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Abstract

We study bifurcations of periodic travelling waves in granular dimer chains

from the anti-continuum limit, when the mass ratio between the light and

heavy beads tends to zero. We show that every limiting periodic wave is

uniquely continued with respect to the mass ratio parameter and the periodic

waves with the wavelength larger than a certain critical value are spectrally

stable. Numerical computations are developed to study how this solution

family is continued to the limit of equal mass ratio between the beads, where

periodic travelling waves of granular monomer chains exist.
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Introduction

Wave propagation in chains of granular crystals has been a popular area of

study over the last decade. Granular crystals are realized physically as chains

of densely packed, elastically interacting particles. These chains obey the

Fermi-Pasta-Ulam (FPU) lattice equations, accompanied with Hertzian inter-

action forces. Experimental work with various materials based on granular

crystals along with the many possible applications [6, 25] of such systems has

motivated theoretical research on chains of granular crystals.

The existence of solitary waves in granular chains has been studied us-

ing several analytic and numerical techniques. MacKay [21] used the technique

of Friesecke and Wattis [11] to prove the existence of solitary waves. Six years

later, this result was used by English and Pego [9] to prove that spatial tails

of such solitary waves have double-exponential decay. Numerically, Ahnert

and Pikovsky [1] studied convergence to the solitary wave solution. In review-

ing the variational technique of [11], Stefanov and Kevrekidis [27] proved that

these solitary waves in granular chains are single-humped (bell-shaped).

The focus in this area of research has more recently shifted to periodic

travelling waves in homogeneous and heterogeneous chains of granular crystals.

This change in focus is due to the notion that such studies can be more relevant

for physical experiments [13, 24]. James considers the existence of periodic
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wave solutions of the differential advance-delay equation in the context of

Newton’s cradle [14] and homogeneous granular chains [15]. In [15], James

shows the existence of periodic travelling waves in the neighbourhood of a

special solution for binary oscillations using an application of the Implicit

Function Theorem. Numerical calculations in [15] suggest that periodic waves

with wavelength larger than a critical value are spectrally unstable. Numerical

and asymptotic analysis in [15] also show the convergence to a solitary wave in

the limit of infinite wavelength. More recent work [16] showed non-existence

of time-periodic breathers in homogeneous granular crystals and existence of

these breathers in Newton’s cradle, where a discrete p-Schrödinger equation

provides a robust approximation.

Starosvetsky et al. used numerical techniques based on Poincaré maps

to approximate periodic waves in a chain of finitely many beads closed in a

periodic loop. These waves were approximated both for monomers (homo-

geneous chains) [26] and dimers (chains of beads of alternating masses) [17].

Solitary waves were found to exist in the limit of an infinite mass ratio be-

tween light and heavy particles in [17]. The authors of [17] explain that such

solitary waves are in resonance with linear waves and therefore do not persist

when changing the mass ratio parameter. The existence of a countable set of

mass ratio parameters for which solitary waves should exist are suggested by

numerical results in [17], yet no rigorous studies of this problem have been de-

veloped. Recent work [18] contains numerical results on existence of periodic

travelling waves in granular dimer chains.

This thesis is devoted to analysis of periodic travelling waves in dimer

granular chains. In particular:

• We use the anti-continuum limit of the FPU lattice, recently explored in

2
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the context of existence and stability of discrete multi-site breathers by

Yoshimura [28], to find a periodic travelling wave solution to the dimer

system in the anti-continuum limit.

• From the solution at the anti-continuum limit, we use a variation of the

Implicit Function Theorem to prove that every limiting periodic travel-

ling wave is uniquely continued with respect to the mass-ratio parameter.

These results differ from the asymptotic calculations in [17], where a dif-

ferent limiting solution is considered in the anti-continuum limit.

• We use perturbation arguments, similar to those developed in [23], to

determine spectral stability of periodic travelling waves. We show that

periodic travelling waves with wavelength larger than a certain critical

value are spectrally stable.

• We show numerically that the family of periodic travelling waves bifur-

cating from the anti-continuum limit extend to the limit of equal masses

for the dimer chains. We also show numerically that the periodic travel-

ling waves of the homogeneous chains considered in [15] are different than

those extended to the equal mass limit from the anti-continuum limit. In

other words, the periodic waves in dimers do not satisfy the reductions

to periodic waves of monomer chains even at the equal mass-ratio limit.

This thesis is organized as follows: Chapter 1 introduces the model

and sets up the necessary preliminaries for the search of periodic travelling

waves. Chapter 2 develops a continuation of periodic travelling waves from

the anti-continuum limit. Perturbative arguments that characterize Floquet

multipliers to determine spectral stability of periodic travelling waves near

the anti-continuum limit are discussed in Chapter 3. Numerical results are

3
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collected in Chapter 4. The MATLAB codes used for numerical computations

are collected at the end of the thesis.

4



Chapter 1

Mathematical Formalism

1.1 The Model

We consider an infinite chain of spherical beads of alternating masses (a dimer),

which obey Newton’s equations of motion, mẍn = V ′(yn − xn)− V ′(xn − yn−1),

Mÿn = V ′(xn+1 − yn)− V ′(yn − xn),
n ∈ Z, (1.1)

where m and M represent masses such that m ≤ M . {xn}n∈Z and {yn}n∈Z
are the coordinates of the centres of the beads of mass m and M , respectively.

V is the interaction potential that represents the Hertzian contact forces for

perfect spheres [24, 25]:

V (x) =
1

1 + α
|x|1+αH(−x) (1.2)

where α = 3
2
and H is the Heaviside step function with H(x) = 1 for x > 0 and

H(x) = 0 for x ≤ 0. The value of α is determined by the spherical geometry
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of the beads. The Heaviside function with a negative argument captures the

behaviour that the beads will only experience a force when in contact with

one another and will move inertially when not in contact with another bead.

Making the substitution,

n ∈ Z : xn(t) = u2n−1(τ), yn(t) = εw2n(τ), t =
√
mτ (1.3)

where ε2 = m
M
, we can rewrite the system of Newton’s equations (1.1) as

 ü2n−1 = V ′(εw2n − u2n−1)− V ′(u2n−1 − εw2n−2),

ẅ2n = εV ′(u2n+1 − εw2n)− εV ′(εw2n − u2n−1),
n ∈ Z. (1.4)

The limit ε = 0 is referred to as the anti-continuum limit of zero mass

ratio. In the limit of equal masses that is, for ε = 1, we can apply the reduction,

n ∈ Z : u2n−1(τ) = U2n−1(τ), w2n(τ) = U2n(τ). (1.5)

Under this substitution, the system of two granular chains (1.4) reduces to the

scalar system of Newton’s equation of motion that describes a homogeneous

chain of granular crystals of uniform mass (a monomer),

Ün = V ′(Un+1 − Un)− V ′(Un − Un−1), n ∈ Z. (1.6)

We note two symmetries of the dimer equation (1.4). The first is trans-

lational invariance of solutions with respect to τ . If {u2n−1(τ), w2n(τ)}n∈Z is

a solution of (1.4) then

{u2n−1(τ + b), w2n(τ + b)}n∈Z (1.7)
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is also a solution for any b ∈ R. The second symmetry is a uniform shift of

the coordinates {u2n−1(τ), w2n(τ)}n∈Z in the direction of (ε, 1). If

{u2n−1(τ), w2n(τ)}n∈Z is a solution of (1.4), then

{u2n−1(τ) + εa, w2n(τ) + a}n∈Z (1.8)

is also a solution for any a ∈ R.

The Hamiltonian function for system (1.4) is given by

H =
1

2

∑
n∈Z

(p22n−1+ q22n)+
∑
n∈Z

V (εw2n−u2n−1)+
∑
n∈Z

V (u2n−1− εw2n−2), (1.9)

written in canonical variables {u2n−1, p2n−1 = u̇2n−1, w2n, q2n = ẇ2n}. With the

Hamiltonian (1.9), we can write the system (1.4) via the symplectic structure:

u̇2n−1 =
∂H

∂p2n−1

, ṗ2n−1 =
∂H

∂u2n−1

, ẇ2n =
∂H

∂q2n
, q̇2n =

∂H

∂w2n

. (1.10)

1.2 Periodic Travelling Waves

In this thesis, we consider 2π-periodic solutions of the system (1.4). In other

words, we consider solutions such that,

u2n−1(τ) = u2n−1(τ + 2π), w2n(τ) = w2n(τ + 2π), τ ∈ R, n ∈ Z. (1.11)

In addition to this requirement, we consider travelling wave solutions that

satisfy the reduction,

u2n+1(τ) = u2n−1(τ+2q), w2n+2(τ) = w2n(τ+2q), τ ∈ R, n ∈ Z, (1.12)

7
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where q ∈ [0, π] is a free parameter. Given constraints (1.11) and (1.12) for

periodic travelling wave solutions, there must exist 2π-periodic functions u∗

and w∗ such that

u2n−1(τ) = u∗(τ + 2qn), w2n(τ) = w∗(τ + 2qn), τ ∈ R, n ∈ Z. (1.13)

Parameter q is inversely proportional to the wavelength of the periodic

wave when regarded in this context. The functions u∗ and w∗ satisfy a system

of advance-delay differential equations:

 ü∗(τ) = V ′(εw∗(τ)− u∗(τ))− V ′(u∗(τ)− εw∗(τ − 2q)),

ẅ∗(τ) = εV ′(u∗(τ + 2q)− εw∗(τ))− εV ′(εw∗(τ)− u∗(τ)),
τ ∈ R.

(1.14)

Remark 1. We could generalize the class of solutions by seeking a periodic

travelling wave in the form

u2n−1(τ) = u∗(cτ + 2qn), w2n(τ) = w∗(cτ + 2qn), τ ∈ R, n ∈ Z,

where c > 0 is an arbitrary parameter. With the help of a scaling transforma-

tion of system (1.4), we can always normalize c to one.

Remark 2. It will be useful for numerical approximations and stability anal-

ysis of periodic travelling waves to consider another reduction. For particular

values, q = mπ
N
, where 1 ≤ m ≤ N , we can reduce system (1.4) to a system

of 2mN second-order ordinary differential equations subject to the periodic

boundary conditions:

u−1 = u2mN−1, u2mN+1 = u1, w0 = w2mN , w2mN+2 = w2. (1.15)

8
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1.3 The Anti-Continuum Limit

The anti-continuum limit occurs when massM is infinitely larger than massm,

so that ε = 0. In this limit, the system of differential-advance delay equations,

(1.14) reduces to: ü∗(τ) = V ′(−u∗(τ))− V ′(u∗(τ)),

ẅ∗(τ) = 0,
τ ∈ R. (1.16)

We can see that the system is decoupled in the anti-continuum limit and the

equation for u∗ can be further simplified,

ü∗(τ) = V ′(−u∗(τ))− V ′(u∗(τ))

= −|u∗(τ)|αH(u∗(τ)) + |u∗(τ)|αH(−u∗(τ))

= −|u∗(τ)|α−1u∗(τ)

Let ϕ be a solution of the nonlinear oscillator equation,

ϕ̈ = V ′(−ϕ)− V ′(ϕ) → ϕ̈+ |ϕ|α−1ϕ = 0. (1.17)

Since α = 3
2
, the fourth derivative of ϕ is no longer continuous in t. Thus, if

ϕ is a 2π-periodic solution to equation (1.17), then ϕ ∈ C3
per(0, 2π).

The nonlinear oscillator (1.17) has the first integral (or energy),

E =
1

2
ϕ̇2 +

1

1 + α
|ϕ|α+1. (1.18)

The phase portrait of the nonlinear oscillator, (1.17), in the (ϕ, ϕ̇)-plane

9
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Figure 1.1: Left: Phase portrait of the nonlinear oscillator (1.17) in the (ϕ, ϕ̇)-
plane. Right: The period T of the nonlinear oscillator versus energy E.

consists of a family of closed orbits around the point (0, 0). This is visualized

numerically in Figure 1.1 (left). It is clear that the origin is the only critical

point for equation (1.17). Each orbit corresponds to a T -periodic solution,

ϕ, where T is determined uniquely by the energy E. It is known [15, 28]

that for α > 1 the period T is a monotonically decreasing function of E

with the properties that T → ∞ as E → 0 and T → 0 as E → ∞. Figure 1.1

(right) verifies this numerically for the nonlinear oscillator, (1.17). Given these

properties, we can conclude that there is a unique E0 > 0 such that T (E0) =

2π. We also know that the nonlinear oscillator (1.17) is nondegenerate in the

sense that T ′(E0) 6= 0. More precisely, T ′(E0) < 0.

In this thesis, we consider only 2π-periodic functions ϕ, defined by

(1.18) for E = E0. We define a unique ϕ by fixing the initial conditions at

ϕ(0) = 0 and ϕ̇(0) > 0. These initial conditions uniquely determine one of

two odd solutions, ϕ, to equation (1.17).

Using equations (1.16) and (1.17), we conclude that the limiting 2π-

periodic travelling wave solutions at ε = 0 which satisfy the constraints (1.12)

10
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for any fixed q ∈ [0, π] are

ε = 0 : u2n−1(τ) = ϕ(τ + 2qn), w2n(τ) = 0, τ ∈ R, n ∈ Z. (1.19)

We will prove persistence of the limiting solutions (1.19) in powers of

ε in the granular dimer chain (1.4). To do this, we will work in the Sobolev

space of odd 2π-periodic functions for {u2n−1}n∈Z,

Hk
u =

{
u ∈ Hk

per(0, 2π) : u(−τ) = −u(τ), τ ∈ R
}
, k ∈ N0, (1.20)

and in the Sobolev space of 2π-periodic functions with zero mean for {w2n}n∈Z,

Hk
w =

{
w ∈ Hk

per(0, 2π) :

∫ 2π

0

w(τ)dτ = 0

}
, k ∈ N0. (1.21)

The choice of spaces is motivated by the symmetries (1.7) and (1.8).

The two symmetries generate a two dimensional kernel of the linearized opera-

tors of the system (1.4). The choice of constraints in (1.20) and (1.21) creates

a trivial, zero-dimensional kernel for the linearized operators. We will see more

on the linearized operators and their kernels in the following chapter.

It will be clear from analysis that the vector space defined in (1.21)

is not precise enough to prove the persistence of travelling wave solutions

satisfying constraints (1.12). Therefore we will need a more precise space

given by,

H̃k
w =

{
w ∈ Hk

per(0, 2π) : w(τ) = −w(−τ − 2q)
}
, k ∈ N0. (1.22)

11
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We can see clearly that H̃k
w ⊂ Hk

w since if w is a 2π-periodic function, then

∫ 2π

0

w(τ)dτ = −
∫ 2π

0

w(−τ − 2q)dτ

=

∫ −2π−2q

−2q

w(τ)dτ

= −
∫ 2π

0

w(τ)dτ,

from which we conclude that
∫ 2π

0
w(τ)dτ = 0.

1.4 Special Periodic Travelling Waves

In the next chapter, we shall prove persistence of periodic travelling wave

solutions from the anti-continuum limit for ε > 0. It is worthwhile to mention

before such analysis the existence of three explicit periodic travelling wave

solutions of the granular dimer chain (1.4) for special values of q.

The simplest of these solutions occurs at q = π
2
. Setting w∗ = 0, the

system (1.14) reduces to ü∗(τ) = V ′(−u∗(τ))− V ′(u∗(τ)),

0 = V ′(u∗(τ + π))− V ′(−u∗(τ)),
τ ∈ R. (1.23)

The solution, ϕ of the nonlinear oscillator (1.17) has the symmetry

ϕ(τ − π) = ϕ(τ + π) = −ϕ(τ).

Therefore, we obtain the exact solution u∗ = ϕ that gives:

q =
π

2
: u2n−1(τ) = ϕ(τ + nπ), w2n(τ) = 0 (1.24)

12
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For q = 0 and q = π, the system (1.14) reduces to, ü∗(τ) = V ′(εw∗(τ)− u∗(τ))− V ′(u∗(τ)− εw∗(τ)),

ẅ∗(τ) = εV ′(u∗(τ)− εw∗(τ))− εV ′(εw∗(τ)− u∗(τ)),
τ ∈ R. (1.25)

Under the change of variables p(τ) = u∗(τ)−εw∗(τ) we can reduce the system

to,  p̈(τ) = (1 + ε2)(V ′(−p(τ))− V ′(p(τ))

ü∗(τ) = V ′(−p(τ))− V ′(p(τ)),
τ ∈ R. (1.26)

This provides the exact solution p = ϕ
(1+ε2)2

, that gives,

q = {0, π} : u2n−1(τ) =
ϕ(τ)

(1 + ε2)3
, w2n(τ) =

−εϕ(τ)

(1 + ε2)3
. (1.27)

By construction, the solutions (1.24) and (1.27) persist for any ε ≥ 0.

In the following chapter, we investigate whether the continuations are unique

near ε = 0 for the special values of q, as well as whether the general limiting

solution (1.19) can be continued uniquely in ε for any other fixed value of

q ∈ [0, π].

It is worthwhile to note that the exact solution (1.27) at q = π and

ε = 1 satisfies the monomer constraint (1.5) in that

U2n−1(τ) = −U2n(τ) = U2n(τ − π).

This reduction shows that the solution at ε = 1, q = π satisfies the granular

monomer chain (1.6) and coincides with the solution obtained by James [15]. In

contrast, the solutions (1.24) and (1.27) for q = 0 do not satisfy the monomer

constraints (1.5) at ε = 1. This would suggest that there exist two distinct

solutions at ε = 1 for q 6= π. One is continued from ε = 0 and the other one

13
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is constructed from the solution of the monomer chain (1.6) in [15].

14



Chapter 2

Persistence of Periodic

Travelling Waves Near ε = 0

2.1 Existence and Uniqueness Result

We consider the system of differential advance-delay equations (1.14). The

limiting solution to equations (1.14) is given by,

ε = 0 : u∗(τ) = ϕ(τ), w∗(τ) = 0, τ ∈ R, (2.1)

where ϕ is a unique odd 2π-periodic solution to the nonlinear oscillator equa-

tion (1.17) with ϕ̇(0) > 0.

The aim of this chapter is to prove a unique continuation of (2.1) for

ε > 0. The following theorem summarizes the main result.

Theorem 1. Fix q ∈ [0, π]. There is a unique C1 continuation of 2π-periodic

travelling wave (2.1) in ε. In other words, there is an ε0 > 0 such that for all

ε ∈ (0, ε0) there exist a positive constant C and a unique solution (u∗, w∗) ∈

15
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H2
u× H̃2

w of the system of differential advance-delay equations (1.14) such that

‖u∗ − ϕ‖H2
per

≤ Cε2, ‖w∗‖H2
per

≤ Cε. (2.2)

Remark 3. By Theorem 1, the limiting solution (2.1) for q ∈
{
0, π

2
, π

}
is

uniquely continued for any ε > 0 as exact solutions (1.24) and (1.27).

2.2 Formal Expansions in ε

Before proving Theorem 1, we first attempt formal expansions in powers of ε

to understand the persistence analysis from ε = 0. Since V is C2 but not C3,

the formal power series expansion in ε cannot be continued beyond the power

of ε2.

We expand the solution of the differential advance-delay equations

(1.14) as follows,

u∗(τ) = ϕ(τ) + ε2u(2)
∗ (τ) + o(ε2), w∗(τ) = εw(1)

∗ (τ) + o(ε2). (2.3)

From these expansions, we can obtain the linear inhomogeneous equations for

u
(2)
∗ and w

(1)
∗ , given by:

ẅ(1)
∗ (τ) = F (1)

w (τ) := V ′(ϕ(τ + 2q))− V ′(−ϕ(τ)) (2.4)

and

ü
(2)
∗ (τ)+α|ϕ(τ)|α−1u

(2)
∗ (τ) = F (2)

u (τ) := V ′′(−ϕ(τ))w
(1)
∗ (τ)+V ′′(ϕ(τ))w

(1)
∗ (τ − 2q).

(2.5)

16
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We consider the two differential operators

L0 =
d2

dτ 2
: H2

per(0, 2π) → L2
per(0, 2π), (2.6)

L =
d2

dτ 2
+ α|ϕ(τ)|α−1 : H2

per(0, 2π) → L2
per(0, 2π), (2.7)

These operators are not invertible in L2
per(0, 2π) because they admit one-

dimensional kernels,

Ker(L0) = span {1} , Ker(L) = span {ϕ̇} . (2.8)

The kernel of L is one-dimensional so long as the system is non-degenerate,

i.e. T ′(E0) 6= 0 [15].

To find unique solutions to the inhomogeneous equations (2.4) and (2.5)

in the function spaces H2
w (1.21) and H2

u (1.20) respectively, the source terms

F
(1)
w and F

(2)
u must satisfy the Fredholm conditions [10]:

〈1, F (1)
w 〉L2

per
= 0 and 〈ϕ̇, F (2)

u 〉L2
per

= 0. (2.9)

The first Fredholm condition is expanded as

〈1, F (1)
w 〉L2

per
=

∫ 2π

0

[V ′(ϕ(τ + 2q))− V ′(−ϕ(τ))] dτ

=

∫ 2π

0

V ′(ϕ(τ + 2q))dτ −
∫ 2π

0

V ′(−ϕ(τ))dτ

= 0.

The third equality holds because the mean value of a periodic function is

independent of the limits of integration so long as we integrate over a full

period. Therefore, the first Fredholm condition is satisfied.
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The second Fredholm condition is given by

〈ϕ̇, F (2)
u 〉L2

per
=

∫ 2π

0

ϕ̇(τ)
[
V ′′(−ϕ(τ))w(1)

∗ (τ) + V ′′(ϕ(τ))w(1)
∗ (τ − 2q)

]
dτ = 0.

The second Fredholm condition is satisfied if F
(2)
u is odd in τ since we are

taking the integral over a full period and ϕ̇ is even in τ . We show that F
(2)
u is

odd in τ by proving

w(1)
∗ (τ) = −w(1)

∗ (−τ − 2q), ⇒ F (2)
u (−τ) = −F (2)

u (τ), τ ∈ R. (2.10)

Indeed, using equation (2.4) we show that

ẅ(1)
∗ (τ) + ẅ(1)

∗ (−τ − 2q) = V ′(ϕ(τ + 2q))− V ′(−ϕ(τ))

+ V ′(ϕ(−τ))− V ′(−ϕ(−τ − 2q))

= 0,

where the second equality holds because ϕ is odd in τ . Integrating this equa-

tion twice yields,

w(1)
∗ (τ) + w(1)

∗ (−τ − 2q) = 0,

since w
(1)
∗ ∈ H2

w. This condition gives,

F (2)
u (τ) = V ′′(−ϕ(τ))w(1)

∗ (τ) + V ′′(ϕ(τ))w(1)
∗ (τ − 2q)

= V ′′(−ϕ(τ))w(1)
∗ (τ)− V ′′(ϕ(τ))w(1)

∗ (−τ)

= −F (2)
u (−τ),

and reduction (2.10) is proved. Therefore we can conclude that the second

Fredholm condition is satisfied. The sufficient condition on w
(1)
∗ , needed to

18
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prove the second Fredholm condition, suggests the need to use H̃2
w instead of

H2
w, where H̃2

w is given by (1.22).

We see that up to O(ε2) a unique solution exists. However, this formal

method cannot be used to expand to arbitrary order in powers of ε due to

the lack of regularity of the potential, V . In the following section we prove

Theorem 1 by means of the implicit function theorem.

2.3 Proof of Theorem 1

To prove Theorem 1, we shall consider the vector fields of the system of dif-

ferential advance-delay equations (1.14),

 Fu(u(τ), w(τ), ε) := V ′(εw(τ)− u(τ))− V ′(u(τ)− εw(τ − 2q)),

Fw(u(τ), w(τ), ε) := εV ′(u(τ + 2q)− εw(τ))− εV ′(εw(τ)− u(τ)),
τ ∈ R. (2.11)

We seek a strong solution (u∗, w∗) ∈ H2
u×H̃2

w of system (1.14) satisfying

the conditions,

u∗(−τ) = −u∗(τ), w∗(τ) = −w∗(−τ − 2q), τ ∈ R. (2.12)

We first note that Fu is odd in τ if (u,w) ∈ H2
u × H̃2

w:

Fu(u(τ), w(τ), ε) = V ′(εw(τ)− u(τ))− V ′(u(τ)− εw(τ − 2q))

= V ′(−εw(−τ − 2q) + u(−τ))− V ′(−u(−τ) + εw(−τ))

= −Fu(u(−τ), w(−τ), ε).

As well, since V ∈ C2, Fu is a C1 map from H2
u × H̃2

w × R → L2
u and the

19



MSc Thesis – M. Betti McMaster – MathematicsMSc Thesis – M. Betti McMaster – Mathematics

Jacobian of Fu at ε = 0 is given by

DuFu(u,w, 0) = V ′′(−u)− V ′′(u) = −α|u|α−1, DwFu(u,w, 0) = 0. (2.13)

Next, under the constraints (2.12), we have Fw ∈ L̃2
w because

Fw(u(τ), w(τ), ε) + Fw(u(−τ − 2q), w(−τ − 2q), ε)

= εV ′(u(τ + 2q)− εw(τ))− εV ′(εw(τ)− u(τ))

+ εV ′(u(−τ)− εw(−τ − 2q))

− εV ′(εw(−τ − 2q)− u(−τ − 2q))

= 0.

Since V is C2, Fw is a C1 map from H2
u × H̃2

w × R → L̃2
w and its Jacobian at

ε = 0 is given by

DuFw(u,w, 0) = 0, DwFw(u,w, 0) = 0. (2.14)

We now define the nonlinear operator fu(u,w, ε) :=
d2u
dτ2

− Fu(u,w, ε),

fw(u,w, ε) :=
d2w
dτ2

− Fw(u,w, ε).
(2.15)

We have (fu, fw) : H2
u × H̃2

w × R → L2
u × L̃2

w because the second derivative

operators preserve constraints (2.12). Moreover, (fu, fw) are C
1 near the point

(ϕ, 0, 0) ∈ H2
u × H̃2

w × R.

To apply the Implicit Function Theorem near this point we require the

following criteria:
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• (fu, fw) must be continuously differentiable.

• fu(ϕ, 0, 0) = fw(ϕ, 0, 0) = 0

• The Jacobian operator must be invertible at the point (ϕ, 0, 0).

We have already established that (fu, fw) are C1 maps and (ϕ, 0, 0) is a zero

of (fu, fw).

The Jacobian operator for (2.15) follows from (2.13) and (2.14)

 L 0

0 L0

 =

 d2

dτ2
+ α|ϕ|α−1 0

0 d2

dτ2

 (2.16)

We see that the Jacobian is a diagonal operator, with diagonal entries L and L0

defined in equations (2.6) and (2.7). These both allow one-dimensional kernels

in L2
per(0, 2π), but within the constrained spaces H2

u and H̃2
w, the kernels are

zero-dimensional. This implies that the operators L and L0 are one-to-one from

H2
u to L2

u and from H̃2
w to L̃2

w respectively, and thus the Jacobian operator is

invertible.

Therefore, we can invoke the Implicit Function Theorem to conclude

that there exists a C1 continuation of the limiting solution (2.1) with respect

to ε as the 2π-periodic solution (u∗, w∗) ∈ H2
u×H̃2

w of the system of differential

advance-delay equations (1.14) near ε = 0. From the explicit expression (2.11)

and the formal expansion (2.3), we can see that ‖w∗‖H2
per

= O(ε) and ‖u∗ −

ϕ‖H2
per

= O(ε2) as ε → 0. This completes the proof of Theorem 1.
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Chapter 3

Spectral Stability of Periodic

Travelling Waves Near ε = 0

3.1 Linearization of Periodic Travelling Waves

In order to analyze stability of the solutions to the dimer chain equations (1.4)

near ε = 0, we will linearize the system of nonlinear equations (1.4) at the

periodic travelling wave solutions of the form (1.13). As a result, we obtain

the linearized dimer equations for small perturbations:



ü2n−1 = V ′′(εw∗(τ + 2qn)− u∗(τ + 2qn))(εw2n − u2n−1)

− V ′′(u∗(τ + 2qn)− εw∗(τ + 2qn− 2q))(u2n−1 − εw2n−2),

ẅ2n = εV ′′(u∗(τ + 2qn+ 2q)− εw∗(τ + 2qn))(u2n+1 − εw2n)

− εV ′′(εw∗(τ + 2qn)− u∗(τ + 2qn))(εw2n − u2n−1),

(3.1)

where n ∈ Z. It is worthwhile to note that V ′′ is continuous but not contin-

uously differentiable. This fact will complicate the analysis of perturbation

results for ε > 0. On the other hand, this complication does not occur for
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exact solutions (1.24) and (1.27). For exact solution (1.24) with q = π
2
, the

linearized system (3.1) is written explicitly as ü2n−1 + α|ϕ|α−1u2n−1 = ε (V ′′(−ϕ)w2n + V ′′(ϕ)w2n−2) ,

ẅ2n + 2ε2V ′′(−ϕ)w2n = εV ′′(−ϕ)(u2n+1 + u2n−1).
(3.2)

For exact solution (1.27) with q = 0 or q = π, we can write the linearized

system (3.1) explicitly as ü2n−1 +
α

1+ε2
|ϕ|α−1u2n−1 =

ε
1+ε2

(V ′′(−ϕ)w2n + V ′′(ϕ)w2n−2) ,

ẅ2n +
αε2

1+ε2
|ϕ|α−1w2n = ε

1+ε2
(V ′′(ϕ)u2n+1 + V ′′(−ϕ)u2n−1) .

(3.3)

In both cases, we can see that the linearized systems (3.2) and (3.3) are analytic

in ε near ε = 0.

The system of linearized equations (3.1) has the same symplectic struc-

ture (1.10) as the nonlinear system (1.4), but the Hamiltonian is given by

H =
1

2

∑
n∈Z

(
p22n−1 + q22n

)
+
1

2

∑
n∈Z

V ′′(εw∗(τ + 2qn)− u∗(τ + 2qn))(εw2n − u2n−1)
2 (3.4)

+
1

2

∑
n∈Z

V ′′(u∗(τ + 2qn)− εw∗(τ + 2qn− 2q))(u2n−1 − εw2n−2)
2.

The Hamiltonian, H, is quadratic in the canonical variables

{u2n−1, p2n−1 = u̇2n−1, w2n, q2n = ẇ2n}n∈Z.
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3.2 Main Result

The coefficients of the linearized dimer system (3.1) are 2π-periodic in τ . This

suggests we look for an infinite-dimensional analogue of the Floquet theorem

which states that all solutions of the linear system with 2π-periodic coefficients

satisfy the reduction

u(τ + 2π) = Mu(τ), τ ∈ R, (3.5)

where u := [· · · , w2n−2, u2n−1, w2n, u2n+1, · · · ] and M is the monodromy oper-

ator [8].

Remark 4. We may close the system of dimer equations (1.4) into a chain

of 2mN second-order differential equations subject to periodic boundary con-

ditions by setting q = mπ
N

as stated in Remark 2. In a similar fashion, we

may close the linearized system (3.1) as a system of 2mN second-order linear

equations. The monodromy operator, M then becomes an infinite diagonal

composition of 4mN by 4mN Floquet matrices with 4mN eigenvalues known

as the Floquet multipliers.

We can find eigenvalues of the monodromy matrix, M by looking for

the set of eigenvectors in the form,

u2n−1(τ) = U2n−1(τ)e
λτ , u2n(τ) = W2n(τ)e

λτ , τ ∈ R, (3.6)

where (U2n−1,W2n−1) are 2π-periodic functions and the admissible values of

λ are found from the existence of such 2π-periodic functions. The admissible

values of λ are known as the characteristic exponents and they define the

Floquet multipliers, µ, by the formula µ = e2πλ.
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Eigenvectors (3.6) are defined as 2π-periodic solutions of the linear

eigenvalue problem,

Ü2n−1 + 2λU̇2n−1 + λ2U2n−1 = V ′′(εw∗(τ + 2qn)− u∗(τ + 2qn))(εW2n − U2n−1)

− V ′′(u∗(τ + 2qn)− εw∗(τ + 2qn− 2q))(U2n−1 − εW2n−2),

Ẅ2n + 2λẆ2n + λ2W2n = εV ′′(u∗(τ + 2qn+ 2q)− εw∗(τ + 2qn))(U2n+1 − εW2n)

− εV ′′(εw∗(τ + 2qn)− u∗(τ + 2qn))(εW2n − U2n−1).

(3.7)

This equation is derived from equations (3.1) using the definition (3.6).

The Krein signature plays an important role in the study of spectral

stability of periodic solutions [2, Section 4]. The Krein signature is defined as

the sign of the 2-form associated with the symplectic structure (1.10):

σ = i
∑
n∈Z

[u2n−1p̄2n−1 − ū2n−1p2n−1 + w2nq̄2n − w̄2nq2n] , (3.8)

where {u2n−1, p2n−1 = u̇2n−1, w2n, q2n = ẇ2n}n∈Z is an eigenvector (3.6) asso-

ciated with an eigenvalue λ ∈ iR+. It follows from the symmetry of the

linearized system (3.1) that if λ is an eigenvalue, then λ̄ is also an eigenvalue.

The 2-form, σ is constant with respect to τ ∈ R.

If ε = 0, the monodromy operator, M, in (3.5) is block-diagonal and

consists of an infinite set of 2-by-2 Jordan blocks. This occurs because the

dimer system (1.4) is decoupled into a countable set of uncoupled second-

order differential equations at ε = 0. Therefore, the linear eigenvalue problem

(3.7) with the limiting solution (1.19) admits an infinite set of 2π-periodic

solutions with λ = 0,

ε = 0 : U
(0)
2n−1 = c2n−1ϕ̇(τ + 2qn), W

(0)
2n = a2n, n ∈ Z, (3.9)

where {c2n−1, a2n}n∈Z are arbitrary coefficients. Another countable set of gen-
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eralized eigenvectors exists, beyond the eigenvectors (3.9), for the uncoupled

second-order differential equations which contribute to the Jordan blocks.

Each block corresponds to the double Floquet multiplier µ = 1 (i.e. the

double characteristic exponent λ = 0). When ε 6= 0 but ε � 1, the character-

istic exponents λ = 0 of a high multiplicity splits. We study this splitting of

characteristic exponents λ by using perturbation arguments.

We formulate the main result of this section.

Theorem 2. Fix q = πm
N

for some positive integers m and N such that 1 ≤

m ≤ N . Let (u∗, w∗) ∈ H2
u × H̃2

w be defined by Theorem 1 for sufficiently

small positive ε. Consider the linear eigenvalue problem (3.7) subject to 2mN -

periodic boundary conditions (1.15). There is a ε0 > 0 such that, for every

ε ∈ (0, ε0), there exists q0(ε) ∈
(
0, π

2

)
such that for all q ∈ (0, q0(ε)) and

q ∈ (π − q0(ε), π], no values of λ with Re(λ) 6= 0 exist, whereas for q ∈

(q0(ε), π − q0(ε)), there exist some values of λ with Re(λ) > 0.

Remark 5. By Theorem 2, periodic travelling waves are spectrally stable for

q ∈ (0, q0(ε)) and q ∈ (π − q0(ε), π] and unstable for q ∈ (q0(ε), π − q0(ε)).

Therefore, the linearized system (3.2) for the exact solution (1.24) with q = π
2
,

subject to periodic boundary conditions, is unstable for small ε > 0. Whereas

the linearized system (3.3) for exact solution (1.27) with q = π subject to

periodic boundary conditions is stable for small ε > 0.

Remark 6. The result of Theorem 2 is expected to hold for all values of q

in [0, π], but the spectrum of the linear eigenvalue problem (3.7) for the char-

acteristic exponent λ becomes continuous and connected to zero. An infinite-

dimensional analogue of the perturbation theory is required to study eigenvalues

of the monodromy operator M in this case.
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Remark 7. The case q = 0 is degenerate for an application of the perturbation

theory. Nevertheless, we show numerically that the linearized system (3.3)

for the exact solution (1.27) with q = 0 is stable for small ε > 0 and all

characteristic exponents are at least double for any ε > 0.

3.3 Formal Perturbation Expansions

We normally expect splitting of exponents λ = O(ε1/2), since the limiting lin-

ear eigenvalue problem at ε = 0 is diagonally decomposed into 2-by-2 Jordan

blocks [23]. The splitting we see occurs at a higher order, O(ε), since the

coupling between the particles of equal masses occurs at O(ε2) in the pertur-

bation theory. Perturbation computations in O(ε2) require V ′′ to be at least

C1. This creates an obstacle since V ′′ is only continuous. In our computations

we neglect this discrepancy, which is valid at least for q = π and q = π
2
. For

other values of q, we use a renormalization technique in order to justify the

formal perturbation expansion.

We expand 2π-periodic solutions of the linear eigenvalue problem (3.7)

in a power series in ε:

λ = ελ(1) + ε2λ(2) + o(ε2) (3.10)

and  U2n−1 = U
(0)
2n−1 + εU

(1)
2n−1 + ε2U

(2)
2n−1 + o(ε2),

W2n = W
(0)
2n + εW

(1)
2n + ε2W

(2)
2n + o(ε2),

(3.11)

where the zeroth-order terms are given by (3.9). In order to determine unique
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corrections to the power series expansion, we require that

〈ϕ̇, U (j)
2n−1〉L2

per
= 〈1,W (j)

2n 〉L2
per

= 0, n ∈ Z, j = 1, 2. (3.12)

Note that if U
(j)
2n−1 contains a component which is parallel to ϕ̇ then the corre-

sponding term will change the value of c2n−1 in the eigenvector (3.9). Similarly,

if a 2π-periodic function W
(j)
2n has nonzero mean, then the mean value of W

(j)
2n

will change the value of a2n in eigenvector (3.9). These coefficients are yet to

be determined, and thus our condition is justified.

The linear equations (3.7) are satisfied at O(ε0). At O(ε), we obtain

the equations


Ü

(1)
2n−1 + α|ϕ(τ + 2qn)|α−1U

(1)
2n−1 = −2λ(1)U̇

(0)
2n−1

+ V ′′(−ϕ(τ + 2qn))W
(0)
2n + V ′′(ϕ(τ + 2qn))W

(0)
2n−2,

Ẅ
(1)
2n = −2λ(1)Ẇ

(0)
2n + V ′′(ϕ(τ + 2qn+ 2q))U

(0)
2n+1 + V ′′(−ϕ(τ + 2qn))U

(0)
2n−1.

(3.13)

Let us define solutions of the following linear inhomogeneous equations:

v̈ + α|ϕ|α−1v = −2ϕ̈, (3.14)

ÿ± + α|ϕ|α−1y± = V ′′(±ϕ), (3.15)

z̈± = V ′′(±ϕ)ϕ̇. (3.16)

If we can find unique 2π-periodic solutions of these equations such that

〈ϕ̇, v〉L2
per

= 〈ϕ̇, y±〉L2
per

= 〈1, z±〉L2
per

= 0,
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then the perturbation equations (3.13) at the O(ε) order are satisfied with U
(1)
2n−1 = c2n−1λ

(1)v(τ + 2qn) + a2ny−(τ + 2qn) + a2n−2y+(τ + 2qn),

W
(1)
2n = c2n+1z+(τ + 2qn+ 2q) + c2n−1z−(τ + 2qn).

(3.17)

The linear equations (3.7) are now satisfied up to the O(ε) order. Col-

lecting terms at the O(ε2) order, we obtain



Ü
(2)
2n−1 + α|ϕ(τ + 2qn)|α−1U

(2)
2n−1 = −2λ(1)U̇

(1)
2n−1 − 2λ(2)U̇

(0)
2n−1 − (λ(1))2U

(0)
2n−1

+ V ′′(−ϕ(τ + 2qn))W
(1)
2n + V ′′(ϕ(τ + 2qn))W

(1)
2n−2

− V ′′′(−ϕ(τ + 2qn))(w
(1)
∗ (τ + 2qn)− u

(2)
∗ (τ + 2qn))U

(0)
2n−1

− V ′′′(ϕ(τ + 2qn))(u
(2)
∗ (τ + 2qn)− w

(1)
∗ (τ + 2qn− 2q))U

(0)
2n−1,

Ẅ
(2)
2n = −2λ(1)Ẇ

(1)
2n − 2λ(2)Ẇ

(0)
2n − (λ(1))2W

(0)
2n

+ V ′′(ϕ(τ + 2qn+ 2q))(U
(1)
2n+1 −W

(0)
2n ) + V ′′(−ϕ(τ + 2qn))(U

(1)
2n−1 −W

(0)
2n ),

(3.18)

where corrections u
(2)
∗ and w

(1)
∗ are defined by expansion (2.3).

To solve the linear inhomogeneous equations (3.18) the source terms

must satisfy the Fredholm conditions because the operators L0 and L defined

by (2.6) and (2.7) have one-dimensional kernels. We require the first equation

of (3.18) to be orthogonal to ϕ̇ and the second equation of system (3.18) to

be orthogonal to 1. We substitute (3.9) and (3.17) into the orthogonality

conditions (i.e. substitute the solutions into the system (3.18), multiply the

first equation by ϕ̇ and the second by 1, and integrate on [−π, π]. Taking

into account the symmetry between couplings of lattice sites on Z, we obtain

difference equations for {c2n−1, a2n}n∈Z: KΛ2c2n−1 = M1(c2n+1 + c2n−3 − 2c2n−1) + L1Λ(a2n − a2n−2),

Λ2a2n = M2(a2n+2 + a2n−2 − 2a2n) + L2Λ(c2n+1 − c2n−1),
(3.19)

where Λ = λ(1) and (K,M1,M2, L1, L2) are numerical coefficients to be com-
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puted from the projections. In particular, the coefficients are defined as

K =

∫ π

−π

(2v̇(τ) + ϕ̇(τ)) ϕ̇(τ)dτ,

M1 =

∫ π

−π

V ′′(−ϕ(τ))ϕ̇(τ)z+(τ + 2q)dτ =

∫ π

−π

V ′′(ϕ(τ))ϕ̇(τ)z−(τ − 2q)dτ,

M2 =
1

2π

∫ π

−π

V ′′(ϕ(τ + 2q))y−(τ + 2q)dτ =
1

2π

∫ π

−π

V ′′(−ϕ(τ))y+(τ)dτ,

L1 = −2

∫ π

−π

ẏ−(τ)ϕ̇(τ)dτ = 2

∫ π

−π

ẏ+(τ)ϕ̇(τ)dτ,

L2 =
1

2π

∫ π

−π

V ′′(ϕ(τ + 2q))v(τ + 2q)dτ = − 1

2π

∫ π

−π

V ′′(−ϕ(τ))v(τ)dτ.

It is worth noting that the coefficientsM1 andM2 need not be computed

at the diagonal terms c2n−1 and a2n due to the fact that the difference equations

(3.19) with Λ = 0 must have eigenvectors with equal values of {c2n−1}n∈Z
and {a2n}n∈Z which correspond to the two symmetries of the linearized dimer

system (3.1) related to symmetries (1.7) and (1.8). This fact suggests that the

problem of limited smoothness of V ′′, which is C but not C1 near zero, is not

a serious obstacle in the derivation of the reduced system (3.19).

Difference equations (3.19) give a necessary and sufficient condition to

solve the linear inhomogeneous equations (3.18) at O(ε2) and continue the

perturbation expansions beyond this order.

The system of difference equations (3.19) presents a quadratic eigen-

value problem with respect to the spectral parameter Λ. Such quadratic eigen-

value problems often appear in the context of spectral stability of nonlinear

waves [5, 19].

Before justifying the formal perturbation expansions, we shall explicitly

compute the coefficients (K,M1,M2, L1, L2) of the difference equations (3.19).
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3.4 Computation of Coefficients

We prove the following technical result.

Lemma 1. Coefficients K, M2, L1, and L2 are independent of q and are given

by

K = − 4π2

T ′(E0)
, M2 =

2

πT ′(E0)(ϕ̇(0))2
, L1 = 2πL2 =

2(2π − T ′(E0)(ϕ̇(0))
2)

T ′(E0)ϕ̇(0)
.

Consequently, K > 0, whereas M2, L1, L2 < 0. On the other hand, coefficient

M1 depends on q and is given by

M1 = − 2

π
(ϕ̇(0))2 + I(q),

where

I(q) = I(π − q) := −
∫ π

π−2q

ϕ̈(τ)ϕ̈(τ + 2q)dτ, q ∈
[
0,

π

2

]
.

To prove Lemma 1, we must first find unique solutions to the linear

inhomogeneous equations (3.14), (3.15) and (3.16). For equation (3.14), the

general solution is given by

v(τ) = −τ ϕ̇(τ) + b1ϕ̇(τ) + b2∂EϕE0(τ), τ ∈ [−π, π],

where (b1, b2) are arbitrary coefficients and ∂EϕE0 is the derivative of the T (E)-

periodic solution ϕE of the nonlinear oscillator equation (1.17) with first inte-

gral (1.18) satisfying initial conditions ϕE(0) = 0 and ϕ̇E(0) =
√
2E at energy
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E = E0, for which T (E0) = 2π. We note the equation

∂EϕE0(±π) = ∓1

2
T ′(E0)ϕ̇(±π), (3.20)

follows from differentiation of equation ϕE(±T (E)/2) = 0 with respect to E

at E = E0.

To define v uniquely, we require that 〈ϕ̇, v〉L2
per

= 0. This condition

along with the fact that τ ϕ̇ and ∂EϕE0 are odd and ϕ̇ is even in τ force b1 = 0

and thus v(0) = 0. Therefore, v is odd in τ . In order to satisfy the 2π-

periodicity, we require v(π) = 0, which will uniquely determine b2 by virtue of

(3.20) as

b2 =
πϕ̇(π)

∂EϕE0(π)
= − 2π

T ′(E0)
.

We have now uniquely determined v(τ) as

v(τ) = −τ ϕ̇(τ)− 2π

T ′(E0)
∂EϕE0(τ), τ ∈ [−π, π]. (3.21)

For equation (3.15), we take advantage of the fact that ϕ(τ) ≥ 0 for

τ ∈ [0, π] and ϕ(τ) ≤ 0 for τ ∈ [−π, 0]. We also use the symmetry ϕ̇(π) =

−ϕ̇(0). Integrating the equations for y± separately from equation (3.15), we

obtain solutions

y+(τ) =

 1 + a+ϕ̇+ b+∂EϕE0 , τ ∈ [−π, 0],

c+ϕ̇+ d+∂EϕE0 , τ ∈ [0, π],

y−(τ) =

 a−ϕ̇+ b−∂EϕE0 , τ ∈ [−π, 0],

1 + c−ϕ̇+ d−∂EϕE0 , τ ∈ [0, π].

We use continuity of y± and ẏ± across τ = 0 to uniquely determine d± = b±
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and c± = a± ± 1
ϕ̇(0)

. The solutions are 2π-periodic if y±(−π) = y±(π), which

gives

b± = ± 2

T ′(E0)ϕ̇(0)
.

We note that the constants a± are still unspecified.

In order to define y± uniquely, we require orthogonality 〈ϕ̇, y±〉L2
per

= 0.

This forces the constraints on a±,

a± = ∓ 1

2ϕ̇(0)
∓

2〈ϕ̇, ∂EϕE0〉L2
per

T ′(E0)ϕ̇(0)〈ϕ̇, ϕ̇〉L2
per

.

Thus, we obtain a unique solution for y±,

y+(τ) = a+ϕ̇(τ) + b+∂EϕE0(τ) +

 1, τ ∈ [−π, 0],

ϕ̇(τ)
ϕ̇(0)

, τ ∈ [0, π],
(3.22)

and

y−(τ) = a−ϕ̇(τ) + b−∂EϕE0(τ) +

 0, τ ∈ [−π, 0],

1− ϕ̇(τ)
ϕ̇(0)

, τ ∈ [0, π],
(3.23)

where (a±, b±) are uniquely defined as above.

Equation (3.16) can be integrated separately on [−π, 0] and [0, π] to

obtain

ż+(τ) =

 c+ − |ϕ(τ)|α, τ ∈ [−π, 0],

c+, τ ∈ [0, π],

ż−(τ) =

 c−, τ ∈ [−π, 0],

c− + |ϕ(τ)|α, τ ∈ [0, π],

where (c+, c−) are constants of integration and continuity of ż± across τ = 0
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has been used. Again, we require 〈1, z±〉L2
per

= 0 in order to uniquely define

z±. Integrating the above equation once under this condition, we find:

z+(τ) =

 c+τ + d+ − ϕ̇(τ), τ ∈ [−π, 0],

c+τ − d+, τ ∈ [0, π],

z−(τ) =

 c−τ + d−, τ ∈ [−π, 0],

c−τ − d− − ϕ̇(τ), τ ∈ [0, π],

where (d+, d−) are constants of integration. Continuity of z± across τ = 0

sets the coefficient d± = ±1
2
ϕ̇(0). Periodicity of z±(−π) = z±(π) defines the

coefficient c± = ± 1
π
ϕ̇(0). Therefore we can write a unique solution to equation

(3.16) as

z+(τ) =
1

2π

 ϕ̇(0)(2τ + π)− 2πϕ̇(τ), τ ∈ [−π, 0],

ϕ̇(0)(2τ − π), τ ∈ [0, π],
(3.24)

and

z−(τ) =
1

2π

 −ϕ̇(0)(2τ + π), τ ∈ [−π, 0],

−ϕ̇(0)(2τ − π)− 2πϕ̇(τ), τ ∈ [0, π].
(3.25)

Using solutions (3.21), (3.22), (3.23), (3.24) and (3.25) we can now

compute the coefficients (K,M1,M2, L1, L2) of the difference equations (3.19).

For K, we integrate by parts and use equations (1.17), (1.18) and (3.21) to

obtain

K =

∫ π

−π

ϕ̇(ϕ̇+ 2v̇)dτ =

∫ π

−π

(ϕ̇2 − 2vϕ̈)dτ

=

[
τ ϕ̇2 +

2π

T ′(E0)
∂EϕE0ϕ̇

]∣∣∣∣τ=π

τ=−π

+
2π

T ′(E0)

∫ π

−π

(∂EϕE0ϕ̈− ∂Eϕ̇E0ϕ̇) dτ

= − 4π

T ′(E0)

∫ π

0

∂E

(
1

2
ϕ̇2 +

1

1 + α
ϕ1+α

)
E0

dτ = − 4π2

T ′(E0)
.
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As stated in Section 1.3, T ′(E0) < 0 and so K > 0.

For M1, we use equations (3.16), (3.24), and (3.25) to obtain

M1 =

∫ π

−π

V ′′(−ϕ(τ))ϕ̇(τ)z+(τ + 2q)dτ =

∫ π

−π

z̈−(τ)z+(τ + 2q)dτ

= −
∫ π

−π

ż−(τ)ż+(τ + 2q)dτ =

∫ π

0

ϕ̈(τ)ż+(τ + 2q)dτ.

Note that the sign of M1 depends on q. Using solution (3.25), for q ∈
[
0, π

2

]
,

we obtain

M1 =
1

π
ϕ̇(0)

∫ π

0

ϕ̈(τ)dτ −
∫ π

π−2q

ϕ̈(τ)ϕ̈(τ + 2q)dτ

= − 2

π
(ϕ̇(0))2 + I(q), I(q) := −

∫ π

π−2q

ϕ̈(τ)ϕ̈(τ + 2q)dτ.

For q ∈
[
π
2
, π

]
, we obtain

M1 = − 2

π
(ϕ̇(0))2 + Ĩ(q), Ĩ(q) := −

∫ 2π−2q

0

ϕ̈(τ)ϕ̈(τ + 2q)dτ,

and

Ĩ(π − q) = −
∫ 2q

0

ϕ̈(τ)ϕ̈(τ − 2q)dτ = −
∫ 0

−2q

ϕ̈(τ)ϕ̈(τ + 2q)dτ = I(q),

since the mean value of a periodic function does not depend on the limits of

integration.

For M2, we use equations (3.15) and (3.22):

M2 =
1

2π

∫ π

−π

V ′′(−ϕ)y+dτ =
α

2π

∫ π

0

ϕα−1y+dτ

= − 1

2π

∫ π

0

ÿ+dτ =
1

π
b+∂Eφ̇E0(0) =

2

πT ′(E0)(ϕ̇(0))2
,
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and, again since T ′(E0) < 0, we have M2 < 0.

For L1, we may use (1.17), (1.18) and (3.23) to find

L1 = −2

∫ π

−π

ẏ−ϕ̇dτ = −2b−

∫ π

−π

∂Eϕ̇E0ϕ̇dτ

=
4

T ′(E0)ϕ̇(0)

[∫ π

0

(∂Eϕ̇E0ϕ̇− ∂EϕE0ϕ̈) dτ + ϕ̇∂EϕE0

∣∣∣∣τ=π

τ=0

]
=

2(2π − T ′(E0)(ϕ̇(0))
2)

T ′(E0)ϕ̇(0)
.

By construction ϕ̇(0) > 0, and since T ′(E0) < 0 we have L1 < 0.

For L2, we can use (1.17), (1.18) and (3.21) to get

L2 = − 1

2π

∫ π

−π

V ′′(−ϕ)vdτ = − α

2π

∫ π

0

ϕα−1vdτ

=
1

T ′(E0)

∫ π

0

∂E (ϕE0)
α dτ − 1

2π

∫ π

0

ϕαdτ

=

[
1

2π
ϕ̇− 1

T ′(E0)
∂Eϕ̇E0

]∣∣∣∣τ=π

τ=0

=
2π − T ′(E0)(ϕ̇(0))

2

πT ′(E0)ϕ̇(0)
=

1

2π
L1,

and hence L2 < 0.

This completes the proof of Lemma 1.

3.5 Eigenvalues of Difference Equations

The coefficients (K,M1,M2, L1, L2) of difference equations (3.19) are indepen-

dent of n. This means we can solve these equations by means of a discrete

Fourier transform. We make the substitution

c2n−1 = Ceiθ(2n−1), a2n = Aei2θn, (3.26)
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where θ ∈ [0, π] is the Fourier spectral parameter. With this substitution,

we obtain the system of linear homogeneous equations from the difference

equations (3.19): KΛ2C = 2M1(cos(2θ)− 1)C + 2iL1Λ sin(θ)A,

Λ2A = 2M2(cos(2θ)− 1)A+ 2iL2Λ sin(θ)C.
(3.27)

A nonzero solution of system (3.27) exists if and only if Λ is a root of

the characteristic polynomial

D(Λ; θ) = KΛ4+4Λ2(M1+KM2+L1L2) sin
2(θ)+16M1M2 sin

4(θ) = 0. (3.28)

This equation is bi-quadratic and thus has two pairs of roots for each θ ∈ [0, π].

For θ = 0, both pairs are identically zero. This recovers the characteristic

exponent, λ = 0 of algebraic multiplicity of at least 4 in the linear eigenvalue

problem (3.7). For a fixed θ ∈ (0, π), the two pairs of roots are generally

nonzero and given by Λ2
1 and Λ2

2. The following lemma specifies their location.

Lemma 2. There exists a q0 ∈
(
0, π

2

)
such that Λ2

1 ≤ Λ2
2 < 0 for q ∈ [0, q0) ∪

(π − q0, π] and Λ2
1 < 0 < Λ2

2 for q ∈ (q0, π − q0).

To classify the nonzero roots of the characteristic polynomial (3.28),

we define

Γ := M1 +KM2 + L1L2, ∆ := 4KM1M2. (3.29)

The two pairs of roots are determined in the following table.
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Coefficients Roots

∆ < 0 Λ2
1 < 0 < Λ2

2

0 < ∆ ≤ Γ2, Γ > 0 Λ2
1 ≤ Λ2

2 < 0

0 < ∆ ≤ Γ2, Γ < 0 0 < Λ2
1 ≤ Λ2

2

∆ > Γ2 Re(Λ2
1) > 0, Re(Λ2

2) < 0

Table 4.1: Squared roots of the characteristic equation (3.28).

Substituting the explicit computations of coefficients (K,M1,M2, L1, L2)

found in Section 3.4, we obtain

Γ = − 8

T ′(E0)
+ I(q),

∆ =
64

(T ′(E0))2

(
1− πI(q)

2(ϕ̇(0))2

)
.

The function I(q) is symmetric about q = π
2
as shown in Lemma 1. Therefore,

we may restrict our consideration to the values q ∈
[
0, π

2

]
and use the explicit

definition of I(q):

I(q) = −
∫ π

π−2q

ϕ̈(τ)ϕ̈(τ + 2q)dτ, q ∈
[
0,

π

2

]
.

It is clear that I(0) = 0. We can show that I(q) is a monotonically increasing

function in
[
0, π

2

]
.

Firstly, by (1.17), ϕ̈(τ) = −|ϕ(τ)|α−1ϕ(τ). Since ϕ(τ) ≥ 0 on τ ∈ [0, π],

we have that ϕ̈(τ) ≤ 0 on τ ∈ [0, π]. As well, ϕ̈(τ +2q) ≥ 0 for τ ∈ [π− 2q, π].

We then have I(q) ≥ 0 for 2q ∈ [0.π]. Moreover, we can show that I is a C1
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function of q, because the first derivative, given by,

I ′(q) = −2

∫ π

π−2q

ϕ̈(τ)
...
ϕ(τ + 2q)dτ = 2

∫ π

π−2q

...
ϕ(τ)ϕ̈(τ + 2q)dτ

= −2α

∫ π

π−2q

|ϕ(τ)|α−1ϕ̇(τ)ϕ̈(τ + 2q)dτ,

is continuous for all 2q ∈ [0, π]. The functions ϕ̇(τ) and ϕ̈(τ) are odd and

even, respectively, with respect to τ = π
2
. We have already established that

ϕ̈(τ + 2q) ≥ 0 on τ ∈ [π − 2q, π]. We also have that ϕ̇(τ) ≥ 0 on τ ∈
[
0, π

2

]
and ϕ̇(τ) ≤ 0 on τ ∈

[
π
2
, π

]
. Thus, I ′(q) ≥ 0 for all 2q ∈ [0, π]. Therefore, I(q)

is monotonically increasing from I(0) = 0 to

I
(π
2

)
= −

∫ π

0

ϕ̈(τ)ϕ̈(τ + π)dτ =

∫ π

0

(ϕ̈(τ))2dτ > 0.

Hence, for all q ∈
[
0, π

2

]
we have Γ > 0 and

Γ2 −∆ = I(q)

(
I(q)− 16

T ′(E0)
+

32π

(T ′(E0)ϕ̇(0))2

)
≥ 0,

where ∆ = Γ2 if and only if q = 0. We see that only the first two lines of Table

4.1 can occur.

For q = 0, I(0) = 0 hence M1 < 0, ∆ > 0 and ∆ = Γ2. The second

line of Table 4.1 gives Λ2
1 = Λ2

2 < 0. All characteristic exponents are purely

imaginary and degenerate, thanks to the explicit computations:

Λ2
1 = Λ2

2 = − 4

π2
sin2(θ). (3.30)

The proof of Lemma 2 is complete if we can show that there is a q0 ∈(
0, π

2

)
such that the first line of Table 4.1 yields Λ2

1 < 0 < Λ2
2 for q ∈

(
q0,

π
2

]
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and the second line of Table 4.1 yields Λ2
1 < Λ2

2 < 0 for q ∈ (0, q0). Because I is

monotonically increasing as a function of q and ∆ > 0 for q = 0 the existence

of q0 ∈
(
0, π

2

)
follows by continuity if ∆ < 0 for q = π

2
. Since K > 0 and

M2 < 0, we need to prove that M1 > 0 for q = π
2
. Equivalently,

I
(π
2

)
>

2

π
(ϕ̇(0))2 .

Since ϕ̇ is a 2π-periodic function with zero mean, the Poincaré inequal-

ity yields

I
(π
2

)
=

1

2

∫ π

−π

(ϕ̈(τ))2dτ ≥ 1

2

∫ π

−π

(ϕ̇(τ))2dτ.

Using (1.17) and (1.18) along with integration by parts we see

1

2

∫ π

−π

(ϕ̇(τ))2dτ = −1

2

∫ π

−π

ϕ(τ)ϕ̈(τ)dτ =
1

2

∫ π

−π

|ϕ(τ)|α+1dτ =
2π(α+ 1)

(α+ 3)
E.

The last equality comes from integrating the invariant (1.18) on [−π, π]. There-

fore, we obtain

I
(π
2

)
≥ 2π(α+ 1)

(α+ 3)
E =

π(α+ 1)

(α+ 3)
(ϕ̇(0))2 >

2

π
(ϕ̇(0))2,

where the final inequality holds for α = 3
2
based on the fact that 5π2

18
≈ 2.74 > 1.

Therefore M1 > 0 and as a result ∆ < 0 for q = π
2
. This completes the proof

of Lemma 2.

Numerical approximations of coefficients Γ and ∆ versus q were com-

puted and are shown in Figure 3.1. We can see from the figure that the sign

change of ∆ occurs at q0 ≈ 0.915.
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Figure 3.1: Coefficients Γ (left) and ∆ (right) versus q.

3.6 Krein Signature of Eigenvalues

Because the eigenvalue problem (3.27) is symmetric with respect to reflection

of θ about π
2
, that is, sin(θ) = sin(π − θ), some roots Λ ∈ C of the character-

istic polynomial (3.28) produce multiple eigenvalues λ in the linear eigenvalue

problem (3.7) at the O(ε) order of the asymptotic expansion (3.10). To control

splitting and persistence of eigenvalues λ ∈ iR+ with respect to perturbations,

we shall look at the Krein signature of the 2-form σ defined by (3.8). The

following result allows us to compute σ asymptotically as ε → 0.

Lemma 3. For every q ∈ (0, q0), the 2-form σ for every eigenvector of the lin-

ear eigenvalue problem (3.7) generated by the perturbation expansion (3.11) as-

sociated with the root Λ ∈ iR+ of the characteristic equation (3.28) is nonzero.

Using the representation (3.6) for λ = iω with ω ∈ R+, we rewrite σ in

the form:

σ = 2ω
∑
n∈Z

[
|U2n−1|2 + |W2n|2

]
+i

∑
n∈Z

[
U2n−1

˙̄U2n−1 − Ū2n−1U̇2n−1 +W2n
˙̄W2n − W̄2nẆ2n

]
.
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Now using perturbation expansion ω = εΩ + O(ε2), where Λ = iΩ ∈ iR+ is

a root of the characteristic equation (3.28), and the perturbation expansions

(3.11) for the eigenvector, we compute

σ = ε
∑
n∈Z

σ(1)
n +O(ε2),

where

σ(1)
n = 2Ω

[
|c2n−1|2ϕ̇2(τ + 2qn) + |a2n|2

]
+ i(c2n−1

˙̄U
(1)
2n−1 − c̄2n−1U̇

(1)
2n−1)ϕ̇(τ + 2qn)

−i(c2n−1Ū
(1)
2n−1 − c̄2n−1U

(1)
2n−1)ϕ̈(τ + 2qn) + i(a2n

˙̄W
(1)
2n − ā2nẆ

(1)
2n ).

Using representation (3.17), this becomes

σ(1)
n = 2Ω(|c2n−1|2E0+ |a2n|2)+i(c2n−1ā2n− c̄2n−1a2n)E−+i(c2n−1ā2n−2− c̄2n−1a2n−2)E+,

where E0 and E± are numerical coefficients given by

E0 = ϕ̇2 + ϕ̇v̇ − ϕ̈v,

E± = ϕ̇ẏ± − ϕ̈y± − ż±.

Using explicit computations of functions v, y±, and z± in Section 3.4, we obtain

E0 = − 2π

T ′(E0)
, E± = ±2π − T ′(E0)(ϕ̇(0))

2

πT ′(E0)ϕ̇(0)
,

and hence we have

σ(1)
n = 2Ω

(
K

2π
|c2n−1|2 + |a2n|2

)
− iL2(c2n−1ā2n − c̄2n−1a2n − c2n−1ā2n−2 + c̄2n−1a2n−2).

Substituting the eigenvector of the reduced eigenvalue problem (3.19)
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in the discrete Fourier transform form (3.26), we obtain

σ(1)
n = 2Ω

(
K

2π
C2 + A2

)
− 4L2 sin(θ)CA

=
1

πΩ

(
Ω2KC2 + 8πM2 sin

2(θ)A2
)
,

where the second equation of system (3.27) has been used. Using the first

equation of system (3.27), we obtain

σ(1)
n =

C2

πL1L2Ω3

[
KL1L2Ω

4 +M2(KΩ2 − 4M1 sin
2(θ))2

]
. (3.31)

Note that σ
(1)
n is independent of n, hence periodic boundary conditions are

used to obtain a finite expression for the 2-form σ.

We consider q ∈ (0, q0) and θ ∈ (0, π), so that Ω 6= 0 and C 6= 0. Then,

σ
(1)
n = 0 if and only if

KL1L2Ω
4 +M2(KΩ2 − 4M1 sin

2(θ))2 = 0.

Using the explicit coefficients in Lemma 1, we factorize the left hand side as

follows:

KL1L2Ω
4 +M2(KΩ2 − 4M1 sin

2(θ))2 =
(
Ω2 + T ′(E0)M1M2 sin

2(θ)
)

×
(

32π2

(T ′(E0))2

(
1− T ′(E0)(ϕ̇(0))

2

4π

)
Ω2 +

16

T ′(E0)
M1 sin

2(θ)

)
. (3.32)

For every q ∈ (0, q0), M1 < 0, so that the second bracket is strictly positive

(recall that T ′(E0) < 0). Now the first bracket vanishes at

Ω2 =
−2M1

π(ϕ̇(0))2
sin2(θ).
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Substituting this constraint to the characteristic equation (3.28) yields after

straightforward computations:

D(iΩ; θ) =
8M1 sin

4(θ)

πϕ̇2(0)

(
1− 2π

T ′(E0)ϕ̇2(0)

)
I(q),

which is nonzero for all q ∈ (0, q0) and θ ∈ (0, π). Therefore, σ
(1)
n does not van-

ish if q ∈ (0, q0) and θ ∈ (0, π). By continuity of the perturbation expansions

in ε, σ also does not vanish. The proof of Lemma 3 is complete.

Remark 8. For every q ∈ (0, q0), all roots Λ ∈ iR+ of the characteristic

equation (3.28) are divided into two equal sets, one has σ
(1)
n > 0 and the other

one has σ
(1)
n < 0. This follows from the factorization

D(iΩ; θ) = − 4π2

T ′(E0)

(
Ω2 − 4

π2
sin2(θ)

)2

− 4I(q)

(
Ω2 − 8

πT ′(E0)(ϕ̇(0))2
sin2(θ)

)
sin2(θ).

As q → 0, I(q) → 0 and perturbation theory for double roots (3.30) for q = 0

yields

Ω2 =
4

π2
sin2(θ)± 2

π2
sin2(θ)

√
|T ′(E0)|I(q)

(
1− 2π

T ′(E0)(ϕ̇(0))2

)
+O(I(q)).

Using the factorization formula (3.32), the sign of σ
(1)
n is determined by the

expression

Ω2 + T ′(E0)M1M2 sin
2(θ) = ± 2

π2
sin2(θ)

√
|T ′(E0)|I(q)

(
1− 2π

T ′(E0)(ϕ̇(0))2

)
+O(I(q)),

which justifies the claim for small positive q. By Lemma 3, the Krein signature

of σ
(1)
n does not vanish for all q ∈ (0, q0) and θ ∈ (0, π), therefore the splitting

of all roots Λ ∈ iR+ into two equal sets persists for all values of q ∈ (0, q0).
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3.7 Proof of Theorem 2

To conclude the proof of Theorem 2, we develop rigorous perturbation the-

ory in the case when q = πm
N

for some positive integers m and N such that

1 ≤ m ≤ N . In this case, the linear eigenvalue problem (3.7) can be closed

at 2mN second-order differential equations subject to 2mN -periodic bound-

ary conditions (1.15) and we are looking for 4mN eigenvalues λ, which are

characteristic values of a 4mN × 4mN Floquet matrix.

At ε = 0, we have 2mN double Jordan blocks for λ = 0. The 2mN

eigenvectors are given by (3.9). The 2mN -periodic boundary conditions are

incorporated in the discrete Fourier transform (3.26) if

θ =
πk

mN
≡ θk(m,N), k = 0, 1, . . . ,mN − 1.

Because the characteristic equation (3.28) for each θk(m,N) returns 4 roots,

we count 4mN roots of the characteristic equation (3.28), as many as there are

eigenvalues λ in the linear eigenvalue problem (3.7). As long as the roots are

non-degenerate (if ∆ 6= Γ2) and different from zero (if ∆ 6= 0), the first-order

perturbation theory predicts splitting of λ = 0 into symmetric pairs of non-

zero eigenvalues. The zero eigenvalue of multiplicity 4 persists and corresponds

to the value θ0(m,N) = 0. It is associated with the symmetries (1.7) and (1.8)

of the dimer equations (1.4)

The non-zero eigenvalues are located hierarchically with respect to the

values of sin2(θ) for θ = θk(m,N) with 1 ≤ k ≤ mN − 1. Because sin(θ) =

sin(π−θ), every non-zero eigenvalue corresponding to θk(m,N) 6= π
2
is double.

Because all eigenvalues λ ∈ iR+ have a definite Krein signature by Lemma 3

and the sign of σ
(1)
n in (3.31) is the same for both eigenvalues with sin(θ) =
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sin(π − θ), the double eigenvalues λ ∈ iR are structurally stable with respect

to parameter continuations [4] in the sense that they split along the imaginary

axis beyond the leading-order perturbation theory.

Remark 9. The argument based on the Krein signature does not cover the

case of double real eigenvalues Λ ∈ R+, which may split off the real axis to the

complex domain. However, both real and complex eigenvalues contribute to the

count of unstable eigenvalues with the account of their multiplicities.

It remains to address the issue that the first-order perturbation theory

uses computations of V ′′′, which is not a continuous function of its argument.

To deal with this issue, we use a renormalization technique. We note that if

(u∗, w∗) is a solution of the differential advance-delay equations (1.14) given

by Theorem 1, then

...
u ∗(τ) = V ′′(εw∗(τ)− u∗(τ))(εẇ∗(τ)− u̇∗(τ))

−V ′′(u∗(τ)− εw∗(τ − 2q))(u̇∗(τ)− εẇ∗(τ − 2q)), (3.33)

where the right-hand side is a continuous function of τ .

Using (3.33), we substitute

U2n−1 = c2n−1u̇∗(τ + 2qn) + U2n−1, W2n = W2n,

for an arbitrary choice of {c2n−1}n∈Z, into the linear eigenvalue problem (3.7)
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and obtain:

Ü2n−1 + 2λU̇2n−1 + λ2U2n−1 = V ′′(εw∗(τ + 2qn)− u∗(τ + 2qn))(εW2n − U2n−1)

− V ′′(u∗(τ + 2qn)− εw∗(τ + 2qn− 2q))(U2n−1 − εW2n−2),

− (2λü∗(τ + 2qn) + λ2u̇∗(τ + 2qn))c2n−1

− εV ′′(εw∗(τ + 2qn)− u∗(τ + 2qn))ẇ∗(τ + 2qn)c2n−1

− εV ′′(u∗(τ + 2qn)− εw∗(τ + 2qn− 2q))ẇ∗(τ + 2qn− 2q)c2n−1,

Ẅ2n + 2λẆ2n + λ2W2n = εV ′′(u∗(τ + 2qn+ 2q)− εw∗(τ + 2qn))(U2n+1 − εW2n)

− εV ′′(εw∗(τ + 2qn)− u∗(τ + 2qn))(εW2n − U2n−1)

+ εV ′′(u∗(τ + 2qn+ 2q)− εw∗(τ + 2qn))u̇∗(τ + 2qn+ 2q)c2n−1

+ εV ′′(εw∗(τ + 2qn)− u∗(τ + 2qn))u̇∗(τ + 2qn)c2n−1.

(3.34)

When we repeat decompositions of the first-order perturbation theory, we write

λ = ελ(1) + ε2λ(2) + o(ε2),

U2n−1 = εU (1)
2n−1 + ε2U (2)

2n−1 + o(ε2),

W2n = a2n + εW (1)
2n + ε2W (2)

2n + o(ε2),

for an arbitrary choice of {a2n}n∈Z. Substituting this decomposition to system

(3.34), we obtain equations at the O(ε) and O(ε2) orders, which do not require

computations of V ′′′. Hence, the system of difference equations (3.19) is justi-

fied and the splitting of the eigenvalues λ at the first order of the perturbation

theory obeys roots of the characteristic equation (3.28). Persistence of roots

beyond the o(ε2) order holds by the standard perturbation theory for isolated

eigenvalues of the Floquet matrix. The proof of Theorem 2 is complete.
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Chapter 4

Numerical Results

In order to perform numerical analysis of the 2π-periodic travelling waves

(1.12) in the case q = π
N

where N ∈ Z+, we rewrite the system of 2N differ-

ential equations (1.4) in the form: ü2n−1(t) = (εw2n(t)− u2n−1(t))
α
+ − (u2n−1(t)− εw2n−2(t))

α
+,

ẅ2n(t) = ε(u2n−1(t)− εw2n(t))
α
+ − ε(εw2n(t)− u2n+1(t))

α
+,

1 ≤ n ≤ N,

(4.1)

subject to periodic boundary conditions

u−1 = u2N−1, u2N+1 = u1, w0 = w2N , w2N+2 = w2. (4.2)

The linearized system is given by

¨̃u2n−1(t) = (εw2n(t)− u2n−1(t))
α
+(εw̃2n(t)− ũ2n−1(t))

− (u2n−1(t)− εw2n−2(t))
α−1
+ (ũ2n−1(t)− εw̃2n−2(t)),

¨̃w2n(t) = ε(u2n−1(t)− εw2n(t))
α
+(ũ2n−1(t)− εw̃2n(t))

− ε(εw2n(t)− u2n+1(t))
α
+(εw̃2n(t)− ũ2n+1(t)),

1 ≤ n ≤ N,

(4.3)
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The 2π-periodic travelling waves (1.12) correspond to 2π-periodic so-

lutions of system (4.1) satisfying the reduction

u2n+1(t) = u2n−1

(
t+ 2π

N

)
,

w2n+2(t) = w2n

(
t+ 2π

N

)
,

t ∈ R, 1 ≤ n ≤ N. (4.4)

For uniqueness, we require u1 be an odd function, u1(t) = −u1(−t) such that

u1(0) = 0 and u̇1(0) > 0.

By Theorem 1 for every N ∈ Z+, the travelling wave solution satisfying (4.4)

exists and is unique at least for small values of ε. We can continue the limiting

solutions from ε = 0 with respect to parameter ε numerically along this branch

all the way to the limit of equal mass ratio, ε = 1.

4.1 Existence of Periodic Travelling Waves

In order to numerically compute the 2π-periodic travelling wave solutions to

the nonlinear system (4.1) we use the classical shooting method [12]. Our

shooting parameters are given by the set of initial conditions

{u2n−1(0), u̇2n−1(0), w2n(0), ẇ2n(0)}1≤n≤N .

Since u1(0) = 0, we have a set of 2N − 1 shooting parameters. However,

for a fixed N , we can use the symmetries of the nonlinear ODE system (4.1)

to reduce the number of shooting parameters needed for approximation of

solutions satisfying the travelling wave reductions (4.4).

For clarity, we give the examples of four particles (N = 2 or q = π
2
),
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six particles (N = 3 or q = π
3
) and eight particles (N = 4 or q = π

4
) explicitly.

For N = 2, we can write the nonlinear ODE system (4.1) as

ü1(t) = (εw4(t)− u1(t))
α
+ − (u1(t)− εw2(t))

α
+,

ẅ2(t) = ε[(u1(t)− εw2(t))
α
+ − (εw2(t)− u3(t))

α
+],

ü3(t) = (εw2(t)− u3(t))
α
+ − (u3(t)− εw4(t))

α
+,

ẅ4(t) = ε[(u3(t)− εw4(t))
α
+ − (εw4(t)− u1(t))

α
+].

(4.5)

We seek 2π-periodic functions satisfying the travelling wave reduction

u3(t) = u1(t+ π), w4(t) = w2(t+ π). (4.6)

The system (4.5) is invariant with respect to the transformation

u1(t) = −u1(−t), w2(t) = −w4(−t), u3(t) = −u3(−t). (4.7)

A 2π-periodic solution of system (4.5) satisfying (4.7) must also satisfy

u1(π) = u3(π) = 0 and w2(π) = −w4(π). In addition, a solution satisfying

(4.6) must also satisfy w4(π) = w2(0).

An approximation of a solution to the system (4.5) satisfying (4.7)

needs only four shooting parameters, (a1, a2, a3, a4), in the initial condition,

u1(0) = 0, u̇1(0) = a1, w2(0) = a2, ẇ2(0) = a3,

u3(0) = 0, u̇3(0) = a4, w4(0) = −a2, ẇ4(0) = a3.

The solution of the initial-value problem corresponds to a 2π-periodic travel-
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ling wave solution only if the following four conditions are satisfied:

u1(π) = 0, w2(π) + w4(π) = 0, w2(0)− w4(π) = 0, u3(π) = 0.

These four conditions fully specify the shooting method for the four parameters

(a1, a2, a3, a4). Additionally, the reductions (4.6) and (4.7) also require the

conditions

ẇ2(π)− ẇ4(π) = 0, ẇ2(0)− ẇ4(π) = 0,

but these conditions are redundant for the shooting method. We have been

checking these conditions a posteriori, when the shooting method has con-

verged to a solution.

The error of the shooting method is generated from the error of the

ODE solver and the error in finding zeros of the above functions. We use the

built-in MATLAB function ode113 on the interval [0, π] as the ODE solver

and then use the transformation (4.7) to extend the solution on the interval

[−π, 0] and hence to continue to a full period [0, 2π].

Figure 2 shows the three solution branches obtained by the shooting

method. The first solution branch (labeled Branch 1) exists for all ε ∈ [0, 1]

and is shown in the top right panel for ε = 1. This branch coincides with

the exact solution (1.24) found analytically. The error in the supremum norm

between the numerical and exact solutions ‖u1 − ϕ‖L∞ can be found in Table

5.1.
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AbsTol of Shooting Method AbsTol of ODE solver L∞ error

O(10−12) O(10−15) 4.5× 10−14

O(10−10) 3.0× 10−11

O(10−8) O(10−15) 4.5× 10−14

O(10−10) 3.0× 10−11

Table 5.1: Error between numerical and exact solutions for branch 1.

The top left panel of Figure 4.1 shows w2(0) versus ε. A pitchfork

bifurcation occurs at ε = ε0 ≈ 0.72 and results in two symmetrically reflected

branches (labeled Branch 2 and Branch 2’). These branches with w2(0) 6= 0

extend to ε = 1 (bottom panels) where the two travelling wave solutions of

the monomer chain (1.6) are recovered. The solution of Branch 2 satisfies the

travelling wave reduction Un+1(t) = Un(t + q) and was previously obtained

numerically by James [15]. The solution of Branch 2’ satisfies the travelling

wave reduction Un+1(t) = Un(t − q) and was approximated numerically by

Starosvetsky and Vakakis [26].

For N = 2 (q = π
2
) the solution of Branch 2’ given by {ũ2n−1, w̃2n}n∈{1,2}

can be obtained from the solution of Branch 2 given by {u2n−1, w2n}n∈{1,2}
through the symmetry

ũ1(t) = −u3(t), w̃2(t) = −w2(t)

ũ3(t) = −u1(t), w̃4(t) = −w2(t).

This symmetry holds for all ε > 0 although it is clear that both solutions 2 and

2’ only exist for ε ∈ (ε0, 1] due to the pitchfork bifurcation at ε = ε0 ≈ 0.72.

The solution of Branch 1 is the invariant symmetry reduction ũ2n−1 = u2n−1,

w̃2n = w2n, so that w2(t) = w4(t) = 0 is satisfied for all t.
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Figure 4.1: Travelling wave solutions for N = 2: the solution of the dimer
chain continued from ε = 0 to ε = 1 (top right) and two solutions of the
monomer chain at ε = 1 (bottom left and right). The top left panel shows the
value of w2(0) for all three solutions branches versus ε.

In the case of six particles (N = 3 or q = π
3
), the nonlinear ODE system

(4.1) can be explicitly written as



ü1(t) = (εw6(t)− u1(t))
α
+ − (u1(t)− εw2(t))

α
+,

ẅ2(t) = ε[(u1(t)− εw2(t))
α
+ − (εw2(t)− u3(t))

α
+],

ü3(t) = (εw2(t)− u3(t))
α
+ − (u3(t)− εw4(t))

α
+,

ẅ4(t) = ε[(u3(t)− εw4(t))
α
+ − (εw4(t)− u5(t))

α
+],

ü5(t) = (εw4(t)− u5(t))
α
+ − (u5(t)− εw6(t))

α
+,

ẅ6(t) = ε[(u5(t)− εw6(t))
α
+ − (εw6(t)− u1(t))

α
+].

(4.8)

We are looking for 2π-periodic functions satisfying the travelling wave reduc-
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tion:

u5(t) = u3

(
t+ 2π

3

)
= u1

(
t+ 4π

3

)
,

w6(t) = w4

(
t+ 2π

3

)
= w2

(
t+ 4π

3

)
.

(4.9)

It can be seen that system (4.8) is invariant under the following transformation:

u1(−t) = −u1(t), w2(−t) = −w6(t),

u3(−t) = −u5(t), w4(−t) = −w4(t).
(4.10)

A 2π-periodic solution to system (4.8) satisfying (4.10) must also satisfy the

conditions u1(π) = w4(π) = 0, w2(π) = −w6(π), and u3(π) = −u5(π). The

constraints of the travelling wave reduction (4.9) force the conditions: u3(π) =

−u1

(
π
3

)
and w4(π) = −w2

(
π
3

)
.

To approximate a solution of the initial-value problem for the sys-

tem (4.8) satisfying (4.10) numerically, we only need six shooting parameters,

(a1, a2, a3, a4, a5, a6), in the initial condition:

u1(0) = 0, u̇1(0) = a1, w2(0) = a2, ẇ2(0) = a3,

u3(0) = a4, u̇3(0) = a5, w4(0) = 0, ẇ4(0) = a6,

u5(0) = −a4, u̇5(0) = a5, w6(0) = −a2, ẇ6(0) = a3.

This solution corresponds to a 2π-periodic travelling wave solution only if it

satisfies the following six conditions:

u1(π) = 0, w2(π) + w6(π) = 0, u3(π) + u5(π) = 0,

u1

(
π
3

)
+ u3(π) = 0 w2

(
π
3

)
+ w4(π) = 0, w4(π) = 0.
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Reductions (4.9) and (4.10) also require we satisfy the conditions

u̇3(π)− u̇5(π) = 0, u̇1

(π
3

)
− u̇3(π) = 0,

ẇ2(π)− ẇ6(π) = 0 ẇ2

(π
3

)
− ẇ4(π) = 0.

These conditions are redundant for the shooting method and are checked a

posteriori after the shooting method has converged on a solution.
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Figure 4.2: Travelling wave solutions for N = 3: the solution of branch 1 is
continued from ε = 0 to ε = 1 (top right) and the solution of branch 2 is
continued from ε = 1 (bottom left) to ε = 0.985 (bottom right). The top left
panel shows the value of w2(0) for solution branches 1 and 2 versus ε.

Figure 4.2 shows two solution branches obtained by the shooting method

for N = 3. Again, w2(0) is plotted versus ε. Branch 1 is continued from ε = 0

to ε = 1 (top right) without any pitchfork bifurcation in ε ∈ (0, 1). Branch

2 is continued from ε = 1 (bottom left) starting with a numerical solution
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of the monomer chain (1.6) satisfying the reduction Un+1(t) = Un

(
t+ π

3

)
to ε = 0.985 (bottom right), where the branch terminates according to our

shooting method. We have not been able so far to detect numerically any

other branch of travelling wave solutions near branch 2 for ε = 0.985, hence

the nature of this bifurcation will remain open for further studies.

For the case of eight particles (N = 4 or q = π
4
), the nonlinear ODE

system (4.1) can be written explicitly as



ü1(t) = (εw8(t)− u1(t))
α
+ − (u1(t)− εw2(t))

α
+,

ẅ2(t) = ε[(u1(t)− εw2(t))
α
+ − (εw2(t)− u3(t))

α
+],

ü3(t) = (εw2(t)− u3(t))
α
+ − (u3(t)− εw4(t))

α
+,

ẅ4(t) = ε[(u3(t)− εw4(t))
α
+ − (εw4(t)− u5(t))

α
+],

ü5(t) = (εw4(t)− u5(t))
α
+ − (u5(t)− εw6(t))

α
+,

ẅ6(t) = ε[(u5(t)− εw6(t))
α
+ − (εw6(t)− u7(t))

α
+],

ü7(t) = (εw6(t)− u7(t))
α
+ − (u7(t)− εw8(t))

α
+,

ẅ8(t) = ε[(u7(t)− εw8(t))
α
+ − (εw8(t)− u1(t))

α
+].

(4.11)

We seek 2π-periodic functions which satisfy the travelling wave reduction:

u7(t) = u5

(
t+ π

2

)
= u3 (t+ π) = u1

(
t+ 3π

2

)
,

w8(t) = w6

(
t+ π

2

)
= w4 (t+ π) = w2

(
t+ 3π

2

)
.

(4.12)

Moreover, system (4.11) is invariant with respect to the transformation:

u1(−t) = −u1(t), u3(−t) = −u7(t), u5(−t) = −u5(t)

w2(−t) = −w8(t), w4(−t) = −w6(t).
(4.13)

A 2π-periodic solution to system (4.11) satisfying (4.13) must satisfy

the conditions u1(π) = u5(π) = 0, w2(π) = −w8(π), u3(π) = −u7(π), and
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w4(π) = −w6(π). The travelling wave reduction (4.12) yield the conditions

w2(0) = w6(π), u3(0) = u7(π), and w8(0) = w4(π).

To approximate a solution to the initial value problem for the nonlinear

system (4.11) satisfying (4.12) and (4.13) we need eight shooting parameters

(a1, a2, a3, a4, a5, a6, a7, a8) in the initial condition:

u1(0) = 0, u̇1(0) = a1, w2(0) = a2, ẇ2(0) = a3,

u3(0) = a4, u̇3(0) = a5, w4(0) = a6, ẇ4(0) = a7,

u5(0) = 0, u̇5(0) = a8, w6(0) = −a6, ẇ6(0) = a7,

u7(0) = −a4, u̇7(0) = a5, w8(0) = −a2, ẇ8(0) = a3.

This solution corresponds to a 2π-periodic travelling wave solution only

if it satisfies the following eight conditions:

u1(π) = 0, w2(π) + w8(π) = 0, u3(π) + u7(π) = 0, w4(π) + w6(π) = 0,

w2(0)− w6(π) = 0, u3(0)− u7(π) = 0, w8(0)− w4(π) = 0, u5(π) = 0.

These eight conditions determine the shooting method for the eight

parameters (a1, a2, a3, a4, a5, a6, a7, a8). Again, there are additional conditions,

namely,

ẇ2(π) + ẇ8(π) = 0, u̇3(π) + u̇7(π) = 0, ẇ4(π) + ẇ6(π) = 0,

ẇ2(0)− ẇ6(π) = 0, u̇3(0)− u̇7(π) = 0, ẇ8(0)− ẇ4(π) = 0.

These conditions are redundant for the shooting method and are checked apos-

teriori.

Figure 4.3 shows the bifurcation plot for N = 4. It is similar to that
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Figure 4.3: Travelling wave solutions for N = 4: the solution of branch 1
continued from ε = 0 to ε = 1 (top right) and the solution of branch 1
continued from ε = 1 (bottom left) to ε = 0.9 (bottom right). The top left
panel shows the value of w2(0) for solution branches 1 and 2 versus ε.

of N = 3 in that there is no pitchfork bifurcation, and only two branches

are shown: Branch 1 is continued from the anticontinuum limit, ε = 0, and

Branch 2 is continued from the limit of equal masses, ε = 1. We note that

this bifurcation diagram is topologically different from that of N = 3 in that

w2(0) for Branch 2 increases for smaller values of ε whereas for N = 3, w2(0)

decreases for smaller values of ε. Branch 2 terminates at ε = ε0 ≈ 0.9. At

ε = 1 the solution satisfies the reduction Un+1(t) = Un

(
t+ π

4

)
and is a solution

to the monomer chain (1.6).
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4.2 Stability of Periodic Travelling Waves

To determine stability of periodic travelling wave solutions of the granular

dimer chain (1.4), we compute Floquet multipliers of the monodromy matrix

for the linearized system (3.1). To do this, we use the travelling wave solution

obtained with the shooting method and the MATLAB function ode113 to

compute the fundamental matrix solution of the linearized system (3.1) on the

interval [0, 2π].

By Theorem 2, the travelling waves of Branch 1 for N = 2
(
q = π

2

)
are

unstable for small values of ε. Figure 4.4 (top) shows the real and imaginary

parts of the characteristic exponents associated with Branch 1 for all values

of ε ∈ [0, 1]. We show only positive values of the characteristic exponents

since the negative values are symmetric. Moreover, Im(λ) is shown in the

interval
[
0, 1

2

)
because of the 1-periodicity of characteristic exponents along

the imaginary axis.

Taking advantage of periodic boundary conditions we can close the

system of linearized equations (3.1) for N = 2 at four second-order differential

equations. For Branch 1, the equations produce eight characteristic exponents:

exponent λ = 0 of multiplicity 4 for small ε > 0, one pair of real λ which persist

for all ε ∈ [0, 1]. The final pair of λ is purely imaginary for ε ∈ [0, ε0) at which

point the pair coalesces and splits along the real axis, creating a second pair

of real λ for ε ∈ (ε0, 1]. We can conclude that Branch 1 for N = 2 is unstable

for all ε ∈ [0, 1]. The nonzero pairs of λ bifurcate from the anti-continuum

limit, ε = 0, according to the roots of the characteristic polynomial (3.28) for

θ = π
2
. The asymptotic approximations are shown in the top panels of Figure

4.4 by solid lines. We note the excellent agreement between the asymptotic

approximation and numerical data.
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Figure 4.4: Real (left) and imaginary (right) parts of the characteristic expo-
nents λ versus ε for N = 2 for branch 1 (top) and branch 2 (bottom).

The bottom panels of Figure 4.4 show real and imaginary parts of char-

acteristic exponents λ associated with Branch 2 (and Branch 2’ by symmetry)

for all values of ε ∈ [ε0, 1]. We see that these periodic travelling waves are

spectrally stable near ε = 1, in agreement with numerical results presented by

James [15]. As ε is decreased, we lose spectral stability near ε = ε1 ≈ 0.86.

This occurs because of a coalescence of a pair of purely imaginary character-

istic exponents λ which creates a pair of real characteristic exponents λ for

ε < ε1. The two solution branches (Branch 2 and 2’) annihilate each other as

a result of the pitchfork bifurcation at ε = ε0 ≈ 0.72 which is also induced by

the coalescence of the second pair of purely imaginary characteristic exponents
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Figure 4.5: Real (left) and imaginary (right) parts of the characteristic expo-
nents λ versus ε for N = 3 for branch 1 (top) and branch 2 (bottom).

λ.

For N = 3, we are able to close the system of linearized equations

(3.1) at six second-order linearized equations because of periodic boundary

conditions. Barring the characteristic exponent λ = 0 of multiplicity four, we

have eight nonzero characteristic exponents λ. The characteristic polynomial

(3.28) with θ = π
3
and θ = 2π

3
predicts a double pair of real λ and a double

pair of purely imaginary λ. The top panel of Figure 4.5 shows Re(λ) (left) and

Im(λ) (left) for solutions of Branch 1. The double pair of purely imaginary λ

split along the imaginary axis for small ε > 0. In contrast, the double pair

of real λ split along the transverse direction and create a quartet of complex-
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valued λ for small ε > 0. These complex λ approach the imaginary axis at

ε = ε1 ≈ 0.43 in a Neimark-Sacker bifurcation and then split safely along the

imaginary axis as two pairs of purely imaginary λ for ε > ε1. We also have

one pair of purely imaginary λ continued from ε = 0 approaching the line ± i
2

at ε = ε2 ≈ 0.72. The line ± i
2
corresponds to a Floquet multiplier at -1, that

is, a period-doubling bifurcation takes place at ε = ε2. The pair of imaginary

λ splits in a complex plane for ε > ε2 (the corresponding Floquet multipliers

are real and negative). In summary, we have that the periodic travelling wave

of Branch 1 for N = 3 has an island of stability for ε ∈ (ε1, ε2) but is unstable

near ε = 0 and ε = 1.

The bottom of Figure 4.5 shows Re(λ) (left) and Im(λ) (right) for

solutions of Branch 2. Such a solution only exists for ε ∈ [ε∗, 1], where ε∗ ≈

0.985. Near ε = 1, we see that all four pairs of characteristic exponents, λ,

are purely imaginary. This corresponds to numerical stability of travelling

waves in monomer chains [15]. Two pairs coalesce at ε ≈ 0.995 and split in

a complex quartet of characteristic exponents (resulting in a Neimark-Sacker

bifurcation). Another purely imaginary pair of λ approach the line ± i
2
at

ε ≈ 0.989. The pair then splits in a complex quartet (resulting in a period

doubling bifurcation). The final remaining pair of purely imaginary λ crosses

zero near ε = ε∗ ≈ 0.985. This picture suggests that the termination of Branch

2 is related to a local bifurcation. Using the current methods, we are not able

to numerically identify any other branch of travelling wave solutions in the

neighbourhood of Branch 2 for ε ≈ ε∗.

We recall that the coefficient M1 changes sign at q ≈ 0.915, as seen in

Figure 3.1. Considering this, the characteristic polynomial (3.28) for any value

of θ predicts pairs of purely imaginary λ for N ≥ 4. For N = 4, it predicts

two double pairs for θ = π
4
and θ = 3π

4
and two single pairs for θ = π

2
.
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Figure 4.6: Real (left) and imaginary (right) parts of the characteristic expo-
nents λ versus ε for N = 4 for branch 1 (top) and branch 2 (bottom).

This prediction is realized in the top panel of Figure 4.6 for N = 4 or

q = π
4
. Again, neglecting the characteristic exponent λ = 0 of multiplicity four,

we have twelve nonzero λ. We see from Figure 4.6 that the result of Theorem

2 holds as all double pairs of λ split along the imaginary axis for small ε > 0.

The periodic travelling waves for N = 4 remain stable for all ε ∈ [0, 1]. The

figure also illustrates the validity of the asymptotic approximations (solid lines)

obtained from the roots of the characteristic polynomial (3.28).

It is indeed interesting that Figure 4.6 shows safe coalescence of char-

acteristic exponents for larger values of ε. We recall from Remark 8 that the

characteristic exponents have opposite Krein signature for small values of ε
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such that larger exponents on Figure 4.6 have negative Krein signature σ and

smaller exponents have positive Krein signature σ. It is typical to observe

instabilities arise after the coalescence of two purely imaginary eigenvalues of

opposite Krein signature [20], but this happens when the double eigenvalue

at the coalescence point is not semi-simple. When the double eigenvalues are

semi-simple, instabilities do not arise [3]. This is what we observe in Figure 4.6.

After coalescence, for larger values of ε, the purely imaginary characteristic

exponents λ reappear as simple exponents with opposite Krein signature; i.e.

the exponents with positive Krein signature are now above those exponents

with negative Krein signature.

The bottom panel of Figure 4.6 shows Re(λ) (left) and Im(λ) (right) for

Branch 2 which exists exclusively for ε ∈ [ε∗, 1], with ε∗ ≈ 0.90. Besides three

pairs of purely imaginary λ, there is one pair of real exponents and a complex

quartet near ε = 1. The pair or real λ corresponds to the numerical results

for instability of travelling waves in monomer chains [15] for which instability

occurs for q < 0.9. The quartet of complex λ gives additional instability,

which is not captured by the reductions to the monomer chains. Several more

instabilities arise as ε decreases from ε = 1 for the solutions of Branch 2 due

to bifurcations of pairs of purely imaginary exponents λ. Branch 2 is unstable

in the entire existence interval [ε∗, 1].

Figure 4.7 shows the stability of solutions of Branch 1 for N = 5 (left)

and N = 6 (right). These figures are included to illustrate the safe splitting of

purely imaginary exponents λ near ε = 0 as well as safe coalescence of purely

imaginary exponents λ of opposite Krein signature (i.e. coalescence never

results in the occurrence of a complex exponent λ). For N = 5 and N = 6,

the solution of Branch 1 remains stable for all ε ∈ [0, 1]. The predictions from

roots of the characteristic polynomial (3.28) are shown by solid lines.
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Figure 4.7: Imaginary parts of the characteristic exponents λ versus ε for
N = 5 (left) and N = 6 (right). The real part of all the exponents is zero.

4.3 Gauss-Newton Iterations

While the shooting method shows accurate approximations and agreement

with asymptotic approximations for small ε, an alternative numerical method

is available to reduce computational time. This numerical method was devel-

oped by James [15].

We note that in order to further decrease q using the shooting method,

we would require a system of N = π
q
equations evaluated on the interval [0, π].

It is evident that, as we approach the limit q = 0, the shooting method will

become increasingly complex, slow and error prone.

On the other hand the alternative method of James [15] is very robust

as it takes full advantage of the travelling wave conditions (4.4) of the system

of differential equations (4.1) in order to continue the solution obtained on an

interval [0, 2q] to the full period [0, 2π]. We shall extend the method to the

dimer chains.
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Let us define the solution to (4.1) as

X(t) = [X1, X2, · · · , XN ]
T , Xn = [u2n−1, u̇2n−1, w2n, ẇ2n]

T , (4.14)

We use the built-in MATLAB function ode113 to compute the solution X(t)

on the interval [0, 2q] where q = π
N
. Let S be a shift operator defined such

that

S[X1, X2, · · · , XN−1, XN ]
T = [X2, X3, · · · , XN , X1]

T . (4.15)

We now constrain a solution to (4.1) by the conditions

F2q = SX(2q)−X(0) = 0, (4.16)

which are equivalent to the travelling wave reduction at t = 2q = 2π
N
:

u2n+1(t) = u2n−1

(
t− 2π

N

)
,

w2n+2(t) = w2n

(
t− 2π

N

)
,

t ∈ R, 1 ≤ n ≤ N. (4.17)

We note that these conditions are opposite to the travelling wave conditions

(1.12) used earlier. In other words, instead of finding left-travelling waves, the

conditions (4.16) allow us to find right-travelling waves. We can circumvent

this through the transformation,

u(t;−q) = −u(t+ π; q), w(t;−q) = −w(t+ π; q), t ∈ R, q > 0, (4.18)

which connect left-travelling and right-travelling solutions to (4.1). We lin-

earize the system (4.1), and obtain the system (4.3), to compute the matrix

DF2q, where the columns of DF2q are given by the partial derivatives of F2q

with respect to initial conditions X(0).
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We would like to use Gauss-Newton iterations [7] to find zeros of F2q in

order to approximate a solution to (4.1). The matrix DF2q is not invertible,

and so we exploit the symmetries between solutions to (4.1). These symmetries

are equivalent to those found in (4.7) in the case N = 2, (4.10) in the case

N = 3, and (4.13) in the case N = 4.

When computing columns of the matrix DF2q, we use columns of the

identity matrix as initial conditions to the linearized system (4.3). However,

in doing this we do not account for symmetries such as (4.7),(4.10) and (4.13),

which lead to a redundancy in parameters in our initial conditions. In or-

der to reduce the number of parameters and to include these symmetries, we

introduce the matrix TN .

While the code for finding TN for any N can be found in the MATLAB

codes for the Gauss-Newton method, we give here the example of T2 (N = 2):

T2 =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1

0 −1 0 0

0 0 1 0


This matrix encodes the fact that we have four parameters in the initial con-
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ditions after the symmetries (4.7) have been accounted for:

u1(0) = 0, u̇1(0) = a1, w2(0) = a2, ẇ2(0) = a3,

u3(0) = 0, u̇3(0) = a4, w4(0) = −a2, ẇ4(0) = a3.

It is clear that X(0) = T2a, where a = [a1, a2, a3, a4] ∈ R4.

The Gauss-Newton iterations for a fixed N are used to refine our pa-

rameters, a:

anew = aold − (JT
NJN)

−1JT
NF2q (4.19)

where 4N × 2N matrix JN is given by

JN = DF2q ∗ TN .

Since this matrix now accounts for all symmetries of the system (4.1) and has

full column rank, the 2N × 2N matrix JT
NJN is invertible.

The matrix

D2q = DF2q + I = DSX(2q) =


∂X2(2q)
∂X1(0)

... ∂X2(2q)
∂XN (0)

...
. . .

...

∂X1(2q)
∂X1(0)

... ∂X1(2q)
∂XN (0)


is said to be related to the monodromy matrix [15] but a proof of this fact is

not offered in [15]. We state and prove the following theorem.

Theorem 3. Consider the solution to system (4.1) with q = π
N
, organized

in the blocks (4.14). Let R(t, t0) be the fundamental matrix solution to the
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linearized system (4.3), where t0 is the initial time. Then we have,

D2q = SR(2q; 0), (4.20)

SR(t+ 2q; t0) = R(t; t0 − 2q)S, (4.21)

and

R(2π; 0) = [D2q]
N (4.22)

Remark 10. By Theorem 3, we only need a solution to the nonlinear system

(4.1) on the interval [0, 2q] in order to obtain numerical results for stability

of periodic travelling waves. In the limit of small q, we should expect more

accurate results than the shooting method, as well as a decrease in the compu-

tational time.

Proof. We prove equation (4.20) by considering the first column of D2q,

[D2q]1 =



∂X2(2q)
∂X1(0)
...

∂XN (2q)
∂X1(0)

∂X1(2q)
∂X1(0)

 = S



∂X1(2q)
∂X1(0)
...

∂XN−1(2q)

∂X1(0)

∂XN (2q)
∂X1(0)

 = S [Y (2q)]1 ,

where the first column [Y (t)]1 is the derivative of the solution vector X(t)

with respect to X1(0). The column [Y ]1 solves the linearized system (4.3) with

initial data being an identity block for the first entry of [Y (0)]1. In other words,

[Y ]1 is the first column of the monodromy matrix for the linearized system (4.3)

and hence D2q = SR(2q; 0) is proved for the first column. Generalizing this

for any column, equation (4.20) is proved for the entire matrix.

Next, we prove equation (4.21); for simplicity we take t0 = 0.

Notice that each column of R(t; 0) solves the linearized system with
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initial data R(0, 0) = I, where I is the identity. Let us denote Z(t) = SR(t+

2q; 0). Therefore, Z(t) solves the linearized system (4.3) with initial condition

Z(0) = SR(2q; 0). By the travelling wave reduction, we haveXn(t) = Xn−1(t−

2q). As a result, we have

[Z(t)]1 =



∂X2(t+2q)
∂X1(0)
...

∂XN (t+2q)
∂X1(0)

∂X1(t+2q)
∂X1(0)

 =



∂X1(t)
∂XN (−2q)

...

∂XN−1(t)

∂XN (−2q)

∂XN (t)
∂XN (−2q)

 = [R(t;−2q)]N = [R(t;−2q)S]1

Therefore Z(t) = R(t;−2q)S is proved for the first column and similarly for

any column. Hence, equation (4.21) is proved for the entire matrix Z(t).

To prove equation (4.22), we expand [D2q]
N , using equations (4.20) and

(4.21):

[D2q]
N = [SR(2q; 0)]N

= SR(2q; 0)SR(2q; 0)...SR(2q; 0)SR(2q; 0)

= SR(2q; 0)...SR(2q; 0)SSR(4q; 2q)R(2q; 0)

...

= SNR(2Nq; 2(N − 1)q)...R(6q; 4q)R(4q; 2q)R(2q; 0)

= R(2Nq; 0)

= R(2π; 0).

In the second last equation, we have used two results. First, SN = I, by the

construction of S. Second, each monodromy matrix in the chain

R(2Nq; 2(N − 1)q)...R(6q; 4q)R(4q; 2q)R(2q; 0)
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computes the fundamental solution on an interval of length 2q, starting at the

end point of the previous matrix. Therefore, together they give R(2Nq; 0) =

R(2π; 0).

Table 5.2 compares computational time in seconds for the shooting

method and the Gauss-Newton method described here for N = 3 and N = 4.

The time represents the time taken by a 3.2GHz Pentium M processor working

with 2GB of RAM to approximate solutions and characteristic exponents for

the solution of Branch 2 at ε = 1. We can see that the Gauss-Newton method

is faster than the shooting method. Again, this is obvious considering the fact

that we are approximating a solution on a smaller interval, [0, 2q].

N Elapsed time of shooting method Elapsed time of Gauss-Newton method

3 73s 46s

4 206s 114s

Table 5.2: Comparison of computational time for the shooting method and

the Gauss-Newton method for N = 3 and N = 4.

An additional advantage of the Gauss-Newton method is that we only

need to use the ODE solver once to compute both the solution of the nonlinear

system (4.1) and the characteristic exponents of the linearized system (4.3).

On comparison, in the shooting method we need to use the ODE solver to

approximate the solution of the nonlinear system (4.1) on the interval [0, π]

and again to compute the characteristic exponents of the linearized system

(4.3) on the full period [0.2π].
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4.4 Stability of Uniform Periodic Oscillations

The periodic solution with q = 0 (which is no longer a travelling wave but a

uniform oscillation of all sites of the dimer) is given by the exact solution (1.27).

Spectral stability of this solution is obtained from the system of linearized

equations (3.3). Using the boundary conditions

u2n+1 = e2iθu2n−1, w2n+2 = e2iθw2n, n ∈ Z,

where θ ∈ [0, π] is a continuous parameter, we obtain the system of two closed

second-order equations, ü+ α
1+ε2

|ϕ|α−1u = ε
1+ε2

(
V ′′(−ϕ) + V ′′(ϕ)e−2iθ

)
w,

ẅ + αε2

1+ε2
|ϕ|α−1w = ε

1+ε2

(
V ′′(−ϕ) + V ′′(ϕ)e2iθ

)
u.

(4.23)

The characteristic equation (3.28) for q = 0 predicts a double pair (3.9) of

purely imaginary Λ for any θ ∈ (0, π). We confirm here numerically that the

double pair is preserved for all ε ∈ [0, 1].

Figure 4.8 shows the imaginary part of the characteristic exponents λ of

the linearized system (4.23) for θ = π
2
(left) and θ = π

4
(right). Similar results

are obtained for other values of θ. Therefore, the periodic solution with q = 0

remains stable for all values of ε ∈ [0, 1].

The pattern on Figure 4.8 suggests a hidden symmetry in this case.

Suppose λθ is a characteristic exponent of the system (4.23) for the eigenvector

 u

w

 =

 Uθ(t)

Wθ(t)

 eλθt, (4.24)

where Uθ(t) and Wθ(t) are 2π-periodic and the subscript θ indicates that the
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Figure 4.8: Imaginary parts of the characteristic exponents λ versus ε for
θ = π

2
(left) and θ = π

4
(right). The real part of all the exponents is zero.

system (4.23) depends explicitly on θ. Recall that the unperturbed solution

satisfies the symmetry ϕ(t + π) = −ϕ(t) for all t. Using this symmetry and

the trivial identity e2πi = 1, we can verify that there is another solution of the

system (4.23) with the same θ for the characteristic exponent λπ−θ: u

w

 =

 Uπ−θ(t+ π)

e2iθWπ−θ(t+ π)

 eλπ−θt. (4.25)

From the symmetry of roots (3.9) and the corresponding characteristic expo-

nents, we have λθ = λπ−θ. The eigenvectors (4.24) and (4.25) are generally

linearly independent and coexist for the same value of λ = λθ = λπ−θ. This

argument explains the double degeneracy of characteristic exponents λ for the

case q = 0 for all values of ε ∈ [0, 1].
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Conclusions and Open Problems

We have studied periodic travelling waves in granular dimer chains by continu-

ing solutions from the anti-continuum limit (i.e. when the mass ratio between

the light and heavy particles is zero). We have shown that the limiting peri-

odic waves are all uniquely continued from the anti-continuum limit for small

mass ratio parameters. Despite the lack of smoothness of vector fields of the

granular dimer chains, we are still able to use the implicit function theorem to

guarantee a C1 continuation with respect to the mass ratio parameter. Rig-

orous perturbation theory is used to compute characteristic exponents in the

linearized stability problem. We are able to show that periodic waves with

wavelengths larger than a certain critical value are spectrally stable for small

mass ratios.

We have used numerical techniques to show that for larger wavelengths

the stability of these periodic travelling waves persists all the way to the limit

of equal mass ratio. We also compute periodic travelling waves continued from

the solutions of granular monomer chains at the equal mass ratio, their spectral

stability and their termination points with respect to mass ratio parameter.

There are several open questions which are left for further studies. The

nature of the bifurcations where Branch 2 terminates at ε∗ ∈ (0, 1) needs to be

clarified. We have been unsuccessful in our attempts to find another solution
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branch nearby for ε ' ε∗. The safe coalescence of purely imaginary character-

istic exponents λ of opposite Krein signatures is also remarkable. We are still

lacking understanding the hidden symmetry in the linearized stability prob-

lem that would explain why the eigenvalues at the coalescence point remain

semi-simple.
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MATLAB Codes

This script was used to compute solutions and characteristic exponents for the
case N = 4 using the shooting method. Similar codes exist for N = 2, 3.

function Dim_FM8

clear all

tic

p=8;

eps = 1;

nn=1;

options = odeset(’RelTol’,1e-12,’AbsTol’,1e-12);

%a=([0 1.1278 0 0 1.2038 0.0000 0 0 0 -1.1278 0 0 -1.2038 0.0000 0 0])’;

a=([0 2.2030 1.7302 2.2030 3.4605 2.2030 4.9781 0.4028 0 -11.8207

-4.9781 0.4028 -3.4605 2.2030 -1.7302 2.2030])’;

v1=[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]’;

v2=[0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0]’;

v3=[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1]’;

v4=[0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0]’;

v5=[0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0]’;

v6=[0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0]’;

v7=[0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0]’;

v8=[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]’;

for eps=1:-0.002:1

aa=zeros(16,1);

while (norm(aa-a) > 1e-10)

T=pi;

aa=a;

ic =[a;v1;v2;v3;v4;v5;v6;v7;v8];

[~,x] = ode45(@DIM,[0,pi/2,T],ic,options);

n_t=length(x(:,1));

n2=2;

F=[x(n_t,1),x(n_t,3)+x(n_t,15),x(1,3)-x(n_t,11),
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x(n_t,5)+x(2,1),x(1,5)-x(n_t,13),x(n_t,7)+x(n_t,11),

x(1,15)-x(n_t,7),x(n_t,9)];

for k1=1:8

DF(k1,:)=[x(n_t,1+k1*16),x(n_t,3+k1*16)+x(n_t,15+k1*16),

x(1,3+k1*16)-x(n_t,11+k1*16),x(n_t,5+k1*16)+x(2,1+k1*16),

x(1,5+k1*16)-x(n_t,13+k1*16),x(n_t,7+k1*16)+x(n_t,11+k1*16),

x(1,15+k1*16)-x(n_t,7+k1*16),x(n_t,9+k1*16)];

end

DF=transpose(DF);

a=([a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(10)])’-DF\F’;

a=([0,a(1),a(2),a(3),a(4),a(5),a(6),a(7),

0,a(8),-a(6),a(7),-a(4),a(5),-a(2),a(3)])’;

norm(aa-a)

end

[t,x] = ode45(@DIM,[0 2*T],ic,options);

figure(6)

plot(t,[x(:,1),x(:,3),x(:,5),x(:,7),x(:,9),x(:,11),x(:,13),x(:,15)])

T=2*pi;

for jj=1:16

ic=zeros(32,1);

ic(1:16)=a;

ic(16+jj)=1;

[tt,xx] = ode45(@DIM_lin,[0,T],ic,options);

n_time = length(xx(:,1));

M(:,jj) = (xx(n_time,17:32))’;

end

figure(2)

plot(tt,xx(:,1))

hold on

eps

EM=eig(M)

for j=1:16

Enorm(j)=norm(EM(j));

end

Emax(nn)=max(Enorm);

figure(3)

plot(cos(tt),sin(tt))

hold on

plot(real(EM),imag(EM),’r*’)

nn=nn+1;

figure(1)

plot(eps,x(1,3),’*’)
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hold on

epsil(nn)=(eps);

EM=sort(EM)

FM(:,nn)=abs(EM);

FMa=angle(EM);

FM1(:,nn)=FMa;

nn=nn+1;

end

a’

Y=(log(FM))/(2*pi);

figure(7)

plot(epsil,Y,’*’)

figure(8)

plot(epsil,FM1/(2*pi),’*’)

toc

function y = f(x)

if(x>0)

y=(x)^(3/2);

else

y=0;

end

end

function y=df(x)

if(x>0)

y=(3/2)*sqrt(x);

else

y=0;

end

end

function dx = DIM(~,x)

dx=zeros(2*p+2*(p)^2,1);

for i1=1:2:2*p-1

dx(i1)=x(i1+1);

end

for i1=4:4:2*p-2

dx(i1)=(eps*(f(x(i1-3)-eps*x(i1-1))-f(eps*x(i1-1)-x(i1+1))));

end

for i1=6:4:2*p-2

dx(i1)=(f(eps*x(i1-3)-x(i1-1))-f(x(i1-1)-eps*x(i1+1)));

end

for i1=2
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dx(i1)=(f(eps*x(2*p-1)-x(1))-f(x(1)-eps*x(3)));

dx(2*p)=(eps*(f(x(2*p-3)-eps*x(2*p-1))-f(eps*x(2*p-1)-x(1))));

end

for j1=1:p

for i2=1+2*p*j1:2:2*p-1+2*p*j1

dx(i2)=x(i2+1);

end

for i2=4+2*p*j1:4:2*p-2+2*p*j1

dx(i2)=(eps*(df(x(i2-3-2*p*j1)-eps*x(i2-1-2*p*j1))*(x(i2-3)-eps*x(i2-1))

-df(eps*x(i2-1-2*p*j1)-x(i2+1-2*p*j1))*(eps*x(i2-1)-x(i2+1))));

end

for i2=6+2*p*j1:4:2*p-2+2*p*j1

dx(i2)=(df(eps*x(i2-3-2*p*j1)-x(i2-1-2*p*j1))*(eps*x(i2-3)-x(i2-1))

-df(x(i2-1-2*p*j1)-eps*x(i2+1-2*p*j1))*(x(i2-1)-eps*x(i2+1)));

end

for i2=2+2*p*j1

dx(i2)=(df(eps*x(2*p-1)-x(1))*(eps*x(2*p-1+2*p*j1)-x(i2-1))-df(x(1)

-eps*x(3))*(x(i2-1)-eps*x(i2+1)));

dx(2*p*j1+2*p)=(eps*(df(x(2*p-3)-eps*x(2*p-1))*(x(2*p*j1+2*p-3)

-eps*x(2*p*j1+2*p-1))-df(eps*x(2*p-1)-x(1))*(eps*x(2*p+2*p*j1-1)

-x(2*p*j1+1))));

end

end

end

function dx = DIM_lin(~,x)

dx = zeros(32,1);

dx(1) = x(2);

dx(2) = f(eps*x(15)-x(1))-f(x(1)-eps*x(3));

dx(3) = x(4);

dx(4) = eps*(f(x(1)-eps*x(3))-f(eps*x(3)-x(5)));

dx(5) = x(6);

dx(6) = f(eps*x(3)-x(5))-f(x(5)-eps*x(7));

dx(7) = x(8);

dx(8) = eps*(f(x(5)-eps*x(7))-f(eps*x(7)-x(9)));

dx(9) = x(10);

dx(10) =f(eps*x(7)-x(9))-f(x(9)-eps*x(11));

dx(11) = x(12);

dx(12) = eps*(f(x(9)-eps*x(11))-f(eps*x(11)-x(13)));

dx(13) = x(14);

dx(14) = f(eps*x(11)-x(13))-f(x(13)-eps*x(15));

dx(15) = x(16);

dx(16) = eps*(f(x(13)-eps*x(15))-f(eps*x(15)-x(1)));

79



MSc Thesis – M. Betti McMaster – MathematicsMSc Thesis – M. Betti McMaster – Mathematics

for jk=0

dx(17+jk*16) = x(18+jk*16);

dx(18+jk*16) = df(eps*x(15)-x(1))*(eps*x(31+jk*16)-x(17+jk*16))-df(x(1)

-eps*x(3))*(x(17+jk*16)-eps*x(19+jk*16));

dx(19+jk*16) = x(20+jk*16);

dx(20+jk*16) = eps*(df(x(1)-eps*x(3))*(x(17+jk*16)-eps*x(19+jk*16))

-df(eps*x(3)-x(5))*(eps*x(19+jk*16)-x(21+jk*16)));

dx(21+jk*16) = x(22+jk*16);

dx(22+jk*16) = df(eps*x(3)-x(5))*(eps*x(19+jk*16)-x(21+jk*16))-df(x(5)

-eps*x(7))*(x(21+jk*16)-eps*x(23+jk*16));

dx(23+jk*16) = x(24+jk*16);

dx(24+jk*16) = eps*(df(x(5)-eps*x(7))*(x(21+jk*16)-eps*x(23+jk*16))

-df(eps*x(7)-x(9))*(eps*x(23+jk*16)-x(25+jk*16)));

dx(25+jk*16) = x(26+jk*16);

dx(26+jk*16) = df(eps*x(7)-x(9))*(eps*x(23+jk*16)-x(25+jk*16))-df(x(9)

-eps*x(11))*(x(25+jk*16)-eps*x(27+jk*16));

dx(27+jk*16) = x(28+jk*16);

dx(28+jk*16) = eps*(df(x(9)-eps*x(11))*(x(25+jk*16)-eps*x(27+jk*16))

-df(eps*x(11)-x(13))*(eps*x(27+jk*16)-x(29+jk*16)));

dx(29+jk*16) = x(30+jk*16);

dx(30+jk*16) = df(eps*x(11)-x(13))*(eps*x(27+jk*16)-x(29+jk*16))

-df(x(13)-eps*x(15))*(x(29+jk*16)-eps*x(31+jk*16));

dx(31+jk*16) = x(32+jk*16);

dx(32+jk*16) = eps*(df(x(13)-eps*x(15))*(x(29+jk*16)-eps*x(31+jk*16))

-df(eps*x(15)-x(1))*(eps*x(31+jk*16)-x(17+jk*16)));

end

end

end

This script computes solutions and characteristic exponents for the case N = 3
using the Gauss-Newton method.

function GNdim

tic

eps=0.1;

p=6; %p=2N

m=1;

n=2400;

fixed=linspace(0,1,n+1)*(pi);

q=4*m*pi/p;

nn=1;

kk=1;
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options = odeset(’RelTol’,2.3e-14,’AbsTol’,1e-15);

%a=[0,u0(1,2),-u0(600,1),u0(600,2),0,u0(1200,2),u0(600,1),u0(600,2)]’;

%p=6

a=[0 0.8905 0.9322 0.8905 1.8089 0.4563 0 -3.5842

-1.8089 0.4563 -0.9325 0.8905]’;

%a=([0,1.1278,0,0,1.0293,-0.6418,0,0,-1.0293,-0.6418,0,0])’; %Main Branch

%p=4

%a=([0,1.127491828593248,0,0,0,-1.127491828593248,0,0])’;

%a=([0,0.7795,-0.4599,-0.2412,0,-0.2973,0.4599,-0.2412])’;

%a=([-0.0000,0.2973,0.4599,-0.2412,0,-0.7795,-0.4599,-0.2412])’;

%p=8

%a=([0 1.1278 0 0 1.2038 0 0 0 0 -1.1278 0 0 -1.2038 0.0 0 0])’;

%a=([0 2.2030 1.7302 2.2030 3.4605 2.2030 4.9781 0.4028 0 -11.8207 -4.9781

0.4028 -3.4605 2.2030 -1.7302 2.2030])’;

%p=10

%a=([0 1.1278 0 0 -1.1395 0.4039 0 0 -0.6821 -0.9821

0 0 0.6821 -0.9821 0 0 1.1395 0.4039 0 0])’;

%a=[0 31.1444 -11.1504 0.7632 -8.7976 -4.6673 -5.8650

-4.6673 -2.9325 -4.6673 0 -4.6673 2.9325 -4.6673 5.8650

-4.6673 8.7976 -4.6673 11.1504 0.7632 ])’;

%p=12

%a=([0 1.1278 0 0 -1.0293 0.6418 0 0 -1.0293 -0.6418

0 0 0 -1.1278 0 0 1.0293 -0.6418 0 0 1.0293 0.6418 0 0])’;

%a=([0 70.2179 -21.7997 4.5955 -18.4793 -8.8232 -13.8595 -8.8232 -9.2396

-8.8232 -4.6198 -8.8232 0 -8.8232 4.6198 -8.8232 9.2396 -8.8232

13.8595 -8.8232 18.4793 -8.8232 21.7997 4.5955])’;

S=eye(2*p,2*p);

S=circshift(S,[0 4])

S1=eye(2*p,2*p);

S1=circshift(S,[0 -2])

T=eye(2*p,p);

T=circshift(T,[1,0]);

T(p+1,p)=0;

T(p+2,p)=1;

for pp=1:2:p-2

T(p*2-pp,pp+1)=-1;

end

for pp=0:2:p-3

T(2*p-pp,pp+3)=1;

end

v=eye(2*p,2*p);

for eps=1:0.02:1
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aa=zeros(2*p,1);

while (norm(aa-a)>1e-12) && (norm(aa-a)<1000)

aa=a;

ic(1:2*p,1)=a;

for j=1:2*p

ic(2*p*j+1:2*p*(j+1),1)=v(:,j);

end

[t,x] = ode113(@DIM,[0 q],ic,options);

nt=length(x(:,1));

F=zeros(nt);

F1=[x(1,1:2*p)]’;

F2=[x(nt,1:2*p)]’;

F=(F2-S*F1);

DF=zeros(2*p,2*p);

for jj=1:2*p

F3=[x(1,1+jj*2*p:2*p*(jj+1))]’;

F4=[x(nt,1+jj*2*p:2*p*(jj+1))]’;

F5=[x(2,1+jj*2*p:2*p*(jj+1))]’;

DF(:,jj)=(F4-S*F3);

end

M=DF+v;

DF=DF*T;

DFT=transpose(DF);

a1=zeros(p,1);

for i=1:p-1

a1(i)=a(i+1);

end

a1(p)=a(p+2);

a1=a1-(DFT*DF)\(DFT*F);

for i=1:p-1

a(i+1)=a1(i);

end

a(1)=0;

a(p+1)=0;

a(p+2)=a1(p);

for i=1:2:p-2

a(2*p-i+1)=a1(i+2);

end

for i=1:2:p-2

a(2*p-i)=-a1(i+1);

end

norm(aa-a)
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end

a’

M=M^(p/2);

figure(1)

plot(eps,x(1,3),’*’)

% hold on

figure(2)

plot(t,[x(:,1),x(:,3),x(:,5),x(:,7)]);

hold on

[V,EM]=eig(M);

EM=eig(M);

time=[0:pi/20:2*pi];

figure(4)

plot(cos(time),sin(time))

hold on

plot(real(EM),imag(EM),’r*’)

hold on

epsil(nn)=(eps);

EM=sort(EM)

FM(:,nn)=real(EM);

FMa=angle(EM);

FM1(:,nn)=FMa;

nn=nn+1;

end

figure(12)

plot(t,[x(:,1),x(:,3),x(:,5),x(:,7),x(:,9),x(:,11)]);

hold on

plot(t+q,[x(:,5),x(:,7),x(:,9),x(:,11),x(:,1),x(:,3)]);

plot(t+2*q,[x(:,9),x(:,11),x(:,1),x(:,3),x(:,5),x(:,7)]);

B(:,1)=ones(nn-1,1);

B(:,2)=epsil;

Y=(log(FM))/(2*pi);

% XCX=B\Y.’

% Err=B*XCX-Y.’

figure(7)

plot(epsil,Y,’*’)

figure(8)

plot(epsil,FM1/(2*pi),’*’)

legend(’Real’,’Imag’,’RD’,’IMD’)

% figure(3)
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% plot(1:-0.001:0.984,Enorm)

toc

function y = f(x)

if(x>0)

y=(x)^(3/2);

else

y=0;

end

end

function y=df(x)

if(x>0)

y=(3/2)*sqrt(x);

else

y=0;

end

end

function dx = DIM(~,x)

dx=zeros(2*p+(2*p)^2,1);

for i1=1:2:2*p-1

dx(i1)=x(i1+1);

end

for i1=4:4:2*p-2

dx(i1)=(eps*(f(x(i1-3)-eps*x(i1-1))-f(eps*x(i1-1)-x(i1+1))));

end

for i1=6:4:2*p-2

dx(i1)=(f(eps*x(i1-3)-x(i1-1))-f(x(i1-1)-eps*x(i1+1)));

end

for i1=2

dx(i1)=(f(eps*x(2*p-1)-x(1))-f(x(1)-eps*x(3)));

dx(2*p)=(eps*(f(x(2*p-3)-eps*x(2*p-1))-f(eps*x(2*p-1)-x(1))));

end

for j1=1:2*p

for i2=1+2*p*j1:2:2*p-1+2*p*j1

dx(i2)=x(i2+1);

end

for i2=4+2*p*j1:4:2*p-2+2*p*j1

dx(i2)=(eps*(df(x(i2-3-2*p*j1)-eps*x(i2-1-2*p*j1))*(x(i2-3)-eps*x(i2-1))

-df(eps*x(i2-1-2*p*j1)-x(i2+1-2*p*j1))*(eps*x(i2-1)-x(i2+1))));

end

for i2=6+2*p*j1:4:2*p-2+2*p*j1

dx(i2)=(df(eps*x(i2-3-2*p*j1)-x(i2-1-2*p*j1))*(eps*x(i2-3)-x(i2-1))

-df(x(i2-1-2*p*j1)-eps*x(i2+1-2*p*j1))*(x(i2-1)-eps*x(i2+1)));
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end

for i2=2+2*p*j1

dx(i2)=(df(eps*x(2*p-1)-x(1))*(eps*x(2*p-1+2*p*j1)-x(i2-1))-df(x(1)

-eps*x(3))*(x(i2-1)-eps*x(i2+1)));

dx(2*p*j1+2*p)=(eps*(df(x(2*p-3)-eps*x(2*p-1))*(x(2*p*j1+2*p-3)

-eps*x(2*p*j1+2*p-1))-df(eps*x(2*p-1)-x(1))*(eps*x(2*p+2*p*j1-1)

-x(2*p*j1+1))));

end

end

end

end

This script computes the numerical constants of the characteristic equation
(3.28).

function Phase

dphi0=1.127781604466791;

%Input desired 0=<q=<pi/2

q=pi/6;

Theta0=pi/4;

%---------------------------------

mnum=(2*n1/pi)*q;

M2=M2data(n1-mnum)

Cp=-u0(1,2)/pi;

Cm=-Cp;

E0=(dphi0^2)/2;

Tprime=-0.9894;

K=-(2*pi)^2/Tprime

M1=2/(pi*(dphi0)^2*Tprime)

L1=(2*(2*pi-Tprime*dphi0^2))/(Tprime*dphi0)

L2=L1/(2*pi);

C=(K*M1+L1*L2+M2);

Delta=4*K*M1*M2;

M0=-4*E0/pi;

C0=(K*M1+L1*L2+M0);

D0=4*K*M1*M0;

D=[K,0,4*(sin(Theta0))^2*C,0,4*(sin(Theta0)^4)*Delta/K];

LA1=[sqrt(-(2/K)*C+sqrt((4/K^2)*(C^2-Delta)));\

-sqrt(-(2/K)*C+sqrt((4/K^2)*(C^2-Delta)));sqrt(-(2/K)*C

-sqrt((4/K^2)*(C^2-Delta)));-sqrt(-(2/K)*C-sqrt((4/K^2)

*(C^2-Delta)))]

LA0=[K,0,4*(sin(Theta0))^2*C0,0,4*(sin(Theta0)^4)*D0/K];

CE0=roots(LA0)
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te=[0:0.01:0.5];

KK=roots(D)

figure(7)

plot(te,imag(CE0)*te ,’k’,’LineWidth’,2)

hold on

plot(te,imag(CE0)*te ,’k’,’LineWidth’,2)

end

This script computes the periodic solution and characteristic exponents for
q = 0.

function Qzero

alpha=3/2;

theta=pi/4;

options = odeset(’RelTol’,1e-12,’AbsTol’,1e-15);

ic=eye(4,4);

a=[0,1.127781604466791]’;

nn=1;

for eps=0:0.01:1

for j=1:4

[t,x]=ode113(@DIM,[0 2*pi],[a;ic(:,j)],options,alpha,eps);

x_l=length(x(:,1));

M(:,j)=x(x_l,3:6);

figure(1)

plot(t,x(:,3),’b’,t,x(:,5),’r’)

hold on

end

EM=eig(M);

[D,V]=eig(M)

epsil(nn)=(eps);

EM=sort(EM)

FMa(:,nn)=angle(EM);

FMa=sort(FMa);

nn=nn+1;

end

B(:,1)=ones(nn-1,1);

B(:,2)=epsil;

figure(7)

plot(epsil,[FMa/(2*pi)],’*’)

function y = f(x)

if(x>0)

y=(x)^(alpha);
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else

y=0;

end

end

function y = df(x)

if(x>0)

y=(x)^(alpha-1);

else

y=0;

end

end

function dx = DIM(~,x,alpha,eps)

dx=zeros(6,1);

dx(1)=x(2);

dx(2)=-x(1)*sqrt(abs(x(1)));

dx(3)=x(4);

dx(4)=(eps*alpha/(1+eps^2))

*(df(-x(1))+df(x(1))*exp(-2*sqrt(-1)*theta))*(x(5))

-((alpha*sqrt(abs(x(1))))/(1+eps^2))*(x(3));

dx(5)=x(6);

dx(6)=(eps*alpha/(1+eps^2))

*(df(-x(1))+df(x(1))*exp(2*sqrt(-1)*theta))*(x(3))

-((eps^2*alpha*sqrt(abs(x(1))))/(1+eps^2))*(x(5));

end

end
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