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ABSTRACT

The superior high-temperature elastic-plastic pt@secoupled with greater damage
tolerance when compared with monolithic ceramickentramic matrix composites, CMCs,
promising candidates for challenging applicatiamshsas engine components, rocket nozzles,
cutting tools and nuclear energy reactor core comms. Anelastic recovery is the time-
dependent back strain observed upon the load rérialesving creep. In whisker-reinforced
CMCs this can be a factor limiting operating candi. Plastic strain misfit between two
phases is thought to be the main driver in termshefinteractions within a percolating
network. However, the network deformation mechasisre still unclear and a previous
neutron diffraction study showed an unexpected edser of peak width after creep

contradicting the theoretical predictions.

In this contribution, the finite element method {HEs applied to a representative
volume element (RVE) with proper boundary cond&idan order to simulate the creep
deformation and hot pressing processes. Three geesneave been generated and studied: a
3D randomly-oriented short-fiber unit cell withofiiber to fiber contact, generated by a
random sequential adsorption algorithm; 3D regylaligned single fiber unit cells; and 2D
regularly aligned percolating unit cells. Deforroatimechanism has been studied from an
energy point of view and compared with a modifiethlgical model. Then a virtual
diffraction model has been developed providingaanwork to transfer information between
the FEM simulations (strain fields) and the diffrac pattern in terms of the peak width (full
width at half maximumFWHM) and peak position as a measure of stress disbtrband
mean stress state respectively. Furthermore, thgliog effects of external stress,

deformation mode, and thermal stress on the diifrapatterns have been studied.

The critical importance of a percolating whisketwagk for the anelastic recovery is
demonstrated based on the 3D multi-whisker randoitncell. Whisker bending is shown to
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be the dominant mechanism over contact effectsigltine creep deformation of a composite
containing a well aligned percolating whisker natoased on the 2D unit cell model. Good
gualitative agreement was found between our FEMilsiions and the analytical model of
Wilkinson and Pompe with regards to the maximunoverable strain and the characteristic
relaxation time. The analytical model capturegtadl critical factors characterizing the strain
recovery, e.g., the effect of creep pre-exponemstemt, whisker Young’'s modulus and aspect
ratio. Furthermore, it is found that the deformafitom an initial stress-free state inevitably
introduces peak broadening of whiskers inside thgixa Several factors determine the peak-
width and -shift, i.e., creep strain, applied sty@spect ratio and geometry. However, thermal
stress from the cooling stages following creep &otl pressing processes shelters this
broadening effect and complicates the trends. \WWidging peak-width changes from
narrowing to broadening are predicted dependinghengeometry and applied stress. The
peak position is shifted to a lower angle due ie tilermal effect. This clearly explains the
contradicting phenomena motivating this work anad¢eto that recommendation that a
diffraction source with high angular resolutiomeeded to detect the subtle change of peak

profile during creep.
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CHAPTER 1

INTRODUCTION

As compared to a monolithic alumina ceramic thetaddof SiC whiskers into
an ALO3; matrix produces enhanced fracture toughness vattou3 to 4 fold increase
(Becheret al, 1984, 1988), higher resistance to thermal shd@géet al, 1987) and to
room temperature slow crack growth (Beckeal, 1990) and enhanced creep resistance
by up to 2 orders of magnitude (Lét al, 1990, 1991). This composite material has been
widely used for cutting tool inserts, valves, puogmponents and extrusion dies in the
commercial market. Meanwhile, as a promising caateidor structural applications for
more fuel-efficient energy conversion systems whiedjuire higher service temperatures
and lighter weight, its creep resistance is perhi@yesmost critical high temperature
property. The creep mechanisms 0§@¢-SiC,, composites must therefore be understood

to enable a reliable employment.

However, the reinforcing effect of the SiC whiskarthe creep property is not clear.
Of particular importance is the phenomenon of atielaecovery, which is the time-
dependent back strain observed upon load removab@s-SiC,, during creep deformation.
From an engineering perspective, anelastic recolmars the operating range of CMCs.
From a scientific perspective, anelastic recoveny loe studied in order to develop a more
fundamental understanding of the complex interastiof reinforcement network with the
matrix. The mechanisms of this anelastic recovesystll under investigation. Generally, the
mechanical performance of these composites is depeon the individual properties of each
of the constituents, the distribution and morphglofphases present and the properties of the

interfaces between the phases.

Previous modeling suggests that whisker bendinghés dominant deformation

mechanism in an aligned percolating network (Wskim and Pompe, 1998). Experiments

1
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were performed by Quan (2004) to verify this, usiegtron diffraction peak-widtiF(WVHM)

as a measure of elastic whisker bending, and pesitigm to monitor average residual
thermal stress. These experiments on crept alucoimposites containing 20-30vol% of SiC
whiskers showed an unexpected decrease of pedk fordhe <111> whisker peak which is
parallel to the whisker axis. One must thereforesier competing mechanism. For example,
Hertzian contact could also exist along with begdas the deformation mechanism when the
whiskers network is formed, and contribute to thestee energy driving the back strain.

However, both mechanisms lack of support from expsrtal data via diffraction.

The primary purpose of this work is to addresswiesker network deformation
inside a creeping matrix and provide correlatiostsveen the deformation and the diffraction
characterization. Chapter 2 reviews the currenerstanding of creep properties of,®¢-
SiCy, some composite theories related to elasticity arekp, and phenomena and
mechanisms of anelasticity. In Chapter 3, finitenent simulations used in this work are
introduced. Chapter 4 illustrates the virtual difffon model connecting the FEM simulations
and diffraction patterns in terms of peak-width gowokition. Chapter 5 discusses the
anelasticity modeling for the ADs-SiC, composite. Chapter 6 presents the correlations
between deformation and diffraction pattern. Inptea7, we summarize the present work by
highlighting the critical results obtained followég a discussion on some ideas for future
research.



Ph.D. Thesis — JUAN KONG McMastédaterials Science and Engineering (2012)

CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

This chapter reviews the background literatureiloe-freinforced composites related
to the study in this thesis: section 2.2 introduites structure of ADs-SIC, composites;
section 2.3 describes the basic creep theoriemgleghase alumina; section 2.4 discusses
observations of creep properties 0§@¢-SiC,, composites; section 2.5 presents some theories
of elastic and creep properties of compositesrimgeof micromechanical (rule of mixture,
shear lag model and some mean field) theories alkth¥én and Pompe’s rheological theory
(1998), respectively; section 2.6 gives detailddrination of the anelastic recovery from
experimental observations to the hypothesized nméiing; and section 2.7 offers an overall

assessment of the literature.

2.2. Structure of Al,O5-SIiC,,

2.2.1. Crystalline structure of alumina

Alumina, the only solid oxide of metal aluminiumashthe chemical formula of
Al,O3 existing in many kinds of structures, namelyy, 6, 6, n, B, ¥ and x aluminas,
summarized thoroughly by Wefers and Misra (198¥@ntLevin and Brandon (1998). The
most prevalent and thermodynamically stable formnr-Ad,O; referred to also as corundum,
ruby or sapphire based on the occurring type awdl lef trace impurity, while other
polymorphs are generally categorized as trangti@ses. Table 2.1 shows some commonly
accepted processing routes and phase transitioersees toward the stalteAl 05 (Levin
and Brandon, 1998). A theoretical explanation fer $tability of the corundum structure is
provided by Wilsoret al (1996), through calculating the energies of diffie solid phases of
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Al,O3 using arab initio pseudopotential method combining the density-fanat theory with

the local-density approximation for exchange andetation.

Table 2.1Common processing routes and transition sequensest the stable-Al,O;phase. Approximate
packing of oxygen as HCR;y andk; FCC:y, 6, 0, n (Levin and Brandon, 1998)

h-..
o _ T00°-800°C 5
a-AlOOH (diaspore) ——— a-Al,0,

: s 150°-300°C 650°-750°C 1000°¢C
v-Al(OH);(gibbsite) X > K > a-Al, O,

T00°—R00°C ; T50°C 2007

5Al1,05-H,0 (tohdite) K K a-Al0,
Vapor (CVD) — k — a-Al,O4

foo

300°-500°C TOOF—B00°C Q0071 000 C 100071 100°C
LY

vAIOOH (boehmite) ¥y il > 0 > a-Al, 0,
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Corundum has a trigonal crystal structure withacsmroup ofR3c, number 167 in
the International Tables for Crystallography, whadntains two formula units per unit cell
(Hubner, 1984). In ceramic science, anions withtinely big size are generally considered to
form a close-packed sublattice, either face-cethtenbic or hexagonal close packed, with the
interstices filled by cations of relatively smaites (Chianget al, 1997). The cation/anion
radius ratio provides criteria that determine whiaterstitial sites will be occupied, either
octahedral (0.414-0.732) or tetrahedral (0.2254).4ltes for most common cases by far.
According to this kind of ionic compound structuepresentation, far-Al 05, largeroxygen

ions form anHCP sublattice and smaller aluminium ions occupy thicdtof the octahedral
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interstices maintaining charge neutrality in areced array, as shown in Figure 2.1 (Chiahg
al., 1997). A hexagonal array with the same spacintp@®xygen ions is formed by these
octahedral sites. The columns of octahedral sigsepdicular to the (0001) or basal plane
alternate in having every two sites occupied ar@eampty, as shown in Figure 2.1(a) and (b)
with horizontal or vertical pattern respectivelyhelcation sublattice (Figure 2.1(c)) repeats
after three layers. Taking into account the altargaplacing of both the cation and anion
layers, the structure repeats itself after sixriayesulting in six formula units per hexagonal
unit cell witha equal to 4.761A andequal to 12.991A (Munro, 1997).

° A|3+
X Empty site

(@)
Columns-of-. O Empty-site
face-sharing-octahedral- @ a
@ i @ L @ A [0001]
X
0t —0i—0—-
O—50—-0 A
O4—O0—0—-+ e
O—0—/20 !
——@ @ @ ) @_ ° 117001 (11001
@ @ @ A [2110] [1210)
@Ozu @ A3 11610 - (01701
(b) (©

Figure 2.1 Structure of a-Al, O3 (Chiang et al, 1997): (a) Filling of two-third of the octahedralsites in the
basal plane; (b) Filling of two-third of the octahdral sites alongC axis; (c) Structural unit cell, showing
only the cation sublattice, As are the hexagonal basis vectors
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2.2.2. Crystalline structure of SiC

Silicon carbide, with chemical formula SiC, has enttran 170 crystalline polytypes,
among which 3C, 4H and 6H are the most extenssteigied due to their electronic and
structural applications (Levinshtein, Rumyantseg &hmur, 2001). The polytypes consist of
identical close packed layers, referred to culld br hexagonal (0001) planes, but differ in
the stacking sequences, eAC for 3C, ABABfor 2H, ABCBAfor 4H andABCACBfor 6H
(Parket al, 1994). Ramsdell notation (Ramsdell, 1947) isleygal here, which consists of a
number representing the number of close-packedeltayers of silicon and carbon atoms in
the unit cell, followed by a letter denoting theaBais lattice type  for cubic, H for
hexagonalR for rhombohedral). Therefore, for hexagonal phdsétgce constants vary with
polytypes in terms of long axisbut have a similar value af e.g.: a=3.0730 A, ¢=10.053 A
for 4H; a=3.0806 A, ¢=15.1173 A for 6H (Levinsht&hal, 2001). For comparison, the
lattice constané for cubic -SiC is equal to 4.3596A (Levinshtedh al, 2001). Generally,
longer-period structures are based on combinatibrike more commonly observed short-
period polytypes, such a£3and2H. For structural applications we generally clgssie
polytypes intd3 (cubic) and (hexagonal or rhombohedral) phases. Figure 2 &sstige unit
cells of two typical structures, Zincblende and ite (Chiang, Birnie and Kingery, 1997),
which represent th@-SiC (3C) and H-SiC polytypes respectively (Wyckoff, 1963). The
bond between silicon and carbon is covalent resufiom the overlap op® hybridized
orbitals with tetragonal directionality for all pojpes. Tetrahedral interstices with a
coordination number of 4 are needed to satisfykihid of geometry. Zincblende structufie (
SiC or &) consists of &CC sublattice (silicon or carbon) with one-half oé ttetrahedral
sites filled through occupying the opposing postidt is the same as diamond structure if all
the atoms are the same. Wurtzite structure con&aitdCP sublattice with one-half of the

tetrahedral sites are filled.

B-SiC whiskers used to reinforce alumina compostescommercially fabricated
through carbothermic reduction reactions of lowtsdga and carbon precursors, such as rice
hulls (Lee and Cutler, 1975). They are rod-likeggncrystals with <111> crystallographic

6
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direction parallel to the long axes, which coulgéhan aspect ratid up to hundred. Besides
the regular or irregular hexagonal cross-sectidng, (1984) also observed that SiC whiskers
contain immobile partial dislocations, systematacking faults and core inclusions that are

highly defective, shown in Figure 2.3.

120°

sic) O csi) @soc
(@ (b)

Figure 2.2 Unit cell of the (a) Zincblende structure of-SiC; (b)Wurtzite structure of 2H SiC (From
Chiang, Birnie and Kingery, 1997)

(@) (b)

Figure 2.3 TEM images of the as-receive@-SiC whiskers: (a) section normal to the axis, shdng partial
dislocations in radial directions and cavities in are region; (b) Typical distributions of cavities n whiskers
with diameters around 5 to 10nm. (Nutt, 1984)
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2.2.3. Microstructure of Al ,.O3-SiC,,

Uniaxial hot pressing is commonly employed to fedte alumina composites
reinforced with SiC whiskers, which inevitably sl a whisker texture of preferred
orientation with whisker axis normal to the hotgsiag-axis (HPA). Figures 2.4 and 2.5 show
SEM micrographs of an AD; composite containing 30vol% of SiC whiskers wimple
surface perpendicular and parallel to the HPA sy (Quan, 2004). The formation of a
touching whisker network is observed which possessaearly plane-random distribution
perpendicular to the HPA. Neutron diffraction expents revealed an average out-of-plane
angle of about 21° for this sample (Quan, 2004bal milling process is normally involved
during fabrication, which significantly decreaség twhisker aspect ratio. The regime of
interest therefore deals with composites contaimihigkers of an averaged diameter around

0.5-1xym and an aspect ratid between 10 and 30 based on experimental data tfiem

literature, e.g. (1) Quan (200400 to 30, (2) Gu, Porter and Langdon, (1994, 1995): as-
fabricated SiC whiskers has averaged aspect ratimd30, and the value for whiskers after
ball milling is aroundLG; (3) Nuttet al. (1990, 1993)5 to 1Q (4) Swan, Swain and Dunlop
(1992: 10to 20, (5) Arellano-Lopezt al.(1990, 1993,1998, 20Rlaround30, 20, 1Gand10.

Matrix grain size is normally around 1 togZh and sometimes up to 1fn,
depending on the whisker volume fraction and faltino conditions (e.g. sintering aids,
temperature and time). Generally, increasing whigikime fraction has a counter effect on
the grain size. Higher sintering temperature angdo sintering time yield a bigger grain size
due to the enhanced diffusion process during sugtelt is well established that the creep
strain rate is a function of grain size with an axgnt of -2 or -3, depending on the
deformation mechanism, whether through latticeramgooundary diffusion. However, grain
size is not of primary interest in the current aeske but rather the relationship between the
reinforcing effect within a quasi-steady matrix rogtructure and the externally measured

macroscopic variables.
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Figure 2.4 A SEM micrograph of Al,O3; composite containing 30vol% of SiC whiskers withample surface
perpendicular to Hot-Press-Axis (HPA). The surfacevas thermally etched at 1400 for 2 hours to expose
the whiskers (Quan, 2004)

10um

Figure 2.5 A SEM micrograph of Al,Os; composite containing 30vol% of SiC whiskers withample surface
parallel to Hot-Press-Axis (HPA) (Quan, 2004)
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2.3. Creep mechanisms of single phase £A);

Reactions of a structural material to applied stgsare very important during
engineering applications. Due to the nature of etdsonding of ceramic materials, which
comprise strong and directional covalent or iorwads, very limited plastic deformation is
observed at room temperature before fracture smecg high energy is needed to move
dislocations in these structures. Nonetheles$ieatetperature is raised, normally above half
of the melting point, temperatures at which ceranaice often employed, for example in
energy conversion systems, these materials camnuéfp way of creep. This is a process
involving thermally activated dislocation movemert pure mass transport by diffusion
through the lattice and/or grain boundary. Theesftite creep rate at constant stress usually
increases exponentially with the temperature shgpwinhenius behaviorg 0 exp(-AG /RT),
whereAG is the activation energ\ is the Boltzmann Constant aiidis the temperature.
Similarly to room temperature plastic flow, cresgaused by the shear, or deviatoric part of

the stress fieldr,. The dependence of the creep rate on the strgemesally a power-law

relationshipé O g7 with the stress exponentdetermined by the creep controlling process.
This section illustrates the creep deformation iofjle phase alumina, starting from a

description of basic creep phenomena and modelthandpplied to alumina.

2.3.1. Basic creep phenomena

Typically, under constant load tests, creep catiaged into three regimes shown in
Figure 2.6, namely: Primary creep, characterized tgcreasing creep strain rate; Secondary
or Steady-State creep, characterized by a rekategistant creep strain rate (often referred to
as the minimum strain rate); and Tertiary creepratterized by an increasing strain rate and
leading to the final fracture. However, a complstenario does not always exist during
experiments and sometimes a steady-state is rabtea@daFurthermore, especially for metals,
depending on the extent to which the material iskvinardened before creep, an increasing

creep strain rate might be observed instead o€easng one during primary stage. Primary

10
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creep and tertiary creep are also named transegy ¢ contrast to the steady-state creep, the

latter being a state wherein the microstructurthefcreeping material has attained a state of

dynamic equilibrium.

primary creep secondary creep tertiary creep Rupture

strain, ¢

|Su : Flastic-Extension

time,

Figure 2.6 A schematic diagram showing the typical creep defamation curve for a monolithic ceramic
material (From Kingery et al, 1976)

The total creep strain can be expressed as (Bedtlaksl995)
Eot =&+ Ep +EsHE =& + A{l— exp(—l)j + &0+ B(exp(l) —1) (2.1)
T r

where &, is the total accumulated creep strap,is the elastic strairngy is the primary
creep straingg is the steady-state creep strap,is the tertiary creep straidy andB are
parameters related to strain hardening and sofiemspectivelys is a rate constant, also
called relaxation time for creep deformatian, is the steady-state creep strain rais,the
loading time. Each term dominates during the cpaeding regime. Generally, a curve fitting
procedure is used to determine the parametric vafigransient creep strains in Eq. (2.1).
This is referred to as the “theta concept” (Wilstand Evans, 1985) in some of the literature
and is a phenomenological method since the theieepb parameters do not directly originate

11
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from consideration of creep deformation physics.tl@nother hand, steady-state creep strain

rate can be derived through physical models baséaeocreep controlling processes.

2.3.2. Creep models for single phase ceramics

From an engineering point of view, the steady-stegep region with the minimum
strain rate is of particular importance since tedaines the creep life of structural materials.
Therefore, models dealing with creep mechanismeseadmics within this regime will be
illustrated below. The carriers for plastic floneagenerally structural defects: point defects
such as vacancies and interstitials, dislocatiodsyaain boundaries. Unlike metals, for which
the activities of dislocations in terms of climbghide are responsible for creep deformation,
characterized by a higher valuempf3 to 5, diffusional creep is the main mode obdeftion
at elevated temperature for polycrystalline ceramith the common value of equal to 1

(Poirier, 1985). It is phenomenologically similarMewtonian viscous flowd =né, where
n is viscosity) owing to the proportionality betwestnain rate and stress:] o (Poirier,

1985). Grain boundaries act as defect sources iakd gnder stress. Pure mass transport
between grains results in a macroscopic deformaiepending on the path of diffusion and
the accommodation mode, Nabarro-Herring creep, €Coldep and grain boundary sliding

(GBS) all contribute to creep strain and any ong beathe rate controlling process.

2.3.2.1. Nabarro-Herring creep

A non-hydrostatic stress field could lead to déf@rvacancy concentrations at grain
boundaries experiencing different states of stilesompressive stress results in a depletion
of vacancies while a tensile stress results in>aess of vacancies. A diffusive flux of
vacancies down the concentration gradient throbgltettice causes an equal flux of atoms in
the opposite direction. The grains then elongatberdirection of tensile stress and shrink in
the direction of the compressive stress. Nabared§)L first proposed this mechanism and
derived the corresponding macroscopic strain reterring (1950) reached the same

conclusion through the chemical potential gradi€he constitutive law is expressed as

12
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£, = 402272

—= 2.2
N KTd2 (2.2)

whereDgqis the self-diffusion coefficient showing Arrhesidependence on temperaturés
the applied stresK) is the atomic volumek is the Boltzmann’s Constart,is the absolute

temperatured is the grain size.

2.3.2.2. Coble creep
If the transport of matter occurs through the ghainndary instead of the lattice, it is

named Coble creep (Coble, 1963), and the conetialtlaw is expressed as

: D y,00Q

Ec =141—F2—— 2.3

c KT @3)
whereDgyis the grain boundary diffusion coefficientjs the grain-boundary thickness, and

other parameters have their usual meanings as.above

The stress in equations 2.2 and 2.3 is shear .dfresgineering stress is employed,
should be replaced by/3. The important difference between Nabarro-Herring @oble
creep lies in the fact that the former mechanispedds on grain size with an exponent of -2
and the latter mechanism with an exponent of 8.dasy to understand this relationship since

transport through the grain boundaries gives actie diffusion coefficient that depends on

J/d, making the strain rate proportionallt6d®. The two processes are independent or
parallel-concurrent and both contribute to thel tsti@in. The faster mechanism controls the
creep behavior. The activation energy for lattigiusion is higher than for grain-boundary
diffusion. Therefore, in general, Nabarro-Herringep can be the dominant mechanism of
deformation at high temperatures with grain boupndéfusivity becoming dominant at lower

temperatures.

13
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2.3.2.3. Grain-Boundary Sliding (GBS) accommodated by Diffuson Creep

Herring and Coble calculated the diffusion credp t@sed on identical spherical
grain shape and didn't consider plastic incompagibiRaj and Ashby (1971) later
demonstrated that GBS is an integral part of dofus creep and that diffusion and sliding
are strongly coupled and mutually accommodating¢asted out earlier by Lifshitz (1963) as
one accommodating mode for GBS in addition to dation flow). The resulting deformation
is correctly described either as diffusional creeps grain boundary sliding with diffusional
accommodation. The constitutive law is express€Basand Ashby, 1971):

. _ D 0Q
EcBs — 42W (2.4)
Do is an effective diffusion coefficient:
mo D
Der = Dgg| 1+ ——22> 2.5
. ( 2 D ] 25)

Note that for lattice diffusion alone, equation Zj¢es the same expression for
creep-rate as the Nabarro-Herring theory and faingvoundary diffusion alone is practically
identical with the Coble expression. Still, thetéasone is rate limiting. Generally, the
diffusional process is ambipolar in ceramics whiatolves coupled transport of charged
species through a common internal electric fielsrder to maintain the mass and charge
balance of the stoichiometric ratio and avoid dqmosition of the compound (Chiaed al,
1997). While each ion can diffuse either throughl#itice or grain boundary, the slowest ion

in its fastest path controls the rate. For a pumark compounavi,O,, D for use with

Equation 2.4 becomes (Gordon, 1973)

M o
(x+ y)( DY +ﬂ5(§)9b J( DS, +7T5:9bJ

M o
Y( D +7T5dng J+ x( DS +7T5:g‘“ J
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2.3.2.4. Other mechanisms

Diffusional creep dominates over a broad rangdre$s, grain size and temperature.
However, grain boundaries do not always act aggesinks or sources of defects as assumed
above. Sometimes, the interface reaction couléiteecontrolling and display non-Newtonian
behavior (>1). One important thing to be mentioned is thatréte-controlling process does
not necessarily contribute the majority of the isfraimilarly as how dislocation glide
provides the strain but the creep rate might beralted by the dislocation climb through
diffusion. Therefore, the activation energy of diisition creep is normally the activation
energy of self-diffusion. Besides interface-contnan-accommodated GBS at high stress also
shifts the stress exponent from 1. While the kasetif diffusion is not rapid enough, cavities

then form and lead to the final fracture.

Furthermore, GBS, a major mode of deformation dpinigh temperature creep, is in
fact stochastic and history independent (Blancleral., 1998). It is also the important
mechanism for superplasticity, characterized biyess exponent of 2, without elongation of
grains. Large strain is achieved through a neighbaitching event and the accommodating
diffusion occurs over a shorter distance comparéti diffusional creep. The models
developed by Ashby and Verrall(1973) and Gifkin87@, 1978) treat this process in detail.
Table 2.2 summarizes some creep deformation meshanencountered frequently by

ceramics with the emphasis on GBS.

15
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Table 2.2 Values af, pandQ for creep mechanisms (Cannetral, 1983; Poirier, 1985)

Mechanism n P Q Reference

( I) Dislocation glide and climb:

(a) controlled by climb 4.5 Q Weertman
(b) controlled by glide 3 Q. Weertman

(IT)_Grain Boundary Sliding

(1) Lifshitz sliding
Sliding accommodated by diffusion:

(a) through lattice 1 2 Q Nabarro-Herring
(b) through boundary 1 3 Q Coble
(c) lattice + boundary 1 2or3 ob Raj&Ashby
(d) controlled by interface reaction 2 1 Q orQy,
Sliding accommodated by
intragranular flow across the grains t1 Crossman&Ashby
ng
(2) Rachinger sliding
With a continuous glassy phase
at the boundary 11 Qon Orowan
Without a glassy phase:
(a) Sliding accommodated by Q
formation of GB cavities 2 1 Langdon
(b) Sliding accommodated by .
formation of triple-point folds 35 2 Q Gifkins
(3) Superplasticity 2 2 Qu Gifkins

** Power-law constitutive relationshig:=Co"d " exp(-Q / RT). In contrast to the Lifshitz sliding,

Rachinger sliding occurs without concomitant graiiongation.Q} , Qg,, Q; andQ,, are the activation

energies for lattice self-diffusion, grain boundédiffusion, chemical inter-diffusion of solute aterand the
energy associated with the grain boundary liquakph

2.3.3. Creep behavior of alumina

Creep deformation of alumina has been extensivteliesi over the past several
decades. It is well accepted that the main meamaisidiffusional creep over the range of
interest. Work by Cannort al. (1980) shows the observation of interface contlolle

diffusional creep at lows which shiftsn from 1 to 2. However, diffusional creep dominates

16
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over a range of temperatures (12001750C), stresses (1.4 to 310MPa) and grain sizes (1 to
15um). A threshold stress exists below which no crespuis. This decreases more rapidly
with increasing temperature (e.g. 23.4MPa at 119® 8.3MPa at 1418) than does the
shear modulus. Furthermore, basal sty G >10°) and non-accommodated GBS are also

observed via TEM (Heuest al, 1980). A stress-grain size deformation map (flaguir) is

then constructed identifying the dominant deforarathechanisms (Heuet al, 1980).

The grain size exponent is between -2.7~ -2.9 siggethat both lattice and grain

boundary diffusion are important (Cannoset al, 1980). Generally, for bulk
diffusion, D > D°, for grain boundary diffusioD? > D' (Coble et al., 1978). Each

species/path combination might control in a spegfain size range, as shown in Figure 2.8

(Cobleet al., 1978). The diffusion of aluminum involves migratiof chargedAl defects,
Al or V, , while the oxygen diffusion in the bulk involve§™ and at grain boundaries is

due to migration of neutral interstitial oxygenratoQ” (Kroger, 1984).

- | —
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g e N

= Diffusional creep, DfY

[G]

102+ —
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10 1072 100 102 104
. Stress, MPa

Figure 2.7 Deformation map for MgO doped ALO; at 1500C(Chiang et al, 1997;Heuer et al, 1980
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Figure 2.8 A schematic diagram showing the logarithm of creepate vs logarithm of grain size for ALOs.
Solid lines show the creep rate dependence on grasize for each assumed species (Al or O) and path
(lattice or grain boundary) controlling the rate. The dotted line traces the rate-controlling mechanis: the
slower ion along its fastest path.(Chiangt al, 1997;Cobleet al, 197§

2.4. Creep mechanisms of AlD5-SiC,

Creep behavior of SIC whisker reinforcedb@d has been extensively studied by
several groups (Lipetzkgt al, 1988, 1991; Liret al, 1990, 1991, 1996; Nuét al., 1990,
1993; Arellano-Lopeet al.,1990, 1993, 1998, 2000, 2001; Svedml, 1992 Guet al, 1994,
1995; Romeret al, 1995; O’'Mearat al, 1996; Quan, 2004) since Chokshi and Porter (1985)
published the first paper on the creep propertiethie system. Due to the variations in
processing routes, microstructures (the volumetidracof whiskers; the strength of the
interfacial bond; grain size of the matrix; impyrippercent of glassy phases; oxidation
susceptibility) and experimental methods (compvessiensile and flexural), a direct
comparison of the reported creep data is verycdiffi Instead of exact values, this section
summarizes some salient tendencies with an empbasighisker volume fraction effect,
stress dependence, grain size dependence, activaiergy and microstructures such as
glassy phases and damage after creep.
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2.4.1. Whisker volume fraction effect

Generally, the addition of SiC whiskers into amaha matrix yields a lower creep
rate provided that the microstructures are compmr@hg., grain size and damage). For
composites containing whiskers at less than 15vti@strain rates do not change by more
than a factor of 4 compared with monolithic alumiAdove that, the creep rate of pure
alumina could be reduced by up to 2 orders of nbad@iusing whisker additions (Figure
2.9(a)). The dependence of absolute creep ratehskev concentration is complex (Figure
2.9(b)), as pointed out by Lin and Becher (199M1)9They found that creep resistance
generally increases with increasing whisker loadingl the volume fraction reaches about
30%. Then, due to the counter effect of grain simd the extensive formation of creep

damage, no further increase is found. Furthernaosejaller strain before fracture is observed.

T T T T ITT1007] o L B B
©01200° C 1 Al,O - 1200°C 1300°C .
P e N - —— 20% SiC
. :1:2,'80:0 AlOy + o = 30% 5303
107 | w1400° ¢ J20% SiCw ] 105 v v 50% SiC,, |
— 10 —
» ° |
) v
— 107 —
P 108 [—
10—9 i | I Lo dalalsl 100 | i TN N T S |
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Figure 2.9 (a) Steady creep rate vs stress relationship for parystalline Al,Ozand Al,Os-SiC,, within
temperature range of 1200-140C from flexural experiments (Lin et al., 1990); (b) Steady creep rate vs
stress relationship for ALOs-SiC,, with whisker up to 50vol% from flexural experiments (Lin et al.,1991)

A longer primary stage is observed than in pureneda (Lin et al, 1990, 1996;
Swanet al., 1992; Romeret al., 1995). This is interpreted as a long-range stedagation
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process related to whisker network deformation KinWslon, 1998) since the primary stage is
usually related to an internal stress distributidnich decays with time (Frost and Ashby,
1982).

2.4.2. Stress dependence

There are two distinct regimes of interest for stvess dependence. At moderate
temperatures and stresses, the stress exponentddbetween 1 and 2, which is attributed
to the diffusion-accommodated GBS, as with purenada. Above a critical stress, depending
on the microstructure and testing environment, levabove 2 is obtained. From the
microstructural observation, this is generallyilatiied to a damage accumulation process
instead of dislocation creep (Lipetzkyal, 1988, 1991; Liret al.,1990, 1991; Swast al.,
1992; Romereet al., 1995; O'Meareet al., 1996). Bimodal behaviour is observed by several
separate studies (Chokshi and Porter, 1985; Lipetizal, 1988, 1991; Liret al, 1990, 1991)
with a pronounced stress exponent shift (Figuré}.thdicating the change of the dominant
deformation mechanism. Generally, tensile and flxreep tests result in a higher value of
than compressive tests due to more extensive dafieagexample, Nutet al. obtained 3 for
compressive creep and 5 for flexural creep (1998)e Quan (2004) found a value as high as
11 for tensile creep tests.

2.4.3. Grain size dependence

From the work by Lin and Becher (1996), Arellanggret al. (1990, 1993, 1998,
2000, 2001), creep rate generally decreases witkaning grain size provided the whisker
loading is the same. However, no direct grain degggendence was observed without detailed

information on the microstructure. For example, éfiral. found a value of 1 at 1200 while
at 1300C the creep rate was independent of matrix grain dibe latter case is attributed to

the enhanced nucleation and coalescence of credpesaand the development of

macroscopic cracks. Instead, Arellano-Lopeal. found that the effective grain size, and the
distance between the whiskers, is more importaah tthe nominal grain size when

normalizing the creep rate by a grain size expooiegit
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2.4.4. Activation energy Q

For micron grain size polycrystalline /&8s, creep deformation is generally
controlled by the diffusion of alumina through thatice with Q=47&Jmol, or grain
boundary withQ=41&Jmol (Cannonet al. 1980, Figure 2.7). However, for composites,
activation energy shows a broader range betwee®@dd/moldepending on the test mode,
temperature range, stress range and microstrugthieh might suggest more complicated

deformation mechanisms for the composites.

2.4.5. Microstructures after creep

As specified in the stress dependence sectiorhiginer value oh is attributed to
creep damage. There are two categories of damiageiedep: (1) nucleation and coalescence
of submicron sized creep cavities at triple granrularies, grain-boundary-interfaces (GBI),
and along grain boundary faces; (2) developmemhadroscopic cracksX10um). Figure
2.10 shows typical TEM observation for each of¢h€yeep damage contributes a significant
portion of the creep strain. Generally, tensileepréO’Mearaet al., 1996) results in more
extensive damage than flexural (lehal., 1991; Nuttet al.,1993; Romeret al., 1995) and
compressive creep (Swan al., 1992). Whisker additions inhibit the GBS and acstiess
concentration sites, resulting in creep damageth&umore, oxidation of SiC yields CaO-
containing aluminosilicate glass that lubricatesSEBd yields more cavities since diffusion is
not fast enough to accommodate GBS gtial.,1991). Thus, creep in air normally results in
a higher creep rate than in an inert atmospherdaltie severe oxidation and glassy phase
(Lipetzky et al., 1991; Nuttet al., 1993). Unlike cavities, the macroscopic cracksegaly
originated from the surface, and the distributiypge, size and severity of the cracks varied
with temperature and stress (O’Meataal., 1996). Creep damage promotes oxidation via
providing diffusion paths for oxygen and oxidatipromotes creep damage with the aid of
glassy phase. Meanwhile, the thin film of glassggghassociated with the cavity also comes
from the sintering additives (i.e ¥, plus MgO) in addition to the oxidation of whiskeLin
et al.,1991).
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Figure 2.10 (a) cavitation at triple grain boundary (Nutt et al., 1993); (b) cavitation at GBI (Nutt et al.,
1993); (c) cavity between two grains (O’Mearat al.,1996); (d) macroscopic cracks (O’Mearat al.,1996)

2.4.6. Summary

The creep behaviour of As-SiC, is very complicated and the traditional analysis
methodology used for a single phase ceramic sucliffasional creep and grain boundary
sliding is not adequate. A more complete pictureregép in ceramic composites involves both
the creep of ceramics and the reinforcing effedtlaad transfer within composites. Section
2.5 thus introduces the basic models developed@domposites in a micro-continuum field
such as rule of mixtures and the shear lag modébwing that the model dealing with two-

phase ceramics developed by Wilkinson and Pom@8j14ill be described.
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2.5. Models for elastic and creep behavior of composites

A composite is generally a mixture of at least tliemically distinct materials with a
distinct interface between them. Composites aenaftharacterized in the first instance by the
matrix material (metal, ceramic or polymer) reicgEment type (particle, continuous fibre,
short fibre or whisker) (Taya, 1989). From a de®ggineering point of view, predicting the
overall behaviour (constitutive relationships fbermo-elasticity, plasticity/creep and heat
conduction) of a composite by appropriate formulemn the already known thermo-
mechanical behaviour of the individual constituastsritical to developing new composites
with unique properties. This is a procedure gehleraferred to as homogenization.
Mathematically, analytical models developed frorspacific system are applicable to any
composite systems, despite that the morphologyunwel fraction and distribution of
inclusions determine the application range and racgu Furthermore, the methodology is
extendable from elastic to other properties. Ia #eiction, basic composite models for elastic
behaviour are illustrated, followed by a discussibthe creep theories. No attempt is made to
provide a complete summary of composite theorahger the basic ones related to the topic

of this research are noted.

2.5.1. Micromechanical composite models
2.5.1.1. Rule of mixtures

For a continuous aligned fibre reinforced compaosith fibre volume fractiorV; , if
loaded along the fibre axis direction, the straithe matrix is equal to the strain in the fibres
provided that there is no interfacial sliding. Exéal Young's modulus is expressed as (Voigt,
1889)

E =E.(1-Vi)+ EV, (2.7)

In addition, if the composite is loaded transverdle stress in the matrix is assumed

to be the same as in the fibres. The transversagf®modulus is expressed as (Reuss, 1929)
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l :—(:L_Vf ) +V_f

E. En E; 28)

The well-known Voigt-Reuss rule is expected to &khvto a high degree of precision
for continuous fibre reinforced composites. In féfoe iso-stress condition is not as accurate as
the iso-strain condition since there are stressastration regions above and below the fibres
within composites under transverse load, as verifigthe photoelastic experiments (Hetl
al., 1996). Nonetheless, these models provide upperl@amndr bounds for composite

properties.

2.5.1.2. Shear lag model

The fibres in our materials are not in practiceyMeng and for that reason the
iso-strain assumption is not applicable. The moskely used model dealing with the
effect of loading an aligned short-fibre composiitgposed in continuous lines either end
to end (Figure 2.11(a)) or with a slight overlapthe shear lag model (Cox, 1951). It
describes the transfer of load from matrix to fibrear the fibre ends by means of
interfacial shear stresses. A unit cell with lengtrand widthD (Figure 2.11(b)) is
assumed to contain a straight fibre with lenbtéind diameteR embedded in a solid
matrix. Let this aligned short fibre composite lbjscted to an applied uniaxial strain
along thex-direction. The axial displacements at distaxde the fibre and the matrix at
the same point if the fibre were absent are denbtedi and v, respectively. The

difference(u-v), which represents the rate of transfer of loagnfrmatrix to fibre is
assumed to be proportional to the shear stres$eatinterfacer; or do; / dx . By

considering the force equilibrium in a free bodggiam shown in Figure 2.11(c), one

could obtain
do; 47,
_- - I = h u— 2.9
dx R U=y 29)
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where g is the axial stress in the fibre am@ a constant. Since, = g, du/ dxfrom

Hooke’s law, and since = dv/ dx, we have the ordinary differential equation

doy (o0 _
7 —h( £ gj (2.10)

The general solution to equation (2.10) is given by
o; =E;e+C coshBx+ G, sinhb x (2.11)

where g =./h/ E; andC; andC, are constants which could be obtained by applyiag

boundary conditiongr; =0at x =+I/2. The stress field in the fibre is then given by

o = Efg(l—Mj (2.12)
cosh@l /2)

Substituted into equation (2.9), the shear stredsei matrix is expressed as

r=Ee G,/ E; sinh Sx (2.13)
2In(D /R) coshl /2

Since the model assumes no load is transferredsatite end faces of a fibre (which is in fact

not completely accurate), the tensile stress ibra builds up from the ends. The shear stress
has a maximum at the fibre ends and a minimum eaffitine centre. Figure 2.12 shows
schematic variations of stresses along the fibreetwhre verified via photoelasticity and
Micro-Raman Spectroscopy (Mehanal.,2000). It is obvious that a longer fibre transtees

load more efficiently, and a stress transfer lerggists which should be reached when
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choosing the fibre aspect raligA = %Q).
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| ............... ‘... ‘ 8<— 7 — 1R D_>8 < |>
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Figure 2.11 Schematic illustration of the shear lag model: (ajepresentative short fibre composite; (b) unit
cell for analysis; (c) finite lengthdx and stresses around.

Stress (MPa)

Fractional distance from fibre centre

Figure 2.12 Predicted variations in fibre tensile stress (blackines) and interfacial shear stress (purple
lines) along the length of a SiC whiskelR=0.5um, V;=10%, e=1x10* E=600GPaG,=100GPa.

The mean stress in the fibre is computed as

. 112
O _2 J.o'fd)(:Efg 1_W) (2.14)
| Al2
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Combining equation (2.14) and (2.7), the Young'slatas of the composite will be

tanh(8l /2)

E=EV [1‘ B2 j"‘ E.(1- V) (2.15)

In order to solve for the constamtand 3, consider next the displacement along the

x-direction at an arbitrary poiytin the matrix,w, wherew-g,) = u, antwy-p,;) =V. The

force equilibrium at=RZ andy=y provides2ryr = 277(R/ 2); . The shear straipr and stress

r aty=y is then expressed gs:i"":i:LB, whereG, is the shear modulus of the
dy G» 2G,y
matrix. Integrating fromy=Rz to y=D/2, we obtainv_u:LRm(Bj . Combining with
2G, \R

equation (2.9), we get

8G,
h=——"—
R°In(D/ R

_2J2 [G,TE;
B= R \In(D/ R (2.16b)

2.5.1.3. Other models

2.16a)

Rule of mixtures and the shear lag models tendv®ogpor estimates for the thermo-
mechanical properties of a composite where thecaspéo is small and distribution is
complicated. However, it is difficult for an analysn terms of stress to combine reasonable
simplicity with conceptual accuracy. More sopheterl methods are developed at the
expense of the detailed stress information andemerally based on: (1) mean field method,
which assumes a uniform stress distribution wifibres and matrix respectively, such as
Eshelby’'s models (1957) and extended self-consistenel (Hill, 1965); or (2) variational
principle in terms of energy dissipated, such ashiaShtrikman’s bounds (1962). Figure

2.13 shows schematic predictions of different nedeimmarized by Mura (1987).
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1 Voigt
2 Reuss
3 Hashin-Shtrikman's
upper bound

4 Hashin-Shtrikman's
lower bound
5 Eshelby

6 Self-consistent
method

/Gm)
~

(GH/Gym)=100

Effective Shear Modulus (G

0 0.1 0.2 0.3 0.4 0.5 0.6

Volume Fraction V ¢

Figure 2.13Effective shear modulus of particle composite vs Yume fraction V;, provided that the ratio of
the fibre shear modulus to the matrix’'s was kept 10 (Mura, 1987).

2.5.2. Creep models for composite materials
2.5.2.1. Shear lag model

Several analytical models based on shear lag @alyes developed to predict the
steady-state creep rate of an aligned short fibngposite (Mclean, 1972; Kellgt al, 1972;
Tayaet al, 1989). The frictional force between the creepmagrix and the more rigid fibres
oppose the extension of the former producing areased shear of the matrix and hence a
shearing force. A common feature of these treatniemeglecting elastic strains, which are
best applicable when the plastic strain is subasthngreater than the elastic. For example,
Mclean (1972) considered a simple case where sigiit fibres are embedded in a creeping
matrix in shear obeying power-law constitutive Ig8till, the load transfer to the fibre via

direct stresses across their ends is generallectedl and a perfect bonding is assumed. A
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geometrical argument shows that shear strain icghgoosite is amplified by/ 2(D -R)due
to the presence of rigid fibre. Then the sheassti® amplified byl /2(D -R))"", wheren is
the stress exponent. If all the external work $sigated through creep of the matrix, the stress

of the composite is amplified ag =V,,(1/ (D - R))*"" g, in order to extend the composite at

the same rate as that produceddq\if fibres were absent. Considering force equilibrias

before, tensile stress along the fibre could baiobtl as

o; = 4n [ij{(ly n—x“l’”} (2.17)
Ra+nl g )|\ 2

where 3 is the appropriate proportionality factor. Figured4 shows schematically the

variation of fibre stress for several valuesnofThe plateau shaped distribution for elastic

deformation is changed toward a continuously irgingeone for creep deformation.

n=1
No flow

0.8
06 F

04 p

02 F

Tensile Stress in fibre, relative units

0 A
0 0.2 04 0.6 0.8 1

Fractional distance from fibre center

Figure 2.14Predicted variations in fibre tensile stress (McLen, 1972).
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2.5.2.2. Creep mechanisms in multiphase ceramics (Wilkinsor,998)

The increase of creep resistance through the addfihard, second-phase particles
depends on the volume fraction, morphology andiibligion of the reinforcing phase. In 1998,
Wilkinson gave a critical review on the creep medsas in multiphase ceramics in terms of

rheological theory £ = o/ ) which emphasizes the importance of network famnahat is

otherwise neglected by other theories. All systeamsidered have a reinforcing phase with a
considerably higher creep resistance than the>aaid could be treated as if it were perfectly
elastic, e.g., whisker-reinforced ceramics (e.gOASIC,); infiltrated powder compacts (e.g.
siliconized SiC) and glass-bonded ceramics (eiereid SiN4). There are several interactions
that occur over the whole range of volume fract®hlow volume fractions, the inclusions
behave independently of one another and the effeltte to the disturbance of the flow field
around the inclusions. As the volume fraction afusions increases, interactions begin to
take effect. A percolating network of point-to-pogontacts is developed when the volume

fraction is above a critical valupgpint-contact percolatiothresholdg,,, which depends on

inclusion morphology and orientation. For spherjaatticles of uniform size, this occurs at
about 16vol% (Grannaat al, 1981) and decreases for fibers with increasspget ratio.
Theoretical calculations specific to a fiber geagnetith a random distribution approximate

the percolation threshold as (Nan, 1993):

0.7
Goep = —— (2.18)

Thus, a very small volume fraction is needed faghkaspect ratio whiskers to

develop an interconnected network (egg., = 4vol% for A = 20). Since the whiskers are

likely to orient normal to the hot pressing axisP@) during fabrication and more than one
contact per particle is needed for a highly dewatopetwork, this value will in practice be

larger, perhaps by a factor of two or so. Creep thquires the compatible deformation of this
network (e.g., squeezing out of the matrix fromreatact regions and bending of whiskers).

As the volume fraction increases, a second thrdskaleached which is referred to as the
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facet-contact percolationthresholdg,, . It could be related to the random, close-packed

structure, e.g. 63vol% for spherical particles, amhsiderably lower limit applies for
elongated particles. However, a theoretical treatrfoe the onset of facet-contact percolation
has yet to be developed. Within this structurerditegtion and long-range motion of individual
inclusions becomes highly restricted, and creegoigrolled by flow within the interfacet

regions (e.g. flow of glass betweenN&igrains). Figure 2.15 shows the schematic illustrat

of network development for point-contact percolati@nd facet-contact percolation
(Wilkinson, 1998)

Figure 2.15 Schematic illustration of network development in mitiphase ceramic materials: (a) point-
contact percolation in a whisker- or platelet- reirfiorced ceramic; (b) facet-contact percolation withmost of
the particle interactions involve full facet contats. Thin grain-boundary layers separate the facetéshown
in the inset), and creep occurs by the squeezingthis material from between the facets under compsion
(Wilkinson, 1998).
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In summary, composites consisting of discrete @astiembedded in a creeping

matrix can be divided into three distinct volumeacfion regimes: (1)Vi <@, ;
(2)Boep <V < @iy (3) Vi > @i, . Models developed for different ranges of volumaetions

have been reviewed and compared with the obserxpdrimental data. For example,
infiltrated powder compacts (siliconized SiC) amasg-bonded ceramics (sintereg\g) are
well above the facet-contact percolation and tha @tam experiments agree well with the

rheological model.

For particulate-reinforced ceramics, such as SiGkeh reinforced alumina, the
range of volume fractions straddles the critichl@dor point-contact percolation. A series of
models developed by Wilkinson and Pompe (1998}Hercreep and anelastic recovery of
whisker- and platelet-reinforced ceramics are aéstewed. These models provide critical
explanations for the increase in creep resistandettee effect of network on the anelastic
recovery observed in the whisker-reinforced ceranitiree different creep mechanisms are

envisaged (Wilkinson and Pompe, 1998):

(1)  WhenV; <@, the particles behave independently and theictsffean be
attributed mainly to the local increase in effegtidiffusion path. The increase of
viscosity 7 (decrease of creep rafg is modelled from the unconstrained rotation of
particles in a viscous matrix (Figure 2.16 (a))eTinatrix far from the particles
inherits its intrinsic viscosity, and the regions near the particles enclosed inedas
lines are constrained locally, which has a highiscosity 77, . Then a composite

homogenization procedure, described by the Hashuat®n (Hashin, 1962) is

employed to obtain the effective composite visgosit

Mo —q4 251"7 (2.19)
o ~ Veon

with
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Voo = (%(sin 29) +< cod 6?>j [V, (2.19a)

where v, is the constrained volume fraction aAds the angle between loading
direction and particle axis. This leads to vis@esitip to a factor of two larger than for

the unreinforced matrix.

(2) WhenV; >¢,,, a network is formed. Due to the hot pressingi¢abion

process, most whiskers align within the plane nbtmtéhe HPA (Hot pressing axis).
Wilkinson and Pompe (1998) thus assumed an iddalegpular whisker network with
the whiskers forming a series of aligned layersheame of which is oriented normal
to the one below, as shown in Figure 2.16 (b). Ukael, the whiskers first approach
one another as the matrix is squeezed out fromahecontact regions contributing a

viscoplastic strain with a maximum value €fD - R)/ D when the entire matrix is

squeezed out of the contact. The viscosity duaiseetfect is given by

BT
Mo _ 2@ 1)1 0 (2.20)
T kA’ | (Vi

wherek,is a stress concentration factor connecting thel Istesso and far field
stresso,, throughg = ko (€.9. K, =1/ (V; f)**for loading normal to the whisker
plane, k, =1/ (2sin & )for loading within the whisker plane) is the packing

efficiency of particles defining the anisotropy ofpacking through
/L =f(R/D)with I, L, R andD defined in Figure 2.11. It has a minimum value

when two layers of whiskers are contacting eacar@®rD).

(3) In addition, the deformation of a whisker networi imduce elastic bending

of the whiskers. This leads to a viscoelastic stwath a maximum value ofU / D,
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whereU is the maximum elastic displacement of the whiskat would bend in the
absence of matrix constraint. When the load is veaiothe composite will be left in
an internal stress state due to the elastic dmtodf the whiskers which drives
anelastic recovery (Section 2.6). The viscositytduais effect is given by

e 16

o 1K (V) 221)

(b)

O 0 5
| }—¢— Before cree

@ O "HR"

| | After cree|
O ® ®
()

Figure 2.16 Schematic illustration of the assumed geometry (Wkinson and Pompe, 1998): (a) dilute
distribution of whiskers that rotate under the far-field stress; (b) an idealized regular whisker netark; (c)
bending of whisker network after creep.
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All three mechanisms acting together govern thal toscosity. Figure 2.17 shows

the normalized viscosity /17, as a function of volume fraction and packing efficy for

three mechanisms. The viscosity due to viscoplastains,, increases significantly with

increasing volume fraction as well as the viscagityg to dilute rotationp, . On the contrary,

the viscoelastic viscosity decreases with incregggoiume fraction. If the strain rates due to

viscoelastic and viscoplastic flow are independiettotal viscosity of the composite is given

by equation 2.22. Figure 2.18 shows the normalia&ad viscosity as a function of volume

fraction. Smaller packing efficiendyproduces a bigger viscosity for a fixed volumeticn.

There is a change in the dominant mechanism fr@ooplastic to viscoelastic flow ds

decreases, shown in Figure 2.19.
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Figure 2.17 Normalized viscosity/7 / 17, as a function of volume fraction @ ) and packing efficiencyf for

three mechanisms (Wilkinson and Pompe, 1998).
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Figure 2.18 Normallized total viscosity (/7/1],) as a function of volume fraction @ ) and packing
efficiency (). The solid curve represents the viscosity due tiscoelastic creep whenf = f.;, (Wilkinson

and Pompe, 1998).
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Figure 2.19Predicted creep mechanism map of a constrained orieed whisker network, e.g. AJOs-SiC,,

with 8 =10": The boundary separates regions dominated by visetastic and viscoplastic creep, which is

sensitive to aspect ratiod , especially at high values of packing efficiency\(ilkinson and Pompe, 1998).
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These models do not provide very useful predictast the actual creep rates since
the response is highly sensitive to the intercantcof the network, which changes during
the creep process. However, they represent quaditathe creep response of whisker- and
platelet-reinforced ceramics, especially the vissiE creep which is demonstrated from the

anelastic recovery observed in these compositeragse.g. AOs-SiC,.

2.6. Anelastic creep recovery

Elastic deformation is time independent, which nsghat an applied stress produces
an instantaneous elastic strain that remains ugedaaver the period of time the stress is
maintained and upon the release of the load tratielkstrain immediately returns to zero.
Anelasticity implies a time dependent non-elastghdvior, also named as viscoelastic
behavior of material. Specifically, in this work,refers to the time-dependent-creep-strain
recovery after the load is removed, due to theedtelastic energy inside. This section reviews
the basic analogue model, experimental observatiodshypothesized mechanisms for the
anelastic behavior for ADs-SiC,,.

2.6.1. Kelvin-Voigt element
Viscous behavior is essentially dissipative, hemoeversible. The constitutive
relationship is

o =né (2.23)

wheres is viscosity which is a material constant anchia tase of linear viscous fluid, it is

independent of the stress (Newtonian viscosity)mimy instances, the viscosity is non-
Newtonian and depends on the stress (usually seseas the stress increases) and the strain-
rate-stress relationship is no longer linear (BQid985).
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Figure 2.20 Kelvin-Voigt body: (a) spring and dashpot in parallé (b) for an imposed stress, strain
exponentially reaches its elastic value.

The simplest analogue model for anelastic behagiothe Kelvin-Voigt body,
represented by a spring with spring constarand a dashpot with viscosity in parallel
(Figure 2.20 (a)), which is widely used to fit ggeelaxation data in the literature (Flligge,
1967). If a constant stregs, is suddenly imposed on a Kelvin-Voigt body, theaist
increases from zero to the maximum vaklle= g,/ E for infinite time; and if the load is

removed, the strain decreases exponentially agweese process of the loading:

‘ﬂoading = E* |:1_ eX[{_;j:| (224)

Eunloading = ‘E* exp(_%) (225)

For both cases; =/ E, named the characteristic relaxation time is usedharacterize

whether a given material behaves as a viscousdiurdyid solid by the relative value of its

characteristic relaxation time and the time scafesiclered.
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2.6.2. Experimental observations

Anelastic recovery or the time-dependent backrstisiobserved upon load removal
in CMCs during creep deformation. From an engimgeperspective, anelastic recovery
limits the operating range of CMCs. From a scienpkrspective, anelastic recovery can be
studied in order to develop a better understandinghe complex interactions of the
reinforcement network with the matrix. Anelasticaeery is not unique to ceramic matrix
composites. It is observed in many material systsoth as SiC whisker or particulate
reinforced A}Os (Porter, 1989; Get al, 1994, 1995; Denet al, 1999), SiC fiber reinforced
SiNs (Holmes et al, 1993), AYOs fiber reinforced Al alloys (Dragonet al, 1992),
SiEN#/MgO alloys (Langeet al, 1980), SIN4 (Arons et al, 1980; Woodfordet al, 1998),
Aluminum (Hendersoret al, 1965; Mills et al, 1986), Titanium (Es-Souni, 2000), Steel
(Beereet al, 1987) and Copper alloys (Henderson, 1968).

The first report of anelastic recovery in SiC wiiskeinforced alumina system was
made by Porter (1989) who studied four point begndlina composite with 15vol% of SiC
whiskers. More systematic studies on the anelastiovery behaviour in SiC whisker
reinforced AJO; composite were made by G al. (1994, 1995), and Quan (2004), from
which several general tendencies appeatr:

(1) No obvious anelastic recovery was observed in polgerystalline A}Os; and

Al,05-SiC,, composite with whisker loading <10vol% (Figure1d.2

(2) The recovered strain is reproducible and equalbtutx10° upon load

removal (Figure 2.22). It is independent of thaltoteep strain at which the load

was removed as long as it is arolswi10 for the first cycle (Quan, 2004).

(3) Whiskers with low aspect ratio resulted in morelaste recovery than
whiskers with high aspect ratio (Figure 2.23).
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Figure 2.21 Strain vs. Time plot: (a)Flexural creep test on pure AJO; (Gu et al., 1994); (b) Tensile creep
test on ALO; composite with 10vol% of SiC whisker (Quan, 2004).
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Figure 2.22Strain vs. Time plot on composite with 15vol% Si¢, via flexural test (Guet al, 1995).
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Figure 2.23Recovered strain vs. Time plot (Glet al, 1995):(a) Al,Os-SiC,, composite with aspect ratio of
30; (b) Al,O5-SiC,, composite with aspect ratio of 10.

2.6.3. Anelastic recovery mechanism in AlOs-SiC,,

Using TEM Langeet al. (1980) observed highly localized strain fieldsgagin
boundaries in crept specimens of theNgMgO system, indicating a back stress building up
during initial loading, which they believed is thaurce of the viscoelastic strain. Holne¢sl.
(1993) attributed the observed dramatic creepnstegovery in SiC fibre reinforced 38iy
composites to the residual stress state developd#uei composites upon unloading. In the
study of Denget al(1999) on SiC patrticle reinforced A, the elongated grain morphology
was thought to be the reason since the retardath secovery was observed in samples
containing elongated ADs grains instead of equiaxed ones. An interconngatietwork
composed of elongated &k grains shed the applied stress more than the egLigrains did.

A residual stress state would exist between theeekinds of grains upon unloading and
result in the anelastic strain. @t al. (1994, 1995) also used a modified Kelvin element t
address the recovered strain behaviour in SiC whiskid particulate reinforced 28k

composites. However, the mechanisms responsibkaiokind of phenomenon are not well

explained. There are fundamental differences inr theechanisms due to the intrinsic
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difference in the microstructure of the materialy,sype of the matrix (metal or ceramic),
shape of the inclusions (particle, continuous ascatinuous fibre/whisker) and the
interconnection. This section summarizes two ingsartsources hypothesized to be

responsible for the recovery followed by some meutfiffraction results.

2.6.3.1. Dislocation evolution

The first is based on the evolution of dislocat&ructure that occurs during the
loading and unloading processes. Examples of rtblside the unbowing of pinned network
dislocations first proposed by Lloyd and McEIro@714), subgrain migration and dissolution
proposed by Pahutod al. (1979) and backward motion of free dislocatiorthiwvisubgrains
proposed by Gibeling and Nix (1981). In un-reinatanaterials, particularly metals, these
mechanisms are suspected to provide a recoveiy strapproximately 1/3 of the elastic
strain, and the slope of the anelastic recovemaihstersus stress change is around 1.8/E,
which is verified by the experimental results frddills et al. (1986). Furthermore,
transmission electron microscope (TEM) observatsimsving bowed dislocations between

obstacles provide support for this mechanism (Beteag 1987).

2.6.3.2. Creep strain misfit (Wilkinson and Pompe’s bendingmodel, Hertzian contact
model)
The second mechanism of anelastic recovery is basetbe misfit of creep strain
between material components with different thernsimanical properties. The elastic energy,
stored within the stiffer phase during the forwardep, is believed to be released upon the

load removal to drive the anelastic recovery.

(A) Wilkinson and Pompe model
The analytical model of Wilkinson and Pompe (19f8)the creep and anelastic
recovery of whisker-and platelet- reinforced cemmmtharacterizes this second origin of

anelastic recovery. That work assumes the formatioa percolating network when the
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whisker volume fraction reaches a certain threskialde determined by the whisker aspect
ratio and distribution (as detailed in section2.5The percolating network undergoes pure
elastic deformation while the matrix undergoestelgdastic deformation, and the unbending
of the whisker network might be the dominant memarfor creep recovery. The predicted

viscoelastic strain is given by

_1 Kooer 1
32 E, V, "

(2.26)

where E,, is the Young's modulus of whiskers,, o, V; andf are as in section 2.5.2. For

15vol% of SiC whiskers with an average misorentatib< 8 >=10°, the predicted anelastic
recovered strain ranges from a lower bound of @2id an upper bound of 4, depending on
the assumptions, primarily the density of whiskewhisker contacts. Although this covers

the observed experimental data, the range is glearlbroad to give useful predictions.

The model of Wilkinson and Pompe is based on erparial observations of
SiC,, reinforced A$O3; composites, in which no significant dislocatiortidties were
observed during creep. It was found that whiskelitemh significantly reduces the creep
strain rate by impeding diffusion accommodatedrgkaundary sliding (GBS), the main
creep mechanism in polycrystalline alumina (Canebml, 1980; Heueeet al, 1980).
Meanwhile, the magnitude of the anelastic recovestdin is around 1xIbfor the
15vol% SiG,-Al,0O3 composite, which is several times the elasticirstrurthermore,
pure alumina and composites containing less thawol%® of whiskers show no
significant time-dependent strain recovery when kb&d is removed during creep,

suggesting the formation of whiskers network (Galgt1994 ,1995; Quan, 2004).

(B) Neutron Diffraction data

From the systematic experimental work done by Q2&04), due to the micron
scale of whiskers and the small deformation, nemolable bending of SiC whiskers were
captured through TEM, which is consistent with Werk of other researchers (Arellano-

Lopezet al, 1993, Nuttet al., 1993). Moreover, the expected broadening of tHeadiion
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peak, due to non-uniform micro-strains introducgdavhisker bending (theoretically predicted
by the model, as will be illustrated in chapterwas not observed from neutron diffraction
experimental data (Figure 2.24). On the contrahgftahifting (0.072° to 0.1°) and narrowing
(0.0056° to 0.0576°) of the diffraction peak waseed for AIO; containing 20-30vol%
whiskers.

150

#5-1 (S302) FWHM

125 - O Beforecreep 0.3672 £0.0070
® After creep 0.3319 +0.0067
100 - (111) siC

Normalized Intensity
o
T

a1
o
T

N
al
T

56.5 57.0 57.5 58.0 58.5
Scattering angle (Degrees)

Figure 2.24(111) SiC whisker peaks measured before and aftereep (Quan, 2004).

This raises two possibilities as described by Qudms Ph. D. thesis (2004). One is,
as hypothesized in the Wilkinson and Pompe mod98) whiskers do bend during the
creep deformation. However, the peak broadeningingufficient to be measured
experimentally. Indeed, based on theoretical caticuis, Quan concluded that the maximum
value of broadening due to pure bending is abouHM#0.004 which is below the
instrumental resolution for the technique he usdtere can, however, be other factors
contributing to the change in peak width, which egathe separation of the contribution from
whisker bending alone very difficult. For examplegt pressing generates considerable
compressive residual stresses in the whiskers €TaB), which are also observed by other
research groups via neutron and X-ray diffractidiajgmdaret al, 1988, 1989; Predeckt
al., 1988; Abuhasaet al, 1990). The compressive residual stresses mighitdyéated during
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the tensile creep test resulting in the left shgftof the peak position as shown in Fig 2.24
(Quan, 2004). The second possibility is that thecebf whisker bending is not the dominant

mechanism, which requires some other mechanismmeléxation.

Table 2.3 Lattice strains &10°°) measured at room temperature for SiG (Quan, 2004). Numbers in
parenthesis are uncertainties. BC: before creep; ANannealed; AC: after creep

Sapmle 30% BC 30% AN 30% AC 20% BC 10% BC

(111) plane  -3.65(0.08)  -3.42 (0.08)  -2.51(0.09)3.95 (0.12) _ -5.65 (0.15)

(C) Hertzian contact model

Based on the experimental results, especially tredastic recovery phenomena
observed in SIiC particulate reinforced,®@4 which cannot exhibit bending during creep
deformation, Quan (2004) hypothesized that oneilgtigsis the localized elastic point
contacts between particles where large strain eaachieved under low stress owing to the
Hertzian contact phenomenon. Figure 2.25 illudratiertzian contact between spherical
particles and rods. It assumes the surroundingixniatluces rotation of the misaligned

whiskers, then at the contact points normal fofgegre generated to balance the moment

formed by the shear stresscting along the matrix whisker interface. The rarforce is
calculated by (Quan, 2004):

F,=2r’csin® A?)

wherer is the radius of whiskers arétlis the misorientation angle. Then the displacerdeat

to contact deformation is given as (Lan@hal, 1986):

5 2 1/3
h= Fj”[g(l_" J —1] (2. 28)

2\ E r

whereE andv are the Young's modulus and Poisson ratio of thisker, respectively. Then

the strain at the loading direction is given by #Qu2004),
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2h

£= Ttan@ = %{ (sin® §° tar@ (2.29)

E

3\/_% (v ) ):|2/3

For AlLOs-SiC,, composite containing whiskers with an aspect @t (r /L =0.1)

and an average misorentation<of >= 20°, the predicted anelastic recovered strain is @oun
3.3x10" if E=427GPaandv=0.2.

(©

Figure 2.25 Schematic illustrations of Hertzian contact phenomea between (a) spheres and (b) rods in
contact (Quan, 2004).

2.6.4. Summary

Both of the models reviewed in this section (reldtebending and contact) assume
the formation of an inclusion network and the pelastic deformation of inclusions while the
matrix creeps. The contact model seems to givettarbonsistency to the magnitude of
observed recovered strain, s&8.3x10%, which is the same order of those experimentally
observed, e.g= 1x10°% Furthermore, it predicts increasing strain witcréasing whisker
aspect ratio, which is in accord with the experitaketiata by Get al. (1994, 1995). However,

both of them lack support from direct observatiodiffraction experiments due to instrument
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resolution effects. Thus the mechanism for anelastovery in AIOs-SiC, composites is
still not clear. One more important feature of W&lkinson and Pompe model is the
introduction of load transfer from matrix to indluss through contact points in a constrained

network in addition to the shear stress at thefatte introduced in section 2.5.1.

2.7. Assessment of the literature

To date, the dominant mechanism, say whisker bgn@ivilkinson and Pompe,
1998) or contact (Quan, 2004), which is responsibtethe anelastic recovery of SC
reinforced A}Os is still unknown and the experimental diffractidata cannot be well
explained. Furthermore, as mentioned before, inaditanalytical approaches (Eshelby, 1957,
Mura, 1987; Cox, 1951; Mclean, 1972; Kelly al, 1972; Tayeet al, 1989) idealize the
stress/strain fields and neglect the interactioavéen inclusions when predicting the
macroscale behaviours based on the propertieseaittroscale constituents. An arbitrary
distribution of inclusions could be addressed melatively simple way without resorting to
the intractable stress calculations using elagtibitory. However, the information neglected
is critical for investigating the mechanisms of lasc recovery. Furthermore, several
research groups have attempted to study the diffrapeak from residual elastic strain
distributions: in SIiC particle reinforced A& composites using three idealized analytical
models while lacking direct relation to the actoatrostructure (Todd and Derby, 1993); in
Tungsten Caribide-Nickel composites involving agerg elastic strain output from a
representative FE model (Weisbroetk al. 1994, 1995). However, no systematic numerical
work combining these effects has been carriedmakplain the deformation mechanisms of
the whisker network, the effect of load transfetwlsen whiskers and matrix through
interfaces and contact points, and their relatmithe subsequent diffraction patterns after

deformation.

Consequently, the present study uses FEM combiiteduwit cell methodology to

study the anelastic behavior of Qi8l,03composites and local stress/strain fields based on
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which the relative contributions of bending andtaohwill be addressed. A virtual numerical
diffraction model has also been developed to cdrthecstrain field determined by FEM to
the expected diffraction pattern in terms of thakpeidth FWHM) and peak position. The

correlation between the deformation and diffractmattern is studied and the effects of

experimental conditions such as thermal stresalsmanvestigated.
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CHAPTER 3

FINITE ELEMENT SIMULATIONS

3.1. Assumptions and material properties
In the present study, several assumptions are toai@plify simulations:
(1) Steady state microstructures are considergd, @ grain growth, dislocation

evolution and damage accumulations (such as voaiscro cracks) are permitted.
(2) Perfect bonding between matrix and whiskeasigs assumed.

(3)As for the mechanical properties, isotropic tedeend elasto-creep deformation for

SiC whiskers and AD; matrix are studied respectively.

The assumption of steady microstructure is reasershce neither of the first two
mechanisms noted above are evident from the expetainobservations (Arellano-Lopet
al., 1993; Nuttet al, 1993). Damage is also insignificant during theoselary creep stage
even though it is critical during the tertiary grestage which leads to the final rupture (section

2.4). The hypothesis of perfectly elastic whiskerisased on their high melting point (273D

as well as the observed whisker structural pragsettiat are highly defective. It is observed
that SIC whiskers are single crystals containingnahbile partial dislocations, systematic
stacking faults and core inclusions (Nutt, 198%ihe low vacancy concentration in SiC
whiskers and the long diffusion path yield a cresgp many orders of magnitude lower than
that in the matrix. Material properties involved tire simulations are given in Table 3.1
(Munro, 1997) and Table 3.2 (Petroeical, 1985; Wonget al, 1997; Goldbergt al, 2001).
The steady state creep behaviour is expressedarsieguivalent uniaxial power-law relation,
Norton form with a typical stress exponent of 1 for diffusbareep (Munro, 1997; Cannon
et al., 1980; Heuer et al., 1980; Poirer, 1985).

éq =Co (3.1)
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Table 3.1 Material properties of ALO5; (Munro, 1997)

Temperaturé() 20 500 1000 1200 1400 1500
E(GPa) 416 390 364 354 343 338
v 0.231 0.237 0.244 0.247 0.250 0.252
C(S' MPah) 0 0 2.67e-11 1.87e-09 4.4e-08  1.64e-07
CTE(10°K™) 4.6 7.1 8.1 8.3 8.5 8.6

**CTE: Coefficient of thermal expansion

Table 3.2 Material properties of SiG, (Petrovic et al, 1985; Wonget al, 1997; Goldberget al, 2001)

Temperature() 230 330 630 1230 1700
E(GPa) 600 600 600 600 600
v 0.17 0.17 0.17 0.17 0.17
CTE(10°%k") 338 4.3 4.8 5.5 5.5

**CTE: Coefficient of thermal expansion

3.2. Finite element Method

Generally, FEM is a numerical technique used td fipproximate solutions for
partial differential equations describing physiaablems. From a mathematical point of view,
FEM is a combination of the Galerkin approach (weakulation) and piecewise polynomial
interpolation with mathematical validity from thaderlying Sobolev spaces (Marti, 1986). It
originated from structural analysis with the pianeg work of Courant (1943) on a torsion
problem and in this field is referred to as théualwork or variational principal approach due
to the physical background (Stolle, 2005). It hasesbeen applied to other fields of continua
such as thermal analysis and fluid flow while teert Galerkin method is more generally
employed.

A critical advantage of FEM over analytical appluex is its versatility: arbitrary
phase geometries and distributions, arbitrary |@amkarbitrary boundary conditions can be

handled in a straightforward manner and detailedl Istress/strain fields in the matrix,
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inclusions and along their interfaces can be coetputhile providing the overall behaviours
as well. In this section, we will illustrate thesiatheory of the finite element method, starting

from the elastic analysis and then the creep pmble

3.2.1. Basic theory of finite element method
The general governing equation for 1D elastic amahyithout body force is shown
as

Ox= Eu,xx =0 (32)

where g, is the derivative of stress with respectxou,, is the second derivative of
displacement with respect xp andE is the Young's modulus. Suppose the case condidere
here is a bar with uniform cross-sectional are#,ofubjected to a uniaxial end logdas
shown in Figure 3.1(a). The general procedure ofl FEto apply a test function into the
equation 3.2, then multiply it with some weight étion wand integrate over the whole

domain to minimize the residual
[wEu, dv=0 (3.3)
L

After integration by parts, we have

fwxEude—a A =0 (3.4)
L

Equation 3.4 is the weak form of the equation J1clwlowers the continuity requirement of
function ufrom C'to C°at the expense of increase on the weight funstioThis is also
referred to as the weighted residual method. Ifsteight functionwand test functiou are in
the same space, for example, the piecewise consnomynomial, it is the Galerkin method.
Furthermore, if the test functiamrepresents the displacement field at equilibriurd e

weight functionw represents the small perturbation of displacerdentthis equation also
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corresponds to the virtual work procedure sincevtloek done by forces in equilibrium

subjected to virtual displacemedi is zero.
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Figure 3.1 Schematic illustration of FEM (a) a bar under uniavial end loadf in global coordinate systems
with element discretization; (b) line elements indcal coordinate systems.

The whole domain is then discretized into finitedamains called elements that are
glued by the nodes at the element boundariesirRpligty, only two elements with length of
| are illustrated in the figure. There is a localrdinate systera associated with each element
(Figure 3.1(b)). Its origin is located at the cemtrof the element. The local and global

(physical) coordinates can be mapped as

X=1-9)%/2+ (1t 9% /2= x N> (3.5)

52



Ph.D. Thesis — JUAN KONG McMastédaterials Science and Engineering (2012)

At the same time, the displacement field withinelenent might be interpolated as
u=(1-s)y/2+ 1+ 9u /2= U= Ng (3.6)

where the second part in each equation is the spaneling matrix form with

N =%[(1—s) (1+ 9)] containing the shape functionX, =[x %]’ containing the global

coordinates of the nodes, aad=[u W]" containing the unknown displacements at the

nodes. The superscriptdenotes transpose. The strain is convenientipet:fs

_ONos_ __1

SUy=——a.=B— 3.7
* T s I E a (3.7)
whereB = %[—1 1]is the strain-displacement transformation matmng |d| :% :12 IS the
Jacobian resulted from the mapping between lochyobal system.
Substituting the matrix forms into equation 3.7dach element we have
o2 [ B EAB|J1| dsa-0 d E=0== ka= | (3.8)
1 —_
with k= [ BTEABS ds= =2 (3.8a)
L | -1 1

wherek is the element stiffness matrix aRd is the vector containing nodal loads already
known. By adding the contribution from the two ests, we have the global form
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1 _1 O U1
EA
Ka=F=o>=>—|-11+1 -1 [w|= (3.9
0 -1 1| |uy |f

whereK is the global stiffness matrix which is a symmeesparse matrix representing the

coefficients of a set of simultaneous algebraicaéqns. Inverting the global stiffness matrix

yields the displacement vectoraE K™F ), which might be accomplished by Gauss
elimination. This requires th& must be non-singular, satisfied by applying enasgbports

to eliminate the free body motion. In general,aadt of obtaining a complete solution, the
integration over domain while forming the stiffnesatrix is obtained numerically through
Gauss quadrature that yields the integration throsgme sampling points and weight
functions. The procedure above is known as thearsopetric FEM since it uses the same
functions for shape functions and for transfornmafiem a “master element” to the actual
nodal positions. With the increasing number of elets, the result converges to the accurate
solution, which is referred to as h-refinement. réntaus may be thousands of thousands of
such equations for a complicated problem, whichneghat computer implementation is
mandatory. Higher order of shape function mighebwgloyed yielding a faster convergence

rate and it is referred to as p-refinement.

Furthermore, without getting into alist equation 3.8 could be obtained through
minimizing the total potential energy. The totalgrdial energy of the system is

[1 = strain energy - work done

%a; fIBTEABi dsa- d F:—; d k- & | (3.10)

9l

with 0[] =ka, - F.== (3.10a)

Thus, the solution obtained represents a minimdoewat strain energy which means that the

displacement field yielded is always an undereséma
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3.2.2. Finite element method in creep analysis

As described in equation 3.1, a creep problenme tilependent and thus can be
treated as an initial value problem in the stresstain. Generally, techniques required to
solve nonlinear creep problems consist of two camapts: (1) a means of solving the elastic
problem of the structure as discussed in sect®ni;32) a means of solving the initial value
problem (Boyle and Spence, 1983). Here we brie#lycdbe the scheme without getting into
details. Suppose the structure is subject to aleégrmation along with elastic deformation,

the total strain is decomposed into an elagti@and a creeg,, component. Then we have

0 = De&y = De(£-£4) (3.11)

whereDg is the matrix of elastic coefficients whichEsin last section. Apply the Galerkin

theorem to the equation 3.2 which holds also dwegp, we obtain

LBTJdV— F=0 @1

where matrixB andF contain the same information as in the sectiorl 3Then substituting

the equation 3.11 into 3.12, there results

Ka-F,-F=0 13)
with K = L B" D.BdV (3.13a)
and F, = L B" De&, dV (3.13b)

where the contribution from the creep deformaties ithin the forc&,, . Combining the
solution from equation 3.13 with the equation 3wé have
g-= DE(Ba_gcr) = D¢ BK—I( R+ F) = Dty (314)

By rewriting the 3.14 in rate form, the equatiofstoess redistribution are then obtained for

power law creep&, =Co™")
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99 _ D.BK(E, + E) - Dot
dt (3.15)
=DeBK™ [ B'D:Co"dV+ D.BK' F- D@
Then the equation for the evolution of inelastiaistfor power law creep is
dgcr n -1 T 1 "
& =CD (BK L B' D&, dV+ BK* F- scr) (3.16)

The situation is now becoming a finite system oftforder initial value problems
with an initial elastic deformation. The fundamémtaject of the algorithm next is to obtain
the solution at a sequence of discrete instartisnef which are called time stepping. This is
actually accomplished by integrating the inelasttiains (equation 3.16) over time (the “initial

strain” method). The simplest algorithm applie@rieep mechanics of the for%?[f = f(y,1),

with y(0) =y, is

Yiu = ¥ +AL[A-a) f +a fu] (3.17)

where0O<a <1. Whena =0 this is the explicit Euler algorithm, which needista from
previous step (forward integration) and is conddity stable. Wherr =1/ 2 this is the
implicit Euler scheme since it needs data unkndvatKward integration) and iterations are
needed to get the solution which needs to sat@fyeserror tolerance (cetol). The implicit

algorithm is unconditionally stable when>1/2(Boyle and Spence, 1983).

In practice, it is convenient to employ an algaritthat can determine the step
size automatically based on stability and accuratABAQUS/Standard, this automatic
algorithm will first start from the explicit integtion, the stable step size of which is
calculated as that at any point in the model, tiee strain increment is not larger than

the total elastic strain
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& |t

At, =0. (3.18)

é‘CI‘

t

whereZ,| andg,

_are the equivalent total elastic strain and thevedent creep strain rate

respectively, at timethe beginning of the increment. The critical timerement is calculated
as

(3.19)

At every increment for which explicit integratios performed, the stable time increment is
compared to the critical time incrementMif; < At., At is used as the step size resulting in a
limit imposed by the stability criterion rather thlay accuracy considerations. Af; < At.for

nine consecutive increments, the program will tlaemomatically switch to the implicit

integration that is unconditionally stable.

3.3. Fundamentals of unit cell technique

There are many millions of whiskers inside a swallime, e.g. 1cfhif the volume
fraction is 15vol% and aspect ratio is 10. It ipractical to simulate the whole sample even
based on the most powerful computers and bestithlgsr currently available. Generally
accepted methodology in continuum micromechanic®ofposites is the Unit Cell Model. It
assumes that the material has periodic microsteicind describes the macroscale and
microscale behavior of inhomogeneous compositesualying a Reference Volume Element
(RVE) with appropriate boundary conditions. By d#fon the RVE contains all the
information necessary for the statistical desaiptf a given microstructure. Generally, for a

given periodic phase arrangement unit cells areimgoe (shown in Figure 3.2), depending
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on the symmetries presented in the microgeometrighyof course, refer to different kind of
boundary conditions, e.g., symmetry boundary cardit antisymmetry boundary conditions,
periodicity boundary conditions and so ondhBn gives a detailed description in his
unpublished report (1998).

.H. € 06533?;‘....

;] Tmmmmes periodic boundary o syminetry center
symmetry boundary (pivot point)
point symmetry boundary

Figure 3.2 Schematic illustration of periodic hexagonal arrayof circular inclusions in a matrix and 11
unit cells that can be used based on symmetries pent (Bdhm, 1998).

Figure 3.3 Sketch of periodicity (left), symmetry (center), ad antisymmetry (right) boundary conditions
as used with two-dimensional unit cells (Bhm, 1998).
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Periodic boundary conditions (PBCs)

Periodic boundary conditions are used on the uslis ovhich could tile the
computational space by simple translation, e.g R in Figure 3.2. They are the most general
boundary conditions and could handle any possidierchation state of the unit cell as shown
in Figure 3.3. They require the compatible phasstridutions and finite element

discretizations for each pair of faces (up and ddefhand right, back and front):

Uiny = Us) T Uiy s Uie) = Uw) T Uiy Uine) = Use + Uinw s Uiswy =0 (3.20)

wherei =1, 2,3 are the indices of displacements alongZz, Zs (x, v, 2) respectively;Uin) ,
Us), Uie) and Uw) are the displacements of the nodes on the plaheS E and W

respectively;Uiw) , Uisg)y Uineyand Uisw) are the displacements of the nobiss, SE

NE andSWrespectively.

Symmetry boundary conditions (SBCs)

In practice, due to the multi-point constraintsuimed, finite element based unit cell
studies using PBCs may be quite expensive in tefrmsmputing time and memory required.
For unit cells in which the faces of the cell cadecwith symmetry planes of the phase
arrangement and retained after deformation (e.g.cefi G in Figure 3.2), PBCs can be

simplified to symmetry boundary conditions (SBCs):

Uoxny = Uanwy s Uye) = Uise)s Uy(s) = Uiwy = Uiiswy =0 (3.21)

where Uy(n) andUys) are the displacements alongdirection of the nodes on the plariés
and S respectively;Uy ey and Uyw) are the displacements alongdirection of the nodes on
the plane€ andW respectively;Uz(nw)is the displacement along direction of the node

NW, Uysg) is the displacement along; Zirection of the nodeSE Uisw) are the

displacements of the no&&V.
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Antisymmetry boundary conditions (ASBCs)

Antisymmetry boundary conditions are even more téchiin terms of the
microgeometries since they require the presencentérs of point symmetry (pivot points). If
P is the pivot point in Figure 3.3, the boundary ctows can be defined through

Uzany = Ua(nwy Ueuy + UeEy = Upy: Up(s) = Uiw)y = Uiswy =0 (3.22)

where U; ey and Ugy are the displacements of the nodes on the platésand EL

respectively;U; ) are the displacements of the nétle

It should be noted that although the detailed Istralss and strain distributions near
inclusions are accurate, they are only meaningftiié context of the modeled system and the
interpretation of the local fields must be madehwatwution since the real material never

exhibits the imposed periodicity as the model system

3.4. Unit cells used in current study

Three kinds of geometries that are numerically coottd are employed in the
current study to investigate the effects of whisketwork on the anelastic behaviours,
deformation mechanisms and diffraction patternthadgh an emerging technique preferred
nowadays is to obtain an actual microstructure f6mnay tomography or serial sectioning
with the aid of TEM or SEM in order to make a rei#ti comparison to actual experimental
values (Chawla et al., 2006), a numerically recansgtd random geometry could also provide
satisfactory information while studying the reirdioig effect of composites with considerably
less procedures Bm et al, 2002; Duschlbauest al, 2006, Kariet al, 2007). Meanwhile, a
fabrication process of hot pressing for@d-SiC, composites containing higher volume of
whiskers yields a three-dimensional (3D) percotpitane random distribution (Quan, 2004).
However, it is an unrealistic task since a minimdistance between any two cylinders is

required for the practical application. This is diwegrid resolution and the maximum
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allowable model nodes imposed by the limited alditg of computer memory, as well as a
reasonable accuracy based on well shaped elemeatsthe contact region. Thus, a 3D
random unit cell is generated without percolatiod awo-dimensional (2D) percolating unit
cells are generated by modifying the near contagome. 3D single whisker unit cells are
generated to provide the fundamental basis of howhaker behaves alone and the
corresponding diffraction pattern. All simulationsre implemented through the commercial
finite element package ABAQUS/Standard, versior36.80ad control is employed while the
stress is applied to the unit cells as concenttasetiacting on a ‘master node’. All 3D and 2D
unit cells correspond to alumina composites comginvhiskers with a diameter of 0.5

microns resulting in a unit of micron for reference

3.4.1. 3D periodic random-oriented-short-fiber unit cell

Numerically generating the periodic 3D random-dedrvhisker micro-geometry is
accomplished with the aid of Matlab based on agansgequential adsorption algorithm. The
position of each whisker is described by its ceptnt and two Euler angles, which are
generated by Matlab’s random number generator iwihspecific cube volume. Each new
position can only be accepted if the new cylindeesdnot overlap any previous ones.
Intersection testing of two cylinders is basedtengrojection method of Eberly (2008). At the
same time, in order to retain the periodicity, payt of a fiber that extends beyond the face of
the cubic domain is cut and shifted to the oppdaite and intersection testing is carried out
correspondingly. The minimum distance between neigidpa@ylinders is set at 5.6% of its
diameter specified in the work ofbBm et al. (2002). A 3D multifiber unit cell containing 15
fibers of equal size, aspect ratmb at a total reinforcement volume fraction of 18%hown
in Figure 3.4. The unit cell was meshed with 10entetrahedra, C3D10M using ABAQUS
CAE 6.7-1, which is recommended by ABAQUS docuntemafor a better accuracy in
nonlinear calculations. The number of elements ravdes in the unit cell are 133224 and
191747, respectively. Displacement controlled craaplysis is performed following the
PBCs (Bbhm, 1998).
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Ui (x=a) = U(x=0) T U(x=a,y=0,~0) (3.23)
Uiy=b) = Ui(y=0) T U(y=b,x=0,0) (3.24)
Ui (z=c) = Uiz=0) T U(=¢ %0, y0) (3.25)
Ui(x=0,y=0,2=0) = 0 ®2

wherei =1,2,3 are the indices of displacements along, z respectivelyth(x=a) , Ux=0),
Uiy=b) , Ui(y=0), Uiz=¢c) and Uiz=0) are the displacements of the nodes on the planes a
position x=a, x=0, y=b, y=0, z=c and z=0 respectively; Uix=a,y=0,0) ,

Ui (y=b,x=0,=0) and Ui(z=c, x0,=0) are the displacements of the nodes at posjtiano0),

(0,b,0) and(0,0,c) respectively.

ZIX

Figure 3.4 Periodic multi-whisker unit cell with randomly oriented whiskers: (a) fibres, (b) fibre meshing,
(c) matrix meshing.
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3.4.2. 2D oriented percolating unit cells

In order to study creep deformation in the contafxf percolating network, the
whiskers are assumed to form a series of paraigrs, each one of which is oriented
perpendicular to the one below it. Typical whiskenfiguration for this case is shown in
Figure 3.5, generated by ABAQUS CAE 6.8-3. The abRVE that can generate the entire
idealized geometry by translation in tkg plane is represented in the figure in dark dashed
lines. Half of the RVE (rectangulabcn), containing a simple three point bending geometry
is chosen with PBCs used for top and bottom bougmiaio andcm and ASBCs used for left

and right sidesc andomdue to a “pivot point” placed in the middle of theundary (B>hm,
1998). Specifically,

Uimg) = Uicoby + Um (3.27)
2U(p) = Uep) T Uop) (3.28)
2Ui(q) = Umg)  Ugog) (3.29)
Ui =0 (3.30)

wherei =1,2 are the indices of displacements alofg/ respectively;uime , Uioby » Uicp)
Up) » Uimg @Nd U(oq are the displacements of the nodes on thenfieieob, cp, bp, mgand

0q respectivelyum , Uip)» U andu,, are the displacements of the nadep, g ando

respectively.
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5
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Figure 3.5 (a) Idealized micro-geometry of aligned percolatingvhisker network, A=5; (b) 2D percolating
unit cell with meshesa=7; (c) magnified view (~ 20 times) of contact regin shown in square box in (b).

Table 3.3 Two-dimensional percolating unit cell paameters?

Aspect ratid, LengthL(#m) HeightH(u#m)  Volume fractionV; (%)
3 2.1 2 50
5 3.1 2 50
7 4.1 2 50
10 5.6 2 50
15 8.1 2 50
20 10.6 2 50

**|t should be noted that length is dependent on the aspect ratid volume fractionV; ,
heightH and system geometry are fixed.

The 2D mesh is generated with 6 node triangulanetes, CPS6M from ABAQUS

manual with average size of 0.08r) except near the contact region where a smaflerdsi

0.006 (um) is employed. Plane stress conditions are assulmeatder to assure element

conformity in contact regions, a very small amourthefmatrix is removed near each contact
region, as depicted in Figure 3.5 (c). The lengdtthe removed region is double the contact
length, the latter of which is obtained from a safgasimulation carried out based on the same

whisker geometry but without matrix. It was fouhdttthere was no significant dependence
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on simulation results on the size of this removeatrisn region. Parameters of unit cells
containing whiskers with varying aspect ratio aneven in Table 3.3, while Figures 3.6

showing the corresponding unit cells with meshes.
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65



Ph.D. Thesis — JUAN KONG McMastdrlaterials Science and Engineering (2012)

=15

=20

Figure 3.6 2D aligned percolating unit cells with meshes, fronop to bottom with aspect ratios of 3, 5, 7,
10, 15 and 20. Red lines delineate the whiskersiiuts.

3.4.3. 3D single whisker unit cells

In order to study composites containing low volunaetion and/or unidirectionally
aligned whiskers without interactions, single whisknit cells with varying aspect ratio are
also generated via ABAQUS CAE 6.8-3. Whiskers ageiged to be uniformly placed within
the matrix while the ratios of whisker lengthto cell lengthl) and of whisker diametd®) to

cell width D) are the same, thatlis = R/D, as shown in Figure 3.7 (a) and (b). The smallest
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repeating volume is enclosed in the dash liney, oné eighth of which is employed as the
unit cell (Figure 3.7 (c) and (d)) with SBCs at bdaries. Table 3.4 shows the parameters of
3D single whisker unit cells with varying aspediaavhile keeping the volume fraction as
10%. The mesh is generated with 20 node hexagteraksts, referred to as C3D20R in the
ABAQUS manual, with average size of 0.Q@n{), as shown in Figure 3.8.

Uyx=b/2) = Uix=D/2,y= 0= 0) (3.31)
Uz(y=pr2) = Uz2(x=0,y=D/2.z= 0) (3.32)
Uz(z=1/2) = U3(x=0,=0,= L/2) (3.33)
Ui(x=0,y=0.=0) = U1 0) = U2 0)= Uz 0= 0 33

wherei =1, 2,3 are the indices of displacements along, z respectively;Uyx-p/2)are the
displacements alongdirection of the nodes on the plane at posienD/ 2; Uyy-p/2) are

the displacements alorygdirection of the nodes on the plane at positienD/2; Us=1/2)
are the displacements alomgdirection of the nodes on the plane at position L/ 2 ;

Uix=p/2y=0.=0)are the displacements alorglirection of the node at positigm / 2,0,0);
Uz x=0y=Dr2,=0)are the displacements aloggdirection of the node at positigo,D /2,0);
Usx=0,y=0=L/2yare the displacements aloaglirection of the node at positiqo,o,L /2);
Ui(x=0y=0--0) are the displacements of the node at positor 0,y = 0,Z= 0); Uyx-o),

Uy(y=0) and Uz,=o) are the displacements aloxngy andz directions of the nodes on the plane

at positionsx =0, y=0 and z = 0 respectively.
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P L/2 J D/?

Figure 3.7 (a)&(b) Idealized micro-geometry of aligned whiskernetwork, A=5, V; =10%, l/L = R/D;
(c)&(d) unit cell used in the simulation.

Table 3.4 Three-dimensional aligned single whiskemit cell parameters™

Aspect ratio. LengthL/2(um)  Width D/2(um) Volume fractionV; (%)

5 2.485 0.497 10
7 3.478 0.497 10
10 4.969 0.497 10
15 7.454 0.497 10
20 9.939 0.497 10

**|t should be noted that the lengthand W is dependent on the aspect rfaifcthe volume
fractionV; , and system geometry are fixétl € R/D).
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A=15

Figure 3.8 3D single whisker unit cells with meshes, from letb right with aspect ratios of 5, 7, 10, 15 and

red lines delineate the whiskers inside, elentesize is around 0.05

20
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3.5. Accuracy analysis and element selection

3.5.1. Source of Errors

Finite element modeling is a numerical approxinmat@mthe boundary value problem,
which is only useful if it can be assured of raligbbased on some analyses for accuracy. In
general, there are three categories of errorsiagstavith any simulation (Cook, 1995): (1)
modeling error, due to the replacement of a phlyprcdolem by an approximate mathematical
formalism; (2) discretization error, because thaatiqn is solved in piecewise fashion by
FEM in space and time; and (3) numerical errogesionly a finite number of bits are used to
represent each number by the computer. The fistval be discussed in the subsequent
chapters. The third one can only be improved thiazlgposing aloubleprecisionnumber
format in any commercial FEM software in order &t g better accuracy, which is routinely

used for current study. This section focuses omftze analysis from the second source.

The truncation error associated with the FEM treatmof the creep problem
decomposes into two parts: one part is the digat&in with respect to space and the other
part is the discretization with respect to time.iAtgsoduced in section 3.2.1, FEM solution
converges monotonically to the correct one withirareasing number of elements- (
refinement). This is guaranteed mathematically (M&086) and is verified by a patch test
which is accomplished for each kind of element lynmercial software already (e.g.
ABAQUS Benchmark Manual). For the truncation ewtth respect to time, as introduced in
section 3.2.2, the step size is controlled by tteui@cy criterion (error tolerance) instead of
the stability criterion. We are interested in whalue of error tolerance would be enough for
the creep analysis. Theoretically, the smaller kament size and error tolerance are, the more
accurate the result is. However, we want to avwédvtaste of time and computer resources

associated with over-refinement.

This section studies both accuracy effects whichbsacontrolled by users: element

size and error toleranceefo). Since they are based on the results insteaaeahtoretical
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predictions, they might be viewed as posteriorreggtimations. The study is based on the
percolating unit cell in Figure 3.6 with aspectaates. It is expected that this system could
provide a representative study provided all urliseesed in the current study (Figure 3.4, 3.6
and 3.8) retain the same set of units: (1) it hasmost complicated near contact regions
although not the most complicated whisker distidnyt(2) the stress redistribution greatly
differs throughout the system since all the loall @ transferred from the matrix to the
whiskers (as detailed in Chapter 5), which is msigally related to the error tolerance (in
equation 3.19). A compressive stress of -60MPpptied in they direction on the top surface

with the boundary conditions illustrated in sectioh.2.

3.5.2. Element selection

Generally, element selection is as important aséfextion of element size during
discretization with respect to space in order taageliable solution for a specific problem. In
principle, hexahedrons (e.g. C3D20R in the 3D sirghisker unit cells, Figure 3.8) are
preferred since they are capable of providing atisolwof equivalent accuracy at less cost.
However, triangles (e.g. CPS6M in the 2D percadgtinit cells, Figure 3.6) and tetrahedrons
(e.g. C3D10M in the 3D random whiskers unit catiuire 3.4) are employed to obtain a high
quality of elements for complex geometries. Qualityhe elements can be assured with the
aid of mesh verification function in ABAQUS CAE thiaighlights elements with extreme
angles and aspect ratios. Normally, elements witbrek order interpolation function and
reduced integration are chosen since the firstisneapable of representing the curved
boundaries (whiskers) more closely and of captuhegstress concentration more accurately,
while the latter one is capable of mitigating theerostiffened matrix. In current study,
modified triangular (CPS6M) and tetrahedral (C3D)0&lements are recommended by
ABAQUS documentation for a better accuracy in madr calculations especially contact
problems via containing additional degrees of foeed
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3.5.3. Discretization with respect to space
Theoretically, the order of truncation error for FEEMy be expressed as (Stolle,
2005)

o(prem) (3.35)

whereh is the size of the element,is the order of polynomial ana is the highest order
derivative of displacement for calculating stra@enerally, by study of how the sequence
converges (linear extrapolation) we might be ablednclude the error of results from the
finest mesh. However, the geometry used in theeotstudy is very complicated and biased
element size is used in order to capture the sir@skient around the contact area (Figure 3.5
and 3.6). The relationship of Equation 3.35 mighit loe evident. So a series of simulations
with different element sizes are carried out talgtine effect oh-refinement in the sense that
the discretization error with respect to time plays role for elastic deformation. Results

(Figure 3.9) for average element sizes of @ 0.08um and 0.12%/m (except the near

contact regions) are in substantial agreementatidg that convergence is almost complete.

%, Mises
{Awg: 75%0)
+9.39a+02
+&.46e+02
-‘ +7.53e+02
+6.01le+02
+5.682+02
+4.75a+02
+3.83e+02
+2.90a+02
+1.98e+02
+1.05e+02
+1.22e+01

h=0.05um
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5, Mises
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+5.69e+02
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+3.83e+02
+2.91e+02
+1.98e+02
+1.05e+02
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+2.91e+02
+1.98a+02
+1.05e+02
+1.23e+01
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5, Mises
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+9.70e+02
+8.82e+02
+7.86e+02
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+5.92e+02
+4.96e+02
+3.99e+02
+3.02e+02
+z2.06e+02
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+1.25e+01

5

h=0.25um

Figure 3.9 Von Mises Stresdor different element sizes with deformation scaléactor of 1145, based on
unit cell in Figure 3.6 with A=5, T ppjieq = -60MPa.
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3.5.4. Discretization with respect to time

A series of simulations wittcetol (error tolerance) ranging frorix10™" to
1x 10" are carried out to study the effect of error talesin the sense that the discretization
error with respect to space plays no role by cimgpthie element size as 0.0a6rQ). Creep
time is 264,960 seconds at temperature of 12@Dorder to obtain a total strain of 0.5% (that
is the displacement along direction U2 is around 0.Qdm) which is a value involved
frequently in subsequent chapters. It is found thatresult converges with difference less
than 1% aftecetoF1x10°, as shown in Figure 3.10 which plots the U2 onttfpesurface
versus the loading time. However, the CPU timeeases by more than 3 times from
cetol=1x10" to cetol=1x10° and 5 times tacetol=1x10" while making no significant
difference in the accuracy (with a difference l#ssn 0.15%), as shown in Figure 3.11.
Therefore, the error tolerance is generally betwtbenvalues olx10°and1x10” for all

simulations in order to obtain a good balance betviee accuracy and computer time.

0 . . . . .
50000 100000 150000 200000 250000 300000
-0.002 —<— cetol-1
—B&— cetol-2
£ -0.004 } —a— cetol-3
=2 —— cetol-4
S .0.006 | cetol-5
—*— cetol-6
-0.008 | W | —cetol-7
-0.01

Loading Time(s)

Figure 3.10Displacement along y direction (U2) versus loadingrte for different value of error tolerance
(cetol) from 1% 10" (cetol-1) to1x 10 (cetol-7) based on unit cell in Figure 3.6 with=5, O applied = -
60MPa, element size = 0.05ufn).
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Figure 3.11 Error tolerance (cetol) versus CPU time and error tlerance versus U2 at time 264960
seconds, based on unit cell in Figure 3.6 Witte5, T, piieq = -60MPa, element size = 0.054m).
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CHAPTER 4

VIRTUAL MODEL OF DIFFRACTION

4.1. Introduction

Diffraction experiments are widely employed to defiee the crystal structures as
well as to provide information on stresses witramples. For most cases, data is extracted
from the diffraction experiments to provide suclmimation. However, in the current study, a
reverse process is needed. This chapter propestgah diffraction model that can be used as
the framework to analyze the relationship betwéaendeformation mechanisms predicted by
our FEM simulations and the diffraction pattern weuld expect to see experimentally:
section 4.2 outlines the fundamentals of the daksliffraction theory (Kluget al, 1974;
Warren, 1990; Pecharskgt al, 2003); section 4.3 details the derivation of theual
diffraction model connecting the strain fields at¢a from FEM simulations to the expected
diffraction patterns in terms of peak position @eak width (FWHM); lastly, verification of
the virtual diffraction model will be carried out section 4.4. This model will be specifically
applied to the deformation of Abs-SiC,, composites in chapter 6.

Although X-ray diffraction is used as an examplaseation 4.2, it is the same frame
for all types of diffraction sources including neut diffraction and electron diffraction. They
all have a wavelength, (at the level of Angstrom, I6m) comparable with the interatomic
spacing, which is essential for diffraction. Th#edence is that X-rays and electrons interact
with the electron clouds surrounding the atoms arel angle-dependent, while neutrons
interact with the nuclei of the atoms and are m@lexdependent, in addition to a higher

penetration depth.
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4.2. Fundamentals of the diffraction theory

When an X-ray beam falls on an atom, it may be rdlesbwith the ejection of an
electron from the atom or it may be scattered.tRedatter case, the X-ray may be scattered
elastically (no energy lost which means no modificaof the wavelength) or inelastically
(Compton modified scattering, yielding a longer wemgth). Both of them are useful in
determining the materials structures. For stredssénain analysis, we emphasize the elastic

scattering.

Since atoms within crystals are periodically aregth@gn three dimensional lattices,
the diffracted X-rays from each atom interfere with each otherjngivconstructive or
destructive interference due to their phase difi@ewhich in turn results in strong intensity
(proportional to the square of the amplitude of thesulting wave) in some particular
directions. Bragg's law, shown in equation (4.4 Yhie most straightforward way of predicting
the relationship between those directions and thistatlographic inter-planar spacing. It
considers the scattering from a periodic latticehasinterference of reflections from each
crystallographic plane, where the difference irveliang distance should be the integral

multiple of the wavelength, as shown in Figure 4.1.
2dhk| sin@ = /]D ].m-

whered, is the inter-planar spacing, is the angle between the incident beam and plane,

Ab is the wavelength of the incident beam.

It is convenient to express Bragg's law in a vefdam. If S, and S are unit vectors
in the directions of the incident and diffractecivs,S- Sis perpendicular to thekl planes
with magnitude o - Sy| = 2sing . Substituting these definitions into Bragg's laveg

S- 9| _2sing _ 1
Ao Ao Ong

=Hpw 4.2)
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Figure 4.1Relations involved in the vector representation dhe Bragg law.

We can construct vecto® / A, , S/ A, and Hy,y as shown in Figure 4.1. In terms
of the reciprocal latticéd,,; is written as
Hug =hl + kiy + Iy (4.3)
whereh, k andl are the Miller indices of the planes dndb, andbzare the reciprocal vectors

of the crystal, which are defined @&/arren 1990):

X _ XXay _ A Xa

=278 p= = (4.4)
a (B, % 3 a Bxa as B x a

in which, & is the vectors in the normal lattice. There areitwoortant relations between the

two vector spaces (Warren, 1990):

(1) The (hkl) plane in the normal lattice corresponds to atgaithe reciprocal lattice with

position vector othb + kly + Iy normal to the plane with the lengthXofd,;

) aEﬂF{l,i:j, (4.5)

0% ].

78



Ph.D. Thesis — JUAN KONG McMastédaterials Science and Engineering (2012)

Figure 4.2 Schematic illustration of the interference of two toms in a unit cell.

A crystal can be viewed as an infinite three dinmra packing of identical unit
cells. InX-ray diffraction, the structure factdt,, is derived by considering the interference of
scatteredX-rays from all the atoms in the unit cell. It conginformation to determine the

scattering power of a crystal. Figure 4.2 showsitterference of scattered waves of two

atomss,, Sand a; have their usual meanings, is the position vector of thg" atom.

N =Xja, +yj;a; +2z;a; (4.6)

The difference of the wave travelling distanZgis given by

oOj=r;B-rls=rnrHs- %) 4.7)

The phase difference of the two waves is given by

g, = —0;, =2m(hx, + ky, + lz;) (4.8)
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It is convenient to express the propagation of @evilaterms of the quantum mechanical free-
space traveling wave function. For the scatteregeved the j" atom, the phase shift in the

complex wave functions of the X-rays scattered ftbentwo atoms is given by:

— ig; _ 27 (hx; +ky; +1z;
wj — ‘wj‘elm — fje”'(xl+ yi +1z) 4.9)

where f; is the amplitude of unmodified scattering per atexpressed in electron units

(amplitude in units of the amplitude from a singllectron) of thej™ atom.

_ amplitude-of-unmodified-scattering-peieam 4.10)
amplitude-of-unmodified-scattering-peeetron

Suppose there afd atoms in the unit cell, the resulting scatteredvavamplitude is the
summation of scattered amplitudes by all atoms. 3thecture factor,, thus becomes
(Pecharsky, 2003):

N
_ 2mi(hx; +ky; +1z;)
Fra = Z fie A (4.12)
j=1

From the structure factdf,, , it is straightforward to see that due to the sytnyn
within the crystalline structure, only certgiikl) planes satisfying certain conditions have the
potential to give out the diffraction peak in afrdi€tion experiment. Adding up all the
scattered waves from each unit cell within a stfie@a crystal, Warren (1990) proved that if
the size of the crystal is large enough, for exammindreds of times the size of the unit cell,
the resulting scattered beam should have an eXyresharp intensity profile. However, the
observed diffraction peak is broadened, displaced fits theoretical anglegd on the
goniometer scale, and even more or less asymmgetgashown in Figure 4.3. This is
attributed to two general sources (Kktgal, 1974):

(1) Physical broadening from the crystallite-sizestrdbution, magnitude and

distribution of lattice strain, which defines ther@ diffraction profile f (¢) ;
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(2) Instrumental broadening from the wavelengthritistion of the incident beam
(lack of monochromatism), flat specimen surfacecispen transparency and aberrations
introduced from the geometrical properties of tifgattometer, which defines the weight

function g(¢) .

Peak
Centroid

Half Width, 5,,

Intensity

| |
& X

20>

o
D
[aN]

28 —

Figure 4.3 A typical observed line profile (Kluget al, 1974).

The observed profiléa(e) is the convolution of the pure diffraction profifgg)
and the weight functiog (&) (Klug et al, 1974). The pure diffraction line profilé(g) could
be obtained via deconvoluting the observed linéllera(e) to yield the information needed.

However, it involves extensive and tedious compariaf e.g. Fourier transformation (Stokes,
1948). For many practical applications where oelgtive numerical results are needed, direct
measurements of the profile width would be emplaystead. Generally, peak position and
peak breadth are critical characters used to deterthe inter-planar spacing, and the

crystallite size and lattice strain, respectively.
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4.3. Relation between diffraction and deformation in AbOs-SiC,,

For the present study, since the long axes of ithevBiskers are coincident with the
[111] crystallographic direction, while the long rangeley of three other off-axi§111}
planes are destroyed during crystal growth (N@84), the(111) plane diffraction peak is
related primarily with the normal strain along thieisker axis, e.g.£,, if the whisker axis is
parallel to thex direction in space coordinate. According to Bradays, 2d,,, Sind = Ap, itis
simple to verify that non-uniform microstrains (&ig 4.4 (c)) would result in a broadening
and perhaps also a shift of diffraction angle, /hitiform microstrains (Figure 4.4 (b)) would
only result in a shift of the diffraction angle. Tiartical lines in Figure 4.4 represent the (111)
planes normal to the whisker axis. If the (111gkpef the crept sample becomes broadened
when comparing with the one before creep, thisigesvsupport for the bending mechanism
of anelastic recovery (Wilkinscet al, 1998).

<111>

(@)

()

- S

SiC whisker (111) peak

-

AN

Figure 4.4 Schematic illustration of change in the shape andggition of (111) peak due to lattice
deformation: (a) without deformation (b) uniaxial compression and (c) bending.
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4.4. Development of the diffraction model

4.4.1. Model construction

Mathematically the most significant measures okpaasition and peak width are
the centroid (equation (4.12)) and variance (eqog#.13)) due to the additivity of these two

parameters through convoluting the pure diffractmafile f(¢) and the weight function

g(¢) (Kluget al, 1974):

. j 24 (26)d (26)

4.12
j | (26)d (26) “12)

(26— < 26 >)?1 (20)d (26)
j | (20)d (26)

Wzg =< (Zg_ < 2(9 >)2 >= J. (413)

where|(29) is the intensity at the diffraction angle in terofs26on the goniometer scale
which acts as the probability density function. Timeoretical advantage gained as a result of
the additivity of variances is more than offsetphactical use due to the sensitivity of the
variance on background (Klweg al, 1974). Use of variance on the peak width is refeto
also as the Wilson method (1963). Meanwhile, offaeameters such as integral breadth and
full width at half maximumREWHM) are also frequently used to characterize the pezie

while line profiles f (¢), g(¢) andh(e) are assumed.

In order to deal with the centroid and variance thainates from the strain field
separately and independently from other factorstalliys size and instrument effects are
assumed constant during the calculation, which ysipally sound since microstructures of
SiCy reinforced A}O; composites undergo no significant changes durimg dreep
deformation and the same diffraction experimergaip were applied each time. Furthermore,
only elastic inter-planar spacing changes are takenaccount which is conformable to the
isotropic elastic deformation of SiC whiskers (reéfeSection 3.1). Each element of our FEM

simulations is treated as a quasi-diffraction-dontiaat yields a diffraction peak behaving as a
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delta function with position and intensity deterednby the strain and volume of the
corresponding element respectively. Moreover, tolime of the element is big enough
compared with the crystallographic unit cell in Véars work (1990) to justify that the size
and shape effect of each element can be ignorptbfe from such a deformed FEM sample
is comprised of a superposition of diffraction nmaaifrom all such elements with different

weightsv.

The mathematical development of our diffraction eldeegins by differentiating the

Bragg'’s law2d, sind = A,

20, CONEG + 2sir\dy, = AAp (4.14)

whered., , 8 , A, , and Ady, , AG, AJ, are the inter-planar spacing bkl planes, the
diffraction angle and the wavelength of the diffi@e source respectively, along with their
corresponding changes. Sint&, =0 due to constant instrumental broadening, a sioel |

strain shifts the reflection by

A@ =—tang,e (4.15)

whereg, is the diffraction angle for zero straid\é s the shift of the diffraction angle due to
strain € Which is the ratio of the change of the inter-plaspacing to the strain free spacing

By replacing the intensity, in other words the jatabty density function, with the volume of

the element, the centroid and the variance ofiffraction line profile are expressed as

328y
<20>=1L (4.16)

SV

2. (28-< 28>,
W == (4.17)

SV
=
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where the summation goes over all elements. Suisfjtthe equation (4.15) into (4.16) and
(4.17), the centroid and the variance of the diffom line profile due to the finite strain
distribution are expressed by

D eV
<20 >= _Ztarﬁo i:::; + EO (418)
V,

i=1

n

21 Doav
Yl -5 |V
i=1 ZVI

Wi = 4tarf 6, = (4.19)

SV,
i=1

whereV, and&; are the volume and strain of tHe element, whilen is the total number of
elements obtained from the FEM simulations. Funtioee, since the variance, which has
units of 8%, is not a straightforward parameter to compare thighpeak width, the full width
at half maximum EwHM ), with units of@, is obtained in order to compare with the neutron

diffraction experimental data that is normally fittevith the Gaussian function. Finally the
expressions foFWHM is given by

n 2
L Doav
D=5 |V
i=1 Z\/I
FWHM = 2¢/2In 2/Wy = 4/ 2In 2 tars, EE (4.20)
\%

i=1

One thing to mention is that equations 4.18 and 4.20 wieitd of arc (radians)

which should be converted into degrees by multiplyi8@ /77before comparing with the
experimental data.
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4.4.2. Model implementation through ABAQUS
The diffraction model is implemented through an ABAS post-processing
algorithm with the aid of the Python language. Bwe present study, thglll) plane

diffraction peak is associated with the normalistedong the whisker axis, e.dg; (Exx)

for the 2D percolating unit cells (Figure 3.6) &Re( £, ) for the 3D single whisker unit
cells (Figure 3.8) in space coordinates. For the chAshe 3D randomly-oriented-short-fibre
unit cell (Figure 3.4), the strain field within eaatmisker is transformed with respect to its
local coordinate system before calculating BwHM and 26 to maintain a one to one
assignment. The strain at the element centroidmplaed during simulation. All the
predictions possess a volume average charactera@ndased on the diffraction angle
26 =56 here for the (111) peak, whi.36 is used in chapter 6 according to the neutron

diffraction experiments of Quan (2004).

4.5. Verification of the diffraction model

In this section, verification of the diffraction ohel including the accuracy as well as
the dependence on the element size is conductesktoe the overall quality of the present
study. Model accuracy is accomplished by compatirg diffraction pattern predictions
obtained from the numerical diffraction model ahd ainalytical solution for the case of a
simple supported beam under load as shown in Figire(a). The beam possesses the

properties of SiC whisker with a height of @n and an aspect ratio of 20, and is subject to
bending induced by the center loed-5MN and to tension induced by the end traction
P =100MPa simultaneously. Element size dependence is examinedomparing the

predictions based on different element size.
4.5.1. Diffraction model predictions
Numerically, FEM simulations of the beam under laagl carried out first through

ABAQUS standard to provide the strain fields whiah be used as inputs for the subsequent
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diffraction pattern simulations through the ABAQU®spprocessor to predideWHM
(equation 4.20) and peak position (equation 408 to the symmetric distributions of the
loads, supports and resulting strain fields, omlly of the beam is simulated with SBCs used
at the center. The geometry is meshed through ABAQAE 6.8-3 with 8-node rectangular
elements which is referred to as CPS8R in the ABS&@uanual. Two kinds of meshes with
element size of 0.08m and 0.lum are employed in order to check the dependence on
element size due to the intrinsic volume averageadter of the diffraction model. Figure 4.5
(b) and (c) show the strain field distributionsdzhsn the two meshes. Meanwhile, Table 4.1
summarizes the predictions BWHM and peak position from the numerical diffraction

simulations together with the values obtained dicaly in the next section.

P=100MPa F=5MN P=100MPa
- . C. 7 4
< i_x ¢ R -
y I Y
L. B
(a)
E,E11
(Avg: 75%)

+6.570e-04
+5.718e-04
+4.867e-04
+4.015¢-04
+3.163e.04
+2311e04 |[ELLIT

2799e-04
3651e-04 {b)

E,EM1

(Avg: 75%)
+6.572¢-04
+5.672e-04
+4.772¢-04
e T
- e SRR R
+2072¢-04 R
+1.172e-04 sy
+2.724¢-05 s
£275e-05
1527¢04
2.427¢-04
3327004
4.227e04 (c)

Figure 4.5 Diffraction model verification: (a) schematic illugration of a simple supported beam with

height of 0.am and span of 9.am under bending and tension; (b) normal strain (Ej; or &)
distribution obtained from FEM simulations with element size around 0.im; (c) with element size
around 0.05um.
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4.5.2. Analytical model predictions

Analytically, the resulting elastic response of gystem is the sum of the responses
from bending and tension independently accordirtyegrinciple of superposition in physics.
Without getting into a detailed derivation, the maf stress along the axis of a bent beam is
given by (Wanget al, 2000)

0=t (4.21)

Here 0,4 is the normal stress alorglirection. | is the second moment of area of the whisker

Cross sectiom(:iafor unit thickness into thedirection withR the height of the beam} is
12

position through the thickness of the beam runtiiogn —R/2to R/2 M is the bending

moment withim :%Fx for (0< xs%l) and M :%F(l -x) for (%| <x<l) (wherel is the

span of the beam) which is characterized by a synukstribution with respect to the axis

of x= %| for a center loaded beam. Therefore, it is obvibasthe normal stress possessing a

symmetric distribution with respect to the axisxef%| and an antisymmetric distribution

with respect to th& axis yields a mean value of zero if the end edfact neglected based on

the Saint-Venant principle (Timoshenko al, 1970). The normal strain behaves the same

. g
sinces,, = % , and can be expressed as

Exx =l—xy for (0< xs%l) 4.22)
The variance for a continuous varial® is given by

) j(ze— < 26>Yd ()
v [d20)

(4.23)
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By substituting equation (4.15) into (4.23) andirtgkadvantage of the zero value of the
centroid & 26 >= 0 ) resulting from the zero mean value of the norstrain ¢,,, the variance

of the diffraction peak can be rewritten as a fiamobf strain:

_ I(Z taneogxx )2d exx )

20 ~ 4.24
[d(ew) 29

By substituting equation (4.22) into equation (3#.24d integrating over the left half of the

beam Q< x<1/2, - % <y< %) due to the symmetry with respect to the aXBS:O%I ,

the variance of the diffraction peak for a benthéagiven by

20 —

4.25
12 EI 4.25)

[ 1F tanHORIjz

The analytical solution of theWHM for a beam under symmetric bending is expressed as

V2In2 F tang)RI
El

FWHM = (4.26)

Meanwhile, the symmetric bending does not contlbaitthe peak position since the
mean value of the normal strafpy is zero as argued before. In contrast, for the cds

uniaxial tension, it has no contribution to thekpegdth, while contributing only to the peak

position which could be calculated through equatibh5) together wittz,, = UEXX :

_ 2tang,P

A26 = @2

Comparison of the analytical predictions to tho$ehe diffraction model is
shown in Table 4.1. Same as before, equations ah@64.27 yield units of arc, which

should be converted into degree by multiplyk8p /77.
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4.5.3. Summary

Analytical predictions of th&WHM and peak position obtained through equations
(4.26) and (4.27) are summarized in Table 4.1 kegetith the predictions from the two
numerical diffraction simulations with varied elamesize. The diffraction model correctly
calculates the changes of peak width and peakiguosi.g. with differences of 0.97%
(FWHM) and 0.098% 426 ) between the analytical predictions and the nuwakdiffraction
simulations based on the element size of Qrim common value of FEM discretization used
in the current study. Moreover, no dependence emlitment size is observed since doubling
the element size results only in a difference 6%dfor FWHM and no difference faa24 .
Meanwhile, the subtle difference between the twoukitions is due mainly to the FEM

calculations which depend on element size inhegfemdlshown in Figure 4.5 (b) and (c).

Table 4.1 Comparisons ofFfWHM and A28 for (111) peak between the diffraction model andraalytical
solution (in degree). (b): with element size aroun.14/m (Figure 4.5 (b)) (c): with element size around

0.05u4m (Figure 4.5 (c)).

Analytical solution Diffraction model (c) Diffraction Model (b)

FWHM (111 0.02366 0.02343 0.02307

A26 (111) -0.01015 -0.01016 -0.01016
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CHAPTER 5

ANELASTIC BEHAVIOR MODELING OF Al ,03-SiC,,

5.1. Introduction

As discussed in the introduction of this Thesisjdte, the mechanisms responsible
for the anelastic creep of Sj@einforced AYO; are still not well explained and no systematic
numerical work has been carried out based on acatiimethodology to explain how the
elastic energy is stored within the network and dwskers interact with each other. In order
to address the aforementioned questions, this ehaptamines creep deformation and
anelastic recovery numerically in anp@$ matrix reinforced by whisker networks aligned in a
2D and 3D-random geometry (as illustrated in clig@)teThe Finite Element Method (FEM)
will be used to calculate the local strain andsstieelds. The deformation mechanisms of the
whisker network and the relative contributions ehding and contact will be addressed. The
investigation is carried out without considering thermal effects. The material properties
employed are illustrated in Table 5.1, which cgroesl to the data around 1200n section
3.1.

Table 5.1 Material properties of ALO3; and SiG,

Property E(GP3) Poisson ratio n Cc(S* MPa™h
Material
SiC 600 0.17
Al,O3 354 0.247 1 1.87x 10°

5.2. Percolation of the whisker network

A percolation threshold is a mathematical conceptito describe the formation of
long-range connectivity in systems. It has a bn@adje of application in various physical
phenomena, such as electronic transport, the glassition and the Anderson transition
(Zallen, 1983). For spherical particles, it occarsabout 16vol% (Grannast al, 1981) and
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decreases for fibres with increasing aspect ratieoretical calculations specific to the fibre

geometry approximate the percolation threshol@i@ndom orientation as (Nan, 1993):

@ =0.7/2 (5.1)

where A is the whisker aspect ratio. In the cases studsed, for an aspect ratio of 20, a
percolating path consisting of random contactoimé&d when whisker volume fraction is
above 4vol%. The percolating network is characerizy the ability to (statistically) enable
load transfer across the unit cell. If the whististribution is not completely random due to
hot pressing for example (the process by whichv@iiker reinforced AlDsis fabricated),
the percolation threshold will be larger by abodaetor of two for the same effective load
transfer (Wilkinsoret al, 1998). The load transfer characteristics of @gletion threshold
offer a plausible explanation of why pure alumimal a&omposites containing less than
10vol% of whiskers show no significant time-dependgrain recovery when the load is
removed during creep. This is consistent with tleekwof Favieret al (1997) on a latex
composite reinforced with cellulose fibers, whidiows an unusual high value of elastic
modulus when the volume fraction of cellulose fibsrabove a particular value, a result that
cannot be explained by the traditional mean fiéldoty wherein fibers interactions are
ignored. Their results can be explained analyyidatlincorporating the effect of fiber volume

fraction via percolation theory.

In this section, we study the role of a percolatietyvork on the anelastic behavior of
Al,05-SiC,, composites based on a 3D multi-whisker unit catitaining 15 fibres of equal
size and aspect ratia<5) at a reinforcement volume fraction of 15%. Frpercolation
theory, composites with these parameters shouleh farpercolating network, which is
assumed to be a prerequisite of anelastic recolgrved in the Wilkinson and Pompe work
(1998). As mentioned before, the 3D unit cell wasstructed without perfect contacts
deliberately. If the predicted magnitude of anedasticovery based on this non-percolating
geometry does not match experiments, a percolagtwork is demonstrated to be necessary.

In Al,O3 composites, the typical experimental magnitudénefrecovered anelastic strain is
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around 1x18when the SiC volume fraction is equal to or gretitan 15% for whiskers, as
well as particles (Geet al, 1994&1995; Denget al, 1999; Quan, 2004). Although this
magnitude can be reproducible, it first appearsnvthe total creep strain is around 5%10
Figure 5.1 shows the simulated stress versus timiaé case of creep deformation of a unit
cell with randomly packed whiskers at 15vol%. la $fimulation, an initial stress of 60MPa is
subsequently reduced to 20MPa, analogously to regperiments of Quan (2004). When the
stress is reduced after 25 hours of creep defamatith the total accumulated strain of
5x10°, an instantaneous elastic contraction is obsefottowed by a plateau of almost no
time-dependent back strain for about 2 hours, aftech forward creep strain is once again
observed. As suspected, the lack of back strasumsimulations indicates that without an
effective percolating network, elastic energy stonathin the whiskers is dissipated locally
without a detectable global back strain upon unfgad his result thus suggests the necessity

of a percolating network for significant anelas@havior to be observed.
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Figure 5.1 Stress reduction-Strain transient curve for the ramlom, three-dimensional multi-whisker unit
cell without contact, O ,ppjieg =-60MPa, T finy =-20MPa.
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It is also noted that in experiments, the 20MPal fatress may indicate a threshold
stress for the creep deformation op@4 ceramics below which no creep will occur because
the grain boundaries will no longer act as the smrand sinks of defects needed for
diffusional creep (Chiangt al, 1997). Besides the absence of a percolating netilas
could be a possible reason for not observing ack btxain for pure alumina and alumina
composites with low volume fraction of SiCFurther experiments investigating the threshold
stress of the creep deformation of alumina areinedjuio better incorporate the role of

threshold stresses into the constitutive equatdb”RrEM models.

5.3. Deformation mechanism of the 2D percolating whiskex network

The results of the previous section demonstratechéitessity of a 3D percolating
network, which is achieved by an inclusion volurraetion above a threshold value. This
section examines the role of whisker interaction8D networks that model the cross section
of a 3D percolating network of regularly arrangeuskers, as described before. While these
networks are not the same as a random 3D netwaskexpected that they can still provide
valuable insight into the role of whisker bendirgrsus contact during creep deformation.

Plane stress is assumed.

5.3.1. Typical stress reduction-strain transient and relaxation curves

Figure 5.2 shows a typical creep strain curveddole) from a simulation based on
the percolating unit cell with aspect ratio of %laompressive stress of 75MPa alongythe
direction. Within the first 200 hours the straicreases rapidly then almost saturates at the
value of 9.64x18 which is named the maximum recoverable stgaiand used to describe
the capability of the network to provide anelagicavered strain. Owing to the percolating
geometry of these 2D simulations, all the accuradlatrain is recovered within 500 hours
after complete unloading. This process is driventh®y elastic energy stored within the

network at the unloading stage, exactly the revefsghat happens in the loading process.
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When the total forward strain is 5%1@s shown in Figure 5.2 (dashed line), a significan
amount of anelastic strain is observed even wherstitess is only partially reduced. This
indicates that unloading proceeds until a balasta® between the simulated residual stress

and internal stress is achieved.

0.01

0.008
£
£0.006 1
n 0. =-75MPa
Q.
$0.004
o O;=- 20MPa

0.002

O;=0MPa
0
0 250 500 750 1000
Time(h)

Figure 5.2 Stress reduction-Strain transient curve for 2-D pecolating network, A=5, O applied = -75MPa,
the solid line shows the asymptotic curve, the deitl line shows the behaviour while unloading at the
strain of 5% 107 with a final stress of -20MPa.

The asymptotic curve of the unloading part in Fegbu? can be expressed by

In( {j:—%t (5.2)

wheres and £ are the instant strain and asymptotic strain, wtsedy, while 7 is the
characteristic relaxation time ardis time. A straight line with the slope ofl/7 is

generated as shown in Figure 5.3 when plomiings / g*) versust . Reversing the slope

yields the characteristic relaxation tinreused to characterize whether a given material

behaves as a viscous fluid or rigid solid by tHatinee value of its characteristic relaxation
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time 7 (Poirier, 1985). This analysis shows that the celitmodel examined here behaves as
an effective Kelvin-Voigt model consisting of siand dashpot in parallel, the simplest
analogue model of viscoelastic response. The deaisdic relaxation time is 82h for the case

examined here.

0
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%
w -4
£
y =-0.0122x
6 R%=0.998

Time(h)

Figure 5.3 Plot of natural log of the fraction of recovered stain vs time, A=5, 0, = -75MPa.

5.3.2. Relative contribution of bending and contact effec

Our simulations suggest that creep strain accuesuiatthe matrix while the applied

load is transferred from the matrix to the whiskatwork, saturating eventually to a

maximum accumulated strain when the entire load is carried by the whiskemwnek.
Figure 5.4 and Figure 5.5 show the stress disimibuf S;; and Sy, the normal stress along
thex andy directions respectively, at full loading of a tgliwhisker network. It is seen that
the whiskers behave similarly to three-point loatdedding beams during deformation. The
matrix around the whiskers is made invisible farity. Half of the whisker “beam” is under
axial tension and the other half is under axial @@ssion. Maximum normal streSg occurs

at the mid-span of the beam with positive and megatlues corresponding to the tensile and
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compressive part respectively. Normal str&s is distributed near the contact region,
reflecting a contribution of the contact effecteTdeflection of the top surface of the center
whisker clearly illustrates a bending shape andrasmooth concave region near the contact

region, as shown in Figure 5.6.

S, S11

(Avg: 75%)
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-1.18e+04
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Figure 5.4 S, distribution within whisker network with invisible (white regions) matrix, A=7, O applied = -
75MPa.
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Figure 5.5S;, distribution within whisker network with invisible matrix, A=7, O sppjied = -75MPa.
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Figure 5.6 Deflection along the middle whiskeri=7, T ppjieq = -75MPa.

As expected, simulations show that bending andacbotcur at the same time. The
relative percentage of the two deformation mechasmare calculated from an energy point of
view. The calculation is done on ABAQUS 6.7.1 tlgloypost-processing using the Python
language. Specifically, the energy contributiomfrioending is given by

n
Z 011 X €11 %XV,
—

Pieending = 7 : — — (5.3)
Z(Uhxgu"' 02X+ 20' 1 X € )XV,

i=1

while the energy contribution from contact is givsn

Z Ty X E XV,
p(contact) = n . ' = . . . . (54)
z (011X E11+ T X E o+ 201X € YXV,

i=1
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wheren is the number of elements in the whisker netwfkis the volume of"" element,
Jil and Elil are the normal stress and strain alangjrection fori™ element respectively,
05, and Eyare the normal stress and strain alpdirection fori™ element respectivelwliz

and &}, are the shear stress and strainifoelement respectively. The remaining energy is

contributed to shear deformation which is illugichalso in Figure 5.7 for comparison.

1
0.8 F
<
o 06 F
(=]
©
c
S 04
e Contact
0.2
Shear
0
0 5 10 2 15 20 25

Figure 5.7 Contribution of two deformation forms in terms of percentage versus aspect ratio.

Figure 5.7 shows the contribution of the bendind eontact effects for the total
energy storage versus the whisker aspect ratie tlear that the bending contribution
increases rapidly as the aspect ratio increasass,almost saturates at 100%. Even when the
aspect ratio is 7, bending effect contributes & &7 the total elastic energy. Furthermore, for
the specific aspect ratio, the contribution of edeffiormation form, bending or contact,
remains relatively the same as the creep deformatatinues. Although the well aligned

whisker distributions used here idealize the sdunatt is expected that the generic features of
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Figure 5.7 will also hold for a random network dfiigkers, i.e., the contribution of bending
will tend to unity as whisker aspect ratio incresaddeanwhile, the role of contact is not
expected to be very significant, even at small @sfadios. Therefore, the shape of whiskers
could be simplified for the study of 3D random j@éating network, although the same is not
true for networks of cylindrical-shaped whisketsHhould be stressed, however, that the shear
force at the interface between matrix and whiskeay induce a tensile or compression
deformation, the relative importance of which wli#ipend on the angle between the loading
direction and whisker alignment, and whisker disttion. The relative contribution of

bending and such tensile deformation is suggested#ure study.

5.3.3. Comparison of FEM results with the analytical model
In this section, our FEM simulations are comparath \an analytical model of
Wilkinson and Pompe (1998)r the creep and anelastic recovery of whisker4alatelet-

reinforced ceramics, which is based on creep arer'&ueam theory. The procedure for
obtaining the analytical solutions{ and 7, ) is described below in section 5.3.3.1. The

numerical results £ and 7 ) are extracted from the FEM simulations through #ame
procedure as illustrated in section 5.2.1. The négaces of the maximum recoverable strain
and the characteristic relaxation time on the wdnigispect ratio and the material properties

are then examined.

5.3.3.1. Analytical model construction

Modification to the governing equation presentedkMson et al, 1998) was made
in order for the analytical model to conform to i2 percolating unit cell model used in this
study (as shown in Figure 5.8). The reader is nedeto Appendix A for the complete

derivation of the modified analytical model.
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For a unit cell with length (ob, alongx direction in Figure 3.4), Height (bc, along
y direction in Figure 3.4) and depii (z direction into the paper in Figure 3.4), the goiray

equation for a whisker embedded in a creeping xnatri

4
_Ewlau:21 W

pwe E(le)u(x,t)+ Fo(X) (5.5)

Figure 5.8 Simplified 2D bending unit cell: W, H and L are the width, height and length of the unit cell,
2d=)*2r is the length of whisker with radius ofr and aspect ratio ofi.

from which the predicted maximum strain recovery is

3
« _LoA (5.6)

M = —

ler E,

and the characteristic relaxation time is

_12 4
=7 CE, (5.7)

v
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whereE,, is the Young's modulus of the whiskérjs the second moment of area of the

wW(2r)®

whisker cross section I(= ), u(x,t) and u are the displacement rate and

displacement normal to the whisker planes alpidgrection respectivelyd(x) is the Dirac

delta function describing localized nature of tlatact forceF atx=0, andC is the creep
constant of the matrix.

5.3.3.2. Aspect ratio dependence

(A) Maximum recoverable strain

Our FEM results are in qualitative agreement whkh analytical model. However,
they deviate from it quantitatively. For examplar, &én aspect ratio of 7 and stress of 75MPa,
the maximum recoverable strain predicted by the FBEMel is about™ =32.27x 10°,
while the analytical model predicts a strain tedtigher by 26%, witle, =43.95x< 10°. This
discrepancy is mainly due to the geometric fadtat enters the analytical model. First, the
support-points of the whisker are not exactly ledat the two ends, ar), is calculated
assuming that the span between the support-psipteportional to the aspect ratia It also
neglects the end effect. These approximations teaah overestimation of the maximum
recoverable straig,, . To test this hypothesis the maximum recoverabig@nswas re-
calculated using a whisker span #f1. For this span, the analytical model gives
Ewpy ~27.675¢ 10°, 14% less than the FEM result. The effective sgaould thus lie
between these two values. For example, only an 8féreshce is obtained when the
coefficient of the effective span is takenkeB.5 resulting in &y 1-05 around35.19x 10°.
Despite the discrepancies due to the aforementiocmutact effects and inherent
underestimating from Euler's beam theory for sraafpect ratio (Wangt al, 2000) which
neglects the shear deformation (as shown in Figufg this difference between the FEM

simulation and the analytical model will decreaséh@ aspect ratio increases, resulting in an
averaged difference of 4% after adjusting for te effect.
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To characterize the aspect ratio dependence dh steaovery exclusively, the
maximum recoverable strain is scaled by the lebgiind applied stresg for both the FEM
results and the analytical solutions during consari(s’ =& /Lo ). Generally, for the
same applied stress, the maximum recoverable straifincreases significantly with
increasing aspect ratio, due to the inherently nmoke compliant whisker network, as well
as the increasing load that is proportional tarlheeasing unit cell length. Because of this,
during FEM simulations, smaller stresses are apptiehe unit cell with high aspect ratios in
order to avoid an over-deformed network by keeftiegmaximum recoverable strain less
than5x107. Typical values of =0.25 ancE,, =600GPa are substituted into Equation (5.6).
We obtain the maximum recoverable strain as aifumctf the aspect ratio for the analytical

model (red solid line in Figure 5.9) given by

0.003
& FEM: £'=4x107(1-0.5)° R*=1

m FEM: €= 2x1072%2 R*=1
A FEM: £'=6x107(2-1)*° R*=1
) €X' =4.17x107(3-0.5)°

0.002

0.001

0 3 6 9 . 12 15 18 21
Iy

Figure 5.9 Scaled maximum recoverable strain versus aspect iat finite element model (FEM):
dotted trend lines with the fitting equations; anaytical model (AM): solid line and the equation in
red for comparison.
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£, =4.17x 10" @ - 0.5) (5.8)

At the same time, fitting the corresponding scd&&d/ results gives (black dotted

lines in Figure 5.9)

£ =4x10" (A- 0.5§ (5.9)

Equation (5.8) and equation (5.9) are within 4%auath other. Furthermore, when the
FEM data is fitted with. and -1, we obtaine” =2x10"A*?and, & =6x10" (A - 1}°
(dashed lines in Figure 5.9). These results confiven hypothesis of overestimation and

underestimation due to end effects.

(b) Characteristic relaxation time

The analytical model consistently estimates a lor&xation time than does the
FEM simulations. For example, when the aspect iatid and applied stress is 75MPa, the
characteristic relaxation times from the two moaets250h and 73.2h, respectively. The ratio

of these results is maintained for all aspectsatince

Log(ry) =4Log(A)—-1.51 (5.10)
Log(r) =4Log(A)—-1.01 (5.11)

which were obtained from the analytical model dr@lREM results, as shown in Figure 5.10.
It is found that the end effects are not significsince the data fitted with — 0.5 yields a

poorer result, as shown in Figure 5.10 with gneg.li

One possibility for the underestimation of the giedl model is that the governing
equation (5.5) attributes the varying reactionddrcthe matrix only and neglects the fact that
contacts point loads also change with time during tinloading process. A smaller
characteristic relaxation time, or faster strate @& decay, was obtained for a high stress in

the matrix from the analytical model as compareith Wie FEM simulations. This is because
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most of the stress is actually carried by whiskestead of the matrix in the FEM simulations.
However, the analytical model does capture thergetrend of the unit cell FEM simulations,

with respect to the power law dependence on thecasgtio.

6
5 B FEM: Log(t) = 4Log(2)-1.01 R*=1
=—AM: |og(Ty )= 4Log(})-1.51
4 b "
x / v
23 -
- ~d
2 b
1P
0 [ 1 a a A
0 0.4 Loog.%k) 1.2 1.6

Figure 5.10 Characteristic relaxation time versus aspect ratiofinite element model (FEM): dotted
trend lines with the fitting equations; analytical model (AM): solid line and the equation in red for
comparison.

5.3.3.3. Material mechanical property dependencies
For the case of the material constant dependenggeperformed simulations on the
2D unit cell model with aspect ratio of 5. One paeter at a time was varied, while keeping

all others fixed, as described in Table 5.1.

(A) Maximum recoverable strain

As predicted by the analytical model, one imporfarameter was found to play an
important role on the maximum recoverable strdie: Young’'s modulus of the whisker.
Figure 5.11 shows the whisker elastic modulus dégrare of the maximum recoverable
strain. The analytical model predicts the behasgiagcording to
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&v =7.06x 10E,™ (5.12)
Fitting the data from the FEM results yields:
£ =5.96x 16E,™ 513

0.02

0.015

*y 0.01

0.005 s ;
B FEM: £* = 5.96x10°E, " R%=1

o—AM: £*,= 7.06X10°E,,”

0
0.E+00 2.E+05 4 E+05 6.E+05 8.E+05 1.E+06
E.(MPa)

Figure 5.11 Maximum recoverable strain versus Young's modulus fothe whisker, A=5, O appjied = -
100MPa.

(B) Characteristic relaxation time

As predicted by the analytical model, two paranseteere found to play an
important role on the characteristic relaxatioretinttie Young's modulus of the whisker and

the creep constant of the matrix.

Figure 5.12 shows the whisker elastic modulus digree of the characteristic

relaxation time. The analytical model predictstiebaviours as according to

Log(ry) =-Lod E,)+7.06 (5.14)

Fitting the data from the FEM results yields:
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Log(r) =-Lod E,)+7.51 (5.15)

B FEM: Log(T)= -Log(E,)+7.51 R*=1
3 =AM Log(ty) =-Log(E,)+7.06

0 t———r————h—————|———
4.5 5 5.5 6 6.5
Log(Ey)

Figure 5.12 Characteristic relaxation time versus Young’'s moduls of the whisker, A=5, O applied = -
100MPa.

Figure 5.13 shows the matrix creep constant depeedef the characteristic

relaxation time. From the analytical model, thatieh is expressed by

log(ty ) =-1log(C)-7.4% (5.16)
Meanwhile, the FEM results are approximated by

log(r) =-1log(C)- 7.0z (5.17)

Once again, the analytical model captures thecakitnverse dependence Bp and
C, despite overestimating and underestimating dasiaély the values from the FEM
simulations for the maximum recoverable strain @matacteristic relaxation time respectively.
Although Figures 5.11 to Figure 5.13 present théenad properties dependence based on
aspect ratio of 5, a bigger value of aspect rabaldvactually show an even better agreement

between FEM simulations and the analytical modeichhhis work extends since the
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contribution from contact effect is smaller and #&malytical model is based on beam theory

which favors a large aspect ratio.

& FEM: Log((T) = -Log(C)-7.02 R? =1
4 &, —AM: Log(Ty) =-Log(C)-7.45

-12.0 -10.0 -8.0 -6.0 -4.0
Log (C)

Figure 5.13 Plot of logarithm of characteristic relaxation time versus logarithm of creep constantj=5,
Uapplied = -100MPa.

Furthermore, the effects from the rest of the natproperties (in Table 5.1), such as
the creep constant and Young's modulus of the xatrithe maximum recoverable strain,
and the Young’s modulus of the matrix on the chargstic relaxation time, are also studied,

which show no dependence confirming the analyticadel prediction.

5.4. Extrapolation to the 3D percolating whiskers netwok

The useful study above is based on the plane stssssnption. However, both plane
stress and plane strain assumptions involve afizdtan of reality to some extent. The real
physical problem is three dimensional. The efféthis might be extrapolated however from
the combined study of plane stress and plane stamditions. This section provides some
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understanding of the behaviour for the percolating cells with the plane strain condition

while keeping other properties the same.

5.4.1. Typical creep strain curves for plane strain condibn

Figure 5.14 shows typical creep strain curves fsamulations based on the 2D
percolating unit cells, under the plane strain d¢@rg at a compressive stress of 10MPa along
they direction. As for the plane stress condition iatisa 5.3, the strain increases rapidly at
first and then almost saturates at maximum recbleeistraing . Owing to the percolating
geometry of the 2D simulations, all the accumulateains are recovered upon load removal
provided there is enough time allowed. In ordepltd all the data in one figure for a clear
comparison, simulations with different aspect satwe carried out with different values of

creep constan€ which controls the rate of creep, in other worttie time needed for

saturation.
0.008
—e—=5, C=1.87x10"*
—=—)=7, C=1.87x10%
oo6 & ¢ - T U]
= —a+—)=10, C=1.87x10"
ju —j=15, C=1.87x10"°
m A
o 0004 - & - e
[«}]
o
o
0.002 % €
0
0 2000 4000 6000 8000 10000
Time(h)

Figure 5.14 Stress reduction-Strain transient curves for 2D pegolating network with varied aspect ratio
and plane strain condition, O ,ppiied = -10MPa.
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However, a single value of characteristic relaxatime could not be obtained for

each aspect ratio since all the plots pf (5 / g*) versust could not all be fitted by straight

lines, as shown in Figure 5.15(a). For comparisesylts based on the plane stress conditions
(section 5.3) are shown in Figure 5.15(b). Thisgests that 2D percolating unit cells with
plane strain condition still behave as effectivéviteVoigt models but with a spectrum of the

characteristic relaxation timegs for each aspect ratio. Thus, only the maximumveable

strain&” is extracted for future analysis and the chariatiterrelaxation timer is studied

gualitatively. Furthermore, plane stress conditiormally yields larger recoverable strain and
smaller characteristic relaxation time than plar@rscondition does indicating that the plane
stress condition is more compliant due to the gerssmpensation mechanism during
deformation which will be illustrated in sectiomZ. However no quantitative comparisons

can be made between them while some trends alarsimi
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1500 2000 2500 3000 3500

-2

In(e/e*)
A

C=1.87x10°, y = -0.0077x, R2=o.g397
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1000 1500 2000
®)=5, C=1.87x10",y =-0.0122x, R?*=0.998
W)=7, C=1.87x10",y=-0.004x, R’=1
A)=10, C=1.87x10", y = -0.0951x, R°=0.9996

@ =15, 87x107, y = -0.0188x, R?=0.9999

X3=20, C=1.87x#0”, y = -0.0058x, R*=0.9999

Time(h)
(b)

Figure 5.15Plot of natural log of the fraction of recovered stain vs time for different aspect ratios: (a)
with plane strain condition, O,ppiieq = -10MPa; (b) with plane stress conditionTygpieq = -7SMPa, -
75MPa, -10MPa, -5MPa and -1MPa for aspect ratios 05, 7, 10, 15 and 20 respectively.

5.4.2. Deformation mechanisms for plane strain condition

Our simulations suggest that for both plane smeskplane strain conditions creep
strain accumulates in the matrix while the appladl is transferred from the matrix to the
whisker network, saturating eventually to a maximacoumulated straig” when the entire
load is carried out by the whisker network. Fonplatress, the whiskers behave like a simply
supported three-point bending beam, as studiedatioa 5.3. For plane strain condition, if
there is no matrix, the whiskers behave like a sirsppported three-point bending plates with
typical stress distributions shown in Figures BBt3 in Appendix B, which resemble those
cases for the plane stress condition: (1) Halhefglate is under tension and the other half is
under compression. (2)Maximum bending st®gccurs at the mid-span of the plate with
positive and negative values corresponding toehsile and compressive part respectively.
However, for the plane strain condition of 2D péating unit cells with matrix, the stress

distributions within whiskers are complicated.

111



Ph.D. Thesis — JUAN KONG

McMastdrlaterials Science and Engineering (2012)

Figure 5.16 and Figure 5.17 show the stress diiito of S;; andS,,, normal stress

along thex andy direction respectively, at full loading of whiskeetworks with different

aspect ratios. As before, the matrix around theskelns is made invisible for clarity. Although

Sy is still non-zero primarily within the contact regi the bending stresS;; does not

resemble the profile of a simple bending plate amye. This becomes clear from the

deformed profile of the whiskers, as shown in Fegbrl8, which shows the deflection of the

center lines of the center whiskers. The profitddme aspect ratios is quite complex.
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Figure 5.16 S, distribution within whisker network with invisible (white regions) matrix for aspect ratio
from 5 to 20 with plane strain condition, 0, ppjieq = -10MPa.
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Figure 5.17 S, distribution within whisker network with invisible (white regions) matrix for aspect ratio
from 5 to 20 with plane strain condition, G ppjieq = -10MPa.

It is speculated that the matrix which surroundswihiskers plays a critical role on
the deformed state of the whiskers. Generallyb#an (plane stress) and plate (plane strain)
sustain the vertical load through bending and deflermal to the surface. If the deflection is
not big, normally less than one-half of the thids)ehe middle surface (halfway between top
and bottom surfaces) remains unstressed (Yound).198e part of the beam/plate under
compression wants to expand sideways with straim—-ve, due to the Poisson ratio effect.
For plane stress condition, the expansion is peth#indo, remains essentially zero. But for
plane strain condition, the strain is zero resglima stress ofr, =vo,. The situation for the
matrix is almost the same. For plane stress conditithe matrix could flow out from the
stressed region and extend into zldrection resulting in insignificant effect on tiviskers
deformation. However, for plane strain conditidme matrix, especially the part within the

lower half of the unit cells, is confined withinetmegion. It could only extend horizontally
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and/or vertically to maintain the volume that ihinged during creep deformation. This
results in the complicated wavy shapes after deftom as shown in Figure 5.18.
Furthermore, the mean value of bending st&gssvithin whiskers is no longer zero as shown
in Figure 5.19 suggesting stretching to some exaadtthe neutral plane is no longer stress
zero. This is called the diaphragm stress (YouB891 It increases with the aspect ratio and
remains almost constant indicating the same trérttieneffect of the matrix. Due to this
diaphragm stress, stresses for a given load asrajgriess or stresses for a given deflection
are greater than the case of unit cells withoutim@Appendix B), e.g., for aspect ratio 10
with -10MPa applied stress,S;;  within - whiskers are within the range of
1.5x10 to- 5.7% 10 MPand 1.25x 1§ to- 3.12 10 MF for unit cells without and
with matrix respectively. As for plane stress, thean value ofS; is essentially zero
indicating insignificant stretching of the whiskeltsappears that plane strain leads to results
that are non-physical, such as the wavy shape.i3hige direct result of how the material
compensates for the requirement to eliminate siramne direction. This suggests that the

plane stress approach is more reliable in theadd to more physically sensible results.
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Figure 5.18 Deflection of the neutral line along the middle wtsker, plane strain condition, T applied = -
10MPa.
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Figure 5.19 Mean value ofSy; within whiskers for plane stress and plane strairconditions respectively,
Uapplied =-10MPa.

The contribution of the bending and contact effestalso calculated based on
equations 5.3 and 5.4. The remaining energy stosagtributed to the shear deformation as
before. Figure 5.20 shows the contribution of edeformation to the total energy storage
versus the whisker aspect ratio. As before, thiedskof deformations coexist. However, no
general trend could be captured. It seems on tHacsuthat the bending contribution
decreases first and then increases finally for bggtect ratio with the other two mechanisms
increasing first and then decreasing. Howevergdtia should be interpreted with caution,
e.g..S; is no longer attributed only to the bending babalongation of the whiskers resulted
from the matrix deformation instead of from theyadeflection that happens for a plate when
there is no matrix.
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Figure 5.20 Contribution of deformation forms in terms of percentage versus aspect ratio, plane strain
condition, Tapplieq = -10MPa.

5.4.3. Comparison of FEM results with the analytical model

In this section, our FEM simulations with the plastein condition are compared
with an analytical model which inherits the theofyWilkinson and Pompe (1998)r the
creep and anelastic recovery of whisker-and ptatedeforced ceramics. The procedure for

obtaining the analytical solutions{, and 7, ) is described below in section 5.4.3.1. The

numerical results £ and 7 ) are extracted from the FEM simulations through same
procedure as illustrated in section 5.4.1. The miggrecies of the maximum recoverable strain

and the characteristic relaxation time on the vérigispect ratio and the material properties
are then examined.

5.4.3.1. Analytical model construction for plane strain condtion

The analytical model is constructed based on theetrin section 5.3.3.1. The only

4
modification is to use the simple bending plateome(—D% =q) to replace the Euler's
X
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4

simple bending beam theory-E, | % =() (Cook and Young, 1985). For a unit cell with
X

lengthL (ob, along thex direction in Figure 3.4), height (bc, along they direction in Figure
3.4) and deptlW (z direction into the paper in Figure 3.4), the goirey equation for a
whisker embedded in a creeping matrix with plarerstondition is

0,1 W

o c (H/Z)U(X’ t)+ FO(X) (5.18)

EWEI _ E,
12(1-V2) ~ (1-\?)

where D is the flexural rigidity D = I), Ewis Young's modulus of the

3
whisker, | is the second moment of area of the whisker csession (| =W_(22r) ):

I:,I(X,t) andu are the displacement rate and displacement naontiaé whisker planes along
y direction respectivelyd(x) is the Dirac delta function describing the loaadinature of the

contact forcd= atx=0, andC is the creep constant of the matrix.

By comparing equation 5.5 and 5.18, it is easyote that a simply supported three-
point bending plateg, = 0or W > 2r ) might be analyzed as a simply supported threstpoi
bending beam &, =0or W ~ 2r) provided thatE, is increased by dividing it by-v?.
Then following the same procedure as in Appendixol,the plane strain condition, the
predicted maximum strain recovery is

Lo A®

EM —EE—W(]._VZ) (519)

and the characteristic relaxation time is

12 A*

' CE,

1-v?) (5.20)

M
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It seems on the surface that the FEM simulationis plane strain condition should
behave similar as the plane stress condition éctit 5.3) if comparing equations 5.6, 5.7,
5.19 and 5.20. However, the situation is far beythadpredictions indicated by the theory

above.

5.4.3.2. Aspect ratio dependence
(A) Maximum recoverable strain

As before (section 5.3.3.2), the maximum recoveratvhin is scaled by the unit cell

lengthL and the applied stress(e’ =& /Lo). From Figure 5.21, the scaled maximum
strain does not give a good match. For the pla@énstondition, there is a big deviation
between the FEM simulations and the analytical in(eation 5.19) which seems much

closer to the FEM results with plane stress camulitistead.

0.003
—f— Plane Strain
0.002 b =—{1=—Plane Stress
Analytical Model

X
w

0.001 f

0 *——.
0 5 10 15 20 25

A

Figure 5.21 Scaled maximum recoverable strain versus aspect iatfor FEM with plane stress and
plane strain (T 4pgiecq =~100MPa) conditions and for analytical model withplane strain condition.
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This is because the governing equation 5.5 andded@unt for the deflection from
the bending stress only. It assumes that whislary the load only by bending which is
reasonably true for plane stress condition as ateticin Figure 5.7, but inaccurate for the
plane strain condition as indicated in Figure @ahé 5.20 that show the effect of diaphragm
stress as well as the contact and shear effecest®inese factors, especially the diaphragm
stress, the unit cells with plane strain condiiom stiffer than indicated by the ordinary theory
and the load-deflection and load-stress relatioms:ianlinear as shown in Figure 5.22, Figure
5.23 and Table 5.2. Concentrated loads used fdr eait cell should be divided by their

length L to get the values of stresses applied, e.g. 1ksmonds to 0.32MPa, 0.24MPa,

Ph.D. Thesis — JUAN KONG

McMastédaterials Science and Engineering (2012)

0.18MPa, 0.12MPa, 0.09MPa for aspect ratios of 50,715 and 20 respectively.

e

Figure 5.22 Scaled maximum recoverable strain versus aspect iatfor plane strain condition with
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e (.1MPa
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varied loading conditions for comparison.
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Figure 5. 23Maximum recoverable strain versus load with the filing equations.

Table 5.2 Maximum recoverable strain from FEM predctions (From Figure 5.24) and analytical model
(AM) for 2D percolating whisker unit cells based orplane strain condition

Aspect ratio. FEM AM
S £ =3x10°F** &v =5.06x 10°F
7 £ =4x10°F%% &v =1.39x 10*F
10 £ =4x10°F%% &y =4.05x 10°F
15 £ =4x10°F%% &y =1.37x 10°F
20 £ =8x10°F%*° &y =3.24x 10°F

No guantitative relationship could be found betw#enmaximum recoverable strain
and the aspect ratio (Figure 5.22). Two opposinghaugisms are speculated to control the
deflection/strain: the aspect ratio and the matitkin the confined region. A bigger aspect
ratio suggests a larger strain obtained for theesanit load as analyzed before. On the

contrary, a bigger aspect ratio also means a lageme of the matrix with bigger effect on
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the diaphragm stress decreasing the deflectionmEb@émum strain from FEM deviates from

the analytical model more severely for bigger aspaito (Table 5.2) suggesting the latter
effect, e.g. from the factor of up to 2 for aspetip of 5 to the factor of up to a 100 for the
aspect ratio of 20. With the combination of these factors, the scaled maximum strain
seems to increase first, then decrease and finallgase again with the aspect ratio for most
values of the applied stresses (Figure 5.22). BOMPa applied stress in Figure 5.22, the
scaled maximum strain decreases first, then ineseagth the aspect ratio suggesting the
bigger effect of the confined matrix under highppleed stress due to severe deformation.
Furthermore, the observation that the scaled maxirstrain increases with decreasing

applied stress for each aspect ratio also confinesffect.

Furthermore, Appendix B illustrates the FEM resaltsunit cells without a matrix
under plane strain conditions. They all agree wigh equation 5.19 providing support for the
above argument that the behaviour of the 2D peiaglanit cells with plane strain condition

originates from the matrix.

(b) Characteristic relaxation time

As analyzed in section 5.4.1, no single value ef ¢haracteristic relaxation time
could be obtained. Thus the effect of the aspéct imstudied qualitatively. In general, the
characteristic relaxation time increases with iasigg aspect ratio as shown in Figure 5.15.
Furthermore, compared with the plane stress congigxtended loading time needed for
creep strain saturation is observed by a factonpto 10 for the plane strain condition
suggesting the same trend of characteristic retaxaime. One more thing to mention is that
the relaxation curve also depends on the applredss{shown in Figure 5.24) as the case of
the maximum recoverable strain. Bigger appliedssteeems to produce a quicker relaxation
speed and this dependence decreases with the emjmestich that for aspect ratios of 15 and

20 all the curves converge into one.
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Figure 5.24 Plot of natural log of the fraction of recovered sfin vs time with varied applied stress for
different aspect ratio.

5.4.3.3. Material mechanical property dependences

For the case of the material constant dependenggeperformed simulations on the

2D unit cell model with aspect ratio of 10. Onegpaeter at a time was varied, while keeping
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all others fixed, as described in Table 5.1 extiggitthe creep constant is takerl&&7x 10"
instead oft.87x 10°.

(A) Maximum recoverable strain

Unlike the situation of plane stress condition,esalvparameters were found to play
important roles on the maximum recoverable stthm:Young's modulus of two constituents
and the Poisson ratio of two constituents. Figu2& Shows the elastic modulus dependence
of the maximum recoverable strain. The analyticatieh predicts the behaviours as according

to

&v =25E,™ (5.21)
Fitting the data from the FEM results yields:

£ =0.2%,°" (5.22)

However, fitting the FEM results still yields a @émdence on the Young's modulus of the

matrix which is not predicted from the analyticajael:

£ =5.2x10°E, °* (5.23)

where E,, and E,, are in units of GPa. According to the analyticaldel, there should be no
dependence of the matrix elastic modulus. The Ysumgpdulus of the two constituents
affects the deflection as well as the deformed estudgthe whiskers. Bigger whisker elastic
modulus results in smaller deflection and a sttaigbhape as shown in Figure 5.26. On the
contrary, bigger matrix elastic modulus resultsnmaller deflection and more wavy shape as
shown in Figure 5.27. Poisson ratio of the two tituents was found to affect the maximum

recoverable strain as shown in Figure 5.28 whiethsis not supported by the analytical model.
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Figure 5.25 Maximum recoverable strain versus Young's modus, plane strain condition, A=10,
Fapplied: -100N.
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Figure 5.26 Deflection of the neutral line along the mida@l whisker for varied Young’s modulus of the
whisker, plane strain condition,A=10, Fapp”ed: -100N.
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Figure 5.27 Deflection of the neutral line along the midal whisker for varied Young’s modulus of the

matrix, plane strain condition, A=10, F,ppjieq= -100N.
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Figure 5.28 Maximum recoverable strain versus Poisson ratj plane strain condition, A=10, Fappjieq= -
100N.
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(B) Characteristic relaxation time

From the analytical model (equation 5.20), two ingat parameters were expected
to play an important role in determining the chtmastic relaxation time: the Young's
modulus of the whisker and the creep constanteofiritatrix. However, the Young's moduli of
both constituents were found to affect the relaxatiurve (Figure 5.29 and Figure 5.30), as
well as the creep constant of the matrix (FiguB3pwhich shows an inverse relationship
with the characteristic relaxation time as predidiy the analytical model. Poisson ratios

were found to have essentially no effect.
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—+—900GPa

N\

-7

In(e/e*)

Time(h)

Figure 5.29 Plot of natural log of the fraction of recoveed strain vs time for varied Young's modulus of
the whisker, plane strain condition, 2=10, Fyppjieq= -100N.
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Figure 5.30 Plot of natural log of the fraction of recoveed strain vs time for varied Young's modulus of

the matrix, plane strain condition, A=10, Fappjiea= -100N.
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Figure 5.31 Plot of natural log of the fraction of recoveed strain vs time for varied Poisson ratio of the

whisker, plane strain condition, 2=10, Fapp”ed: -100N.
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Figure 5.32 Plot of natural log of the fraction of recoveed strain vs time for varied Poisson ratio of the
matrix, plane strain condition, =10, F,ppjieq= -100N.
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Figure 5.33 Creep strain versus time for different creep constats C, plane strain condition, A=10,

I:applied: -IN.
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For 2D percolating unit cells with plane strain dition, FEM results vyield
dependences on the parameters which were not {getdiig the analytical model originated
from the Wilkinson and Pompe model (1998). Thiglie to the confined matrix during
deformation. However, the real situation is clasa fplane stress condition instead of plane
strain condition since the matrix could flow anywhand each phase is percolating through
the whole geometry. Furthermore, the whisker i&bly represented by a beam instead of by
a plate. We therefore conclude that the analyticatlel captures the critical parameter

controlling the deformation.

5.5. Conclusions

We have verified the critical importance of a p&ating whisker network for the
anelastic recovery based on the 3D multi-whiskedoan unit cell. We then demonstrated that
bending is the dominant mechanism during the adeémmation of a composite containing a
well aligned percolating whisker network based fwen 2D unit cell model. Good qualitative
agreement was found between our FEM simulationstlam@nalytical model of Wilkinson
and Pompe with regards to the maximum recoveratas @ind the characteristic relaxation
time. Despite the deviations in absolute magnitide, analytical model captures all the
critical properties characterizing the deformatimechanisms or strain recovery. These
include: the maximum recoverable strain is invgrgebportional to the whisker's Young'’s
modulus and proportional to the third power of dispect ratio; the characteristic relaxation
time is inversely proportional to the whisker's Yifs modulus and creep pre-exponent
constant, and proportional to the fourth powehefdspect ratio. We demonstrated that plane
stress condition better represents the real fituatrer plane strain condition since the matrix
could flow out from the deformed region and a bésumore suitable to describe a whisker.
Therefore, even though the FEM results on 2D patiog unit cells with plane strain
conditions show some behaviours which are not giegtliby the analytical model due to the
confined matrix, we conclude that the Wilkinson &wmpe model is able to describe the

deformation of a percolating geometry.
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CHAPTER 6

CORRELATION BETWEEN DIFFRACTION AND

DEFORMATION

6.1. Introduction

As noted earlier, there is a lack of experimenifédadtion data to support the theory
developed in the last two chapters. The modelsesti@ increase of peak width representing
the non-uniform stress field distribution due todieg. This is not generally observed. This is
the motivation for the current study. From expentaga narrowing (0.0056° to 0.0576°) and
left shifting (0.072° to 0.1°) of the diffractiorepk was observed experimentally for@y
containing 20-30vol% of whiskers when comparing saenples after creep with the ones
before creep from the hot pressing fabrication ggeqQuan, 2004). As mentioned in the
literature review, one possible reason for the @akxperimental support for whisker bending
is that it is too small to be detected. Other facguch as thermal stresses due to different
CTEs of the two components, and the whisker netwefermation and load transfer during
creep also need to be considered. This chapten@tido provide relatively comprehensive
correlations between the diffraction patterns &oede factors via the framework (illustrated in
Chapter 4) which transfers the information betwt#en FEM simulations (strain fields for
specific loading cases) and the virtual diffractioadeling (peak width and position). Virtual

testing results are also compared with the analy#sults and the experimental data.

Section 6.2 addresses the peak width and positssoceted with various
deformation modes based on simulations from assfres state excluding thermal effects.
Section 6.3 outlines the effects of thermal stesssulting from the cooling stage after creep

and hot pressing process interactively with theomedtion modes to uncover these
contradicting trends. For samples after creep, aelis are deformed at 1400to a creep

strain of 0.005 followed by cooling to Z0 under load within 1 hour to mimic the
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experimental cooling stage in air. The reason faosing 140 is that it is the thermal
stress free temperature after the hot pressinggsddlajumdaet al, 1989). Meanwhile, the
strain of 0.005 is the maximum creep strain invdlve Quan’s experiments and as
demonstrated later the strain incorporates thettaadfer processes. For samples before creep
(FEM simulations in section 6.3), the unit celle aooled under load (e.g. -50MPa) from
1700C to 20C within 1 hour to mimic the experimental coolingg after the hot pressing

fabrication process.

Three whisker networks are employed: 3D randomtige8.4.1), 2D percolating
(section 3.4.2) and 3D aligned (section 3.4.3) oeiis. It has been shown that bending is
dominant for the 2D percolating geometry with eesmall aspect ratio (chapter 5) and
elongation or contraction is dominant for the 3yredd geometry with the stress field
distributing as described by the shear lag modek,(@951) and verified by experiment
(Mehanet al., 2000). Meanwhile, the 3D random unit cell might\pde information for a

random geometry which is closer to the real casa @ithout percolation.

Materials properties incorporated in the FEM simoife are illustrated in Section
3.1 (Table 3.1 & 3.2). Generally, for creep defararasimulations, external loads for 3D
random and 3D aligned unit cells are tensile atbeg direction, while the ones for those 2D
percolating unit cells are compressive alongytldrection for both section 6.2 and 6.3. The

external loading directions are along yfdirection for FEM simulations of hot pressing.

6.2. Peak width and position due to deformation
6.2.1. Effect of whisker network

Figure 6.1 shows typical creep strain curves fronukations based on 3D random,
2D percolating and 3D aligned unit cells with aspato of 5 and a stress of 60MPa at 1200

C. For the 2D percolating geometry, creep straiaratgs at the maximum recoverable strain

£ representing an entire load transfer process fratmix to whisker network. However, a
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shift of the strain rate occurs for the other twa-percolating geometries (3D random and 3D
aligned unit cells), which seems to suggest aghddad transfer process within the system.

The creep strain then continues at a relativelgteon reduced rate.

0.02
|| 60MPa, 3.=5,1200C ||
0.016 }
=
c 0.012
»
Q.
$ 0.008 |
o
—&— 3D Random
0.004 —ill— 2D Percolating
—&— 3D Aligned
0 | 2 2
0 100 200 300 400 500
Time(h)

Figure 6.1 Creep strain versus time for three kinds of whiskenetworks: 3D random, 2D percolating and
3D aligned unit cells A=5, T ,ppiieq = 60MPa, T=1200C.

Generally, the peak width increases with creepinstes shown in Figure 6.2
suggesting that deformation introduces a non-umifstress field even for a single aligned
whisker embedded in the matrix while a uniformsstréeld occurs for the case without a
matrix (demonstrated in section 4.5). For the 2f2gating geometryFWHM increases with
creep strain and saturates in accordance with dhgletion of the load transfer process
(purple lines in Figure 6.2). This mechanism isae if FWHM is plotted versus time in
Figure 6.3. HowevelFWHM for the 3D aligned unit cell also saturates adogrtb the shift
of the strain rate, suggesting a complete loadsfiearprocess. Due to the non-percolating
geometry, the continuing creep strain comes frarutireinforced matrix for the 3D aligned
unit cell. As for the case of the 3D random geoynetrshift occurs for thEWHM increase
rate, which is associated with the partial loashdfer process within the system and the
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FWHM continues increasing after that, suggesting tindiragng process of load transfer. In
general, bending and random geometry are the maites of peak broadening compared
with the simple stretch deformation mechanism. H@net depends on the extent of creep
strain, e.g. bending and elongation result in aeslawel ofFWHM and the random geometry

contributes more when the creep strain is less 2xk0°. Bending (2D percolating) takes

the dominant position over random geometry whertiep strain is bigger thah4x 10°.
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Figure 6.2 FWHM versus creep strain for three kinds of whiskernetworks: 3D random, 2D percolating
and 3D aligned unit cellsp=5, Typiieq = 60MPa, T=1200C.
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Figure 6.3 FWHM versus time for three kinds of whisker networks: 3D random, 2D percolating and 3D
aligned unit cells,\=5, T yppiieq = 60MPa, T=1200C.

The peak position (shown in Figure 6.4) shifts toveer value and saturates for all
three geometries after a small amount of creempstimwever, the 2D percolating geometry
(bending, purple line in Figure 6.4) saturatesie@ar.e. at a smaller creep strain compared
with the peak width, while the 3D aligned (elongafi black line in Figure 6.4) and 3D
random geometries (blue line in Figure 6.4) satuadialmost the same creep strain as for the
case of peak width representing the load transferess. This suggests that elongation results
in a significant shift of the peak position compmhreth the bending (2D percolating) and
random geometry. Meanwhile, it is straightforwasdspecify that when the stress status is
changed (e.g. from tensile to compressive), thé peaition would shift to the opposite

direction while the peak width would be consisesbefore.
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Figure 6.4 Peak shift versus creep strain for three kinds of Wisker networks: 3D random, 2D percolating
and 3D aligned unit cellsp=5, T,pjieq = 60MPa, T=1200C.

6.2.2. Effect of applied stress
It has been shown above that the creep straimdets the peak position and width.

This section examines the effect of the extermatstif the value of the creep strain is fixed.
Three values of stress 60MPa, 75MPa and 100MPapated to the three whisker networks
with aspect ratio of 5. Figure 6.5, Figure 6.6 &iglre 6.7 show the creep strain versus time
for 3D aligned, 2D percolating and 3D random umilscat 1400C. Larger value of the
applied stress yields the same value of creemsitra quicker time regardless of the different

network.
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Figure 6.5 Creep strain versus time with different applied streses for 3D aligned unit cell)=5,
T=1400C.
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Figure 6.6 Creep strain versus time with different applied streses for 2D percolating unit cell).=5,
T=14007C.
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Figure 6.7 Creep strain versus time with different applied streses for 3D random unit cell, 2=5,
T=14007C.

Figure 6.8 and Figure 6.10 show the peak width@eak position under different
applied stress for three geometries. The non-negl geometries (3D random and 3D
aligned unit cells) show that the peak widRWHM) depends on the applied stress
representing the characteristics of the intermabstdistribution range on the external applied
stress for a certain creep strain. However, sugferatence is not observed for the 2D
percolating geometry although this still existstfoe elastic deformation (stage 1 as shown in
Figure 6.9). The reason for this is that the toteép strain is attributed to the bending of the
internal whisker network and a fixed creep strasults in almost the same level of bending
for different applied stress. However, small deora are still observed (Figure 6.9), e.g.
larger stress yields a smallEWWHM at first (stage 2); then as creep proceeds, |atgess
yields higherFWHM (stage 3); finally when the total creep strain gsuanulated to some
extent, larger stress yields smalé/HM and the difference increases (stage 4) to thé dimi
which the maximum strain is approached. Actudllg,tbtal creep strain consists of the elastic
and creep components. Larger stress yields small@reep strain due to whisker bending for

a fixed creep strain since a bigger elastic strasults, which means a narrow stress
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distribution and thus small&WHM. At the same time, larger stress introduces aehigfiness
concentration around the contact points as theiobding transferred from the matrix to the
whisker network resulting a broader stress didiohuand thus greatédfWWHM. These two

mechanisms compete with each other yielding the\betrrs in 3 stages as shown in Figure

6.9.

FWHM(111)(degree)

Figure 6.8 FWHM versus creep strain under different applied stress for 2D percolating, 3D aligned
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Figure 6.9 Enlarged view of FWHM versus creep strain for 2D percolating unit cell 4=5, T=1400C.

All three geometries exhibit a relative dependemtehe applied stress in terms of
peak-shift (Figure 6.10 and 6.11), representingtmesistency between the mean stress inside
the whisker network and the external applied stregardless of its distribution. In general,
larger stress shows the behaviour of rate changipgesenting the load transfer process

around a larger total creep strain no mattetisfé completed process or not.
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Figure 6.10 Peak shift versus creep strain under different appéd stresses for 2D percolating, 3D
aligned and 3D random unit cells3=5, T=1400C.
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Figure 6.11 Peak shiftversus creep strain under different applied stressefor 2D percolating and 3D
random unit cells,2=5, T=1400C.
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6.2.3. Effect of aspect ratio

Simulations above are based on the unit cells asghect ratio of 5. This section
studies the effect of aspect ratio for three kfdshisker networks and relates the simulation
results to the analytical models. Unit cells witgpect ratios of 5, 7, 10, 15 and 20 are
deformed under stresses 60MPa, 75MPa and 100M#eeRlefer to Appendix C for Figures
of the creep strain versus tinkl&VHM versus creep strain, and peak-shift versus stvathe

simulations with varied aspect ratios under vastegisses.

6.2.3.1. 2D percolating geometry

As before, larger stress always yields the samee\@ creep strain in a quicker time
for all aspect ratios (as shown in Figures C-1 18).CAlthough the unit cell with a bigger
aspect ratio has a longer characteristic relaxdiioa 7 (as demonstrated in chapter 5), it

approaches the creep strain of 0.005 in a sharter since it is more flexible (bigger

maximum recoverable strain ) if other conditions are fixed. Peak width andkppasition
behave similarly for all aspect ratios (as showRigures C-4 to C-9): (IfWHM increases

with the creep strain; (2) peak position shifta tower value and almost saturates.

Generally, for a fixed strain, e.g. 0.005, peaktlwaecreases with the aspect ratio for
the 2D percolating geometry and reaches a limghasvn in Figure 6.12. Meanwhile, peak
position shifts to a lower value for a bigger aspato as shown in Figure 6.13. Bending
contributes mainly to the peak width instead okgaasition with a difference of one order of
magnitude. Furthermore, no dependence of AiHM to the external stress has been
observed since the three lines representing vastiexsses almost merge into one line.
However, the peak shifting is found to be dependerthe external stress, which is consistent

with the previous results.
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Figure 6.12 FWHM versus aspect ratio for 2D percolating unit cellsvith 2=5, 7, 10, 15 and 20,
T=1400C, Oyppiieq = -60MPa, -75MPa and -100MPa.
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Figure 6.13 Peak shift versus aspect ratio for 2D percolating nit cells with A=5, 7, 10, 15 and 20,
T=1400C, O,ppiicd = -60MPa, -75MPa and -100MPa.
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A simple analytical model could be constructed Bage the analysis presented
above. We have demonstrated the peak width fomplesibent beam in chapter 4 and the
strain due to a center load in appendix A. It raightforward to substitute the lo&din
equation 4.26 and spaa = A x Rwith equation A.14A to yield thEWHM in terms of strain:

&

FWHM =8J2In 2 tart, yo (6.1)

where g, is the stress free diffraction angléjs the aspect ratidR is the diameter of the
whisker ande is the strain of the unit cell which is actualle ttieflection of the beam (which
is u., in appendix A). This equation suggests that thé-pédth representing the stress field
distribution within the whisker network for a fixestrain (deflection) of the unit cell is a
problem of geometry since it contains no materaperties and experimental conditions at all.
It is straightforward from it to understand the f@pendence of peak width on the external
stress, and the decreasing tendency of peak witlthtlre aspect ratio although no limit is
predicted. However, this equation can only prowdme general trend since it is based on a
beam without a matrix which is critical for the dehation of the beam inside. For example,
the maximum peak width is 0.1%4&Figure 6.3) which is smaller than the value df3if
calculated using equation 6.1 with the inputg 6f0.00778<and A =5. Discrepancy comes
from several sources. One important source isttigastrain obtained directly from the unit
cell deviates from the deflection of the beam duiné end effect specified in Section 5.3.3.2.
Furthermore, based on the simple bent beam, negtafikould be predicted since it assumes

no deformation on the central plane while it isgsbarce of peak-shift of our simulations.

6.2.3.2. 3D aligned whisker geometry

As before, larger stress always yields the samee\@i creep strain in a quicker time
for all aspect ratios (as shown in Figures C-104®). The unit cell with a larger aspect ratio
has a more significant strain rate shifting and@gghes the creep strain of 0.005 in a longer
time if other conditions are fixed. This represemisncreasing reinforcing effect of the larger
aspect ratio and is consistent with the predidtiased on the shear lag model (Cox, 1951 and
Mclean, 1972). Peak width and peak-shift behavéasignfor all aspect ratios under different
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external stresses (as shown in Figures C-13 to)CAABFWHM increases with the creep
strain and then saturates when all the load isfeened to the whisker; (2) peak position shifts

to a lower value and saturates when all the loadmsferred to the whisker.

Generally, for the 3D aligned geometry with a fp&dain, i.e., 0.005, both peak
width (Figure 6.14) and peak-shift (Figure 6.15¢r@ases with the aspect ratio. These
behaviours imply a broader distribution and highelue of mean stress inside the whisker
network resulting from the increasing reinforcirifget of a larger aspect ratio. Elongation is
the main deformation mechanism for the 3D aligneohgetry, which contributes to the peak
width and peak position at the same order of madaitNormally, a plateau shaped stress
distribution from elastic deformation is changeddad a continuously increasing one for
creeping deformation based on shear lag model @AcE972, Figure 2.14). Furthermore, the

peak width and peak-shift also depends on theraltstress for different aspect ratios.
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Figure 6.14FWHM versus aspect ratio for 3D aligned unit cells with=5, 7, 10, 15 and 20, T=1400,
O applied = 60MPa, 75MPa and 100MPa.
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Figure 6.15Peak shift versus aspect ratio for 3D aligned unitells with =5, 7, 10, 15 and 20, T=1400,
O 3ppiied = 60MPa, 75MPa and 100MPa.

6.2.4. Summary
The relationships between the peak width and paositith the deformation modes

have been extensively studied. Generally, peakwimdreases with the creep strain and peak-
shift represents the inside mean stress state vaigisés related to the external stress state.
However, different geometries behave differentlg do the internal load transfer process.
Both 2D percolated and 3D aligned geometries eixgburation of the peak width and peak-
shift with increasing creep strain (Figure 6.3 &) suggesting a complete load transfer
process, although they have different deformatioechanisms: bending for the 2D
percolating geometry and elongation for the 3Dnaldgeometry. However, the 3D random
geometry exhibits a partial peak broadening while peak-shift almost saturates. 2D
percolating and 3D random geometries contributenijwad the peak width instead of the
peak-shift during the deformation with an ordemafgnitude difference, while the 3D aligned
geometry contributes almost equally. For a fixe@ist e.g. 0.005, the 2D percolating
geometry demonstrates non-dependence of peak woidtithe external stress due to
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percolating and the dominant bending mechanismlewdther two geometries show the
dependence. However, all three geometries shodeghendence of peak-shift on the external
stress. Furthermore, for a specific strain, e@D%).the 2D percolating geometry shows that
the peak width decreases with the aspect ratio dowa limit (Figure 6.12), while peak
position shifts to a smaller angle for a biggereaspatio (Figure 6.13). However, the 3D
aligned geometry shows that peak width increas#s the aspect ratio (Figure 6.14), while
peak-shift is more significant for a bigger aspatib (Figure 6.15). Therefore, for an initially
stress free state, deformation inevitably yields-aniform distributions of stress fields inside

the whisker network embedded in the matrix, whegults mainly in peak broadening.

6.3. Peak width and position with thermal stress
6.3.1. Effect of whisker network during cooling after crego

Figure 6.16 shows the simulated total strain, wigassentially the sum of the creep
strain and thermal strain, versus time, based trcelis with an aspect ratio of 5, subjected to
an applied stress of 60MPa, at 1400Due to the different stress states, the 2D patiog|
unit cell (compressive along thedirection) shows an increase of total strain dutime
cooling stage following the creep strain of 0.0biee the creep and thermal strains have the
same sign. However, the 3D random and alignedcetfi# (tensile axis along ttzedirection)

show a decrease since the thermal contraction epjplos creep strain.
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Figure 6.16 Strain versus time for three whisker nvorks (3D random, 2D percolating and 3D aligned
unit cells), with A=5, O,ppieq = 60MPa, as they are deformed to a strain of 0.00&8t 1400C, then

cooled to 20C.

For the 3D random and 2D percolating unit céiigyHM (Figure 6.17) continues
increasing during the cooling stage indicating aemonhomogeneous stress distribution. On
the contrary, for the 3D aligned unit cell peak twidecreases first to a minimum value of
0.01421° around 926 which is slightly before the minimum total straiocars at around
810C and then increases with the further drop of teaipes to a final value of 0.04306°.
Still, the random and percolating geometries douate mainly to the peak width (final values

of 0.1194° and 0.1298° respectively).
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Figure 6.17FWHM versus temperature for three whisker networks (3D andom, 2D percolating and 3D
aligned unit cells), with A=5, O pieq = 60MPa, as they are deformed to a strain of 0.00& 1400C,
then cooled to 2CC.

For all three unit cells, peak positions (FigurE8 shift to higher values indicating a
compressive mean stress state due to the thermizhcton during the cooling stage. The
random geometry still has the biggest value of dfting (0.1719°) while the percolating
has the smallest value (0.04764°). Due to the iMegatontribution from the tensile
deformation, the peak-shift for the 3D aligned getsynhas a zero value around %26and a
final value of 0.1162° is obtained. Furthermordyigher value of peak-shift (closer to that
from the 3D random geometry) could be extrapoléded compressive external stress along

thez direction (whisker axis) as we might move up the horizontally.
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Figure 6.18 Peak-shift versus temperature for three whisker networks (3D andom, 2D percolating and
3D aligned unit cells), withA=5, T,,pieq = 60MPa, as they are deformed to a strain of 0.0G& 1400C,

then cooled to 2QC.

6.3.2. Effect of whisker network during cooling after hotpressing
Figures 6.19 and 6.20 show the simulated peak-vaidth-shift versus temperature

from 1700C to 20C based on the unit cells with aspect ratio of 5 @ndpressive stress of
50MPa during cooling after hot pressing. They belamilarly to the Figures 6.17 and 6.18
respectively, representing a similar competing gsecbetween the creep strain and the

thermal strain.
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Figure 6.19 FWHM versus temperature after hot pressing for three kids of whisker networks: 3D
random, 2D percolating and 3D aligned unit cells, th A=5, T ,ppiied = - SOMPa.
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Figure 6.20 Peak-shift versus temperature after hot pressing fothree kinds of whisker networks: 3D
random, 2D percolating and 3D aligned unit cells, ith A=5, T ,ppjieq = - SOMPa.
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The rapid increase of peak-width (Figure 6.19)hat beginning of cooling stage
(1700C to 1500C) suggests a dominance of creep deformation oeemtl contraction due
to the rapid creep strain rate at high temperatethermore, for the 3D random and 2D
percolating unit cells, thermal strain at the latage of cooling dominates and enhances the
extent of the stress distribution range. On thdraon for the 3D aligned unit cell, after this
rapid increasing period with peak value of 0.0118t8Und 165&, peak width decreases to a
minimum value of 0.005907° around 1307associated with a minimum total straiand
then increases with the further drop of the tempegao a final value of 0.05769°. This is
because the whisker elongates first as a Poistamt afong the direction (parallel to its axis)
due to the compressive stress alongyttigection (normal to its axis) and then contraath
the continue dropping of temperature. Still, thedmm and percolating geometries contribute
mainly to peak-width (giving final values of 0.13&5d 0.1299° respectively).

Meanwhile, for three unit cells, peak positionsftsta higher values indicating a
compressive mean stress state due to the ovesathdh contraction during cooling after hot
pressing process. The random geometry still hadarthest value of peak-shift (0.1786°) while
the percolating geometry has the smallest val@&8832°) similar to the case in section 6.3.1
due to different deformation mode. Same as beftve, competing process is clearly
demonstrated in the 3D aligned unit cell, the creegin first opposes the thermal strain
yielding a rapid leftward shifting up to -0.0161&und 166% (due to the Poisson effect as
mentioned in the case BMWHM), followed by a period of plateau before reacHisg0C.
Then the thermal contraction dominates and incsgasepeak position rapidly to a final value
of 0.1441° with a zero-shift around 1300 associated with the minimum total strain.
Furthermore, a higher final value (closer to the iom the 3D random geometry) could be

extrapolated if a compressive stress was appled)ahe whisker axiz @irection) for the 3D

aligned geometry.
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6.3.3. Effect of applied stress during cooling after creep
Same as in Section 6.2.3, three values of str@ddP&, 75MPa and 100MPa, are

applied to the three whisker networks with aspab 10f 5 in order to check the effect of the
external stress during cooling after creep if tam@e is crept to a strain of 0.005 before
cooling. Figure 6.21 and 6.22 show BA&HM and peak-shift versus temperature respectively.
The 2D percolating geometry still shows no depeoelem the applied stress for both peak-
width and -shift. For the non-percolating geomsfridD random unit cell possesses the
dependence of the peak width on the external siegsy cooling while the 3D aligned one
does not. A larger stress yields a smaller themoaltraction resulting in a smaller final
FWHM. As for the case of the peak-shift, the two gedassebehave in a contrary manner.
The 3D random unit cell shows no dependence whde3D aligned one does. It is obvious

that the cooling stage after creep complicatesp#ak-width and -shift opposing the case

observed in Section 6.2.3.
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Figure 6.21FWHM versus temperature under different applied stressefor 2D percolating, 3D aligned
and 3D random unit cells, witha=5, as they are deformed to a strain of 0.005 at @@’C, then cooled

to 20°C.
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Figure 6.22 Peak-shift versus Temperature under different appled stresses for 2D percolating, 3D
aligned and 3D random unit cells, withA=5, as they are deformed to a strain of 0.005 at @@C,
then cooled to 2CC

6.3.4. Effect of aspect ratio with thermal stress
6.3.4.1. 2D percolating geometry

During the cooling stage after creep, peak-widiguie C-19 to C-21) and peak-shift
(Figure C-22 to C-24) behave similarly for all atatios under different applied stresses: (1)
FWHM increases continually as temperature drops afeepg (2) peak position shift
rightwards during the cooling stage from the leftivahifting during creep representing a

compressive mean stress state due to thermal cloonra

Figures 6.23 and 6.24 show the peak-width andt-gmigus aspect ratio for the 2D
percolating geometry at four stages during defaomatelastic deformation (ED), creep
deformation (CD), cooling under load (Cooling) astaistic unloading (EU). Generally, peak-

width still decreases with the aspect ratio forabBepercolating geometry and the saturation at
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the stage of creep deformation is not that sigmiti@fter being virtually cooled under load in
air as shown in Figure 6.23. Furthermore, bothpcdeformation and cooling contribute
mainly to the peak-width while the elastic deforimratshows a trivial effect. Meanwhile, peak
position shifts rightwards to a higher value fdsigger aspect ratio as shown in Figure 6.24

after cooling, for which the contribution of theoting stage is dominant.
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Figure 6.23 FWHM versus aspect ratio for 2D percolating unit cellsvith 2=5, 7, 10, 15 and 20,
deformed to a strain of 0.005 at 140C then cooled to 20C with Oyppieq = 60MPa, ED: elastic
deformation, CD: creep deformation, EU: elastic unbading.
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Figure 6.24 Peak-shift versus aspect ratio for 2D percolating unit cells #h A=5, 7, 10, 15 and 20,
deformed to a strain of 0.005 at 140C then cooled to 20C with Typpieq= 60MPa, ED: elastic
deformation, CD: creep deformation, EU: elastic unbading.

For the case of hot pressing, peak-width (Figu2&)éand peak-shift (Figure 6.26)
behave similarly for all aspect ratios as beforean the same deformation mode (bending)
and competing strains (creep strain opposes thestrah). Normally, peak-width still
decreases with the aspect ratio for the 2D penagl@feometry. Meanwhile, peak position
shifts rightwards to a higher value for a bigggyess ratio after cooling due to the dominant

thermal contraction.
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Figure 6.25FWHM versus temperatureafter hot pressing for 2D percolating unit cells wih =5, 7, 10, 15
and 20, Uapplied = - 50MPa.
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Figure 6.26 Peak-shift versus temperature after hot pressing f2D percolating unit cells with A=5, 7, 10,
15 and 20,0’app”ed =-50MPa.
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6.3.4.2. 3D aligned geometry

Same as before, for 3D aligned geometry peak-viieljures C-25 to C-27) behaves
similarly during cooling stage after creep for edriaspect ratios and applied stresses.
However, some small differences are still obserlredeneral: (1JFWHM decreases first then

increases again with the dropping temperature lf@sgect ratios witho,,,i.s =60MPa; for
aspect ratios of 5, 7 and 10 with,,,.s =75MPa; for aspect ratios of 5 and 7 with
O.ppiea =100MPa; (2) monotonously decreases as temperatops after creep for bigger
aspect ratios and applied stresses: aspect ratidgsand 20 witho s =75MPa; for aspect

ratio of 10, 15 and 20 witkr, . =100MPa.

As mentioned before, the whisker elongates aloag tlrection (parallel to its axis)
during creep and then contracts with the continepping of temperature. Larger tensile
stress shows a stronger effect of inhibiting tleerttal contraction yielding a smoother change
of peak-width during cooling for each aspect rétioser to the second case). Meanwhile,
larger aspect ratio shows a stronger reinforcifgcefyielding a smoother change of peak-
width during cooling for varied applied stress. rEfiere, unit cell with smaller aspect ratio
contracts more and might overcome the effect afcstrain while the one with larger aspect
ratio might not and results in a monotonous deereastemperature drops. The extent is

determined by the applied stress.

For the case of peak-shift, it behaves in a similay for all aspect ratios and
different applied stresses (Figures C-28 to C-80ind cooling stage after creep. In general,
peak position shifts rightwards due to cooling frohe leftward shifting due to creep
deformation indicating a change of the mean stetate from tensile to compressive.
Meanwhile, no significant dependence of the pedk-sh the aspect ratio was found after
being virtually cooled under load in air and almaltaspect ratios combine into one line.
However, a bigger applied stress affects the pl#ikrsore significantly and results in more

scattered lines during cooling stage.
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Figures 6.27 and 6.28 show the peak-width andt-ghifus aspect ratio for the 3D
aligned geometry at four stages during deformatielastic deformation (ED), creep
deformation (CD), cooling under load (Cooling) asldstic unloading (EU). Both creep
deformation and cooling contribute mainly to thelpe/idth while the elastic deformation
shows a trivial effect. Furthermore, an initial e&se then an increase with increasing aspect
ratio of peak-width (purple line in Figure 6.27)lsserved after cooling and the monotonous
increasing trend with the aspect ratio after creg longer existed (black line in Figure 6.27).
Meanwhile, peak position shifts rightwards afteslegy from the leftward shifting after creep
as shown in Figure 6.48. Still, both creep defoionend cooling affect mainly the peak-shift

while the elastic deformation shows a somehow smedintribution.

0.08
] - E ——FED
3D-Aligned, 1400°C, €=5X10 == CD
m =—fe==Cooling
o ——EU
o
[})
2
= 004 | >é:::
=
I
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0 e R e e
0 5 10 15 20 25

A

Figure 6.27 FWHM versus aspect ratio for 3D aligned unit cells wit=5, 7, 10, 15 and 20, deformed to
a strain of 0.005 at 140@ then cooled to 20C with Ty,pieq = 60MPa, ED: elastic deformation, CD:
creep deformation, EU: elastic unloading.
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Figure 6.28 Peak-shift versus aspect ratio for 3D aligned unitells with A=5, 7, 10, 15 and 20, deformed
to a strain of 0.005 at 140 then cooled to 20C with Oyppiea = 60MPa, ED: elastic deformation,
CD: creep deformation, EU: elastic unloading.

For the case of hot pressing, peak-width (Figue®)6and peak-shift (Figure 6.30)
still behave similarly for all aspect ratios asdoefbased on the same deformation mode
(elongation or contraction) and competing straioegp strain opposes thermal strain).
Normally, smaller aspect ratio yields a larger peakh for the 3D aligned geometry for the
same reason mentioned above. Meanwhile, peak quostso exhibit a strong effect of
thermal stress instead of the aspect ratio duritgptessing while a larger aspect ratio does
result in a larger rightward shift insignificantly.
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Figure 6.29 FWHM versus temperature after hot pressing for 3D aliged unit cells with A=5, 7, 10, 15
and 20, Uapplied = - 50MPa.

0.16
0.14 ——=)=5
—— =7
o2} ——A=10
1) B —f—\=15
%’, 0.1 =l \=20
2 0.08 }
z
= 0.06 |
= 0.04 }
S 002 b
So.
0 'l [l [l
-0.02 500 1000 2(1)0
-0.04

Temperature(C)

Figure 6.30Peak-shift versus temperature after hot pressing fo3D aligned unit cells withA=5, 7, 10, 15
and 20, Uapplied = - 50MPa.
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6.3.5. Net change of peak-width and -shift after creep

Figures 6.31, 6.32, 6.33 and 6.34 show the netgehah peak-width and -shift by
comparing the samples before and after creep Wwehmal effects in section 6.3 for 2D
percolating and 3D aligned geometries: being cobieah 1700C to 20C under 50MPa
compressive stress after hot pressing; being twegpistrain of 0.005 then cooled under load
with 60MPa, 75MPa and 100MPa. The relationship eetwthe peak-width and -shift with
the deformation modes and aspect ratio studiedatios 6.2 (i.e. Figure 6.12, 6.13, 6.14 and
6.15) are concealed by the thermal stress fromwtbecooling stages: i.e. the decreasing and
saturation of the peak-width with increasing aspatio for the 2D percolating geometry
(Figure 6.12), and the increasing of peak-widtthwitreasing aspect ratio for the 3D aligned
geometry (Figure 6.14). However, the non-dependehpeak-width change on the applied
stress as well as the wavy dependence on the aspeds observed for the 2D percolating
geometry (Figure 6.31). Meanwhile, for the 3D aidryeometry the peak-width (Figure 6.33)
still increases with the aspect ratio with varipgleed stresses and behaves in a different way
from Figure 6.14. Most importantly, both broadenamgl narrowing effect of the peak-width
after creep are predicted here while in sectionwe&2summarized that creep deformation
would inevitably introduce peak broadening fromnitial stress free state. Furthermore, the
net change of peak-shift (Figures 6.32 and 6.34)dth geometries decreases with the aspect
ratios for varied applied stresses and exhibigftevdird shift as before (Figures 6.13 and 6.15).
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Figure 6.31 AFWHM versus aspect ratio for 2D percolating unit cellsvith 2=5, 7, 10, 15 and 20,
compared between samples before (hot pressed with, g = - 50MPa) and after creep (deformed to a

strain of 0.005 at 140QC then cooled to 20C with T,ppjieq =-60MPa, -75MPa and -100MPa).
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Figure 6.32 Peak-shiftversus aspect ratio for 2D percolating unit cells ih 2=5, 7, 10, 15 and 20,
compared between samples before (hot pressed with, . = - 50MPa) and after creep (deformed to &

strain of 0.005 at 140QC then cooled to 20C with Tppjeq =-60MPa, -75MPa and -100MPa).
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Figure 6.33AFWHM versus aspect ratio for 3D aligned unit cells with=5, 7, 10, 15 and 20, compared
between samples before (hot pressed w4 = - 50MPa) and after creep (deformed to a strain of

0.005 at 140QC then cooled to 20C with T ,ppjieq =-60MPa, -75MPa and -100MPa).
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Figure 6.34 Peak-shift versus aspect ratio for 3D aligned unit cells with=5, 7, 10, 15 and 20, compared
between samples before (hot pressed witll,peq = - 50MPa) and after creep (deformed to a strain of

0.005 at 140QC then cooled to 20C with T ,ppjieq =-60MPa, -75MPa and -100MPa).
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6.4. Discussion

Information in section 6.3.5 points out the critiefiect of the thermal stresses on the
final peak-width change and position although eting a systematic trend coupling the
network deformation, load transfer and the thestraks is not possible due to the complexity
of the situation. Therefore, a general comparisetwéen the virtual results and the
experimental data is made below, which emphasimesainge of the results obtained in this

work and from Quan’s experiments.

Figure 6.35 (a) shows the peak-width predictionghen® goniometric scale due to
creep deformation from an initial stress-free stetée the distribution range is different for
different geometries as illustrated in Table 6iede values can be compared with the error
range for neutron diffraction (+0.0067~+0.0132)admng to Quan’s (2004) data based on the
E3 materials science diffractometer attached toNh#onal Research Universal (NRU)
reactor at Chalk River Laboratory (CRL). It woukkem that the peak width changes predicted
by the models are sufficiently large that they rhigl seen experimentally. In terms of peak-
shifts, only the 3D aligned geometry might yieldiftshbig enough to be measured
experimentally (Figure 6.35(b)), as illustrated able 6.1.

Table 6.1 FWHM and Peak-shift 420) range for three geometries without thermal stress’

2D percolating geometry 3D aligned geometry 3Dloamgeometry
0.02464° (60MP&a,=20) 0.02765° (60MPa,=5) 0.07747° (60MP&,=5)
FWHM I ]
0.08698° (60MPa,=5) 0.08023° (100MP&,=20) 0.1135° (100MPa;=5)
-0.002368° (60MPa,=5) -0.04423° (60MPa=5) -0.00222° (60MPa,=5)
A20 | I I

-0.005952° (100MP4=20)  -0.09323° (100MP&=20)  -0.004761° (L00MPa=5)

** Based on virtual tests wit¥5, 7, 10, 15 and 2@7,ppieq = 60MPa, 75MPa and 100MPa, as they are
deformed to a strain of 0.005 at 1400

166



Ph.D. Thesis — JUAN KONG McMastédaterials Science and Engineering (2012)

Together with the thermal effect, external stregddy net changes of the peak-width
(AFWHM in Figure 6.35(c)) after creep in a broader rangferchined by the geometry and
stress, as illustrated in Table 6.3. Peak postiofts (Figure 6.35(d)) to lower values for all
virtual tests among which the 3D aligned geometeydy significant effect as before, as
illustrated in Table 6.2.

Table 6.2 FWHM and Peak-shift §26) range for three geometries with thermal stres&?

2D percolating geometry 3D aligned geometry 3Dloamgeometry
-0.0001104°(60MPa=5) -0.021496°(100MPa=5) -0.01706° (60MP&=5)

FWHM | [ I
-0.01702°(100MP&,=7) 0.03798°(100MP&,=20) 0.005624°(100MPa;=5)
-0.001182° (60MP&,=5) -0.027846° (60MPa,=5) -0.006712° (60MP&,=5)

A20 ] ] I

-0.003778° (100MP4=20) -0.06771° (100MP4=20)  -0.007804°(100MP4;=5)

** Based on virtual tests wittx=5, 7, 10, 15 and 2@ .ppica = 60MPa, 75MPa and 100MPa, as they are
deformed to a strain of 0.005 at 14D0then cooled to 2Q.

Net changes of the peak-width and -shift obtainedially cover the range of the
data obtained from experiments and explain therappaontradiction between theory and
experimental results mentioned in the introductissnshown in Figure 6.35(e) and 6.35(f).
Despite the deformation mode, peak broadeningseptiag the non-uniform distributions of
stress fields inside the whisker network embeddethé matrix comes from two sources:
external stress or temperature change while ther laine makes the data intractable.

Furthermore, the peak position is also dominateithéyhermal stress.
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Figure 6.35 FWHM and Peak-shift predictions (dark area) : (a) andlf) for three geometries without
thermal stress, (c) and (d) for three geometries i thermal stress, (e) and (f) for all virtual test with
thermal stress, without thermal stress and experim#al tests; virtual tests are witha=5, 7, 10, 15 and 20,

O applicd = 60MPa, 75MPa and 100MPa, as they are deformed # strain of 0.005 at 140, then

cooled to 20C if thermal stress is considered
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Therefore, it is not helpful to freeze the bendgtgain after creep by cooling the
samples under load because this will introducedneplicated thermal stress and conceal the
phenomenon of interest. Although the changes dé-padth and -shift obtained in this work
seem detectable via neutron diffraction (i.e. ermamige between +0.0067~+0.0132 from
Quan’s work), it should be used with caution ev@nchses without thermal stress since they
are of the same order of magnitude, Moreover, seffeets are still undetectable such as
cases in Figure 6.35 (b) and (d). Furthermorewthisker geometry in the experiments does
not exactly match any of the virtual configuratiostsidied, suggesting a more realistic
microstructure of the ADs-SiC, composite is needed for simulations in order tikema
closer matching.
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CHAPTER 7
SUMMARY AND FUTURE WORK

7.1. Summary

This work systematically studied the anelastic Beimand deformation mechanisms
for Al,0s-SiC,, composites containing a percolating whisker netvasrwell as explained the
contradicting experimental neutron diffraction tesun the former work (Quan, 2004). It
provides a framework for performing virtual testsvering mechanical deformation and the
corresponding characterization via diffraction iermis of peak width and position.
Deformation mechanisms have been studied using omeshanical methods and
characterized using the virtual diffraction develdpn this work. Specifically, this work

addressed and answered the following issues:

(1) The origins of the anelastic creep recovery for ADs-SiC,:

It exists not only in composites but also in umi@iced materials and arises from
two sources: dislocation activities and plasti@istrmisfit. For SiC whisker containing
alumina composites, the latter is the main mechauige to the high formation energy and
Peierls force of dislocations. In this work we haxexified the critical importance of a
percolating whisker network for the anelastic rerg\wbased on the 3D multi-whisker random

unit cell.

(2) Deformation mechanisms of the percolating network dring creep:

We demonstrated that bending is the dominant mesrhaaver contact from an
energy point of view during the creep deformatibrm @omposite containing a well aligned
percolating whisker network based on the 2D utiithcedel.

(3) Comparison between analytical and FEM results for aelasticity:
Good qualitative agreement was found between ouvl Eitnulations and the

analytical model of Wilkinson and Pompe with regatd the maximum recoverable strain
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and the characteristic relaxation time. Despite dbeiations in absolute magnitude, the
analytical model captures all the critical prog=ritharacterizing the deformation mechanisms
or strain recovery. These include: the maximumveble strain is inversely proportional to
the whisker's Young’'s modulus and proportionaltte third power of the aspect ratio; the
characteristic relaxation time is inversely projoil to the Young's modulus of the whisker
and creep pre-exponent constant for the matrix,paoplortional to the fourth power of the
whisker aspect ratio. Plane stress condition bas demonstrated to more closely represent
the real situation over plane strain condition eitise matrix could flow out from the

deformed region and a beam is more suitable taidescwhisker.

(4) The effect of creep deformation and thermal stressn diffraction pattern:

Peak-width FWHM) is a measure of stress distribution with thetielaghisker
while peak position represents the mean stregs ftaas been shown that creep deformation
inevitably yields non-uniform distributions of e fields inside the whisker network
embedded in the matrix and results in the pealdieroag for a zero stress initial state despite
the deformation mechanisms. Both bending (2D patiogd geometry) and random (3D
random geometry) modes contribute mainly to thé padth instead of the peak-shift with an
order of magnitude difference, while elongationtcaction mode (3D aligned geometry)
contributes almost equally. Increasing the asei decreases the peak-width to a limit for
the bending mode and increases for the elongatagie niHowever, both modes showed more
significant peak-shift for a bigger aspect ratibeToad transfer process has been verified via
the partial and/or full saturation of the peak-widhd -shift. Furthermore, the 2D percolating
geometry demonstrates the independence of the \ielk on the external stress due to
percolating and the dominant bending mechanismgwine other two geometries show the
dependence. However, all three geometries shovdeépendence of the peak-shift on the

external stress.

We have further demonstrated that the thermal sstfiesn the cooling stage

following the creep deformation increased the scattthe stress distribution inside resulting
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in a continuing increase of peak width. This terapee change is so large that the final mean
stress state became compressive despite the démrmeodes. The effect of aspect ratio is
not straightforward under the interaction of thdratiess and external stress for both bending
and elongation/contraction modes. The cooling stali@ving the hot pressing process has
been shown to broaden the peak-width despite tfferait geometries and yields a
compressive residual stress as well. It has baeeamdfthat this thermal stress concealed the
observation of a peak broadening effect and shifted peak to a lower position when
compared with samples after and before creep. &kiained the contradicting neutron
diffraction data wherein both broadening and naimgwef peak width has been obtained. The
neutron diffraction method is found to be not dlédor the characterization of deformation
mechanisms due to the rather low angular resolufibat is, the error range is too large in
comparison with scale of the effects due to cramp thermal effects, thus preventing a

definitive determination of the processes at play.

7.2. Future work

In terms of experiments, it is essential to use-aay source with a small intrinsic
peak width. It would also be wise to choose a systithout such a large thermal expansion
difference between two constituents. In situ expents would enable more accurate tracking
of the observed phenomena. It would be interestirapeck the effects of percolating, applied
stress together with the aspect ratio on diffracpatterns experimentally while a diffraction

source with higher angular resolution than neutiiiraction should be used.

In terms of modeling, this work used three simgtifigeometries: percolating,
random and aligned and obtained useful informasioch as the deformation mechanism
inside a percolating geometry and the correlateiwvéen deformation and diffraction pattern.
A 3D plane-random percolating geometry closer ¢éoréal microstructure is needed in future
work to better understand the processes at play.cbuld be generated numerically using a

random sequential adsorption algorithm or experiatignfor example by a TEM sectioning
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method or xerography via synchrotron radiation @@fnom real samples. Whiskers with non-
circular cross section might be used to avoid titeead problem of element discretization
based on the conclusion in this work that the @bntantribution is insignificant for a
percolating network in terms of energy. Based e3id plane-random percolating geometry,
direct study of the effects of percolating, aspetio and experimental conditions on the

anelastic behaviour could be carried out.
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Appendix A

The Analytical Model for 2D Percolating Geometry

This appendix illustrate the the analytical mods#diin chapter 5. It is based on the
Wilkinson and Pompe model (1998) for the creep anelastic recovery of whisker- and
platelet- reinforced ceramics. In the 2D unit cell, shown in Figure 5.8, whiskers are
described as beams with rectangular cross sectbedded in a creeping matrix. The Euler
equation for the beam deformation is given as below

-E,l i‘j =P+ Fd(X) (A.1)
0X

whereP is the distributed load(force per unit length}x) is the Dirac delta functiorf; is the
point load,u is the displacement along tgedirection and other parameters have the same
meanings as in section 5.283is proportional to the stress exerted on the lmaface by the

surrounding matrix and t@/, the depth along thedirection, the former of which could be

related to the creep strain rate through the areaptitutive law ag =é . The strain rate

is equal to the displacement ra;tedivided by half of the unit cell height since there are two
three-point bending in one unit cell along yt@irection. Furthermore, a factor of 2 is included
accounting for the effects from two surfaces, tag aottom, due to the perfect interface
bonding. Finally, for the 2D unit cell with length (ob), HeightH (bc) and depthw, the
governing equation for a bent whisker embeddectcieaping matrix is given

ou_ 1 W -
_EWI W = ZEWU(X, t)+ F5(X) (AZ)
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Calculation for characteristic relaxation time

LetA=E,J, B=—2~
C(H/2)

and rewrite equation (A.2) as

0*u .
A——- = Bu(x,t .
PV (x1) )\

Using the method of separation of variables, agsgimi

u(xt) = u(xu(t) A

The boundary conditions for a symmetric bendingrbsanply supported for any

time are given by

ou_ 0 at=0
ox
(A.5)
u(x)=0 ak= +d
Substitute (A.4) into (A.3),
4
1 0°u(x) _B1 ou(t) —= K, (A6)

u(x) ox* Au(t) ot

where K is the eigenvalue for the differential equationchhs a series of constants. Solve

the temporal part

) _ Ay o (A7)
uit) B

which has the standard solution of (Z#,al, 2000)*
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u(t) = K, expe: Kit) (A.8)

with 7 =-

(A.9)

The value of K is needed to calculate, which can be determined via solving the
spatial part

9*u(x)

ot w
The general solution for equation (A.10) is therf@Zill et al, 2000)
u(x) = D™ + D" + Dcosyf K+ D,sind K (A.11)

Place the boundary conditions (A.5) into (A.11), get D= D.= Ds= 0, and the
smallest value of Kis (which corresponding to the maximum relaxatiom)

4
T
Ki=| — A.12
(2] (A1)
Substitute (A.12) into (A.9), the characteristiaxation time is given by

_ 48y _12 A°
E.C7*(2r°H " E.C

M

(A.13)
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Calculation for maximum recovered strain

The maximum recovered strain is obtained by integydhe equation (A.1) directly

when the load is fully carried by the beams:

2 3
U (X) = U, 1-3(X) _ifx -kx<0
2ld) 2ld
e 1] (A.14)
U (X) = U, 1——(% +—(5J &x<d
2\d) 2\d
3
with v, = - (24) (A1pA
48E, |

which is the maximum displacementxa) (middle of the beam). The maximum recovered
strain is obtained via combining the loBd= oWL and spared = A x 2r into (A.14A)

= U‘E :_LO-AS
H/2 1& E,

(A.15)

Eu
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Appendix B

FEM Simulations for 2D Percolating Geometry with Pane Strain

Conditions

Figure B-1 and Figure B-2 show the stress disiobubf S;; and Sy, normal stress
along thex andy direction respectively, at full loading of whiskegtwork without any matrix
based on plane strain conditions for aspect rafiés 10 and 20. It is seen that the whiskers
behave similarly to three-point loaded bendinggdladuring deformation. One half of the
plate is under tension and the other half is uecderpression. Maximum normal streSs
occurs at the mid-span of the plate with positiud aegative values corresponding to the
tensile and compressive part respectively. NortnessS,, is distributed near contact region
with its maximum value located around the contaciter, reflecting a contribution of the
contact effect. Figure B-3 shows the von Mises\adent stress distribution at full loading of
the whisker network without a matrix based on plstn@n conditions for aspect ratios of 5,
10 and 20. The maximum value of equivalent stresare beneath the contact surface where
the shear stress is the largest during deformalibis. is a typical stress distribution for a

Hertzian contact problem with non-conforming cohtacfaces (Johnson, 1985).
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Figure B-1 S, distribution within whisker network without matrix for aspect ratio 5, 10 and 20 with plane
strain condition.
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Figure B-2 S, distribution within whisker network without matrix for aspect ratio 5, 10 and 20 with
plane strain condition.
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Figure B-3 Von Mises stresslistribution within whisker network without matrix  for aspect ratio 5, 10
and 20 with plane strain condition.
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One thing important to mention is that the appiesses specified in the Figures

above are based on the 2D percolating unit cetls mvatrix present as shown in Figure 3.6,
which should be increased by a factorjlafl‘? while applied here to the network without
x2r

matrix (L is the length of unit cell with matrix in Figure63andA x 2r is the length of unit cell
without matrix here). Different stresses are aapto different aspect ratio in order to keep

the strain within the order of T0

From simple plate theory (Cook and Young, 1985)

0*u
-D—= B-1
o d (B-1)
which share a close similarity with the equationljAlt is simple to obtain the strain for a 2D

unit cell without a matrix based on the plane stcaindition:

. Lo A’
Ey =——@A-V B-2
M= e EW( ) (B-2)
which is a version of equation A.15 obtained byeasing thek,, by (1—EW2) .
-V

Table B-1 shows the maximum strain from FEM simoitet and the analytical
model prediction. It seems that the end effectilissgnificant since for aspect ratios of 10
and 20, data fitted witld —1 agree better with the FEM simulations. Howevarafpect ratio
of 5, it between the fitting withl and A -0.5 suggesting that the situation is much more

complicated due to the small aspect ratio.
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Table B-1 FEM results and analytical model predictbns (AM) for plane strain condition

Aspect FEM AM
ratio
P A1-05 A-1
S 1.24x 10° 1.57x 10° 1.14x 10° 8.03x 10°
10 1.77x 102 2.27x 107 1.94x 107 1.65x 102
20 2.98x 102 3.43x 10? 3.18x 102 2.94x 102
0.2

€25, g* =5x10"°F"%, R?=1

0.15

0.05

0 200 400 600
F (N/m)

Figure B-4 Maximum strain versus load with the fitting equatios, plane strain condition.

Figure B-4 shows the maximum strain versus loatl wie fitting equations from
FEM simulations. It seems that the nonlinear loaftledtion relationship is not significant
except for aspect ratio of 5 which indicates thatglate theory is not applicable for short plate

due to the effect of contact and shear deformatientioned in section 5.4. All the data are

190



Ph.D. Thesis — JUAN KONG McMastédaterials Science and Engineering (2012)

compared with the analytical model (equation BAZable B-2 while the data for aspect ratio
of 10 and 20 are fitted using—1,and A is used for the aspect ratio ofGod agreement is
obtained showing the validity of the analytical rabfibr unit cells without a matrix based on

the plane strain condition.

Table B-2 Maximum strain from FEM predictions (Figure B-4) and analytical model (AM) for 2D
percolating whisker unit cells without matrix basedon plane strain condition

Aspect ratio. FEM AM
S £ =5x10°F°% &, =5.06x 10°F
10 £ =3x10*F &, =2.95x 10°F
20 £ =2.8x10°F &, =2.8x10°F
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Appendix C
FEM Data for Chapter 6

This appendix summarizes supplemental figures ap&h 6 for 2D percolating and
3D aligned unit cells with aspect ratios of 5, @, 15 and 20 which are deformed under

stresses 60MPa, 75MPa and 100MPa with and withetrial stress.

(1) Figures C-1 to C-9 for section 6.2.3.1 (2D peglating unit cells)

Figures C-1, C-2 and C-3 show the creep strairugdisie while Figures C-4 to C-9
show peak width and position versus creep strair2d percolating unit cells with varied
aspect ratios under varied stresses. Larger stiglgls the same value of creep strain in a
quicker time for all aspect ratios. Although thét gell with a bigger aspect ratio has a longer
characteristic relaxation time (as demonstrated in chapter 5), it approachesréep strain
of 0.005 in a shorter time since it is more flegiibigger maximum recoverable strair)
provided the same condition. Peak width and posiiEhave similarly for all aspect ratios: (1)

FWHM increases with the creep strain; (2) peak postiuits to a lower value and saturates.

0.006

[ 2D-Percolating, 60MPa, 1400°C |

0.005

0.004

0.003

Creep Strain

0.002

0.001

0 '] 'l 'l Il ']
0 2000 4000 6000 8000 10000 12000
Time(s)

Figure C-1 Creep strain versus time for 2D percolating unit cdés with A=5, 7, 10, 15 and 20,
T=1400C, O appiica = -60MPa.
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Figure C-2 Creep strain versus time for 2D percolating unit cés with 2=5, 7, 10, 15 and 20, T=1400,
Uapplied = -75MPa.
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Figure C-3 Creep strain versus time for 2D percolating unit cés with A=5, 7, 10, 15 and 20, T=1400,
Uapplied =-100MPa.
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Figure C-4 FWHM versus creep strain for 2D percolating unit cellswith A=5, 7, 10, 15 and 20,

T=1400C, Tppicd = -60MPa.

0.004

0.005 0.006

0.09
—

— e \=7
2 —6—A=10
> 0.06 F =b==7\=15
o ——\=20
=} ‘
= 0.03 g
= | N g
T8

0 ] ] ]

0 0.001 0.002 0.003 0.004 0.005 0.006

Creep Strain

Figure C-5 FWHM versus creep strain for 2D percolating unit cellsvith A=5, 7, 10, 15 and 20,

T=1400C, Tppied = -75MPa.
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Figure C-6 FWHM versus creep strain for 2D percolating unit cellsvith A=5, 7, 10, 15 and 20,
T:1400°C, Uapplied =-100MPa.
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Figure C-7 Peak shift versus creep strain for 2D percolating unit cells wh 2=5, 7, 10, 15 and 20,
T:1400°C, Uapplied =-60MPa.
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Figure C-8 Peak shift versus creep strain for 2D percolating unit cells wh 2=5, 7, 10, 15 and 20,
T:1400°C, Uapplied =-75MPa.
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Figure C-9 Peak shift versus creep strain for 2D percolating it cells with 2=5, 7, 10, 15 and 20,
T=1400C, O,pplied = -100MPa.
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(2) Figures C-10 to C-18 for section 6.2.3.2 (3Digthed unit cells)

Figures C-10, C-11 and C-12 show the creep steasus time while Figures C-13 to
C-18 show the peak width and position versus cetegn for 3D aligned unit cells with
varied aspect ratios under varied stresses. Langess always yields the same value of creep
strain in a quicker time for all aspect ratios. Tiné cell with a larger aspect ratio has a more
significant strain rate shifting and approachescteep strain of 0.005 in a longer time if other
conditions are fixed. This represents an increagimjorcing effect of the larger aspect ratio
and is consistent with the prediction based orsti@ar lag model (Cox, 1951 and Mclean,
1972). Peak width and peak-shift behave similanyafl aspect ratios under different external
stresses: (IFWHM increases with the creep strain and then satundttes the entire load is
transferred to the whisker; (2) peak position sHift a lower value and saturates when the

entire load is transferred to the whisker.
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Figure C-10 Creep strain versus time for 3D aligned unit cells #h A=5, 7, 10, 15 and 20, T=1400,
Japplied = 60MPa.
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Figure C-11 Creep strain versus time for 3D aligned unit cells #h 2=5, 7, 10, 15 and 20, T=1400,
Uapplied = 75MPa.
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Figure C-12 Creep strain versus time for 3D aligned unit cells #h =5, 7, 10, 15 and 20, T=1400,
Uapplied = 100MPa.
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Figure C-13 FWHM versus creep strain for 3D aligned unit cells with=5, 7, 10, 15 and 20, T=1400,
Uapplied = 60MPa.
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Figure C-14 FWHM versus creep strain for 3D aligned unit cells with=5, 7, 10, 15 and 20, T=1400,
Japplied = 75MPa.
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Figure C-15 FWHM versus creep strain for 3D aligned unit cells with=5, 7, 10, 15 and 20, T=1400,
Uapplied = 100MPa.

0 ] [ ']
0.002 0.004 o.(loe

. || 3D-Aligned, 60MPa, 1400C ||

Q

[}

< -0.02 |

[<}]

)

o -0.04 }

N

<

-0.06

Creep Strain

Figure C-16 Peak shift versus creep strain for 3D aligned unitcells with =5, 7, 10, 15 and 20,
T:1400°C, Uapplied = 60MPa.
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Figure C-17 Peak shift versus creep strain for 3D aligned unitcells with A=5, 7, 10, 15 and 20,
T=1400C, Oappiied = 75MPa.
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Figure C-18 Peak shift versus creep strain for 3D aligned unitcells with =5, 7, 10, 15 and 20,
T=1400C, Oppiied = 100MPa.
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(3) Figures C-19 to C-24 for section 6.3.4.1 (2Dngelating unit cells)

Figures C-19, C-20 and C-21 show the peak widthugetemperature while Figures
C-22, C-23 and C-24 show the peak-shift versus ¢eatyre during the cooling stage after
creep for 2D percolating unit cells with variededpatios under varied stresses. They behave
similarly for all aspect ratios under different b stresses: (JfWHM increases continually
as temperature drops after creep; (2) peak poshdhrightwards during the cooling stage
from the leftward shifting during creep represegtancompressive mean stress state due to

thermal contraction.
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Figure C-19 FWHM versus temperature for 2D percolating unit cells Wwh A=5, 7, 10, 15 and 20,
O applied = -60MPa, as they are deformed to a strain of 0.0G&% 1400C, then cooled to 2CC.
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Figure C-20 FWHM versus temperature for 2D percolating unit cells wth A=5, 7, 10, 15 and 20,
O applied = -75MPa, as they are deformed to a strain of 0.0G& 1400C, then cooled to 2CC
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Figure C-21 FWHM versus temperature for 2D percolating unit cells with A=5, 7, 10, 15 and 20,
O appiied = -100MPa, as they are deformed to a strain of 0.6Gat 1400C, then cooled to 2CC.
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Figure C-22 Peak-shift versus temperature for 2D percolating uit cells with A=5, 7, 10, 15 and 20,
O applied = -60MPa, as they are deformed to a strain of 0.0G& 1400C, then cooled to 2CC.
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Figure C-23 Peak-shift versus temperature for 2D percolating unit cells wh =5, 7, 10, 15 and 20,
O appiied = -75MPa, as they are deformed to a strain of 0.0G& 1400C, then cooled to 2CC.
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Figure C-24 Peak-shift versus temperature for 2D percolating uit cells with A=5, 7, 10, 15 and 20,
O appiied = ~-100MPa, as they are deformed to a strain of 0.8Gat 1400C then cooled to 2CC.

(3) Figures C-25 to C-30 for section 6.3.4.2 (3Dighed unit cells)

Figures C-25, C-26 and C-27 show the peak widthugetemperature while Figures
C-28, C-29 and C-30 show the peak-shift versus eeatyre during the cooling stage after
creep for 3D aligned unit cells with varied aspatibs under varied stresses. Same as before,
for 3D aligned geometry peak-width (Figures C-2€t87) behaves similarly during cooling
stage after creep for varied aspect ratios andieabtresses. However, some small

differences are still observed. In general:RYYHM decreases first then increases again with

the dropping temperature for all aspect ratios with.s=60MPa; for aspect ratios of 5, 7
and 10 withog,,es =75MPa; for aspect ratios of 5 and 7 wih, s =100MPa; (2)

monotonously decreases as temperature drops gy for bigger aspect ratios and applied

stresses: aspect ratios of 15 and 20 with.s =75MPa; for aspect ratio of 10, 15 and 20 with

O appiied =100MPa.
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For the case of peak-shift, it behaves in a similay for all aspect ratios and
different applied stresses (Figures C-28 to C-30ind cooling stage after creep. In general,
peak position shifts rightwards due to cooling frohe leftward shifting due to creep
deformation indicating a change of the mean stetage from tensile to compressive.
Meanwhile, no significant dependence of the pedk-sh the aspect ratio was found after
being virtually cooled under load in air and almaltaspect ratios combine into one line.
However, a bigger applied stress affects the pl#ikrsore significantly and results in more

scattered lines during cooling stage.
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Figure C-25 FWHM versus temperature for 3D aligned unit cells withA=5, 7, 10, 15 and 20,
O applied =60MPa, as they are deformed to a strain of 0.005 4400°C, then cooled to 2CC.
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Figure C-26 FWHM versus temperature for 3D aligned unit cells with=5, 7, 10, 15 and 200 ,ppjied =
75MPa, as they are deformed to a strain of 0.005 &400C, then cooled to 2CC.
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Figure C-27 FWHM versus temperature for 3D aligned unit cells with=5, 7, 10, 15 and 20¢ ppjieq =
100MPa, as they are deformed to a strain of 0.00% 2400°C, then cooled to 2CC.
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Figure C-28 Peak-shift versus temperature for 3D aligned unit ells with A=5, 7, 10, 15 and 20,
O appiied = 60MPa, as they are deformed to a strain of 0.0Gf 1400C, then cooled to 2CC.
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Figure C-29 Peak-shift versus temperature for 3D aligned unit ells with A=5, 7, 10, 15 and 20,
O applied = 75MP4a, as they are deformed to a strain of 0.0G4 1400C, then cooled to 2CC.
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Figure C-30 Peak-shift versus temperature for 3D aligned unit ells with A=5, 7, 10, 15 and 20,
O appiied = 100MPa, as they are deformed to a strain of 0.0GH 1400C, then cooled to 2CC.

209



