA is a new and hot topic right now so much simulation work is available for

statisticians. Since there are many elements to consider when testing a Sparse PCA

method through simulation, it is hard to generalize results. This thesis, for example,

tests the performance of three specific methods while selecting tuning parameters

primarily via prediction-based cross-validation. The simulation strategy chosen was

to generate data from a multivariate normal distribution by restricting the variance-

covariance matrix to block-diagonal form. The simulation settings chosen were meant

to expose pocketed scenarios, instead of providing a fine-tuned range for specific

parameters for interest. One can imagine many alternative simulation studies that

could compliment the results from this thesis.

By fixing all but one of the varied parameters, we might be able to come up with

performance thresholds for the Sparse PCA methods. Doing so could provide very

useful information, but only for a specific subset of settings one would encounter.

Our simulation results suggest that PMDSPCA might be the go-to method for the

‘harder’ data scenarios that may be more prevalent in modern data environments,

where very high-dimensional data is being collected; perhaps further exploration of
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this method and its performance thresholds could benefit.

Since tuning parameters completely dictate Sparse PCA results, it would be in-

teresting to select them in other ways. For example, balancing explained variance

and sparseness can be done based on minimal sacrifice in both categories, as we tried

for SPCA in n << p data-dimensions.

The criteria that we used to evaluate the performance of the Sparse PCA methods

was synthesized from literature sources and hopefully sets the bar for rigid evaluation

in future research. That said, perhaps more invasive measures can be used to judge

how well groups have been captured. The ANGLE, TRUENZ, and TRUEZ criteria

capture important information with regards to accuracy and classification, but it

could be of interest to look at the number of simulation iterations that successfully

captured complete groups of variables; missing none.

A concept not explored in this thesis that could have significant impact is ro-

bustness of Sparse PCA results to our assumptions. Inference for regular PCA is

dependent on an assumption of a multivariate normality amongst the original vari-

ables. This assumption has naturally imposed itself to our simulations; we generated

the data using multivariate normal distributions. It would be interesting to see how

robust Sparse PCA results are to breaking this assumption. Like the n = 22 gene

expression dataset explored in Chapter 4, many of the high dimensional data found

in genetic research will not have high enough sample size to easily justify an assump-

tion of normality (of course, to justify multivariate normality is difficult in most cases

anyway). This assumption is therefore extra suspicious and the implications could

be rather dramatic if using the PCs in further inference.
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The code created for the simulations in this thesis are available upon request and

would be a good starting point for including new elements to Sparse PCA research.
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