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i [NTRODUCT ION AND LITERATURE SURVEY

l.1 General

Momentum, heat and mass transfer Ee#ween blunt objects and
surrounding fluids are offen experienced in nature and technological
processes. |Industrial operations involved with a dispersion of
essentially spherical particles, include fluidization, sedimentation,
crystallization, spray drying, pneumatic transportation, deoxidation of
molten steel and many others. An example of a natural phenomenon which
is of great inferest to meteorologists fs the growth of cloud drops and
the evaporafioﬁ of raindrops. Industrial and scientific interest in
flows normal to the long axis of a circular cylinder is also significant.
Examples include, among others the shell and tube heat exchanger and
hot wire anemometfry.

Although much experimental and theoretical work has been dong
in this field of engineering, many gaps in our knowledge still exist.
Most experimental studies have involved the measurement of integrated
quantities such as the dfag coefficient and overall Nusselt number.
Detailed temperature, concenfrafion or velocity distributions measured
experimentally are almost non-existent. There are also a very Fimited
number of distributions predicted theoretically. Analytical solutions
involving limiting dimensionless parameters and solutions obtained by
matched asymptotic expansions have provided information which is

applicable only over a very small range of parameters. For example, the



Oseen solution for a single sphere in-an unbounded_fluid.is only
épplicable for Reynolds number less than about 0.1. Boundary layer
solutions, although very successful for slender bodies, are of |imited
applicability for blunt objecfs. Such solutions are reasonably accurate
from the frontal stagnation point to the flow separation point, but do
not apply past the séparafion point. lhformafion obtained from these
approaches, does not fulfill all of the requirements for the analysis
of processes of fechnological intferest. |t is for this reason that
this theoretical study of more realistic transfer models was initiated.
This theoretical study of transport phenomena around submerged
blunt objects required The solution of the complete Navier-Stokes
equations of motion for viscous, incompressible flow and continuity
equations of heat and mass transfer subject to various boundary conditions
describing different physical situations. Analytical solutions of these
equations are not to be expected because of fheir nonlinearity. However,
numerical solutions can be obfained‘by applying finite-difference
techniques. Recent solutions of complex problems in many fields indicate
that finite-difference techniques are undoubtedly a powerful tool for
obtaining numerical séluTions to non-linear partial differential equations.
For large complex problems, however, methods of solving the large sets
of non-linear algebraic equations are not efficient with respect to
computation time with a digital computer. There is a need for the
development of faster techniques for the solution of large sets of

non-1linear algebraic equations.




The following sections will critically review important
theoretical works related to convective momentum, heat and mass transfer
aroﬁnd blunt objects. Convective flow around a single sphere and
infinite long cylinder in an unbounded fluid will be considered.

{.2 Fluid Mechanics

Viscous, incompressible fiow of Newtfonian fluids around blunt
objects is governed by the well-known Navier-Stokes equation.. The only
exact and useful solution of the Navier-Stokes equations is for creeping
axisymmetric flow around a rigid>sphere in ah‘unbounded fiuid, and is
due to Stokes (1851). He neglected inertia terms and thus |inearized
the Navier-Stokes equations. This is valid fér Re - 0. The solufion-inv'

terms of stream function y*is

= f; (FI*‘ 3%+ 2%%) sin% C2=n
and the corresponding total drag coefficient CEBis
Chs™ 24/Re (1.2-2)

At a distance away from the surface of the sphere the inertia
terms dominate the flow field and Stokes' assumﬁfion is therefore not
valid in this region.

Oseen (1910) linearized the convective velocities in the Navier-
Sfokes equations by using the undisturbed free stream velocity U, and
Obtained the following analytical solution

5 Re (r*cos0)

w*= zta2e Lisino - = (1 + cos0) (I-e 2 ) (1.2-3)



and the total drag coefficient as

_ 24 3 )
Co = ig (| *+ Tg Re) (1.2-4)

This solution is valid for Re << |, and.is not exact in the vicinity
of the sphere surface.
For slow uniform streaming motion past a cylinder, there is no
Stokes solution; one that remains finite far from the cylinder surface
and that satisfies the no-siip condition on the surface. Approxima+e
solutions to this problem have been obtained by Lamb (1911) utilizing
Stokes' assumption and by Faxen (1927) and later Tomotika and Aoi (1950)
using Oseen's linearization. These solutions were later improved by
applying matched asymptotic expansion techniques after Kaplan (1957) .
.This fechnique matches the flow field to both Stokes' and Oseen's fegions
by means of a singular perturbation method, which has been used widely
to obtain more accurate solutions of the Navier-Stokes equations of ‘flow
around spheres and cylinders in the limiting range of Re << | (Kaplun
1967, Lagerstrom and Cole 1955). The work of Proudman and Pearson(i957)
is a typical example. They matched inner (Stokes') and outer (Oseen's)
solutions in the perturbation approach and obtained higher approximations

to the solutions for uniform flow disturbed by a single sphere or cylinder

in an unbounded fluid.

Recent experimental results of Maxworthy (1965) and Pruppacher
and Steinberger (1968) show that for flow around a sphere, the drag
approaches Oseen's drag rather than Stokes' drag as Re approaches zero

(Pruppacher, LeClair, and Hamielec 1970). Matched asymptotic expansion

i~




solution of Proudman and Pearson (1957) agrees very well with these
experimental investigations. However, analytical solutions by the
perturbation method are |imited by the asympfotic ranges of the para-
meters and at best provide information over a very narrow range of
Reynolds numbers 0 < Re < 0.1.

The well developed boundary layer theory for solution of the
Navier Stokes equations for high Reynolds number flows has achieved
great success in approximating flow behavior for slender bodies. However,
geometric factors must be taken into account, for instance, in problems
involving flow around blunt objects with the appearance of a frailing
vortex ring at moderate Reynolds -numbers. Boundary layer assumptions
even as Re + » are unapplicable over a good portion of the object. [t is
because of this loss in generality of the boundary [ayer approach for
the investigation of flows around blunt objects and the limited applicability
of matched asymptotic methods that numerical studies of the complete
Navier Stokes equations have lately received so much attention.

Approximate solutions of the Navier Stokes equations for viscous,
incompress%ble flow around a single sphere in an unbounded fluid have been
obtained with various methods, Kawaguti (1948), using Galerkin's error
distribution method, approximated the flow profile around a sphere at
Re > |. |t was found that a trailing vortex appears at a Reynolds number
of 40. Kawaguti's original work was later extended by Hamielec et.al.
(1963) up to Re < 5000. These approximate methods have been shown to give

insufficient accuracy when compared with solutions obtained using finite-




6

difference ftechniques (Hamielec, Hof%man and Ross [967).

At present, accurate solutions of the non-linear Navier Stokes
equations can only be obtained using numerical Technties. The most
powerful methods appear to be finite-difference techniques. There are
two main finite~difference methods of obtaining steady state solutions of
the Navier Stokes equations, namely, the steady-state methods and the
unsteady state methods. The general numerical procedures are similar.
They differ in that the derivative with respecf'$o time is dropped in
the steady-state method. Steady-state method of solving the Navier Stokes
equations was first used by Thom (1933). Flow past a circular cylinder
at low Reynolds numbers was considered. Thom spjiT the fourth-order
Navier Stokes equation in y*¥ the stream function into two second-order
equations by introducing a new variable, &% the vorticity. Allen and
Southwel | (1955) applied relaxation methods in solving finite-difference
equations for flow past a cylinder. Apelt (1958) solved the same problem
at Reynolds numbers of 40 and 44. Jenson (1959) used the steady state
method and obtained solutions for viscous incompressible flow around a
sphere for Re < 40. Russell (1962) reviewed the variety of steady-state
methods and concluded that modified successive optimum dispiacement by
points seems to be the best method giving fastest rate of convergence with
stable solutions. Of these steady-state methods, Jenson's method was
computerized by Hamielec et.al. (1967). Prior to computerization, all of
the solutions were highly inaccurate because long compufation times with

desk calculators did not permit the use of sufficiently small mesh sizes



nor proper simulation of an unbounded fluid. Good agreement of predicted
quantities (Hamielec et.al. 1967, 1969) with experimental data of Lapple
(1954), Tritton (1959), Taneda (1956) and recently Pruppacher and
Steinberger (1968) indicated the usefulness of the steady-state method
employed. Computation times were sufficiently large so as to indicate a
limitation for solution of more complex problems. Unsteady state
approach to solutions of Navier-Stokes equations for steady fiows can be
divided into -several groups depending on different difference schemes
used. Fromm and Harlow (1963) developed an explicit forward time difference
method of solving the Navier Stokes equations. Their method was used by
Thoman and Szewczyk (1966) to determine time-dependent two-dimensional
cross flow of a viscous incompressible fluid over stationary and rotating
Ccylinders and by Rimon and Cheng (1969) to study uniform flow around a
sphere. In this method, the time-dependent, fourth-order equation of
motion in ¢ *was split into the vorticity transport equation and the
defining equation of vorticity and a relaxation method is used in an
iterative scheme for each time step. Fromm and Harlow's method is limited
in the choice of a time step size due to the inherent instability of the
explicit form and thus requires many time steps to obtain a steady-state
solution. Pearson (1965) developed a new time-dependent method for
solving viscous flow problem which employs an implicit procedure.
Pearson's method is stable and a large time step can therefore be chosen
to obtain the steady-state solution. In Pearson's method, the vorticity
transport equation is approximated by an implicit Crank-Nicholson form

where the non-|inear terms, the stream function and its derivatives, are




linearized over the time interval, and an alfernafing direction implicit
method (ADIl) devised by Peaceman and Rachford (1955) is used to solve
the Crank-Nicholson approximaffon of the vorticity transport equation.
Pearson's method was used by Son and Hanratty (1969), O8sthuizen (1970)
for flow around a cylinder and by LeClair (1970) 1o study
The flow around a sbhere accelerating under the influence of gravity.
This method, usually called ADI is considered to be the fastest method
reported in the literature.

Chorin (1967) used the primitive variables (velocity and pressure) §

— T

and developed a new time dependent-method for solving the Navier Stokes
equations, which is equally applicable to problems in two or three J
dimensions. Pseudo-compressiblie flow approach is used by introducing an
artificial compreséibilify during the iteration. The method has been

used to solve Benard convection problems in three dimensions, a problem ‘
which is considered difficult to solve numerically even in two dimensions.

The important feature of Chorin's method is its direct applicability to

the solution of three dimensional problems which can not be handled by
previous methods. However, no comparison has been made of the stability

and rate of convergence with other methods.

1.3 Forced Convection

Forced convection heat and mass transfer is governed by the
continuity equations of energy or mass if it is assumed that the velocity
profile is unaffected by ftransfer of heat or mass during this process.
Therefore, the Navier Stokes equations and the continuity equation of

heat or mass are uncoupled and can be solved separately.
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Boussinesq (1905) in an early paper showed that this kind of
difficulty can be avoided if one assumes potential flow. By transforming
The geometric coordinates to flow potential and the stream function as
independent coordinates, Boussinesq found that the boundary layer type
energy equation applying to heat conduction ina two dimensional flow
field can be simplified. |In addition, if the longitudinal conduction is
neglected, then the equation assumes the same form as that for a flat
plate. The one well known solution using this approach is for forced
convection from a circular wire due to King (1914), King;s solution can
be approximated closely by two equations. Written in dimensionless form

as

2
Nu = ,» Pe < 0.08
log(2e I-o/P%
(1.3=1)
1
N =+ o+ (2Rey , Pe > 0.08
m T

Comparison with experimental data shows that Equ. (1.3-1) overesfimaqu
the heat transfer rate by up to 40%. The potential flow solution, of
course, does not satisfy the no-slip condition on the cylinder surface.
A useful piece of theory (although of |imited scope) is that
based on the Oseen approximation. This is, of course, strictly valid
only in the limit as Re » 0. Cole and Roshko (1954) found that this

approximation yields the solution

- 2 ' (1.3=2)

8
lOg-F%-O



B O S e

i oo AR

b
H
£

Experimenfal work by the same author fai{ed to substantiate their
theoretical result and it was thought that the disagreement is due to
disturbance of the two dimensional convection by +h}ee_dimensional effects.
Grosh and Cess (1958), taking the Boussinesq (1905) approach,
solved the forced convection problem numerically for a single cylinder in

cross flow and obtained

>
Nu = 1.015 (Pe)™ (1.3-3)

The calculation assumes that the heat transfer connected with vortex motion
on the rear portion of the cylinder is negligibly small as compared with
heat transfer by conduction. Comparison with experimental measurements
indicates that this assumption is justified for values of Pe < 500.

Tﬁis kind of solution is probably a good approximation for liquid metal
heat transfer because of the thick, thermal boundary layer due to the very
low Prandtl numbers for liquid metals, and that is why the neglect of
angular diffusion or conduction terms in the energy equation does not
change the overall result appreciably.

Matched asymptotic solutions for axisymmetric forced convection
around a sphere and cylinder have been studied by various authors. Acrivos
and Taylor (1962) and recently Rimmer (1969) have derived forced convection
asymptotic solutions for heat transfer around a sphere for the limiting
case of Pe <<.I. Acrivos and Taylor used Stokes' velocity profile while
Rimmer applied a more accurate velocity profile of Proudman and Pearson

(1957). Their solutions are




Acrivos and Taylor

Nu = 2+Pe+Pe2(Iog Pe+0.8239) + O.5Pe3log Re + ... (1.3-4)
Rimmer
Nu = 2+Pe+Pe2[log Pe + l(2Pr2-Pr+4o - géid
; 4 i 40" (1.3-5)
+ 2(Pr7-3Pe-2) log Pr-2(Pr+1) (Pr-2)log(Pr+1)]
The Acrivos and Taylor solution will give a lower Nu at Re » | than by

Rimmer because in Stokes' velocity profile, the term of O(Re) has been
ignored. [t will be later shown that these solutions have very |imited
applicabitity.

A simplification made to the continuity equation of heat or mass
is to remove the angular diffusion | terms. This leads
to an equafion parabolic in @, the angular coordinate. The reduced

equation follows

<
N
o

3
ar

aC 0 aC
_— - 2
v ar r 90

r =D (

n aC
+F-§F)

N

where n=| for a cylinder and n=2 for a sphere. Levich (1962) used Stokes
velocity profile for Yr and VG and solved the equation analytically for
a8 sphere. The solution which satisfies the boundary conditions

at r =R ; C = |
rﬁoo ’C:O
8=0,r>R;C

1l

can be expressed as
/3

Sh = 0.991 Pe (1.3-6)

i

Baird and Hamielec (1962) solved the same problem using velocity profiles

after Kawaguti (Hamielec et.al. 1963) for intermediate Reyriolds numbers.



LeClair and Hamielec (1968) solved this problem numerical ly using velocity
profiles calculated by finite-difference ftechniques. They considered
rigid spheres, cylinders and fluid spheres of low viscosity. This
approach of solving the continuity equation of mass or energy by neglecting
angular diffusion or conduction terms is usually called thin concentration
(or thermal) boundary layer theory. This theory is reasonable for sysfems
of high Peclet v number. However, local transfer rates so
calculated are in appreciable error, especially at the flow separation
point and in the trailing vortex. This conclusion is based on a compar i son
of experimental data with theory by Garner et.al. ( 1958, 196]..),,
Peltzman and Pfeffer (1967), Rhodes and Peeble (1965). These experimental
investigations indicate that 2 finite transfer rate should occur at the flow
separation angle rather than the zero transfer rate predicted by thin

thermal boundary layer theory.

Numerical solutions of the elliptic equafiqn which include both
angular and radial diffusion terms have been obtained for creeping flow
by Johnson and Akehata (1965) and Houghton (1967). The iterative methods
used were very slow. Dennis et. al. (1968) using Oseen type linearization
of the heat transfer equation, sélved for steady laminar forced convection
from a circular cylinder from Re = 0.0! to Re = 40.Velocity profiles were
calculated by finite-difference methods. Their solutions are in good
agreement with Those found in the present analysis. Gauss-Seide!l iterative
scheme was employed in solving the finite-difference equation. They made
no mention of the convergence rate of the method they used. Brian and

Hales (1969) solved the elliptic continuity equation for a sphere in the




creeping flow regime at various Peclet numbers. Stokes velocity profiles
were utilized. Finite-difference Teéhniques were applied tfo solve‘
smoothed (by variable transformation) continuity equation. A modified
numerical procedure of Douglas and Rachford (1956) was employed. Trans-
piration effect at the surface of the particle was also considered.

In the case of multiparticle systems, particle interaction
reduces the size of the vortex ring (LeClair and Hamielec 1968). Thin
concentration boundary layer theory gives reasonable average transfer
values. However local transfer rates can be appreciably in error. To
predict accurate local transfer rates one must solve the complete elliptic
equation with accurate velocity distributions.

l.4 Mixed Convection

The effect of free convection associated with a system of non-
uniférm temperature or concentration is often neglected in studying
convection problems. It is well known that a density variation due to
non-uniform temperature or concentration can affect the flow profile
significantly. The effect is neglected because of the complexity of the
flow of interacting free and forced convection.

A large amount of work has been done both theoretically and
experimental Iy on pure free convection phenomena, for example, the nature
and stability of Benard convection (Chandrasekhari196i) and the boundary
layer approach to solving free convection problems for curvilinear surfaces
(Merk and Prins 1954) . However, the existing literature for simultaneous
convection flow is very limited. Acrivos (1958, 1966) analysed combined

free and forced convection for a vertical plate and found that the parameter




Gr/Re2 is of fundamental importance for a flat plate. Numerical results
are reported for the heating and cooling with upward flow past a vertical
fiat plate for three Prandtl numbers, 0.73, {0, 100. It was found that
the fransition from forced to free convection is gradual and the processes
of free and forced convection interact and cannot be superposed. This

is especially true at high Prandti numbers. Shear stress increases in
aiding flow and decreases in opposing flow. The boundary layer is
stabilized by aiding flow whereas opposing flow hastens the appearance of
f low separation. Sparrow, Eichhorn and Gregg (1959) and Kubair and Pei
(1968), obtained similar results for laminar boundary layer flows. The
same flow characteristics were found. Kubair and Pei considered non-
Newtonian fluids as well.

Hieber and Gebhart (1969) solved the convective equations by
matched asymptotic expansion fechniques for mixed convection for a sphere
for the limiting cases of Re » 0 and Gr - O(Rez) for a system of unift
Prandt! number. Their results are given in terms of The Nusselt number

and drag coefficient as follows

3
_ Re Re Re Re
Nu = 2 + | .284 Re+—2—-|n (-2—-)"’ G in (2)
Gr Gr Re
+O.|94§—e"+?—ln (2—‘)
24 3 9 2 Re Gr
T m— — ———r — 4 ———
CD RS rr o+ 6 Re + T Re“ In (2 ) - 5
e
+0.166 25 -0 359-2-+37- or 1n 38 (1.a-2)
166 Rg T V-2 027 320 703 U




The drag coefficient was found to Change with Gr significantly and
comparison with the present numerical solutions for the limiting parameters
ranges shows excellent agreement. However, these assumptions are valid

in the Iimit of Re > 0 and Gr - O(Rez); this is a very limited range of
applicability.

Numerical studies of mixed convection flow around a circular
cylinder have been carried out very recently by 6hman (1969) and
O8sthuizen (1970). Both authors studied air flow past a cylinder. The
vorfex ring is shown to be very sensitive to free convection which agrees
with the present findings. However, their results are of |imited
accuracy due to very large step size and wall effect as wel | as inadequate
convergence criteria. They did not make a comprehensive study of the

stability and rate of convergence of their numerical method.




2. FORMULATION OF MATHEMAT ICAL MODELS

2.1 Basic Assumptions and Governing Equations

When a fluid flows over a blunt object at a different temperature
or one that causes mass transfer, the density of the fluid near the object
surface will change due to heat or mass fransfer or both. This density
variation will cause a non-uniform body force field which affects the
forced flow as well as the transfer rate between the object and the fluid.

In the study of mixed convection fiow problems, Boussinesq (1905)
approximations are frequentiy used to simplify the basic flow equations.
These assumptions can best be summarized in two statements:

i) The variations in density which appear with the advent of motion
results principally from thermai or concenffafion (as opposed to pressure)
effects.

ii) In the equation for the rate of change of momentum and mass,
density variations may be neglected except when they are coupled to the
gravitational acceleration in the buoyant force.

These approximations have been used extensively (Acrivos 1958,
Aziz and Hellums 1967 , Hieber and Gebhart 1969 etc.). Speigel and
Veronis (1960) re-examined the applicability of these assumptions for a
compressible fluid assuming that the ideal equation of state can be used
for the compressible %Iuid and concluded that Boussinesq approximations
are always valid if fthe flow of compressible fluid is isochoric. In low

Reynolds number flows (Mach No. << |) of a compressible fluid, the flow




can be considered incompressible. Of course, one can expect that for
very high Temperature or concentration gradients, these approximations
may lead to appreciable error. For small temperature or concentration
gradients, the Boussinesq approximations are apparently valid.

The relationship between the density and temperature can be

obtained through the Téylor Series expansion of p in T about some reference

temperature TR, i.e.,
30 32 (T-TR)2
p = pIT + a—‘ (T-T'R) + —g l —5T— + -
R TR aT R !

For a reasonably small temperature difference (T-T_,), the bulk viscosity

R
and density Hays Pgy C@N be assumed constant and the temperature variation

of density in the body force field can be approximated by

P = Pav 7 Pay B(T-Tav)’

where the reference temperature T, is chosen as the bulk temperature Tav'

R

This linear relationship between p and T and the Boussinesq
approximations will be used to derive the mixed convection transport
equations for convective flow around sphere and cylinder. For axisymmetric
flow around a sphere and cross flow around an infinite cylinder, only two
special coordinates need be considered. |In addition, incompressible,
Newtonian behavior of the fluid is assumed and viscous dissipation is
neglected.

Consider a two dimensional externa! flow over a curvilinear

surface of Figure 2.1-1. The steady state transport equations are:
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Navier Stokes momentum equations

x=direction

2 2
3V aV . vV 37V
X x oP! X
v +V = - + X + —X)
X 9x y ay ax 8x2 3y2
- g sing (I-p (T—Tav)) (2.1-1)
y=direction
2 2
oV oV sp! 3 Vx oV
VX % T Vy oy - 37_'+ l)(-_7_ + 2 )
_ . 09X oy
+ g coso (I-8 (T-Tav)) (2.1-2)
equation of continuity
oV oV
=+ Y=o (2.1-3)
ax ay

Continuity equation of heat or mass

oT oT _ _k (BZT + BZT
o) Cp 3x2 3y2

) (2.1-4)

For a flow problem with two spatial coordinates, a scalar
- function, ¢, the stream function can be introduced to reduce the number
of dependent variables. The relationship between y and the velocity

components are
(2.1-5)
¥, thus defined satisfies equation (2.1-3) everywhere.

Substituting equation (2.1-5) into equations (2.1-1)-(2.1-4)

and eliminating P' from equations (2.1-1) and (2.1-2), one obtains
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4 Y 9 2 Y 9 2
v — -—
Vv y + 5 (V7y) . (V7y)

3x 3y ay
(2.1-6)
aT . AT
+ —_— —) =
gB (cos® e + sin® ay) 0
dy oT _ 3y 3T _ _k (32T + 8ZT) (2.1-7)
dy 9x  3x 3y ap ax2 8y2

Equations (2.1-6) and (2.1-7) are fourth order and second order
non-linear partial differential equations of elliptic type. By introducing

another variable, &, the vorticity defined as

g = vy, (2.1-8) «
equation (2.1-6) can be split into two second-order equations, namely
The vorticity fransport equation

Z)VZE P L. oy 2%, gB (cos® §£-+ sind %%J =0 (2.1-9) (

and the defining equation of vorticity (equation (2.1-8)).

Equations (2.1-7) and (2.1- 9)are coupled and must be solved
simultaneously for the field functions ¢y, & and T subject to appropriate
boundary conditions. Once the field functions are available, the transport
properties, i.e. heat or mass transfer rate, surface pressure distributions,
drag coefficient etc. can be calculated.

2.2 Axisymmetric Flow Around a Solid Sphere

2.2.1 Governing Equations for Field Functions

The dimensionless vorticity transport equation, defining equation
for vorticity and the continuity equation of energy or mass for axisymmetric
flow around a sphere written in spherical polar coordinates (see Figure 3,1-1

with the following dimensionless groups and variables
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-

d Uoo d U op C 2
S— =2 __ P = -
Re = ——, Pe - » Gro=d78 g(T =T )4y
5 T-T
rC=r/Ro, ¥ = y/URT , E* = R/, n* = e
S oo
are
Vorticity transport equation
¥ 3 g _ WX 3 g* :
5% 55 FTR T 30 3% ‘et d SN0
-2 %2 . Gr VO L I I | -
* Re ES (E*r¥*sino) + > (cos@sind 55t " snr?e ar*) (2.2.1)
2Re
Defining equation for vorticity
g* = Ezzw*/r*sine (2.2-2)
Continuity equation of heat or mass
ay* on¥ u* an* 2r*25in9 azn* 2 an* | an*
C 220 - L 2200, L

S5r¥ 30 ¥
or* 230 90 ar Pe ar*2 P r*2 ae2

cot9 an*

+ ——
x2 30
-

(2.2-3)

2.2.1 Pertinent Equations for Drag Coefficients and
Nusselt (Sherwood) Numbers

Surface Pressure Distribution:
Integration of the O-component of the equation of motion from the
frontal stagnation point over the surface along the parametric line r¥* = |

gives the surface pressure distribution

0

4 oE*
* = p¥ > * -
Plo) P0+Rej; (——ar* t g )Ir*z, de (2.2-4)

where P;, is the frontal stagnation pressure, is obtained by integrating




22

t+he r-component of the equation of motion along the line 0=0°, and

can be expressed as

8 36* dr¥*
* = — —mg— . -
po | + Reo Q[ (BO )|®=o g , (2.2-5)
|

_ Form Drag Coefficient:
Integration of surface pressure distribution over the sphere

surface gives the form (or pressure) drag coefficient as

™
- * H . -
CDP f P(G)Ir*zt sin20de (2.2-6)
o

Friction Drag Coefficient:
Infegrafion-of surface vorticity distribution over the sphere
surface gives the friction drag coefficient as
i
_ 8 % . 2 _
CDF = Re v[‘ £ |r*=| sin"0do (2.2(7)
o

and the total drag coefficient is

CD = CDF + CDP : (2.2-8)

Local Nusselt or Sherwood Number:

The local Nusselt or Sherwood number can be written as

*
Nu(@) or Sh(e) = =2 %-};r Ir*=1 (2.2-9)

Average Nusselt or Sherwood Number :
Integration of Nu(g) or Sh(g) over the sphere surface gives the
average Nusselt or Sherwood number

™
an¥* .
Nu or Sh = (- §F¥0 sinodo (2.2-10)

o}
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2.3 Cross Fiow to an Infinite Circular Cylinder

2.3.1 Governing Equations for Field Functions

The dimensionless vorticity transport equations, defining
equation of vorticity, and the continuity equation of energy or mass for
cross flow over an infinite circular cylinder written in cylindrical
polar coordinates (see Figure 2.2-1) with the following dimensionless

groups and variables

d U dUp C
= 2 = > b - 49 _ 2
Re ) ,» Pe " », Gr =dB g (TS T
T-T
¥ =r/R, y* = Y/UR, &* = ER/U_ , n* = Ts =5
? are
Vorticity Transport Equation
By¥ 3e% _ 3y¥ g*. _ 2r¥ xp . G an* | x.: o on¥ _
[3r* 30 20 a4 T RS EC £* + 2R92 {cos0o 53 + r*sind 3r*) (2.3-1)
Defining Equation for Vorticity
t
'; g% = ExZyx (2.3-2)
Continuity Equation of Heat or Mass
2 2
op* an* X an*o _ 2r*  3%n% | ap* | 3 n¥ _
5% 55 ~ 56~ 57%d = Pe (ar*z T 2 2 302 ) (2.3-3)

2.3.2 Pertinent Equations for Drag Coefficients and
Nusselt (Sherwood) Numbers

Surface Pressure Distribution:
Integration of the O-component of the equation of motion from the
frontal stagnation point over the surface along the parametric line r*=|

gives the surface pressure distribution
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0
* X 4 Y
Py =Pot Re V[‘ 5\, de (2.3-4)

where Pg is the frontal stagnation pressure, is obtained by integrating
the r-component of the equation of motion along the line ©=0° and can be

expressed as

o [7 aex dr
* = — — -
PX = 1 S T (2.3-5)
!

Form Drag Coefficient:
Integration of surface pressure distribution over the cylinder

surface gives the form (or pressure) drag coefficient as

i
= * -
CDP V(‘ P (®)|r*=| cos@do (2.3-6)
o

Friction Drag Coefficient:

Integration of surface vorticity distribution over the cylinder

surface gives the friction drag coefficient as

s [

C._ ==

D
F Re J
o]

g*lr*=l sin0do (2.3-7)
and the total drag coefficient is

CD = CDF + CDP (2.3-8)

Local Nusselt or Sherwood Number:
The local Nusselt or Sherwood number can be written as

*
Nu(0) or Sh(@) = =2 %2¥'|r*=i (2.3-9)
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Average Nusselt or Sherwood Number:

Integration of Nu(0®) or Sh(0) over the cylinder surface gives

the average Nusselt or Sherwood number

i .
_ 2 an* -
Nu or Sh = = f (= 508 | ez 90 (2.3-10)
)

Mixed convection problems can be classified as two types, namely
aiding flow and opposing flow. If the free convection current is in the
same direction as the forced convection stream, the fiow is aidfng
otherwise the flow is opposing. Aiding and opposing flow can be classifiéd
from the sign of the Grashof number in the vorticity transport equation,
positive Grashof number refers to aiding flow whereas negative Grashof

number indicates opposing flow.




3.  MATHEMATICAL ANALYSIS AND METHODS OF SOLUTION

3.1 Coordinate Transformation

The solution of the transport equations derived in the previous
'section can be obtained only through numerical means because of their
non-linearity (asymptotic solutions which are available in the limiting
ranges of the parameters are not taken info account). Finite difference
techniques are the most powerful available for problems of this complexity
and these will be used Here.

in the study of convective flows around a blunt object, the
changes in the field functions y*, £*¥ and n* through the whole domain of
interest must be investigated. Generally, the gradients in the normal
direction of y*, £¥ and n* near the surface of the object are large
(especial ly for high Re, Pr and Gr systems). Far from the surface, these
gradients are small. As a result, in carrying out finite difference
calculations, a non-uniform mesh system - small near the surface, large
away from the surface - should be used in the domain of the solution.
For the sake of simpiifying the mathematical formulation and numerical
calculation, the transformation

¥ = et

is used such that a constant step change in the fransformed coordinate z

will give an exponential step change in the real physical coordinate r¥,

A constant step size in © is adopted in this study. Figure 3.0~

i llustrates the transformed rectangular domain and the real physical domain.
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e— A I
iy i-1) a,go JGi,j+n |
1
B |
. |
Ci=1,]) l
I
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FIGURE 3.1-| REAL AND TRANSEORMED MESH SYSTEMS USED

IN THE PRESENT FINITE.DIFFERENCEZ METHOD
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The governing transport equafiéns for y*, £* and n* and the
pertinent equations for calculating fluid mechanfcal and heat or mass
transfer properties in the transformed coordinate (0,z) are listed in
Table (3.1-1) and (3.1-2).

3.2 Finite Difference Approximations

Finite differential representations for partial derivatives can
be found in any standard texts. In accordance with the recommendations
of Russell‘(l962) and Lapidus (1962), small molecule formulae are
preferred to large molecule formula as being more suitable for digital
computer calculations. In this study, central differences of a five
point molecule were used for the approximations of the partial derivatives
which is accurate to second order. These finite difference approximations
of the partial derivatives, according to mesh point system in Figure 3.1-]|
for a general field function F are

in z direction

of TG TFE -1 oF FuLien Taup P GLi-n
37 R 20T 2

in © direction

oF _ F(i+I,J) B F(i—t,J) 3%F _ F(i+I,J) - 2F(i,J') Y PGanL
30 2B 202 52

These finite difference representations of partial derivatives are then
substituted into equations in Tables (3.1-1) and (3.1-2) and the resulting

difference equations are listed in Tables (3.2-1) and (3.2-2).




Table 3.1-1 Transport and Other Pertinent

Equations for Sphere in Coordinates (0,z)

Vorticity transport equation:

Y* 3 g¥ oY¥ 3 g z_.
[32 30 ( z . ) 30 az ¢ z . )] e"sino
e sind e sind
22 : % *
=2 E*2 (t*e’sino) + or (cos®sing 2 + S|n29 il
Re 2 30 9z
2Re
Defining equation for vorticity:
2 3z .
* = * *
£ Eszw /e” "sin@
Continuity equation of heat or mass:
(X an* _ ayX an¥o | 2e%sino (32n* + 32 £ 0% L org 30X
9z 30 0 23z Pe 822 8@2 Y4
Frontal Stagnation pressure:
8 aE*
* = —
P = | +Ref (=2 )le—o dz
o
Surface pressure distribution:
P =px g 4 —-+g*) _ do
@) o  Re | z=o0
Form drag coefficient:
CDP = v[” (@) sin @d@
Friction drag coefficient:
ks
-8 :r 2
CoF " Re | | z=0 sin“0do
Yo

29




Table 3.1-1 (Cont'ed)

Local Nusselt or Sherwood Number:

Nu(0) or Sh(@)

Average Nusselt or Sherwood Number:

M
*
Nu or Sh = vf (- an”
9z

[¢]

| z=0

sinedo




Table 3.1-2 Transport and Other Pertinent

Equations for Cylinder in Coordinates (0,z)

Vorticity transport equation:

r4 * *

e &r {(cos® Eﬂ—-+ sinG 93—»

2 90 9z
aRe

BY* ag* _ ay* ¥ ex2ex 4
3z 30 90 29z Re "cz

-2

(

Defining equation for vorticity:
2 2z
XE % - *
Eczw e £

Continuity equation of heat or mass:

(X oan* oy an*, _ 2 (é_zn_*J,f.fﬁ)
9z 930 90 oz Pe 2 2
9z 30

Frontal stagnation pressure:

4 ¥
* = nd LA
PO |+ Re J£ (ae |e=o dz

)
4 ae*
¥ = px 4 2 1
Ploy = P6 ¥ Re /| 8z |z=o de
o

Form drag coefficient:

™
- %
CDP f P(O)|z=o cosedo
e}

Friction drag coefficient:
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Table 3.1-2 (Cont'ed)

Local Nusselt or Sherwood Number:

Nu(@) or Sh(B) = -2 —

Average Nusselt of Sherwood Number:

n
*
NuorSh=—gf Kchuiak __do
m 3z |z=o0




Table 3.2-1 Finite Difference Equations for Sphere

Vorticity transport equation:

2.2 : :
N _ _ .
G A, w6 (EA s Ehy e (ZfQEQIQLL))
i,J) A282 (i, j+b) 4A2 (i,j=1) 4A2 (i+t,]) 4B2
. 22
2+Bcoto (i) Gr e Sy -
8,0z ) Re TeRg  Leoso(DsImetA

. 2.
* " * - ¥
(n G+, 1) n (i-l,j)) + Sin“06(i)B(n i, g+ D) n (i,j—l)j

Re z(]j)
6AB ©

- * - ¥ . -
W G T e ) MG e T R gen? D

J— z(j) _. .
where G(i,j) 13 (L) e sind(i)

- % Z(j) . .
H(i,j) £ (i,j)/e sind(i)

Defining equation for vorTi¢i+y:

2. 2
*  A%B 2-A 24A. 22(j)
oo Ay e  ERy e, (52 -6, e
(i) 3252 (1,+ 0 2 TV LT TR
+ ¢*(]+| J)(Z-BCO;O(')) + w*(;-. J)(2+Bco£@(i))}
’ 48 ’ 48

Continuity equation of heat or mass:

* - *
¥ (QE:EE) - [2+Bc0te(i)_ Pel™ ( 4y =¥ (i,j-l))]
() 252 G+, 07 482 16ABeZ 9 sino (i)
* - ¥*
-  [ZBeotoll) Pelv (i sy ~ ¥ (I,j-l))]
(=1, 48° I6ABeZ(J)sInO(i)

. . * - ¥ -
sind(i)[y (i, 5+ b (i,j-l))(H(i+I,j) H(i-l,J))
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: Table 3.2-1 (Cont'ed)
* - ¥
3 . 24a  PET G ) TV Gy

+ n*,. . [ + -]
] (i, j+1) 4A2 2(1)
: 16ABe“ "’ sino(i)
l,‘ * - P*
i . =7 _ PTG, TV G )
3 + n (i - ]}
4 i,j=1) 4A2 2(1)
- 16aBe®"Y’ sina(i)
i Frontal stagnation pressure
1 - * - ¥ - 3k
| pe o o8 I @,y T gy T3 A
2 o) Re .~ 2B
J_l
? Surface pressure distribution
] ioag% - gx £
. 4 (i,2) (i,3) (i,!)
¥* = p* _ » » » *
4 Py TPt Re b A e LD
53 Form drag coefficient
i
- i=I
b - * . o
3 Cop iil P (i) Sin20(i) B
3 Friction drag coefficient

i=1
: 8 . L2
CDF Re ii| £ G, D) sin0(i) B

Local Nusselt or Sherwood Number:

* ¥* - *
L YL T A G0
A

Nudi) or Sh(j) =

Average Nusselt or Sherwood Number:

i=I Bn*(i 0 + n
Nu or Sh = ¢ 2
i=|

* - *
(i,3 " M)
A

sind(i) B
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Table 3.2-2 Finite Difference Equations for Cylinder

Vorticity transport equation

* * . * *
o A8t S TG0 e G-
SEN PR 2 ¥ P
L Or e (cosd (i) (n* - n* ) A
=2 TEAB CG+,5) " G-, )
e
H H * - ¥*
+ S'nO(')(n(i,J+l) n(i,j_l)) B
_ Re_ * - ¥ * ¥
B LV, e T YL 50 Chie, ) S,
- * - * ¥* - *
WG, T VG- e T G T
Defining equation for vorticity:
* * ¥* *
v ASBE VG, P VG-, YL TV D)
Vi, L 7 * 7
S 2A 28
2z(j)
- *
g (i, ) e /2]
Continuity equation of heat or mass
* - * * - *
« A% Mg TN Goj=D . G+, " V=1L
i, ) 7 7 ¥ ,
'»J7 a‘g 2A 28
_ _Pe_ * s * - ¥
68 L, 540 Vi, -0 e, T -, !

) (n*

- * - ¥ - *
(v V-1, 0 e T G -0

Ci+l, )



Table 3.2-2 (Cont'ed)

Frontal stagnafion pressure

f= * - ¥ - *
A A e W WA AP

)

A

4
* = 4+ -

surface pressure distribution

H * - * - *
agX oy T BN 3y T 08 (i, B

®(i) = P¥ + —
P*(i) PO + e iil Sh

" Form drag coefficient

CDP

"
et
0
*
-
O
o]
wn
(0]
~~
[9e]

Friction drag coefficient
_4 x . .
CDF Re i £ G, sino(i) B
Local Nusselt or Sherwood Number:

3n%, . + n¥, . - 4n¥ .
Moy or Sh(i) = —Cetl  Lb3) (i,2)

Average Nasselt or Sherwood Number:
H * * - *
=L ¥y G,y TG, ),

(
| A

Nu or Sh = 2
kit
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3.3 Methods of Solution and Convergence Acceleration Techniques

3,3.1 |ferative Solution of a Large Set of
Algebraic Equations

The solution of field functions ¥*, £* and n* at every mesh point
in the domain of interest can be obtained by solving sets of difference
equations taken from Tables 3.2-1 and 3.2-2. This solution can be
obtained either by a direct method or by an indirect method. The direct
method of solution is to invert the coefficient matrix by elimination
and the indirect method is by iteration. The direct me+hod is the most
efficient approach available for small sets of equations; it is not for
large sets. The procedure requires 2N2 arithmetic operations to solve N
' equafions of the type being considered. When N becomes relatively large,
i+ is more efficient fo use an iterative procedure for solving the
equations. In addition to computational efficiency, iterative procedures
possess other advantages over the elimination method. In computer
applications They'require much smaller memory capacity for storage of
intermediate data, and they are easier to program. Furfhermore, they
are applicable to nonlinear sets of equations, whereas solution by
elimination is not. As a result of these several advantages, iterative
procedures are generally preferred for solutions of the moderate to large
sets of equations encountered in problems of this study.

The most elementary iterative method available i;ifhe relaxation
method. Among these relaxation methods, the most succes;fdll and
frequently used is successive overrelaxation (SOR) (Young_-}_1954) and

alternating direction impiicit iteration (AD 1) (Peacemapléhd Rachford 1955).
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Many other relaxation methods are described in the text by Varga (1962).

SO0R, also known as extrapolated Liebman method (Frankel 19509,
involves the use of a single iterative parameter (ofher terms for
iterative parameter, often used are forcing parameter, marching or
movement factor). This iterative parameter is usually called relaxation
factor. In most cases, the choice of this relaxation factor can only
be made by trial and error. If the optimum choice is made, SOR is quite
fast and the amount of computing required is proportional to N3/2, where
N is the number of equations in the se+. Unfortunately, this optimum
value of the relaxation factor is unknown for most problems.

ADI, in some simple cases, is a great deal more efficient than
SOR. .The best treatment of ADI| is that the computing work required is
proportional to NgnN. But again this efficiency éxTends only in part to
more complex problems. In extreme cases, solutions obtained by ADI
converge very slowly or not at all. One reason for this slow convergence
is that ADI requires the selection of a set of iteration parameters to
be applied cyclically during the iteration. For a very simple problem
there exists a theoretical basis for selection of this set of iteration
parameter that will give rapid convergence (Varga [962), but for the
general case no practical basis exists, thus, ADI frequentiy is applied
with non-optimal sets of iteration parameters,

A qualitative explanation of the higher convergence rates
achieved by ADI is that this method is more implicit than SOR. Stated

another way, each step of ADI is more closely related to direct solution

by elimination than is the step of SOR.
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3.3.2 The lterative Parameter (Relaxation Factor)

The relaxation factor W in iterative processes plays an important
role in determining the rate of convergence of the solution. An optimum
value of this factor usually exists and results in the fastest convergence
rate, however for most cases, there exists no theoretical basis for
calculating this relaxation factor, except for the particular case of a
square grid system (Lapidus 1962). In general the optimum relaxation
factor can only be obtained by trial and error. Moreover, this optimum
may vary from point to point in the grid system. In this study, W
varies from point to point except for the Poisson equation (defining
equation for vorticity), which is linear and known to have excellent
convergence properties. This is in contrast to the studies of Hamielec
et.al. (1967, 1969, 1970) where uniform relaxation factors over the entire
grid field were used. The use of a uniform relaxation factor in iteration
procedures must be questioned, because at some locations of the domain
of interest, the residual from iteration +o iteration of the field function
is extremely large and requires a very small relaxation factor for
stabilization, whereas, at other locations, this residual is small and a
relatively large relaxation factor should be employed. The use of a
sma il relaxation factor slows down the convergence rate and the use of a
large relaxation factor can cause the solution to diverge. In the case
of the solution of non-linear difference equations, the relaxation factor
can vary from iteration to iteration as well, a point to be discuésed
later. In this study, several cases have been investigated fo examine

the effect of varying relaxation factors, and in general it was found
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t+hat a varying relaxation factor gave significantly faster convergence
.rafes.

Russell (1962) in studying solutions of the Navier Stokes
equation for flow over flat plates, used a square grid system and
suggested that the relaxation factor for the Poisson's equation can be
selected as uniform over the entire field and the relaxation factor
for the vorticity transport equation should vary from point fo point
and from iteration to iteration. The equation used fo calculate the
relaxation factor employed by Russell is an approximate one obtained
by analysing the linearized vorticity transport equation. it cannot be
applied directly to problems of this study, because of the rectangular
grid system employed here. Russell's formulas for relaxation factor
which do not include the effect of step size are rather oversimplified
Tﬁe step size is known to have a significant effect on stability as
well as relaxation factor (Hamielec, Johnson and Houghton 1967).

A general éecondeorder elliptic partial differential equation

can be expressed in the form

2 _ _  aF oF )
v F=Patog (3.3-1)

where P, Q are functions of x,y and F. The modification of Russell's
formula for the relaxation factors in the rectangular grid system taking

into account both the physical parameters and step sizes is of the form

2 2.7%
wF(i 7 = 2/{1 + [0.5(P° + Q) ]* } (3.3-2)
According to this equation, the formulae for relaxation factors for

sphere and cylinder are as follows
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Sphere %

. x 2
z(i) . Y, -y
- Re e sind(i) (i, j+1) (i,j=1
wé?i,j) 2/{1 + 5 [¢ 2 A
* . *
- - - w . . 21/
, o (|+1,J)2.B , a I.J), 1% (3.3-3)
* *
Who oy = 2/11 + (-?e [('4’(;,34,,) _ w’“’J"”)z
ntisJ 8e”" sina (i) A
ooy oy = % 2L
+ oML ZBW-I,J)) 1} (3.3-4)
Cylinder
R o '+1)"np’(e' -0, 2
- Re i, ] N
Wi, = U+ 2L A )
Y e 2
+ (w(l'*'lrJ) w“"’J)) ] } (3.3-5)
2B '
Vi oy — W% 02
_ Pe (i, j+1) (,j=b
i, gy = 20 g L A -
Ve ) V5, o, 2%
bty -, 1} (3.3-6)

2B
These relaxation factors when applied to problems of viscous flow around
@ sphere or a cylinder, forced convection around a sphere and a cylinder
and mixed convection around a sphere generally gave faster convergence
rates, alfhough they are by no means optimum. They are, however, easy
to use in a computer program and give reasonably rapid solution. The
relaxation factor for the Poisson's equation according to Russel! (1962)

is
Wox = 2 (3.3-7)

Y - 51
|+u2/(12+J2”“
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The application of these varying relaxation factors to iterative

solutions of elliptic partial differential equations gave the greatest
saving in computation time for the case of the linear elliptic partial
differential equation (e.g. forced convection around a sphere and a
.cylinder) where (P, Q) are already known and wﬁﬁi’j) in equ§fions (3.3-4)
and (3.3-6) can be calculated and stored for permanent use and no
additional computer time is required. For the case of non-linear elliptic
equations, the calculation of wﬁ%i,j) and wg(i,j) during every iteration
is time consuming. However, one can avoid t+his difficiency by calculating
wﬁ?i,j) and wéﬁi,j) every M iterations (M 3_20), since the Poisson
equation for calculating y* is linear and is known to have excel lent
convergence properties. From computer experience with the solution of
problems of this nature y* does converge faster than £* or n*, and
investigations of wﬁ?i,j) and wéﬁi,j) every M fold iterations indicate fthat
they do not vary too much. In reality This procedure is just an approximate
method for reducing computer time. One can ensure a better approximafibn
by employing a small M.
Several studies were made to investigate the effect of varying

the relaxation factor in the grid system. For low Prandt! numbers and
small r¥, a considerably larger relaxation factor can be used and a
selection of uniform relaxation factor over the whole field is quite
adequate and the solufion converges very rapidly. The situations become
worse when the Prandt! number and r: increase, very small Wn*musf be

used in order to stabilize the iterative process. Table 3.3-1 indicates

the variation of Wn*in t+he grid field for forced convection around a
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sphere at Re = 57, Pr = 5 and r¥ = 3,32 according to equation (3.3-4).

wn*decreases monotonically with increasing r*. It is undersTan&able

that near the surface the grid dimension in the physical coordinates

(r, © is small whereas near the outer boundary it is large because of

the transformation r* = e%. It is known that the smaller the grid size

the larger The relaxation factor that can be accepted. Near the

separation point, the relaxation factor is quite iarge; this is because

of the small gradients existing around this point. The extremely small

Wn*near the outer boundary is the maih reason why the use of a uniform

relaxation factor must be chosen as low as 0.006 in order to get the

iterative process going. The rate of convergence is exitremely slow

and it is estimated that 20 times more computation time is required

with a uniform relaxation factor of 0.006 than with the varying relaxation
~ factor of Table 3.3-1. |

For the case of non-linear elliptic partial differential

equations (viscous flow around a sphere and a cylinder and mixed convection

around a sphere), the same conclusions apply. Table 3.3-2 shows the

variation of wgﬁi,j) with r* and 60 at the final stage of iterative

solution of viscous flow around a cylinder at Re = 40. Small W_xis

£

found near the outer boundary and large W _xnear the surface especially

3
at the flow separation point. With the calculations for mixed convection
around a sphere, the varying relaxation factor method provides faster

convergence; however not as pronounced as the other cases because of the

low Prandt! and Reynolds numbers involved. Solutions take about half

the time using the variable relaxation factors.
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- 0.163

0.092

0.068

0.059

0.057

0.061

0.072

0.095

0.145

0.261

0.606

I.505

0.864

0.943

Table 3.3~
able 3.3~ wd*i.j) Sphere

Re=57, Pr=5, r:=3.32

.22
0.045
0.031
0.023
0.020
0.0i8
0.018
0.020
0.023
0.024
0.037
0.069
0.171

-0.826

0.456

.49

0.022

0.019

0.016

0.014

0.013

0.012

0.012

0.013

0.014

0.019

0.030

0.059

0.173

0.661

1.82
0.014
0.013
0.013
0.012
0.011
0.010
0.010
0.010
0.010
0.011
0.014
0.023
0.051

0.202

2.23

0.010
0.010
0.010
0.010
0.009
0.009
0.008
0.008
0.008
0.008
0.009
0.012
0.023

0.059

2.72

0.008

0.008

0.008

0.008

0.007

0.007

0.007

0.007

0.007

0.007

0.007

0.008

0.012
0.026
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3.32

0.007
0.007
0.007
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.009

0.016
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36
48
60
72
84
96
108
120
152
144
156
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.082
.326
.207
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. 146
145
. 160
195
.263
.392
.622
.90
.76
726

.792

Table 3.3-2 W

Re =
2.028
0.054
0.047
0.041
0.036
0.033
0.031
0.029
0.029
0.031
0.037
0.055
0.107
0.310

0.434

X, )

Cylinder

40, r* = 59.4

4.111
0.020
0.019
0.019
0.018
0.017
0.016
0.016
0.0l6
0.015
0.015
0.015
0.016
0.028

0.114

8.336
0.009
0.009
0.009
0.009
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008

0.015

16.90
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004

0.004

34,27
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002

-0.002
0.002
0.002

0.002
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One concludes that the relaxation factors given by equations
(3.3-2) to (3.3-7) provide rapid convergence rates and can be taken as
a guide for choosing W's for other problems. This is preferable to
choosing W's by trial and error, of cburse they are by no means optimum
and there is no theoretical expression available to calculate optimum
values. In the calculation a damping factor a whose value lies between
0 and | can be introduced into equations (3.3-2) to (3.3-7) in case the
system diverges. The proper value of a can be chosen based on the
history of the initial several iterations.

3.3.3 Convergence Acceleration Technique

The dominant eigenvalue method of convergence promotion of
iterative processes developed by Orbach and Crowe (1971) was used to
accelerate the iterative solution of problems of this study. The method
itself is essentially a generalization of the linear extrapolation method
of Aitken (1925, 1936) and Wegstein (1958)., The application of this
method of accelerating iterative solutions of non-linear as well as
I inear élgebraic equations for the present study has been very successful
when new sequences of calculation are employed to the iterative processes.
Moreover, the dominant eigenvaiue method is very simple to apply in

Computer caiculations.

lf f = (fl, f2’ f3 -—- fm) is the input vector, or initial guess
vector, and fo = (fol’ foZ’ f03 -— me) is the output vector which is
related by
f =3 (3.3-8)
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Any iterative process will lead fo ?s such that
| f,-F 1 < € | (3.3-9)

where € is a tolerance vector which depends on The specified accuracy
of the solution.

The general form of the iteration can be written as

FN-3 (Y
o
2 ¥n+l LU (¥2 _f =3 (i (3.3-10)

where n represents iteration number and W is the matrix of relaxation
factors and depends on n. Equation (3.3-10) is SOR with variable relaxation
factor.

| f equation (3.3-10) can be approximated sufficiently closely by

a Taylor series accurate to first-order about an arbitrary point fa in

the neighbourhood of fn, i.e.

BT+ b (3.3-11)
where E = [53/37] et
@ (3.3-12)
p=(T-O) 7
a

then the matrix ¢ can be evaluated using equation (3.3-12). This, how-
ever, required foo much computation time and therefore an alternative
approach was developed.

The necessary and sufficient condition that the iterative process

represented by equation (3.3-11) to converge is

A = Max l A l < | (3.3-'3)
| K k
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(Fadeeva 1959). A, is the dominant eigerivalue. The solutioh of

equation (3.3-11) can be written as

"-fF =8"G -1, (3.3-14)
S (o] S
If all Ak are distinct, ‘
T, = -
m Q (F-f)
fl-F = 3 Ko s = ;n (3.3-15)
S k=1 ﬁT- k" k
k Yk

where ?S = (1-5)7'5, the steady state solution and ;k and 5k'are the
eigenvectors and eigenrows of Ak.

I f AI is the dominant eigenvalue, equation (3.3-15) can be

approximated by T o~ -
on - oy (fo-fs) _ n
fref = ——— y ] (3.3-16)
s T = | |
e

If the dominant eigenvalue AI is not distinct, equation (3.3-16) is
still valid, although the convergence rate is much slower (Orbach and
Crowe 1971). However, it is unlikely that two or more eigenvalues would
be numerically identical for problems.of this nature.

The apparent value of Al can be obtained from .

-n_l -n ..n-l Q.:- (F -F ) - n-]

AFNT = FRAEL L S S J (A-Da (3.3-17)
. T - | | n

9y

The ratio of the norm of successive Af gives the absolute value of Al as

HaF" 17 1187 ] = ) (3.3-18)

where the vector norm can be defined in various ways
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||aF] ] = max IAfkl
k
llAf||| > IAfkl (3.3-19)
k=1 . : . )
m
- - 2 ;i
_ ||Af||2 = {kil st}

|§ the successive apparent values of kl calculated from equation (3.3-18)
are sufficiently close, equation (3.3-16) can be said to hold and it can

+herefore be used to estimate the apparent solution ?é

o ;n_?n-l
fs = f +a (3.3-20)
l-lxll
where 0 < a < | is inftroduced as a damping factor to depress oscillation.

Comparison of equations (3.3-16) and (3.3-20) indicgfes that if
lkll is close to unity, the application of équafion (3.3-20) improves the
rate of convergence significantly. For most of the problems studied in
this work, IAII is very close to I, and therefore a faster rate of
convergence was achieved by applying dominant eigenvaiue method in the
iterative process.

tn solving the linear elliptic difference equation of forced
convection around a sphere and a cylinder, there is involved only one
dependent variable, n. Convergence prbmo*ion equation (3.,3-20) is

applied as soon as IAII; for successive iterations satisfy
n n=-1|
a1 - I | < eM (3.3-21)
where €, Wwas chosen as IO.3 in this study. However, in case of mixed
|

convection around a sphere and viscous flow around a sphere and a cylinder,
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there are involved more. than one dependent variable, e.g., ¥*, £%, and
+wo dominant eigenvalues IA‘]w*, IA‘|€* are estimated every iteration.
There is very small chance that equation (3.3-21) for both v* and £¥
will be satisfied. This situation is even more pronounced in case of
mixed convection around a sphere since three variables y¥*, £¥ and n¥*
are encountered. An alternate process must therefore be adopted, which
is to apply equation (3.3-20) after an arbitrary number of iferations
M and choose an arbitrary Al. M and Al can only be obtained by trial
and error with the aid of the history of Al during the iteration. A big
M siows down the rate of convergence and a small M causes it to oscillate.
The computer experience from the present investigation indicated that
M=20 is a good choice.

In most calculations, IAII is very close to unity, e.g., 0.99.
The damping factor a in equation 13.3-20) is set equal to 0.7 and I-|A||

is bounded by a certain maximum depends on the problem being solved.

3.3.4 Sequence of Calculation

; | Application of the convergence promotion technique (dominant
eigenvalue method) to iterative solution of sets of algebraic equations
can be made more successful if the physical characteristics of the
problem are taken into account. The convergence acceleration technique
rg ‘ is essentially used to give a pulse change to the relaxation factor
"after a certain number of iterations. One then reverts to the original
relaxation factor in the next several iterations. This process was

repeated many Times during the entire iterative process. The sudden
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increase of the relaxation factor causes oscillation of the system and
thus leads to instability. For example, when the dominant eigenvalue
convergence promotion method is applied to SOR iteration, the system
oscillates and even diverges because of error propagation. |In order to
overcome this problem, new séquences of calculation were developed,
which stabilized the solution by reducing error propagation.

Linear Elliptic Equation:

variable n needs to be determined. The matrix representation of al|

difference equations in every mesh point is

Cn = b (3.3-22)

First of all § is split into two matrices

5‘ n+é

on=0bh (3.3-23)
where 5| is a tridiagonal matrix and 52 is a bidiagonal matrix of order
(Ixd) and n is the vector of all n in every mesh point and b is a vector

including boundary conditions.

An iterative scheme can be designed so that

o

Ca" =5 - ! = BI”" (3.3-24)

Equation (3.3-24) can be solved efficiently by the method of Thomas
(Lapidus, 1962) provided that ﬁn—l is known. This process is repeated
from the starting solution n° (or initial guess of n) until 7" satisfies

a given criteria.



A more detailed description of this iterative scheme can be
. |lustrated by looking at a particular grid soint (i,j). The elliptic

difference equation can be written as

- oL p 2G-n T a,p T LD 340

- e PGen T Mg PGED T 0 (3.3-23)

where 3(i-1)’ a(i+l) and b(j+l) are related o ¥ and are constants.
By assigning the values of "L, je) and LITIRTIR equal fo those of the
previous iteration, the value of Ni-t, ! n(i,j) and n(i#l,j) can be

obtained from

.y a ¥ n_ o, n o,
Gi-1,)) 2= 7 TG Citt, ) CGi+D

n-1 n-|
(i, -0 Bgen TGN JEM)

(3.3-26)
The same treatment has been applied to all grid points along the constant
j line. The matrix representation of this tridiagonalization procedure
is essentially equation (3.3-24). Therefore by solving equation (3.3-24),
all i values of n(i,j) along the constant j line are calculated at
iteration level n. This procedure is then repeated for all j lines.
This method of iteration has proved That +he convergence rate is abouf
twice as fast as SOR iteration.

A more rapid convergence rate can be obtained by applying the

convergence acceleration technique. However, the stability problem

related to error propagation must be considered. This can limit the

applicability of the convergence acceleration technique.
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Consider the mesh system in Figure 3.3-1. Iteration by
equation (3.3-24) revises The‘values of n for all i's starting from
J=2,3,4 - j-1 (j=I and J=J are boundaries where n's are known).
Divide the iteration into two half iterations as follows:

i) Calculate new values of nn atong the lines

J=2,4,6, 8---using values of "™ at Iines

J ty 3, 5, 7 ——-
ii) Calculate new values of nn along the lines
J=1,3,5 7, 9 -—— using values of nn at line
J = 2, 4; 6, 8 calculated from the first half iteration.
This sequence of calculation reduces efror propagation.

In Tﬁe first half of the iteration, sucéessive substitution is
applied, i.e. )
| CHEE ‘ | (3.3-27)
* ¥

where n" is calculated from equation (3.3-24). For the second half

of the iteration relaxation with convergence promotion is used.

- -n- = n**  _._
n' = 3" g awn(nn - a" |) (3.3-28)
where & is the promotion factor and.
§=a/ G- |x]) (3.3-29)

Of course § in equation (3.3-28) is set equal to unity except at the
iteration level when convergence promotion applies and has the value
given by equation (3.3-29). In some extreme cases, IAII is very close
to unity and & can reach a large value, which leads to divergence.

To avoid this, & is bounded by 8§ max, a value which depends on ]All.
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This sequence of calculation was found to be 3-4 times faster
than SOR iteration with varying relaxation factor and is much faster
then SOR with uniform relaxation factor. Comparison of computational
work beftween SOR and the new sequence tridiagonalization with convergence
promotion are shown in Figure 3.3-2, |t can be seen that § can varyA
over quite a wide range with very small effect on convergence.

Nonlinear Coupled Elliptic Equations

Nonlinear coupled elliptic equations appear in problem; of
viscous flow around a sphere and a cylinder and mixed convection fiow
around a sphere and a cylinder. These equations are vorticity fransport
equation and the continuity equation of heat or mass. Direct application
of the convergence promotion technique gives rise‘fo error propagation
even worse than encountered with the linear elliptic difference equation.
A new sequence with convergence promotion was develioped to overcome
This problem.

The new sequence of calculation is a modification of the sequence
for linear equations. One complete iteration was divided inTo'Two hatf
iterations, one by direct substitution and one by relaxation with
convergence promotion. Consider the mesh system in Figure 3.3-3. The
sequence of calculation of the field function F is'such that, as iteration
sweep from i = 2, 3, 4, 5 --- for all j at each i line the X points are
calculated in the first half iteration and direct substitution (equation
3.3-27) of the calculated F value is used as the new F value; in the
second haif iteration O points are calculated. Relaxation with convergence

promotion is used for calculating new F value (equation 3.3-28).
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' Figure 3.3-2 Comparison of Computation Time; Linear
i Elliptic Equation
Sphere Re = 57, Pr =5, A = 0.05, 8 = /30, r* = 3.32
;f SOR with unjform Wn*= 0.1 _ ]
SOR with varying Wn*(i,j) P
New sequence convergence promotion
5‘ with varying Wﬁ’fi,j)
i § = 30
3 50
100 o
CDC6400 cpu time per iteration
_ SOR 0.097 sec
4
* New sequence convergence promotion 0.095 sec.
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This completes one iteration. This new sequence of calculation was

found to be more stable and converged 2-3 times faster than SOR iteration.
A comparison of computation work for SOR and new sequence iteration

are shown in Figure 3.3-4., The rational of this new sequence of
calculation is the same as that for the linear elliptic equation, fn
other words to reduce the error propagation in the system.

A comparison between AD! and the present method has not been
made, however computer time of Son and Hanratty (1969), using ADi for
cylinder at Re=40 takes 40 minutes using an IBM 360/75. The study of
exactly the same problem (same number of mesh points, same step sizes
and same r:) by the present method takes |5 minutes using the CDC6400
compu ter which is comparable to the IBM 360/75 in speed.

In conclusion, the new sequence with convergence promotion
methods developed here are generally faster than SOR, ADI| iterations.
Other advantages of this method may be summarized as fol lows

i) The effects of step sizes, physical parameters on stability
are mild and Therefore‘fhese methods can be applied to a variety of
problems.

ii) The stability is not sensitive to the convergence promotion
factor § so that a wide range of § can be chosen.

iii) For the case of non-linear, coupled ellipfic.equafions,
the choices of relaxation factors given in Section 3.3-2 vary slightly
from iteration to iteration, since these relaxation factors depend ontly

on stream function y* which converges much faster than £* and n*

Therefore wE's and Wdés can be revised every M iterations. This leads




Figure 3.3-4 Comparison of Computer Time; Coup led

Non linear Elliptic Equations

Sphere Pr = 0.71, Gr = =300, Re = 30
A =0.05, B =u/30, r* = 14.88
SOR with uniform W's a

W ,= 0.4, Wo=0.2, W,=0.4
y* g g .
SOR with varying W's e

New sequence convergence promotion
with varying W's( . [revising every 20 i teration]

i,]
§ = 10 x
CDC6400 Cp time per iteration

SOR = 0.79 sec.

New sequence convergence promotion with varying

1
W S(i,j) 0.8 sec.
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to0 @ significanf reduction of computation time.
iv) The sequence and convergence promotion techniques are
easy To program for a digital computer.

3.4 Convergence Tests of Numerical Solutions

In general, the iteration procedure of the field function

F(y*, €% or n*) s said to converge if fthe following condition is

satisfied N -1 l
[FN - F
) (D < e (3.3-30)
iy] n-l|
LIS

where € is an arbitrary tolerance and depends on the degree of accuracy
required. More accurate resulfs can be achieved if € is set smaller.

However, the value of € depends on lF(i J)n_‘l, t+he denominator of
’

equation (3.3-30). [n some cases the value of |F j)n]ll is %xfremely n_ll
’ Fo.o .y = Feos
small, e.g., in solving forced convection probiems max (i) ni;’J)
i) lF(i,j) ‘

usually appears at the rear end and near t+he outer boundary where

|F n=l1 {s small and the change \F e j)n - F J)n-l\is relatively
] H

(i,]J)
farge. As 2 result a proper € must be chosen based on the error of the
local or integrated values such as Nu(e), Nu or CD per iteration. In this
work the change in these properties were less than 0.1%. The convergence
can also be tested by varying the step sizes A anq B. Large values of

A and B increase +runcation error, however smal ler values of A and B

lead to a greaf number of mesh points and larger computation time.

The selection of A and B is a matfer of trial and error. The various

A and B used in this study are the same as those used by Hamielec,
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Hof fman and Ross (1967), Hamielec and Raal (1969)and LeClair (1970).
The integrated values (e.g., Nu, CD etc.) are less sensitive
than the local values (e.g., Nu(0), £* etc.) per iteration. In this

study all local changes in field functions per iteration must be less

than 0.1% at convergence. This convergence criterion is used throughout.




4. SPECIFIC PROBLEMS SOLVED

4.1 Viscous Flow Around a Single Sphere and a
Circular Cylinder in an Unbounded Fluid

4.1.1 Governing Equations, Boundary Conditions and
Method of Solution.

The governing equations for viscous flow around a sphere and a
cylinder is the Navier Stokes equation described by Hamielec et. al.

(1967, 1969). 1In coordinates (0, z) they are

Sphere
é_w_*a &* _ —alp_* 3 E* .
L57% (& - % 3z ‘T )1 sind
e sinod e sind
2 ¥2 % Zov _
~ Re ESZ (E¥ e“sin) 4.1-1)
*2 3z .
¥ = *
€ Esz v*¥ / e “sind
Cylinder
ay* 3EX | ay* 3g¥ 2 o *2 4
3z a0 30 3z Re cz &
(40"’2)
-)(-2 ¥*
* =
& Ecz v

Undisturbed parallel flow boundary conditions are used to

simulate flow in an unbounded fluid. These boundary conditions are

Sphere
= k * = *2 * H
at z = 0; ¥ =0, ¢g* = ESZ y*¥/sino
2z
at z = z_ ; y* = 95— sinZO, £¥ = 0 (4.1-3)

at g=o,n ; Y*=§£*=0

63




64

Cylinder
a.i.z=o. ‘b*:O g*=E*2w*
? ) » CZ )
at z = z_; y* = ezsinO, £* = o- (4.1-4)
at @ = o,m; Y¥ = ¥ = ¢

The method used to solve these non-linear equations was the new
sequenhce convergence promotion method described in Section 3.3-2.
FORTRAN IV computer program for sphere is: listed in Appendix A.l.
?or the case of cylinder, the logic of programming is the same as that
for sphere except the finite difference equations, and the computer program
of cylinder is therefore not shown in defail. Initial guesses of y*
and g% for sphere are Stokes creeping flow solution for Re<|0 and
Kawaguti's approximate solution for Re>10. Potential flow theory was
used for the cylinder.

4.1.2 An Extrapolation Technique to Obtain
Flow Behavior for an Unbounded Fluid

ASquTions of vorticity and stream function obtained by solving
the Navier Stokes equation subject to finite boundary r¥* which simulates
r¥ == (as finite difference solution for r*¥ = » is impossible) usually
include wall effects unless r¥ is chosen large enough. The proper r¥
is obtained by trial and error. The choice of too large r: leads to
excessive computation time and poor stability of the iterative scheme.

An efficient method was developed to estimate fliow behavior for
r¥ = o, This involved extrapoliation of two sets of solutions for finite
rX. By examining y* and £* distributions of the Navier Stokes equation

solutions obtained at different r¥, it was found that both y* and g™
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change monotonically with r:, which indicates that ¢* and £*¥ can be

expressed as an infinite series expansion of i/r¥*, i.e.,

C C C 4
F=Fo+"*lf+"'§' +___§_ $ ome (4.1-5)
ro r: r:

where F represents y* or £* and FO is the value of F at r* = «» and CI'
2 C3 --- are constants.

Assume r¥ is chosen large enough such that terms j_l/r:3 can be

C

neglected from equation (4.1-5). Therefore

Y
F2F 4+ — + -, (4.1-6)
o

At ¥ > o, F > F, and the Ist derivative of F with respect to I/r¥ is

assumed zero, that is

L =0 (4.1-7)
dii/r*y|1/r¥ > o
condition (4.1-7) implies CI = 0, therefore
c
F2F +—2 (4.1-8)
o} %2
r

Fo can be obtained from two sets of solutions of r:l and r:2

by eliminating 02 as follows

r:% Fy - rig F,
F_ = (4.1-9)
o %2 x2
r -r
| ©?
This equation is used to calculate all local values of ¥ and &%,

these values are then used to caliculate drag coefficient etc.
This extrapolation method has been tested by considering three
sets of solutions of different r* for the case of viscous flow around a

circular cylinder at Re = 85 (cylinder is known to have a very large wall




effect, Hamielec and Raal

Table 4.1-1, Excellent extrapolated values are indicated. Comparison

of drag coefficients so obtained with experimental measurements is

(1969)) and the results are tabulated

also excellent as will be shown later in tabular form.

Table 4.1~

*
r, = 7.03
and
9.03

*
e = 9.03
and
i1.59

*
ro=17.03
and

11.59

Cylind

C

Extrapolated CD Values

er Re = 85

A = 0.05, B =6°
DP(°°) CDF(w) CD(w)
0.90 ‘ 0.35 1.25
0.87 0.34 .2l
0.88 0.35 .23
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4,1.3 Mesh Dimensions and Accuracy of Solutions

The step size selected for A and B in the numerical calculations
were selected based on the work of Hamielec, Hoffman and Ross (1967),
Hamielec and Raal (1970) and LeClair (1970). A and B used for different
Reynolds number ranges for both sphere and cyl inder are as follows

0.0l <Re < | ; A=0.1, B=mu/30 (6°)

| < Re < 100; A =0.05, B=n/30 (6°)

100 < Re < 400; A

0.025, B = n/60 (3°)
A must be chosen considerably smaller at high Reynolds numbers because
the gradient near the surface is steep.

The effects of angular and radial step size have been investigated
thoroughly for the case of Re = 85 for cylinder. The results are shown
fn Table 4.1-2. This table indicates that the choices of A = 0.05 and
B = x/30 is small enough to provide accurate CD at Re = 85.

Table 4.1-2 Effects of A and B for Cylinder at Re = 85

r* A B CDP CDF ‘ CD
7.03 0.05 /30 {.20 0.44 | .64
0.05 /60 .20 0.44 .64
9.03 0.05 n/30 .09 0.40 .49
0.05 /60 .08 0.40 {.48
9.0I 0.0314 /60 .09 0.40 .49
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The size of the outer boundary r* must be obtained by trial aﬁd

error, too small r: increases the wall effect and too large an r:
increases the number of mesh points and therefore increases computation
t+ime. At low Reynolds numbers the wall effect is very important and at
moderately high Reynolds numbers the wal |l effect becomes less significant.
In fhe case of the high Reynolds number range (100 < Re < 400) the quite
long vortex at the rear must be taken into account. Too small a choice
of r* will decrease the dimension of this vortex. In this study r¥ = 11.88
is chosen for 100 < Re < 400, and is considered to be large enough since
the calculated drag coefficients are in excellent agreement with
experimental measurements. In the case of the cylinder, the wall effect
is larger than for the sphere. The extrapolation technique described in
Section 4.1-2 was used to obtain y* and £* at unbounded fluid fiow from
two sets of ¥ and £* of different r¥,

| The accuracy of an iterative solution depends on the tolerance €
in equation (3.3-30). In this study € is set equal to IO-4 which will
give less than 0.1% change in the field functions y¥¥, E*}

4.1.4 Discussion . of Results and Comparison with
Existing Data

Sphere in an Unbounded Fluid

A. Flow Field Phenomena

The surface pressure and surface vorticity distributions
for 0.0l < Re < 400 are listed in Appendix B.l. Figure 4.1-I shows
constant ¢* and £* lines around a sphere at Re = 400. A secondary vortex

motion immediately beyond the flow separation angle is observed.
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Son and Hanratty (1969) in their numerical study of viscous flow around
a cylinder also observed this secondary vortex at Re = 500. At Reynolds
numbers of 300 and 200, it is small and a finer mesh system is required
for a more comprehensive investigation. At Re = |00 it vanishes. The
presence of Tthis secondary vortex motion can also be observed by
investigating the surface vorticity distribution shown in Figure 4.1-2.
The wavy curves beyond the separation angle appear to be a result of
this secondary vortex.

The surface vorticity distributions are used to determine the
flow separation angles Os where 52 = 0. The vortex length is the
distance from the rear stagnation point to the point where Vr = 0 along
the parametric line @ = 7 and Thé wake volume is obtained simply by
integration of the revolution of zero stream function line (which is the
boundary of the vortex ring) around the axis © = n. These calculated
results are listed in Table 4.1-1I.

Figures 4.1-3 and 4.1-4 show the variation of OS and L/d with
Reynolds number, respectively. Numerical solutions of Jenson (1959),
Rimon and Cheng (1969), Rhodes (1967) and the recent resuits are shown.
Predictions by the matched asymptotic expansion technique of Proudman
and Pearson (1957) are also shown. Comparison with experimental
measurements of Taneda (1956), Garner and Grafton (1954) and Nisi and
Porter (1923) is good except at low Reynolids numbers where Taneda some-
what underestimates the vortex length. This may be the effect of extreme
difficulties in visualizing the flow with tracer particles of finite

size and finite fall velocities. The experimental resuits of Nisi and
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Table 4.1-1 . Present Caiculations of

0, L/d and Vw/Vs for Sphere

Re 0, L/d A
30 27.6° 0.20 0.0287
40 36.0° 0.34 0.0891
57 43 .5° 0.60 0.246
100 52.8° 0.95 0.698
200 63.3° l.66 .59
300 68.4° 2.16 2.29

400 72.3° 2.50 -




porter were probably biased by their method of suspending the sphere.
The value of L/d obtained numerically by Rimon and Cheng for low and
high Reynolds numbers is biased by the boundary conditions they used
which do not simulate unbounded fluid flow; in addition, the step sizes:
they used are considered to be too large. The critical Reynolds number
for the initiation of vortex motion has been shown fo be 20 by LeC|air
(1970), by varying the step sizes and distance to the outer boundary
which ensured that the computed values for L/d and @S were not biased
by these parameters. Another indication of this critical Reynolds
number can be more or less drawn from the plot of CD/CEE-l vs Re as
suggested by Maxworthy (1965), Pruppacher and Steinberger (1968) and
Pruppacher, LeClair and Hamielec (1970). This drag curve indicates
+hat there are two pronounced breaks, one at Re = 20 and one at Re = 400.
These breaks may be explained by the formation of a wake at Reynolds
number around 20 and the vortex shedd ing phenomenon at Reynolds number
of around 400.

The calculated volumes of the vortex at the rear of the sphere
at Re = 30, 57, 100, 200 and 300 are plotted in Figure 4.1-5 together
with experimental data after Hendrix et.al. (1967) for liquid drops.

The present numerical solutions give higher wake volumes than those
measured. This is undoubtediy the result of circulation within the drop
which tends to decrease the flow separation angle and wake length. Recent
measurements of Karla (1971) at Monash University in Australia for rigid

spheres indicates good agreement.
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FIGURE 4,]1~5 VW/VS vs Re FOR SINGLE SPHERE IN AN
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B. Drag Coefficient

The predicted form and friction drag coefficients are tabulated
in Table 4.1-2. Computational parameters, extrapolated values of drag
coefficient using the extrapolation technique described in Section 4.1.2
and experimental measurements are also shown. Excellent agreement with
experimental data is apparent. This is especially true for recent
measurements of Pruppacher and Steinberger (1968). Figure 4.1-6 shows
the variation of CD with Reynoids number, analytical solutions of
Stokes (185]), Oseen (1910, The analyfiéal
solutions deviate significantly from the experimental data for Reynolds
number greater than about unity. Recent experimental results of Maxworthy
(1965) and Pruppacher and Steinberger (1968) suggest that the drag approaches
the Oseen drag rather than Stokes drag as Re » 0. Numerical solutions
at low Reynolds numbers did verify this fact (LeClair, Hamielec and
Pruppacher 1970). Stokes solution is therefore only valid for Re = 0
whereas solutions by Oseen, Proudman and Pearson are applicable at
Reynolds number below 0.1. At larger Reynolds numbers, these theories
fail to give results of sufficient accuracy.

Single Cylinder in an Unbounded Fluid

A. Flow Field Phenomena

The surface pressure and surface vorticity disftributions
are tabulated in Appendix B.l. for Reynoids numbers 23, 40, 85 and i75.

7% Hamielec and Raal (1969) studied the variation of separation angle OS

and vortex length for the Reynolds number range, | to 500, and for this

reason these quantities will not be discussed in detail in this thesis.
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B. Drag Coefficient

The predicted form and friction drag coefficients are tabulated
in Table 4.1-3. Computational parameters, extrapolated values of drag
coefficient and experimental measurements of Tritton (1959) are also
shown. Agreehenf between predicted and measured data is good. Figure

4,.1-7 shows a graphical comparison.

4,2 Forced Convection Around a Single Sphere in an
Unbounded Fluid and in an Assemblage

4.2.1 Governing Equation, Boundary Conditions
and Method of Solution

The governing equation for forced convection around a sphere and

sphere assemblage is the elliptic continuity equation of heat or mass,

ay*an* _ ay* an*_ 2e”sino (32”* + 82n*+ A, oo A0
9z 90 90 9z Pe aZ2 302 9z a0

and the boundary conditions with constant surface temperature or

concentration are

at z =20 ;oo = |

at z = z_ ;o n* =0
*

a+e=o,n;g—”=o

The stream function y*, which is already known, is that calculated
in Section 4.1. However, for a sphere in an assemblage, y* calculated
by LeClair (1970) is used.

This linear elliptic partial differential equafion was solved
using the new sequence tridiagonalization with convergence promotion

described in Section 3.3.4. The initial guess of n* field is n* =0
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everywhere. FORTRAN 1V computer program listing may be found in
Appendix A.2.

4.2.2 Mesh Dimensions and Accuracy of Solutions

The step sizes A and B for the n¥ field are selected identical
to those listed in Section 4.1.3 for the flow field such fthat the
calculated stream function ¢* in Section 4.1 can be used directly
because the mesh system of n* field is exactly +he same as y* field.
For larger Prandt! numbers, reduction of the mesh size is required fo
account for the thin +hermal boundary layer near the frontal stagnation
point. In the low Prandt! number range studied here (Pr < 5), fhe
chosen step sizes should provide solutions of sufficient accuracy.

The n* field is not as sensitive to the outer boundary r¥
as the y* and g* fields especial ly at high Prandt| numbers where the
therma| boundary layer fis considerably thinner and the boundary condition
n* = 0 at moderate r¥ is most likely satisfied. 0f course at very low
Prandt! number, where +he thermal boundary layer is relatively Thick,
r¥ must be chosen sufficiently large 1o closely épproximafe an unbounded
fiuid.

The accuracy of the numerical solution also depends on the
tolerance e of equation (3.3-30). In this case € Was set equal to lO_3

to give a maximum change in the jocal or average Nusselt or Sherwood

number of less than 0.1% per iteration.




4.2.3 Discussion of Results and Comparison
with Existing Data

Single Sphere in an Unbounded Fluid

Calculations were made for Re = 0.05, 0.1, 0.2, 0.5, 0.75, |, 2?

3,5, 10, 30, 57, 100, 200 and 300 and for Pr = 0.25, 0.35, 0.5, 0.71,

I, 2, 3.5 and 5. This covers the possible Prandt! number range for gasei
between 25°C and 2500°C.

Local Nusselt (or Sherwood) numbers are tabulated in Appendix 8_2
Figure 4.2-1 shows the plot of local Nusselt (or Sherwood) number at
Pr = 10.71 for Re = 57, 100, 200 and 300. The transfer rate at the
point of minimum transfer is finjte rather than zero as predicted by Th;é
therma | boundary layer theory (Baird and Hamielec 1962, LeClajr and
Hamielec 1968). This is in agreement with experimental observations of ]
Peltzman and Pfeffer (1967), Rhodes and Peeble (1965) and Garner et.al.
(1958, 1958, 1961). No quantitative comparison can be made because of
the difference in Prandt! numbers. Comparison between local transfer
rates obtained by thin thermal boundary layer theory and present numericai
results are shown in Figure 4.2-2, which indicates that calculation by
thin approximate theory is significantly in error especially in the
Circulating wake regime where the thermai boundary is thick due to |
internal circulation and the assumption involving the neglect of angular 3
diffusion is obviously invalid.

Figure 4.2-3 shows the variation of local Nusselt (or Sherwood)
number with Prandt | number at Re = 300. Local transfer rate increases

wiTh increasing Prandt| number. This is a resyl+ of the thinner thermal

‘ﬁ."ﬁ-f
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boundary layers at higher Prandt! numbers. The angle of minimum
t+ransfer, as observed in this figure moves away.from the rear stagnation
point as the Prandt! number increases. For Pr = 0, the transfer rate
is qniform over the surface. Within Thé low Prandt| number range
investigated in this study, the minimum transfer angle @M is significantly
smaller than the flow separation angle o,- This is undoubtedly the
result of angular diffusion which tends to move the minimum fransfer
angle OM towards the rear stagnation point. The difference between OS
and O is less pronounced at higher Prandtl numbers because of the
+hinner thermal boundary layer and the reduction in importance of angular
diffusion. |t can be predicted that as Pr » «, @M > es asymptotically.
This observation indicates that flow separation angles measured by
estimation of the point of minimum heat or mass transfer at low Pr or
Sc systems can be significantly in error. The variation of OM with Pr
at various Re are tabulated in Table 4.2-1 and shown graphically in
Figure 4.2-2.

Average Nusselt (or Sherwood) numbers are tabulated in Tabie
4.2-2, Nu vs Pr are plotted for various Re in Figure 4.2-5. The
linear relationship between log Nu and log Pr for Re = 10 fo 300 suggests
a correlation of the form

Nu = a Prb (4.2-1)

where a, b are functions of Re. Linear regressions were made on a, b

at various Re and the results are shown in Figure 4.2-6. This figure

suggests that a and b can be expressed as



Re
20
30
57
100
200

300

Table 4.2-1 ¢, for Sphere

Pr 0.25 0.5 0.71
0° 0° 0°
0° 0° 0°
0° 6° 12°

27° 30° 33°
39° 42° 45°

45° 48° 51°

36°
47.4°

53.4°
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2 3
+ ———
do dIRe + dZRe + d3Re +
C

b =C, Re 2

[o}]
1

Least square fitting of these curves gave

35.2 3

3.103 + 0.681 x 10"'Re - 0.233 x 10 "Re” + 0.365 x 1076 Re

.o
1l

0.096 (4.2-2)

b =0.198 Re

The final correlation for forced convection heat or mass transfer takes
The form of equation (4.2=-1) with a, b functions of Re given by equation
(4.2-2). This correlation is valid for {0 < Re < 300 and 0.25 < Pr < 5.
For the case of Pr = 0.71, calculations have also been made for
Re = 0.05, 0.1, 0.2, 0.5, 0.75, 0.2, 3, and 5 in addition to those
Reynolids nuﬁbers mentioned earlier and results are listed in Table 4.2-3.
These calculated values are in excellent agreement with recently measured
values of Beardand Pruppacher (1971). Figures 4,2-7 and 4.2-8 show the

. 1/3 1, 1/3 :
variation of Nu/2 or Sh/2 with Re™® Pr or Re? Sc at low and high

Rel/2 Pr‘l/3 respectively. Analytical solutions of Acrivos and Taylor (1962),
Rimmer(1969) and numerical solutions of Brian and Hales (1969) and
exper imental measurements of Ranz and Marshall (1952) and Beard and
Pruppacher (1971) are also shown with present predictions. It is seen
that analytical solutions by perturbation analysis are valid only at very
low Reli Prl/3 range (< 0.6) where they agree satisfactorily with numerical
solutions of present study and Brian and Hales who employed Stokes

velocity profiles. Measurements of Ranz and Marshall probably over

estimated the transfer rates due to suspension technique used, and low

values of Beard and Pruppacher may be caused by the difficulty of
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Table 4.2-3 Nu or Sh single Sphere inan
Unbounded Fluid

Sc = Pr = 0.71
1/3 )

Sc = 0.892.

Re = 0.05 ~ 300

Re Sh Re? sc'/’ re*
0.05 2.016  0.2235 0.199
0.1 2.028  0.316 0.282
0.2 2.058  0.4475 0.399
0.5 2,136  0.707 0.631
0.75 2.194  0.866 0.772
1.0 2.246  1.000 0.892
2.0 2.430  1.414 |.262
3.0 ).588  1.732 |.544
5.0 2.844  2.236 1.992
10 3.34 3.16 2.820
30 4.6 5.48 4.88
57 5.75 7.55 6.73
100 6.98 10,0 8.92
200 9.26  14.14 12.60

300 10.95 17.32 {15.43
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1 1/3
low Reynolds number measurements. A+ moderately high Re? Pr > 1.4),

the present predictions agree very well with Beard and Pruppacher, who
used freely suspended drops. The maximum error is about 4%.

Sphere Assemb lages

Calculations were made for Re = 100, Pr = 1.0 and three porosities
e = 0.417, 0.644 and 0.834. Velocity profiles used in these calculations
were originally calculated by LeClair and Hamielec (1968) . Local Nusselt
or Sherwood numbers which are difficult to measure experimentally are
also calculated and These are tabulated in AppendiXB.Z Comparison
between local +transfer rates predicted in present numerical analysis
and analytical solutions using thin t+hermal boundary layer theory (LeClair
and Hamielec 1968) are shown in Figure 4.,2-9. 1t is observed that in
concentrated particle systems, the average Nusse | T(or Sherwood) numbers
calculated analytically agree quite well with numerical solutions. Best
agreement is observed at low porosities wheré particle interaction is
strongesT. Particle infteraction suppresses the formation of a vortex
ring making the approximations of the thin Thermal boundary layer theory
more reasonable. The local transfer rates differ somewhat.

4.3 Forced Convection Around 3 Single Cylinder in an
Unbounded Fluid and in a Bundlie

4.3.1 Governing Equations, Boundary Conditions
and Method of Solution

The governing equation for forced convection around a cylinder

is the elliptic continuity equation of heat or mass,
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and the boundary conditions of constant surface temperature or

concentration are

at z=0 ;0 n¥* =1
— . * =

at z =12z n* =0

an . g

at 0 =0, m; 5

@

The stream function y* has already been calculated in Section

4.| for a single cylinder in an unbounded fluid. For a cylinder ina

bundle, y* values calculated by LeClair and Hamielec (1970) are used.

The linear elliptic partial differential equation was solved

using the new sequence tridiagonalization with convergence acceleration
described in Section 3.3.4. Initial guess of n* field is n* = 0 every-

where. FORTRAN |V computer program is similar to that for sphere except

the energy equation.

emciatimasi s S i"E AULIEIALL

4.3.2 Mesh Dimensions and Accuracy of Solutions

The step sizes A and B for n* field used are identical to those

listed in Section 4.1.3 for the flow field of a cylinder. Calculations

were made for A = 0.0314 and 0.05 at Re = 85, Pr = 0.74, B = /30 and
r* = 9.03. Local Nusselt numbers are listed in Tablie 4.3-1. Maximum

difference (< 2%) appears at the frontal stagnation point where therma

Average Nusselt numbers however differed by less

boundary is thinnest.
than 1%. From this test, the A and B used are believed to give average
Nusselt numbers with errors less than those of experimental investigations.

The n* field is not as sensitive to the outer boundary r¥ as

the ¢* and £* fields which is similar to the case of the sphere however

more pronounced effect may be observed since the wake behind a cylinder

- __
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Table 4.3-1 Nu(@) for Cylinder
Re = 85, Pr = 0.74

r* = 9.03, B = 30/

ANGLE A
0.0314 0.05
0 9.02 9.17
12 8.93 9.08
24 8.70 8.82
36 8.30 8.40
48 7.73 7.80
60 7.01 7.04
72 6.13 6.14
84 5.13 5.13
96 4,07 4.08
108 3.07 3.08
120 2.22 2.23
132 1.69 1.69
144 |1.58 .56
156 1.79 1.74
168 2.06 1.99
180 2,17 2.10
Average
Nusselt 4.76 4.78
Number

______’
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at intermediate Reynolds number has much larger dimensions than that

of the sphere, and Therefore considerably larger r¥ must be used fo
closely simulate n* = 0 at rX. Table 4.3-2 indicates the local Nusselft
and average Nusselt numbers for cylinder at Re = 85, Pr = 0.74 at r: = 9,03
and 7.03. The average Nusself number differed by less than 4%. However
t+he local Nussel!t numbers are appreciably in error. This is because the
choice of r: = 7.03 which is less than the length of the vortex (L = 8.5,
Hamielec and Raal 1969) and the boundary condition n* = 0 near the rear
end is not satisfied since the trailing vortex is known to have high
concentration due to internal circulation. A choice of r* = 9.03 which
is comparable to the length of the vortex is believed fto give better
result. |t is therefore recommended that r: be chosen considerably
larger than the length of the vortex ring.

The accuracy of the numerical solutions also depends on the
tolerance ¢ of equation 13.3-30). € was set equal fo IO-3 to give a
maximum change of less than 0.1% per iteration of the local or average
Nusselt number.

4.3.3 Discussion of Resulfs and Comparison
with Existing Data

Calculations were made for Re = 2, 10, 23, 40, 85 and 175 for
Pr = 0.74. Local Nusselt or Sherwood numbers are tabulated in Appendix
B.3. Comparison of present predictions with the experimental data of
Eckert and Soehngen (1952) obtained using a Mach Zender interferometer
are shown in Figure 4.3-1. The agreement is good. Finite transfer rates

at minimum transfer angle are indicated in contrast to zero transfer

predicted by thin thermal boundary layer theory (LeClair and Hamielec 1968).
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Table 4.3-2 Nu(©) for Cylinder

Re = 85, Pr = 0.74
A = 0.05, B = n/30
ANGLE r*
9.03 7.03
0 9.17 8.94
12 9.08 8.85
4 8.83 8.59
36 8.40 8.15
; . 48 7.80 7.55
| 60 7.04 6.78
72 6.14 5.87
g 84 5.13 4.86
96 4.08 3.82
L 108 3.08 2.85
{ 120 2.23 2.10
i 132 .69 1.77
? | 44 | .56 1.96
f 156 |.74 2.44
f % 168 1.99 2.87
j ; 180 2.10 3.04
i: Average
= Nussel T 4.78 4.67
- Number
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Comparisons have also been made with numerical calculations
of Dennis et.al. (1968) for Re = 2, 10 and 40 at Pr = 0.73 in Figure
4.%3-2 and the agreement is exce|len+..

The average NusselT numbers are tabulated in Table 4.,3-1 and
comparison with Dennis et.al. (1968) and experimenfal measurements of
Collis and Williams (1959) shows excel lent agreement. These are shown
in Figure 4.3-3.

Single Cylinder in a Bundle

Caiculations were made for Re = 100, Pr = 0.74 and three
porosities € = 0.399, 0.605, 0.798. Velocity profiles used in these
calculations wereée originally calculated by LeClair and Hamielec (1970) .
Local Nusselt or Sherwood numbers calculated here are tabulated in
Appendix B.3. Comparison of predicted local transfer rates of pfé?en*
study and those obtained through use of the thin thermal boundary layer
theory are presented in Figure 4.3-4, 11 can be seen that local transfer
rates are not in good agreement even at the lowest porosity € = 0.399
(highest density). The average Nusselt (or Sherwood) numbers deviate
more than 10%. This is because The parficfe interaction in cyl inder
bundles does not suppress wake formation as much as for the case of a
sphere assemblage. Therefore application of thin thermal boundary
|ayer theory for the calculation of heat or mass transfer in cylinder

pundles is not recommended .
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Table 4.3-1 Nu for Cylinder

Re

20
23
40
85

175

Nu¥

1.043

| .884

2.638
3.263
4.670

6.466

% present, Pr = 0.74

%¥*% Dennis et.al. (1968), Pr =

Nu**

0.812
{.023
1.318
|.633
|.897

2.557

3.480

0.73
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4.4 Mixed Convection Around a Single Sphere in an
Unbounded Fiuid at Pr = 1.0 and 0.7

4.4.1 Governing Equations, Boundary Conditions
and Method of Solution

The governing equations for mixed convection around a sphere -
are the coupled Navier Stokes equations and the continuity equation of
heat or mass described in Table 3.I-I. The boundary conditions

satisfied follow

EX% %
at z=0 ; v¥ =0 , £¥% = —257—— » n* =1
sin"6
eZz 2
at z = z_ ; y* = —— sin 8, E¥ =0, n*¥=0
at @ = 0,m; y¥ = g% = 0 Qﬁ*\\; 0
F AN ] - » ae

The coupled Navier Stokes and energy equations were solved using
the new sequence convergence acceleration iteration described in
Section 3.3-4. Initial guesses of y*, £* and n* are Stokes creeping flow
solution for Re < 10 and Kawaguti's approximate solution for Re > 10
and n* = 0 everywhere. FORTRAN |V computer program |isting may be found

in Appendix A.3.

4.4.2 Mesh Dimensions and Accuracy of Solutions

The step sizes A and B used were

0.0 <Re < 1.0; A=0.1 , B=mn/30

5<Re <30,; A=0.05, B

t

/30
The size of the outer boundary was sefected by trial and error.
The values tried will be shown later. At low Reynolds numbers, the wall

effect is significant and r* of up to several thousands was used. A%
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moderate Reynolds numbers, smaller r* were used. The extrapolation
technique described in Section 4.1-2 was nof used as Ei values used
were sufficiently large to closely simulate an unbounded fluid.

A convergence folerance of € = IO.3 in equation (3.3-30) was
used.

/
{

4.4.3 Discussion of Results and Cdmgarison
WiTh Existing Data

Heat and Mass Transfer

At Pr = 1.0, calculations were made for Re = 0.01, 0.1 and |
and Gr from IO"2 to 0 for both aiding and opposing flows. To study The
ef fect of Prandtl number on this low Reynolds number system, two |
illustrative cases were calculated at Pr = 10 for Re = 0.1 and Gr = 0.1,
-0.05. Local Nusselt (or Sherwood) numbers are tabulated in Appendix B.4.

Figure 4.4-| shows The variation of Nu(0) or Sh(©) with Gr at
Re = 0.1. [T can be seen that aiding flow (Gr > 0) increases the rate
of transfer at the frontal stagnation point and descreases it at the
rear stagnation point. This is a consequence of the aiding natural
convection current steepening the thermal boundary layer at the front
and thickening it at the rear. For the case of opposing flow (Gr < 0),
the opposing natural convection current thickens the thermal boundary
layer at the front and steepens it at the rear and at a certain negative
Grashof number the natural convection current dominates the flow and
+he minimum transfer point moves to the frontal stagnation point. ]
can be concluded that there exist certain Grashof numbers where the

minimum transfer point OM |ies between O = 0, mn. The flow separation

‘__________-—.
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angles GS also lie between 0, m and OM gnd Os are different in magnitude.
i+ is important to note that even though the Reynolds numbers are in
the so called creeping flow regime, flow separation may occur due to
opposing free convection flow.

Figure 4.4-2 shows the effect of Prandt! number on Nu(e) at
Re = 0.1 and Gr = -0.05. At Pr = 1.0 and Gr = -0.05 an opposing natural
convection current alters the flow significan*ly with the minimum transfer
rate appearing at the frontal stagnation point. When Pr increases to 10,
+he minimum +ransfer point moves +o the rear stagnation point which
indicates fhat the natural convection field is.now not as strong and
does not dominate the flow fiela.

In Table 4.4-1, is tabulated +he variation of average Nussel ™
(or Sherwood) number with Grashof number for both aiding and opposing
flows. |T can be seen that for Re = 0.0l and 0.1, Nu and Sh is close to
2 (the pure conduction or diffusion asymptotic fimit) with a max imum
deviation of about 5%. There exists a certain Gr which will give a
minimum average transfer rafe for both aiding and opposing flows. How-
ever as The mechanism of mixed convection flow is very complicafed and
non-additive (Acrivos 1958, 1966), this small variation may be The result
of step size and or wall ef fect errors. For the case of Re = |, Nu
is seen to increase and decrease monotonical ly with Gr for aiding and
opposing flow, respectively in the Gr range under consideration.

A+ Pr = 0.71, calculations have been made for Re = 5, 10, 20
and 30 and Gr from o - 300 for bofh aiding and opposing flows. Local

NusselT (or Sherwood) numbers are tabulated in Appendix B.4.
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Figure 4.4-3 shows the variation of Nu(@) or Sh(0) with Gr at
Re = 30. |t can be seen that aiding flow increases the transfer rate
at the frontal stagnation point and decreases it at the rear whereas
opposite results are obtained for opposing flow. Also minimum fransfer
points do exist at Gr = =300 and =200 and for other Grashof numbers,
the minimum transfer points all appears at the rear stagnation point.
This is because opposing flow moves the fiow separation angle to the
front and aiding flow moves it to the rear, a point to be discussed
later.

The average Nu or Sh are tabulated in Table 4.4-2. Nu or Sh
increases for aiding flow and decreases for opposing flow, however the
changes are smail in the Gr range considered. Comparisons of present
predictions with experimental measurements of Yuge (1960) indicate good
agreement. Experimental measurements of Narasimham ahd Gauvin (1966)
are for very high Grashof numbers outside our range. Unfortunately
there exists no data in the literature in the low Grashof number range
under consideration here.

Flow Phenomena and Drag Coefficient

The properties of mixed convection flow around a sphere are
extremely complex, particularly for opposing flows. Surface pressure
and vorticity distributions for various Gr and Re are tabulated in
Appendix B.4.

Figures 4.4-4 and 4.4-5 show surface pressure and vorticity

distributions respectively at Re = O.landPr = |.0 for various Gr.
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The frontal stagnation pressure increases with increasing Gr in aiding
f|low and decreases in the case of opposing flow. Negative frontal
stagnation pressure is experienced at a certain negative Gr. The
rear stagnation pressure behaves exactly opposite 1o t+he frontal
stagnation pressure as can be seen in Figure 4.4-4. The surface
vorticity as shown invFigure 4.4-5 increases for aiding flow and
decreases for opposing flow. Negative surface vorticity is experienced
at a certain negative Gr. These phenomena including the surface pressure
indicate that fhe natural convection current for this Gr completely
dominates the flow, and negative drag is experienced by the particle.

The form and friction drag coefficients are tabulated in
Tables 4.4-3, 4.4-4 and 4.4-5 at Pr = 1.0. The outer boundary r* is also
shown. Analytical solutions of Hieber and Gebhart (1969) obtained by
matched asymptotic expansion technique compares well with the present
numerical resulfs (see Tables 4.4-3, 4 and 5) for the limiting values
of Re + 0 and Gr > Rez. The error in the analytical solution increases
with increasing Re. i+ can be seen that the effect of natural convection
on drag coefficient is significant. Figures 4.4-6, 7 show the variation
of CD/CDO with Gr where CDO is the drag coefficient at Gr = 0. If Is
seen that aiding f low increases the dragd coefficient whereas opposing
f low decreases it. Negative drag can appear at a certain negative Gr.
This will never be exper ienced for a freely suspended sphere pecause at

CD <0 t+he sphere would accelerate. Steady state can be maintained by

suspending the sphere with an external supporf. in Table 4.4=3 it can be
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Table 4.4-3 CD for Single Sphere in an Unbounded Fluid

Pr=1.0
Re=0.01
*
Gr . Cpp Cor Cp C5/Cpo 'o
0 789 1630 2420 1.000 992
0.5x10 3 1680 3450 5130 2.124 "
1.0x1073 2350 4820 7170 2.968 "
5.0x10"3 5340 10900 16200 6.705 "
1.0x10"2 7610 15400 23000 9.532 "
~0.5%x10"3 -564 -1150 -1710  -0.710 " !
~1.0x1073 -1880  -3850  -5720  -2.368 " ;
-5.0x10"°>  -5320 -10800 -16200  -6.685 "
-2

-1.0x10 -7640 -15500 -23100 -9.579 "
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Table 4.4-4 C_, for Single Sphere in an Unbounded Fluid

D
Pr = 1.0
Re = 0.1
Gr Cop Cor C Co/Co0 *
0 79.9 165 244 1.000 365
« 1072 8l.4 168 549 (250 )% 1.017 "
« 107> 83.3 172 55 (256 O 1.042 "
<« 1072 9.2 197 05 (298 ¥ 1.198 "
« 1072 11l 226 337 (334 O¥% 1.499 "
x 1072 196 391 587 2.398 "
198 394 592 3.419 60l
« 107 270 534 804 3,285 365
273 536 809 3,308 60l
<102 el 128 189 0.772 365
<102 3.0 8.4 19 0.488 n
« 1072 -187 372 -559 -2.284 "
x-5.0 x 1072 -3.22 6.95 3.73 0.015 134
ox 10 13 308 471 1.925 134
¥ pr =10

* %

Hieber & Gebhart (1969




Table 4.4-5 CD for Single Sphere in an Unbounded Fluid

Pr = |
Re = |
Gr Cop Cor Co
0 8.96 8.4 27 .4
107> 8.96 18.4 27 .4
-3 ,
5 x 10 8.98 18.4 27.4
5x 1002 9.23 18.9 28. 1
o] 9.53 19.5 28.9
5 x TR 22.7 34.4
L. 14.2 26.4 40.7
5 x 1002 8.66 17.9 26.6
~10”! 8.35 17.4 25.8
-5 x 0" 5.72 i3.1 18.8
- 1.18 5.08 6.25

%% Hieber & Gebhart (1969)

.0
.0

*%

(28.5 )

-(28.7 )

C./C

DO

{.000

.00l
.026
1.054
1.257

|.484

0.971

0.942

0.687

0.228

"

|24

cawmutat 11 CCUIANIN H:HQVWDW
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seen that Re = 0.0l and Gr = 5 x 1073¢-5 x 107) and 1072(=1072) that
the drag coefficients are equal, but of obposife sign (for both aiding
and opposing flows). For this small Reynolds number free convection
dominates forced convection giving rise to the symmetry noted. Consider
the case of a cold sphere suspended with a wire in a hot fluid moving
vertically upward. The sphere is fixed in space and the fluid velocity
and temperature are constant giving rise to steady state. A temperature
difference can be found at which the Grashof number (opposing flow) is
sufficientiy negative to give zero fluid drag. Further increases in
the temperature difference will give negative drag. The apparent weight
of the sphere would now be greater than ifs true weight. If the sphere
were now suddenly released it wou I d acceleraTe.unTiI the drag become
positive and equal to the true weight of the sphere. One concludes,
that for a freely suspended sphere, steady state can only be achieved
when the drag is positive.

The increasing and decreasing of sphere drag with Gr shown in
these figures indicates t+hat when the sphere is falling or rising, aiding
flow (natural convection in The same direction as the forced flow)
reduces the sphere velocity and opposing flow (natura! convection in
opposite direction to the forced flow) increases it.

Calculations also were made for the case of Re = 0.1, Gr = -0.05,
-0.1 and 0.1 at Pr = 10 to study the effect of Pr. The results are
tabulated in Table 4.4-4. |t is observed that the effect of Gr on drag
is smaller. This is a result of the thinner thermal boundary layer at

higher Pr. The natural convection currents are concentrated in a confined
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region and lose intensity. Figure 4.4-8 shows stream fines
around the sphere for Gr=-0.05 and -0.1 for the case of rRe=0.1
and Pr=10. At Gr=-0.1 natural convection completely dominates the
flow whereas atGr=-0.05theforced convection fieid is only partially
overcome as can be seen from the vortex ring formed at the rear. It
can be concluded that the effect of natural convection on drag is less
significant for higher Pr and at Pr > <, the effect vanishes.

At Pr = 0.71, calculations have been made for Re = 5, 10, 20,
30 and Gr from 300 to 0 for both aiding and opposing flows in order fo
study the effects of natural convection on drag coefficient, separafion
angle, wake length and wake volume. Surface pressure and vorticity
distributions are tabulated in Appendix B.4.

Figure 4.4-9 shows surface pressure distributions for Re = 30.
The frontal stagnation pressure is invariant over the Gr range studied
for this Reynoids number. For lower Reynolds numbers, however, aiding
flow increases the frontal stagnation pressure and opposing flow decreases
it. (see Appendix B.5). The rear sfpgnafion pressure is affected
significantly by natural convection. Aiding flow decreases it and
opposing flow increases it. The behavior of the frontal stagnation
pressure for this moderately high Reynolds number range under the influence
of natural convection is quite different from that at low Reynolds numbers
(see Figure 4.4-4). The opposing natural convection current is not large
enough to affect the flow at the frontal stagnation point where forced

convection dominates. With significantly high Gr free convection would

——E
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dominate the whole flow field and the behavior of frontal stagnation
pressure would be the same for both cases. The present study is concerned
mainly with positive drag (CD > 0) aﬁd freely suspended particles.

These are of greater technological interest. Grashof numbers were
selected to give positive drag. The surface vorticity distributions

are shown in Figure 4.4-10 for Re = 30. Aiding flow increases the
surface vorticity and moves the flow separation angle to the rear,

however opposing £ low decreases The surface vorticity and moves the

flow separation angle to the front.

Table 4.4-6 displays the separation angle OS, normal ized wake
length L/d and normalized wake volume Vw/VS for Re = 30 and 20. At

Re = 30 there exists a wake at Gr = 0. Aiding flow suppresses it where-
as opposing flow causes it to increase. At Re = 20 there is no wake

at 6r = O. Opposing flow generates 2 wake. The corresponding graphical
represenfafions are shown in Figures 4.4-11 and 4.4-12. The flow
separation angle and wake length are affected similarly by free convection
they increase with opposing flow and decrease with aiding flow. The
variation of OS, L/d and Vw/VS are shown in Figures 4.4-13, 4.4-14 and
4.4-15, and corresponding numerical values are reported in Table 4.4-6.
The drag coefficients are listed in Tables 4.4-7, 4.4-8, and
4.4-9. The drag coefficient is found to decrease with opposing flow

and to increase with aiding flow. The same arguments as used earlier

can be used 1o explain the effects of free convection on particle velocity.
The corresponding values are displayed in Figures 4.,4-16 and 4.4-17.

The present results agree qualifafively with experimenfal observations

- ——eeee|
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SPHERE -
Pr = 0.71

Present numerical:

Re 30 V Aiding fiow
A Opposing flow

Re 20 o Opposing flow
Q

FIGURE 4.4-15 VW/VS va Gr FOR

SINGLE SPHERE
IN AN UNBOUNDED
FLUID

s 1 a1

éO 80 100 200 300
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Table 4.4-6 OS, L/d and Vw/Vs for Single Sphere

in an Unbounded Fluid

at Re = 30 and 20

Re = 30
Gr 0 L/d vV /N
S w S
25 24 .6° 0.155 0.0165
50 21° 0.128 0.00746
100 [1.4° 0.04 0
200 0 0 0
300 0 0 0
=25 30.6° 0.25 0.0459
-50 33° 0.3l 0.0703
-100 37.8° 0.45 0.137
-200 46.2° 0.885 0.441
-300 54 .6° (*) (*)
Re = 20
-10 13.2° 0.06 0.00114
-25 19.80 0.11 0.00544
-50 27.6° 0.21 0.0293
-100 39.6° 0.535 0.182

(*¥) Not accurate due 1o wall effect.

T VIVIN AN QY P R IR Tl UL rYvey



Gr

Table 4.4-7 CD f

DP

2.57

4.08

2.33

1.86

Pr = 0.71,

DF

5.89
6.40
6.43

4.64

2.60

Re

7.

22
.43
.56
.44
.48
.53
.97
.98
.66

.18

5

Cc,/C

{.030
i.158
1.310
|.453
1.460
0.965
0.830

0.645

0.440

or Single Sphere in an Unbounded Fluid

139
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Table 4.4-8 CD for Single Sphere in an Unbounded Fluid

Pr = 0.71, Re = 10

Gr Cop Cor Cy Co/Co0 r*
0 [.54 2.84 4,38 | 19,11
5 |.64 2.93 4.57 |.043 "
1) 1.76 3,02 4.77 1.090 "
25 2.10 3.29 5.39 |.230 "
50 2.65 3,70 6.34 l.450 "
100 3.71 4.44 8.15 |.860 19.11
-5 |.42 2.71 4.16 0.950 19.11
-10 1.30 2.64 3.94 0.900 .
-25 0.945 2.33 3.28 0.748 "
-50 0.328 |.74 2.07 0.472 "
-100 (negative drag occurs)

-179 -2.41 -1.43 -3.84 £1.59
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Table 4.4-9 CD for Single Sphere at Re = 20 in an

Unbounded Fluid

Pr = 0.71, Re = 20

Gr Cop CoF ‘o /%00 ™
0 1.02 .72 2.74 i1.59
10 1.08 .78 2.86 1.043
25 1.16 1.83 2.99 1.092 11.59
50 |.28 1.90 3.18 I.162 "
99 1.52 2.04 3.55 1.299 "
179 }.89 2.24 4,13 1.510 "
293 2.42 2.53 4.95 |.809 "
2.43 2.55 4.98 19.11
-10 0.975 1.72 2.69 0.983 14.88
-25 0.900 | .67 2.57 0.938 "
-50 0.775 1.58 2.36 0.862 "
-100 0.520 |.40 1.92 0.703 "
0.509 .39 1.90 0.694 19.11
-200 0.035 1.05 1.08 11.59
-0.009 0.982 0.973 14.88
-0.042 0.931 0.889 19.11
-179 0.144 .19 1.33 wall effect




142

Table 4.4-10 C_ for Single Sphere at Re = 30 in an

D
Unbounded Fluid
Pr = 0.71, Re = 30
Gr Cop Cor C, Cy/Co0 rx_
0 0.835 1.33 2.17 11.59
25 0.888 1.36 2.25 1.037
50 0.939 1.39 2.33 1.073 "
100 1.04 .44 2.48 [.144 "
200 1.24 1.54 2.76 |.284 "
300 .44 .64 3.08 1.421 "
-25 0.786 .30 2.09 0.964 m
-50 0.734 1.28 2.01 0.926 "
- 100 0.630 1.22 .85 0.852 "
-200 0.422 .09 .51 0.700 "
~300 0.210 0.955 .16 0.537 11.59

0.190 0.929 bol2 0.516 14.88



M
<

(MOTd ONIA
NI 34

qHdS TTONIS q0d

1v¥) ainid amaNnogNn NY¥ o4 g
9/°0 9l-v'¥ ERIRSLE

19 SA

19 _

0

Q!

v

[}

o
2y %
1£0=1d
MO14 9SNIAIV’ 343HIS

0l

¢l

71

009/ 91

491

0¢




144

arnid

0!

(MOTd DNIS04do) od. ,d
QZANAOENA NY NI JddHdS ETONIS d0d ID SA /-0 LT-y°¥ 3ENOId

0l

_

| §

19

o€ v
0¢ o
0l o
G = oy %

{£0=1d

MO1d 9NIS0ddO0 * 343HdS

0d5,89

I'0

¥0

S0

S0

L0

80

60

0l




145

of Narasimhan and Gauvin (1966), theoretical observations of Acrivos
(1658, 1966) and Sparrow et.al. (1959) on a flat plate and a wedge.

in conclusion, the effects of natural convection on heat or
mass transfer, surface pressure, vorticity distributions, flow separation
ang ie, wake length and volume and drag coefficient discussed previously
can be explained phenomenologicaliy by considering the mechanism of
fluid flow with aiding or opposing flow current over the freely suspended
spherical particle. Aiding flow natural convection current enhances
the forced flow whereas opposing flow natura! convection current
suppresses the forced flow.

4.5 Mixed Convection Around a Sphere in an
Unbounded Fluid - zero Prandt! Number

4.5.1 Governing Equations, Boundary Conditions
and Method of Solution

At zero Prandt! number, the thermal boundary layer is of infinite
thickness and the temperature field can be considered radially symmetric

with n* = |/r¥ as the distribution. Substituting this relation into the

vorticity transport equation of Table 3.1-1 one obfains
aw* ) g* _E_IP_* 3— g* z .
(5730 (= ) - % 37 7 )] e7sind
e sino e sind
2 2 z eZ Gr 2
- £ g *% (g¥e"sin@) - x3 T sin’0
e sZ 2 Re2

This equation, together with the defining equation for vorticity
2 3z
* — E¥ * :
g S / e “sind

are the governing equations of flow of zero Prandtl number fluid around

‘__._
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a sphere. The momentum and energy equations are uncoupled.
Undisturbed parallel flow boundary conditions are used. ﬁf(

They are

B . _ B 2 %,
atz=0 ; y* =0, g* = E:z p /sing

at z z ;0 P

=]

1]
N'
"
o
N
@
-
yry
%
!
(@)

at 0 = 0,7 ; ¥ =¢g* =0

The method of solving these equations was the new sequence

iteration with convergence promotion described in Section 3.3.4.

Initial guesses of ¢* and £* were Stokes' velocity profiles. FORTRAN [V : g
computer program is the same as in Appendix A.| except the finite
difference equation for vorticity transport equation.

4.5.2 Mesh Dimensions and Accuracy of Solutions

The step sizes used were A = 0.1 and B = n/30 for the low
Reynolds numbers (0.01 , 0.05, 0.1) studied. The size of the outer
boundary ri was chosen extremely large fto avoid wall effect. The wall
effect for this problem is great because of the very thick thermal
boundary layer. Suitable values for r¥ were found by trial and error.

The convergence tolerance used was e = |0 in equation

(3.3-30).

4.5.3 Discussion of Results

Calculations were made for Re = 0.0, 0.05 and 0.! at Gr from
0.5 x 10-5 to 3.0 x IO-S. Surface pressure and vorticity distributions
are tabulated in Appendix B.5. Figures 4.5-1 and 4.5-2 show the

* *
variation of Ps and Es with Gr at Re = 0.05. Similar resuits for low
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Reynolds numbers at Pr ='I.O were observed, however the effect is
greater. Tables 4.5-1, 4.5-2 and 4.5-3 show the variation of drag
coefficient with Grashof number. Similar but larger effects are
observed. These results are displayed graphically in Figure 4.5-3
and 4.5-4. Unfortunately no data exists in the | iterature for
comparison with the present calculafionsi

For the case of the cylinder, The-zero Prandt! number limift
gives a uniform n¥ distribution and a zero buoyant force (uniform body
force field). This limit has therefore already been covered in
Section 4.1 for viscous flow around a single cylinder in an unbounded
fluid.

This specific study simulates liquid metal flow around a sphere.
Liquid metals have very low Prandtl number (0.005 ~ 0.03) because of
their high conductivity. Deoxidation of molten steel is a process
where the effect of simultaneous forced and natural convection on

particle drag may play a significant role.
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Table 4.5~ CD for Single Sphere at Pr = 0 in an

Unbounded Fluid

Re = 0.0l i
Cop Cor ) CoCoo |

10~ 819 169 ' 251 1.046 2697

10~ 850 175 260 .083 n

10”° 913 186 S 277 [.153 "

1072 999 207 307 |.280 4447

107° 761 158 234 0.975 2697

107> 735 (51 25 0.937 "

102 678 1400 207 0.865 "

5 .

10 563 1160 172 0.718 4447
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Table 4.5-2 CD for Single Sphere at Pr = 0.0 in an

Unbounded Fluid

Re = 0.05
Gr Cop Cor ) Co/Cho e
0 157 323 481 | 1636
0.125 x 107> 168 348 517 1,075 "
0.25 x 10° 178 367 545 1,134 "
0.5 X 0™ 195 403 599 |.246 "
0.75 x 107 221 457 678 1.410 2697
0.125 x 107 149 308 458 0.952 1636
20.25 x 107 139 287 426 0.887 "
0.5 x 107 18 244 363 0.756 "
-3

-0.75 x 10 80.8 167 248 0.516 2697
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Table 4.5-3 C. for Single Sphere Pr = 0.0 in an

D
Unbounded Fluid
Re = 0.1

or Cop “oF ‘o /oo e
0 80.2 166 246 | 992

0.5 x 107 85.3 176 261 |.063 "

1.0 x 107° 90.2 186 276 .125 "

2.0 x 107 99.7 206 305 |.243 "
3.0 x 107 109 224 333 1.356 992
13 234 348 |.414 1636
0.5 x 107 79.8 164 244 0.994 992
0.5 x 107> 74.7 154 229 0.932 992
75.6 156 232 0.942 60l
-1.0x 107 69.3 143 212 0.864 992
22,0 x 107 57.8 119 177 0.721 "
-3.0 x 107 37.0 77.1 14 0.464 1636
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5. CONCLUSIONS, LIMITATIONS OF SOLUTION AND CALCULATION
METHOD AND RECOMMENDAT\ONS. :

5.1 Conclusions

Numerical methods with a new sequence of calculation and convergence
acceleration have been developed to solve linear elliptic difference equafions and
non-linear coupled difference quo’rions. These methods were found to be much
faster than the ADI and SOR methods; these methods are generally used in numerical
: studiés of this kind.

Fluid mechanical data for a single sphere and for a single cylinder in

an unbounded fluid have been calculated theoretically. Ranges of dimensionless
parameters, Reynolds, Prandt! and Grashof numbers covered extend significc\ntly
those which have been considered in previous numerical studies. Present solufions
are genel.'olly more'occurate than those published in the literature. | |

‘5.2 Limitation of Solution and Calculation Method

The limitations of solutions and caleulation method involved in this
study are caused by two main sources, namely, the flow instability and compufoﬁonal
instability. They are described in the following sections.

The numerical solutions obtained in this study were for steady state

~ conditions. The flow phenomena in question may become transient under certain
conditions and for certain values of _the. dimensionless pdrome’rers. For example
vortex shedding from a sphere is qbserved experimentolly at a Reynolds number of
about 400, the critical value depending on main stream turbulent intensity.

Beyond this critical Reynolds number the flow is transient and the steady state
solution can only hope to approximate the actual behaviour.

For certain values of the dimensionless parameters, the flow becomes
unstable, and the growth in intensity of this instability can eventually result in
turbulent flow. An example of this is opposing flow at high Grashof numbers where
the large natureal convection current extensively disturbs the forced convection

current. Without considering the transient term in the Navier Stokes and energy

155
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studies at high Pr and intermediate Re thin thermal boundary layer theory and
integral method should be considered for solving the energy equation. The
application of the finite element method for the solution of Navier Stokes

equations of motion should be considered.

'
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“equations, one cannot be sure that the steady-state solution which has been

reported here actually exists. 1t is well known that opposing natural and forced
convection leads to instabilities. This is suspected in this case where the

caleulated flow field shows a zero «treamline separating the natural and forced

flow field at a position away from the sphere surface. The steady-state solution
itself became highly unstable in this region.
In case of high Prandtl and intermediate Reynolds number, the thermal
, boundary layer up o the separation point is extremely thin although the vortexring
, regime can still be considerably thick due to circulating motion. The temperature
gradient over the upstream region is very steep near the surface and this
necessitates a fine mesh in the radial direction in the energy equation fo make
the second order finite—-difference equations stabte. This will lead to a large increase
‘n mesh points and therefore computation fime. In this study, situations in which
large differencesin velocity and temperature gradients were not investigated.
_ In the mixed convection problems colved in this study, the Prandtl
numbers considered are of order | and 0 where the natural convedion is important.
Unhder these conditions, the thermal boundary layer is thick and @ relatively large
outside boundary must be chosen fo ensure undisturbed parallel flow. Ata Grashof
number where the radio Gr/Re2 is greater than unity, it was found that the
computation for opposing flow becomes unstable, and the outside boundary must
be chosen extremely large 10 bound the large reversing natural convection contour.
The instability problem can be reduced by employing a smaller mesh system; however,
very large computation times are required.
All solutions obtained in this work assume constant property flow and
this can be a serious limitation in many proc’rical applications.
u . 5.3 Recommendations
| A foster aumerical method should be developed. The Galerkin method

v looks attractive for future study in this ared of computation - In forced convection
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NOMENCLATURE

A -

a —-—

o
1

@ Q Q o
1

DF'’ "DP

Lattice spacing in z direction, dimensionless
Constant in the correlation Nu=aPrb,
dimensionless

Lattice spacing in © direction, dimensionless
Constant in the correlation Nu=aPrb,
dimensionless

Column vector

Concentration, dimensional

Total drag coefficient, dimensionless
Friction and form drag coefficients,
dimensionless

Total drag coefficient at Gr=0, dimensionless
Stokes drag coefficient, dimensionless
Coefficient matrices

Heat capacity, dimensional

Molecular diffusivity, dimensional

Diameter of sphere, dimensional

Differential operators for cylindrical

coordinates
2 2

E*Z - 9 4_1;_ 9 + 1 ]
[ *2 * * *2 2

or r oY r 30
. 2 2
E:zzs : 2+ 2 2

dz a0
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- Differential operators for spherical coordinates

2 32 in@
EFY ==+ 25 ¢ ine g—
arx”  rx° 30 °© ©
E*2 = 82 -3 + gine 2_{__1_.3_9
sz 3,2 o 90 S1in® 36

Field function (stream function, vorticity,
temperature or concentration)

Dummy vectors

Grashof number, d:ijg(Ts—'];w)/l)2

Gravitational constant, dimensional
Gravitational acceleration vector

Dummy functions of vorticity §*, dimensionless
Average heat transfer coefficient, dimensional
Local heat transfer coefficient, dimensional
Total number of mesh points in © direction
Identity matrix

Subscript determining mesh point in © direction
Total number of mesh points in z direction
Subscript determining mesh point in z direction
Average mass transfer coefficient, dimensional
Local mass transfer coefficient, dimensional
Length of vortex, dimensional

Dummy integer

Subscript for mass transfer
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N = Total number of mesh points

Nu - Nusselt number, dh/k

Nu (®e) - Local Nusselt number, dh (8) /k

n - Iteration level

P,Q = Dummy coefficients in the generalized second

order elliptic pPartial differential equation

pP' = Dummy variable of pressure, pressure/Q

p* - Dimensionless pressure, pressure/%pUg

P*(G),P; - Surfac