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Abstract

In this thesis, a practical superposition coding scheme based on multilevel low-density

parity-check (LDPC) codes is proposed for discrete memoryless broadcast channels.

The simulation results show that the performance of the proposed scheme approaches

the information-theoretic limits. We also propose a method for optimizing the degree

distribution of multilevel LDPC codes based on the analysis of EXIT functions.
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Chapter 1

Introduction and Problem

Statement

1.1 Background

In this section, the problem setup and some coding schemes for discrete memoryless

broadcast channel (DM-BC) are reviewed.

1.1.1 Broadcast Channel Problem Setup

A two-receiver DM-BC (X , p(y1, y2|x),Y1 ×Y2) consists of three finite sets X ,Y1,Y2,

and a conditional probability mass function (pmf) on Y1 × Y2. The transmitter X

wishes to send messages M1 and M2 to receivers Y1 and Y2 respectively.

As illustrated in Figure 1.1, a (2nR1, 2nR2, n) code for DM-BC consists of two message

sets [1 : 2nR1] and [1 : 2nR2]. At the transmitter side, the encoder assigns a codeword

xn(m1, m2) to each message pair (m1, m2). Meanwhile, at the receiver side, decoder

1
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Encoder p(Y1,Y2|X)

Decoder2

Decoder1

 

(M1,M2) X
n

Y1
n

Y2
n

M1

M2

Figure 1.1: Channel model of broadcast channel

1 assigns an estimate yn
1 (m̂1) ∈ [1 : 2nR1] or an error e to each received sequence yn

1 ,

and decoder 2 assigns an estimate yn
2 (m̂2) ∈ [1 : 2nR2] or an error e to each received

sequence yn
2 .

We assume that message pair (M1, M2) is uniformly distributed and that the average

probability of error is defined as P (n)
e = P (M̂1 6= M1 or M̂2 6= M2). A rate pair

(R1, R2) is said to be achievable for DM-BC if there exists a sequence of (2nR1, 2nR2, n)

codes with P (n)
e → 0 as n → ∞.

1.1.2 Time Sharing

It is well known [1] that, for a point-to-point discrete memoryless channel (DMC)

with input X and output Y , any rate R below maxp(x) I(X; Y ) is achievable. Note

that the two-receiver DM-BC (X , p(y1, y2|x),Y1 × Y2) introduced in Section 1.1.1

can be viewed as two separated point-to-point DMCs, as shown in Figure 1.2. As a

consequence, the following rate region (see Figure 1.3) is achievable via time-sharing:

R1 ≤ t max
p(x)

I(X; Y1), R2 ≤ (1 − t) max
p(x)

I(X; Y2), (1.1)

2
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where t ∈ [0, 1] is the time-sharing parameter.

Encoder

p(Y1|X)

Decoder2

Decoder1

 

(M1,M2)
X

n

Y1
n

Y2
n

M1

M2

p(Y2|X)

t

1-t

Figure 1.2: A broadcast channel viewed as two separate point-to-point channels

I(X;Y1)

I(X;Y2)
time sharing

R1

R2

Figure 1.3: Rate region of time sharing

1.1.3 Superposition Coding

The superposition coding scheme was introduced by Cover in [2]. For DM-BC

(X , p(y1, y2|x),Y1 ×Y2), the superposition coding scheme is described as follows:

• Codebook generation: Fix p(u)p(v)

3
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– Randomly and independently generate 2nR2 sequences vn(m2), m2 ∈ [1 :

2nR2 ], each according to
∏n

i=1 p(vi).

– Randomly and independently generate 2nR1 sequences un(m1), m1 ∈ [1 :

2nR1 ], each according to
∏n

i=1 p(ui).

– Generate 2n(R1+R2) sequences of xn(m1, m2) by function f(un(m1), v
n(m2)),

where un(m1) and vn(m2) are from two codebooks separately.

• Encode: Given the message pair (m1, m2), xn(m1, m2) is transmitted.

• Decode: Decoder 2 declares that a message m̂2 is sent if it is the unique message

such that (vn(m̂2), y
n
2 ) ∈ T (n)

ǫ , where T (n)
ǫ is the joint typical set [7]; otherwise

it declares an error.

Decoder 1 declares that a message m̂1 is sent if it is the unique message such

that (xn(m̂1, m2), v
n(m2), y

n
1 ) ∈ T (n)

ǫ for some m2; otherwise it declares an error.

A rate pair (R1, R2) is achievable if it satisfies the conditions [2, 4, 5]:

R1 ≤ I(X; Y1|V ),

R2 ≤ I(V ; Y2),

R1 + R2 ≤ I(X; Y1)

(1.2)

for some p(u)p(v), where X = f(U, V ).

It can be seen from Figure 1.4 that the achievable rate region of superposition coding

is larger than that of time-sharing.

4
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I(X;Y1)

I(X;Y2)
time sharing

R1

R2

superposition coding

Figure 1.4: Rates regions of time-sharing and superposition coding

1.1.4 Binary Symmetric Broadcast Channel

In this thesis, we mainly focus on the binary symmetric broadcast channel (BS-BC),

which is a special case of DM-BC. As shown in Figure 1.5, BS-BC consists of two

binary symmetric channels (BSCs), where the crossover probabilities for the first BSC

and the second BSC are p1 and p2 respectively. With no loss of generality, we assume

p1 < p2 < 1
2
.

For BS-BC, the rate region of time-sharing is

R1 ≤ t(1 − Hb(p1)), R2 ≤ (1 − t)(1 − Hb(p2)) (1.3)

while the rate region of superposition coding is given by

R1 ≤ Hb(α ∗ p1) − Hb(p1),

R2 ≤ 1 − Hb(α ∗ p2)

(1.4)

5
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+

+

Y1

Y2

X

Z1~Bern(p1)

Z2~Bern(p2)

Figure 1.5: Channel model of BS-BC

for some α ∈ [0, 1/2]. Here Hb(p) = −p log2 p − (1 − p) log2(1 − p) and α ∗ p =

α(1 − p) + (1 − α)p.

These two rate regions are depicted in Figure 1.6.

1.2 Motivation and Contribution of the Thesis

Recently the applications of low-density parity-check (LDPC) codes in conjunction

with various message passing algorithms to channel coding problems have shown ex-

tremely good performance (see, e.g., [6]). It should be noted that these codes and

message passing algorithms are mainly developed for binary-input symmetric-output

channels for which the capacity-achieving distribution is the uniform distribution.

However, in some scenarios one might be interested in the case where input dis-

tribution is not uniform. One notable example is the superposition coding scheme

introduced in Section 1.1.3. In this case, the direct application of binary linear codes

6
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1-Hb(p1)

1-Hb(p2)
time sharing

R1

R2

superposition coding

Figure 1.6: Rates regions of time-sharing and superposition coding for BS-BC

is suboptimal since they can only induce uniform input distribution. In order to gen-

erate the desired non-uniform input distribution, one can use multilevel linear codes

constructed through deterministic mapping. The main contribution of this work is the

implementation of multilevel codes in superposition coding as well as the associated

code design method.

1.3 Organization of the Thesis

The thesis is structured as follows:

1. In Chapter 2, we show that the rate region of superposition coding can be

achieved by multilevel codes, which serves as the theoretical foundation for the

subsequent chapters.

2. LDPC codes are introduced in Chapter 3, where the belief propagation algo-

rithm and the associated analysis methods, like density evolution, EXIT chart,

etc. are also discussed.

7



M.A.Sc. Thesis - Wenbo Sun McMaster - Electrical Engineering

3. In Chapter 4, we focus on superposition coding for BS-BC. A multilevel coding

scheme based on LDPC codes as well as the associated degree distribution

optimization method is proposed. Simulation results are also presented.

4. In Chapter 5, we conclude this thesis and suggest the directions for future work.

8



Chapter 2

Proof of Theoretical Bounds

2.1 Review of Linear Codes

For error correction codes used in communication, it is important that they are

amendable to fast encoding and decoding and efficient storage representation.

Let us think about how well we can represent a code. In general, we need to write

all of the codewords down into a codebook describing which sequence of k bits gets

mapped to which codeword. A code C : {0, 1}k → {0, 1}n can be stored using n2k

bits, which is exponential in space. In contrast, linear codes have succinct represen-

tation, specifically, only nk bits space is needed, for each linear code.

2.1.1 Achievable Rates of Linear Codes

We shall show that, for an arbitrary DMC p(y|x), rate R is achievable by binary linear

codes if R < I(X; Y ), where I(X; Y ) is evaluated using the binary uniform input.

9
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• Random linear codebook generation: Let k = ⌈nR⌉ and (u1, u2, . . . , uk) ∈

{0, 1}k be the binary expansion of the message m ∈ [0 : 2k − 1]. Generate

a random codebook such that each codeword xn(uk) is a linear function of uk.

Specifically, let

[ x1 x2 · · · xn ] = [ u1 u2 · · · uk ] ·

























g11 g12 · · · g1n

g21 g22 · · · g2n

...
...

. . .
...

gk1 gk2 · · · gkn

























where gij ∈ {0, 1}, i ∈ [1 : k], j ∈ [1 : n] are independent and identically

distributed (i.i.d.) variables according to Bern(1/2).

• Two properties:

1. X1(m), . . . , Xn(m) are i.i.d. Bern(1/2) for each m 6= 0.

2. Xn(m) and Xn(m̃) are independent for each m 6= m̃.

The proof for the two properties is in Appendix A.

• For the DMC, the transition probability is given by p(yn|xn(m)) =
∏n

i=n p(yi|xi(m)).

• Encoding: Given message m, we transmit xn(m).

• Decoding: Let us denote received sequence as yn. The receiver declares that a

message m̂ is sent if it is the unique message that (xn(m̂), yn) ∈ T (n)
ǫ ; otherwise,

the receiver declares an error.

• Analysis of error probability: We assume that message m is sent.

If m = 0, we assume it will cause a decoding error : ε1 : m = 0. If m 6= 0, the

10
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possible error cases are as below:

ε2 := {(Xn(0), Y n) 6∈ T (n)
ǫ },

ε3 := {(Xn(m), Y n) ∈ T (n)
ǫ for some m 6= 0}.

By the union bound, P (ε) = P (ε1 ∪ ε2 ∪ ε3) ≤ P (ε1) + P (ε2) + P (ε3).

1. For the first term, P (ε1) = 1
2nR approaches to zero as n → ∞.

2. For the second term, P (ε2) tends to zero as n → ∞ by the law of large

numbers.

3. For the third term, (Xn(m), Y n) ∼
∏n

i=1 pX(xi)pY (yi), which means Xn(m)

and Y n are pairwise independent. Thus P{(Xn(m), Y n) ∈ T (n)
ǫ for some

m 6= 0} → 0 as n → ∞, if R ≤ I(X; Y ) − δ(ǫ) by the packing lemma [7].

Note that since the probability of error averaged over codebooks goes to zero, It follows

that there must exist a good linear code (n, k) with diminishing error probability as

n → ∞. This proves that R < I(X; Y ) is achievable for binary linear code, where

I(X; Y ) is evaluated using the binary uniform input.

2.1.2 Converse

In this subsection we shall show that it is impossible to achieve rates above I(X; Y )

(evaluated using the binary uniform input) with binary linear codes. With no essential

11
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loss of generality, we assume the decoding error probability is zero. Note that

nR = H(M)

= I(M ; Y n)

= I(M, Xn(M); Y n)

= H(Y n) − H(Y n|Xn)

=
n
∑

i=1

[H(Yi|Y1, Y2, . . . , Yi−1) − H(Yi|X
n, Y1, Y2, . . . , Yi−1)]

≤
n
∑

i=1

[H(Yi) − H(Yi|X
n, Y1, Y2, . . . , Yi−1)]

=
n
∑

i=1

[H(Yi) − H(Yi|Xi)]

=
n
∑

i=1

I(Xi; Yi).

Where M is the set of messages. It is shown in Appendix A that the distribution of

Xi is Bern(1/2). This completes the proof.

2.2 Proof of the Rate Region of Superposition Cod-

ing Achieved by Linear Codes

2.2.1 Introduction to Deterministic Mapping

It is shown in Section 2.1.1 that the input distribution induced by linear codes follows

Bern(1/2). We shall show that by using deterministic mapping, it is possible achieve

arbitrary channel input distribution by linear codes.

12
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A deterministic mapper is defined as f : W → X, where W ∈ {0, 1}m, X ∈ X (

X is the channel input alphabet) and m is the length of W . A simple example is

illustrated in Figure 2.1 where W has a uniform distribution, P (X = 0) = 1/4 and

P (X = 1) = 3/4. Note we can only achieve probabilities of form k/2m. However, by

increasing the value of m, we can approximate an arbitrary channel input distribution.

W X

00

01

10

11

0

1

Figure 2.1: An example of deterministic mapping

2.2.2 Proof of Achievability by Linear Codes

Here we will prove the achievability for the superposition coding scheme with linear

codes.

• Codebook generation:

1. Generate 2nR1 sequences of linear codeword un(m1) with deterministic

mapping, where m1 ∈ [0 : 2nR1 − 1] and U is according to p(u).

2. Generate 2nR2 sequences of linear codeword vn(m2) with deterministic

mapping, where m2 ∈ [0 : 2nR2 − 1] and V is according to p(v).

13
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3. Generate 2n(R1+R2) xn(m1, m2) by function fn(un(m1), v
n(m2)), where un(m1)

and vn(m2) are from two codebooks separately.

• Encode: Given the message pair (m1, m2), xn(m1, m2) is transmitted.

• Decode: Decoder 2 declares that a message m̂2 is sent if it is the unique message

such that (vn(m̂2), y
n
2 ) ∈ T (n)

ǫ ; otherwise it declares an error.

Decoder 1 declares that a message m̂1 is sent if it is the unique message such

that (xn(m̂1, m2), v
n(m2), y

n
1 ) ∈ T (n)

ǫ for some m2; otherwise it declares an error.

• Error probability analysis: We assume that message pair (M1, M2) = (m1, m2)

is sent.

– Average probability of error for decoder 2

If we assume it will cause a decoding error event ε21: m1 6= 0 and m2 6= 0.

If m1 = 0 or m2 = 0, we define the error cases as:

ε22 := {(V n(m2), Y
n
2 ) 6∈ T (n)

ǫ },

ε23 := {(V n(m′
2), Y

n
2 ) ∈ T (n)

ǫ for some m′
2 6= m2}.

1. For the first term, P (ε21) ≤
1

2nR1
+ 1

2nR2
approaches to 0 as n → ∞.

2. For the second term, P (ε22) tends to 0 as n → ∞ by the law of large

numbers.

3. For the third term, P (ε23) goes to 0 as n → ∞, if R2 < I(V ; Y2) by

the packing lemma.

– Average probability of error for decoder 1

14
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We assume m1 6= 0 and m2 6= 0. We divide the error events into 3 cases:

ε12 := {(Xn(m1, m2), V
n(m2), Y

n
1 ) 6∈ T (n)

ǫ },

ε13 := {(Xn(m′
1, m2), V

n(m2), Y
n
1 ) ∈ T (n)

ǫ for some m′
1 6= m1},

ε14 := {(Xn(m′
1, m

′
2), V

n(m′
2)Y

n
1 ) ∈ T (n)

ǫ for some m′
1 6= m1, m′

2 6= m2}.

1. By the law of large numbers, the term P (ε12) tends to 0 as n → ∞.

2. For m′
1 6= m1, Xn(m′

1, m2) is conditionally independent of (Xn(m1, m2), Y
n
1 )

given V n(m + 2) and is distributed according to
∏n

i=1 p(xi|vi), where

X = f(U, V ). By Packing Lemma, P (ε13) tends to 0 as n → ∞, if

R1 < I(X(V, U); Y1|V ) = I(V, U ; Y1|V ) = I(U ; Y1|V ).

3. For m′
1 6= m1 and m′

2 6= m2, Xn(m′
1, m

′
2) is independent of (Xn(m1, m2), Y

n
1 ).

Hence, by Packing Lemma, P (ε14) goes to 0 as n → ∞, if R1 + R2 <

I(X; Y1) = I(U, V ; Y1).

This proves that the rate region

R1 < I(U ; Y1|V ),

R2 < I(V ; Y2),

R1 + R2 < I(U, V ; Y1)

(2.1)

is achievable by superposition coding scheme with linear codes. It will be seen in

Chapter 4 that we propose a practical coding scheme with more structured multilevel

codes.

15



Chapter 3

Low-Density Graph Codes

3.1 Introduction

Low-density parity-chek (LDPC) codes were invented by Gallager in [8]. LDPC

codes are linear codes obtained from sparse bipartite graphs. Assume that G is a

graph with n variable nodes and r check nodes. The sum of the neighboring positions

of each check node is zero (see Figure 3.1).

Let H be the adjacency matrix of graph G. Specifically, H is a binary r × n matrix

such that the element (i, j) is 1 if and only if the i-th check node and the j-th vari-

able node are connected in graph G. The set of the vector x = (x1, . . . , xn) satisfying

H · xT = 0 forms a linear code. The matrix H is called the parity-check matrix for

the code.
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Figure 3.1: An example of LDPC codes. Codeword x = (x1, x2, . . . , x7) satisfies the
conditions that x1 +x2 +x4 +x5 = 0, x1 +x3 +x4 +x6 = 0 and x2 +x3 +x4 +x7 = 0.

3.2 Decoding Algorithm: Belief Propagation

Let us first introduce a general class of decoding algorithm for LDPC codes [9]. These

algorithms are called message passing algorithms for the reason that messages passed

from variable nodes v to check nodes c and then back to variable nodes v. Belief

propagation algorithm, also known as sum-product message passing algorithm, is one

subclass of message passing algorithms. The messages passed in belief propagation

algorithm are probabilities. For each variable node v, one has probability from certain

value of v and from previous passing round c → v. For each check node c, one has

probability just from previous passing round v → c.

We use log-likelihoods instead of probabilities in our subsequent analysis. For a binary

variable x, likelihood of x is L(x) = p(x = 0)/p(x = 1). Given another variable y,

conditional likelihood is L(x|y) = p(x = 0|y)/p(x = 1|y). Similarly, the log-likelihood
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is lnL(x) for variable x and the conditional log-likelihood is ln L(x|y) for variable x

given y. If the distribution of variable x is uniform, then L(x|y) = L(y|x) by Bayes’

rules.

Let m(l)
vc be the message passed from variable node v to check node c at the l-th round

iteration of this algorithm; m(l)
cv is defined similarly. The messages updating equations

for both variable nodes and check nodes are described as

m(l)
vc =



















mv, if l = 0,

mv +
∑

c′∈Cv−{c} m
(l−1)
c′v , if l ≥ 1.

m(l)
cv = ln

1 +
∏

v′∈Vc−{v} m
(l)
v′c

1 −
∏

v′∈Vc−{v} m
(l)
v′c

,

(3.1)

where mv is the message passed from the channel. Cv is the set of check nodes c

connected to variable node v, and Vc is the set of variable nodes v connected to check

node c.

3.3 Degree Distribution

The degree of a node is defined as numbers of neighboring nodes connected to this

node. In [9], it is shown that the performance of LDPC codes can be significantly

improved by optimizing the distributions of node degree. We define the node degree

distribution as follows:
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λ(x) =
∑

i

λix
i−1, ρ(x) =

∑

i

ρix
i−1, (3.2)

where λi is the distribution of variable node with degree i and ρi is the distribution

of check node with degree i.

Thus, the design rate is given by

R(λ, ρ) = 1 −

∫ 1
0 ρ(x)dx
∫ 1
0 λ(x)dx

. (3.3)

3.4 Density Evolution

The average performance of an ensemble LDPC(n, λ, ρ) can be analyzed because of

its recursive structure. An effective way to assess the performance of LDPC codes is

density evolution [10, 11].

Consider a degree distribution pair (λ, ρ) and transmission over a binary memoryless

symmetric channel (BM-SC) with distribution density α0. Let

αl = α0 ⊗ λ(ρ(αl−1)), (3.4)

where l is the times of iteration rounds and

λ(α) =
∑

i

λiα
⊗(i−1), ρ(α) =

∑

i

ρiα
⊙(i−1), (3.5)

where ⊗ denotes convolution and ⊙ denotes convolution under the space GF (2) ×

[0,∞).
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3.4.1 Density Evolution at Variable Nodes

At variable nodes, the messages are represented by log-likelihoods in (3.1) that

mvc(m0, m1, . . . , mdv−1) =
dv−1
∑

i=0

mi, (3.6)

where
∑dv−1

i=0 mi is simply the convolution of their densities. Let α0, α1, . . . , αdv−1

denote densities of messages m0, m1, . . . , mdv−1. Thus, density evolution for variable

nodes is

mvc(α0, α1, . . . , αdv−1) = α0 ⊗ α1 ⊗ · · · ⊗ αdv−1. (3.7)

3.4.2 Density Evolution at Check Nodes

For the belief propagation algorithm, 0 is mapped to 1 and 1 is mapped to −1. Let

us denote belief p(yi|xi = 1) by µ1 and p(yi|xi = −1) by µ−1. For check nodes, we

have

µ1 − µ−1 =
dc−1
∏

k=1

(µk
1 − µk

−1), (3.8)

and also µ1 + µ−1 =
∏dc−1

k=1 (µk
1 + µk

−1)=1.

If the m is a log-likelihood ln µ1

µ−1
, then it follows that

µ1 − µ−1 =
em − 1

em + 1
= tanh(m/2). (3.9)

Conversely, ln µ1

µ−1
= ln 1+(µ1−µ−1)

1−(µ1−µ−1)
. Thus the definition for check node message passing

is

mcv(m1, . . . , mdc−1) = ln
1 +

∏dc−1
i=1 tanh 1

2
mi

1 −
∏dc−1

i=1 tanh 1
2
mi

. (3.10)
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We can represent density of (µ1, µ−1) by (ln sgn(µ1 − µ−1),− ln |µ1 − µ−1|), since

tanh(m
2
) = µ1 − µ−1. By this transform, densities are mapped into GF (2) × [0,∞).

The density of sum on check node is the convolution of densities pair (ln sgnm,

− ln | tanh(m
2
)|) according to (3.10). Therefore, we have

mcv(α1, α2, . . . , αdc−1) = α1 ⊙ α2 ⊙ · · · ⊙ αdc−1. (3.11)

3.5 Extrinsic Information Transfer Function

Extrinsic Information Transfer (EXIT) function [12, 13] is a useful and intuitive tool

for analyzing the performance of LDPC codes. In Section 3.4, density evolution

provides an exact assess of decoding performance by tracking message density during

each decoding iteration. However, the complexity of density evolution is huge. In

contrast, using EXIT functions we only need to track one single parameter (mutual

information) rather than densities.

Let X be a codeword of length n chosen from codebook C. Let Y be a sequence of

length n received after transmitting X over BM-SC(h), where h denotes the entropy

passed from this BM-SC. The EXIT function of i-th bit in the codeword is defined as

hi(h) = H(Xi|Y∼i(h)). (3.12)

The average EXIT function is

h(h) =
1

n

n
∑

i=1

H(Xi|Y∼i(h)) =
1

n

n
∑

i=1

hi(h). (3.13)
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The EXIT function tracks entropy passed from input to output. Note that EXIT

function is defined by H(Xi|Y∼i) instead of H(Xi|Y ), since we focus on the ”extrinsic”

information transfered from other symbols Y∼i rather than Yi.

In the next chapter, we will analyze the error probability in decoding process with

EXIT functions.
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Chapter 4

A Practical Superposition Coding

Scheme Based on Multilevel LDPC

Codes

4.1 Introduction to Multilevel Coding

It is well known that linear codes can be directly used to achieve the information

rate evaluated with the uniform input, which we have proven in Chapter 2. Given

the existing results on the design of LDPC codes for binary symmetric channels, it

suffices to say that LDPC codes provide good practical solution when the desired

input distribution is the uniform distribution [14].

However, the input distribution is not uniform in many cases, e.g. superposition cod-

ing. For such coding schemes, linear codes can not be used directly, for linear codes

only induce uniform distribution.

In this chapter, we will construct multilevel codes by using a set of binary linear codes
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and a deterministic mapper to achieve a general mutual information rate (possibly

evaluated using a non-uniform input distribution) over the channel. However, the

mapper does not necessarily have to be a one-to-one function. In our proposed super-

position coding scheme, multilevel codes with several layers can achieve rates close to

the mutual information rate evaluated with an arbitrary input distribution PX .

4.2 Coding Scheme

4.2.1 Deterministic Mapping

The deterministic mapper is defined in Section 2.2.1. In our practical coding scheme,

we let U be distributed according to Bern(p), where P (U = 0) = p and P (U = 1) =

1 − p. A possible deterministic mapper is shown in Figure 4.1, where W ∈ {0, 1}3

and is uniformly distributed.

4.2.2 Proposed Coding Scheme

Our proposed superposition coding scheme is as follows:

• Codebook generation: Design two binary code generator matrices G1[k×n] and

G2[k × tn], where k is the length of message, n is the length of the codeword

and t is the numbers of multilevel.

Generate codewords V n = m2 ·G2, where each vn is i.i.d. Bern(1/2) sequence.

Generate codewords Ûn = m1 · G1, which is a 2k × tn codebook and each

codeword is i.i.d. Bern(1/2) sequence. By the deterministic mapping function
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000
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110

111

0

1

Figure 4.1: A three-level deterministic mapping

we mentioned above, every m columns W1 · · · Wt in the codebook are mapped

into one column U.

W1 · · · Wt → U

For the whole codebook,

[ W1 · · · Wt · · · W1 · · · Wt
] → [ U · · · U ]

So, we can get a 2k × n codebook that every codeword Un is i.i.d. Bern(p)

sequence.

• Encode: Given (u, v), xn(m1, m2) = un(m1) ⊕ vn(m2) is transmitted, where ⊕

is modulo-2 addition.

• Decode:
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1. Decoder 2 decodes m2 from yn
2 = vn(m2)⊕(un(m1)⊕zn

2 ) by treating un(m1)

as noise. m2 can be decoded with probability of error → 0 as n → ∞ if

R2 < I(V ; V ⊕ U ⊕ Z2) = H(V ) − H(U ⊕ Z2)

2. Decoder 1 uses successive cancelation: It first decodes m2 from yn
1 =

vn(m2) ⊕ (un(m1) ⊕ zn
1 ), subtracts off vn(m2), then decodes m1 from

un(m1) ⊕ zn
1 . m1 can be decoded with probability of error → 0 as n → ∞

if R1 < I(U ; U ⊕ Z1) = H(U ⊕ Z1) − H(Z1)

4.2.3 Information Rate Achieved by Multilevel Codes

Next, let us show the mutual information across a channel induced by an arbitrary

input distribution can be achieved by the multilevel coding scheme proposed above.

Argument: The proposed coding scheme can achieve the mutual information

across the DMC induced by an arbitraryI(W ; Y ) = I(X; Y ).

Proof:

I(W ; Y, X) = I(W ; X) + I(W ; Y |X)

= I(W ; Y ) + I(W ; X|Y )

Note that I(W ; Y |X) = 0, which is due to the fact that W → X → Y forms a Markov
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chain. Thus

I(W ; Y ) = I(W ; X) − I(W ; X|Y )

= (H(X) − H(X|W ))− (H(X|Y ) − H(X|W, Y ))

= H(X) − H(X|Y )

= I(X; Y )

where H(X|W, Y ) = H(X|W ) = 0, for X is a function of W .

Hence we can achieve the rate using the proposed multilevel coding scheme and

I(X; Y ) = I(W ; Y )

= I(W1; Y ) + I(W2; Y |W1) + I(W3; Y |W1, W2)

This proof shows that the deterministic mapping from W to X does not incur a rate

loss.

4.3 Degree Distribution Optimization

In our proposed multilevel coding scheme, the distribution of X is P (X = 1) = 1− p

and P (X = 0) = p. We will find optimized degree distribution by analyzing the

EXIT function.

4.3.1 EXIT Function for Check-to-Variable Nodes

For a check node with degree m, the error probability of edge connected is ǫ, as

illustrated in Figure 4.2. Note that only if odd numbers of edges are in error, the

check node is in error. Even numbers of errors do not introduce any error.
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1

m-2

m-1

...

Figure 4.2: Check-to-variable node message

The error probability of this outgoing edge combined with m−1 incoming messages

is

α
⊙(m−1)
BSC(ǫ) =

m−1
2
∑

k=0

(

m − 1

2k + 1

)

ǫ(2k+1)ǭm−1−(2k+1)

=
(ǫ + ǭ)m−1 − (ǭ − ǫ)m−1

2

=
1 − (1 − 2ǫ)m−1

2

(4.1)

where ǭ = 1 − ǫ.

The EXIT function of this check node with degree m is

hm−1
c (h) = H(α

⊙(m−1)
BSC(ǫc)

)

= H(α
BSC(

1−(1−2ǫc)m−1

2
)
)

= Hb(
1 − (1 − 2ǫc)

m−1

2
)

(4.2)

where ǫc = H−1
b (h) and h is the entropy passed from variable node to check node.
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4.3.2 EXIT Function for Variable-to-Check Nodes

Assuming a variable node with degree m, and the error probability of each edge is ǫ,

as illustrated in Figure 4.3.

The conditional probability is

0

1

m-2

m-1

...

Figure 4.3: Variable-to-Check node message

p(Xj = 1|Y∼j) =
p(Y∼j|Xj = 1)p(Xj = 1)

p(Y∼j)

=

∑m−1
i=0

(

m − 1

i

)

(1 − p)ǫiǭm−1−i

∑m−1
i=0

(

m − 1

i

)

(1 − p)ǫiǭm−1−i +
∑m−1

i=0

(

m − 1

i

)

pǭiǫm−1−i

=
(1 − p)ǭm−1−2i

(1 − p)ǭm−1−2i + pǫm−1−2i
,

and

p(Xj = 0|Y∼j) = 1 − p(Xj = 1|Y∼j)

=
pǫm−1−2i

(1 − p)ǭm−1−2i + pǫm−1−2i
.

(4.3)
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So, the EXIT function of variable node with degree m

hm−1
v (h) =H(αBSC(ǫ0) ⊗ α

⊗(m−1)
BSC(h))

=
m−1
∑

i=0

(

m − 1

i

)

ǫ0ǫ
iǭm−1−iHb(

(1 − p)ǫ0ǭ
m−1−2i

(1 − p)ǫ0ǭm−1−2i + pǭ0ǫm−1−2i
)

+
m−1
∑

i=0

(

m − 1

i

)

ǭ0ǫ
iǭm−1−iHb(

(1 − p)ǭ0ǭ
m−1−2i

(1 − p)ǭ0ǭm−1−2i + pǫ0ǫm−1−2i
),

(4.4)

where ǫ = 1−(1−2ǫc)dc−1

2
, dc is the degree of the corresponding check node and ǫc =

H−1
b (h), h is the entropy of the previous iteration.

4.3.3 Degree Distribution Optimization via Linear Program-

ming

If the entropy at the output of the variable nodes is h, after one further iteration, it

becomes

vh(c(h)) =
∑

i

λih
i−1
v (c(h)) (4.5)

The condition for progress at each iteration is vh(c(h)) ≤ h. This formulation is lin-

ear with the variable degree fraction λi. If check node distribution ρ is fixed, we can

therefore optimize λ by linear programming techniques. Assuming crossover proba-

bility ǫ0 is fixed, by the EXIT function hi
v we introduced above, the corresponding

linear program is

max{
∑

i≥2

λi

i
|λi ≥ 0;

∑

i≥2

λi = 1;
∑

i≥2

λih
i−1
v (c(h)) ≤ h;h ∈ (0, 1)} (4.6)

For message V , no multilevel coding is involved. So V is uniformly distributed.
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We can use the same distribution optimization function above, but the entropy of

variable node with degree m is

hm−1
v (h) =

m−1
∑

i=0

(

m − 1

i

)

ǫ0ǫ
iǭm−1−iHb(

ǫ0ǭ
m−1−2i

ǫ0ǭm−1−2i + ǭ0ǫm−1−2i
)

+
m−1
∑

i=0

(

m − 1

i

)

ǭ0ǫ
iǭm−1−iHb(

ǭ0ǭ
m−1−2i

ǭ0ǭm−1−2i + ǫ0ǫm−1−2i
).

(4.7)

4.4 Practical Decoding Scheme

In our practical scheme, we set t = 3 which generates non-uniform distribution P (X =

1) = 7/8 and P (X = 0) = 1/8. By linear optimization function (4.6) and (4.7), some

optimized degree distributions we find are given in Table 4.1 and Table 4.2.

Table 4.1: Optimized variable node degree distribution with the check node degree
distribution fixed

degree ρ7 = 1 ρ6 = 1 ρ9 = 1
2 0.1369 0.0580 0.0455
3 0.0019 0.1545 0.0015
4 0.0192 0.0070 0.0265
5 0.0326 0.0325 0.0115
6 0.3292 0.1700 0.0590
7 0.1570 0.3640 0.5380
8 0.1748 0.2140 0.1820
9 0.1464 0 0.1250
10 0 0 0.0110

R = 0.1496 R = 0.1587 R = 0.1658

For decoder 2, it faces a simple point-to-point channel as shown in Figure 4.4,

which is equivalent to Figure 4.5, where U is considered as noise.

Now, let us consider about XU . For decoder 1, first decode V while treating U as

noise and then subtract V from the received codeword and further decode U . Note
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Table 4.2: Optimized variable node degree distribution with the check node degree
distribution fixed

degree ρ6 = 0.8, ρ7 = 0.2 ρ5 = 1
2 0.1865 0.2560
3 0.0745 0.1975
4 0.2285 0.1105
5 0.0615 0.0845
6 0.3225 0.0210
7 0.0415 0.1335
8 0.0850 0.1970
9 0 0.0085

R = 0.2562 R = 0.3144

+

P2

X(U+V) Y2

Figure 4.4: Channel model for decoder 2

that XU is associated with three-level coding, and the probability of W1, W2 and W3

are presented in Figure 4.6.

4.5 Simulation Results

We implement the algorithm using MATLAB. Some optimized degree distributions of

LDPC codes are demonstrated in the last section for this binary symmetric broadcast

channel.

Four rate pairs of (R1, R2) are chosen as shown in Figure 4.7. The simulation results
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+

U+P2

V Y2

Figure 4.5: Equivalent channel model for decoder 2

are shown in Figure 4.8∼4.15. We test the performances of the proposed multilevel

LDPC coding scheme by setting block length =5,000. Therefore, the length of three-

level code used in the test cases is 15,000. The maximum iterations in the message

passing algorithm is 100. For each simulation case, 5,000 sequences are tested. Ac-

cording to degree distribution optimization function (4.6), we generate four H1 and

four H2 with corresponding rate pairs shown in Figure 4.7. The Shannon limits of

crossover probabilities for the two decoders are also shown in each figure. The simu-

lation results are close to the theoretical bound in these cases, validating our coding

scheme.
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Figure 4.6: Decoding scheme for decoder 1

34



M.A.Sc. Thesis - Wenbo Sun McMaster - Electrical Engineering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
1

R
2

 

 
superpostion coding
time sharing

(0.4212, 0.2844)

(0.4488, 0.2562)

(0.4761, 0.2272)

(0.4974, 0.2165)

Figure 4.7: Four rate pairs are chosen when crossover probabilities p1 = 0.010 and
p2 = 0.055
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Figure 4.8: Performance of decoder 1 when R1 is 0.4212
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Figure 4.9: Performance of decoder 2 when R2 is 0.2844
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Figure 4.10: Performance of decoder 1 when R1 is 0.4488
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Figure 4.11: Performance of decoder 2 when R2 is 0.2562
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Figure 4.12: Performance of decoder 1 when R1 is 0.4761
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Figure 4.13: Performance of decoder 2 when R2 is 0.2272
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Figure 4.14: Performance of decoder 1 when R1 is 0.4974
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Figure 4.15: Performance of decoder 2 when R2 is 0.2165
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, a practical superposition coding scheme based on multilevel low-density

parity-check (LDPC) codes is proposed for discrete memoryless broadcast channels.

The simulation results show that the performance of the proposed scheme approaches

the information-theoretic limits. We also propose a method for optimizing the degree

distribution of multilevel LDPC codes based on the analysis of EXIT functions.

5.2 Future Work

There are two possible directions for future work. Firstly, instead of using EXIT

functions, one can optimize the degree distribution of multilevel codes using density

evolution [15], which may lead to better performance. Secondly, in this thesis we

have mainly focused on BS-BC; the coding problem for other broadcast channels, e.g.

AWGN broadcast channel [7], are worth investigating.
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Appendix A

Proof of the Properties of Linear

Codes

The linear codebook is generated as follows: Let k = ⌈nR⌉ and (u1, u2, . . . , uk) ∈

{0, 1}k be the binary expansion of the message m ∈ [1 : 2k]. Generate a random

codebook that each codeword xn(uk) is a linear function of uk. Let

[ x1 x2 · · · xn ] = [ u1 u2 · · · uk ] ·

























g11 g12 · · · g1n

g21 g22 · · · g2n

...
...

. . .
...

gk1 gk2 · · · gkn

























where gij ∈ {0, 1}, i ∈ [1 : k], j ∈ [1 : n] are independent and identically distributed

(i.i.d.) according to Bern(1/2).

1. Argument: X1(u
k), . . . , Xn(u

k) are i.i.d. Bern(1/2) for each uk.
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Proof : Note that

Xm(uk) = uk · gm

Xn(uk) = uk · gn

where Xm(uk) is the m-th position in codeword and gm is the m-th column vec-

tor of the generator matrix G. Thus Xm(uk) is a linear combination of gm, and

Xn(uk) is a linear combination of gn. Every element in G is an i.i.d. Bern(1/2)

random variable, so Xm(uk) and Xn(uk) are independent. Meanwhile, the sum

of two independent Bern(1/2) random variables is also a Bern(1/2) random

variable, which proves that Xm(uk) and Xn(uk) follow Bern(1/2) distribution.

Therefore, all elements in Xn(uk) are i.i.d. Bern(1/2) random variables.

2. Argument: Xn(uk) and Xn(ũk) are independent for each uk 6= ũk.

Proof : Xn(uk) is a linear summation of i-th row of G for ui = 1, where i is

from 1 to k. For uk and ũk, we assume there is one position i different in these

two messages, that is uk
i = 0 and ũk

i = 1. Thus, Xn(ũk) = Xn(uk) + ḡi, where

ḡi is the i-th row of G. According to the codebook generation, all elements in

G are i.i.d. random variables, which means Xn(uk) and ḡi are independent.

Therefore, Xn(uk) and Xn(ũk) are pairwise independent sequences.

3. Argument: The empirical distribution of every column of the codebook is

Bern(1/2).

Proof : Without loss of generality, we assume one element Xmi in the i-th col-

umn of the codebook is 1, xmi = uk
m · gi = 1, where gi is the i-th column of

generator matrix G (we assume G has no zero columns, since zero columns
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conveys no information) and uk
m = (um1, um2, . . . , umk) is the m-th message. So,

we can generate another message uk
n = (1−um1, um2, . . . , umk) that one element

in this message uk
m is flipped, so Xni = uk

n · gi = 0. Therefore, if there is a

”1” in the i-th column of codebook, there is always a corresponding ”0” in the

same column. The empirical distribution of every column of the codebook is

Bern(1/2).
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