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Abstract

In today’s retail environment, there are many consumer packaged goods (CPG) in the

same category with various brands and differential products under the same brand.

These differential products appear in different dimension sizes, display facing areas,

purchasing costs and selling prices which are competing for a limited space in retail

store shelves. Product assortment and space allocation of the chosen products to a

limited shelf space is becoming more and more important for retailers. This is espe-

cially true for supermarkets that are struggling to make ends meet in a market with

razor-thin profit margins. In this thesis we critically review the existing literature of

shelf space allocation optimization models and solution techniques. We then propose

a comprehensive model for shelf space allocation for a product category. Products are

allocated to a two-dimensional area of a shelf section where a shelf section consists

of multilevel vertical shelves. We account for adjustable shelf heights and product

and brand integrity in a shelf section. Unlike the existing optimization models in the

literature, we model our demand not only as a function of the space allocated to a

product, in terms of the number of display facings, but also as a function of vertical

product location in a shelf section and price sensitivity. Stackability of the products

is also considered and products can be stacked depending on their package. Our

objective is to maximize the retailer’s daily gross profits. We numerically show that
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incorporating price changes and adjustable shelf spaces can have major impacts on

the retailers profits. Finally, we provide directions and suggestions for future research

in this growing area of research.
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Notation and abbreviations

Indices:

I the set of all products in the product category

I+ the set of products that are included into the product assortment

I− the set of products that are not included into the product assortment

i (j) item index of the products that are included in the assortment (i, j ∈

I+, note that for models that do not consider product selection i, j ∈

I is used in order to simplify the notation in the model)

k (k′) item index of the products that are not included in the assortment

(k, k′ ∈ I−)

m shelf index of a shelf in the showroom inventory (m = 1,2,....,M)

n shelf index of a shelf in the backroom inventory (n = 1,2,....,N)

e shelf part index of a shelf m in the showroom inventory (e =

1,2,....,E)

z marketing variable index of the non-space marketing variables (z =

1,2,....,Z)

b brand index of different brands (b = 1,2,....,B)

o orientation index of a product i (o = 1, 2, 3)
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t time index of the period

t′ period index

Demand and Cost Parameters:

Di (Dim) Demand function of product i (on shelf m) (unit/day)

Π Total available potential demand of the product category (unit/day)

RD Random Demand (sum of all RDi’s,
∑I

i=1RDi)

PD Preference Demand (PD = Π−RD)

LD Loyal Customer Demand

GD Gained Demand (demand resulting from product switching within

the assortment)

AD Acquired Demand (demand resulting from product switching from

unstocked products to stocked products)

U Unmodified Preference (Ui = πi for product i) (unit/day)

UMDi Unmodified Demand of product i (UMDi = RDi + LDi in additive

form, RDi LDi in multiplicative form, UMDi = Ui = πi ) (unit/day)

MDi Modified Demand of product i (MDi = UMDi + GDi = RDi +

LDi + GDi in additive form, MDi = UMDiGDi in multiplicative

form) (unit/day)

ADi Acquired Demand of product i (unit/day)

SOBDi Stockout Benefit Demand of product i (unit/day)

SOLDi Stockout Loss Demand of product i (unit/day)

MinDi Minimum Daily Demand of product i (Lower Bound-Limit Demand)

in units of sales (= LDi) (unit/day)
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UDi Maximum daily demand of product i (Upper Bound-Limit Demand)

in units of sales (unit/day)

NDi Natural Demand of product i (demand before in-store support, very

similar to πi, however, πi reflects the demand when all marketing mix

variables are fixed, e.g. when product i has a fixed price and a base

level shelf allocation) (unit/day)

ψi parameter for product i’s portion of preference demand that is switch-

ing preference demand

τi parameter for product i’s portion of preference demand

θk (θj) parameter that reflects the resistance to compromise customer’s orig-

inal purchase decision from an unstocked (temporary stockout) prod-

uct k(j) to stocked products in the assortment

∆ij a probability ratio of switching from a stocked product i to another

stocked product j (θi +
∑

j ∈ I+
j 6=i

∆ij = 1)

δiom shelf location-orientation quality-adjustment weight corresponding to

display facing area allocated to product i in orientation o on shelf m

ξ parameter that reflects the range flexibility from the base level shelf

space allocation allowed by the decision maker (ranges between 0−1)

ζ•i parameters of the quadratic function for product i where • =

1, 2, 3, ...

Ωib parameter that transforms the purchase unit of product i under brand

b into its display unit

Ω′ib parameter that transforms the purchase unit of product i under brand

b into its sales units (Ωib ≥ Ω′ib)
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adv total advertising level for the product category

di total distribution level for the product category

ci(cib) unit cost (purchasing price for the retailer) of product i (under brand

b)

Ci Cost function for product i ($/day)

Pi Gross profit function for product i ($/day)

NP (NPi) Net Profit function (for product i) ($/day)

MADsolution Mean Absolute Deviation for the solution

MADbest

(MADworst)

Best (Worst)MAD value achieved when Psolution = Pworst (Psolution =

Pbest)

MAD%solution Percent of MAD value achieved by the solution

Psolution Gross Profit achieved by the solution

Pbest

(Pworst)

Best (Worst) Gross Profit achieved when MAD = MADworst

(MAD = MADbest)

P%solution Percent of Gross Profit achieved by the solution

Elasticity Parameters:

αi direct-space elasticity of product i, 0 6 αi 6 1

βij cross-space elasticity of product i to product j, −1 6 βij 6 1 for all

i 6= j , βii = αi

σi direct-price elasticity of product i, σi 6 0

µij cross-price elasticity of product i to product j , 0 6 µij for all i 6= j,

µii = σi
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σ′ib direct-price-change elasticity of product i under brand b as compared

to the previous period, σ′ib 6 0

µ′ib,j cross-price-change elasticity of product i under brand b as compared

to the previous period, −1 6 µ′ib,j 6 1 for all i 6= j, µ′ib,i = σ′ib

γzi the elasticity of product i relative to z-th marketing variable

λi operating cost elasticity associated with increased sales of product i

%i own-advertising elasticity of product i

%′ij cross-advertising elasticity of product i to product j

ςi own-distribution elasticity of product i

ς ′ij cross-distribution elasticity of product i to product j

ε elasticity parameter that reflects the marketing carryover effect

Scale Parameters:

π′i scale parameter of product i (= LDi) (unit/day)

π′′j scale parameter of product j (
∏I

j=1
j 6=i

π′′j = RDi) (unit/day)

πi scale parameter of product i (potential demand of product i, market

share-strength of product i without in-store support, base level de-

mand rate of product i when base level shelf space allocation is used)

(unit/day)

φi cost scale parameter of product i (DPCi is used by Bookbinder and

Zarour, 2001)

ϕm location scale parameter that reflects the increase of the demand rate

with respect to the shelf level when products are displayed on shelf m
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ϕi weighted average of location scale parameter of product i when prod-

uct i is displayed on more than one shelf

Product Parameters:

wi width of product i in showroom orientation

hi height of product i in showroom orientation

di depth of product i in showroom orientation

wbi width of product i in backroom orientation

hbi height of product i in backroom orientation

dbi depth of product i in backroom orientation

ȳib parameter representing whether product i under brand b is stackable

pi unit sales price of product i

pavg average sales price of products in the product category

pi
suggested suggested sales price of product i by the manufacturer or supplier

gi gross margin of product i (pi − ci, contribution to profit generated

by a unit of product i; DPPRi is used by Bookbinder and Zarour

2001)

blocki number of product i in a horizontal-vertical block (stack) if the prod-

ucts come in multi-packed cases such as twin-packed paper towels.

In Zufryden (1986), the ōi will be in incremental block units of blocki

ui the amount of space required per unit of product i (cm, mm, facing,

package, case, cm3)

vi (vim,

vime)

per facing profit (value) of product i (on shelf m, on part e of shelf

m, respectively)
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deviance a limit distance from one shelf to its adjacent shelf

fi variable(s) that may affect the demand of product i (space, retail

price, advertising, promotions, store characteristics)

fzi variables (where z = 1, 2, ..., Z) that may affect the demand of prod-

uct i other than space (retail price, advertising, promotions, store

characteristics)

weight weight of profit objective in the objective function given by the

decision maker (range between 0− 1)

1−weight weight of under base level allocation objective in the objective func-

tion given by the decision maker

Pmin
i

(Pmax
i )

minimum (maximum) selling price that can be assigned to product

i which is decided by the retailer or determined by the market

PCnegative
ib

(PCpositive
ib )

maximum allowable percentage of price increase (decrease) of prod-

uct i compared to the previous period which is decided by the re-

tailer

Shelf Parameters:

L (Lm,

Lme )

total width of the available shelf space (shelf m, part e of shelf m,

respectively) in showroom inventory

H (Hm) height of the available shelf space (shelf m) in showroom inventory

DE

(DEm)

depth of available shelf space (shelf m) in showroom inventory

BL total width of available shelf space in backroom inventory

BH total height of available shelf space in backroom inventory
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BDE total depth of available shelf space in backroom inventory

TH Total Height of the shelf section of the product category (TH =∑M
m=1Hm)

Hmin

(Hmax)

minimum (maximum) height of a shelf which is decided by the retailer

Lmini

(Lmaxi )

minimum (maximum) amount of shelf space to be allocated to product

i, in terms of total width-length, which is decided by the retailer.

Xmin
i

(Xmax
i )

minimum (maximum) quantity of product i to be allocated in show-

room inventory which is decided by the retailer.

X (Xm) available shelf space in showroom inventory, in terms of total number

of products, which can be allocated to the shelf (shelf m).

BX available shelf space in backroom inventory, in terms of total number

of products, which can be allocated to the shelf.

O total number of slots to be allocated to the products in showroom

inventory

Omin
i

(Omax
i )

minimum (maximum) number of slots to be allocated to product i in

showroom inventory

Inventory Parameters:

Qmin

(Qmax)

minimum (maximum) quantity of product i to be ordered from the

suppliers due to production, order size or procurement constraints

LTi Lead Time of product i (days)

IIi Initial Inventory of product i (unit)

INim(t) displayed Inventory of product i on shelf m at time t
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AIi (AIim) Average Inventory of product i (on shelf m) (unit)

IR Investment Rate of the products (%)

CTi

(CTim,

CTb)

Cycle Time of product i (on shelf m, joint replenishment of all prod-

ucts under brand b, respectively) (days)

CTmaxi Maximum Cycle Time of product i (expiration date of the product)

(days)

OC Order (Procurement) Cost - fixed ($/order)

OCb Order Cost of joint replenishment of all products under brand b ($/or-

der)

HCi Holding (Inventory Investment) Cost of product i based on the in-

ventory level (Average inventory level of the showroom and backroom

inventories will be used to simplify some of the models, e.g., see Ur-

ban (1998) and Hariga et al. (2007), in which demand is a function of

display inventory level, not the instantaneous inventory level) ($/day)

SCi Storage Cost of product i based on the allocated space in backroom

inventory ($/day)

DCi

(DCim)

Display Cost of product i (on shelf m) based on the allocated space in

showroom inventory (= storage cost for showroom inventory) ($/day)

GCi Guarantee Cost of product i (costs incurred by insurance, deteriora-

tion and returning) ($/day)

ICi Insertion Cost of product i to include it into the assortment - fixed ($)

xv



RCi Replacement (Rearranging, Restacking) Cost of product i each time

product i is rearranged on the shelves at the beginning of a new period

($/order)

ETib Expiration Time (holding time limitation) of product i (in days)

WD number of Working Days in a period

BU available Budget for purchasing products in a period

NR maximum allowable Number of Replenishments for all different types

of products in a period which is decided by the retailer

NRb maximum allowable Number of Replenishments for brand b from the

manufacturer or supplier

NFi

(NFib,

NBib)

total number of product i (under brand b in showroom inventory, under

brand b in backroom inventory, respectively) that can be placed in one

facing in case of a fixed shelf height (in vertical and depth column)

DLi Desired target level of product i placed on the width-length of the

showroom inventory

nDLi

(pDLi)

negative (positive) deviations from DLi

DBi Desired target level of product i placed on the width-length of the

backroom inventory

nDBi

(pDBi)

negative (positive) deviations from DBi

DPM Desired target level placed on Profit Margin by the retailer

nDPM

(pDPM)

negative (positive) deviations from DPM
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ps a penalty for nonproductive use of space

pm a penalty for negative deviation from DPM

psi a penalty for negative and positive deviations from DSi

pbi a penalty for negative and positive deviations from DBi

SV Sib slack variable

TCP Total Costs of Purchasing per period

TCO Total Cost of Joint Replenishment (Order Costs for all brands) per

period

TCH Total average Cost of Holding (inventory investment) per period

TCSP Total penalty in a period due to nonproductive use of space

TC Total Cost per period

TR Total Revenue per period

Decision and Consequence Variables:

xi (xim,

xime, xiom,

xib, xib,m)

number of display facings of product i (on shelf m, on part e of shelf

m, in orientatation o on shelf m, under family b or brand b, under

family b on shelf m, respectively) to be allocated to the width-length

of the shelf in showroom inventory

xbasei number of display facings of product i when product i is in base

level allocation (xbasei = πi
Π
X)

x̄ib,m number of display facings of product i from brand b to be allocated

to the height-length (bHm

hi
c) of shelf m in showroom inventory

x′i (x′ib) number of product i (under brand b) to be allocated to the width-

length of the shelf in backroom inventory
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x̄′i number of product i to be allocated to the height-length (bHn

hi
c) in

backroom inventory

ōi number of slots to be allocated to product i (area allocation)

li (lib) shelf space allocation of product i (under brand b), in terms of

total width-length, associated with the number of display facings

in showroom inventory

l̄i (lib) shelf space allocation of product i (under brand b), in terms of total

height-length (bHm

hi
chi), in showroom inventory

l′i (l′ib) shelf space allocation of product i (under brand b), in terms of total

width-length, in backroom inventory

l̄′i (l̄′ib) shelf space allocation of product i (under brand b), in terms of total

height-length (bHn

hi
chi), in backroom inventory

ai (aib,

aiom)

shelf space allocation of product i (under brand b, in orientation o on

shelf m, respectively), in terms of total area allocation, associated

with the number of display facings in showroom inventory

c̄i (c̄b) center of the display facings of product i (under family-brand b)

on a shelf in horizontal dimension (e.g. the distance from the total

facing area center to the left end of the shelf)

PCib percentage of price change for product i under brand b as compared

with the previous period

PCib,j percentage of price change for product i under brand b’s substi-

tute products (as compared with the previous period or average-

suggested price by the market)
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qi (qim,

qib)

order quantity of product i (on shelf m, under brand b, respectively)

ri reorder point of product i (quantity of products in inventory)

yi binary variable representing whether product i is in the assortment

yim binary variable representing whether product i is located on shelf

m (yi = 1, when the product is already in the assortment)

yime binary variable representing whether product i is located on part e

of shelf m

ybm binary variable representing whether family b is located on shelf m

yib,m binary variable representing whether product i under family-brand

b is located on shelf m

y′ij binary variable representing whether product i is located to left of

product j

leftbm continuous variable representing the left end (coordinate) of family-

brand b on shelf m

rightbm continuous variable representing the right end (coordinate) of

family-brand b on shelf m

topi (topib) integer variable representing the top shelf on which product i (under

family-brand b) is located

bottomi

(bottomib)

integer variable representing the bottom shelf on which product i

(under family-brand b) is located

uvi under-achievement goal variable for product i allocation

ovi over-achievement goal variable for product i allocation
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Chapter 1

Introduction

1.1 Motivation

Shelf space is one of the most important scarce resources that a retailer has to work

with. The importance stems from the fact that the shelf space provides the display

facing area of the products to the public. Therefore, the wise management of this

very limited space is crucial.

The average number of new products, or so called ”store keeping units” (SKUs),

in a supermarket have increased by %20 in the 1970s and %75 in 1980s (Greenhouse

2005). This increase put a lot of pressure on the limited, and often fixed, amount of

space in the retailers facilities. Therefore, the questions (1) which product to include

in the assortment, (2) how much space to allocate and (3) at what price to sell,

become the most important challenges facing a retailer. Applying cost minimization

techniques to increase profitability may not take the retailer one step ahead against

its competitors, where the average net profit after taxes is around 1%, although

the average gross margin can be up to 28% (Reyes and Fraizer 2007). Attracting
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customers to switch stores through promotions, better product category placements

within the store and better product assortment and shelf space allocation might be

the only strategy in order to increase overall demand and profitability.

In todays retail environment there are many consumer packaged goods (CPG)

in the same category with various brands and differential products under the same

brand. These differential products appear in different dimension sizes, display facing

areas, purchasing costs and selling prices which are competing for a limited space in

retail store shelves. Similar to how products’ sales prices influence the customers’

purchasing decisions in the stores; product assortment, product display facing areas,

number of facings of the product and location of the products on the shelves also

influence the customers’ in-store buying decision (Dreze et al. 1994). While consumers

would prefer to purchase a product by paying less rather than paying more, they would

not necessarily purchase the cheapest product from a retail store assortment because

of the other marketing variables mentioned above and factors such as loyalty to a

particular brand, desire to try different things, perceived quality of the product etc.

(Reyes and Frazier 2007).

Many shoppers decide on what to purchase inside the store; this rate could be as

high as nine out of ten (e.g., see Silvera et al. 2008). Thus, it is expected that differ-

ent shelf space allocations and displays will lead to different sales. Especially when

shoppers do not receive aid in their shelf ”browsing” except perhaps for high-value

items such as electronics and beauty products. Given the importance of packaging

and the information it conveys (color, text, image, texture, etc...) and that it is

perhaps the only information that is readily accessible to all self-serve shoppers (as

opposed to other advertising media), it is crucial that such a function is used properly
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by retailers in the stores. In effect packaging serves as the ”silent salesman” (Dichter

1957) in the absence of a real salesperson in the world of self-service retail.

Through the utilization of information technologies, the collection of data in retail

stores became very efficient. With the help of point of sale (POS) systems, retail

stores can now easily collect transactions data from consumers to know what kind of

brand, which exact item, when and from which store (among their retail store chains)

they purchased. Using this transactions data, they are able to analyze and forecast

future demand, inter-relation between brands and product or products with product

categories and estimate the parameters for space allocation. This data availability

makes shelf space allocation decision making more reliable and provides an incentive

for management to use the data as a way of getting a return on their information

technology infrastructure investments.

1.2 Thesis Focus

In general, the decision of shelf space allocation can be divided into two levels: the

retailer should decide (1) how much shelf space to allocate to a product category

and (2) how much shelf space to allocate to a product within each product category.

In the shelf space allocation literature, we generally work on the optimization of a

shelf space allocation problem within a product category with a limited shelf space

or multiple shelves allocated to that category. The main concern of the problem is to

determine which products to display on shelves (it is referred to as ”product selection”

or ”product assortment” in the literature) and how much shelf space will be allocated

to each selected product. In shelf space allocation literature, product assortment and

shelf space allocation decisions are generally solved simultaneously for a certain time
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period. As Borin et al. (1994) noted, this is a routine decision-making process.

Brown and Tucker (1961) list three product classes: “Unresponsive Products,”

such as salt and spices, which are considered as inelastic, “General Use Products,”

such as canned foods and cereals, which are consumed on a daily basis and “Occasional

Purchase Products,” such as sardines and nuts, which are not the generally purchased

products and not looked for at first when shopping. This last class of products is slow

in responding to shelf space changes until the display facing area is large enough to

get the attention of the consumers. At that point, the sales curve rises steeply. In the

literature this phenomenon is called the ”threshold effect”. Although there is no strict

distinction, unresponsive and general use products are considered as staple products

and occasional purchase products are considered as impulse products (Curhan 1973).

Cox (1970) found that there is no relation between the amount of shelf space given

to a staple product and the total unit of sales of that product. Therefore, we do not

worry about the staple product assortments and allocation. As long as we allocate

the minimum amount of shelf space needed to a staple product based upon past sales

history (Anonymous 1960), the amount of space allocated to that product will not

impact consumers demand for that product. Thus in shelf space allocation studies,

our focus is on impulse products in which the consumers make their decisions in a

retail store in front of the display shelves.

Another important conclusion from the literature is that the changes in shelf space

effects are more in large retail stores than in small retail stores (Frank and Massy

1970). Thus, in our thesis we focus on retailers with large retail surfaces, such as

supermarkets and department stores.
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1.3 Shelf Space Allocation Approaches

The early studies implied that the shelf space should be allocated in proportion to

sales (e.g. see Progressive Grocer publications in 1951, 1955, 1958, 1960). However,

to allocate shelf space according to the market share of the product (or in proportion

to product’s market strength, which implicitly assumes that all products’ prices are

fixed within the same category) is often considered as a trivial solution to overcome

the shelf space allocation problem (Buttle 1984b; Yang 2001), as such an approach

neglects space and price elasticity.

Another approach to shelf space allocation is direct product profitability (DPP).

The aim of DPP was to calculate standard costs continuously and use them to deter-

mine the end products. Thus through DPP, we can calculate the unit contribution

of products to overhead and profits and retailers could accordingly reallocate shelf

space to maximize their return on investment. Many results supported the fact that

profits can be increased by reallocating products and shifting their spaces from low

profit products to high profit products (Curhan 1973). Of course, these increases were

dependent on the location of the space allocated to that product and space elasticities

of the products in the assortment. But DPP can not show the effects due to space

changes or the gains because of the increased sales from replacing a product with

another product (Bookbinder and Zarour 2001). Since it has been assumed that unit

handling costs are stable against the reallocation changes, total profit would increase

only by the increase of the products sold because of the different space elasticities of

the new products included in the assortment (McKinsey-General Foods Study 1963).

However, a more practical model should include these cost implications (Corstjens

and Doyle 1981).
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Cosmos 1 package used a rule of thumb, which has been proposed by Buzzell et al.

(1965), to reallocate the space by taking the space from the least profitable products

and assigning them to the most profitable products (Hansen and Heinsbroek 1979).

But there were no product selection in the package.

All of these early studies have the unrealistic assumptions that products have

uniform space elasticities on demand and zero cross elasticities between products

(Corstjen and Doyle 1981).

1.4 Computer Packages

A planogram is a traditional shelf space management tool which uses heuristics for

shelf space display facings allocation. Since the shelf space allocation problem is com-

plex and planograms often do not consider the demand parameters of retailer stores

and only simple heuristics rules have been developed, planograms are not sufficient

for globally optimizing shelf space (Zufryden 1986; Desmet and Renaudin 1998; Yang

2001; Lim et al. 2004). PC-based tools such as Apollo (IRI) and Spaceman (Nielsen)

use historical product sales, gross profit margins and turnover to allocate shelf space

and use handling and inventory costs for the constraints of the problem (Lim et al.

2004) in order to reduce the time spent to change space allocation manually, however,

they are still generally used for planogram accounting (Dreze et al. 1994; Yang 2001).

Although they help retailers to visualize alternative shelf space designs and show the

shelf location of the products in the assortment, they are not used for optimization

purposes. Galaxi (Space Solutions) is another planogram, which is used by Tesco in

U.K., does not optimize the shelf space allocation but uses manual drag-and-drop

procedures (Bai 2003; Lim et al. 2004).
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1.5 Suppliers Perspective

In a market which generally consists of loyal customer demand, the changes of shelf

space or any other marketing variables would hardly affect products’ demands. In con-

trast, in a market which generally consists of random customer demand, the changes of

shelf space or other marketing variables for a product would affect products’ demand

easily. Although retailers’ purpose is to manipulate customers’ purchasing preference

using in-store support such as space allocation and change his purchasing decision to

more profitable products within their assortment in order to maximize their profit,

the manufacturers do not want to adhere to the retailers’ space allocations or any

other in-store marketing variables. Manufacturers want to create strong relationship

between their products and their customers through product differentiation. The

manufacturer’s aim is to maximize his own profit using his product diversity and

their shelf space allocation. Therefore, in this reciprocal relationship between the

retailer and the manufacturer, the manufacturer wants to create customer brand-

loyalty in order to have more shelf space in retail shelves while the retailer wants to

lessen these brand loyalties using in-store support such as space allocation, pricing

and in-store promotions so as to maximize his own profit. Furthermore, retailers are

also increasingly using the same support system to built up customer loyalties for

their own store brands.

To guarantee a shelf space suppliers buy (rent) space from the retailer. The retailer

would want to sell the shelf space to the supplier that can offer a price for a unit space

which exceeds the opportunity cost of this space. This opportunity cost is the most

gross profit a retailer can get by allocating the products into the shelves the best way

he can to maximize his profit. Otherwise, the retailer would instead proceed with his
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own product assortment. Suppliers’ interest in renting shelf space is driven by their

desire to expose their products to potential customers in the store so as to increase

their profits. For suppliers, the location and the amount of the shelf space is very

important (Cairns 1962). The sales of a product on the shelves depend not only on

the price, but also on determinants such as the number of facings, total display facing

areas and the location of the shelf space allocated to that product.

If the manufacturer’s product has a high demand on the market, then the retailer

may not have the choice of not carrying the product even if its profit margin is

so low. Since otherwise the absence of this product may cause loyal customers to

switch to other retail stores. Furthermore, if the demand is high enough, the retailer

might consider a priority shelf space allocation policy for those products that reserves

for them a better location and more amount of space. The manufacturer may still

rent the retailer’s space, in spite of a zero gross profit, due to the presence of the

manufacturer’s competitor products in the assortment (Cairns 1962, 1963).

1.6 Private Brands

In today’s retailer environment, most of the retailers have their own “private brand”

(store brand) along with a ”national brands”. Since these private brands have a

tendency to have a large amount of shelf space in their own retail stores, it is likely

that they will have their own promotions and best location on the shelves. As a

result, the retailer should balance the gross profit per unit of space coming from their

private brand with the gross profit per unit of space coming from the national brand

(Cairns 1962). Curhan (1973) also found that private brands have a higher elasticity

than national brands. Nogales and Suarez (2005) investigated the effects of private
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brands and promotions on shelf space allocation in a case study.

1.7 Shelf Level and Store Location

Although Frank and Massy (1970) found that there is no significant change in sales

variation with shelf levels, retailers believe that shelves closer to the eye level would

have a greater effect than the shelves above and below eye level (Curhan 1973). Dreze

et al. (1994)’s experiments showed that the vertical location of the products (the

shelf level on which the product is displayed in a multi-level shelf environment) had

a great impact on products’ sales even more important than changes in the number

of facings allocated to those products as long as a threshold was maintained. On

average, the sales increased 39% from the worst vertical shelf to the best vertical

shelf and additionally 15% from worst horizontal location to best horizontal location.

The sales changed almost an average of 59% from the worst positioning to the best

positioning with the combined effects of both. Furthermore, Underhilll (1999) noted

that the zone between slightly above eye level and knee level is a reliable zone for

products to be noticed. The type of consumer to whom the retailer is selling the

products also plays an important role in the shelf space allocation. If the target

audience are children then the products, such as toys, sweets, chocolates etc., should

be located on the lower levels of the shelves which are more visible and accessible to

children in order to attract their purchasing preference (Silva et al. 2009).

Underhill (1999) found that products at the end of aisles are more visible and

noticeable to customers because they do not tend to walk the whole aisle completely

in order to make a choice. He called this phenomenon the “boomerang effect”. Dreze

et al. (1994) found that half of the category sales at the end of the aisles increased.
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Larson et al. (2005)’s study had similar results where customers tend to choose the

aisles for shopping instead of entering all the aisles in the store and have a tendency

to enter and exit aisles instead of walking the whole aisle from one end to another

end.

1.8 How Much to Stock on the Displaying Shelves?

Larson and DeMarais (1990) described the stimulus effect of the display facings on

customers as “psychic stock” where they found, through experimental studies, that

a retailer can achieve better sales by keeping the display shelves fully stocked. They

suggested a policy that keeps the shelves full all the time and called it ”full-shelf mer-

chandising”. However, the effects of out-of-stock (temporary) or decreasing number

of display facings have not been studied in the literature. Although in some product

categories decreasing the number of display facings might decrease the demand of

that product, we can observe the reverse effect in other product categories.

1.9 Life Cycles

Most of the products in today’s environment have a life cycle in the market and

because of the consumers’ changing desires, manufacturers introduce new products

or a modified version of the existing products with stylish and colorful display facings.

At the end of the product’s life cycle, the product demand decreases. Thus retailers

should also take these dynamics into account in their product assortments and shelf

space allocations (Cortsjen and Doyle 1983). Fresh products, such as produce, dairy

and meat, have a short shelf life that continuously deteriorates through time where
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the freshness of the product decays (Bai et al. 2008). In contrast to existing models

in the literature, the demand rate of such products should not be assumed constant

between replenishments. Some of the inventory models in the literature (Nahmias

1982; Raafat 1991; Goyal and Giri 2001) modeled the demand for these kind of

products using a fixed deteriorating rate, but with non-decaying utilities between

replenishments (before the expiration date of the product). The assumption of non-

decaying utilities is unrealistic because the freshness is a quality factor that affects

the product’s demand (Bai et al. 2008). Besides, the cost of shelf space allocation

of such fresh products is significantly higher than that of durable goods due to low

temperature requirements to increase their freshness time. Additionally, due to the

lack of durability of fresh products, the inventory replenishments of such products will

be more frequent compared to durable products. Moreover, Kar et al. (2001) observed

that in the developing countries fresh products are divided into different categories

depending on their freshness and generally exhibited in different store types.

1.10 Space Elasticity

Space elasticity, αi, can be defined as “the ratio of relative change in unit sales to

relative change in shelf space” (Curhan 1973). It means that the amount of shelf

space assigned to a product affects its sales per unit of space which is referred to as

“unit sales”. Therefore, we say the unit sales of the products are space elastic. When

the unit sales increase as shelf space increases and vice versa, space elasticity should

be positive. However, researchers such as Bultez and Naert (1988) and Dreze et al.

(1994) found that as space allocated to a product increases, marginal returns will first

increase then decrease in a S-shaped curve for αi > 1 (the increasing case would occur
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only for a very small number of display facings, such as one facing, but it would be

very difficult to identify such an S-shape) or strictly concave for 0 < αi < 1. However,

it is generally assumed that an increase in the number of display facings will only show

diminishing returns on the demand where 0 6 αi 6 1. Lee (1959) and Bates (1970)

hypothesized that as shelf space increases, unit sales will increase at a decreasing rate

until maximum sales level is reached. For example, assigning two display facings of a

product instead of one display facing, might double the sales. However, an increase in

the number of display facings from two to three would generally result in less increase

than from one to two. This especially true for impulse products (Brown and Tucker

1961), the subject of our research.

Generally, with a finite product quantity, as the number of display facings in-

creases, the demand is an increasing concave function which reaches to a maximum

beyond which increasing the number of facings will not increase the sales anymore.

For inelastic products, the quantity display of staple products such as salt and pepper

does not affect the product’s demand as long as a threshold is maintained. In prac-

tice, however, it has been assumed that there is a linear relationship between shelf

space and unit sales for all products (Cox 1964).

In the literature there have been different estimates for space elasticities, depend-

ing on whether it is used at a product or store level. In Curhan (1973), the space

elasticity for all products are averaged at 0.212 and unit sales showed a 8% positive

change in the same direction of shelf space changes. Hansen and Heinsbroek (1979)

used a value of 0.15 on average at the item level and Thurik (1988) used a value of

0.6 on average at the store level. Corsjen and Doyle (1981) used 0.086. Desmet and

Renaudin (1998) found that the space elasticity ranged between negative values and
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0.8 for different product categories. They model the demand function using the mar-

ket share (π) of a product and suggested that if the buying rate of a product category

increases (an increase in the overall category demand) then the space elasticities of

the products in that product category would increase.

1.11 Product Interdependency

As well as the sales of one product affects the sales of another product in the same

category, the sales of one product may affect the sales of another product in another

category (such as a camera and batteries). Therefore, retail store managers should

consider another key concept of the relationship between two products which is called

interdependency. There are two kinds of interdependencies: substitution and comple-

mentarity. When a customer can not find the product he is looking for on the shelves,

he would substitute his choice with another product from the assortment under cer-

tain conditions. This is called customer-based stock-out substitution. However, if one

product is sold and another product is purchased along with the main product, this is

a complementary effect. These are defined as cross elasticities between products and

we may see these effects in inter-groups and intra-groups. For example, in a shaving

category, a sale increase of a particular safety razor brand may increase the sales of

shaving lotions but it may decrease the sales of another brand of a safety razor and

electric razors, and vice versa (Urban 1969).

Most of the studies show that in many cases, customers are not willing to purchase

any product if their preferred product is not within the displayed showroom. In other

words, these loyal customers do not want to substitute their preferred products. In

some cases up to 40% choose to not substitute (Borin et al. 1994). It is important to
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note here that, in fact, premium products have much more resistance to compromise

customer preference than low-end products. Therefore, it is more likely to substitute

for low-end products than for premium products since premium products have a

higher brand loyalty (Fadiloglu et al. 2010). In our research we use the notation θk

to indicate the ratio of such loyal customer demand for an unstocked product k. The

ratio θk is higher for premium products than for low-end products. Furthermore, as

this ratio decreases for a product according with its low profit margin, the product

is likely to be eliminated from the product assortment since a significant amount of

that product’s demand can be directed to the other products within the assortment

(Fadiloglu et al. 2010).

We should note here that it has been implicitly assumed, in the literature and

retail practice, that a customer who prefers a product which is not in the store’s

product assortment will substitute by a product from the assortment depending on

his loyalty. However, if the product assortment of the retail store does not satisfy

the customers’ product variety perception, and thereby not trigger their purchasing

instinct, then not only loyal customers but also a portion of the customers who are

willing to switch would be lost. This kind of (lost) demand has been neglected in the

literature. Given the focus on satisfying the consumer demand on highly demanded

products and include them into the product assortment, a constant overall category

demand has been assumed for all periods and lost customers are neglected in the

long run. This effect can be neglected in short run decisions, however, it should be

considered in the long run in a dynamic model.
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1.12 Cross Effects in Products’ Demand

Starting from the 1970’s, academic research has focused on how to model the demand

function in shelf space allocation literature. Given the marketing findings that the

amount of space dedicated to a product in a retail store (display area in the show-

room inventory) affects the demand of the product, space elastic functions were used

to model demand. Although most of studies took into account product space elastic-

ities, only some of them took into account inter-elasticities between products. As we

mentioned above, the own (direct) space elasticity of a product measures the effect of

increasing or decreasing the number of display facings on demand for a single prod-

uct. An increase of a display facing of a product affects the demand of that product

positively. On the other hand, an increase of that product’s demand will affect most

of the other products’ demand in the same category negatively, such as the same

products under different brands. However, the increase in the product’s demand can

affect some of the products’ demand in the same category positively, such as shaving

razors and lotions. Similarly, an increase for a product’s demand may also affect

another product’s demand positively in some other product category such as cameras

and batteries, an intra-group effect.

Cross-space elasticity of a product measures these substitute or complementary

effects between two products. We note that the cross elasticity of a product to another

product (product i to product j) is not equal to the cross elasticity of the direct

opposites (product j to product i). For example, an increase in camera sales may

affect the battery sales positively but not vice versa (βij 6= βji). Furthermore, since

the relation between products can be positive (supplementary), negative (substitute)

or neutral, the cross elasticity values can take positive values, negative values or 0,
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respectively.

Bultez and Naert (1988) stated that the cross elasticities between products would

not occur if there was enough shelf space. The existence of a limited shelf space

causes interdependencies between products to occur because an increasing space of a

product causes a decreasing space for the other products in the assortment. If there

was no limitation on the available shelf space area or if there was enough shelf space

corresponding to the maximum demand that could be reached by the space increments

of each product in the assortment, these interdependencies would not occur, since

increasing space of a product would not increase its demand after a threshold has

been reached. Therefore, if there is enough space to fulfill the threshold demand for

each product and to allocate the available space corresponding to this maximal space

of each product, then there would not be any interdependencies (space) between

products within the assortment. An important conclusion from Anderson (1979)’s

work is that, if the products are perfect substitutes, which means that they satisfy

the customers equally with no financial incentives, then the retailer can encourage

the customers to purchase the high-profit-margin product by allocating more space

to that product, while discouraging the low-profit-margin products.

1.13 Knapsack Model in Shelf Space Allocation

Models

Due to the highly non-linear nature of the space elasticities, all the models that

included these effects are complex and generally hard to solve. Furthermore, since the

estimation of own-space elasticity and cross-space elasticity parameters are difficult,
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many studies chose to approximate the space allocation problem with a special version

of the simple knapsack problem: maximizing the benefit of including items in a

knapsack while not exceeding the knapsack’s capacity. The space allocation problem

is more general than the knapsack problem in that it may have additional constraints

to the capacity constraint and the latter may be represented by multiple constraints

each for a different section of the shelf.

Consequently, shelf space allocation problem can also be considered as a modified

version of a multi-dimensional knapsack problem where the goal is to choose the most

profitable products and allocate them into a scarce space to gain the most profit from

the customers. In this formulation, the cross elasticity between two products are

neglected due to the difficulty of estimating these elasticity parameters. Furthermore,

the nature of own-space elasticity is assumed linear for an interval of a certain number

of display facings (Yang and Chen, 1999; Yang, 2001; Lim et al. , 2004). We know

that the products which are less elastic to space changes such as staple products will

result in a diminishing return in demand earlier than the products which are more

elastic to space changes, however, as Yang and Chen (1999) mentioned, the concave

nature of this space elasticity effect can be controlled in a certain interval of display

facing quantities and the effect of the space elasticity could be assumed as a linear in

this interval of display facings.

We emphasize that the effects of cross elasticities had to be ignored when model-

ing the problem as a knapsack problem because the nature of the knapsack problem

is unable to define and observe the opportunity cost of a substitute or a comple-

mentary product when a product is allocated to a shelf. Cross elasticity factors in

shelf space allocation problems using the nonlinear demand function models take all
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these inter-relations between two products into account and measures the substitute

or complimentary effects one by one for the entire product set.

1.14 Multi Display Locations Within the Store

During promotional activities in retail stores, some products are displayed in more

than one location within the store such as store entrances, shelf endings, checkout

points, and particular places in the store where store management can stack products.

This type of marketing technique stimulates a threshold effect on many consumers

who do not have any preferences on that product category. Also, some products may

be displayed in more than one shelf within the store because the products could be

a part of different categories at the same time and to satisfy all consumers various

shopping behavior, store management should premeditate this phenomenon. For

example, 100% fresh juices can be categorized under soft drinks as well as they can

be categorized under natural products. Some retail stores even place these kind of

soft drinks right behind the fresh fruits category to emphasize the naturality of these

products. Another good example is alcoholic drinks which can be grouped under

manufacturers, distributors or price sets (Russell and Urban 2010). In our thesis we

focus on products that are likely to be displayed in one single location within the

store.

1.15 Thesis Structure

The remainder of this thesis is as structured. In this chapter we discuss the most

related issues to shelf space allocation problem. We define the basic concepts and

18



M.A.Sc. Thesis - Mehmet Erdem Coskun McMaster - Computational Eng. & Sci.

components of the problem. In the Literature Review Chapter, we present the opti-

mization models that have been proposed in a critical perspective and investigate each

component of the models in a profound structure. First we examine how each study

formed their demand model, second we examine each optimization model’s problem

definition, assumptions and components in detail, and third we criticize each model’s

contributions and weaknesses. We use detailed figures and table structures to define

and compare all the models at the same time. In the New Model chapter, we propose

our comprehensive optimization model of a shelf space allocation problem for a prod-

uct category which considers almost all needs and necessities that a retailer is facing

in todays retail environment. We then present the results from our experiments and

compare the results of our model with the early proposed models. Finally, in the

Conclusion chapter, we summarize our study and provide directions and suggestions

for future research.
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Chapter 2

Critical Review of Optimization

Models

In this chapter, we critically discuss the demand functions and optimization models

that have been proposed in the shelf space allocation literature and describe the

main differences between these models. In each optimization model, we will discuss

the model’s main assumptions and define its objective function and its constraints.

Afterwards, we examine the gaps in the literature in lights of the main needs of the

current real world retail environment and describe the contributions of our thesis.

2.1 Demand Function

In this section, we define various demand functions that have been proposed in the

shelf space allocation literature. Most of the demand functions are based on models

that have been proposed in the 1980’s. To have a unified presentation we use a

common notation (see the Notation and Abbreviations on pages vii–xix).
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2.1.1 Urban (1969)

Urban (1969) suggested a mathematical model to represent the interaction between

products in a product category. He determined the three most basic and important

effects on sales as price, advertising and distribution and combined the effects of these

variables in an aggregate demand function. He mentioned the disadvantage of the

simplest (linear) form of the combined equation. Since the linear form would not

allow the mix effects of the marketing variables and the decreasing returns, because

of the linear response to these variables, he suggested a linear log function, which

can represent the mix effects of the marketing variables. The demand function of a

product can then be expressed as

Di = π′ip
σi
i (adv)%ii (di)ςii (2.1.1.1)

This form allows for the nonlinearity of the demand function for a product which

is reflected by the own-elasticity parameters σi, %i and ςi. Urban defined the elas-

ticity parameters as “the proportionate changes in the product sales resulting from

a proportionate change in one variable”. For example, when the value of the elas-

ticity parameter of a product price is between 0 and 1, the response of the demand

function will be decreasing as the variable increases. When the value of the elasticity

parameter is less than 0, the response of the demand function will be increasing as

the variable increases.

Urban then introduced the interdependency effects to the demand function by

considering the interdependencies among products and emphasized the complemen-

tary and substitution effects between products. The complementary effect induces

consumers to purchase a product along with another product and the substitution
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effect causes disloyal consumers to change their purchase decisions from one product

to another product. The interdependency effects for the original demand formation

of a product can be expressed as

π′′j p
µij
j (adv)

%′ij
j (di)

ς′ij
j (2.1.1.2)

where µij, %
′
ij and ς ′ij are the cross-product elasticities of product i to product

j. For example, if the cross (price) elasticity parameter is positive then this means

that there is a negative relationship between the two products and the products are

substitutes. If the cross (price) elasticity parameter is negative then the products are

complements. The marketing mix variables and the interdependency effects between

products are then combined to form the following model:

Di = πip
σi
i

I∏
j=1
j 6=i

p
µij
j (adv)%ii

I∏
j=1
j 6=i

(adv)
%′ij
j (di)ςii

I∏
j=1
j 6=i

(di)
ς′ij
j (2.1.1.3)

Urban’s demand model contains the basic variables such as price, advertising and

distribution where the interdependencies among products is considered by using direct

and cross elasticities of the variables.

2.1.2 Anderson and Amato (1973)

Anderson and Amato are the first researchers who modeled the potential demand

and its components in the shelf space literature and used this demand function to

simultaneously select the products that should be displayed on shelves and allocate

shelf space for the chosen products. We think that one of the most important models

which defined demand is Anderson and Amato’s. They decomposed the expected
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potential demand Π, which is the product quantity limit that would be sold if all the

products were in the assortment and displayed, into two important components and

subcomponents:

1. Random Demand: Demand that originates from consumers that do not select

the product on purpose or deliberately. We define RDi as the demand for prod-

uct i from potential consumers who do not have an incentive to purchase that

particular product, but nevertheless purchase it without any selection prefer-

ence. Therefore, the sum of all random demand for each product generates the

total random demand, RD =
∑I

i=1 RDi.

2. Preference Demand: If consumers choose a product within an assortment de-

liberately and purposely, then the demand is a preference demand. Therefore

PD = Π− RD. Potential preference demand for a product has two important

disjoint components: The demand originating from consumers which are loyal

to a product (LD) and consumers who have a calculated product preference

among all products (GD + AD). It is obvious that both the loyal consumer

demand (LD) and the calculated choice demand (GD +AD) decisions contain

a consumer preference. The second category of consumers make their choices

based on their calculated valuations among the products. Therefore, consumers

may or may not switch from one product to another product. We describe these

components of the preference demand below in more details. The demand that

arises from consumers who prefer or choose to purchase a product within the

assortment but purchase product i through calculated valuations, can not be

categorized under LDi since the consumers who generate this demand are not
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loyal to product i. Preference demand for a product i in an assortment consti-

tutes of three parts, PDi = LDi + GDi + ADi. The notations are defined in

the switching and non-switching preference demand subsections below.

(a) Switching preference demand: The demand originates from consumers who

make their choices on their calculated valuations among products. There

are two important components of switching preference demand:

i. Switching preference demand arises from consumers who are willing to

prefer a product within the assortment but through their calculated

valuations, choose a product i within the assortment. We call this

gained demand for a product i (GDi) from the products within the

assortment.

ii. Switching preference demand arises from consumers who are not will-

ing to prefer any product within the assortment but through their cal-

culated valuations, choose a product i within the assortment. Borin

(1994, 1995) refer to this as acquired demand for a product i (ADi).

We link the definition of the switching preference demand by Anderson

and Amato (1973) for a product i in the assortment to GDi + ADi, since

consumers switch to product i regardless of whether they prefer a product

within the assortment or not. Furthermore, ADi can be further partitioned

into two components:

• consumers who are willing to purchase or prefer a product which is

not in the assortment and are willing to switch to a product i in

the assortment. This is referred to as acquired demand (ADi) in the

literature.
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• consumers who are willing to purchase or prefer a product which is

not in the assortment and are not willing to switch to a product in

the assortment. But, Anderson and Amato hypothesized that if there

is any customer who prefers a product which is not in the assortment,

then he/she will substitute his/her choice from a product in the as-

sortment. This means that they neglected the lost demand-sales (LD

of the products that are not in the assortment) due to permanent

stock-out and did not consider it in their demand model.

(b) Nonswitching preference demand arises from consumers who are loyal to

a product i and do not consider to switch to another product under any

circumstances. We call this demand for a product i in the assortment,

loyal customer demand (LDi).

Since potential demand Π has been defined in two components, it is obvious that

RD + PD = Π (2.1.2.1)

where

RD =
I∑
i=1

RDi. (2.1.2.2)

It is then posited that a consumer would purchase a particular product i within the

assortment with probability

Pr(i) = xi(
wi
L

), (2.1.2.3)

i.e., the probability is proportional to the number of facings, xi, and the ratio of the

horizontal space (wi) reserved for the product to that available in the shelf (L). The
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random demand for product i becomes

RDi = Pr(i)RD = xi(
wi
L

)RD (2.1.2.4)

A product’s preference demand coming from a nonswitching preference is

LDi = (Π−RD)τi(1− ψi) (2.1.2.5)

and the part of this product’s preference demand coming from switching preference

is as follows

GDi = (Π−RD)τiψi. (2.1.2.6)

This demand can be categorized under the consumer demand who chooses to

purchase a product or any product with a calculated valuation within the assortment

and then chooses to purchase product i. Not to forget, consumers’ first choice is not

to purchase product i within the assortment. The consumers who prefer any product

within the assortment but choose to purchase product i constitute this demand.

The other part of the product’s preference demand comes from switching prefer-

ence and is as follows:

AD = (Π−RD)

(∑
i∈ I−

τiψi

)
(2.1.2.7)

This demand can be categorized under the consumer demand who chooses to

purchase the product with a calculated valuation from unstocked products and then

chooses to purchase product i within the assortment with a probability. And not

to forget again, consumers first choice is not to purchase any product within the
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assortment and there is a probability for product i to be picked among the available

product assortment. Since there is a probability for product i to be chosen along all

the products within the assortment, the probability is posited by

Pr
(
i|i ∈ I+

)
=


τi∑

i∈ I+ τi
, if τi > 0

1
|I+| , if τi = 0

, (2.1.2.8)

where |I+| denotes the cardinality, or number of items, of I+. Anderson and Amato

(1973) assume that τi > 0. Therefore the acquired demand for product i becomes

ADi =

(
τi∑

i∈ I+ τi

)
(Π−RD)

(∑
i∈ I−

τiψi

)
(2.1.2.9)

Thus, we may find the total preference demand coming from the stocked products’

preferences and unstocked products’ preferences by adding the following demands

GDi + ADi = (Π−RD)

[
τiψi +

(
τi∑

i∈ I+ τi

)(∑
i∈ I−

τiψi

)]
(2.1.2.10)

To find the total demand for product i we add up both the random demand and

preference demands for product i:

Di = RDi + LDi + (GDi +ADi)

=

[
xi(

wi

L
)RD + (Π−RD)τi(1− ψi) +

(
(Π−RD)

[
τiψi +

(
τi∑

i∈ I+ τi

)(∑
i∈ I−

τiψi

)])]

=

(
xi(

wi

L
)RD + (Π−RD)

[
τi +

(
τi∑

i∈ I+ τi

)(∑
i∈ I−

τiψi

)])
(2.1.2.11)
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To better understand the different demand components we present in Figure 2.1 the

consumers’ decision making process and related demands for all the customers who

enter the store. In Figure 2.2, we show the customer’s decision process for purchasing

a product i and how the total demand for a product i is structured. It is important

to note here that both figures consider all possible purchase options of a customer

and therefore the assortment may or may not be satisfactory for customers, unlike

the assumptions in Anderson and Amato’s.

Customers enter

Preference

No preference

Loyal to a certain

Prefers a certain

products but not loyal

Product is in

Product is not

Product(s) is/are

Product(s) is/are not

Buy that product

Do not buy any

Choose the product

Choose a product

Do not buy any

Choose a product

choice among

LD

GD

AD

RD

PD

Π
product or couple of

the assortment

in the assortment

in the assortment

in the assortment

product and leave

or make a calculated

preferred products

from the assortment

product and leave

from the assortment

the store

product

Figure 2.1: Consumers’ Decision Making

A Customer

Preference

No preference

Loyal to product i

Prefers product i first

products but not loyal

Product i is in

Product i is not

Product i is

Product j is not

Buy product i

Do not buy any

Choose product i

Choose product i

Do not buy any

Choose product i

LDi

GDi(positive)

ADi

RDi

PDi

Diand some other

the assortment

in the assortment

in the assortment

in the assortment

product and leave

product and leave

enters the store

Choose a product j
GDi(negative)

Prefers product j first

products but not loyal
and some other

Product i is not
in the assortment

Choose a product j

Product j is
in the assortment

Choose product i

Choose a product j

Do not buy any
product and leave

Product i is not
in the assortment

Product i is
in the assortment

Choose product j

Choose another product

GDi(positive)

Figure 2.2: One customer’s decision making and the role it plays in the overall demand
of that product
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2.1.3 Hansen and Heinsbroek (1979)

Hansen and Heinsbroek modeled the demand function of their shelf space allocation

model using the main shelf space effect and ignored the cross effects between products.

They used a multiplicative form, instead of using an additive form, to shape the

demand function. They assumed that the demand only depends on the shelf space

allocated to that product and this means that sales will be proportional to the space

allocated to the products. They included the space elasticity factor into their demand

function and assumed that it is constant for all products in the assortment. Thus,

the demand model is represented by

Di = πil
αi
i . (2.1.3.1)

2.1.4 Corstjen and Doyle (1981, 1983)

Corstjens amd Doyle (1981) are the first researchers who incorporated both the

product-space elasticity effect and inter-cross elasticity effect between products within

the store in a shelf space optimization model. But, the optimization framework is

actually presented in Urban (1969)’s study where the cross effects of the products

are modeled and estimated. Their contribution to shelf space allocation literature

has been used in many studies directly or with few extensions to the original demand

model. They mentioned that there are many variables that effect the demand besides

the space factors, such as marketing, promotions and price, and they assumed that

these factors will be constant in their demand model. The model is represented by
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Di = πix
αi
i

I∏
j=1
j 6=i

x
βij
j . (2.1.4.1)

Corstjen and Doyle’s (1983) second demand model involved a dynamic case of the

model presented above where they account for the growth of the market. Their model

introduces the time dimension and assumes that past demand (and thus consumer

preferences) influences current period demand. The model for demand is represented

by a multiplicative form as

Dit′ = πix
αit′
it′

I∏
j=1
j 6=i

x
βijt′

jt′ D
ε
i(t′−1). (2.1.4.2)

2.1.5 Zufryden (1986)

Zufryden assumed that demand for a product is a function of a vector which includes

all variables that may affect product demand such as advertising, promotions, shelf

space and retail price. The unit demand for a product is defined as

Di(fi) = Di(ōi, f1i, f2i, ...., fzi), (2.1.5.1)

where ōi is the number of slots to be allocated to product i and the fi, f1i denote the

function and factors, respectively, that affect demand other than space.

For tractability, Zufryden considered the space effect as the main effect, assumed

the other non-space demand variables as fixed values, and ignored the consideration

of cross-elasticities between products in the store. The resulting demand model was

the first model that did not consider the shelf space in one dimension (only the width

of the shelf). His study introduced the stacking process into the literature, a factor
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that was largely ignored in the literature. The unit demand for a product becomes

Di(fi) = Di(ōi) = Di(ōi, f
′
1i, f

′
2i, ...., f

′
zi) = πi(ōi)

αi

Z∏
z=1

f
′γzi
zi (2.1.5.2)

where f ′zi’s are fixed values of non-space demand variables.

2.1.6 Borin et al. (1994) and Borin and Farris (1995)

Borin et al. (1994) defined the demand in four key concepts: unmodified demand

(UMD), modified demand (MD), acquired demand (AD) and stockout demand

(SOBD and SOLD) where UMD, MD and AD influence the product demand pos-

itively and stockout demand influences the product demand negatively. UMD rep-

resents the intrinsic preference for the product. It is similar to πi, as used in Shugan

(1989) and Corstjen and Doyle (1981), where it represents the potential market share

of the product in the store without in-store support such as advertisement, promo-

tions, space and specific location in store. UMDi reflects the demand of product i

when all marketing variables are fixed. Thus, UMD of a product can be represented

by

UMDi(xi, f
′
1i, f

′
2i, ...., f

′
zi) = Ui = πi (2.1.6.1)

where space (xi) and f ′zi’s are fixed values of demand variables.

MD represents the demand for the product from its UMD with in-store merchan-

dising support such as advertisement, promotions, space and specific location in the

store. They assumed that the modified demand is solely a function of space while

the other marketing variables are held constant and therefore modified demand is the
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“modified” version of the unmodified demand with its differential space allocation. If

some of the other marketing variables were not fixed, they would be a part of MD.

Since marketing variables other than space are fixed in the unmodified demand, space

is the only in-store attractiveness variable that affects sales. Thus, MD of a product

can be represented by

MDi = πi
∏
j ∈ I+

x
βij
j = πix

αi
i

∏
j ∈ I+
j 6=i

x
βij
j (2.1.6.2)

AD represents the demand that unstocked products capture. Some of the con-

sumers may change their preferences and purchase a product within the assortment

and some of them may stay loyal to their first choice and decide not to purchase the

product. A product’s AD would consist of three basic parts:

ADi =
∑
k∈ I−

πkxαk
k

∏
k′ ∈ I−

x
βkk′
k′

 (1− θk)

(
βikπix

αi
i

∏
j ∈ I+ x

βij
j∑

i∈ I+ βikπix
αi
i

∏
j ∈ I+ x

βij
j

) (2.1.6.3)

where the first part, in the product expression, is the potentialMD that the unstocked

products would have received if they were in the assortment. The second part is the

fraction of consumers which would change their opinion and purchase a product within

the assortment. The third part represents the distribution of the demand amongst the

stocked products in the assortment. If the sum of these demands exceeds the product’s

quantity in the stock, this causes a temporary stockout and there exists a potential

demand (the difference between the sum of the demands and product stock) for

products in the stock. A temporary stockout demand for the other products can then

be determined by using the resistance to compromise factors (θj) and this potential
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(temporary stockout) demand can be allocated to products in the assortment as the

same proportion which is used in ADi. The resultant amount allocated to a product

is a stockout gain (SOBDi). They assumed that temporary out-of-stock situations

and permanent stockout situations have the same resistance to compromise factors

which might not be realistic in the real life. With all of these differentially categorized

demands which have positive and negative effects, they formed the unit demand for

a products in an additive form as

Di = MDi +ADi + SOBDi + SOLDi

= πix
αi
i

∏
j ∈ I+
j 6=i

x
βij
j +

∑
k∈ I−

πkxαk
k

∏
k′ ∈ I−

x
βkk′
k′

 (1− θk)

(
βikπix

αi
i

∏
j ∈ I+ x

βij
j∑

i∈ I+ βikπix
αi
i

∏
j ∈ I+ x

βij
j

)
+ SOBDi + SOLDi (2.1.6.4)

Demand sources for product i

Loyal to product i

Prefers product i but not

Loyal to one of the products

Prefers another product(s) from the assortment

Loyal to one of products that

Prefers another product(s) that

loyal to any particular product

from the assortment

but not loyal to any particular product

is not in the assortment

is not in the assortment

Buy product i

Make a calculated choice and buy product i

Make a calculated choice and buy any product j

Buy any product j

Make a calculated choice and buy product i

Make a calculated choice and buy any product j

Do not buy any product and leave

Make a calculated choice and buy product i

Make a calculated choice and do not buy any product

Make a calculated choice and buy any product j

LDi

GDi (negative)

GDi (positive)

RDi

ADi

No Preference
Buy product i

Buy any product j UMDi

MDi

Condition Action taken Formula component

Di

GDi (positive)

Figure 2.3: Demand Sources for a Product i

In Figure 2.3 we show the demand sources for a product i and each related formula

component. In Figure 2.4, we show a general demand distribution of the overall
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PD

RD

LD

GD

AD

LD 1
LD 2

LD 4
LD 5

LD 3

GD 1
GD 2
GD 3

AD 1
AD 2
AD 3

RD 1
RD 2

RD 4
RD 3

RD 5

RD

D 1 = RD 1 + LD 1 + GD 1 + AD 1

D 2 = RD 2 + LD 2 + GD 2 + AD 2

D 3 = RD 3 + LD 3 + GD 3 + AD 3

D 4 = LD 4

D 5 = LD 5

Demand distibution when some of the products are not chosen for the product assortment

Ex: Total of 5 product in the market, product 1, 2, 3 are chosen for the assortment and Product 4, 5 are not

AD 1 = RD 4 + GD 4 + RD 5 + GD 5

(lost sales)

(lost sales)

Total available
market demand

GD 4
GD 5

AD 2 = RD 4 + GD 4 + RD 5 + GD 5

AD 3 = RD 4 + GD 4 + RD 5 + GD 5

(portion)(portion)(portion) (portion)

Π
(portion)(portion)(portion) (portion)

(portion)(portion)(portion) (portion)

Figure 2.4: Demand Distrubution

category demand and how each product’s demand is being structured. Figure 2.4 is

useful for understanding how a product’s demand in the assortment is shaped and

how a retailer loses sales. Figure 2.4, unlike Figure 2.2 and 2.3, assumes a satisfactory

product assortment, since lost sales are only generated by loyal demand for the non-

stocked products. If the assortment is not satisfactory to the customer, a portion of

each product’s gained demand (a portion of
∑

i∈ I+GDi
= GD) will also be lost. In

general, all the optimization models in the shelf space allocation literature, implicitly,

assume a satisfactory product assortment for the product category.

The figures we used to reflect Anderson and Amato (1973) and Borin et al. (1994)

demand functions might look similar, however, the Anderson and Amato function

does not consider the effects of marketing variables. They construct their demand

function using probabilistic relations. Although they did use MDi in their demand

structure, the GDi component in MDi is assumed to be fixed by using probabilistic

values and the RDi component is assumed to be the active component that reflects
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the shelf space allocation of product i. But since Borin et al. considers the effects of

marketing variables, such as space, they modify the structure as UMDiGDi = MDi.

Therefore, MDi in Anderson and Amato (1973) would not reflect the same results as

MDi in Borin et al. (1994).

2.1.7 Urban (1998)

Urban (1998) was the first model which incorporated the conventional inventory-

control decisions. All existing models by that time implicitly assumed that the shelves

are always kept fully stocked with the products in the assortment, since they used

number of facings to calculate the demand. Decreasing number of display facings and

its effect on demand was not considered before in the demand formulations.

To account for changing display facings we need to introduce the concepts of

backroom inventory and shelf space inventory (backroom space). Backroom inventory

can be defined as the inventory where the products are being delivered to the retailer

and being stocked in a warehouse. Backroom space is the space in the shelf behind

the display facings where the products are also being stocked in order to satisfy the

consumer demand right on the shelf. Backroom inventory depletion, backroom space

depletion and decreasing the number of display facings therefore should be considered

in order to represent the demand.

Urban (1998) formulated the demand as a function of the display inventory level

and assumed a deterministic and constant demand rate and that the inventory is

replenished instantaneously with a constant lead time. Hence, as long as the inventory

level of the product’s display facing is constant, the demand rate of the product will be

kept constant. This means that the products in the backroom inventory or backrooom
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space are the ones that are being depleted since the facing products are dedicated for

display. After all the backroom inventory and the products in the backroom space are

depleted and it is the turn for the facing products to be depleted, then the number

of facings will start to decrease and therefore the demand rate decreases too, since

the demand rate depends on the displayed inventory level. In addition, the demand

rate of a product will decrease at a decreasing rate after the backroom inventory is

depleted because the demand rate of a product depends on the instantaneous display

inventory level. Since the demand rate of a product will always change for every

instance of depletion after the backroom inventories are depleted, they simplified the

demand rate of a product by making the demand rate as a function of space allocation

of all the other products and not the instantaneous inventory level. Thus, the unit

demand for a product is represented by

Di = πix
αi
i

∏
j ∈ I+
j 6=i

x
βij
j

[
1 +

∑
k∈ I−

(1− θk)f(πk, βki)

]
(2.1.7.1)

The expression in the brackets shows the demand coming from the consumers

which are willing to purchase a product within the assortment if their preferred prod-

uct is not included in the assortment. This function depends on potential demand

(πk) and the degree of substitutability (βki) with the products that are not in the

assortment. This part is analogous to the expression for AD in Borin (1994).

2.1.8 Yang and Chen (1999)

Yang and Chen (1999) additionally considered the location effect of a product in

different shelves. Their model also contained cross-elasticity between products and
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included other marketing variables besides space, but assumed that the other market-

ing variables are fixed. They modeled the demand of a product as a function of the

display facing of the shelf on which the product is displayed. Thus, the unit demand

for a product on shelf m in the assortment is defined as

Dim(xim) = Dim(xim, f
′
1i, f

′
2i, ...., f

′
zi) = πix

αim
im

I∏
j=1
j 6=i

x
βij
j

Z∏
z=1

f ′
γzi
zi (2.1.8.1)

where f ′zi’s are fixed values of non-space demand variables and xj =
∑M

m=1 xjm is

the total amount of display facing of product j. Their main contribution to the

literature was to propose an alternative optimization model that is applicable to the

retail practice. Since we focus on the demand models in this section, we will discuss

their alternate model formulation in the optimization models section.

2.1.9 Irion et al. 2004

Unlike the other polynomial demand models, Irion et al. (2004) model the demand

using not only the number of facings of the products but also the width-lengths of the

products. They describe the width-length diversity of the products in assortments

and the interrelation between the product and its dimensions (width-length in this

model) and explicitly implied that the width-length of a display facing would affect

the demand since the product and its width-length are interrelated. Therefore, they

model the demand not using the number of facings but using the total width-length

area (since total width-length area is in one dimensional space, we may just call it

total width-length). This demand model is similar to that of Hansen and Heinsbroek

(1979) in terms of modeling the demand using the total width-length of a product,
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not the number of products. However, Hansen and Heinsbroek did not consider

the cross-space effect between products within the assortment. Irion et al. defined

demand as

Di = πi (wixi)
αi

I∏
j=1
j 6=i

(wjxj)
βij . (2.1.9.1)

They model the demand using one-dimensional area of the product to allocate

space and then stacking the products on top of each other for every product in the

assortment until there is no space left to stack one more product. If we look at the

demand model carefully, although it seems like the demand model can be expressed

using a two-dimensional space, because of the stacking process, the authors argue that

“as long as the products are stacked until there isn’t enough space left to stack one

more product on top of the other, one-dimensional area allocation (total width-length

of the product allocation) determines the demand because the area remained between

the stacked products and the height of the shelf does not affect the demand”. Hence

they did not consider the total area of the product, ai, and used the one-dimensional

area of the product, (wixi), to form their demand function. We believe that this

may be a reasonable assumption in a product category, if the height of the different

products are very close to each others. The similar product heights would result in the

same number of display facings to be stacked in the shelf height and therefore the total

height of the different products would be very close. Since the percentage cover of the

stacked products to the height of the shelf display will be very similar and consumers’

space allocation perception depends more on the allocated space of the total width-

length of the products (consistent with the shelf space allocation literature), therefore

the demand might not be affected by the deviations of the uncovered area on top of
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the shelf caused by different (but close) product heights.

2.1.10 Reyes and Frazier (2005)

Reyes and Frazier (2005) model their demand function in order to determine the initial

shelf space allocation of the retail store and therefore their demand model has very

similar characteristics to Anderson and Amato (1973)’s demand model. The main

difference is that Reyes and Frazier incorporated space elasticity with probabilistic

values when calculating the different demand components. In order to define the cross

space elasticity between two products, a ratio of the relative difference in shelf space

allocation to the two products, 1 +
xi−xj
X

was used. Thus, they model their demand

in an additive form as

Di = RDi + LDi + (GDi + ADi)

= RDi + LDi + (GDi(negative) +GDi(positive) + ADi)

= RD
xi
X

+NDi −
∑
j ∈ I+
j 6=i

X + xj − xi
X

NDi ∆ij +
∑
j ∈ I+
j 6=i

X + xi − xj
X

NDj ∆ji

+
∑
k∈ I−

xi
X
NDk(1− θk) (2.1.10.1)

The two parts of GDi, GDi(negative) and GDi(positive), reflect the losses and

gains from the other products in the assortment. In particular, GDi(negative) rep-

resents the lost demand resulting from switching product i to a stocked product j

and GDi(positive) represents the gained demand resulting from switching a stocked

product j to product i.
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2.1.11 Hwang et al. (2005)

Hwang et al. (2005) model is inspired by the study of Dreze et al. (1994) in which

they concluded the importance of shelf level on which products are displayed within

the shelves and emphasized that eye-level position has the most of effect on sales.

They modified Corstjen and Doyle (1981) model and incorporated a location effect

multiplier (ϕm > 1) in the demand function. Each shelf has a weight for the position

relevant to the eye-level and the shelf which is on eye level has the highest weight.

The bottom or the top shelf have lower weights depending on the characteristics of a

store and the lowest weight of 1 is assigned to the worst shelf location. If the product

is displayed on different shelves at the same time, they assumed an average value of

ϕi, depending on the amount of products on the different shelves. Hence, the unit

demand for a product is defined as

Di = πix
αi
i

I∏
j=1
j 6=i

x
βij
j ϕi (2.1.11.1)

where xi =
∑M

m=1 xim and ϕi =
∑M

m=1 ximϕm

xi
is the average value of a ϕi if the

product is displayed on more than one shelf.

2.1.12 Reyes and Frazier (2007)

Reyes and Frazier (2007) mentioned the various factors which impact the customer’s

choice among different products within a product category such as price, space, in-

store promotion, customer loyalty, brand reputation, quality of the product, and

the desire to try something different. They incorporated two key factors in their
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demand model: price and space. Most consumers prefer to pay less for a product,

however not all consumers prefer to purchase the cheapest products because of the

other factors that alters consumers’ preference. That is why highly price-sensitive

consumers are affected more by price changes. Thus, reducing the price affects the

demand in a positive way and increasing the price affects the demand in a negative

way. The difference between Reyes and Frazier (2007) demand model and existing

demand models is that they represent the impact of the price sensitivity of demand by

dividing the price of a particular product by the average price of all the products in the

assortment or product category (
(
pavg
pi

)σi
, where they used σi = 0.5 for the examples

in their study). When pi = pavg then the price sensitivity factor of that product is

1, implying that product i is not sensitive to price changes. They also represent the

space elasticity factor in a different form from the existing demand models, which used

a multiplicative form. They form the base level shelf space allocation for a product,

which is determined by the ratio of base level demand of that product to total demand

for the product category, and multiply this ratio by the total available shelf space in

terms of number of product units (xbasei =
(
πi
Π

)
X). Then using this knowledge,

they represent the space sensitivity factor of a product by dividing the actual shelf

space allocation of that product by the base shelf space allocation (
(

xi
xbasei

)αi

where

they used αi = 0.5 for the examples in their study). When xi = xbasei then the space

sensitivity factor of that product is 1, implying that product i is not sensitive to space

changes. Therefore, they defined the unit demand for a product in the assortment as

Di = πi

(
xi
xbasei

)αi
(
pavg
pi

)σi
. (2.1.12.1)
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2.1.13 Hariga et al. (2007)

Hariga et al. (2007) model incorporates both the main-space effect and the cross effects

between products with location effects. But, in their work they consider the location

effect as being displayed in more than one location within the store. Therefore, they

model the unit demand of a product on shelf m (or m-th display location) in the

assortment as

Dim(t) = πiIN
αim
im (t)

∏
j ∈ I+
j 6=i

IN
βij
jm (t) (2.1.13.1)

and to simplify the model, they assumed that the demand will depend on total space

allocation of the other products in the assortment and not the instantaneous inventory

level of display facings. They have done this by replacing the time dependent INj(t)

by xj. Thus, the unit demand for a product on m-th display location in the assortment

becomes

Dim(t) = πix
αim
im (t)

∏
j ∈ I+
j 6=i

(1− yj + xjyj)
βij (2.1.13.2)

where yi is a binary variable in order to determine whether the product is included

in the assortment. The authors also mentioned that this model can be extended by

using price as a decision variable in the demand function using the main effect and

the cross effects between the products in the assortment under the circumstances of

no advertising and in-store promotions.

2.1.14 Murray et al. (2010)

Most of the shelf space allocation models consider the number of facings as the decision

variables in the demand model. Unlike the common demand models, Murray et al.
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(2010) consider the product facing areas and three display orientations, assuming

three dimensional quadrangular sizes for product packaging. They refer to the study

of Dreze et al. (1994) about the importance of product facing areas and aesthetic

determinants of product packaging such as size, color coordinations related to display

orientation and model the demand using display facing areas rather than the number

of facings. They argue that “a full facing packaging orientation on an eye-level shelf is

likely to be much more better in terms of quality of a given amount of display facing

area allocated to the product than a side facing packaging orientation on a bottom

shelf.” motivated by the findings of Bimolt et al. (2005) and Bucklin et al. (1998), the

incorporate the price decisions and cross-product price interactions. In addition they

consider display facing areas (two dimensional space) for stackable products. They

modeled the unit demand for a product by

Di(p, xi) = πi

(
3∑
o=1

M∑
m=1

δiomwiohiox̄iomxiom

)αi

pσii

I∏
j=1
j 6=i

p
µij
j (2.1.14.1)

where wiohio represents the display surface area of product i and x̄iomxiom represents

the quantity of product i that can be placed in shelf m (two-dimensional facing area

of shelf m). Thus, the product wiohiox̄iomxiom represents the shelf space allocation of

the product in display orientation o on shelf m (aiom). In addition, δiom is a parameter

that indicates a shelf location-orientation quality-adjustment weight corresponding to

the display facing area of product i in display orientation o on shelf m.
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2.1.15 Russell and Urban (2010)

Russell and Urban (2010) based their model on the model by Dreze et al. (1994),

which noted that the sales tend to act as a quadratic function in the horizontal

dimension in a shelf and as a cubic function in a vertical dimension. They also noted

that the model results would not differ much if sales are assumed to be quadratic in

the vertical dimension. Additionally, they also used a quadratic formulation for the

demand function for the effects of the display facing numbers of products on sales,

because it can reflect diminishing returns and provide a good estimate of concave

functions’ diversity, especially for a small number of products’ display facings. The

demand formulation for a product in the assortment is defined as

Di = ζ0i + ζ1ic̄i + ζ2i(c̄i)
2

+
M∑
m=1

[
ζ3i(Hmyim) + ζ4i(Hmyim)2 + ζ5i(Hmyim)3 + ζ6i(xim) + ζ7i(xim)2

]
(2.1.15.1)

where ζ•i are appropriate coefficients for particular products. Since (yim) is a binary

variable (implying that that yim = (yim)2 = (yim)3) then Di can be simplified to

Di = ζ0i + ζ1ic̄i + ζ2i(c̄i)
2 +

M∑
m=1

[
(ζ3iHm + ζ4iH

2
m + ζ5iH

3
m)yim + ζ6ixim + ζ7ix

2
im

]
(2.1.15.2)

2.1.16 Lotfi et al. (2011)

Lotfi et al. (2011) model the demand using a minimum-maximum approach where the

maximum demand is defined by the price change of the product and space allocation.

44



M.A.Sc. Thesis - Mehmet Erdem Coskun McMaster - Computational Eng. & Sci.

They have looked at the problem in a different way and claimed that any price

change in a product’s price affects the demand of the product as well as the other

products’ demand in the assortment. For example, if a product’s price increases and

its substitutes price stay the same, increase less or decrease, then the consumers who

are not willing to purchase any particular product, or are not totally loyal to any

brand or product, tend to alter their choice in terms of their benefit and gain from

the products. They assume a minimum daily demand (in units of sales) which is

also assumed to be constant for a product in a previously determined time period

and use this information as an input in the demand model. They calculate the

maximum daily demand for that product which it can meet due to the price change

and space allocation. Eventually, they form the maximum demand for a product in

the assortment as

UDib = MinDib
(1− PCibσ′ib)

(1− PCib,jµ′ib,j)
xαi
ib (2.1.16.1)

Since they applied a minimum-maximum approach to demand, this information

will be used in according with MinDib as a constraint in the main optimization model.

The constraint will guarantee that the order quantity, which is a decision variable,

will be between UDib and MinDib of the product. The quantity
1−PCibσ

′
ib

1−PCib,jµ
′
ij

represents

how price changes affect the customer demand, since the numerator represents the

price change effects of the product and the denominator represents the price change

effects of the product’s substitutes. If µij is positive then the demand of product i

increases, while a positive µji decreases the demand and vice versa.
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2.2 Optimization Models

2.2.1 Anderson and Amato (1973)

Anderson and Amato (1973) demand model is a touchstone among the demand mod-

els that have been proposed until now. It almost includes all the aspects of a potential

demand Π. However, the other demand models tried to model the demand as a func-

tion other factors such as the space allocated to the product and its price. Anderson

and Amato (1973) demand model works only for short-run periods and can not in-

clude the effects of any advertising or promotion activities in the demand model (since

they partitioned the potential demand of a short-run period). Thus, it may not be

suitable for real time shelf space allocation. The optimization side of the model has

basic assumptions such as:

1. The total display facing area for a product (li) has a homogeneous quality in

fixed physical size and is able to contain at least one display facing of the

product.

2. There is enough stock of products in the assortment to satisfy the minimum

demand for each displayed product.

3. All the products’ operating costs and profit margins are fixed and given in the

period.

4. All products is the assortment have the same physical size (since we allocate

products using the width of a product wi) and require the same amount of

display facing per placement.
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5. Total display area for a product is a multiple area of one product and total

display area (li) is a multiple of a product’s display facing area (or width-length

wi). i.e., li/wi = K where K is an integer.

Based on these assumptions, we see that they assume one, horizontal, homoge-

neous in quality shelf space. Since they consider simultaneously determining the

product selection within a product category and allocation of the chosen products

within this product category, they used binary variables (yi) to decide whether the

product is chosen for the assortment or not in addition to the decision variables

which represents the number of products to be allocated (xi’s). Their aim was to

maximize the gross profit of the product category and therefore they proposed their

optimization problem as

max P =
I∑
i=1

yigiDi

s. t.
I∑
i=1

xi 6 X, (2.2.1.1)

Xmin 6 xiyi, ∀i (2.2.1.2)

where giDi = Pi is the gross profit of a product in the assortment. Their model

resembles a classical “knapsack” problem where the gross profit multipliers (giDi)

imply the values in the objective function of the knapsack problem and the width-

length of each product (wi) imply the weights and total width-length of the shelf (L)

imply the weight capacity of the knapsack. Since they assume the same product sizes

(width-lengths) for all products, they are translated to xi and X values, respectively.
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It can easily been seen that they allocated the space among products depending

on the products’ potential demand, i.e., the market share of the product in a short-

run period. Even though they ignored the cross-space elasticities between products,

which generally uses the absolute space of a product to be allocated, the main-space

effects were accounted for in the share of a product (RDi) in the assortment. In

addition, the lost sales due to stockouts were neglected and they assumed that all the

stockout demand will be split up to the products in the assortment.

2.2.2 Hansen and Heinsbroek (1979)

Hansen and Heinsbroek (1979) optimization model incorporates the product selection

(yi) among a set of products. Their model also takes into account the minimum shelf

space needed for a product to be allocated in a shelf. Furthermore, they require an in-

teger solutions to allocate the space (li) for integer number of display facings. Hansen

and Heinsbroek proposed an optimization model to maximize the total profit by se-

lecting the products from a given set and optimally allocating the chosen products.

The model has basic assumptions such as

1. If a product is chosen to be in the assortment and to be allocated to the shelves,

a minimum quantity must be given to that product.

2. Total shelf space (L) is limited to products to be allocated.

3. Space elasticity of the products is constant for all products.

Based on these assumptions, we see that they assume one, horizontal, homoge-

neous in quality shelf space. Since the purpose is to maximize the total profit from
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each product that can be chosen to the assortment, the problem can be defined as

max
I∑
i=1

(giπil
αi
i −DCili)− f(NR,LT )

s. t.
I∑
i=1

li 6 L, (2.2.2.1)

Lmini yi 6 li 6 Lyi, ∀i (2.2.2.2)

yi ∈ {0, 1}, ∀i (2.2.2.3)

li
wi
∈ N+, ∀i (2.2.2.4)

where giπil
αi
i − DCili = Pi is the profit (not the gross profit) of a product in the

assortment and f(NR,LT ) is the replenishment cost of the shelf stock function which

depends on the number of replenishment (times per week) and lead time of the orders

(in days). Constraint (1) ensures that the total amount of shelf space to be allocated

to all the products in the assortment does not exceed the total shelf space. Constraint

set (2) ensures that if product i is chosen to be in the assortment then the space

allocated to the product should be between the minimum and maximum shelf space

(the total length of the shelf) which is under the control of the retailer. Constraints

(3) represent the binary variable which determines whether the product will be in the

assortment or not, and constraints (4) ensures that the number of product i to be

allocated to the shelf is an integer value.
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2.2.3 Corstjen and Doyle (1981)

Corstjen and Doyle (1981)’s demand model is the most well known space allocation

demand model in the literature. As we indicated in the previous section, they mod-

eled the demand using both own product space elasticities and cross (inter-product)

elasticities between products in a multiplicative form (polynomial form). Therefore,

the amount of shelf space allocated to a product determines the product’s demand.

Since retailers seek an allocation which maximizes their profit from the products in

the assortment, they mentioned that the operating cost side also plays an impor-

tant role within the model. For each product in the assortment, procurement costs,

carrying and out-of-stock costs are different. They included two cost components in

their model: the different gross profit margins (caused by different purchase costs

and different sales prices of the products) and the operating costs such as procure-

ment, carrying and out-of-stock costs associated with the incremented sales of various

product assortments caused by alternative allocation of products. They modeled the

operating cost function of the model as

Ci = φi

πixαi
i

I∏
j=1
j 6=i

x
βij
j


λi

and the gross profit of a product as

Pi = giπix
αi
i

I∏
j=1
j 6=i

x
βij
j .

Corstjen and Doyle modeled the problem of maximizing the net profit subject to
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the constraints of total available shelf space, limiting sales of the products due to

production or carrying limit of the products and lower (essential for retailer’s image

in the market) and upper (life cycle of a product may be on a later stage) bounds of

the shelf space allocation of a product where the number of products to be allocated is

the decision variable (xi) for their problem. Hence, their proposed their optimization

model is

max
I∑
i=1

gi
πixαi

i

I∏
j=1
j 6=i

x
βij
j

− φi
πixαi

i

I∏
j=1
j 6=i

x
βij
j


λi

s. t.
I∑
i=1

xi 6 X, (2.2.3.1)

Xmin
i 6 xi 6 Xmax

i , ∀i (2.2.3.2)

Di 6 Qmax
i , ∀i (2.2.3.3)

xi > 0, ∀i (2.2.3.4)

where constraint (1) guarantees that the total number of products to be located

does not exceed the available shelf space. Constraints (2) ensures that the number

of product i which will be located on the shelf should be between the minimum

and maximum number of display facings which the retailer decided. Constraints (3)

represents the limiting sales (upper bound of sales) because of the production or

carrying restrictions.

Based on these assumptions, we see that they assume one, horizontal, homoge-

neous in quality shelf space. They also assumed that the physical size of the products

in the assortment are the same in terms of dimensions. Although, their model is the
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most well known model in the literature and almost all the following models were

inspired by their work, one of the weaknesses of their model is that the solution of

their model may not be integer.

Corstjen and Doyle (1983)’s dynamic model is more of a theoretical model where

they eliminated most of the constraints and only included the shelf space availability

constraints (constraints 1). The practical use this model is shallow since the con-

straints are pretty much simplified and most importantly the cost side of the model

is ignored.

2.2.4 Zufryden (1986)

Zufryden (1986)’s aim was to develop a tractable model that might be used efficiently

by computers. He modeled the demand using the own-space elasticity of the product

but ignored the cross-elasticity between products in the store. He has considered both

the demand side and the cost side in the objective function to maximize the profit.

The cost function of the product is defined by

Ci = φi

(
πiō

αi
i

Z∏
z=1

f ′zi

)λi

where f ′zi’s are fixed values of non-space demand variables. The optimization problem

that maximizes net profit is

max
I∑
i=1

gi(πiōαi
i

Z∏
z=1

f ′zi

)
− φi

(
πiō

αi
i

Z∏
z=1

f ′zi

)λi


s. t.
I∑
i=1

ōi 6 O, (2.2.4.1)
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Omin
i 6 ōi 6 Omax

i , ∀i (2.2.4.2)

Di 6 Qmax
i , ∀i (2.2.4.3)

ōi = 0, blocki, 2blocki, 3blocki...., ∀i (2.2.4.4)

blocki > 1, ∀i (2.2.4.5)

blocki ∈ N+, ∀i (2.2.4.6)

Based on their assumptions, they assumed one, horizontal, homogeneous in quality

shelf space and the whole shelf space is divided into rectangular slots. A product can

fit and can be allocated to one slot since all the products in the assortment have

the same physical size (width and height). The space allocated to a product then

can be the multiples of slots (slot areas). Therefore, display facing area (number

of slots, ōi considered as the decision variable) is considered rather than the space

volume allocation, and thus they guarantee integer solutions. This is the first model

that considers product stacking (vertically) on a shelf inline with retailers desire to

allocate the shelf space as uniform and complete columns (Dreze et al. 1994).

Constraint (1) ensure that the total number of slots to be allocated to all the

products in the assortment does not exceed the available slot numbers in the show-

room inventory. Constraint set (2) guarantees that the number of slots which will be

allocated to product i will be between the minimum and maximum number of slots,

as desired by the retailer. Constraint set (3) sets the limiting sales (upper bound of

sales) because of the production or carrying restrictions. Constraint set (4) permits

the consideration of space allocation in block units such as twin-packed paper towels

and six-packed soft drink cans (display facing of the six-packed can be allocated into

the shelf in blocks of three or two).
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2.2.5 Borin et al. (1994), Borin and Farris (1995)

Borin et al. (1994)’s demand model is one the most comprehensive model in the

literature. Their style of categorizing the demand for a product into different com-

ponents gives a clear idea of how to identify each type of demand. They formulated

an optimization problem where the retailer is to maximize the category’s return on

inventory investment. Their model also has basic assumptions such as:

1. The space variable in the model is assumed to be the number of display facings

of a product.

2. Retailer’s inventory investment represents the retailer’s purchase cost of a full

shelf for all the products in the assortment.

3. Products which will be allocated to the shelves are given. It means that there

is no product selection in the optimization model.

4. There is adequate backroom space (shelf depth, not backroom inventory) for

extra product stocking. The depth of the shelf is being considered in the model

and it is fixed.

5. Minimum shelf space needed (Lmini for this model) for a product to be allocated

is the minimum number of display facings of the product and the maximum shelf

space for a product (Lmaxi = L for this model) to be allocated is the number of

display facings that available total shelf space can take.

6. The loyalty factors for both cases of temporary out-of-stocks and permanent

stockouts are the same.
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Based on the assumptions, they assume one, horizontal, homogeneous in quality

shelf space. Their goal is to find li in order to:

max

∑I
i=1 gi[pi(MDi + ADi + SOBDi + SOLDi)]∑I

i=1(1− gi)piIIi

s. t.
I∑
i=1

li = L (2.2.5.1)

Lmini 6 li 6 L, ∀i (2.2.5.2)

where constraint (1) stipulate that the number of products to be allocated to all

products into the shelf space should corresponds to the total number of products

which can be allocated to the shelf. Constraint set (2) sets the minimum (one facing)

and the maximum (total shelf space) for the number of number of product i to be

allocated.

2.2.6 Urban (1998)

As we mentioned in the previous section, Urban was the first researcher who incorpo-

rated the inventory level dependent decisions to explicitly model the demand function

as a displayed inventory level. All of the previous demand models implicitly assumed

the shelves are kept fully stocked at all times. He was also the first researcher who

made an explicit distinction between the backroom inventory and the showroom in-

ventory, since the backroom inventory has no effect on the sales. He incorporated the

effect of the showroom (display) inventory on demand when the showroom shelves

are not fully stocked. To do so, he made the following assumptions:

1. The products are being depleted from the showroom (displayed) inventory but

55



M.A.Sc. Thesis - Mehmet Erdem Coskun McMaster - Computational Eng. & Sci.

the replacement from the backroom inventory is instantaneous. This means

that the showroom shelves are being fully stocked and the backroom inventory

is being depleted until there is no product in the backroom inventory left.

2. Since the backroom inventory is being depleted until all the products are gone,

the showroom inventory is fully stocked and therefore the demand rate is con-

stant.

3. Once the backroom inventory is depleted then the showroom inventory will

be depleted and the demand rate of the product will start to decrease as the

showroom inventory level decreases.

4. The total inventory replenishment is also instantaneous with a known and con-

stant lead time. It means that the entire order from the suppliers is received

instantaneously as soon as the inventory is depleted. Replenishments are in-

dependent for each product in the assortment. It means that there is no joint

replenishments.

5. The total order is being received in the backroom inventory.

6. There is a limited dedicated display area (shelf space) for the product and when

other products are being depleted from the showroom inventory (in case of their

backroom is depleted already), the product can not be allocated to the other

products dedicated display area. It means that the limited shelf space for the

product can not be exceeded.

7. All the of the prices and costs (selling price, unit purchase cost of the products,

holding costs, carrying costs, display costs) are known and constant.

56



M.A.Sc. Thesis - Mehmet Erdem Coskun McMaster - Computational Eng. & Sci.

Based on the assumptions, we conclude that Urban considered one, horizontal,

homogeneous in quality shelf space for the showroom inventory and one backroom

inventory with a limited capacity. Inventory decisions are incorporated through two

variables: the order quantity (qi) and the reorder point (ri). In addition, a binary

variable (yi) is used to determine which products to be chosen for the assortment.

The objective of the model is to maximize the net profit from all the products in the

assortment. The net profit per cycle from a product in the showroom inventory is

defined as

NPi =
(pi − ci)qi

CTi
− OCi
CTi

−HCiAIi −DCixi, (2.2.6.1)

where AIi is assumed to be the average inventory, not the instantaneous inventory

level, to simplify the model. In the above expression the net profit is obtained by

subtracting the purchase, ordering, inventory and display costs from the revenue.

There are two components of the total inventory level (see Urban (1998) p. 20

and 21). The first part is when the backroom is being depleted and the showroom

inventory is kept fully stocked. The second part is when there is no product left in the

backroom inventory and the showroom inventory is being depleted. In the first part

the total inventory level will decrease linearly since the demand rate is constant, but

the showroom inventory level will stay the same and be fully stocked. Therefore, the

amount of displayed inventory will be equal to the space allocated to that product.

In the second part the showroom inventory will be depleting and so the demand rate

will also decrease. It has been show by Silver and Peterson (1985, p. 176) that if

there is a deterministic, constant demand rate and instantaneous replenishment, it

is optimal to reorder when the inventory level reaches to zero. This means that it is

optimal to reorder when all the inventory is depleted. On the other hand, the retailer
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does not want to take the risk for very low demand rates. So the best time to reorder

is sometime in the second part of the period. Therefore, the net profit of a product

is calculated as

NPi =

[(pi − ci)qi −OC]πi(1− αi)xαi
i

∏
j ∈ I+
j 6=i

x
βij
j

[
1 +

∑
k∈ I−(1− θk)f(ak, βki)

]
(1− αi)(qi + ri) + αixi − r1−αi

i xαi
i

−
HCi(1−αi)

2(2−αi)
[(2− αi)(qi + ri)

2 + αix
2
i − 2r2−αi

i xαi
i ]

(1− αi)(qi + ri) + αixi − r1−αi
i xαi

i

−DCixi

where the first part takes care of the revenue and purchase and ordering costs, the

second part is the average inventory cost (see Urban (1998) for more details) and

the last part is the display cost. Since the demand is a function of the displayed

inventory level of the products in the assortment, the demand rate of a product

will change every instance when the level of display inventory falls below the space

allocation of that product. Therefore, they simplified the evaluation of the demand

function and approximate it as a total shelf space allocation of all the other products

in the assortment and neglected the instantaneous inventory level case. Hence, HCi

depends on this average inventory (of the total inventory which contains the backroom

and the showroom inventory) level. The objective of the model is to maximize the

net profit from the products, which have been selected in the assortment, and can be

formulated as

max
I∑
i=1

yiNPi

s. t.
I∑
i=1

xiui 6 X, (2.2.6.2)
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I∑
i=1

(qi + ri)ui 6 BX, (2.2.6.3)

xi 6 Xyi,∀i (2.2.6.4)

ri 6 BXyi, ∀i (2.2.6.5)

qi 6 BXyi, ∀i (2.2.6.6)

Qmin
i yi 6 qi 6 Qmax

i , ∀i (2.2.6.7)

ri 6 xi 6 qi + r′i, ∀i (2.2.6.8)

Xmin
i 6 xi 6 Xmax

i , ∀i (2.2.6.9)

yi = {0, 1}, ∀i (2.2.6.10)

qi, ri, xi > 0, ∀i. (2.2.6.11)

Constraint (1) and (2) represent the showroom and backroom space capacity limit,

respectively. The parameter ui allows for different measure units such as facings,

packages, cases. Constraint sets (3), (4) and (5) make sure that if a product is not

selected (yi = 0) then the number of products, reorder and order quantities are set to

zero, respectively. Constraints (6) represent maximum and minimum bounds on the

order quantity, usually imposed by a supplier. Note including binary variable on the

left hand side of this constraint is necessary (Urban did not include it) otherwise the

problem will be infeasible because of the inconsistency between constraints (5) and (6)

when yi = 0. Constraint set (7) ensures that the products allocated to the shelf space

exceed the reorder point (ri 6 xi) and the replenishment provides at least enough

quantity to cover the allocated space (qi+r′i > xi, where r′i is certain inventory level).

Constraint set (8) represents bounds on the number of product i to be allocated to

the showroom inventory, usually imposed by the retailer.
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2.2.7 Yang and Chen (1999)

The first demand model which considered the location of the product on different

shelves in a product category and its effect on sales was Yang and Chen (1999).

Their optimization model also introduced different shelf space sizes (different width-

length of showroom-display shelves) for each shelf which can be very useful in retail

practice. They used the same assumptions as those of Corstjen and Doyle (1981).

Their optimization model’s objective is also to maximize the total profit from the

products in the assortment, where the number of products to be allocated to each

shelf (xim) is the decision variable. As in the basic model of Corstjen and Doyle

(1981), the cost function can be represented as

Ci(xi) = φi

(
M∑
m=1

Dim(xim)

)λi

= φi

 M∑
m=1

πix
αim
im

I∏
j=1
j 6=i

x
βij
j

Z∏
z=1

fγzizi


λi

The optimization model is to

max
I∑
i=1

gi
 M∑
m=1

πix
αim
im

I∏
j=1
j 6=i

x
βij
j

Z∏
z=1

fγzizi

− φi
 M∑
m=1

πix
αim
im

I∏
j=1
j 6=i

x
βij
j

Z∏
z=1

fγzizi


λi

s. t.
I∑
i=1

wixim 6 Lm, ∀m (2.2.7.1)

Xmin
i 6

M∑
m=1

xim 6 Xmax
i , ∀i (2.2.7.2)

M∑
m=1

πix
αim
im

I∏
j=1
j 6=i

x
βij
j

Z∏
z=1

fγzizi 6 Qmax
i , ∀i (2.2.7.3)
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xim ∈ N+, ∀i,m (2.2.7.4)

Constraint set (1) enforces the total shelf space limit in the width-length measure

for each shelf m. Constraint set (2) sets bounds on the total number of display facing

of product i as per the retailer requirements. Constraint set (3) makes sure that

the demand for product i does not exceed the supply limit of that product. Finally,

constraint set (4) ensures integrality of the solution (number of display facing).

They also proposed an alternative model that can be considered as an extension

of a knapsack problem. Within a small range of the display facing amount (number

of facings) for a product, they assume that the profit is linear which can be controlled

using Xmin
i and Xmax

i sizes. Thus, using per facing profit for a product (vi) on a

shelf, their objective is still to make the maximum profit from the products in the

assortment. They transformed the shelf space allocation problem to an extension of

a knapsack problem where the objective is to

max
I∑
i=1

M∑
m=1

vimxim

subject to the same constraints except constraint set (3) since they assumed that the

profit is linear within a small range of the display facing amount of a product.

The main problem of the alternate model is that it ignores the cross effects between

products since the process of picking the highest gross profit margin products neglects

the complementary and substitute effects among products within the assortment or

in the store. Murray et al. (2010) have also disputed the validity of this assumption

arguing that assuming a minimum number of display facings contradicts the minimum

required display facings or the product inventory availability assumption.
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2.2.8 Bookbinder and Zarour (2001)

Bookbinder and Zarour incorporated direct the product profitability (DPP) approach

within the optimization models in order to enhance the utility of the models. Since

DPP is a method to calculate an item’s net profit margin, which goes beyond the

gross margin of a product and accounts for all the discounts, deals and promotions

per product from different supply chain parties, it is a more reliable way to estimate

the net profit of a product within the assortment. DPP accounts for all the revenue

and cost elements of a product in a unified analysis (As Stern and El-Ansary 1992).

However, because DPP is static, it does not account properly for costs that vary

depending on the order and inventory level such as procurement and transportation.

Bookbinder and Zarour (2001) incorporated the DPP approach in order to provide

a better way to estimate how the space allocation of a product, and its compliment

and substitute products, may affect a SKU’s profitability. They use the Corstjen

and Doyle (1981) demand model which incorporates the own-space and cross-space

effects. The DPP approach is included in the objective function of the problem

in order to calculate the net profit from a product in the assortment. Thus, the

new adjusted gross profit margin is computed by multiplying the DPP margin rate

(DPPRi = DPPi

DPCi
, where DPPi is the direct product profit and DPCi is the direct

product cost) of a product with the unit demand of a product. As Corstjen and Doyle

(1981) mentioned in their study, the cost of each product should be computed for a

better optimization model and thus DPCi is used instead of φ in the DPP approach
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to refer to the total costs of a product. The optimization model is to

max
I∑
i=1

DPPRi

πilαi
i

I∏
j=1
j 6=i

l
βij
j

−DPCi
πilαi

i

I∏
j=1
j 6=i

l
βij
j


λi

s. t.
I∑
i=1

li 6 L (2.2.8.1)

Lmini 6 li 6 Lmaxi , ∀i (2.2.8.2)

Di 6 Qmax
i , ∀i (2.2.8.3)

where constraint (1) represents the shelf space limit. Constraint set (2) sets the

retailer bounds on the number of display facings for each product. Constraint set (3)

represents the limit on sales because of the production or carrying space restrictions.

2.2.9 Irion et al. (2004)

Irion et al. (2004) optimization model is the second model, after Urban (1998), that

considers the diminishing display inventory level and product selection process. But

unlike Urban’s model, they let the display inventory level reach zero and replenish

when there is no product left on the shelf. Furthermore, they implicitly assume a

constant demand rate in the time period of a decreasing inventory level. This is not a

reasonable assumption since shelf space allocated to a product is the main marketing

variable that affects demand. As such one would expect the demand rate to change if

the shelf space is changing. The following is a summary of their major assumptions:

1. All shelves are owned by the retailer.

2. There is no backroom inventory to stock products in the warehouse.
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3. A product can be stacked on top of the other until there is no space left to stack

one more.

4. There is backroom space to stock products behind display facings.

5. The products are being depleted from the showroom (displayed) inventory but

the replacement from the backroom space is instantaneous. This means that

the showroom shelves are being fully stocked and the backroom space is being

depleted until there is no product in the backroom space left. The replacement

cost is negligible.

6. When the backroom space is being depleted until all the products are gone, the

demand rate of the product is kept constant.

7. There is a limited dedicated display area (shelf space) for the product and when

other products are being depleted from the showroom inventory (in case their

backroom is depleted already), the product can not be allocated to the other

products dedicated display area. It means that the limited shelf space for the

product can not be exceeded.

8. Unit cost of each product contains all procurement costs.

9. Products are replenished individually from the manufacturer or the supplier.

This means that the order cost for each product is different since procurement

(order placement and transportation) costs are different.

10. As soon as the number of products on the shelves reaches zero, the product on

the shelf will be replenished by the amount that the shelf would take (considering

both display facing and the backroom space).
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11. There exist related costs such as, holding costs, unit replenishment costs (cov-

ers product insurance, deterioration and processing costs of sending products

back to the supplier if there are complications on the product or they are no

longer needed), fixed replacement (re-arraging, re-stacking) costs to restack the

products to the shelves and fixed costs to include a product into the assortment.

Based on the above assumptions, they assume one, horizontal, homogeneous in

quality shelf space for the showroom inventory. Since they do not consider a backroom

inventory, there is no space to stock the product except behind the display facing.

Therefore, their model does not need to determine the order quantity or the reorder

point. The only decision variables are the binary selection variables (yi) and variables

corresponding to the number of products i’s to be allocated (xi). The objective is

to maximize the net profit from all products in the assortment. They model the net

profit for a product per day as

NPi = (pi − ci)Di −GCiDi −HCiAIi −RCi
(

Di

xiNFi

)
= (pi − ci)Di −GCiDi − (ci IR)

(
xiNFi

2

)
−RCi

(
Di

xiNFi

)
=

(
pi − ci −GCi −

RCi
xiNFi

)
Di − (ci IR)

(
xiNFi

2

)
.

The optimization model is

max
I∑
i=1

yi

[(
pi − ci −GCi −

RCi
xiNFi

)
Di − (ci IR)

(
xiNFi

2

)
− ICi

]

s. t.
I∑
i=1

yiwixi 6 L (2.2.9.1)

(wixi − wi)(wiyi − wi) > 0, ∀i (2.2.9.2)
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Xmin
i 6 xi 6 Xmax

i , ∀i (2.2.9.3)

xi ∈ {1, 2, 3...}, ∀i (2.2.9.4)

yi ∈ {0, 1}, ∀i (2.2.9.5)

where ICi is an insertion cost that is subtracted from the revenue. Constraint (1)

models the space availability. Constraint set (2) ensures that there would be at least

one product i in the assortment if product i is not chosen for the assortment. This

is introduced to avoid the case where xi takes a value of zero resulting in negative

demand. Constraint set (3) represents the retailers bounds on the space to be allo-

cated for each product. Constraint sets (4) and (5) represent integrality of the space

variable and the binary nature of the selection variable, respectively.

Recently, Irion et al. (2011) extended this model by including the price effect

without the cross-price effect.

2.2.10 Reyes and Frazier (2005)

Reyes and Frazier (2005) consider inventory ordering and holding costs in a basic

optimization model:

max
I∑
i=1

(pi − ci)Di −
OCi
xi

Di −HCixi

s. t.
I∑
i=1

xi = X (2.2.10.1)

xbasei (1− ξ) 6 xi 6 xbasei (1 + ξ), ∀i (2.2.10.2)

xi > 0, ∀i (2.2.10.3)

xi ∈ {1, 2, 3, ....}, ∀i (2.2.10.4)

66



M.A.Sc. Thesis - Mehmet Erdem Coskun McMaster - Computational Eng. & Sci.

Constraint (1) represents the space limit and constraint set (2) defines the bounds

for the space variable. We can see from their optimization model that they assume

one, horizontal, homogeneous in quality shelf space and same product sizes for all the

products in the assortment.

2.2.11 Hwang et al. (2005)

Hwang et al. consider the location effect on multi-level shelves and incorporate the in-

ventory level effects on the optimization model, by including the backroom inventory.

But in their model, this backroom inventory is not interpreted as a replenishment

stock as in Urban (1998) model, but as the “backroom space” where products are

placed in the back side of the display facing products. Their model also has some

other assumptions:

1. The display area is always kept fully stocked.

2. The products are being depleted from the showroom (displayed) inventory but

the replacement from the backroom inventory (from now on backroom space)

is instantaneous. This means that the showroom shelves are being fully stocked

and the backroom space is being depleted until there is no product in the

backroom space left. The replacement cost is negligible.

3. Since the backroom space is being depleted until all the products are gone in

the backroom space, the showroom inventory is fully stocked and therefore the

demand rate is constant.

4. The products are ordered with an (r, Q) policy and the total order is being

received in the backroom space.
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5. The total inventory replenishment is also instantaneous with a known and con-

stant lead time. It means that the entire order from the suppliers is received

instantaneously as soon as the inventory is depleted. Replenishments are in-

dependent for each product in the assortment. It means that there is no joint

replenishments.

6. All the of the prices and costs (selling price, unit purchase cost of the products,

holding costs, carrying costs, display costs) are known and constant.

7. The shelves in the category have different shelf space sizes (different width-

length).

Since the demand rate is constant, the inventory level will decrease linearly. Be-

cause the assumption was to keep display facings fully stocked, the retailer should

order before all products in the backroom space are depleted. They use a zero inven-

tory order policy: order only when the inventory level reaches to zero. This means

that the reorder point is xi for all products where xi is the inventory level when all the

products stock in the backroom space is depleted and only the fully stocked display

facing inventory is left. The decision variables are qi, xi and xim. Since the cycle time

for a product is CTi = qi
Di

and the average inventory for a product is AIi = 2xi+qi
2

(see

Hwang et al. 2005 p. 188) then the net profit for a product during a unit period can

be defined as

NPi =
(pi − ci)qi

CTi
− OCi
CTi

−HCiAIi −DCixi

=
(pi − ci)qi −OCi

qi
Di

−HCi
2xi + qi

2
−DCixi

=

[
(pi − ci)−

OCi
qi

]
Di −HCi

2xi + qi
2

−DCixi
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The optimization model can be expressed as

max
I∑
i=1

[[
(pi − ci)−

OCi
qi

]
Di −HCi

2xi + qi
2

−DCixi
]

s. t.
I∑
i=1

wixim 6 Lm, ∀m (2.2.11.1)

Xmin
i 6

M∑
m=1

xim 6 Xmax
i , ∀i (2.2.11.2)

xi =
M∑
m=1

xim, ∀i (2.2.11.3)

xim > 0, ∀i,m (2.2.11.4)

qi > 0, ∀i (2.2.11.5)

Constraint set (1) ensures that the space allocated to a shelf does not exceed the

shelf space size (width-length). Constraint set (2) represents the bounds on the

total amount of display facing for each product. Constraint set (3) defines the shelf

space variable for a product as the sum of all its allocations in all shelves. Finally,

constraint sets (4) and (5) represent non-negativity for the shelf storage variable and

strict positiveness for the order quantity variable.

2.2.12 Reyes and Frazier (2007)

Reyes and Frazier (2007) consider two important performance measure: profitability

in terms of improving return on inventory investment through incremental sales, and

thereby increasing profit margins, and customer service in terms of reducing the

out-of-stock situations. This is achieved by having enough amount of shelf space

dedicated to every product within the assortment relative to the proportion of each
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product’s demand to the total available demand (Yang and Chen 1999; Yang 2001).

They model the problem as a nonlinear integer weighted goal program for which the

solution can be evaluated through weighting the trade-off between profitability and

customer service level. Therefore, while maximizing the first objective, which is the

profitability objective, will try to allocate more space to products which have higher

profit margins, minimizing the second objective (since the second term has a negative

sign in the objective function, the model attempts to minimize that objective), which

is related to customer service, will try to allocate a base level to each product to

satisfy all possible consumer demand for each product and reduce the risk of stock-

outs. Accordingly, the number of products to be allocated (xi), under-achievement

and over-achievement goal variables (uvi and ovi, respectively) are defined as the

decision variables.

Their model is

max weight
I∑
i=1

[
(pi − ci)πi

(
xi
xbasei

)αi
(
pavg
pi

)σi]
− (1− weight)

I∑
i=1

uvi

s. t.
I∑
i=1

xi = X (2.2.12.1)

xi + uvi − ovi = xbasei , ∀i (2.2.12.2)

xi > (1− ξ)xbasei , ∀i (2.2.12.3)

xi, uvi, ovi > 0, ∀i (2.2.12.4)

xi ∈ {1, 2, ...}, ∀i. (2.2.12.5)

Constraint (1) represents the space limit. Constraint set (2) represents the goal

constraints for the base level allocations. Constraint set (3) places a lower bound
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on the space variable. Constraint sets (4) and (5) represent the non-negativity and

integrality requirements, respectively.

They also proposed an alternate approach, which was a nonlinear integer program,

however not a goal program, to avoid the decision maker to make the choice of desired

weights for the objectives with goal programming. They find the best composition of

the two objectives, maximizing the profitability and minimizing the mean absolute

deviation (MAD) between the actual shelf space allocation and base level allocation.

The purpose is to maximize the combined average percentage achievement of the two

objectives. To do so, new decision variables are defined such as, total profit for a

solution (Psolution), best profit (Pbest), worst profit (Pworst) and percent of optimal

profit achieved with a solution (P%solution) and MAD for a solution (MADsolution),

best value of MAD (MADbest), worst value of MAD (MADworst) and percent of

optimal MAD value achieved with a solution (MAD%solution). The aim of their

alternate approach model is to maximize the average percentage achievement of the

two objectives, profitability and MAD. The alternate model is defined as

max 100
P%solution +MAD%solution

2

s. t.
I∑
i=1

xi = X (2.2.12.6)

xi > (1− ξ)xbasei , ∀i (2.2.12.7)

Psolution =

[
(pi − ci)πi

(
xi
xbasei

)αi
(
pavg
pi

)σi]
(2.2.12.8)

P%solution =
Psolution − Pworst
Pbest − Pworst

(2.2.12.9)

MADsolution =
1

I

I∑
i=1

|xi − xbasei | (2.2.12.10)
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MAD%solution =
MADworst −MADsolution

MADworst −MADbest

(2.2.12.11)

All variables > 0 (2.2.12.12)

xi ∈ {1, 2, ...}, ∀i (2.2.12.13)

2.2.13 Hariga et al. (2007)

Hariga et al. (2007) considered many decision variables: the variety of the products

(product selection, yi), the various locations a product is being displayed within a

store (yim), the total order quantity of the product (qi) and their order quantity to

each location (qim), number of products to be allocated (xi) and number of products

to be allocated in each location (xim), cycle time of the product (CTi) and cycle time

of the location (CTim) and average inventory of the product in a particular location

(AIim). They also made a clear distinction between the showroom inventory and the

backroom inventory. They made several assumptions that are similar to those made

in Urban (1998) and defined the new assumptions as:

1. The products are being depleted from the showroom (displayed) inventory but

the replenishment from the backroom inventory is instantaneous. This means

that the showroom shelves are being fully stocked and the backroom inventory

is being depleted.

2. While the backroom inventory is being depleted, the showroom inventory is

fully stocked and therefore the demand rate is constant for that time interval.

3. Once the backroom inventory is depleted for a product in a shelf (or a display

location) then the showroom inventory will be depleted and the demand rate
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of the product will start to decrease as the showroom inventory level decreases

(see Hariga et al. 2007, p. 243 and 244).

4. The total order is being received in the backroom inventory.

5. The total inventory replenishment is instantaneous with a known and constant

lead time. It means that the entire order from the suppliers is received instan-

taneously as soon as the inventory is depleted.

6. There is a limited dedicated display area (shelf space) for the product and when

other products are being depleted from the showroom inventory, the product

can not be allocated to the other products’ dedicated display area. It means

that the limited shelf space for the product can not be exceeded.

7. All the of the prices and costs (selling price, unit purchase cost of the products,

holding costs, carrying costs, display costs) are known and constant.

In Urban (1998) the retailer did not want to take the risk for very low demand

rates and tried to find the optimal reorder point, which was in the second period of the

cycle time and did not let the inventory level of the product reach to zero. In contrast,

Hariga et al. (2007) assume that products will not be replenished from the backroom

inventory until all products stock allocated to the shelf is totally depleted. While

Urban’s model does not let the showroom inventory reach zero, because of the possible

decrease of the demand, Hariga et al. let the showroom inventory reach zero for all

the products in the same shelf (or location). Hariga et al. do not allow an unstocked

product i in shelf m (location) to be replenished as soon as its inventory is depleted,

rather they wait until all the other stock of products in shelf m is depleted. In their

model the new inventory cycle begins at that time when the shelf is replenished, since
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inventory replenishment is instantaneous. For a detailed explanation of the model

see Hariga et al. p. 245–247. The net profit per unit of time for a product can be

expressed as

NPi(xim, qim) =
M∑
m=1

[
(pi − ci)qim

CTi
− OCi
CTi

−HCiAIi − SCi(qim − xim)−DCixim
]

and therefore the profit per a unit of time for a product whether it is included in the

assortment or not can be expressed as

NPi(xim, qim) =
M∑
m=1

[
(pi − ci)qim −OCiyi −HCiAIim − SCi(qim − xim)CTim −DCiximCTim

(1− yi + CTiyi)

]
(2.2.13.1)

and the optimization model is defined as

max
I∑
i=1

M∑
m=1

[
(pi − ci)qim −OCiyi −HCiAIim − SCi(qim − xim)CTim −DCiximCTim

(1− yi − CTiyi)

]

s. t.
I∑
i=1

uixim 6 Xm, ∀m, (2.2.13.2)

I∑
i=1

uiqi 6 BX (2.2.13.3)

xi =
M∑
m=1

yimxim, ∀i (2.2.13.4)

qi =
M∑
m=1

yimqim, ∀i (2.2.13.5)

xi 6 Xmax
i , ∀i (2.2.13.6)

qi 6 Qmax
i , ∀i (2.2.13.7)

yimX
min
i 6 xim 6 yimX

max
i , ∀i (2.2.13.8)
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qim 6 yimQ
max
i , ∀i,m (2.2.13.9)

xim 6 qim, ∀i,m (2.2.13.10)

Dim(0) = πix
αim
im

∏
j ∈ I+
j 6=i

(1− yj + xjyj)
βij , ∀i,m (2.2.13.11)

CTim =
qim − xim

(
xim

1−αim

)
1− yim + yimDim(0)

, ∀i,m (2.2.13.12)

0 6 CTim 6 yimCTi, ∀i,m (2.2.13.13)

CTi 6 yiCT
max
i , ∀i (2.2.13.14)

AIim =
1/2(qim − xim)2 + xim

(
qim −

[
1−αim

2−αim

]
xim

)
1− yim −Dim(0)yim

, ∀i,m (2.2.13.15)

yim 6 yi, ∀i,m (2.2.13.16)

yi 6
M∑
m=1

yim, ∀i (2.2.13.17)

yim = {0, 1}, ∀i,m (2.2.13.18)

yi ∈ {0, 1}, ∀i. (2.2.13.19)

Constraint set (1) represents the storage limit for each shelf. Constraint (2) takes

care of the backroom inventory space limit. Constraint sets (3) and (4) defines the

logical relationship between a product’s total allocated number of units and order

quantity and the allocations and orders sizes to individual shelves, respectively. Con-

straint set (5)–(9) set the appropriate limits on shelf allocations and order quantities.

Constraint set (10) defines the demand rate at time 0 for product i in shelf m, Dim(0),

for the selected products, which accounts for the own-space elasticity of the product

and cross-elasticities among products. Constraint set (11) defines the cycle time for
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selected products, which depends on the order quantity, space allocation, space elas-

ticity and the demand function of the product on shelf m. Constraint set (12) ensures

that if product i is in the assortment of shelf m then the cycle time of product i on

shelf m does not exceed the cycle time of product i. Constraint set (13) defines the

bound on a product cycle time, CTi, as the maximum value among all its cycle times

on the shelves. Constraint set (14) defines the average inventory of product i on shelf

m per unit of time as a function of the average backroom and showroom inventories.

Constraint sets (15) and (16) define the logical relationships between the binary vari-

ables for product selection and shelf placement. Finally constraint sets (17) and (18)

state the binary variables.

2.2.14 Silva et al. (2009)

Silva et al. (2009) use Yang and Chen (1999)’s idea of modeling the shelf space

allocation model as a modified version of a multidimensional knapsack problem. They

consider the shelf levels (vertically) and shelf parts (horizontally). They model this

problem for convenience stores and accordingly made the following assumptions:

1. One shelf block consists of three shelves in a horizontal dimension: the top level,

eye level and bottom level.

2. Each shelf consists of three parts in a vertical dimension: the right part, middle

part and left part.

3. The shelves which are on the eye level and middle parts of each shelf are assumed

to have the highest profitable parts.
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4. Each shelf and each part has a priority based on their position since each section

contributes to profits differentially.

5. There is no stacking process and therefore the height of the products are ignored

in the model. However, the shelf is tall enough to accommodate each products’

height.

6. The depth of the products are also ignored.

7. Each products’ display facing should be located on the same shelf. This as-

sumption ignores the situation of having multiple display facings on different

shelves.

Their decision variables are the number of products to be allocated on a part

of a shelf (xime) and a binary variable to determine whether the product is located

on a part of shelf or not (yime). The modified version of Yang and Chen (1999)

optimization model is then defined as

max
I∑
i=1

M∑
m=1

E∑
e=1

vimexime

s. t.
I∑
i=1

wixime 6 Lme, ∀m,e (2.2.14.1)

M∑
m=1

E∑
e=1

yime = 1, ∀i (2.2.14.2)

Xmin
i 6

M∑
m=1

E∑
e=1

xime 6 Xmax
i , ∀i (2.2.14.3)

yime 6 xime 6 Xmax
i yime, ∀i,m,e (2.2.14.4)

xime ∈ N+, ∀i,m,e (2.2.14.5)
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yime ∈ {0, 1}, ∀i,m,e (2.2.14.6)

Constraint set (1) takes care of space limitations. Constraint set (2) ensures that

product i can only be located to a particular part of a particular shelf. Constraint

sets (3) and 4 models the bounds on the total number of display facing of product

i, depending on whether the product is located on a part of a shelf or not. Finally,

constraint sets (5) and (6) represents the positive number of display facings for each

product and the binary variable requirements.

The authors mention the potential weakness of the model when shelf parts doe

not correspond to the space where products are allocated. In such cases, there would

be an unused space and potentially lower profitability.

2.2.15 Murray et al. (2010)

Murray et al. (2010) consider display facing areas of a product, their various display

orientations on a shelf and the location of the product within a product category.

Their model is also the first optimization model that considers the product price (pi)

with shelf space allocation (display facing areas, shelf locations and display orienta-

tions, xiom) as decision variables. Since they consider the display facing area of a

product, unlike existing models which considers the width of the product , they take

into account the height of the product too. However, since they allow the products

to be placed on a shelf in diverse orientations, for each orientation of the product,

different dimension lengths are used as the width and the height of the product. The

height of the shelf also became an important parameter because of product stacking.

They made the following assumptions:
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1. The products to be allocated have already been chosen.

2. Each display shelf has different dimension sizes for each dimension.

3. The model does not consider the backroom inventory (space) which is behind

the product display facings.

4. The use of shelf depth dimension and product depth dimension is solely for the

purpose of ensuring the product’s depth does not exceed the shelf’s depth.

5. Product i can only be stacked on top of itself and it must be in the same

orientation.

The gross profit of a product can be defined as

Pi = (pi − ci) Di(p, xi)

The aim of their optimization model is to maximize the gross profit from the products:

max
I∑
i=1

(pi − ci) Di(p, xi)

s. t.
I∑
i=1

3∑
o=1

wioxiom 6 Lm, ∀m (2.2.15.1)

xiom = 0 for all i, o, m such that x̄iom = 0 (2.2.15.2)

xiom = 0 for all i, o, m such that bDm

dio
c = 0 (2.2.15.3)

Xmin
i 6

3∑
o=1

M∑
m=1

x̄iomxiom 6 Xmax
i , ∀i (2.2.15.4)

Pmin
i 6 pi 6 Pmax

i , ∀i (2.2.15.5)

xiom ∈ {0, 1, 2, ....}, ∀i (2.2.15.6)
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Constraint set (1) ensures that the space allocated to all products (width of all prod-

ucts) on shelf m does not exceed the space (width) of shelf m. Constraint sets (2) and

(3) ensure that if the product i is placed on shelf m in orientation o and product’s

height or depth exceed the shelf’s height or depth, respectively, then the product can

not be placed on shelf m in orientation o. Constraint sets (4) and (5) put bounds on

the products allocated space and price. Constraint (6) ensures the number of display

facings is integer.

2.2.16 Russell and Urban (2010)

Underhill (1999) noted the positive effect on sales of the region from slightly above

eye level to knee level (horizontally) and the region from one end to another end of

the aisles (vertically). To model this effect, and inspired by Dreze et. al. (1994),

Russel and Urban (2010) assumed sales to be quadratic in the horizontal and vertical

dimensions. The objective function of their model is to maximize the net profit from

products in the assortment. As Dreze et al. (1994) noted the importance of allocat-

ing space to products in a uniform column, they took into account the location of

the product family within the shelf category and used a limit deviance (deviance)

to control the distance from one shelf to its adjacent. Their decision variables are

the location of product i (center of the products’ display facings in a shelf, c̄i), the

number of product i (xim) to be allocated on shelf m, a binary variable which repre-

sents whether the product i will be placed on shelf m (yim), a binary variable which

represents whether a family will be placed on shelf m (ybm), and (when the family is

placed on shelf m) a continuous variables which represent the location of the family b

from left end to the right end (leftbm and rightbm) and top shelf to the bottom shelf
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(topb and bottomb). The optimization model is

max
I∑
i=1

giDi

s. t. c̄i >
wi
2
xim, ∀i,m (2.2.16.1)

c̄i 6 Lm −
wi
2
xim, ∀i,m (2.2.16.2)

M∑
m=1

yim = 1, ∀i (2.2.16.3)

M∑
m=1

xim > Xmin
i , ∀i (2.2.16.4)

xim 6 Xmax
i yim, ∀i,m (2.2.16.5)

c̄i −
wi
2
xim > c̄j +

wi
2
xjm − Lm y′ij − Lm(2− yim − yjm), ∀i (2.2.16.6)

y′ij + y′ji = 1, ∀i,j(i < j) (2.2.16.7)

leftbm 6 c̄ib −
wib
2
xib,m + Lm(1− yim), ∀i,b,m (2.2.16.8)

rightbm > c̄ib −
wib
2
xib,m − Lm(1− yim), ∀i,b,m (2.2.16.9)

rightbm − leftbm =
I∑

ib=1

wibxib,m, ∀b,m (2.2.16.10)

ybm 6
I∑

ib=1

yib,m, ∀b,m (2.2.16.11)

ybm > yib,m, ∀i,b,m (2.2.16.12)

topb > mybm, ∀b,m (2.2.16.13)

bottomb 6M − (M −m)ybm, ∀b,m (2.2.16.14)

topb − bottomb =
M∑
m=1

ybm − 1, ∀b (2.2.16.15)

topb > bottomb, ∀b (2.2.16.16)
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leftbm − leftb,m+1 6 deviance+ Lm(2− ybm − yb,m+1), ∀b,m(m 6M − 1)

(2.2.16.17)

leftb,m+1 − leftbm 6 deviance+ Lm(2− ybm − yb,m+1), ∀b,m(m 6M − 1)

(2.2.16.18)

rightbm − rightb,m+1 6 deviance+ Lm(2− ybm − yb,m+1), ∀b,m(m 6M − 1)

(2.2.16.19)

rightb,m+1 − rightbm 6 deviance+ Lm(2− ybm − yb,m+1), ∀b,m(m 6M − 1)

(2.2.16.20)

Constraint sets (1) and (2) ensures that the center of product i sequence does not

go beyond the shelf m’s both ends. Constraint set (3) stipulates that each product

can only be allocated to one shelf. Constraint sets (4) and (5) put bounds on the

total number of product i to be allocated to the all shelves and the number items

of product i placed on shelf m, respectively. Constraint set (6) states that the left

end of the product i sequence is to the right of product j sequence’s right end, if

product i is not placed to the left of product j (−Lm y′ij) or is not on a different shelf

(−Lm(2 − yim − yjm)). Constraint set (7) ensures that product i should be placed

either to the left of product j or to the right of product j. Constraint sets (8) and

(9) model the locations of both ends of family (brand) b in each shelf. Constraint

set (10) ensures that all family (brand) members will be adjacent to each other.

Constraint sets (11) and (12) represents logical relations for for the definition of the

binary variable ybm indicating whether family b is on shelf m or not. Constraint sets

(13) and (14) model the location (top shelf and bottom shelf in a vertical dimension,

respectively) of family b using the binary variables and shelf numbers. Constraint
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(15) ensures that all the family members will be adjacent to each other in terms of

shelves. Constraint set (16) secures logical conditions of the top and bottom shelf.

Constraint sets (17–20) model the limits on adjacent shelves from their left (17–18)

and right (19–20) sides.

2.2.17 Lotfi et al. (2011)

In Lotfi et al. (2011) each product is represented by the form of multiple brands.

They considered costs related to nonproductive use of space along with the inventory

investment cost, replenishment cost and inventory holding costs. They assumed an

estimated minimum daily demand for a product which is used as an input for the

model and tried to calculate the maximum (potential) demand due to the price change

and space allocation. Their decision variables are the maximum daily demand of

product i (UDib), order quantity of product i (qib), number of display facings and total

width-length of product i to be allocated in showroom inventory (xib and sib), number

of product i and total width-length of product i to be allocated in backroom inventory

(x′ib and s′ib) and cycle time of the joint replenishment of all products under brand b

(CTb). The objective is to minimize the total weight penalty due to the deviations

from different profit margins and the space allocated to a product (variables such as

nDPM , pDPM , nDLi, pDLi, nDBi, pDBi are the deviations from desired target

levels and SV Sib is the slack variable). They considered a planning horizon (say three

months) and assumed that:

1. Each product is represented by the form of multiple brands.

2. Data such as demand (daily demand), prices, and costs for the products are

constant during the time period.
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3. Seasonal variations and periodic trends are noticed in the estimation of the

parameters.

4. If the products are under the same brand, then they are replenished jointly.

5. There is a limited number of replenishments during a period (especially for

perishable products).

6. Products are being held in backroom inventory and showroom inventory.

7. A full shelf strategy is being applied.

8. The products are being depleted from the showroom (displayed) inventory but

the replenishment from the backroom inventory is instantaneous. This means

that the showroom shelves are being fully stocked and the backroom inventory

is being depleted. This also means that backroom inventory decreasing rate is

equal to the constant demand rate.

9. The replenishment lead-time for a brand is zero.

10. The best display facing of a product has already been chosen by the retailer.

11. The dimension sizes of the showroom inventory (display shelves) and backroom

inventory (holding shelves) are predetermined by the retailer.

12. If the consumer faces a shortage of product i, then he will either purchase

another product or does not purchase any product within the assortment. If

the consumer does not purchase any product in case of a shortage, then the

shortage is identified as a lost sale.
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13. A penalty is introduced for the nonproductive use of shelf space, because to place

a different kind of product on or behind of a product in showroom inventory

(shelves) is not possible due to aesthetic reasons and accessibility limitations.

The optimization model is

min pm nDPM +
ps
DL

I∑
i=1

(pDLi + nDLi) +
pbi
DB

I∑
i=1

(pDBi + nDBi)

s. t. UDib = MinDib
(1− σ′ibPCib)

(1− µ′ijPCib,j)
xαi
ib , ∀i,b (2.2.17.1)

MinDibCTb 6 qibΩ
′
ib 6 UDibCTb, ∀i,b (2.2.17.2)

CTb 6 ETib, ∀i,b (2.2.17.3)

I∑
i=1

B∑
b=1

lib 6 L (2.2.17.4)

I∑
i=1

B∑
b=1

l′ib 6 BL (2.2.17.5)

xib =
lib
wib

, ∀i,b (2.2.17.6)

x′ib =
l′ib
wib

, ∀i,b (2.2.17.7)

qib + SV Sib =
xibNFib

Ωib

+ x′ibNBib, ∀i,b (2.2.17.8)

WD

I∑
i=1

B∑
b=1

cibqib
CTb

6 BU (2.2.17.9)

WD

B∑
b=1

1

CTb
6 NR (2.2.17.10)

TCP = WD
I∑
i=1

B∑
b=1

cibqib
CTb

(2.2.17.11)

TCO = WD
B∑
b=1

OCb
CTb

(2.2.17.12)
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TCH =
I∑
i=1

HCi

B∑
b=1

cibqibΩ
′
ib

2
(2.2.17.13)

TCSP = ps

I∑
i=1

B∑
b=1

SV Sibwib
NBib

(2.2.17.14)

TC = TCP + TCO + TCH + TCSP (2.2.17.15)

TR =
I∑
i=1

B∑
b=1

pibqibΩ
′
ib

CTb
WD (2.2.17.16)

NP = TR− TC (2.2.17.17)

NP

TC
+ (nDPM − pDPM) = DPM (2.2.17.18)

B∑
b=1

lib + nDLi − pDLi = DLi, ∀i (2.2.17.19)

B∑
b=1

l′ib + nDBi − pDBi = DBi, ∀i (2.2.17.20)

nDPM, pDPM,nPLi, pDLi, nDBi, pDBi, SV Sib > 0, ∀i,b (2.2.17.21)

xib, x
′
ib, qib ∈ {1, 2, ..}, ∀i,b (2.2.17.22)

Constraint set (1) states that the maximum daily demand of product i depends on the

minimum daily demand of product i, number of display facing and the price change

effects for product i and its substitute (since positive PCib increases the demand for

product i while positive PCib,j decreases the demand for product i). Constraint set

(2) puts limits on the order quantity of product i. Constraint set (3) states that

the cycle time for a brandb should be less than the holding time limit of all the

products under brandb. Constraint sets (4) and (5) state showroom inventory and

backroom inventory space limits, respectively. Constraint sets (6) and (7) ensure

that the space allocated to product i is a multiple length of the product’s width
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dimension so that the quantity of product i to place on shelves can be an integer

value for showroom inventory and backroom inventory, respectively. Constraint set

(8) represents the relationship between the order quantity of product i and its space

allocation. Constraint set (9) sets a limit on the total cost of ordering for all the

products in the assortment . Constraint set (10) puts a limit on the total number of

replenishments for a brandb. Constraint sets (11-14) define the cost components of the

model. Constraints (15), (16) and (17) define the total cost, revenues, and net profit

for the period, respectively. Constraint sets (18-20) represent the goal constraints of

the model. Finally constraint sets (21-22) represent non-negativity and integrality

requirements.

2.3 A Critical Discussion about the Literature

From the reviewed literature on shelf space allocation optimization models we infer

that there are two main modeling approaches: models that incorporate space elastic-

ity in the demand function and models that assume a linear relation between shelf

space and sales. Although a large majority of the models considered space elasticity

functions, some of the models such as Yang and Chen (1999), Yang (2001), Lim et

al. (2004), Silva et al. (2009) and Hansen et al. (2010) assumed a linear relation in

a knapsack-like models and provided solution algorithms in order to solve the linear

version much faster. Yang (2001) proposed the first heuristic to the linear formula-

tion of the shelf space allocation problem. The solution heuristic is composed of four

phases:

(1) A preparatory phase where enough shelf space is being checked to allocate the

minimum required number of facings for all the products and assigning a priority
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index to each product based on their ”profit weight” (gi/wi).

(2) An allocation phase where an initial solution is designed by assigning shelf space

to each product following the ordered priority indexes with minimum required

number of facings.

(3) An adjustment phase which consists of three adjustment methods. The first ad-

justment swaps a display facing between two products allocated on the same shelf.

The second adjustment swaps a facing between two products allocated on differ-

ent shelves. The last adjustment, an extension of the second adjustment, looks

for additional shelf space to allocate more products before swapping products on

different shelves again.

(4) A termination phase where the total gross profit of the shelf space allocation is

being calculated.

Lim et al. (2004) and Silva et al. (2009) improved the efficiency of this heuristic by

using different elements in the above phases. Hansen et al. (2010) proposed a genetic

algorithm as a method to improve the outcome of the shelf space allocation problem

in their comparative analysis study.

The justification for the linearity relationship is that obtaining the direct-space

elasticity parameters for each product is difficult. Furthermore, assuming a linear

relation between shelf space allocation and sales in a limited range of display facing for

each product is reasonable. It is important here to also note that knapsack-like models

do not consider the inter-relation between products and therefore ignores factors like

cross-space and -price elasticities. Furthermore, these models assume all marketing

mix variables are fixed. Thus, we think that knapsack-like models, although appealing
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from a computational tractability perspective, they are restricted in their ability to

represent real word retail conditions. As Corstjen and Doyle (1981) showed, including

cross-elasticity and inter-product factors leads to significantly different shelf space

allocations than when they are not included. In the sequel we focus on models that

use space elasticity and consider inter-product marketing factors interactions. For

convenience, we summarize the features of the optimization models and solutions

approaches in Tables 1 and 2, respectively.

Marketing research (Dreze et al. 1994) shows that products should be allocated on

shelfs as uniform and complete columns. Although models in the literature considered

using complete columns in a single shelf, in a real retail environment most of the

products can be located vertically on multi-shelves. Yang and Chen (1999), Yang

(2001), Lim et al. (2004), Hwang et al. (2005) and Murray (2010) considered the

allocation of a product vertically on multilevel shelves. However, Hwang et al. (2005)

model can result in space allocations on discreet shelves in a vertical column. For

example, if there are 7 shelves in a product category, their model can make space

allocation on the second and fifth shelves vertically, an unrealistic arrangement. The

same problem occurs with Murray et al. (2010) model which considers product display

orientation, location on vertically different shelves and stacking. For example, if there

are six shelves in the category, their model can make a shelf space allocation on the

second shelf with the display orientation 1 (say main facing of the product) and the

sixth shelf with the display orientation 3 (say side facing of the product). Besides,

both of these models did not enforce uniform and complete allocation in a shelf

section. In our thesis, we enforce both uniformness and completeness in the case

of allocations on multi-shelves by having the same number of products on vertically
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neighboring shelves.
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Hariga et al. (2007) consider the joint inventory ordering and allocation of shelf

space to a product on different locations within a retail store. These situation arise in

practice when a product can be a member of different product categories (e.g. fresh

juice) or should be located under a certain product category (e.g. batteries under use-

and-throw camera category) so as to increase its sales. Hariga et al. (2007) assume

that the replenishment of a shelf occurs when all its products are depleted. This

would mean that the first product that has been depleted can only be replenished

when all the other products on the same shelf are depleted. They also divided the

order quantity from the manufacturer into order quantities for each different shelf

location. Therefore, when one dedicated inventory of a shelf for a product in the

backroom inventory reaches zero, there would still be products of the same kind

in the backroom inventory, but they would not be used to replenish the depleted

items because they are not dedicated to that particular shelf. This assumption of

joint replenishment of the different products in a shelf may cause the shelves to be

partially full, mostly empty, for a significant period of the time.

There is still some ambiguity in the literature over whether demand for a product

should be a function of the total display space or display inventory. Studies such as

Urban (1998) and Hariga et al. (2007) assume that if the display facings of a product

are decreasing, then the demand should be decreasing in a decreasing rate. Borin et

al. (1994) and Irion et al. (2004) modeled their problem in terms of space allotted

to a product but they let the inventory level reach zero in the showroom inventory.

Both of these studies implicitly assumed constant demand rates in the time interval of

decreasing number of display facings, since they modeled the demand in terms of space

allocation, not the instantaneous inventory level (or average inventory level). Urban
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(2005) demonstrated when the model costs are not dependent on the inventory level

throughout the period then models that assume demand depends on the instantaneous

inventory level can be shown to be equivalent to models that assume that demand

depends only on the initial inventory level.

The only studies that considered the effects of product’s horizontal location in a

shelf were Silva et al. (2009) and Russell and Urban (2010). However, in order to

simplify the problem structure, they artificially partitioned one horizontal shelf into

smaller parts and assigned priority weights based on the horizontal location in a shelf.

Partitioning one shelf causes smaller widths and could affect feasibility in terms of

space allocation. When a product allocation can not fit into the remaining space in

a shelf part, it would be allocated to another part of this shelf and it would leave

unused productive space. In general, any kind of fragmentation of space in a shelf

limits the use of scarce shelf space. An alternative is to consider the center of facings

as a continuous decision variable as modeled in the main model of Russell and Urban

(2010).

Lotfi et al. (2011) used a minimum maximum approach in order to model de-

mand. They assumed a minimum (loyal demand in a day) as a constant (input) and

model the maximum demand as a decision variable. They developed a rich model by

including different practical aspects such as products under brands, inventory deci-

sions, cycle times of a brand, different sizes of products for backroom and showroom

inventory, expiration time of the products, budget of the product category, and max-

imum number of replenishments for a product or a brand. The downside is that their

model resulted in a complex problem where they were able to solve small problem

sizes of 8 products under 4 brands. Their model’s purpose was to minimize the usage
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of nonproductive use of space behind display facing.

To conclude our critical review of the literature, we present all the studies in a

chronological and clustered structure on Figure 2.5 in order to visualize each study’s

path in the literature.

Shelf Space Allocation

Optimization Models

Linear Programming
Formulation

Nonlinear Programming

Formulation

Knapsack Formulation Probabilistic Linear
Formulation

- Yang And Chen (1999) (alternate approach)
- Yang (2001)
- Lim et al. (2002)

- Reyes and Fraizer (2005)

- Lim et al. (2004)

- Hansen et al. (2010)

- Anderson and Amato (1973) - Hansen and Heinsbroek (1979)

- Silva et al. (2009)

- Cortsjen and Doyle (1981)

- Bookbinder and Zarour (2001)

- Zufreyden (1986)
- Bultez and Naert (1988)
- Borin et al. (1994)

- Urban (1998)

- Cortsjen and Doyle (1983)

Demand is a function of

- Irion et al. (2004)

- Hwang et al. (2005)

Space Allocation
Demand is a function of
Display Inventory Level

- Hariga et al. (2007)

- Russell and Urban (2010) (quadratic formulation)

- Coskun and Hassini (2012)

- Reyes and Frazier (2007)

- Murray et al. (2010)

- Lotfi et al. (2011)

Figure 2.5: Chronological Schema of the Optimization Models

2.4 Contributions

Our major contributions are

1. Critical review. We critically review the major optimization and demand models

for shelf space allocation. We presented a uniform notation to help us analyze

the similarities, differences and limitations of the models.
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2. A Comprehensive and Practical Model. Motivated by the practical issues facing

retailers and the existing literature, we developed a comprehensive model that

incorporated:

(a) Adjustable Shelf Heights. We allow for the flexibility of adjusting shelf

heights so as to maximize shelf space utilization. Our numerical results

show that including this feature leads to significant profit gains.

(b) Joint minimization of non-productive space and maximization of net prof-

its. Several objective functions have been considered in the literature:

maximizing gross or net profit, return on investment and minimizing the

usage of nonproductive space behind display facing. A more promising

model would be one that can jointly minimize nonproductive use of space

in the showroom inventory (2 dimensional area) and backroom space be-

hind display facings (3 dimensional space) while maximizing the gross or

net profit of the product category. To achieve such a goal, in our study we

consider adjustable shelf heights as a decision variable to use more space

(display facing area) in the shelf section, increase the visibility of the prod-

ucts. This would also allow us to respond to space elastic demand more

wisely than models that use fixed shelf heights and hereby minimizing the

nonproductive use of space. As we show in our experiments, consider-

ing adjustable shelf heights significantly improves the usage of productive

space and increase profitability.

(c) Product integrity. We insure product and brand integrity in a shelf section

(the location and numbers in a vertical column). Motivated by the real

world needs for uniform space allocation and stackability, in our thesis
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we enforce both uniformness and completeness, for product allocations

on multi-shelves, by having the same number of products on vertically

neighboring shelf allocations.

(d) Price Changes We allow for prices to be controllable by the retailer by con-

sidering the option to increase or decrease the current price by a certain

percentage. Given the different cross-elasticities we include in our model,

changing prices provides the retailer with a level to optimize revenues de-

pending on the product marketing mix. Our numerical results show that

this ability significantly increases the retailer profits.

2.5 Open Research Problems

Based on our analysis of the existing literature and the needs arising in the retail

industry we suggest the following topics as possible research topics:

1. Providing a decision support system with alternative demand functions and

models. One can build on the spreadsheet-based decision support system pro-

vided by Ramaseshan (2008), which is based on his work that integrates shelf

space and inventory management (Ramaseshan, 2009). Such a decision support

system would be interactive with the user to identify the retail environment and

then selects the right demand functions and constraints for optimization.

2. Incorporate inter-temporal effects such as promotions and reference prices. For

example, when a retailer carries a time-limited promotion how should the shelf

space allocation change? Should more space be given to the product in the

same (old) shelf or should additional (new) display area be provided elsewhere?
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3. Jointly optimizing shelf space with with inventory management such as:

• Minimizing the inter-replenishment time as it disrupts the customer ship-

ping experience. The model developed by Hassini (2008) for backroom

inventory storage management can be used as a starting point.

• Inventory coordination and transshipment between stores. Retails are

using virtual integrations, through sharing real time inventory data, to

achieve the benefits of inventory aggregation. This, in a way, allows the

retailer to extend their product display areas. How should retailers that

use virtual integration design their space allocations?

• How should the demand be modeled in the event of a stockout occurs, for

example due to promotions and/or supply scarcity? Most of the literature

of shelf space allocation employs models that assume that as the shelf

display area decreases the demand will also decrease. But, wouldn’t the

reverse happen in situations where there is a promotion or scarce capacity?

4. Many retails have opted for e-tailing channels: selling through the internet to

the consumers. How can we define a demand function in such environments?

Which factors would be more important in generating demand. For example,

is it plausible to think of the web site layout as a proxy for store shelf space?
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Chapter 3

New Model

We consider the problem of allocating shelf space for a product category in a shelf

section that is composed of multi-level vertical shelves. Each shelf in this shelf section

has a scarce space and has a different quality for allocating products. Our goal is to

maximize the daily gross profit of the product category. As a basic assumption, the

assigned shelf section’s location in the retail store, product display facing and total

space limit have already been determined by the management.

Although a product may be located on a shelf in different display orientations, in

practice most products have one practical orientation. Different display orientations

are possible in some product categories, such as books and CDs, however, are often

limited to two orientation (e.g., book front cover and back cover) that have to be

displayed simultaneously side by side. Retailers often count on the shopper to examine

the product before purchase and so one display orientation is often enough. Therefore,

in our model we consider that the product will be displayed in only one orientation.

Our main contributions to the literature is the considerations of adjustable shelf

heights, product and brand integrity in a shelf section (the location and numbers in
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a vertical column) in a shelf section while considering space (in terms of number of

display facings), price change and product location as the main determinants which

affect product’s demand.

We should note here that we assume the selling prices are predetermined by the

manufacturer, the supplier or the market. We can think of these prices as the “sug-

gested price” for a product by the manufacturer or “the average price” on the market.

Except for space, all the other marketing mix variables, such as advertising and pro-

motions, were fixed in the market share-strength of the product (π). Since the market

share-strength of the product (π) has been determined by the marketing mix vari-

ables such as “suggested price” or “average price” of the product, we assume that

only percentage changes from that suggested price affect its sales. We introduce this

new structure of the demand function to the literature where the demand of a prod-

uct is a function of price changes from its suggested price rather than the product’s

price itself. In this context, our demand model is similar to those of Reyes and Fra-

zier (2007) and Lotfi et al. (2011). Reyes and Frazier (2007) use a “price sensitivity

factor”,
(
pavg
pi

)σi
, that represents the deviation of the product selling price from the

average price of the category. We model our price sensitivity factor as the deviation of

the selling price of the product from its suggested price (
(

pnew
i

psuggestedi

)σi
= (1−PCi)σi).

Lotfi et al. (2011) used a similar price change idea, however , they modeled their

demand using a minimum-maximum approach.

3.1 Model Assumptions

We consider products, stackable or non-stackable, that are grouped into brands that

have to be allocated to one shelf section. This section consists of vertical multi-level
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adjustable shelves for each product category. In each of these shelf levels, there is a

parameter assigned to each shelf to reflect the location effect on demand. We note

here that although we use adjustable shelves we assume fixed vertical shelf effects on

demand. This is plausible as the number of the vertical shelves is fixed in a given

shelf section and we assume given minimum and maximum shelf heights.

Our objective is to maximize the gross profits generated from the displayed prod-

ucts. An alternative objective could be to maximize the display area used, since we

are using adjustable shelf heights, by penalizing the unused display space. However, it

is not easy to estimate these penalties. Our numerical results indicate that our profit

maximization model leads to significantly higher use of display space than models

that do not use flexible shelf heights. Although we do not account for operating

costs, such as inventory costs, we note that our model leads to a more efficient use of

the shelf space, include the space behind the display facings, and in turn it releases

the pressure on the backroom inventory space and leads to longer cycle times for the

brands, thus, decreasing inventory costs.

Motivated from the realities of the retail world and the literature, we make the

following additional assumptions:

1. The shelves are kept fully stocked with the display facings at all times. Thus,

we avoid temporary stockout situations and the possible resulting change in

demand rates. This assumption is realistic in many retail setting, where of-

ten employees will be going around shelves to replenish them or to reorganize

products from the back of the shelf into the front facings. In effect we are

assuming that the replenishment from the backroom space and inventory to

showroom space is instantaneous. In addition, we assume that the cost of this
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replenishment is negligible.

2. There is adequate backroom space (to the shelf depth, not backroom inventory)

for extra product stocking and it is fixed.

3. The shelf section which is dedicated to a product category has a fixed length

of width, height and depth. However, the height of each shelf in the shelf

section can be adjustable as long as total height of the shelves will be equal

to the height of the shelf section. The model also considers the policy of the

retail management about the minimum and maximum shelf height conditions.

Considering shelf height and depth in the showroom inventory is not just for

the purpose of ensuring the products’ depth or height doesn’t exceed the shelfs’

height or depth, but also to stack products vertically (to the height) on top of

the other and stock products horizontally (to the depth).

4. Products come in rectangular size packages. For non-rectangular physical con-

tours of a product, we consider the least area rectangular contour dimensions

that the product can fit into (Murray et al. 2010).

5. The products under the same brand will be adjacent to each other on the display

shelves. This means that each product under a brand will be located to the left,

to the right, to the top or to the bottom of a product under the same brand. A

brand will be visible to the public on display shelves as a cluster.

6. Unlike the vertical location, we assume that the horizontal location of a product

does not affect its demand.

7. Stackable products should be stacked in a uniform and complete column (Dreze
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et al. 1994). It means that the left end and the right end of each horizontal

stack and the top end and the bottom end of each vertical stack should be on

the same level .

8. Products may be located on adjacent shelves. In such cases they should be

located in uniform and complete columns (Dreze et al. 1994). It means that

the number of products on one shelf (in a horizontal stack, xib,m) should be the

same as the number of products on the adjacent shelf (in a horizontal stack

xib,m+1 or xib,m−1). Since the horizontal location of product does not effect its

demand, the left end coordinate and the right end coordinate of each horizontal

stack on adjacent shelves can be arranged as long as there are same number of

products in each horizontal stack.

9. The best display facing of a product has already been chosen by the retailer.

This means that the width, height and depth length of the product for showroom

inventory is already known.

10. For each product, minimum and maximum number of display facings, the pur-

chasing cost and suggested selling price are known and given.

3.2 Demand Function

We define the unmodified demand (UMD) as the intrinsic preference for the products

by

UMDi(xi, PCi, f
′
1i, f

′
2i, ...., f

′
zi) = Ui = πi.
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where all the marketing mix variables are fixed. The parameter πi represents the

potential market share-strength of a product i in the store without in-store support,

such as advertisement, promotions, specific location in store, that are represented by

fzi. In our study, the demand is a function of space and price change (instead of

price) while other marketing variables are fixed.

Switching preference demand (PD) arises from (1) consumers who are willing to

prefer a product within the assortment and (2) those who are not willing to prefer

any product within the assortment, but through their calculated valuations, chose a

product within the assortment (although there may be consumers who are not willing

to prefer a product within the assortment and still prefer another product which is

also not in the assortment, such scenario has always been neglected in the literature,

please see Chapter 1 for detailed explanation of such demand). We call the demand

gained by product i from the switching preference of the first consumer group the

“Gained Demand” (GDi) and the demand gained by product i by switching preference

of the second consumer group the “Acquired Demand” (ADi).

Incorporating UMDi with GDi results in “Modified Demand”, MDi. MDi rep-

resents the demand for the product that results from its UMDi through in-store

merchandising support such as advertisement, promotions, space and specific loca-

tion in the store. In our model, modified demand is the “modified” version of the

unmodified demand with its differential “space allocation”, “price change” decisions

in a multi-level shelf concept (Dreze et al. 1994). Since marketing variables, other

than space and price change, are fixed in the unmodified demand (UMD), we expect

that space, display location of the product within the shelves and price changes to be

the in-store attractiveness that affects sales. Therefore, we may define the modified
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demand for a product i as

MDi = πi

(∑M
m=1 ϕmximx̄im

xi

)
I1∏
j=1

x
βij
j

I1∏
j=1

(1− PCj)µij

= πi

(∑M
m=1 ϕmximx̄im

xi

)
xαi
i

I1∏
j=1
j 6=i

x
βij
j (1− PCi)σi

I1∏
j=1
j 6=i

(1− PCj)µij

where
(∑M

m=1 ϕmximx̄im
xi

)
is the display location factor (weighted average value of ϕm

when product i is displayed on more than one shelf), xαi
i

∏I1
j=1
j 6=i

x
βij
j is the space allo-

cation factor in terms of number of display facings and (1−PCi)σi
∏I1

j=1
j 6=i

(1−PCj)µij

is the price change factor. As in Hwang et al. (2005), the shelf that is in the worst

position in the shelf section, generally the bottom shelf, has the smallest value of 1

for the display factor.

AD represents the demand that unstocked products capture, where some con-

sumers may change their preferences and purchase a product within the assortment

and some of them stay loyal to their first choice and decide not to purchase any prod-

uct. For tractability purposes we leave out this type of demand from our model. As

a result, our unit demand for a product i in the assortment can be represented in a

multiplicative form as

Di = UMDi ×GDi = MDi

= πi

(∑M
m=1 ϕmximx̄im

xi

)
xαi
i

I1∏
j=1
j 6=i

x
βij
j (1− PCi)σi

I1∏
j=1
j 6=i

(1− PCj)µij
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3.3 Optimization Model

The gross profit for a product i under brand b is defined as

Pib = (pib−pibPCib−cib)

πib
(∑M

m=1 ϕmxib,mx̄ib,m
xib

)
· xαib

ib

I∏
j=1
j 6=i

x
βib,j
j (1− PCib)σib

I∏
j=1
j 6=i

(1− PCj)µib,j


(3.3.0.23)

and the shelf space allocation problem is formulated as

max
I∑
i=1

B∑
b=1

Pib

s. t. 1 6
M∑
m=1

yib,m, ∀i,b (3.3.1)

M∑
m=1

yib,m 6 A, ∀i,b (3.3.2)

yib,m 6 yb,m, ∀i,b,m (3.3.3)

yb,m 6
I∑
i=1

yib,m, ∀b,m (3.3.4)

topb −
∑M

m=1myb,m∑M
m=1 yb,m

−
∑M

m=1 yb,m − 1

2
= 0, ∀b (3.3.5)

bottomb −
∑M

m=1myb,m∑M
m=1 yb,m

+

∑M
m=1 yb,m − 1

2
= 0, ∀b (3.3.6)

topb > mybm, ∀b,m (3.3.7)

bottomb 6M − (M −m)ybm, ∀b,m (3.3.8)
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topib −
∑M

m=1myib,m∑M
m=1 yib,m

−
∑M

m=1 yib,m − 1

2
= 0, ∀i,b (3.3.9)

bottomib −
∑M

m=1myib,m∑M
m=1 yib,m

+

∑M
m=1 yib,m − 1

2
= 0, ∀i,b (3.3.10)

topib > myib,m, ∀i,b,m (3.3.11)

bottomib 6M − (M −m)yib,m, ∀i,b,m (3.3.12)

xib,m 6 xib, ∀i,b,m (3.3.13)

yib,m 6 xib,m, ∀i,b (3.3.14)

xib,m 6 yib,mR, ∀i,b where R is a very large number (3.3.15)

yib,m xib,m+1 = xib,m yib,m+1, ∀i,b,m (3.3.16)

I∑
i=1

B∑
b=1

wibxib,m 6 L, ∀i,b,m (3.3.17)

Hmin 6 Hm 6 Hmax, ∀m (3.3.18)

M∑
m=1

Hm = TH (3.3.19)

x̄ib,m = yib,m for all i, b, m, such that ȳib = 0 (3.3.20)

x̄ib,mhib 6 Hmyib,m for all i, b, m, such that ȳib = 1 (3.3.21)

xib =
M∑
i=m

xib,m x̄ib,m, ∀i,b (3.3.22)

Xmin
ib 6 xib 6 Xmax

ib , ∀i,b (3.3.23)

PCnegative
ib 6 PCib 6 PCpositive

ib , ∀i,b (3.3.24)

yib,m, yb,m are binary ∀i,b,m (3.3.25)

xib,m, x̄ib,m, xib, topb, bottomb, topib, bottomib are integer ∀i,b,m (3.3.26)

where constraint set (1) ensures that product i under brand b will be located at
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least on one shelf. Constraint set (2) represent the policy constraint of the retail

management where product i can be located on a limited number (where A is a

constant decided by the retailer) of shelves. Constraint set (3) ensures that if a brand

is not chosen for a shelf m, then a product i under that brand should not be chosen

to be located on that shelf. Constraint set (4) ensure that if a brand is chosen for a

shelf m then at least one product i under that brand should be chosen to be located

on that shelf. Constraint sets (5–12) define the top and bottom shelves of brand b

(any product under brand b) and product i. The constraints ensure that items for

a certain product, or brand, should be adjacent to each other if they are located on

multiple shelves. We provide more explanation on the derivation of these constraints

in Appendix A.1. Constraint sets (13–15) represent the interdependencies between

the allocations to shelf sections (xib), shelf levels (xibm and the decision of allocating to

a shelf (yibm). Constraint set (16) guarantees that the number of items from product i

under brand b located on a shelf m will be the same as that on the adjacent shelves, if

the product is located on multiple shelves. Constraint set (17) ensures that the total

amount of shelf space allocation to the width-length of a shelf m does not exceed that

shelf m’s width-length. Constraint set (18) defines the bounds on the height-length

of a shelf m. Constraint (19) guarantees that the total height-length of the shelves

should be equal to the height-length of the shelf section. Constraint sets (20–22)

take care of the product stackability requirements. Constraint sets (23-24) define the

bounds on the number of facings and price changes.
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3.4 Numerical Analysis

In our numerical analysis, we solve the optimization problem starting from small size

test problems to relatively large size problems. To benchmark the performance of

our model, we have solved the following varieties of our model: fixed shelf heights

shelf space allocation model (FSHSSA), adjustable shelf heights shelf space allocation

model (ASHSSA), price change and fixed shelf heights shelf space allocation model

(PCFSHSSA), and price change and adjustable shelf heights shelf space allocation

model (PCASHSSA). For simplicity, all the test samples were solved without consid-

ering product brands.

3.4.1 Parameter Estimation

For each test problem parameters, we chose different lower and upper bounds between

the ranges that has been given in Table 3 and generate the data using a uniform

distribution between the chosen these bounds.

Table 3: Test problems parameters.
Parameter Range
width-length (w) [4, 9]
height-length (h) [7, 13]
purchasing cost (c) [5, 8]
suggested selling price (p) [9, 13]
market share-strength (π) [40, 100]
own-space elasticity (α) [0.3, 0.5]
cross-space elasticity (β) [0.005, 0.03]
own-price change elasticity (σ′) [−1,−4]
cross-price elasticity (µ′) [0, 0.2]

The highest value of the location scale parameter is assigned to the a shelf that

is closer to the eye level (e.g. second shelf from the top is closer to the eye-level for

111



M.A.Sc. Thesis - Mehmet Erdem Coskun McMaster - Computational Eng. & Sci.

3 shelves, 4 shelves and 5 shelves problems). The next highest value is assigned to

the top shelf and the lowest value, 1, is assigned to the bottom shelf as suggested

by Hwang et al. (2005). The dimensions of the shelf section/shelves are determined

in such a way that sufficient space was available to allow a feasible solution while

limiting the maximum number of display facings. For all test problems, the bounds

for minimum and maximum number of display facings were 2 and 16, respectively

and allowable (percentage of) price change was %40.

As per Talluri and van Ryzin (2005, p. 325) a price increase of a product does not

increase the total demand (Π) of the product category. However, such assumption

allows that a price increase (decrease) for all products in the category can decrease

(increase) the overall demand. In this context, the overall demand can be controlled

by the cross effect parameters of the products corresponding with the own effect

parameters of the products. In all of our test samples, the associated cross-price

change elasticity parameters are generated consistent with this aforesaid assumption.

If any solution is observed by the price increase or decrease of all products in the

assortment, this would mean that total product category demand would be decreasing

or increasing, respectively. Such scenarios are allowed in our model, but in our test

samples we randomly generated such price change elasticity parameters in a certain

range that does not reflect such situations. As we can easily observe from the results

of all our experiments, when some of the products’ demand rises with better shelf

space allocation and price reduction, then some of the products’ demand decreases

with worse shelf space allocation and price increase. In general, the overall demand

increases or decreases are neglected.

The ranges for the cross-space and -price changes elasticities were taken from the
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literature. Space elasticity parameters for a product i, αi and βi, can be estimated

based on experimental field data (Dreze et al. 1994, Frank and Massy 1970). Yang

and Chen (1999) state that store location is one of the factors that influence the

allocation of space in a store and for chain stores they should take into account

this factor when estimating elasticity parameters. Price change elasticity parameters

can be estimated through scanning actual transaction data (Mace and Neslin 2004,

Russell and Peterson 2000).

We present an example shelf space allocation of a 10 products-3 shelves problem to

visualize the results of our solutions in Table 4. As expected, the shelf with the higher

values of location scale parameter has more space than the shelf with lower values of

the location scale parameter. Products with many display facings are allocated closer

to the eye level and have discounts on their prices, on the other hand, products with

few display facings are allocated to the bottom and top shelves with price increases.
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Table 4 Solution of the 10 product - 3 Shelves test problem

Item = × topi bottomi PCi pisuggested pinew

1 6 = 3×2 1 1 -0.4 raise 9.442 13.2188

2 2 = 1×2 3 3 -0.4 raise 11.010 15.414

3 2 = 1×2 1 1 -0.4 raise 9.641 13.4974

4 5 = 5×3 3 3 0.4 discount 12.490 7.494

5 2 = 1×2 1 1 -0.4 raise 10.060 14.84

6 12 = 2×2 + 2×4 2 1 0.236 discount 10.143 7.749

7 2 = 1×2 1 1 -0.4 raise 11.376 15.9264

8 16 = 4×4 2 2 0.273 discount 11.891 8.6447

9 4 = 1×4 2 2 -0.4 raise 11.513 16.1182

10 2 = 1×2 3 3 -0.4 raise 10.855 15.197
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3.4.2 Computer Packages

Our models are nonconvex Mixed Integer Nonlinear Programs (MINLP). In general,

MINLPs are very difficult to solve and there is no method that can guarantee finding

a global optimal solutions for such problems (Bussieck and Pruessner, 2003). We

have used the optimization modeling language GAMS and tried three solvers:

• BONMIN (Basic Open Source Nonlinear Mixed Integer programming) which is

designed for solving MINLPs.

• BARON, a solver that is designed to find global optimal solutions for nonconvex

optimization problems.

• KNITRO solver package, a NLP solver.

Through experimental trials we found that BARON was very slow and often gave

solutions with lower profits than KNITRO and BONMIN. Therefore we decided to

focus our numerical efforts on the latter two solvers. Although KNITRO is designed

for nonlinear problems, it can be also be efficient for solving discrete optimization

problems with integer or binary variables and therefore has been suggested for solv-

ing moderate size MINLPs. KNITRO implements both state-of-the-art interior-point

methods, where the nonlinear problem is replaced by a series of subproblems, and

active set methods for solving nonlinear optimization problems. It provides two pro-

cedures for the computing steps within the interior point approach: Interior/CG

where each step is computed using a projected conjugate gradient iteration and Inte-

rior/Direct which attempts to compute a new iterate by solving the primal-dual KKT

matrix using direct linear algebra. For all of our models, Interior/Direct procedure

is automatically chosen by KNITRO. KNITRO found slightly better solutions much
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faster than BONMIN for small size problems. Therefore, we kept solving all the prob-

lems with KNITRO. Unfortunately, the integer decision variables, such as number of

display facings on a shelf (xim) and total number of display facings for a product (xi),

were unable to converge for relatively large size problems. As we show our results in

Table 5, although we found solutions for models using the fixed shelf heights strategy

(FSHSSA and PCFSHSSA) in all test cases, KNITRO was unable to converge for

models using the adjustable shelf heights strategy (ASHSSA and PCASHSSA) for 8

products 3-shelves test problems and larger size problems .

The BONMIN solver provides two algorithms for solving MINLPs: (1) B-OA

(outer approximation) that features outer approximation based decomposition in

which the objective function and constraints are linearized at various points and

(2) B-Hyb (Hybrid) which is a hybrid algorithm composition of outer approximation

and branch-and-cut algorithms rather than the default algorithm, B-BB. The latter

is a basic branch-and-bound algorithm in which a continuous nonlinear relaxation

is solved at each node of the search tree. Because we use binary and integer vari-

ables to implement the product integrity and uniformity constraints, we were not

able to make use of the BONMIN algorithms, unlike Murray et al. (2010). More-

over, Bonami and Lee (2007) suggested the use of B-BB for nonconvex MINLPs since

outer-approximation algorithms have not been tailored to treat nonconvex problems.

They also noted that B-BB is only a heuristic for such problems.
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Optimal 
Solution

Solution time 
(in seconds)

Optimal 
Solution

Solution time 
(in seconds)

FSHSSA 1996 0.749 1981 53.618
PCFSHSSA 2492 0.358 2392 134.41
ASHSSA 2092 11.716 2092 111.915
PCASHSSA 2599 6.692 2486 84.444

FSHSSA 2432 0.53 2400 74.319
PCFSHSSA 3518 0.172 3518 17.41
ASHSSA 2589 28.8 2560 165.77
PCASHSSA 3788 23.44 3711 81.792

FSHSSA 1491 2.262 1491 22.573
PCFSHSSA 1694 1.451 1673 32.713
ASHSSA 1563 110.027 1563 326.244
PCASHSSA 1763 97.079 1763 149,402

FSHSSA 2391 4.633 2367 27.456
PCFSHSSA 2525 14.258 2480 180.384
ASHSSA 2500 262.316 2503 605.128
PCASHSSA 2677 252.659 2677 366.368

FSHSSA 3322 35.163 3263 515.303
PCFSHSSA 4889 13.931 4869 364.793
ASHSSA 3731 511 3638 2781.638
PCASHSSA 5543 632 5417 659.529

FSHSSA 2321 45.864 2291 695.78
PCFSHSSA 2432 72.899 2429 121.571
ASHSSA 2515 655.938 2503 2198.475
PCASHSSA 2647 1064.938 2594 2892.024

FSHSSA 1981 15.912 1937 589.918
PCFSHSSA 2257 49.843 2155 464.478
ASHSSA 2040 3627.195 1978 7013.805
PCASHSSA 2363 3679.533 2340 3039.149

FSHSSA 4540 10.576 4512 2813.634
PCFSHSSA 4744 103.429 4647 999.624
ASHSSA 4905 7830.923 4838 3348.234
PCASHSSA 5102 52803.4775 5095 21503.739

FSHSSA 5094 16.146 5018 971.465

5 Products-2 Shelves

4 Products-2 Shelves

MODELProblem size

6 Products-2 Shelves

4 Products-3 Shelves

5 Products-3 Shelves

6 Products-3 Shelves

7 Products-3 Shelves

Table  Results of the 4 models under each test case
Solvers

KNITRO BONMIN

3 Products-2 Shelves

7



PCFSHSSA 5863 602.024 5830 508.72

ASHSSA 5315
50000 (time 

limit) 5263 3422.366

PCASHSSA NA
50000 (time 

limit) 5993 10431.413

FSHSSA 5549 2801.731 5471 909.017
PCFSHSSA 7933 8350.422 7909 1142.037

ASHSSA NA
50000 (time 

limit) 5629 10051.269

PCASHSSA NA
50000 (time 

limit) 8159 25301.272

FSHSSA 6968 887.022 6944 1602.333
PCFSHSSA 9504 13365.338 9450 1440.638

ASHSSA NA
50000 (time 

limit) 6946 50830.57

PCASHSSA NA
50000 (time 

limit) 9579 22993.362

FSHSSA 2573 471.528 2502 932.231
PCFSHSSA 2878 803.749 2817 3336.221

ASHSSA 2892
100000 (time 

limit) 2862
100000 (time 

limit)

PCASHSSA NA
100000 (time 

limit) 3145 50765.268

FSHSSA 5725 5.928 5560 6494.275
PCFSHSSA 6565 2155.59 6441 4045.917

ASHSSA NA
100000 (time 

limit) 5868 33810.549

PCASHSSA NA
100000 (time 

limit) 6788 15502.007

FSHSSA 7884
100000 (time 

limit) 7844 24800.321

PCFSHSSA 10535
100000 (time 

limit) 10459 8571.819

ASHSSA NA
100000 (time 

limit) 8203
150000 (time 

limit)

PCASHSSA NA
100000 (time 

limit) 11937 50929.927

13 Products-5 Shelves PCASHSSA NA NA 11828 149946

14 Products-5 Shelves
PCASHSSA NA NA NA

150000 (time 
limit)

9 Products-3 Shelves

10 Products-3 Shelves

6 Products-4 Shelves

8 Products-4 Shelves

10 Products-4 Shelves

8 Products-3 Shelves
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15 Products-5 Shelves
PCASHSSA NA NA NA

150000 (time 
limit)

20 Products-6 Shelves
PCASHSSA NA NA NA

150000 (time 
limit)
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3.4.3 Test Samples

The results of the test problems are displayed in Table 5. In total 56 problems were

solved by KNITRO and BONMIN solvers. Moreover, we tried to solve the price

change and adjustable shelf heights shelf space allocation model (PCASHSSA) for

relatively large size problems such as 13 product-5 shelves, 14 product-5 shelves, 15

products-5 shelves and 20 products-6 shelves. However, we could only find efficient

solutions for the 13 product-5 shelves problem. We tried to provide “good” initial

solutions to the solvers, but this did not help. The stopping times for the solvers were

between 40,000 seconds and 100,000 seconds depending on the initial solutions that

we have given to the solver.

3.5 Results and Insights

3.5.1 Adjustable shelves effect

One benefit of our general model should be that we would use more space, and thus

make more profit, due to the flexibility we get from adjustable shelves. The concept

suggests that if we were able to adjust shelf heights in a shelf section, we would be

able to use the space more efficiently and respond to space elastic parameters more

delicately and accurately. As we can examine in all of our experiments, the shelf space

allocations of the four different models are different for fixed shelf heights and ad-

justable shelf heights (FSHSSA versus ASHSSA and PCFSHSSA versus PCASHSSA)

in terms of the number of display facings. A small percentage of profit increase has

been observed, as expected, in all of our test cases. We note that ASHSSA model

shows a minimum of %2 to a maximum of %14, with an average of %6 increase on
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gross profits compared to the conventional model, FSHSSA. Very similar profit in-

creases (a minimum of %3 to a maximum of %14, with an average of %7) are observed

when comparing PCASHSSA to PCFSHSSA. It is worth noting that these percent-

age increases in profits are significant in many retail sectors, such as groceries, where

profit margins can be as low as 1 to 2 %.

3.5.2 Price changes effects

We observe that PCFSHSSA model shows a minimum %4 to a maximum %47, with

an average of %21 increase on gross profits compared to the conventional model,

FSHSSA. Very similar profit increases (a minimum of %4 to a maximum of %48,

with an average of %22 on gross profits) have also been observed for PCASHSSA

compared to the ASHSSA. The wide range of profit increases depends on the product

category price elasticity parameters. In the real world retail environment, each prod-

uct category’s sensitivity to prices changes varies depending on the characteristics of

its products. Although categories such as fresh juices, yogurts and cereals can be

very sensitive to price changes, categories such as spices and lamps can be quire in-

sensitive to price changes. Therefore, we have used a variety of price change elasticity

ranges for different test sample sets. The lower values of the elasticity parameters

(more sensitive to price changes) we tested, the higher profit margins we obtained,

the higher values (less sensitive to price changes) we tested, the lower profit margins

we obtained.
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3.5.3 Combined effect of adjustable shelves and prices changes

The most important result of our study is the comparison of the conventional shelf

space allocation model of fixed shelf heights, FSHSSA, where the demand is only a

function of the space allocated to a product, with our shelf space allocation model

of adjustable shelf heights and price change effects, PCASHSSA. This comparison

shows that a minimum of %11 and a maximum of %66, with an average of %30 of

increase on gross profits, can be achieved through our model. The large increases are

achieved when the price changes are large (in our experiment as large as %40). In a

realistic competitive environment the retailers may not have the luxury to make such

large price changes and so we expect that in practice moderate profits savings would

be observed.

3.5.4 Location Effect

In general, the shelves with higher values of location scale parameters (the shelves

closer to the eye-level) tend to have more space than the shelves with lower values

(shelves closer to the bottom shelf). Products allocated closer to the eye-level shelves

tend to have many display facings and have discounts on their prices in order to

increase their demand. In contrast, products allocated closer to the bottom shelves

tend to have few display facings (e.g. closer to the lower bound) and price increases.

However, we have also seen cases where some products with few display facings and

price increases have been allocated closer to the eye-level shelves because of the extra

shelf space that could not be used by other products.
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3.6 Sensitivity Analysis

We have also conducted a sensitivity analysis for own-price change elasticity param-

eters in order to evaluate the response of the price changes of each product for the

case of 10 products and 3 shelves. Each case is solved under a range of own-price

change parameters starting from -4 to -1 with increments of 0.25 while keeping other

parameters fixed. We find that for larger values of own price-change parameters (less

sensitive to price change) such as between -1.25 and -1, all the prices were set up to

their upper bounds. But, with each 0.25 reduction on the own-price change elasticity

values, the price increases started to decrease starting from the product with the

highest profit margin, as expected. As per our sensitivity analysis results in Table

6, we see that as products become more price sensitive, cutoffs start from the highly

profitable products to the lower profitable products.

In our early test problems, the price change elasticity parameters were chosen in

a range that did not allow overall category demand increases or decreases for any of

our problem cases. However in our sensitivity analysis overall demand decreases were

allowed (e.g. own price change elasticity parameters are chosen in the range of -1.25

and -1 when cross price change elasticity parameters are fixed between 0 and 0.1). In

general, a price decrease for a product provoked a price increase of another product

in order to balance the overall effect on the demand of the category. This has been

observed in all of our test cases.

123



Pr
ic

e 
Ch

an
ge

 
el

as
tic

ity
 

pa
ra

m
et

er
s

 -1
.2

5 
an

d 
-1

 -1
.5

 a
n d

 -
1.

25
 -1

.7
5 

an
d 

-1
.5

 -2
 a

nd
 -

1.
75

 -2
.2

5 
an

d 
-2

 -2
.5

 a
nd

 -
2.

25
 -2

.7
5 

an
d 

-2
.5

 -3
 a

nd
 -

2.
75

 -3
.2

5 
an

d 
-3

 -3
.5

 a
nd

 -
3.

25
 -3

.7
5 

an
d 

-3
.5

 -4
 a

nd
 -

3.
75

 p
(i)

c(
i)

p(
i) 

- c
(i)

Pr
od

uc
t i

i1
9.

44
2

5.
82

7
3.

61
5

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

i2
11

.0
1

5.
23

5
5.

77
5

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.0

78
-0

.4
0.

18
0.

23
9

0.
28

9
0.

29
9

0.
32

7
i3

9.
64

1
5.

62
8

4.
01

3
-0

.4
-0

.4
-0

.4
-0

.4
-0

.4
-0

.4
-0

.4
-0

.4
-0

.0
08

0.
08

1
0.

05
1

0.
13

5
i4

12
.4

9
5.

09
3

7.
39

7
-0

.4
-0

.4
-0

.4
-0

.0
45

0.
16

8
0.

27
3

0.
31

6
0.

35
5

0.
37

9
0.

4
0.

4
0.

4
i5

10
.0

6
5.

67
7

4.
38

3
-0

.4
-0

.4
-0

.4
-0

.4
-0

.4
-0

.2
56

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

i6
10

.1
43

5.
36

4
4.

77
9

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.1

24
-0

.4
-0

.4
-0

.4
-0

.4
0.

09
2

0.
16

1
i7

11
.3

76
6.

29
1

5.
08

5
-0

.4
-0

.4
-0

.4
-0

.4
-0

.2
58

-0
.0

81
-0

.4
-0

.4
0.

07
4

-0
.4

0.
08

5
0.

06
3

i8
11

.8
91

6.
12

1
5.

77
-0

.4
-0

.4
-0

.4
-0

.2
88

-0
.0

41
0.

05
7

0.
11

0.
18

3
0.

21
4

0.
23

8
0.

27
7

0.
28

8
i9

11
.5

13
6.

54
4.

97
3

-0
.4

-0
.4

-0
.4

-0
.4

-0
.3

4
-0

.2
85

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

-0
.4

i1
0

10
.8

55
5.

59
6

5.
25

9
-0

.4
-0

.4
-0

.4
-0

.4
-0

.2
05

-0
.0

1
-0

.4
-0

.4
-0

.4
-0

.4
-0

.4
-0

.4

i1
6

6
6

3
6

3
3

3
3

3
3

3
i2

3
3

3
9

3
3

6
12

12
15

12
15

i3
3

3
3

3
3

3
3

3
3

3
3

3
i4

6
6

6
6

6
9

12
12

15
15

15
15

i5
4

4
4

4
4

4
4

4
4

4
4

4
i6

3
3

3
6

3
6

3
3

3
3

3
3

i7
16

16
16

16
12

12
4

4
8

4
4

4
i8

12
12

12
12

12
16

16
16

16
16

16
16

i9
6

6
6

6
9

3
3

3
3

3
3

3
i1

0
15

15
15

9
15

12
12

9
3

3
3

3

*T
he

 v
al

ue
s f

or
 th

e 
pr

ic
e 

ch
an

ge
 e

la
st

ic
ity

 p
ar

am
et

er
s a

re
 ra

n d
om

ly
 g

en
er

at
ed

 b
et

w
ee

n 
th

e 
sp

ec
ifi

ed
 v

al
ue

s
 a

cc
or

di
ng

 to
 a

 u
ni

fo
rm

 d
ist

rib
ut

io
n 

w
hi

le
 k

ee
pi

ng
 a

ll 
th

e 
ot

he
r p

ar
am

et
er

s f
ix

ed
.

PC
(i)

 - 
pe

rc
en

ta
ge

 o
f p

ric
e 

ch
an

ge
 o

f t
he

 p
ro

du
ct

 i

x(
i) 

- n
um

be
r o

f p
ro

du
ct

 to
 b

e 
al

lo
ca

te
d 

to
 th

e 
sh

el
f s

ec
tio

n

Ta
bl

e 
5 

Se
ns

iti
vi

ty
 A

na
ly

sis
 o

f t
he

 1
0 

pr
od

uc
t -

 3
 S

he
lv

es
 te

st
 p

ro
bl

em

4



M.A.Sc. Thesis - Mehmet Erdem Coskun McMaster - Computational Eng. & Sci.

Our sensitivity analysis shows that for the product categories with higher values of

price change elasticity parameters (products in the product category are less sensitive

to price changes), it is not reasonable to examine the structure of the product category.

It is better to increase the prices for all the products to their upper bounds. This

can be seen in the real retail environment where for products that are unresponsive

to price changes (“unresponsive products” as described by Brown and Tucker, 1961),

such as lamps, the retailer does not change the prices significantly from period to

period and charges the customer high prices. However for product categories with

lower values of price change elasticity parameters (products in the product category

are very sensitive to price changes), it is important to define each product’s market

strength and response to space changes and price changes. Thus, the retailer can

adjust his space allocation and decrease the prices of some products in order to

increase their demand while increase the prices of some products in order to balance

the overall category demand.
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Chapter 4

Conclusion

4.1 Summary

In this thesis we have reviewed the shelf space allocation optimization models in the

literature. We then developed a model that optimizes retailer’s daily gross profit of

a product category which makes the decisions of price changes, shelf space allocation

and display location in a shelf section with adjustable shelf heights.

In Chapter 2 we carefully examine the literature and classify different demand

function forms and components. We also tried to present a unified framework that

links the different demand forms together. Our investigation of the major shelf space

allocation optimization models in the literature identified some gaps in the literature.

In Chapter 3 we present a new model where we introduce price changes as a

factor in the demand function. In addition we consider adjustable shelf heights and

enforce product and brand integrity in the shelves. Our numerical results show that

considering price changes increases profitability by about 21 to 22 percent compared

to the conventional models. While the effect of adjustable shelf heights increases
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profitability about 6 to 7 percent compared to the conventional models. Finally, the

combined effects of price changes and shelf heights increased profits by an average of

30 percent over conventional models.

4.2 Future Work

Through our numerical experiments we found that with todays computing technology

we can not solve a comprehensive model of shelf space allocation in a reasonable time

(say in a couple of hours). Therefore better solution algorithms should be developed

in order to solve these problems in practical times.

Apart from the computational challenges, there are several other future venues

for research in this field. One such direction is to add inventory decisions to our

model. Including price change effects into the demand function would cause the de-

mand to fluctuate in a wide range and so the related costs such as ordering costs,

transportation costs, storage costs and holding costs would also vary. Another di-

rection is to incorporate the effects of uncertain demand in the model. Finally, it

would be practical and interesting to extend the model to a supply chain context

where decisions related to product assortments and categories inventory management

necessarily involve the suppliers.

Finally, extending shelf space allocation models to include inter-temporal effects

is also worth investigating. For example, it is plausible to expect the demand to

dynamically change depending on previous periods demand as well as prices.
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Appendix A

Top Shelf and Bottom Shelf

Constraints

In the following we clarify the description of the constraints (3.3.5– 3.3.8) in our

model. Since topi defines the top and bottomi defines the bottom shelf where product

i is located in a shelf section, we can define the top and bottom shelf of each product

as

topi = maxm{myi,m}

and

bottomi = minm{myi,m}.

To enforce the adjacency of the products in neighboring shelves we should have

topi − bottomi + 1 =
M∑
m=1

yi,m.
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Finally, we add

bottomi 6 topi

to ensure that the top shelf should be on top of the bottom shelf. Using the above

four constraints and the idea that
∑n

i=1 i = n(n+1)
2

we get

topi(topi + 1)

2
− (bottomi − 1)bottomi

2
=

M∑
m=1

myi,m

or

topi + bottomi =
2
∑M

m=1 myi,m∑M
m=1 yi,m

and so we have

topi =

∑M
m=1myi,m∑M
m=1 yi,m

+

∑M
m=1 yi,m − 1

2

bottomi =

∑M
m=1myi,m∑M
m=1 yi,m

−
∑M

m=1 yi,m − 1

2
.
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