

WORKBENCH FOR MODELING AND OPTIMIZATION

OF DIVERSE NETWORKS

WORKBENCH FOR MODELING AND OPTIMIZATION

OF DIVERSE NETWORKS

By JUNAID AZIZ, M.Sc.

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfilment of the Requirements for the Degree Master of Science

McMaster University © Copyright by Junaid Aziz, April 2012

ii

MASTER OF SCIENCE (2012) McMaster University

(Computing and Software) Hamilton, ON

TITLE: Workbench for modeling and optimization of diverse networks

AUTHOR: Junaid Aziz, M.Sc. (Mohammad Ali Jinnah University, Pakistan)

SUPERVISOR: Dr. Vladimir Mahalec

NUMBER OF PAGES: ix, 71

iii

Abstract

This work describes an architecture which enables experiments in optimization of

networks that represent systems in diverse application domains, e.g. multi-product food

production plants, gasoline blending and shipment, heat exchanger networks in refineries,

etc. The prototype implementation is a web-based workbench (NOPT). Design of the

workbench enables instantiation of different application domains via attributes describing

entities (materials, energy) flowing through network arcs, and via node models relevant to

the domain. From data describing the network attributes, NOPT generates a mathematical

model described by a set of linear equations and provides a user with abilities to select

appropriate solution algorithms. Multi-step composite algorithms, each solving a

subnetwork or an entire network for specific time periods can be constructed with input

from the user. Some of the steps in the algorithm can be non-linear procedures which

compute specific model parameters. Hence, the architecture enables solution of bilinear

systems of type “x*y” (e.g. energy balances) by first solving for “x’ (e.g. mass flows)

from some other set of equations (e.g. mass balances) and then solve for “y” since “x’ is

known. Current architecture of NOPT also supports the inclusion of external node models

that helps user to import his customized node models into the workbench via the feature

called User Node.

iv

Acknowledgements

First of all I would like to thank Almighty Allah for giving me courage and skills in order

to be what I am today. I like to thank my supervisor Dr. Vladimir Mahalec for supporting

me and guiding me throughout the completion of this thesis. I would like to thank my

team members (names in alphabetical order) Erik Rafael and Shefali Kulkarni for being

part of developing this software. Also, I like to thank Pedro Castillo for testing NOPT

interface by solving different problems and providing his feedback. Lastly, I like to thank

my parents, brother and sister for bearing me and encouraging me through tough times.

v

Contents

Contents

Introduction .. 1

1.1 NOPT: Network Optimization Tool ... 3

1.2 Node Libraries ... 4

1.3 User Node ... 5

1.4 Stream Library ... 6

1.5 Results Analysis .. 6

Architecture View ... 7

2.1 Architecture Constraints and Principles .. 10

2.2 Architecture Representation ... 12

2.3 Functional View .. 13

2.4 Process View ... 14

2.5 Logical View ... 15

2.6 Physical View .. 16

Graphical User Interface ... 18

3.1 Workflow .. 20

3.2 Design Rationales .. 21

NOPT Controller... 24

4.1 Data Handling ... 25

4.2 Controller Execution Flow (Pseudo Code) ... 27

4.3 Case Study: Gasoline Blending Problem .. 29

4.3.1 Network Topology ... 30

4.3.2 Stream Properties ... 33

4.3.3 Calculation Phases ... 34

4.3.4 Set Parameter Data... 35

vi

4.3.5 Computational Sequence & Solver Parameters ... 37

4.3.6 Numerical Results .. 39

Conclusion and Future Work ... 42

Documentation.. 43

A.1 Doxygen .. 43

A.2 Star UML .. 45

A.3 NOPT Documentation Screenshots .. 45

Use Case Details ... 48

Node Model Design .. 68

Bibliography ... 70

vii

List of Figures and Tables

Figure 1: Icons Representing Node Models ... 5

Figure 2: Top Level Architecture Diagram .. 8

Figure 3: Architecture Standards ... 11

Figure 4: Use Case Scenarios for Application Interface .. 13

Figure 5: Use Case Scenarios for Model Building.. 14

Figure 6: Interface Diagram .. 15

Figure 7: Activity Diagram ... 16

Figure 8: Deployment Diagram ... 17

Figure 9: GUI Work Flow ... 21

Figure 10: Controller Work Flow ... 25

Figure 11: Enter New Model Information .. 30

Figure 12: Set Node Title and Template Information ... 31

Figure 13: Set Stream Information and Port Selection.. 32

Figure 14: Complete Model ... 32

Figure 15: Properties related to Model ... 33

Figure 16: Set Stream Properties for Model ... 34

Figure 17: Set Calculation Phases.. 35

Figure 18: Parameter Data For Multiple Time Periods ... 36

Figure 19: Parameter Data For Single Time Period .. 37

Figure 20: Adding New Computational Sequence.. 38

Figure 21: Setting Solver Parameters ... 39

viii

Figure 22: Run Validation Checks ... 40

Figure 23: Find A Solution .. 41

Figure 24: Showing documents directory structure for all the components 46

Figure 25: Showing links to UML diagrams .. 46

Figure 26: Partial Collaboration Diagram for Main Controller ... 47

Figure 27: Partial list of class members for Main Controller class .. 47

Figure 28: Designing Cost Node ... 69

Figure 29: Setting Properties for Cost Node... 69

ix

List of Abbreviations and Symbols

NOPT Network Optimization Tool

UML Unified Modeling Language

.NET Framework Microsoft Framework used to run applications

ASP.NET Programming language used for web development

ASCII American Standard Code for Information Interchange

ADO.NET ActiveX Data Objects for .NET

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

1

Chapter 1

Introduction

Modeling, scheduling and production planning are major research topics in

process industries. Researchers have solved many supply chain problems (e.g. gasoline

blending, production of food bars, shipping of multiple liquid products vi a pipeline, etc.)

using network modeling technique. In this technique all the components of a particular

problem are termed as nodes and connections between components are termed as edges.

For example in a gasoline blending problem Tanks and Splitters will be represented by

nodes while streams coming in and going out from each of these nodes will be

represented by edges. Due to high efficiency and popularity of this technique, tools for

modeling network and solving problems are available today from software vendors, such

a AspenTech, i2 Technologies, Oracle,SAP etc. Production planning and scheduling in

various industries are typically solved either by special purpose tools developed for such

industries or (e.g. refinery planning via AspenTech’s PIMS) or by generic tools (e.g.

LINDO or AMPL). Special purpose tools incorporate domain knowledge and user

interfaces that make it easy to solve problems in a given domain. Generic tool can model

any kind of problems, but require that a user works at the level of individual equations.

Among researchers, use of Microsoft Excel in combination with Microsoft Access and A

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

2

Mathematical Programming Language (AMPL) has become common [1]. Some

researchers have also proposed tools based on simulation modeling for solving such

problems [2] [3]. A model used in simulation can capture a lot of detail about a specific

system, but the complexity of the model is dependent upon the purpose of the simulation

that will be “run” using the model. However, it is known that accuracy of the results

generated by using these simulation tools is highly dependent on accuracy of the

simulation representing a particular physical system [4]. Also, so far such efforts have

typically led to building network models to solve particular problems fulfilling specific

scenarios only [5][6]. Most of these tools are either employed by a single user or by

multiple users with no collaboration among the users. User interface of a network

optimization tool provides capabilities for building models and manipulating values.

Also, it controls how the user view results, influences how the user understands results

and hence influences user choices.

The goal of this work is to design and develop a multi user web based network

optimization tool that:

 Can be used to model networks belonging to different, diverse business

domains.

 Is able to solve subsets of equations describing the network, e.g.

o Solve only material balance equations, or

o Solve volumetric flows and (quality*flow) equations

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

3

 Enables a user to configure a network model for a given domain by using

predefined models of nodes and network arcs (streams) , corresponding to

the specific domain.

 Can solve various applications on the network (e.g. planning of material

flows through the network) or its subnetworks (e.g. energy use

optimization in a plant that is a subset of the total network).

Such a software will not only make it possible to model different types of

networks rapidly but also be handy in constructing solution algorithms that utilize

either mathematical programming or evolutionary optimization algorithms or their

combinations.

The remainder for this chapter describes at a high level key functional capabilities

of the NOPT system. This will provide the reader with an understanding of the

functional requirements that are the basis for architectural design.

1.1 NOPT: Network Optimization Tool

 NOPT is a web based network optimization workbench where multiple users,

regardless of their geographic locations can build network models, schedule production or

optimize production plans. Users can build new models, persist them in their individual

repositories for later editing, build custom reports and share their models with other users

by changing the “view” property of the models to “public”. Public models grant read only

access to the users other than the owner of these models. Access to the workbench is

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

4

granted based on two type of roles “Administrator” and “User”. Administrators have full

access to the workbench that includes updating node libraries for applications and setting

appropriate icon representation for each of them, updating model templates, updating

stream properties, etc. The users have limited access to the workbench that allows them to

build new models and solve them, update or remove their models, view models built by

other users and import them to their repositories, manage their model repositories, build

charts and reports, etc. Each user selects an application domain, which causes NOPT to

provide him access to the libraries of node models and material properties specific to that

domain. Only Administrator of the workbench can attach such libraries and material

properties to a particular domain.

1.2 Node Libraries

 Any supply chain or manufacturing system can be represented as a network consisting

of nodes that process or store materials. Each node connects to the incident streams via

ports. In real plants, ports can be placed where pipes connect to the process equipment or

ports can be doors on the warehouse storing material that is being delivered via some

transportation devices. In NOPT, node is described by equations that model the

transformation taking place in the node. Our convention is that every entity appearing in

the node equation is a variable. This means that vector of variables describing the

network contains individual entries for all coefficients and all variables. Such approach

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

5

allows us to pose problems where coefficients of the equations are computed if the

variables are set to some specific values.

 NOPT workbench contains a library of node models representing different network

types such as Gasoline Blending, Pipeline, and Heat Exchanger etc. Each node model is a

generic representation of equations for a given model type. Some of these node models

along with their iconic representation are shown below:-

Figure 1: Icons Representing Node Models

1.3 User Node

 NOPT also allows user to add his equations generated outside the NOPT workbench

environment. User can embed these equations with the help of User Node which is a

special type of node that can be made part of the model. Currently, this type of node is

representing two types of templates one that takes single input and multiple output and

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

6

other one that takes multiple input and single output. More templates will be attached to

this node in future.

1.4 Stream Library

 Streams are used to transfer material from one point to another point in the Network

model. These streams differ from one application area to another such as streams

describing gasoline blending components are described by Volumetric Flow, RON, MON

etc. Therefore, modeling of a network for specific application area requires that the

streams in the network be described by a stream class containing the required attributes.

Since NOPT is able to handle multiple subnetworks therefore more than one stream class

can be used to describe the streams in the whole model.

1.5 Results Analysis

 Currently all result analysis are being done using Microsoft Excel. Once the solution

to the model is found then results are stored into a database table by the Controller.

Operator can then generate different charts based on that data. At present this is a manual

process. However, in future NOPT workbench will have reporting and analysis

component integrated to it which will let operators to generate reports and charts online

using Microsoft SQL Server Reporting Services.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

7

Chapter 2

Architecture View

The technical architecture of NOPT is described in the following terms:-

 Architecture Constraints and Principles: decisions about implementation,

messaging between different components, persistency, data transfer and error

handling

 Functional and Non-functional requirements: represented by use cases that

describe the main functionality provided by workbench

 Domain concerns focusing on commonly agreed templates representing key

information

 Design of required components and interfaces provided by these components

 Information display, data security, authentication of registered users and

workbench administration

 Deployment standards for the whole workbench

Currently architecture of NOPT consists of four major components which are User

Interface, Model Management, Controller and Data Access.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

8

Figure 2: Top Level Architecture Diagram

A. User Interface

NOPT interface has been implemented on .NET Framework. Model of a network is

built via drag & drop of the generic node model icons on the canvas and connecting them

by arcs (streams). User selects a class of attributes describing the material in the streams

and also specifies node parameters (e.g. max. storage capacity). Specification of node

parameters instantiates the generic node model and makes it specific to the given node.

The user interface, written in ASP.NET, provides various forms and editing tools to

specify “applications”. An application is a subnetwork for which computations will be

carried out. In other words, multiple computational subnetworks can be defined for the

same network topology. A subnetwork is described by its nodes, stream properties,

starting and ending time period. Computational sequence for multiple subnetworks can

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

9

also be provided, including invocation of operator defined procedures at any

computational step. Operators can also configure the look and feel of the interface

according to their needs and likeness or dislikeness. Since user interface is compatible with

all commonly used web browsers such as Firefox, Internet Explorer and Chrome etc.

therefore this workbench is accessible from any location that has an Internet access.

B. Model Management

This component enables operators to edit their existing models, change view properties

of models by either setting them to public or private, persist models in their model

repository and delete models from the model repository etc. Model ownership is managed

via model view properties. An existing network model can be edited or copied into a new

model and then edited. This facilitates network model sharing among operators.

C. Controller

Once operator is finished building the model then the Controller starts generating the

topology information, stream properties, node model information, solver parameters and

proceeds towards finding the solution of the problem. Controller determines the execution

flow starting from the model definition until it is solved. The first step is to generate all

equations describing each node in the network. This is followed by assembling equations

and variables for each subnetwork (based on the nodes included in each subnetwork and

the attributes that describe the streams in that subnetwork) for as many time periods as

specified by the operator. Supply and demand for each time period are computed from

their respective data for the time horizon that is being modeled. Finally, the Controller

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

10

invokes the solver specified by the operator and persists the results in the SQL Server

database.

D. Data Access

Topology information of all network models built by an operator, generic node models

(model templates), stream properties that can be “processed” by the node models, demand

and supply data, and results (intermediate and final) are persisted in the Microsoft SQL

Server database. This component is responsible for performing add, remove and update

related operations in the database.

2.1 Architecture Constraints and Principles

 Now a days focus has been shifted from standalone desktop applications to online

multi-tier applications so that users can access and operate them from anywhere in the

world. This also allows different users to collaborate, share their knowledge and

experiences based on the usage of such online applications. Therefore, considering the

current trend and standards, the architecture of NOPT has been designed using web based

protocols. This enables the tool to handle requests made by the users online. All these

requests are first handled by the web server and then forwarded to the application

modules for processing. Some custom standards related to the NOPT tool have also been

set as denoted by * in Figure 3.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

11

 Figure 3: Architecture Standards

Security standards denote the user authentication, data privacy and data management.

Access to the online workbench is granted to the registered users only through a unique

user id and password. User accounts can be created or modified by the administrator only.

Every user has his own view of the workspace which prohibits him to view other user’s

workspace. Some portal standards related to the work flow and presentations of interface

have also been set. This web portal has been designed and made functional in such a way

that user is aware of every step it takes to build a new model until finding the optimized

solution for that model. Through the interface user is given different entry points during

the process of solving a model. Using these entry points users can make appropriate

changes at any point of time and those changes will be reflected in the solution instantly.

Since the architecture of NOPT is based on different components therefore some message

standards in form of ASCII files have been set to help components exchange information

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

12

with each other. Examples of such files are NET_DEFINITION which holds the

information of subnetworks belonging to a network model along with phases and

equations types, SOLVING_PARAM which holds solver information including solver

name and parameters for each subnetwork, etc.

2.2 Architecture Representation

 UML specification of the system has been divided into following four views:-

 Functional View: Describes the actors and use cases for the system, this view

presents the need of the user and is elaborated further at the design level to

describe discrete flows and constraints in more detail.

 Process View: Describes interfaces provided by components of the system. Also,

shows interaction of the components.

 Logical View: Shows complete activity detail of building model until finding an

optimized solution.

 Physical View: Describes potential deployment structure for the system including

Operating System, Database vendor, Platform information to host components and

hardware information.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

13

2.3 Functional View

 Figure4, 5 and 6 present the user perception of the functionality provided by NOPT.

These use cases were synthesized while considering all the requirements but do not

include descriptive text. Putting aside overriding architectural constraints outlines above,

all development (in terms of design and content documentation) has been done in support

of one or more of the following use cases. Details of all the use cases are provided in

Appendix B.

Figure 4: Use Case Scenarios for Application Interface

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

14

Figure 5: Use Case Scenarios for Model Building

2.4 Process View

 The diagram below demonstrates how to present NOPT components in the UML [8]

which expose set of interfaces. These components include NOPT Site, MainController,

Assembler, NOPTGenerator and Solver. Assembler component makes use of another

library component called NOPT++. By separating the notion of a component which is an

actual software entity that exists at some identified end point from the interfaces which

are a specification of some set of behavior we gain the flexibility to reuse common

interfaces across number of components. In this way an interface can be identified as a

stand-alone entity, versioned and managed independently from any component that

implements it (in UML terms the component realizes the interfaces).

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

15

Figure 6: Interface Diagram

2.5 Logical View

 Activity diagram below gives the detail view of NOPT work flow along with an

appropriate description. Steps to find an optimized solution of a model are identified by

step number. Controller is the main driver which supervises the whole process of finding

the solution and make sure all the pre-requisites have been met before moving to the next

step by performing different validation checks on the results obtained in the previous step.

View of all the models are restricted based on user access level. Owner of the model has

full access on that model however other users have just view level access to that model.

Once the solution is found then the results are saved into the Database from where

appropriate reports and graphs are generated for analysis purposes.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

16

Figure 7: Activity Diagram

2.6 Physical View

 NOPT tool is deployed in .NET environment running on Windows Server. Figure9

shows the detailed deployment structure. Net Diagrammer toolkit from MindFusion[10]

is used to provide a Canvas where models can be built using different model libraries and

streams connecting each other. Assembler and Solver Executive components have been

implemented in C++ running as standalone executables. Database operations are

performed using ADO.NET control. Only components running in .NET environment

access database to perform different operations.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

17

Figure 8: Deployment Diagram

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

18

Chapter 3

Graphical User Interface

 NOPT workbench can be populated with knowledge (node models, properties of

streams) corresponding to different domains. This enables an operator to select a specific

domain (e.g. gasoline blending) and configure the network models with minimal effort. A

model library representing models pertaining to the selected application area becomes

visible in the GUI. For example, when operator selects gasoline blending (“GB”) as an

application area, then all the model library containing tanks, stream splitters, blending

tanks, etc. is activated in the GUI. Every library model is represented by a distinct shape

and the associated generic model equations (model template). Alternative node models are

available when appropriate, and an operator can select the model best suited for the

application. Shapes in the libraries have been designed to convey the meaning of the

underlying model, e.g. Heat Exchanger model is represented by a shape that is divided into

four different color blocks where each block represents a specific port type, e.g. the red

block on the left represents the hot inlet port, yellow block on the right represents the hot

outlet port, green on the top represents the cold outlet and blue on the bottom represents

the cold inlet port. Only Administrator of the workbench has access to add custom shape

libraries. Once the network is configured, the operator specifies subnetworks that are used

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

19

for computation (by default, the entire network is one computational subnetwork). For

each subnetwork, operator selects property set containing list of properties describing

every stream in that subnetwork. Operator is then asked to set initial values for the

equipment parameters for each of those templates used in that subnetwork. After that the

entire network information (topology, parameter values and stream properties information,

node models) are saved in the database. The network topology model along with its

subnetworks also becomes visible in the operator’s model repository. Each application

area has associated default set of equations (by equation type) that describe the

transformations that nodes carry out on the incident streams. Hence, the operator needs

only to specify for each subnetwork the solver engine to be used and its parameters. Prior

to invoking the solver, after the time periods are specified, the Controller populates the

variables and constraints with the demand and supply constraints. The same process is

repeated for every subnetwork in the computational sequence specified by the operator.

This enables construction of complex algorithms, e.g. solve supply chain network

planning, and that followed by solving problems for subnetworks. After obtaining the

results if an operator wants to change parameter values, demand or supply values or solve

the same model for different time periods then instead of repeating the whole process,

operator is given an option to change the required values and re-invoke the solver. In this

way operator can obtain the optimized results by running different tests on the

subnetwork(s) and analyze them. Interface also allows user to build new model from an

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

20

existing model with different model information such as Model Name, Total Time

Periods, etc.

3.1 Workflow

 Diagram below shows the workspace that user will see when he logs into the system

which helps user guide through the process of building new model from scratch or

building a new model from an existing model, updating model, setting model parameters

and finding solution etc. As shown in Figure9, NOPT is basically comprised of five main

sections described below:-

a) Start: It allows user to select business area, set new model information and make

changes to an existing model.

b) Network Specification: It lets user to build new model using different node

libraries, add subnetworks and setting stream properties. It also help user setting

any simulation parameters for the model and building calculation phases for each

subnetwork of the model.

c) Data: It allows user to set parametric values such as demand data, supply data,

Max flow, Min flow, etc.

d) Solve: Here user will be defining computational sequence, selection of solvers and

their parameters and invoke the solver to find the solution. As described above

before finding a solution to the model Controller’s job is to validate whether all

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

21

the pre-requisite have been met or not. That validation check will be run at this

level.

e) Analyze: Finally, once solution is found and saved in database, user is shown

different charts and reports to perform analysis on those results.

Figure 9: GUI Work Flow

3.2 Design Rationales

 In order to keep NOPT interface simple and efficient some important design decisions

have been made. With the help of these decisions it has been made possible that a novice

user will not have to read manuals in order to start using this interface because workflow

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

22

diagram shown on workspace is self explanatory. These design decisions are mentioned

below:-

a) NOPT interface doesn’t have single entry point rather it has multiple entry points

which makes it easy for the user to jump to a particular section straight away

without digging into multiple pages.

b) Size of the interface has been kept compact by limiting the number of pages

because web interfaces clotted with lot of pages always tend to confuse users.

c) Unnecessary input from the user is avoided. Most of the input fields or check

boxes are set automatically with default values. So in order to complete a certain

operation all he needs is a click of the button unless he wants to set different

values.

d) Informative messages are displayed wherever required. These messages are quite

helpful to guide the user throughout the completion of a certain operation. Also, it

helps user identity correct input data.

e) Every page that requires input data from the user is equipped with Clear button to

clear the entries at once. This is quite common practice especially in web

development and has proven to be quite effective.

f) Since a subnetwork can be solved either for single time period or multiple time

periods and it is highly likely that model parameters will overlap for all the time

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

23

periods therefore an option is provided in the interface which allows user to set

same value for all the time periods.

g) All the messages generated by the Controller throughout the process of finding the

solution are logged and displayed to the user, informing him about the outcome of

every operation with the status either Success or Failure along with brief

description.

h) Solve button is used to invoke the solver for finding the solution of a problem.

Initially, this button is disabled which enforces the user to click the Validate

button first that eventually asks Controller to run different validation checks on

the values which have been set for the model. If Controller returns with the status

OK then Solve button becomes enable otherwise an informative message is

displayed to the user.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

24

Chapter 4

NOPT Controller

 Controller is the core component of NOPT workbench software. It keeps track of all

the operations necessary to perform in order to find a solution to the model. Figure10

shows the process which is followed by an operator to build a new model and find an

optimized solution to it. Once the new model is built by the user then Controller generates

the equations and required variables for that model. Next step is to set the values and

bounds for those variables. Controller then tries to assemble the equations as per the

criteria set by the operator. Finally operator is given an option to define any

computational sequence using which his model is going to be solved. Before invoking the

Solver to solve the model, Controller performs the check whether all the prerequisites

have been met or not. At this point if it finds any property or important information for

this model missing then it uses the default set of properties most appropriate for this

model just to avoid any abnormality during the process of finding an optimized solution

to this model. Lastly, based on the appropriate solver selection made by the operator,

Controller tries to solve the model according to the computational sequence already set by

the operator. After getting the results from the solver, Controller saves all the results in

the Database for persistency and reporting purpose.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

25

Figure 10: Controller Work Flow

4.1 Data Handling

 Controller deals with two different types of data handling operations. One is to

exchange information between components and other is data persistence. Since NOPT

components have been developed in two different type of environment C++ and C#

therefore information sharing between these components has been achieved using ASCII

files. Currently there are 10 such files which exist in the system providing different set of

information. Besides to these ASCII files, Controller also creates a separate XML file for

every system id which can be used by the GUI to allow user to make changes in the

model and set different parameter values. Detail of each file is mentioned below:-

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

26

 Model_Name.xml: Describes the detailed information for the model including

template id assigned to the node, stream class, node and stream names etc.

Controller creates this file every time a new model is built by the user.

 NET_Definition.txt: Holds all the information regarding the subnetworks

belonging to a model. Controller creates this file.

 Solving_Params.txt: Lists all parameters that must be sent to the solver engine to

compute the solution of a model. Controller creates this file.

 Solution_subnetid.txt: Lists all retained variables assigned to a particular

subnetwork of the model with their respective values once the solver finishes the

computation. Controller creates this file.

 NET_Matrix.txt: Holds all information coming from the database to create

coefficients of all the equations. This file is created by NOPTGenerator.

 NET_Vars.txt: Holds all information coming from the database to create all

variables to the model. This file is created by NOPTGenerator.

 NET_Equations.txt: Holds all information coming from the database to create all

equations to the model. This file is created by NOPTGenerator.

 ABig.txt: Specifies the coefficients of the equations, inequalities and objective

function of the RHS data structure of the model. Assembler creates this file when

it assembles all the equations by equation types.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

27

 RHS.txt: Specifies the information related to the RHS of the equations of the

model. Assembler creates this file when it assembles all the equations by equation

types.

 Xbig.txt: Specifies the information related to the variables of the model.

Assembler creates this file when it finishes generating all the model variables

 Var_Name.txt: Specifies all variable names and parameters used in the mode.

Assembler creates this file when it finishes generating all the model variables.

With the help of Data Access object from time to time Controller keeps performing

different database related operations such as storing the data, updating the data, etc.

Controller updates the database with all the information of a model from the time it is

built until a solution is found by the solver. Once the solution is stored in database then

it can be used for different analysis and reporting purposes. Database tables which are

affected in such case will be discussed step by step when we will try to build a small

gasoline problem and find an optimized solution using NOPT in a section below.

4.2 Controller Execution Flow (Pseudo Code)

 Pseudo code below shows the execution flow of the Controller in terms of making

calls to other components and data handling in result of these calls. It can also be seen in

the following code that Controller also performs check on the existence of required file

before moving forward. Before moving forward to the next step Controller performs a

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

28

check on the existence of these files. If it finds any of these files missing then it reports

that as an error the logger and take appropriate action based on that.

ROUTINE NOPT_CONTROLLER

1. (Path, Ret, Model.xml) : = Call BuildModel (Path,Debug)

2. IF Ret = 1 AND (Model.xml) Exist = TRUE then

3. (Ret, Net_Matrix.txt, Net_Vars.txt, Net_Equations.txt) := Call EGProgram

4. (Path,Debug)

5. IF Ret = 1 And (Net_Matrix.txt, Net_Vars.txt, Net_Equations.txt) Exist =

6. TRUE then

7. (Ret,Net_Definition.txt) := Call Create_Phase_Seq_TP(Path,Debug)

8.

9. IF Ret=1 And Net_Definition.txt Exists = TRUE then

10. (Ret, XBig.txt, Var_Name.txt) := Call GenerateVariables

11. (Path,Debug,Net_Matrix.txt, Net_Vars.txt,

12. Net_Equations.txt , Net_Definition.txt)

13.

14. IF Ret=1 And (XBig.txt, Var_Name.txt) Exist = TRUE then

15.

16. IF Ret = 1 And XBig.txt Exist = TRUE then

17.

18. For(subnetid : = I to totalsubnetworks)

19.

20. While(Reassemble)

21. (Ret, RHS.txt,ABig.txt) := Call

22. AssembleEquations(Path,Debug,subnetid)

23. END While

24.

25. IF Ret = 1 And (RHS.txt, ABig.txt) Exist = TRUE then

26. Ret := Call UpdateVars(Xbig.txt, Var_Name.txt,Debug)

27. (Ret, Solving_Params.txt) := Call SolverSelection (Debug)

28. (Ret, Solution_subnetid.txt) := Call SolverExecutive (

29. Path,Debug, XBig.txt,RHS.txt,

30. ABig.txt, Solving_Params.txt)

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

29

31. END IF

32. END For

33.

34. For(subnetid := 1 to totalsubnetworks)

35. IF Solution_subnetid.txt Exists = TRUE then

36. Ret := Call StoreResults (Solution_subnetid.txt)

37. END IF

38. END For

39.

40. END IF

41. END IF

42. END IF

43. END IF

44. END IF

END NOPT_CONTROLLER

4.3 Case Study: Gasoline Blending Problem

 Gasoline is an important and widely used refinery product. The biggest portion of a

refinery’s revenue comes from its production [11]. Also, its production quality provides a

competitive edge to the refineries over each other [12]. NOPT workbench has been tested

to build and solve problems related to Gasoline Blending, Pipelines and Heat Exchanger.

In this section let us walk through the process of building a small Gasoline Blending

model using NOPT interface and try to find an optimized solution. This will also help us

understand the functionality of the Controller in a better way. This model consists of three

supply nodes, four tanks, one blender and one demand node. Initially this model has one

subnetwork attached to it. Properties attached to all the streams in the subnetwork consist

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

30

of FRACTION, MFLOW, QOPEN and VFLOW. This subnetwork is going to be solved

using SPARSE and GLPK solver.

4.3.1 Network Topology

 In order to build this model user will be asked to enter some model related information

first such as application area, model name, maximum time periods and length of time.

Since our model is a gasoline blending model therefore we select Gasoline Blending as an

application area for this model and set other information as shown in Figure11. Once this

information is entered then the next step is to build the model by dragging and dropping

the appropriate node model icons from the list of icons visible on the right hand side of

the Canvas. Initially dropped icon will have no title set to it so in order to set the title and

template for this node user will have to double click on the node and enter the required

information there. Figure12 shows how to set a title of a Tank to TALK and template to

Single Outlet Tank. In this way we’ll fill out the information for every node of this model

one by one.

Figure 11: Enter New Model Information

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

31

Figure 12: Set Node Title and Template Information

After this we’ll set the stream information for every link that connects one node to the

other by just double clicking on that stream link. This stream information consists of

name of the stream, outlet port of the node stream is coming from and inlet port of the

node stream is connecting to. Figure13 shows how we are setting this information for the

stream that connects source SALK to tank TALK? Figure 14 shows the final view of the

model after setting its node and stream information correctly. Now at this point by just

clicking Save Model button a new model will be built and an xml file with name

Blending One Product_1.xml storing all the model information will be created in the user

root directory. The entire model related information such as model name, total time

periods, start time, end time, etc. will be inserted in AMST_PROC_SYS table. A new

subnetwork id 1 along with application id GB (Gasoline Blending) will be inserted in

AMST_APP_SUBNET table. NET_NODE_MODEL table will be updated with all the

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

32

node models this new model consists of. Finally NET_TOPLOGY table will be updated

will all the topology related information such as nodes and streams connecting to all the

nodes.

Figure 13: Set Stream Information and Port Selection

Figure 14: Complete Model

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

33

4.3.2 Stream Properties

 Now our model is built and we need to attach stream classes to our model. So, from

workspace page we will click on select stream classes link which will take us to the page

where we can select stream properties for our model as shown in Figure 15. By clicking

on the Stream Properties button a pop window will appear showing the list of stream

properties which user can choose from. Figure 16 shows the list of properties we have

selected for our gasoline blending problem. User can always come back to uncheck the

selected stream properties. Clear button here will help user uncheck the checked

properties all at once and start over again. Once the user clicks the SetProperties button

then AMST_STRM_PROP table will be updated with all the stream properties that are

selected to be attached to our new model.

Figure 15: Properties related to Model

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

34

Figure 16: Set Stream Properties for Model

4.3.3 Calculation Phases

 Solution of the model can be tweaked by changing the order of equations to be solved

by the solver. Change in such order is managed by different phases. These phases define

the order of equation types to be computed while find the solution to the problem. Every

equation type has a particular phase number attached to it. User makes such selection on

the Calculation Phase page where one equation type can also be attached to more than

one phases separated by comma. Figure 17 shows how are we assigning phase numbers to

the equation types for our problem? Controller updates AMST_CALC_PHASE table with

equation type and phase no for this new model once SetCalculationalPhases button is

clicked.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

35

Figure 17: Set Calculation Phases

4.3.4 Set Parameter Data

 After user defines the calculation phases Main Controller creates NET_Definition.txt

file and in turn invokes NOPT Generator and Assembler to generate required equations

and variables for the this model. NET_Matrix.txt, Net_Equations.txt and Net_Vars.txt

files are created by NOPT Generator while Assembler creates XBig.txt and Var_Name.txt

files. NOPT Generator updates AMST_EQUIP_PARAM table with all the equipment

parameters corresponding to all the node models used in this model. It also populates

NET_EQUATIONS, NET_MATRIX and NET_VARS tables in database with the

information that matches to NET_Equations.txt, Net_Matrix.txt and Net_Vars.txt files.

Initially variables in XBig.txt file are set to some default values which user is required to

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

36

change according to his problem. Since NOPT can be used to solve single time period as

well as multi time period problems therefore it allows user to set values for both type of

problem. User is provided two ways of setting the values for all the time periods. Either

he can enter the values once and let the NOPT set these values for all the remaining time

periods at once or he can enter values for each time period by himself. Figure 18 shows

how are we setting values for all the time periods at once however, Figure 19 shows in

case if we want to set different values for different periods. Once SetParameters is clicked

then Controller updates XBig.txt file with the new values corresponding to different

variables for all the time periods.

Figure 18: Parameter Data For Multiple Time Periods

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

37

Figure 19: Parameter Data For Single Time Period

4.3.5 Computational Sequence & Solver

Parameters

 NOPT can be used to create multiple subnetworks from an existing model. These

subnetworks having different set of properties and parameters can be solved by defining

computational sequences. Different type of solvers and parameters can be set to different

subnetworks in such computational sequences. Creating a new computational sequence is

very easy. User just has to click Add Sequence button which will open a pop window

asking different information about this new sequence. User enters time period length this

subnetwork to be solved for, select solver at subnetwork level and select solver for each

phase along with parameters. This whole process helps user creating one computational

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

38

sequence involving one subnetwork. Changes in an existing computational sequence can

be made by clicking the Update Sequence button. Figure20 shows how are we creating a

computational sequence for our problem that has just one subnetwork? However,

Figure21 shows the process of selecting solvers and their parameters for our test problem.

With the click of SetCalculationalSequece button Controller insert a new computational

sequence in AMST_CALC_SEQUENCE table along with the subnetwork id, start time

period and end time period value. Controller inserts the solver information against this

sequence number in AMST_SOLVING_PARAM table. Controller also creates

Solving_Params.txt file which has solver information for this model.

Figure 20: Adding New Computational Sequence

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

39

Figure 21: Setting Solver Parameters

4.3.6 Numerical Results

 After selecting the solver and setting required parameters for each solver now it’s time

to find the solution to our problem. Before invoking the solver, Controller’s job is to

make sure that all the required values have been set. This is done with the help of

Validate button on the Interface. In order to find the solution user is required to click the

Validate button first which runs different validation scripts in the background and display

the results in Informative Area. If the message displayed says All Clear then it means all

the validation scripts have returned with the status OK otherwise an appropriate error

message will be displayed to the user along with the steps need to fix the problems. This

is quite handy because interface will only invoke the solver until required information has

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

40

been entered resulting non-existence of unnecessary information validation scripts in

solver component. Figure22 shows that after clicking the Validate button Controller ran

different validation scripts on our model and returns the message saying “All Clear”

which means that all the basic information is there for this model which the solver needs

in order to find a solution. Solve button has also become enabled. Now, solution to our

model can be found by clicking the Solve button which will eventually ask Controller to

invoke the solver. Once the solver is invoked different messages will be returned and

displayed in the Informative Area section of the page just to inform the user about the

updated status of current operation. User will be seeing “Solver is finished executing

message” when solver is finished its execution. User will also be getting message in the

end detailing whether solver was able to find an optimum solution to the problem or not.

Figure 22: Run Validation Checks

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

41

Figure23 shows that an optimal solution to our problem has been found by the solver.

Since the solution is found therefore Controller will store all the results in the file called

Solution_1.txt where 1 represents the subnetwork id and inserts the results in database

table NET_VARS_SOL.

Figure 23: Find A Solution

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

42

Chapter 5

Conclusion and Future Work

 Currently we are testing NOPT to solve large scale gasoline blending and pipeline

problems which require building large models consisting of hundreds of nodes. These

problems grow rapidly in size as the number of time periods increases, potentially leading

to truly large scale problems. NOPT design enables us to model such large systems and

solve them very rapidly. Our future work will include capabilities to generate

formulations that include two-level decomposition algorithms, as well as integrated

planning & scheduling applications. Introduction of this workbench is definitely going to

help people to solve diverse problems, systemize their models and share them with other

operators. Currently we are also working on allowing operators to share their reports with

other operators same way they share their models now.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

43

Appendix A

Documentation

 From the beginning the idea was to automate the process of generating NOPT

documentation as much as possible. For this purpose open source tools were used and

integrated with our own modules where required. This gave us the benefit of maintaining

updated documentation all the time. Also, if a change was required either at Design level

or implementation level then it didn’t take too much time to reflect that change in the

appropriate documentation. Since this was made part of the standards which were set for

the development of NOPT therefore a lot of research and meetings were conducted in

order to find appropriate tools to achieve the above mentioned goal. Finally, some tools

were found meeting our needs and requirements which are described below.

A.1 Doxygen

 Doxygen [7] is an open source documentation generator for multiple programming

languages such as C#, JAVA, C++, PHP etc. which parses tags defined in the source code

and automatically generates html files for documentation. It also has the ability to

generate LATEX reference manual. This tool has been developed under Linux and Mac

OS X environment but equally compatible for Unix and Windows. Installation and

configuration of Doxygen is pretty straightforward mostly by just setting certain

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

44

properties in its configuration file that include choosing a programming language,

directory location where your source code files reside etc. Once all set then

documentation generation is just one click away. Apart from generating class member

details, Doxygen also helps generating collaboration diagrams, inheritance diagrams and

call graphs of different methods that helps user understanding the flow quite quickly as

compare to manually digging into the code which is a time consuming task. Doxygen has

vast majority of tags meant for fulfilling different requirements. Tags which have been

used mostly for NOPT documentation generation purpose are described below:-

@file: It is used to indicate that commented block contains the description for a specific

file. The name of that specific file is passed as a parameter.

@author: Every source file is making use of this tag in order to show the author

information.

@version: Since the development of NOPT was an iterative process therefore changes in

any source file was tracked through versions set for a particular build.

@date: This tag was used to show the date when this source file was created or modified.

@section: Every source file made use of this tag in order to provide brief description

about the functionality.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

45

<a href>: Since html hyperlinks to the external sources can also be set in doxygen

therefore this tag was used to provide links to UML diagram images generated through

other tools.

A.2 Star UML

 Star Uml [9] is an open source tool which helps designing UML diagrams quickly. It

also allows user to do forward engineering and reverse engineering on the source code

currently for both JAVA and C#. Besides to this it also helps an Architect to organise

design level documents and corresponding UML diagrams in hierarchical format. All the

diagrams shown above in Architecture View section have been created using this tool and

exported in image format so that these diagrams could easily be read by Doxygen

generated doc files. Integration of these image files with Doxygen is a manual procedure

as Doxygen is set to retrieve these files from a particular directory. So, whenever a

change in any of these documents is required then the updated version of the exported

image file has to be placed in that directory so that Doxygen can show the updated

diagrams on user’s next visit to such files.

A.3 NOPT Documentation Screenshots

 Screen shots below show different documentation pages for NOPT which have been

generated using the above mentioned tools.

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

46

Figure 24: Showing documents directory structure for all the components

Figure 25: Showing links to UML diagrams

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

47

Figure 26: Partial Collaboration Diagram for Main Controller

Figure 27: Partial list of class members for Main Controller class

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

48

Appendix B

Use Case Details

Use Case ID UC_1.1

Use Case Name New User Registration

Description User creates a new account to use the system

Actors User

Trigger User clicks the register link on the web page

Preconditions User is not registered

Interaction

• User clicks the register link on the web page

• User provides the information which is required for a

registration process in html form

• A registration request is made to the SharePoint server

• Server validates the information and displays an error

page informing the user to provide the correct/missing

information if it finds any problem

• If server is able to validate the information provided by

the user a new account is created on SharePoint server

and account information is stored in database.

Postconditions User is registered

Dependencies N/A

Use Case ID UC_1.2

Use Case Name User Login

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

49

Description User is Authenticated

Actors User

Trigger User clicks the login button

Preconditions User provides his user name and password

Interaction

• Authentication request is made to the server

• Server validates the information and displays an error

page informing the user to provide the correct/missing

information if it finds any problem

• If user is authenticated successfully home page is

shown to the user

Postconditions User is authenticated

Dependencies N/A

Use Case ID UC_1.3

Use Case Name User Logout

Description User is Logged out from the system

Actors User

Trigger User clicks the logout link

Preconditions User is logged in

Interaction

• Check if user has made changes in the model and

prompt him appropriately

• Logout request is made to the server

• Server accepts the request and displays an error page

informing the user if it finds any problem

• If user is logged out successfully, user is taken back to

the main page of software

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

50

Postconditions User is logged out

Dependencies N/A

Use Case ID UC_1.4

Use Case Name Clear Model

Description Clear model information from the database

Actors UC_1.3

Trigger User initiates the logout process

Preconditions
 User is logged in

Interaction

• Connect to the database

• Clear the model information from the database

• Inform the web application that database has been

cleared

Postconditions Model information in the database is cleared

Dependencies N/A

Use Case ID UC_1.5

Use Case Name Edit Model

Description User wants to edit his model

Actors User

Trigger User clicks the Model Name link on List Models page

Preconditions User is logged in

 User is seeing the models list

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

51

Interaction

• Check if model requested belongs to the current user or

not

• If it doesn’t belong to the user display an error page

saying “Access to the model is prohibited”

• If it belongs to the current user then request for model

detail is passed to the server

• Model detail is retrieved from server

• User is taken to the page where he can edit the model

Postconditions
User is able to see the page where he can edit the model

requested

Dependencies N/A

Use Case ID UC_1.6

Use Case Name Save Model

Description User wants to save the model

Actors User

Trigger User clicks the Save model button on Build Model page

 User clicks the Save model button on Edit Model page

Preconditions
 User is logged in

 User is finished building the model

 User is finished editing the model

Interaction
• Changes in the model are passed to the server

• Server persists those changes in the model

• Changes in the model are also passed to database

Postconditions
Changes made in the model by the user are persisted and

updated in database

Dependencies
Include: UC_1.6.1, UC_1.6.2

Extend: UC_1.5, UC_1.10

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

52

Use Case ID UC_1.6.1

Use Case Name Persist Model on Server

Description Changes made by user in the model are persisted

Actors UC_1.3, UC_1.6

Trigger • User initiates the logout process

• User made changes in the model

Preconditions
 User is logged in

 User made changes in the model which were not

persisted earlier

Interaction

• Changes made in the model are added to the model

structure in reusable format

• Formatted structure is sent to the server for persistence

• Server updates its local repository and acknowledges

the application of its outcome

Postconditions Changes made in the model have been persisted successfully

Dependencies N/A

Use Case ID UC_1.6.2

Use Case Name Save Model in database

Description Model information is loaded in the database

Actors UC_1.6, UC_1.12

Trigger
 User clicked the save model button to save the model in

database

 User clicked the Run Model button to run the model

Preconditions
 User is logged in

 User made changes in the model which were not saved

in the database earlier

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

53

Interaction

• Model information is forwarded to the database

• Information is updated in the database

• Acknowledgment of this action is dispatched to the web

application

Postconditions
Changes made in the model have been saved in database

successfully

Dependencies N/A

Use Case ID UC_1.7

Use Case Name List Models

Description Models created by the users are displayed

Actors User

Trigger User clicks the Existing Models icon

Preconditions User is logged in

Interaction

• Network Models along with their sub network models

are retrieved from server

• Models created by the current user are labelled as “My

Model”

• Current user is able to edit, remove and run his own

models

• Models created by others are labelled as “Others”

Postconditions Models list is shown successfully

Dependencies N/A

Use Case ID UC_1.8

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

54

Use Case Name Show Model

Description User wants to see the model

Actors User

Trigger User clicks the Model he wants to see

Preconditions User is logged in

 User is seeing the models list

Interaction

• Request for model detail is passed to the server

• Model detail is retrieved from server

• If current user is the owner of the model then show an

edit link and remove link next to the model otherwise

simply show the model

Postconditions Requested model is shown successfully

Dependencies N/A

Use Case ID UC_1.9

Use Case Name Remove Model

Description User wants to remove the model

Actors User

Trigger User clicks the Remove Model link on List Models page

Preconditions User is logged in

 User is seeing the models list

Interaction

• Detail of the model user wants to remove is passed to

the server

• Server receives the requests and sends an error message

if it finds any problem with the detail

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

55

• Server sends a reply when model is removed

successfully

• User is notified that model has been deleted

successfully

Postconditions Selected model is removed successfully

Dependencies Include: UC_1.4, UC_1.9.1

Use Case ID UC_1.9.1

Use Case Name Change Model location on Server

Description
Keep a copy of the model on the server if model remove

requested is received

Actors UC_1.9

Trigger User intends to remove a model

Preconditions User is logged in

 User is seeing the models list

Interaction

• Server acknowledges a model remove request

• Server copies the persisted file containing model

related information to a different location

• Server removes the original file containing model

information

• Server informs the application that model is removed

successfully

Postconditions Selected model is removed successfully

Dependencies N/A

Use Case ID UC_1.10

Use Case Name Build Model Page

Description Show Build Model page to the user

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

56

Actors User

Trigger User clicks the Build Model link

Preconditions User is logged in

 List of available business areas are loaded in a list

Interaction

• Connect to the server

• User selects the business area from a list of business

areas

• User clicks the build model button which shows him

the work area where he can build a network model by

dragging and dropping the node models and he can also

create streams to connect the nodes

Postconditions

 User is able to see the page where he can build a new

model

Dependencies N/A

Use Case ID UC_1.11

Use Case Name Show Canvas

Description Create a Canvas where user can build models

Actors UC_1.5 , UC_1.10

Trigger User clicks the Build Model button

 User clicks the Model Name link on List Models page

Preconditions
 User is logged in

Interaction

• Create the Canvas area

• Show the node models, stream classes belonging to the

selected business area and work area where user can

build a new model or edit an existing one

• User is notified when he can start building a model or

editing an existing one

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

57

Postconditions
User is able to see the stream classes (lines), node

models(shapes) and work area

Dependencies Include: UC_1.11.1, UC_1.11.2

Use Case ID UC_1.11.1

Use Case Name Load library of node models (shapes)

Description
Library of node models are loaded when user goes to Build

Model page

Actors UC_1.11

Trigger User clicks the Build Model button

 User clicks the Model name link on List Models page

Preconditions User is logged in

 User has selected the business area

Interaction

• Connect to the server

• Retrieve the node models library file belonging to the

business area from the server

• Load the node models along with default properties

such as template id and display them to the user

Postconditions User is able to see the node models

Dependencies N/A

Use Case ID UC_1.11.2

Use Case Name Load library of stream classes (lines)

Description
Library of stream classes are loaded according to specific

application area when user goes to Build Model page

Actors UC_1.11

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

58

Trigger User clicks the Build Model button

 User clicks the Model name link on List Models

Preconditions User is logged in

 User has selected the business area

Interaction

• Connect to the server

• Retrieve the stream classes library file belonging to the

business area from the server

• Load the stream classes along with default properties

attached and display them to the user

Postconditions User is able to see the stream classes (lines)

Dependencies N/A

Use Case ID UC_1.12

Use Case Name Run Model

Description Run the model

Actors User

Trigger
• User clicks the Run Model icon on List Models page

Preconditions
 User is logged in

Interaction

• User sets the phases and time periods for the model

• Model information is loaded into the database

• Model information is dispatched to AEG

• Acknowledgement of this action is received

• AEG generates the equations and forward them to the

solver

• Solver solves the equations and store the results back in

database

Postconditions Model information is forwarded to AEG which starts

generating equations and invoke the solver

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

59

Dependencies Include: UC_1.6.2,UC_1.12.1

Use Case ID UC_1.12.1

Use Case Name Set Phases and Time Horizon

Description
Before generating the equations for the model user sets the

phases and time horizon

Actors UC_1.12

Trigger
• User clicks the Run Model icon on List Models page

Preconditions
 User is logged in

Interaction

• User sets the length of time horizon for the complete

model including sub network

• User specifies the phases and which sub networks to be

solved in every phase

• For every sub network in every phase user defines the

number of time periods over the time horizon

• User sets the equation type for every sub network in

every phase

Postconditions
 Time horizon, number of time periods, phases and

equation type for every sub network have been set

successfully

Dependencies N/A

Use Case ID UC_1.13

Use Case Name Model Specification

Description Change the specification of a model

Actors User

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

60

Trigger
• User clicks the Model Specification link

Preconditions
 User is logged in

Interaction

• List of all the models created by user is shown to the

user

• User can go up to level 2 and join maximum of three

models together

• After selecting the models to join user clicks the

Change Model Specification button

• User can also use this page to split the models

• Once user is done all these changes are persisted on

SharePoint server.

Postconditions Model information is successfully forwarded to the

SharePoint server

Dependencies Include: UC_1.13.1

Use Case ID UC_1.13.1

Use Case Name Persist Model Specifications on Server

Description
Store the information related to sub net work model on the

SharePoint server

Actors UC_1.13

Trigger
• User clicks the Change Model Specification button

Preconditions User is logged in

 User has selected the models to join or to split

Interaction

• All the model information is forwarded to the

SharePoint server

• Information is updated in the network model file on

SharePoint server having information specifically about

its sub network

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

61

• Server sends a reply to the web application about the

outcome of this action

• Web application informs the user

Postconditions Model file on SharePoint server having information

specifically about its sub network is updated

Dependencies N/A

Use Case ID UC_2.1

Use Case Name Place Node

Description

Drag and Drop a node from node model (A node which can

only have one template attached to it but available in the

toolbar as a standard shape) library on Canvas

Actors User

Trigger
• User wants to add node to a new/existing model

Preconditions User is logged in

 User has selected the node from the node model library

Interaction

• User selects a node from the node model library

• User drags the node

• User drops the node at the appropriate place on the

canvas

• Dropped node is shown to the user

Postconditions
 Model is updated with the node user just dropped

Dependencies N/A

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

62

Use Case ID UC_2.2

Use Case Name Edit Node

Description Show menu options to user related to the node

Actors User

Trigger
• User wants to change node attributes

Preconditions User is logged in

 User has selected the node

Interaction

• User selects the node he wants to edit

• Menu appears, showing the user different options such

as node name, set template etc. related to that

particular node

• User selects the particular option to make changes

• Changes are applied to that node

Postconditions
 Changes are applied to the node successfully

Dependencies Include: UC_2.2.1, UC_2.2.2

Use Case ID UC_2.2.1

Use Case Name Set Template

Description
Every node has at least one template and every template has

different set of equations.

Actors User

Trigger
• User wants to set an appropriate template for a node

Preconditions User is logged in

 User has selected the node he wants to set template for

Interaction
• User selects the node to set template for

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

63

• User is given the options to select template he wants to

set for this particular node and any calculations he

wants to perform on the constants belonging to

equations attach to this template

• User clicks Change button to apply the changes

Postconditions
 Template is set for that particular node

Dependencies N/A

Use Case ID UC_2.2.2

Use Case Name Node Properties

Description Set properties of a node

Actors UC_2.2

Trigger
• User wants to set properties of a node

Preconditions User is logged in

 User has selected the node he wants to set properties of

Interaction

• User selects the node

• User sets different properties such as level of demand if

it is a demand node, level of supply if it is a supply

node, quantity, Octain etc.

• User clicks set to make the changes

Postconditions
 Node properties are set successfully

Dependencies N/A

Use Case ID UC_2.2.2.1

Use Case Name Create Time Sections for Demand/Supply Node

Description Level of demand and supply are set for certain time periods

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

64

Actors User

Trigger
• User wants to set level of demand and supply of a node

Preconditions User is logged in

 Node properties dialog is shown to the user

Interaction

• User sets the minimum and maximum level of demand

if it is a demand node otherwise set minimum and

maximum level of supply if it is a supply node

• User sets the start date, start time, end date and end

time for level of demand/supply whichever is

appropriate

• Level of demand or supply is split evenly between user

defined time periods if minimum and maximum levels

are different

• If minimum and maximum levels of demand or supply

for a certain time period are equal then demand and

supply will remain constant for that particular time

period.

Postconditions Levels of demand and supply have been split evenly

between the specified time periods.

Dependencies Extend: UC_2.2.2

Use Case ID UC_2.3

Use Case Name Set Algorithm

Description Sets the algorithm of the model

Actors User

Trigger • User wants to set an algorithm (LP, NLP, GLP) for the

model

Preconditions User is logged in

 User is finished building a model

Interaction
• User is given options to select algorithm for the model

(default is LP)

• User selects the algorithm and its computational

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

65

parameters

• User clicks the Select button to set the algorithm for the

model

• Algorithm for the model is set

Postconditions
 Algorithm for the model is set successfully

Dependencies N/A

Use Case ID UC_2.4

Use Case Name Connect Stream

Description Connect a stream between two nodes

Actors User

Trigger • User wants to connect two nodes with a stream in

between

Preconditions User is logged in

 User has selected the stream from stream library

Interaction

• User selects a stream from the stream library

• User drags the stream

• User drops the stream at the appropriate place on the

canvas

• Nodes are connected with the stream just dropped by

the user

Postconditions
 Nodes are connected with the stream

Dependencies Include: UC_2.4.1

Use Case ID UC_2.4.1

Use Case Name Connection Node

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

66

Description
Split the stream into two streams and joining them by

connection node

Actors UC_2.4

Trigger
• Two nodes are connected by a stream

Preconditions User is logged in

 User has just connected two nodes by a stream

Interaction

• A stream is created to connect two nodes

• This stream is split into two streams which are joined

by a connection node

• User is not seeing this connection node as it is part of

business logic

• Stream is changed successfully

Postconditions Connection node is created successfully to join the two

sub streams

Dependencies N/A

Use Case ID UC_2.5

Use Case Name Stream Attributes

Description Allow user to change stream attributes

Actors User

Trigger
• User wants to change stream attributes

Preconditions User is logged in

 User has selected the stream

Interaction

• After selecting the stream user is able to change stream

attributes

• User attaches attributes to the stream such as amount,

flows, temperature etc.

• User is allowed to select system of units such as

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

67

imperial, SI etc. SI is a default system of units.

• User clicks the Set Attribute button

• Attributes are set to the stream

Postconditions
 Attributes for the stream has been changed successfully

Dependencies N/A

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

68

Appendix C

Node Model Design

 NOPT workbench consists of library containing icon representation for every node

model which is shown to the user when he starts building either a new model or update an

existing model. These icons are created and maintained by the Administrator. This section

describes the step by step procedure of designing and inserting a new node model into the

library. All the node models shown on the canvas in NOPT workbench are saved in an

xml file which can be edited by a small utility called “LibraryDesigner” provided by

MindFusion. Designing and inserting a new node model is pretty straightforward using

this utility. Firstly, an administrator has to draw a shape which he wants to include in

node model library to represent a particular node model and then administrator assigns a

display name and ID to this newly created shape. Display name of the shape is used as

identification in the node model library file and that has to be unique in the library. ID

should match with the EQUIP_TYPE of the node model administrator wants this shape to

represent for. Figure28 shows how LibraryDesigner utility can be used to design new

shape for CostNode? Next and final step now is to set a unique display name and ID

matching EQUIP_TYPE which in this case is COST_NODE as shown in Figure29. Now

this new node model library file can be saved in NOPT workbench root directory to

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

69

become available.

Figure 28: Designing Cost Node

Figure 29: Setting Properties for Cost Node

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

70

Bibliography

[1] Bakhrankova, K. (2010): “Decision support system for continuous production.”

Industrial Management & Data Systems, 110:4, pp. 591–610

[2] Saad, S. M., Lau, K. H., Omer, A., (2009) "Design and analysis of oil production

area-A simulation approach" the 23rd European Conference on Modelling and

Simulation, Madrid, Spain., June 9-12.

[3] Herran-Gonzalez A.,De La Cruz J. M.,De Andres-Toro B., Risco-Martin J.L.

Modeling and simulation of a gas distribution pipeline network (2009) Applied

Mathematical Modelling, 33 (3), pp. 1584-1600.

[4] Heckl I., Kalocsai P., Halasz L. and Kalauz K., (2009), Event driven process

simulation of pipeline networks, Chemical Engineering Transactions, 18, 737-742

DOI: 10.3303/CET0918120

[5] F. Rømo, A. Tomasgard, L. Hellemo, M. Fodstad, B.H. Eidesen, and B. Pedersen,

"Optimizing the Norwegian Natural Gas Production and Transport", presented at

Interfaces, 2009, pp.46-56.

[6] Cafaro, D. C.; Cerda, J. Efficient Tool for the Scheduling of Multiproduct Pipelines

and Terminal Operations. Ind. Eng. Chem. Res. 2008, 47, 9941–9956

[7] http://www.stack.nl/~dimitri/doxygen/

[8] http://www.uml.org/

http://www.stack.nl/~dimitri/doxygen/
http://www.uml.org/

M.Sc. Thesis – Junaid Aziz McMaster University – Computing and Software

71

[9] http://staruml.sourceforge.net/en/

[10] http://www.mindfusion.eu/netdiagram.html

[11] Allan D Waren. Omega: An improved gasoline blending system for texaco.

Interfaces, 1989:85-101, 1989.

[12] A Singh, J F Forbes, P J Vermeer, and S S Woo. Model-based real-time optimization

of automotive gasoline blending operations. Journal of Process Control, 10, 2000.

http://staruml.sourceforge.net/en/
http://www.mindfusion.eu/netdiagram.html

