-

'
'
-
—.\\
'
o
v
'
. '
' .
- -~
-
-
-

- _ANISOTROPY OP MAGNETOCONDUCTIVITY

q

OF METALS

hY
e
-
N
T P
. 4
«
'
v
"
r
-
A
: K
- e
ra




| ANISOTROPY OF
MAGNETOCONDUCTIVITY OF METALS

g oo

» '
, ) !
D
ROBERT JAMES DOUGLAS, B.Sc.’ (gons).“
‘l/‘ ‘ - .
_— ' R
o . , R
‘ ».\- Thesis |
Sul_:mi.ttéa_to the Scl(tool of Grdduaté Studies 4
ﬁ) Partial Fﬁifiineﬁt o.f- the Requirements ‘ |
for the quige‘ s |
- boctor of Philosophy
RN S SN
| McMaster University : R
. August, 1973 - ' ' /
. . e . | | | - :

bert James Do\q.‘ig.]\as‘ 1974



'3
o

%

,’i\’-

DOCTOR OF PHILOSOPHY (1973). MCMASTER UNIVERSITY
(Phyeics) . Hamilton, Ontario’

i

;. TITLE: Anlsotropy of Magnetoconductxvxty of Metals

AUTHOR: .Robert James Douglas, B. Sc. (Hons) (Univer51ty of
; Manitcba)

'SUPERVISOR: Dr. W. R. Datars , - e

NUMBER OF PAGES: XiV. 128.

SCOPE AND ngTENTS.
\ :

The anisotropy and field dependence of the mag-

netoresxstlvxty tensor was calculated for aluminum and

indium. The calculations used the semx-class;cal path-

integral method, usually in conjunctxon with a modified

nearly—free~electron Fermi surface and a uniform relaxatlon

time'f These calculations, and cgiculations with more

general Fermi surfaces and anlsotrOpic relaxatlon times,

AR

‘were compared with experiment. These calculations were used

- to interpret experxmental ‘induced’ torque of aluminum. The

reaults of induced torque experiments in high-purity

aluminum are presented and are compared with reported four-

probe high-field transverse linear maqnetoresistance.
Calculations are preaented which eliminate one class of
explanations of ‘the linear magnetoresistance as the major-

.cause of the reported linear magnetoresistance of aluminum.
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ABSTRACT o \

.The components of the electrical mégnetoconductivity
énamagnet?;esiqtivity tensofs of aluminum and indium were
calculated by the pa;h—int?gral method using closed nearly-
free electron Fermi surfaces and A_unigorm relaxation time.
The anisotropy of thé components is shown to depend primari-
ly on the symméﬁ:y of the Fermi surf;ce in relation to the
magnetic field‘aiis. The high-field longltudlnal magneto—
lresistance is found to be a minimum for fields along high-
symmetry directions, where the mean orbitally averaged longl-
itudxnal component of -carrier velocxty is a m;nimum ‘The ’
'anisotropy of the transverse magnetoresxstance is 1arger
"_in indium,’ which is face centered tetragonal than in face- -

centered-cubic alum;num.; The’ ‘calculated Hall coeffxcients |
of both metals are 1sotrg;£c in the high-field tegime, but
" show considerable anxsotropy for intermediate ?Lelds._ Thb‘
longitudxnal—transversg components of magnetoresistivity
can saturate at values as high as 0 26 of the zero—field
'renistiv1ty;but the ef!ects of the longitudinalvtrnnsvgfsa
;magnatoconductivxty conponents on the Hall coefficients and

,_nagnetoresistance are suall. The calculated results are com-

‘pared uith experxmnnt whero possible, and are used tﬁ fit the

induccd torqpo data for aluminua. The thaory rap:oducas thc.‘
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3 ' * -
Lo . . . . . o

111

N




]
L]

field dependence and anisotropy of tne induced torque'data.
Induced torque experiﬁents in hign-purity aluminum showed _
noﬁlineqr magnetoresiStence (slope < 1073) except for fields
within.3° of <100>. This anomaly was tentatively iéenti?ied
as due to open prbits resultinq'from.magnetic breakdown.
Calculations were aone-ﬁhich sho: thatqthe anréotropy'of c
the transverse linear magnetoresietance observed in four?

T

probe experlments cannot be-due to an orbital. enhancement of

" the sem;-classical.transverse conduct1v1ty. )

The}uniform relaxation time-path-integral magneto-

conducti?ity was aIso calculcted_forfAshcroft's (1963) Fermi

. B B F .
surface model of aluminnm fOr a <1l00> direction. The trans-

verse magnetoresxstlvxty .and Hall coeffxcient were the same
as for the nearly-free-electron Fermi surface, but/the low-'

field resxstiv1ty and the h;gh-field longitudinal magneto- -

-resistxvity were some SO\ largeilthan the nearly-free-electron

,calculations, and the abaolute v&lue ‘of the low-field Halk

coefficient was some 20! smaller.

L

The eftects of an anxsotropic relaxation tggs on

,the calculatxons ‘were also 111ustrated. Assuming a different
: rolaxation time for the electron and hole banda was !ound to
: explnin, qualitatively, the 1ou-§xeld Kall coef!icients o!

fiindium and alum;num, and thexr temporaturc dependenceg._,rh§=
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éffects of neglecting the nearly free electron a arms_of
indium were also calcul ea,'and it was found that those

effects should be separable from the effects of relaxatlon

time anisotropy if the anlsotropy as well as the f161d depen~ ‘3\

dence ‘of the Hall coefficient=of a single sShple could be

‘measured. - L ‘. .

The path-lntegral methos\was found to be a powerful,

flexible and economlcal computatlonal method wh;ch was capahle-'

.of generating physically useful lnsight. _When used with a

complete Fermi surface (even a nearly-free electron one) ' &
' ke

»

i
Wad7s

‘and not just some subset of 'representative orbits, the
calculations agreeéjquxte well with experiments._ The
nnisoufopy of the magnetorgsistivxty components was found
to be of much greater use in testlng transport theories thanhk
'was the field dependence or the values of the galvano--

mhgnetic.coefficients. : ) B P o ' . ‘“x; " -
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CHAPTER I

INTRODUCTION o

This thesis ‘is about charge transpcrt in metals.
Hct all about the transppft of electric charge in metals,
for that task has already consumed-the 1ifetimes of many
physicists (gnd will pncoubtedlylcccupy'many_more.ﬁ.The
scope of this thesis is restricted to cﬁe steady state
_transport of electric charge in;aingle crystals of metalé
“in a magnetic :ield, at temperatures low enough S0 that the

|
thermal motions of the crystal lattice do not appreciab17

affect the tran5port properties. ]

The major breakthrough in this field was the develop-

ment of tha concept of the Fermi surface of a metal and -

its application to tranaport theory (szshitz et al 1956-a,
1956-b, Chambers 1956). ~ This concept (which is: discussed
further in the next chapter) had such an apparent utility as
well as. aesthetic appeal -that experinentalists developed
specific experimanta to determine the geometry and othe:
propcrties of the Permi surface of metals. Por the simpler
‘zatals, the data often may be sumnazined quitc accuratoly
using ouly a few paramntors. _ |

'The D.C. qalvanouagnetic transpoxt propertiaa are

—._ . o
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usually average'properties of the entire Fermi'surface; aﬁd‘ <
as such their utility in determining the Fermi surface para-

meters is quite limited.when compared to other techniques. The

;moat notable exception to}ﬁhxs generallsation is the study of
bahde of "open orbits” on the Fermi surface,'51nce even a ’
narrow band of such orbits can dominate the oalvenomagnetic
properties of a metal. ‘These studles have proved very useful
in the preliminary investigationa of many metals . to determine
the topology and connectivity of their Fermi surfaces.
gcr the semi-classical transport regime, where .

quantum oscillatory effects. axe negligible (that ie, the

"effects of Landau level quantization), the galvanomagnetic

properties of a metal, being.average orOperties of the Fermi °
uurface. offer a chect oh the-accurecy of the understanding -
both of the metal itself, and of transport theories in general. -
-1t consistent experimentel data are avafiable for the field |
depeodence-ot the gQLVenomagnetic properties of a metal,with

the fiela{in a 1arqe'nﬁmber of cryateilograohic'orientationa,"
and if the Fermi surface parameters are determined, thon the .
transpogt theorist has a testing qround for. tranaport theories. -

HIdeally, all o{ the qalvanomagnetic data would be. taken !rom P

ot
&

.‘"’,
PR

a single nanple. and the Perniologist would have measured

* _ the Landau level widths to obtain informetion on_ the acatterinq

of tha conduction electrons in this samo sanple. This approach v
would otter a direct couparilon of theory with _experimental
‘data u:inq no free parameters, and has become technically

-~
feasible in the noble netals only rather recently. _

o



If the scattering information is not AVailéble some
: additional assumption about the form of the scattering must

be made, and free parameters must be 1ntroduced This is

LY

the approach taken in this thesis: to compare theoretical

predictions of few—ﬁarameter nodels to/measured field depen-.

dehces and anisbtropies of the galvanomagnetic propeities. BN
‘ /

- Aluminum an indium are, in many ways, ideal candi-
dates:fér?sdéh’a p;oject. Their galvanomagnetic properties
are latgely devoid of the complexities which open orbits intro-
duce. The paths of most charge carriers are far from free-

) electron like, wh;ch may generate interesting galvanomagnetic:'f

anisotropy; and. yet thefFermi_surfaéés are cloae-to.being
re-mapped spheres. The major‘obstacié-in‘mounting such a
program for these metals was the i;ck of a consistent picture
of the galvanomagnetic properties of monocrystallina fndium
and aluminum. Until recently, of the magnetoresistivity *

‘ lcomponents of these two tals, only tﬁ% Hall terms in aluminum
~ had uhown any real experimantal consistency {Forsvoll and Holwech
.{1965}) Haqneto:eststance mqgsuremants (Balcambe (1963).> -

VOlotskaya (l963). Borovik and Volotskaya (1965), Chianq et al
.' (1969), Balcoanbe and Parker (1970) , Kesternich and Ullmaier
{1971)) ﬁsing the convuntional four-probe techniqua show a
very wide angg“gfrhigh-tiold maqnetorcaistanca hehaviour.
Feder and Lothe (1965) calculated the field dependence. of ‘the
galvanomagnetic gropertios of lluninun.with tha nagnotic ‘
field alaong <001>, but their 1initod _agreement with pal-

caubo's (1963) nnasureannts did not ptovida oncournge-



ment to calculate the'éélﬁanoragnetic anisotropy.' The
anisqtropy was_appareﬁtly viewed ‘as a more difficult problem
than the field dependefce, both experimentally and theore-
tically. A
Hitﬁ the advent of the extensive, and fully reprodu-

cible galvanomagnetic measurements of‘Holroyd et al (1953),
the major -obstacle was removed ‘for aluminum. These measdrefr
ments were not conVentional four-lead measuremen;s, but were
induced torque measurements. This leadleSS‘;echnique per-
mitted the investigation of the field dependence of the |
galvanomagnetic properties of each sample for all field di- >
‘ nections in the (100), (110) and (112)'planes. The penalty-' - Q%%

which this technique inflicts is a small one: the induced - , ‘i

torque 13(3 scrambled functiOn of the ‘calculated magneto- -
conductiyity components (Visscher and Falicov, 1970), but only
slight&y more scrambled than are the quantities meaaured in -

four-probe measurements. o : o ot

———i
T

‘The calculationu required to make such a_comparison
of these extensive induced torque data with theory. as well
as othar calculations which folloued from then, maxe up u
lthiu thesis. hs vell as this direct’ comparison, the calculated
- results of aluminum and indium are presented in some detail/
_-tcgether with some more general incights which‘uey prove
ulotul in understandinq the qalvanonagnetic properties of ..

othor\uetals. "The calculnted rasules are co-pared to other



/
/

experiments where possible, and exténded where necessary.

The imfuced torque anisotropy of high-puriéy aluminum was

measured in a search for ;he lipear.transverse magneto- | , T
resistance which is measured in many-four—probe experiments.

One class of possible explanations for the 1iﬁear‘magneto—

resistance w%F investigatéd and the calculated anisotropy

¥

compared to the measured four-probe anisotropy of/ the linear

term:

.



CHAPTER 11

' THEORY

A.  The Goal of Magnetoconductivity_}heories

The transport of electrlc charge by metallic crys-
tals depends on the applled electric and magnetic fzelds, ‘
'as well as the 1nterna1 structure of the metal. The elec—
tric current resulting from an applled static electric field

E, for our purposes here, is sufficiently well described

by linear responae theory (the Ohm‘s Law remee) Because
the electrxc current density, 3, and tha electric field are

not in general co-lxnear, the linear response is a second

rank tensor, o. where |

S Fes o m
Thn coaductivity tensor a. for a particular crystal.

is a tcnsor function ot the applied magnetic field vector

H, depending on both “the direction and magnitude o: B. The

;qoal of anp maqnctoconductivity thaOry is to predict the.

field dapendanco and anilotrOpy ot the nxne coaponentl of

T as the field maqni.tudc and direction are varied. and to

do this in temms of a snnll_nunher of paranntnrs (tha Fermi

1 lurtach-bgracntorsri
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B. Ejectrons in Hetals

The charge carriers in metals are .the mobile conduc-
tion electrons which are not localized to a particular atomlc

ion core, but move through the periodic potential of the

—

positive ion cores. A very useful picture of this complex

' many-body system is to consider. one electron moving ip the
medium of the other electrons and ion cores. The.major effect
that the medium of the other conduction electrons has is-

tho screening oﬁ the strong, long-rangg Coulomb 'interaction,
which leaves a much weaker short—range ;nteraction. The
electron which we- have singled out moves through an effec-

tive screened potential of the ion cores which is rather weak.

The solutions to the Schrddinger wave equation describxng
a charged particle moving through a perxodic potent1a1 are
Bloch states Lk>. whero k is the wavevector (the quasi-
'momentum divided bylﬁ. whare 41 is Planck“s constant -divided
by 2m). There are only certain allowed energies, € {k) for
aach wavevector: tho subscript 1 is freferred Eo as the band
index. o - L
: hese single-particla ener . states are £illed hy :

‘the condudtion olectrona to uinimize the total £ree cnergf

while at the same time putting only tvO electrons per atatc i,k
(one spin up and one spin down] as prescribed by thc Pauli |

" exc¢lusion principle. Thus, in the absence of intcractions

between tha clectrons, the aingle particle electron energy

C P ‘ - oo < ' C : ' Con . e



bands would be filled to a certain energy,By - the Fermi '
energy, and empty above EF. The screened Coulomb interaciionh
iﬁtroduces correlations which act to spread the dcpupancy

of the energy bands; but doés not remove the zero-temperature
'(T = 0) discontinuity in occupancy at the Fermi endrgy. The -,
surface in k-space which is described by tilﬁ) = e, is the

th

Fermi surface of the i~ band.

For many metalghthe'nearly-frqe electron Fermi sur-

face is a gogd approximation to the experimenfally deduced
Fermi surface, due to the greatly weakened screened Coulomb.

potential; This surface, also known as the single orthogo-'
nalized plqae wave (single-OPW) Fermi surface is easily ob-
tained for any metal using the Barrison (1960): construction ’
of re-mapped spheres. For many metals there is significant“
deviation from the singla-OPH surface only in the vicinity
of Brillouin zone boundaxies, where the sharp cusps of the

single-OPﬂ Permi surfaca are rounded by the tinite size of

pr
L -~

-

the lnttice potentiak. 1In Pig. 1-b anB l-c the ningle-OPw o

Permi ’ surface of aluminun is shown, and’ for comparison the -
tour-O?ﬂ psaudopotcntial third band uodel of Ashcroft (1963)

is also shown. The surface idnntitied as a "hole" surface

in Fig. 1. has its interior atatas k unoccupied. vhile the
"electron® surfaces have thoix interior states occupied. In

o | Ilgnetic tiald, carrxoxl on thono two types ‘of surface



- Figure l-a Figure l-b ‘ .

The Brillouin zone of The single-OPW second b%pd hole
face-centered cubic Fermi surface of aluminum.. Tﬁe
aluminum. only major difference of the

X :

four-OPW hole surface from th;s
is a rounding of the sharp
single-OPW cusps. .

]

S

-0

-~

o

 Figure'l-c ’ Pigure 1-d o
 The single-OPW . The four-OPW third band elec-
‘ghird band elﬁcttcn . tron rbrﬁi surface of aluﬁiaum, o
Fermi lprfacé of ‘  -after Ashcroft*(IQGBi.' : .

aluminum, - - ' | ’ I =
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ﬁ“{aov(i), where o '1' T

10

traverse their orbits (in both real and reciprocal space)
in opposite senses. This fact has observable effects in-lhe
galvanomagnetic properties of metals, and so is a useful
distinction to make. s e L e

The electrans yithin eneréé kBT {where kg is the
Buitzm?nn constant) of‘the Fermi surface dominate electronic
transport pgoperties; since only at the Fermi s%ffec? ?s'there
a large number of occupied states separated fron‘afiarge
number of unoccupied states by a small energy difference; and
any electronic ttanSpbrtfgill be dominated by those.state;
where a minimal amount of energy can result in a maximal dis-

‘placement of the electronic distribution from equilibrium.

C. Quasiparticles in Metals

For electronic transport properties, it is advanta-~

geous to think of quasxparticles rather than electrons. A

quasipartlcle is an excxtatlon of the ground state of a metal -
for a metal at T =0 with no électric field present. the quasx-
particle density is zero. The quasxparticle is the carrier of
renergy in a metal and should not" be confused with the struc-
tural unit of the electronic sea - the electron. although

‘both have the sa;enchnxge. The utxlxty of this conccpt lics
ihjthc fact that atiiow temberatuxos, the quasiparticlo density
is low, und the quakaparticles are constrained to ho near the

f

Fermi surqnegir The quanxparticlo veloclty lor Formi velocity)

|- - . ' ,'l

b
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' Copious data are available about the geometry of the Fermi '
Surface and the Fermi velocity for many metals. These
data are available as inputs to an? magnetoconductivity
theory. ; e - r

bl - - ‘ . ‘ l: ' - ) {a'
D. Boltzmann Equation '

. The distribution of conduction electrons in ‘phase
'.space, £(k,5), will depend on the externallyaqpplied fields,
_and will differ from f‘(k r), the zero-field equilibrium

concentration at T of. electrons in state k. ;The electroddc

trensport ptoperties‘depend on the difference between oL

£(k,7) hnd f'(k r)r.denoted By g(k r). This difference may

be determined in some cases from the boundary conditions

. app:opriate to the problem, and froa the Boltzmann trnnsport
‘equntion uhich stetes thht the sum ot the time rates of

X cbnnge oflf(k,rlxnust be-zeroffor steady-state transpo:;:

" - .' . .
Bf!ké;) B, AMED

-

Y 11 Y : ,'°;- }
. -_-1ﬁ?l. o " 13

scattering '’ diffusion

|fields

- rh. first ternm, due to externaily applied fields, 1:

s

. _ f g o

’ rperhnpp the limplest to deal with, that is
3—’&?—%& . o= —»k e_ v'kf'tk'g) N
RPN fields T

s eeg @ LIEEBeED 10

)

-at
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where e isﬁthé charge of an electron, and B = TH. {For

most of this work we will make no great distinction between
the magnetic field H and the magnetic inductlon, B.)

Equation (4] is derived (Ziman (1964), pg. 179) from the
assumption of. the Liouville theorem, and the external

Coulomb and Loréhtz.fqrces'applied to electrons,‘where )
ik, is?tﬁe velocity of electrons in state k in the vicinity
£t | ‘ |
» The aiffusion term,1similar1y is

?f(k,r) - - $(~E?;)lvrf(i,§), R

diffusion

which, is usually neglected in magnetoconddttivity theories,

iwith"th; justificationrthat the ideal sample is homogeneous,

, so‘that Vrf(i,;) iétzeto,fand the ¥ dependences of f(i,;);
f'(i,;)”ahd g(i};) disappeqr}' This point will be dittussed

'_again iﬁ conjunction‘with the observed linear magnetoresistance

of some metals. S _ : ‘p, .

The scattering term can be dealt with on dif!erent

- e Y

‘.levola. Hb have uaed the simplest treatment in this wotk. ,
having assumed that the acattering may be adequately described :
'ﬁiing a rel#xatiqﬁ time t(k), -defined over the Perﬁi surface:

E
e ek, ) g (x,r) ' |
o e 2__L_. | . ;f}

lcattqrinq _ 1{k)

‘Ht also assume that an excitation at k {near -the Fermi surface)

/
is scattered equally to all atates At the Fermi ‘surface.

i
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‘Since this kind of scattering is, for the most part, large-
angle scattering which results in quasiparticle destruction,

it will be identified as catastrophic scattering. In prac-

-

tice, we have usually assumed T to be isotropic, so that there
is but a single adjustable parameter available to describe

the tensor functionjg(ﬁ). Welhave also used different relaxa-
“ .
tion times on different bands (Chapter VI), but even these

[

were constant over the individual bands.

E. The Path-Inteqral Method

If we can alqo neglect the effects of the Landau

14

_level quantization of the electrons (discussed further in

Chapter VI) ‘then the zero-temperature limit to the lineanzed a
Boltzmann tran3port equatioa is. the Chambers path-integral
£ormula (Chambers,_lSSG) '

EI §

ey
¥

: Hith the magnetic field in the z direction, a set o£
mcyclotron orbits over the Fermi surface is ‘selected around
which the quasiparticles are driven by the Lorentz force, at
constant k_. Thia set of orbits depends on the crystalloqra-.
phic orientation of tha maqnetic field, so for any particular
!ield orientation tha conductivity tensor couponents, dij(B"
‘arc given by the inteqral over all. these orbita (i.0. all L
of the Brillouin zone) for each band of the path integral of
the rérm;'uelocity c%mpcncnts (vi(i)) weighted by a relaxation

factor. - | ~ o K
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3]
: ( : m")-:ez ; .
o B) = dk : dov_ (8 ,k_) dyv, (v,.k.,)
ij : 4“5ﬁ§wo z .11 b A S | b R -
‘ orbits ' _
zone ‘ around . Voo
orbit - [7
exp{—¥=2_)
w t(k)
~ N
where mbais the free electron mass,and we use w_ = en_ as

m c
oo o
the field parameter for convenienqe: but this in 'no way

restricts the band structure for which eq. [7] is valid.

The phase variables ¢ ahd 8 are defined by integrals along
the orbit: fldk| , where v =/ v LI v :.
mojl 1 x - 'y ,

Equation [7] would be a standard numerical integration o %ﬁ
for any ‘band structure, were. it not for the -= as the lower
limit on the xnteg:ation over v. Tha efficient evaluation
of the path integral around each orbit vas~¢tcomp1ished by
approximating the orbit with N contiguous circular arcs and e .

t

Aconsiderinq v ,vl. k . kl w/ k ! * kY!Aand 1(k) to be constant ,

~on each arc.; Por cur single-OPw rermi surtaco this involved

no additional appzoxiﬁ&tion, but ‘for any other Permi anr!ace,

'K-,}
t

' 'N must be adjusted to mako thase approximations of tho cal-

~culation reasonable. ‘Also, on the lth arc, it was moreé con-

¥
‘5

e

Vi

venient to usa a geon-trical angle Yy such that v - jl CQIT .
: and v - Yl oinv, rather than the phaso vazinble " Then

*



. forms over the wircular arcs (Falicov; private communication). ~

-~

15
-2
TR
. ae = dy
i} f' : movl -
i _\\ L = a dy . : {8]

and oo'fhe Eth arc y is taken from ay to B On the ﬁth arc,
we also define the. relaxatlon time anisotxopy, b, . b§ t(k) =
Tb where T is an average relaxation time.‘ We define the

transport anisotropy ag c, = “i/bz' ‘'which is theranisoﬁropy

of the inverse of .
It is useful to define fifteen orbit 1ntegrals and

to express them in terms of integrals which have analytic

" With the phase variable going fromlo to ¢ for one traversal

of the orbit, these orbit integrals are:

Ri(uot)l- = [ dBv (a) exp{__._L} o | R o .- o
‘ : ot(k) N .
o B T S
{- S (B0, ) e ) e ty) (Lrgden, té; |
- 3 - 12 - a,| arv, (Ylexp
- L-l P . YT k L+l k%% ck [ ‘ i o A
‘ --oi ‘ S . I
A . - . / ) 'D .. 9 | )
B.(w t) = dev (e) { : ) '
iY%o j \oiexp mor(ﬁf) | o . o ) .
. o _ ) ) ‘ | o .
-1 hrss ye, ) B‘a."' ) t(d"m‘} {10)
= T expl I (Bg~a )} a, | @yvily)expl—Dpe—
t=1 “of k= 1 - ak i _ “o

Ol‘
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$ 8 :
- . 4 86'-9
C.. ) = de |de' 9 g —_—
i3 (w T [ l Vi(‘)vj( )exp{w T(i)}
) o ©
B
Y2 [ [ av v, e
= a v, : _—
oo | ar | avv vyt epl—
% %k {
Bx {(Gk-Y)c } k-1 ; k-1 }
+ a . dyvy(y)exp I exp{-—— I t8_-a_)c
k WoT =1 , Lot n=t+1 . nonn
Clk h T
: By (v-B,) e, <. '
x a, dyv (y)exp{ ~ &y .- : [11)
%e

w
7

The definite integr&ls which will account for:previous traver-
sals of the orbit into the infinitely remote past are defined

as

Di(wor) I devile}expféfuor(i)?ﬁ

- Ai/(l-exp(~¢(wof}? R - /
C = A/ (l-expl{- —;—,— 351 (a,j——uj)cj E . (12}

6éingvt9]-{12] iA (7} results in the ditferentiai'conductibity ’

| ’ 2 .
do (k) me , ' o :
i3 - 497- S (B,D, + C,.). {13}
de, P Yo ‘all . ﬂiaj . 3 o

orbits
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’

Numerical 1ntegratlon of [13] with respect to‘ht gives the con-.
ductivity tensor component for a partlcular w,T and crystal-
lographic orientation in the case of uniquely defined orbits
' {no magnetic bréakdown or "hot spot" scattering (Young, 1568)).
The semi-classical effects of mﬁgnetic breakdown may be included
in éqs. [9]1-[13) as an exteni;on of the present theory
" (Falicov and Sievert 1965). o 7 .

The tifteen orbit_integrais'(hi, B, and cij) were
evaluated for each w_T in terms of the Fermi parameters of
thé N arcs'comérisihg the orbit.” For most of the éalculations
herelq descrxbed, an 1sotrop}c relaxation time (b = 1) was

assumed for all £ and all k_, although for some calculations

b was allowed. to be different for the Ea%ferent electronic

bands. The magnitude of the Fermi’ velocity was taken to be
constant. Eor each arc, and for the single—OPW calculationa, was
taken to be constant for all arcs. For other band structures,
the Fermi velocxty must be determined for egch arc- using Bq. (21.
A uniform electron-phonon mass enhancement (a - (l+l))
can aasily be included. The bare cyclotron £requoncy Wo (hence~
forth w) and the bare relaxation time trare Oppoaitoly affected
by the electron-phonon interaction (Prahge andﬂxadanofg,A1964).
so that b, = {1+)) asé € - 1. It should be emphasized that'utp
remains unaffected by the electxon—éhonon interaction, that is

wTmw®t* (where the stars dcnoto dressed quantitiesk, nnd that =~

the conductivity ia acaled by x. not 1%, Hith any mnasurod

P
S|

SN
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cyclotron frequency w;, of a_pgrtiéufar orbit, T* should '///
be used to obtaih a value of wt.

The efficient numerical integration of eq. [13] with
respect to kz requires ‘some knowledge of the kz variation
of the integrands. The variation of the high-field {wT=100)
differential conductivities with respect to k, for the
second-band hole surface of aluminum is shown in Fig. 2.for .-
the field along a <012> direction. For a gpheriCAI Fermi E
surface, these curves would be parabolas opening down, excep-
ting the zz component for which the parabola would open

upward. The different fOrms in* Fig. 2 arise from the compléx

manner in which the orbit changes with k'. At high fields

N

the. differential Hall component, do /dk “is directly propor- :}%

tiondl to the orbital area 'in recxprocal‘space.- Thus, 1
/dk is a smooth functxon of k, in the high—field lzmit.

The k integratzon of the transverse differential conducti

‘vities requircs more care since they are discontinous when

-

segments of an orbit with large vx a.nd-vy are cut off as k,
is varied. The differential longitudinal component do_ /dk .

Qhas large discontinuxties where there is a limit point orbit

.-
Thc width of this reqion in Fig. 2 is about 310~ -3 1 at

kz = 1 198 A 1. This narrgk sat .of orbits contributos about

L A
. lt_to 9. in the ‘high-field reqion.

Thua, to ensure convcrgonce of the k inthrals to

. thcir true valucs, Cuts were taken through tha Fcrmi surface

Fif




et

Figuté 2. The contribution §o the various
conduétivity components of the orbits a£ each kz on the
second band hole surface with the field along-[iO?], Y
along [010]} gnd wT = 100, Note the different scale

N . ,
factors and origins for the four components that are

shown. To the right are shown representative orbits,u - '

- each with its k, value. Nbte in particular the

. . .
limit ggint grbit ki = 1.198 A 1, and its contri-
bution to O,.+ Which is off the graph by about a fac-

tor of two.
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at a nominal k, spacing of from kF/GO to kF/100 (kF is the

free electron Fermi radius), and the cut spacing was decreased
as required using an_adaptive algorithm. The cut spacing

was decreased in k* t%gxons where one or more of the

dcil el

dk
chafacter of one or more of the orbits changed (see Fig. 2).

's were large. These regions occurred only where the

The symmetry of the foferential conductivity components about-
kz - 0 which is apparent in Fig. 2 is a consequence of the
inversion symmetry of the Fermi surface about I'. This sym-'
metry was used to reduce the required range of k, integration
by a factor of two. With z in a mirror plane, ‘or along an

axis of n—folé symmetry, the orbital path integrals could be

R

reduced by factors of 2 and n, respectively.

F. Useful D;stinctions

F.1 Compensated and Uncompensated Hatals

Metals with equal reciprocal-space volumes of elec-
trons angd holca (those with an evan number of conduction
electrons per unit’ cell) are re!erred to as compensated metals.

This seemingly qinor diatinction'chanqea the high-field dopen-

-1

. o _ _ =2
dence of the Hall term, o . from B = to a more rapid H

_ xy
~ field dependence. This nay be seen in. the log-log graphs

in. Fig. la and 3b, where we cqpparo the calculnted <100> tield
; dspcndenceu of oijla) for the sinqle-ovﬁ Formi uurtacos of

nluninun {unccnpenaated) and lead {coapensatod). The field

-3

dcpcndepcu ot_oxy for lead is la:qnly " (B being in a

‘mirror plane means thare is no H™ -3 term og c::Y in the high—.



!

Figure 3. A comparison of the calculated field
dependence of an uncompensated métal-(aluminpm) and a com-
pensated nmetal (1ead)'for the field along four-fold axis.
The calculations used thé-path-iniegfal méthod and assumed-
_a uniform relaxation time and the'single-QPW Fexmi sur-
faces. Both metals ‘are face centered cukic and for ‘the
fielad along'<i00> their single-OPW Fermi surféces support

no open orbits. Aluminum has three valence electrons

__ per atom, and lead has four.

Figure 3-a. The field dependence of the conductivity
components of alumiﬁum, divided by the relaxation time.
Note ;hai Oxy has an (ut)fl {or H-}) field dependence in
- the high-field limit.

Figure 3-b. The field dependence of the conductivity

Y

components of lead, divided by the relaxation time. oxy
has' only a small high-field ™! term, vhich should be
idontically zero but for the. numnrical inaccurncias of

the cnlculations (<0 1\)

‘riqur|-3-c. The tield dependence ot the resistivity
. components of aluninun, multiplied by the relaxation time.

rigure 3-d. The field dapendeucn of the resiltivity
‘couponeatn of Ioad. uultiplied by the relaxation timn

- : R
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field limit) with a small H ' term which reflects the

numerical inaccuracies in determining the electron and hole
surface volumes, which is.less than 0.1%. This apparently

miﬁbr difference in the Hall term of the conductivity tensor
of compensat;d and uncompensated metals, has a dramatic
effect on the field dependences of most of the reslstialty
tensor components 3’ (H) = (G(Hf)ij, as may be seen by

_ comparing Fig. 3c and 3d. The transvarse magnetoresistivity
of alumlnum has sat;rated in the high-field limit,. while

that of lead has an éQ field dﬁpendence.

F.2 Open Qrbits and Closed Orbits . -

A similarly dramatic effect occurs in the field. f K
dependence_of the magnetoresistivity if \\\open orbit exists
in the x-z plane for some. range (even a very small ranga)
of k . Thls is illustratqﬂ in.Pig. 4 for 1ndium. Fig. 4b
and'dd are the s;ngle-OPW conductivity and resiativity _
field dependences of indiun (uncomp;nsated.with the field
1n the llOOl di:&ction, where. there ia,an open orbit along
the x direction (1o10)) in reciprocal space which is indi-
cated by the dotted line on tha second band hole suriace
T of indium in Pig. b, Figuxes 4a and dc are the same as
4b and 4d respectively. except that the sccond band hole
;Fermi surface has been sliqhtly modified at W.to remove
“the open orbits. ) .. _'. . )

Thaao dramatic effects have ‘been. obne:vud nnd

uaed to stﬁdy Pcrmi sux!cce voluana and connectivity for

‘some 2 decades. It 1s ‘the purpose of this thanig to show



Figure 4. A comparison of thewcnlculeted field

dependence of the conductivity ‘and resistivityacéhponents

,) L ,,-—"“'-

of indium for closed and open Fermi aurfacee with*the _fiexa

L \-.“-

o R

‘ in the <100> dlrﬂCthD. These path-integral calculations
dsed a oniform relaxation time and either the Bingle-OPw
.rermi surface (4-b and 4- d), or”these eurfacesﬂmodif%pd
to exclude open orbits by cutting the connections between
the second band hole surfaces at W (4-a and 4-c). . The
p)

open orbit in real space is elong the: four—fold axis -

the y exis,,

-]

riqu£%'4—a. The field dependence of the conductivity' '
' couponents of indium, divided by the relaxation time, for

a closed Fermi surface. —_ - , _zf

w

”Piqure 4-b. She £ie1d dependence ot the conductivity
"couponents of indiun, divided by the relaxetion time,'
| for the single—OPH Fe:mi sur!ace, with its hand ot open
“;_o:bits.‘ i L - B L
?1guce l-c; "The field dependence of the reeiativity.
co-ponents of indium, nultiplied by the relnxation time.

Zor a closed Perui surche.

riquze i-d; The field dependence of the reiistivfiy‘ e

couponents o! indiun, unltiplied oy the relaxation time,

Ior tho linqle-OPw rerni surface, with 1ts band ‘of open
“ oxbxu. ¢
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Figure 5-a. The ‘Figure 5-b. The single-
\ Brillouin zone of face cen- OPW second band hole Feimi
| tered tetragopal indium. gurface of indium. The
- l T dotted line showq\f?ér;pen
T ” orbit wifich exists for fields
_in the [100] direction. The
black parts of the suﬁgace,
- ’ near the W points (bué not
‘tﬁe'T ;oinfs) of the zone,
are regions‘whete the hoie

surface touches the zone

boundary in'tﬁé qingléaOPw~
model. In our modified
'éinglevopﬂ model these re-
" gions do not_togéh the 2qhé_‘

Arigurews-c. 'The single-
OPW third band electron
Permi surface of indium.
Thaﬁhaﬁfhed'ﬁrQQ are tho" .
n-qrﬁs,and the.ﬁnhktched : L f \ir

o+
‘ 1

) . arms are the B-arms. S

° e S '
. - - -
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how the geometry of closed Fermi surfaces of uncompensated l<
metals relates to the anisotropy of the magnetocoﬁductivity
% ; : .

tensor components. The restriction to closed Fermi surfaces
avoids the obscurlng complexity of anisotropy due to open
orbits, which 1s fully understood in principle. 'The restric-
tion to uncompensated metals means that the Hall coefficient
and the’magnetoresiétance'shbuld saturate in the high-field
iimit. Besides the alk;11 metals, which have nearly spheri-
cal ‘Fermi surfaces, there are only two simple metals which-
are uncompensated and have closed Fermi surfaces: aluminum
and iodium, and these two metals are discusﬁed in the fol-

L

lowing chapters.




.

CHAPTER III

" MAGNETOCONDUCTIVITY OF ALUMINUM.

i
-

LY

A. Introduction

In this chapter, we examine the field dependence

and anisotropy of the magnetoconductivity and magnetoresis-

- tivity tensor'compdnents'of-single—crystai aluminum calcu- .

lated by the path-integral over a nearly-freo—electron
Fermi. surface, assuming a uniform relaxation time. These
calculations were motivated by induced torque measuremsnts‘
that showed reproducible induced torgque minima in the low-::
temperature, high-field limit for the magnetic field at ~
<100> and <1l1ll> directions (Bolroyd et al 1973) & These
minima persisted in samples that had been strained by up

to 8%, and for temperatures from 1.2 to 25 R. The minima
disappeared gradually as the temperature was increased above

25 K, because the increasing phonon scattering slowly removed

'the sample from the high-field regime. The small changos in

resistivity with strain and tamperature indicated to us
that the acattering was impurity dominated in the samples of
nominal 5-9's purity, and hence likely c}oaa to the catas-
trOphic ideal o! the relaxation time approxination.
Tha contribution of the Pormi sur!aca geometry to this
peraistcnt anisotropy was considarsd to be of su!!iciant im=
, 26




L

27
a
portance to merit detailed path—integral calculations,
using a. simplified Fermi surface model and a uniform re-
laxation time, The path—integral method, as discussed in
Chapter II, admits the inci&gion of the effects of Fermi |
surface topology, and has provided the basis for the quali-

tative dnderstanding of the galvanomagnetic.properties of

many metals. Since the aluminum Fermi surface is free-

4

electron~-like, these calculations used the Single—orthogonalized—

- planexwave (single-OPW) second-band hole surface and discon-

nected toroidal composites of the third and fourth band
single-OPw electron pieces. This Fermi surface accounts
for the- effect% of Bragg reflection.

Essentially these same esaumptions were used by

Feder and Lothe (1965) in their calculation . of the mngneto— '

resietivity tensor of aluminum with the magnetic field .
elong <100>, although they neglected the very small !ourth
band aingle-OPw elect:on pockets rather than including '
them in a composite electron band. They- solved the Boltzmann
transport equatioﬁs by modifying the free electron uniform’

<"

relaxation time solution to be continuous for Bragg reflec-

-~

tions. 7 .

The path-inteq;hl method ggrmits the straightforward
inclusion ot tne ettects of naqnetic bzeakdoun, :elaxntion'
tine anilotropy and a more accurate rerui suxtace.r The
extansions to the einplost thcory are discui-ed separately
in Chapte:-VI because the simple theory reproducod ou:
induced torque data with cnly small lyute-atic deviation:.
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In particular our induced torque data, in fields wp to 18

-

k0e, show no evidence of the open orbits which magoetic break-
down_woold induce. |

In this chapter we present the results of these de-
tailed simple calculatiooe for aluminum, Sﬁd some general
insights which may prove useful in understanding the galvano-

" magnetic propertles of metals.

The eingle—OFw Fermi surface of aluminum consists
of ; second-band hole surface and electxog pieces in the third’
and fourth bands as ie'eﬁown in Fig. 1. The hole.eurface

(Fig. i;b) is very similar to that detetmined by Ashcroft
(1963) by a four-OPW calculation, except fo the rounding

of ‘the sharp cusps that are evident in the single—OPw model.

We have modified the single-OPw electron pieces
(Fig. 1-c) inteo disconnected toroidal composites egual in
~volume to the single-opw third and fourth band ‘electron pieces.

This composite has the form of Ashcrott 8 electron surface

| (Fig. l-d) although the shapes of the arms differ_somewhat.
The arcs of the modi:ied e;ngle-opﬁrermi surface are Laxgo-
and few"in number. Each arc terminates in a BtaQQTreflectioﬁ |
which generally changes the pcraoete:s‘v‘ and vlltrom arc - ‘1
to arc. These abrupt and often large changes have significance
for the lou-fieid dependences of the conductivity and resis-
tivity coupoaents, as well as the hiqh-tield dependences.
' In the unerical evaluation of the path-intcgrels.



29

for each orbit, considerable care had to be taken to ensure -
that the arcs were traversed in the _correct order and that the
resulting orbits were in fact closed, since even one oébit
(of the some 200-300 orbits which had to be ebaluatéd for
each field orientation) with an artificial open orbit charac-
-tef would vitiate the high-field calculations.

" To evaluaté‘each conductivity component, the k. inte-
gration was carried out for 'each conducti\-rity c"omiaonent ‘using‘
the aéaptive algorithm.doscribed in Chapter II. For each orys—
" tallographic oriéntation, the conductivity tensor di;;ded
by 1 was evaluated for values of wT over a range of almost

4 decades, from 0.02 to 100. The wt values were logarxth-

' mxcally distributed to permit accurate interpolatlons to be

made in each field regime, so that from these’ computed Values
j(d) could be simply determxned gzven a value for z.

The wt (recall that wt=w*T*) dependence of the ch- :
ductivxty c0mpoo;nts for selected field directlons are shown in-
log-log plots in Fig. 6, where the conductivity is scaled by
1-1. The resistivity tensor was obtained for each wT value <. -
by invertxng the corresponding bonductxvxty matzxx. ‘The re- .
‘sulting Wl dopondences of the resxstivxty tensor components,
scaled by r. are plotted in log-loq grapha in Fig. ?. " The
field dcpondencos of the index transposes of the plotted
'-components may bo inferred from the Onsager relatlons

j(H) - cji( u) and Dij(H) - pjx( -H). ' Note that thosc

ompononts which change sign are plotted as thoir absolu'o value.



Figuie 6. The computed path-integral magneto-

conductivity as a function of wt for aluminum with the

field (z axis) in selected directions:

+

A: 2z along {100] along [001]}

B: z 0.1° from [100] towards [110], y along [001]
C: 2 20° from [100] towards [110] , y-along [001)
D: 2z along {110] : ’ along [001] -

E:1 'z 25° from {111] towards [110] , along [112]

Y Y N

F: z 50° from {1%1] towairds [110]} ,

aleng [112]..

Note the absolute value signs for the off#diagonﬁl
terms, and the changes in sigh which vertical 'asymptotes
indicate.-?he conductivit& is-séaled by % to make these

o

graphs completely ganeral}
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Figure 74 fhe computed path-integral magneto-
resistivity of’alumiﬁum as a function of w1 with thé
field (z-axis) in selected direg}ions,(the same as Fig. 6):
‘A: z along [100] | y along [001]
B: z 0.1° from [100] towaxds [110]}, 'along [ooi]
C: z 20°* from [100] towards [110} , along“[OO’la
D: 2 along {110] | ’ along {001]

E: z 25° from [111] towards [116]A; along (1121

'<'<'<'<-‘<

F: z S0° from [111) towards [110] ,

w

along [112)

Note the absolute value signs for the off-diagonal terms.

The resistxvity is scaled by T to make these graphs

~ Y

coapletely general. N

.._--
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B. Calculated Galvanomagnetic Properties

In this section we separately summarize the proper-
ties of the Hall, transverse, longitudinal and longitudinal-
transverse maghetoconductivity and magnetoresistivity comézi_
ponento of aluminum as calculated by the- uniform relaxation
time path integral ovef‘the nearly free electron Fermi sur-
face. The colcﬁlated field dopendence and anisotropf of each
component, as calculated for fields in the (100). (110) and

(112) planes, are explicitly discussed._ S "

B.i Hall Terms

G

- The calculated field dependence;of the Halléconduc-

tivity: oxy' scaled;by.f'l, is shoun'by the ‘solid ;ine in

Fig. B for magnetic fields along the <100% and <111> direc-
.tions.. Theccoctrihutiohs of the second oond holes and'third
band electrons are indicated separately by the dotted and |
dashed lines respectively. The hole and electron pieces ' - f
contributEfEB“E“\ with opposite sign; and tha electron :
contributlon reaches the (wr) , high—!iald regimo at lower -
fields than does the hole contribution. ‘Thus_the Hall

. conductivity chanées'sign at alfie;d value which dépond@ on
~ the k dxstribution of Wy t !or both bands. The approxihnte-
extrema of the calculated Hall xnisotroPy at intermediate .. :-
fields occur at the <100> and <111> directioiis. Fig. 8

shaws the field dependcnco of ciy ‘for theso direction:.

. in n particular tiald diraction. at any given tiold.

<



Figure 8. The Hall oooductivity of Al as

a' function of w1 for a field direction (a) along

<100> and (b) along <111> directions showing the con~

tributions of the holes (dotted curves) and electrons
.(dashed curves) separately, as-wollras the totallnall

conductivity (solid curves).

I'4
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it is always possible to find éoor&inates u, v, generated'
LY i
from x and y respectively by a proper rotation around z ro %

(thé¢ field direction) such.tpat v = -UVU'“ This means

that the even-field Hall term can be set to zero {(from the

M
e

Oonsager relations: O (H) = Oux (-H)) at any specified ) | :fhﬁ
field by such a coordlnate rotation. It does not mean that

a single coordinate system will have.ouv(H) - - ovu(ﬂ) for

all fields. Using tﬁe‘general oath-integrallformula, igﬂ'

may be shown that when 2z is in a mirror plane, qu/ﬁé co%w

atré%kgf (oxr v) to be in fhis_mirror plain aléoinﬁhen fo#i
all fields, o tH) = =0 (8) , -if there are no open orbitor
Thus for z in the (100) and {110) pLanes, with-y ‘along [001]
and {110] respectively,‘the calculqted Hall torms are -odd:
in field, while in the (112) . plane, with y nlong [112],
there is also a Hall term component which is even in field.

,Since there are no open orbits, these even-field components

do not affect the high—field limit of the Ball coefficient. . -
In the low-field region, our calculations indicate that Sy -
‘may differ from “Oy bY P ‘to 15% for fields in the (112 | R
plane and with b4 along [ld2]. -

The Hall coefficient o rcsistivity. AB(E o /B).
was obtained from the inversio .ot the conductivity tensor.f
The field dependences of An for magnetic fields in <100> and
<111> directions are shown in Pig. 9. ‘In the lou-field limit,
few carriers. encounter . a gxaqg ‘rafleéction in a mean free

path, and so the low-field Hall ‘coefficient corresponds very



Pigure 9. The Hall koefficient Ay -nfﬁ ,
of aluminum as a function of wt for a magnetic field
along <100> and <111> diractions, calculated using
the uniform relaxation time path-integral over our
modified single-OPW Ferﬁi surface. The two field
orientations shoq the approximate extremes of the Ay
aniaotropf in the i;termediate field region. HH
rises froﬁ thé value nearly correspdnding tq~the_'
.Free-electron carrier éénsity (n) of tﬁ}ee‘electrons'

per atom in the low-‘ield limit to one hole per atom
Y
in the high -field limit.

o
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i~ . Figure 10. The anisotropy 6f the'Hall coef-
ficient of aluminum, calculated for fields in the_(Oll),
(001) and (112) planes for different wt values. The
x-z plane is a mirror plane for the (011) and (001)
planes with y along [011] and ;001] respectively, so
Pyx = = Pxy+ This is not th}f::?/ciase in the (I12) plane
8o both Dyx/H and - pxyAH a;g@p;ogted for tﬁé (112?

plane. . e

3
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nearly to three electrons per atom, if the even-field Ha&l
termg are zero, Or ére cancelled by considering only the
.odd-fi¢ld Hall coeffiéient, AH' = EX%EEEI . ?he anisotropy”
of AH (as well as that of pxy/H' for the. (112) plane) is
shown for selected values of wt in Fig, 10. At wt = 0.02,
the calculated AH' corresponds to some 3% less than the ex-

. pected free electron value of 3 electrons per atom. The
difference between A, and AH . which is up to 7% at wi = 0 02,
decreases as the field is incf;asqd;cgpd in the high-field H

limit, the implied carrier concen ration changés to one hole

per ‘atom on the basis of tﬁé nea y free electron Fermi sur-

face volumes and 15 1sotropic to w1 hin 1% in our calcula—

tions. It is also iqteresting to note that even at wx= 10,
Ay is some 2% less than I/Hcyx due to the éohtribution of

the transverse conductivity in the matrix inversion. - ‘ .?,. /
B.2 Transverse Terms

- YY
in the low-field 'limit to a H 2 field dependence 1n the high-

The transverse components, é;x d Oy vary from co ' )

field region as seen in Fig. 3.A The lqw-field asymptote of

043/ is™, 12!1019 (Q cm—scc) -1 and is the samé (within 3%)

as that calculated from thc zero—fleld conductivity.pcof

using o /1 = ne /m where n is tho carrier ‘density. The n
hlqb‘fxeld dependence is cxpected for any metal with no |

open orbits using the relaxation time approxzmation (Litshitz .

at al, 1956-a).

The calculated ficld dependence of the transverse’
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magnetoresistances, (pxx-p;)/p and (pyy—po)/p are shown
in Fig. 11 by tKe dotted and dashed curves respectively.
These maqnetoresistancés‘gre shown at four selected field
orientations. In each case there is a low-field linear
magnetoresistance which originates with the artificially
sharp cusps of the model Fermi surface, and the resultant’
discontinuities in v(8) at Bragg reflections. These dis-
continuities make the'usuﬁl (Ziman, 1964, p. 259)‘low-field
Taylor expansion of eq. 7 ;nabplicablq, and'éhange the

. generally preaicted low-field H2

dependence to a lindar'de-‘
pendence.‘Th;s pioparty of the low-field magnetbresistance
can be_used as -a crude probe of the sharpnééé of Bragg
reflectfons in nearly;fre; ela¢troﬂ metals (Pippard 1964).

In the intermediate field region, the calcula%éd -
tranBVerse-ﬁagnetoresistahce risesuﬁouards a high-field
aaturation value (as expected for uncompensated metals with
no open orbits) reaching within l\ of the saturation valua '
by wt = 6§, The anisotropies of the ' saturation txansverse
dmagnetoreuistanca is shown in Fig. 12 for- field directions
in the (100), (110) and (112) planei, and with y alonq (100},
{110) and [112] xospcctivaly. These anisotxopies arise
‘tro; the anisotropy of the hiqh-!iold transverse .conduc-
tivitiel which ia generated by the variation o! tha orbitally
averaged mean . of v (8) and vy (e) tinn their ucond ‘moments.

Altornativoly, it is posaiblo to ditcull the hiqh-

field t:an:va:se ungnotorasiltanco nnisotzopy in teran o!
. . N

e



Figure 11. The magnetoresistance as a function
of wt for aluminum, calculated using the uniform re-
laxation time path integral over our modified single-OPW

Permi surface. The three magnetoresistance components

PurPo  Pyyv P (Y ‘

XX °, YY _© and 22 _9 are shown by the dotted, {
o o : Po .

dashed and solid curves respectively. In Figure.ll-a,

the magnetoresistance is shown for the'field along [110]
and y alohg {001): and for the field along (1Y1] with y.
along ({I12). 1In Figure 1l1-b, y is along [001]; and

the transverse mggnatéresistance components are plotted for
2 along [100] and z :25° from [100] towards [110]. The
longitudinal magnetoresist&nce-is.ploétéd for;; aloné

[100] and at 5°, 10°, 15%, 20* and 25° from [100] towards

- -[110]. : | o a

¥

kg -J
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. is shown by the dashed curve.

Figure 12. The anisotropy of the saturation

(high-field) value of the three magnetoresistance com-

ponents for fields in the (011), (001) and (112) planes.
The lower solid curve is the saturation longituéihal'

magnetoresistance. The upper solid curve is the satu-
P, P

. ration transverse magnetoresistance, _2%__9 » which

- o ,
is to be compared with experimental magnetoresistance

rotation diagrams for.the current along {011}, [001] and

_(112) directions, for fields rotated in the (011), (001)

and (112) planes respectively. For completeness, the
! Prx—Po
Po

other aaturation'maqnetoxesistance component,

1

4
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a simple geometric inéegral. The hig;-field transverse mag-
oetoresistance of uhcompenaaﬁéd‘metals with no open orbits
depends on the k_ 1ntegral of <(k -k ) > for o and ’
<(k —E ) > for byy where k and Ey are the reciprocal space
coordinates of each orbit 8 centroid, and the angular brackets
denote an orbital integral (Wagner, 1972). Since the central
orbits for all field directions in the xz plane share a common

ky o the asymmetry of p,., (the.component meagured in 4-probe

Yy
g%psurements).is expected to be somewhat smaller.than the .
_aaymmecry of p_, which has no common k., value for the dif- .

ferent field directions, and this may be seen in the (001) and
\ > k . 3 ‘

‘(bii) planes in Fig} 12. This central band of orbits on the

¢

gsecond band hole surfaCe, with their partial .correlation in

ky, are large orbits and so contribute significantly to

4

o,y and hence to pyj{- There is also an. approximate inverse _
correlation between.o_. and Py which ‘may be saen in Fiq. 12. o 3
The tendency of o, to rise a8 p falla originates with

" the constanc; of vx2'+ v32 for oocthoint:onghe‘Permi surface

for a fixed,direction'qf y in the cryotol. '

o . .

B.3 Long;tudinal Terh o
The. computed 1ongitudina1-mmgnetoconductivity in
'aluminom decreases from the low-field limit of co to & smaller, -
‘high field value which is iighly aniaotropic, as may be seen’
‘Ln Pig. 13., This givos rise to larqe anisotropy in tha intor- .

'mndiato and high-!ield magnetoreaistivity which il ahown in N ;;



-

-

Figure 13. A log-log plot of the ldﬁgitudina;
conductivity contributions versus wt for various orbits
on the second band hole surfaée, with the field along

- g P : o
\“w111>.f;The extremal orbit at k, = 0 {(dashed orbit on
;1jihe Fermi surface) has an (m)-2 field aependence in the

high-field limit. |

.“

{\ .
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Fig. 7. The field dépendence of the calculated longitudinal
. magnetoresistance (pzz—po)/pO is shown in Fig. 11 by the

s0lid curves, for several field orientations. There ig’a low-

. R
I 4

field linear magnetoresistanceﬂﬁbr the same reason as was.

:

dlSCUSSGd above for the transverse magnetoresistance. The

anlsotropy of the saturation longitudinal magnetoresistance-

*':is~§hown in Fig. 12 by the lower solid line, for magnetic
‘fields in the (100), (lib) and (112) planes. The higher
“the aymmetry of the nearest symmetry directlon of the magnetic

field, the more rapldly the longltudlnal magnetoresxstance

saturates and the lower that saturation value is.

[+

The orlgln of this large ‘high- fleld,anlsotropy is

the variationwith magnetic fleld dlrectlon of the mean of <vz>:

the orbital average of v, (8). When <vz> is zero for a partzcular

orblt las it is for extremal orbits), the longltudxnal dif-

.. -

ferent1a1 conduct1v1ty of that orblt will have a H 2 ficld
dependence in the high field llmlt. This dependence is just
the same as that of the transverse dlfferential conductivities
for closed orbits_(<v;> B <y > = d). In genéréi wv,> for an
orbit is nén—zcroland‘;n'thi case the orbit's longitudinal

differential conduckivity will\have the same field dcpcndcgce

' . . : . , .2
as that of a transverse term with an open orbit. If <v_>

: : / . . N
is small compared to tv22>, Oai for this orbit may still have

a i 2 region ovcr a 11m1ted field range but in this casc.

5, will be asymptotlcally boundcd abovc on the low-ficld

-
- e

side, "and on the high-field sxdc will be bounded bglow. Thc
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4

ratio of these asymptotes will depend on the ratio <vzz>

o2
> .
to <v,

Free-electron like orbits (such as limit point orbits)

will exhibit no variation in their differential longitudinal
conductivity WIth field. Each of these three types of be-

haviour may be seen in Fig. 13, where the logarithms of

dozz

and wt are plotted as function of kz for the second band
z .

hole éurface, with the field in a <11l1> direction. The

re

"dotted line in Fig. 2 shows the diﬁfe;ehtial 10n§itudina1

conductivity vs k, for the second band hole surface at wt = \
10G. Note that there is a rather‘broad‘band'of orbits \t
around the central orbit which are contributing very little 1

to o_,. The orbits which terminate in the limit poxnt orbit

contrxbute much more to ozz

The actual value of the high-field saturation longi-

AN

tudinal magnetoreqisiance for a particular field direction
depends on the degree of vy orbital cancél;qtion for the

whple set of cyclotron drbits. “The major<?£fecf”of the

crystal potential'in real spacaAis to Bragg reflect the
carriers, ch&néing the high-field helical spiraISébf a free
electron gas (with no longitudinal magnetoresistance) to a ‘
set of helxcal arcs of varying pitch, with the Ej%zaqe gitch
less than for the free olactron spirals. This reduces the

uz componant of the mean free. path at high fields as compared
’to tho low-field mean free path. qenoratinq the longitudinal

qnetordsxstance. For higher symmetry field orientation:.
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14
more order is imposed on the orbital systematics of the

vz(B)'s of aluminum than feor field directions far from

symmetry. Thc higher the symmetry, the smaller the v£ can-

cellation and the saturation longitudinal magnetoresiét&nce

is expected to be smaller.

{refer to Fig.- 1(b) and l{c)},
we can“éeelthat'ﬁﬁcre/isylittle cancellation of v, for orbits
on the single OPW hole surface. . On the single-OPW hole sur-
face in this direction the central band of extremal orbits
.which contribute nothiog to the high-field 0.2 is vanishingly
narrow, and the sharp cusp at the central o=hit is an crgi—
ficial feature. This point is discussed further in Chapter
VI, in the section on the four-OPwocalculations. 'For the
[001} or;entation, some 78! of the hlgh field 1ongitud1na1
magnetoconductivzty arises from the carriers on the hole
-gurface, some 19\ from the electrons on the electron toroxd
whoge axis is along [001] and some 1.5% each is contributed
by the two remain;ng toroids,'which support only orbits with
large vz cancel ation. 353 corresponding contributions to
~the low-field conductivity are——?%\—;— 17% and 4%, The %lectron
orbits have small cyclotron masses and so reach the fhigh-
field condition™ at sﬁhllor values of wt than the average hole
orbit. Hcre the "high field condition® refera to a fiold
regicn whefa'thé longitudinal magnetoconductivity of a -

. particular orbit has either saturated or has become negligib{e
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with respect to the total Oopt That is, a region where the
field dependence’of*the contrioution of a particular orbit
to g, is not affecting the field dependence of o,,. Even
the large-orbits on the second-band hole. surface will reach
this high-field condition at an wt value that is four times
smaller than might be naively thought, since the fourafold 1 : "
symmetry has reduced the periodicity of v, by a fector of |
four, and it is this periodicity rather than the orbital
periodicity that controls the field dependence of the contri-
bution to L similarly, .for z along other symmetry direc-
tions, we expect saturation of ¢ 22 to be more rapid than

for z along crystallographic directions far from symmetry.

" The higher the symmetry of the. field direction, the more

rapid the saturation will tend to be. This tendency is some-
what . complicated by the variation of the cyclotron frequencies
of all orbits as the field. orientation is changed, and by _
the fact that not all orbits around an n-fold symmetric axis © "
have n-fold” symmetry (e.g. most electron orbits for z
.along c001>), '

b These two observations on the role of symmetry in
‘the saturation behaviour of 0, do not require exact symmetry'
to affect the orbital averages, and 80 we might expect the
behaviour of Coz to vary slowly ag/we move away from the
symmatry directions. That this is the case may be seen in
Fig.11l and Fiq-l2.

”
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B.4 Longitudinal4Transverse Terms

The longitudinal-trahisverse magnetoconductlvzty

components (oxzﬁ O °yz and o, ) measure the tendency of

an excitation of the electronic Fermi sea in a transverse
(longitﬁdinal) direction to propogate in a longitudinal
(transverse) directioﬁ under the combined influence of the
crystal potential and the magnetic field. That is, carriers

" -are accelerated by the application of an electr@c field in,
.say, the x direction, and under the igfluence og the magnetic
field and Bragg reflections, their path in real space will

be such that in 29ng:gl_there.will be a net current component
in the z‘diréctioh. Iﬁ'éeneral these terms have a gl field

dependence in the hxgh-fiéld limit. for closed orbits. (With

" open orb;ts, the longxtudinal-transverse Qagnetoconductivities
‘can aaturate at_hlgh fields.) With the magnetic field pre—. -
cisely ‘along directions of two—fold or higher symmatry, the e
IIbngitudinal transverse- terms are identically zero. Even' ‘
- htly away from symmetry, our calculat;ons show that this
is not the case as may be seen in Pig. kﬂﬁ) when the magnetic ™
. field is 0.1 degrees away from the four-fold [D01] directicn.
"1f the x-z plane is a mirror plane, then by considering the

path-integral expansion at high Eields, for closed orbits .
-1

I

it may be shown that the H & term of 0, (H) must be zero. - 5
Thus in the (610) ana (I10) planqi with y‘along_[QIOI and

(110) fespecpively, Cys and S (byuthg Onsager re%?fion)  {



have H_z dependences in the high-field limit. That this is
a sufficient but not necessary condition for a'H-z dependence

is illustrated in Fig. 6 (f) where o , has a H 2 field depen-

dence up to wT = 100, although tQ? y-2z plane is far from a
mirror plane. There has just been fortuitous cancellation of °
the -1 contributions from the different orbits.

In the high-field regime, if 0, Varies as "2 and

9yz varies as H-l. then for an uncombengated'metal such as

aluminum, Pyz will vary as H-l and Prz will tend to a constant

high-field value. If both oy, and QY; vary as H T, then both _
Pxz and pyz will tend to a constant value which is up to 0.26

p,+ These types of behaviour are illustrated in Fig. 7.

fhe-anisotropy of the saturaﬁion’value‘of pxz'for
fields in the (100), (110) and (112) planes is: shown in Fig.. 14
by the solid lihe, expressed as a fraction of the zero field
resistivity Poe ~ The saturation value of Pyz is also shown " )
in Fig. 14 .for the {112)y?15ne, the only non-mirror plane for
' which calculationa vere done: .and so it is ‘the only plana
 for which the c;lculated °yz doeas npt tend to zero in the high-
field limitil: — | o |

For each of tha abova cases, the behaviour of tha
index tranSpose of the °ij or °ij longitudinal-tranaverao "
components may be inferred trcm the Onsager ralation, ,
qiﬁtﬁ) -'cji(*n);qnd oij(n) - pjit-aL and the tield dcpendence

aﬁd'uign of cjifqu Dfi - | .fﬂw_f e



- Figure 14. ?hg calculated anisotropy of the ;
high-field saturation value of the 1ongitudina1-transﬁersé
registivity of aluminuﬁ, for fields in the (011), (001)
and (112) planes. Since the x-z plane is a mirror plane

for y along [011) and along [001], p_ ., tends to zero

Yz
(as H_I) in the high;field limit for these two planes.

The (I12) plane is not a mirror plane so that in that
plane both oxz/po and pyz/oo are plotted. I? the high-
field limit, where oxz‘and/or pyz satugate Pz = P

zX

and/or pYz = Dzy'

N
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It is also apprdpriate here to note the effects of
neglecting the longitudinal-transverse conductivity coﬁponents
in the matrix inversion to obtain the resistivity tensor.

In our aluminum calculations, these effects were found{fo be
small for all magnetoresistivity components, at all fields

and for all field-directione investigated (that is, at 5°
intervals im the (100), (110) and (112) planes). The deter-
minant oflthe condhctivity matrix is aitered by up tc £0.2%
near wt = 1, with this discrepancy tending to zero in both

the low-field and high-field 1imits. The error in the approxi—

mate determinant affects all the resistivity components, and

is the only change in the\longitudinal component. The ap-

proximate determinant effects the Hall terms most at intet—

mediate fie}ds, while neglectiqg the longitudinal-transberse'

terms in the Hall cofactors also changes the 1ow-field Hall

coefficient by up to O. 14\ at wt = 0.02. The high-field

saturation value of the»transverse magnetoresistivity may be
e

'up to 0.8% too small, if the lonqitudinal-tranaverse terms

are neglected.

C. Comparison with Induced Torque Heasurements

In this section ue discuss the induced torque
method and the agreement between our exporimnts and theory. .

The induced torgque technique for obtaininq information
on the qalvanomagnetic proporties of mntals has prcvad to be

a ula!ul.adjunct to conventional tour-pxobo experiments. .The
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chief attractions of this technique are its leadless nature
and the attendant ease with which it can probe.the galvano-
magnetic properties.of a single sample with the magnetic
field in any crystallographic orientation. In these ex-
perimonts, a monocrystalline spherioal sample is suspended
from a nulling torque transducer in a magnetic-field, whiph
is rotating about the torque transducer axis with an ‘angular
velocity 1. This 1nduces eddy currents in the sample‘bhxch
in turn produce a retarding torque which is measured by

the torque magnetometé!‘h*The torque is an 1nvolved but
exactly known, function of the resistivity tensor . 1f

we define a rotating coordinate system such that B = Bz

.

ané}ﬁ = Qy and “assume that B is constant throughout the

r.r

sample, then to flrst prder in @, the induced torque is

. -.,‘_.“' -
g t .

-~

5 2., . -”
N = 5_“3—9-%— Cecd) T=5571 (14}
Y' ) 15¢

where R is the sample radius (Visscher and Falicov, 1970). If
i ‘ '1 I3 »
the 1ong1tud1na1 -transverse texrms are neglected, the explicit

cxpression in terms of the resxstivity components is

-

Sﬂ 2 . (oxx+°zz) _ . {15)
2 TExxwzz) ("y_y*‘f’zz)"pxyf'yx ,‘ |

‘ H'V_ 47R

Y 15c

cglcctlng the longxtudxnal tranaVersc magnctoconductiﬁit?
clements dccreascs the cnlculntcd torque by up to Q. St.so
that although eq. (14} was uscd for thé quantitative purposcs.

B




Figure 15. Torque rotation diagrams in the

(001) ‘plane of aluminum at 1.5 K. For each magnetic

field, except 20 kOe, the torque is shown for both

-~ directions of rotation.
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the appro#imate expression flS]‘can gi;cla very good qoali—
tative pictore of the field dependehce of the induced torque.
A typical set of torque rotation diagrams for aluminum
at 1.5 K is sﬁown in Fig. 15. Here the fi¢ld was rotated in
a (010) plane at 40°/min. .The sample.was‘a 5.8 mm diameter
5phero (wigh aépheric@ty less tﬁan¢l%) spark-cut'from a
nominal 5-9's purity sing1e=crys£al. The induced componont
of theltotal torque, for this and other“sphofes, was obtained
by dlgltally recordlng the total torgue in both rotation
‘dlrcctlons and s%lectlng the component whléh 15 odd in Q.

The even-i torques are generally small,: cxcept at the higher

fields, where the de Haas van Alphen torque oscxllatxonf be-

come 1mportant. ‘The broad- -minima in the hzgh fleld induced . . b
torque cv1dent in Fig.l5 at <100> dlrectlons were also observed
as the fxeld was rotated through <100> d1reo§1ons in the (110) .

—

plane. Similar mlnima were seen at’. <lll> dxrectlons in the

., (110) and (i12) rotatlon plancs.; These hlgh-‘leld induccd
ltorque minima were also found in sphercs uhlch were sparPﬁcut
from single crystals that had bcen straxned along a low-symmetry
axis by 1%, 5% anduB%. _ These minina- pcrsxsted as the tenm-
pcrature was raxscd from 1. 2 K up to 25 K, where the mznlna

- gradually dQ‘gpp&ared as the. zncreased phonon scatter1ng
rezoved the sample from the hxgh-fleld condxtlon. The

-

‘1nduced .torque: tended towards hlgh-fleld.satu:atxon for all
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field orientatiens, and showed no evidence of open orbits
induced by magnetic breakdown in fields up to 20 kOe.
There was no evidence of lineer magnetoresistance up to
wt = 7, - _ !

The computed magnetoresistivity tensor was used with
eq. [14) to obtain theoretical induqed.tprque at. field dired-
tions in (100), (liO) and (112) planes, fLr which extensive
experimental data ere aviilable (Holroyd et al 1973). The
theoretical induced torque was fitted to our ihduced torque

-'

data using two parametérs whlch scaled wt and the torque

;magnltude independently. The fittlng was -carried out for each

sample plane, simultaneousiy fitting the éompiete'set of
. o , :

measured fields (typically 0.5 or 1.0 kOe intervals over the

range 0 to 20 kOe), with the data and theory sampled at 5°

| int_er\'ra%s".‘ The fitted ‘theory is shown in Figs. 16-18 for
the (106), (110yiandp(;iz) pianee of‘sampléll (unstrained,

nomiparASJQ;s purity elumipdm at 4.2 K) . The points are

experlmental data, graphed for selected fzelds and orientatlons,.n}

and the solid. llnes are the ca%responding theoretlcal fits. . The

" two parameter torque, model fits both the field dependence and

-the’ anlsotropy of the experimental induced torque. At

ﬁymmeéry directions the lpw-field tordue‘ma;ima as well as

"the'high-field porqﬁe mihima ere féprbduCEdf- The‘prigin .

. of these anisotxopies may QF understood by considerxng the

z‘l. 2
- - A . -

approximate induced torque,\given by [15}. The induced torque

. -
-



Pigure 16. The experimental specific induced,”
torque (that is, the induced torque normaIizedﬁby the
sample size and :dtetipn.epeed ueing eq. (14]) and theore-
tical fit in the (100) plane of sample 1. The points are
the experimehtai valees, shown for field rotations at
selected flelds (left) and the fleld dependence at
selccted orientations (rlght) Only selected values are
| plotted since all of our data could not be clearly shown )
on one,such dlaqram. The solld lines are the two-parameter
least*squares flt to the complete set of all 36 field .
rotations. The theory to which these data were fitted
is the exact 1nduced5€prque expression of eq. (14] using

_ the re81st1v1ty tensor function of H calculated using

the uniform relaxation time path- lntegral over our modified
{

single-OPW Fermi surface.

%
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Figure 17. The experimental specific induced’
torque and theoretical fit in the-m‘(110) plane of samplé
1. The points are experiméntal field rotations at selec-
ted. ficlds (left) and't;ﬁe field dependence ‘-at selected-
'field orientations (right). The solid lines -are the
tw§ parameter least-squares fit of our theory to.t".he‘

)
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Figure 18. The exﬁerimental 5pecifié induced
torque and theoretical fit inlthe tllé) plane of sample
1. The points are the experimental field rbtaﬁiggg at
selected fields (left) and the~fie1d-depéndenée at

L \
selected field orientations (right). The'g 1lid lines

are the two parameter leas
to data.

i
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minima at <100> and <11l1> field diregtions arise from the p

minima in the high-field region where the Hall terms dominate

the denominator of Eg. [15]., In lower fields, where the o

minima still exist, but where the Hall term contribution to

the. denominator is smpll, the same p, minima generate torgquce

‘maxima. The main effect of the much smaller, calculated

transverse magnctoresistance anisotropy is to partiall? cuun—
teract the effect of the [ anisotropy; in particulaf it
tends to equalize the induced torque minima at <100>

and <1l1> directions.

The two fitting parameters provide a meaéure\of the

experinmental deviation from the theoretical Kohler-plots

calculated by the path-integral method. The field fitting
paramcter yields a value of wt for ecach field, so that we

e~

can extract a relaxatlon time from the fitted value of ‘f.”
rthis paramctcrrfpr cach plane of data. ThlS relaxatlou tlFC 1
(tﬂ; bure relaxation time,- in the absénce‘of the ¢1cctron—
_phonon lntcractlon) and the fitted ws ualucs detcrﬁinc thu
absolute theoretical re51st1vrry components at. cach fleld,;
since we have calculated toij(ut) usxng the path -integral

T method. The resxstxvxty components in turn detcrmxne the

specific incucced torque i;he 1nduced torque normalized by
div;diug the znduccd torque by the product of the angular.

rotation rate and ‘the fifth power of the sample radlus)

a

Tbu; the field dependence of the induced torque in its rzse

to” saturatlon together with our calculations‘aetermines a
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ltheoretical specific induced torque amplitude which ﬁay be
compared withrexperiment.

.'Our two parameter fits of theory to experiment have
root mean square deviation? of less than 2.5% of the maximum
torgque in ecach plane, for every sample. The fits were consis-
tently best in the (100) plane, where the average deviation
‘was 1.6%; and worst in the (110) plane (2.3% average deviation).
The *(112) planes had an average dev;atlon of l 8%

The two fitting paraﬁcters were completely consistent
for the three measured planesjof cach Sample. ”They varied by
less than 3t for the thrce pl%nes, in every sample. The
relaxation vimes which were d;rived from the fitt;drfieid
scaling parameter values we;é.within 10% of the ﬁean value Fi‘

'fof all'plaﬁéS'of all sampics,jincludiﬁg thosc strainéd by up
to 8%. The mecan value of T was 1.9x10" ! sec. -

 Thk ratios of the predicted to measured induced torquc

| were also consistent. Althougﬁ uncertaiﬁtics in thé torque
magnetoncter caiibr;tion‘and sampie'radius gencrate a 10%
uncertainty in the absolute amplitude of thc induced torque,
the ratlo varied by less than 15% from sarmple to sannle, with
less than 2% varlatlons from plane to plane in any one sarple.w

The average ratio of measured to predicted torque
amplitude was.1.3. We do not feel that thls is a systemat;c
error in_the-ﬁagnetomete; calibration, but a ;eal dlscrepancyﬂ

| bctwéen.the‘theoretiéal and'gxpérim?ntal':esis;ivities. We

conclude that the theoretical high-field value of {Fxxfp‘ >

L ! . S - .
. S ' 8 . ot .
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is‘some 30% too small in our simple calculations. Path-~
integral calculations using the four—on Fermi surface
{Chapter VI) predict a high—fieid value of (pxx+pzz) which
is 15% larger than the SOPW calculations, mostly due to

changes in p

~

Path-integral calculations assume that the scattering®
is catastrophic (as defined on page 13); and this approximation

in our calculations is the most probable cause of the discrepan-

cies. “
I

D. Discussion and Comparison with Other Measurcments

-

~ : In this section, the results of our path-integral \\\ ™
calculations are compared to prev1ous calculations and to

experlments other than 1nduced torque. The llmxtatlons of

£

the calculatlons, and the consequenccs of some extensions of
the ulmplest path—lntegral model are dzscussed for each type

of galvanomagnetic componcnt.

D.1 Hall Terms

The .isotropic relaxatxon time approximatlon gives a-
field o;pendchce'of the Hall coefficiont which is in good -
agrcemcnt with the extensive aluminum Hall effect data at |
1ntermed1ate and high- fields (Borovik 1952: Forsvoll and
' Holwech 1965; Amundsen and Sccberg 1968) Feder and Lothe~

{1965) oalcuiated the fxeld dependence of the Hall coefflcinnt

with the maghétic field along <100?, and;obtaineq.resultq Fhat \k

' .are similar to oufs for'thqt.difection. Ashcroft (1969) has

SRy n e P .
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aloo calculateo the field dependence of the Hall coefficient
in aluminum in the low to intermediate field regime. The
magnetic field at the zero crossing point depends on the
relaxation time anisotropy and tho kz distribution of W, T

The meaoured high-field value of Ay corresponds to
1.00¢.01 holes per atom, and is isotropic to within 1%.
This is reproduced by'our_calculationo, as would be éxpected
by oimply considering the Fermi surface volumes of the electrons

£y

and holes. This good agreement is due in part to thq‘Hall

e
L

conductivity indépendence from the scattéring mechanism in
uncompensated metals, and in part to the orbxtal averaging

of t. The effects of relaxation tlme anlsotropy are dis-

cussed.further in Chapter VI.

'D.2 Transverse Terms

For an uncompensated metal with no open orbits, the .
path- integral magnctoresxstance saturates at high ficlds. Qur
“isotropic. relaxatzon time calculations of ‘the transverse
saturation magnetores;stance give values of Ap/o wh;ch vary; )
froo 2.28 to 2.68 depending on the crystalloqraphxc orienta-
: tion.r Qur value of 2.67 with z along_ <100> is not in good
" agreement with the value of 2.97 obtained by. Feder and Lothe
in. their kxnetic calculatxon. although both calculations use
the game physﬁcal assumptions. )
Thore rimental renults do not generally show

’.qaturation_bu_ \ther a high—field linear magnotoresiatance .;'ﬁ
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! ) Tr——
of varying slope (Kesternich and Ullmaier 19?&;waith higher
purity (i.e. higher residual resistance ratio) samples giving
generally larger slopes. No evidence of any linear magneto-

resistance was seen in our induced torque.experiments,

these experiments did not prebe to high enough values of
We define a pseudo~saturation'velue‘of the'transveree magneto-
resistance as that high- fleld magnetoresistance value where
the meéhetoreSLStance curvature with fleld approaches zero.

In most but not all’ experlments, thls magnetoreSLJtance
value, just before the llnear term becomes apparent, falls

in the range 1.5 to 2.0 {Kesternich and Ullmaler 1971; Bal-
combe and Parker 1970; uChiang et al, 1§69; Borovik endv | ’
vOlotska}a 1965~ Balcombe 1963; Volotskaya 1962; Ficket
197); Balcombe and Parker 1970) ; which is well below our

" calculated valtues and consistent with our induced torque

measu:ements. |
The origins of the lipeap-magnetoresisgance are
discussed in Chapter IV. | (;. ( | V
D.3 .Longitudinal Terms T
The experimental longitedinal magnetp;eeistance is
smaller than the experimental transverse mngnctoresietgnce.
as is predictcd by our path 1ntegra1 calculatxons. The
'*experlmentak saturatxon values are generally larger than
our calculatad values (Balcombe and parker 1970 F;ckett 1971; .
Lutcs and CIayton 1965),.and the 1ongxtudinal magneto—

resistance -also shows a linear magnetoresistance which cannot
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be predicted by the'simple‘path—intgg;al theory.

- The anisotropy of the longitudinal magnetoresistance
is difficult to measure using the conventional four-probe
technique; since this entails co}relating the magnetoresis¥
tance from different samples. Thé leadless induced torque
htechnique‘circumvents this difficulty; and permits us té |

~'probe the galvanomagnetic_propert;es"og a given sample .

o f with the field along any crystallographic dire&tion. Wé draw
the mdjqr corroboration of our caléulated anigotropy (sge fié;

. 12) of the high-field longitudinal'magnetoresistivity of
aluminum from the agreement between the calculatcd and mea-
sured 1nduceé torque.'i"‘ tff frl- '.”  e

The calculated longitudinal magnetoresistance agré’”

quite"well with previous_calculated.valucs for H along <100>.
&p

Pxppard (1964) estlmated a saturatxon valueuof Z of 0.35,
o s :
'Feder and Lothe obtained a value of 0 31._while our calculated‘

"

3.
.
.
3
¥
o

value is 0.33. Each of these calculations results ftom the
calculation of the conductlvzty using a nearly free clectzon
Fermi surface (no’ rounding &% the zone boundaries) and a
~ uniform relaxatlon time\r N | _
' The fact that the band of oiiits neax any extremal o ﬁ;

5

s orbit contrlbutes but ‘little to the longitudinal conductlvity
-means that-the use of central orbita {Lutes and Clayton 1968) - .~
for xnterpreting-sizeﬁeffect data on’ longitudinal magnato- '

.resistance can be quite m;sleadinga
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D.4 Longitudinél—Transverse_Ierms i - . R J\

Heretofore little has been.done about the:iongitudinal
" transverse terms either experimentail;‘or theoretically. The
'largely academic interest in them ﬂs in knowing the size of-
the error introduced by neglecting thenm. Although our calcu- .
lated longitudinal-transverse resistivityﬁcan be as large as 16\
of p , the effects on the usually measured properties (the
Hall coefficient, the transverse. resistivxty, and the induced ‘ >
torque) are small (less than 0.001%, 0. §%. and. 0.5% respectively
; at wy = 100) The effects of the. 1ongitudina1—transverse
terms on the transvgrse resistivxty and induced torques ‘are |

1argest in the high—field ragime, where they very slightly

’ modify the saturation values;g‘rhe largest changes in the Hall |
coefficient occur at low to intermediate fields. It is smallar '
tless than 0.2% change in the ‘low=-£field 1imit) than tha effects »

..on the other components. The largest changes in the longitudinal

' magnetoresiativity occur-at intermediate*tields {wt ~ 1) uh&re

'there in a changa of up to 20. 2\ in the detnrminant ot the _
conductivity matrix, which il ‘the only place the lcnqitudinal-

txanaverae conductivity components enter the exprelsion for )

- _the longitudinal resiutivity.




CHAPTER 'IV
INDUCED TORQUE IN -HIGH-PURITY ALUMINUM

A. . Introduction ..

. . The excellent reproduciblllty of previcus lnduced
torque experxments (Holroyd et al 1973) in 5-9's single-
crystail alum;num, ccmb;ned WLEP the xnherent adwanccges;

' of being able. to 1nvestig&te the galvancmﬁ/ etic anzsotropy
of ‘samples u51ng a probbless method, encouraged us to
' extend the low-field, 5-9'5 purxty induced torque data to

Loy

appreciably higher wt. The foux—probe experlments.

(Volotskaya 1963: Borovxk and VOk’staya 1965: Chxang et al

1969; - Balcombe 1963: Keaternich and Ullmaier 1971) which '*.'

-~
*
']

havo been done on hxgh putity aluminum show an alarming

degree of 1rreproducibility. with txansvnxso magnetoresis-

.tance which does not (usually) satuxata but rather exhibi:s ' R

a 1ineJr or quasiﬁlineat increase vith field in the high- . 73;:\
\field regime. The linear. term is repo:ted to.be’ 1arqent .
'_{or\(110> magnatic tipld directions. where the dinnnnionlass

slope S, uhq:e S -'oAp . is as largo as 5-10 -2 (lgsternich

L5

) und Ullmaier. L911) or avnn as larqe as 0 1 (Borovik und

VOlotnkaya. 1965).' Any luch 1inoax t:anaversc nagnetcreais- -
tance would be-ovident in an induced torque expcrinnn: {on
a’ sphorical aanple) as a linear increaso of Lnduced torquc

r

6



with field, as ma; be seen by inspectiug Eq. [15), the
appioxiﬁate'expréeeion for induced torque. Using the exact’  °
expregeion, Eq. [1@1, leads to\the'same‘conclusion.‘“ c
There are additional difficulties which arise in \\&B
induced torque exper;ments in higher conductiv;ty samplea.
for uncompensated metals the high-field saturation torque - _ 4.
decreases as %, while the de Haas-van Alphen torque oscil-
lations increase iﬂ'size: the coupled mechanical-helicon
- oscillations (Delaney and Pippaxd, 1971) also increase L
dramatically with sample puxity and with sample si:e. The
experimental remedies of these two difficulties are to some

extent mutually exclusive' the most obvious cure for the

former difficulty is an increase in sample radius since :_ -
the induced torque increases as . Rs'while the de Baas-van )
"Alphen toxque increaseiﬁpnly as R . but the lerger samples
that this would euggest qenerates coupled nechanical-heliten
‘oscillations which are even more t:oublesone "than the de

-

Haas-v;n Alphen torque.' ot

B."Sgggle-Pteparntion
o e

The high—purity sanples were cast as spheres rather -
than cuttinq spheres from a pinqle crystnl by npa:k ero:ion

_u had been done for the 5-9': aluninun. The mnocry\ullinn

.

‘“:spheten wore grown undex bigh vacuun in hlqb-puxity qrc#hlte
moulds using a modified Bridqann techniqua. using the '
apparatus shown-in rig. 19. -ma mm- w:e clemad by



-
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Figure 19. Apparatus for growing mono-

-

- crystalline spheres of aluminum: :
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first soaking in acid and subsequently'baking them under . ~

higﬁ vacuum -at.1300 K. This ?rocess also removed the layer-
of loose carbon'which acts as a release agent'in unbaked |
moulds, "and so a thin layer of loose c;rbon was depOSLted‘ - ;
in two- hem;spherlcal caV1t1es from an oxygen-poor bunsen
';,burner flame.  The mould was agaxn bakeé?nnder vacuun at’
" 1300 K. The reservoir was fxlled with alumlnum, .and the'
_ piston fltted in place. (It was necessary 40 use aluminum
chunks rather than a- szngle piece, since the latter melted
© 8O rapidly that the. ensuing collapse would squirt the molten
aluminum around the piston.) With a 300 gm weight (+3x10°

dynes/cm2 pressure) the molten alumlnum filled the 0 0;0!

inch access hole and starting tube and did not'pass the
piston whxch had a clearance cf up to 0. 004 inches with the‘tﬁ
. reservoxrj The furnace, at a temperature of 750'C. was: g'
raised at -the rate of approximately 1 .cm per hour.» The Qeatj
flow was contrclled by the necks in the mould at the top\:nd-
bottom of the sphenical cavity, and a 1lcu thernal condiic-
tivity) thin—wall staxnless steel tube supportinq the weiqht...
hese heat flow controls were necessary to ensure that the . o
stnrtinq tubc would be the-!irst part %o freeze. "and the i )
access hole’ would be the 1ant.° These ‘were checked' respec— 1,f‘ .
tively by cxanining the crystal orientation of thc—sphoro

" and’ the .starting tube, and checkinq the axterior ‘for-external
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' - -_-“-."-*- : : ' . . ) T e
voids and the density for intérior voids. Providing that ;
pressure was maintained in the reserv01r (that is, barring
leaks) tne dgamples grown in this manner were invariably void-
free single crystals, usually with a <100> growth axis o
(although <111> growth axes were also observed) The fill
tube was cut as far from the sample as possiblo with a )
jeweller 8 saw and the mould. separated. If the mould had
been properly carbonized, the differential contraction of

the graphite and aluminum allowed the mould. and the sample

‘all apart. ‘To remove"the starting and fill tlp9f the

"samples werefbeavxly etched in a\:oncentrated aqueous . -

aolution of NaOH, or heaVily electropolished.using Beidenreich s'

13

electrolyte (Heidenreich, 1949), to a smooth finish. The |
samples were then carefully checked for asphericity, and . _: 3

oriented to within 0 5¢ by back-reflection Laue x-ray difﬁrac-

tion. )

v 4

The best results {in the_ sense of, the highest wt

values combined with the smallest spuxious torques) vere

S U
obtained. with a IK inch diametar aphere grown. £rom 6-9' . .\\\_
grade aluminum obtained trom Comincog ?hia sample was - olactxo—
polished to a mirror—lika sphera with a mea;\diamitaz,ot 0.180

“inch, with deviations from sph.:icity that uo:p lasl than l;;

e
3

E ‘3‘-_ The Sample was oriented and mountcd in a Xal-r holdat

uaing Glyptal cement.. The sample holdat was friction £ittad

“and glued to a 2 o diamnta: quart: tod. ‘d the orianted,

“u
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sample ‘glued in place with a <100> axis within I° of the

axis of the quartz rod The orientation x-ray photographs

showed a moesaic spread of approximately 1° about twice the snal;
lest which we obtained in this manner for any sample (Aluminum

is notorious for its inherently 1arge mosaic spread (Gilman

1963) . The rod was suspended in a fixed dewar from a

7 nulling torque transducer WIth an electrically variable
compliance (Vanderkooy and,Datars, 1967) . The compliance

was increased until the nulling system could efzectively

“damp the coupled mechanical—helicon oscillations. ‘ fifteen

»inch Varian lron-core electromagnet*was ‘used with a one

inch'gep to obtain fields up to 29 kOe. 1t could be rotated .
‘at angular rotation fates (n) of up to 45 degreés per ‘minute.
For each field, the torque was recorded as a qbnction of
angle for both gsenses. of magnet rotation.“ Tge two torques

. at each angle were subtracted one from the other. Thie

¢

givee the induced toxque and should be fPee of the de Haas- :

_van Alphen torque which is independent ot the senee of a.

C. Results .

The induced torque at interuediate !ieldn shoued
.thc samé anisot:Opy as diad the lower: purity sazples. The
<110> and <100> dixec:;bns axe the directiona of particular .
interest, and the field dependence of the induced;toz?ue for

' fields in these directions ‘age shown' in rig. 20. The $110>
directlont are of interest eince with the eeqnetic tieid
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. N |
along a <110> direction the fouraprobe measurements £ind - -
the largest linear term in the transverse magnetoreSistance.
The expectedly large "linear field dependence of the induced
torque is absent. The dimensionless slope, S = %ﬂéﬁ . is
'less than 10 ? at <110> compared to four probe m:asurements
at <110» of S = 0. 05 and S = 0.1 (Kesternich and Ullmaier
1971, and Borovik and Volotskaya 1965). In all o:ientations
the induced torque fofiows the prediogions of the path-

iht gral qalculations, except  for a narrow angular region
- . . //

‘(: o)-aroundr53237fdirections. The field dependence of

e <100> dirECtibnS'is also shown in Pig; 20, where the

1inaar-11ke term!w1th 8-7*1x 10 -3 in these orientations may

§
bo seen. Where/the de Baas-van Alphen 63ci11ations :of torquo

are fortuitapsly quiescent near <100>, at, 26 x0e, the: <100>
anomaly may be seen clearly on the rotation diagramuin Fig.
Zl.c,The anomaly looks" suspiciously like a small open orbit
| peak in the. induced torque. ~ Balcombe (1970) has auggested "
magnetic breakdown fo: fields along <100> in aluminum. to :
. explain his four-probe nngnetoresiatance data for fields up
to 60 k0e. In the tield ragime where the probability of

naqnetic breakdoun is quite dit!erent !ron 0. 0 or 1.0,

. there¢ is an open orbit character (or extendod orbit charactar)

T to tho-network'ot orbito undnrqoinq magnetic breakdown |

vhich could genorate just sudh an’ anonaly around <100>.'

O

-',
)

JETE
Aua L




Figure 20. The field dependence of the

induced torque in high—purxty aluminum in the (001)'

plane, for fields in the <1do> and 110> auections.'.

The two <1003 directious have been averaged as have.
the two <110> dxrections. The lines result from .

the two parameter tit to these data - the ‘gsame

.procedure as was used for the lower purity- alumandm

.datd (Figure 16). . = . -

<

i 7

&
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Pigure 21. The torque rotation diagrams for -
high—puxlty alumznum at 4. 2 K,in a magnetic field of .

26 kOe, rotatxng at 31‘/m1n. The sample radius is

2 33:.06 rmm. The offset_?f the upper curves is twiée ,

.the 1nduced torque. ‘In the lower curves this offset .
has.been: ;educed to show the increase in induced torque

near the <100> field directions.
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i

The llhts in Fig. 20 are ?—parameter fits;of,the
single—ORw,‘uniforﬁ relaxation timé‘path integral magneto-
‘conductivity calculations. The théory doé§ not include
magnetic breakdown 1n the <100> dxrectlon, and has dif-
flculty in flttlng tﬁlS directzon._ Tbe_fitted-value of#t;,\thé
relaxatlon tlme derlqu from.the w1 scaling was 5.0 xlo;}I‘
sec, and the predlcted.lnduced torque amplztude (from the

' value of 1) and the fitted amplitude stale factor agreed
to within 35%, with the predlcted[gmplltude being too mnall,

' jas was the case for the [5- 9's aluminum data. i &

3

Other samples, grown in a simllar manner,exhiblted '

lower re a tlQﬁ tlmes, ‘but they also showcd no evidence of . @I

] !-

a llnear term to the induked torque except near the <100>

N

»dlrect;ons; ) : S
l) ';“‘ o . N ‘._._ A

This search for a linear term to the 1nduced torquo

which. could Ye correlated witﬁithe four probo linear transvcrse o
3 e Sl -
_mngnctoresxstunce gave pcrsistently ncgativc results. -ﬂith‘ ‘
¥ ,
the exceptlon.of thc <100> orientatlon. the induccd torquo
&n

é in® high—purzty alumiﬁum could bc undorstood for fiéldn An
'q;thc (100) plane usxng the simple;gath-xntegral theory. The
" <100> anomaly was not considered io have nu!ficicnt in!or-
mation (oniy itn slopeq to unanbiguously dcternlno whethor
or not maqnotic brcakdovn waa relpoaaible, .and so pcth-

integral calculaéions invoking maqnetxc bteakdoun 1n.alumlntnlwure

“ W F

not attcmpted. Other poasiblq o:igina of linear aaqacto-

:naiatance are di:cu!hed in Chapter vI. B

-
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" and anigotropy of the magnetoresistivity tensor components

CHAPTER V

MAGNETOCONDUCTIVITY OF INDIUM

.

A. introductxon

In this chapter, we discuss the fin1d¥dependence

4

of indium as caiéu}ated by the uniform relaxation time

path-integral over a nearly frce-electronlFérmi'curfaca.

The results are compared with the calculations for aluminum,

t

and with the expergmental rhsults-of‘indium. It was not -

possible to compare the theoratical and measured induced

‘ torqua, ag was done for aluminum. Despite a concerted effort

to grow single- crystal spheres of indium for induced torque,

f—experiments, using techniques similar to ‘those descxihed in

chaptar v, all auch aamples wera either polycrystallina
or too badly c?inned for the mnasured indpced torqua aniso-

&ggggy to be useable as a test ot ﬁhe calculatad galvnnomngnetic -

|

- The compariaon of these calculations with those o!

propartiba,of 1ndium.

1
aluminum is baaed on the sinilarity of the basic rerni sur-
face tOpoloqy of 1ndiun and nluninﬁé “the ti:st wone o! cach
mul is full; the sacond band hole surfaces are very s mm:

to the re-mapped :egnnnt: of the free olactron rerni apbara:
tho third band electron -nx!accs axo ring-like str?i}nxes

+
4

"~
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which differ Significantly from the frée—electron construc-
‘tions: and the fourth zone is emptp.’ Neither metal has
- been found to support open orbits in fields below 18 kOe.

- Despite these similarities, there are differences due

. to the different crystal classes of-the_two metals. Indium
is, face centered tetragonal {fct) with c/a = 1.0831 at.

low temperatures (Barett, 1962),‘ and aluminum is;face'cen- '
tered cubic3 .The Brillouin zone of indium may be generated
from the Brillouin zone of aluminum by compressing the 1atter s
zohe by some 8% along [oo1l, the four-fold axis. This dis-
tortion- changes the symmetry of what would have otherwise .

'been equivalent crystallographic directions in the two metals,

while loosely preserving the similarities in shape between ‘

their Fermi surfaces.. ‘The difterent symmetries are reflected
.in ‘the galvanomagnetic prOperties of the tuo metals. '

The Fermi surtacs uhich was used for these calculations
was the. single-OPw surfaceé of indium. vith the second band
,rhole "surface modified near W to exclude open orbits. _ shoun
. in Fig. 5 {in Chspter II) ' Tho galvanoaagnetic consequenccs
" of leaving the open orbit band in piace may be seen in Pig.. 4.'
| and since these dranatic ef!octl havs not been obsorvod
-'vo have used the disconncctcd rermi surface to reptesant the
holo surtacc. The electron sur!acc thst vas used ia a4 com~
- posite. of the third and ‘fourth bnpd single-OPW reraiﬁsurracos.
'It oonsiltod;ot a ring vith its uxiu along [001] and, a;i-_:

" connected from it, two’ halt*rinqs along each of llonl
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and [010], as shown in Fig. 5. 'Tne_major deficiency of this -
model 15 the snarp cusp which exists'at anylaragg reflection.
The uniform relaxation time path—lntegral over this
Fermi surface was done- in- the manner described in Chapter
11, and’ the field dependence of the magnetoresistivxty tensor
components were determlned as described for alumlnum in
'Chapter III. The’field depeddences were calculated for . fields
in the (100), (001) and (llO) planes of indium. The {100) and
{(001) planes, whxch are equivalent for fcc aluminum, are not

,equiéalent for fet indiuwm. L S

Calculated Galvanomagnetic Properties

B 1 nall Terms .*

The calculated anisotropy of the Hall coefticient,.

Ay - ° x/H for fields in the (100). (001) and (110) planes,

" is shawn in_Fig. 22 for wut'values of 0. 02, 0. 1. 0.2, o.‘.'
Y 0 and- 10. Thasa thraa xz planes ara all mirror planas, so
that the irreducible even-!ield Hall terma are zero, and
there is no amblquity in’ tha Ball cocfficient sinca

oxy‘f.;. yxe. BY the saqar relation. The calculated nall .
coefficient is_ isotxopic in. both the low-!ield and high-tield
limits, but exhibits. conaidarahla aniaotropy at. tntarud_i_at,e |
" fields. The :1.1a dapdhdlnct of the Rall coe!ticient-il T
shown in riq. 23 for fields along <xno> and <001>. Tha low-
fie1d Hall cosfficient 1:911.: a cuzrln# concentraticn of
':thr.. electrons por atom (vithin 2 at dr - 0.02), while in
——

qh-!lcld llnlt the. Llpliad caxrier cencantratloa is

vlthla lt o! one hola per ato-.



&)

"

.Figqure 22.: The calculated ahisotropy of the
Hall coeffxcxent, AH = p x/H. of fct indium. Tha aniso—

txopy is shown in the (010), (001) and (110) mirror

b d
Fed

planes. ‘for different values of Wle

o
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Figure 23. The calculated field dependence

*

of the Hall coefficient of indium for fields along the -

four-fold axis (<001>) and along a pseudo-four ‘fold
. A : | eudo- |
axig (<100>).
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'B.2 Transverse Terms
The calculated zero—fiel& resistivity; Por is

1sotrop1c even though indium is not cubic. This is the

case because our Fermi. surface model is a vxrtually complete

»
(though re—mapped)'sphere,,and the relaxation time and Eerml

velodity are. uniform over this sphere. The anisotropy of
Py for other conduct1v1ty models of 1ndlum is dlscussed in
qbapter vi. The usotroplc o is (to withln 0. 3%) equal to

™, /(nézr), where n is the carrier density, and-for indium at

' low temperatures PoT = 3. 03!10 -20 g cm sec. ‘
- N
The field dependence of. the calculated transverse

magnetoresxstances, 1p xx~P )/p and (pyy po)/o , are shown

in Fig. 24-a by the dotted and dashed lines respectively, for -

selected field orientationms. Therc is again a lrﬂeag lowr ,
-fxelé magnetoresxstance. nt an wTt value of 6.-the transvcrse
magnetores;stance has reached to within 1t of thc high -field
.fsnturat;on value. The calculated anisotropy of the high-field

transversc saturation magnet"kesistance of indium is shown in

Flg. 25-a by the upper curves..

B.3 ;Longitudinal Term ‘ .

The tield dependcnce of the. calculated lcngitudinal_'w
magnetoresxstancc of indium, (542 po)/o » i8 ahown by the solid
‘lines in Fig. 2‘-& for selccted field orientntlons, and the
nnxsotropy of the satu:atxon valun is shown Ain r;q.‘zs-a by

thc ‘lower solid C“IV@W for field orientatloan in the (010},

100X) and (110) planes:



-tions, qﬁa

&7

‘pigure 24. Caléu{ated magpétoresiétance as a
function of wT f0ﬁ indium (Figure 24-ai and.a}umingm
(Figure 24-5); for selected field directions. The solid
curves are the field dependences of the longitudinal .
magnetoresistance for fxeld directions specxfied'ln the
angular brackets, and for a magnetic field dlrectlon in
the - (110) plane 25° from [001]. The Qashed curves give’

the field dependence of (oYY °o)/° for'fields‘along‘the

‘symmetry directions specified, with y along [010]. [001]

and (110) directions for fields along 10011, [1101 and

{111] axes respectively. The transverse magnetoreaistance

-coﬁponent (o -0 )/o is nhown for the same tieid direc- .

XX O
~

hed\as the dotted 1ine. | : -

1N

]
¢
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.Figure 25. Aﬁ£;g£r0py.ofﬂthe calculated sa-
turation (high-field) value 6f the three magnetorésis-
tance components for indium (Figure 25;;) and‘a}tminum '
(Figure 25-b), with thé'magnetic field in the (010),
(001) ané\(llO) planes. The lower solid curve in e&ch
graph is the saturatxon longitudinal hagnetoresistance._
The upper Solld curvé is the saturation transverse
“nmgnetoresistance {oyy oo)/p ’ which is to be com-
pared with experimental magnatoresistance rotation :
djagrams for currents along [010], (001} and (110} di~
rections, for fields rotated in (010),‘3301) and (1Io)

: planel,respectively <3 For completeness, the other

' 'tzansvarse magnetoresistance component (0P )/D

~shown by the dashed curve. Bquivalont planea (010) .
and (001) of aluninum are both shown to facilitate con-

3

-parison vith indium. / - : ‘u .
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The longitudinal-tr sV
g al-transverse terms (pxz' Pax? py

B 4 LongltudinaliTransverse Terms

. and ) are zero for field orientations along symmet{y

dIPbizions of two-fold or higher symmetry In the three 7.~ .
YL

planes we ﬁave.calculated, only Pyz and Py x Saturate in’

the high-field limit. For all these calculations, the x-2 )

-1
7plan is a mirror plane, 80 tl‘mt;“"’,Yz and p 2y have H field
depen ce in the- high—field limit, -The calculated aniso- ,
tropy of the - high-field saturation value of o, /o is

shown in Fig. 26. ‘ R ' “

C. Discussion and Comparison with Sxperiment !

C.1l Hall Terms _ _
. ,
~ The general behaviour of the HAll coefficient of

~indium parallels that™ calculated for algpinum. For both |

 metals there aré low-field and high-field limits which are °~

i i

isotropic.: Because of the diffetent ‘atomic densities o£ ‘yﬁ_ﬂJ
.the two metals, the calculatcd Hall coetficients have dif-
ferent Values, but in each Case the low-field aaynptote
correaponds .to three electrons per atom (vithin 2%) and the
“high-tield value to one hol& per atom (withinclt) The
intermediate-field anisotropy of the Ball coetticient is h
latger for indium than it is for aluninun. as nny be seen

“ by, conparinq equivalent (and pscudo-equivalcnt) planea ;'
‘Lkot Fig. 22 (indiun) and 219- 10 (aluminum). 1he larger
misot:ppy of Ay £o: lndiun a:ises from the lﬁ:qor anisotropr :
o! t!.u Xy diltzihuticn ot,nez for. iadiua cw to uuunu-..
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Piqure 25. The calculated anisotropy of the

'high-field 8

- (010). {o01)

' 18I0 as H.

lonqitudinal-transverse term 6. <2 18 equal to Py

aturation vafue of the-longitudinal-

Zthanlverse resxstivity of indium, for fields in the

L

and (110) planes of 1ndium. The p}anes‘

J

‘i

r-.?

“ are all mirror planes so that Dy “and Dzy tend to

-1 in the high-field limit. The plotted

/.

in the high-field limit..
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The predicted high-field Hall coafflcient of indium

-12 -1 . -1

is 1.577x10 Vem A Oe v which is in good agreement with )

the measured values. Amundsen (1966) measured Ay as 1.58x10" -12
venatoel with an-upcertainty of 1.5%. Garlgnd and Bowers
{1969) found the high-field Hall coefficient to be isotropic
within 1%, as. tReory predicts.

The’ change in sign of the Hall coefficient of indium
has been experimentally observed in singlercrystal_indlum by ‘ ;\
’Garland ({969).' His dat# are comparéd wigh'ouf calchl#tiohs
in Fig.‘27. ,Garland‘s data may be arbitrarily scaled in the

abscxssa for each sample (corresponding to a choice of t for

each sample), and Garland's ordinate axis calibration error

is "of the order of 10%". Thare is good qualitative agreement,'
but the field depéndengé~qg-the theory is toq rapid fqr

wt < 0.2,and too gloﬁ for wt v 0.5. The anisotxdpy that is
.evideht in Garland's data at th; lowast fields cannot be ex-
_plalned by the (re-mApped) apherical Fermi suxface. This
aniso opy miqht be due, in part, to the apparent absence “of
the t§’arms in indium, as will bae diacussed in Chapter VI.
while this can account for the low-field anigotrogy, Garland‘s
low-field asymptgtic'valua'toranﬁ for fields alondll1001-is
ﬁbre negative than.tho rt?naéped‘sphete would p:ed;ct, and

dii&afdiné the a-arms would accentuate this discrepancy.

C.2 Transverse Terms -1‘ .
The field dependence of the transverse rmagnetoresistance
calculated for indiunﬁand aluainum are quito uiﬁiiar in genetil



Figure 27. The field dependenée‘of the calcu-
lated and experimantal Hall coeffxcxent of ‘indium, - The

experimental data’ are the helicon data of Garland (1969)

-
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form, as may be seen by comparing Fig. 24-a with Fig. 24-b.
The major differences are in the high-field saturation mag-
netoresiétance, whose anisotropy is shown by the uppér curves"
in"Figé. 25-a and 25-b for the (010}, (001) and (110) planes
of both metals. The saturation value of the calculated
. transverse magnetoresxstance tends to be larger for indjum

than for aluminum, and the anisotropy of the transverse mag-"
netoreslstance is appreciably larger for indium than it is

for aluminum. This may be understood best by cons;dering

a highéfield approximatidn for-uncompensated metals with, no
-open orbits- P exc is proportional to the k, integral of

<(k -k ) > and DYY depends in the same way on <(ky—k ) > - v
.- where k and ky are the reciprocal Space coordinates of the ‘
orbit cént;olds, d the angular brackets denote an orbit
-integrai'(ﬁhgner, 1972) Only the large orbits (those on

the second band hole surfaces) need be considered The third.
nband electrons contribute less than 2% to the_high-field trans-
verse conductivity, due to the small orbit size. This approxi-;
mation also ignores the effects due to the aniaotropy of the(
longitudinal-trannverse terms (less than a 1% error). '

| . Since the integrals of <(kj -k ) > and <!( ) '> over
thn lecond hand hole surtace o£ indium are genorally laxget
than the same intcgrals for aluninun. the latuxation trans= .
verse magnctoresistanca is gonerally 1axger for indiuﬁ.-lthe
-coapressxon of the second band hole surface o! indiun is some

8% alonq {oo1). . Coupaxed to aluminum its transverse satuxation
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magnetoresistanoo exhibits larger anisotropy. With ky along
L (001) b, is 2 minimum in the high-field limit, due to the
smaller ky'oxtent of the orbits. }
Tﬁe'high—field~anisotropy of&f' , shown by the upper
solid llne in Figs. 25-a and 25-b, is less than the calculated:
anisotropy of P ex in each plane. The central orbits for all
field dlrectlons in the x-2 plane share a_ common ky' while
there is no common k value for the dlfferent field direc-
tions:‘51nce the x axis rotates with the z axis. This

central band of orbits on the second ‘band hole surface, B

with thelr partial torrelation in ky,,are largé_orbits and

80 contrlbute 51gn1f1cantly to Uxx and hence to pyy Tho
: partial correlat1on in kY and the lack of any such corrolation "\
1n Kt would lead us to expect the anisotIOpy of °yy "to be
less than the anisotropy of P , as is the case. §

L, It is the anisotropy of pYY which is measured in con-
ventionai four—probe measuremcnts of magnetoresistance. ‘We o
expect the anisotropy to bo smnllest in planes where thore is

' the most ‘correlation in kyg that is for Y directiona where
the Fermi surface around k ‘- k = 0-is most nearly flat.

. Garland's. four-probo measuremonts show thia, as may bo seen
vin rig. 28. The smallest anisotropy in Dyy wvas tound for the
(111) plane, where ‘there is the largest plateau on the .
second band hole surface -around k, = k = 0; the noxt smal-
lest anisotropy he found was in the (100) plane which has a

smaller plqtoaﬁi ~and tﬁc.la';‘goot anhou:ooy vas !ound'tof a



\

Figure 28. The expera.mental ’ :Eon.g:-probe aniso-
-'tropy of the transverse maqnetoresistance, (pyy-po)/p
after Garland and Bowers, (1969). ('a) y 10° from [110];
(b) gidtnin_r of [100]; (c) within 1° of [111]. |

45'-
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plane whoee normal was some 10° from the [110] direction, which
has no plgteau. Garland's measured anisotropy'in tne,(100)
plane is larger tnan is our caiculated‘anisotropy. There are
peaks at [010] and [001] in both experiment and calculation,

'but pyy is measured to be larger for fields along [010] than
along [001], while the calculations predict the converse. .
The experimental minimum in pyy which is evident in Fig. 28-br
for fields near [011] is not reproduced well by our calcula-
tions. The comparison oi the {110) calcnlation (Fig. 25-a)
to the experiment' (Fig. 28-a) cannot be a quantitative one
due to the 10° difference in alignment.- ' .

A comparison of the ¢calculated high—field magneto-
Dreszstance values with experiment is compiicated by the exis-*
tence of linear magnetoresistance in the high-field limit of
most four-probe measurements on indium, just as was found for

most four-probe measurements on aluminum._This is a seriouS' N

discrepancy which has occasioned a wide vaxiety of explana-

O L}

tions. Since it seems possible w adequate care to alininate L

the hiqh-field linear magnetoresistance in potassium (Babiskin
and Siebenmann, 1971) ~and aluminum (preceding chapter), it
~is likely that the high-tield linaar naqnetoresistance is

not an intrinsic effect, but is reiited to.the. microatructuxe |
of the sanple - .that is, atructuxe that 1: amall conpared to
"the mean free path, but not small compared to a high-field
,Cyclotron orbit.‘ b 8 4 the linear nagnetoreaiatance tarn is
subtracted from the data, Garland's and Bowers' (1969) high-
!iold-aaqnetoreaiatance values range from 1.5 to 2.0 for

polycrystalline -;mpxa.; The thoo:y predicts saturation mag-
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netoresistance values of from 2. 3 to 3. l, depending:on crystal
orientation. This is in much better agreement with the single-
crystal data of Gaidukov (1965) which show high-fielri values
(less the "linear" terms) of from 2.0 to 2.5. The measure-

ments are systematically lowexr than our simple theory pfeaicts.

c.3 Longitu&?hal ‘Term (f”'
- H '

The calculatéd field dependences of the 1ongitudinal
‘magnetoresistance of indium and aluminum are muéh-the same.
'Thg/higher the symmetry of the magnetic field axis, the
- faster Prz saturates, as may be seen by comparing the solid

curves of Fig. 24, With the field along_a four—fold.axis

' (<001>) in aluminum or indium, P

22 gsaturates at the lowest

fields. At the pseudo-four=fold.axis in indium,o,, saturates
at somewhat hiéhéi\fields, but at iower fields than for the |
<1ill>, three—fdld’axis”in aluminun. For fields along the

[

pseudo-three-fold <111> of indium, along the two-fold <110>.

and :a; from symmetxy, p # saturates at proqressivaly’higher
fields.' This variation in the rate of saturation occurs
because the saturatzon ccndition is- determined by the period&«
city‘bf vzte). 1f an orbit has n-fold aymmetry, the Vs

period is a factor of 1/n times as large as.the cyclotron
period Moat (but not all) cyclotgon orbits with the field

k 'albng an n-fold symmetry axin have n-told symnetry in indium
‘and aluminum, so that Py 1n luch a diroction will aatuxata

at !ields that are/routhy n tines smaller than thu latuxation

field far from any symmetry axil. The cross-correlation of
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.the indium and aluminum results is possible because\of the
similarity of vz(e,kz) on their Fermi surfaces. '

A more noticeable feature of the longitudinal mag-
'netorecistence anisotrcp} is the very large variation in the
Asaturation value of bz;, for both iqgium and aluminum. It
varies from 0.3 to 1.5, with the lowest values for fields
along high symmetry directions. The saturatibg magﬁeteresis-
".tance gets progressively'larger as one reducesjtﬁe symmetry :

of the nearest symmetry axis to the field directlon. The .
-magnetore51stance minima result from the more nearly free— s (//,
electron nature of the longitudinal component of the Fermi
velocxty on cyclotron orbzts around,the hlgher symmetry = |
direction in the crystals. | Away from symmetry dlrections ' '

in these two metals, more, orbxts undergo Bragg reflections

“which change {or reverse) the z component of carrier velpcity.

These reflectlons reduce the z component of the mean free
path: (a kinky sprral) ;n the high-fleld limit, and thus in-
crease the saturation value of Pyee For the purposés. of ,
checking these predictions, no satisfactory data on indium exlst.
Garland's and’ Bowers/ (1969) data on polycrystalline samples
show high-field longitudlnal magnetoreaistance values that ~
fange frém 0.4 to'l.2. ! | |

The calculated. satuxatioc'vilues of- axx-and Py

"exhibit an interesting, but very app:oxinate inverse. corre-\

-lation , which may be_seen in riq.,zs. The tandency of °xx
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¥
to rise as p_, falls originates with the constancy of

‘vi + vi for each point on the Fermi surface, for a fixed

direction of y in the crystal.

C.4 Longitudinal-Transverse Terms ' } )

/

fhe calculéted longitudinal-transverse tefns of
indium and'aluminum'shon limited similarities, as mdy be
seen by comparing Fig. 26 with Fig.-14.' Note that the
two grapns are ngt plotted for the same R}anes. The longi-
tudinal—transvergé conductivity tensor components of indium
‘are everywhere small enough, for practical purposes,. to d':u;
be neglected in the matrix inversion to obtain the resistivity

tensor, as they were for the case of aluminum. Also as

i

they were in the case of aluminumf they remain egperlmentally

unmeasured.




CHAPTER VI

EXTENSIONS OF THE SIMPLE THEORY

In thig. chapter ‘we ;;resent and discuss the calcu- ’
lated galvénomagnetio-conaequenoes of relaxation time - |
anlsotropy and of more reallstic Fermi surfaces. 'we aléo
discuss the anlsotr0py of the transverse high-field linegr
magnetore31stan;g:7and show that . the reported anisotropy.
of alumlnum cannot be accounted for by .an- orbital conduc-

txvxty enhancemint at high fields. m.! R ) -

‘A. Relaxation

ime Anisotropy,* L

The effects of relaxation time anisotropy are il-
lustrated by allowing different relaxation times’ for the
' electron and hole'bands. We express the field dependences

of the Qalvanomaantic properties as a function of Wiy, where'

'_rﬁ is the relaxation time on the hole surface; and as a

.gunctionrof tﬁe'free parameﬁer Ta’ The where.ﬂte _ia_the
relaxation time on the electron surface. . . ~°
A.l Indium - 7 -

In Pig. ﬁB'thenfieid depEndenoe qtfthe Hall coefticient
‘of indium with the field along <1oo> measured at different
temperatures (Garland. 1969),;il compared with the calculated

. - . . E ’ +



a EigufE-ZQ, Tﬂépfield dependence of‘th% phtﬁ;
‘integral cdiculations of the Hall coeffi:iiﬁt of indium,
for differe;t ratios 3f the relaxation time on the élfctron
surfacea(r ) to that on the hole surface (t ’ compared
with the. measurements of Garland (1969).w\?oth ex-

__ perimeﬁ; and calqulations are for fields in <100> .
diroctions. “The Fermi surface used fbgjthe calculz&u:i.ons’.'=

qﬁa’tﬁe.Qdﬁpletg, re-mapped sirgle-OPW sphere.

-




1.5

95

INDIUM T
.o". -"’-"'
<|00) T
L TR
S
g/
I'J
3
10k
Euperiment ‘(cfter Gonand)
R

5



96
field dependence for different.values of Te/Th. The
parameter T /1 l has to be about 1.3 to explain the measured
low—fﬁéld value of Ay at 1.2 K, but then the functlonal
form of the flEld dependence is 1ncorrect. If the functional

‘form»is fitted at 1.2 K, then re/Th‘=“016'(which is the
. " value that Ashcroft (;969)Hestimated from Garland's data
from the zero-crossing field); hut thén the 1ow-field

- value of A, is incorrect. Furthermore, ‘the nearly free-
eleétrog model we have used has-foo‘many electrons,rand
the use of a more realistic Fermi surfaée_wéuld-énly compound |
this discrepancy, as is discussed in the next;section.

Despite the:difficulty in. %ec&nciling 6ur éheory

with’ the low-field value of Garland's measurements (whxch

. depends on ‘the hel;con theory of Chambers and Jonés (1962),

and has a calibratan'error which Garland quotes as bexng "of
the order of'ldtﬁ) it is possible gualitatively to explain ."f
'thc:rapld temperature dependence of the low—fleld measurements. -
The scattering rate, 1/, 18 the sum of the zero temperature
scattering rate (1/1') cnd the phonon scatterlng rate, whxch

is a functxon of temperature. Castaxng and Goy (1973) found
that, for indium from T = 1 to 4 K, the phonon sd%ttering rate
_on the electroh surface increases much more rapidly with
tcmperature than docs the scatterxng on the hole surface, so .

that / h decroases thh tempcrature.‘ Hhethgr or not this

reduction- in 10/: rcduces the zero-axossing field of tha Hall
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coeff1c1ent (as Garland has observed}, depends on the rela-
tive ‘temperature depehdence of Ta .and e The relative

| .
temperature dependences which Castaing and Goy quote

-~

r
land's data when coupled with our calcuylations, even allowing

(cyclotron resonance measurements) do not reproduce Gar-

the ratioc T /T to be a free parameter. This may be due to

differences in the average temperature dependences of the’

{

-1

transport relaxatlon times, Te and T from the otbital

"
3 Il L A ‘ .
cyalotron resonance relaxation time measurements, or the ‘

breakaown of the relaxation tiﬁe‘approximation,'or short-
comlngs 1n our Fermi surface model. o |

The assumptlon of different relaxatlon times for the
two bends also affects“the zero-£field resxstxvxty of lndlum(
meking it_anisotropic. The ‘anisotropy is ;acher small,

- amounting to 2% in oux nearly free-électron model, assuming

T /1 = 0.6, and 5% if the electron conductivity ic'entirely .
neglected. | o
A2 Aluminum S - _— : : s

{ The varxathn of T /1 "for cubic aluminum can produce
nc such zero—fleld anxsotropy, but there 13 a change in the .
low-field Hall coeffrcxent-as T /r is varied. The relaxaf_,
tlon time anxsotrOpy affects all the reszstivxty tensor
' components most in the low-field limit. The results of
calcuiations-using.te/rh -,6.6'arercompared,wrth the
1o/ Ty = 1.0 results in Table I. Both the low-field and high-
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Table I

Ratio of results for aluminum using Té/Th = 0,6 to the

results using Te/Th = 1,0

: ' <100> - <110> = <l1l1>
< ' - .

o, R - 1.11 S U & S U § |
Prx (88 W) | 1,012 . - 1,008 1.012
}yy(as WI+wo) - 1.012 1.007 o~ 1,012
o, (a8 wiws) 1.085 1,080 - 1.082
Py 0Ty = 020 o 0.337 0.344 0.335
WTy where A, = 0 - Q.74 - 0.72 .0.71

Vs

_\‘ ‘ /
.‘ ' .- .-v
4

£ ~



99
field limits are tabulated for fields along <100>, <1105,
and <lll> dlrectlons.

The four-probe Hall effect measurements of Borovik
_(1955!, and Forsvoll and Holwech (1965}, are compared in
Fig. 30 with the nearly free-electron calculated field de-
pendences of AH\fcr both Te/Th'= 110 and Te/rh = 0.6, T?e
room temperature data are ciosé tc the-calculations using
Te/Th =.1§0, and the 4.2 K data are ciose to the calcula-
tions which use Te/Tg = 0.6, the value suggested by p:evioué
work (Lick, 1;66);: Intermediate temperatures (?p K) may
be e;plained by assuming intermediate values offte/rh'

The decrease in magnitude of the (negative) low-
field Hall cOefficieﬂfzwhgn Te/Th iS reduced from 1.0 to 0.6

results from the scaling of the electron contribution to o

by a factcr of d 6, and frod'the scaling of the Ty of the
peak of the electron contrlbutlon by a factor of (0. 6)-'.
TOgether, these changes scale the low—fzeld llmlt of,AH by
a fac;or that is slightly less than (0.6) . _A simple two-
band sphericai parabolic.codel can reproducc.ﬁhis behaviour
fully, at the expense of addlng free parameters.

| The experimental dxfferences in the Rall coeffic;cnt
from sample to sample, that are evident. at intermediate ‘
~ tields in Fig. 30, may be due in part to different tnverage)
crystal orientations of the different samples, or due to a

breakdown of Kohler s rule - (i. e. the zero—f;eld resistxvity

~and the Hall resistivity being scaled‘by different “"relaxation -



PigG}p 30. The calculated and experimental
Hall coefficient of alumin%m. ‘The‘(unorientedf experi-
mental ‘data are those of F;)x:s'vqll and Holwech I(lS_GS) .
. The: calculations are for fields aloqg[?lboéf, withua‘
ﬁnftorm relax&tion Fime and for Te/th = 0f6.'.Thg ex-
perimental field a;cislig scaled by tfxe ratio'.df the
Debye.temperaiuie-(428 K) reéist}vity to th zero-

temperaturé reéi}tivity, DB/DO."

-y’
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times", as is predlcted by a more complete treatment of scat—

' tering than the catastrophic scattering approximation we. have
used, see Richards (1972-b) for example). The changes wlth
temperature'ere larger than the sample to sample variations.
The zero-field reeistivity.is increased by some 11%

by substituting te/rh = 0.6 for the uniform relaxation time"
assumption. Since this same substitution only increases the

YY .
‘magnetoresistance is redcced by soméwhat more than 10%. This

high-field values of p . and P, by about 1%,. the saturation

~ Just reflecte the fact that the eiectrona are'much more ef-
fective carriers in the lowaleldfiimlt than they are in the

‘.hggh-fleld limit, where t?eir small orblt sxze, and thus
small values of <(k, -k ) > and <(k -E ) 2, make them inef-

fective transverse caxrlers.‘ The reducticn cf the saturation
&

~—d§§netoresistance by this assumption brings the theory more
nearly into agreement with experiment, with the mejor | ‘
exception of the commonly observed high-fxeld linear magneto~
resxatance, which wi}l-be discussed at some length later in
this chapter. ‘ o | -
’ The high-field satuxation value of the.lonqitudinal
magnetoresistance -decreases by some 4\ with the_substitution

ot 1 /T = 0,6 for e ueiform relaxation tiﬁe} that is, the

high~field maqnetoresiativity has increased, but not as

much as po {refer to Table 1 £or d‘?“iﬁ)- ' -

- . ' B
-
L N : .
N . . -

<&
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B. Better Fermi Surface Models

The Fermi surface models we have used for all the .

f

calculations disﬁussed\fhus far have suffered from the de-~
fect of having sharp cusps in the vicinity of Bragg re- -
flections. The crystal potential rounds these sharp cusps,

" so that experimenfs do not show the linear low-field mag-
netofesistance'which are présent in our calculations. This
does not'sound_particulirly serious unless it is realized

that the high-field calculations should be very nearly cprrgct;
and that this 1iﬁeax 1ow-fiéld magnetoresisgdnqe is an extra
conductivity due to the cusps (or due to the discéntinuities;
in v(8) in the conventional 1o§-field expanéidnn(Ziman

(1964), pg. 259). To demonstrate both the shortcomings and

successesfof_dur sinyle-OPW Fermi surface models, we have
' calculated the %001> field dépendenée'pfﬁﬁherp&th-;pﬁegral
magnetoconductivity tenﬁor using A{hcxoft's (1963) four-OPW

-pseudopotential Fermi;surfgca model of aluminum.

'B.l Indium Without a-Arms | _—

Before comparing the results of the single-OPW and '
four-OPW Permi surfaces of aluminum, lat us examine the con~
sequences of a ruch simple: modi!ication of the sinqle»OPH
Permi surface of indium. The third band electron surface of
indiun apparently does not includo any pieces associated
uith the single-OPH *a-arms® (Mina and Khaikin, 1965)

/
a-arms are the third-band electron tubes o:lanted along <011>
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direétions. Mina and’Khaikin found no evidence of the a-
arms in their cyclotroh resonanée-expéfiments, but only
evidence of the third band ring (8 arms, along <110> direc-
tions). | o

We have constructed a sing1€LOPW Fermi surface
model for indium without the a-arms, and have ca;cﬁlated .
the field dependence of the path-integral conductivity ten-
sor component of this model for: fields alonq <001>, <100>
<110> and <111> directions. The low-field resistivities,
for currents along <100> and <001> directions (°<100> and
:001>,' respectively) are largen.than the iaotropic Po
which was calculated using the complete single-OPW Fermi sur-
face. The low-field values of o -, and Py which are

YY
? ) . l
given in Table II are all derivable ¥rom P.100,T and °<°01>Tf

which are 3.56x10 2° 0 cm sec and 3.20x10 =20 % cm sec. respec-

N tively. That is, ﬁhe':e;istivity ié“ioﬁer Along_the four-

| fold axis than it is perpepdicﬁlar tolthe four-fold ;xis._f
The low-fiéld Bailhcoefficiént‘éhows considerabie .

aniaotrOpy, as may be seen in Table II and Pig. 31, The | ~

anisotropy of Garland's (1969) data, which are also shown in |

' Fig. 27 is ‘consistent with the calculations, but the:’?af;;

- vertical scale o! his low—tielﬂ data is not in agreement

'with our calculations. His data are £or dttterent -ample:.

ficd

,and so di!tarent‘ho:izontal acalinq (di!ferent t'l) nay

F
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The galvanomagnetic‘effects_of deleting the a-arms of In

. field <001>

direction
y-direction [010]
ot . 3.03x07%°
o 3.56x10"2°
xx
~ 3.56x10"%°0
¥ -20
p 3.20x10
xX
AH(mT-.OZ)
12

S

High-field limit ratio of resisti

P ex o :958
Pyy -.958
Pz ' 1.014
Poy - .980

)

-.0092x10

g
<100>

L

" {001}
3,03x10~20
3.56x10" 2%

3.20x10" 29

3.56x10"29

-.3299x10"

é

- .952
940
1.181
.98

12

+<110>
{001]

<111>
[110]

3.03x10720 3.03x10"

3.56x10"20

*3.20x10"2%0 3,56x10
3.56x10"2% 3.45x10"

C

2 _ . 3533x10

3,31x10°
L20

12 _,.574x10 _
' . Ven A Oe ™

20
20

fi-cm-sec
{l-cm—sec

‘Q-Cm-sec
20

-12 7

. vity components of the calcu-
lations without the a arms to the

calculations with a;ﬁs.

.959
.955
1.056
";980

.949
.958

1.101

.979

rc«

fi-cm-sec

1

o
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Figure 31. _The uniform telaxation'time path-
integral Hall coeffxcient of indium without the single-
OPH Q. arms, companed with experiment {after Garland, _
1969). The orzentations in this figuxe specify field ‘-

directions. . - : _‘. .
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Vd ‘ o

" be chos*n for téb two sample;. This points out thc desira—
biliﬁy of measuri g the anisotr0py of’ the galvanomagnetic
properties of.a si gle sample, 'since with such measurements
it should be possible to sort out the effects of Fermi sur-
face anisotropy and the effects of relaxntion time aniso-
tropy. rn our calculations, the former has generated low:
fiel& anisotrogy in-the Hall coefficient, while the latter '
scales the low-field Hall coefficient uniformly, as was dis-~
cuased in the previous section.

ke - The high»field gaIVanomagnetic properties are not

changed much by neqlecting the. c-arms The major change "

.is in'the high-field ‘Hall coefficient, which is decreasad by
about 2! for all field orientations.' This is effectively a
2% increase in the,net hole concentration.' The change in '
the Hall term accounts for 4% of the 4 to 6% change in ‘the
hiqh-field transverseuresistivity. The chanqe in. Dy in the
high-field imit is quito anisotropic. boing larqest for
directions where the z qomponent of the carrier velocity in

most noarly freo-electron-like on the o arms. . -

L o y o
'B.2 Alumihum - F ur-OPH Model s S @' S

the plane waves, axp(i(k - qj 'ri, orthogonalixed to thc

ion cores. The four.vnluoa of the uciprocal lattico vnctorl

2

S 4

%
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Ej {giving the four plane waves orthogonhlized to the core
states) are (000), (002), (111}, and (111) in units of 27/2a.

for k' s in the two irreducible 1/48 th

's of the Brillouin zone
wthh are closest to these reciprocal- lattice vectors. Sol-
ving the energy eigenvalue problem resulting from the four-

OPW expansion of the Schrooanger equation is equivwalent to

'éolving for the eigenvalues of a four plane wave expansion

© with a differenﬁ potential. This is the pseudopotential,

which incorpor;teS‘the orthogonalization condition, and is -
a weaker potent;al‘ihan the orlginal potent1a1 | A great com—
putatlonal sxmpllflcation is achieved 1f the pseudopotentlal
is assumed to be a true (or "loCal ) potential, as Ashcroft

has. done. - In thlS case the energy elgenvalue problem reduces

~ to solving the secular equation:

i where T* ) 7* (k—gi)

. is the (g -gj) Fourier . component of the potential. Since

-

is LS
s L2 S | |
= k-E .. v{(002) ; V(1) v(111) |
'.vgcpz) ’ I—-(x—(oog‘f /a) ‘e v(11l) - viiil) .
T qv{111) . v{ly) ‘"2( -(111)2r/a) -s  v(002)
h | ' | Zm 2
v . V(111) v(002) ,—(E-um" /8)%-g

Det ((T»i—s)éij + V(gi-gj)) =0 (161

2 : : - -
2 is the kinetic energy,., and V(gi-gj)

v(0) may be incorpo ated into E, the explicxt sccular equation

re
4

-
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There are three parameters for the four—OPw Fermi surface:
'V(OOZ),HV(lil) and Eg, the Fermi'energy; Ashcroft (1963)
fitted these three parameters with de Haas-van Aiphen effect -
data, and the condltlon that the Fermi surﬂaqeegolume in

the extended zone scheme correspond to three electrons per
atom {(which he found to be nearly equivalent to the conditxon
* that jye cyclotron mass be normalized to the single-OPW

cyclotron mass). These values which we have used are

5

v(lDO) ?&§£;55 v(lll) = 0281 and EF = 0. 4280 in atomiC‘unltsr

1though the band structure whlch is determ;ned usxng
the pseudopotentlal thh four OPH‘S has not’ converged (that
is, taking the same pseudOpotential form and more OPW's .|
results in an apprec;ably dlfferent band structure), the four-

OPW model ﬂlth the three parameters (2 pseudopotential para-

meters and the Fermi energy) as f;tted by Ashcroft (1963) has
been rather successful in accounting for the measurcd proper-
ties of alum;num (Grelssen and Sorbello, 1972) : Although

there ‘is stxll a lxne of contact between the second and third
bands ncar the W poxnt of the zone, the sharp cusps of the"
.single—OPw modcl have otherwise been rounded off. without
1ntroducxng too 1arge a computatxonal burden for our purpoSes.f
To reducc the computational burden as much as possible, full
use was madc of the rotationnl and mirror symmetry of the or—
bits. The path integrals were ovaluated in terms of the

analytic arc 1nteqrals dcscrxbed in Chapter 1I, vith the arc
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parameters-vl, Vo kl and‘angles a and B determined numeri-

¥

cally from the four-OPW band structure. The larger.orbits
‘each required the evaluation of about 36 arcs (for the ir-
reduc¢ible one-eighth of the orbit) to obtain convergehc; of
the path integrals in.the low-field limit. The- single-OPW
model required only 2 arcs to deéqribe'thé equivalent. one-
eighth of the orbit; although this.orbit symmetry wdéfﬁot
_utilize&. Although fhé_fbur-opﬁqmodel(fot_the field along
<001>) nominallyjrequired 1ess—than twice the computer time |
that the sxngle-OPW model réguired: much more human inter—a

¢
vention was requlred for the fou:-OPH model, to guide the

arcs around‘lxnes of contact, to follow the electron "and hole

orbits in the proper sense,) and to choose. the best numerical
step s;zes for the different orbits. Thus only the <001>__
'dxrection was evaluated for the four-opwW model.

o - Calculations of oxx( %X ‘yy) °xy and azz aro.com--’

parad for the slngle-OPw and four-OPH models in Fig. 3a.

In the high field limit axx and oxy of the two models agree

“vory well. The major differences are in the low-field limit |
of the conductivxty, the low to intermediate field dependences,‘f
and in the highwfxeld ‘'value of c }. A aimilar ccmparison ot’

.the resistivity cpmponents -of the two models is given in
Fig. 33 " |

L N -

. The calculated zero tield resiltivity. Co* is larger

for the !our-OPH model than for the single—OFW nodal:

4




Figure 32. The unifo;m relaxation time path-
integral conductiviﬁz of aluminum, for the field
‘along <100>. The dashed lines are the cdnductivity

components calculated using the siné*e-OPW Fermi

surface, and th;'solid lines are the four-OPW calcu-

oy
w

. v \;;ations.

-~
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Figure 33. A coéparison of the fiéld'de-
pendence of the single-OPW (dashed line) and four-
OPW (solid line) resxstivity components of alumlnum,_
calculated: for the field along <100> using the unzform ,

relaxqtion tima path-integral.
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<
PT = 2.91XI0—20 ! cm sec for the four-OPW model, compared

with p T = 1.95>¢10“20 Q cm sec for the single-OPW model.
This resistivity increase reflects the sﬁaller sprface-aéea,
and smaller Fermi velocity (near Bragg reflections) of the’
four-0PW model. (Recall that..po may be expresséd'as a sur- -
face 1ntegra1 of VpT- .} The smaller Fermi velocity affects

b;z almost equally in all fields - the ratio of the p, s of
the two models are 1.53 in the low—flold 11m1t; and 1.45 in

the high-field 11m1t. The>longi£udina1 magnetoresistances

of the two models éhe plotted as. the lower curves in Fig.

34, The lower four-OPW value is due mainly to the rounding
of the Fermi surface cusps,,;hich'generates a smaller longi-

tudinal conductivity for the third zone electrons and the

central band of orbits on the four-OPW hole surface. The

electron orbits are smallet, with the Fermiﬁ;elocitf smaller‘

than the f;ee electron Ferml velocxty, and the central band
of orblts on the hole surface of aluminum with the field

| along <100> has v, values_that, due to the geometrical roun-.

dlng, are much smaller than the correspondxng v, values on .

the sxnglc-opw surface, for fields along <100>. The <100>

dlrectlon is a singular direction in the sxng1e~opw model, since

it is- only JJ\thiS d;rectlon ‘where <vz> is non-zero for. the
centraf“hole orbits. The <100> direction is not singular in

this sense 1n the-four-OPH model.



Figure 34. A comparison of the single-OPW
(dashed lines) and four-OPW {solid lines) magneﬁé-

resistance calculated for aluminum.
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The change in p  also affects the transverse
m?gnetoresistance, whose field}dependences‘arc glso com-
pared in Fig. 34, but in this case because there is only a
small change in the high-field transverse resistivity, tﬁe'
" four-OPW transverse saturation magnetor;sistance“is much
smaller than the single-OPW magnetoresistance (1,42 com-
pared to 2.83). " \i>

The Hall coefficients of the two calculations are
compared in Fig. 35.i%In the high-field limig; the roundihg
of the electron and hole bands may be seen to be cqual in
volume - the Hall,coefficiectc Both correspond to one hole.

per atom. : In the low-field limit, where the electrons are

dominating'thé Hall conductivity, the effect.of-the reducfionc

in size of the electron pieces of the Fermi surface may be
seen. The four-OPW low-field Hall coefficient ‘is less nega-
‘tive than that of the sanle-OPWrmodel. QualitatiVely, this
';has the same effect as thc reduccionrof the electron relaxa-
'tion tima. which was discussed in a previous section. ' To
distinguish betueen these tuo mechanisms would prcbably re-
quire reliance on the measured anisotropy of the Hall coet-.
ficient within one sample.

The changes introduced in pijﬁn) by including the
effects of the crylta_l ‘potential have brought the transverse

magnetoresistance and_lduwficld_aall coefficient closer to



P
¥ 2

' “?igure 35. A‘compazl:ison. of the ingle-OPi;i. .
(dashed line) and four-OPW (solid line) C;fllcoef-
ficient of al@inm, calculated using the uniform
relaxation time path-integral, for fields along

<100>.
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the experimental results. )
C. Linear High-field Transverse MagnetoresistEnce
., The linear high-field magnetoresiétance which is™ é?&

observed in uncompensated"ﬁetals with no opeh orbits’
(Resternich and Ullmaier- (1971), for Al; Garland (1969),

for In; Babiskin and Slebemann (1971), for K} cannot

be accounted for on the basxs of the simple Lifshitz theory j

of galvanomagnetlc properties. The 1inear‘component is

.

quite sensitive to sample preporatioh and crystal defects.

. The purpose of this section is not to review all theories

b

‘ : 1
-of the linear magnetoresistance, but to. examine the aniso-

tropy of the t/gnsverse linear term predxcted by one class
of theories and compare it to the observed anlsotropy, for
aluminum. L

The observed- high—field transverse linear magnetg— |
resistance indicates thet the transverse conductivities have
been enhanced from an~? deoendence to afi-l, or rether a. |
|H‘%] dependence;' This.transverse conductivity enhahcemantl
may be viewed as a majoetically enhanced scetteriog, or a

magnetic reduction of the relaxation time. It should be

noted that the enhanced scattering time ‘increases the high-

field transverse conductivity because it is caused by, rather

-~

than relaxed by.scatterxng. .
The observed iﬁfiotropy of the high-field linear:
magnetoresxstance aIOpe oftert a tantalixing clue as to its _

h

origin. This slope.is largest for fields along <110> as

i
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I
is shown in Fig. 36 (Kesternich and Ullmaier 1971) - the axis
of the-electron ;cylinde;s“j If the transversg.conductivity
enhancement were sn"crbital enhancement of thb‘form of
(1¥mct! (where t is a.free‘parameter) might not the smaller
masses along <110>Vgivs rise to the larger linear magneto-
resistance? Since our calculations can.check such a hypo-
thesis, we proceedéd to do s0. - .

Richards (1972-&) has predicted just such an enhance-
ment in the high-field regime where the effects of Landau
level quantxzation become important. ‘The Shubnikov-de Haas
effect is just such an‘sffect, uscalif,attributed to an

oscillatory (in 1/H) relaxation time which arises from the

oscillatory density of states which is available as the final
states of scattering events. Richarcs proposes that the
oscillatory‘density of stath must'glgg_be,iscluded eipiicitly
in the Lntegration over energy. He concludes that pure.dif-
fusive scattering (small angle scattering that is mainly

. scattering wathin_a Landau’ leveI) will enhsnce the semi-

r

. classical transverse conductivity of an orbit by a factor

F, S o N
P =1 +.z/(exp'(zxn)-1) T s
, 2w2kB- ‘ '
where X, = 'TT-" Ty snd Ty is the Dingle temperature. o
This is approxxmately of the form, for small Xpe -of (1 + : r).

’

»
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.

where T is tne nzgdeu level lifetime. To see if.Riehards'
(1971) prediction of an intrinsic linear'magnetoresistance ////
could account for the- observed anisotropy, we applied’ an |
enhancement of the form of Eq. [18] to the path-integral
transverse cpnducilyitiee of ‘each orbit, where W, is the
cyelotron frequency of the orbit, andrr/T Iis an adjustabie
~ parameter. which is proportional to the Landau level life-
time in Rlchards' theory. If the 1inear magnetoresistance
were generated by any such o;bital enhancement of the semi-
classical path-lntegral transveree conductiv;tlee we would
expect some’ value of rr/r would reproduce both the slope and the
anisotropy of the slope of the linear magnetoresietance.
This was not found to be the case, as may be.seen in Fig.
v : :

36. The observed maximum in slope with the field along <110>

was not reproduced, and 50 we conclude that the linear

magnetoresxstance in aluminum is not a simple orbital enhancej
ment of the transverse conductivities. The linear'term in
Richards'ltheory also seems to pecome appafent at-higher.
fields than is found experinenta;ly There are of course |
other theofies of the linear magnetongsistance (for-a summary,
see Falicov and Smith 1972). ‘but these theories cannot be
checked direcz{; by our calculations.{ -

" The fact that, with care, it is possible to prepare
potaxsium (Babiskin and Siebenmann. 1969 1971) and aluminum

{Chapter IV) which exhibit little or no linear magnetoresis-

’



Figure 36. A comparison of the anisotropy of
the linear magnetoresistancé of aluminum.measured by
Kesternich and Ullmaier (1971) and the predictions of

Richards! (1572~h) theory. The measured and calculated
field dependences are shown for fields along <110> and
along <111>, with the current along <112>. Note there is
an offset of the two calculaéed sets of curves. The
'cal?ulations are for different ratios of Landau level
lifetime (rr) to the transport l;fetime on the hole
surface (Th)j The calculations assume fe/rh = 0.6,

-~ and used the single~OPW Fermi suxface of aluminum.

L
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tance suggests that this behaviour is not intrinsic, but
rather is relatod to the defect structure of a sample.

These sample inhomogeneities ma; make the diffusive term
important in the Boltzmann transport equation‘(Eq. [31).

The important structure for these effects would be micro-
structure that lS small compared to the zero-fleld mean ?ree
path, but not small compared to a hlgh -field cyclotron orbit
diameter. Such structure would only affect the low-

rield properties in an average way whlch could be adequately
treated theoretlcally.assuming a homogeneous sample. In

the high-field limit, current strssmlining (or diffusion)
would result,’és Babiskin and Siebenmann (1969,1971) have
proposed. l?here does appesr to bero correlation"between

smail orbits and large linear msgnetorosistance in those

samples which exhibit this effect. The losgitudinal magneto-

resistance has a ‘larger . 'linear term than have the trans-
verse ternms in potassium {Simpson, 1973) where the smallest -
_ orbits (in both real and reciprocal space) are 11m1t point
orbxts which contrlbute most strongly to the longitudinal
conductiv;ty. In aluminum, the largsst linear term is

genarally observed for fields along <110>. (Kesternxch and

Ullmajier (1971), Borovik and Volotskaya (1965))., which is

. It is difficult to explain

an axis of two electron 'tubqs'

this correlation using any h eneocus transport §h°°fy =
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wherein we expect the high-field magnetoresistance to be e
but little affected by such small orbits with small values =
of <(kx-ix)2> and <%ky—iy)2>. ) ya | ' '

These ohservations qualitatively seem to fit the
ideas of Babi§kin ana Siébenmann about thn origin of the
linear magnetbresistante, outlined above; and strengthen
their concept of a "macroscopic magnetoresistance® attti-
butable to the current distribution, with magnetic field, over
dimensions greater than the mean free path (a kinky helix o
whose mean radius decreasés as‘the~fieiéﬁin¢reasés)., The
resulting macroscopxé'current redlstrlbutxon would cause
the current streamllnes to be pinched, 1ncreasxng the apparent
magnetotes;stance approxlmately linearly ‘as the plnchxng

increased with field.

An unequ1voca1 resolutlon of the cause of the observed

inear magnetoreszstance lies prcbably in a very careful

characterization of the experimental samples (to ensure that
the homogenaity condition is satisfied, orLEg,Specify the
inhomogeneltles if it is not), combined with ‘anisotropy
rmaasurements of the magnetoresistance slope. Calculations
of the anxsotropy, as we have done for Richards' theory.
can then eliminate some theories, which otheru;ae have no
, renl test, since fitting only the slope with one adjustable
parameter (as most proposed theonxes ‘have)? cannot be very |

convincing in itself.
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CHAPTER VII

QONCLUSIQNS

The anisotropy of the field dependence of the.‘
eemi-claSSical magnetoresistivity tensor of crystalline

metals provxdes a powerful test of transport theories.

_The goal of charge transport theories, the prediction

of the tensor function p(u) in terms of the independently

measured Fermi surface parameters, should be focussed

.more on the anisotropy than on the field dependence for

the field in only one orientation. This approach requiresu
reliable experimental methods of measuring ‘the anisotropy,;
and requires more computational effort on ‘the pa;t of
the_theorist, but the rewards{ire much-greater. not-only
is it a more complete and more rigorous test, but the ex-
tensive nature of this comparison permits even'a simple
theory to show not only its deficiencies, but also the
ways in which it agrees‘with experiment. In this latter °
reapect. the anisotropy is a more: forgiving:kind of compari—

son than the very intensive comperison for only one field

-orieﬂtetion, since even if the theory 'accurately accounts

122
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for only that part'of the conductivity which generates
most of the anisotropy, there will be some measure of
agreement. Even if there are no' open or extended orbitsi
on the Fermi surface, the Bragg reflectlons of the carriers
can generate very considerable anisotropy in the theore- .
tical p(H) which-must then be-compared with experiment.’

For aluminum, the induceé torque technique gave
- fully reproducible results (uhich the four-probe method
did not), and provided the necessary extensive data ‘for the
oomparison'with.the path-integral predictions; There was
excellent agreement Betwebn these experiments and the patn—
integral theory, with a RMS deviation of less than 2. 5%.
The rather znvolved dependence of the induced torque on p(ul
was Eo handrcap. The path-xntegral calculatxons and the
Vinduced torque technique complemented one another beauti-
-fully, the calculations being Bupported by the experiments
\agd the experlmental results being explained by the theory.
The induced torque anlsotropy of ‘some 10% was interpreted as
confirmation of the calculatedAlongrtudinal_conductiuity :
aniaqtropy, which required a‘careful k, integration over all
orbits, and cpuld not have been determined usxng a small
number of . epresentative ‘orbits.,

'Induced-torque experiments in'high-purity aluminum
(to wt ~ 25) showed no sign of the'linear transverse mag-
netoreaietance which is reguiarly reported in four-probe

- measurements, except for a»narrow {=3*) band around <001>
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which was tentatively identified as a consequenqe of mag-
nétic breakdown. The reported anisotropy of the linear mag-
netoresistance slope (measured by the four-probe technique)
was used to show that this linear magnetoresistance cannot
be due to a simple orbital enhancement ‘of the path-integral
conduct1v1ty, as had been suggested.

The path-integral method was found to be an ef-
ficient means of evaluating the semi—classical conductivity
~ tensor function. It 15 a technique which can encompass
arbitrary Fermi surfaces, anisotropic Fermi velocities
(including anisotropic electron-phonon mass enhandementS).
anisotropic relaxation times and ma //gnetic breakdown. It
is valid for any magnetic field and is economical of ‘com~
puter time: . even for our simplified Fermi surface models
consisting of re-mapped spheres, the evaluation and ordering
of the single-OPW Fermi surface arcs took some 20 times as
long as the path-integral.evaluation (assuming a uniform
_ relaxation‘timei for one wt vaive, kalthough the Iatter
procedure was carefnlly optimized while the former was not).
Thus the use of high-field approximations 1n the calculation
. of magnntoconductiVity tensor components is not justifiable
except for cases where the catastxophic acattering approxi-

mation is not to be applied.- The anisotropy o! D(ﬁ) ahould—

be of considerable assistance in determining the form of
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the‘scettering and its anisotrgsﬁénmgge-separability of
Fermi surface geometry effects and the effects of scattering
anisotropy were demonstrated usiné the low-field Hall coef-
ficient anisotropy and value.

The single-OPW Fermi surface model of aluminum was
shown to be a“gocd model for most of tne“high-field gal-
venomagnetic_properties, but for wrt < 1fthe effects of the
lattice potentiel are important; as they are for.the longi- -
"tudinal magnetoresistlvity in any field regime. The single—
OPW results also lndlcated that the lbngltudinal—transverse'
magnetoconductivity components can be safely ignored, for
\practical purposes,- in the matrlx inversion to obtain the

[ 1

magnetoresistitvity tensor.

a

The different calculated anisotroPLes of the galvano-

magnetic properties of aluminum and indium were related to

the geometrlc features of the Fermi surface from which they
arose. This understanding o%/these semi—classical effects

of the Fermi surface geometry is a prerequesite for harnessing
‘the full potential of the galvanomagnetic anisotropy and
‘ita'field and-temperature_dependence, for the teeting ct

transport theories and scattering mechanisms.

'

.
. a
- -
\ -
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