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ABSTRACT 

 
 
 Current gold standard practices for the diagnosis of tissue disease involve invasive 
tissue biopsies subjected to a time consuming histopathological examination process. An 
optical biopsy can offer a non-invasive diagnostic alternative by exploiting the properties 
of naturally occurring light-tissue interactions. A time-resolved fluorescence spectroscopy 
instrument (355 nm excitation) has previously been developed by our lab to capture the 
fluorescence response of gastrointestinal tissue (370-550 nm in 5 nm increments, 25 ns at 
1000 ps/pt). Measurements were conducted ex-vivo during routine upper gastrointestinal 
tract biopsies on duodenum, antrum, stomach body, and esophageal tissue. The work 
currently presented is focused on protocol development for tissue handling, measurement 
collection, clinical data management, fluorescent decay modeling using Laguerre based 
deconvolution, instrument performance evaluation, and k-means based classification.  
 Descriptive parameters derived from spectral (total signal intensity) and temporal 
(lifetime and Laguerre polynomial coefficients) analysis were used to evaluate the data. It 
was found that data were only compromised when the total signal intensity for the peak 
wavelength 455 nm fell blow 19.5 V·ns. The data did not exhibit any signs of 
photobleaching or pulse width broadening that would have otherwise distorted the 
lifetime from its true fluorescence response. Data for diseased tissue were limited so the 
clinical diagnosis was used to classify normal duodenum tissue from normal esophageal 
tissue. Over 400 pairs of parameters demonstrated k-means can identify duodenum tissue 
with 87.5 % sensitivity and 87.5 % specificity or better. With some dimensional axis 
transformations these results could be improved. The lifetimes are not factors here but the 
relative intensity and decay shape were. Protocols can be applied to diseased or other 
tissue types with little adaptation. Just a single set of parameters may hold the key to help 
surgeons choose optimum locations for traditional biopsies or perhaps one day replace 
them altogether. 
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CHAPTER 1:  INTRODUCTION 

 

1.1: Clinical Relevance  

 

 Current gold standard practices for the identification of gastrointestinal (GI) 

diseases and cancers involve endoscopic surveillance of the GI tract and extraction of 

tissue biopsies for a histopathological examination. [1] Not only is this process invasive, 

it is quite time consuming and expensive. An ideal biopsy tool could gather information 

without the removal of tissue and deliver the results in real time. The doctor could then 

interpret the results and get back to the patient that very same day. However, the new 

biopsy tool must be quick, accurate, and affordable before it can be utilized as a standard 

practice in the clinic. 

 A patient who experiences reoccurring problems and discomfort in digestion must 

first report their symptoms to a general physician. If their symptoms cannot be easily 

resolved then the patient is referred to a gastroenterologist. These specially trained 

physicians can provide the appropriate care required with the observations gathered from 

an endoscopy. Depending on what the symptoms are and what the endoscopist sees using 

a white light camera, they may remove some tissue specimens (i.e. biopsies) from the 

upper GI tract depicted in Figure 1.1. [2] Typical biopsy locations come from four major 

regions of the upper GI tract: the duodenum, antrum, stomach body, and esophagus. 

Gastroenterologists may also have colonoscopies of the lower GI tract conducted but 

these locations are beyond the scope of our current study.  
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Figure 1.1: Anatomic Regions of the Stomach. This Figure was published in 

Shackelford's surgery of the alimentary tract, Vol. II, Zuidema GD, Yeo CJ 

(editors), Anatomy and physiology of the stomach, Page 3, Copyright Elsevier 

(2002). [2], With Permission. 

 
 
 Biopsies are taken from the mucosa layer of tissue while leaving the deeper 

submucosa intact. The main reason for this is that the epithelium cells which face the 

inside of the GI cavity are the most differentiated. It implies that they are highly 

specialized because they serve different functions along the GI tract and therefore 

changes in these cells makes the mucosa the most identifiable area for disease. The 

submucosal layer is composed of connective tissue where cells are more spread out 

because this layer contains mostly blood vessels, adipose, and nerve cells. Removal of 

this layer would be more painful to patients and require more time to heal. So sometime 

after the endoscopy has been completed, a pathologist analyses the specimens under a 

microscope to look for anatomical differences between normal and diseased tissue. 

Examples of common findings are chemical cell damage with our without inflammation 

(gastritis and gastropathy respectively) or types of acidic reflux disease. More serious 
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conditions include intestinal metaplasia where the cells have mutated to look like the 

small intestine (ex. Barretts’ esophagus) or cancer. [3] 

   After the biopsies are taken they must be prepared for histology. Regardless of 

what type of tissue is to be examined, the process usually takes a few days. If the 

physicians had access to an ideal biopsy technology which provides the results in real-

time, they can scan more surface area to search for signs of disease that traditional biopsy 

grab samples might not always find. If such an ideal technology were to become accepted 

as a standalone technique where additional histopathological examination was not 

necessary, any required treatments for the patient could be immediately arranged instead 

of waiting for histology results. In any case, if the technology allows the patient to have 

faster access to treatment it may increase the chance of treatment success. Early disease 

identification is critical for treatment success by stopping abnormal cell development 

(dysplasia) and preventing neoplastic (uncontrolled) cell growth that could possibly 

convert into a cancerous situation [4].  

 

1.2: Optical biopsy and its Application to Address the Clinical Problem 

 

 With an optical biopsy tool, operators can exploit the properties of light-tissue 

interactions in order to observe the tissue’s health instead of relying upon the microscopic 

analysis of tissue anatomy from a highly trained and skilled pathologist. The technology’s 

main feature is that it provides a non-invasive way to observe the tissue because it does 

not require tissue resection. It can be used in-vivo during operating procedures and 

provide results in a near real-time fashion making it an attractive area for research and 
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development. There are many types of modalities used in medical diagnostics that collect 

photons coming from the direction of the tissue but they differ in penetration depth, 

resolution, and mechanism of tissue interaction. [5-7] 

Interactions between light and tissue specimens are quite complex because the 

tissue is composed of a variety of different molecules, ions, and cellular constituents that 

can absorb and/or scatter photons. Photon absorption is particularly interesting because 

incident photons can lose energy to the molecule and re-emit at lower energy wavelengths 

in a phenomenon called fluorescence. A narrow bandwidth of light can excite multiple 

cellular components where each one has its own unique emission spectrum because they 

have different molecular configurations. Endogenous fluorophores are naturally found in 

tissue and includes molecules such as: metabolites - nicotinamide adenine dinucleotide 

hydride (NADH), flavin adenine dinucleotide (FAD); and structural components – 

collagen, elastin. [8] The concentration of each fluorophore depends on the type of tissue 

studied [3, 8] and each fluorophore has its own unique fluorescent lifetime [9]. For 

example, cancerous cells are more metabolically active than normal cells because they 

constantly undergo cell division [3]. If there is a measurable difference in fluorescence 

between different tissue types, then a diagnosis may be made.  

The most common form of optical biopsy technology currently available is the 

conventional wide field image an endoscopist uses during observational and biopsy 

procedures. Although the operator is provided with real time feedback, the camera lens is 

only capable of providing macroscopic resolution. [1, 5, 7] Fluorescence endoscopy is 

also possible with this method by modifying the camera and source light with both 
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excitation and emission filters. Filters are chosen specifically to target particular 

endogenous fluorophores of interest. As a result, the macroscopic locations with high 

concentrations of the fluorophores are highlighted using a computer defined colour 

scheme on a two dimensional macroscopic image. [7] 

Point spectroscopy can be used to provide more in depth knowledge on the 

molecular level by quantifying the constituents present in either a steady-state (spectrum) 

or time-resolved mode. There is also the potential to convert the spectral information into 

a pixelated “wide field” point-scanned image. [5-7] Examples of microscopic observation 

techniques include but are not limited to the following technologies. Diffuse Reflectance 

(or ‘Elastic Light Scattering’) can be used to derive the scattering and absorption 

properties of tissue by observing the propagation of incident light through the tissue [7, 

10]. Fluorescence spectroscopy studies the concentration of endogenous fluorophores like 

fluorescence endoscopy but in a single point location [7, 8]. Raman spectroscopy can be 

used to study the chemical bonds present by observing the inelastic scatter of near 

infrared photons [11].  

There are two other common optical biopsy methods in research that differ from 

wide-field imaging and point spectroscopy. Confocal Microendoscopy has been used to 

create two dimensional cross sectional images that are sectioned below the surface area 

by collecting photons that are only in focus from a single horizontal plane [12]. Optical 

Coherence Tomography can provide cross-sectional and depth information in a plane 

vertical to the surface area by using low-coherence interferometry with near infrared light 

13]. Even with all these different optical modalities available, no single method has been 
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shown to be superior as a standalone diagnostic tool [7]. The best solution may be to 

combine two or more modalities during a procedure to support the diagnosis by 

confirming the same information [7].  

Steady-state fluorescence spectroscopy can be implemented by inserting a fiber 

optic probe into the working channel of an endoscope or biopsy instrument. It relies 

exclusively on the total fluorescence intensities observed over a defined period of time to 

develop a diagnosis protocol. There is however large variability in these spectral 

measurements when comparing different spatial points within a patient and from one 

patient to another. [7] Although it is possible to compare relative intensities, it is still 

difficult to establish an analysis protocol because endogenous fluorophores have 

overlapping emission spectra [7, 8]. The reality is that one cannot be certain how much 

influence each endogenous fluorophore species has on the overall contribution to the 

fluorescence spectral intensities.  

Time-resolved measurements in addition to steady-state observations are 

important because it can allow for identification of molecular species with overlapping 

emission spectra [7, 14, 15]. Fluorescent lifetimes are intrinsic to each molecule [9] and 

they are independent of the fluorescent intensity [14, 15]. Therefore the lifetime (or 

lifetimes) that best describe the fluorescence decay can be used to identify either how 

much each molecular species dominates the observed decay [14] or find relative changes 

in an average lifetime from one wavelength to another [15]. Either way fast data 

acquisition is critical for temporal resolution but the cost of such instruments proves to be 

a major barrier for this technology to be used in the clinic [15]. There have been a few 
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groups that have used time-resolved fluorescence spectroscopy (TR-FS) for samples 

under in-vitro or ex-vivo conditions where tissue specimens are analyzed after excision 

[16]. In-vivo measurements are necessary to validate an optical biopsy tool because when 

a tissue is excised the metabolism and morphology change. It is unclear to what extent 

this change in environment may affect the auto-fluorescent signature of the tissue. [15] 

A recent review [15] highlights that many types of tissues have been studied in-

vivo using steady-state and/or TR-FS. Anatomical locations include but are not limited to 

cancers and disease involving the oral cavity, esophagus, colon, brain, skin, eye, lung and 

arteries. Other tissues such as cervical and breast tissue have been studied using just 

steady-state fluorescence. The review focuses on just the outcomes of studies involving 

TR-FS. It was found that several groups could demonstrate that fluorescent lifetimes can 

be used in contrast to spectral data to characterize diseased tissue and achieve the 

appropriate diagnosis. [15] Further research in this area could lead to the development of 

fluorescence spectroscopy diagnostic instruments for practical use in the clinic and 

perhaps someday lead to acceptance as a standalone technique. 

Altogether there have only been two groups [17, 18] that have studied TR-FS 

specifically targeting the upper GI tract. Pfefer et. al [17] conducted in-vivo TR-FS on 

esophageal tissue at 337 nm and 400 nm excitation to observe fluorescence between 530 

nm and 570 nm on 37 patients. The bi-exponential lifetime parameters lead to 

unsuccessful tissue classification although they were able to show that at 377 nm the 

decay of dysplastic tissue is faster than normal tissue. Glanzmann et al. [18] found that 

under the same excitation (337 nm) the normal esophageal tissue fluorescence from 375-
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400 nm had faster decay curves than cancerous tissue but between 465-485 nm it was in 

fact slower. The findings suggest that large spectral ranges should be used when 

considering time-domain features although they only sampled one patient. 

Ultraviolet and visible light (specifically 300-700 nm) is required to induce tissue 

auto-fluorescence. Excitation at a 355 nm was chosen in our study because it overlaps 

with the absorption spectra of NADH, collagen, and elastin. Ultraviolet excitation 

wavelengths can only penetrate tissue samples up to a depth of 200 µm. [8] The 355 nm 

excitation is actually ideal for future in-vivo studies because it will not penetrate past the 

mucosa and into the submucosal layer. The depth of the mucosal and submucosal layers 

is loosely documented because they can vary significantly depending on their location, 

health, and function. In the upper GI tract the mucosal layer range for normal stomach 

tissue is typically between 200 µm and 1500 µm [19]. 

 

1.3: Instrumentation 

 

 Earlier generations of laser induced TR-FS instruments by our group were much 

slower than the system used in the GI study. Spectra had originally been obtained using a 

grating-based monochromatic serial scanner. Mechanical switches inside the 

monochromator which change the grating limit the speed of data acquisition to about 45s 

for a 200 nm spectrum with 5 nm increments [20]. If the fluorescence was coupled into a 

spectrograph instead, it was shown that a custom fiber bundle of different lengths could 

be used to temporally delay different wavelengths into the detector [21]. Although this 

parallel setup was much faster (200 ns for five wavelengths 25 nm apart) it is not practical 
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to increase the data throughput with additional fibers. That fiber coil already contained 

fibers 5-24 m in length and the additional fibers required would only make the bundle 

bigger and more fragile. [21] 

 The next generation TR-FS instrument made use of an acousto-optic tunable filter 

(AOTF). Technical details about its development and optimization for the GI data 

collection have been well documented [22-25]. An AOTF is a solid state device capable 

of altering the Bragg diffraction properties of a birefringent crystal with an acoustic radio 

frequency (RF) wave induced vibration. It acts as a narrow bandpass filter because the RF 

changes the refractive index of the crystal selecting the wavelength that will diffract at 

Bragg’s angle of incidence while the others pass through undiffracted. A mirror can be set 

up to deflect the light from this angle into a photo-detector and thus no mechanical 

switches are required to select wavelengths when operating an AOTF. [26] 

The birefringent property of the crystal allows non-polarized incident light from 

the selected beam to be diffracted into two first order beams of opposite polarizations but 

typical AOTF setups only detect use of them [26]. The AOTF was modified with a 

second mirror to collect light from both beams such that the total light throughput was 

now comparable to grating-based systems [22]. RFs are modulated within a few 

microseconds to step though wavelengths such that a 200 nm spectrum (5 nm increments) 

can be acquired from our instrument in less than 4 s [22]. Therefore the AOTF based 

instrument can achieve a desirable amount of data acquisition during near real-time 

clinical applications.  
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 A block diagram of the system is presented in Figure 1.2 while the list of the 

instrument’s components is provided in Table 1.1. Figure 1.3 shows the instrument setup 

enclosed inside a moveable cart that was used during clinical data collection. In the 

simplest of terms, a user operates the cart from a program developed in Labview® to 

configure the AOTF, trigger the laser, and collected the data using a micro-channel plate 

photomultiplier tube (MCP-PMT). Operation of these components will be discussed 

briefly as it is essential to understand how the data is collected so it can be processed 

accordingly. More elaborate instrument documentation can be found in Reference [25]. 

 Fluorescence induced at each wavelength is measured from 11 laser pulses 

(excitation 355 nm, 350 ps pulse width, 1 kHz repetition rate). A 50 ms time window is 

allocated for data acquisition at each wavelength to measure 11 consecutive fluorescence 

decays (11 ms total at 1 ms per pulse) and account for the data acquisition/transfer time 

required by the oscilloscope. The number of pulses (11) was chosen so that the first pulse 

could be discarded in the event there was an issue with instrument synchronization while 

the last 10 fluorescence decays are used to improve signal to noise ratio. The major 

source of this problem was resolved with an AOTF driver firmware upgrade but there 

were still some intermittent delays with the direct digital synthesizer chip [25]. That chip 

is responsible for generating the signaling frequencies that control the timing of all the 

instrument components. Therefore it is still necessary to discard the first pulse although 

that data may be reliable (most of the time) after the AOTF firmware was upgraded. 
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Figure 1.2: AOTF TR-FS Instrument Diagram, Figure 1.3 from Reference [25]. The 

acronyms and parts are listed in Table 1.1. 

 

Table 1.1: Parts list for TR-FS Instrument. 

 

 

Digital Oscilloscope (DPO7254, Tektronix Inc, Beaverton, OR, USA) 

LabView® (v8.2, National Instruments, Austin, USA) 

MCP-PMT (R5916U-50, Hamamatsu Photonics, Tokyo, Japan) 

Amplifier (C5594, Hamamatsu Photonics, Tokyo, Japan) 

HVPS: high voltage Power Supply (C4840-01, Hamamatsu Photonics, Japan) 

AOTF Driver (SN: 0610-AE-7359, Brimrose Corp., Baltimore, USA) 

F1: coaxial low pass filter, (BLP-250, Mini-Circuits, Brooklyn, USA)  

AOTF Crystal (TEAF5-0.36-0.52-S, Brimrose Corp., Baltimore, USA) 

BD: beam dump made of black aluminum foil (Thorlabs) to absorb the diffracted part of the light not 
 desired for collection, the desired wavelength is reflected by 2 concave mirrors M1 and M2  

Pulse Generator (QC9512, Quantum Composers, Bozeman, MT) 

F2: coaxial low pass filter (BLP-10.7 Mini-Circuits, Brooklyn, USA)  

Nd:YAG PowerChip Nanolaser (part no. PV-001525-140, Teem Photonics, Meylan, France) 

Coupler: telescopic lens tube with a plano-convex lens with a focal length of 20 mm  

PD: external photodiode (DET10A, Thorlabs, Newton, NJ, USA) 

Excitation/Emission Fiber: customized silica fiber bundle (50-2632-REV1, CeramOptec GmbH, 
 Berlin, Germany) 

C: plano-convex collimation lens (part no. 45098, Edmund Optics, Barrington, NJ, USA)  

LPF: long pass filter (LP02-355RU, Semrock, Rochester, NY, USA) 

Hospital Grade Isolation Transformer (IS500HG, Tripp Lite, Chicago, USA) 

Uninterruptible Power Supply (APC Back-UPS XS 1500VA, American Power Conversion, West 
 Kingston, RI, USA) 
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Figure 1.3: TR-FS system used for ex-vivo clinical data collection. All the contents 

except for the computer monitor, keyboard, fiber probe and stand in Figure 1.2 fit 

inside a moveable cart of size 3.5’ x 2’ x 2’. The fiber probe delivers excitation light 

through a single fiber (600 µm core diameter) that is surrounded by a ring of 12 (200 

µm core diameter) collection fibers. Shown inside the cart are the oscilloscope with 

built in computer (1), pulse generator (2), MCP-PMT (3), an uninterruptible power 

supply (4), AOTF spectrometer (5), and the laser with fiber coupling (6). 
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  Each laser pulse is sent every 1 ms and the corresponding fluorescence signal 

detected by the MCP-PMT is recorded by the oscilloscope at 25 ps resolution over a 

period of 25 ns. This process is repeated until all wavelengths have been collected from 

370-550 nm in 5 nm steps. One complete data set can be collected in less than 4 s. It takes 

the operator about 1.5 s to control the instrument from the computer while the other 2 s is 

the time it takes for the instrument to measure and record data from all of the 37 

wavelengths. Optimal signal resolution was achieved for clinical data when the digitizer 

was set to a scale range of 2.5 V (500 mV/division) with the shortest sampling rate of 25 

ps/pt. Calibration tests showed the lifetimes values for FAD and Fluorescein were within 

accepted literature values even though the spectral resolution of the AOTF, which 

increases naturally with the wavelength, was low (1-4 nm) [22, 25]. Therefore 

wavelength steps of 5 nm are necessary to avoid spectral overlap.  

 Several artifacts were discovered in the signal and these distortions were removed 

so that the fluorescent signal could be accurately identified [25]. Out of band RF 

distortions were noticed if the AOTF was disturbed by vibrations and this was resolved 

by the manufacturer. Fans were also installed to cool the AOTF driver and stop RF pulse 

broadening artifacts due to temperature dependent power fluctuations delivered to the 

crystal. Ringing artifacts (oscillations in the decay signal) were found to be caused by the 

inherent ringing frequency of the MCP-PMT gating signal. An analogue filter was placed 

at the output of the pulse generator (F2 in Figure 1.2) to reduce the rise/fall time of the 

MCP-PMT and consequently the length of ringing, thus eliminating this interference from 
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the decay. Other electromagnetic interferences were removed by using double shielded 

co-axial cables, a common ground point, and another filter (F1 in Figure 1.2).  

Finally, one last modification was made to the instrument in order to reduce the 

external trigger jitter. An external photo diode was introduced to trigger the data 

acquisition because the timing of the laser pulse was significantly unreliable taking 

anywhere between 50 – 400 µs to generate [25]. Now that the artifacts have been 

removed and the system components are synchronized, the laser profile was measured to 

capture the MCP-PMT rise time. The total pulse width measured (350 ps + system 

response) was about 530 ps [25]. The finite system response will always be present in 

acquired data. Therefore the intrinsic lifetime response of the sample will need to be 

extracted from the raw data using a processes referred to as deconvolution. 

 

1.4: Signal Deconvolution 

 

 Deconvolution is the act of extracting the sample’s intrinsic fluorescence response 

from any and all distortions in the measured signal y(n). The y(n) is given by Equation 

1.1: the unique convolution of the undistorted “h(n)” Impulse Response Function (IRF), 

the undistorted laser profile “l(n)”, and distortion from the MCP-PMT detector response 

“d(n)”. Since the laser profile and IRF are both distorted by d(n), a single laser 

measurement without an auto-fluorescence response can be used to capture d(n) into a 

new equation where x(n)=l(n)*d(n) and Equation 1.1 becomes Equation 1.2. 

Deconvolution can now be performed using the known measurements of y(n) and x(n) in 
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Equation 1.3 over a sampling interval Г and a truncated memory length M, where “n” is 

the discrete time variable from 0, 1, 2, …, M-1. [14, 27]  
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 There is, however, one fundamental problem with this theory and the TR-FS 

instrument. The laser light will not be captured in each y(n) because both the long pass 

filter and AOTF crystal diffraction will keep it from reaching the MCP-PMT. The d(n) 

cannot be captured on its own because the response is initiated only by incoming light. 

Since the duration of the laser is a magnitude smaller than the fluorescent decay, each IRF 

can be deconvolved relative to the same x(n) and therefore the same l(n). The extracted 

IRF is very close to the actual IRF minus the same small laser contribution. 

 The most common way to solve the deconvolution problem is to use a model that 

assumes the IRF is of a specific form such as a multiexponential decay and find the best 

solution using non-linear least squares iterative reconvolution (LSIR). The number of 

decay laws present, as well as their values (lifetimes) and weights (amplitudes) are 

numerically adjusted until a solution is formed that minimizes the error, by least-squares 

method, between the y(n) and its theoretical fit [14]. There are two major concerns when 

it comes to employing this method. The first concern is that multiexponental decays can 
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have multiple solutions that would satisfy the decay curve. The lifetimes and amplitudes 

are correlated such that one can be varied to compensate for the other [14]. The second 

concern is the amount of time that can be spent on computing the parameter solutions 

only to find out through experimentation and conservative interpretation that they are not 

actually descriptive of the data [14, 25, 28, 29]. In this regard the fitting parameters 

cannot be used to describe the fluorophore content of the sample or compute solutions in 

real time.  

 The other way to deconvolve the data is to use models that do not require any a 

priori assumptions about the IRF decay. Some methods include the use of Fourier 

transformations or solving differential equations to find the best solution [30, 31]. One of 

each type of deconvolution algorithm (bi-exponential and Laguerre expansion) were 

tested on preliminary fluorescent data [25]. Laguerre expansion was chosen because the 

terms in the Laguerre polynomial form an orthonormal basis set having unique and 

normalized solutions [31]. System dependent parameters in the Laguerre polynomial can 

be generalized for a particular sample type using LSIR. While those parameters are held 

constant, the others which are dependent on the individual sample itself can then be 

determined in a one-step calculation. The computation is so fast and robust that it can be 

used in real-time to calculate the sample specific descriptive parameters. [28, 29, 31] 

 The Laguerre deconvolution technique developed by Krishnamoorthy [25] is 

based on the work done by Marcu’s group [28, 29] with a modification to account for 

wave dependent effects present in our system. The MCP-PMT is a significant upgrade 

from Marcu’s group such that the temporal resolution can pick up on the chromatic 
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dispersion of the light inside the fiber probe. Fiber probes can cause wavelength 

dependent temporal shifts where the photons of different colours arrive at the detector at 

different rates [32]. Although this dispersion is often considered negligible and cannot be 

seen by sampling at a rate of 100 ps/pt or greater, it can be seen by our sampling rate of 

25 ps/pt [25]. The wavelength dependent delay became problematic during LSIR because 

the x(n) used during recovolution was not in sync with the measured output at any given 

wavelength [25]. An additional step was added to the Laguerre algorithm that 

reconvolves each IRF with a shifted x(n) until the best fit is achieved. Basic theory 

required to understand the implementation of Laguerre deconvolution in this report will 

be discussed next. Detailed theory including the algorithm code was provided by 

Krishnamoorthy [25]. 

 

1.5: Laguerre Expansion Technique – Basic Theory 

 

 In Laguerre deconvolution, the IRF takes on the form of Equation 1.4 with the 

expansion of discrete Laguerre polynomials (Equation 1.5). For each order “j” the kth 

Laguerre function, Lα(n,j), is weighted by “cj”, the Laguerre Coefficient (LEC-j). The 

built in exponential functions allow the Laguerre polynomial to describe a physical 

system that undergoes an asymptotic decay [31]. The system dependent parameter (0 < α 

< 1) is used to govern the rate of asymptotic decline for a given set of Lα(n,j). The 

selection of α depends on the sampling rate and memory length “M”. Higher order Lα(n,j) 

also require a longer M to finish converging asymptotically towards zero. The M and α 

should be chosen such that all Lα(n,j) decline close to zero by the end of the y(n). As for 
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the number of Lα(n,j), the amount should be as many as reasonably necessary to model 

the complexity of the decay function and keep computational time to a minimum.  
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 The first five Lα(n,j) for a given α (0.97) at our recorded M (1000 pts) and rate (25 

ps/pt) is shown in Figure 1.4. When combined these Lα(n,j) make a single function h(n) 

that decays to zero. The 0th order has more influence over the decay shape than the higher 

orders because it describes the slowest decay process. However, the value of each LEC 

can drastically change the weight each order has on the overall decay model such that the 

h(n) might contain local minima as seen in the higher order Lα(n,j). These inflection 

points are not present in the observed y(n) for fluorescent decay and therefore it is critical 

that the Laguerre fitting algorithm converges to a solution representing a single decay 

process. Only one ‘average’ lifetime (τ) is then used to describe the complex biological 

sample that contains many individual fluorophore lifetimes.  

 Through a series of lengthy calculations described in [25, 28] the LECs are 

estimated by the removal of y(n) from each Lα(n,j) convolved with x(n). The best solution 

for our system is found through LSIR, selecting the α and laser shift required to minimize 

the sum of residuals between the measured output y(n) and the theoretical Laguerre fit to 

y(n). The LECs are inserted into Equation 1.4 to form the IRF decay curve at each 
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wavelength where the τ for a single exponential decay (Equation 1.6) is the time the IRF 

takes to decay to 1/e of its maximum height [14].  
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Figure 1.4: The first five Laguerre functions for α = 0.97 at 25 ps/pt sampling rate. 

 
 
 
 
 The expanded Lα(n,j) are orthonormal meaning that all orders are orthogonal and 

of the same unit length [31]. The most appropriate solution is obtained when this 

condition is met for a given sampling rate, M, and α. As a result, the set of LECs are said 

to be unique or ‘normalized’ solutions to the set of Lα(n,j). No additional normalization is 

required to compare LEC or τ from one sample or wavelength to another. All five LECs 
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and the associated IRF lifetime for each wavelength are intrinsic to each individual spot 

measured on the sample modeled with the Laguerre technique. A fixed α, M, and 

sampling rate for all wavelengths is required in order to make a comparison between 

samples because the decay of each Lα(n,j) is dependent on these parameters.  

 To retain orthonormality, the best α and M are the ones that make the Laguerre 

Matrix (L = [M x k]) of Lα(n,j) orthogonal, i.e. when LTL forms the Identity Matrix. 

Without sacrificing computation time for accuracy, orthonormality is maintained when 

the last order term in the Identity Matrix (I4) from the matrix operation LTL is 0.9 or 

better. It is satisfied (by I4 = 0.9441) for M = 600 pts when α = 0.97 during preliminary 

testing of the GI data. [25] As data was acquired, further testing in Chapter 2 revealed the 

common α between all GI tissue locations was approximately 0.967. The M was 

increased to 650 pts (I4 = 0.9912) because it does not noticeably impact the processing 

speed but it will ensure even more that the Laguerre algorithm provides accurate 

solutions. Different tissue types can have vastly different tissue compositions because 

they serve different functions within the body (ex. Brain vs. GI) so α must be optimized 

for each application and the M adjusted accordingly. 

 

1.6: Current Work 

 

 The instrument was fully calibrated for the collection of GI data using the first few 

patients to trouble shoot and solve any problems. Both the bi-exponential and Laguerre 

expansion deconvolution algorithms were tested on simulated data, fluorescent dyes, 

endogenous fluorophores, and the first few GI biopsies. Lifetime results produced by each 
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method were confirmed with accepted literature values for the dyes and fluorophores 

demonstrating proof-of-concept. Not only did the Laguerre technique calculate results 

faster than bi-exponential, it also outperformed the bi-exponential model in noisier 

environments. [25] Although an optimal α and M were proposed for GI data, more data is 

required to select an average α and the corresponding M to make the Laguerre results 

suitable for comparison between different types of GI tissue. The next step is to build a 

data base of fluorescent measurements from GI patients that can be used to develop a 

classification system which would successfully identify the tissue type based on the 

values of its Laguerre parameters.   

 Protocols for clinical ex-vivo measurements and data management are established 

in Chapter 2 while the integrity of the data is evaluated in Chapter 3. A single optimized α 

Laguerre parameter was calculated that best describes the Laguerre function decay for all 

four GI tissue locations. For the two largest patient groups (normal esophagus and normal 

duodenum tissue) K-means clustering was used to find pairs of statistically different 

Laguerre variables (LEC-jλ, τ-λ) and/or “Iλ” (normalized integrated spectral intensity from 

the time-domain) that can classify the most GI measurements into their correct clinical 

diagnosis from histology. Results are presented and discussed in Chapter 4. 

 At this time, a second generation instrument is under construction. The new 

instrument will be capable of measuring both diffuse reflectance and TR-FS in the same 

fiber probe. Eventually the deconvolution and classification algorithms will be added to 

the instrument so that the tissue type can be identified in real-time from the diffuse 

reflectance corrected TR-FS signal free from distortions caused by blood absorption. 
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Before any algorithm can be accepted it must be analyzed statistically and improved over 

several stages of clinical trials to ensure that auto-fluorescence diagnosis is consistent 

with the histological tissue identification. Also, to make this diagnostic modality more 

versatile it must be tested and configured on other types of tissue such as brain tumours or 

atherosclerotic plaques. 
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CHAPTER 2:  METHODS 

 

 

This chapter begins with an overview of the clinical procedures required to handle 

the human tissue and collect the data in an ethical manner, protecting both the patients’ 

best interests and the safety of the operators. The TR-FS instrument used in this study was 

described in Section 1.3. A step by step guide for instrument operation (Appendix A), 

clinical data collection (Table 2.1), and note taking (Appendix B) will now be provided. 

Next, the data processing and management strategies are presented. These methods are an 

extension of the work done by previous students. The α Laguerre parameter described in 

Section 1.5 was optimized here in Section 2.2.1 for GI tissue. 

Finally, the background information required to understand the data analysis is 

discussed. Several steps were taken to ensure a meaningful classification algorithm was 

derived for our data. Half of the parameters measured (Chapter 4) did not follow normal 

sampling distributions. Thus the rank-sum test was used instead of the popular t-test to 

identify parameters whose measurements from two different tissue locations were 

statistically different (p < 0.05). An unsupervised, non-parametric classification model 

(K-means) was selected for the GI data that is not influenced by the type of sampling 

distribution. All calculations were conducted using Matlab®. The identification and 

removal of outlier measurements from the data pool for the analysis algorithm proved to 

be quite an extensive task so it will be discussed on its own in Chapter 3. 
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2.1: Clinical Procedures 

 

2.1.1: Research Ethics 

All clinical studies were performed at the McMaster University Medical Center’s 

Endoscopy Unit led by Dr. Frances Tse. Research Ethics applications were prepared by 

Dr. Fang and Dr. Tse for the project title “An Ex-Vivo Study of Time-Resolved  

Auto-fluorescence Spectra of Upper GI Biopsy Samples” with Dr. Tse listed as the 

principle investigator. Ethics boards have been put in place to ensure that the study goals 

and protocols will protect the health and safety of everyone involved. The Human Tissue 

Committee, a subcommittee of the Hamilton Health Science/McMaster Faculty of Health 

Science Research Ethics Board (REB), approved the study project No 08-165T on April 

9th, 2008. The initial approval was granted until January 17th 2009 (or one year from the 

first version submission) and subjected to review upon the anniversary date. Further 

extensions were given without any required changes for data collection conducted in 2009 

and 2010.  

As part of the research ethics requirements, patient consent was obtained in 

writing before each endoscopy procedure by Dr. Tse for use of their tissue specimens in 

our study using an REB approved form. The consent form explained in basic non-

scientific terms that we would shine light onto their tissue only after it has been removed 

and use the light that shines back to study the sample. The ultraviolet light used would not 

alter their tissue or affect the outcome of the pathology results. It also explained that their 

personal information such as their name and address would not be released to us and that 

they would not be financially compensated for their participation. Since the pathology 
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evaluation is used for their diagnosis, there is no need to contact patients purely for the 

outcome of our study. Patients are given the opportunity to withdraw their participation at 

any time during our study.  

The first six patients (P01-P06, measured in three separate experiments) were used 

to identify any challenges working in a clinical environment. The goal was to perform the 

fluorescent measurements efficiently without being disruptive to standard endoscopy 

procedures, hospital staff, and the patients. In this time we were able to streamline the 

study protocol and test the instrument’s sensitivity (signal to noise ratio) on human 

specimens. While it is not necessary for fluorescence measurements to be conducted in 

the same room as the procedure, collection took place inside the endoscopy room because 

of space limitations in the Endoscopy Unit. Most of the patients allowed us to collect data 

during their procedure but some of the data were collected after the procedure at the 

request of the patients.  

Standard operation procedures were finalized for GI tissue handling, instrument 

operation, and note taking after the P07-P09 data collection. GI data collection can be 

completed effectively by two experienced operators where one operator’s job is to only 

handle the tissue while the other operates the computer and records written notes. All of 

the notes were digitally transcribed and saved as time stamped PDF files for good record 

keeping practice. Digital copies are backed up on a server in the biophotonics lab. 

Hardcopies were printed and placed in a binder dedicated to papers containing any 

information related to this study such as copies of the REB approval and standard 

endoscopy medical reports from Dr. Tse. All personal identifiable information (name, 
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birth dates, etc.) has been removed in these notes while the lookup table between the 

Patient ID (P01, P02, etc.) and the patients’ names is maintained by Dr. Tse.   

 

2.1.2: Clinical Data Collection 

Endoscopies from Dr. Tse’s morning schedule were used to allow us time to setup 

the cart in the endoscopy unit and finish measurements over the staff lunch break if 

needed. Sometimes emergency biopsies were scheduled during the break which required 

us to pack up quickly and leave. On the day of the procedure the first thing to do at the 

clinic was to double check the planned endoscopy schedule with the charge nurse for any 

changes. Once the endoscopy schedule had been verified, the cart was moved from Dr. 

Tse’s office to the endoscopy unit.  

Before any tissue measurements were performed, the TR-FS instrument described 

in Section 1.3 was turned on using the procedure described in Appendix A and tested to 

ensure that it was functioning correctly. First, the laser energy was measured using a 

power meter (3sigma Laser/Power Energy Meter, 0012-0840, Coherent Inc., Portland, 

OR, USA) which is calibrated for a 355 nm source (J5-09010K-030-Modified Standard 

Energy, 1095449, Coherent Inc., Portland, OR, USA). Average laser energy required to 

produce adequate tissue auto-fluorescence was 3.0 µJ. The second test was to fire the 

laser on a paper business card to see if its spectrum displayed in Labview matches its 

known fluorescence spectrum (see Section 3.2). Both the laser energy and paper 

fluorescence were recorded at the start of each collection day and, if time permitted, 

before shutting down the instrument. Basic trouble shooting could be performed in the 
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clinic if either test failed. Laser energy can be tuned by readjusting the focusing lens 

located directly in front of the laser. Other instrument failures as indicated by a rather 

noisy paper spectrum collected (with no apparent signal) could be fixed by reloading the 

Labview software or by verifying that each procedure listed in Appendix A was followed 

correctly. If the paper signal was drastically different in shape from its relatively stable 

form, this would be an indication of a major AOTF related malfunction where trouble 

shooting could only be performed back at the lab or perhaps even the manufacturer.  

Table 2.1 presents a step by step procedure for clinical data collection. Disposable 

supplies such as gloves, absorbent pads, saline, and alcohol wipes required to sanitize our 

working space and prevent cross-contamination of samples are available in the endoscopy 

unit. All other materials required in Table 2.1 such as laser equipment, tweezers and a 

Petri dish were obtained through the Health Sciences Store. The operator designated for 

tissue handling duty (Operator #1) was required to wear gloves and handle the tissue with 

tweezers to protect themselves from infection. The tweezers, laser probe, and Petri dish 

were all sanitized using alcohol wipes after the instrument was setup and after each 

patient. Gloves and other disposable items were changed only as needed if they had 

touched anything that had come into contact with the tissue. Since the upper GI tract of a 

single patient is continuous, disinfecting the equipment between biopsy locations is not 

necessary by the endoscopist or for our measurements. 
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Table 2.1: Clinical Standard Operating Procedure for Ex-Vivo Tissue Handling 

 

 
 

 

1. Identify appropriate cases for this clinical study and determine their schedule. (Dr. 
Tse) 

2. On the day of the procedure, visit the clinic first to double check the cases with the 
charge nurse. 

3. Move cart to the endoscopy unit after 8:00 am from Dr. Tse’s office (her secretary has 
the key). 

4. Room preparation: 
1. Identify space needed for the TRFS instrument cart.  
2. Obtain a small stainless steel table top cart from the unit nurses.  
3. Obtain supplies:  

� From hospital: Blue pad, needles, gloves, alcohol wipes, 4×4 
(absorbent pad), and saline. 

� From our lab: tweezers ×2, Petri dish, laser goggles, metal stand, fiber 
probe, black cardboard shield, power meter, USB flash drive. 

4. Use alcohol wipes to clean probe (at start), Petri dish, and tweezers. (Clean 
dish and tweezers after each patient, Step 10) 

5. Talk to the nurse in charge: 
1. About what we plan to do. 
2. Ask that they label the cassettes first and don’t close them. 
3. We’ll put the cassette back closed; they’ll put them in the jar of formalin. 

6. Take specimens to the cart. 
1. ALWAYS check the labels and that they are labeled. 
2. Put the cassettes on the 4×4 which is on top of the blue pad. 
3. Put a drop of saline on each sample piece. 

7. Transfer one specimen to the Petri dish and put another drop of saline on it. 
8. Do measurement(s) with probe at 45 degrees, distance 2-3 mm. 
9. Move specimen back to the cassette and close it. 

1. [Then go to step 7] 
10. Clean the Petri dish and tweezers after we are finished with that patient. 
11. Dispose of needles in sharps container and alcohol wipes used in the proper bin. All 

garbage goes to biohazard; don’t put it in the litter bin. 
12. At the end, wrap up all disposables in the blue pad and put in the bin. 
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Operator #1 was required to wear appropriate laser goggles (blocking 355 nm 

light) when handling the laser probe. A black cardboard shield was placed around the area 

of the probe stand and Petri dish to protect all other people in the room from any chance 

of laser reflections as per safety regulations even though special care was taken by the 

operators when aiming and firing the probe. Saline was used to keep the specimens 

hydrated, simulating the in-vivo environment as much as possible. It is a sterile 0.9 % 

sodium chloride solution that is used to clean and hydrate tissue during medical 

procedures and does not give off a fluorescent signal. Formalin was used by the medical 

staff to fix the sample in its current biological state and preserve it for pathology. All 

specimens are labeled based on the following convention: A – Duodenum, B – Antrum,  

C – Body, and D – Esophagus. 

Operator #2 was responsible for operating the instrument, firing the laser under 

the direction of Operator #1, and recording notes. Enough data sets were collected to 

represent the visible area of each specimen while it was on the Petri dish without trying to 

overlap laser spots and achieve acceptable signal strength. Information recorded included 

notes about the experiment (Appendix B) as well as the file names and if they were new 

or repeated positions on the specimen. File names included important information about 

the instrument setup including the PMT voltage in case time did not permit for detailed 

note taking. Each file name includes the following information: date, patient number, 

biopsy location and specimen number, PMT voltage, data set or “take” number, and by 

default the channel number used by the oscilloscope. An example file name is 

‘20091102_P28_B1_V2200_T2_CH1.dat’. 
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All fluorescence measurements were taken with the probe fixed at an approximate 

45˚ angle and close to (~2-3 mm) the sample. The reason for this was to reduce the 

collection of back reflected laser light which was otherwise found to overpower the 

strength of the fluorescence signal. Fluorescent light emits isotropically [1] so the 

measured signal produced by endogenous fluorophore emissions (Section 1.2) should not 

be affected by the probe placement [2]. Current work includes the production of a new 

generation optical biopsy system that incorporates the collection of diffuse reflectance 

measurements. Unlike fluorescent measurements, diffuse reflectance is dependent heavily 

on probe and fiber position [2, 3] and the new design will require much more 

consideration and evaluation using tissue phantoms. The focus of this thesis is not to 

specifically evaluate the probe design experimentally but the evaluation of our data in the 

following chapters will demonstrate the probe is sufficient to collect data for lifetime 

extraction using Laguerre deconvolution.  

If there was a break between procedures that required us to wait outside for an 

extended amount of time, the laser trigger was shut off manually so it could not be fired 

accidentally. The PMT voltage was also turned down to minimize chances of damage and 

the sample was covered in saline to prevent it from drying out. Upon return, the laser 

power and/or paper fluorescence was retested before continuing to ensure that there have 

been no changes to the system that would affect subsequent measurements. After the last 

biopsy the data was downloaded on to a memory stick by Operator #2 before the cart was 

shut down and returned to Dr. Tse’s office for storage. Operator #1 used alcohol to 

disinfect the workspace and disposed of all garbage in the biohazards bin. Recorded notes 
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were transcribed within 24 hours and saved to PDF files. If a standard medical report was 

obtained from Dr. Tse, the patient name was removed and then the papers were scanned 

as an extra electronic copy.  

 

2.2: Data Processing 

 

2.2.1: Pre-Processing and Laguerre Deconvolution 

 The data is collected using the procedure outlined in Section 2.1 with the 

instrument described in Section 1.3. An overview of the data processing is provided in 

Figure 2.1. Data were sampled 11 times for every wavelength at a rate of 25 ps/pt for a 

total of 1000 data points in each frame. The output file saved from the digitizer is a single 

column of floating-point numbers that requires processing to split it back into 407 (11 x 

37) useable frames. The pre-processing code [4] was used to average the data from 10 

pulses (discarding the first pulse) at each wavelength, remove any offsets present, and 

truncate the data to 650 pts (or 16.25 ns). As discussed in Section 1.3, the extra (11th) 

pulse was added so that the first pulse could be discarded in case the AOTF had not yet 

stabilized from changing to a new wavelength. Offset removal is a critical component in 

data analysis because it gives each data set a common baseline allowing one data set to be 

compared to another and it also reduces error between fitting algorithms and the observed 

signal [4]. The truncation length was selected (Section 1.5) to improve processing speed 

without compromising the Laguerre algorithm’s ability to provide unique solutions.  
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Figure 2.1: Flowchart for the processing of the tissue fluorescence response collected 

when the laser has been fired on one tissue spot. The data is averaged to reduce 

signal noise and truncated to increase processing speed during Laguerre 

deconvolution. The final result is a set of seven descriptive parameters to be used 

during tissue classification. 

 
 
 

The total spectral intensity observed over the 17 ns time period for each 

wavelength is then calculated from the averaged data using trapezoidal integration to 

estimate the area under each time-domain curve. It is the integrated spectral intensity ‘Iλ’ 

before it has become normalized to a specific wavelength. The resulting file is saved with 

the same file name replacing the ‘_CH1.dat’ extension with ‘_pre.mat’ so it can be read 

by Matlab® for further analysis. The Iλ for each of the individual data files were 

normalized after deconvolution to the wavelength with the highest amplitudes (I455) 

during the data analysis stage. The signal intensities observed for each data file are 

dependent on both the tissue composition at that particular spot and the distance between 
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the fiber probe and tissue. Normalized Iλ allow for the comparison of relative 

fluorescence signal observed and eliminates the bias.  

 It was shown in previous work [4] that the empirical Laguerre algorithm 

performed as well as the bi-exponential fitting algorithm during simulations in a fraction 

of the computation time. The best α is empirically chosen as the one that minimizes the 

sum of squared errors where the error is the difference between the data measured and 

theoretical data curve. Another alpha optimization method using a closed form approach 

[5] aimed at minimizing a cost function to derive the best alpha did not perform as well as 

the empirical method during longer lifetime simulations [4]. The motivation behind this 

cost function for Dr. Jo’s group is that it reduced their computation time by 1-2 orders of 

magnitude to find the optimum α compared to the empirical method [5]. The closed form 

algorithm, alpha_opt_CF.m in Reference [4], did not yet include any laser shifting 

mechanism to account for chromatic dispersion inside the fiber probe. An analog to 

alpha_opt_1f.m (commented as alpha_opt_1g.m [4]) was constructed by Krishnamoorthy 

using the closed form method called ‘alpha_opt_1e.m’ but the comparison between 

methods was not conducted in time for the completion of his dissertation. Since then both 

the empirical and closed form Laguerre methods have been evaluated for the GI data. The 

optimization of α will be described next. 

 Deconvolution was initially conducted to find the optimized alpha and laser shift 

required for each wavelength on every patient’s ‘_pre.mat’ file using alpha_opt_1e.m. 

The results were saved with the new file extension ‘_laguerre.mat’ and an information 

variable ‘info’ was included to record the name of the Matlab function used for the 
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deconvolution. It was found that α could be as low as 0.94 at the end wavelengths where 

there is little to no signal recorded while it was most often recorded as 0.96 or 0.97 for the 

other wavelengths. Review of the optimized α values did not show that the data had a 

preference for selecting an α of either 0.96 or 0.97. Fixing all the wavelengths to either α 

value for all data sets produced reconvolved Laguerre functions that resembled single 

decay curves in some but not all of the data files. An example of an undesirable decay 

curve is presented in Figure 2.2 when α is fixed to 0.96 instead of 0.97. 
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Figure 2.2: An example is taken from Patient 15 at 440 nm where the α value of 0.96 

creates three obvious inflection points in the decay curve compared to when α was 

fixed at 0.97. 

 
 
 The next logical step was to adjust the algorithm so that it runs through α values 

starting at 0.94 in increments of 0.001 instead of 0.01 to obtain more precise results. Both 

the empirical and closed form Laguerre methods were used. Neither method was 

noticeably faster because the laser shifting portion of the algorithm is the limiting time 
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factor for our system. The computation time required to find the optimized α at each 

wavelength for one ‘_pre.mat’ file was increased from 6 s to 1 minute when demanding 

more precision. Therefore five files from each tissue location were selected at random 

from the patient database because the computation was now 10 times slower. The files 

selected and their averages at each wavelength are found in Appendix C. 

 The average α from all tissue locations combined was taken over the range of 390-

510 nm because the most variation in α at individual wavelengths takes place outside of 

this range. Results from both optimization methods were in agreement within 1 SD of 

each other; 0.968 ± 0.002 for alpha_opt_1e.m and 0.967 ± 0.003 for alpha_opt_1f.m. It 

suggests that incorporating the laser shifting algorithm into the CF method will provide 

accurate results but further testing on simpler biological systems, such as simulations and 

fluorescent dyes, are required to confirm that statement. Since the difference in 

computation time between the two methods is negligible, there is no advantage to 

investigate the closed form method further for our instrument. All files in the patient 

database were deconvolved using alpha_opt_1f.m with a single alpha value of 0.967 for 

all wavelengths with the file extension label ‘_lag1f_967.mat’. 

 

2.2.2: Data Management 

 Laser spots were not registered with histological analysis for this pre-clinical trial 

feasibility study as that would present another set of challenges working within the 

clinical environment. The GI study was intended to build upon the previous work done to 

develop the instrument and demonstrate that the Laguerre deconvolution proof of concept 
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can be used on human tissue samples. In the next stage, researchers and the pathology 

staff are working to make a protocol for processing samples marked with tissue dye on 

larger specimens that come from resected brain tumours. The tissue used for the laser 

study there is in excess of what is required for the clinical diagnosis and thus allowing the 

research team time to develop the more involved protocol.  

 The challenge with the GI biopsies is that they are quite small (typical surface area 

was about 0.3 x 0.6 cm2) so often multiple specimens for a biopsy are resected but the 

pathology is only conducted on one of the specimens. Multiple laser spots, with minimal 

overlap, were used to collect data until the area of each specimen lying face up on the 

Petri dish was covered. Even though fluorescent data were labeled specific to each 

individual specimen, there is no way of knowing which specimen the pathologist selected 

for their analysis. The best representation of the fluorescent data for each tissue location 

would be to take the average of all the data sets taken for that patient’s tissue location 

after any outliers have been removed. Outlier data sets include those where the laser 

missed the sample target or where the instrument’s reading was compromised by too high 

or too low of a signal input. Chapter 3 is devoted to the analysis of the individual data sets 

collected to identify ones that do not represent tissue fluorescence because of external 

factors and not the differences in biological composition. Removal of the outlier data 

before calculating the average patient tissue fluorescence is critical because it will 

otherwise distort the descriptive statistics from their true values and affect the results of 

classification models presented in Chapter 4. 
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 One last thing to mention is that the information required to conduct further 

analysis (such as τ-λ, Iλ , and the LEC-0λ to LEC-4λ) was saved into a new file (~169 kB) 

for two reasons. The first is that having smaller files to work with in Matlab made loading 

files much faster than individual Laguerre files (~660 kB). The second reason was that 

these smaller files could be manipulated and sorted into categories (ex. diseased or 

normal diagnosis) in new folders without jeopardizing the integrity or organization of the 

original Laguerre files. File names were also shortened by removing the date and adding 

the extension label ‘_var.dat’ (ex. P28_B1_V2200_T2_var.dat). After some initial data 

evaluation in Chapter 3 it was found that the time-domain information would be required 

to do some further analysis. Since the ‘_var.dat’ files had already been categorized by 

disease it was easier to create a new file (ex. P28_B1_V2200_T2_tdomain.dat) containing 

just the time-domain information of each wavelength (50 kB) and add them to the 

categorized data instead of starting from scratch with new ‘_var.mat’ file that included the 

time-domain information. Matlab scripts were developed and automated to create those 

new files and to gather the parameter averages after the outlier files were manually 

removed from the folders.  

 

2.3: Data Analysis 

 

2.3.1: Overview 

 The parameters available for analysis are the values at each of the 37 wavelengths 

for the five Laguerre coefficients (LEC-jλ), average lifetime (τ-λ), and the normalized 

intensity (Iλ). It is unknown which of these 259 (37 x 7) parameters may differ 
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significantly from one tissue location to the next as this is the first study of its kind on GI 

tissue. A simple comparison test is required first to identify potential parameters that 

statistically differ from one tissue to another and further simplify the data pool for 

potential classification methods. An ideal classifier can take a measurement from an 

unknown tissue type and identify it quickly and correctly. The best model can predict the 

tissue type with 100 % sensitivity (Equation 2.1) and 100 % specificity (Equation 2.2) 

meaning that there are no results identified as false positives or false negatives 

respectively. [6] 

∑∑
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 To make the analysis more selective, two parameters that were both identified as 

being statistically different between two different types of tissue will be used to mark 

each tissue type in a two dimensional space. The distribution of tissue measurements in a 

multi-dimensional space should ideally create more separation between each tissue cluster 

and make it easier to derive a much better defined classification model [7]. All possible 

pairs of the 259 parameters must be considered. Computation time can be significantly 

reduced by eliminating those parameters where the tissue samples are not statistically 

different because it would be impossible to find a classifier that can separate 

homogeneous data. The following sub-sections of this chapter are dedicated to the 
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identification of such parameters and the development of a classification system for the 

GI fluorescence data.  

 

2.3.2: Hypothesis Testing 

 Before continuing further, a basic review of hypothesis testing is warranted in 

order to understand the decision making process when interpreting statistical significance. 

The null hypothesis (Ho) is rejected in favour of some alternative hypothesis (H1) when 

the probability of obtaining a test statistic is as or more extreme than the desired 

confidence level. For example take the t-test, the most popular test for the difference 

between two independent samples where Ho hypothesizes that both samples have equal 

means and the alternative H1 is that they are not equal. If the desired confidence level is 

95 %, then Ho is rejected when the probability or ‘p-value’ is less than 0.05. It means that 

there is s 5 % chance Ho has been rejected when it’s actually true and this is the risk of a 

false negative result. Note that when the test does conclude that Ho is ‘true’, it does not 

imply that the test has proven the mean of the two samples are the same but rather that 

there is no reason to conclude that they are different. [8, 9] It is important to understand 

that statistics is not an absolute science but rather one that is developed by studying and 

modeling events that occur by chance so that one can report and interpret, perhaps even 

predict, the meaning of events with a quantitative degree of confidence.  

 Each statistical test developed is based on a certain set of assumptions about the 

data and its distribution. Violation of any one assumption in a test will jeopardize the 

integrity of the test results and leave more chance for error when making decisions. In 
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hypothesis testing the most common assumptions are that the sample outcomes were 

measured independently from one another, have equal variances, and are normally 

distributed [8]. Based on the last assumption, tests are divided into two categories: 

parametric and non-parametric models. Parametric models require more assumptions 

compared to non-parametric methods and are often preferred because the models are 

simpler and more precise when the data follow the Gaussian (bell-shaped) normal 

distribution. Non-parametric tests are designed to make decisions while taking into 

account that less is known about the sampling distributions and do not rely on a particular 

distribution to build the test theory. It is to say that they are more versatile but less 

efficient if there actually is a distribution criteria that can be met. [9]  

 Most tests available in either case require that the samples are independent and 

often there are corrections available that can account for unequal and/or unknown 

variances. Individual fluorescent measurements meet the independence requirement. Data 

at each wavelength is measured from individual laser pulses and the outcome at each 

sampling location is not affected by the tissue at another location. The next challenge 

when searching for meaningful GI data after the removal of outliers is to determine which 

statistical tests can and should be used to identify differences in tissue fluorescence 

between samples. The analysis will start by identifying if the most powerful (parametric) 

tests are applicable to the GI data and then work to select an appropriate method to 

identify statistically different parameters for tissue classification. 
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2.3.3: Statistical Methods Required to Compare Individual Parameters 

 A two sample t-test (where samples are two different tissue locations) would be 

the best place to start. It can be calculated with or without the assumption that the 

variances are known and are both equal but each sample must follow a Gaussian normal 

distribution [9]. Before using the t-test the normality of each distribution must be 

confirmed. Graphical representation of the data in a histogram can be used to visualize 

the distribution of the data but it is often too difficult to estimate the skew (tails) and 

kurtosis (peak rise) of the distribution by simply looking at the graph [7]. In small data 

sets (N < 30) it is near impossible to estimate what the normal distribution should be 

without some guidance from a mathematical theory [7].  

 While there are several normality tests available, no single test method is 

dominant and different software packages will offer different tests [7, 10]. For example 

SAS® (v.9.2) offers the Kolmogorov–Smirnov (KS), Shapiro-Wilk, and Anderson 

Darling tests, while Matlab (v.2010) offers KS, Lilliefors, and Jarque-Bera tests. In good 

practice it is best to try two methods and see if they are in reasonable agreement. In cases 

where there is a lot of data (such as 259 parameters) using one test to get an idea of how 

many of the samples are reasonably normally distributed or not is enough to decide if a 

non-parametric comparison test instead of the t-test should be used. In a search for the 

popularity of these tests using the Scientific Journal search engines Web of Science and 

PubMed, KS is the most popular while the others are extremely rare. The vast majority of 

authors who analyzed data with the t-test did not even report the use of a normality test   

at all.  
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 The KS test however is arguably an over simplified method used to compare the 

maximum difference between the cumulative frequency distribution of the sample to the 

known normal distribution of the population. It is more conservative meaning that it is 

less likely to reject Ho during borderline decisions. Lilliefors test is a more powerful 

extension of KS when the population cumulative frequency distribution is unknown and 

must be estimated. Also its corrections lead to p-values different than the KS which make 

the test less conservative. [11, 12] The ‘lillietest.m’ function in Matlab was used to test 

the normality of each tissue type using the patient averages. As discussed later in Chapter 

4, some τ-λ, Iλ, and most of the LEC failed the test (p < 0.05) meaning that the data 

cannot be reasonably fitted to a hypothetical normal distribution. Therefore the non-

parametric alternative rank-sum test was used instead of the t-test. 

 The rank-sum test, known as the Wilcoxon Rank-Sum or Mann Whitney U-Test, 

uses the rank of the pooled measurements to look for the Ho where the groups have equal 

medians instead of equal means (i.e. the t-test). To set up the rank-sum test, all of the 

measurements are ordered lowest to highest and assigned a rank. If the sum of the ranks 

for each group are close enough to each other (p < 0.05) then Ho is true. [6, 13] The rank-

sum test does not assume each group has equal variances nor is it dependent on the data 

satisfying a particular distribution type. However its only fallback is the assumption 

where the groups to be compared both have the same type of distribution. [13] A two-

sample KS test can be used to check this assumption by determining if the maximum 

difference between these two cumulative frequency distribution is significant (p < 0.05) 

enough to suggest that they follow different distributions [10, 14]. Both tests are available 
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in Matlab (ranksum.m and kstest2.m) and were used to identify potential parameters for 

the two dimension separation analysis. 

 Now if the two groups of interest are in fact very different from each other, then in 

theory they will have different medians and the rank-sum would be able to detect it 

regardless of the 2-sample KS test result. Removal of parameters from the rank-sum test 

whose groups do not have the same distribution, but possibly have different medians, 

would omit potential parameters that could be used for a successful two dimension 

classification. All of the parameters were used in the rank-sum test in light of this motive. 

However, by using the rank-sum test on all of the samples there is still the risk of error of 

where Ho is kept when it is actually false. The test cannot distinguish a difference 

between the two samples with different distribution types because co-incidentally they 

will have the same rank-sum when the samples are pooled together for their rank 

assignment. To reduce the risk of missing out on these parameters, results of the rank-sum 

test were cross-referenced with the 2-sample KS test. Any parameters that passed the 

rank-sum test but failed the 2-sample KS test were included in the classification analysis. 

 

2.3.4: Classification Methods 

 An unsupervised learning classification algorithm (ex. clustering) is preferential 

for the GI data because of our small data base available for study. More complex 

classification models can offer more precise solutions but require the assistance of 

supervised machine learning. In this case random sub-samples from the population are 

used to train the classifier until the error in the model is minimized and it converges to a 
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single solution. It is not an ideal approach to classify the GI data because this process is 

highly sensitive to change when the sample size is small [15]. Also, many of these 

supervised methods are parametric models that rely upon several assumptions regarding 

both the data sampled and its population. One of these assumptions require that the 

population variance be known because then the variance of random sub-sampling will be 

stable and make the training classifier more robust [15]. Unsupervised methods are 

typically non-parametric [15, 16] and are advantageous at this point in the GI study 

because the behaviour or rather ‘the character’ of the population distribution can only be 

truly revealed by acquiring large amounts of data.  

 On that last note, it is advised to collect as much data as possible within the time 

and resources available even though there are several ways to justify how much data is 

enough to draw conclusions [17, 18]. The minimum sample size required by a study 

needs to be calculated using the initial results of the test in question and not some other 

related study. Each test completed by a different treatment and/or delivery protocol can 

present its own influence on the measurements no matter how profound or subtle it may 

seem. To determine what the minimum sample size should be is often a formula based 

calculation that depends more on the clinical significance rather than the character of the 

data. The clinical significance confidence interval is the difference between the two 

portions (means or categories) being tested that are desired in order to accept the risk of a 

patient’s outcome when treated from a misdiagnosis. [17, 18] Ultimately the calculation 

of the sample size required to validate the results of a study is the responsibility of a 

clinical epidemiologist who has been assigned to the research ethics committee.  
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 Researchers must gather enough data to initialize their study and one common 

way to estimate the starting sample size is to review publications on similar studies. The 

average pilot study size begins with a minimum of 20 patients so the GI study was 

targeted at 30-40 patients. Butte et. al [19] has demonstrated that Linear Discriminant 

Analysis (parametric modeling) can be used to classify brain tumours based on 

parameters derived from TR-FS and Laguerre deconvolution. However, he is still 

cautious to point out that they need a sample size much greater than their 42 patients (71 

total biopsies) to stay clear of overestimating the classifiers. The main reason cited was 

that they only selected the biopsies and parameters that would train for the best possible 

outcomes [19]. GI tissue has not been studied before using Laguerre deconvolution so it 

is unknown which (if any) parameters can be used effectively to distinguish between 

different tissue types. Cluster analysis is a popular unsupervised method and will be used 

to study our parameters for fluorescence signatures. 

 Typically cluster analysis is reserved for studies where the true object labels 

and/or number of groups is unknown [16]. However, it can still be used when this 

information is known because the algorithm was designed not to be influenced by this 

kind of specific knowledge prior to the analysis. Both the data labels and the number of 

groups are known for the GI data. In this case the sensitivity and specificity [6] of the 

object classification in two dimensions can be used to assess the potential of an optical 

biopsy to be able to distinguish between different tissue types.  

 If the clusters are not homogeneous and well separated then it is expected that this 

result would lower the sensitivity and specificity of the test. Heterogeneous data would 
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have a negative impact on these rates regardless of which classification method was used 

but to what extent can only be determined by taking the time to implement different 

models. A more sophisticated classification model from supervised machine learning 

should be able to improve these numbers provided it was one chosen that can provide a 

more appropriate fit to the data character. No single classification method is superior to 

another [15, 16]. It is best to apply several different models to see which one works best 

to model the data of interest beginning with the simpler, less computationally involved 

methods first.  

 

2.3.5: K-Means 

 The simplest unsupervised computational algorithm available is k-means cluster 

analysis. It is a non-hierarchical way of partitioning the data into classes where the only 

requirement is that the number of cluster centers or ‘k-means’ are specified prior to 

implementing the algorithm. It does not depend on any other prior knowledge about the 

data character. Clusters can either be estimated when the data graphically appear well 

separated or they may already be known (as in our case). In contrast, hierarchical methods 

are used to create cluster trees when the number of clusters is not obvious. [16] 

 K-means will assign each data point to the closest centroid (‘k-mean’ value) using 

the assignment which minimizes the sum of distances to form ‘k’ initial clusters. Starting 

point selection for each k-mean centroid is completely arbitrary. Each centroid is then 

recalculated based on this assignment of data points and then the next iteration begins. 

The classification of each data point will change if it is now closer to another k-mean. 
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Once all the data points have been checked or reassigned, each k-mean centroid is 

recalculated again and the process repeated until the algorithm converges. The k-mean 

values can then be used for supervised classification where new unlabeled objects are 

assigned a label based on which k-mean centroid they are closest too. [16] 

 The k-means analysis was performed on the GI data using the 2-step algorithm 

available in Matlab (k-means.m). The additional second step can fine tune the centroids to 

a local minimum after the traditional way of finding k-means (described previously) and 

thus optimize the chance of finding the global minimums. This step now recalculates the 

centroid every time one of the data points can be reassigned to reduce the sum of 

distances from each data point to its centroid. Once all of the points are passed through 

this process a new iteration begins until none of the points can be reassigned. By default 

Matlab has included this step in its algorithm although it does not require more than one 

or two iterations to achieve a local minimum. [20] 

 Point to centroid distances can be calculated multiple ways depending on if the 

clusters are roughly spherical with a globular boundary or not. Squared Euclidean 

distance and City-Block ‘Manhattan’ are the two most common distance formulas for 

non-standardized data (Figure 2.3). In most cases the two formulas will yield similar 

results except for when there are some data (objects) with particularly large centroid to 

point distances. The Squared Euclidean distance puts more weight on these objects during 

classification and is recommended for use when the clusters are not globular. Cluster 

assignment using these distance equations can also be influenced by the dimensions of 

each axis and may lead to less than desirable clustering results. [21]  
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Figure 2.3: The Squared Euclidean and City-Block “Manhattan” centroid to point 

distance calculations. 

  

Both distance calculations are available in Matlab and by default kmeans.m 

selects the Squared Euclidean distance. Clusters formed by the parameter pairings 

roughly do not look globular so the default distance option was used. Some of the 

parameter pairings had large differences between their dimensions. As an example the 

values for LEC-3λ are two orders of magnitude smaller (1x10-2) than Iλ. If LEC-3λ is on 

the y-axis and Iλ is on the x-axis then the x distance to each centroid will influence the 

assignment more than the y distance. For pairings where there was at least 1 order of 

magnitude difference between the dimensions, clustering was performed both with and 

without dimension transformations. Results for the GI fluorescent data did not reveal a 

definite answer as to if and when the data should be transformed so that the dimensions 

are matched. Details are presented and discussed in Chapter 4.  

 Another disadvantage to clustering is its low precision relative to other 

classification methods that use training samples because it is sensitive to the initial choice 

of centroid locations [16]. Ultimately the true global minima can only be found by 
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repeating the two-step process using several different sets of starting centroids (termed 

‘replicates’) to see which ones produce the best results. Matlab offers an opportunity to 

run multiple replicates using either pre-defined or randomly chosen initial centroids [20]. 

Only the k-means solution with the lowest sum of distances from the centroids to their 

data points is reported back [20]. Each option was tested using two k-mean groups to see 

how the selection of the starting centroids and number of replicates affected the outcome 

of results. The sensitivity and specificity with respect to the first group were calculated 

using the cluster group index results produced by kmeans.m. 

 Sometimes the computer randomly selected the first centroid from the second half 

of the data list and the second centroid from the first half. In this case the sensitivity and 

specificity are very poor because the classification labeling has been reversed where 

group one has become recognized instead as group two. Random selection of data points 

using each individual group must be done outside of kmeans.m and used as pre-defined 

inputs. While this rectified the situation for the most part, it was still a problem when a 

starting centroid was close enough to the other cluster to cause a reversed classification. 

Multiple replicates (5, and 10) did not guarantee that Matlab would report the best 

solution with the correct group label assignment if a solution with the lowest sum of 

distances happened to be one with a reversed classification. 

 Since the choice of starting locations is indeed arbitrary, in theory the user can 

choose any point on the x-y grid to represent the starting locations. The k-means can be 

steered towards the desired cluster locations because each data’s proper classification is 

known previously from the GI histology results. The average x and y co-ordinate of each 
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group was used to calculate the actual geographic center (i.e. the ‘theoretical centroid’) of 

each cluster making up the pre-defined starting centroid inputs. As the kmeans.m 

reassigns data points to the other cluster centroid if it is indeed closer, the value of the 

centroid will be recalculated to reflect this change. Otherwise if the clusters are 

homogeneous and either well separated or globular, the final centroids will be the same as 

the input centroids. In preliminary testing it was found that using these averages will 

produce the best sensitivity and specificity results when used with the Squared Euclidean 

distance because clusters do not have a defined shape. 
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CHAPTER 3:  DATA EVALUATION 

 
 
 Time-domain fluorescence spectroscopy data collected from human tissue 

samples are usually noisy and contain a number of artifacts from the clinical data 

acquisition process. Therefore, it is important to be able to categorize the quality of the 

data before further analyses are performed. The goal is to establish criteria that can 

consistently identify outlier data. Such measurements can skew the results and in turn 

jeopardize the integrity of any generalized conclusions.  

 The time-domain data was reviewed for any cases where the signal amplitude may 

have been saturated by inadequate digitizer settings or from excess light build up inside 

the MCP-PMT. Both steady-state and time-domain data were used to determine the lower 

signal detection limit of the instrument. If the signal-to-noise ratio (SNR) is poor, the 

Laguerre algorithm may be incapable of accurately extracting reasonable lifetimes. Also, 

if the signal is too low, the 8-bit digitizer may not have the sufficient vertical resolution to 

record the data. Sample photobleaching and the repetition of measurements on the same 

tissue spot are concerns also addressed in this chapter. Finally, the results were 

summarized and the list of relevant criteria was applied to tabulate all of the 

measurements which should be removed from further analysis. 
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3.1: Clinical Results 

 

 The histological diagnosis of each sample location from each patient is shown in 

Tables 3.1 and 3.2. Patients were labeled in the order that they were sampled however not 

all of the patients could be included in the analysis and calculations. Samples from two of 

the 28 patients were from the same person (P12 and P19). Originally the esophageal 

samples were too small and could not be analyzed by histology or auto-fluorescence. The 

P19 esophageal biopsy was a successful repeat visit and the results were relabeled in this 

study to be included as P12 data. Also, the P18 data had to be excluded from our analysis 

because the medical record number could not be located. For reasons discussed in the 

next section, patients P01-P06 inclusive were removed from our data set due to 

instrument sampling errors. Lastly, fluorescence measurements were not recorded for the 

P26 duodenum because the sample was preserved in formalin immediately after the 

biopsy and could not be recovered. 

 In total there are 20 patients available for fluorescence analysis in our data base. 

Of these 20 patients only some of their tissue locations returned normal biopsy results 

meaning that there are only 16 duodenum (A), 3 antrum (B), 13 body (C), and 16 

esophagus (D) biopsies available for analysis. Most of the diseased antrum tissue (14/17 

patients) were found to have various degrees of chemical gastopathy while chemical 

gastritis was present in the others. Several different conditions ranging from acid reflux to 

cancer were observed in the other tissue locations but not enough patients (less than 4) to 

form another diseased group for future analysis. 
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Table 3.1:  Histological Diagnosis for Patients 1 to 28. 

 
Collection

Date YMD
Patient

Duodenum

A

Antrum

B

Body

C

Esophagus

D

2009-02-23 P01 0 1 0 1

2009-03-06 P02 0 1 0 0

2009-03-09 P03 0 1 1 0

2009-03-09 P04 0 0 0 0

2009-03-09 P05 0 1 0 1

2009-03-09 P06 0 1 0 1

2009-08-31 P07 0 1 1 0

2009-08-31 P08 0 1 0 0

2009-08-31 P09 0 1 1 0

2009-09-14 P10 1 1 0 0

2009-09-14 P11 0 1 0 1

2009-09-14 P12* 0 0 0 0

2009-09-15 P13 1 1 0 0

2009-09-15 P14 0 1 1 0

2009-09-15 P15 0 1 0 0

2009-09-21 P16 0 1 0 0

2009-09-21 P17 0 1 1 0

2009-09-21 P18 NA NA NA NA

2009-09-28 P19* NA NA NA 1

2009-09-28 P20 0 1 0 1

2009-09-28 P21 1 1 0 0

2009-09-28 P22 0 1 1 0

2009-09-29 P23 0 1 0 0

2009-09-29 P24 0 1 1 0

2009-09-29 P25 0 0 0 0

2009-10-19 P26 0 1 0 0

2009-10-19 P27 0 1 1 0

2009-11-02 P28 0 0 0 1  
 Normal = 0, and Diseased = 1, Diagnosis unavailable = NA. 
 * P12 esophageal biopsies were non-diagnostic and repeat biopsies were performed on 
 2009-09-28 (P19).  
 ** Fluorescence results were not obtained for P01 A-D or for P26 A. 
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Table 3.2: Comments for the Histological Diagnosis of Patients 1 to 28. 

 
Patient Comments

P01 Antrum has chemical (reactive) gastropathy; Esophagus has mild reflux esophagitis

P02 Antrum has chemical (reactive) gastropathy

P03 Antrum has chemical (reactive) gastrophaty; Body has fundic gland polyp

P04 All are Normal

P05 Antrum has minimal chronic gastritis; esophagus has focal acute esophagitis

P06 Antrum has mild chronic gastritis; esophagus has focal reflux

P07 Antrum has minimal chemical gastropathy; body has minimal chemical gastritis

P08 Antrum has chemical gastrophathy

P09 Antrum and Body have chronic active HP gastritis

P10 Duodenum has mild increase IEL, crypt blunting, architectural distortion with fibrosis; 

Antrum has mild reactive gastropathy

P11 Antrum has chemical gastropathy; esophagus has mild reflux esophagitis

P12* Esophagus biopsies were non-diagnostic; repeat with P19*

P13 Duodenum has mild villous blunting; Antrum has chemical gastropathy

P14 Antrum and Body have chemical gastropathy

P15 Antrum has chemical gastropathy; esophagus has mild reflux esophagitis;

P16 Antrum has chemical gastrophaty

P17 Antrum and Body have chemical gastropathy

P18 No Diagnosis Provided.

P19* P12* is resampled, Esophagus has invasive neuroendocrine cancer

P20 Antrum has mild chemical gastropathy; Esophagus has reflux esophagitis

P21 Duodenum has duodenitis; Antrum has mild chemical gastropathy

P22 Antrum and Body have gastritis

P23 Antrum has chemical gastropathy

P24 Antrum and Body have chemical gastropathy

P25 All are Normal

P26 Antrum has chemical gastropathy

P27 Antrum and Body have HP gastritis

P28 Esophagus has Barrett's with indefinite dysplasia  

 

 

3.2: Data Assessment  

 

 In the data processing stage, steps were taken to reduce the signal noise by 

removing artifacts and averaging 10 sets of measurements that improved the overall 

performance of the Laguerre deconvolution algorithm [1]. However, those steps did not 

include a screening method with upper and lower detection limits for the collection of GI 
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data. There are a few main causes of outlier data that need to be identified and removed if 

found present in order to obtain an accurate statistical analysis. Outlier results would be 

expected when the sample was not in the path of the laser and when there is light 

saturation inside the MCP-PMT. Other causes arise when the GI signal is quite low in 

signal amplitude and challenges the performance of fitting algorithms to fit the true signal 

rather than fit to the noise. All of the data collected were kept for review. 

 The auto-fluorescence spectral range of human tissue is similar to that of paper 

with a glossy finish (Figures 3.1 and 3.2). A business card was used to verify that the 

system was functioning correctly because its spectrum is relatively stable. The program 

that was developed with Labview was designed to display the maximum intensity profile 

taken from the last AOTF sweep because it takes less processing power than calculating 

the Iλ. The spectral shape is nearly identical using these two methods. If the spectral shape 

of paper displayed in Labview was as expected (based on visual inspection), then the 

instrument was deemed to be functioning properly and ready for GI data collection. 

Problems with the instrument’s performance were observed during the first few 

patients. Transportation of the instrument for the first date shifted the laser components 

enough making the P01 data collection impossible. Adjustments were made accordingly 

to realign the laser and the system was tested using paper fluorescence back in the lab. 

However, during the next two collection dates the erratic and inconsistent spectral shape 

of GI data raised some further concerns about the instrument’s performance. The previous 

students returned the instrument back to the lab after P06. Every component was retested 

and recalibrated but they were unsuccessful in determining the exact cause of the 
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problem. The abnormalities discussed next cannot be reproduced and never occurred in 

subsequent measurements.  
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Figure 3.1: Time-domain and spectral data for paper fluorescence. On the left, the 

time-domain data are plotted for all 37 wavelengths. On the right is the area under 

each time-domain curve plotted as a function of wavelength.  
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Figure 3.2: Time-domain (left) and spectral data (right) for P16 body tissue. One 

data set (T4) was chosen to represent the time-domain data for all wavelengths. 

Each normalized spectral data set typically has complete overlap with one another, 

except sometimes during shorter wavelengths as with this sample here. The GI data 

plotted has a shape similar to the fluorescence by the paper sample in Figure 3.1. 
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 The pre-processed time-resolved data were plotted and reviewed from these first 

few patients (P02-P06). An example is taken from P06 body tissue in Figure 3.3. It was 

found that the time-resolved signal does indeed resemble the shape of the impulse curves 

produced by paper and tissue fluorescence but not in the progressive rise and fall pattern 

of signal strength. The differences are these spikes in measured intensity (ex. ‘P06 C1 T3’ 

in Figure 3.3) which are apparent in the steady-state data and are the reasons for raising a 

concern about the instrument’s integrity. Most of the data from P02-P06 can be 

represented by Figure 3.4 where the instrument lacks the ability to take consistent 

measurements. Sometimes the instrument was a little more consistent (Figure 3.3) but 

without the problem or problems identified it is not known to what affect the system had 

on the outcome of each measurement. All of the data obtained from P01-P06 are excluded 

from the calculations in this report. 
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Figure 3.3:  Patient 6 body tissue time-domain (left) and spectral data (right). In 

P06, some of the data is distorted (ex. T3) by the instrument’s jitter when collecting 

the data as indicated by the jumps in observed fluorescence signal. Also, the peak 

wavelength was found to be blue shifted 5 nm and was corrected during the re-

calibration process. 
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Figure 3.4: Patient 4 represents most of the data from Patients 2 to 6. There was no 

consistency in the instrument’s ability to measure incoming signal as the normalized 

spectral data do not overlap.  

 
 
 
3.2.1: Amplitude Saturation 

The initial digitizer vertical scale was set high enough to include the maximum 

fluorescence intensity observed in GI tissue. If the limits were too low then the digitizer 

would be saturated such that the signal amplitude would be cut off and the pulse would be 

square. In other words the measurement is recorded as that cut-off value for any length of 

time the signal exceeds that maximum limit. The signal could also become saturated if 

ambient light leaked into the instrument which would increase the observed signal and 

cause it to saturate the digitizer and/or broaden the observed pulse width. In either case 

the lifetime features can be influenced by these artifacts and produce erroneous results. If 

saturation is indeed present in some of the GI data, a square or broadened pulse in the 

time-resolved data would be obvious during manual visual inspection. The scale used was 
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from 0 V to -2.5 V (500 mV/division) where the signal amplitude could be adjusted to fit 

this range by changing the MCP-PMT gain (discussed next in Section 3.2.2).  For other 

tissue types the fluorescence strength may be different and the digitizer scale should be 

adjusted to capture the signal with maximum vertical resolution before causing saturation. 

The best vertical resolution is one that can record the signal intensity with enough 

precision to capture the decay such that an actual curve is observed which would 

otherwise be lost when each measurement is rounded to a less precise value. 

The data with the highest amplitudes (I455 ≥ 150 V·ns.) were checked to see if the 

maximum time-resolved signal had been cut off. Figure 3.5 shows P13 with the first data 

set T1 amplified nearly four times higher than the average signal in T2-T6. In Figure 3.5c, 

time-resolved data was plotted for T1 at 435 nm, 455 nm, and 475 nm where the 

maximum amplitude is 1.45 V at time point 150 or 3.75 ns. A square pulse was not 

observed in Figure 3.5 or for any of the high intensity data including the maximum 

observation of 1.84 V at 3.73 ns for P25 esophagus tissue T4.  

Pulse broadening was suspected in cases where the normalized Iλ (to 455 nm) 

were much greater than other measurements from that same sample or other patients. 

Some of these samples were targeted first. The full width at half maximum (FWHM) of 

the time-domain signal looked somewhat wider than usual but evidence of MCP-PMT 

saturation was not obvious as more extreme broadening was expected (Figure 3.6). For 

the most suspicious samples the cause of any pulse broadening would be difficult to 

determine because they are from a patient with a disease that is not found elsewhere in 

our data base. Manual review of the data in an attempt to quantify evidence of pulse 
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broadening due to MCP-PMT saturation would be time consuming so the following 

calculations and analysis was performed in Matlab and Microsoft Excel. 
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Figure 3.5:  Saturation of the instrument by a strong signal is reviewed using P13 as 

an example. A) T1 maximum signal is nearly four times greater than the other data 

collected. B) When normalized, the change in fluoresce observed across all 

wavelengths is maintained. C) The time-domain data is compared between T1 and 

T5 at three different wavelengths 435 nm, 455 nm, and 475 nm. D) Signal 

broadening is not observed when the data is normalized in the time-domain. 
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Figure 3.6: Simulated signal with PMT saturation. The saturated signal decays 

much slower (5 ns) than what an expected GI signal does (2.6 ns). 

 
 
 
Since the observed signal is a unique combination of the laser pulse reflection and 

fluorescent decay, a theoretical formula for calculating the FWHM of this curve 

distribution does not exist so the FWHM was determined with a less conventional 

method. A Matlab function add-in available online [2] was used to successfully measure 

the time taken for the first instant the signal reaches half the maximum to the first instant 

it drops to half of the max after the maximum point. Microsoft Excel was used to 

organize the results using conditional formatting to highlight which data sets had FWHM 

values that are within 1, 2 and 3 standard deviations (SD) of the calculated average for 

that particular tissue type. 
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The FWHM of normal duodenum tissue was 2.6 ± 0.6 ns. In the 132 data sets, 

nine were outside ± 1 SD and only two of them were outside of both ± 2 SD and ± 3 SD. 

The two outliers P14 T8 (FWHM = 0.64 ns) and P24 T1 (8.4 ns) corresponded to signals 

of background noise and no visible impulse signal. For normal esophageal tissue the 

FWHM was 2.4 ± 0.4 ns where 23 of the 107 data sets were outside ± 1 SD with six of 

them between ± 2-3 SD and two outside ± 3 SD. The two data sets outside the 99% 

confidence interval (P13 T1 and P26 T2) were both outside -3 SD (0.88 ns and 1.01 ns) 

so there were no significantly large FWHM values. Also, no pulse broadening was found 

using the available diseased information and their respective FWHM averages for the 

categories of ‘chemical gastropathy’ and ‘other diseases’. 

 

3.2.2: Lower Signal Detection Limits 

 Data with a signal level that is too low may be overpowered by noise and leads to 

inaccurate lifetime estimation. Upon review of the normalized integrated spectral data it 

became clear that there is a lower detection ability of the system because the spectral 

shape was erratic instead of the expected bell shape. Voltage supply to the MCP-PMT 

was often increased to combat the lack of sensitivity by the system for a low (weak) GI 

signal. Amplification of the signal in this manner does not affect the signal lifetime decay 

as seen in Figure 3.5. The time-domain data in T1 taken with 2200 V MCP-PMT voltage 

was normalized and compared to T5 taken at 2100 V. There is considerable overlap 

between the two data sets at each wavelength supporting that the MCP-PMT voltage in 

this range does not affect the temporal shape of the signal but amplifies weaker signals. 
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 In the early stages of the study it was found that data sets without an obvious 

observed signal pulse could be removed by quick analysis of the steady-state information 

calculated in the pre-processing code. The Iλ could be negative at a particular wavelength 

if the time data contained only background noise. Figure 3.7 contains three negative 

points (at I380, I385, and I525) and the level of background noise overshadows a possible 

weak impulse signal at 455 nm. No impulse signal was observed in all the cases where 

the data set contained three or more negative Iλ values. For data with at least some 

observed impulse signal the Iλ values were all positive. Such a limit was useful to exclude 

data containing only background noise when making initial comparisons by graphing in 

Matlab but it cannot remove any data containing signals that challenged the lower 

detection limit of the instrument (Figure 3.8).   
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Figure 3.7: Patient 14 has a data set where background noise is dominant. SNR at 

455 nm is 11 dB. The space below the zero mark in the time-resolved data (left) 

makes a negative contribution to the spectral integration while the space above the 

zero line is positive. The steady-state data (right) have three negative Iλ at I380, I385, 

and Iλ525. 



M.A.Sc Thesis – Michelle L. LePalud    McMaster University – Biomedical Engineering 
 

 69 

0 2.5 5 7.5 10 12.5 15 17.5
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
P25_C1_V2200_T2_tdomain.mat

Time [ns]

S
ig

n
a
l 
A

m
p
lit

u
d
e
 [

V
]

 

 

455 nm

360 410 460 510 560
0

0.5

1

1.5

2

2.5

3

3.5

4
P25_C1_V2200_T2_tdomain.mat

Wavelength [nm]

In
te

g
ra

te
d
 I

n
te

n
s
it
y
 [

V
 *

 n
s
]

 
 

Figure 3.8: Patient 25 as an example of a weak data set. The SNR at 455 nm (left) is 

19 dB. Steady-state information (right) is not a smooth curve but rather erratic and 

the weak signal is enough to make the Iλ positive at all wavelengths.   

 
 
 
 Visual inspection of the spectral data alone is not sufficient to evaluate the lower 

detection limit of the system. Another method used to evaluate the strength of the signal 

was the Signal to Noise Ratio “SNR” (Equation 3.1). The signal and noise were measured 

at the same point in the instrument (the sample collection reading) so they have the same 

impedance. Amplitude can then be expressed as the VRMS (Equation 3.2): i.e. the Root 

Mean Square (RMS) of the voltage measurements (in volts “V”) over Time (t). [3] 
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 Background noise was calculated using the VRMS of 65 time points (or 10% of the 

data) before the laser was automatically fired. The window of 11-75 points was chosen to 

start at point 11 to avoid any abnormal noise build up in the instrument at the start of the 

collection period. The time window ends well before the observed pulse rising edge 

taking into account the variation in the time (points 85-110) that each wavelength size and 

speed takes to arrive at the detector. It is important to note that in these fluorescence 

measurements the signal amplitude of each measurement decays over time and at 

different rates. Such variations can influence the SNR and make comparisons difficult so 

the maximum signal should be used [3]. The data point with the maximum amplitude was 

used to calculate the signal VRMS. To interpret the data, ratios where converted into 

decibels (dB) by the conversion factor of 10*log10(SNR) [3]. 

 The SNR is largely dependent on the chosen gain of the system by adjusting the 

MCP-PMT voltage at the time of collection [3] and the ability of the sample type to 

fluoresce. Data were collected under the direction to achieve a good SNR that was only 

estimated by looking at the time-resolved data in P07. It was determined that a maximum 

signal at the peak wavelength of 455 nm should be between 300 mV and 600 mV to get 

SNR of about 30 dB. On tissue with low signal amplitude the maximum MCP-PMT 

voltage was limited to voltages of 2250 V because the system response beyond 2300 V 

was not linear [1] and to protect the instrument from electrical damage caused by long 

term power exposure. Typical MCP-PMT voltages for tissue were 2150 V or 2200 V 

while only 1700 V was enough for observing paper.  
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Anyone comparing SNR from two data sets with different power gain settings 

should subtract the reference SNR from the data collected using the higher voltage [3]. 

An example would be as follows: 

   Sample 1 SNR = 28 dB, MCP-PMT = 2200 V 

   Sample 2 SNR = 26 dB, MCP-PMT = 2150 V 

   Reference = 10*log10(2200/2150) = 0.0998 

   Sample 1 SNR = 28 – 0.0998 = 27.9 dB 

Therefore when Sample 1 is compared to Sample 2, the Sample 1 SNR is actually equal 

to 27.9 dB. The maximum reference factor that would have to be considered when 

comparing tissue data is 0.2996 dB for a 150 V difference. For the purpose of 

determining a lower cut-off we will see that this small difference is negligible to the 

outcome of our results. 

 Evaluation was considered at the first quarter, center, and last quarter of the 

spectrum (410 nm, 455 nm, and 505 nm) for the two largest tissue groups, normal 

duodenum and normal esophagus. Table 3.3 shows average SNR and lifetimes calculated 

for normal duodenum tissue (N = 132) and normal esophageal tissue (N = 107). The 

largest lifetime SD occurs near the ends of the spectral window when the SNR is less than 

20 dB. The SNR at the peak wavelength (455 nm) is always generally quite good, (36 ± 

6) dB for duodenum tissue and (33 ± 6) dB for esophageal tissue. On a few occasions 

there is noticeable variation in spectral shape around 410 nm (ex. Figure 3.2) where 

phenomena such as blood absorption [4] could possibly have an effect on the outcome of 

lifetime calculations. To what extent this may be relevant is yet to be determined by 
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ongoing work which aims to correct for artifacts in the fluorescence measurements by 

implementing diffuse reflectance analysis. Further study will therefore be performed on 

data at 505 nm for normal duodenum and esophageal tissue to see if there is a correlation 

between the calculated lifetime and the SNR for a way to establish possible detection 

limit criteria. 

 

Table 3.3: SNR and Lifetimes for Normal Duodenum (A) 

 and Normal Esophageal (D) Tissue. 

  

Wavelength

[nm]

Wavelength

[index]

SNR [dB]

Normal A

Lifetime [ns]

 Normal A

SNR [dB]

Normal D

Lifetime [ns]

 Normal D

375 2 15 ± 5 1.1 ± 11 14 ± 6 2 ± 2

410 9 27 ± 6 1.1 ± 0.3 25 ± 6 1.3 ± 0.6

455 18 36 ± 6 1.1 ± 0.2 33 ± 6 1.1 ± 0.3

505 28 26 ± 5 1.0 ± 0.3 22 ± 5 1.1 ± 0.4

540 35 20 ± 4 1.1 ± 0.5 16 ± 4 1.2 ± 0.7  
 
 
 
 Normal duodenum and esophagus lifetimes at 455 nm and 505 nm were compared 

to their respective averages. Table 3.4 lists every normal duodenum and esophageal data 

set that have an I455 < 20 V·ns, and very few of these data sets were found to produce 

lifetimes outside ± 2 SD. At 505 nm SNR’s < 20 dB do not affect the Laguerre fitting 

from producing reasonable lifetimes as only two of the data sets, one from each of 

duodenum and esophageal, have lifetimes outside ± 2 SD. From this table it can be 

observed that data sets with similar Iλ and SNR often produce lifetimes within ± 1 SD of 

the average while on the rare occasion data of similar signal strength can produce two 

very different lifetimes. For example ‘P22 D1 T2’ and ‘P26 D1 T4’ both have similar 

SNR and I455 (7.2 V·ns, 20 dB and 6.9 V·ns, 21 dB respectively) but P26’s lifetime of 
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1.80 ns is outside ± 2 SD and much larger than the P22’s lifetime of 0.77 ns. A 

comparison of the R2 values from the Laguerre fit indicates that the fitting algorithm is 

operating optimally on both data sets so it is very probable that the difference is in the 

tissue composition itself. Without the histological correlation it is impossible to 

investigate this further and supports the need for exact correlation between fluorescence 

and histology in future studies. From Table 3.4 it can be concluded that a low signal or 

SNR for the normal GI data will not result in unreasonable lifetime extraction. 

 

Table 3.4: The SNR and Lifetimes for Normal Duodenum (A) and Normal 

Esophagus (D) Data that have Iλ < 20 V·ns. 

 

Integrated 

Intensity [V*ns]

SNR

[dB]

Lifetime

[ns]

Integrated 

Intensity [V*ns]

SNR

[dB]

Lifetime

[ns]
P09_A1_V2150_T2 19.1 27 0.93 4.2 19 0.60

P12_A2_V2150_T6 16.8 26 0.89 5.3 17 0.79

P12_A2_V2150_T8 17.1 27 0.92 4.9 19 0.72

P14_A2_V2200_T8 0.9 11 0.49 0.6 10 0.46

P15_A1_V2150_T1 10.4 24 1.20 4.3 14 0.76

P15_A1_V2150_T3 12.9 24 1.02 3.9 18 1.24

P23_A1_V2200_T1 8.6 21 2.25 2.1 14 1.93

P24_A1_V2200_T1 1.4 11 2.18 -0.9 9 0.38

P24_A2_V2200_T9 12.5 24 0.91 3.1 17 1.06

P09_D1_V2200_T2 19.2 26 0.83 3.8 19 0.61

P10_D1_V2150_T1 17.9 25 1.41 4.2 17 0.54

P13_D1_V2150_T1 0.2 9 0.37 -0.5 8 0.33

P13_D1_V2200_T2 7.6 21 1.15 2.9 13 0.44

P14_D1_V2150_T2 7.9 21 0.79 3.0 17 1.23

P14_D1_V2150_T3 11.5 25 0.64 2.7 20 0.52

P22_D1_V2200_T2 7.2 20 0.77 3.1 13 0.65

P23_D1_V2200_T1 15.5 29 0.77 3.4 20 0.84

P25_D1_V2200_T7 19.0 29 0.75 4.5 16 2.47

P25_D1_V2200_T9 7.4 22 0.82 2.7 15 1.64

P26_D1_V2150_T1 2.4 17 1.03 1.2 13 1.10

P26_D1_V2150_T2 5.2 21 2.21 2.0 12 1.62

P26_D1_V2150_T4 6.9 21 1.80 1.5 12 0.84

P26_D1_V2200_T5 11.2 23 1.00 3.0 16 0.78

P26_D1_V2200_T6 16.8 27 1.35 3.3 16 1.79

P26_D1_V2250_T7 17.2 27 1.33 4.6 19 1.86

P26_D1_V2250_T8 19.8 28 0.88 5.3 18 0.76

Filename

455 nm 505 nm

 
Lifetimes in Bold are outside ± 2 SD, average lifetimes are given in Table 3.3. 
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Table 3.5: The SNR and Lifetimes for Normal Duodenum (A) and  

Normal Esophagus (D) Data that have Lifetimes > ± 2 SD. 

 

Integrated 

Intensity [V*ns]

SNR

[dB]

Lifetime

[ns]

Integrated 

Intensity [V*ns]

SNR

[dB]

Lifetime

[ns]
P08_A1_V2200_T3 41 35 1.01 11 25 1.89

P11_A1_V2150_T6 34 36 1.17 11 23 1.72

P14_A2_V2200_T8 1 11 0.49 1 10 0.46

P15_A1_V2150_T5 34 29 1.93 10 25 1.59

P23_A1_V2200_T1 9 21 2.25 2 14 1.93

P23_A1_V2200_T4 38 33 1.25 11 25 1.65

P24_A1_V2200_T1 1 11 2.18 -1 9 0.38

P24_A1_V2200_T6 154 41 1.63 40 33 1.21

P25_A2_V2200_T10 265 50 1.49 72 38 1.71

P25_A2_V2200_T5 243 50 1.62 69 37 1.70

P25_A2_V2200_T8 199 49 1.28 57 35 1.79

P28_A1_V2200_T4 50 35 1.17 16 24 2.31

P13_D1_V2150_T1 0.2 9 0.37 -1 8 0.33

P22_D1_V2200_T3 43 34 1.11 10 24 2.32

P24_D1_V2200_T1 29 31 1.93 8 25 0.58

P25_D1_V2200_T5 170 46 1.70 46 32 1.42

P25_D1_V2200_T6 24 31 0.97 6 20 2.25

P25_D1_V2200_T7 19 29 0.75 5 16 2.47

P25_D1_V2200_T8 105 43 1.73 27 30 1.24

P25_D2_V2200_T12 86 41 1.84 22 31 1.65

P26_D1_V2150_T2 5 21 2.21 2 12 1.62

P26_D1_V2150_T4 7 21 1.80 2 12 0.84

Filename

455 nm 505 nm

  

Lifetimes in Bold are outside ± 2 SD, average lifetimes are given in Table 3.3. 

 

 

 Table 3.5 lists all of the data sets with lifetimes found outside ± 2 SD for normal 

duodenum and esophagus at 455 nm and 505 nm. Very few filenames overlap with Table 

3.4. At first glance it appears that the less desirable lifetimes are produced by mainly 

large SNRs such as those with > 40 dB at 455 nm and > 20 dB at 505 nm. Upon further 

consideration there are already some examples which are present in Table 3.5 where the 

data have very strong signals (ex. ‘P25 A2 T8’ with 199 V·ns and 49 dB) and a lifetime 

within ± 1 SD (1.28 ns). It was found in the previous section on Amplitude Saturation 
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(3.2.1) that none of the data sets with large signals experienced any pulse broadening. 

There is no trend evident from Table 3.5 that points to a reason for excluding all data 

above or below a specific SNR. 

It is suggested then, on the basis of visual inspection of the spectral data alone, 

that all data with I455 < 20 V·ns be removed from all further considerations regarding the 

patient data analysis. Typically esophageal tissue produced lower Iλ than duodenum tissue 

and was sometimes less bell shaped (or smooth looking), often requiring a higher MCP-

PMT voltage of 2250 V to achieve any reasonable signal. All data sets for normal 

duodenum and esophagus above this I455 > 20 V·ns threshold held a consistent and stable 

spectral shape while anything less was very noisy similar to the example shown in Figure 

3.8. Removing data below this threshold from further data analysis will alleviate the 

influence of noise while keeping most of the data from weaker tissue such as the normal 

esophageal tissue. Patient 26 is the only one that would lose all of its data under this rule 

unless it was changed to < 19.5 V·ns so it would get to keep 1 data set (T8, 19.8 V·ns) 

which has a lifetime within ± 1 SD.  

 The SNR ratio investigation however may not end here for future studies using the 

TR-FS instrument. Although the digitizer is very fast (25 ps/pt sampling rate), the vertical 

resolution of our data is limited by the 8-bit oscilloscope. The instrument could be 

improved with higher resolution (ex. 12-bit) which would be more sensitive and better 

able to detect signals from weak samples because it has less digitization noise. 
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3.2.3: Photobleaching and Repeated Measurements 

 Laser excitation at 355 nm and intensity of 3.0 µJ were chosen during instrument 

construction such that it would not be disruptive to the tissue structure and minimize 

sample photobleaching [5]. In this event, the tissue would loose the ability to fluoresce 

and it would be evident by observing a rapid decrease in signal acquisition during 

subsequent measurements. Photobleaching was only observed during paper fluorescence 

towards the end of the study and was immediately remedied by using a new piece of 

paper. Typically the same spot on the specimen was not repeated during measurements. If 

the maximum spectral intensity was < 300 mV, the next measurement was taken either 

after repositioning the probe closer to the sample or after increasing the MCP-PMT 

voltage. Often this would improve the signal strength observed but when it did not, the 

entire sample would give similar low quality auto-fluorescence results. 

 Repeated spots were performed intentionally on P07 to review the effect of 

repeated spots (Figures 3.9 and 3.10). It was recorded that duodenum tissue T4, T5, and 

T6 were all the same tissue location without repositioning the probe or sample. The MCP-

PMT voltage for T5 and T6 were 2200 V while T4 was 2150 V. The effects of increased 

MCP-PMT gain discussed earlier were reflected in the observed increase in Iλ of Figure 

3.9 and when normalized, the T4 and T5 steady-state spectra had complete overlap. A 

third measurement in the same location however started to reveal some changes in tissue 

fluorescence. The observed intensity in T6 started to decrease and when normalized the 

spectral shape started to vary from previous measurements T4 and T5. It is possible that 

minimal photobleaching can be observed after three consecutive measurements but since 
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the Iλ overlap or are greater than the Iλ of other spots on the sample (when normalized) the 

effect of photobleaching is considered negligible.  
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Figure 3.9: Patient 7 duodenum spectral data where T4, T5, and T6 are consecutive 

measurements on the same spot location but taken at two different voltages. Some 

changes in the shorter wavelengths are reflected in the normalized data after the 

third measurement (T6).  This spot also shows increased fluorescence from 370-455 

nm and visible absorption around 415 nm when compared to three other spots on 

the specimen (T1-T3). 

 
 
 Some variation can be expected in the spectral shape when measurements are 

repeated (for example P07 esophageal tissue in Figure 3.10) but this difference is within 

reasonable limits. It was common for the spectral shape to experience this small type of 

variation between 435-470 nm in other patients even when the spot locations were not 

repeated. Small fluctuations in the fluorescent signal can occur because the tissue has not 

been fixed in a single biological state meaning that the tissue is still living and subject to 

change. It also means that the fluorophore composition can fluctuate at any location on 
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the sample at any given moment. Lifetimes from both T1 and T2 are within ± 1 SD of the 

tissue average showing that these fluctuations are small and very reasonable even though 

the fluorophore composition cannot be monitored or quantified under the limitations of 

this feasibility study. Therefore it is not necessary to repeat the same spot more than once.  
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Figure 3.10: Patient 7 esophagus spectral data where T1 and T2 are consecutive 

measurements on the same spot at the same PMT voltage (2200 mV). The variations 

depicted in the above spectral shapes between 435-470 nm are commonly found in 

other patients that do not have any spot locations repeated. 

 

 Very few spots have repeated measurements throughout P07-P28 and sometimes 

these additional notes were not recorded due to time constraints in the clinic. Based on the 

analysis of this section, it does not matter which of the two repeated spots are removed. 

The gain was either increased or decreased by the operator in attempt to improve the 

spectral shape and achieve a maximum measurement between 300-600 mV for an ideal 

SNR of about 30 dB. Sometimes the student recorded a repeated measurement without 
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changing the gain or providing a comment. It cannot be assumed in this instance that the 

laser was repositioned and ultimately changing the spot or they just wanted a second 

measurement. Regardless, to reduce over counting to the best of our records the first 

record will be removed for consistency on the basis that instrument adjustments were to 

be made in attempt to improve the signal quality on the second measurement. All of the 

remaining data sets will be kept if their I455 is less than 19.5 V·ns because it was shown 

previously (Section 3.2.2) that improving the SNR by increasing the gain does not affect 

the shape of the time-domain data above this level or effect lifetime extraction. 

 
 
3.2.4: Increased Fluorescence Intensity during Shorter Wavelengths 

 As discussed briefly in Section 3.2.2 (Lower Signal Detection Limits), there can 

be variation in the spectral shape where absorption is sometimes visible around 415 nm.  

An increased fluorescence between 370-455 nm was often but not necessarily found when 

the absorption occurred and it was most noticeable from 390-410 nm. Patient 7 duodenum 

tissue (Figure 3.9) is an example where some of the data reflects this variation while in 

P15 duodenum tissue (Figure 3.11) all of the data sets show the increased fluorescence. 

All tissue locations, normal or diseased, were found in some instances to experience this 

although it was more prominently found to occur within diseased tissue. 

It is expected that tissue orientation could very well be the sources of these 

inconsistencies because the tissue composition will change as the biopsy is sampled 

deeper into the patient. Recall that a physician’s aim is to collect a biopsy that leaves the 

submucosal layer intact. The submucosal layer is dominated by connective tissue and in 
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turn this layer requires more fibrous tissue (collagen and elastin) to hold itself together 

than in the mucosal layer [6]. It is known that the fluorescence emission spectra of these 

fibrous molecules are greatest around 390 nm and 410 nm [4, 7]. If there are indeed 

greater concentrations of collagen and elastin present then it would result in larger 

observed Iλ around these wavelengths.   
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Figure 3.11: All of the P15 data sets show a 20% increase in fluorescence around 400 

nm when compared to P08. 
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Fluorescence measurements have consistent spectral shapes (especially in the 

normal tissue samples) most of the time because the biopsy was taken from the mucosal 

layer containing minimal traces of submucosal components. However, without correlation 

between tissue orientation and fluorescence measurement locations it is difficult to make 

the assumptions or conclusions about the tissue orientation and composition for our data. 

Many changes in mucosal tissue structure caused by disease are also accompanied by 

increased levels of collagen, elastin, and blood [6]. It would be expected that changes in 

fluorophore concentrations in diseased tissue would become evident in both steady-state 

and lifetime analysis. Diseased tissue will not be analyzed in this study because there are 

not enough patients (less than 4) with a similar disease to establish well known lifetimes. 

Consideration however will be given to one mixed data set (P07) and two opposing sets 

(P08 and P15) for normal duodenum tissue. 

The P07 duodenum data are compared to the overall normal duodenum lifetimes 

in Figure 3.12. Some of the data sets (T4, T5, and T6) had shown areas of increased 

fluorescence in Figure 3.9 from 390-455 nm. At 390 nm and 400 nm, both of the T4 and 

T5 lifetimes are slightly greater than ± 1 SD indicating they have longer lifetimes than the 

other data sets. Interestingly enough, the T6 lifetime is within ± 1 SD despite coming 

from the same tissue location. Its lifetime could be shorter due to some minimal 

photobleaching of the sample or physiological changes because the sample was not fixed. 

The lifetimes in these shorter wavelengths are not significantly different from the normal 

duodenum average lifetimes. Also, the average of these data sets (with the greater Iλ) has 

a ± 1 SD overlap with the other P07 data sets T1-T3 in Figure 3.13. Similarly, the 
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averages from P08 vs. P15 (Figure 3.13) also overlap with each other within ± 1 SD. 

Therefore the removal of normal tissue data with increased Iλ in the shorter wavelengths 

is not necessary as there is no evidence to suggest that there is underlying physiological 

differences that cause significant changes to the observed lifetimes. 

 

385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460
0

0.5

1

1.5

2

2.5

3

3.5

4
Lifetimes for P07 Duodenum

Wavelength [nm]

L
if
e
ti
m

e
 [

n
s
]

 

 

P07_A1_V2150_T1_var.mat

P07_A1_V2150_T2_var.mat

P07_A1_V2150_T3_var.mat

P07_A2_V2150_T4_var.mat

P07_A2_V2200_T5_var.mat

P07_A2_V2200_T6_var.mat

 

Figure 3.12: Patient 7 duodenum lifetimes are plotted with the averages of all tissue 

A ± 1 SD (N = 132). Data sets T4, T5, and T6 show increased fluorescent signals in 

Figure 3.9 when compared to T1-T3 but for the most part their lifetimes are all 

within the ± 1 SD of the averages.  
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Figure 3.13: Average lifetimes for data sets with increased fluorescence (black 

circles) are greater than those without (blue x) but overlap within ± 1 SD. 
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3.3: Results of Data Evaluation 

 

 After extensive review of the data in Section 3.2, it is clear that very few data sets 

should be removed when calculating patient averages and conducting further analysis. 

Certain patients were excluded entirely from our data base because of obvious reasons 

summarized in Table 3.6. Saturation in intensity plots was not detected as described in 

Section 3.2.1 for any tissue using either the manual (visual) inspection of individual time-

domain decay data or by searching for samples with a FWHM > + 3 SD of the tissue 

average. It was found that the detector limits were able to record the entire impulse for all 

samples where the largest maximum signal observed was 1.5 V for ‘P25 A2 T10’ (I455 = 

265 V·ns). It was determined that data sets could only be excluded if their integrated 

spectral shape are noisy and if the same spot was repeated. All of these data sets listed in 

Table 3.7 are excluded from all further calculations in the normal duodenum and normal 

esophageal tissue groups. The arrival of these conclusions and their reasoning are 

discussed next.  

 

 

Table 3.6: Entire Patient Data Sets (Tissues A-D) Removed. 

 
Patient Reason

P01 laser misalignment, no data collected

P02-P06 instrument error, inconsistent measurments

P18 pathological diagnosis unavailable

P19 repeat biopsy from P12  
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Table 3.7: Data Excluded from Normal Duodenum (A)  

and Normal Esophageal (D) Tissue. 

 

Filename
First

 Duplicate

I(455)

< 19.5 V*ns

FWHM

> ± 3 SD

P07_A2_V2150_T4 X

P09_A1_V2150_T2 X X

P12_A1_V2150_T3 X

P12_A2_V2150_T6 X

P12_A2_V2150_T8 X

P14_A2_V2200_T8 X X

P15_A1_V2150_T1 X

P15_A1_V2150_T3 X

P16_A1_V2100_T1 X

P17_A1_V2150_T3 X

P23_A1_V2200_T1 X

P24_A1_V2200_T1 X X X

P24_A2_V2200_T9 X

P27_A1_V2150_T3 X

P07_D1_V2200_T1 X

P08_D1_V2200_T3 X

P09_D1_V2200_T2 X

P10_D1_V2150_T1 X

P10_D1_V2150_T2 X

P13_D1_V2150_T1 X X X

P13_D1_V2200_T2 X

P14_D1_V2150_T2 X

P14_D1_V2150_T3 X X

P16_D1_V2150_T4 X

P17_D1_V2150_T1 X

P22_D1_V2200_T2 X

P22_D1_V2200_T3 X

P23_D1_V2200_T1 X

P23_D1_V2200_T3 X

P25_D1_V2200_T1 X

P25_D1_V2200_T7 X

P25_D1_V2200_T9 X

P25_D1_V2250_T4 X

P26_D1_V2150_T1 X

P26_D1_V2150_T2 X X

P26_D1_V2150_T4 X X

P26_D1_V2200_T5 X

P26_D1_V2200_T6 X X

P26_D1_V2250_T7 X

P27_D1_V2200_T2 X   
  Total Filenames: Tissue A = 14, and Tissue D = 27. 
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 In Section 3.2.2 a low SNR at 445 nm or 505 nm could not be used to identify 

data sets with unreasonable lifetimes outside ± 2 SD. Figures 3.14 and 3.15 show the 

extracted lifetime distribution related to SNR 455 nm. Averages and SD were reported in 

Table 3.3. The distributions are not symmetrical but appear skewed to the right. It should 

be noted that there is large variation by patient and these distributions may be biased by 

one patient. At this point in time it provides insight as to what the sampling distribution 

might look like if we sampled many times (ex. N > 100). The two data sets with lifetimes 

below 0.5 ns (‘P14 A2 T8’ and ‘P13 D1 T1’) are outside ± 2 SD with FWHM outside - 3 

SD and can safely be disregarded as data that is mostly noise. Visual inspection of the 

time-domain data confirms there is no visible impulse at 455 nm. Data sets at 455 nm 

with lifetimes outside + 2 SD also had extracted lifetimes at 505 nm within ± 1 SD.  

 The spectral intensity measured at 505 nm is lower than 455 nm in Figure 3.16 

and it shows that the instrument response to SNR increases linearly with signal intensity. 

The extracted lifetimes at these lower signals and SNRs are shown in Figures 3.17 and 

3.18 with distributions and limitations similar to the measurements at 455 nm. Averages 

and SD were reported in Table 3.3. It was found in Table 3.5 that the lifetimes outside ± 2 

SD are not always from signals with very high or very low SNR. About half of the 

esophageal tissue 505 nm data (Figures 3.16 and 3.18) have SNR lower than 20 dB but 

still have lifetimes within ± 1 SD. Therefore the relationship between SNR and lifetime 

cannot be used to emplace criteria for disregarding measurements. 
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Figure 3.14: Signal to noise ratio and extracted lifetime relationship at 455 nm.  

 
 
 
 

0 0.5 1 1.5 2 2.5
0

2

4
6

8

10
12

14

16
18

20

22
24

Duodenum at 455 nm

Lifetime [ns]

F
re

q
u
e
n
c
y

0 0.5 1 1.5 2 2.5
0

2

4
6

8

10
12

14

16
18

20

22
24

Esophagus at 455 nm

Lifetime [ns]

F
re

q
u
e
n
c
y

 
 
 

Figure 3.15: Lifetime distributions for normal duodenum and normal esophagus at 

455 nm.  
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Figure 3.16: Signal to noise ratio increases linearly with the integrated spectral 

intensity. Examples are shown at both 455 nm and 505 nm for normal duodenum 

and normal esophagus. 
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Figure 3.17: Lifetime distributions for normal duodenum and normal esophagus at 

505 nm.   
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Figure 3.18: Signal to noise ratio and extracted lifetime relationship at 505 nm. 
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One thing that can be certain though is that the coefficient of determination R2 

(Equation 3.3) will approach 1 as the SNR increases. An example is taken from P15 

esophageal tissue in Figure 3.19. In theory an R2 value equal to exactly 1 indicates that 

the best possible fit has been achieved because the ratio of the Residual Sum of Squares 

(SSError) and the Total Sum of Squares (SSTotal) is equal to zero [8]. For that to happen 

the differences between the measured data (yi) and a theoretical fit (fi) have to be very 

small relative to the differences between yi and the average measured data (yavg). The 

range 370-550 nm was chosen to cover most of the auto-fluorescence from tissue. In 

Figure 3.19 the R2 improves dramatically (to ≥ 0.87 from 0.4 or 0.6) when the SNR is > 

20 dB which corresponds to wavelengths 385-520 nm as shown in Figure 3.20. A good fit 

is said to have an R2 of at least 0.8 and a great fit is 0.99 but the R2 alone cannot be used 

to assess the quality or accuracy of the model used to fit the behaviour of the data [8].  
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 Recall that the analysis at 505 nm did not suggest that SNR ratios between 10 db 

and 20 dB provide a signal quality that is insufficient to extract lifetimes with a 

reasonable SD or lean towards a lower limit for the Laguerre algorithm. In the 

development of the data processing algorithm [1] it was decided, based on simulations 

and fluorescent data (NADH, FAD, and P07), that omitting the end wavelengths from 

both deconvolution and bi-exponential fitting would save processing time knowing this is 
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where the signal was the lowest at 370 nm, 545 nm, and 550 nm. For the GI data in this 

report those wavelengths were not involved in deconvolution and therefore not available 

in any future calculations. The data file in Figures 3.19 and 3.20 was deconvolved 

separately to get the end wavelengths to demonstrate relationship between the R2 and the 

signal quality at each wavelength.  
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Figure 3.19: R
2 

values calculated at each wavelength plotted as a function of SNR 

and integrated spectral intensity for a sample data set taken from P15 duodenum 

tissue. The R
2 

approaches 1 as the signal increases.  

 
 
 
 The lifetime and SNR analysis did not reveal that any of the data sets could be 

removed above or below a particular signal threshold. It is also difficult to exclude data 

with longer lifetimes (most lifetimes outside ± 2 SD in Table 3.5 were > 2 SD) without 

knowing the fluorophore content in the tissue. The biological information about the signal 

is necessary to evaluate the data further to reason if longer lifetimes are indeed a 

biological relevant signal or abnormalities caused by the instrument. It was obvious that 
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the spectral data became noisy below I455 < 19.5 V·ns. and that the measurements become 

unstable even though it is not clear to what effect this may have on the observed lifetimes. 

Since the Iλ ratios can be used to look for tissue signatures, all of the data in Table 3.4 

(except for ‘P26 D1 T8’, I455 = 19.8 V·ns) will be excluded from all further calculations. 

It implies that the lifetimes and Laguerre coefficients from the noisy spectral data will 

also be disregarded when calculating patient averages. This Table 3.4 includes the data 

sets mentioned earlier with the FWHM < 3 SD. 
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Figure 3.20: R
2 

values for each wavelength corresponding to the P15 duodenum 

sample in Figure 3.19.  The R
2
 improves rapidly to values

 
> 0.85 (385-520 nm) from 

the end wavelengths. From Figure 3.19 this range is where the SNR is > 20 dB.  

 
 
 
 Section 3.2.3 concludes that photobleaching was not observed during two 

consecutive spot measurements and considered negligible after a third measurement. As 

long as the I455 value was greater than 19.5 V·ns, all of the spectral data regardless of the 
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MCP-PMT voltage gain can be used in further analysis. However, when there is a spot on 

the sample whose fluorescence has been measured more than once it introduces bias 

when calculating the tissue average. A repeated measurement puts more weight on the 

information coming form that area of the tissue because it was been counted more often 

than other spot locations. It was decided that the first of every repeated measurement 

would be removed for consistency and because typically the measurement was repeated 

by the operator to improve the quality of the signal by increasing SNR. Lastly, in Section 

3.2.4 the increased fluoresce intensity that was sometimes observed during the shorter 

wavelengths did not have extracted lifetimes outside ± 1 SD. Therefore those data sets 

with possible submucsoal layer exposure to the laser path are not significantly different 

than all of the other normal samples.  
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CHAPTER 4:  RESULTS AND DISCUSSION 

 
 
 Now that the erroneous data measurements have been identified in Chapter 3 and 

discarded from the data pool, the observed tissue fluorescence can be further analyzed 

without such distortions. The individual parameters (Iλ, LEC-jλ, and τ-λ) that characterize 

the individual tissue fluorescence will be used to compare the clinical diagnosis of one 

tissue type to another. It was noted in Section 2.2.2 that each patient and their biopsy 

locations have varying amounts of measurements because the total surface area of the 

specimens was not consistent. Therefore it was necessary to take the average parameter 

value of the individual measurements to represent the patient’s biopsy location before 

moving forward with any type of analysis.  

 The new values representing each patient with a normal biopsy diagnosis were 

averaged to compare the total observed fluorescence, Iλ, of the four biopsy locations at 

each wavelength. The two largest patient pools available (normal esophagus and normal 

duodenum) were then compared graphically for any differences between the individual 

parameters at each wavelength. Data analysis protocols from Section 2.3 were used to 

select parameters that were statistically different (p < 0.05) between the two patient 

groups in preparation for two dimensional k-means classification. The best results from 

the k-means classification (with and without the need for dimensional transformations) 

are presented and discussed in this chapter. 
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4.1: Patient Averages 

 

 In Chapter 3, the clinical diagnosis revealed how many of the patient biopsies 

were normal. There are 16 duodenum (A), 3 antrum (C), 13 body (B), and 16 (D) normal 

biopsies out of a possible 20 Patients available for further study (Section 3.1). To make a 

general comparison between the biopsy locations, the average of the patient’s averaged 

results were taken and reported with the standard deviation of the mean or ± 1 ‘standard 

error’ ( NSDSE =  [1] ) in Figure 4.1 for Iλ and τ-λ. Wavelengths 370 nm, 545 nm, and 

550 nm are excluded from the results because the SNR was ≤ 0.6. Erroneous data sets 

using the criteria derived in Chapter 3 were also excluded from the results. The criteria 

(summarized in Section 3.3) were data sets that have I455 < 19.5 V·ns, a FWHM at I455 > ± 

3 SD of their tissue average, and the first data set of a spot with repeated measurements. 

    In Figure 4.1 it is difficult to tell where exactly there may be differences 

between Iλ except for between I380 and I410 where the antrum Iλ are greater than all the 

other tissue. As for the lifetimes, the greatest variation among tissue occurs before 410 

nm. The SE values in this region are quite large ranging from ± 0.1 ns to ± 0.3 ns 

suggesting more data may be required to define what the τ-λ are. From τ-420 to τ-530 

there is a clear distinction that the body tissue has shorter lifetimes than all the other 

tissue. In Figure 4.2 the Iλ were plotted showing just two of the tissue locations at a time. 

The normalized Iλ shows fairly consistent results for both tissue types with small errors, 

especially in the longer wavelength region (> 460 nm). There is also more separation 

between the average values suggesting that these parameters could be significantly 

different during statistical testing. The focus groups for the k-means clustering however 
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will be the two largest normal patient groups, esophagus and duodenum, to determine if 

k-means clustering can be used to classify the data. 
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Figure 4.1: Normalized integrated intensity (top) and lifetimes (bottom) are plotted 

for the four biopsy locations using only the patients with a normal diagnosis. The 

data is averaged over 16 (A), 3 (C), 13 (B), and 16 (D) patients to ± 1 SE.
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Figure 4.2: Comparison of normalized spectra (Iλ) from the esophagus to the 

duodenum (left) and body (right). The ± 1 SE bars are too small to be represented 

for most λ on this graph. Values are tabulated in Appendix D. 

 
 
 The τ-λ and LEC-jλ for normal esophagus and duodenum are plotted in Figure 4.3. 

Lifetimes for the esophagus and duodenum were very similar at each wavelength except 

for around 410 nm and 520 nm where the esophagus displayed longer lifetimes. In 

Figures 4.1 and 4.3 the lifetimes become shorter, decreasing from about 1.25 ns to 1.0 ns 

as the wavelengths get longer. Several wavelengths for each LEC-j in Figure 4.3 show 

promising differences between the two tissue types but ultimately the choices will be 

narrowed down by mathematical comparison tests instead of graphic extrapolation. 

 It is apparent in Figure 4.3 that the absolute values of all LEC-jλ are of a smaller 

magnitude than both Iλ and τ-λ. Although the LEC-jλ are indeed unitless, recall from 

Section 2.3.5 that problems can arise in clustering if the x and y axis dimensions are 
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mismatched [2]. The squared Euclidean distance (Figure 2.2) may be biased towards 

assignment of data points to the nearest k-mean in the axis that has the larger dimension 

[2]. The range of Iλ (~ 0.1-1.0) and τ-λ (~ 0.9-1.2) are close enough to each other that a 

dimensional transformation is not required to compare them. To get the LEC-jλ on par 

with this scale and with each other, the required transformations are listed in Table 4.1. 

The value of 1 is a tricky number to work around when deciding which dimension should 

be chosen. When a change in magnitude is applied to small number (i.e. between 1 and 

1.5) it creates a negligible change in the difference than if the numbers were any larger. In 

a quick example: |1.2 – 0.7| = 0.5 while |0.7-0.12| = 0.58 and |2.2 – 0.7| = 1.5 when |0.7-

0.22| = 0.48. The magnitude selection clearly makes significant changes to the difference 

between two values when they are greater than 2. LEC-2 and LEC-3 are two parameters 

in our data with high end range values around 2.5 and 2 respectively. 

 It was found that a reduction in magnitude by a single order on the multiplier 

provided a more appropriate dimensional match only when LEC-2 and LEC-3 are 

compared to Iλ. These parameters were flagged for special consideration because their 

measurements approach values > 1.5. An example using the GI data is worked through in 

Table 4.2. LEC-2 requires that its dimension be reduced by a factor of 10 when compared 

to Iλ in order to make the smallest difference between the dimensions. If the 100 factor 

was not used on LEC-2 when compared to τ-λ then the difference between these two 

parameters increases by an order of magnitude showing that these dimensions are no 

longer matched. The same holds true for LEC-3 and its reduced multiplier from 1000 to 
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100. Also the wider range of Iλ (with values all less than 1) makes the reduced multiplier 

a better choice than for τ-λ whose range is tight around 1.  
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Figure 4.3: The average lifetimes and LEC-j for normal duodenum and normal 

esophagus are plotted with ± 1 SE. Values are tabulated in Appendix D. 
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Table 4.1: The dimensional multipliers are presented for each parameter along with 

the approximate range and median values derived from Figures 4.2 and 4.3. 

 
Parameter ~ Range ~ Median Multiplier Median Maximum

I 0.1 - 1.0 0.5 1 0.5 1.0

τ 0.9 - 1.2 1.1 1 1.1 1.4

LEC-0 0 - 0.150 0.080 10 0.8 1.5

LEC-1 0 - 0.009 0.004 100 0.4 0.9

LEC-2 0 - 0.025 0.012 *100 1.2 2.5

LEC-3 0 - 0.002 0.001 *1000 1.0 2.0

LEC-4 0 - 0.008 0.004 100 0.4 0.8    
 * A lower multiplier by a factor of 10 may be preferential. 

 
 
 

Table 4.2: A comparison between the multipliers 10 and 100 on the LEC-j (j = 1, 2) 

using the normalized integrated spectra (I) and lifetime (τ) medians. 

 

LEC-j τ LEC-j Absolute I LEC-j Absolute

Multiplier Median Median Difference Median Median Difference

LEC-1 100 1.2 0.40 0.8 0.5 0.40 0.10

LEC-1 10 1.2 0.04 1.2 0.5 0.04 0.46

LEC-2 100 1.2 1.20 0 0.5 1.20 0.70

LEC-2 10 1.2 0.12 1.1 0.5 0.12 0.38

LEC-j

 
 
 
 
 Not shown in Table 4.2 is a comparison of a dimensional reduction on LEC-2 

with LEC-4 that has the same suggested multiplier of 100 from Table 4.1. Even though 

the maximum LEC-2 values are about 0.02 a.u., most of wavelengths for both esophagus 

and duodenum tissues have LEC-2 values that are below 0.015. This range of values is 

then more consistent with the LEC-1 and LEC-4 suggesting that a reduction in dimension 

is not necessary here for LEC-2. A LEC-2 dimensional reduction works better for Iλ also 

because the variability of measurements at each individual λ are much greater for the 

LEC-j than the Iλ. In this case the multiplier selected should be the one that allows the 

most overlap between the measurements of LEC-j values. As for LEC-3, its values are on 
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a dimension of their own and that 1000 multiplier should be used with the other LEC-j’s 

multiplier to match the dimensions. Therefore the lower multiplier is preferential when 

comparing LEC-2 (and likewise LEC-3) to Iλ only. 

 So after these initial observations in regards to the measured values and their 

ranges it can be said that a change in dimension may improve the results at some 

wavelengths but compromise them more at others. Dimension selection could become 

more applicable after the rank-sum test has suggested two parameters with wavelengths 

whose values that fall at the extreme ends of the measured ranges. Changes in the 

sensitivity and specificity results caused by these transformations (or lack there of) will 

reveal if the dimension selection is a critical component for k-means clustering of GI 

fluorescent data. Without over complicating the analysis before it has even begun, 

clustering will be performed with and without the suggested multipliers from Table 4.1. If 

clusters turn out to be heterogeneous anyways, a dimensional transformation would not 

help to separate the overlap and there would be no need for further investigation. 

 

4.2: K-means  

 

 Before the K-means classification algorithm was employed, the parameters were 

analysed using techniques in Section 2.2.3 to identify which individual parameters are 

statistically different between normal esophagus and duodenum tissue. First it was 

confirmed that for many of the parameters either the esophagus or duodenum sample 

group failed the Lilliefors normality test (p < 0.05, Appendix E). Most noticeable was the 

LEC-j where 90% of the LEC-jλ had either the esophagus and/or the duodenum fails the 
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normality test. Consequently the 2-sample t-test for equal means cannot be used to 

compare the tissue because the majority of parameters are not normally distributed. The 

rank-sum test was used instead where the null hypothesis Ho is tested to see if the two 

groups have equal medians versus H1 where they do not. 

The results of the rank-sum test in Table 4.3 identify many parameters that do not 

have equal medians (p < 0.05) when normal esophageal tissue is compared to normal 

duodenum tissue. As discussed in Section 2.3.3 the rank-sum results were cross 

referenced with the 2-sample K-S test for each parameter because the rank-sum test 

requires that both groups have the same distribution type. All of the parameters that failed 

the 2-sample K-S test were picked up as being statistically different by the rank-sum test 

except for LEC-1535, LEC-2375, and LEC-4395. These three parameters could potentially be 

useful in a non-parametric classification model ( K-means) because they have different 

distributions despite coincidently having equal medians. Every combination of the 

parameters in Table 4.3 that found H1 to be true (value 1 in Table 4.3) along with the 

other three LEC were used in K-means classification. Two Matlab scripts, fireaway_3.m 

and GIKmeans_6.m (Appendix F), were created to automate the process.   

There are 16 normal duodenum (A) and 16 esophageal (D) data points for each 

parameter. Recall from Section 2.3.1 that the sensitivity and specificity equations are 

based upon the number of results that the test identifies as true or false positives and true 

or false negatives [3]. For our study, let the number of true positives be the amount of 

data that is correctly identified as duodenum tissue and the number of esophageal tissue 

correctly identified be the true negatives. In turn any esophageal results classified as 
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duodenum are said to be false positives while the false negatives are duodenum results 

that were not identified correctly during the classification.  

 

 

Table 4.3: Rank-Sum Test Results from Normal Esophagus and Duodenum. 

 
Wavelength 

[nm]

Integrated

Intensity
Lifetime LEC-0 LEC-1 LEC-2 LEC-3 LEC-4

375 0 0 1 1 0 0 0

380 0 0 1 1 1 0 0

385 0 0 1 0 1 0 0

390 0 0 1 1 1 1 0

395 0 0 1 1 1 0 0

400 0 0 1 0 1 0 0

405 0 0 1 0 1 0 0

410 0 1 1 0 0 0 1

415 0 0 0 0 0 0 0

420 0 0 1 0 1 0 0

425 0 0 1 0 0 0 0

430 0 0 1 0 1 0 0

435 0 0 1 0 0 0 0

440 0 0 1 0 1 0 1

445 0 0 1 0 1 0 1

450 0 0 1 0 1 0 1

455 0 0 1 0 1 0 1

460 1 0 1 0 1 0 1

465 1 0 1 0 1 0 1

470 1 0 1 0 1 0 1

475 1 0 1 0 1 0 1

480 1 0 1 0 1 0 1

485 1 0 1 0 1 0 1

490 1 0 1 0 1 0 1

495 1 0 1 0 1 0 1

500 1 0 1 0 1 0 1

505 1 0 1 0 1 0 1

510 1 0 1 0 1 0 1

515 1 0 1 0 1 0 1

520 1 1 1 1 1 0 1

525 1 0 1 0 1 0 1

530 1 0 1 0 1 0 1

535 1 0 1 0 1 0 1

540 1 0 1 0 1 0 0  
The value 0 represents when Ho was found to be true, otherwise the value is 1 

   when the test has rejected that Ho = the two samples have equal medians. 
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Sensitivity (SN) will represent the portion of normal duodenum tissue results 

classified correctly. The specificity (SP) then refers to the portion of normal esophageal 

tissue that was correctly classified. Both are measured as a percentage where a result of 

87.5 % = 14/16, 93.75 % = 15/16 and 100 % = 16/16. The k-means classification is said 

to be both specific and sensitive if it can identify (test positive) for a high number of 

tissue diagnosed as normal duodenum that are actually from normal duodenum tissue and 

not from normal esophagus tissue (false positives). To know how much sensitivity and 

specificity is required to validate the k-means algorithm would ultimately depend on a 

much larger sample size and the clinical significance of a patient’s outcome when 

treatment from a misdiagnosis is received (see Section 2.3.4 for further discussion) [4, 5]. 

 A total of 406 two-parameter combinations without dimensional transformations 

yield both a sensitivity and specificity of 87.5 % or greater. It implies that no more than 

four data points (two from duodenum and two from esophagus) were classified 

incorrectly. The number of combinations decreased from 406 to 50 when the results are 

narrowed down further when no more than two points were falsely classified. There are 

13 combinations where the sensitivity and specificity are both 93.75 % and the other 37 

occur when one of the sensitivity or specificity is 87.5 % and the other is 100 %. These 

results are listed in Tables 4.4 and 4.5. Some of these results include the three parameters 

that passed the rank-sum test but failed the 2-sample K-S test. Examples from these k-

means clustering classification results in Figure 4.4 show that clusters can be somewhat 

heterogeneous and are definitely not the same size or globular. 
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 Where dimensional matching may be required there are only 68 parameter 

combinations with results of ≥ 87.5% sensitivity/specificity which is down from the 406 

pairs observed before. Only three of these 68 pairs have no more than two falsely 

classified points. These three results (Table 4.6) are new which means they are found only 

when the dimensions are transformed to what was considered to be a more appropriate 

match. Some of the 68 combinations produce the same results as the untransformed data 

but they now only came from Iλ vs. LEC-2 or LEC-4. In either case where dimensions are 

matched or not, there are no significant combinations involving τ-λ or LEC-j vs. LEC-j. 

There is too much overlap between duodenum and esophagus clusters to effectively 

distinguish between tissue types as shown in Figure 4.5. 

 
 

Table 4.4: The K-means Results for Untransformed Data (Part 1). 

 
Sensitivity Specificity

X Y (%) (%) X1 Y1 X2 Y2

I_460 I_515 93.75 93.75 0.906 0.236 0.873 0.193

I_480 I_540 93.75 93.75 0.575 0.110 0.519 0.088

I_485 I_515 93.75 93.75 0.461 0.236 0.412 0.193

I_500 I_515 93.75 93.75 0.284 0.236 0.242 0.193

I_505 I_515 93.75 93.75 0.273 0.236 0.235 0.193

I_510 I_515 93.75 93.75 0.259 0.236 0.218 0.193

I_515 I_520 93.75 93.75 0.236 0.202 0.193 0.171

I_515 I_530 93.75 93.75 0.236 0.151 0.193 0.122

I_470 LEC-0_460 93.75 93.75 0.793 0.127 0.748 0.073

I_470 LEC-0_465 93.75 93.75 0.793 0.115 0.748 0.065

I_470 LEC-0_470 93.75 93.75 0.793 0.112 0.748 0.063

I_470 LEC-0_475 93.75 93.75 0.793 0.105 0.748 0.058

I_505 LEC-0_490 93.75 93.75 0.273 0.055 0.235 0.031

Centroid A Centroid DParameter Pairs

 
Spectral parameters Iλ are normalized to I455.  
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Table 4.5: The K-means Results for Untransformed Data (Part 2). 

 
Sensitivity Specificity

X Y (%) (%) X1 Y1 X2 Y2

I_460 I_505 100 87.5 0.906 0.271 0.868 0.232

I_470 I_470 87.5 100 0.797 0.797 0.750 0.750

I_470 I_540 87.5 100 0.797 0.110 0.750 0.090

I_470 LEC-1_535 87.5 100 0.797 -2.23E-06 0.750 -9.42E-05

I_470 LEC-2_375 87.5 100 0.797 0.0022 0.750 0.0019

I_470 LEC-4_395 87.5 100 0.797 0.0024 0.750 0.0020

I_470 LEC-1_375 87.5 100 0.797 -0.0005 0.750 0.0003

I_470 LEC-1_380 87.5 100 0.797 -0.0009 0.750 0.0004

I_470 LEC-1_390 87.5 100 0.797 -0.0025 0.750 -0.0008

I_470 LEC-1_395 87.5 100 0.797 -0.0035 0.750 -0.0014

I_470 LEC-1_520 87.5 100 0.797 0.0003 0.750 -0.0003

I_470 LEC-2_380 87.5 100 0.797 0.0025 0.750 0.0023

I_470 LEC-2_385 87.5 100 0.797 0.0036 0.750 0.0030

I_470 LEC-2_390 87.5 100 0.797 0.0060 0.750 0.0048

I_470 LEC-2_520 87.5 100 0.797 0.0053 0.750 0.0031

I_470 LEC-2_525 87.5 100 0.797 0.0044 0.750 0.0025

I_470 LEC-2_530 87.5 100 0.797 0.0039 0.750 0.0024

I_470 LEC-2_535 87.5 100 0.797 0.0032 0.750 0.0023

I_470 LEC-2_540 87.5 100 0.797 0.0027 0.750 0.0017

I_470 LEC-3_390 87.5 100 0.797 -0.0008 0.750 0.0000

I_470 LEC-4_410 87.5 100 0.797 0.0031 0.750 0.0020

I_470 LEC-4_440 87.5 100 0.797 0.0060 0.750 0.0044

I_470 LEC-4_445 87.5 100 0.797 0.0066 0.750 0.0049

I_470 LEC-4_465 87.5 100 0.797 0.0060 0.750 0.0040

I_470 LEC-4_475 87.5 100 0.797 0.0055 0.750 0.0036

I_470 LEC-4_480 87.5 100 0.797 0.0044 0.750 0.0027

I_470 LEC-4_485 87.5 100 0.797 0.0037 0.750 0.0023

I_470 LEC-4_490 87.5 100 0.797 0.0032 0.750 0.0020

I_470 LEC-4_495 87.5 100 0.797 0.0028 0.750 0.0017

I_470 LEC-4_500 87.5 100 0.797 0.0022 0.750 0.0014

I_470 LEC-4_505 87.5 100 0.797 0.0022 0.750 0.0014

I_470 LEC-4_510 87.5 100 0.797 0.0022 0.750 0.0012

I_470 LEC-4_515 87.5 100 0.797 0.0019 0.750 0.0010

I_470 LEC-4_520 87.5 100 0.797 0.0018 0.750 0.0009

I_470 LEC-4_525 87.5 100 0.797 0.0014 0.750 0.0008

I_470 LEC-4_530 87.5 100 0.797 0.0013 0.750 0.0008

I_470 LEC-4_535 87.5 100 0.797 0.0011 0.750 0.0006

Centroid A Centroid DParameter Pairs

 
Spectral parameters Iλ are normalized to I455.  
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Figure 4.4: Examples of k-means clustering results from Tables 4.4 and 4.5. The 

clusters are not homogeneous and well separated despite good sensitivity and 

specificity. 
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Figure 4.5: Examples of k-means clustering results from τ-λ or LEC-j vs. LEC-j 

have resulted in classifications that have poor sensitivity or poor specificity. Notice 

that most of the LEC-0390 are in a in a range where a dimensional transformation is 

not required to match values of LEC-2430.  
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Table 4.6: The K-means Results for Transformed Data. 

 
Sensitivity Specificity

X Y (%) (%) X1 Y1 X2 Y2

I_460 LEC-2_515 93.75 93.75 0.906 0.065 0.868 0.037

I_505 LEC-2_510 100 93.75 0.271 0.067 0.234 0.036

I_460 LEC-2_510 100 87.5 0.906 0.062 0.873 0.031

Parameter Pairs Centroid A Centroid D

 
 
 

 
The best result from all the parameter combinations with or without dimensional 

transformations comes from Table 4.6, LEC-2510 vs. I505. Before and after classification 

graphs can be found in Figure 4.6. The dimensional transformation (x 10) allows three 

more data points to be correctly classified around the border of the two clusters. If the 

LEC-2510 axis was transformed by 1 more dimension (i.e. the 100 multiplier) the 

sensitivity for the 3 results falls to 50% or lower. Most of the transformations from Table 

4.1 when applied altered some but not all of classifications. Transformations generally did 

not improve the amount of desirable results but it has shown that it is worth the time and 

consideration. 

Axis transformations most often caused one of the centroids to become biased 

towards the edge of an oddly shaped cluster, lowering the sensitivity and specificity 

results dramatically. Figure 4.7 is an example from LEC-1 where transformations 

destroyed all of the reasonably good results with Iλ. The theoretical centroid of both 

clusters in this result (unlike Figure 4.6) shifts with each assignment iteration such that 

one of them becomes biased towards data points with the smaller values of LEC-1. At the 

end of the k-means clustering algorithm, the duodenum tissue contains most of the data 
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points in the top half of the graph because the change in y distance becomes equally as 

important as the change in x distance when the dimensions are matched.  
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Figure 4.6: An example of improved sensitivity and specificity from k-means 

clustering when LEC-2510 values are multiplied by 10 to match the dimension of 

I505/455. A) The data points are plotted using the clinical results. B) Results of the K-

means classification without any axis dimension transformations. C) The LEC-2510 

axis dimension has been transformed by 100. The result is lower SN but slightly 

improved SP. D) The LEC-2510 axis is transformed by a factor of 10 instead of 100 

which results in the best SN and SP of the GI tissue fluorescence study. 
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Figure 4.7: Dimensional transformation of LEC-1520 causes shifting of the 

theoretical centroids creates top-bottom segregation instead of left-right clusters. 
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CHAPTER 5:  CONCLUSION 

 
 
 The steady-state and time-resolved fluorescence response produced from 355 nm 

excitation of biopsies from the upper GI tract were collected, processed, and thoroughly 

evaluated. A set of criteria were derived to single out data deemed to be erroneous so they 

could be discarded to prevent distortions in the data pool of 28 patients. The clinical 

diagnosis and k-means classification algorithm were used to identify the tissue diagnosis 

based on spectral (total signal) and time-resolved (Laguerre based deconvolution [1]) 

properties of the tissue fluorescence response.  

 Current gold standard practices for identification of GI disease involve invasive 

tissue biopsies and require histopathological examination by a trained professional [2]. 

An optical biopsy can exploit light-tissue interactions without the removal of tissue to 

arrive at the same diagnosis [3, 4, 5]. Acceptance of an optical biopsy technology into the 

clinic however requires a highly accurate diagnosis produced in-real time. So far with a 

limited data pool of 16 normal duodenum and 16 normal esophageal samples we have 

been able to show that over 400 pairs of fluorescent response parameters can be used to 

classify these samples with 87.5 % sensitivity and 87.5 % specificity or better. With some 

minor data manipulation in the form of dimensional transformations can improve these 

results to be as good as 100% sensitivity and 94% specificity. There is indeed potential 

that further study into GI tissue can reveal that just one parameter pairing can be 

measured and used to classify tissue in just a few seconds. 

 Before the data were acquired for this study, the TR-FS instrument was optimized 

for clinical data collection by implementing several improvements that maximized the 
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signal quality which was now free from component interference [1]. The first six patients 

in this study were used to develop and streamline both data collection and tissue handling 

protocols. It was found that the instrument error which affected these measurements was 

unacceptable so they were discarded from any data analysis in this study. Instrument re-

calibration resolved the error and all further data collected were scrutinized for several 

other problems. Descriptive parameters derived from spectral (Iλ) and temporal (τ-λ, 

LEC-jλ) analysis extracted from the data [1] aided the evaluation process.  

 There were four main areas of interest when it came to analysing the integrity of 

the data. The first two areas were conventional issues dealing with upper and lower 

instrument signal detection limits. For the data displaying the greatest Iλ, the time-domain 

signal was reviewed and it was found that nowhere in the data pool did the signal exceed 

the digitizer’s maximum recordable value. Amplitude saturation in the form of extreme 

pulse width broadening was also not observed in the time-domain as the FWHM did not 

exceed + 3 SD in each tissue. Some data sets fell below – 3 SD and were directly 

correlated with samples containing just background noise and no signal.  

 In an attempt to quantify the lower instrument cut off with an associated SNR 

value, the τ-λ was used as a measure to determine if the Laguerre deconvolution 

algorithm was able to fit noisy data. At 505 nm SNRs < 20 dB were not associated with 

lifetimes outside ± 1 SD. Lifetimes at 455 nm or 505 nm outside of their respective ± 1 

SD did if fact happen at any SNR. It is expected that the lifetime response is directly 

dependent on the tissue fluorophore composition [3]. Without direct correlation between 

fluorescence and histology it is impossible to investigate the extremely large or small 
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lifetimes any further. Overall the Laguerre algorithm had demonstrated in this section its 

robust ability to extract consistent lifetime values under low SNR conditions. There is no 

conclusive lower detection limit based on SNR and Laguerre lifetimes. On the other hand 

it was clear based on spectral data that there was in fact an instrument lower detection 

limit. Spectra with I455 < 19.5 V·ns had a noisy spectral shape instead of the bell curve 

observed at all higher signal intensities. Relative Iλ values are an integral part of 

classification modeling and thus this data could not be placed in confidence. The Iλ with 

associated τ-λ and LEC-jλ were removed from the data pool. 

 The other two main areas of interest arose from variations in the data collection 

protocol and the spectral data. Some times consecutive measurements on the same sample 

spot were taken for the sole purpose of increasing the signal quality by adjusting the 

PCM-PMT gain. It was found that photobleaching could not be observed even after three 

consecutive measurements were made. Also, the difference in fluorescence between two 

measurements showed negligible variation confirming that an average of just 10 pulses is 

enough to articulate the tissue fluorescence response. Average parameters from a single 

patient location had to be used to represent the diagnosis due to lack of correlation with 

pathology. Thus the first of every repeated measurement was removed from the data pool 

because overrepresentation of repeated data can skew the average.  

 Variations in the spectral data shape with an increased Iλ between 370-455 nm and 

an absorption around 410 nm seldom occurred in normal esophagus and duodenum tissue. 

Such a spectral pattern is most attributed to the absorption of blood and the emission of 

collagen and elastin [6]. It was found that the degree of this variation pattern in the 
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normal tissue samples had negligible effects on the fluorescent lifetimes. Such a pattern 

was more exaggerated in some of the diseased tissue samples. The observation supports 

expectations that diseased tissue have increased levels of collagen, elastin, and blood in 

the mucosal layer [7]. However it would have been difficult to examine this data and 

quantify the impact signal attenuation from blood has on the observed fluorescence with 

only two or three patients in the data pool having the same diseased condition. A larger 

data pool of diseased patients is required to verify if any corrections to the parameters 

extracted with the methods used in this study are required. 

 The two largest specimen pools were normal esophageal and normal duodenum 

with 16 patients each. The descriptive parameters representing these data pools generally 

did not follow a normal sampling distribution (Lilliefors test, p < 0.05). Thus the rank-

sum test instead of the t-test was used to select parameters whose values had significantly 

different medians (p < 0.05) between the esophageal and duodenum groups. There were 

three parameters identified as having equal medians where the groups did not pass the 

rank-sum test assumption that they are of the same distribution type (2 sample KS test). 

Otherwise all other parameters that failed the assumption had measurements that were far 

enough apart that they were determined to not have equal medians anyways. For 

completeness, the three parameters were included with the set of rank-sum results for 

further non-parametric classification analysis. 

 The k-means classification algorithm was an excellent choice for this initial study 

because it does not require the groups have the same distribution type or that they are 

normally distributed. The sheer amount of results from the k-means classification 



M.A.Sc Thesis – Michelle L. LePalud    McMaster University – Biomedical Engineering 
 

 117 

conducted using different pairs of parameters from duodenum and esophageal tissue is 

promising. It acknowledges that k-means clustering could become a viable classifier 

solution for GI tissue based on the parameters extracted from the observed relative 

wavelength intensities and Laguerre deconvolution of the IRF. 

The most significant differences between two normal GI tissue groups stood out in 

the longer wavelengths after the peak emission I455. The most dominate parameter in k-

means classification was I470/455 which corresponds to the peak emission of NADH [6]. It 

suggests that there is a metabolic difference between duodenum and esophageal tissue but 

this assumption cannot be confirmed from spectral data because the emission spectrum of 

NADH also overlaps with collagen and elastin [6]. Aside from I470/455, differences in the 

LEC-j parameters with positive terms (j = 0, 2, and 4) also dominated the k-means results. 

The negative terms in the Laguerre expansion (LEC-1 and LEC-3) are less influential 

likely because these are the terms in the function that approach asymptotic decay from 

local minima which are not observed in the IRF. The tissue composition’s average 

fluorophore lifetime (i.e. τ-λ) was not found to be significant in the k-means clustering. It 

implies that normal esophageal and duodenum tissues have similar fluorophore 

composition. 

There are two drawbacks about the normal GI data in particular that challenge the 

k-mean method. The first is that the clusters are not homogeneous and the acquisition of 

data from more patients could reveal greater cluster overlap, lowering the sensitivity and 

specificity results seen here. The second caution comes as a fall out from the first. The 

clusters are not globular or well separated and it questions the importance of dimensional 
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match selection to steer the cluster assignments into their correct shapes. If the cluster 

boundaries do become more complicated and make k-means classification less viable, it 

would be time to move on and try some more sophisticated techniques. Advanced 

classification methods such as those that require machine learning (ex. logistic regression, 

step-wise linear discriminat analysis, or support vector machine [8]) could work to define 

linear or nonlinear hyperplane classifiers in two or more dimensions. 

 In conclusion, a protocol for data analysis was developed such that it is possible to 

characterize GI tissue fluorescence and use this information to correctly identify the 

corresponding clinical diagnosis. It is clear that validation of the findings from this study 

would first require the accumulation of more data for both normal and diseased patients 

as well as direct correlation between fluorescence location and histology. The signal 

attenuation effects from blood absorption will have to be investigated to determine what 

kind of correction if any should be applied to ensure the data is free from such distortions. 

If a single set of parameters can be used to classify tissue with enough accuracy to satisfy 

the clinical tolerance then this optical biopsy technology can definitely report the 

diagnosis on site and in real time. The instrument can be fine-tuned to hone in on just 

those wavelengths, deconvolve the data, and assign the result a diagnosis based on which 

k-means it is closest to. This technology not only has the potential to become a very 

powerful tool in GI diagnostics, it can be very quite versatile. Protocols are applicable to 

other tissues such as brain and lung with some tweaking of the Laguerre system 

dependent parameters α and M. 
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APPENDIX   A:   Operation of the TR-FS Instrument for Clinical Study 

 

1. Plug cart into a wall outlet. 
2. UPS Power button On (screen will become red backlit) 
3. Top cutout on the side of the cart:  

o Power button for industrial box (if not on already, leave it on so UPS charge is 
maintained) 

o Red Power button for AOTF driver  
o Chrome toggle switch 'on' for AOFT driver bias voltage 
o Turn key on for the laser power supply 

4. Bottom front of cart: 
o Turn on diode (switch in “down” position is “on”, located the backside of the diode) 
o Connect fibre optics probe 

5. Bottom cutout on the other side of the cart: 
o Turn on laser switch (back of laser) 
o Turn on laser ready button (do this after connecting the probe) 

6. Turn on computer by pressing on/off button on the oscilloscope 
7. Turn on delay generator by pressing it's on/off button  
8. Press run/stop on delay generator before acquiring data 
9. On the computer/oscilloscope: 

o Login using 'user' and the network password 
o Double click 'Tekscope' icon on the desktop (oscilloscope software) 
o Load 'system_hopping_mode_v5' to load Labview and our data acquisition program 

10. Turn on PMT and fan: 
o PMT black power switch 
o let voltage=0V and 'Neg' light come on 
o turn on high voltage using the green button 
o use coarse and fine adjustment knobs to set the PMT voltage (do not exceed300V) 
o fan switch is located on white power cord 

11. Use Scope Setting 10 on the delay generator to acquire data: 
o Press yellow shift key then “9/Recall” (a music note appears now in upper left 

display) 
o type in “10” 
o then yellow shift key again then “9/Recall” to save the change (music note 

disappears) 
o Press Run/Stop (a dot in the upper left display means “Run” mode) 

12. Note: Scope setting “6” will allow you to continuously fire the laser controlled manually 
by pressing Run/Stop. 

13. To Turn off the Instrument: 
o Shut down in any instrument order but in reverse detail. 
o Leave the isolation transformer on. 
o Plug the cart back into a wall outlet after cart relocation. 
o Turn on the UPS to recharge it. Do not leave the UPS off with a low charge over a 

long period of time otherwise it can damage the battery. 
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APPENDIX   B:   Sample Note Collection 

 
 

Ex-Vivo Clinical Testing of the Time-Resolved Laser Induced 
Fluorescence Spectroscopy (TR-FS) System with Patient 28 

 
Collection Date: November 2nd , 2009 - Patient 28. 
McMaster University Medical Centre, Department of Endoscopy 
Attendance: F. Tse, Z. Nie, and M. LePalud 
Notes by: Z. Nie and M. LePalud 
 
Equipment Notes: 
- Used same equipment and data collection method as P07-P09. 
- Laser Energy at start: 3.05 µJ with probe perpendicular to the floor (Scope Memory 6). 
- Scope settings (Memory 10) were loaded normally for tissue and paper collection. 
- Cart was stored in Dr. Tse's office and returned there after endoscopy. 
 
Data Collection Notes: 
- Forgot to press Run/Stop before colleting the first trial. Restarting Labview and 
  Tekscope did not fix the problem. Restarted the computer and turned the pulse generator 
  off. Then Labview would collect data. 
- Fluorescence of tissue and paper were taken with probe at 45 degrees like always 
- Took 3 paper files, all looked normal. 20091102_Paper_V1700_T1_pwrmtr (is actually 
  paper), 20091102_Paper_V1700_T1_CH1.dat and T2 were the other two paper files. 
- One endoscopy patient today, biopsies taken at 9:00am. 
- P28(U#:XXXXXXXXXX, DOB:XX/XX/XX) 
- P28 fluorescence data collected from 9:14 am to 10:03 am. 
- Lights were on for A1_T1 to C2_T4. Lights were off from C2_T5 onward. 
- Dr. Tse indicated D, E, and F are all Esophagus, sampled at 30cm, 35cm, and 39cm. 
- Paper scans T3 to T6 looked normal. Some are strong/weak signals depending on height 
  of the probe. 
- The data was copied onto a flash USB drive and loaded onto the lab server. 
- Charge Nurse for the day: XXX. 
 
Other Notes: 
- Files for P28 are in J:\Data\GI_Ex\GI_P28_20091102 (46 total trials) 
- Files labeled Paper are in J:\Data\GI_Ex\GI_P28_20091102 (7 total trials) 
- Sample file names: 20091102_P28_B1_V2200_T2_CH1.dat 
- These folders have been zipped with the original data files (backups) 
- The standard medical report from Dr. Tse was not received, the computer was down to 
  make a printout. 
 
 

GI_ExpSummary_20091102_P07-P28_bak.xls Notes_P28 03/11/2009 4:13 PM 
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APPENDIX   C:   α Calculation 

 
Table 1: Files used to obtain average α values. 

 
Tissue A Tissue B Tissue C Tissue D

P08_A1_V2200_T1 P08_B1_V2200_T1 P08_C1_V2200_T2 P08_D1_V2200_T1

P08_A1_V2200_T2 P08_B1_V2200_T3 P08_C2_V2200_T4 P08_D1_V2200_T2

P17_A1_V2150_T2 P08_B2_V2200_T5 P17_C1_V2200_T3 P17_D1_V2200_T3

P17_A1_V2150_T3 P17_B1_V2200_T3 P17_C2_V2150_T9 P25_D1_V2250_T3

P17_A1_V2200_T6 P26_B1_V2150_T4 P26_C1_V2150_T1 P25_D1_V2250_T4  
 
 

Table 2: Average α using alpha_opt_1e.m. 
 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

375 0.9556 ± 0.0145 0.9586 ± 0.0084 0.9612 ± 0.0124 0.9634 ± 0.0069

380 0.9566 ± 0.0154 0.9692 ± 0.0018 0.9660 ± 0.0068 0.9612 ± 0.0088

385 0.9654 ± 0.0063 0.9598 ± 0.0118 0.9570 ± 0.0112 0.9590 ± 0.0124

390 0.9672 ± 0.0029 0.9628 ± 0.0095 0.9622 ± 0.0074 0.9686 ± 0.0019

395 0.9648 ± 0.0116 0.9682 ± 0.0035 0.9670 ± 0.0062 0.9678 ± 0.0039

400 0.9660 ± 0.0050 0.9694 ± 0.0013 0.9692 ± 0.0011 0.9660 ± 0.0053

405 0.9642 ± 0.0064 0.9672 ± 0.0052 0.9610 ± 0.0123 0.9690 ± 0.0022

410 0.9666 ± 0.0053 0.9664 ± 0.0025 0.9674 ± 0.0024 0.9618 ± 0.0102

415 0.9696 ± 0.0009 0.9652 ± 0.0075 0.9672 ± 0.0036 0.9688 ± 0.0018

420 0.9676 ± 0.0043 0.9662 ± 0.0052 0.9640 ± 0.0022 0.9666 ± 0.0056

425 0.9664 ± 0.0061 0.9618 ± 0.0088 0.9684 ± 0.0030 0.9670 ± 0.0041

430 0.9680 ± 0.0035 0.9686 ± 0.0022 0.9690 ± 0.0014 0.9694 ± 0.0013

435 0.9694 ± 0.0013 0.9688 ± 0.0018 0.9678 ± 0.0029 0.9700 ± 0.0000

440 0.9674 ± 0.0040 0.9684 ± 0.0021 0.9690 ± 0.0017 0.9700 ± 0.0000

445 0.9678 ± 0.0026 0.9684 ± 0.0017 0.9678 ± 0.0019 0.9690 ± 0.0022

450 0.9694 ± 0.0013 0.9686 ± 0.0021 0.9688 ± 0.0016 0.9700 ± 0.0000

455 0.9672 ± 0.0026 0.9678 ± 0.0023 0.9684 ± 0.0026 0.9692 ± 0.0018

460 0.9648 ± 0.0044 0.9692 ± 0.0018 0.9686 ± 0.0017 0.9700 ± 0.0000

465 0.9656 ± 0.0046 0.9680 ± 0.0035 0.9680 ± 0.0019 0.9684 ± 0.0036

470 0.9698 ± 0.0004 0.9700 ± 0.0000 0.9658 ± 0.0058 0.9698 ± 0.0004

475 0.9700 ± 0.0000 0.9676 ± 0.0029 0.9648 ± 0.0059 0.9676 ± 0.0039

480 0.9654 ± 0.0081 0.9670 ± 0.0031 0.9674 ± 0.0024 0.9688 ± 0.0027

485 0.9688 ± 0.0013 0.9658 ± 0.0053 0.9672 ± 0.0024 0.9664 ± 0.0064

490 0.9656 ± 0.0053 0.9644 ± 0.0088 0.9676 ± 0.0029 0.9686 ± 0.0031

495 0.9700 ± 0.0000 0.9668 ± 0.0044 0.9674 ± 0.0036 0.9700 ± 0.0000

500 0.9680 ± 0.0025 0.9624 ± 0.0112 0.9670 ± 0.0045 0.9648 ± 0.0079

505 0.9646 ± 0.0051 0.9678 ± 0.0027 0.9634 ± 0.0117 0.9690 ± 0.0017

510 0.9670 ± 0.0042 0.9674 ± 0.0043 0.9634 ± 0.0131 0.9628 ± 0.0099

515 0.9568 ± 0.0129 0.9642 ± 0.0066 0.9556 ± 0.0125 0.9664 ± 0.0045

520 0.9684 ± 0.0022 0.9552 ± 0.0131 0.9590 ± 0.0083 0.9656 ± 0.0098

525 0.9650 ± 0.0090 0.9566 ± 0.0128 0.9674 ± 0.0032 0.9674 ± 0.0037

530 0.9664 ± 0.0061 0.9682 ± 0.0025 0.9594 ± 0.0096 0.9666 ± 0.0050

535 0.9588 ± 0.0106 0.9640 ± 0.0134 0.9662 ± 0.0036 0.9624 ± 0.0127

540 0.9586 ± 0.0120 0.9618 ± 0.0114 0.9574 ± 0.0101 0.9578 ± 0.0117

Tissue C Tissue DWavelegnth

[ns]

Tissue A Tissue B

 



M.A.Sc Thesis – Michelle L. LePalud    McMaster University – Biomedical Engineering 
 

 123 

Table 3: Average α using alpha_opt_1f.m. 
 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

375 0.9556 ± 0.0145 0.9586 ± 0.0084 0.9612 ± 0.0124 0.9634 ± 0.0069

380 0.9566 ± 0.0154 0.9692 ± 0.0018 0.9660 ± 0.0068 0.9612 ± 0.0088

385 0.9654 ± 0.0063 0.9598 ± 0.0118 0.9570 ± 0.0112 0.9590 ± 0.0124

390 0.9672 ± 0.0029 0.9628 ± 0.0095 0.9622 ± 0.0074 0.9686 ± 0.0019

395 0.9648 ± 0.0116 0.9682 ± 0.0035 0.9670 ± 0.0062 0.9678 ± 0.0039

400 0.9660 ± 0.0050 0.9694 ± 0.0013 0.9692 ± 0.0011 0.9660 ± 0.0053

405 0.9642 ± 0.0064 0.9672 ± 0.0052 0.9610 ± 0.0123 0.9690 ± 0.0022

410 0.9666 ± 0.0053 0.9664 ± 0.0025 0.9674 ± 0.0024 0.9618 ± 0.0102

415 0.9696 ± 0.0009 0.9652 ± 0.0075 0.9672 ± 0.0036 0.9688 ± 0.0018

420 0.9676 ± 0.0043 0.9662 ± 0.0052 0.9640 ± 0.0022 0.9666 ± 0.0056

425 0.9664 ± 0.0061 0.9618 ± 0.0088 0.9684 ± 0.0030 0.9670 ± 0.0041

430 0.9680 ± 0.0035 0.9686 ± 0.0022 0.9690 ± 0.0014 0.9694 ± 0.0013

435 0.9694 ± 0.0013 0.9688 ± 0.0018 0.9678 ± 0.0029 0.9700 ± 0.0000

440 0.9674 ± 0.0040 0.9684 ± 0.0021 0.9690 ± 0.0017 0.9700 ± 0.0000

445 0.9678 ± 0.0026 0.9684 ± 0.0017 0.9678 ± 0.0019 0.9690 ± 0.0022

450 0.9694 ± 0.0013 0.9686 ± 0.0021 0.9688 ± 0.0016 0.9700 ± 0.0000

455 0.9672 ± 0.0026 0.9678 ± 0.0023 0.9684 ± 0.0026 0.9692 ± 0.0018

460 0.9648 ± 0.0044 0.9692 ± 0.0018 0.9686 ± 0.0017 0.9700 ± 0.0000

465 0.9656 ± 0.0046 0.9680 ± 0.0035 0.9680 ± 0.0019 0.9684 ± 0.0036

470 0.9698 ± 0.0004 0.9700 ± 0.0000 0.9658 ± 0.0058 0.9698 ± 0.0004

475 0.9700 ± 0.0000 0.9676 ± 0.0029 0.9648 ± 0.0059 0.9676 ± 0.0039

480 0.9654 ± 0.0081 0.9670 ± 0.0031 0.9674 ± 0.0024 0.9688 ± 0.0027

485 0.9688 ± 0.0013 0.9658 ± 0.0053 0.9672 ± 0.0024 0.9664 ± 0.0064

490 0.9656 ± 0.0053 0.9644 ± 0.0088 0.9676 ± 0.0029 0.9686 ± 0.0031

495 0.9700 ± 0.0000 0.9668 ± 0.0044 0.9674 ± 0.0036 0.9700 ± 0.0000

500 0.9680 ± 0.0025 0.9624 ± 0.0112 0.9670 ± 0.0045 0.9648 ± 0.0079

505 0.9646 ± 0.0051 0.9678 ± 0.0027 0.9634 ± 0.0117 0.9690 ± 0.0017

510 0.9670 ± 0.0042 0.9674 ± 0.0043 0.9634 ± 0.0131 0.9628 ± 0.0099

515 0.9568 ± 0.0129 0.9642 ± 0.0066 0.9556 ± 0.0125 0.9664 ± 0.0045

520 0.9684 ± 0.0022 0.9552 ± 0.0131 0.9590 ± 0.0083 0.9656 ± 0.0098

525 0.9650 ± 0.0090 0.9566 ± 0.0128 0.9674 ± 0.0032 0.9674 ± 0.0037

530 0.9664 ± 0.0061 0.9682 ± 0.0025 0.9594 ± 0.0096 0.9666 ± 0.0050

535 0.9588 ± 0.0106 0.9640 ± 0.0134 0.9662 ± 0.0036 0.9624 ± 0.0127

540 0.9586 ± 0.0120 0.9618 ± 0.0114 0.9574 ± 0.0101 0.9578 ± 0.0117

Wavelegnth

[ns]

Tissue A Tissue B Tissue C Tissue D
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APPENDIX   D:   Values for Figures 4.2 and 4.3 

 

 
Table 1: Values for Figure 4.2, Average ± 1 Standard Error.  

 
 

375 0.065 ± 0.008 0.055 ± 0.005 0.056 ± 0.008

380 0.091 ± 0.011 0.080 ± 0.006 0.078 ± 0.011

385 0.137 ± 0.016 0.126 ± 0.011 0.119 ± 0.015

390 0.228 ± 0.023 0.217 ± 0.018 0.201 ± 0.021

395 0.296 ± 0.028 0.286 ± 0.018 0.271 ± 0.024

400 0.333 ± 0.026 0.326 ± 0.021 0.311 ± 0.022

405 0.361 ± 0.023 0.356 ± 0.022 0.360 ± 0.021

410 0.368 ± 0.020 0.365 ± 0.024 0.368 ± 0.021

415 0.374 ± 0.016 0.370 ± 0.022 0.385 ± 0.019

420 0.426 ± 0.016 0.416 ± 0.023 0.445 ± 0.021

425 0.509 ± 0.017 0.494 ± 0.021 0.540 ± 0.020

430 0.613 ± 0.016 0.581 ± 0.021 0.650 ± 0.020

435 0.719 ± 0.014 0.679 ± 0.018 0.759 ± 0.018

440 0.826 ± 0.011 0.792 ± 0.017 0.854 ± 0.014

445 0.920 ± 0.009 0.884 ± 0.012 0.939 ± 0.010

450 0.978 ± 0.006 0.957 ± 0.007 0.983 ± 0.006

455 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

460 0.906 ± 0.003 0.913 ± 0.006 0.873 ± 0.006

465 0.814 ± 0.005 0.825 ± 0.005 0.785 ± 0.007

470 0.790 ± 0.005 0.797 ± 0.009 0.750 ± 0.005

475 0.734 ± 0.007 0.740 ± 0.008 0.688 ± 0.006

480 0.570 ± 0.006 0.573 ± 0.006 0.524 ± 0.007

485 0.460 ± 0.006 0.459 ± 0.005 0.413 ± 0.006

490 0.393 ± 0.005 0.397 ± 0.004 0.353 ± 0.005

495 0.332 ± 0.005 0.332 ± 0.004 0.299 ± 0.006

500 0.283 ± 0.005 0.281 ± 0.004 0.243 ± 0.004

505 0.271 ± 0.004 0.264 ± 0.004 0.236 ± 0.004

510 0.257 ± 0.006 0.250 ± 0.005 0.220 ± 0.005

515 0.235 ± 0.005 0.226 ± 0.004 0.195 ± 0.005

520 0.201 ± 0.005 0.194 ± 0.003 0.172 ± 0.004

525 0.170 ± 0.005 0.166 ± 0.002 0.140 ± 0.003

530 0.149 ± 0.005 0.144 ± 0.002 0.123 ± 0.003

535 0.129 ± 0.005 0.123 ± 0.003 0.112 ± 0.004

540 0.110 ± 0.004 0.106 ± 0.003 0.088 ± 0.003

Wavelength

[nm]

Normalized Integrated Intensity (to 455nm)

A C D
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Table 2a: Values for Figure 4.3, Average ± 1 Standard Error. 

 

375 0.008 ± 0.001 0.006 ± 0.002 -0.0007 ± 0.0003 0.0006 ± 0.0009

380 0.011 ± 0.002 0.008 ± 0.002 -0.0010 ± 0.0003 0.0008 ± 0.0010

385 0.017 ± 0.003 0.012 ± 0.003 -0.0015 ± 0.0004 0.0004 ± 0.0011

390 0.029 ± 0.005 0.020 ± 0.005 -0.0030 ± 0.0006 -0.0001 ± 0.0014

395 0.038 ± 0.006 0.026 ± 0.005 -0.0039 ± 0.0008 -0.0008 ± 0.0013

400 0.043 ± 0.006 0.030 ± 0.005 -0.0041 ± 0.0008 -0.0015 ± 0.0013

405 0.047 ± 0.007 0.033 ± 0.005 -0.0047 ± 0.0009 -0.0026 ± 0.0011

410 0.049 ± 0.007 0.034 ± 0.005 -0.0042 ± 0.0008 -0.0029 ± 0.0008

415 0.050 ± 0.007 0.035 ± 0.005 -0.0044 ± 0.0009 -0.0029 ± 0.0007

420 0.057 ± 0.007 0.040 ± 0.005 -0.0048 ± 0.0009 -0.0040 ± 0.0007

425 0.068 ± 0.008 0.049 ± 0.006 -0.0055 ± 0.0011 -0.0041 ± 0.0009

430 0.082 ± 0.009 0.059 ± 0.007 -0.0063 ± 0.0013 -0.0055 ± 0.0011

435 0.095 ± 0.010 0.068 ± 0.008 -0.0077 ± 0.0016 -0.0057 ± 0.0013

440 0.109 ± 0.011 0.077 ± 0.008 -0.0084 ± 0.0018 -0.0065 ± 0.0014

445 0.121 ± 0.011 0.085 ± 0.009 -0.0089 ± 0.0019 -0.0064 ± 0.0018

450 0.129 ± 0.012 0.089 ± 0.009 -0.0081 ± 0.0018 -0.0067 ± 0.0018

455 0.132 ± 0.012 0.090 ± 0.009 -0.0080 ± 0.0018 -0.0062 ± 0.0019

460 0.120 ± 0.010 0.080 ± 0.008 -0.0063 ± 0.0017 -0.0043 ± 0.0017

465 0.109 ± 0.010 0.072 ± 0.007 -0.0048 ± 0.0015 -0.0039 ± 0.0014

470 0.106 ± 0.009 0.069 ± 0.007 -0.0039 ± 0.0016 -0.0031 ± 0.0013

475 0.099 ± 0.008 0.064 ± 0.006 -0.0031 ± 0.0014 -0.0020 ± 0.0014

480 0.077 ± 0.007 0.049 ± 0.005 -0.0017 ± 0.0011 -0.0018 ± 0.0012

485 0.062 ± 0.005 0.039 ± 0.004 -0.0009 ± 0.0008 -0.0011 ± 0.0010

490 0.053 ± 0.005 0.033 ± 0.003 -0.0006 ± 0.0008 -0.0008 ± 0.0007

495 0.045 ± 0.004 0.028 ± 0.003 -0.0003 ± 0.0007 -0.0006 ± 0.0006

500 0.039 ± 0.004 0.023 ± 0.002 0.0001 ± 0.0007 -0.0005 ± 0.0005

505 0.037 ± 0.003 0.022 ± 0.002 0.00004 ± 0.0006 -0.0004 ± 0.0005

510 0.036 ± 0.003 0.021 ± 0.002 0.0005 ± 0.0006 -0.0003 ± 0.0005

515 0.032 ± 0.003 0.018 ± 0.002 0.0003 ± 0.0005 -0.0004 ± 0.0004

520 0.028 ± 0.003 0.016 ± 0.002 0.0003 ± 0.0005 -0.0004 ± 0.0004

525 0.023 ± 0.002 0.014 ± 0.001 0.00005 ± 0.0004 -0.0002 ± 0.0004

530 0.021 ± 0.002 0.012 ± 0.001 0.0002 ± 0.0003 -0.0001 ± 0.0004

535 0.018 ± 0.002 0.010 ± 0.001 0.0001 ± 0.0004 -0.0002 ± 0.0003

540 0.015 ± 0.002 0.008 ± 0.001 -0.0002 ± 0.0003 -0.0002 ± 0.0002

LEC-0 LEC-1

A D A D

Wavelength

[nm]
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Table 2b: Values for Figure 4.3 Continued, Average ± 1 Standard Error.  

 

375 0.002 ± 0.000 0.002 ± 0.001 -0.0005 ± 0.0003 0.0003 ± 0.0004

380 0.003 ± 0.000 0.002 ± 0.001 -0.0002 ± 0.0001 0.0003 ± 0.0004

385 0.004 ± 0.001 0.003 ± 0.001 -0.0006 ± 0.0002 0.0000 ± 0.0004

390 0.006 ± 0.001 0.005 ± 0.001 -0.0009 ± 0.0001 0.0002 ± 0.0005

395 0.008 ± 0.001 0.005 ± 0.001 -0.0011 ± 0.0003 -0.0002 ± 0.0005

400 0.009 ± 0.001 0.006 ± 0.001 -0.0012 ± 0.0003 -0.0004 ± 0.0005

405 0.009 ± 0.001 0.006 ± 0.001 -0.0014 ± 0.0002 -0.0008 ± 0.0004

410 0.009 ± 0.001 0.006 ± 0.001 -0.0010 ± 0.0002 -0.0008 ± 0.0002

415 0.009 ± 0.001 0.007 ± 0.001 -0.0011 ± 0.0003 -0.0007 ± 0.0003

420 0.010 ± 0.001 0.007 ± 0.001 -0.0015 ± 0.0003 -0.0012 ± 0.0003

425 0.012 ± 0.001 0.009 ± 0.001 -0.0013 ± 0.0004 -0.0010 ± 0.0003

430 0.015 ± 0.002 0.010 ± 0.001 -0.0012 ± 0.0004 -0.0015 ± 0.0003

435 0.017 ± 0.002 0.013 ± 0.001 -0.0016 ± 0.0005 -0.0011 ± 0.0004

440 0.019 ± 0.002 0.014 ± 0.002 -0.0018 ± 0.0006 -0.0016 ± 0.0004

445 0.021 ± 0.002 0.016 ± 0.002 -0.0021 ± 0.0007 -0.0014 ± 0.0007

450 0.022 ± 0.002 0.016 ± 0.002 -0.0021 ± 0.0006 -0.0018 ± 0.0005

455 0.023 ± 0.002 0.017 ± 0.002 -0.0018 ± 0.0006 -0.0011 ± 0.0006

460 0.021 ± 0.002 0.014 ± 0.001 -0.0015 ± 0.0006 -0.0009 ± 0.0006

465 0.019 ± 0.002 0.013 ± 0.001 -0.0014 ± 0.0005 -0.0009 ± 0.0005

470 0.018 ± 0.002 0.012 ± 0.001 -0.0013 ± 0.0006 -0.0010 ± 0.0004

475 0.017 ± 0.002 0.012 ± 0.001 -0.0011 ± 0.0005 -0.0008 ± 0.0004

480 0.013 ± 0.001 0.009 ± 0.001 -0.0009 ± 0.0004 -0.0008 ± 0.0004

485 0.011 ± 0.001 0.007 ± 0.001 -0.0006 ± 0.0003 -0.0006 ± 0.0003

490 0.009 ± 0.001 0.006 ± 0.001 -0.0006 ± 0.0002 -0.0004 ± 0.0002

495 0.008 ± 0.001 0.005 ± 0.001 -0.0004 ± 0.0002 -0.0003 ± 0.0002

500 0.007 ± 0.001 0.0042 ± 0.0004 -0.0005 ± 0.0003 -0.0004 ± 0.0002

505 0.007 ± 0.001 0.0043 ± 0.0004 -0.0004 ± 0.0002 -0.0005 ± 0.0002

510 0.007 ± 0.001 0.0039 ± 0.0004 -0.0001 ± 0.0002 -0.0004 ± 0.0002

515 0.006 ± 0.001 0.0034 ± 0.0004 -0.0003 ± 0.0002 -0.0004 ± 0.0002

520 0.005 ± 0.001 0.0030 ± 0.0003 -0.0002 ± 0.0002 -0.0005 ± 0.0002

525 0.004 ± 0.001 0.0024 ± 0.0003 -0.0003 ± 0.0001 -0.0002 ± 0.0001

530 0.0038 ± 0.0004 0.0023 ± 0.0001 -0.0001 ± 0.0002 0.0000 ± 0.0002

535 0.0032 ± 0.0003 0.0021 ± 0.0002 -0.0003 ± 0.0002 -0.0002 ± 0.0001

540 0.0026 ± 0.0003 0.0016 ± 0.0002 -0.0004 ± 0.0001 -0.0001 ± 0.0001

LEC-2

A D

Wavelength

[nm]

LEC-3

A D
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Table 2c: Values for Figure 4.3 Continued, Average ± 1 Standard Error. 

 

375 0.0009 ± 0.0002 0.0007 ± 0.0002

380 0.0008 ± 0.0001 0.0007 ± 0.0003

385 0.0012 ± 0.0002 0.0009 ± 0.0003

390 0.0020 ± 0.0003 0.0016 ± 0.0004

395 0.0025 ± 0.0004 0.0018 ± 0.0005

400 0.0029 ± 0.0005 0.0020 ± 0.0005

405 0.0030 ± 0.0004 0.0020 ± 0.0004

410 0.0031 ± 0.0004 0.0019 ± 0.0004

415 0.0030 ± 0.0004 0.0023 ± 0.0003

420 0.0030 ± 0.0005 0.0024 ± 0.0004

425 0.0040 ± 0.0005 0.0030 ± 0.0004

430 0.0047 ± 0.0006 0.0033 ± 0.0004

435 0.0053 ± 0.0006 0.0042 ± 0.0005

440 0.0059 ± 0.0006 0.0043 ± 0.0005

445 0.0065 ± 0.0006 0.0047 ± 0.0004

450 0.0067 ± 0.0007 0.0046 ± 0.0007

455 0.0071 ± 0.0007 0.0054 ± 0.0005

460 0.0067 ± 0.0006 0.0047 ± 0.0005

465 0.0058 ± 0.0006 0.0040 ± 0.0004

470 0.0057 ± 0.0005 0.0040 ± 0.0005

475 0.0053 ± 0.0006 0.0036 ± 0.0004

480 0.0043 ± 0.0004 0.0026 ± 0.0003

485 0.0036 ± 0.0003 0.0022 ± 0.0003

490 0.0031 ± 0.0003 0.0019 ± 0.0002

495 0.0027 ± 0.0003 0.0017 ± 0.0002

500 0.0022 ± 0.0002 0.0013 ± 0.0002

505 0.0022 ± 0.0002 0.0013 ± 0.0002

510 0.0022 ± 0.0003 0.0012 ± 0.0002

515 0.0018 ± 0.0002 0.0010 ± 0.0002

520 0.0018 ± 0.0002 0.0008 ± 0.0002

525 0.0014 ± 0.0002 0.0007 ± 0.0001

530 0.0013 ± 0.0001 0.0008 ± 0.0001

535 0.0011 ± 0.0002 0.0006 ± 0.0001

540 0.0009 ± 0.0001 0.0004 ± 0.0001

LEC-4

A D

Wavelength

[nm]
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 APPENDIX   E:   Results of the Lilliefors Normality Test 

 

 
Table 1: Results form Lilliefors Normality Test for Normal A and Normal D Tissue. 

 

A D A D A D A D A D A D A D

375 1 0 0 0 1 1 0 1 1 1 1 1 1 1

380 0 1 0 0 1 1 1 1 1 1 0 1 0 1

385 1 0 1 1 1 1 0 1 1 1 0 1 1 1

390 1 1 0 0 1 1 1 1 1 1 0 1 1 1

395 1 0 0 0 1 1 1 1 1 1 0 1 1 1

400 1 0 0 0 1 1 1 1 1 1 0 1 1 1

405 0 0 0 0 0 1 1 1 1 1 1 1 1 1

410 0 0 0 0 0 1 1 0 1 1 1 1 1 1

415 0 0 0 0 0 1 1 0 0 1 1 0 1 0

420 0 0 0 0 0 1 0 0 0 1 0 0 1 0

425 0 0 0 0 0 1 0 0 0 1 1 0 0 0

430 0 0 0 0 0 1 1 0 0 0 1 1 0 0

435 0 0 1 0 0 1 1 1 0 0 1 1 1 0

440 0 0 0 0 0 1 1 1 0 0 1 1 0 0

445 0 0 0 0 0 1 1 1 0 1 1 1 1 0

450 0 0 0 1 0 1 1 1 0 0 1 1 0 0

455 0 0 0 0 0 1 1 1 1 1 1 1 1 1

460 0 0 0 0 0 1 1 1 0 0 1 1 0 1

465 0 1 0 0 0 1 1 1 1 1 1 1 1 1

470 0 1 0 0 0 1 1 1 1 0 1 0 1 1

475 0 0 0 0 0 1 1 0 0 1 1 0 0 1

480 0 1 0 1 0 1 1 1 1 1 0 1 0 1

485 0 0 0 1 0 1 1 1 0 0 1 1 1 0

490 0 0 0 0 0 1 1 1 0 1 0 0 0 0

495 0 0 0 0 0 1 1 1 1 1 0 0 1 0

500 0 0 1 0 0 1 1 1 1 1 0 0 1 1

505 1 0 0 1 0 1 0 1 0 1 0 0 0 1

510 0 1 0 0 0 1 0 1 1 0 0 0 1 0

515 1 0 0 0 0 1 0 0 1 1 0 0 0 1

520 0 0 0 0 1 1 1 1 1 1 0 1 1 0

525 0 0 0 0 1 1 0 1 1 1 0 0 0 1

530 0 0 0 0 1 1 0 1 1 0 0 0 1 0

535 0 0 0 1 1 1 0 1 0 0 1 1 1 0

540 0 0 1 0 0 1 1 1 0 0 0 1 0 1

Wavelength

[nm]

LEC-2 LEC-3 LEC-4Intgr. Inten. Lifetime LEC-0 LEC-1

 
 
If Ho is true then H = 0, otherwise H = 1 when the test rejects that the data sampled follow 
a normal distribution.  
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APPENDIX   F:   Matlab Code for K-means Classification Using GI Data  

 
 
Fireaway_3.m 

 

%% Parameters (P1 & P2) are loaded and sent to the function GIKmeans_6.m 

if they both failed the rank-sum test. The k-means results from all the 

possible combinations are saved into a single file at the end. 

 
close all 
clear all 

 
load results_ranksum_spec.mat h_all 
P1=h_all; 
P1_name='I'; 
load all_spec_thesis.mat 
xA=tissueA.spec_intgr_norm; 
xD=tissueD.spec_intgr_norm; 

  
load results_ranksum_lift.mat h_all 
P2=h_all; 
P2_name='Lifetime'; 
load all_lifet_thesis.mat 
yA=tissueA.lifet; 
yD=tissueD.lifet; 

  
%% Use for loading file names containing LEC. 

% 

% for L=0 %or 0:4 
%     f1=strcat('results_ranksum_cc_',int2str(L)); 
%     load(f1) 
%     P1=h_all; 
%     P1_name=strcat('LEC-',int2str(L)); 
%  
%     f2=strcat('all_cc_',int2str(L),'_thesis.mat'); 
%     load(f2) 
%     xA=tissueA.lag_cc; 
%     xD=tissueD.lag_cc; 
%      
%     %for k=L:4 %don't repeat 0-1 and 1-0 etc., j=1:35. 
%     k=L; %use when j=i:35 
%         f3=strcat('results_ranksum_cc_',int2str(k)); 
%         load(f3) 
%         P2=h_all; 
%         P2_name=strcat('LEC-',int2str(k)); 
%  
%         f4=strcat('all_cc_',int2str(k),'_thesis.mat'); 
%         load(f4) 
%         yA=tissueA.lag_cc; 
%         yD=tissueD.lag_cc; 

 
%% Code is the same for all parameter types.  
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outfile=strcat(P2_name,'_vs_',P1_name,'_all.mat') 
W=[370:5:550]; 
results_all=[]; 
labels_all=[]; 
Centers_all=[]; 
true_false_all=[]; 
km_results_all=[]; 
starts_all=[]; 

  
 for i=2:35  
        if P1(i) == 1  
            temp_xA=xA(:,i);  
            temp_xD=xD(:,i);         
            P1_w=num2str(W(i));    

 
            %for j=2:35 %use when P1 and P2 files are different    
            for j=i:35 %don't repeat 2-35 and 35-2 etc.  
                if P2(j) == 1 
                    temp_yA = yA(:,j); 
                    temp_yD = yD(:,j); 
                    P2_w=num2str(W(j));         
                    

[starts,true_false,Centers,km_results,results,labels] = 

 GIKmeans_6(P1_w, P1_name, P2_w, P2_name, temp_xA, ... 
                   temp_yA, temp_xD, temp_yD,j); 

  
                    pause(1)  

                    close all 

  
                    results_all=[results_all; results]; 
                    labels_all=[labels_all; labels]; 
                    Centers_all=[Centers_all; Centers];  
                    true_false_all=[true_false_all; true_false]; 
                    km_results_all=[km_results_all; km_results];  
                    starts_all=[starts_all; starts];  

  
                end % P2(j)==1  
            end %for j=2:35    
        end %if P1(i)==1      
end% for i=2:35 

  
save(outfile, 'results_all', 'labels_all', 'Centers_all',... 
    'true_false_all', 'km_results_all', 'starts_all') 
close all  

 
%    end %for k=0:4   %% end loop for a LEC file names as P2 
%L=L+1; 
%end %for L=0:4       %% end loop for a LEC file names as P1 

 

END Fireaway_3.m 



M.A.Sc Thesis – Michelle L. LePalud    McMaster University – Biomedical Engineering 
 

 131 

 

GIKmeans_6.m 

 

%% Data from P1 & P2 are received and are used to conduct K-means 

classification. The sensitivity and specificity are then calculated. The 

before and after clustering results are plotted and saved while the 

results are passed back to Fireaway_3.m.  
 

 

function [starts, true_false,Centers,km_results,results,labels] = 

GIKmeans_6(P1_W, P1_name, P2_W,... 
    P2_name, temp_xA, temp_yA, temp_xD, temp_yD,J)  

  
 

%% labels for plots 
temp_P1=([P1_name,' (',P1_W,')']); 
temp_P2=([P2_name,' (',P2_W,')']);  

  
x_name=([temp_P1,' [a.u.]']); 
y_name=([temp_P2,' [a.u.]']);  
name_A='Tissue A'; 
name_D='Tissue D'; 

  
% label_1=strcat('L_',P1_W); 
% label_2=strcat('L_',P2_W);  
label_1=strcat(P1_name,'_',P1_W); 
label_2=strcat(P2_name,'_',P2_W); 

 

  
%% setup data in format required for kmeans.m 

W=[370:5:550]; 

  
[m,n]=size(temp_xA); 
[j,k]=size(temp_xD); 

  
GROUP=[repmat(name_A,[m 1]); repmat(name_D,[n 1])]; 

  
XY= [temp_xA temp_yA ; temp_xD temp_yD]; 

  
k=size(XY,2); %# of columns in XY=# of clusters  

  
%% run K-means using the average P1 and average P2 
kmean1=[mean(temp_xA) mean(temp_yA)]; 
kmean2=[mean(temp_xD) mean(temp_yD)]; 

  
SPTS=[kmean1; kmean2]; 

  
opts = statset('Display','off'); 

  
[idx,C,SUMD,D] = kmeans(XY,k,'Distance','sqEuclidean',... 
    'start',SPTS,'Options',opts); 
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% %% run K-means with random starting points  
%  
% rep=5; % picks 5 random sets, selects best answer as final result 
%  
% for i=1:rep 
%     kmean1=XY(randsample((1:m),1),:); % 1st kmean from A 
%     kmean2=XY(randsample((m+1:m+j),1),:); % 2nd kmean from D 
%     start_means=[kmean1; kmean2];%      
%     SPTS(:,:,i)=[kmean1; kmean2];%  
% end %for 
%  
% %disp(SPTS)  
% %opts = statset('Display','iter'); % or ‘final’. 
%  
% [idx,C,SUMD,D] = kmeans(XY,k,'Distance','sqEuclidean',... 
%     'start',SPTS,'Options',opts); 
%  

 
%% Sensitivity and Specificity Calculations           

  
% Let A (or parameter 1) be the True Positive. 
A1=0; % A1 = # of sample 1's belonging to cluster 1, True +ve 
A2=0; % A2 = # of sample 1's belonging to cluster 2, Flase -ve 
D1=0; % D1 = # of sample 2's belonging to cluster 2, True -ve 
D2=0; % D2 = # of sample 2's belonging to cluster 1, False +ve 

  
 for w=1:m  
    if idx(w)==1 
        A1=A1+1; % true +ve 
    else 
        A2=A2+1; % false -ve 
    end 
 end 

  
 % for the second half of "idx" belonging to sample 2. 
 for w=m+1:m+j  
     if idx(w)==2 
         D1=D1+1;  % true -ve 
     else 
         D2=D2+1;  % false +ve 
     end  
 end  

 
sens_A=A1/(A1+A2)*100; % sensitivity for A=tp/(tp+fn) i.e. portion of  

        % A's correctly idetified as As. 
specif_A=D1/(D1+D2)*100; % specificity for A= tn/(tn+fp) i.e. portion of 

     % D's correctly identifed as D's  
% measures of performance are  
pos_rate=A1/(A1+D2)*100; %positive predictor value for the tp/(tp+fp) 
neg_rate=D1/(D1+A2)*100; %tn/(tn+fn), the negative rate is the portion 

 %of the negative tests found that are actually true negatives. 
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%% PLOTTING 

  
% if (sens_A >=90 && specif_A >=90)%% || (sens_A >=93 && specif_A >=87) 
pos1=[0.1 0.15 0.37 0.715]; % horizontal 
pos2=[0.58 0.15 0.37 0.715]; % horizontal 
pos3=[200 200 720 325];% for Matlab v.2010  
figure(J)  
% plot A and D categorized from histology 
subplot(1,2,1,'Position',pos1) 
     plot(temp_xA, temp_yA, 'b^','MarkerSize',5) 
        hold on 
    plot(temp_xD, temp_yD,'r.','MarkerSize',12)                
        v=axis;            
            %gscatter(XY(:,1),XY(:,2),GROUP,'br','^*',5); 
        xlabel(x_name,'Interpreter','none'); 
        ylabel(y_name,'Interpreter','none'); 
%        legend(name_A,name_D,'Location','NorthEast') 
%            set(legend,'FontSize',8,'Interpreter','None') 
        title([temp_P2,' vs. ',temp_P1]); 
        box('on');  
% plot A and D categorized by K-means         
subplot(1,2,2,'Position',pos2)        
    plot(XY(idx==1,1),XY(idx==1,2),'b^','MarkerSize',5) 
        hold on 
    plot(XY(idx==2,1),XY(idx==2,2),'r.','MarkerSize',12) 
    plot(C(:,1),C(:,2),'kx','MarkerSize',10,'LineWidth',2) 
    plot(C(:,1),C(:,2),'ko','MarkerSize',10,'LineWidth',2) 
        xlabel(x_name); 
        ylabel(y_name); 
%        legend(name_A,name_D,'K-Mean','Location','NorthEast') 
%            set(legend,'FontSize',8,'Interpreter','None') 
        title([name_A,'  SN = ',num2str(sens_A,3),... 

'%  SP = ',num2str(specif_A,3),'%']); 
        %set(gca, 'Xlim', [v(1) v(2)], 'Ylim', [v(3) v(4)]); 
        axis(v) 
        set(gcf, 'Position', pos3); 

  
pause(1) %pause 1 sec. so video card can catch up 

  
outname=strcat(label_1,'_',label_2,'__',num2str(sens_A,3),'_',... 
     num2str(specif_A,3),'.bmp'); 
 

saveas(figure(J), outname, 'bmp') 

  
results= [sens_A specif_A pos_rate neg_rate]; 
labels=[{label_1} {label_2}]; 
km_results=struct('idx',idx,'kmeans_centroids',C,'SUMD',SUMD,'D',D); 
Centers=[C(1,1) C(1,2) C(2,1) C(2,2)]; 
true_false=[A1 A2 D1 D2]; 
starts=[SPTS(1,1) SPTS(1,2) SPTS(2,1) SPTS(2,2)]; 

 
 

END GIKmeans_6.m 


