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ABSTRACT

Efficient delivery of therapeutic cell and pharmaceutical suspensions to the
posterior segment of the eye remains an elusive goal. Delivery is made difficult by blood
ocular barriers that separate the eye from systemic circulation, the compartmentalized
structure of the eye that limits diffusion across the globe, and effective clearance
mechanisms that result in short drug residence times. The work presented in this thesis
focuses on the design, synthesis, evolution and refinement of novel biomaterial scaffolds
ultimately intended to facilitate the minimally invasive delivery of therapeutic payloads
into the posterior segment of the eye. The first generation materials presented in this work
(Chapter 2) consist of linear chains of temperature-sensitive amine-terminated poly(N-
isopropylacrylamide) (PNIPAAm) grafted onto the backbone of type I collagen. Second
generation materials (Chapter 3) saw the inclusion of the lubricious polysaccharide,
hyaluronic acid (HA), and replacement of the bulky collagen backbone, which was
observed to impede scaffold gelation, with small cell adhesive RGD peptide sequences.
The introduction of degradability was the emphasis of third generation copolymers
(Chapter 4) and was achieved through copolymerization with dimethyl-y-butyrolactone
acrylate (DBA). The DBA lactone side group was found to undergo a hydrolysis
dependent ring opening, which raises copolymer LCST above physiologic temperature,
triggering the gelled scaffold to solubilize and be excreted from the body via renal
filtration without the liberation of any degradation by-products. Degradation was found to
occur slowly, which is favourable for long-term release scaffolds intended to decrease the

frequency of injections required to maintain therapeutically relevant concentrations
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within the vitreous. Finally, the design of a fourth generation material is discussed
(Chapter 5), in which optical transparency is achieved through copolymerization of third
generation materials with polyethylene glycol (PEG) monomers of varying molecular
weight. Synthesis, design and characterization of the various copolymers is described

herein.
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1.1 INTRODUCTION

Retinal diseases, such as age-related macular degeneration (AMD) and diabetic
retinopathy (DR) have a devastating effect on the health and well being of patients. DR is
one of the leading causes of preventable blindness in working aged adults and impacts
both developing and developed countries [1, 2]. It is estimated that by 2010, the
prevalence of diabetes had risen to 285 million people worldwide and by 2030 this
number is expected to increase to 438 million [3]. It is believed that roughly one third of
diabetics show signs of DR and a third of these suffer from vision-threatening retinopathy
[2]. Almost all patients with type 1 diabetes will develop DR within 15 years and 50 to
80% of type 2 diabetics develop DR within 20 years of their initial diagnosis [4]. More
than 12,000 people lose their vision as a result of DR every year in the US [5] and the
number of people at risk is expected to double in the next 25 years with the aging
population [6]. AMD is the leading cause of irreversible blindness in people over 50
years old in the developed world [7]. It is estimated that over 8 million Americans
currently suffer from AMD, and this number is anticipated to increase by more than 50%
by 2020 [7]. In recent years, posterior segment diseases have seen exciting advances in
the development of new pharmaceuticals, improvements in the understanding of the
underlying biochemical pathways implicated in disease progression and in cell-based
therapeutics, particularly with developments in stem cell technologies. However, effective
delivery of pharmaceutical and cell-suspensions into the posterior segment of the eye
remains one of the most significant unmet needs of visual health care. Posterior segment

delivery is made difficult by the isolated nature of the eye, with barriers such as the blood
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retinal barrier (BRB) separating the back of the eye from systemic circulation.
Additionally, there are numerous barriers within the compartmentalized eye itself, which
limit the diffusion of drugs within the globe. Topical drug administration is an extremely
inefficient approach to deliver pharmaceuticals to the back of the eye. Typically, less than
5% of topically applied drugs successfully enter the aqueous humour, and negligible
amounts reach the posterior segment [8]. Furthermore, only 1 — 2% of systemically
applied drugs cross the restrictive blood ocular barriers to reach the posterior segment [9].
Intravitreal injections offer an effective means of introducing therapeutically relevant
concentrations of pharmaceutical directly into the posterior segment of the eye while
minimizing systemic exposure. However, due to efficient clearance mechanisms within
the eye, frequent injections are required to maintain therapeutic concentrations of drug
within the vitreous. Frequent injections are associated with an increased risk of
complication and patient discomfort and compliance issues. Therefore, in this work, we
present a series of novel biomaterial scaffolds designed to undergo a rapid phase
transition, from liquid to gel, following injection into the body, allowing the introduction
of a solid drug depot into the vitreous via minimally invasive techniques. Ideally, the
solid drug-releasing scaffold will release low levels of pharmaceutical for sustained
periods of time, maintaining therapeutic concentrations within the vitreous while
minimizing systemic exposure and increasing the time between injections. Furthermore,
through the incorporation of cell adhesive bioactives, we created a series of in sifu gelling

biomaterial scaffolds designed to introduce suspensions of anchorage dependant retinal
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pigment epithelial (RPE) cells into the delicate subretinal space and provide a synthetic

adhesion substrate for the transplanted cells.

1.2 BACKGROUND: TEMPERATURE RESPONSIVE MATERIALS FOR
DRUG DELIVERY

Stimuli responsive materials have gained considerable attention for their potential
to create targeted, tunable and personalized therapeutics that respond directly to the
physiologic environment. With recent advances in medical polymer technology, it is
becoming increasingly possible to tailor drug-releasing scaffolds to produce on-demand
delivery of therapeutic payloads locally in response to physiological requirements [10].
Stimuli responsive polymers, also termed intelligent, smart, environmentally responsive
and sensitive polymers, are a class of materials that undergo significant, rapid
physicochemical changes in response to small changes in environmental conditions.
There are a number of different classes of responsive polymers, which respond to a
distinct set of stimuli, including light, pH, temperature, ultrasound, magnetism, electric
field, enzymes, antibodies, or the presence of specific molecules, such as glucose [11].
Additionally, the specific response varies depending on the system. Polymers may
undergo changes in hydrophobic / hydrophilic balance, solubility, hydration,
conformation, shape, degradation, or micellization in response to the presence, or
absence, of an external stimulus [11]. It is therefore possible to employ these materials to
generate drug delivery scaffolds that respond with predictable, controllable, pre-defined
response profiles to impart a large degree of control and tunability over drug dosing. The

ability to produce targeted on-demand drug release has implications in a number of
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different clinical applications, including hormone replacement therapy, chemotherapy,
rhythmic heart disorders, diabetes, birth control and posterior segment ocular drug
delivery. Of the various stimuli responsive materials, temperature-sensitive polymers are
the most widely studied and this special report, while not exhaustive, will focus on
several of these materials that have particular importance in drug delivery applications. A
list of natural and synthetic thermoresponsive homopolymers and copolymers that are

relevant to drug delivery is provided in Table 1.

1.2.1 Thermo-Responsive Polymers and their Applicability for Controlled Release
Drug Delivery

Thermoresponsive polymers utilize subtle changes in temperature to trigger
macroscopic changes in material properties. Polymers that possess a lower critical
solution temperature (LCST) typically undergo a sol-gel phase transition when heated
above their LCST, whereas polymers that become soluble upon heating are said to
possess an upper critical solution temperature (UCST) [12]. Both systems can be
exploited for drug delivery purposes. LCST copolymers can simply be mixed with drug
as a liquid suspension at room temperature and delivered via minimally invasively
injection techniques directly to hard-to-access target tissues within the body. Heating to
physiologic temperature drives a sol-gel phase transition, which entraps infused drug
within a solid depot, and can provide sustained-release of therapeutic concentrations of
drug directly at the site of interest [13]. Drug-releasing polymer systems possessing a
UCST may employ temperature-induced swelling or scaffold destabilization to rapidly

release drug at a target site [14]. Localized heating (tumor tissues) or the application of an
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externally applied stimulus (ultrasound, infrared laser, etc.) may be utilized to induce the
local destabilization of a UCST drug releasing copolymer scaffold to produce targeted
release [15, 16].

Thermoresponsive drug delivery scaffolds offer numerous advantages, such as
eliminating the need for invasive surgical implantation and the ability to bypass
physiological barriers allowing delivery to hard to access locations within the body [17].
Furthermore, drug encapsulation within a scaffold may protect the therapeutic agent from
enzymatic or environmental degradation. The release rate can be tailored to locally
produce persistent levels of therapeutically relevant concentrations of drug, thus
overcoming the ineffectiveness of simple injections, which are associated with an initial
spike that may lead to toxic levels initially followed by a rapid decrease to levels that

possess little to no therapeutic benefit, Figure 1 [17].
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Figure I-1: Representation of the ideal delivery profile in which drug concentration is
maintained within the therapeutic window, below the toxic threshold, but high enough to
exert a therapeutic effect.
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1.2.1.1 Synthetic Thermoresponsive Materials
1.2.1.1.1 Poly(N-isopropylacrylamide) (PNIPAAm)

Polymer hydrogels that display reversible volume changes have gained
considerable interest since Tanaka observed the tendency of polyacrylamide gels to
undergo phase separation in response to temperature or fluid composition [18]. Poly(N-
isopropylacrylamide) (PNIPAAm) is one of the most widely studied temperature-
sensitive polymers; it exhibits a rapid sol-gel transition when heated above its LCST,
approximately 32°C, allowing injection at room temperature and scaffold formation at
body temperature [13]. One of the major limitations of PNIPAAm is that it is non-
degradable. Degradable drug delivery materials afford elimination of the scaffold
following exhaustion of the drug reservoir without the requirement for secondary surgical
removal. Therefore, there has been an increased emphasis in recent years on introducing
degradability into NIPA Am-based copolymers. Ultimately, it is desirable to preserve the
thermal phase transition properties of NIPAAm, while promoting the eventual
degradation and clearance from the body following exhaustion of the therapeutic effect.
In 1999, Neradovic et al. synthesized NIPAAm-based polymers with 2-hydroxyethyl
methacrylate — monolactate (HEMA-monolactate) [19]. As the hydrolytically labile
lactate ester side groups were cleaved, the hydrophilicity of the copolymer increased,
raising the LCST. If the LCST is raised above body temperature, the thermoreversible
NIPAAm-based copolymers revert back into a hydrated liquid state, allowing uptake into
systemic circulation and clearance from the body, provided the molecular weight is below

the renal filtration limit of 30 — 50 kDa [20]. Yoshida et al. designed NIPA Am-based
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copolymers that were crosslinked with degradable poly(amino acids) [21], which showed
a similar clearance mechanism. Guan et al. synthesized a series of protein-reactive
NIPAAm-based copolymers possessing relatively high tensile strength that hydrolyze to
produce soluble, non-toxic degradation products through copolymerization with HEMA-
polylactide (HEMA-PLA), N-acryloxysuccinimide (NAS) and acrylic acid (AA) [22]. Ma
et al. further improved mechanical properties through incorporation of methacrylate-
polylactide (MAPLA) and HEMA [23]. Cui et al. developed a series of slow-degrading
NIPAAm-based copolymers through copolymerization with dimethyl-y-butyrolactone
acrylate (DBA). These copolymers undergo a hydrolysis-dependent opening of the DBA
lactone ring structure, capable of increasing LCST above body temperature without
producing any degradation products [24, 25]. The Sheardown group prepared bioactive
NIPAAm / DBA copolymers through copolymerization with NAS [26] for posterior
segment ophthalmic cell and drug delivery purposes. For a list of thermoresponsive
homopolymers and copolymers of PNIPAAm, see Liu, 2008 [27]. There are many other
examples of N-substituted thermoresponsive polyacrylamides that may be suitable for
drug delivery, such as poly(N,N-diethylacrylamide (DEAAm) [28, 29] and poly(N-vinyl
caprolactam) (PVCL) [30]. For a comprehensive list, see Asayev, 2010 [31]. Similar to
PNIPAAm, linear polymers of DEAAm and PVCL have LCST values of 32°C [28] and

31°C [27] respectively.

1.2.1.1.2 Polyethylene Oxide (PEO) Based Thermoresponsive Copolymers

Triblock copolymers possessing an A-B-A configuration of poly(ethylene oxide)-

poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), referred to as Pluronics or
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Poloxamers, are another family of thermogelling synthetic materials that have been
extensively studied for their potential use as drug carriers [32]. Through manipulation of
concentration, composition and molecular weight, these copolymers can be tuned to
undergo reversible gelation at physiological temperature and pH [32]. The combination of
hydrophilic ethylene oxide and hydrophobic propylene oxide units creates an amphiphilic
copolymer that can self-associate into micelles under aqueous conditions when above a
critical micelle concentration (CMC), Figure 2. The CMC is highly temperature
dependent, as below a critical micelle temperature, both ethylene oxide and propylene
oxide blocks are relatively soluble in water [32]. As the temperature of the system
increases, the PPO chains become less soluble, resulting in micelle formation. Pluronic
micelles typically possess a diameter ranging from 10 to 100 nm and consist of a
hydrophobic, PPO-rich core and a hydrated, hydrophilic PEO-rich shell [33]. The PPO
core is capable of incorporating up to 30 wt % of water insoluble drugs, while the PEO
corona maintains the micelles in a dispersed state and improves drug stability by
shielding the reserves from undesirable interaction with cells and proteins [33]. However,
these hydrogels tend to possess poor mechanical strength, limited stability, and high
permeability, thereby limiting their effectiveness as sustained-release systems [33, 34].
Cohn et al. have utilized a number of strategies to improve the mechanical integrity of
PEO / PPO copolymers. Such strategies include the introduction of in sifu crosslinking
end-groups, such as carbon-carbon double bonds [35], methacrylate groups [36] and
triethoxysilane groups [36] and covalently linking PEO and PPO using carbonyl chloride

and diacyl chloride coupling agents [37]. In recent years, there has been extensive
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investigation into the synthesis of copolymers of polyethylene glycol (PEG) with
degradable polyesters such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA) and
poly(caprolactone) (PCL) to generate thermoresponsive copolymers with improved
rigidity that degrade in vivo, allowing their ultimate clearance from the body [37-39].
PEG-containing copolymers that have attracted significant interest include PLGA-PEG-
PLGA, PEG-PLA-PEG, PCL-PEG-PCL, and poly(oligo(ethylene glycol) methacrylate)

(POEGMA) to name a few [10].
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Figure 1-2: Illustration of some of the architectures that can be obtained using
thermoresponsive copolymers for drug delivery applications. The architectures include
bulk gels, micelles possessing a hydrophobic core and hydrophilic corona, polymersome
that have a hydrophobic layer sandwiched between a hydrophilic core and corona, IPNs
and polymer films.
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1.2.1.1.3 Polyphosphazenes

Polyphosphazenes are a thermoresponsive family of hybrid organic-inorganic
polymers. These polymers contain an inorganic backbone consisting of alternating
nitrogen and phosphorous atoms connected by alternating single and double bonds [40].
Attached to every phosphorous group are two organic groups that impart a high degree of
versatility for modification and manipulation of properties and functionality, which can
be utilized to impart thermoresponsive properties [13]. Numerous approaches have been
explored to develop hydrolytically susceptible copolymers that have highly controllable
degradation kinetics, capable of breaking down in periods that range from hours to years
[40-43]. Polyphosphazenes have demonstrated good compatibility with numerous cell
lines in culture [44, 45] and in vivo [46]. Furthermore, the degradation byproducts,
namely ammonia, phosphate and alcohol, are well tolerated and the copolymers can be
designed to possess fast in situ gelation with tunable release kinetics, making
polyphosphazenes attractive candidates for drug delivery [40, 47]. For an in depth review

of polyphosphazenes, see Kumbar 2006 [40].

1.2.1.2 Natural Thermoresponsive Materials
1.2.1.2.1 Elastin-Like Polypeptides

Elastin-like polypeptides (ELPs) are synthetic elastin-inspired polymers with a
pentapeptide amino acid repeat structure, Val-Pro-Gly-Xaa-Gly, where the Xaa guest
residue can be any natural amino acid except proline [48, 49]. Below the phase transition
temperature (T;), ELPs exist as a clear homogeneous aqueous solution. When heated

above their transition temperature, the solution becomes turbid through ELP coacervation
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into droplets [50]. The ELP droplet size and distribution can be manipulated through
concentration and temperature [50], while the transition temperature can be adjusted by
varying the concentration, molecular weight, salt content and ELP composition (ie —
through modifying the Xaa guest residue, using variable amino acid sequences or by
functionalization with other proteins or polymers) [50]. ELPs are interesting candidates
for drug delivery as they possess tunable characteristics, are well tolerated in vivo, and
degrade into simple amino acid residues [51]. Additionally, the molecular weight and
composition of ELPs can be precisely controlled through genetic engineering approaches
to form narrowly dispersed polymers, which allows an increased level of control over
drug release performance [52]. Furthermore, ELPs can be expressed in high quantities
from Escherichia Coli and can be easily purified as a result of their thermo-gelling
behavior [53]. The Chilkoti group has extensively studied ELPs for their ability to target
tumor tissues [54-57]. In one strategy, the group passively targeted tumor tissues by
employing drug-conjugated ELPs with a T that was well above physiologic temperature.
The small, soluble, ELPs took advantage of the enhanced permeability of tumor
vasculature to accumulate within tumor tissues following systemic delivery [56]. In
another approach, ELP-drug conjugates were designed to thermally target tumor tissues.
The peptides were engineered to possess a T, between 37 and 42°C and an externally
applied stimuli induced localized hyperthermia causing the ELP-drug conjugates to
aggregate and adhere to the vessel walls [57]. Mild hyperthermia was also used to drive
the localized assembly of micelles that possessed a tumor-targeting ligand on the

hydrophilic corona, leading to enhanced cellular uptake [55]. In another strategy, ELPs
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with a sub-physiologic T, were injected directly into tumorous tissues to produce a

sustained-release drug depot directly within the tumor tissues for extended treatment [54].

1.2.1.2.2 Chitosan

Chitosan is a polysaccharide that is derived from chitin [13]. While on its own
chitosan is not thermoresponsive, it becomes so when mixed with glycerophosphate (GP)
[13]. At elevated temperatures, GP forms strong hydrogen bonds with chitosan, which
leads to gel formation [13]. However, chitosan/GP mixtures tend to possess slow gelation
rates. Therefore, for applications requiring more rapid gelation, the derivative chitosan
chloride can be used to expedite the gelling process [58]. Chitosan scaffolds also suffer
from relatively rapid release of loaded protein and drugs possessing low molecular
weight; complete release is often achieved within several hours [13, 59]. There are also
concerns about the suitability of chitosan/GP hydrogels for in vivo application as they

have been shown to induce a relatively significant inflammatory response [60].

1.2.1.2.3 Cellulose Derivatives

Several cellulose derivatives, such as methylcellulose (MC) and
hydroxypropylmethylcellulose (HPMC) display LCST behavior that can be exploited for
drug delivery and tissue engineering applications [61]. MC and HPMC display LCST
values between 40 — 50°C and 75 — 90°C respectively [62]. However these values can be
substantially lowered using both physical and chemical methods, such as the addition of
NacCl or a reduction in the hydroxypropyl content [62, 63]. At low temperatures, the

macromolecules exist in a fully hydrated state with little polymer-polymer interaction
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aside from physical entanglement [61]. Upon heating, intermolecular hydrophobic
interactions between the methoxy groups result in gradual dehydration and gel formation
[62]. Recently, a physical blend of hyaluronan and MC (HAMC) demonstrated rapid
thermo-reversible in situ gelation, degradability, good in vivo tolerance and potential for
minimally invasive intrathecal drug delivery for spinal cord injuries [64, 65].
Formulations of HAMC have also demonstrated favorable results as injectable cell

scaffolds for retinal therapeutics [66].

1.2.1.2.4 Xyloglucan

In its native form, the xyloglucan polysaccharide does not form a gel [67].
However, Miyazaki et al. developed a thermally reversible xyloglucan hydrogel through
partial degradation of xyloglucan from the seeds of Tamarindus indica [68]. When more
than 35% of the galactose residues have been removed, xyloglucan exhibits temperature
responsive behavior under dilute aqueous conditions and possesses a relatively high
storage modulus [32, 34]. Xyloglucan gels have been examined as drug delivery scaffolds
for oral [69], ocular [70], rectal [68], percutaneous [71] and intraperitoneal [72]

applications.

1.2.2 Polymer Architecture

A crucial parameter to consider when designing in situ forming drug delivery
scaffolds is the type of polymeric architecture that will be most suitable for the intended
application. /n situ forming hydrogels can form numerous scaffold architectures, such as

interpenetrating networks (IPN), micelles, polymersomes, films and other variations,
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Figure 2. There are two main types of gels: physical gels and crosslinked gels. Physical
gels are formed through the physical entanglement of polymer chains or micelle ordering,
whereas crosslinked gels are covalently bound [17]. Covalently linked thermoresponsive
networks undergo a change in their degree of swelling in response to temperature, while
physically linked gels undergo a sol-gel phase transition [17]. Covalently linked networks
can either be formed in situ or prior to implantation. /n situ crosslinking minimizes
invasiveness of instillation, but requires the use of crosslinking chemistry that is safe in
Vivo.

IPNs consist of two or more polymer networks that are bound through physical
entanglement such that the networks can only be separated through bond breakage. [PNs
offer a powerful tool for drug delivery as each polymer in the network can introduce
specific properties, such as temperature-sensitivity, and new properties can arise from the
interaction of the various polymers within the network. Furthermore, it is relatively easy
to manipulate properties by varying the polymer ratio within the IPN and modifying the
polymers within the network. Liu et al. have designed transparent silicone/PNIPAAm
IPN materials which show temperature transitions that are useful for drug loading and
which show particular promise for the delivery of hydrophobic drugs (Liu and
Sheardown, J Controlled Rel submitted). Semi-interpenetrating copolymer networks
(semi-IPNs) contain at least one crosslinked polymer network, either linear or branched
[73]. Kim et al. prepared thermoresponsive semi-IPNs based on chitosan and poly(acryl
amide) (PAAm) in which the hybrid synthetic and natural copolymers displayed high

swelling ratios that were dependent on temperature, pH, ion concentration and electric
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field [73]. Nanoparticle IPNs consisting of poly (acrylic acid) (PAA) and PAAm display
UCST behavior and rapidly swell in response to heating above a critical temperature [74].
Chen et al. prepared semi-IPN nanogels based on hydroxypropylcellulse (HPC), which
possesses an LCST around 41°C, and PAA, which, as mentioned, possesses UCST
behavior [75]. By varying the chemical composition and the degree of crosslinking, the
phase transition properties of these HPC-PAA nanogel semi-IPNs could be shifted from
UCST to LCST. IPNs and semi-IPNs of thermoresponsive copolymers offer a high
degree of flexibility and can be tailored to provide variable release profiles to suit a broad
range of applications.

As discussed, amphiphilic block copolymers can spontaneously assemble into
micelles with a hydrophilic corona and a hydrophobic core. Therefore, micelles may be
particularly useful for cancer therapeutics, as many chemotherapeutics are small
hydrophobic compounds with a poor therapeutic index [53]. Micelle drug carriers can
increase drug accumulation in tumor tissues while minimizing off-target effects through
the enhanced permeability and retention (EPR) effect, which allows extravasation of the
small drug carriers through the leaky tumor vasculature, as mentioned previously [53].
Quan et al. designed an elegant thermoresponsive micelle carrier for tumor-triggered drug
release [76]. Upon encountering the subtle physiological changes in tumor physiology
(pH 6.8, T > 37 °C), PEGylated RGD peptides were de-protected allowing internalization
by RGD-receptor overexpressing tumor cells and destabilization of drug-loaded micelles
for localized treatment. Wei et al. synthesized a series of NIPAAm-containing

thermoresponsive shell crosslinked micelles [77]. They found that the crosslinked shell
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slowed drug release at temperatures below the LCST (25°C), but the rate accelerated
dramatically above the LCST (37°C) as pNIPAAm gelation led to a deformation of the
micelle structure.

Polymersomes, also known as polymer vesicles, are similar to micelles in that
they are self-assembling amphiphilic block copolymers, however they arrange to form a
hydrophobic ring sandwiched between a hydrophilic core and corona [17]. The
polymersome structure allows interior encapsulation of both hydrophilic and hydrophobic
drugs while the hydrophilic shell protects the entrapped drug from undesirable
interactions and can help the drug delivery system to evade the immune system. The
hydrophilic corona can act as a rate controlling membrane to modulate the release of drug
from the hydrophobic ring, which in turn can serve to impede release from the
hydrophilic core [78]. Li et al. synthesized thermoresponsive, self-assembling
polymersomes consisting of diblock copolymers of poly(N-(3-
aminopropyl)methacrylamide hydrochloride) (PAMPA) and PNIPAAm [79]. In aqueous
conditions, the amphiphilic block copolymers existed as unimers at room temperature and
transitioned to form vesicles when heated above their LCST, which could be adjusted
between 30 — 40°C by varying composition. The vesicle shells were then crosslinked by
polyelectrolyte complexation. Qin et al. prepared thermoresponsive, doxorubicin-
containing PEG-PNIPA Am-based polymersomes that self-associated upon heating above
their LCST and could be destabilized, or ruptured, upon local cooling with either ice or
penetrating cryoprobes [80]. These experiments demonstrate how temperature-sensitivity

can be utilized to create localized drug release following minimally invasive delivery. For
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an in depth review of stimuli-responsive polymersomes in targeted drug delivery, see
Meng 2009 [81].

Thermoresponsive films can also be used as coatings on medical implants to create
a stimuli-responsive material capable of modulating the microenvironment surrounding
the implant. For example, a rate-controlling thermoresponsive film may increase its
release rate in response to slightly elevated increases in temperature due to localized
inflammation.

Using thermoresponsive materials, there are numerous design architectures that
can be generated, and researchers must decide which type is suitable for their intended
application. For an in depth review on temperature responsive polymer architecture, see

Ward 2011 [17] and Stuart 2010 [78].

1.2.3 Expert Commentary

When designing drug delivery vehicles, an important design question to consider
is whether to use natural or synthetic materials. Both choices possess inherent advantages
and disadvantages. While natural materials offer great potential for inherent
biocompatibility, synthetic materials offer greater flexibility for manipulation and tuning
of system performance. With natural materials, we are limited in our ability to modulate
material properties, unless we resort to the use of synthetic modification techniques.
Furthermore, natural materials often possess indefinite composition, poor mechanical
strength, variable and uncontrollable degradation kinetics, microbial contamination and
compatibility issues [40]. Whereas synthetic polymers allow a high degree of control over

important design constraints, such as mechanical properties, degradation rates, pore size,
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morphology, scaffold shape and size, drug release kinetics and bio-mimetic behavior [40].
It is the opinion of the authors that, moving forward, synthetic polymers inspired by and
potentially augmented by natural materials will provide valuable tools for the design of
novel drug releasing scaffolds. Patenaude et al. synthesized novel hybrids of natural and
synthetic materials based on PNIPAAm and various carbohydrate polymers [82]. These
studies demonstrated a high degree of control over copolymer properties, such as
swelling, degradation, phase transition, and mechanical properties, effectively combining
the desired performance features of both natural (degradation and biological interactions)
and synthetic (compositional diversity and thermal sensitivity) materials. Table 2 lists
some of the advantages and disadvantages of natural and synthetic materials for medical
application.

The current state of temperature-sensitive drug delivery copolymers offers
minimally invasive implantation of sustained-release scaffolds to hard-to-access regions
within the body through simple injection and in situ gelation. Furthermore, through
utilization of the subtle temperature increase in tumor tissues, it is possible to tailor
scaffolds to undergo a sol-phase transition upon encountering a tumor, thus targeting the
subtle physiological differences and providing localized dosing. Several strategies, such
as localized ultrasound application, can induce subtle temperature increases that lead to
directed accumulation of drug carriers that possess gelling temperatures slightly above
physiologic temperature and penetrating cryoprobes can induce localized cooling to
destabilize drug carriers. Thus, temperature-sensitive drug delivery scaffolds are

particularly interesting for cancer therapeutics and applications where minimally invasive
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procedures are crucial, such as spinal cord [65] and ocular cell and drug delivery purposes
[83]. However, temperature-responsive copolymers alone are limited in their ability to
respond to the abundance of subtle differences that characterize specific diseased states.
Therefore, when used in conjunction with additional stimuli responsive materials, the
degree of control vastly increases, as dual, or multi-responsive materials can respond with
controllable properties to a number of different physiological states.

There are two classifications of stimuli-responsive materials that can be used to
further functionalize temperature-sensitive drug delivery scaffolds: materials that respond
to internal stimuli present in the in vivo environment and those that respond to externally
applied stimuli. Light, magnetism, electrical impulses and ultrasound are examples of
stimuli that can be externally applied to manipulate and regulate the performance of
implanted scaffolds [84]. Ionic strength, pH, enzymes, antigen-antibody interactions, or
the presence of specific chemicals are examples of internal stimuli that may drive a
behavioral change in an implanted scaffold [85]. Internal stimuli have the ability to act as
a negative feedback loop and generate a direct response to the surrounding physiologic
environment. In contrast, externally regulated stimuli responsive materials require active
manipulation from an outside source to generate a change in performance properties.
While internal stimuli may provide better on-demand release profiles and tighter
regulation of the pathological state, materials requiring external stimuli afford physicians
a greater degree of control over the dosing parameters, which is particularly important

should complications arise. For an in depth review on recent advances and future
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perspectives of various stimuli-responsive materials, see Roy (2010) [85], McCoy (2010)

[86] and Bawa (2009) [84].

1.2.3.1 Thermoresponsive and Externally Regulated Stimuli Responsive Systems

There are many examples of dual thermo- and externally regulated copolymer
systems. Temperature and light responsive materials were prepared from photochromic
derivatives of ELP, in which one azobenzene moiety was incorporated for ever 30 amino
acid residues [87]. Irradiation at 350 nm induced a trans — cis isomerization, which
increased the hydrophilicity of the material and shifted the phase transition temperature
from 32 — 42°C. Irradiation with a longer wavelength was found to reform 50% of the
hydrophobic trans isomer, thus driving phase separation. Such a system could be used to
generate a pulsed-release profile for on-demand release. Zrinyi synthesized thermo- and
magnetoresponsive polymer beads by incorporating magnetic nanoparticles into
crosslinked PNIPAAm and PVA hydrogels [88]. In uniform magnetic fields, the gel
beads arranged into linear, chainlike structures. However, in non-uniform fields, the gels
formed random aggregates. This study demonstrates the ability to externally manipulate
scaffold architecture with externally applied magnetism. This concept could be extended
to manipulate gates in a channeled drug release scaffold, thus creating on-off capabilities
and a pulsatile release profile. Kim et al. prepared thermo- and electroresponsive IPNs
from PVA and PNIPAAm [89]. Electroresponsive materials tend to swell, shrink, or bend
in response to an applied electric field and are typically comprised of polyelectrolyte
hydrogels [90]. Deformation of the polyelectrolyte occurs as charged ions are guided

towards the cathode or anode side of the gel [90]. Ultrasound is a non-invasive stimuli
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that has been shown to influence drug release properties within the body by accelerating
degradation in degradable polymers and enhancing the permeation of drug in both
eroding and non-eroding scaffolds [90]. Ultrasound can be used to disrupt micelle
architecture through acoustic destabilization, thus inducing release of the therapeutic
payload [90, 91]. It can also be used to induce localized heating and aggregation of

thermoresponsive drug scaffolds.

1.2.3.2 Thermoresponsive and Internally Regulated Stimuli Responsive Systems

Thermoresponsive copolymers have also been combined with a number of
materials that respond to internal stimuli. pH responsive systems have received
considerable attention owing to the significant variation of pH within the different
locations of the body. In the GI tract, the stomach has an acidic pH between 1 and 3,
whereas the duodenum ranges from 4.8 — 8.2 [12]. Cancer tissue has a slightly acidic
extracellur pH between 6.5 — 7.2, whereas normal tissues and blood possess a pH around
7.4 [12]. Furthermore, intracellular variations in pH can be exploited for targeted
delivery; the early endosome, late endosome and lysosome have pH values of 6.0 — 6.5,
5.0-6.0, and 4.5 — 5.0 [12]. pH responsive polymers contain weak acids or weak bases,
such as carboxylic acids or amines, and thus undergo changes in their ionization state in
response to changes in pH [12]. Changes in the ionization state can lead to
conformational changes, such as micelle formation or disruption, or changes in swelling
properties of crosslinked gels [11]. Ionizable polymers possessing a pKa that closely
matches the pH of the target tissues can utilize the conformational pH-induced changes to

release drug at a specific location. There are many examples of thermo- and pH-
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responsive polymers systems. Peppas et al. described the synthesis and characterization of
temperature and pH-responsive hydrogels of methacrylic acid and PNIPAAm [92] and
Leung et al. synthesized microgels with a thermoresponsive core and ph-sensitive shell
[93]. These studies demonstrate the potential to target tissues based on their pH and are
particularly interesting for cancer therapeutics as tumor tissues possess an elevated
temperature and a slightly acidic pH. In addition to pH, antigen-responsive materials are
capable of undergoing significant property changes in response to highly specific stimuli
recognition. Lu et al. reported the synthesis of thermo- and antigen-responsive hydrogels
from the combination of a polymerizable antibody Fab’ fragment, which was prepared
from an anti-fluorescein monoclonal antibody, with NIPAAm and N,N’-
methylenebis(acrylamide) (MBAAm) [94]. The resulting hydrogels underwent significant
reversible volume changes in response to both temperature and the presence of antigens.
Glucose-responsive copolymers are of considerable interest for their ability to detect
glucose levels and deliver insulin as required [90]. Glucose-responsive polymers typically
function either through enzymatic oxidation of glucose via glucose oxidase (GOx),
through glucose binding with concanavalin A (ConA), or through reversible bond
formation with boronic acids [90]. Thermo-and glucose responsive copolymers have been
synthesized from comb-type graft copolymers of poly(N-isopropylacrylamide-co-3-
acrylamidophenylboronic acid) [95], and through covalently linking GOx to copolymers
of NIPAAm, MAA and octadecylacrylate (ODA) and subsequently immobilizing to the
surface of liposomes [96]. Such scaffolds could introduce sustained release scaffolds that

detect blood sugar levels and accordingly modify their insulin-release profile, thus
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decreasing the frequency of insulin injections and allowing tighter regulation of blood
sugar levels.

While temperature-sensitive materials have tremendous potential for targeted drug
delivery, combination with dual and multi-responsive polymer systems has the potential
to unleash and help realize the true capabilities of these drug release scaffolds to create

personalized and on-demand release profiles.

1.2.4 Five-Year Outlook

It is becoming increasingly possible to synthesize drug delivery scaffolds
consisting of multiple stimuli-responsive materials that can locally release a multitude of
different pharmaceuticals on-demand in response to internal physiological feedback and
externally applied signals. Such control will allow drastically improved manipulation of
the microenvironment of diseased tissues and improve the regulation of systemic
conditions. As our understanding of the physiological signature of different diseases
increases, so too will our ability to design drug releasing scaffolds that produce a
predictable and controllable response to disease specific stimuli. As mentioned,
temperature-sensitive systems alone are limited in their ability to respond to the surplus of
stimuli that characterize a specific disease. Therefore, the true power of thermoresponsive
drug releasing scaffolds will be realized when they are combined with additional stimuli-
responsive materials. Such dual and multi-responsive drug delivery scaffolds are
beginning to emerge in the literature as temperature-sensitive polymers are combined
with materials capable of external regulation through stimuli such as light [97],

magnetism [98] and ultrasound [99]. However, a new generation of stimuli responsive
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materials is emerging, wherein the identification of differentiating environmental factors
characterizing various conditions is allowing the use of intricate internal stimuli to
manipulate polymer properties to create a pre-defined response to disease-specific
environmental cues, thus providing on-demand, personalized treatment. A
thermoresponsive, glucose-sensitive copolymer that forms an insulin-loaded scaffold
upon injection into the body with release that is dictated by blood sugar levels would
mimic the body’s natural regulation mechanism and help provide tighter regulation of
blood sugar levels for diabetic patients. The generation of such nature-mimicking
scaffolds will be driven by the improved understanding of biochemical pathways
implicated in various diseases. Better characterization of the chemical signature of
various diseases expands the engineer’s toolbox for designing novel scaffolds capable of
providing personalized treatment. Thus, future generations of drug delivery scaffolds will
require a multi-disciplinary approach to harness the true potential of stimuli-responsive

materials.

1.2.5 Key Issues
* Temperature-sensitive drug delivery scaffolds allow minimally invasive
instillation of sustained release scaffolds for localized or systemic treatment.
* Encapsulation within a scaffold protects pharmaceuticals from undesirable
interactions and enzymatic or environmental degradation. Furthermore, the
scaffolds can be designed to generate sustained drug release, maintaining
concentrations within the therapeutic window and avoiding complications

frequently associated with simple injections.
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* There are numerous temperature responsive polymers and architectures to choose
from when designing drug delivery scaffolds. Several design choices include
whether to use degradable versus non-degradable scaffolds, natural versus
synthetic materials and which architecture (simple hydrogel aggregates,
interpenetrating networks, micelles, polymersomes, films etc) is best suited for the
intended application.

* Synthetic materials offer a high degree of flexibility, allowing manipulation of
mechanical properties, degradation rates, pore size, morphology, scaffold shape
and size and drug release kinetics, whereas natural materials often possess
uncontrollable degradation kinetics, microbial contamination and compatibility
issues. Ultimately, combinations of natural and synthetic materials may overcome
the limitations while capitalizing on the strengths of both types of materials.

* Temperature-sensitive drug delivery scaffolds are particularly well suited for
delivery of chemotherapeutics. Scaffolds designed with a gelling temperature
slightly above physiologic value utilize the subtle temperature increase in tumor
tissues to drive scaffold formation and accumulation in tumor vasculature and
surrounding tissues.

* [n situ gelling temperature-sensitive drug delivery scaffolds have tremendous
potential for hard-to-access complications requiring minimally invasive
techniques, such as ocular and spinal cord therapeutics.

* Combining temperature-sensitive polymers with additional stimuli responsive

materials imparts the ability to respond to numerous external and internal stimuli,
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such as light, magnetism, electrical impulses, ultrasound (external) and ionic
strength, pH, enzymes, antigen-antibody interactions, or specific chemicals
(internal). Such dual and multi-responsive drug delivery scaffolds afford a
significant level of control over dosing characteristics and treatment
personalization.

* The continued identification of differentiating environmental factors
characterizing specific diseases will allow the development of increasingly
intricate scaffolds capable of responding to disease-specific cues to provide
negative feedback that attempts to mimic the body’s natural regulation

mechanisms.
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Table 1-1: A list of natural and synthetic thermoresponsive homopolymers and

copolymers with their corresponding thermal phase transition temperatures.

LCST/
UCST
Name Abbreviation €O Ref.
Synthetic Homopolymers
Poly(N-vinylcaprolactam) PVCL 31 [100]
Poly(N-isopropylacrylamide) PNIPAAmM 32 [101]
Poly(N-n-propylacrylamide) PNPAm 25 [102]
Poly(N,N-ethylmethylacrylamide) PEMA 70 [102]
Poly(N-ethylacrylamide) PEA 82 [103]
Poly(N,N-diethylacrylamide) PDEAAmM ~28 -32 [28]
Poly(ethoxypropylacrylamide) PEPA ~32 [104]
Poly(N,N-bis(2-methoxyethyl) acrylamide) PBMEAmM 49 [105]
Poly(N-(3-methoxypropyl)acrylamide) PMPAmM >60 [105]
Poly(vinyl methyl ether) PVME 34 [106]
Poly(2-dimethylamino)ethyl methacrylate) PDMA 50 [107]
Poly(proprylene oxide) PPO 10-20 [108]
Poly(2-ethyl-2-oxazoline) PEOZ ~62 [109]
Poly(2-isopropyl-2-oxazoline) PIPOZ ~36 [110]
Polyphosphazenes ~25-99 [82,90]
Synthetic Multi-Block Copolymers
Poly(ethylene oxide)-poly(propylene oxide)- PEO-PPO-PEO 10-100 [111]
poly(ethylene oxide) [Pluronics®]
L42* PEO,PPO,,-PEO, 37 [111]
L62* PEO4sPPO;4+PEOg 32 [111]
L63* PEQOy-PPO;,-PEOy 34 [111]
Polyester/PEG block copolymers
Poly(lactic acid-co- glycolic acid)-polyethylene PLGA-PEG-PLGA ~37 [112]
glycol- poly(lactic acid-co- glycolic acid)
Poly(ethylene glycol)-b-poly(D,L-lactic acid-co- PEG-PLA-PEG ~37
glycolic acid)—b-poly(ethylene glycol) [113]
Poly(oligo(ethylene glycol) methacrylate) POEGMA 26 - 90 [114]
sPoly(ethylene glycol)-b- poly(2-(2-methoxy SPEG-b-P(MEO2MA-co- 35-41 [115]
ethoxy) ethyl methacrylate-co-oligo(ethylene OEGMA 475)
glycol) methacrylate)
Poly(2-(2-methoxyethoxy)ethyl methacrylate-co- P(MEO2MA-co- OEGMA) 32-37 [114]
oligo(ethylene glycol) methacrylate) 5-8% OEGMA units per chain
Poly(e-caprolactone)-poly(ethylene glycol)- PCL-PEG-PCL ~15-50 [116]
poly(e-caprolactone)
PCL1900-PEG 199-PCL 100 (15 — 35 wt%)  ~18-25 [116]
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LCST/
UCST
Name Abbreviation €O Ref.
PCL1900-PEG 1500-PCL 1000 (15 — 35 wt%)  ~39-46 [116]
PCL;500-PEG500-PCLy509 (15 — 35 wt%)  ~37-45 [116]
PCL;950-PEG750-PCL 950 (20 Wt %) ~42 [117]
PCL5;10-PEG39090-PCL3;19 (20 Wt%) ~ 44 [117]
Natural polymers and derivatives
Chitosan-glycerophosphate Chitosan-GP ~37 [59, 60]
Methylcellulose MC 50 [106]
Hydroxypropylcellulose HPC 42 [101]
Ethyl(hydroxyethyl)cellulose EHEC 65 [106]
Xyloglucan (with 44% removal of galactose) 22-27  [68]
Elastin-like Polypeptides ELP 0-100 [118]
ELP[V34,G5-90] 49 [50]
ELP[V34,G3-150] 40 [57]
ELP [VsA4,G3160] 55 [57]
poly(VPGVG) 27 [119]

* Pluronic Nomenclature: The first letter in the copolymer name indicates the physical state of starting
polymer is a liquid (L). The last number indicates the weight content of PEO block (in terms of weight

percent), while the remaining numbers give an indication of the molecular weight of the PPO block (taken

from [111]).

** Table adapted from Liu et al [120].
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Table 1-2: A list of some of the advantages and disadvantages of using naturally derived

and synthetic materials in medical applications.

Advantages

n
O
en
<
+—
=
<
>
o
<
Z
A

Natural Materials Synthetic Materials

Inherent biocompatibility

Safe degradation byproducts
Defined cellular and biological
interactions

Natural materials are well suited
for ‘nature mimicking’ strategies
popular in tissue engineering

Can provide a close approximation
of native extracellular matrix

Limited number of natural
polymers, therefore restricted
range of attainable properties
Batch to batch variability with
indefinite composition

Poor mechanical strength

Can illicit an immune response
Biological contamination
Sterilization can be difficult

30

Synthetic flexibility and
compositional diversity

High degree of control over
performance parameters, such as
MW, mechanical properties,
elasticity, stimulus-response,
release profile, degradation
kinetics, etc.

Easily sterilized

Carbon-carbon backbone is not
inherently degradable, thus
degradation strategies are often
required, which can induce
inflammation and cytotoxicity
Often engineered in attempt to
‘mimic’ biological tissues,
however, unable to recreate ‘true’
extracellular microenvironment
Can illicit a foreign body reaction
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1.3 BACKGROUND: POSTERIOR SEGMENT OCULAR DRUG DELIVERY

Delivery of pharmaceuticals into the eye is a particularly daunting task, but
emerging concepts in ocular drug delivery systems utilizing engineered materials and
devices stand to revolutionize the treatment of posterior eye diseases. Delivery of drugs
to the eye is complicated by its relatively isolated nature as well as by its numerous
physical barriers. The eye is divided into anterior and posterior regions. The anterior
chamber consists of the cornea, aqueous humour, ciliary body and the lens, while the
posterior segment contains the vitreous body, choroid and the retina. Additionally, the
eye contains a number of efficient drainage routes that rapidly clear pharmaceuticals that

successfully enter the ocular environment, Figure 1-3.
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Figure 1-3: The eye contains many different potential routes of entry (solid arrows) and
clearance (dashed arrows) that dictate the kinetics of ophthalmic drug delivery. These
delivery and clearance routes must be well understood when designing devices to deliver
drugs to the eye. The efficient clearance routes typically result in short half-lives of free-
drug within the posterior segment. Therefore, polymeric scaffolds that slowly release
small amounts of drug over a prolonged period of time represent an attractive means to
treat posterior segment disorders. Reproduced with permission from Advanced Drug
Delivery Reviews [121].
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Figure 1-3 illustrates the number of routes that drugs can enter and be
eliminated from the eye. Topical application results in delivery into the anterior chamber
of the eye either through the trans-corneal route (arrow 1, Figure 1-3), or through the non-
corneal route, in which drug diffuses across the conjunctiva and sclera into the uvea
(arrow 2). Drugs may also enter the anterior chamber via the systemic circulation by
crossing the blood aqueous barrier (arrow 3). Within the aqueous, the half life of a
typical drug is about an hour [121]. Elimination from the anterior chamber occurs
through constant turnover of the aqueous to the trabecular meshwork and Schlemm’s
canal (arrow 4), or by re-absorption into systemic circulation through venous flow of the
anterior uvea (arrow 5). Drugs can enter the posterior segment from the systemic
circulation by crossing the blood retinal barrier (BRB) (arrow 6) or by direct injection
into the posterior segment. Some topically applied drugs that follow the non-corneal
route into the uvea (particularly large molecular weight hydrophilic drugs that do not
readily penetrate the cornea) may enter the posterior segment (arrow 2). However, this is
a highly inefficient means of delivery for posterior segment conditions. From the
posterior segment, drugs are eliminated either through the posterior (arrow 8) or anterior
(arrow 9) routes. The anterior route is accessible to all compounds and involves diffusion
to the posterior chamber and elimination via uveal blood flow and aqueous turnover.
Removal via the posterior route requires permeation across the BRB, which favours small
molecular weight, lipophilic compounds. Therefore, the posterior route is less effective at
removing large molecular weight, hydrophilic drugs. These pharmacokinetic properties

of the eye can be exploited to manipulate and tailor drugs and their delivery systems in
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order to prolong the retention time of pharmaceuticals within the posterior segment of the
eye and increase the time between treatments.

Due to the number of barriers and clearance routes within the segmented eye,
delivery of pharmaceuticals via topical eye drops is extremely inefficient and typically
results in less than 5% uptake into the anterior chamber and negligible amounts in the
posterior segment [8]. The majority of topically applied drugs are absorbed into the
bloodstream through the conjunctival and nasal blood vessels [8]. Therefore, topical eye
drop application is limited primarily to the treatment of anterior segment eye diseases
[122-125]. Systemic drug administration is also limited in its ability to successfully
deliver drugs to the posterior segment, as only 1 — 2% of a systemically delivered dose
crosses the restrictive blood-ocular barriers (blood aqueous barrier and BRB) [9].
Therefore, large systemic doses are necessary to achieve therapeutic levels within the eye
[126]. However, the use of large systemic doses is accompanied by increased risk of
undesirable side effects, and makes inefficient use of expensive pharmaceuticals.
Consequently, this is not an attractive means of delivering drugs to the posterior eye.
Periocular delivery routes, in which drugs are applied to the tissues surrounding the eye,
including the peribulbar, posterior juxtascleral, subtenon, retrobulbar and subconjunctival
space, represent another potential avenue for delivering drugs to the posterior segment
(Figure 1-4) [9]. Although periocular delivery is considered relatively safe, as it does not
require perforation of the eye wall, the requirement for externally applied drugs to cross
the restrictive physical barriers to gain access to the posterior segment makes it inefficient

[8]. Direct injection into the vitreous cavity however, is a highly efficient method to
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achieve high concentrations of drug within the vitreous body and retinal tissues [126].
Unfortunately, due to the relatively short half life of drugs within the vitreous, repeated
injections are needed (often every 4 — 6 weeks) in order to maintain a therapeutic
concentration [127]. Frequent intravitreal injections are associated with significant risks,
such as vitreous haemorrhage, endophthalmitis, cataract formation, retinal detachment
and patient discomfort [126, 128]. However, as intravitreal injections are capable of
leading to therapeutic levels within the vitreous segment while minimizing systemic
exposure, this route is attractive for posterior segment drug delivery purposes. Novel
drug delivery approaches that safely utilize the intravitreal route for prolonging residence
time of pharmaceuticals within the vitreal chamber represent an exciting potential for

future treatment of posterior segment eye diseases.

Anterior sub-Tenon's
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Fornix
Figure 1-4: Drugs can be delivered to numerous locations surrounding or within the eye
as injections, drops or as slow-release scaffolds. Direct introduction into the vitreal
cavity is the most efficient means to obtain high concentrations of drug within the
posterior segment while minimizing off-target effects. Reproduced with permission from
the Nature Publishing Group [129].
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1.3.1 Various Sustained Release Ocular Drug Delivery Modalities

There are a number of implantable drug delivering platforms designed to produce
sustained release of pharmaceuticals within the posterior segment of the eye to treat
conditions such as AMD, DR, DME, dry eye, cytomegalovirus, inflammation, infections
or glaucoma [8]. Novel delivery modalities currently being explored for long-term ocular
drug release include injectable micro and nanoparticles, iontophoresis, cell encapsulation
strategies, in situ gelling systems, and numerous implantable solid scaffolds or devices
with varying geometries and degradation kinetics, providing unique release profiles [126].
While the majority of implantable drug delivery devices were designed for a specific
ocular condition, it is likely that many of these delivery systems can be appropriately
adapted for delivery of various pharmaceuticals to treat a number of different posterior
segment conditions. For in-depth reviews of the various strategies for posterior segment
drug delivery, please see, Choonara (2009) [126], Del Amo (2008) [8], Lee (2009) [130],

Novack (2009) [129] and Thrimawithana (2011) [131].

1.3.2 Implantable Scaffolds

Implantable scaffolds capable of achieving sustained release profiles within the
intravitreal chamber have gained considerable interest in recent years as promising
methods of treating posterior segment eye diseases [126]. When designing an
implantable ocular drug delivery platform, one of the most important features is deciding
whether the system will be degradable or non-degradable. Both systems can be employed
for ocular delivery and are associated with certain advantages and disadvantages. Non-

degrading devices offer improved control over sustained release profiles, but degradable
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systems do not require secondary surgical intervention for removal [126]. Control over
release kinetics is made difficult in degrading scaffolds as the release profile changes with
device degradation. Numerous factors, such as pH, temperature and host response
influence the rate of polymer degradation, and in vivo conditions are not as well-defined
or predictable as laboratory testing [126]. As delivery devices degrade, changes in
surface area can have a profound influence on the release kinetics, therefore it is desirable
to utilize geometries that will not be significantly altered as the material degrades [126].
It is important to design devices that do not erode more rapidly than the drug releases as
this could result in a large secondary burst phase as remaining drug is expelled from the

degraded scaffold.

1.3.3 Microparticles and Nanoparticles

Controlled release can be obtained by encapsulating a drug within a suspension of
microparticles (1 — 1000 wm) or nanoparticles (1 — 1000 nm) [8]. Typically,
microparticles and nanoparticles are formulated using degradable polymers such as PLA
and PLGA [126]. Microparticles and nanoparticles can be injected directly into the
vitreal cavity, providing sustained release for weeks or months [132, 133]. However, a
potential drawback of microparticles and nanoparticles is their tendency to cause vitreal
clouding [133]. This is typically not a significant problem for microparticles as they have
a tendency to sink to the bottom of the vitreal cavity out of the pathway of incoming light,
however nanoparticles often remain suspended within the vitreous and are more likely to
cause clouding of the central vision. Periocular microsphere formulations have been

examined in animal models for trans-scleral delivery in attempts to bypass the need to
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perforate the eye wall [134]. As discussed, the trans-scleral delivery route is less efficient
when compared with intravitreal delivery as there is an increased number of barriers that
the drug must cross to reach the target tissues [130]. However, subconjunctival
application of anti-TGF-p2 (transforming growth factor 32) using PLGA microspheres
has been shown to prevent post-surgical fibrosis for 42 days following trabeculectomy
[135]. Studies such as this have demonstrated the potential for long-term drug release
through relatively non-invasive trans-scleral application via microparticle suspensions.
Microspheres have also been examined for intravitreal administration by a number of
groups and have been fairly well tolerated [136, 137]. Previous studies by Shive and
Anderson have demonstrated that microspheres having a diameter greater than 5 — 10 um,
may not be phagocytosed by macrophages and foreign body giant cells, leading to the
formation of a foreign body response at the surface of the spheres [138]. However,
microspheres smaller than 5 um may undergo phagocytosis, leading to rapid degradation
and subsequently, an increased rate of release, leading to a shorter duration of treatment
[138]. Therefore, the selection of microsphere size must be a trade-off between duration
of action and host response. Giordano et al. examined the degradation of PLGA
microspheres (diameter: 54 and 105 wm) and the tissue response following intravitreal
injection into rabbit eyes [136]. A mild, localized, non-progressive foreign body response
was reported and the major cells implicated in response to microsphere injection were
proposed to be glial cells and fibroblasts. No changes were observed in the choroid or the
retina and no abnormalities were revealed through electroretinography (ERG).

Furthermore, no clinical inflammatory signs were observed 4 days postoperatively.
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While there have been some promising studies with microparticles, their small size has
the potential to lead to poor control over drug release and localization. Furthermore,
should complications arise, removal of the microparticles would be very challenging.
Many different nanoparticulate systems including nanospheres, liposomes and
micelles are being examined in pre-clinical studies. Nanoparticulates from a single
intravitreal injection were shown to persist within RPE cells following phagocytosis for
up to four months, demonstrating their potential use in sustained delivery [139].
Similarly, early studies showed the localization of albumin nanoparticles within the
ciliary body and vitreous for 2 weeks following intravitreal injection, demonstrating the
potential for controlled drug release from a scaffold having safe degradation products
[140]. However, a longer release profile is needed for this system to become an effective
delivery vehicle. Micelles are generated with amphiphilic surfactants or diblock
copolymers and have been examined for the treatment of choroidal neovascularization
using photodynamic therapy [141-143]. Liposomes are lipid-based vesicles that can
range from 25 — 10,000 nm in diameter [8]. Different preparation methods of liposomes
result in various sizes, stability and release profiles. Hydrophobic drugs can be loaded
into the lipid walls whereas hydrophilic agents can be uptaken by the aqueous interior of
liposomes. Phagocytic cells such as the RPE engulf liposomes, enabling intracellular
delivery [8]. Liposomes can also be surface-modified to target specific cells. However,

vitreal clouding may occur following intravitreal injections of liposomes [8].
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1.3.4 Scleral Plugs and Intrascleral Discs

Several degradable scleral plugs have been developed that transverse the sclera at
the pars plana with the drug releasing segment protruding into the vitreous chamber [ 144,
145]. Numerous scleral plug designs have been examined, typically consisting of PLA,
PLGA, or HA [126]. Release profiles from degradable scleral plugs are typically
characterized by an initial burst, followed by a diffusional release period and a final burst
as the plug degrades [126]. Kunou et al. demonstrated the ability to release therapeutic
levels of ganciclovir from PLGA scleral plugs for up to one year [146]. More recently, a
non-degrading, scleral plug with a refillable reservoir has been developed [147]. In
attempts to develop less invasive means of delivering pharmaceuticals into the posterior
segment of the eye, several degradable intrascleral implants have been developed for
implantation into the periocular space, thus eliminating the need for perforation of the eye
wall [126]. These intrascleral discs, which make use of the sclera’s large surface area,
accounting for approximately 95% of the eye’s total surface area, have shown promise in
animal models, but need further examination to determine their safety and effectiveness
profiles [148]. Furthermore, the need for drug diffusion across the sclera into the vitreous

represents a significant barrier to delivery that will reduce the efficiency of this route.

1.3.5 TIontophoresis

Iontophoresis is a non-invasive technique that enhances the delivery of ionized
drugs through physical barriers with the aid of a mild electric current as shown in Figure
1-5 [8]. There are three classifications of ocular iontophoresis: trans-corneal, trans-scleral

and corneoscleral. Trans-scleral iontophoresis is the most applicable for delivery of drugs
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into the posterior segment. The surface area of the sclera is much larger than the cornea,
is well hydrated, has a low cell density and is permeable to large compounds [149].

Choroid
Retina

Optic
Nerve

Drug
Distribution

Drug Applicator

Figure 1-5: Ocular iontophoresis represents a relatively non-invasive method for delivery
of charged drugs into the posterior segment of the eye without having to perforate the eye
wall.  However, delivery is inefficient and the drug action is much shorter than
intravitreal drug-releasing devices. Reproduced with permission from Drug Delivery
Technology [150].

More recent ocular iontophoresis systems require lower levels of electrical current
and are easier to use than previous generations [8]. While ocular iontophoresis is a
minimally invasive route of administration, the duration of drug activity is significantly

reduced compared with prolonged release systems [8] making it potentially less attractive

than more invasive forms of treatment.

1.3.6 Cell Encapsulation

Encapsulated cell technology (ECT) attempts to entrap genetically modified cells
within a semi-permeable enclosed system that allows passage of oxygen and nutrients but
prevents the infiltration of immune cells [8]. In theory, this allows delivery of engineered

cells that are programmed to continuously generate and release therapeutic proteins
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directly at the site of interest, thus providing controlled, continuous, and sustained release
directly within the vitreous chamber of the eye. ECTs are sutured in place at the pars
plana outside the visual field.

The ECT contains genetically modified cells, which can theoretically be tailored
to secrete therapeutic proteins to combat the major manifestations of retinal disease:
retinal cell degeneration, inflammation and neovascularization. Neurotech has
demonstrated the ability to engineer RPE cells to express ciliary neurotrophic factor
(CNTF) to combat retinal cell loss, and a VEGF antagonist, rhuFab V2, a ranibizumab-
like compound to treat neovascularization [126]. ECT technology however, is a
controversial field, as it is not known whether genetically modified cells produce other
compounds in a disproportionate quantity to natural RPE cells. Long-term safety and
efficacy of ECTs need to be further examined. Furthermore, it is not clear how
Neurotech has overcome issues of cell death at the centre of the device as has been seen
in other cell-based systems and can arise from poor oxygen and nutrient transport [152].
Neurotech Inc. has recently completed Phase II clinical trials with their lead product NT-
501, a semi-permeable, hollow-fibre membrane surrounding modified RPE cells designed
to express CNTF for the treatment of dry AMD [153] and for the treatment of early and
late stage RP [154, 155]. NT-501 demonstrated the ability to stabilize vision loss with
96.3% of ECT treated patients losing less than 3 lines of vision after 12 months compared
with 75% in the sham group [156]. There appears to be a correlation between vision
stabilization and retinal thickening, which is proposed to arise from secretion of CNTF

via engineered RPEs, which provides protection for the photoreceptor cells, preserving
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their health. Concerns regarding the viability of transplanted cells were addressed by
explanting 23 devices 12 — 18 months post-implantation and demonstrating that all
implants contained viable cells capable of producing CNTF [156]. However, the ECT
implants were not able to produce any improvements in visual acuity, possibly due to pre-

existing photoreceptor damage that CNTF secretion was not able to reverse.

1.3.7 In Situ Gelling and Stimuli Responsive Systems

Stimuli-responsive polymers can be used in topical eye drops to slightly enhance
drug retention times, increase drug uptake into the aqueous chamber and reduce required
dosing frequency in comparison with conventional formulations [157]. The use of
intelligent materials that undergo a stimuli-induced phase transition from liquid to gel
represents an interesting approach to deliver drug-containing scaffolds to the posterior
segment of the eye through minimally invasive techniques. Polymer-drug suspensions
can be mixed together and injected directly into the vitreous chamber or applied
periocularly. Changes in stimuli (i.e. temperature, light, pH) induce a phase transition
from liquid to semi-solid gel that entraps infused drug allowing prolonged release from an
in situ-formed drug depot [8]. In the Sheardown lab, we are interested in the potential use
of thermally gelling biomaterials, such as PNIPAAm, for minimally invasive posterior
segment drug delivery. In Figure 1-6, which is intended to illustrate the concept of in situ
gelling ocular drug delivery, a liquid suspension of drug (Coomasie Blue in this case)-
infused PNIPAAm is injected into a pre-heated aqueous environment, which represents
the eye. Upon contacting the heated aqueous medium, the polymer forms a drug-loaded

scaffold as it is heated above its LCST, Figure 1-6a. Ideally, this temperature-driven

42



Ph.D. Thesis S. Fitzpatrick McMaster University School of Biomedical Engineering

scaffold formation allows the minimally invasive introduction of a sustained release
scaffold into the vitreous, which can locally release low-levels of drug for extended
periods of time, thus decreasing systemic exposure and increasing the time between
injections (left and middle vials, Figure 1-6b) [34, 158]. Upon exhaustion of the majority

of the drug reservoir, the scaffold will commence degradation, allowing the copolymer to

be cleared from the eye and body (vial on the right, Figure 1-6b).

]

Figure 1-6: A drug-infused thermoresponsive polymer solution (PNIPAAm-based) is
injected into a heated aqueous medium, which represents the vitreous body (a). The
polymer undergoes a temperature-induced phase transition, from liquid to gel, thus
entrapping the infused drug and forming a solid scaffold capable of providing sustained
release (left and middle vials in b). Following exhaustion of the majority of the drug
reservoir, the scaffold degrades and is cleared from the eye and the body via renal
filtration, eliminating the need for surgical removal (vial on the right in b). Images
reproduced with permission from Ron Scheffler (photographer).

1.3.8 Alternative Stimuli Responsive Systems
In addition to temperature-responsive materials, a vast number of stimuli
responsive materials exist and many are being examined for their potential use in drug

delivery applications. As discussed, materials can also undergo numerous stimuli-induced
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transformations in response to various stimuli, such as pH, light, magnetism, electricity,
changes in ionic strength and mechanical stress [84, 158]. In addition to
thermoresponsive cell and drug delivery scaffolds, the Sheardown lab is developing
polymeric scaffolds capable of producing externally controllable release profiles through
light-induced changes in copolymer network crosslinks [159-161]. Through stimuli-
induced dimerization and de-dimerization of light-sensitive polymer side chains, we can
reversibly control the crosslinking and un-crosslinking of our scaffolds. In the dimerized
/ crosslinked state, the pore size of the polymer scaffold shrinks, hindering the release of
entrapped drug, slowing its release. De-dimerization leads to an un-crosslinked network,
decreasing resistance and allowing drug to be released more rapidly. The degree of
crosslinking can be controlled by adjusting the amount of time the scaffold is exposed to
its stimulus, allowing externally controlled, tunable release kinetics of an implanted

scaffold.

1.3.9 Micro-Electromechanical Devices

Micro-electromechanical (MEMS) drug delivering systems may soon be
incorporated into mainstream ocular drug delivery. When made with a small enough
form-factor, such MEMS devices may be capable of resting on the external eye and
delivering drugs through a canula or microneedle array into the subconjunctival space, or
directly into the chambers of the eye [126]. Recently, the Prausnitz group demonstrated
the ability to deliver drugs and particles into the scleral tissues in a minimally invasive
fashion using hollow microneedles [162]. Drug release profiles from MEMS devices are

not governed by diffusion, and can therefore be tightly controlled and adjusted remotely,
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allowing external regulation [126]. Furthermore, re-fillable drug reservoirs connected to
a syringe port allow administration of subsequent doses without the need for surgical
intervention. However, the manufacture of sophisticated MEMS devices for intraocular
therapy is extremely difficult and expensive. Further research is needed in this area
before clinically relevant devices become commonplace.

Recent work in the Sheardown and Selvaganapathy labs has focussed on the
development of inexpensive, soft, flexible MEMS devices for ocular drug delivery,
Figure 1-7 [163]. The development of a remotely controllable electroosmotic (EO)
micropump capable of delivering small amounts of drug in a controlled, tunable fashion
using inexpensive materials and fabrication techniques will enhance the flexibility of
these systems. The design architecture of this novel hybrid MEMS device will
theoretically eliminate the need for expensive clean room fabrication and will allow direct
control over drug release rates, which will be achieved by communicating with the device
through medically-designated radio frequencies. The use of hollow glass microcapillaries
instead of conventional microneedles greatly reduces the cost of manufacture and allows
accurate positioning and fabrication within the soft, flexible body of the EO micropump
which is designed to sit on top of the eye and conform to its contours, which would not be
possible with the rigid, flat base required for conventional microneedles. An easily
accessible port connected to the reservoir will permit re-filling of the drug reservoir,
allowing long-term therapy with minimally invasive intervention. Preliminary results
demonstrate that continuous and constant delivery through porcine sclera is possible and

that it is possible to target specific layers of the retina.
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Figure 1-7: A prototype of the soft, flexible, inexpensive PDMS-based MEMS device
being developed in the Sheardown and Selvaganapathy labs for non-invasive, pain-free
delivery of pharmaceuticals to the posterior segment of the eye is shown next to a
Canadian dime. On the right, the fabricated microneedles are pictured next to a 30-
gauge stainless steel needle, a commonly used size for intravitreal injections. The
microneedles are 300 um long with 148 um outer diameter and 10 um tips. (Unpublished
image from Mahadevan and Sheardown).

1.3.10 Future Directions

With the advent of intravitreally implantable drug-releasing scaffolds, there has
been considerable improvement in the ability to deliver pharmaceuticals into the posterior
segment of the eye for prolonged periods of time. Future approaches will likely
investigate new polymer formulations and novel pharmacotherapies. There does however
remain a significant need to improve methods for extended delivery of drugs to the back
of the eye, particularly in the treatment of chronic diseases of the young such as DR.
Future devices will aim to offer less invasive delivery, greater control over release
profiles, slower degradation rates, and longer release kinetics. Figure 1-8 illustrates
several of the various strategies for intravitreally implantable devices capable of
providing sustained delivery to the back of the eye. It is likely that many of these

strategies will be modified to include novel polymer formulations and new
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pharmaceuticals in an increasing effort to combat the many ailments affecting the
posterior segment of the eye. Stimuli responsive materials are likely to play an important
role in the design of next-generation ophthalmic drug delivery devices. Perhaps
combinations of stimuli-responsive materials capable of responding to several externally
applied stimuli will be employed to provide tailored release kinetics of multiple drugs. It
is the opinion of the authors that degradable devices with slow degradation rates and
prolonged release profiles, capable of being delivered intravitreally with minimally
invasive techniques, preferably administered in an office setting, will likely become the

preferred delivery modality for posterior segment ocular complications.

1.4 Pharmacotherapies

VEGF inhibitors and corticosteroids are two of the most important families of
drugs for posterior segment eye conditions. Anti-VEGF agents are particularly useful for
their ability to limit the progression of ocular neovascularization, which is prevalent in
both AMD and DR [164]. The anti-inflammatory properties of corticosteroids make them

powerful agents to treat patients suffering from macular edema.

1.4.1 VEGTF Inhibitors

While numerous factors appear to be involved in the pathogenesis of neovascular
eye diseases, VEGF has been widely implicated for its role in the formation of new
vessels. [128, 164]. When injected intravitreally into healthy primate eyes, VEGF
induces a proliferative diabetic retinopathy (PDR)-like state, including microaneurysm

formation, intraretinal haemorrhages, venous beading, capillary closure, and increased
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permeability of retinal vasculature [165, 166]. VEGF has also been shown to contribute
to the breakdown of the blood-retinal barrier in the early stages of diabetes [167]. Anti-
VEGTF therapies have demonstrated considerable success in the treatment of age-related
macular degeneration (AMD), which has motivated the study of anti-VEGF therapies for
other exudative ocular diseases, such as DR, DME, RVO and retinopathy of prematurity
(ROP) [164]. VEGTF is a pro-angiogenic, vasopermeable, endothelial-specific factor that
binds with tyrosine kinase activity to membrane bound receptors [128]. It is produced in
the retina via the retinal pigmented epithelial (RPE) cells and all the major retinal neurons
[128]. VEGF s is the most abundant of the VEGF isoforms, has the highest biological
potency [168], and appears to play the greatest role in the pathogenesis of
neovascularization in ocular diseases [169]. Intraocular neovascularization in diabetic
retinopathy is stimulated by retinal ischemia and can result in vitreous haemorrhage,
neovascular glaucoma, retinal detachment and vision loss [128].

Currently there are three commercial anti-VEGF agents available: pegaptanib
sodium (Macugen), bevacizumab (Avastin) and ranibizumab (Lucentis) [128].
Pegaptanib and ranibizumab have been approved by the Food and Drug Administration
(FDA) for the treatment of AMD [128] and clinical trials are underway to assess the use
of anti-VEGF agents for treatment of DR [128, 170]. Bevacizumab has received FDA
approval for intravenous use in cancer therapy and has been used off-label to treat ocular

neovascularization [128, 171].
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B. Subconjunctival
implant

C. Suprachoroidal
implant

D. Suprascleral
injection

E. Intravitreal implant
fixated to the sclera
F. Intravitreal implant: free floating
G. Intravitreal injection a. Medidur: nonbioerodible
a. Hydrogel-based b. Posurdex: bioerodible
b. Suspension

Figure 1-8: A summary of the various intravitreal drug delivery modalities and

their locations within the eye. Reproduced with permissios from S. Karger AG,
Basel [130].

1.4.1.1 Pegaptanib (Macugen)
In 2004, Pegaptanib became the first VEGF inhibitor to receive FDA approval for

the treatment of AMD [172]. Pegaptanib is a nuclease resistant peglyated RNA aptamer
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that specifically targets highly potent VEGF 65 [173]. Unlike other anti-VEGF agents that
target all active VEGF isoforms and directly inhibit VEGF from binding with its receptor
(VEGFR), pegaptanib selectively binds VEGF 45 and larger isoforms and indirectly
modulates VEGF-induced neovascularization through interaction with the heparin-
binding domain [173, 174]. The heparin binding domain serves to enhance VEGF
signalling by binding with coreceptor neuropilin-1 (NP-1) [174]. Therefore, pegaptanib
does not directly block the interaction between VEGF and its receptor, instead it limits
the amplification of VEGFR signalling, decreasing the ability of VEGF to enhance
vascular permeability and stimulate endothelial division [128]. A recent case study
demonstrated regression of ocular neovascularization following intravitreal injection of
pegaptanib (0.3 mg) and there was no evidence of new vessel formation after 15 months
[175]. A phase II clinical trial demonstrated that intravitreal pegaptanib injections in
patients with DME resulted in the regression of neovascularization in 62% (8/13) of
patients six weeks after their last treatment, whereas patients receiving sham injections
showed no signs of regression (0/3) [176]. However, neovascularization returned in 38%
(3/8) of patients following their last injections, demonstrating the need for frequent,
recurring injections, which can be painful, inconvenient and increases the risk of

injection-related complications [176].

1.4.1.2 Bevacizumab (Avastin)

Bevacizumab is a full-length humanized recombinant antibody that non-
selectively targets all VEGF isoforms and received FDA approval in 2004 for the

treatment of colon cancer [128]. As mentioned, bevacizumab and ranibizumab directly

50



Ph.D. Thesis S. Fitzpatrick McMaster University School of Biomedical Engineering

interact with the receptor-binding domain of VEGF to inhibit its interaction with VEGFR.
[174]. Bevacizumab has demonstrated success in small observational case studies in
which off-label injections of the drug were used to treat neovascular AMD, macular
edema and iris neovascularization [177, 178]. Small pilot studies have examined the use
of bevacizumab to treat PDR, with a reported 100% (44/44) of treated eyes demonstrating
regression of vascular leakage to some extent within one week of intravitreal injection
[179]. Complete resolution of new vessel formation at the optic disc (NVD) and
elsewhere on the retina (new vessel elsewhere, NVE) was reported in 73% and 59% of
treated eyes, respectively [179]. However, recurrence of neovascularization occurred as
early as two weeks following injection, once again demonstrating the need for frequent
re-administration. Interestingly, neovascularization was also observed to subside in

several untreated eyes, which raises concerns of potential off-target effects [179].

1.4.1.3 Ranibizumab (Lucentis)

Approved by the FDA in June 2006 for the treatment of neovascular AMD,
Ranibizumab is a recombinant humanized antibody fragment derived from the full length
monoclonal antibody, Bevacizumab, that targets all isoforms of VEGF [180]. Itis a
chimeric compound consisting of a nonbinding human sequence and an epitope derived
from mice that binds VEGF with high affinity [180]. The small recombinant fragment
was developed in attempts to promote diffusion through the retina following intravitreal
injection, allowing treatment of subretinal neovascularization in AMD [181].
Ranibizumab has demonstrated the ability to reduce VEGF-induced proliferation of

retinal endothelial cells [182] and its efficacy has been demonstrated in two pilot studies
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for DME [183, 184]. The effectiveness of ranibizumab in the treatment of PDR remains
to be established. The small Ranibizumab antibody fragment was designed to lack the
constant Fc region and therefore does not bind complement C1q or FCy receptors, in

order to prevent any complement-mediated responses directed against the compound

[180].

1.4.1.4 Comparison Between Pegaptanib, Bevacizumab and Ranibizumab

In a direct comparison of pegaptanib, bevacizumab and ranibizumab, Klettner and
Roider examined the VEGF-sequestering and neutralizing efficiencies of the three VEGF-
inhibitors in vitro [174]. Interestingly, they found pegaptanib had no neutralizing effect
in vitro, which may help to explain why pegaptanib has somewhat fallen out of favour in
the treatment of AMD [185]. As suggested by the authors, this finding may also have
been related to the experimental design and the fact that pegaptanib interacts with VEGF
through the heparin binding domain [174]. It was found however, that at clinical doses,
ranibizumab and bevacizumab neutralized VEGF equally, whereas when diluted,
ranibizumab demonstrated higher potency [174]. Although ranibizumab has been
demonstrated to be highly effective and has received FDA approval for the treatment of
neovascular AMD, bevacizumab is often used off-label as it is approximately one-fortieth
the price of ranibizumab [174]. Furthermore, early clinical evidence has suggested
bevacizumab may be just as effective in the treatment of neovascularization as

ranibizumab [1].
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1.4.1.5 Alternative Anti-VEGF Strategies

A number of anti-VEGF strategies are currently in the development phase.
VEGF-trap (Aflibercept, Regeneron Pharmaceuticals) is a fusion protein that acts as a
receptor decoy and inhibits all forms of VEGF with a high binding affinity [186]. It
consists of segments of the extracellular domains of VEGF receptors 1 (VEGFR-1) and 2
(VEGFR-2) fused together with the constant Fc domain of human IgG [187]. Small
molecule tyrosine kinase inhibitors (TKi) such as Pazopanib (GlaxoSmithKline) have
been examined for treatment of VEGF-induced ocular neovascularization [164]. TKi
inhibit the tyrosine kinase cascade that is activated by the binding of VEGF with its
receptor, preventing downstream effects [180]. Bevasiranib (OPKO Health) is the first
small interfering RNA (siRNA) agent developed for AMD and has been examined for the
treatment of DME [164, 188]. Bevasiranib is a gene silencing mechanism that causes the
catalytic destruction of VEGF messenger RNA [188]. As each of these methods directly
targets VEGF, all should yield somewhat similar results; in all cases however, a more

sustained delivery method would be favourable to ensure efficacy.

1.4.1.6 Adverse Effects of Intravitreal Anti-VEGF Agents

Although anti-VEGF therapies have demonstrated promising results for the
treatment of ocular neovascularization, there are potential complications that may arise
from this form of treatment. In addition to being an angiogenic factor, VEGF is known to
possess neuroprotective properties; it is important for the survival of photoreceptors,
Muller cells and retinal neurons, and is essential for maintaining a healthy retina [128,

189, 190]. Therefore long-term treatment with anti-VEGF agents may result in adverse
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events by preventing VEGF from exerting its neuroprotective effects. There is concern
that intravitreal injections may result in absorption into systemic circulation, leading to
undesired effects. A 12-month case study examining the safety profile of intravitreal
bevacizumab injections found adverse systemic effects in 1.5% of patients (18 / 1173)
[191]. Complications of bevacizumab injections included hypertension (7 / 1173),
cerebrovascular accidents (6 / 1173) and myocardial infarcts (5 / 1173) [191]. Five
patient deaths were attributed to these complications [191]. These results suggest a need
for delivery of the smallest efficacious dose over a prolonged period of time directly to
the site of interest. In addition to systemic risks of anti-VEGF therapy, there is also a
significant risk associated with intravitreal injections, including cataracts,
endophthalmitis, retinal detachment, corneal abrasion, haemorrhage and RPE tears [128,
131]. Injection-related risks are not limited to anti-VEGF treatments, but are common to
all intravitreal injections. The risks associated with intravitreal injections greatly increase
with frequent perforation of the eye wall, which is often required to maintain therapeutic
concentrations within the vitreous. As such, there is a significant need for sustained
treatment options that prolong drug residence times within the eye and require less

frequent intervention.

1.4.2 Corticosteroids

Corticosteroids have been used since the 1950s to treat ocular inflammatory
conditions [192, 193]. Recently, intravitreal corticosteroids have been used to treat
several ocular diseases, such as AMD, PDR and macular edema [186]. Prior to the use of

intravitreal delivery techniques, high systemic doses of corticosteroids were required to
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achieve therapeutically relevant concentrations within the posterior segment of the eye
[194]. High systemic exposure to corticosteroids can cause a number of adverse side
effects, including exacerbation of diabetes, adrenal suppression, cushingoid state and
osteoporosis [194]. However, intravitreal administration of corticosteroids has allowed
high local concentrations within the posterior segment while minimizing systemic
exposure. Corticosteroids, which are widely known and used for their anti-inflammatory
properties, combat macular edema through suppression of VEGF expression and
stabilization of the blood-retinal barrier [195]. VEGF suppression is believed to occur
through repression of proinflammatory genes and transcription factors such as cytokines
and nuclear factor-k B (NF-xB) [5, 196]. Stabilization of the BRB is thought to occur
through inhibition of leukostasis as adhesion of leukocytes to the endothelium can disrupt
tight junctions, which increases vessel permeability and deteriorates the BRB [194].
Triamcinolone acetonide has been used for many years, generally demonstrating
favourable results and has shown promise when used in conjunction with panretinal
photocoagulation (PRP) [197, 198]. In the US there are four commercial formulations of
intravitreal triamcinolone (IVTA), including Kenalog-40 (Bristol-Myers Squibb),
preservative-free triamcinolone acetonide, Triesence (Alcon) and Trivaris (Allergan)
[199]. Dexamethasone and fluocinolone acetonide are other corticosteroids currently
under investigation for treatment of DME [199]. Table 1 lists the relative potencies of

various corticosteroids.
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Table 1-3: Relative potency of several candidate corticosteroids for treatment of macular
edema [200, 201].

Corticosteroid Relative Potency

Cortisone 0.8
Cortisol 1
Triamcinolone 5
Fluocinolone 25
Dexamethasone 25

1.4.2.1 Adverse Effects of Corticosteroids

Intravitreal injections of corticosteroids also pose significant risks to the patient.
One of the most common risks is an increase in IOP, resulting in secondary open-angle
glaucoma [202]. Increases in IOP up to 24 mm Hg have been reported in as many as 40%
of patients injected intravitreally with corticosteroids [203]. Another important risk factor
is cataract formation, which has been reported to become visually significant in 50% of
eyes within one year of injection [204]. Migration of corticosteroid into the anterior
chamber may also cause problems such as pseudoendophthalmitis [205]. In January
2010, the FDA issued a warning that corticosteroid formulations containing benzyl
alcohol, such as Kenalog, are not suitable for intraocular injection due to potential
toxicity issues [206]. It was found that benzyl alcohol was toxic in rabbit eyes when
injected at concentrations higher than that found in commercial Kenalog, resulting in the
loss of photoreceptors and outer segments [207]. Typical injection-related side effects
also pose a risk for intravitreally administered corticosteroids [194]. Recently, a large
randomized multicenter clinical trial found that focal / grid photocoagulation was more

effective at treating patients with DME and resulted in fewer side effects in comparison
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with IVTA [208]. Nevertheless, corticosteroids have demonstrated exciting potential for
the treatment of DME and further investigation is warranted. Sustained-release scaffolds
that act as a drug reservoir may limit the free steroid exposure within the eye,
significantly reducing associated complications and prolonging the duration of drug
action [209].

Despite being associated with a relatively high rate of cataract and glaucoma, TA
is the most commonly used intravitreal corticosteroid [210]. However, Dr. Kupperman
suggests dexamethasone may be better suited for intravitreal administration as it is more
potent than TA and may have a lower risk of cataract, glaucoma and retinal toxicity
[210]. In vitro testing revealed that, compared with TA, dexamethasone possessed
decreased toxicity towards lens epithelial cells [211], trabecular meshwork cells [210,
212], and retinal RPE and neurosensory cells [213, 214]. One of the major drawbacks of
intravitreal dexamethasone however, is its relatively short half-life within the vitreous
(3.5 hours) compared with TA (18 days), which persists for approximately 3 months
within the eye [215, 216]. Therefore, sustained release drug delivery modalities that
extend the residence time within the eye and increase the duration of activity may make
dexamethasone a more desirable therapeutic for posterior segment therapies, specifically
macular edema, and lower the incidence of corticosteroid-related complications.

As our understanding of the biochemical pathways implicated in the onset and
pathogenesis of posterior segment ocular disorders increases, so too will the number of

potential targets available for pharmacological intervention. However, the need for
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effective delivery of these agents to the target tissue over prolonged periods of time

remains crucial for the ultimate success of these highly specialized pharmaceuticals.

1.5 Conclusions

With many new drugs and potential treatment options, posterior segment ocular
complications stand to benefit greatly from novel delivery techniques. Ophthalmic drug
delivery is a rapidly expanding field with a unique set of challenges. Sustained delivery
of pharmaceuticals to the posterior segment of the eye is one of the most significant
unmet needs of visual health care. Although substantial progress has been made in recent
years, there are still major obstacles to overcome. An ideal device for ophthalmic drug
delivery to the posterior segment must be non-invasive, easy to administer, provide
prolonged release decreasing the need for frequent dosing, and must minimize the risk of
complications frequently associated with current techniques such as infections, cataracts,
hemorrhages, increases in IOP and retinal detachments. For an ocular delivery device to
achieve commercial success, it must be accepted by the patients receiving the treatment as
well as the physicians that will ultimately administer the technology. Therefore, ease of
use and minimal ‘scare factor’ are important design criteria for novel drug delivery
devices. Advances in polymer technology and improved understanding of the
biochemical pathways involved in the pathogenesis of posterior segment eye diseases will
ultimately yield safe, long-term therapies capable of improving outcomes in these

debilitating complications.
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