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Abstract

In this thesis, the importance of temporal fine structure (TFS) in speech perception is

investigated. It is well accepted that TFS is important for sound localization and pitch

perception, while envelope (ENV) is primarily responsible for speech perception. Recently, a

significant contribution of TFS in speech perception has been suggested. This was linked to

the improved ability of normal-hearing subjects to understand speech in fluctuating-power

background noise as compared to hearing-impaired people. However, the accuracy of this

claim is questionable since TFS and ENV are correlated and one can recover ENV to some

extent if provided with TFS-only speech. In this work, we quantify the relative advantages

of TFS and the possible influence of recovered ENV on speech recognition scores. We used

a computational model for the cat auditory periphery, which was modified to match the

available data for human cochlear tuning. The output of the model was analyzed by the

spectro-temporal modulation index (STMI) metric to predict speech intelligibility. The

settings for the auditory model output and STMI parameters were chosen to be insensitive

to fast variations in the speech waveform within a narrow frequency band so that the STMI

results are a direct measure of the envelope content of the stimulus. A speech recognition

experiment was conducted on five normal-hearing subjects and the STMI predictions were

mapped to intelligibility using a specially constructed mapping function. The TFS role was

quantified by examining the TFS intelligibility scores and the corresponding intelligibility

predictions from ENV recovery. Our results show that although ENV recovery has some

influence on the intelligibility results, it cannot account for the total reported intelligibility.
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Hence, we are suggesting that it would be beneficial to develop better coding schemes for

hearing aids and cochlear implants in order to provide better TFS cues to facilitate speech

recognition in the presence of fluctuating-power noise background.

v



Acknowledgements

First and foremost I thank and praise Almighty Allah for giving me the ability to complete

my PhD research and I hope that this work will be of help to as many people as possible.

I am completely grateful to my supervisor, Dr. Ian C. Bruce, that I cannot possibly thank

enough, for his ultimate patience and invaluable guidance during my research. Being always

approachable, either by email or with his open office door, made me always feel safe during

many uncertainties in the period of this research. I am ever so grateful and absolutely

blessed to have such a supervisor that is sincerely thoughtful for his students. On top of

that he is a great family man who opened his house for his students and introduced us

to his incredibly lovely family (Gillian, Colin and Owen). Thank you very much for your

remarkable hospitality, it was a great pleasure for my family to spend some time with yours.

I would also like to thank Laurel Carney and Hubert de Bruin for advice on the experiment

design, Sue Becker for the use of her amplifier, headphones and testing room, Malcolm

Pilgrim and Timothy Zeyl for assistance with running the experiment, Dan Bosnyak and

Dave Thompson for assistance with the acoustic calibration, Michael Wirtzfeld and Jason

Boulet for comments on an earlier version of a related manuscript, and the speech-experiment

subjects for their participation. Special thanks for Jason Boulet for his careful review of and

valuable suggestions to improve an earlier draft of the manuscript.

I’d like to deeply thank my husband Sherif for putting up with me during the tough

times of my study and never giving up on me and I’m blessed to always have my daughter

Mariam (6) pushing me to finish writing my thesis “my book” so that we can play together.

vi



Special thanks to my family, my older sister Abeer and my parents for their endless love,

encouragement and support in all of my endeavors specially during my study abroad. Thank-

you for being always there for me. I am completely indebted to Mom and Dad for their

continuous encouragement and support throughout all of my schooling that has got me to

where I am now.

This research was supported by NSERC (Discovery Grant #261736), and the human

experiments were approved by the McMaster Research Ethics Board (#2010 051).

vii



Notation and abbreviations

‖ · ‖

AI

AN

AVCN

CEFS

CF

CIS

CN

CNC

DCN

DPOAE

ENV

ERB

ERBN

IHC

LIN

LSO

MGB

Euclidean norm of a vector

Articulation Index

Auditory nerve

Anteroventral cochlear nucleus

Contrast enhancing frequency shaping

Characteristic frequency

Continuous interleaved sampling

Cochlear nucleus

Consonant nucleus consonant

Dorsal cochlear nucleus

Distortion product otoacoustic emission

Envelope cues of the speech signal

Equivalent rectangular bandwidth, bandwidth of an ideal filter

passing same power as original filter when driven by white noise

Mean value of ERB measured for moderate sound

levels for young normal − hearing people

Inner hair cell

Lateral inhibition network

Lateral superior olive

Medial geniculate body
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MNTB

MSO

MTF

N

NAI

ND

OAE

OHC

PSTH

PVCN

Q10

QERB

SEM

SFOAE

SNR

SOC

SPC

SRT

SSE

STI

STMI

STRF

T

TEOAE

TFS

VCV

Medial nuclei of the trapezoid body

Medial superior olive

Modulation transfer function

Cortical output of a noisy test signal

Neural articulation index

Neural distortion

Otoacoustic emission

Outer hair cell

Post stimulus time histogram

Posteroventral cochlear nucleus

Quality factor of the filter, the center frequency divided by the 10 dB bandwidth

Quality factor of the filter using the ERB value

standard error of the mean

Stimulus frequency otoacoustic emission

Signal to noise ratio

Superior olive complex

Spatiotemporal pattern correction

Speech recognition threshold

Single sideband encoder

Speech transmission index

Spectro − temporal modulation index

Spectro − temporal response fields

Cortical output of a clean template signal

Transient evoked otoacoustic emission

Temporal fine structure cues of the speech signal

Vowel consonant vowel
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WDRC

WGN

Wide dynamic range compression

White Gaussian noise
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Chapter 1

Introduction and Problem Statement

The human auditory system uses the different cues in the received acoustic signal in order to

interpret and understand the speech information in the signal. Speech cues can be classified

into two broad categories; envelope (ENV) and temporal fine structure (TFS). The ENV is

characterized by the slow variations in the amplitude of the speech signal, while TFS is the

fast variations in the signal. It has been widely believed that ENV cues are responsible for

speech perception while TFS cues are associated with melody and pitch perception as well

as sound localization. Recently, a possible role for TFS in speech understanding has been

debated. Some studies showed a possible link between TFS and speech perception especially

in fluctuating background noise scenarios. This may result in some implications for the design

of cochlear implants and hearing aids which are currently not efficient in delivering the TFS

cues. However, the TFS role for speech perception may have been overestimated due to the

process of reconstructing ENV cues from TFS cues at the output of the human auditory

filters. These recovered ENV cues may be the real cause of intelligibility which is something

that can diminish the importance of TFS inclusion in cochlear implants schemes. There has

not been a clear answer of the extent of recovered ENV contribution to intelligibility nor the

amount of TFS contribution to speech perception. In this work, we address this problem,

aiming at quantifying the relative roles of TFS and recovered ENV in speech perception.
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1.1 Scope of Work

The relative roles of different speech cues in speech perception is the subject of ongoing

research and debates. The once commonly accepted idea that speech perception is mainly

due to the ENV content of the signal is now challenged by various studies demonstrating

significant effects of TFS in speech understanding. However, the claims of TFS role in the

process of speech recognition have been refuted by evidence of reconstructed ENV informa-

tion from the TFS cues at the output of the human cochlear filters, which may be responsible

for the observed enhancement in speech perception when TFS information is introduced. In

this work, our goal is to provide a method to predict the amount of intelligibility due to

reconstructed ENV cues, which will be used to estimate the TFS contribution to intelligi-

bility. Hence, we can provide a good quantification of the relative roles of both types of

information. Implications of this work can be profound in the way cochlear implants and

hearing aids speech processing schemes are developed.

The goal of this work is to provide good approximation to the relative roles of TFS

and ENV cues in speech understanding in humans. To achieve our goal of quantifying the

relative roles of ENV and TFS cues in speech perception, we use various techniques to predict

speech intelligibility using a computational model of the auditory periphery system and a

metric for speech intelligibility. We have also conducted a speech experiment on normal-

hearing subjects using test speech that has been processed to generate different types of

auditory chimaeras. The auditory chimaeras are specifically designed to separate the effects

of the speech ENV and TFS cues allowing for a better judgment on their contribution to

speech perception. The output from the auditory periphery model is passed through a

model for cortical processing, which is a bank of modulation-selective filters to predict the

corresponding intelligibility using the Spectro-Temporal Modulation Index (STMI) metric.

The STMI predicts intelligibility by comparing the cortical outputs in response to a reference

(clean) signal and a test (noisy) stimulus. If the cortical pattern of the test stimulus is

close to that of the reference signal, a higher value of intelligibility is predicted. When the

2
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spectro-temporal patterns of the test and reference signals differ considerably, a lower value

of intelligibility is estimated. Our choice of large time bin width in the auditory neurogram

and low temporal rates for the STMI makes the STMI results sensitive mainly to ENV

contents in the signal while ignoring most of the TFS cues. Hence, any value for the STMI

greater than the empirical minimum, in response to a TFS-only stimulus, is a sign of ENV

recovered from the TFS signal.

In the speech recognition experiment, five normal hearing subjects were tested with dif-

ferent kinds of chimaeric speech. The stimuli are selected from the Northwestern University

auditory test number 6 (NU-6) list and then processed to remove either ENV or TFS cues

generating five types of auditory chimaeras. These chimaeras are constructed by combining

ENV (or TFS) speech with conflicting noise TFS (or ENV). We adopt several scoring meth-

ods, with the phonemic representation being the main scoring scheme. In this approach, the

word is divided into its phonemes and subjects are rewarded for partial recognition. This

scoring mechanism is more accurate and closer to the STMI metric (Elhilali et al., 2003).

We constructed a mapping function between STMI and intelligibility, which is based on the

experiment intelligibility data and the model’s STMI predictions to match the STMI results

to the corresponding intelligibility. Assuming that ENV and TFS contributions to intelli-

gibility are added linearly on average, the TFS role in speech perception is estimated by

subtracting the predicted intelligibility from the recovered ENV, which has been computed

using the auditory model and the mapping between STMI and intelligibility.

1.2 Contribution of this Work

The auditory periphery model of Zilany and Bruce (2006) has been modified to include the

sharp cochlear tuning of humans reported in Shera et al. (2002). The middle ear section of

the model has also been modified to allow for using more practical lower sampling frequencies

(≈ 100 kHz) rather than the higher sampling rates of 500 kHz that has been used in Zilany

3
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and Bruce (2006). The stability of middle ear filter has also been improved by reducing the

order of the filter and implementing it digitally as a cascade of 2nd-order filters. The modified

model is employed to investigate how cochlear tuning affects the restoration of ENV cues in

AN responses to TFS speech. It is concluded that the competing noise ENV of the chimeras

further reduces speech ENV restoration but does not totally eliminate it. Moreover, ENV

restoration is greater if the cochlear tuning is adjusted to match the human tuning estimates

of Shera et al. (2002).

Further analysis of the results required more data with various processing schemes in or-

der to quantify the pure TFS contribution in speech perception as well as to estimate speech

intelligibility due to reconstructed ENV cues from the human cochlear filters. Moreover,

the possible influence of adding matched noise to speech chimaeras needed to be addressed

in order to identify: 1) the cases where the matched noise is doing the intended task, of

suppressing some of the original speech cues, 2) the cases when adding matched noise is ac-

tually giving some cues about the original speech signal. These goals have been accomplished

through a word recognition experiment and comparison to the model’s STMI predictions.

We constructed a mapping function between the STMI results and the speech recognition

experiment’s intelligibility scores. This mapping function was then used to predict the in-

telligibility due to recovered ENV cues for Speech-TFS chimaeras. Hence, we were able to

quantify the intelligibility due to the estimated TFS contribution by subtracting the esti-

mated intelligibility due to recovered ENV cues from the total intelligibility scores for Speech-

TFS chimaeras assuming that ENV and TFS cues interact in a simplified linear way. Our

results show a considerable contribution of TFS cues to intelligibility (30% – 50%), which

motivates the development of more sophisticated speech processing algorithms to better

encode TFS cues in hearing aids and cochlear implants as well as in speech intelligibility

predictors.

4
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1.3 Thesis Layout

Following this Introduction, Chapter 2 presents a brief description of the anatomy and

physiology of the auditory system, the response properties of the auditory-periphery and

the central auditory system. A computational model for the auditory periphery in cats is

briefly described followed by a concise description of the development of the speech intelli-

gibility metrics based on the acoustic signal properties and also the auditory-model based

approaches. This is followed by a description of the basic types of speech information, the

envelope and the fine structure, and their roles in speech perception.

Chapter 3 provides a detailed description of the modifications introduced to the cat

auditory periphery model in order to match tuning data for humans. This is followed by

a definition of auditory chimaeras and their generation process. The results section in this

chapter provides the STMI scores obtained using the human auditory model with test stimuli

chosen from the Texas Instruments and Massachusetts Institute of Technology (TIMIT)

database. The STMI scores suggest a possible effect of ENV recovery on the STMI scores for

TFS stimuli. Chapter 4 provides a detailed description of a speech experiment conducted on

five normal-hearing subjects to evaluate the roles of TFS and ENV in speech perception. The

chapter starts by describing the experiment setup and the test materials. The experiment

results are analyzed and the significance of the results is determined using the ANalysis-

Of-VAriance (ANOVA) measure. Comparisons to theoretical predictions from the human

auditory periphery model and the STMI are provided. This is followed by introducing a

mapping function between STMI and intelligibility and describing a methodology to estimate

the relative contributions of reconstructed ENV cues and estimated TFS cues to speech

recognition. Chapter 5 gives a summary of the findings and the insight gained through this

work followed by some suggestions for future works. In the Appendix, we describe efforts

to further adapt the model to match the human auditory periphery system the auditory

periphery model of Zilany and Bruce (2006) by replacing the cat’s middle ear function with

an estimate of the human’s middle ear transfer function.
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1.4 Related Publications

This thesis is the result of the original research conducted by the author, except for contri-

butions made by the thesis supervisor, Dr. Ian C. Bruce. The publications resulting from

each chapter are as follows:

Chapter 3: Parts of this chapter were published in a refereed conference paper: Ibrahim

and Bruce (2010) “Effects of peripheral tuning on the auditory nerves representation

of speech envelope and temporal fine structure cues” in ‘ ‘ Neurophysiological Bases of

Auditory Perception” at the 15th International Symposium on Hearing (ISH), Spain,

June 2009. The improved auditory periphery model for humans is implemented and the

code is available to the public.

Chapter 4: Parts of this chapter are submitted for publication to the Journal of the Associ-

ation for Research in Otolaryngology (JARO).
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Chapter 2

Background

2.1 The Auditory System

The human auditory system has amazing capabilities in discriminating and understanding

complex sounds. Humans also show great sensitivity and perceive sounds with frequencies

over the range of 20 Hz to 20 kHz. Sound is converted by the eardrum into vibrations

after passing through the outer ear canal. Vibrations from the eardrum in response to the

sound pressure are transmitted through the middle ear ossicular chain to the cochlea in

the inner ear. The cochlea acts as a frequency analyzer with each place on the cochlea

responding more favorably to a particular frequency known as the characteristic frequency

(CF). Sensory receptors, known as hair cells, transduce the mechanical wave energy into

neural activity (spikes), which are elicited on AN fibers innervating those hair cells. The

neural code in the AN fibers is then conveyed to higher nuclei in the central auditory system

for further analysis and processing. The auditory system performs several complex tasks

such as sound localization, speech understanding and pitch and melody perception, which are

usually required to function properly even in the presence of background noise or competing

speech. Understanding the mechanism of operation of the auditory system requires good

attention to the structure of the different sections in the auditory system as well as the
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interactions between the different parts. In general, the auditory system can be divided into

four different sections: outer ear, middle ear, inner ear, and central auditory system. For a

detailed review of the structure and functions of the different sections of the auditory system,

the reader is referred to the work of Dallos and Fay (1996); Pickles (1988); Yost (2006) and

the references therein.

2.1.1 The Outer and Middle Ears

Figure 2.1 illustrates the anatomy and interconnections of the outer and middle ears in

humans. The outer ear consists of the visible pinna, which includes a resonant cavity called

the concha. The concha leads to the external auditory meatus or canal. The external

auditory canal leads to the eardrum (tympanic membrane), which is constructed of thin

layers of tissue stretched across the inner end of the canal (Yost, 2006). The tympanic

membrane vibrates in response to the impinging acoustic waveform and the vibrations are

passed on to the middle ear ossicles. Due to the resonance properties of the pinna cavity

and meatus, sound pressure is increased (by 10 – 15 dB) at frequencies from 2 – 7 kHz in

humans (Shaw, 1974). Beside changing the pressure gain for the incident sound wave, the

outer ear has an important function in sound localization (Musicant et al., 1990). Reflections

of the acoustic waveform from the pinna folds can increase or attenuate the resultant signal

based on the direction of the sound source. The pinna adds a direction dependent signature

to the sound spectrum, which helps in sound localization in the vertical plane as well as

distinguishing sounds originating in front or behind the head. In addition, the ear canal

provides protection of the tympanic membrane and a clear passage for sound.

The tympanic membrane vibrations are mechanically conducted to the middle ear through

a lever mechanism formed by the ossicles, from the malleus at the tympanic membrane to

the incus and then to the stapes. The ossicular chain vibrates the oval window membrane of

the inner ear causing the inner ear fluids to move in a plunger action. The middle ear acts

as an impedance transformer to match the low meatus impedance to the higher impedance
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Figure 2.1: A physiological model of the mammalian ear showing the outer ear, middle ear
and inner ear structures (from Clark, 2003).

of the cochlea. In this way, most of the sound energy, which otherwise would have been

reflected back to the meatus, is conveyed to the cochlea. The main factor in transferring

most of the sound pressure is that the area of the tympanic membrane is much larger than

the stapes connection with the oval window and hence the pressure is increased at the oval

window by the area ratio. A secondary factor is the lever mechanism of the middle ear bones,

where the arm of the incus is shorter than malleus increasing the force at the stapes (Pickles,

1988). There are two small middle ear muscles attached to the ossicles known as the tensor

tympani and the stapedius muscles. The tensor tympani is attached to the malleus while

the stapedius muscle is attached to the stapes and the contraction of the muscles increases

the stiffness of the ossicular chain. Contraction of the middle ear muscles can be caused by

loud sound that is more than 75 dB above absolute threshold, vocalization, or general bodily

movement (Carmel and Starr, 1963). The increased stiffness due to the contraction of the

middle ear muscles reduces sound transmission at low frequencies. At high frequencies above

1–2 kHz, transmission of sound is not controlled by stiffness (Pang and Peake, 1986).
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2.1.2 The Inner Ear

The inner ear can be divided into three parts (Fig. 2.2): the semicircular canals, the vestibule,

and the cochlea. The semicircular canals affect the sense of balance rather than hearing (Yost,

2006). The vestibule is the central inner ear cavity. It starts with the oval window, which

is the link between the inner ear and middle ear. The cochlea is a snail-shaped structure

embedded deep in the temporal bone. The cochlea is the primary auditory organ of the inner

ear, where the mechanical sound vibrations are transduced to electrical neural activity in the

AN. The cochlea is composed of three fluid-filled parts: scala vestibuli, scala tympani, and

scala media or cochlear duct. The scala vestibuli is the upper passage of the cochlea, which

starts at the oval window that connects to the tympanic cavity of the middle ear through the

footplate of the stapes. The scala vestibuli meets the scala tympani at the helicotrema. The

scala tympani is the lower passage of the cochlea, which is connected to the tympanic cavity

of the middle ear through the round window. The scala media is an inner compartment,

which is separated from the scala vestibuli above by the Reissner’s membrane and from the

scala tympani below by the basilar membrane.

The two outer scala, the scala vestibuli and the scala tympani, contain a fluid known as

the perilymph that has an ionic composition similar to the extracellular fluid. The inner

scala, the scala media, is filled with a fluid known as the endolymph, which resembles the

intracellular fluid as it contains high concentrations of potassium ions and low concentrations

of sodium ions. Hence, the endolymph in the scala media is at a high positive potential

(≈ 80 mV), while the perilymph in the scala vestibuli and scala tympani and is at or near

the potential of the surrounding bones. The potential difference between the endolymph and

perilymph fluids provides an electrical driving force, which is vital in physiological operation

of the cochlear hair cells.

Sound vibrations are transmitted through the stapes to the oval window. The perilymph

fluid in the scala vestibuli is displaced to the round window, which connects to the scala

tympani. This pressure is transmitted throughout the cochlea causing oscillations of the
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Figure 2.2: A schematic representation of the human inner ear (from Raphael and Altschuler,
2003).

round window of the scala tympani. This in turn causes the basilar membrane in the scala

media to vibrate generating a waveform that propagates away from the basal end of the

membrane. Because of the decreased stiffness moving away from the basal end, the waveform

speed and wavelength decreases while its amplitude increases as it propagates away from the

originating point at the basal point of the basilar membrane. So energy propagation slows

until the wave effectively halts at a characteristic place on the basilar membrane (Dallos

and Fay, 1996). Each location on the basilar membrane has a CF, the resonance frequency,

which is related to the local stiffness and local mass of this point on the basilar membrane.

These frequencies are arranged spatially in a decreasing order from the base to the apex. von

Békésy (1960) measured the traveling wave in human cadaver ears showing a gradual buildup

of the waveform amplitude until a distinct peak was observed. Lower stimulus frequencies

will have the maximum amplitude closer to the apex (Fig. 2.3). In the living ear, the wave

motion is nonlinear with much sharper tuning than von Békésy’s measurements from the

dead cochlea (Dallos and Fay, 1996).

The displacement of the basilar membrane in response to a high-level stimulus is similar

to von Békésy’s measurements. However, the basilar membrane displacement, as a function
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Figure 2.3: von Békésy’s amplitude and phase measurements of the traveling wave in at
different locations in the human cadaver cochlea. The symbol ∼ means Hz. (From von
Békésy, 1960)

of the ossicular displacement, becomes increasingly sharper around the CF as the stimulus

level decreases. This nonlinearity and sharp tuning are best explained using active models for

the cochlea, where a local supply of energy can selectively boost the traveling waveform in the

region basal to the CF with a mechanism to reduce the damping of the basilar membrane and

cochlear fluids (Neely and Kim, 1983). This feature is commonly referred to as the cochlear

amplifier. The active feedback model in the cochlea can produce some instabilities and it

has been observed that some spontaneous oscillations, spontaneous otoacoustic emissions,

of cochlear origin are retransmitted through the middle ear and can be measured in the ear

canal.

Consequently, the basilar membrane acts as a non-linear and time-varying frequency

analyzer. The place-frequency representation, referred to as the tonotopic map, is inherited

by the IHCs and AN fibers, as illustrated in Fig. 2.4.

The organ of Corti, which is the auditory receptor organ in the inner ear, sits on the

basilar membrane in the scala media. The organ of Corti has an arch of rods or pillars, which

divide the organ of Corti into inner and outer parts. The inner side of the organ of Corti
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Figure 2.4: Illustration of the tonotopic organization of the cochlea. The place of the best
frequencies along the basilar membrane is organized with each point tuned to a certain
frequency in the sense that it exhibits maximum displacement in response to a stimulus of
this frequency (from Sachs et al., 2002).

contains a single row of inner hair cells (IHCs) while the outer side contains three or four

rows of outer hair cells (OHCs) with the hair cells being surrounded by various supporting

cells. Stereocilia, which are actin-filled modified microvilli, project from the apical surfaces

of the hair cells up into the endolymphatic space. On the apical surface of each hair cell,

stereocilia are arranged in several rows making “U” or “W” shapes. Within the same row,

the stereocilia are similar in length with the shortest row facing the modiolus and the tallest

row facing the lateral wall (Flock et al., 1962). It is believed that when the stereocilia are

displaced in the direction of the tallest stereocilia, an increase to the synaptic release rate

occurs. On the other hand, when the stereocilia are displaced in the opposite direction, a

decrease in the synaptic release occurs.

The organ of Corti is covered by a soft gelatinous flap, which is called the tectorial

membrane. The tectorial membrane is attached only from one side and is raised above

the basilar membrane. Hence, displacement of the basilar membrane in response to the

vibrational acoustic wave produces shearing motion between the stereocilia projecting from
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the apical surfaces of the hair cells and the tectorial membrane (Fig. 2.5) in proportion to

the basilar membrane velocity at low frequencies and to the basilar membrane displacement

at higher frequencies (Dallos et al., 1972; Billone and Raynor, 1973; Nuttal et al., 1981;

Freeman and Weiss, 1990). The tip links of the stereocilia stretch and contract during the

shear movement of the stereocilia opening ion channels that allow for neural transduction

as the sodium and potassium ions move to and from the hair cells (Hudspeth and Corey,

1977; Russell et al., 1986) and a generator potential develops. When the generator potential

is sufficiently large, neurotransmitters are released from the hair cells causing a synaptic

excitation of the afferent nerve. The action potentials initially exhibit a large potential

change followed by a refractory period. The refractory period is divided into a short absolute

refractory during which the AN can not be excited by any stimulus and a period of relative

refractoriness during which a strong stimulus may cause excitation of a new action potential.

The action potential or neural spike propagates along the AN fibers carrying the coded

information about the acoustic stimulus to the cochlear nucleus (CN).

OHCs have an important role in controlling the response properties of the cochlea to

different frequency components. The frequency selectivity and nonlinear responses of the

cochlea are believed to be directly linked to the OHCs. The OHCs act as a feedback element

in the cochlear amplifier to selectively boost the traveling waveform in the region basal to

the position of maximal passive resonance. Damage to the OHCs removes many of the non-

linear properties of the cochlea response such as two-tone suppression and intermodulation

distortion (Smoorenburg, 1972; Dallos and Harris, 1978; Harrison and Evans, 1979; Schmiedt

et al., 1980). The size of the OHCs, mainly their length, changes in response to acoustic

stimulation. Since the OHCs are attached to the tectorial membrane, the connection be-

tween the basilar membrane and the tectorial membrane changes and the vibration pattern

of the basilar membrane in response to the acoustic stimulus is modified (Brownell et al.,

1985; Brownell, 1990). Hence, the sensitivity as well as the nonlinear features of the cochlear

response are controlled by the OHCs. It is worth mentioning that the OHCs’ motility is
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Figure 2.5: Shear movement between tectorial and basilar membranes. (a) Original position
with basilar membrane at rest. (b) Upward displacement of the basilar membrane stimulates
the hair cells by bending their stereociliary bundles against the tectorial membrane (from
Fettiplace and Hackney, 2006).
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affected by efferent nerve fibers descending from the brainstem and synapsing on the OHCs.

This is, however, a slow motility change as compared to the fast length change caused by

the stereocilia shearing and the transduction at the tip links in response to the acoustic

vibrational movement.

At the basal end of the hair cells, afferent nerve fibers contact the hair cells with nearly

95% of the afferent fibers of the cochlea innervating IHCs with each fiber terminating only

on one IHC. Each IHC is innervated by a different number of nerve fibers. This depends

on the frequency region on the basilar membrane with the density of AN fibers being the

highest in the middle region of the cochlea in humans and cats (Dallos and Fay, 1996).

OHCs are innervated in a slightly different way with a single fiber innervating many OHCs

(Smith, 1975; Berglund and Ryugo, 1987; Dannhof and Bruns, 1993). Efferent fibers mostly

innervate OHCs and carry signals from the brainstem that can modulate the functioning of

the peripheral system. Damage to OHCs or IHCs leads to different hearing problems, with

OHC damage causing broadening of the tuning and loss of cochlear sensitivity and damage

to the IHC causing inefficient transduction and increase of the audibility threshold.

2.1.3 The Central Auditory System

The action potential in the afferent AN fiber encodes features of the stimulating acoustic

waveform, which will be conveyed to the brainstem through the AN fiber. Figure 2.6 illus-

trates the main nuclei in the central auditory system and the interconnection between them.

The first nucleus in the auditory brainstem is the CN. The CN is divided into three regions;

the anteroventral cochlear nucleus (AVCN), the posteroventral cochlear nucleus (PVCN)

and the dorsal cochlear nucleus (DCN). Neurons of the AVCN have similar properties to the

AN fibers and can act as a relay for the neural information. The DCN has more complex

properties and it may be responsible for complex processing of the acoustic information.

The PVCN cells have properties that are intermediate to the properties of the neurons of

the AVCN and the DCN. The superior olive complex (SOC) receives input from the ventral
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cochlear nucleus and it is believed to play an important role in sound localization. The

SOC contains several subnuclei such as the lateral superior olive (LSO), the medial superior

olive (MSO) and the medial nuclei of the trapezoid body (MNTB). The MNTB relays in-

formation from the opposite CN to the ipsilateral LSO. The MSO receives information from

both CNs and is associated with low-frequency analysis to aid in detecting sound direction

from temporal differences of the waveforms from the two ears. The LSO receives direct

input from the ipsilateral CN and indirect connection from the contralateral CN through

the MNTB. The LSO is associated with sound localization via high-frequency analysis to

detect disparities in interaural intensity. The inferior colliculus (IC) is the main receiving

nuclei for the ascending pathways from the SOC. The LSO connects bilaterally to the IC

while the MSO connects ipsilaterally to the IC. The ventral nucleus of the lateral lemniscus

projects ipsilaterally to the IC (Adams, 1979; Elverland, 1978). The dorsal nucleus of the

lateral lemniscus connects bilaterally to the IC (Masterton and Imig, 1984). Direct afferent

fibers connect the contralateral DCN, the contralateral PVCN and contralateral AVCN to

the IC. Hence, the IC receives mono-aural complex frequency responses from the DCN as

well as binaural simpler frequency responses from the SOC. The IC, therefore, is believed to

combine the information from both sources to analyze simultaneously the complex sounds

and their direction in space. The IC delivers input to the medial geniculate body (MGB),

which contains the specific thalamic auditory relay of the auditory system that projects to

the auditory cortex.

Auditory information is split into several pathways in the CN. Some pathways travel

contra-laterally to the opposite side of the brain, while others travel ipsilaterally in the

same side of the brain. Some pathways move from one nucleus to the direct next one,

while others will jump to a higher nucleus (Yin, 2002). One pathway connects to the MSO

and carries information from both cochleas, which helps in sound localization through the

detection of interaural delay times. Detection of differences in sound intensity between the

two ears is accomplished in the LSO and MNTB by a second pathway that projects from the
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Figure 2.6: Schematic of the central auditory pathways showing major processing centers.
Labels are as follows: CN, cochlear nucleus; MNTB, medial nucleus of the trapezoid body;
TB, trapezoid body; SOC, superior olivary complex; NLL, nucleus of the lateral lemniscus;
IC, inferior colliculus; XIC, the commissure of the inferior colliculus; SC, superior colliculus;
MGB, medial geniculate body; AR, auditory radiation; AC, auditory cortex (from Clark,
2003, Fig.2.17, p. 85)).
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VCN. Another information pathway starts in the DCN undergoes complex analysis, which

can lead to the detection of spectral localization cues. Spectral cues are produced when the

sound interacts with the pinna resulting in modifications in the spectrum that depend on the

direction from which sound emanates. Other pathways of information processing in the VCN

exist with complex functions that are not understood as clearly as the sound localization

functions.

There are different types of neural fibers in the neural pathways, which have different

names according to their location. Primary fibers originate from the cochlea and connect to

the CN. High-order fibers are fibers leaving the CN after one synapse. There is a great variety

of discharge patterns of neurons in the VCN. For example, primary-like responses appear to

be generated by spherical bushy cells in the AVCN, while octopus cells may be responsible

for onset responses (Rhode and Smith, 1985). There are various functions associated with

these different types of cells. For example, primary-like cells may act as simple relays of

information as their response is very similar to the AN. Onset cells may have a role in

sharpening the temporal response and hence they can be useful for the estimation of the

fundamental frequency at later processing stages (Møller, 1970).

The information streams project directly or indirectly up to the IC. From the IC, all

streams of information proceed to the sensory thalamus, which then relays the information

to the auditory cortex. The auditory cortex performs further processing of the received

sound information to aid in sound localization as well as the analysis of complex sounds.

It is worth mentioning that the tonotopic map of the basilar membrane appears to be

maintained in the different divisions of the auditory pathways, where sound frequencies are

represented in an orderly high frequency to low frequency map across the responding neurons

(Kiang et al., 1973; Moore, 1987). An extensive review on the central auditory system can

be found in Møller (2000).
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2.2 Neural Responses in the Auditory Nerve

2.2.1 Spontaneous Rates and Thresholds

The AN fibers transmit sound information through action potentials (spikes) to the central

auditory system for further processing and analysis. However, even in the absence of a sound

stimulus, it was observed that AN fibers show some background activity, which is different

in extent from one fiber to another (Moore, 2003). This is termed the AN spontaneous firing

rate, and AN fibers can be classified according to their spontaneous rate into three groups

(Liberman, 1978). High spontaneous rate fibers have spontaneous firing rates of 18–250

spikes per second and constitute about 61% of AN fibers. About 23% of fibers fall in the

medium group with spontaneous rates from 0.5 – 18 spikes per second. Low spontaneous

rate fibers have firing rates of less than 0.5 spikes per second. A closely related property of

the AN fiber is the threshold, which is defined as the lowest stimulus level to incite a change

in the spike rate. High spontaneous fibers will, in general, have low threshold level while low

spontaneous fibers tend to have high threshold levels.

2.2.2 Frequency Selectivity and Tuning Curves

AN fibers have different frequency selectivity, which means that they are more sensitive to

certain frequencies than others in the sense that they have lower threshold levels at these

frequencies. This is usually illustrated by a frequency-threshold curve, which plots the AN

fiber threshold as a function of the stimulus frequency. The frequency-threshold curve is

also known as the tuning curve and the frequency at which the nerve fiber threshold is the

lowest is termed the CF. It is believed that frequency selectivity of AN fibers is a result

of their innervation of a particular region of the basilar membrane, which in turn responds

favorably to certain frequencies more than others, as described earlier. If the frequency scale

is logarithmic, the tuning curve is almost symmetric for AN fibers with low CFs. At higher

CFs, the tuning curve becomes increasingly asymmetric with sharp slopes at high frequencies
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Figure 2.7: Measures of tuning curve characteristics for fibers indicating BF, threshold, and
Q10 parameters of the AN tuning curve (from Sachs et al., 2002).

and less steep slope at low frequencies. An example of a tuning curve is plotted in Fig. 2.7.

For AN fibers with high CFs, a distinctive tip for the tuning curve is apparent with a broad

tail stretching to lower frequencies. One way to measure the degree of frequency selectivity

of an AN fiber is to express it in terms of the 10 dB bandwidth, which is the bandwidth at

10 dB above the best threshold. Alternatively, frequency selectivity may be expressed by the

quality factor Q10, which is the center frequency divided by the 10 dB bandwidth (Pickles,

1988).

2.2.3 Phase Locking

AN fibers encode information about the acoustic stimulus in the average discharge rate and

in the timing between spikes as well. The spike train in the AN fiber in response to a

low-frequency pure tone tends to have almost equal intervals between spikes, which is syn-

chronized to a certain phase of the tone stimulus. This may be explained by the basilar
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membrane movement in response to the acoustic vibrations of the stimulus, where a particu-

lar displacement of the basilar membrane will result in the most release of neurotransmitters

from the IHCs causing neural activities in the innervating AN fibers. The AN fiber does

not necessarily fire on every cycle of the tone stimulus, but when it fires it is more or less

at the same phase of the stimulus. This synchronization is known as phase locking and it

carries some information about the stimulus, which can be decoded in the central auditory

processing of the temporal pattern of the neural discharge. Phase locking is weak at higher

frequencies and the loss of phase locking occurs around 4–5 kHz (Johnson, 1980).

2.2.4 Level-Dependent Auditory Nerve Responses

Some response properties of the AN fibers change with the intensity level of the acoustic

stimulus. Level-dependent tuning, compression, best frequency shift, peak splitting, two-

tone suppression, intermodulation distortion and adaptation are examples of the observed

nonlinear behavior in the AN fibers responses. Frequency tuning of the AN fibers can be

characterized by two more ways, other than the frequency tuning curves. In order to describe

the effects of the stimulus frequency and intensity on the fiber’s discharge rate, we can use

the iso-intensity or iso-rate contours as well as the frequency tuning curves described in the

previous section. When the stimulus intensity is held constant and the fiber’s discharge rate is

plotted against the stimulus frequency, we obtain iso-intensity contours. On the other hand,

we obtain iso-rate contours when we plot the stimulus intensity versus frequency needed to

produce a predetermined fixed discharge rate. The iso-rate curves are generally similar in

shape to tuning curves with a broader shape at higher levels. The shape of iso-intensity

curves is considerably different from the fiber’s tuning curves with a width that increases as

the sound level increases regardless of the fiber’s CF (Rose et al., 1971). This occurs because

of the saturation of discharge rate and the broadening of the BM response at high levels

(Ruggero et al., 1997).

It is observed that the best frequency of the fiber, which is the frequency at which the
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fiber response is maximum, can be different from the fiber’s CF as the sound level increases.

This best frequency shift can be upward or downward depending on the CF of the fiber

(Rose et al., 1971; Carney et al., 1999). Fibers with CFs above approximately 1.5 kHz

will experience a downward shift in the best frequency value when the sound level increases

(Møller, 1977; de Boer and de Jongh, 1978; Evans, 1981; Carney and Yin, 1988). On the

other hand, fibers with CFs below approximately 1 kHz will experience an upward shift in

the best frequency value as the sound level increases. Minimal change is observed for fibers

with CFs between 1 and 1.5 kHz.

It is also observed that the increase in the discharge rate as the stimulus level increases

exhibits a nonlinear behavior, where the slope of the rate-level curve decreases above a

certain sound level which is still below the fiber’s saturation threshold. This is known as

compression and is usually related to the compression behavior of the basilar membrane due

to the cochlear amplifier mechanism (Sachs and Abbas, 1974; Yates, 1990).

The phase locking of the AN fiber is also affected by the increase in the sound intensity. A

sharp transition of up to ±180◦ in the phase-level function is observed when the sound level

is increased to very high levels (Kiang, 1984; Liberman and Kiang, 1984). This behavior is

referred to as the component 1-component 2 (C1/C2) transition (Kiang et al., 1969; Kiang

and Moxon, 1972; Gifford and Guinan Jr, 1983; Wong et al., 1998; Heinz and Young, 2004).

The abrupt phase transition is often accompanied by a dip in the rate-level function as well.

The C1/C2 transition can be explained by the two-factor cancelation hypothesis introduced

in Kiang (1990). In this hypothesis, there are two components acting together to produce

this phenomenon with one component, the C1, being dominant at low and moderate sound

levels and the other component, the C2, being dominant at high sound levels. The C1 has

a narrow tuning, while the C2 is broadly tuned with a response that has ±180◦ phase shift

relative to the C1 response. At low levels, the C2 effect is minimal and is negligible in the AN

response. At levels when the C1 and C2 responses are almost equal in magnitude, the overall

response is diminished as the two components are out of phase and this may explain the dip
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in the rate-level curve. As the sound level increases further, the C2 component dominates

and the phase of the overall response will follow the C2 component resulting in the observed

sharp transition in the phase-level curve.

Another nonlinear level-dependent phase phenomenon is peak splitting. The period his-

togram in response to a tone will normally show a single peak due to the described phase

locking property of the AN fiber. However, as the tone level increases further, we reach

a level where the period histogram show two distinctive peaks (peak splitting) (Kiang and

Moxon, 1972; Johnson, 1980; Ruggero and Rich, 1983, 1989; Kiang, 1984, 1990; Cai and

Geisler, 1996). When the level increases even further, the histogram shows only one peak

but with 180◦ phase shift from the original peak. This phenomenon can be explained accord-

ing to the two-component response hypothesis if one component contains a second harmonic

distortion. At low level, only one component response is dominant and we have a single peak

in the period histogram. As the level increases, we reach the point where the fundamental

responses of the two components almost cancel each other and the second harmonic response

becomes significant. Since the AN fiber locks only on the positive cycles of the tone, we have

two peaks in the histogram corresponding to the positive phases of the harmonic. As the

stimulus level increases further, only one component is active with the phase locking coming

mainly from the fundamental component, which obscures the second harmonics effect and

we have a single peak again but with 180◦ phase shift from the original peak reflecting the

out-of-phase response of the second component.

Suppression is another nonlinear phenomenon, which is related to the level and frequency

of the stimuli. Two-tone suppression occurs when the response of the AN fiber to a single

tone (excitor) is reduced (suppressed) by introducing another tone (suppressor) at a different

frequency (Sachs and Kiang, 1968). This occurs only if the relative frequencies and intensities

of the compound stimulus are carefully constructed. The presentation of the second tone

will increase the AN firing rate when the frequency-intensity point of the suppressor tone is

within the tuning curve excitatory area. On the other hand, suppression occurs when the
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suppressor tone is barely outside the AN excitation area. Two-tone suppression is believed

to originate at the basilar membrane, which experiences similar suppression behavior when

two closely separated tones are presented simultaneously (Ruggero et al., 1992; Robles and

Ruggero, 2001; Cooper, 2004). Two-tone suppression and compression are believed to be

a result from a single mechanism, the cochlear amplifier, which applies different gains to

the traveling wave of tone stimuli of different frequencies (Ruggero et al., 1992; Cooper and

Rhode, 1996).

Intermodulation distortion is another level-dependent nonlinear behavior of the AN fiber

responses, where simultaneous presentation of two tones with frequencies f1 and f2, respec-

tively, will result in a more complex firing pattern. As expected, the AN fibers with CFs

corresponding to the two tones will experience some neural activities. However, other AN

fibers having CFs which are integer combinations of the primary frequencies of the presented

tones also respond in some cases. The response is stronger for auditory nerve fibers at CFs

equal to the cubic tone (2f1 − f2) and the quadratic difference tone (f2 − f1) (Goldstein,

1967; Zurek and Sachs, 1979). Moreover, these fibers are shown to be stimulated even when

the separate frequencies f1 and f2 of the two tones are outside the excitation area (Goldstein

and Kiang, 1968). Similarly, a fiber with a CF equal 2f1 − f2 will respond to a single tone of

frequency 2f1 − f2 almost exactly in the same way it responds to the complex stimuli of two

tones at f1 and f2 (Goldstein and Kiang, 1968; Buunen and Rhode, 1978). Similar to two-

tone suppression, it is believed that intermodulation distortion originates from the cochlear

amplifier property of the basilar membrane responses, where combination tones originate

at CFs corresponding to the primary frequencies and propagate to regions with CF equal

to the frequency of the combination tones (Robles et al., 1997; Robles and Ruggero, 2001;

Smoorenburg, 1972; Kim et al., 1980).

Adaptation is a nonlinear phenomenon where the fiber responses experience temporal

changes during a constant stimulus presentation. It includes the observation that a fiber’s

firing rate reaches its highest value immediately after the onset of the stimulus presentation.
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The discharge rate then decays until it becomes stable (Westerman and Smith, 1984). The

decay rate itself varies over time, starting rapidly for the first 10–20 ms before slowing down.

Adaptation also occurs when the AN fiber is recovering from previous stimulation, where the

discharge rate falls below the spontaneous rate immediately after the stimulus termination

and then increases gradually until it reaches the fiber’s spontaneous rate. Another example

of adaptation is the change in the fiber’s discharge rate in response to sudden changes in

stimulus level (Smith, 1975).

2.2.5 Frequency Selectivity, Masking, and Auditory Filters Shape

The human auditory system possesses good frequency selectivity capabilities, where sinu-

soidal components within a complex sound can be resolved to a great extent. The degree

of frequency selectivity plays an important role in speech perception, and this has resulted

in attempts to study the shape of the human auditory filters. To achieve this task in a

non-invasive way, masking experiments are often employed. Masking is measured by the

amount of increase in audibility threshold caused by the presence of a masking sound. If

the frequency of the masking tone is very close to the original tone, masking can easily

occur. Hence, the masking process is directly related to the degree of frequency resolution

capabilities of the basilar membrane. Several experiments were performed to measure the

threshold of a tone stimulus as a function of the bandwidth of a noise masker (Fletcher,

1940; Hamilton, 1957; Greenwood, 1961; Schooneveldt and Moore, 1989). The noise masker

is centered around the stimulus tone and has a fixed power density. Hence, the noise power

is controlled only by adjusting the bandwidth. It has been shown that as the masker band-

width increases (masker power increases), the signal threshold increases. However, beyond

a certain value for the masker bandwidth, the signal threshold flattens off and ceases to

increase any further (Moore, 2003). To interpret this observation, Fletcher (1940) suggested

that the auditory periphery acts as a bank of overlapping bandpass filters, which are called

the auditory filters. He suggested that each location on the basilar membrane corresponds
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to a certain filter with different center frequency. When the tone stimulus passes from the

filter with center frequency closest to the stimulus tone, the filter will pass the signal and

it will remove most of the noise. Hence, masking depends on the amount of noise left after

leaving the auditory filter. Increasing the noise bandwidth will result in more noise passing

through the auditory filter, which will be detected as a corresponding increase in the signal

threshold. When the noise bandwidth is equal to the auditory filter bandwidth, the noise

passing through the filter will reach its maximum and the sound threshold will reach its

highest value. Further increase in the noise bandwidth will not change the noise amount

passing through the filter, and hence, will have no effect on the signal threshold. In this way,

the bandwidth of the auditory filter can be measured as the bandwidth of the noise masker

after which no further increase in the signal threshold is observed. In order to determine the

auditory filter shape, Patterson (1976) presented the notch-noise method. The signal is a

tone of fixed frequency, while the noise masker is symmetric with a notch centered at the sig-

nal frequency. The width of the noise notch is varied and the signal threshold is measured.

As the width of the notch increases, less noise will pass through the filter and the signal

threshold will decrease. Assuming that the signal threshold corresponds to a certain signal

to noise ratio (SNR) at the output of the auditory filter, we can estimate the area under the

transfer function of the filter which passes the noise bands. Varying the width of the notch,

we can progressively estimate the area under the amplitude transfer function of the filter to

plot the complete filter shape. A typical auditory filter shape is displayed in Fig. 2.7, where

we can see that the filter has relatively steep skirts. The auditory filter can be specified by its

center frequency and 3-dB bandwidth. Another measure of the filter width is the equivalent

rectangular bandwidth (ERB). The ERB is the bandwidth of a rectangular filter, which will

pass the same power at its output in response to white noise that is equivalent to the power

passing through the original filter in response to the same white noise. The mean value of

the ERB of auditory filters measured for moderate sound levels for young normal-hearing

subjects is called the ERBN . Glasberg and Moore (1990) provided an equation relating the
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ERBN to the center frequency

ERBN = 24.7 (4.37F + 1) (2.1)

where the ERBN is in Hz and the center frequency (F ) is expressed in kHz.

The basilar membrane vibrates in response to stimulating acoustic waveforms, with the

high frequencies stimulating the base of the basilar membrane and low frequencies stimulating

the basilar membrane apex. The auditory filters are distributed along the basilar membrane

with frequency selectivity that is a function of the position of the auditory filter. The

frequency spectrum of the auditory filters can be expressed in a frequency scale, which is

known as the critical band or the ERBN number. The ERBN number is related to the

auditory filter center frequency and is given by Glasberg and Moore (1990)

ERBN number = 24.7 log10 (4.37F + 1) (2.2)

The ERBN number is used as a unit of frequency, where for example an increase in frequency

from 935 to 1065 Hz represents a step of one ERBN since we have from (2.2) that 1 ERBN

is equivalent to 130 Hz at 1 kHz center frequency.

2.2.6 Auditory Periphery Model

In our work, we use a computational model for the human auditory periphery system to

predict the intelligibility due to certain speech cues. The model is based on the cat auditory

periphery model proposed in Zilany and Bruce (2006, 2007b). A schematic diagram of the

cat auditory periphery model is given in Fig. 2.8. The first module is a model for the cat’s

middle ear. The input to the middle ear section is the stimulus instantaneous pressure

waveform expressed in units of Pa, which is sampled at a rate of 500 kHz. The output of

the middle ear section passes through three parallel paths. Two paths carry the middle ear

output signal to the parallel modules simulating the two-component (C1 and C2) responses
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of the inner ear. The third path is a control path, which uses the output of the middle

ear to regulate the functionality of the C1 section. The control path adjusts the gain and

bandwidth of the C1 filter to account for certain level-dependent properties of the cochlea.

The output of the two transduction functions following the C1 and C2 filters is combined

and transmitted to a seventh-order IHC low-pass filter, which drives the AN synapses. The

instantaneous synaptic release rate output is computed, including adaptation, and discharge

times are generated using a renewal process that includes refractory effects.

Zilany and Bruce (2006) implemented the middle ear section in a way similar to that of

Bruce et al. (2003), in which the middle ear models of Peake et al. (1992) and Matthews

(1983) were combined to derive a digital-filter implementation. In Zilany and Bruce (2006),

the order of the middle ear digital filter is reduced from 11 to a 5th order implementation

in order to improve filter stability. The 5th-order digital filter is designed using the bilinear

transformation for a sampling frequency of 500 kHz and the filter is implemented as a cascade

of second order filters.

The C1 filter provides the main cochlea tuning properties at low and moderate sound

levels. It consists of two second-order poles, one first-order pole, their complex conjugates

and a fifth-order zero on the real axis. The choices for the pole-zero locations are controlled

by the desired Q10 values and tuning curve shape.

The C2 filter is added to account for the nonlinear phenomena of C1/C2 transition and

peak splitting according the two-factor cancellation hypothesis (Kiang, 1990). It is designed

to have very broad tuning (Liberman and Kiang, 1984; Wong et al., 1998). Hence, the 10th

order C2 filter is designed to be identical to the broadest possible C1 filter. Also, since many

studies show that the C2 responses seem to be independent of the OHC function (Liberman

and Kiang, 1984; Heinz and Young, 2004; Sewell, 1984), the C2 filter is implemented as

linear and static with fixed tuning characteristics across all levels. The control-path consists

of a time-varying third-order gammatone filter, a nonlinear function followed by a third-

order low-pass filter to control the dynamic range and the time-course of compression, and
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Figure 2.8: A schematic diagram of the cat auditory periphery model (from Zilany and
Bruce, 2006, 2007b).

a nonlinear function to compute a time-varying time constant for the C1 filter. The control-

path time-varying gammatone filter has a center frequency and bandwidth which are higher

than those of the C1 filter. The broader bandwidth of the control-path filter accounts for

nonlinear features as the two-tone rate suppression. At low sound levels, the control-path

output time-varying time constant controls the behavior of the C1 filter such that tuning is

sharp, the gain is high and the filter behaves linearly. At moderate levels, the control signal

changes the response characteristics of the C1 filter such that the tuning becomes broader

and the gain is reduced, which simulates the nonlinear cochlea properties of compression

and suppression. At very high stimulus levels, the control signal saturates and the C1 filter

becomes linear with broad tuning and low gain.

2.3 Central Auditory Processing and Speech Intelligi-

bility

A brief description of the central auditory pathways was provided in Subsection 2.1.3 with an

illustration of the central auditory system pathways given in Figure 2.6. Here, we examine

the different types of responses found in the cells of the central auditory system with the
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focus on the cortical processing (STMI) because our work is related more to it.

Many aspects of the central auditory processing of sounds are still under investigation.

Some studies have documented certain responses behavior at the first level of the central

auditory system. Cell response types in the CN have been classified into five types of

responses:

1. primary-like, which has a response similar to the AN and hence may act as a simple

relay.

2. onset, which responds only to the onset of a tone and then ceases to respond for the

rest of the stimulus duration

3. chopper, which has a post-stimulus-time-histogram (PSTH) that appears as if parts of

the histogram have been chopped out with the chopping rate being a function of the

tone level and duration

4. buildup, which has a response that starts high before it is suppressed and after that

the response increases only slowly with time

5. pauser, which has a delayed response relative to the onset of the tone

These five types are not the only responses behaviors in the CN and even less information

is available at higher levels in the central auditory system. One of the well accepted notions

is that the SOC is the first processing point to aid in localization of sound in the horizontal

plane. The LSO can detect inter-aural intensity differences, while the MSO can detect inter-

aural time differences (Yin, 2002). A part of the inferior colliculus is suggested to have a

role in auditory reflexes, such as the startle reflex to loud sounds.

Some information regarding the behavior of processing at the cortical stage has been

gained from measurements of the spectro-temporal response fields (STRFs) of the primary

auditory cortex cells. The STRF provides a spectral and temporal functional description of

single cells in the primary auditory cortex. Examples of STRFs are shown in Fig. 2.9. Along
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Figure 2.9: Spectro-temporal receptive field (STRF) for five example neurons labeled N1-
N5. Red areas indicate stimulus frequencies and time lags correlated with an increased
response (excitation), and blue areas indicate stimulus features correlated with a decreased
response (inhibition) (from Mesgarani et al., 2008).

the frequency axis, warm colors (yellow to red) represent frequencies which excite responses,

cool colors (cyan to blue) represent frequencies which inhibit responses, while green color

represents frequency regions with no response. The time axis displays the response dynamics

to an impulse of energy delivered at each frequency. Each STRF acts as a modulation selec-

tive filter of its input spectrogram, which is tuned to a particular range of spectral resolutions

(scales) and temporal modulations (or rates). Hence, the primary auditory cortex can be

modeled as a bank of modulation filters which analyzes the spectro-temporal modulation

rates of the input neurogram (Chi et al., 1999; Elhilali et al., 2003). Speech intelligibility

can be predicted using acoustical approaches (articulation index, speech transmission index)

or model based approaches (neural articulation index,spectro-temporal modulation index).

Below, we introduce methods used for measuring speech intelligibility after cortical pro-

cessing.

2.3.1 Articulation Index (AI)

The Articulation Index (AI) metric was introduced by French and Steinberg (1947) to es-

timate speech intelligibility in a communication system. It is computed by looking at the

32



Ph.D. Thesis - Rasha Ibrahim McMaster - Electrical Engineering

amount of speech signal above the listener’s threshold and taking into account the SNR.

The AI computations involves the summation of 20 equally contiguous and also equally

contributing frequency bands

AI =
1

20

20
∑

i=1

TIi (2.3)

where TIi is the Transmission Index, which is the normalized intelligibility in the ith band

TIi =
SNRi + 12

30
, −12 ≤ SNR ≤ 18 dB (2.4)

When the SNR value is greater than 18 dB, the band is considered perfectly intelligible

with a transmission index of 1, while an SNR value of -12 dB corresponds to a 0 transmission

index. The AI metric has been modified in several ways (Kryter, 1962; Pavlovic et al., 1986;

Pavlovic, 1987) to include adjustments in importance weighting given to each band, as well

as some other modifications. However, the improved AI metric does not provide accurate

intelligibility prediction in the presence of some time-domain distortions.

2.3.2 Speech Transmission Index (STI)

Steeneken and Houtgast (1980) proposed another speech intelligibility predictor, the speech

transmission index (STI). It is based on the modulation transfer function (MTF), which

was introduced in Houtgast (1973) and Houtgast and Steeneken (1985) to measure the loss

of intelligibility due to echoes and reverberation. The MTF has been extended to account

for a wider range of nonlinear distortions. The STI predicts intelligibility by computing

the modulation depth of the speech waveform, which is the difference in level between a

peak and an adjoining valley in the waveform. In the absence of noise and reverberation,

the modulation depth is 100% since there is very little energy in the signal valleys, which

corresponds to perfect intelligibility (STI = 1). In the presence of noise or reverberations, the

modulation depth is reduced, which corresponds to lower values for the STI and the predicted

intelligibility. The STI computations involve adding the modulation depth measurements
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in each frequency band in a weighted sum across frequencies. Hence, the STI combines

the weighted sum and SNR effects of the AI metric with the MTF-time domain effects to

obtain a better prediction of speech intelligibility. However, it can not accurately account

for masker non-linearities, phase distortions or the underlying auditory mechanisms.

2.3.3 Neural Articulation Index (NAI)

Bondy et al. (2003) proposed another intelligibility predictor, which is known as the neural

articulation index (NAI). It is based on distortions in the spike trains of different frequency

bands. The spike trains are generated using a model for the auditory periphery system (Bruce

et al., 2003) in response to an undistorted speech signal (control case). It is compared to

spike train model output in response to the same signal after undergoing some distortions

(test case). The difference in the estimated instantaneous discharge rate between the control

and test case is computed in each frequency band to compute a value referred to as the neural

distortion (ND). Then the NAI is computed with a weighted average of NDs. However, the

NAI is based on NDs calculated independently in each time-frequency bin while the effects

of these distortions on the spectral and temporal modulations are not considered explicitly.

2.3.4 Spectro-Temporal Modulation Index (STMI)

Chi et al. (1999) formulated an auditory model-based predictor, the spectro-temporal-modulation

index (STMI), which is based on measuring the spectral and temporal modulations in a sig-

nal to predict intelligibility (Elhilali et al., 2003). The STMI is an elaboration on the STI

as it takes into account the joint spectro-temporal behavior of the speech signal. The STMI

has been tested and proven to be robust in capturing the effects of background noise and

reverberations as well as nonlinear compression and phase distortions (Elhilali et al., 2003).

The STMI is computed using a model of the auditory periphery to generate output neu-

rograms in response to a clean template signal and a noisy test signal. The template and

test neurograms are passed through a bank of modulation-selective filters to compute the

34



Ph.D. Thesis - Rasha Ibrahim McMaster - Electrical Engineering

spectro-temporal modulation content of both signals. The STMI is computed using the

following equation (Elhilali et al., 2003)

STMI = 1 − ||T − N ||2
||T ||2 (2.5)

where ||.|| is the Euclidean-norm of the signal, T is the cortical output of the clean template

signal, and N is the cortical output of the noisy test signal. In our work, we adopt the

approach of Zilany and Bruce (2007b) of keeping the time index of the output, in contrast

to the approach of Elhilali et al. (2003) where they have averaged the output over time.

However, we use Elhilali et al.’s (2003) equation to evaluate the deviation between the

template and test responses without taking the square root of the difference, in contrast to

Zilany and Bruce (2007b). Theoretically speaking, applying the square root is not an ideal

mapping function as we may end up at the lower STMI bound with meaningless complex

values– see the proof in Section 4.4.

2.4 ENV and TFS Roles in Speech Perception

Speech perception in humans has been the subject of intensive research to identify the

factors and mechanism by which humans understand speech in different listening conditions.

It has been commonly believed that slow variations in the amplitude of the speech signal

(ENV) are the main cues used by the human auditory system to understand speech signals

in quiet (Flanagan, 1980; Shannon et al., 1995; Smith et al., 2002). The TFS, which is the

fast variations in the speech signal, is generally linked to melody identification and pitch

perception as well as sound localization (Qin and Oxenham, 2003, 2006; Nelson et al., 2003;

Stickney et al., 2005; Füllgrabe et al., 2006).

To study the relative roles of ENV and TFS cues in speech perception, several exper-

iments have been performed where speech signals are processed to remove ENV or TFS

cues. In Smith et al. (2002), a method to separate TFS from ENV cues was presented
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where two acoustic waveforms are processed using a bank of band pass filters followed by

the Hilbert transform to generate ENV-only and TFS-only versions of the signals. In each

band, the envelope of one waveform is multiplied by the TFS of the other. The products are

then summed across frequency bands to construct the auditory chimaeras. Speech-speech

chimaeras are constructed when both waveforms are speech signals. However, to produce

speech-noise chimaeras, one waveform is the speech signal and the other is noise. In this

work, we are following the same approach of using Hilbert transform to compute the signal

envelope in each frequency band. Note that as the number of vocoder filters used in generat-

ing the chimaera varies, the width of the frequency band and hence the envelope frequency

content will vary. Another approach is to compute the envelope in each frequency band using

rectification and low-pass filtering (Shannon et al., 1995). The advantage of this approach is

that it produces a known, fixed maximal bandwidth of the ENV signals, determined by the

cutoff frequency of the low-pass filter. However, rectification is a nonlinear process which

introduces distortions that affect the quality of the extracted envelope. Figure 2.10 displays

the envelopes extracted with full-wave rectification and Hilbert transform methods from a

sinusoidally amplitude-modulated (SAM) tone.
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Figure 2.10: Extracted envelope using Hilbert transform and full-wave rectification applied
to a 1 kHz tone 100 % SAM at 5 Hz. The full-wave rectification is followed by a -6dB /oct
Low-Pass filter (cutoff 32 Hz). The power spectrum shows some high-frequency components
existing in the envelope obtained by full-wave rectification and low-pass filtering (adapted
from http://www.mondegaetan.com/mywebsite/papers/vocoder.pdf).
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Chapter 3

Effects of Peripheral Tuning on the

Auditory Nerve’s Representation of

Speech Envelope and Temporal Fine

Structure Cues

3.1 Introduction

When a sound is received by the cochlea, the frequency content of the signal is mapped

into a pattern of excitation along the basilar membrane. The excitation patterns code the

spectrum information of the acoustic stimulus, which is referred to as “spectral” or “place”

information. It is believed that spectral information plays a crucial role in speech recognition

as many phonetic features are characterized by their frequency spectrum. Because of the

frequency selectivity of the cochlea, it acts as a bank of band-pass filters with each filter

corresponding to a particular position on the basilar membrane. The signal at the output

of the cochlear filters carries important temporal information as well. It can be viewed as

a slowly varying envelope modulation superimposed on more rapid oscillations or temporal
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fine structure (TFS) in the waveform. This temporal information is relayed to the afferent

AN fibers through changes in the firing rate, which is linked to the signal envelope and the

times between spikes, which reflects the TFS information (Young and Sachs, 1979; Young,

2008). The relative envelope magnitude across channels carries information that can be used

by the auditory system to identify the signal spectral shape and its slow short-term spectral

changes. The TFS conveys cues about the fundamental frequency of the sound and about

its short-term spectrum. The TFS information is coded through the phase locking property

of the AN fibers and it is known that phase locking is weak at high frequencies with almost

a complete loss of synchrony for frequencies above 4-5 kHz in mammalian auditory systems

(Palmer and Russell, 1986). Hence, it is commonly assumed that TFS information is not

used for frequencies above that limit.

It has been demonstrated in many experiments that ENV information is important for

speech perception and it provides robust speech recognition in quiet even when provided in

as few as four frequency bands (Flanagan, 1980; Shannon et al., 1995; Smith et al., 2002).

Recognition in background noise, however, requires more frequency bands in ENV speech

generation process (Qin and Oxenham, 2003; Stone and Moore, 2003). It has been concluded

that ENV cues are sufficient to provide good intelligibility in quiet, while the recognition

performance is slightly degraded in the presence of fluctuating background noise. The robust

speech identification in quiet from ENV cues from relatively small frequency bands is the

reason that current cochlear implants provide ENV information over a small number (eight to

16) of electrodes (Wilson et al., 1991). On the other hand, TFS is associated with perception

of pitch for both pure and complex tones as well as sound localization (Füllgrabe et al., 2006;

Moore, 2003; Nelson et al., 2003; Plack and Oxenham, 2005; Qin and Oxenham, 2003, 2006;

Smith et al., 2002; Stickney et al., 2005).

Numerous studies have investigated the relative roles of Speech-ENV and TFS cues in

speech perception (Smith et al., 2002; Xu and Pfingst, 2003; Zeng et al., 2005). The relative

importance of ENV and TFS cues can be inferred by manipulating waveforms to degrade
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one particular cue while leaving the other intact. One way to achieve this is through the

use of noise or tone vocoders. Vocoded speech is generated by filtering a broadband signal

into a number of frequency bands, extracting the envelope from each band to modulate a

noise or tone carrier and combining the resulting signals from all frequency bands. Recently,

several studies have pointed out a possible contribution of TFS cues in speech perception.

Xu and Zheng (2007) studied the relative contributions of spectral and temporal cues to

phoneme recognition. In their experiment, they processed syllables to create vocoders with

variable amount of spectral and temporal cues. Spectral cues are changed by varying the

number of channels in the vocoder processing, while temporal cues are changed by varying

the cut-off frequency of the envelope extractor low-pass filter. The experiment tested both

consonant and vowel identification and showed that there was a tradeoff between the spectral

and temporal cues in phoneme recognition, where enhanced spectral cues can compensate

for reduced temporal ones and vice versa.

Nie et al. (2005) studied spectral and temporal cues in cochlear implant subjects. They

varied the amount of spectral and temporal cues by varying the number of channels and pulse

rate, respectively. They have found the same tradeoff between spectral and temporal cues in

the cochlear implant users. It has also been observed that normal hearing subjects can make

use of TFS cues more than hearing impaired subjects and this was linked to the reduced

ability of hearing impaired persons to understand speech in fluctuating background noise

(Moore and Skrodzka, 2002; Moore, 2003; Lorenzi et al., 2006; Moore et al., 2006; Hopkins

and Moore, 2007; Hopkins et al., 2008). It has been argued that this might be due to reduced

phase locking in hearing impaired subjects. Alternatively, the reduced ability of hearing

impaired subjects to benefit from TFS cues might be caused by reduced ability to decode

the TFS cues where it is argued that this process requires cross-correlation of the outputs of

two points on the basilar membrane (Loeb et al., 1983; Shamma, 1985). Finally, the broader

tuning of the auditory filters in hearing impaired persons (Glasberg and Moore, 1986) may

have a significant role in their poor performance in understanding TFS information. This
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is due to the reduced frequency selectivity of the cochlear filters which causes difficulty in

decoding the complex and rapidly varying TFS information (Moore, 2008b).

Consonant identification in nonsense processed vowel-consonant-vowel (VCV) stimuli was

used in Lorenzi et al. (2006) to assess the contribution of TFS to speech perception. Normal

and hearing-impaired subjects were tested with TFS-only stimuli generated from nonsense

VCV words by filtering the original signal into 16 contiguous frequency bands, computing the

ENV and TFS in each band using the Hilbert transform, and combining the TFS signals from

the different frequency bands to construct the final stimulus. Their results show that normal-

hearing subjects show significant intelligibility for TFS cues, where up to 90% recognition

is reported after some training. Moore (2008b) explained the need for training to achieve

high recognition scores by the possibility that the auditory system is not used to processing

TFS cues in isolation from ENV cues or that TFS cues in processed stimuli are distorted

compared to intact speech and thus training is required. In a similar experiment (Lorenzi

et al., 2009), it has been demonstrated that normal hearing children aged 5 to 7 are able to

make use of TFS cues. They concluded that normal hearing children can use both ENV and

TFS cues at the same level as adults, which means that tests for the sensitivity to TFS cues

can be performed at this very young age for the early detection of any possible problems in

the TFS processing.

A different approach to measure the ability of normal and hearing-impaired persons to

benefit from TFS has been adopted in the work of Hopkins and Moore (2007, 2009, 2010).

Processing of TFS cues is assessed by measuring changes in the speech recognition threshold

(SRT). SRT is the minimum hearing level for speech at which an individual can recognize

50% of the speech material. Hopkins and Moore (2007) measured the importance of TFS

cues by varying the number of frequency channels containing TFS information with the rest

of channels being noise or tone vocoded to suppress any TFS information. They wanted to

test the hypothesis that hearing impaired subjects can make use of TFS cues only at low

frequencies. Hence, removing TFS from low channels would affect the performance while
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removing TFS from high channels should not have much significance. Their results show

that hearing impaired subjects have less ability to make use of TFS cues at medium and

high frequency when listening in a competing talker background.

Hopkins and Moore (2009) measured the SRTs for normal hearing subjects while varying

the cutoff channel which is the frequency band below which the stimulus is left intact, while

TFS information is removed from all bands above it. They found that the SRT declined

significantly as the value of the cutoff channel increased, which suggests that TFS has an

important role in understanding speech in fluctuating background noise.

Hopkins and Moore (2010) measured the SRTs for speech processed to contain variable

amounts of TFS cues. The speech signals were filtered using 30 1-ERBN filters and processed

to keep ENV only information or left unprocessed to preserve both ENV and TFS cues. They

observed that when there are more channels containing TFS cues, SRT were decreased show-

ing benefits from the introduced cues. They also noted some redundancy in TFS information

as adding TFS in some channels does not always improve the threshold. They did another

experiment where they filtered the speech signal through 5 6-ERBN channels and generated

a tone vocoded signal in four of the available five channels. The fifth channel was either

absent or was unprocessed. Normal hearing subjects benefitted from the added TFS cues

over a wide range of frequency, while the benefit was less in hearing-impaired subjects.

Gnansia et al. (2009) studied the effects of spectral smearing and degradation of TFS

cues on masking release, which is the ability to listen in the dips of the background noise.

They processed the stimuli using a spectral smearing algorithm or tone vocoder technique.

The spectral smearing algorithm computes the short-term spectrum using fast Fourier trans-

form, and then the spectrum is smeared by a factor of two or four using a smearing matrix

for 2-ERBN or 4-ERBN auditory filters. They have noticed that the fundamental frequency

information was more degraded by the vocoder than the spectral smearing algorithm. Mask-

ing release was reduced more with the tone vocoder than spectral smearing. They concluded

that both frequency selectivity and TFS cues are important for the ability to listen in the
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dips. Gilbert and Lorenzi (2010) evaluated the relative role of ENV and TFS cues in re-

constructing missing information in interrupted speech. In their study, they used four types

of sentences processed into 32 frequency bands and information in 21 bands were removed

or processed so that the final stimuli have different amounts of ENV and TFS cues. They

generated four types of sentences; reference, partially empty, vocoded and partially vocoded.

The resulting sentences were still intelligible but the intelligibility significantly deteriorated

after adding a silence gap. They showed that TFS cues have an important role in recon-

structing the interrupted sentences. The TFS is not sufficient alone but is used along with

ENV to understand interrupted speech.

A significant concern regarding the results for TFS contribution to speech understanding

is that these results may be influenced by possible ENV cues in signals. These ENV cues may

be due to inefficient signal processing techniques used to separate TFS from ENV, which is

not an easy task given that the TFS and ENV are not completely independent (Ghitza, 2001).

Another important factor is the possible recovery of ENV cues by the human auditory filters

from a correctly processed signal having only TFS cues. For example, narrow-band filtering

can recover the signal ENV from the fine-structure information (Voelcker, 1966; Rice, 1973;

Logan Jr., 1977). This is particularly significant in humans because of the sharp cochlear

tuning (narrow filters), which facilitate the recovery of the slow amplitude variations (ENV)

from the TFS signal (Ghitza, 2001; Zeng et al., 2004; Heinz and Swaminathan, 2009). In

Gilbert and Lorenzi (2006), it is argued that recovery of ENV cues from TFS-only signals

has minimal contribution to speech recognition when the vocoder analysis filters, which are

used to generate the TFS-only stimulus, have bandwidth less than 4 ERBN . According to

them, using 16 frequency channels should be sufficient to prevent the use of recovered ENV

cues. Heinz and Swaminathan (2009), however, presented physiological evidence for the

presence of recovered ENV in chinchilla AN responses to chimaeric speech. They have also

computed neural cross-correlation coefficients to evaluate the similarity between ENV or TFS

to quantify the similarity between ENV (or TFS) components in the spike train responses.
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Sheft et al. (2008) presented different ways to reduce the fidelity of ENV reconstruction

from TFS signals. The TFS signal can be filtered with an all-pass filter with a random

phase response. This is based on the assumption that ENV and the instantaneous phase are

related, so that processing the TFS signal to create a mismatch with the original ENV signal

will reduce the fidelity of ENV recovery (Schimmel and Atlas, 2005). The other method to

reduce the chances of meaningful ENV recovery from TFS cues is to increase the number

of analysis filters. When the bandwidth of the analysis filter is narrower than 4 times the

normal auditory filter, some studies argued that the role of recovered ENV cues in speech

perception is negligible (Gilbert and Lorenzi, 2006). The last method proposed by Sheft

et al. (2008) is to limit the bandwidth of the extracted TFS signal to the analysis filter

bandwidth in order to degrade ENV reconstruction. The results of Sheft et al. (2008) show

that TFS stimuli, processed to reduce chances of intelligibility from recovered ENV cues,

were still highly intelligible (50%– 80% correct consonant identification).

In this chapter, we aim at providing insight on the possible effects of ENV restoration at

the output of the cochlear filters on the claimed significance of TFS in speech perception.

Model predictions of intelligibility in humans are obtained with the recent sharper cochlear

tuning data from Shera et al. (2002) for test signals having mainly TFS cues only. The

TFS cues are separated from ENV cues using specialized acoustic stimuli called auditory

chimaeras, which have the ENV of one sound and the fine structure of another (Smith

et al., 2002). Section 3.2 describes the auditory periphery model, which is based on Zilany

and Bruce (2006) model for the cat. It also introduces the sharp cochlea tuning data for

humans suggested in Shera et al. (2002) and explains the modifications made to the cat

auditory periphery model to incorporate the human sharper tuning features. Section 3.3

defines the speech intelligibility predictor, which is used to predict the intelligibility of the

processed stimuli. Section 3.4 presents the processing method to generate auditory chimaeras

of different types, which will be used as the input stimuli to the auditory model in order

to assess the TFS and ENV relative roles in speech perception. Section 3.5 provides a
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description of the test materials used in the study and finally Sections 3.6 and 3.7 discuss

the results and conclusions of this study.

3.2 The Auditory Periphery Model and Human Cochlear

Tuning

Intelligibility predictions to TFS stimuli are estimated using a computational model for the

auditory periphery together with the STMI metric. The model is based on Zilany and

Bruce model for the cat auditory periphery (Zilany and Bruce, 2006, 2007b). The model

consists of several blocks described in Chapter 2, which represent different stages in the

auditory periphery from the middle ear to the AN. The model can accurately represent

the nonlinear level-dependent cochlear effects and it provides an accurate description of

the response properties of AN fibers to complex stimuli in both normal and impaired ears.

However, the model is designed to simulate the auditory periphery system in cats and there

are some important differences between cat and human ears (Recio et al., 2002) that should

be taken into account in the final model. In particular, the cat’s cochlea is considerably

shorter than the human’s cochlea (25 mm for cats cochlea compared to 35 mm for humans

cochlea). Another difference is the range of frequencies that can be discriminated, where

cats are sensitive to a broader range of frequencies (up to 60 kHz) than humans (20 kHz).

Therefore, humans benefit from a longer cochlea that encodes a shorter range of frequencies

and the frequency selectivity in the human’s cochlea may significantly exceed that of the

cat’s cochlea. The model has been adjusted to match human sharp cochlear tuning as

reported in Shera et al. (2002). The work of Shera et al. (2002, 2010) shows that human

cochlear tuning can be measured in a noninvasive way using otoacoustic emission (OAE)

measurements. OAEs are sounds generated in the inner ear due the cochlear amplifier effect

even in the absence of an external stimulus. OAEs can be evoked using three different

methodologies. Stimulus frequency OAEs (SFOAEs) are evoked with a pure-tone stimulus
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and are measured in the ear canal as the vector difference in pressure between the SFOAE

and the pure tone stimulus waveforms. Another way to evoke OAEs is called transient-

evoked OAEs (TEOAEs), which uses a click stimulus. The third method is called distortion

product OAEs (DPOAEs), which are evoked using a pair of tones of frequencies f1 and f2

with particular intensities and frequency ratio.

Ruggero and Temchin (2007) argued that the estimates of the cochlear tuning in humans

as provided by Shera et al. (2002) are not accurate. Ruggero and Temchin (2007) based their

arguments on the results of Siegel et al. (2005) in which the SFOAE and basilar membrane

group delays were compared for the chinchilla, cat and guinea pig and were found to be almost

equal in contradiction to Shera et al. (2002) where they have used the assumption that the

SFOAE group delay is twice the basilar membrane group delay. Similar to Shera et al.

(2002), some experiments used DPOAE to estimate the basilar membrane delays in humans

assuming that the DPOAE group delay is twice the basilar membrane group delay (Bowman

et al., 1997; Ramotowski and Kimberley, 1998; Schoonhoven et al., 2001). However, Ruggero

and Temchin (2007) maintain that these estimates are invalid for the chinchilla, guinea pig

and gerbil for which the basilar membrane and DPOAE group delay are equal (Gong et al.,

2005; Narayan et al., 1998; Ren, 2004; Ren et al., 2006; Ruggero, 2004).

Shera et al. (2010) justified the validity of the framework used in Shera et al. (2002) to

obtain the sharp tuning estimates of the human cochlear tuning. The otoacoustic estimates

of chinchilla cochlear tuning are validated using direct measurements from AN fibers (Recio-

Spinoso et al., 2005). It is also demonstrated that otoacoustic estimates of human tuning

agree with independent values derived from psychophysical masking experiments (Oxenham

and Shera, 2003) using notched-noise masking (Patterson, 1976). The behavioral measure-

ments of Oxenham and Shera (2003) are obtained using an improved procedure to limit the

effects of compression and suppression. In particular, the signal levels are near absolute

threshold to minimize compression, the masking is applied non-simultaneously to minimize

suppressive interactions (Houtgast, 1973) and the signal level is kept constant while varying
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the masker level to mimic the methods used in neural tuning measurements (Rosen et al.,

1998; Glasberg and Moore, 2000).

The relation between the cochlear delay and otoacoustic delay is explained with the

coherent-reflection theory, which relates the properties of OAEs to the mechanical responses

of the cochlear partition (Zweig and Shera, 1995; Talmadge et al., 1998; Shera et al., 2005).

In Shera et al. (2010), a mechanical model for the cochlea is presented, which assumes that

there exists some micro-mechanical irregularities in the impedance of the cochlear partition

arising from the discrete cellular architecture of the organ of Corti (Engström et al., 1966;

Bredberg, 1968; Wright, 1984; Lonsbury-Martin et al., 1988). The consequence of these ir-

regularities is the emission of sound from the model ear. The introduced model explains

the generation of SFOAEs as a result of the coherent backscattering of the forward-traveling

waves (Shera and Zweig, 1993). The model equations are solved using perturbation theory

to predict the SFOAEs for given model parameters. The model is used to predict SFOAEs in

chinchilla, where the model parameters (the traveling wave and its wave number) are com-

puted in Shera (2007) using the Wiener-kernel estimates of cochlear tuning (Recio-Spinoso

et al., 2005). It was demonstrated in Shera et al. (2010) that SFOAE model predictions

match the available measurements in chinchilla. The claims raised by Ruggero and Temchin

(2007) and Siegel et al. (2005) that the SFOAE delay was erroneously equated to twice the

basilar membrane delay leading to longer delays (sharper tuning) have been addressed in

Shera et al. (2010). It was shown that although in Shera et al. (2002) a factor of half was

used to compensate for the round-trip travel, the procedure does not rely on any relationship

between SFOAE and basilar membrane delays. In fact, the procedure is based on tuning

ratios and the same QERB results would have been obtained if any other constant was used

as long as it is unchanged across species. Shera et al. (2010) also address the other concern

about the improved behavioral estimates in Shera et al. (2002), which was criticized in Rug-

gero and Temchin (2005) claiming that forward masking overestimates the sharpness of the

cochlear tuning. It has been demonstrated in animal studies that behavioral measurements
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using forward masking give narrower tuning than the direct measurements from AN fibers.

However, this has been rectified in the last 30 years by identifying the potential artifacts

such as off-frequency listening and confusion between the masker and the signal. Since then,

new techniques have been devised to minimize the effects of these artifacts rendering more

accurate tuning estimates (Moore and Glasberg, 1981; O’Loughlin and Moore, 1981; Moore

et al., 1984; Neff, 1985). Therefore, the concerns raised in Ruggero and Temchin (2005)

apply to animal measurements that have been conducted 30 years ago not to the recent

behavioral measurements in humans.

Bentsen et al. (2011) supported Shera et al. (2002) cochlear tuning estimates, where

two experiments were conducted to measure SFOAE group delays as a function of probe

frequency and SFOAE two-tone suppression tuning curves as a function of suppressor fre-

quency. Fig. 3.1 shows QERB estimates versus CF for experiments 1 (SFOAE group delay)

Figure 3.1: Cochlear tuning in terms of QERB as measured in experiment 1 of Bentsen
et al. (2011) (solid line with squares) and experiment 2 (solid line with downwards pointing
triangles). Included are QERB curves from Shera et al. (2002) (dashed lines), Schairer et al.
(2006) (dotted line with circles) and Glasberg and Moore (1990) (dot-dashed line) (adapted
from Bentsen et al., 2011).

and experiment 2 (SFOAE two-tone suppression). QERB estimates were averaged across
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test-retest and across subjects. Cochlear tuning from SFOAE delays from experiment 1 of

Bentsen et al. (2011) matches estimates from Shera et al. (2002). It is worth noting that

tuning estimates from Schairer et al. (2006), which were also based on SFOAE group delays

measurement, are significantly different from Shera et al. (2002) and experiment 1 in Bentsen

et al. (2011). This is explained in Bentsen et al. (2011) as a results of the post-processing

strategies used in Schairer et al. (2006), where the SFOAE phase was smoothed using cubic-

spline interpolation across frequency with each probe frequency being weighted by the SNR

before the group delays were converted to QERB values. Bentsen et al. (2011) processed the

results from experiment 1 using the post-processing procedure of Schairer et al. (2006) and

the results become much closer to the QERB estimates of Schairer et al. (2006). This indi-

cates that the post-processing scheme of Schairer et al. (2006) is the cause of the reduced

QERB estimates from the SFOAE group delays. Since the post-processing setup in Shera

et al. (2002) and Bentsen et al. (2011) is different while the QERB estimates are similar, it is

most likely that the tuning estimates given in Shera et al. (2002) and Bentsen et al. (2011)

have been correctly computed. The lower cochlear tuning estimates provided by the two-

tone suppression experiment are interpreted to be strongly affected by suppression in the

cochlea. Rhode (2007) reported that tuning curves from two-tone suppression in sensitive

and healthy chinchilla cochlea are much broader than pure tone basilar membrane vibration

patterns. Therefore, it was argued in Bentsen et al. (2011) that cochlear tuning values from

SFOAE group delay measurements are more accurate than those obtained using two-tone

suppression.

We have adopted the sharp tuning estimates in human (Shera et al., 2002) to develop

a version of the auditory periphery model of Zilany and Bruce (2006) that is more suitable

to predict human AN responses. The cochlear frequency selectivity values for the human

cochlear filters is given by the QERB, which is defined as

QERB(CF) =
CF

ERB(CF)
(3.1)
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In Fig. 3.2, we show the human QERB values given in Shera et al. (2002) as a function of

CF. The QERB values reported in Shera et al. (2002) are two or three times sharper than the

previous behavioral measurements (Glasberg and Moore, 1990) shown in the same figure.
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Figure 3.2: Comparison of the human QERB values as a function of CF given in Shera et al.
(2002) and the earlier human QERB data in Glasberg and Moore (1990).

The QERB values, are mapped to the corresponding Q10 values to set the tuning in the

computational model, where the Q10 is defined similar to the QERB but with the denominator

being the 10 dB bandwidth instead of the ERB. The mapping is illustrated in Fig. 3.3, where

Q10 and QERB values are computed at each center frequency using the model’s cochlear filter

transfer function.

The transfer function of the cochlear filter is estimated by bypassing the middle ear

section, applying a click as the input to the filter and measuring the filter output. The ERB

is estimated using the equation

ERB =

∫

|H(f)|2df
|Hmax|2

(3.2)

where H(f) is the cochlear filter transfer function and Hmax is the peak value of the transfer
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Figure 3.3: Example illustrating Q10 to QERB mapping for an AN filter at CF of 20.107 kHz.

function. A linear mapping between Q10 and QERB is then estimated using least square curve

fitting to obtain

Q10 = 0.2085 + 0.505QERB (3.3)

The data points and the linear mapping of Eqn. 3.3 are plotted in Fig. 3.4, where we can

see that the good fit of the mapping function to the computed data points. In Fig. 3.5, we

examine the Zilany and Bruce (2006) auditory model implementation of the mapped QERB

values specified by Shera et al. (2002). We observe a mismatch for CF > 10 kHz, which

is due to the filter implementation in Zilany and Bruce (2006) that is not exact for these

values as observed from the cat model. It is shown in Equations 9–15 and Figure 2 of Zilany

and Bruce (2006) that the model achieves a simple dependence on Q10 and CF. However,

those equations hold the true dependence for CFs only below 10 kHz while above that more

complex equations are needed to achieve the required Q10 dependency.

Another modification to the model of Zilany and Bruce (2006) is the improvement of the

middle ear section such that the sampling frequency is reduced while maintaining stability
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Figure 3.4: Linear mapping between Q10 and QERB

of the middle ear filter. This is achieved by reducing the order of the original filter (Bruce

et al., 2003) from a 10th order to a 5th order. The locations of the poles and zeros of the

new filter are adjusted such that the new filter response closely matches the original filter.

In this way, the sampling frequency at which the stimulus is presented can be reduced from

500 kHz to 100 kHz, which is more reasonable for neural representations of speech signals

and for practical implementations in terms of computational efficiency. The filter is digitally

implemented using the bilinear transformation in a cascade of three sections

ME1 = 1−z−1

(1+693.48/C)+(693.48/C−1)z−1

ME2 = (C2+1356.3C+7.4417×108)+(−2C2+14.8834×108)z−1+(C2
−1356.3C+7.4417×108)z−2

(C2+11053C+1.163∗108)+(−2C2+2.326×108)z−1+(C2
−11053C+1.163×108)z−2

ME3 = (5.7585×105C+7.1665×107)+14.333×107z−1+(7.1665×107
−5.7585×105C)z−2

(C2+4620C+9.0906×108)+(−2C2+18.1812×108)z−1+(C2
−4620C+9.0906×108)z−2
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Figure 3.5: Comparison between QERB values from the auditory model of Zilany and Bruce
(2006) and Shera et al. (2002) estimates

where C = 2πfp/ tan
(

πfp

fs

)

with fp being the prewarping frequency and fs is the sampling

frequency. In Fig. 3.6, we compare the response of the modified middle ear filter to the

original model of Bruce et al. (2003) to demonstrate that we achieved the reduction in

sampling frequency and improved stability without affecting the performance of the model.

3.3 Speech Intelligibility Metric (STMI)

The output of the model is assessed to predict the speech intelligibility based on the neural

representation of the speech. This is achieved through the STMI metric (Elhilali et al., 2003;

Bruce and Zilany, 2007; Zilany and Bruce, 2007a). A simple model of the speech processing of

the auditory cortex assumes an array of modulation selective filter banks, which are referred

to as spectro-temporal response fields (STRFs). The output of the AN model is represented

by a time-frequency “neurogram”. The neurogram is made up from the averaged discharge

rates (over 16-ms rectangular time windows with 50% overlap) from 128 AN fibers with

53



Ph.D. Thesis - Rasha Ibrahim McMaster - Electrical Engineering

10
2

10
3

10
4

0

5

10

15

20

25

30

35

Frequency

|H
(z

)|
 d

B

Original 10th order filter
5th order filter 40kHz
5th order filter 80kHz
5th order filter 100kHz
5th order filter 500kHz

10
2

10
3

10
4

−3

−2

−1

0

1

2

3

4

Frequency

P
ha

se
(H

(z
))

Original 10th order filter
5th order filter 40kHz
5th order filter 80kHz
5th order filter 100kHz
5th order filter 500kHz

Figure 3.6: Comparison between the new 5th order filter and the original 10th order filter
model (Bruce et al., 2003) for the cat middle ear for different sampling frequencies

CFs ranging from 0.18 to 7.04 kHz. This neurogram is processed by a bank of modulation

selective filters to compute the STMI. The rates for temporal modulations of the filters range

from 2 to 32 cyc/sec (Hz), and the scales for spectral modulations are in the range from 0.25

to 8 cyc/oct. The STMI is computed using a template (the expected response) generated as

the output (at the cortical stage) of the normal model to the stimulus at 65 dB SPL. The

cortical output of the test stimulus is compared to the template as illustrated in Fig. 3.7.

The STMI is computed according to the formula of Elhilali et al. (2003)

STMIElhilali = 1 − ||T − N ||2
||T ||2 (3.4)

where ||.|| is the Euclidean-norm of the signal, T is the cortical output of the clean template

signal, and N is the cortical output of the noisy test signal. In this work, we adopt Zilany and

Bruce (2007b) approach of keeping the time index of the output rather than averaging the

output over time as in Elhilali et al. (2003). However, we use Elhilali et al. (2003) equation

(Eqn. 3.4) to evaluate the deviation between the template and test responses without taking
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Figure 3.7: Schematic of the STMI speech intelligibility predictor computation. The clean
and chimaera speech signals are given as inputs to the auditory periphery model, and the
spectral and temporal modulations in the AN responses are then analyzed by the cortical
model filters to compute the STMI. In this schematic, we show the cortical output at a
certain time and frequency bin to simplify the plot. The actual STMI computations will
compare the cortical outputs for the test and reference signal for all time and frequency
bins.

the square root of the difference, in contrast to Zilany and Bruce (2007b), where it is defined

as

STMIZilany =

√

1 − ‖T − N‖2

‖T‖2
. (3.5)

It is worth noting that, although applying the square root in Zilany and Bruce (2007b) was

meant to provide a good fit of their model-output to some available intelligibility results, it

could be problematic for STMIElhilali < 0 since applying the square root may end up with

meaningless complex values at the lower STMI bound. In the following few steps, we derive

both the upper and lower limits of STMIElhilali and show that, while there is no problem at

the upper limit, values on the lower bound may be problematic if the square root is used

(Eqn. 3.5). Given that T , and N are vectorized matrices, from Eqn. 3.4, the maximum of

STMIElhilali, which is 1, is achieved when ‖T − N‖2 = 0 (i.e., when the cortical response to

the test signal is identical to that of the original signal.). Also, min STMIElhilali is achieved

when ‖T − N‖2 is maximum (i.e., when T and N are orthogonal), as

max ‖T − N‖2 = ‖T‖2 + ‖N‖2.
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Hence,

min STMIElhilali = −‖N‖2

‖T‖2
.

From this derivation, the STMI measure can take negative values (−‖N‖2/‖T‖2 < STMI ≤

1), hence, STMIZilany =
√

STMIElhilali can be infeasible.

Based on the above discussion, the STMI measure used in this study is following the

definition introduced by Elhilali et al. (2003) instead of that by Zilany and Bruce (2007b).

However, in contrast to Elhilali et al. (2003), we keep the time and CF indices in the cortical

outputs for the template and test signal in the same manner as suggested in Zilany and Bruce

(2007b). This is important as the STMI scores in this way will be a good measure of the

partial matches between the test and template signals. If the cortical outputs are averaged

over time as in Elhilali et al. (2003), the STMI will not be as sensitive to degradation

of a particular phoneme in a word or to manipulations such as time reversal of a speech

signal. It should be noted that our objective in this work is to measure the understanding

of the features of the phonemes and to do so, we can not average over time to avoid losing

those important phonemic features. On the other hand, the work of Elhilali et al. (2003)

was mainly concerned with providing an average profile of spectro-temporal modulations in

clean speech that can be subsequently used as a reference. It is also worth mentioning that

the original STMI computations in Elhilali et al. (2003) were implemented using a lateral

inhibitory network (LIN) between the auditory periphery and cortical models. We do not

use a LIN in our calculations, because a LIN can generate some ENV reconstruction based

on phase-locking differences between neighbouring AN fibers, i.e., central reconstruction of

ENV cues, whereas in this study we are interested in determining the extent of peripheral

ENV reconstruction.

Because of the large time bins in the AN neurogram and the slow temporal modulation

rates for the cortical filters, the STMI is only sensitive to spectral and temporal modulation

in the neural response to speech and all phase-locking information about TFS cues is filtered

out. In Fig. 3.8, we display the PSTH from the auditory periphery model in response to
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the test word “door” to show that the large time bins of 16 ms with 50% overlap effectively

remove the spike timing information compared to the PSTH taken with bin width of 20 µs.
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Figure 3.8: Normalized PSTHs from the output of the auditory periphery model in response
to the test word “door”. Two cases are shown: in one case, the PSTH is computed using
a large window of 16 ms with 50% overlap and the other case shows the PSTH computed
with a 20 µs bin width. The example illustrates that spike timing information is essentially
removed when the large window size is used, and hence the STMI value computed from that
PSTH will not be sensitive to TFS information.

3.4 Auditory Chimaeras and Test Speech Material

To separate the TFS code from ENV information, speech signals are divided into frequency

bands to extract the ENV and fine structure codes in each band. The input stimulus to

our auditory model is either the TFS-only signal or auditory chimaeras. Auditory chimaeras

(Smith et al., 2002) are created such that the ENV (or TFS) is from the speech signal

while the TFS (or ENV) is coming from a spectrally matched noise signal. Therefore, the

auditory chimaeras used in our tests contain only one particular cue while suppressing the

other. The test signal is band-pass filtered into contiguous analysis channels and the Hilbert
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transform is used to split the signal into ENV and TFS components (Smith et al., 2002;

Gilbert and Lorenzi, 2006; Lorenzi et al., 2006; Sheft et al., 2008). The Hilbert transform

is used to calculate the analytic signal from which the signal envelope is computed as the

absolute value of the analytic signal. Dividing the original signal by the envelope in each

band gives a signal with the original TFS and a flat envelope. This process is applied to

two different waveforms, where each waveform is filtered into contiguous frequency bands

and its ENV and TFS cues are separated using the Hilbert transform. In each band, the

envelope of one waveform is used to modulate the TFS of another waveform. The products

are then summed across frequency bands to construct the auditory chimaeras. We may have

speech-speech chimaeras, where both waveforms are sentences. We may also produce speech

+ noise chimaeras, where one waveform is the speech signal and the other is noise (Fig. 3.9).

Figure 3.9: Example of auditory chimaera generation, where signals are filtered into bands
and the envelope and fine structure are estimated using the Hilbert transform. In each band,
the auditory chimaera is made from the product of envelope 1 and fine structure 2 (from
Smith et al., 2002).

In Lorenzi et al. (2006), the role of TFS cues in speech perception is assessed by presenting

TFS-only signals to a group of normal and hearing-impaired listeners and recording the
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intelligibility results after several sessions of training. TFS-only signals are generated in a

similar method to that of Smith et al. (2002), as they both have a similar technique for

processing speech signals in each frequency band to separate TFS from ENV information.

However, some distinctive differences exist between the two approaches. First, the number of

frequency bands used in Lorenzi et al. (2006) is fixed at 16 frequency bands, while in Smith

et al. (2002) different choices are tested (from only 1 vocoder filter up to 16 filters). Second,

the Speech-TFS-only signal is used directly as the sound stimulus in Lorenzi et al. (2006),

while in Smith et al. (2002), the Speech-TFS-only signal was modulated by a noise-ENV-only

signal creating auditory chimaeras, which are then used as the new stimulus.

3.5 Procedure

In our work, we have used 11 sentences from the TIMIT database, randomly selected for

different male and female speakers from 8 major dialect regions of the United States. The

sentences were used to create auditory chimaeras following the same procedure as in Smith

et al. (2002). Each sentence signal was filtered using a number of band-pass filters. In this

study, we have used different number of vocoder filters, which are 1, 2, 3, 4, 6, 8, and 16, to

divide the signal into frequency bands. These filters were designed as Butterworth filters of

order 6, with cutoff frequencies determined such that the filters cover the frequency range

from 80 Hz to 8820 Hz with logarithmic frequency spacing (Smith et al., 2002). In each band,

we computed the signal envelope using the Hilbert transform. Note that, when comparing

our results to Lorenzi et al. (2006), we only used 16 vocoder frequency bands to separate the

TFS and ENV signals. To reproduce the stimulus signals created in Smith et al. (2002), we

constructed a spectrally matched noise signal for each test sentence of the TIMIT database

as described in Fig. 3.10.

The noise signal was processed in the same way as the sentence signal to produce the

ENV and TFS for the noise waveform in each frequency band. The two waveforms, sentence
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Figure 3.10: Generation of spectrally matched noise (adapted from Paliwal and Wójcicki,
2008).

signal and noise signal, were combined to form the speech-noise auditory chimaeras. For

every sentence of the 11 TIMIT examples and for each choice of the number of frequency

bands used, two sets of chimaeras were developed: Speech-ENV + noise-TFS chimaeras,

and Speech-TFS + noise-ENV chimaeras. These chimaeras were provided to our auditory

periphery model to compute the output neurogram which was then assessed to evaluate the

extent of speech intelligibility using the STMI metric. The experiment was repeated for each

stimulus and the results were averaged over all sentences in the same speech-noise chimaeras

set. STMI values were computed both with the original cat cochlear tuning of Zilany and

Bruce (2006, 2007b) and the human tuning of Shera et al. (2002).

3.6 Results

In this section, the STMI results are compared to the intelligibility scores reported in Lorenzi

et al. (2006). Moreover, the cat and human’s TFS-only STMI values are computed for the
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case of 16 filter bands averaged over all test sentences. Our STMI result from the cat auditory

model is 0.145, while a value of 0.235 is obtained from the human auditory model. In order

to get a better understanding of these results, the STMI of a white Gaussian noise (WGN)

only test stimulus was computed (equivalent to testing an extremely low SNR signal). In

this case, the STMI results are 0.076 in cats and 0.09 for humans, indicating the lowest

possible values for the STMI. It can be concluded, therefore, that even with 16 vocoder

frequency bands there is still some restoration of ENV cues from the “TFS-only” speech

of Lorenzi et al. (2006), and this restoration is enhanced with the sharper human cochlear

tuning. In order to reduce (or eliminate) any ENV cues that might be recovered by the

TFS-only signal, Speech-TFS+WGN-ENV auditory chimaeras were generated. The average

STMI results in this case are 0.12 for cats and 0.18 for humans. It can be seen that the

average STMI values are reduced for these chimaeras from the TFS-only values, indicating

that introducing the noise-ENV cues does diminish the restoration of speech-ENV cues from

the speech-TFS signal, but restoration is not completely eliminated.

Using the auditory chimaeras, generated as in Smith et al. (2002), the STMI values for

both cat and human’s cochlear tuning were computed. In Fig. 3.11, STMI results for cats and

humans are displayed together with the intelligibility scores obtained in Smith et al. (2002).

The STMI for Speech-ENV + noise-TFS is monotonically increasing with the number of

filter bands, while the Speech-TFS + noise-ENV starts increasing with filter bands having a

maximum value for two frequency bands then it decreases with further increase in number

of frequency bands. The results are displayed in Fig. 3.11 together with the intelligibility

results of Smith et al. (2002).

It is observed that the STMI values are higher for Speech-ENV + noise-TFS than Speech-

TFS + noise-ENV over the entire range of numbers of vocoder filters. For the Speech-ENV

+ noise-TFS signals, the STMI values for cat tuning are consistently higher than those for

human tuning. This is due to the broader cat filters being less sensitive to degradation of

the speech spectrum by the filter bank in the chimaera algorithm. Comparing STMI values
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Figure 3.11: Speech perception of sentences versus number of filter bands in (a) speech-ENV
+ noise-TFS chimaera and (b) Speech-TFS + noise E chimaera as in Smith, Delgutte and
Oxenham (2002). Average STMI values versus number of filter bands for (c) speech-ENV
+ noise-TFS chimaeras as the input to our human model and (d) Speech-TFS + noise
E chimaeras. Average STMI values versus number of filter bands for (e) speech-ENV +
noise-TFS chimaeras as the input to the cat model and (f) Speech-TFS + noise E chimaera.

for cat and human tuning in the case of the Speech-TFS + noise-ENV signals, scores are

consistently higher with the human tuning than with the cat tuning. This observation is

related to the narrower cochlear tuning incorporated in the human auditory periphery model.

This narrow tuning implies better capability of the human auditory filters to restore ENV

information from the TFS signal.

Our STMI results for both cat and human tuning can be mapped to the corresponding

intelligibility results obtained in Smith et al. (2002). Hence, for each (species) version of

the model we have two mapping functions, one for the Speech-ENV + noise-TFS chimaeras

and the other for the Speech-TFS + noise-ENV chimaeras. In Fig. 3.12, we display these
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STMI-intelligibility mapping curves (black lines), together with previous STMI-intelligibility

mappings for cat tuning (Bruce and Zilany, 2007; Zilany and Bruce, 2007a) for different

SNR values (colored lines) for comparison. The results of STMI and recognition scores

from Bruce and Zilany (2007) and Zilany and Bruce (2007a) were obtained for different

scenarios of background noise, presentation level, low-pass or high-pass filtering and with

normal hearing or impaired (aided and unaided). Note that in order to compare our STMI

results with those of Bruce and Zilany (2007) and Zilany and Bruce (2007b), we are plotting

our results in Fig. 3.12 as well as the square of those STMIzilany results of Bruce and Zilany

(2007) and Zilany and Bruce (2007b). It can be observed that our curves for the Speech-TFS

+ noise-ENV signals with cat tuning fits well in the middle between the mappings obtained

in Bruce and Zilany (2007) and Zilany and Bruce (2007b) for speech in noise and speech

in quiet. The curves obtained with human tuning are to the right indicating higher STMI

values due to the sharper cochlear tuning leading to increased ability to recover ENV cues

from the TFS signals.

If the Speech-TFS + noise-ENV intelligibility results of Smith et al. (2002) were due

entirely to ENV restoration, then it might be expected that the mapping function for these

signals would be identical to that for the Speech-ENV + noise-TFS signals. This is clearly

not the case for the cat’s cochlear tuning. For the human tuning, the mappings for 6 to

16 channels for both Speech-ENV + noise-TFS and Speech-TFS + noise-ENV signals do

appear to be consistent with an extrapolation of the Zilany and Bruce (2007a) mappings for

speech in quiet.

3.7 Conclusions

We have demonstrated that STMI values for Speech-TFS + noise-ENV chimaeras attain

a maximum value at 1 and 2 vocoder frequency bands and then decline consistently with

any further increase in bands. This can be explained by the fact that the cochlear filters
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Figure 3.12: Mapping curves between STMI and percent intelligibility explained in the legend
(black), together with STMI-speech intelligibility mappings for cat tuning from Zilany and
Bruce (2007a) for different signal-to-noise-ratio (SNR) values (colored) for comparison.

can recover some of the ENV cues of the original speech signal while processing the TFS-

only information. The ENV restoration reaches its maximum when the number of vocoder

frequency bands is small (1 or 2 bands). Therefore, the STMI results exhibit its highest

intelligibility predictions at this small number of vocoder frequency bands. Similar conclu-

sions have been presented in Zeng et al. (2004), where it was argued that ENV recovery from

TFS cues is the main reason for the relatively high intelligibility scores at small numbers of

vocoder frequency bands. Zeng et al. (2004) generated speech-TFS + noise-ENV stimulus

using one vocoder frequency band. The test stimulus is filtered using a bank of 16 band-pass

gammachirp filters resembling the function of the cochlear filters. The envelopes in each
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band are computed and used to modulate noise TFS to produce a new speech-ENV + noise-

TFS stimulus, where the envelope is coming from the recovery of ENV from TFS of the first

stimulus at the outputs of the cochlear filters. The new test stimulus was presented to 4

subjects and was found to be ≈ 40% intelligible. This matches our conclusions that ENV

recovery at the cochlear filters may be responsible to a considerable amount of the reported

TFS intelligibility especially when the number of vocoder frequency bands is small.

Our results also show that the STMI values obtained for the TFS-only case with 16

channels could almost completely explain the initial speech intelligibility scores for normal-

hearing listeners in the study of Lorenzi et al. (2006). The dependence of the ENV restoration

phenomenon on the number of vocoder frequency bands in the processing algorithm and the

bandwidth of the cochlear filters is illustrated by the STMI scores for the cat auditory model,

where the cochlear filters are wider than the human model. In this case, the ability to recover

ENV cues from TFS-only signals is reduced and the STMI value is consequently less than

the human tuning version. This observation is very important as it supports the theory that

TFS information is used indirectly by the cochlea to recover ENV information, which is then

used for speech understanding. This also explains the reduced ability of hearing-impaired

people to benefit from TFS-only information as observed in Lorenzi et al. (2006). Since

hearing-impaired people suffer from the broadening of the cochlear tuning, the recovery of

ENV cues from TFS information is degraded and hence speech intelligibility is reduced.

However, a consistent mapping between STMI and speech intelligibility for the two types of

chimaeras was not obtained for small numbers of channels. Preliminary results indicate that

this may be due to the effects of the matched noise used in constructing the chimaeras on the

model neural response. Moreover, the test materials we have used in our STMI results are

drawn from the TIMIT database, while the intelligibility results of Smith et al. (2002) were

obtained using sentences from the HINT database and those of Lorenzi et al. (2006) were

obtained using nonsense VCV stimuli. Those test material mismatches promote the need

to obtain both the STMI and intelligibility results using the same test materials in order
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to have a fair comparison between the intelligibility and the STMI model predictions. In

the next chapter, we present a speech recognition experiment that was conducted using the

NU-6 monosyllable word list. The test materials for the speech recognition experiment are

processed to produce different types of auditory chimaeras, where the speech ENV in some

of the generated chimaeras is replaced by WGN, a flat envelope as well as a matched-noise

envelope. Comparisons between STMI predictions and actual speech recognition scores for

the same test material, in the next chapter, reveal important facts about the extent of ENV

restoration by the cochlear processing and the true importance of TFS in speech perception.
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Chapter 4

Quantification of the Relative Roles of

Envelope and TFS in Speech

Perception

4.1 Introduction

Human speech perception has been the focus of extensive research to identify the factors

and mechanisms by which humans understand speech in different listening conditions. It

has been commonly believed that ENV cues in the speech signal can provide robust speech

recognition in quiet listening environments. As a result, conventional speech processing

schemes in cochlear implants and hearing aids are designed to mainly provide sufficient

ENV information while coding of TFS cues is not carefully considered (Lorenzi et al., 2006;

Moore, 2008b; Nie et al., 2005, 2008; Sit et al., 2007; Loizou, 2006).

However, recent studies show that there is a potentially significant role for TFS cues

in speech perception in difficult background noise. This finding is challenged by possible

reconstruction of ENV cues from the TFS signal by the narrow human cochlear filters. Our

results presented in Chapter 3 using model predictions for human intelligibility to TFS speech
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have demonstrated the existence of restored ENV from the sharply tuned human cochlear

filters. The STMI predictions were compared to available intelligibility scores data and sim-

ilar trends are observed with the TFS results decreases as the number of vocoder frequency

bands increases. However, the test signals and preparation used in STMI computations are

not exactly the same as those used in Smith et al. (2002) or Lorenzi et al. (2006) to mea-

sure intelligibility to TFS speech. Smith et al. (2002) used chimaeric speech generated from

sentences of the Hearing-In-Noise-Test (HINT) database with varying number of vocoder

frequency bands, while Lorenzi et al. (2006) generated TFS-only stimulus from nonsense syl-

lables using only a fixed number of frequency bands. Hopkins and Moore (2010) explained

that subjects may learn idiosyncratic features of a small set of VCV stimuli, which may

lead to overestimating the true contribution of TFS to intelligibility. It is worth mentioning

that the chimaeric test signals in Smith et al. (2002) were produced using matched noise

waveform as the conflicting ENV component. Our investigations in the work presented in

Chapter 3 indicate a possible role of matched noise in falsely boosting speech intelligibility

affecting the quality of the assessment of TFS role in speech understanding.

In fact, Paliwal and Wójcicki (2008) investigated the effect of the analysis window dura-

tion on speech intelligibility for a speech stimulus based purely on the short-time magnitude

spectrum. This is, in essence, equivalent to the matched-noise signal in the case of rela-

tively short-duration speech signals. The results of Paliwal and Wójcicki (2008) show that

the speech, reconstructed from the short-time magnitude spectrum (or the matched-noise of

short length speech), is intelligible with almost 100% intelligibility when using an analysis

window of duration 15–35 ms (Fig. 4.1). It is worth noting that these results were obtained

based on consonant recognition and that the sentences from which we generate the matched

noise form in our work have much longer duration than the 15–35 ms that rendered 100%

consonant recognition in the work of Paliwal and Wójcicki (2008). Nevertheless, the matched

noise waveform, as generated in our STMI predictions and Smith et al. (2002) speech recog-

nition experiment, may carry some information about the original speech signal that could
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Figure 4.1: The effect of the analysis window length on the intelligibility of a signal generated
similar to the matched-noise process (a) Subjective intelligibility scores. (b) Predicted scores
using the Speech Transmission Index (STI) metric as in Houtgast and Steeneken (1985)
method (broken line), Drullman et al. (1994) method (dotted line), and Payton et al. (2002)
method (solid line). (Adapted from Paliwal and Wójcicki, 2008).

influence the validity of the results and conclusions drawn from these experiments. We need

to investigate the possible effect of the addition of matched noise. We also need to have

STMI and intelligibility scores for the same kind of stimuli to test various types of vocoders

in order to better judge the relative importance of TFS and ENV in speech recognition. In

order to achieve these goals, we conducted a speech recognition experiment on normal hear-

ing subjects. The results are compared to model predictions of the STMI to better quantify

the contributions of ENV and TFS in speech perception.

Section 4.2.1 describes the speech experiment in terms of the subjects, test words and

experiment setup. Section 4.2.2 describes the procedure steps followed in conducting the

experiment. Section 4.2.3 presents the different scoring schemes adopted in evaluating the
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experiment’s results with emphasis on the phoneme-based scoring approach that rewards

partial word recognition on a phoneme-by-phoneme basis. Sections 4.3 and 4.4 briefly re-

view the auditory periphery model and the STMI intelligibility predictor, which are used to

provide model predictions for comparison with intelligibility scores. Results of the exper-

iment are presented in Section 4.5, where the different scoring schemes results are plotted

and the statistical significance of the results is discussed. In the same section, we derive a

mapping function between STMI and intelligibility, which is used to draw important esti-

mates about the roles of TFS and recovered ENV in speech perception. Finally, Sections 4.6

and 4.7 discuss the findings of this work and compare our results with previous experiments

concluding that TFS seems to play an important role in speech perception that can not be

marginalized by contributing it to merely ENV restoration from the narrowband cochlear

filters.

4.2 Speech Recognition Experiment

4.2.1 Subjects And Speech Material

A word recognition experiment was conducted on five normal hearing subjects with English

as their first language aged 18–21, who were paid for their participation. The subjects were

asked to identify a word in the sentence “say the word (test word)”, where (test word) is the

word that the subjects are required to recognize. The test was done without prior training

or familiarization and was completed over five one-hour sessions for each subject. The test

words were chosen from the NU-6 word list (Tillman and Carhart, 1966), which contains

a total of 200 monosyllabic consonant-nucleus-consonant (CNC) words and were recordings

spoken by a native American English male speaker (Auditec, St. Louis). The test sentences

were processed to create auditory chimaeras in order to degrade ENV or TFS cues. These

chimaeras were constructed by processing two acoustic waveforms using a vocoder consisting

of a bank of band pass filters followed by the Hilbert transform to generate ENV-only and
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TFS-only versions of the signals (Smith et al., 2002). In each band, the envelope of one

waveform was multiplied by the TFS of another. The products were then summed across

frequency bands to construct the auditory chimaeras. The speech signal was one of the two

acoustic waveforms used to generate the auditory chimaera, while the other waveform was

chosen to be either WGN or matched noise, which was added to suppress any remaining ENV

or TFS cues in the stimulus. Matched noise was generated from the Fourier transform of the

signal by keeping the magnitude and randomizing the phase. In this work, we compare our

results when using WGN in the auditory chimaeras with those when matched noise is used

instead, in order to achieve a better understanding of the matched noise effect on the speech

recognition scores. Matched noise has been used in some studies (Smith et al., 2002) with the

goal of suppressing some of the speech cues. However, a study has been conducted by Paliwal

and Wójcicki (2008) in which they have constructed speech stimuli based on the short-time

magnitude spectrum (this is equivalent to the matched-noise signal generation in the case of

relatively short-duration speech signals). The purpose of that study was to investigate the

effect of the analysis window duration on speech intelligibility, and their results showed that

speech reconstructed from the short-time magnitude spectrum is intelligible with variable

intelligibility levels depending on the analysis window size.

The subjects of our speech recognition experiment were informed that it is expected that

they will not be able to recognize all the words as different degrees of processing made some

test words relatively unintelligible. They were asked to guess to the best of their ability

the word they have heard given that a nonsense response was not an option. Subjects were

tested in a quiet room.

All signals were generated with a high-quality PC sound card (Turtle Beach- Audio

Advantage Micro) at a sampling rate of 44100 Hz. The sound was presented to the subjects

via a Yamaha HTR-6150 amplifier and Sennheiser HDA 200 headphones. The signals were

calibrated through a B & K 2260 Investigator sound meter/audiometer (artificial ear type

4152) to adjust the target speech to a presentation level of 65 dB SPL.
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4.2.2 Experiment Procedure

The test sentences were processed to remove any silence before and after the end of the

sentence. The resulting sentences were then filtered with a variable number of band-pass

filters, spanning the frequency range (80–8820 Hz). We had seven different cases, where

the number of frequency bands was changed to be either 1, 2, 3, 6, 8, 16, or 32. For each

number of the frequency bands, the cutoff frequencies span the range from 80 Hz to 8820 Hz

and their values were calculated based on the Greenwood function for humans (Greenwood,

1990) using equally spaced normalized distances along the human cochlea (nearly logarithmic

frequency spacing). The filter overlap was 25% of the bandwidth of the narrowest filter in

the bank (the lowest in frequency). In each band, the signal envelope was extracted using

the Hilbert transform and the TFS signal was computed by dividing the filtered signal

by its envelope. Auditory chimaeras were then generated by combining the speech-signal’s

envelope (Speech-ENV) with the TFS of the noise signal (noise-TFS) or the TFS of the speech

signal (Speech-TFS) with the noise envelope (noise-ENV) and summing over all bands. The

conflicting noise was chosen here to be WGN or matched noise and it was added to suppress

any remaining ENV or TFS cues in the stimulus. The matched noise signal was generated

from the original speech signal by preserving the magnitude while randomizing the phase of

its Fourier transform. Moreover, a TFS-only stimulus (Lorenzi et al., 2006) was generated

by taking only the TFS from all frequency bands (Speech-TFS + Flat-ENV). Hence, we had

five different types of chimaeras:

• Speech-ENV + WGN-TFS,

• Speech-ENV + Matched-Noise-TFS,

• Speech-TFS + WGN-ENV,

• Speech-TFS + Matched-Noise-ENV, and

• Speech-TFS + Flat-ENV (TFS-only-Speech).
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For each chimaera type, we used seven numbers of vocoder frequency bands. For each

set of frequency bands, 50 test words were generated. These 50 test words were randomly

selected from the 200 available words of the NU-6 list, resulting in 1750 test words used in

our study. This word set was presented to the subjects using the following procedure:

a) Sequential presentation of randomized set of 5 vocoders.

b) For each vocoder, randomly select one of 350 available words (50 words for each of the

7 filter sets).

c) Ask the subject to repeat the word as they perceived it.

d) Voice record the subject’s verbal response as well as a written record.

4.2.3 Scoring

We adopted several scoring methods, with the phonemic representation being the main scor-

ing scheme. In this approach, the word was divided into its phonemes such that subjects

were rewarded for partial recognition. The following example explains the scoring procedure

for the phonemic scheme.

Example:

Word Phonetics Response Phonetics Score

tell t/e/l dill d/i /l 1/3

lose l/u:/z rose r/∂ν /z 1/3

This scoring mechanism rewards partial recognition, such that it can be directly compared to

the STMI computations, where partial matches between the test and template patterns are

summed to give the STMI score. We also used complete word correct, consonant and vowel

recognition scoring schemes, which allow for comparison with previous results of similar

experiments.
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4.3 Cochlear-Filtering Model Predictions

The intelligibility scores were compared to the results of the STMI, which is a speech intel-

ligibility predictor introduced in Elhilali et al. (2003). The STMI results are obtained by

presenting the processed stimuli to a computational model for the human auditory periphery

(Zilany and Bruce, 2006, 2007b) and assessing the output of the model with the STMI pre-

dictor. The auditory periphery model of Zilany and Bruce (2006, 2007b), shown in Fig. 2.8,

was utilized to evaluate the effects of cochlear filtering on ENV reconstruction. The cochlear

tuning of the model was modified to match estimates from humans (Shera et al., 2002), as

described in Chapter 3. Simultaneous outputs (discharge rates averaged over 16-ms rectan-

gular time windows with 50% overlap) from 128 AN fibers, characteristic frequencies ranging

from 0.18 to 7.04 kHz spaced logarithmically, make up the AN “neurogram”. The output at

each CF represents the average discharge rates of fibers having three different spontaneous

rates: 20 (high), 5 (medium) and 0.1 (low) spikes/s. A maximum weight of 0.6 goes to high

spontaneous rate fibers, and the weights given to medium and low spontaneous rate fibers

are 0.3 and 0.1, respectively, which is consistent with the distribution of spontaneous rates

of fibers in the auditory system. The AN neurogram is then analyzed by the model of the

central auditory system.

4.4 Speech Intelligibility Predictor

A cortical model of speech processing (Elhilali et al., 2003) analyzes the AN neurogram

to estimate the spectral and temporal modulation content. It is implemented by a bank

of modulation-selective filters ranging from slow to fast rates (2 to 32 Hz) temporally and

narrow to broad (0.25 to 8 cyc/oct) scales spectrally.

Following Zilany and Bruce (2007b), the template has been chosen as the output of the

normal model to the unprocessed stimulus at 65 dB SPL (conversational speech level) in

quiet.
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The STMI takes values between 0 and 1, with higher values predicting better speech

intelligibility. In practice, the STMI has a lower limit of 0.13 for the test material used in

this study. This was computed by averaging the STMI results for 200 WGN test signals

compared to the 200 NU-6 word template stimuli. The maximum STMI value for the test

materials used in this study has been also computed to be 0.92 by averaging the STMI results

for 200 intact (unprocessed) speech words as the test signals. Due to large time bins in the

AN neurogram and the slow temporal modulation rates for cortical filters, all TFS cues are

filtered out in our STMI results, and consequently the STMI predictions are based on direct

and reconstructed ENV cues only.

4.5 Results

4.5.1 Speech Perception Data

The results of a 3-way ANOVA (subject × chimera type × number of filters) are shown in

Table 4.5.1. We report on the three main effects and the three 2-way interaction. All three

factors are statistically significant, but the chimaera type and number of filters are much

stronger factors than the subject number. The small but significant difference in performance

of the different subjects is consistent with the results of Lorenzi et al. (2006), in which they

found that some subjects had higher initial TFS-speech perception scores than others, and

that this difference largely remained even after substantial training. The interactions between

subject number and chimaera type and between the number of filters and chimaera type are

significant, but the interaction between the subject number and number of filters is not.

The intelligibility results we obtained from our speech experiment are plotted in Figs. 4.2

and 4.3. The percent correct scores based on phonemic and complete word correct scoring

schemes are presented in Fig. 4.2, while the percent correct vowels and consonants’ scores

are compared in Fig. 4.3.

For Speech-ENV chimaeras (left panels), subjects performed better when the number of
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Figure 4.2: Phoneme and word perception scores from the listening experiment. Error bars
show ± 1 standard error of the mean (SEM). In the left panel, perception scores for the
Speech-ENV + WGN-TFS and Speech-ENV + Matched-Noise-TFS chimaeras are shown.
In the right panel, perception scores for the Speech-TFS + WGN-ENV, Speech-TFS +
Matched-Noise-ENV and Speech-TFS + Flat-ENV (TFS-only-Speech) chimaeras are shown.
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Source Sum Sq. d.f. Mean Sq. F Prob>F
Subject No. 0.83 4 0.2073 3.57 0.0064
No. of Filters 72.44 6 12.073 208.14 <0.0001
Chimaera Type 60.83 4 15.2074 262.18 <0.0001
Subject×No. of Filters 1.8 24 0.0748 1.29 0.1553
Subject×Chimaera Type 3.85 16 0.2405 4.15 <0.0001
No. of Filters×Chimaera Type 380.46 24 15.8527 273.31 <0.0001
Error 502.95 8671 0.058
Total 1023.15 8749

Table 4.1: Significance of subject number, number of filters and chimaera type and three
two-factor interactions obtained with 3-way ANOVA on Phoneme Perception Data

frequency bands increased. The reverse is true for Speech-TFS chimaeras on the right panels,

where the performance is better when the number of analysis filters used in generation of

the auditory chimaera is decreased. As expected, phoneme scoring gives higher results than

complete word correct, as phoneme scoring rewards partial word recognition.

We observe in Fig. 4.3 that consonant recognition is higher than vowels for Speech-

ENV chimaeras, whereas vowels recognition is higher for Speech-TFS chimaeras with noise

envelopes. The higher scores for vowels with the Speech-TFS chimaeras is consistent with

their having more harmonic structure to be conveyed by the TFS than the consonants.

It is observed that intelligibility scores for Speech-TFS + Flat-ENV are higher than

those for Speech-TFS chimaeras with noise envelopes. This may indicate the presence of

some ENV cues, which have not been completely removed in the Speech-TFS + Flat-ENV

signals and have been diminished when adding conflicting noise envelope in the Speech-

TFS+Noise-ENV chimaeras. We can also notice that intelligibility scores for Speech-TFS

chimaeras are higher in the case of adding WGN-ENV compared to when adding matched-

noise-ENV. A reverse behavior is observed for Speech-ENV chimaeras, where scores when

adding matched-noise-TFS are higher than those obtained after adding WGN-TFS. This

points to a possible effect of matched noise on speech recognition, which is higher when

using the noise’s TFS compared to when using its envelope. It is also worth noting that

some benefits from the progressive introduction of test words was observed as illustrated in
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Figure 4.3: Consonant and vowel perception scores from the listening experiment. Error
bars show ± 1 SEM. In the left panel, perception scores for the Speech-ENV + WGN-TFS
and Speech-ENV + Matched-Noise-TFS chimaeras are shown. In the right panel, perception
scores for the Speech-TFS + WGN-ENV, Speech-TFS + Matched-Noise-ENV and Speech-
TFS + Flat-ENV (TFS-only-Speech) chimaeras are shown.
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Figure 4.4: Intelligibility scores improvement as we progress in the session. The second half
of the sessions (dashed lines) is associated with slight higher recognition scores compared to
the first half of the sessions (solid lines)

Fig. 4.4. The subjects showed improvement in the recognition score in the second half of

each 1-hour session as compared to the first half. Those results are in agreement with the

observations of Lorenzi et al. (2006) and Moore (2008b) that training, or, in this case, long

session duration, improves the intelligibility scores.

4.5.2 Model Predictions Results

Using the same stimuli as for the perceptual experiment, the STMI values are computed

and displayed in Fig. 4.5, where we plot the mean STMI results (averaged over the 50 test

words) with error bars representing the standard error of the mean (SEM). Comparing these

model predictions to the phoneme perception scores from the speech experiment (Fig. 4.2),
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Figure 4.5: Model predictions (STMI) of phoneme perception. Error bars show ± 1 SEM.
In the left panel, model predictions for the Speech-ENV + WGN-TFS and Speech-ENV
+ Matched-Noise-TFS chimaeras are shown. In the right panel, model predictions for the
Speech-TFS + WGN-ENV, Speech-TFS + Matched-Noise-ENV and Speech-TFS + Flat-
ENV chimaeras are shown.

we can see the same trend in the dependency on the number of analysis filters. Note that we

compare the computed STMI results to intelligibility scores based on the phonemic scoring.

The reason we choose the phoneme scoring scheme for the comparison is the similarity

between the partial recognition scoring and the methodology of STMI computations, as the

STMI captures partial matches between the template and test signals. Note that the STMI

results for the Speech-TFS chimaera do not reach the practical minimum value of 0.13, even

for the case of 32 vocoder filters. Since the STMI is sensitive only to ENV information, this

indicates some ENV restoration in the analyzed stimuli.

Comparing with the phoneme intelligibility results (in Fig. 4.2), we notice that, for the

same intelligibility scores, Speech-ENV cases have higher STMI results compared to Speech-

TFS cases, which is expected as the STMI is not sensitive to TFS cues and the STMI values

are due to partial recovery of some ENV cues from the TFS stimulus. We also observe high
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intelligibility scores for Speech-TFS that are matched to relatively low STMI results in some

cases. This indicates that while there are some ENV cues recovered from the Speech-TFS

stimuli, these ENV cues account for only a part of the obtained intelligibility scores.

In Fig. 4.6, the STMI results are compared to intelligibility scores from the speech recog-

nition experiment as well as previous data from Elhilali et al. (2003). The STMI results from

Elhilali et al. (2003) were obtained using speech tokens with increasing additive noise and

reverberation distortions. The intelligibility scores in Elhilali et al. (2003) are obtained from

four subjects. Each subject was presented with 240 sets of five noisy speech samples and a

count of the correct phonemes reported was averaged over all subjects. It was noticed that,

for the same intelligibility level, the STMI values of Elhilali et al. (2003) are higher than the

results we obtained in our model. This may be due to the difference in the STMI computa-

tions, where the 4-D cortical outputs for the template and test signals are averaged over the

time index in Elhilali et al. (2003) instead of keeping the time index as was adopted in our

work. This can possibly increase the estimated STMI as matches in the cortical patterns of

the template and the test signal will be rewarded in Elhilali et al. (2003) even if they appear

at different time intervals. For example, if the original signal is played backward (completely

unintelligible), the STMI of Elhilali et al. (2003) will give it a very high score because of the

matches between the cortical patterns of the original and the test signal ignoring that these

matches are completely out of order in the time domain.

4.5.3 STMI-Intelligibility Mapping Function

In order to understand the significance of the STMI results as translated to intelligibility

scores, we need to build a mapping function between STMI and intelligibility. To perform

such a mapping, first we choose the type of chimaera we are going to use. Since the STMI pre-

dictions are based on direct and reconstructed ENV cues only, we use a Speech-ENV chimaera

case for our mapping. Hence, we are choosing from either the Speech-ENV+WGN-TFS or

81



Ph.D. Thesis - Rasha Ibrahim McMaster - Electrical Engineering

0 0.13 0.2 0.4 0.6 0.8 0.92 1
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

P
ho

ne
m

e 
C

or
re

ct

STMI

 

 

Speech−ENV + WGN−TFS
Speech−ENV + MN−TFS
Speech−TFS + WGN−ENV
Speech−TFS + MN−ENV
Speech−TFS
Elhilali et al. (2003)

Figure 4.6: STMI and Intelligibility scores from our speech experiment for ENV and TFS
speech compared to previous data from Elhilali et al. (2003), which was obtained using noise
speech samples with different reverberation distortions
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Speech-ENV+MN-TFS chimaera. In Fig. 4.6, we notice that in the Speech-ENV+MN-

TFS chimaeras with a small number of filters (i.e., 1 and 2), the STMI and intelligibility

scores are higher than those for Speech-ENV+WGN-TFS chimaeras, due to the previously

described effect of matched noise in speech recognition. Therefore, we choose to use the

Speech-ENV+WGN-TFS case, which spans a greater range of STMI and percent correct

values, to construct our mapping function. The mapping function is chosen to have the form

of a logistic function and the parameters are computed to minimize the mean square error

value. The mapping function is given by

I =
1

1 + exp(7.2 − 17.5 STMI)
(4.1)

where I is the predicted phoneme percent correct (intelligibility). Fig. 4.7 shows the mapping

function and the sample data points from our experiment.

4.5.4 Estimated Intelligibility Due to Recovered ENV and TFS

Cues

We estimate the contribution of ENV cues reconstructed by processing Speech-TFS chi-

maeras with the human auditory filters. This is based on the idea that any STMI scores

for Speech-TFS chimaeras are due to ENV recovery since, as mentioned earlier, the STMI

parameters we use make it insensitive to rapid variations in the stimulus. We map the STMI

results to the corresponding intelligibility scores using the constructed mapping function in

(4.1), which accounts for intelligibility due to recovered ENV cues. The contribution of the

recovered ENV cues was then subtracted from the total intelligibility scores of Speech-TFS

chimaeras to estimate TFS contributions to speech perception assuming a linear relationship

between ENV and TFS intelligibility cues. There could be nonlinear interactions, such as

synergistic combinations of cues or redundancy in information provided by the different cues.

We may expect that in some cases, we have synergistic interactions while in others we have
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Figure 4.7: STMI to intelligibility mapping function based on the results obtained with
Speech-ENV+WGN-TFS chimaeras
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redundancy leading to an average effect which is close to the linear interaction assumption.

Moreover, our goal is quantifying the additional benefit of having TFS and ENV working

together in hearing aids and cochlear implants and we are not suggesting that TFS alone is

enough to have better speech understanding. Similar ideas were presented in Swaminathan

(2010), where the combined roles of true TFS and recovered ENV assessed using neural

cross-correlation coefficients were reported to improve speech understanding for VCV more

significantly than true TFS alone.

The results are plotted in Fig. 4.8, where we can see a significant role for TFS cues in

speech recognition, especially for the case of a large number of narrow vocoder frequency

bands. In Fig. 4.9, we display the predicted recovered ENV cues on the left panel and the

estimated TFS contribution on the right panel for the different Speech-TFS stimuli. We

notice that the recovered ENV cues decrease as the number of filters increases. As expected,

we start with very large recovered ENV cues when the vocoder filters are restricted to 1 or

2 broad vocoder filters. The recovered ENV cues contribution decreases to about 5% when

we use 32 narrow vocoder frequency bands.
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Figure 4.8: Estimated recovered ENV and pure TFS intelligibility for the Speech-TFS+MN-
ENV, Speech-TFS+WGN-ENV and Speech-TFS only stimuli
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Figure 4.9: Comparing the estimated recovered ENV and estimated TFS intelligibility be-
tween all the Speech-TFS chimaeras
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4.6 Discussion

Our intelligibility results qualitatively match the results of Smith et al. (2002), where it was

observed that speech perception is better with fewer vocoder bands when speech informa-

tion is only contained in the TFS (Fig. 4.2). When speech information is contained only in

the ENV, speech reception improves as the number of vocoder bands is increased. When

conflicting noise is added in the envelope of the auditory chimaera, our speech-TFS intelligi-

bility scores are decreased (Fig. 4.2) to ≈ 45% for WGN and ≈ 25% for matched noise (for

32 narrow vocoder filters). This indicates that our results for the Speech-TFS + Flat-ENV

chimaera are influenced by residual ENV cues in the processed stimulus.

An example to further illustrate the idea of ENV recovery from speech-TFS signals is

displayed in Fig. 4.10, which shows neurograms obtained from the output of the human AN

periphery model in response to a sample word with its carrier phrase from the NU-6 list. In

this figure, the output neurogram in panel (a) shows the extent of the ENV detected by the

model for intact speech, while the remaining three panels display the ENV recovery from

the test word processed to keep only TFS cues (flat envelope). The processing is done with

variable number of vocoder filters (1, 8, and 32) to examine the effect of the width of the

generation filters on the quality of ENV recovery. As expected, the figure shows that as the

number of filters increases, the quality of ENV recovery deteriorates.

The envelopes of intact speech, WGN, and matched noise waveforms are displayed in

Fig. 4.11. This serves to illustrate that although the waveforms of the WGN and the matched

noise signals are randomly generated, the fluctuations of the envelope waveform are still

relatively small. Hence, when creating auditory chimaeras with speech-TFS and noise-ENV,

the randomness of the noise waveform does not completely destroy the ability to recover

speech ENV cues from the TFS signal.

An example of ENV recovery from TFS chimaeric speech is illustrated in Fig. 4.12. In

the example, we pass the original intact speech through a number of vocoder filters and

the output from one filter of the vocoder filters is used to obtain the TFS signal. The TFS
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Figure 4.10: Observing the envelope recovery from the output neurograms of the human
auditory periphery model when the input signal is (a) intact speech, (b) speech TFS-only
obtained using 1 vocoder filter, (c) 8 vocoder filters, and (d) 32 vocoder filters. As the used
number of analysis vocoder filters increase, the quality of ENV recovery deteriorates in the
case of speech-TFS signals.
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Figure 4.11: Comparing envelope outputs from each channel of the 16-channel vocoder for
intact speech, WGN, and matched noise inputs. Outputs were low-pass filtered with cut-
off of 64 Hz. Fluctuations of the envelopes of the WGN and matched noise waveforms are
relatively small, especially in the higher frequency bands.
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signal is modulated by a matched-noise envelope in one case and WGN envelope in another

or is applied directly with a flat envelope. The resulted TFS speech is then processed with

a model for the human cochlear filter with the matching CF.

Our consonant recognition scores indicate significant intelligibility ≈ 80% for the speech-

TFS-only stimuli (Speech-TFS + Flat-ENV) when using 16 vocoder filters (Fig. 4.3). This is

in agreement with Lorenzi et al. (2006) and Gilbert and Lorenzi (2006), who have reported

consonant recognition of ≈ 90% after intensive training in response to VCV stimuli processed

to contain only TFS information. Moore (2008b) indicated the need for training in order

to achieve significant recognition scores because the auditory system was not attuned to

processing TFS cues in isolation from ENV cues. Further, TFS cues in processed stimuli are

distorted compared to unaltered speech, which again demanded training. In Lorenzi et al.

(2006), 5-minute training sessions were used and most of the normal-hearing subjects reached

stable performance after about 3 sessions. In our case, although separate training sessions

were not provided, we have noticed that the subjects’ recognition performance improves as

the 1-hour session progresses. The improvement in the second half of the session is relatively

small (see Fig. 4.4), suggesting that the performance may be approaching its asymptote

within half an hour. This means that instead of having many short-duration training ses-

sions, experiments can utilize a single relatively long-duration test session knowing that the

recognition performance is likely to stabilize within approximately half an hour.

Speech-TFS intelligibility scores should be interpreted by taking into account the contri-

bution of recovered ENV cues at the output of the human cochlear filters. In our work, we

estimated the contribution of recovered ENV cues using the subjects’ scores. This is achieved

using our constructed STMI-Intelligibility mapping function (Eqn. 4.1) to map each STMI

value, which is a direct measure for recovered ENV, to the corresponding intelligibility score.

As expected, we start with very large recovered ENV cues of approximately ≈ 90% when

the vocoder filters are restricted to 1 or 2 bands (Fig. 4.9). The recovered ENV cues contri-

bution decreases to about 5% when we use 32 vocoder frequency bands. This is in general
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Figure 4.12: Comparing recovered ENV from Speech-TFS + Flat-ENV, speech-TFS+WGN-
ENV, speech-TFS+MN-ENV to the original ENV in the signal. The stimulus is generated
using 16 vocoder filters and the output of filter 4 (0.31 kHz to 0.43 kHz) is taken. The signal
of each stimulus type is then processed with the human auditory periphery model and the
output of the cochlear filter of the same centre frequency to estimate the ENV recovery in
each case. Outputs were low pass Filtered with a cut-off frequency of 64Hz.
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agreement with results from Gilbert and Lorenzi (2006), Sheft et al. (2008) and Bertoncini

et al. (2009), where they have demonstrated the existence of recovered ENV cues at the

output of a bank of gammachirp auditory filters with 1 equivalent rectangular bandwidth

of the auditory filter for young normally hearing listeners at moderate sound levels (Irino

and Patterson, 1997), simulating the human auditory filters. However, they consider the

amount of ENV reconstruction to be of negligible significance for 8 or more vocoder filters.

In our results, we show that there is a considerable contribution (30% − 50%) of recovered

ENV to intelligibility at 8 filters (Fig. 4.9, left panel). The higher recovered ENV in our

results, as compared to Gilbert and Lorenzi (2006), Sheft et al. (2008), and Bertoncini et al.

(2009), may be explained by the fact that we have incorporated the human cochlear tuning

data from Shera et al. (2002), that are approximately three times sharper than that of Irino

and Patterson (1997). Our assessment of recovered ENV cues is in agreement with Heinz

and Swaminathan (2009), where recovered ENV in chinchilla AN spike train responses to

Speech-TFS chimaeras were reported even at 16 filters. However, in their study they were

unable to provide a prediction of how much intelligibility this recovered ENV would pro-

vide. In addition, chinchilla tuning is likely to be broader than the human tuning, hence the

amount of recovered ENV would be less (Chapter 3). We chose to use the narrow cochlear

tuning estimates for humans reported in Shera et al. (2002), which increases the ability to

recover ENV cues from TFS speech and minimizes the effect of TFS role in speech recog-

nition. Hence, our results represent a conservative estimate of TFS contribution to speech

perception.

TFS contribution to intelligibility is estimated by subtracting the predicted recovered

ENV contribution from the total intelligibility assuming a simplified linear relationship be-

tween ENV and TFS intelligibility cues. We chose the simple linear relation over the more

complicated nonlinear interactions between ENV and TFS where synergistic combinations

of cues or redundancy in information may affect the total intelligibility scores. Our attention

is focused on how much additional intelligibility can be gained by adding the TFS cues to
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the ENV ones in order to assess the value of designing hearing aids and cochlear implant

schemes, which can provide better encoding of TFS cues to be used in combination with the

ENV cues.

TFS contribution to speech intelligibility is found to be ≈ 45% − 75% at 16 filters and

≈ 20%−55% at 32 filters (Fig. 4.9, right panel). These results indicate an important role for

TFS in speech perception and is in agreement with previous studies (Hopkins and Moore,

2007, 2009, 2010), which demonstrated the importance of TFS in reducing the SRT for

normal hearing people as compared to hearing impaired people. Our results also support

the results of Lorenzi et al. (2006, 2009) and Gnansia et al. (2009), where the contribution

of TFS cues in consonant recognition was reported, and the results of Gilbert and Lorenzi

(2010) that indicate the role of TFS in speech perception of interrupted sentences. The

framework presented in this work can be easily incorporated in subsequent studies involving

the assessment of TFS cues by deriving the extent of ENV recovery using the human auditory

model (Chapter 3), the STMI predictor (Elhilali et al., 2003), and the mapping function. Our

results also suggest that the better signal processing schemes are needed to better encode

TFS cues in cochlear implants and hearing aids.

We have also achieved a better understanding of the matched noise effect on speech

recognition scores. Paliwal and Wójcicki (2008) constructed speech stimuli based on the

short-time magnitude spectrum (this is equivalent to the matched-noise signal generation

in the case of relatively short-duration speech signals). They investigated the effect of the

analysis window duration on speech intelligibility and showed that speech reconstructed from

the short-time magnitude spectrum (or in our case, the matched-noise of short length speech)

can be intelligible, depending on the window length.

In our results, in the case of Speech-ENV + matched-noise-TFS, we observe that using

matched-noise TFS significantly increases both STMI results and intelligibility scores for

a small number of vocoder filters. The fact that STMI accurately predicts the increased

intelligibility indicates that ENV information has been recovered from the matched-noise
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TFS in this case. However, introducing a matched noise-envelope to Speech-TFS decreases

intelligibility. This may be due to conflicting noise-envelope information that confuses speech

recognition. This is consistent with the Speech-Speech chimaera results of Smith et al.

(2002), where they found ENV cues dominating TFS cues for speech intelligibility when

both chimaera signals were speech. Hence, we conclude that in order to use matched-noise

to suppress some cues of the original speech signal, we need to employ only the matched-

noise-ENV in generating the auditory chimaeras. Otherwise, the matched-noise-TFS will

provide some information about the original speech signal.

4.7 Conclusions

The role of TFS in speech perception has been debated to be influenced by ENV cues

reconstructed by cochlear filtering. In this work, we estimated the roles of TFS and recovered

ENV in speech perception. A speech recognition experiment was conducted using different

speech vocoders and the intelligibility scores were compared to the human auditory periphery

and cortical model predictions (STMI results). The choice of parameters in both models

makes the STMI results insensitive to TFS cues. Therefore, the STMI values are direct

measures for any ENV contents in the signal. We constructed a mapping function between

STMI and speech perception scores which was then used to translate the obtained STMI

results into the corresponding intelligibility scores. Thus, we were able to predict the amount

of reconstructed ENV cues at the output of the human cortical model. Intelligibility due

to TFS cues was then estimated by subtracting the predicted intelligibility due to recovered

ENV cues from the speech recognition test scores. We find that although ENV reconstruction

has a partial contribution to speech perception results, it only accounts for a part of the total

intelligibility scores. Hence, we conclude that TFS has a significant contribution to speech

perception results, and more effort should be directed to develop better coding schemes for

TFS cues in the designs of hearing aids and cochlear implants.
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Chapter 5

Future Work and Conclusions

5.1 Directions for Future Work

In this section, we highlight some of the possible directions to improve the results of this work.

The human auditory processing model is a basic block in the procedure to estimate recovered

ENV contributions. The auditory periphery model has been modified to better represent

the responses of the human auditory periphery, however, some improvements can still be

made to the model. In particular, the model can be further humanized by incorporating the

linear model for the human middle ear filter that will be described in Section A.1. Another

improvement to the human auditory model can be achieved by employing features from the

latest model for the cat auditory periphery (Zilany et al., 2009), which has an improved

model of the IHC/AN synapse adaptation process and provides a better prediction of the

envelopes of AN responses. The reason we did not employ this model in the current study is

that we had already finished the work of Chapter 3 before the new model became available.

For consistency, we opted to continue our work in Chapter 4 using the same model of Zilany

and Bruce (2007b). Also, the recent auditory model requires significantly more computation

time to process the large number of long TIMIT sentences of Chapter 3, which was not

convenient given the time limitations to finish this study. However, as computational speeds

96



Ph.D. Thesis - Rasha Ibrahim McMaster - Electrical Engineering

Figure 5.1: The new model of Zilany et al. (2009) provides more gain as the modulation
depth increases compared to the previous model (Zilany and Bruce, 2007b) (from Zilany
et al. (2009).

continue to grow, this will not be such a limiting factor for future investigations, such that

the newer model will be preferable. We expect that estimates obtained with the new model of

Zilany et al. (2009) will show less ENV recovery, and hence, more TFS contribution to speech

perception. This is because the new model provides more gain when the modulation depth is

larger (Fig. 5.1). Hence, the template word, which typically has large modulation depth, will

have more gain compared to the vocoded (noisy) test word that has less modulation depth.

Therefore, the value for the computed STMI will be reduced because of the difference in

the model outputs in response to the clean template signal and the noisy vocoded one. The

reduced STMI is interpreted as a reduction in the amount of estimated envelope recovery,

which corresponds to an increase in the predicted TFS contribution to intelligibility.

Another part of the model is the cortical processing represented by the STMI computa-

tions, which can be improved to provide a better speech metric. A possible improvement
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to the STMI accuracy is to use weighted sum in the computations, where different weights

are assigned to different frequency or time regions to emphasize the importance of different

phonemic features (Miller and Nicely, 1955; Li and Allen, 2011) instead of equally adding up

partial matches between the reference and test signal which may lead to less accurate intelli-

gibility predictions. In this work, we assumed a simplified linear relation between ENV and

TFS contributions instead of a more complicated and comprehensive mechanism that may

involve synergistic combinations of cues or redundancy in information (Swaminathan, 2010).

Another interesting direction is to investigate the possible interactions between ENV and

TFS cues in order to come up with a better estimate of the TFS contribution to intelligibility.

Now that the importance of fine structure in speech understanding has been established,

a possible future direction is the development of a new speech intelligibility metric that is

capable of capturing fast variations in the speech signal by taking into account the spike

timing information in the model neural response (Young, 2008). A closely related subject is

the study of speech processing strategies in order to develop better algorithms, which may

provide better TFS representations. The performance of these algorithms can be tested in

a quick and reasonably accurate way using platforms similar to the one we presented in this

work.

5.2 Summary and Conclusions

In this work, the relative contributions of ENV and TFS cues in speech perception are

quantified. The methodology we adopted in this work is a mix of experimental studies, with

a speech recognition experiment conducted on five normal-hearing subjects, and theoretical

intelligibility predictions with a computational model for the human auditory periphery and

the cortical processing. The cat auditory periphery model presented in Zilany and Bruce

(2006) has been improved to better match the behavior of the human auditory periphery.

Changes made to the model include modifying the digital implementation of the middle

98



Ph.D. Thesis - Rasha Ibrahim McMaster - Electrical Engineering

ear filter section such that the sampling frequency is reduced from the 500 kHz used in

the model of Zilany and Bruce (2006) to a more practical and fast implementation with

100 kHz sampling rate. The model has been adjusted to closely match the behavior of the

human auditory periphery by including the sharp human cochlear tuning data from Shera

et al. (2002). Some modifications have been made to the cortical processing section, which

predicts intelligibility based on the STMI metric. We have combined the formulas of Zilany

and Bruce (2007b) and Elhilali et al. (2003) in our STMI calculations. Similar to Zilany and

Bruce (2007b), the time index is retained in the STMI computations, in contrast to Elhilali

et al. (2003) where they averaged over time to evaluate the STMI scores. Averaging over

time may lead to erroneous intelligibility predictions since similarities between the reference

and test signal are added up even if they occur in different time slots. We chose to adopt

Elhilali et al. (2003) without taking the square root in the STMI calculations opposite to

Zilany and Bruce (2007b) who took the square root seeking more spread of the data. We

have shown that taking the square root is not mathematically rigorous and it does not

provide a good mapping to the experimental data we have collected. The human auditory

processing model was used to predict intelligibility in response to chimaeric speech. The

speech stimuli were processed to remove as much as possible one of the original cues about

speech, ENV or TFS. The resulted speech was mixed with noise to replace the removed cue

in order to suppress more any remaining speech information coming from the removed cue.

The human auditory processing was used to predict intelligibility of the processed speech

stimuli, where the settings of the model parameters made the STMI results sensitive only

to the ENV content in the stimulus. This enabled us to measure the extent of recovered

ENV cues from TFS speech, which is known to occur at the output of the sharp human

cochlear filters (Ghitza, 2001; Zeng et al., 2004; Heinz and Swaminathan, 2009). The STMI

scores we have computed showed considerable amount of reconstructed ENV cues from TFS

speech especially when the TFS chimaeric speech was constructed using a small number of

vocoder filters. The work was complemented with a speech recognition experiment, which
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was conducted on a five normal-hearing subjects tested with various types of chimaeric speech

and the results were scored using several scoring schemes with the phonemic representation

being the basic scoring method. Phonemic scoring rewards partial recognition of the test

words in a way that is more similar to the STMI computations making it possible to obtain

an accurate mapping between STMI and intelligibility scores. In particular, we used the

constructed mapping function to match the obtained STMI results for TFS chimaeric speech

to intelligibility scores. Since the STMI values are sensitive only to ENV not TFS, any

STMI value higher than the minimum obtained for TFS chimaeric speech is a measure for

the recovered ENV due to the sharp cochlear tuning. Hence, we were able to predict the

intelligibility due to reconstructed ENV from the TFS speech stimulus. This was used in

conjunction with the TFS speech intelligibility recorded from the subjects’ responses to have

a complete picture about the relative roles of TFS and recovered ENV in speech perception in

humans. Our results shows a significant benefit of having the TFS information present in the

input speech as we noticed a difference of ≈ 45%−75% at 16 vocoder filters and ≈ 20%−55%

at 32 vocoder filters between the recovered ENV intelligibility and total intelligibility. This

finding motivates the efforts to develop better speech processing schemes, which can better

encode TFS cues in a way that make it easier to process in hearing-impaired people.

The result of this work can motivate the development of better signal processing schemes

for cochlear implants. Current speech processing schemes for cochlear implants are not

efficient in delivering TFS cues (Lorenzi et al., 2006; Moore, 2008b; Nie et al., 2005, 2008;

Sit et al., 2007). For example, the commonly used continuous interleaved sampling (CIS)

strategy extracts the slowly-varying ENV from each sub-band while discarding the TFS

due to the lack of appropriate coding schemes (Loizou, 2006). Several attempts have been

suggested to better encode the TFS cues for cochlear implant users. Nie et al. (2005)

suggested to encode TFS in the form of frequency modulation. Sit et al. (2007) proposed

a method where the phase information is encoded by a race-to-spike algorithm. Rubinstein

et al. (1999) proposed to use high-rate pulse trains to enhance the coding of TFS. Nie et al.
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(2008) presented a coherent demodulation method, the single sideband encoder (SSE), which

preserves both the envelope and phase (TFS) information.

Hearing aids designs can be modified as well to make use of TFS. For example, com-

pression speed in hearing aids can be adjusted according to the individual ability to have

the best use of ENV or TFS information (Moore, 2008a). Compression is essential in hear-

ing aids as there is the need to amplify low sounds to levels where they can be recognized

by hearing impaired people. On the other hand, the hearing aid device should be able to

adapt to loud sounds and reduce the gain considerably to improve intelligibility and prevent

damage or discomfort caused by the very high sound levels. Fast acting compression can

reduce the quality of ENV information and hence it is not recommended for a subject who

can not make efficient use of TFS cues. On the other hand, fast acting compression can

be more suitable for a subject who retains some ability to process TFS as it can be use-

ful to enhance the ability to listen in the dips of the background noise. It is worth noting

that the signal processing strategies commonly used in hearing aids do not provide good

encoding for narrow-band TFS cues. For example, the wide-dynamic-range-compression

(WDRC), which is the most common signal processing approach used in the hearing-aid

industry (Boothroyd et al., 1988), basically enhances the ENV cues without preserving the

fidelity of narrow-band TFS information. It provides more gain for low input levels than for

high input levels. However, the range of output intensity is narrow in WDRC instruments,

which reduces spectral peak-to-valley contrasts in speech (Lippman et al., 1981; Van Tasell,

1993; Stelmachowicz et al., 1995; Hedrick and Rice, 2000). This in turn changes the relative

amplitude between vowels and consonants and reduces speech recognition for listeners with

hearing loss (Summerfield, 1987; Stone and Moore, 1992; Souza and Kitch, 2001).

Some speech processing schemes for hearing aids have been proposed to better encode

fine structure cues by improving the spectral contrast in the speech stimulus (Simpson et al.,

1990; Stone and Moore, 1992; Baer et al., 1993; Lyzenga et al., 2002). However, multiband
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compression, which is needed to compensate for reduced cochlear compression, tends to flat-

ten the speech spectrum diminishing any benefits of spectral expansion schemes (Franck

et al., 1999). Miller et al. (1999) presented another scheme for spectral enhancement, which

is called contrast enhancing frequency shaping (CEFS). CEFS attempts to provide a better

neural representation of the formants based on physiological data from cat auditory nerve

(AN) by adjusting the relative amplitudes of spectral peaks without modifying or distorting

the spectral valleys. Another signal processing strategy for hearing aids is the spatiotemporal

pattern correction (SPC), which was proposed in Shi et al. (2006). SPC introduces different

delays across frequency channels so that responses for low- versus high-level input sounds

in an impaired cochlea will be more like those in a normal cochlea. The neurocompensator

algorithm (Becker and Bruce, 2002; Bondy et al., 2004) aims at restoring the normal firing

patterns in the AN of hearing-impaired people. The audio signal is processed by the neuro-

compensator before entering the auditory system such that the overall transfer function of

the neurocompensator and the impaired auditory periphery is close to the transfer function

of the normal auditory periphery. This signal processing strategy is based on the use of

models for the normal and impaired auditory system to evaluate the perceptual impact of

hearing compensation algorithms off-line.

These algorithms are at various stages of development, human testing and commercial-

ization. Given the importance of TFS in speech perception, as proved in this work as well as

other studies, more effort should be directed toward the development of more sophisticated

algorithms for TFS encoding.
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Appendix A

Appendix: Improvements to the

Auditory Periphery Model

In this work, we have used a computational model for the human auditory periphery to aid in

the analysis of the relative roles of TFS and recovered ENV in speech perception. Improving

the match between the model and the true behavior of the human auditory system will

definitely enhance the accuracy of the results. There are several parts to improve in the

model, and we have already investigated to a great extent some of these improvements while

others have been left for future investigations. Below we describe the improvements we have

implemented to the middle ear filter model.

A.1 Improvements on the human auditory periphery

model

The model for the human auditory periphery system can be enhanced to better match the

functions of the different sections of the human auditory periphery. We have included the

human cochlear tuning as estimated in Shera et al. (2002), which is much sharper than the

previous behavioral measurements. Another modification to the model can be inserted in

103



Ph.D. Thesis - Rasha Ibrahim McMaster - Electrical Engineering

Figure A.1: An analog equivalent circuit for the linear and nonlinear behavior of the human
middle ear. The values of the electrical elements are obtained from anatomical data and
knowledge of the mass and volume of the internal structures of the middle ear (from Pascal
et al. (1998)).

the middle ear module to resemble the human middle ear transfer function.

Estimating the transfer function of the middle ear usually requires invasive methods,

which would cause damage to the human ear. In order to estimate the middle ear transfer

function in a non-invasive approach, Pascal et al. (1998) presented an analog equivalent

circuit of the middle ear based on modeling the different parts of the middle ear structure

(Fig. A.1).

The first part of the circuit is designed to model the linear behavior (sound levels < 80

dB SPL). The second part of the circuit is designed with variable elements to account for

the nonlinear behavior (sound levels > 80 dB SPL). The nonlinear middle ear behavior can

be divided into two factors: acoustic reflex and annular ligaments effect. The model divides

the middle ear into five blocks. The first block models the middle ear cavities, the second

block represents the eardrum losses. The third block models the eardrum vibrations in phase

with the ossicular structure. The fourth block represents losses of the elastic junction of the

incudo-stapedial joint. The fifth block models the action of the stapes and the cochlear

impedance. The values of the electrical components are estimated from anatomical data
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Figure A.2: The magnitude and phase of the 12th -order transfer function of the linear part
of the human middle ear as obtained by solving the linear section of the equivalent circuit
presented in Pascal et al. (1998).

and knowledge of the masses and volumes of the different sections of the middle ear. The

model is validated using experimental data measured on human cadavers (Puria et al., 1997).

Rosowki et al. (1990) have shown that, for high sound levels below 5 kHz, the behavior of

the middle ear in human cadavers is similar to that of living humans.

We used the equivalent circuit of the middle ear to compute a 12th-order transfer function

(H(s)) of the linear part of the circuit. The magnitude and phase of the transfer function of

the linear behavior of the middle ear are plotted in Fig. A.2. In order to achieve a practical

implementation of the circuit with improved stability, we reduced the order of the transfer

function from twelve to six. The magnitude and phase of the reduced order transfer function

closely match the original 12th-order function as illustrated in Fig. A.3. Using the bilinear Z

transform, we obtain a digital form of the reduced order transfer function whose magnitude

and phase are plotted in Fig. A.4.

The digital middle ear filter is implemented as a cascade of three digital filters in order
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Figure A.3: The magnitude and phase of the 6th -order transfer function of the linear section
of the human middle ear compared to the original 12th-order transfer function.
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Figure A.4: Digital realization of the reduced order transfer function of the linear section of
the human middle ear obtained using the bilinear Z transform.
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to improve the stability of the overall filter

ME1 =
0.9979 − 1.9408z−1 + 0.9429z−2

1.0000 − 1.9396z−1 + 0.9420z−2
(A.1)

ME2 =
0.9984 − 1.9226z−1 + 0.9415z−2

1.0000 − 1.9245z−1 + 0.9380z−2
(A.2)

ME3 =
0.0286 + 0.0302z−1 + 0.0016z−2

1.0000 − 1.6749z−1 + 0.7847z−2
(A.3)

This implementation of the middle ear filter models the linear behavior of the human

middle ear. The human middle ear filter exhibits also some nonlinear behavior. The nonlinear

part of the circuit models acoustic reflex action and the influence of the annular ligament.

High sound level causes muscular contraction, which decreases the sound pressure preventing

damage or discomfort due to the loud sound. The acoustic reflex threshold depends on the

duration and frequency of the stimulus. There is a latency between the onset of high-level

sound and the contraction of the middle ear muscles, which depends on the sound pressure

level and the stimulus duration and frequency.

From 80 to 120 dB SPL, acoustic reflex due to muscle contraction is the main nonlinearity

in the middle ear responses. Beyond 120 dB SPL, the maximum displacement of the stapes

is limited by the annular ligaments. The annular ligaments together with the acoustic reflex

attenuate the transmission of sound waves in the middle ear. This nonlinear behavior is

modeled in the circuit by a variable resistance and capacitance. The linear and nonlinear

sections of the human middle ear equivalent circuit shown in Fig. A.1 are solved to obtain

the complete human middle ear transfer function. In Fig. A.5, we compare the linear-only

transfer function to the complete transfer function of the human middle ear linearized for

stimuli at 148 dB SPL. We observe a clear difference in the middle ear response at this

high-level input sound where the signal magnitude is attenuated by more than 10 dB at low

frequencies.
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Figure A.5: Comparison between the linear transfer function for the human middle ear to
the complete transfer function with linear and nonlinear behavior linearized for stimuli at
148 dB SPL to include the effects of both the acoustic reflex and the annular ligaments.

The 12th-order complete transfer function of the human middle ear is modified to reduce

its order to six in order to improve the stability of the filter implementation. The magnitude

and phase of the original and reduced order complete middle ear transfer functions computed

at 148 dB SPL are plotted in Fig. A.6.

The reduced order transfer function for the complete circuit is transferred into the Z-

domain using the bilinear Z transform and the digital transfer function is plotted in Fig. A.7.

The digital filter is then implemented as a cascade of three digital filters

ME1 =
0.9551 − 1.8576z−1 + 0.9025z−2

1.0000 − 1.8523z−1 + 0.8630z−2
(A.4)

ME2 =
0.9979 − 1.9217z−1 + 0.9411z−2

1.0000 − 1.9238z−1 + 0.9369z−2
(A.5)
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Figure A.6: Comparison between the 12th-order and the 6th-order complete human middle
ear transfer function at 148 dB SPL.
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Figure A.7: The complete transfer function for the human middle ear after digitization using
the bilinear Z transform.
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Figure A.8: Reduced order transfer functions for the human middle ear obtained for the
linear section at 80 dB SPL and for the complete linear and nonlinear sections linearized for
stimuli at 148 dB SPL.

ME3 =
0.0145 + 0.0154z−1 + 0.0008z−2

1.0000 − 1.7245z−1 + 0.8054z−2
(A.6)

The reduced order transfer functions for the linear (< 80 dB SPL) and complete model

(148 dB SPL) are displayed in Fig. A.8, where we can see the nonlinear attenuation when

the sound level increases to the extremely painful level of 148 dB SPL.

In order to evaluate the importance of the nonlinear part, we tested our auditory human

model with a standard vowel for different SPLs (Fig. A.9). The frequency response of the

fibers was analyzed by applying an 81.92-ms Hamming window w(n) to the PSTH p(n),

taking the Fourier transform, and computing synchronized rate according to the equation:

R(kft) =
|
∑N−1

n=0 w(n)p(n)e−j2πkn/N |
√

N
∑N−1

n=0 w2(n)
(A.7)

where ft is the frequency resolution of the analysis (ft = 1
81.92 ms

= 12.2Hz). In Fig. A.10, the

synchronized rates for the human linear middle ear model are compared to those obtained
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Figure A.9: The spectrum of a standard vowel synthesized as in Klatt (1980). The funda-
mental frequency (F0) is 100 Hz and the first three formant frequencies are: F1 = 0.5 kHz,
F2 = 1.7 kHz, and F3 = 2.5 kHz. Positions of the first three formants are indicated by
vertical red lines.

using the complete human middle ear model for a center frequency (CF =F2), with the

corresponding results at CF = F3 being displayed in Fig. A.11.

A second measure, was used to describe the degree to which synchrony to a particular

formant dominates the response is the power ratio curve (PR(Fx)). The power ratio curve

is defined as the sum of the power in the response at the frequency of formant Fx and its

harmonics, divided by the total power in the response

PR(Fx) ,

∑u
m=1 R2(m Fx)

∑v
n=1 R2(n F0)

, u ≤ 3, u Fx ≤ 5kHz (A.8)

where F0 is the fundamental frequency (F0 = 100 Hz in our example vowel) and the summa-

tion is limited to frequencies below 5 kHz since synchrony is mostly lost above this frequency.

Power ratio curves for the first three formants, PR(F1), PR(F2) and PR(F3) versus CFs

for the linear model of the human middle ear are compared to the complete model for the
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Figure A.10: Synchronized rates using the linear and complete models for the human middle
ear at a center frequency coinciding with the vowel second formant (F2).
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Figure A.11: Synchronized rates using the linear and complete models for the human middle
ear at a center frequency coinciding with the vowel second formant (F3).
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Figure A.12: Power ratio curves for the linear and complete models for the human middle
ear filter computed for the vowel’s first formant (F1).

human middle ear in Figures A.12, A.13 and A.14; respectively.

Our results show that, at 120 dB SPL (painfully loud level), the behavior of the middle

ear responses is almost the same in both the linear and the complete models. However, at 148

dB SPL (extremely painfully loud level), the human model that includes the nonlinear part

preserves the formant information more than that including only the linear part. Therefore,

it might be sufficient to use only the linear middle ear data in our human peripheral auditory

model since the addition of the nonlinear section to the human middle ear transfer function

would be of value only at very high and unpractical sound levels. Another reason supporting

the exclusion of the nonlinear section in the final modeling of the human middle ear is the

lack of human data to validate the nonlinear part, while the linear section of the middle ear

has been verified in Pascal et al. (1998) using data from Puria et al. (1997) and Rosowki

et al. (1990).
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Figure A.13: Power ratio curves for the linear and complete models for the human middle
ear filter computed for the vowel’s second formant (F2).
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Figure A.14: Power ratio curves for the linear and complete models for the human middle
ear filter computed for the vowel’s third formant (F3).
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