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ABSTRACT ‘ )
- Non-linear, approximately sSelf-consistent. calculations

of the electron density distribution around a proton and a

.

helium nucleus in otherwise uniform electron gases of differ-

ent densitiés havg‘ﬁeén performed, - and applied to two types

¢

of propléms.

One of these is the energies and equilibrium positions

of isolated He in Al and Mg, and of pairs of both H and He
in these méEals.« For the pair potential between the impuri-
ties an expression based on the density functional formalism

e 2 \
has been used. :Both perfect hosts and ones with single

vacancies are considered. 1It.is found that. when occuring

singly, each of tﬁése:impurities is attracted at least.to
the vicinity of a vacancy 'in either‘metal, and that when\

twd impuritieé are near a Vacancy,_the minimum‘energy con-
figuration occurs with them bracketing the:defecé, relaxed

ppwards it from the interstitial sites.

The superconductivity of metallic H has been considereéd,

usin@ non-linear calculations

[y

pfoton and proton-proton potentials. It is. found that this

to determine the electron-

'_‘ &
causes an enhancement.of the transition temperature Tc over
. . . \

that obtained using linear response theory. T, also depends

¥

¢ . .
strongly on.the structure assumed, being computed as up to

280°K- for the face-centered cubic structure, ‘and lesé than 16°K

&

for body—égntered cubic.

(iii) . L
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_ INTRODUCTION Lo ¢
Recenl“yegrs have seen many caldulatidns/B% pfoperties L

-

of simple metals which depend on the basic electron-electron,

electron-ion and ion-ion interactions. PséGdOpotential, or

model potential(theories have been-widely used primafily because

of their success, .and because they lend themselves readily to

a perturbation theory approach, in which ‘the unpertufbed state

of the metal is takeén to be a collectjon of jions immersed in a

w

uniform sea of conduction electrons.

. This procqﬁ*é? is naturdlly based on a‘number of approxi-

, . .
mations, and is correspondingly-subject to some limitations.
4 * ’

While these are described more fully in the next chapter, it
is appropriaté to identify here those which primarily motivate .

thg work described in the rest of this thesis.

%
[

“ 134 .
The first of these is the assumption that an ion in a

" Lo .
. simple metal can be represented as a wWeak gperturbation on the

\

electron gas and treated ' in .low order. Sometimes this is simply

(¥

not the case, and to determine the behaviour of the  electrons,
. ' . ) . < .
a different approach must be used. ’

Second, even if this is valid, the actual modelling of
‘the ion is su%ject to uncertainty. Generally one can either
“calculate the pseudopotential from first principles, or use a

,parametrized form ﬁitted’to some quantity. When d%ing the .former,

i
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it is difficult to obtain accurate results; while the l%;ter is-

not entirely satisfactory either, especially if there is not

appropriate information to which a fit can be made.

Chapter II reviews -model potential theory and notes its
approximaticons. Much of this chapter is directly referred to

later, so serves as more than just a review.

“In the ensulng chapters and Appendix II calculatlons

are reported which go beyond thlS to treat the response of ‘the

electrons to the ions. This is dene by determining in a non-

linear,'approxiﬁately self-consistent way the electron charge
"distribution about an atomic- nucleus when immersed in an other-
wise un;form electron gas, which is then exploited to obtain a
description of the oasic interactions'within the metal. - The
method is based op the density functional formalism of Hohenberg

and -Kohn (1964)* and Kohn and Sham (;965).

Chapter III deals with the energies and configprations)
of dilute hydrogen and helium in aluminum and magnesxum. The

1

1mpur1t1es are conSldered both 51ngly and 1n palrs, and the host
metal both as a perfect crystal and as an otherw1se perfect

crystal w1th a 51ngle Vacancy present_ "The H and He are treated

via the nonbllnear calculatlons. For the former this is neces-

sary because the bare proton is a strong perturbatlon. On the
other hand, the latter remalns neutral and hence could presumably
be treated as-a weak perturbatlon.' Benedek (1978) has in fact
calcuiated a pseudopotential for He in Al, assumlng the core

states are the same as for the free atom .and thatnthey can be
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" represented by a simple analytic form. Although the conduction

charge density is Qell represénted near‘the nucleus, outside of
the core region it differs, primarily in:the phese of the Frie-
del oscillations, and the He-Al interaction differs froﬁﬁthat
obtained using the non-linear tHeory.

The non—lieeer results are used to obtain beEté? repre-
sentations of the interactions of the impurity with the electron
gas and wiéh the. host ions, which are employed in computing the
=heats@§£ solution and energy barriers between different sites.
In add@fion, the interaction between pairs of impurities has
been treated by making use of the density functional formalism,’
in which%the kinetic enexrgy functioﬁal for the electrons is
appfoximeted by~he gradient expansion,'and the exchange
by a local expressidn. The. energies of various configurdtions
‘of the pairs are cbnsidered for hosts with and without single
vacadcies.

Non-linear density calculations are also the basis of
the next chapter. The high“density petaliic séate of hydrogen
is studied, and the electron distributions about a proton id
eiectron gasee at densities correspondind to different pressures

) .

determined. These are'subsequently employed for the phonon spee—

.

tra, the _electron-phonon coupling, and sﬁperconducting properties.

-y

+
The results are found to dlffer quantitatively from those of

linear response, and to depend sensltively on which structure

is chosen.

In Appendix II, the calculation of the interatomic

+ » ©

L4
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bptehtiais introduced in chapter III is related to éhe model”
potential expression’ described in éﬁapter II. 1In addition,
the suitability of this for éomputing lattice vibrations is
discussed, and applitation of the method to aluminuﬁ,hfor
which the‘non—linear calculatioﬁs were done at both zero and
finite pressures, is descfibed.‘ ‘-

a

Except when otherwise specified, atomic units with
. ‘

H=e =m= 1 are used. The unit of energy is 27.210 eV and of

distance is the Bohr radius.

-3



} . CHAPTER II
A , S

REVIEW OF MODEL POTENTIAL THEORY

Ed .
\ ~
Since this thesis deals, to a large degree, with both

2.1 INTRODUCTION -

model potential theory and extensions of it, it is aépropriate

I

to begin by reviewing this theory. The .general case will be

presented first, followed byithe results obtained when a local

approximation to the model potential is used.
. We start by reviewing‘some‘of ‘the basic ideas of the

theory of solids'aﬁd‘parficularIQ of simple metals.. In‘'a solid,

K]

" we are confident the electrons can be described by a many par-

ticle wave fuécg}on which is a solution of a Sch;édinger“equa7. .

. 1
tion involving the kinetic energies of all the nuclei and elec-
trons.present, as well as the interactions among all these par-

ticles. Of course, direétiy solving thisiproblém of about‘l_O23

particles is entirely out of the question. To proceed at all,
one.-has to make approximations.

0 . . ‘.v} . . N . * .
. One of these is the self-consistent field approximation.

fft is assumed that eaéh electron moves no£ in the instantanéous

' field of the dtﬁer electrons; but only 'in their average field.
If one-ignores the e%chénée forces, t 's.apprgach is called the
Hartree EpprOXiﬁation; “otherwise it is known aé the Hartree-Fock
app;bximatioh‘ Much work has g?nelipto goiaq beyond the Hartfee4

. . Fock aééroximation, but thesé many'electroh éffects, normally

~

5 .

-



called correlation corchtlons, are usually small (Anderson 1966) .

‘A second approx1matlon often made 1s the adlabatlc

[N
approxrmatlon (Zlman 1960) which enables the separatlon of the

.

Schrodlnger equation 1nto two equatlons, one descrlblng the

-l»~

motlon of the ions and the other descrlblng that of the elec-
“trons in the field of the ions fixed at thelr 1nstantaneous
positions. This is justifiable because electrons move much

more quickly, than the ions, so can adjust almost immediately to

‘their locations.

Within these approximations, a major theoretical goal

‘ ’

is finding the electronic wave functions and corresponding ener-

gies. In simple metals, which are the only ones discussed herég,

the electréns are divided into two group®, the valence or conduc-

tion electrons and the core electrons. The former are not loZ
s . N .
calized, but can move ﬁore or less freely through the_metar.
The latter are Very'localized;‘essenﬁially bound to‘individual
nuclei. in'gact) tnese electrons'are so strongly nound that

their wave functions are assumed not to differ from what they

are in the free atdm, and together with the nuglei form }ons,

.

normally arranged in a, regular array. The simple - metal can

be v1ewed as this array of N ions immersed ih a sea of NZ valence
A

electrons, wheéere 2 is the valence of éeach ion. It is the valencé

.electrons which are often of interest in metallic properties, and

¢

it is these whose propertiee model pdtential theéry is designed

to treat. ‘ .

&



“Since it is how they are scattered by the ione that de-
termines the relevant behaviour of these electrons, not their

detailed behaviour when they are withinjthe ion cores,

¢

what 1s required is ap’ approximate treatment which reproduces

t

the scattering properly. This is the idea of model potential
. . & - * .
theory; within the ‘core regions, where the electron-ion

potentlal is strong, the potential is replaced by a'weaker one{
outside the core, it is left unchanged. The model potential-
iS'then determined to reproduce the electron‘behaviour outside
the core regions,-and since it is chosen to be weak everywhere,
pertdrbation theory is used. .There is a number of mays the
potential can be determined (Cohen and Heine 1970), but a com-
mon procedure is to fit 1t via some theory, to known experlmen—
tal quantities, and then use it to calculate $imilar propertles
The idea of a model ;otential was, introduced by Heine
and Aberenkov (1964) and Aberenkov and Heine (1965) in‘tha Same

spirit as the pseudOpotentlal theory whlch had been 1ntroduced

earlier (Phillips and Kleinman 1959, Kleinman and Phillips 1959

' Austln, Heine and Sham 1962 and Harrlson 1966) . In the general

formulatlon, several approx1matloné were not fully 1nvestlgated
and the screenlng was not treated in a consistent manner Short-

ly after this introduction Sf theé theory attempts were made to

improve on its structure (Animalu 1965 and Animalu and Heine

1965) but,it was not until the work of .R.W. Shaw, Jr., and W.A.

Harrison (Shaw and Harrison 1967, Shaw 1968, 1969a, 1970a, 1970b)

-
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. thebries existed (Harrison 1966, Heine ‘1970, Cohen and Heine

. ~
" can be reproduced quite acclr

o
©

that the model pbtential theory was carefully made consistent,

-using a;poténtial which is both non-local and energy dependent.

By shortly after the time of this basic reformulation,

»

good .sumnmaries of both the pseudopotentiai\ifi/mode; potéential _
. . P ‘
19’701 Heine and Weaire 1970, and Shaw 1970b), and much work
had been done‘usiﬁg pseudopotenfials yith vérying degrees of
sﬁccess (see for example Heine and Weairg\l97b).
The deveiOpment of the theory continued beyond thishgime
with the inclusion of excha%ge'and'éorrelatioﬁ;éffgcts among

the conduction electrons (Shaw 1970a, Shyu et al 1971, Cohen

"~ and Heine 1970, Shaw and. Heine 1972 and Shaw and Pyen 1969)

.«

C :
and “effective mass corrections (Shaw 1969b, Appapillai and

Williams 1973 and Williams and Appapillai 1973). It was seen

that exchange and correlation must be included to obtain results

in agreement with experiment, but the necessity of incorpora-
ting the effective mass corrections is not so definite. In

some cases it appear%,impéxtant'to include these effects (Shaw °
1 ? . .

" 1969b), but for example the aluminum phonon dispersion curves

In the :eét of this the basic formulatioh of»thé

model potential theory as iy had been developed ug to about 1973

"will be given. A full der vation will not be presented, and

in parti lar the~dgclusion\of exchange and correlation effects,
as,well as effective mas rrections, will be added in with

very little disc¢us$ion towards the end of the chapter.

S

without them (Céulthara 1970);,

V]



question, due to the compLexity of V and V . However if this

l-;;

2.2 . THE PROBLEM AND THE ASSUMPTIONS n 9

Within the'self-consistent field approximation, we

want to obtain the wave functions of the NZ electrons. The
equation we wish to solve is

2

-~

(T+v+ve)[wk> =hEk|wEJ/_ . oo

’

The wavefunction <£]wk3,describes an electron with
crystal momentum k, moving in the field oﬁ‘the ions V and the

self-consistent field V of the other valence electrons. T is

the kinetic energy operator.

Exact solutions of this prebhlem are still out of the

v

‘equation were solvable for each occupled state ,wk then,~for

example, the electron den51ty distribution could be constructed

as a sum over occupied stateés. e

n(D) =10 <l ol C(2.2)
k —_ f

-

’
Kk F

where by Z<_we mean the sum-over all states with |k| < k the
Fermi momentum for the crystal.

" One way to solve (2.1) is to consider T as the‘unper—-
turbed Hamiltonian and use perturbation theory. But, it can
be seen immediately-that,this is not justified. Within each
ion core V+V,_ is very strong becoming lﬁ‘feot singular right

at the nucleus. It iS“precisely because of this ‘that model » '

"theories are developed.
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" The pobential is modélled in the core, but outside this

- region it ig left as the bare ion poﬁential, :Z/f. ‘Ingide the
: core, the model po?enﬁial cgnsists of shallbw wells, which can
‘ be constructe@ to reproduce eXactl} the enerqy eigenvalu%s for
each state, and which are in geherai fun?tions of that state.
The model equatio;\ﬁs o ‘
—~

(T+W ’fVe) |x£> = E£|‘x}£> 4 (2.3)(

where W° is the médel_éotential of all the ioms, the lxk> are .,

the model wave functions and the Ek are to be the same as for

—_—

éhe true states lwk5. "This is an equation with a weak poténtial
which }sAtreated a; a pergurbation‘on'the free electron systen.
.o The model equ;tion‘is éui£e different from the“Séhr6~
dinger equation for the eieétrons, and it is cg;tainly.not ob-
"vious that this step does not alter the essential physicé of
the.probleﬁ. But the‘médél states ka> can be' made equal to
the Iwk> outside the core régiong, ang apﬁ;oximately related
withinithem, thus providing the cpnﬂection between the two
thébries. And as we have stated, the energié; are to be the

same.

Before proceeding further with the development of’ the

theory, we will now briefly summarize the three basic assumptions

required. . ! '

" ) . . ’

The first of these is the self—consistent.appréximation,

already described.



‘polyvalent metals.

‘11
'\ ‘ 13 i ) 3 ‘
" . The second of these is the use of perturbation theory.

The whole point of developing model potential théory is to be

' ~ -

able to use perturbation theory, but there is no easy. way of

know1ng if the Born series converges, since computationally

it is very difficult to go beyond second order in energy cal-

culatlons. Operatlonally, if a céicalated property of the

metal agrees with experlment then convergence is normally as-
sumed. If it does-not agree w1th experiment, then one of the

questions which should be addressed. in understanding, the dis-

-

crepancy "is if indeed perturbation tneory is valid. ‘XEfurther

discussion of this is given by Williams (1973).

The third approximetion is the so-called Amall

approximation, which is used in three ways. . The first i's in
neglecting the varidtion in the core region of the
. . N . . » B

due to the conduction electrons.. The' energies of the core.

states are shifted, but their wave functions are not altered.

Secondly, in eval ting, matrix elements of smooth_ggnctions

-

over the region ¢f a core, the spatial variation of these fnnc—

tions 15 i§nore.."The fipal and ‘crucial way in which thislassumpj
tion enters the theory is the neclect of any.overlabpiné of the
cores: This means that the theory cannot handle without modi-
flcatlon noble and transmtlon metals with their averlapplng

d- orbltals, but rather is llmlted to the alkali and 51mple
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2.3 THE MODEL POTENTIAL
The Schrddinger equation (2.1) can be rewritten as ¢
(T‘£ E vi+ve)|wk> =VE£|wE> F2'4)
where each 2 is the self—consisteﬁt potential of an individual
bare ion ‘core at its location Bi in the’metal, and Ve isz as
before, the self-consistentypoteptia4 of the-electrons. The

+

model equation (2.3) becomes

~

° M = .
AT + i wi+ve)lX5> = E&,XE>‘ ' (2.5)

where the w; are the model potentials of the individual bare
ions. We shall insist later that the model and true energies
be the same, Ek = EQ, but for now designate them%sepérately.

. ) -

-
In the vicinity of the jth atom, these equations be-

come N
«
I : Co :
(T+v.) ¥, > = (E_, - I v,=-V )|y > (2.6)
3k k i#3 1 ek ‘
o M ‘
(T+w.)|x > = (B, - L wv.=-V )lx > (2.7)
J _)_(_ E 1?53 1 e E r )

where the fact that w' has been constructed so that in the
o

co;é region of atom j, LA for, i#j, has been used. Invo-

king the small core approximation, £ 'v,+ve is taken to be
e i)
constant over the core region j, allowing a new energy to be

defined as

"B, =E, - I wv.-V Co(2.8)
Y k i#y 1 € .
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so (2.6) and (2.7) now become

- ’

—

' ! ' ’ N
[f” (T+vj)|w5> = Eklw&> , \(2.?>

0 ' *
(Thw ) x> = (Ek+Et—Qk4]Xk> ‘ (2.10)

in this region,

Different forns can be taken for the model potential
w’; the widely used form discussed by Shaw illustrates the
characteristic features of the different possibilities. He

tdefines, for each value of 2 and E'of the electron state being
- [y . .

acted upon, a-well depth AQ(E) and radius R, (E). His model

I3 Q‘ (
potential for the bare ion is then

(E)) - i AQ(E)PQO(RQ(E)-r) ( (2.11)

[
feQ

w =‘-4-_' : @(r—.RQ

H

where the P, are projector operators )
! +

\ - ¢

%Q = - I |m><im] (2.12)
' w

and 0(r) is the unit step function

) (1 r>0
O(r) = (2.13)
0 r<0

N

The model and true ion potentials are shown schematically in ~
fig. 2.1, illustrating the replacement of the true potential by a
weak potential within the core region. The AQ(E) have been

observed to be very nearly linear in E, so they are taken to be
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Fig. 2. Schematic view of model potential — .
- | and ionic potential —--- (/
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AQ(E) ‘= AZ(EF) + (E—EF)AQ(EF) (2.14)

<

- ) B " ‘
where AQ(EF) is the derivative of the AZKE) with respect to

E, evaluated at the Fermi énergy E

v
to obtain E = Eﬁ, so that (2.9) and (2.10) have the same‘eigen-

—

values. The parameters Qf the potential are determlned by flt-

P The well depths are chosen

ting to the energy term values of the free ion. There is sdme

addltlonal freedom here in that different values of the A (E)
\)

can be'chosen which give the same energles, and wavefunctlons

outside the core region. However each of these values of AQ(E)

produces a different wave function inside the core. In parti-
cular, the weakest AZ(E) produces a nodeless wavefunction,

and this is the value chosen. Once the AQ(E) are determined,

- ‘3 - ~
it is then necessary to use the same function,for A (E ) 1n

the metallic model equatlon, but at the meta lic energy E, which

e ]

; —

must be related ‘to the zero oﬁaenergy used in the free ion prob-
lem. Methods ha;ejbeen devised by Animalu and He}ne {1965)

for dete}mining'this relationship, but the general;procedure

is not very sétisfaétory This is probably the blggest single
problem 1nvolved in flttlng a model potent:al to free ion proper-

ties, and extrapolatlng to the metallic regime.

-

' There is still some freedom in choosing the well radii

,

: . .
RQ(EI, which can be used to optimize the potential. The poten-

<4
"tial is cqpsen to produce the smoothest possible wave func@ion\

by minimizing e - ’
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I = = (2.15)
3 2 -
[ 4 _r_le(g) |
with respect to the RQ(E). This results in .choosing
RQ(E) = Z(AQ(E) , (2.16) .

so .the model potential is continuous. The main advantage of

thi's optimization is rapid convergence of the Fourier trans-

. \ . .
form of the potential.

-Once the model potential is obtained, whether in the

form qf SHaw or'some other, the wavefunctions and energies in

the metal can be calculated.
. . ; .
Although it is not possible to accurately construct

the electron distribution within the core regions, via what -

—

is called the depletion charge density; a'reasonable‘approxima—
tion to it canbequmtructed everywhere. |

The total charge distr}butioﬂ as\biven by (2.2) scan be
expressedogsing @hé modei wave functioné Xk(E) and by introdu-

cing a new function pk(z) so that
- «

<
(x

n(x) = (X) x, (£) + p, (X)) (2.17)

*
k' Xk \f
where o, (r) is non-zero only within the ion cores, since xk(E)

= wk(g) outside them. The depletion cﬁarge*déhsity is defined

/\
v N\
by ¥ \

l

ig)u. ' (2.18)
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The mddel theory is to Be thought of as producing a

depletion of charge in the core regions, giben by p(x).
4

Know1ng p (r) and X (r) would be equlvalent to know1ng

L

-~the wk(r so it is hardly surprlslng that model potential

theory does not tell us pre01sely the pk( r). However, consi-

der the total depletzon charge about a single ion site of volume

QM’ known as the depletion hole p.
. . . 3 < * . * . .
p = A7 (L (y, ()9, (x) =%, ()% (x))). (2.19) -
Tk k k=" "k k' o . -
- . -Q,M '

Although this definition of pfcleariy depends on the

wk(gb, it'can actually be’exéctly expressed solely in terms

of the model parameters

_,3 '<‘ * a * , l‘P'

pr= - J a“r(Z ¥y, (x) aE W(E )xk(r)) (2.20)

. K :
2y

The p(x) cannot be expressed in ter@s of only the model

' ypotential, but it is generally approximated by a form.su¢h as

o(r) = p I §(z-R) . . (2.21)
1 .

We now proceed., to solve the model equation

S - . (waj|x£> = EEIX£> . C(2.22)

" where W = W° + Ve' by'éecond order perturbation tHeory, The

zeéro order wave function is clearly



et .. <
AL LT

- P
P .;l‘x - 4

. (2.23)
/0 . .

.
e

. where Q is the crystal volume. The'pérturbed state is

00

> = |k> + I a (k) |k+q> (2.24)
IxE B3 g k). |k+gq ‘

g (]
with
2<k+g|W[k>
a (k) = ————— (2.25)
4 k“-|k+q|

for g#0. Normally in perturbhation theory the ka> are norma-
lized so aO(E) = 0.

But in this case, instead of normalizing

IXk>’ it is required that |Xk> = Iwk> outside the core re-
giéns, and this-leads to

d
2 W(E,)
T,k

) -
= N >
ao(k) > <k k

D T (2.26)
2y .

The energy.- to second orxder ‘of the state k is
. / s "

R <k |W]|k+g><k+q|W]k>
Ey' =5 k7 + <k|wlk> + 2 I

. (2.27)
2 .
a#0 - k- |k+g] o

Now writing the potéential as

W =% W(E_Bl) ’ ('2.28)',
AY i‘ .

factor:

—igfé.
S(q) ==L e’ J

2l

(2.29)

~ where Bi are the ionic positions, and introducing the structure

.",}
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(2.27) ‘becomes
215 (@) | 2] <k Jw]k+q> |2

+ N<k|w|k> +2 3 —— 3 . (2.30)
caf0 - kT-k4g]

K2

ol =

.’\ N 3{/\ “\

N\
Using (2. 17),,(2 200 to first order, and (2.26), the electron

distribution 1n the/yetal is glven to first order by

°

e o
1 N d
»m/a el mpoweg e
R T “ S
\/-»a-»!;\f «' S o o
+2 1 a x)e* 3Ly + o 1 6(x-R,) 1 (2.31)
- g#0 4 i 1

‘ where (2.21) is being used for the depletion holes.
Each term in (2.31) can now be physically iriterpreted.
The first is a uniform density whion when*integr;ted ouer the
crystal volume compeneates for the baokground ions. ‘éhe Eecondﬁ
xls another uniform term, compensating for the depletion holes
which are given by the fourth term.: The third term is the

sc¢reening charge density. Note that this charge has.no'g=0

component so the integrated screening density is zero. Thus

we can eee that the electron distributio) be copveniently
pictured\és a sum of two fluctuating ter - rimposed on a

. uniformn background which when 1ntegrated over the total volume
exactly accounts for all the electrons present

The non-uniform charge is clearly expressible as a

Fourier sum
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~4n(x).= g 4" En ) (2.32)
= ~A - ¥
\/’\
2 < o .
n ==2¥ a (k) + S(q) (2.33)
g‘ Q- k . g —_ %‘ g
where @, is the volume of the unit cell \
9, = /N . - (2.34) oo
It is now straightforward o illustrate explicitly the :

self-consistent nature of the calculation. We considered as
a part of W the self-consistent poﬁéntial of/the electrons

which must be related to the density as

el

_ 4m ' e . ) . : . ?

Ve(g) = =5 nq o B S $

a = . - - i

. <ktg|W k> _(g) ' S

_ c oo am gy ErlW -l (@) /\ o
= —-2- {.SS . +-§—S(hg)}- . (2-35 [ j%

X
kK k-|k+gl? 0

In (2.35) we have used <k+g|W|k>-= <k-l:g|W°|}£'> + Ve(g),

and the self- con51stent.nature is qulte apparent Using the k-

[y

1ndependence of V (g), .it is now easy to show that (2 .35) is

\equlvalent to
Tt

(2.36)

. . < Lo ° ’
o os@ oy [0y Nekralw ol g,
=t T3 5t —3)-

-

Here‘we have introduced the wave vector d@%endent dielectric-

‘function €(q), which comes from -

¢
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- a3k o ,, ._ |
P T = (F) (l-e(q)) ' (2.37)
k.-l)_(fgl . :
and is given by.

1 1-n? . [1s ‘ '
e(q) =1+ —L (1D zn,l—_’l' £ 1) . (2.38)

‘ 2mk_n< - <N nl, : :

F- . :
' where n = q/Zké . o ) . <

Ve(q), and hence nq have now been'expressed“in terms,

-

of the bére ion potential w? and the structure factor S(q).
P a

The - ‘screened form factor wg(k) can now be wrltten

w1thout the structure factor as - ) </\ .,
w_(k )-N<k+g]w|k> ' T .
g L . s < 3 o ’
o - "1 amp g | Tkkrglw k> '
= N<k+q|w k> + = {—5 + - 1}  (2.39)
= = . (q) Q 2 .2 2 2 Ik+ l2 .
: o9 . Ta kK™-lk+g |

. The fonnof'the matrix elements appearlng in (2.39)
naturally depends‘bn the form taken’ for W ; For the Shaw poben—

tlal these are detalled‘?h his the51s (Shaw l970b) and further
K %
transformed to expre551ons convenlent for computatlon by Gllat

a

Rizzi and CublOttl (l§69) . ' ‘ e e e

4 ” N
G ‘
2.4 YTOTAL CRYSTAL EF{ERGY . a N

. We now have, in Hartree theory, the- energy of an elec—

tron in state k. In pr1n01ple it is nowy stralghtforward to

calcu the total energy of the metaI; but it turns out to con-—

———

5
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tain very many terms which are difficult merel& to kee§ track
otl Most of these occur because of the‘non—loeality of the
potential. Becatse of this complex®ty, and because no total
energy calculations using neh-lécal potentials are reported in
this - thesis, onlyza brief outline"of the total energy deriva-
tion indicating a few important points, alongxwith a presenta-
tion of the results{ yili'be given.

Given the electron energies E the total energy pex

) k’

ion is given by : - o

]
1

Zi—

z
k £ i

s

The flrst term double“counts the electron- electron 1nteractlon,

so a term equal to thls 1nteractlon must be subtracted off,

accountlng fqr the  second term in (2.40).( The last term is the
direct ion-ion interactionxcleeriy,~in usihg thie equation,w
we are not conSLderlng the klneflc energy of the ions, so are
deallng with a rlgld lattlce.

Lﬁ Insertlng the expre351on for Ek (2.40) becomes

' | o |s<g.>| I<k+_qlw|k>l
E % I (% k2 )+ <k|w]k> + 2N 2 —
Sk k . k- . k 'lE+SJ 5
- . .P.
1. .3 1 e o '
-3 | IV (Zy ey T vd(lgiggj{) (2.41)
i#3 .
By cgnverting“the sum to an ihteéral, the first term be-
. v ko :
comes % Z‘—g— . The second term 1s the most dlfflcult to eva-

1uate. It 1nvolves the q—O llmlt of the form factor for each

. 3 B ) ) l N »
By =55 | (@ (D) -+ 55 2 Vg(IBi‘BjI) - (2.40)
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: value of k, as well as relating the Fermi energy to the. free ion
. energies. The detailed form again depends on the form taken .for
the potential. - . .. Y .

K

Equation (2. 41) can be rewritten' as a sum of three terms

a

_E-=°3Efe + Ees + Epg - ‘ (2.42)

N
The first is the free:eLectron energy which depends on
the total volume but not the structure of the crystail
2 , ' .
3 <oy .
ZE > =0 2 —=— + L <k|wlk> . (2.43) -

The eléqtrostatic energy E_, and band structure energy

Ebs each depend on both the volume and stxucture, and are given
P ' ‘L : ' et . . ,
B =L (n +ngtn )(v oy o )dr C (2.44)
es. 2N 1 d ‘val’" = o
,. N '
E = 1 |s( )IZQ( y p ' (2 43)‘
“bs . ‘g q’) - ) P ..
. g0 , - .

H

'The notation used in (2. 44) is defined in table 2.1; in the

last term.of that equatlon, the prlme on V 1nd1cates that

. . { . l
kY .
3 ’ charge lnteractlng with.itself is to be omitted. ~(2 45),-

o ~
Y

F(q), whlch is structure 1ndependent is known as the éhergy—.
wavenumber characterrstlc and is given by

g ' . ' , 2|w (k)l
2@ < : ' :
Flg) = —2, d3k = . (2.46)
) (2m) k -|k+9| o

[
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Table 2.1

Notation used in total energy calculation

JUNY

Quantity - "« Notation for Chargeﬁ Notation for Potential
Valence charge Z at RN ‘ Va1 -
ion sites A ‘
Depletion hole §ha£ge L Ny \ vy
_ Totgl uniform chérée | n, ' i ‘ ‘Vu

T ¢

The electrostatic energy cannot be evaluated directly becausé of
the long range nature of the forces. Sums in bbth‘EfSpace and
-gfspaée converge only very slowly. Harrison.. (1966) describes

these calculations, which can be more readily evaluated as

. 2 q p

where Z*, the effective valence is glven by Z* = Z-p, and which

~ can be expressed as

¥ \ ) ’
. 5/3 . .
o _a(z*) :
Bes T 72 rg o - (2.48)

‘where a(is ‘a constant depending on the structure of the éryétal,

and Ty is the electron gas density parameter, related to the

mean electron density by

NZ L L (2.49)

'
e muw:q,’(&:v: ;;;"w:k"dx 2 ot ﬁ:.-"s

o

2 e sy e st mdew o
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2.5 EFFECTIVE ION-ION INTERACTION

£

i

As a final consideration of the non-local Hartree theory,

we wish to focus brié€fly.on the terms contributing to the total

energy of the crystal which depend on éhe structure of the crys-

tal. From these terms the effective interionic potential in the -

metal can be developed, which is used in, for example, phonon

calculations.

o Returhing to (2142) through to 12.46);‘we see that the

. . . 54
terms which depend on the structure are

E' = Ee:s“‘+ Eg - = - (2.50) -

) . . C . )
r
Ebs can"be w 1ttgp - o .

1 ) 1 '
By, =52 L V. (|R.-R:/]) + 5 I F(q) (2.51)
bs 2N’i¢j ind’ -1 =] N q#0
where ' . ’ h
' oy .20 . -ig* (R -R.) o
N Vind(|51 5j|) =N 20 F(gqle = =i -] (2.52)

. g#

S e . . Lo~
+is known as the indirect interaction between two ions located

a >
'Y

at“_R:i and Bj'

*

The part‘onges'which depends on the structure is the
. . P i“ ‘ . . N
interaction of'e&db%depletion hole p and valence charge Z loca-
ted at an ion site Ei,‘ﬁith all the other such charges located

N

~

at ion sites 35.

e M st 0 2 i s i b A e WA 34 4o
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g = I = VgtlR-R, D) (2.53)-
es i#j 2N d =j
where /
T y ;
\vq(lgi—gjl) = (2%)°/|R;-R.| - (2.54)

=3

a

'The effective interaction between two ions located

at R, and gj is the sum of (2.52) and (2.54):

%2 | -ig- (R;~R,)

- 2 i
Vere®iRy) = TEET N ) T e

4 L

2.6 MANY-ELECTRON EFFECTS AND EFFECTIVE MASS CORRECTIONS

Since the theery as it has been presented so far has

taken no account of exchange and correlation effects, it is a

Hartree theory. 'In this section, following Harrison (1966,

1970) and Shaw (1970a,b) these effects are included in an

approximate way. .
< i .

One way in which the theory is modified is in a lowe-

-

ring of the energy of the uniform electron gas Using the

analytic form of Pines and Nozxéres {1966), a correctlon is

added to Eco (equatlon‘YZ 43)) R
®
_ |
MZE,_ = Z(- “2>> - .0575 + .0155 In r_) . (2.56)
e s S .

' The flrst term is the exchange energy, and the next

twa the so—calle&&correlatlon energy. '

R e
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There is also an important effect on\ terms involving
the non~un1form1ty of the electron density.

“The effect of

these fluctuatlons is to add an exchange and correlatlon po-
tentlal V

whlch};Vﬁlnear response can be expressed as
. ‘

n
(Q) Xq qr

so- that the total potential felt by an elec-
tron due to the other(electrons is

4n
v (q) = (5 + n_ . 2.57
Jla) = X' g (2.57)
q
3
Xq can be regarded as a g-dependent cpupling constant relating
ch(q) and‘nq.

2
= -4

After defining a new function h(q) i Xg!
the changes in the theory can be expressed as follows.

23

q
The ‘
dielectric function (2.38) becomes ;
ﬁ %
2 .
™ e(q) = 1 + (1-h(q)) (1-n" , |L#n| , 4, (2.58) ‘
27 2 2n 1-n
Tk _n v
F
The screened form factor (2.39) becomes
< .3 °
. d k<k+3[w l5>
w (k) = v (k) + (le?é?) {4""2 + g [ — 5 (2.59)
e 1 2,0° 1% k- |k+g|
and the energy—wavenumber characterlstlc (2.46) becomes
< - IW\(k)l 2
20 0 X
: 2 9 q - o
Fla) = —— | 4% —3 5+ —0 Ul /etgl) (o ) -u k) ?
(27) k*-lk+q|® I-h(q) . |- 9 d
| ,  (2.60)
where wg(k) is the screened Hartree form factor,
(2 39).

obtained from--
F(q) is’ Stlll a local operator, 51nce wi (k)—w (k) is local

q-
even though “each Of wg(k) -and w (k) is non-local.

M

. -
-
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There is still no completely satisfactg;y way of
+ ¥r

calculating the function h{(q); in this thes%gfihe results of
5 ,'r:c? E
Singwi et al® (1970) are used, o
e -tk
h(gq) = A(1 - Be a ) n (2.61)

<
where A and B are constants which depend on the mean electron
density.

¥Shaw has also incorporated effective mass corrections

into the theory (Shaw 1969b). He defines two functions mE(E)

and mE via . —
mg(k) =1 - <k ks> (2.62)
2
» _ k2' °
:§ . 2mk : 5 +v<5|w [&> (2.63) -
;';\ . .

which aré well defined, with expressions for them given in

that paper. Expressions for e€(qg), F(q) and Qg(quxwhgch now

.depend onh these two new functions can also be found there.

However, since these expressions are quite complicated, and are
not used in this thesis, 'they are not reproduced here.
Appééillai and Williams (1973) have compiled a list of

on the Fél{ilsurface matrix elements and the energy-wavenumber
b

characterisﬁiéb far 33 elements, including both exchange and ef-
fective mass corrections. Co&ley (1976) has found that these
calqu&atidns are apparently in error, and has redone the whole

fi%@ing and extrapolation procedure for 27 eleme%ts. But the

=
EIARA

LRt

o et

o
= mmem w n
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K3
K

question of how to reYate the metallic energies to the free ion
(energies is still not completely solved. In_ fact, he gives three

sets of hodel parameters for each of the elements, cog;esponding

:to three different ways of calcﬁlating this energqgy ﬁgla%ionship.

Taking'aluminum"as an exaﬁple, the 2=0 well depth A, is given -

as either 1.3784, 1.4319 or 1.5509 a.u. It is clear that fitting

the potentials directly to metallic properties would be prefé4m

rable’ to this fitting to free ion properties and extrapolating.

2.7 MODEL POTENTIAL THEORY IN THE LOC}\iL LIMIT
It is much simpler and faster computationally to use a
local apprbx;mation to tﬁe model potential. This results*in much
simpier forms for thé ekpres§ions in this chapteff—Whichfare
presented in this section.
: .

WiFh a local potentia;, all the electrons, no matter

what their energy E or angular momentum quantum number £, feel

. the séme'potential W(r). Since there is no energy dependence

“in W, the deple@ion hole is zero, as-can be seeén immediately

from (2.20). There is correspondingly no difference between the

x

effective valence 2* and the true valence Z, nor a uniform

charge compensating for the depletionﬁholes. A further major

simplification occurs in that all sums over k can be dong
independently of sums aver g, since the matrg? elements are

¥

independent of k.

/'/1

Coiiwt ponimmu & abe =

R e T Wy Vo)
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Different forms can glsb‘be chosen for the local
potential. One corresponding to the Shaw -form of the non-

local potential, which is used in the next chapter . of this

. e

thesis, is

w (x) = - AB(R-x) - 2 9(x-R) (2.64)
with form factor :
wig) = - 4n2‘[A singR + (Z-AR)cosqR] -1 {(2.65) -
Q()q g & E(Q)

and electron distribution -
3 _ 2

5os(q) & wi(g) (1-e(g))e Y2 E | (2.68)
970 A an T k

n(x) =\n0 +

The total energy is again gLQenAby the sum of three

_ terms as in’(2.42), with

~

W

S
3 p

. d ¢
2B, = 7(3:203 _458 _ 4595 4. 0155 lnr ) |

fe 2 - x ~ ey s
. r s . .

, -

) B v - 2 2 N v 7

L + 2 3r%(1 - 2 aR) - . (2.67)

: 2 3

! . Y {

o *' where the first term in:£2.67) is the kinetic enefgy.per ion

i . , ‘ . B AR S g )

\ written, in terms of x, instead of kg

n '

- : az>/3 “

W ) o . - . )

) . By = % . (2.68)

ﬁi” . ‘ . . : S .

& o ..

. and

i

127 (q) (2.69)

T
T e

P
-~

e

E. .= I |s(q)
“bs g0 ,
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where now

Qoq‘z'L"( vl 1
. o w (g _
. ‘ Fla) © "8y 1-n(q) ( )

(2.70)
N 4
Exchange and correlation are included in these éxpressions.

The last thing we are going to*consider in this chapter

is the effective interionic potential in Hartree theory using

a local potential, which reduces to

.

2 .. ~-ig+(R,-R.)
V ._(R.-R.) = =2 +2 1 P(qe -+ 73
eff ' Ti —3 [R;-R,T ° W 9

e (2.71)
. 9740 .
But in this limit, F(q) becomes

1
F(q) = E.w(q)nsc(q)

S (2.72)

where n c(qY is the Fourier transformed screening chérge den—
sity about one ion. Hence

2.Q .
. 7 0 ig*R
VereR) = x + éhw(q)nsc(q)e -
) - §
= Z ] ° L 3 t
= x + nsc(gfg w (r')d’rx

©(2.73)

The picture for Vogg(R) is'now clear. Two -identical
atoms a distance R apart are allowed to overlap and the interac-
tion energy is that of the two bare valence charges Z interac-

- A *
ting, plus the screening cloud of one ion interacting with the
. ° \ .

other unscreened ion. Clearly this must be correct in pertur-

-
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bation theory, but it -is also clear that other effects such as-
changes in the electron kinetic energieé, are not being consi-
- s . . a . ( » )
dered. This point is discussed further in the next chapter,
P and in Appendix I.
\‘ o
E ¢
»
’1"/
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CHAPTER III

EXTENSIONS bf THE MODEL POTENTIAL THEORY: .
HYDROGEN AND HELIUM IMPURITIES IN SIMPLE METALS

3.1 INTRODUCTION
Much interest has focussed recently on the p;pblem of

ﬁ and Hé in simple metals'(see for example Bugeat et al 1976,
Inglésfield and Pendfy%}976, Mainwood ;nd Stoneham 1976, Stone-
haﬁ 1972a, 1972b and’Vgok et éi 1975). 1In particular in a study
spoﬁgbred by the American Phyéical Society to identify problems

RS . . * .
iJlraETation effects:relevént to fusion energy dévelopment,
Vook et al (1975) recommended study oflfhe effects of H on the

mechanical properties of alloy systems as well as of the beha-

viour of He in solids,eincludiﬁg its ihtepactions with other

defects. In this chaptervwaconsidgr ‘the energieswof indepep—.
dent, or at most pairs of, H and He in simplé metals with at
most: isolated mono-vacancies present. . . |

' In developing .the theory, a number of.modifications

/
to the model potential theory will be introduced to tréat the

"electron-ion and interionic interactions. The first set of

modifications will also be used in the next chapter, and in

Appendix I the péésible application of the formalism introduced

for the interatomic potentials to phonon calculations will be

. 4 . - ' .
33 . \
, 0 .
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discussed. These modifications could be presented in a se-

»

parate chapter, but it seems more';;BEQpriate to introduce them

as they’are needed. - ¢

Within a local modél*potentgal theory} it is"straight-
forward to calculate the energy of ‘a perfect simple metal. By
treating a single impurity atom in algimiléf'way,‘thié’caléula—

LY

tion can be modified to provide the ener

of the crystal when
non-intéracting impurities are present. (The difference between
these energies is an approximate heat _solution,.AH, for the

impuriéy'in the'metal. Popoviécet al §1976, hereafter referred

to as PSCP) have done this for H i@ Al and Mg, and found poor

agreement with experiment. They then went on to tomstruct a
new theory incorporating non-linear, approximately self-consis-

tent screening of the proton in the electron gases, oblainigg

much. improved results. Since thén Jena and Singwi (i978) have

, J—— . .
repeated these calculations, incorporating full self-consis-

tency, and have achieved even better agreement. We have dene-~

ralized the theory.of PSCP to treat an impurity of arbitrary

" nuclear chafge.i', and applied it to He in Al and Mg. We ¢

have also cqnéidered in some ‘detail the behaviour of both H and.

He in the presence of a single vacancy, but neglecting lattice

relaxation. -

With furE%er extensions of the theory,.it is possible to
at least partially remove the restriction to dilute impurity

concentrations, by allowing for interactions between "impuri-

-
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ties. This has been done for both H-H and He-He pairs in-‘these
metals, both in the absence of and near mono-vacancies.

In the né&t section we start by presenting with little

discussion_the model potential;or linear, theory of the heat oﬁ

.solution for a single impurity in a simple metal. This is done

\

. primarily to provide the framework for the'modifications in-

corporatlng nen-linear screenlng which are described in the

hensulng section, after which the reSults for a single He atom

.in Al and Mg are presented. The rest of: the chapter is devoted

" to the case of pairs of impurities.. '~ ..

&

3.2 THEORY OF THE HEAT OF SOLUTION OF A SINGLE IMPURITY _ , Ca

In chapter 2, the energy of a perfect‘crystal- within a
e -
local model potentxal theory, was glven as a sum of three terms:

the free electron energy 2E . (equatlon 2 67), the electrosta-

fe
tic enefgy E (equatlon 2 68) and the band structure energy
R
Ebs (equation 2.69). The local model potential W (r) .we are

using (equation 2.64), form~factor'w(ql (equation 2.65) and

energy—wavenumber characteristic F(q) (equation 2.70jewere‘alsd
lrsted‘tnere; ' The enérgy of ‘the perfect crystal can be obtained
from these equations, once the model potential parameters and
the structure of the crystal are séecified,.whiCh is now done
for the host materiais considered here. ;;

jzﬁl'is face'centered cUbic'with only one atom per\primi—

tive unit cell, so



S(q) = sﬂﬁj | (3.1)

wpere'the Ej are reciprocal lattice vectors. Mg is hexagonal

close packed, with two atoms per primitive unit cell. The

3

structure factor can be expressed
T —igep,
sfg) = Ssh(g)(l + e ) - (3,?)

where Ssh(g) is the structure factor for the simple hexagonal
1a8t;ce} within each unit cell; one atom is at the origin and
the other .at £o- 'Ssh(g) is given by equation (3.1); but the

v

Ej refer of course to the reciprocal lattice of the simple

hexagonal lattiee.

The model potentlal parameters are taken ‘from PSCP,

»

‘.where they were fltted to reproduce the equlllbrlum lattice

-pdrameters and binding energies of the perfect crystals; this

was felt to be approprlate Sane our interest is in the change

-in energy when’ ? few 1mpur1tles are added

The above, as well -as’ the rest of the requlred data,.
are summarized in tab1e~3 1. )
| For preseéent purposes, consider the g dependence of
the crystal energy to be a funetien of kF;
the€ crystal can be'written‘as : v ‘

o ramem

E = N(ZEfe(kF) + Ees + Ebs(kF)) . . “(3.3)

When an impurity is added to the system, the.addition

i

The total energy of .

o°
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’ Table 3.1
L ,PSt‘rUCture" and potgential parameters "f'or‘Al énd Mg
AL . Mg
© . Structure fcc hep
Ewald constant o ~1.79175 - -1.79166
Lattice constant (A) 4.031 ©3.193
c/a_ ) .- . 1.624
Valence ) ' 37 2
[xg | 2.064 " 2.642
‘A . 8618 .5337
R 1.3817 1.6890
N “
[ 4
\ y

.
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‘and perturbation theory are used throughout..

pRIeCA

D4

can be thought of as occurring in twovstages. First, the impu-
rity is raised from its ground state ih vacuum to a nucleus of

charge 2' plus z' free electrons, and then these particles

dissolved by the crystal. The heat of solution is the sum of

the energies required for each of these steﬁs;
AH = I + AHel—n . (3.4)

-

where I is the energy required for the first step, and AHel—n
is the heat of solution for the dissociated electrons and nucleus

For H, the former is one—half the- dlssoc1atlon energy for ‘the

molecule plus the 1onlzatlon energy of thé atom, 15.86 &V, and

for He it is the sum of the first’ and second 1onlzatlon energies

for the atom, 78.88 eV.

Before proceedlng to .the detalls of AH el-n’ it is ap-
V .
proprlate to summarize the major approx1matlons used in the

theory. Flrst, at least in the'llnear theory, model potentlals

In the modified

theory, some but not all perturbation calculations are replaced

' Second, ldttice relaxation is neglect%d. For both Al and Mg the

lattice‘relaxation energies about a vacahcy are calculated to
be about ~.03 eV (Popovié et al 1974 and Popovié and Carbotte
. 1974), and would not be expected to dlffer much from thls about

a light 1mpur1ty. Further Malnwood and Stonehﬂm (1976) have

. calculated that for H in Na,

relaxatlon of the four host atoms
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nearest the impurity leads ‘to a lowering of the energy oiy
dnly 003 eV. On the other hand, Benedek (1978) esflmatés ‘that
v the contributidn of lattice reiaxation tovAﬁ_for He in Al
is about 1 eV. This is én effect which probably watrrants fur-
ther investigation. Finaily;vgtétic impuritiesnare assuméd. .

When the impurity is introduced, each term in (3.3)

o ?

is modified. With thé addition of 2 electrons, k. changes,

F
to first'order~in %. to
- ok (1 + =L ' (3.5) |
‘ | IS F 3NZ ]
¥ ‘ ~ so that NZE;, becomes o ' ‘<£v\*
. ' : - . ! 1 9E e(kF) '
-NZEfe —‘NZEfe(kF) +’Z fEfe(kF) + 3 ———EEE——). (3.6)

.

' With the addition of the nucleus of charge z', NE__ becomes

. 5/3 2/3 o
v _ NazZ™/ YA VAR
Nes = 7r T etlen) (3.7)

: “ a'(gn) is an Ewald constant which.depends not only on the struc-
ture of the host material, but also on the locatidbn of the im-
purity within_the‘crystal’gn.' o .

Thé‘band §truéture energy changes due to both the extra

v, , nucleus and extra electrons. For the hcp structure it ‘becomes
\:%’:‘\ * ) . . ' 0 . Z'k}:‘ . P s
':: o * N.Ebs = NEbS(kF) + 37 . COS ("' J'Qz)w (K_J)Tﬁ(—- g(I_<._J)
i ' §j¢0 . . F, C
o+ oW [¢3 )w K g (K, ){cos(K +p )+ cos Kyt (0,mp )}
, : K.#0 . -
. ] \ ’
1. 02 . | - _ ‘
+ 5. v, (@gla) o : o (3.8)

BELy
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where ( q2 . _
S flo 1 _‘ 1
gla) = 8T 1-h(q) (1 e(q)) (3.9)

and w (q) is the form factor of the bare impurity nucleus -

(<2 ]
wo(q) = 4"22 i ©(3.10)
n Q. q
‘ 0
< * , Lt .
For the fcc structure,‘Ebs,is given by (3.8) but with p_ = ¢.

=2
Adding together equations (3.6) to (3.8) and subtrac-

‘ﬁf%?g off the 'energy of the perfect crystal, an expression for

-

AHel—n is obtained, which can be expressed

Hel_n5=«4Hl,+ AH2 ‘ (3.1})
: -k (k) 2/3, )
= 71 F “Cfe “p’ . 22/34,
bRy = 2" (Ep (kpdet o +av'(p )
/ F . s
K 21" 2 5 L
+ 35 I cos (5 Ej-gz)w (Ej) Y g(gj)) - (3.12)
AH:.2 = Kf;o'w (gj)wn(ﬁj)g(ﬁj)(cos(gsgn) + cos(K “(p 28 )))
*§ 3 weli@alg ' (3.13)
. g#0 |

o

PSCP evaluated these expre5510ns for H in Al and Mg

" and obtalned values fox‘AH of 1.99 ev and 2. 89 eV respectively,
compared- w1th experlmental values of .66 eV and .25 eV. ?hey>
1dent1fled AH as the cause of these dlscrgpanc1es, it depends

on the response of the electron gas to the presence of the pro- .

2 L e e e rr e

R A

g

S e e e, v
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- where n(g) is the Fourier transform of the true screening

41

ton, and since the proton is a very strong perturbation, it is

essential to go beyond second order perturbation theory to treat
"it: On the other hand, AH, should be adequate as it is, since

it does not depend on this response.

.

Making use of the regults of chapter 2, equation (3.13)-

can be written

b, = 2o s(@wignP (@) + s 1 e G (gnt (g
L g0 a0 :

(3.14)

where n g) is the Fourier

transform of the displaced elec-

tfpn density about the impurity nucleus, calculated to first

[~} . .
order in wn(g). The first term can now be interpreted as the

«

interaction of this screening cloud with the rest of the ions,

and the second as the leading térm in a perturbation series
. 4 ,

for the correlation energy of the nucleus in the electron gas.

[y

‘

Hence an improved AH can be obtained by modifying AHé to

[4

-

BH, = I S(Qw (gn(q) +E | (3.15)
2 g0 cory

y

cloud An(x) ébout the nucleus at By

. : v’

: -ig-p . : .
nf{q) = e nﬁ[ 4nr2 §%§9£ An(r)dr (3.16)

0

and the correlation energy E.orr 15 (Fetter and Walecka 1971)

P S

v Pt i

o
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Z dz_ , ,
: L - Eeorr T 7:: Vint(zn) ‘ (3.17)
0

where:vint(zn),‘the interaction of a nucleus of charge Zn with .

~

its screening cloud is given by

- - 3. n -
Vine(Zy) = ' a”r > 8n(z_,1) (3.18)

where An(zn,g) is the distribution of displaced electrons about

[} . . 4
a nucleus of charge 2., where 0 < Zn < 2'. By evaluating
An(Zn,E) in a non-linear, approximately self-consistent way

for sufficiently many values of Zn to carry out the calculations

TN .
of equations—(3.15) ®o (3.18), an improved AH, can be obtained. 4
\ ‘ .

: \

3.3 APPROXIMATE NON-LINERR SELF-CONSISTENT SCREENING

-

In the théory_oﬁ%lined above, an improved calculation
\ of An(r) is required. The method used is based on the density
functional formalism' (Hohenberg and Kohn 1964, Kohn and Sham

1965) which states % exists a local, one body effec-

. . /‘3\\,
£ : :
ive potential veff(£ which can be used to cepsgiuct the exact

ground state electron density‘distributiijjfﬁiough solutions

of the ‘one particle Schrddinger equatiord

t\ | ' 3 . ‘.:\a

g (- 392 4 v_ (00 (D) = e b (x) e3319)
?7 . 2 7 eff '~ it= ity S

% | Solving for all the states with energies less thé%;the

‘chemical potential'u,uthe density'can be constructed th:éﬁéh
AR
? Lo
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LY

nE) =N (o |
Y
1\

]

(3.20)

In the present case, the effective potential is, to within

a constant,

— -

2 [ a(zac *

The first two terms constitutgjtﬁéﬂ§e}frcbnsistent Coulomb«

T )

‘potential of the nﬁcleus and electron cloud. ch(g) is the ‘

. . . “ o /., A .
functional derivative of a universal exchange and correlation
) ,

energy functional Exc[n(g)f. ' N

P

? - &8 [n(x)]

" 1 : Veel&) = 5 X6 - o - 3.22)

Since Exc[n(£)] is not known exactly, neither is V (i). For

a slowly variing density, it can be approximated by the ex-
change and correlation part of the chemical potential of a ™

uniform electron gas, but evaluated for, the local density at gf

Ve (El ® b (n(D)] . : , . (3.23)

, F .
o ‘This approximation is used throughout the calculation. ' It is
‘ B ‘decreasingly valid as the nucleus is approached, but this is
|

& probably not a serious problem. First, the kinetic ‘energy and

%ﬁ Coulomb potential domipate the Hamiltonian in this region,

o . "

) Lo . . o . N . Lt -
f%‘ Also, calculations on lithium (Whitmore 1975) indicate that 'the

N

exact form of VXC(E) is not important in obtaining'the density’
distributions.. Third, in recent calculations of Jena and Singwi

b

~

s e o S ke, |
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(1978) , they found that including the first gradient correction

3 .
(Vashishta and Singwi 1972) actually worsened the experimental R4

agreement for the heat of solution of H in Al and Mg. - Finally,

Almbladh et al (1976) find the errors in An(r) due to this

‘approximation to be less than 3% for all atoms.

The form” used for uxd[n(g)] is that proposed by Hedin
and. Lundgvist (1971) which is based on the work of Singwi et
al (1970): | |

: _ 21 21
u(x) = .02909[———-—-—rs(£) + .7734 1n(l + r—-—~—(£))] (3.24)

Y AN

where rs(g) is. the local electron gas density parameter evalua-

ted at r.

We approximate the screening cloud about the nucleus in
the metal by tﬁat in the appropriate .uniform electron gas. This '
/

makes the problem spherica}ly‘symmetric so the Schrddinger equa-

tion reduces to’

W

2 .
~1 d L(2+1) _ ‘ =
=37 T Vete® T T T IRy (R =00 (3.29)

where ng(r)ris the radial wavefunction with angular momentum

labelled by & and energyilabelled by k. For non-localized sta
. s :

1.2
B Ek ‘v-ik.

 The boundary conditions are' straightforward. Bince.the

impurity must be fully screened, 1

7 im rveff(rl,: 0. Hence the -

e+ - oo .
¢“‘ asymptotic form for the non-localized states is
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4
-
i

Rzk(r) = cosngjz(kr) - 51nn\n£(kr)

2 (3.26)

where n, are the phase shifts, and j, and n, . are spherical.
Bessel and Neuman functions.

Bound states can also occur; for H and He these are

ls states, with asymptotic form

—kor
er(r) Nvoa (3.27)

where €y = - % 302 is the binding energy.

After solving the Schrddinger equation for the elec-

tron states below y, the displaced eleétronﬁdensity An(r)

/’can be constructed from -
fn(r) = I |y.(r)]% - n

. i 0 : AN
€. <u - .
i
i kF Y gﬁax . 5 ) S )

= = k“dk & (28+1) (R, (xr) -3, (kxr)") + 2Rb(r)

TT2 =0 k- 2

(3.28)
where-nO has been expaﬁded in terms of jz(kr). In the sum over

«

2, an exact solution 1s obtained by including all ¢ such that

ng#0. ¥ "
Equation(3.21) for V_..(r) can be simplified due to

the spherical symmetry, and in addition is rescaled so that

lim rVéff(r) = 0. This is aone by‘replacing n(r) by An(r) igk\
- . - . o~

the Coulomb potential, and taking

2

cr V) = In(n)) - “xcfnol (3.29)

S
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insﬁead of (3.23). Hence

A - (K )

. | ______12 |2' ' v
Veff(r) =, = + 4mx' “An(r')dr

A

] ] 1
+ { 4jr An(r*)dr +ch(r)

r
(3.30)

A condition on the potential which can be used advantageous-

ly is the.Friedel Sum Rule (FSR). In order for the nucleus to be

completely screened, exactly Zn electrons must be displaced by

.it. For a potential Veff(r)' the number of.displaced electrons

is given by the Friedel Sum (FS), (Kittel 1963)

%

ax

F:g.
il

L

g

(22+i)n£(kF)

(3.31)
0

hy

where n, (kp) are the Fermi level phase shifts of the potential.
The FSR requires F = 7 _.

In spite of the similarity between the above eguations
and those for a Hartree-Fock free atom calculation (Messiah
1%61), theyscannot be simply iterated to convergence because the

numbexr of particles is not fixed. An alternative procedqre'
was thus derived. S )

‘The initial step‘is chopsglg alfrial~potential Vtr(r)
whikh satisfiés the FSR, from which An(r) "is calculated through
(3.2%) and '(3.28). From this, (3.30) is used to .generate an

effective potential Veff(r) for which the FS is calculated. In

Q : .
o

ot e E e Y T
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general, Veff(r) will not satisfy the FSR, nor will it exhibit
much self-consistency with Vtr(r)” The next step is not to

use Veff(F)’ but to return to,Vtr

different Véff(r) is produced, through'a differenE,An(r), which

hopefully more nearly satisfies both the FSR and self-consisten-

(r) and modify it so that a

€y with Vtr(r). These steps are repeated until a satisfactory

Veff(r) is obtained.

For He .(as for H), it was possible to use a sihple para-

metrized form for Vtr(r), which facilitated modifying it in a

systematic way. The form chosen for 1 < Z <.2 was
X

B

_ ~or o
Vtr(r) = ¢C(r)e {3.32)

‘where ¢c(r) is an approximation to the potential of the nucleus

“and the éwp bound electrons

Y | z [lw (x)]2a3c
. + 2 S

n

B n
¢C(r) - T

fz-z'] . (3-33)

where the core wavefunction was approximated by

~N '—3- )
wls(}vj/%— oYX ' (3.34)

Y = Zn -x»_31 . . ’ ) (3.35)

Vtr(f)'clearly does not have any of the. long range
Friedel oscillations characteristic of Veff(r) (see figures 3.1
and 3.2), and hence canot be fully consistent with it. Hence

a slight variation in_the'érccédure was used in the last step.

The procedure followed-for the range 1 < 2 < 2-,wiil‘ﬁow be
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described in’'some detail.,

To begin, an initial value of B was chosen, and then
.0 determined so ‘that V (r) (equation 3.32) satisfied the Fsﬁz
From thls, An(r) and then \Y (r) were calculated, and the FS

eff
(r) noted. -

eff
Then a different value of B was chQsen,Cprodueing a

hew Vtr(r; (with a different~value(for a), and hence a new
Voge(r) with a new FS. The procedure was repeeted a number of
times with different values of 8 until'V . (r)’ satisfied the
FSR’andmwas épproximately self—consistent'fqr r <2a.u..

This Veff(r{ was then used to generate é‘new potenti?l which

wasnfound to satisfy approximately both the FSR and self-

consistency.

The Schrbdinger equation (3.25) was solved in steps of

.05 ag out to 20 age The bhase shifts n, were evaluated

at r'= 15, and the asymptotlc form, eguation (3. 26) beyond that.

"A 48th order Gauss lntegratlon routine was used to perform the

k~integration of equation (3.28), so that (3.25) was solved
for 48 positive eﬁergy states plus'the bound state. The sum

over 2 in (3. 28) was terminated at 2 max =_6m

As prevxously stated, for the heat of solutlon these g

\

calculatlons are requ1red for 0 < 2 < 2. For Zn < 1, the

s -

results of PSCP wege used;. we have done the calculatidons for

ZA = 1.25,.1.50, 1.75 and 2.0. The electron den51t1es and self-

consistent potentials are shown in figures 3.1 and 3.2, and the

r
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300
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An/n0

100

50

Fig. 3.1 Dlsplaced electron denSLty An/ng surrounding-a He
' nucleus in uniform electron gases of density appro-

priate to Al ( ) and to Mg (----) e -

o

\
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Fig. 3.2:

Non-linear self-consistent potential, —rVéff(r),

around a He nucleus in uniform electron gases of
) and to Mg- (----)

density appropriate to Al (
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Fermi level pﬁ%{f shifts in table 3.2.

Table 3.2

[ Fermi level phase shifts for a He nucleus in uniform electron
: . gases of mean density appropriate to Al and Mg

Al 1.9921 .2670 .0502 .0100 .0024 .0005 .0001
Mg 2.2163 .2278 .0376 .0058 .0013 .0002 .0000

N

Similar non-linear self—éonsistent calculations are
. used in the'next chapter on metallic H, and in Appendix I on
Ai under pressure. In these cases, the géneral procedure out-
liﬁed aBove is used, but Vtr(r) and manner .in which i£ is m§di-

fied are different.

A M W

3.4 ENERGIES AND EQUILIBRIﬁM SITES OF A SINGLE He Iﬁ Al AND Mg

| In this section we pfesgnt the résults 6f’tﬁe theory of

. the heat of solution for an isblated He atom dissolved in Al or
Mé;“thése results apply.as long as the imphrity éoncéntratiqh is

low enoughvthay He-He interactions ¢an be ignored.

SIS -, - . .
:-ﬁt:lc?lj},‘.,v;ut. R s

Table 3.3 summarizes the calculations using the non-linear

7

'.“'\{.’-“”

densities. The parameters o and B used in Vtr(r), as well as
the corresponding interaction energies for each Z; between 1.25
and 2.0, are given along with Ec

orr for each metal.

N DA

P
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Results of calculations of the correlation energies of the
helium nucleus in the uniform electron gases of Al and Mq.
Trial potential parameters and Vjnt/Z, are given for dif-

52

" TPable 3.3,

o

. ferent valueg of the nuclear charge Z,, along with the cor-

‘relation energies E

corr

for each metal.

Z

Trial Potential Parameters

n o 8 vint/zn‘

Al 1.25 - .0083 . 2.3348 ' -1.629
'1.50 - .3413 1.3159 -2.135 .

1.75 - .7033 1.2624 -2.709

2.00 ~1.0929 1.2233 -3.347

\ Eoopy = —2-072 :

Mg 1.25 ~ 0815 1.0760 L1596

1.50 - .4095 1.2808 ;‘L2.117

1.75 - .7822 °1.2462 -2.721

2.00 -1.1920 1.2043° -3.399,

E . _
cory = ~2.669

FYIPESPQUPIBPIEIE PRE

e,
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Table 3.4‘c6ntains the heats of solution for two dif-
ferent high symmetry interstitial sites. It is apparent that

interstitial He will occupy the octahedral site in both metals.

.

Table 3.4

Summary of the calculated heats of solution of He in Al and Mg.

‘The first two columns are the heats of solution for the octa-

hedral (AHoct) and tetrahedral (AH._,) sites in each metal.

» The third column contains the He-vacddncy binding energies, and
" the last column the heats of solution for substitutional

He(Aﬁsub). All values are in ev,

AHoct AHtet EB AHsub
Al 4.06 5.77 3.96 .77
Mg 2.71 3.28 2.40 °  1.20

4

\
1
¢
¢

Binding to a vacancy has aisoﬁbeén investigatedl This
is done by evaluatiﬁg AH when the impurity is at a lattice sitg,
and then subtracting out the interaction of the impurity with the
host atom which wqﬁld normally occupy that position. ‘The bin-
ding energy EBkis the difference between this energy and the
energy when the impurity is at the lowést energy interstitial

site, in these cases the octahedral site. When these binding

- energies are combined with vacancy formation energies of .67 eV

in Al (McKee et al 1972) and .89 eV in Mg (Beevers et al 1963),

then the corresponding heats of solutidn for substitutional

.
('
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He of .77 eV and 1.20 eV are obtained, indicating the presence

4

of substitutional helium in both metals.

It is interesting to compare these results with those
on hydrogeﬁ. The heat of solution for octahedral hydrogen was
found to be lower than that for tetrahedral hydrogen in Al,
and the same as that for tetrahedral hydrogen in Mg. For helium,
we have found that AH is lower for the octahedral site in both
metals, Eut the'diffe;énce between the éwo sites is larger in
Al than in Mg.l Similarly, hydrogen-vacancy binding is expected
in Al but not in Mg, whereas Helium—vacanCy binding is found
in both metgls, but with a larger bindin% energy in Al than in
Mg.

In order to:caiculate the~energy barriers between inter-
stitial sites, th€ energy of the system as a function of the

position of the impurity is required. Since the formulae for AH

are valid for any such position £, the position dependence of

the energy E(Bn) can be investigated by focussing on the terms

_contributing to AH which diﬁjfd on p . To'within a constant,

this energy is

E(p ) =a'(p y2—=_+ I "S(g)w(ginlg) . (3.36)
-n n r .
. s g#0

Interstitial diffusion will occur only along certain
specified directions. In Al, an impurity cannot jump diféc£ly
from one octahedral site to another, but must do so via an inter-

mediate tetrahedral site. In Mg, an impurity can make a direct

ey, Tyt Aai A3 S wmaE
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octaheral-octahedral jump in the direction of the ¢ axis, or

alternatively, it can diffuse in the basal plane via a tetra-

hedral site. Table 3.5 presents E(Qh) for eleven equidistant
. ' i. .

points along the straiqht lines described by these processes,

along with the activation energies Ex. From this table, it is
seen that these calculations i?dicate there is no barrier

- 7/
preventing a helium atom from diffusing from a tetrahedral

. Site to an octahedral site, again showing that interstitial he-
. i\

/

lium will locate at the octahedral site. In reality of course’

e
-

G

-~

R
(%

e er P

there is likely to be some barrier, but it is expected to be
quite small.

It is difficu;t to obtain meaningful comparisons
with experimental quantities for these calculations. The good
agreeﬁént obtained by PSCP and more recently by 5ena and
Singwi (1978) for H in Al and Mg points to the validity of the
general theory, but none of the gquantities calculated here for
He has been measured because AH and E, are so high.

However, some indirect comparisons can be made. Be-

~

cause of thekﬁe-vacancy binding, ener@qtic helium atoms injected

into either of these metals should become trapped to such vacan-

cies. ' Any measurements performed on.such metal-helium systems,

0

such as those of Glydg and Mayne (1965a, 1965b), should then

give results relevant to the situation where the helium is trapped

in this way. 1In these experiments helium was injected into each

3

-
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The energy change in eV for 11 equidistant positions of the
impurity in the straight lines joining adjacent sites of high
symmetry. Results are given for Al for the octahedra-tetra-
hedral jump and for Mg for both the octahedral-tetrahedral
jump in the basal plane and the octahedral-octahedral jump in
the direction of the c-axis. The heights of the energy barriers

EM are given in the last row.

al Mg’ Mg
. Oct + Tet Oct -+ Tet Oct -+ Oct
1 0.00 7 0.00 " 0.00 i
> 0.05 0.04 0.07
3 0.21 0.11 0.10
4 0.45 0.18 0.16
5° 0.75 0.29 0.23
6 1.07 0.40 ©0.25
7 1.38 . 0.44 0,23
8 1.58 ‘ 0.51 0.16
9 | 1.70 . 0.56 0.10
10 1.70 0.57 0.07
11 ’ 1.70 0.57 , 0.00 “L
B, 1.70 0.7 0.25
‘ v
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metal, and then the desorption spectra ogtained as the tempera-
ture increased. It was concludéd from these-experiments that
the injected helium initially binds to vacancies ih each metal,
and then diffuses via a vacancy mechanism with activation ener-
gies of 1.60%0.07 eV in Al and 1.57%0.13 eV in Mg.

The present calculations are consistent with these con-
clusions. We certainly have éobtained vacancy binding, but the

I

diffusion we have considered is interstitial diffusion. The %
following observation can be made thodgh. If the sum of the
calculated vacancy binding energies and interstitial energy
barriers was less than the measured activation energies then the
theory would H€¢predicting that the“trapped helium is first
freed from the vacancy and then diffuses as an interstitial, in

contrast to the experiments. But this is not the case for the

calculations, so our results are consistent with experiment for

S in e e o e ey s St 5 e

both metals.

Recently .channeling experiments have been performed,
/

'(Bugeagdet al 1976) on H-Al samples preparad by ion implantation,

which indigate that the H sits at.tetrahedral sites and that

this configuration is associated with the mono-vacancies created

during the implantation, Since ghe theory of’PSCP applies only

to low concentrations of impurities, and these experimenté were

doné at, high H concentrations, the two cannot be compared direcp—

ly. However, because of the apparent diSqQrepancy, it is of in- *
terést to extend the calculations to investiyate more fully the

N

C0)
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" ‘the cases where impurity—vacqnc§ binding has so far béen

.
¥
’

structure of H near a'vacancy. We also do‘this for He near a
s

vacancy, and for each lmpurlty we consider both Al and Mg.
In table 3.6 are listed the energies of the system e
when the impurity lies along, first the tetrahedral-vacancy /

and then the octahedral-vacancy lines. We see that in each of

predicted, the lowest energy of the system occurs when the
impurity is either right at the lattice site, jor very close to
it in the case of He in Mg; in:particulQr we do not find that
H in Al near a vacahcy will locate at a tetrahedral interstitial
site. |
For H near a vacéncy in Mg, the situation is more caﬁt 9
plicated. While we reproduce a repulsive energy when H 1is right
at the vacancy, we see the energy can be lowe;ed by proximity to

)

the vacancy, and that a minimum occurs at'a position along the

PRI, WAV AT I S S ¥ YOS Db e ot

c-axis about 20% frodm the ideal tetrahedral position.
In order to understand the results of Bugedt et al (1976),
we next\extend/Ehe theory to allow for interactions between i

pairs of impurity atoms in the solid.

.

3.5 INTERATOMIC POTENTIALS USING NON-LINEAR SCREENING
In section 3.6 we shall describe the energies of the
systems when there are two mutually interacting impurities pre-

sent. Ap essential element of this calculation is of coufss\

% . :
‘the interadtion energy of the pair of atoms; the technique used
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for this calcdulation is described now.

Denote this interaction energy E[p(r)], where p(r) re-
‘presents the total electron density about the impurity nuclei

separatedxby/gwazgzgsbe R. To get E[p(x)] we use the densrty

functional approach

- op(x)pl(r'y ' 2
E[p(£)= V(£)P(£)d3£+%— ‘]’mﬂd3£d3£'+6[p(r)]+%‘“ (3.37)\2
with
Glo(x)] = Tlo(x)] + E__lo(x)] (3.38)

where T[é(E)] and Exc[p(E)] are, respectively, the- kinetic ener-
}

gy and the exchange and correlation energy functionals. In
(3.37) v(r) is the pofential felt by an electron at r due to

charges of %', one at the origin and one'at R.

) __ 3z
V(E) = -[—ET W . (3.39)
The last term in (3.37) is the interacﬁion energy of the two
nuclei.

To calculate E(p(r)] we take
p(£) = n, + 4n(x) + An(r-R) (3.40)

with n, the mean electron gas density. For the kinetic energy

' _we use the expression of Jennings (1976) and Bracket al (1976),

which was also derived by Kirzhnits (1957). :
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T=1T +T) + T, . (3.4})
( 2/3
_ 3 2 5/3 .3
L [ae?
-2/3 2
2 2 2 Vp 2 Vo 4
(31%) /3 (e _ 9 (¥, =T L=l
T3 540 J prt T (=) 5 (5 () + 3 () dx
For EXC[Q(E)J we use ’
o3 . ‘
E clo(xr)] = - j% (319) J p1/3 d3£, (3.45)

Ma and Sahni (1977) have fecaﬁgiy demonstrated’ the
good convergence of these expressions for the kinetic ener-
gy' for metallic electronhdensities, andaacdordingly we do
not anticipate significant errors aue‘to this approximation.
the other hand, as mentioned earlier, taking the next term
for Exc[p(g)] may worsen matters. ‘

From (3.37) must be subtracted the«ene;gy E[p(é)] whe

the atoms are infinitely far apart. .Since the model consists

lues of E is divergent, so some care must be taken.

Consider first the Coulomb terms, consisting of the.

(3.44)

Onv

n

_of the two atoms in an infinite electron gas, each of these va-

. J .. ‘
first, second and .fourth terms in (3.37). These can be rewritten

Eg =E; + J (-2'8(x) + An(g))¢q(£—55d3£ " (3.46) ¢

4
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where

(=26 (') +An ("))

3

C

bolm) = Tz [

and E

1 does not depend on_the separation R. E

ca’rr - (3.47)

1 is in fact

divergent but since it has no R dependence, can be discarded.

The remaining term in (3.46), which we' denote VC(R), vanishes

in the limit of R+w, According to (3.47) ¢c(£) is.the Coulomb

poteﬁtiai of “the nucleus éﬁd screening electrons located at r=0

The expression foryvé(R) can more conveniently be

evaluated using Fourier transforms.

the Fourier transforms of (-2'S(r) + An(r)). and ¢ (x).

Let N(g) and ¢c(g) be

Taking

advantage of the spherical symmetry of An(r), it is straight-

forward to show that

%

VC(R) = : g i q singR N(q)¢c(q)dq (3. 48)

271°.R

0
N\ N
l n‘,? » L4 34,' . . ’ -2 ‘ " )
= —y .q” singR(¢ _(q)) dqg (3.49)
(2m) "R [ ' €
g

since

. 2
, , N(q) = %ﬁ ¢ _(q).

(3. 50)

In its present form, (3.49) is a difficult integral to’

evaluate; for large q, ¢C(q) is given by

47’

2
g

¢c(q) = -

(3.51)

so ghe.aéympﬁdtic form .of the integrand 'is proportional to

o A
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s

singR/q. This means the integral converges only very slbwly,
. and the integration must be carried out to large q.' However,
an alternative approach is available. Suppose there exists a

O such that for g > Q, ¢_(q) is given by (3.51). Then (3.49)

can %e rewritten '~ ' ‘ -
.le' l Q 3 2 41TZ' 2 . .
VC(R) = R + 3 q sian(¢c(q) - 5 ) Ydq . . (3.52)
(2m) "R g
-0

This integral need be carried out only to where the difference
S

(¢>c(q)2 - (4ﬂZ'/q2) ) is negligible, not out to where (¢c(q)’)2

itself is negligible. For H-H and He-He interactions, Q = 20 aal

.

was found to be large enough. ,
The other contribution to E[p(x)], Glp(x)], was approached ,
differently, all integrations being dgne in r-space. Tﬁé contri-
butions T2 and T3 can be evaluated diréctly,.since very fa{ from
both nuclei all-derivatives of p vanish and 5 itself becomqg ng-
'quéver Tl and Exc diverge if the integration is done over all

[

space. Both these terms are'of the form

’ 7
r

PO

a3 A

Ve .
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where Q is all spaéé. Cleafly.l is inf%ﬁite due to the n_ in

the integrand. This divergence can be removed by ta
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0

+ An(x) + An(r-R))

i
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I' =g ((n0 + An(z) + An(_r_—-_l_%_))B - nOB)d3£ (3.55)

Q

“and, practically, the integral must be done over a large enough

volume Q that (An(r);An(r—R)) makes a negligible contribution
. 0 I
‘to I' outside Q. This in fact requires Q to be a very large

volume. The problem:can be solved by conceptually Qiewing 9]

as made up of two regions, @ = 2, + 9., Ql is the region close

to the nuclei, and all points in 2, are far from both nhclei,
in the sense that

An(£)+Aﬁ(£-3)

o

« 1 ' C(3.56)

for all*g in 92. In this region we can then ‘make the following

expansipn
p An (r) +An (r-R) '
o) Penfa sy ——=—F (3.57)
‘ . ny r
. (An(r)+An{x-R)) o 2
«n B ' = ~ = An ‘
= nD ('l +8 ‘ .no + O(B—a) ) . (3.58)

e

Using this expansion, and the fact that within the total volume
Q 'each .charge cloud must contain exactly Z' electrons, (3.55)

can be rewritten . .
* - g’ v ,

- r.
g g8

1 = o | (p(x)]®n,P-png :

" (an(2) +in(z-R)) @’rr 2080 P hg0

N T L : (3.59)

-~

The volume 2, need.contain only those points where

&



B iiie T P DL LR

s

[ N ]

11‘

_three figure accuracy in the interatomic potentials.
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An(x)+An(r-R) 2

Ty

is in practice much smaller than Q.

) makes a-non-negligiblé contribution to I', and

In order for the potential to .vanish in the limit of infinite
separation, the limiting value of Glp(r)] is found and subtracted
off 'the calculation for each value of R. |

The An(r) used in calculating G[p(r)] was thaé of the non- .
linear.ccreening calculationc described in section é.3.'.The deri-
vatives were calculated by using . a fifth order Bessel interpola- -
tion. To perform the integral over the volume 2,, the cylindrical
and mirror symmetries were‘utilized to :reduce it to a two-cimen—
sional integral oéer a plane. For this, the plane was divided g
into rectangles of various sizcs, over each of which a two dimen-

sional Gauss integration (48th order in each direction) was per-

formed. The volume Ql and the rectangles were chosen to achieve

The procedure described here is quite different from the
method for calculatiﬁg‘interatomic potentials described in the
preceding chapter. 'Thé‘rélationship between the two approaches-

is discussed in Appendix I.

* 3.6 ENERGIES AND EQUILIBRIUM SITES OF PAIRS OF H AND He IN Al

" AND Mg

~

. with a procedure for treating.interaccions between ctoms,

we can now proceed with a discussion of the energies of various
cohfigurations cﬁ pairs of mutuall§ interacting H or He in bobth -
perfect crystals, and in otherw1se-perfect crystals w1th a single
mono~vacancy. In addltlon to the 1mpurity—1mpur1ty interac-

‘

tion, all that is needed is the energy dependent terms

-
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which contribﬁte to AH, given by equation (3.36).‘ The general
procedure followed is the calculation of the energy of the two
ipteractiﬁg atoms at the various configurations, relative to
*the’ energy when.they are each at well separated octahedral sites
‘iﬂ the perfect crystal.
Consider firgt the pexfect crységl: no’ vacancy. We
‘have extended the calculations of PSCP to include two H at
néighbburing interstitial sites. We find that for two H at
octahedral sites colinear with a host atom, at the ;orner of the
unit cell, the H~H interaction is slightly repulsive, while |
it ig slightly aét;active (Q .0i.¢V) if they are at tetra-
hedral sites colinear with the hos£‘atom. Other configurations
of the H atoms iﬁ the lattice were investigated, but in.nércage
was the H-H interaction sufficiently. attfactivehto lower the
energy of these configufatipns to below the energy of octahed-
ral H. The situation is ﬁqf so clear for H in Mg where PSCP'
find that for a single impurity they cannot differentiaté between
octéhédral and tetrahedral sites (both Eonfighrations having
the same energy to witﬁin the accunacy of the calculation).
This ambiguity remains when two H ‘are considefed: |
FPor helium in Al (and Mg), we find agai3 that the-
octahedral.site ié favoured for the-case of a éair of He at ad-
joining interstitial site§ so that in 511 caSés considered, the

impurity-impurity interaction does not lead to octahedral-tetra-

4

‘hedral conversion.

,
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Next, consider pairs of H(He) in the vicinity of a
vacancy. For the cases of ﬁ or He in sl,.and He in My, the
‘first possibility, considered consisted of one impurity trapped
at the vacancy, with the second at an adjoining interstitial
site. In table 3.7 we give the energy of such a conflgura—
tion, as the second H(He) moves alo.g the tetrahedral vacancy
or octahedral-vacancy line in ‘ten equal steps. For H in Al#
the-lowest energy (l.64 eV) is obtained when it is about 20%
away from the‘tetrahedral site. In both Al and Mg, the He
will sit.along the octaﬁedral«yacancy line, displaced by about
‘ 40%, thereby lowering the energy by 5.58 and 3.56 eV respec-
tively. ‘
There are other configurations of two H(He) near a
vacancy which are energefically more favourable than those con‘;> %
sidered so‘far. As for the case of a perfect lattice, a numbe
oﬁ‘geometries was conside;ed; resplts for thbse which were
found to‘have”the lowest energies are reported here. Consioer
a dumb—oell arréngemeht of two H(He) in Al each placed equi-
-diStant from the vacanoy along the line joining the two octa-
hedral sites (0, 0,2) and (0 0,—*), or the two tetrahedral sites -
(i i 1) and‘(—%,—%,—%). * (These are the llnes discussed at
.the beglnnlng of this section, now with a vacancy at the cube .
corner.) In tablé 3.3 we,enter the energy as both 1mpur1t1es

move into the vacancy in ten equal steps. As the 1mpur1t1es

are relaxed towards the vacancy the energy is lowered reachlng
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a minimum of ~v1.73 eV in both octahedral and tetrahedral cases.
Tﬁis is a lower energy conﬁiquration than the one pre;iougly
discussed for which the reﬁé@gnt energy was 1.64 eV. For He
in Al the octahedral direc?ion is favoured with energy 6.23 eV
and position n 35% away out,fromvthe origin. This energy
is to be compared witﬁ 5.58 eV for the substitutional-inter-
stitial configuration.

For Mg which is hcp we discuss two possibiiities. In
;he first the H(He) sit at tetralpedral sites along the c-axis,
one abové‘and one below the central atom. The cher configufa— )
tion which we will refer to as octahedral has one H(He) at the
closest octahedral position to the origin with the second H(He)
at the high symmetry position closest to the line through the

first H(He) and the origin, which is tetrahedral. From.the

tables we see that for both H and He in Mg the tetrahedral con- ;
figuration is preferred. For H the energy is .42 eV and the ;

dumb-bell is rather extended with best position about 20% off ’

the tetrahedral site towards the vacancy. For He, on _ the other §

hand, the energy is 4.10 eV [to be compared with 3.56 eV for the
substitutional-interstitial case previously described}, but with

the He closer to the vacancy: 40% of the way from the origin

o

to -the tetrahedral site.

In conclusion, we have found that guite different energies
- ’ (
and configurations are obtained when pairs of impurities are - ‘

N
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\/f’/ ' involved. The results suggest, in particular, that H iA Al

will indeed associate itself with a vacancy, and may bé found

in tetrahedral sites, but‘well off the ideal interstitial site.
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CHAPTER IV

2

APPLICATION TO SUPERCONDUCTIVITY: METALLIC HYDROGEN

4.1 INTRODUCTI ON

v

Since Ashcroft (1968) flrst sugges ted that metalllc

hydrogen might be a hlgh temperature superconductor, much

£

theoretical work has been done on this material. Because
- . -

the metal is a’very high density state, corresponding to
rng 1.6, pressures on the order of megabars are required to

obtaln it (Beck and Strauss 1975 and Nagara et al 1976),

, aﬁé hehce it has beeh observed in only a few cases (Grrgor'ev

et al 1572, Vereshchagin et al,l975).0 Néverthelzes, it has

' been the object of much interest. j

In order to see the relevauce of the work reported

here, let us review briefly recent developmehts relevant‘to‘

the superconduct1vrty of metalllc H. 1In Ashcroft S orlglnal

paper he con51dered the BCS*expre551on (Bardeen, Cooper and
Schrieffer 1957) for the tran51tlon temperature T . After ma-
- king-estlmates of the parameté;;,enterlng that equatioh appro-
priate-for H, he suggested T, would‘be high .

Schneider and Stoll (1971) went beyond this to -an

—~#—-N-“m2EEESKTﬁEte*so}utaonrof the Ellashberg gap equatlonsfor'an as-

¢ -

sumed hcg,structure.. U51ng an earlier calculatlon of the

k &

latthe vrbratlons dowe in the adlabatlc, harmonlc approx1matlon

[ © . . . R N . -
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.(HA) (Schneider 1969) they obtained a Tc of about 70° to 2§0°,
depending on the density. | ‘

- Fite-centered cubic H was studied-quite extensively‘
by Caron (1974) in the range of densities speC1f1ed by

-1 < ry 1.5. The potentials used by him were based on

°

,linear response theory, using a dielectric function (Caron 1972)

‘which is a variant of the one developed by Singwi et al (1970).

For calpﬁlating the lattice vibrations the interatoimic poten- °

tial was approximated by a series of Gaussians, and the éhonons

AR

calculated using the self—consistent‘harmonic approximation
;

(SCHA) For increasing values ‘of rs, he found that at certaln

points ‘within the Brlllouln zone the transverse modes softened,

\

until at ry = 1.5 some frequencies dropped to zero, indicating
an instability to shearing. This dynémic instability in turn

indicates a phase change to a different structure. Caron poin-

ted out that thismode softening is very sensitive to the elec-.

’

tron screening.

Using these phonons and the linear response potentials

¢ o

he went on to solve the Eliashberg gap equations, assuming

a spherigal Fermi surface, and a plane wave description of the

electrons for the electron-phonon matrix elements (EPME's).’

- . . )
The T_ ‘s he obtained depended strongly on density, being 140.°
' 3 : ® L - ’ .
at ry = 1.5, dropping to 1° at r, = -5, and 0° at ry = .l.

Beck and Strauss (1975) con51dered ln spme detall the

L RS R

3y

A% ey,

'dynamlcs of the metal and the assoc1atéa‘TnstabilLtles for rS

T e g

e

' ranglng from .6 to’l.S.- They again used a dielectric functlon to

- [}
L
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-

_‘describe the respohse of the electrens to the protons; but,

calculated the phoﬁons in the HA, the SCHA, and also by inclu-

ding a third order contribution to the dynamical matrix. They

- ~found that using the SCHA reduces the number of imaginary fre-

quencies, compared to using .only the HA, thus improving sta-
¢ . Y
bility. However they found that including the third order
. ; .

term had the opposite effect. Although this term had little

- effect on most frequencies, at those poiﬂts where the modes are
s .

soft, and hence the frequencies small, the effect can be impor-

’

tant. . In particular, in some cases where the SCHA predicts
\ .

- small but redl frequencies, and hence no instabilities, inclu-

ding the third term causes them to become imgginary. They found
iﬁstabilities for the fcc structure to occur for ry > 1.0;

they-also consiéered the body-centered cubic structure which

-‘they found to be unstable for -all .6 < r < 1.5. They remark

further that the quantitative féagures of the instabilities de-.
éend on the dielectric function—uéed,ri.e. on the screening.

papaconstantopoulos and Klein (1977) énd SwitendicK¥
(1976) approached the problem in similar wayé. They used on;
version of ghé approximate T_ formula of McMillan (1968) , and
hence needéd only*the mass ehhancement factof A, Coulémb pé;a-
mete; u* én& maximum.phonon freqdency,'from which they obtéiﬁed
an approgimate-avefage of the sqﬁares'of fhe phonén ffeqﬁencies.
For the ereétronic cén;;ibution to A, tﬁey used a theory of

Gaspari' and Gyorffy (1972), which although it avoids the prob-

s
o ™

{ [PURVS .

e,

—my o



O AT A ey

o e

e~ s

e phonon frequencies, they used the results of Caron, and ob-
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lem of using plane waves in the EPME's, does neglect. impor-

tant. screening effects,"(Gupta,and Sinha 1976).' - Por the '

tained Tc's of about 250°.
A 3he augmented plane wave calculation was done for

both fcc and body-centered cubic structures, "at rs values of

Q

1.29 and 1.64 by Gupta and Sinha (1976), using approximate
-crystal potentiels. The EPME's were then calculated using.these

wavefunctions, and the McMillan equation used for Tc' The

highest value obtained was only .08°. 'Aléhough‘a one APW cal-
culation using an approximate potential can certainly be criti-
cized, it is probably true that using plane waves to calculate

the EPME's introduces significant errors into the calculation
' : T : .

C * ’ ‘ . r

Flnally we point ‘out that band structure calculations:

B i

(Harrls et al 1973 Sw1tend1ck 1976 and Papaconstantopoulos

-

and Klein 1977) indicate the Fermi supfade is nearly spherical,

and the Fermi surface density of states very nearly that of the ~——-

[ :r..-..»

free electron case.
The work described in the rest'of thi§ chepter differs
from previous work’malniy in the ch01ce of the potentlal i.e.
* the sqreenlng.' As done by Caron, we employ the SCHA for the
'phonons, a spherical Fermi surface, and plane waves for the EPME's..
' - '
Hoye&er,(gge calculations é&ffertan that instedd of iinear’res—_

ponse being used, non-linear self-consistent calculations are

used to generéte the electron-proton and proton-proton potentials. l



The Eiiashberg gap equgtions ere solved for Tc and
for its~ﬁunctional der;vatiﬁes with'respeot to the effective
phonon distribution @?F(w)  and Coulomb parameter p*. We con-
sider hoth fcec and bcc.etructures,and also employ the approxi-
mate formuiae of McMillan and of Leavens (1973).

In the rest of this chapter, we first exhibit the

formalism for the calculation'of TC and its functional deriva-

tives. Following this the screening calculations are briefly

discussed, and then‘the phonons., Finally the-results for the

superconductivity ake presented.

;.2 ELIASHBERG GAP EQUATIONS ;ND FUNCTiONAL DERIQATIVES
| In the calculatlons of the superconducting pro-
perties of hydrogen which are reported here, the pro-
cedure used involves the solutlon of the Ellashberg gap equa-.
" tions u31ng a spher1ca1 Ferm1 surface andlplane wave’ descrlp—
] tion of the electron states. Ih this seetlon we present the
forma;ism for.this case, along with the expressfons for cer-
tain functional derivatives-of~Té; The development,here
is taken trom Daams (1977) and Daams and Carbotte (1978),

who follow Bergmann and Rainer (1973}, Rainer and Bergmann

(1974) and LeavenS'(1954). At the end of this section approxi- '

s

. mate formulae for T, are exhibited.
~.The [Eliashberg gap equatlons are the central result.
of the strong coupling theory-of superconduct1v1ty. They are..

¢

a set of non-linear, integral eguations which require as input
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a -

only normal state properties of the metal. Theseggquations are
derived from considering the electron self energies, which when
evaluated.at the discrete set of points on the imagiﬁary axis
iwn =,inkBT(2n-l), »conpain the information on tﬁe thermodyna-
mics of the sysﬁem; The w are the~Métsu5ara frequencies, kB
the Boltzmann constant, and T the temperature. .Wlthin‘fhe

approximations outlined above, these gap ‘equations are
2

~ (A(m=-n)-u*) A (m)

A(n) = ﬂkBT b (4.1)
' M /5 () 243 (m) 2

~ _ A (m=n) & (m) >
Ow(n.) = wn + TIkBT I (4.2)

m //5(m)2+5(m)2

»

Z(n) is the generalization of the BCS gap evéluated at iwn: In
practice, the sum over m iﬁotruncéted,when the corresponding
Matsubara frequenc§ O reaches a cut-off frequency W usu&lly
taken to be at least five times the maximum phonoﬁ frequency.
The necessary normal state information is contained in
the quantities A(m-n) and y*. The first of these is given by
A(R) = 2 wdwazF(w)

w2+(2n2kBT)2

(4.3)

\

where azF(w) is the average over all electron.states k and k'

‘on the Fermi surface, of the ‘phonon density of states F(k-k',w)"

¢

weighted by the effectiveness.of thesé_phénons for causing .
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electron transitions between the states k and k'. It can be

expressed’ (Leavens 1970)

ko ko;

Co2 k 7k 2
o Flw)=N(0) | = 5 i Iggg,xl

8 (w-w; (k-k")) (4.4)
w

where N(Of is the electron density of states at the Fermi sur-

»

face, ko is an element of solid angle on the Fermi surface at k,

wx‘k"h') is the phonon frequency correspondirg to wave vector

A
constant, which in the plane wave approximation is’

X-k!' and branch A, and Ik is the electron-phonon coupling

~ig-e, (q) wg"(kF)
gkkl A = * (4.5)
— ! Y2MNw, (g)

where g = k-k', g,(q) is the polariZzation vector corresponding

to wk(g), wﬁ(kF) is the form factor for scattering on the Fermi
surface (equation 2.59, or 2.65 for a local potential), M is the
ionic mass and N the number of ions In the metal.

The other normal metal quantity required is the Coulomb

. ]
parameter u*

o N(O)Vc . i
) u* = E (4-6)
1+N(0)V 1n(-L)
C. wc' >

a

where Vc-is thé Fermi surface aferage of the Coulomb repulsion
between electrons. . -The cutoff frequenty W, is the-one used as
the upper limit of the sums over the Matsubara frequencies.

The non-linear’ equations (4.1) and (4.2) have non-

trivial solutidns only-for T < T,. At T, they can be made

1

- e et e ot e ey
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)

linear by neglecting the terms whfch_are of order Z(m)2;

[ .

after a .pair breaking parameter p is introduced for con-

-

venience, they become’ (Bergmann:and Rainer 1973)

-

B(n) = Tk T I (A(m-p)-px) —SEL_ (4.7)
‘ m [0 (m) |+p -
w(n) = w o+ "kBT-ﬁ A(m—n)sgn(wm) . (4.8)

At a temperatume T, the pafameter p(T) can be de~
f;ned as the largest p for which (4.7) has a non—triviai
solutioﬁ( The transitidn £emperature Tc can be obtained by
solving p(T_ ) = 0.

In addition to knowing Tc for a given azF(w) apé u*,
it is often of interest to know quantitatively howATc would
éhange with cﬁanges in the normal state properties; this ques-
tion can be formulated in terms of“the functional derivatives

.of lew;&h respect to these properties. To evaluate these,

-

define a new function .
- _ A(n)

E(n) = — ] " . (4.9)
[&(n) |+p ‘

With this substitution, equation (4.7) becomes

- 8 i | (m) |
pA(n) = 7x_.7T £ (A(m—n)-py* -
B m TrkBT

yE(m) | (4.10)

: . . PLe :
This equation 1s an eigenvalue equat10nw1thkernei

¥
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‘ 8 o [0 (m) |
_
K = kaT(A(m,n)_u* - __;EEE___). (4.11)

Changes in azF(w)'or p* manifest themselves as changes

v

in this kernel; to first order a change'in Knm causes a change

in the transition temperature of

A4

-1
_ 8 . - -2
St = - (35 (& BmSK _K(n))/(Z B(n)®) (4.12)
T m,n n ‘
(o] .
with
3K _
(38 = B (=2 B/ B2 '(4.13)
T m,n T n .
‘C C )
and e
oK ' dA (n—m) _
() 2 meT () - 6 B ggnqww ). (4.14)
T T v 9T g o
C C C

To calculate the influence of chahges in azF(w) on Te,
let 6a2F(w) be a de;ta function of infinitesimal height e cen-

tered at frequency w. This leads to a change

2w

- - - 2" .
) 50 1 m?n &2+wﬁdm (L8 (n1=8 (o) “sgn (Lyog) ) .
ST = e(22) (mk T.) | ~ : ). (4.15)

Cc 2T B°C . Q - 2 )

N T - A(n)
c
A > “ n
’ . . . 7
This derivative exhibits the effectiveness of the dif-

ferent parts of aQF(w) for enhancing Tc. ’
. R N . ” s

If u* changes bv an infinitesimal ¢ then TC changes
bv o

o
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-1 I_*A(m)A(n)

3p m,n
ST, = € (=) (Tk,T ) — (4.16)
i 3T Tc B c 5 A(n)2
: ' n Q
¥
:
. These two equations are the functional. derivatives reported
N - later. o
Before ending this section, "two approximate solutions
to the gap equations are recorded. The first, due to McMillan
(1968) has as its most useful form (Dynes 1972)
M <w> _ -
kT = T30 exp{-1.04 (L+1) /(A-u*(1+.621))} (4.17)
N - -where-A is the mass enhancement factor, (equation (4.3) Qith
2=0 ), and <w> is the average phonon frequency defined by
©
2 J dw azF(w)
0- ,
<w> = 5 . (4.18)
The second, which-ig due to Leavens (1973) consists
of a.pair of simple, coupled equations
= - —n*
kpT 1.134 w, gxp{ (1+A+A(Tc))/(k u*) } 4.19)
9 ' u\
‘E' [ LY
! EERY ®9 2 W+
s T ey dow a"F(w)"’ o T
§~ A(Tc) =2 [ o lan+kBTc/l.l34) (4.20)

i
s
'
o
o

* where w4 is the maximum phonon frequency.
Ad ’ ’

~.,,.. you
Y /1’7‘/'4":‘45'!_‘53.; £l

. 2 . . :
Since a"F(w) is known in our case, Leavens' formula

s ' . .
‘is Virtually no more difficult to use than McMillan's, but, as

-

-
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will become apparent in section 4.5, is more aécurate.
A4.3 NON-LINEAR SCREENING CALCULATIONS AND POTENTIALS

The calculations of PSCP referred to in chapter III cer-

L4

tainly indicate that for r, =

——

2, linear response is inadequate

for calculating the screened electron-proton potential. On

«

the other hand, for the limiting case of rS + 0, linear response ‘-

should be exact (since the Hamiltonian for the system is domi-

nated by the kinetic energy); the éensities corresponding to

the presumed metallic state of hydrogen are between these limits.
The electron-proton potential used in this chapter

was calculated following almost exactly the procedure described

in section 3.3. The only non-trivial difference is that the

following form for the triéi'potential was used.

Q

1 é-ar
V, (r) = - ={ . :
tr T ) +Br+ (824 (atB) “)r°/2

} ©(4.21)

The calculations were performed for ry values of .6,

’

.8, 1.0, 1.2, and 1.4. .The Schrddinger equation was solved in

steps of .05 a, for r,. 2 1.0, and -0125 a, for smaller r_. It

was found that going out to 10 a, was far enough, with the

phase shifts calculated at 5 50' The sums over £, in equation’

(3.28) were terminated at %max = 7;

v o

Since the phonons calculated in the next sectjon are

.all real-only for rs_f l.0, and.hence the superconducting

properties calculated only for these densities, the results of

the potential calculations are presented for only thgse_densities.

e o raer e avae

Iy

P
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Table 4.1 contains the parameters and phagé shifts for
the triai potentials, and fig. 4.1 illustra;es the displaced
densities as a function of r/a0 for each Ly Since the electron-
protoﬁ potential in r-space is not used in calculating azF(w),
but rather its form factor for the range 0 < q < 2k, this is
shown in fig. 4.2. )

The proton—protoﬁ potential is given by the Coulomb
interaction of one proton wiLh the other proton and its associa-
ted screening cloud. The potentials so obtained are plotted
in fig. 4.3 as a function of r/rs. On the same plot, the first
15 neighbour shells of the fcc lattice are shown. It can be‘
seen from this figure that relative to the neighbours, the phase
of the oscillations in the potential is nearly the same j for each

density.

We compare briefly with linear response. Of the. three.

densities considered in detail here, that corresponding to rs = 1.

is of the most interest since it would require the least pressure
to attain. Linear response calculations were,done for this éen—
sity using the Singwi dielectric function described in chapter
II. The differences are illustrated in figs. 4.4 and 4.5.
Linear response underestimages the displaced charge
at the nucleus by é factor of about'Z.S, and differé substantial-
ly from non-linear response.throughoht the region 0 < r < 2 ay-
The oscillations are also differené. Thé first few differ .in
amplitude as well as,phase; for larger dispances tpe amplitude

P
agrees although the phase remains different.

0

b T - o——— s
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r/rS

Fig. 4.3: Screened proton-proton potentials. The vertical
lines mark:the distances to the neighbours of
the fcc structure.
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The differences in £he potential reflect those in the
density, so are not discussed further. .

The behaviour at large r can be understood fromlthe
general linear reséonse theory. Following H%rrison (1966) it
is easy to show that if a bare botential is local and has no

singularities, then the asymptotic form of the density is, in

linear response,

-
< )3w(2kF) COos 2kFr Y
An(r) = - > 3 . (4.22) %:
kF E(ZkF) r ;

-

These are OSCillét%OnS with' zero phase and amplitudeﬂdetermined
by W(2kF). In fig. 4.2 the linear response form factor for
this density is also included, whefe it can ée seen\tﬁat w(ZkF)
is the same as for the non-linear potential. This explains_ the
agreement of the amplitudes, although linear‘reSponse ca%not
reproduce the phase é%rrectly, which is .9é for r_ = 1.0, and
.§2 and .60 for ry equal to .8 and .6 respectivelyf

' ~Altho'ugh there are in the literature no other non-linear
calculations for H in the density range reported here, there are
some for ghe range }.O < rg < 6.0. In addition to tﬁé Mg and

Al densig&es'considered by PSCP, Almbladh et al (1976) have
applied‘bo§ﬁ<thé method used here.and another procedure in which
the self—consisténcy equations.were iterated to convergence for
this range. They:repﬁrt tha£ the two methods agree well for

1 <r_ < 3.

S
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JZaremba et al (1977) also obtained an interation
procedure, which they too applied to the range 1 $rg s 6.
We can make one comparisbn of our results with those published
“by both these authors, and that is the displaced electron charge

density at the proton for r, = 1.0. For an(0) /n we obtain

0’
4.11, Almbladh et al 4.16, and Zaremba et al 4.13.
~ Ffﬁallyr we mention again the calculations of Jena
and Singwi (1978), who repeated the calculations of H in Al
and Mg, but usiﬁg a procedure which converged automatically.
This was achieved by chodsing for Veffkr) not equation (3.30),

but rather

-k .Y —kTFlg—E'l - .

_ e 'y 2 2
Veff(r) = - F TE=T7] An(x") kTFVtr(r)+(l+kTF)ch(r)'

" (4.23)
with kTF the Thomas-Fermi screening parameter.

_Thls }s equivalent to (3.30) if Veff(r) = Vtr(r), and has the
advantage that the Coulomb tail which would normally exist if

the FSR were{not satisfied is automatically truncated.

4.4 . SELF-CONSISTENT PHONONS IN HYDROGEN

The discussion of éection 4.1 clearly indiéates the ’
need to go beyond the HA to calculate the phonons iﬁ H. If the
present aim were ta investigate the stab}lity of the metal it |

would also be necessary to go beyond the SCHA. However, since

our primary interest is in T,, the SCHA should be adequate at
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those densities for which it predicts no instabilities.
L4 -~
In the SCHA, the phonon frequencies and- polarization

vectors are given by the eigenvalue equation (Qéwley and Shukla

-

1974) )

B

D ,(k
(—>€A

af (&) (4.24)

z
B
. N AN

where Ei(g) is the o component of the polarization vector

EA(E)' and the dynamical matrix is

.

D (k) =

ag & (l-COS(E’Ri))<¢a8(BR)> . (4.25)

lc4 g

z
L
The force constant matrix is given by a thermal average

) 1 3 1 -1
<¢p ~(R)> = d7u exp(- 3 Z u_(A,")_u)o (R +u )
afl -2 (8ﬂ3detA2)l/2 2 Yo Yy UL Iy8T8 TaR T e

(4.26)

is the vector describing the displaggment of atom £

~ T

where uQ

" from its equilibrium position 327 8
derivative of the interatomic potential evaluated at R

and ¢a (Ry+u,) the tensor

+u

L =L

The A, are given by

B

: 1
= = - SRy e
= L (l-cos k-Ry)ey (k)ey

. (k) coth (3 B, (k) ) /w, (k)

(4.27)

ﬁ/:‘c
The <¢a8(52)21which play the same role as the ¢a8(5£) in the

HA, are the tensor derivatives of the potential averaged.over

the phonon states generated by that potential, and B = l/kBT.

A
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These phonop~calculatlons have been done at zero tem-
perature for both the }cc and bcc structures for the five densi-
ties listed in section 4.3. Repeating the calculations at
higher temperatures had no significant effect on azF(w) or T v

’

so only the T=0 results are reported: Except for the fcc struc-
ture at r = @6, the HA always gave at least some imaginary
fregquencies. Converged solutions with no imaginary frequencies.

were obtained for both structures for I of .6, .8 and l.0.

e e Bt

These dispersion curves comprise figures 4.6 to 4.1ll, and the con-

verged force constants are Appendix II. For comparison, the dis- ‘

persion curves for r, = 1.2, fcc structure are shown in flg
/ .
4.12, w1th the imaginary fr quencies represented by zerocs. ' -

These calculations included interactions extending

over 30(35) nei§hbouring shells for the fcc (bcc) structures,
corrésponding to about 3.5(4.5) lattice %gnstantsu Except for

the Kohn anomalies, the frequencies were converged with respect

I

to the number of shells to within one percent. ;

In order to obtain this same con&efgence at these
ﬁoints, a large number of shells of neighbours would need to be
included. This would imply knowledge of the pair potential

for separations. of many lattice constants, with many protons in

A

between. Numérically this lony range nature of the potential
can be treabed by working in g-space as Caron did. He obtained
small Wngles ln his dlspers10n curves occuring over a very

small range of q.. But this-implies knowledqe of the potentlal

| i
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for separations of many lattice constants, so the detailed
structure of these anomalies is probably not significant,

The number of shells we have used produces good con-
vergence at all fregquencies, except for partially smoothing
out the small wiggles; in addition, going to 39 shells for
r_ = 1.2 did not alter the occurrence of imaginary frequencies,
so the conclusions regarding at what densities the structures .
are unstable should‘not be changed by including moré neighbours.
Hence it appears reasonable to use the number of neighbours
reporteé here.

The most striking difference between these results
and those of Caron is the density at which the fcc structure
is predictéd to be unstable. Our results are more in agree-
ment with Beck and, Strauss for fcc H, although not for bcc
which they predict to be unstable for all r > 0.6.

Another comparison which can be made with previous
work is the maximum phonon frequencies wm'obtained. Since
the calculations have been done at different densities, this
comparison is facilitated by considering instead wm/wp, where

wp is the plasma frequency of the bare protons. figure 4.13

illustrates the similarity of the results.

4.5 TRANSITION TEMPERATURES AND FUNCTIONAL DERIVATIVES

Figures 4.14 to 4.19 are the functions azF(w) for
the three densities and two structures for whi¢h no instabilities
were found. Table 4.2 displays the superconductiviéy data for

»
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the fcc stgucture which we aéséribe first.

The calculation of'u* is subject to a large uncertain-
ty and is usually obtained independently oF the caiculated
electron-ion potential. We have calculateﬁfli using both the
lihear response and the non-linear response potentials; the
twohvalues agreed to within a few percent. Nonetheless we have
determined Tc for the calculated p* as well as for u* 30%
smaller and 30% larger. TC is reported for eac@ density first
for the ‘expected u*, and then, in brackets, foszﬂe other two
values. The occurrence of high 'I‘C is seen to qé independent of
the uncertainty in this parameter. e

Also in that table are the mass enhancement factor A,

3T
the area of a’F(w) A, average frequency <w>, as well as ‘g‘f and

oT .
S . T L and TcM are the  transition temperatures calculated

U ..
using the approximate formulas described in section 4.2.  McMil-

.- > .
lan's fprmu{ijoverestlmates Tc by about 40%, whereas Leavens'
| . . l
gives a much better result, agreeing to within 103% of the Tc's

_resulting frgm the solutions of the gap equations.

The ‘functional derivatives 6TC/6QZF(w) are shown in

fig. 4.20. The three curves all have the charactéristic maxima

B c
uncertainty in the Kohn anomalies at low frequency. For r, = 1.0.

at w = 7 k_T . Some comments can now be made regarding the

which is our primary interest, the instabilities are expected to
occur in the region w < 40-meV, which is w < 1.3 kBTC. From

figs. 4.16 and 4.20 we see first that a2F(w) is small in this

-
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Table 4.2

Supegconductivity of fec H. T, was calculated using cutoff fre-
quencies of at least ten times the maximum phonon frequency. T

and ToM were

obtained using the approximate formulas of McMillan

(1968) and Leavens (1973)
r .6 .8 1.0
S
N(O)Vé . 130 157 .182
"é\
A \ .5096 .8073 1.2631
A (meV) s 222.2 189.8 1 172.3
<w> (meV) 1059 584.0 -354.3
T, (°K) 147 243 280
. (182,114) (281,214) (306,260)
8Tc - \
T . 5334 .3907 .2831
aT
soe (meV) -115.5 -76.87 -41.11
L, ‘
T (°K) 162 268 310
T " (oK) 204 339 390
L
T /T 1.10 1.10 1.11
C C N -
M . ,
T, /T, 1.39 1. 40 1.39
9
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region, 'and second that these are not important frequencies for
determining Tc’ so small inaccuracies should not be important.

For r, = .6 and .8, the uncertainties occur in the regions

2

w < 100 meV and w < 50 meV, where a“F(w) is so small that even

large relative errors would ke little difference to the func-

tion as a whole.

- For the bcc strufture, solutions. to the gap equations
were not ob£ained begause of e low Tc. Thé number of Matsubara
frequencies required in the sums is proportional to the highest
phonon frequenéy divided by éhe temperature, and in this case |
too many were needed. ’

Therefore the approximate formulae were used, giving

the much lower values of T, listed in table 4.3. These férmu—
lae should be sufficiently accuraté that at least tﬁe order oF
magnitude is correct, and are probably at least as accurate as

for the fcc case. This is because for this'structure_x is

small, indicating a weak coupling superconductor to which McMil-

™lan's and Leavens' equations should both apply, and because the

two formulae agree quite well with each other.

In conclusion we have found that using a non-linear
procedure to calculate the potentials has resulted in a higher
TC for fcc,hydxbgen than thgt ogtained by Caron, kut that the

transition temperature depends strongly on the structure assumed.
{ : y
\/

' g S
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Superconductivity of bcce H.

Table 4.3

only T_"

due to the Jlow Tc

and T L
c

were obtained

r_ 6 8 1.0

S N(0)V, .130 .157 .182

PRy .1840 .2584 .3546
A'(ﬁLV) 106.2 82.62 68.72°
<w> (mev) 1284 v 725.0 A452.8
TéL (°K) .03 1.3 8.8
TCM (°K) .02 1.2 10’




CHAPTER V

SUMMARY AND CONCLUSIONS

Non-linear, apbfoximately self-consistent calculations
of the electron distributions about hydrogenhand helium in
electron gases of various metallic densities have been per-
formed. This constitutes an extension of model potential

.

theory in that the response of the electrons is treated not
just to second order with the atom represeﬂ%ed by an approxi-
mate, weak perturbationi

For dilute hydrogen and helium in aiuminum and magn&i
sium, a theory of the heat of solution of single H atoms in
simple metals has been generalized and applied to He. It was
deduced that this iﬁpurity oécupies the octahedral sites in a
pure crystal for both materials, but that if there is a vacancy
present, it will bind to it. Motivated by experiments of Bugeat
et al (1976), pairs of both H and He impurities were then con-
sidered, both in the pure crystal and‘when a single vacancy is
present. The impurity-impurity interaction was treated by

3

using an expression based on the density functional formalism,
'

in which the k&netig energy of the electrons was calculated

using 'the gradient expansioﬁ, and the exchange by a local

approximation. It was found that pairs of impurities occﬁpy

A
the same interstitial sites in the perfect solid as isola-

ted ones, but the situation is different when a vacancy

114
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is present. In particular, H in Al is expected to occupy
tetrahedral sites bracketing the defect but relaxed towards
it from the ideal interstitial sites. He pairs remain in
relaxed octahedral sites, while for both impurities in Mg,
the relaxed tetrakedral sites are favoured. —xj .
For metallic hydrogen the effect of using non-linear
potentials was seen to be important even though the density
of the electron gas is high. The potentials differ from
what is obtained using linear regponse theory, especially at
distances where the Friedel oscillations are dominant. This
results in both tﬁe fce and bee structures being dynamically
unstable, within the self-consistent harmonic approximation;
for r_ > 1.2. This contrasts with linear theory which indi-

s
cates the fcc structure to be stable up to r, = '1.5.
The/superconducting transition temperatﬁre TC was

found to be highest for the fcc structure at r, =.1.0, for
which it is about 280°K, declining to épout 150° for r_ = 0.6.
These are higher temperatures than tpoge obtained in linear
theory. Althéugh the exacﬁ value of TC depends on the Coulomb
parameter u*, its being high does not. It does however depend'
_on the structure assumed,’beinq less than 10°K for bcc H.

’ For the fcc case the approximate formula of McMillan
and Leavens were used to estimate Tc, along with solutions of

the Eliashberg gap equations. For all three densities it was

o] .
found that McMillan's equation overestimated Tc by about 40%,
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whereas Léavens' equation predicted T, to be about 10%

larger than that obtained by the full -calculation. This
discrepancy occurs even for the highest pressure considered,
with A = .5. For the bcc case only the approximate formulae
were used due to the ibw,value of Tc’ and they were‘in reaso-
nable agreement with each other.

The functional derivatives of TC with respect to p*

2

and a“F(w) were calculated for the fcc structure, and found

to exhibit the same type of behaviour found for lower tempera-

ture superconductors.

Y

a~
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o
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{ APPENDIX I .

INTERATOMIC POTENTIALS FROM THE DENSITY EUNCTiONAL FORMALISM

In section 3.5, a procedure for calculating interato-

mic potentials was described which is different from the ap-

proach ﬁsually taken in modgifgkpential theory (Shaw 1970b)
as described in chapter II of this thesis. The purpose of
this appendix ié twofold; first t?e differences and simiigfi—
ties between the two methods are poiﬁted out, and second, the
applicability of the alternative procedure to the calculation

of phonons in simple metals will be discussed.

AI.1 RELATIONSHIP BETWEEN INTERATOMIC POTENTIALS CALCULATED
USING MODEL POTENTIALS AND USING THE DENSITY FUNCTIONAL
FORMALISM

Our interest is in understanding physically the rela-

<

tionship between the two approaches. For this reason, we shall
neglect in this discussion complicating exchange and correlation
effects, and consider the bare electron-ion potential we(r) to

be local. Fbllowing the procedure of chapter II, if we consi-

der the unperturbed state of the metal to be a collection of

iong in a uniform electron gas of density n., ‘then through<gecond

0
order perturbation theory we derive for the effective inter-

1

atomic potential for ions of valence Z' separated by a distance R

(see section 2.7)

A An(r)w’ (£-R)d°r (a.1)

~—.
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where An(x) is the screening charge density about an ion, and

w°(£) is the bare potential of a single ion. Equation (A.1)

has the physical interpretation of one bare ion interacting via

the Coulomb potential with one screened ion a distance R

K

away. \
5 The expre¢ssion used in section 3.5 for the interatomic

potential can be written (again neglecting exchange and correlation)

V(R) = Tlp(x)] - 2'¢_(R) + r)¢> R)ar - T, (A.2)

1

where T[p(r)] is the kinetic energy of the system of electrons

with distribution giQen by

p(r) = On(r) + Bn(xr-R) + 50 . . “(A.3)

[

where An(xr) is the same as in (A.1l) except it is not now calcu-

lated only in perturbation theory, and ¢c(£) is the Coulomb

otential of the screened ion. Tb is included to make V(R) finite

and vanish ds R -+ o,
Equation (A. 2) has the phy51ca!’1nterpreteglon of chan—
ges 1n the klnetlc energy with changes in R, ﬁ?ﬁs the Coulomb

interaction of two fully screened ions. Hence thlseexpreSSLOn

N

differs from (A.l) by the inclusion of Shenges in kinetic energy,
plus the interaction of one screened ioq/with the screening
. o
' %
cloud associated with the other ion.

Since (A.l) follows from a calculation of the total energy

of the crystal (see,seqtion (2.5), to understand the difference

v

between these expressions, it is sufficient to consider the cor-

responding equations for the energy. .

“

§

v e, e
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total energy of the conduction electrons in\the metal can be written -

(A.4)

¢

. whichfis the kihetic energy of the uniform electron gas plus
the inkeraction S% thig uniform distribution with the potential
of all the screened ions W(r);, plus one-half the interaction
energy of all thelscreening charge density AN(r) with all the :
bare ions WO(E).

In contrast to this, from a pon-perturbation point of

A% .
Lt PR Sl ¥

view the endergy for this system is given by

7

[

E=T+ | nN(ndr+ | aN@W (0 + 3 | avmw ad’c (.5

[ A

which is the kinetic energy of the non-uniform electron. gas plus

o wTRALrs

the interaction of the uniform distribution with the screened ions

plus the interaction of' AN(r) with the bare ions, plus the
iﬁteraction of the charge density with itself, through its poten-

~tial W'(x). The difference between the two expressions can then be

(‘ AN(E)W'(E)?}S\I( (A.6)
b | .

If this difference were to vanish, then the two approa-

written .
T -, +%| v (nair +
fe 2 - -7 =

N

-—orees .

ches would be the same. This in fact does oécur‘if all calcula-
AN
»

tions are done in second order perturbation t?eory@ Althbuéh
the algebra to show this is somewhat tedious,'the Qé§ic ideas

a:; simple. Consider first a genefal guantum system governed
" by Hamiltonian H = T+V, where T is the unperturbed Hamiltonian N

f o - . »
having normalized eigenstates ]¢k>. Two exact expressions for
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the energies Ek of the corresponding perturbed eigenstates Iwk>

of H are' (Park 1974)

[¢]
. o o <Ox|Vivg>
E5 = <¢£|Ti¢5> + :;37—“:—— (A.7)
k! Yk 4
and . »> ) .
E = <wE|T+v[wk> . ) (A.8)

— —_ -~

If each of (A.7) and (A.8) is expanded‘in.a perturba-
tion series for the energy, and the terms identified physically
as was done for equations (A.1) and (A.5), then the véni§hi£g
of (A.6), at least up to second order, is established. This

N :
means that within second order perturbation theory, which is

what is generally used in model potential theory, the change in’

the kinetic energy of the electrons is exactly cancelled by the

sum of onéfhalf of the interaction energy of the displaced elec-

trons with the bare ions, plus the energy of the mutual interac-
” . '

tion of all the displaced electrons.

AL.2 APPLICABILITY TO PHONON SPECTRA

In chapter II of this thesis, the model potential
formalism for interionic potentials, which aré qéprOpriate )
for determining theMattice vibrétions in simple metals, was
presented, apd’in chapter IV calculations of the' phonons in
metallic hydrogen were reported. An alternative approach
would be to make use‘of non—iinear'self—consis&ent calculations

of ‘the electron density An(x), and calculate the interionigc

" poteentials through the density functional formalism, as in

g st X T
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section 3.5. '

One anticipated advantage of (A.2) over (A.1l}, or (3.37)
_ over (2.53) if exchange and correlation are included, is that

it provides a means of going beyond second order perturbation

*theory, without losing the advantages of retaining two-body
] .

2 forcés; In fact; if p(r) and the energy functionals T énd Exc
‘“T were known exactly, then for only‘two ions in an otherwise ‘
uniform eleétron gas, this procedure would provide an exact
§ potential. With the p(r) constructed from the non-linear densi-
X: ) V' ties An(r) as described, and the energy functionals used here,
this is expected to give accurage potentials, unless quantum
mechanical effects which are not adequately treated by the ex~
pressions used for T and E . are important.

Another ekpected advantage follows from including the
core electrons in the.description of p(r). This means that the
small core approximation described in section 2.2 is avoided
for calculating the interjonic péteqtial.

This proceduré was carried throuéﬁ for ;luminum. In
collaboration with F. Magana approximate non—%inear calcula-
tions of the electron distributions,"similar {to those described
in chapters III and Ivlabdut an Al ion in its) own electron gas
were carried Qut, In fact, since the goal was the calcuiatiqn
of the phonon spectra and supercondgctipg transition tempera-
tures Tc.for Al under'pressure,‘the calculafions were performed

for six values of I, corresponding to volume changes ranging

from +2% to -9.5%.



122

The computer programme used to calculate the contri;
bution of the kinetic and exchange energies‘was modified some-
what from the form described in section 3.5; £he major changes
were that for the two dimensional integrals over each rectangle
a 96th order Gauss integral was performed in each direction,
and special care was needed near the nuclei due to the diver-
gence in the kinetic energy density (the integrand of T3, equa-

tion 3.44). .
| The integrals for T and Exc were evaluated with an
accuracy of about % SX10—6 a.u.. The épnvergence of the gra-
dient .expansion (equations 3.41 to 3.44) was also checked.
Fortseparations corresponding to nearest neighbour distances,
about 5 age the contr%pution of'Tz‘to V(R) was about_qne—tenth
that of Ty, and the contribution of Ty déwn by a further fac-
tor of ten. In the region of the eighth nearest ﬁeighboursp

about 15 a the contributions of T, and T, were about equal,

OI
approximately twenty times smaller than that of Tl' The con-
tribution to V(R) of Exc was generally about three times

+

smaller than that of-T. .

In view of the above commentf,s and the possible ad-
vantages of this method, it was anticipated that the poten@ials
calculated this way would generate phonons in at léast reaso-
- nable agreement with experiment. For this calculation, the
first and second derivatives of the interatomic botential at

the neighbours are reqyired, so the potential was evaluated

at five points bracketing each neighbour distance. The values

" L 4
B R SRRy

S A

ek e T Tt o o m < o

T

o o
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PN

of the contrlbutlons to V(R) of the kinetic energy, exchange //
enerqgy, and also ﬁhe Coulomb term gor each point are listed

in table A.l. It is apparent that the kinetic energy contri-

bution to V(R}) is a 51gn1f1cant part. . g

The phonons generated were in fgct not good. ‘This
is believed to be due to using the gradient expansion of T.
Ther Friedel oscillations in An(r) lead to corresponding oscil-
lations in V(R), and in particular in the contribution from
the %ﬁnetic energy. However, thesé .oscillations, which are
quantum mechanical in origin’are not well reproducéd by
using the gradient expansion'for T. In faét, use of this
expansfon leads to oscillations in T which are out of phage
with the true oscillations. When this is combined with the
Coulomb term Which has oscillapions with the correct phase,
the fesulting potential is inaccurate. Since thi§ will -affect
V (R) ﬁor all values of R sufficiently large that the oscil-
lations maké a sign§;icant contribution to the potential or
its first and second derivatives, the potential is not ade-
quate for work pn‘lattice vibrations.

The method in principle should wogk; the problem ’
appears. to be in the evaluation of T[p(r)]. With alkinetic
energy functional which propefly treats quantum effects, in
'partlcular the Friedel oscillations, it is expected ;hat use-

N
ful interlonlc potentials could be obtalned using thfs method.

.

As a final point, we note that because the calculations

-
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;

2"“\ !, '\;"-&
Tssle A. T

Contributions to the interatomic potential. The potential
is evaluated~at the five points which are integral multiples
of .02 lattice constants nearest each/29ighbour distance

Neighbour

{ x %)' T EXc T+Exc Coulomb
(110) .028246 -.009550 .018696 -.013207
.026206 -.008357 .017849 ~.013608

.025131 -.007443 .017688 -.014725

.024628 -.006739 .017889 -.016178

.024373  -.006186 " .018187 -.017655

(200) .012296 ~.002660 .009636 -.012497
.010719  -.002378 .008341 -.010900

.009202 -.002106 .007096 -.009347

.007773 -.001843 .005930 -.007878

.006469 ~.001595 .004874 ~.006531

A

(211) .001234 -.000366 .000868 . -.001104
.000821 ~.000253 .000568 ~.000707

.000440 ~.000150 .000289 -.000356

.000091 ~.000060 .000031 -.000046
-.000224 .000020. ~.000204 .000227 -

(220) ~-.001119 .000249  ~.000870 ©.000982
-.001138 .000263 - -.000875 .000999

~-.001104 .000266 ~-.000839 .000973

-.001026 .000261L -.000765 .000909

-.000912 .000248 -.000664 - .000813

(310) -.000175 .000154  -.000021 .000186
-.000068 .000138 .000070 - .000093

.000010 .000125 .000135 " .000026

. 000055 .000116 .000171 -.000013

.000068 .000110 .000178> -.000024

(222) -.000045 .000115 .600070 .000083
: -.000116 .000125 .000009 .000146
-.000184 - .000126 ~-.000058 .000211

\ . -.000251 .000133 -.000118 .000272
~-.000307 .000138 -.000169 .000323



Neighbour
a
(% 5) | T
(321) -.000367
-.000345
-.000306
~-.000252
-.000187
(411) - .000015
-000069
.000108
.000132
.000138

S e
a

n

125

E
e

.000142
.000138
.000134
.000124
.000119

.000095
.000087
.000083
.000079
.000077

T+E
. XC

.000225
.000207
.000172
.000127
.000068

000110
.000156
.000191
.000211
.000215

Coulomb

.000374
.000351

& .000311

.000256
.000191

~.000016
-.000072
-.000115
~-.000142
~.000152

..
-

.
;
%
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described in chapter 1II are for smaller separations,

L]

difficulties should not affect them.

1

these’

P it

B T
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