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ABSTRACT         

In an effort to better understand the physical mechanisms responsible for 

pool boiling heat transfer, an analytical model is developed that better describes 

the changing shape and size of a growing bubble. Indeed, any analysis of thermal 

transport due to nucleate pool boiling requires bubble frequency predictions 

which are intimately linked to bubble volume. The model is developed and 

validated for quasi-static bubble growth due to gas injection and for bubble 

growth due to vaporization within the heat-transfer controlled growth regime; it 

highlights the need to include the asymmetric nature of growing bubbles when 

modeling bubble growth. 

In addition, a numerical study of quasi-static bubble shape for both 

adiabatic bubble growth and vapour bubble growth provides insight into the 

dependence the bubble shape evolution has on the Bond number. In so doing, 

bubble profiles generated from a numerical treatment of the Capillary equation are 

benchmarked to quasi-static gas injected bubble formations and to heat-transfer 

controlled vapour bubble formations.  

The numerical treatment of bubble shape evolution leads to a simplifying 

bubble geometry for low Bond number applications. The geometric model 

accounts for bubble shape transformation throughout the bubble growth cycle 

including the necking phenomenon. An analytical model of quasi-static adiabatic 

bubble growth is accordingly developed based on the proposed low Bond number 

geometric model; it is coupled with a geometric detachment relation and a force 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

iv 

 

balance detachment criterion that are dependent on the Bond number. The 

resulting predicted bubble growth characteristics, such as profile, volume, centre 

of gravity and aspect ratio, are validated with the benchmarked numerical 

treatment of the problem.  

Furthermore, the low Bond number geometric model is applied to bubble 

growth due to vaporization. In order to solve the mass-energy balance at the 

vapour bubble interface, a spherical surface area is commonly assumed. This 

leads to the need for correction factors and provides little insight into the physical 

mechanism responsible for bubble shape. In this study, the transitioning shape of 

a vapour bubble is considered in the integral analysis of the interfacial mass-

energy balance. The model predicts the following bubble growth characteristics: 

profile, volume, centre of gravity, and aspect ratio. 
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Nomenclature 

 

Symbol Quantity SI Unit 

A Surface area m² 

AR  Arbitrary region - 

AR Aspect ratio - 

Bob Bond number with 

characteristic length b 
- 

 b Orifice radius; Cavity radius m 

 cp Specific heat at constant 

pressure 
J-kg

-1
K

-1 

 C Centre curvature with necking m 

CoG Centre of gravity m 

d Thermal boundary layer 

thickness affected by bubble 
m 

D Diameter m 

F Force N 

 g Gravitational constant m-s
-
² 

 H Vertical position of centre of 

gravity  
m 

 h Height; Height of bubble neck; 

Height of conical frustum 
m 

hlv Latent heat of evaporation J-kg
-1 

Ja Jakob number - 

 k Thermal conductivity W-m
-1

K
-1 
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Ll 
Laplace length: 

 l v g



 
 m 

MR Material region - 

 m Mass in bubble kg 

P Pressure N-m
-2

 

1 2,R R  Principle radii of curvature m 

 R Bubble radius m 

 Position vector m 

s ²² bR   m 

T Temperature profile K 

t Time s 

bt  Characteristic time: 32
/

3
b V  s 

Jat
 

 ² / ³ ²b Ja  s 

u  MR fluid velocity m-s
-1 

, ,ru u u   Spherical coordinates of  MR 

fluid velocity 
- 

V Volume m³ 

V  Flow rate m³s
-1 

crV  
Critical Flow rate 

³

100 5 v

b 


 m³s

-1 

v  Fluid velocity m-s
-1 

w Width m 

r

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w  Surface velocity m-s
-1 

W Work J 

 y Perpendicular distance from 

nucleation cavity 
m 

z hbub - y m 

  Contact angle rad 

  Thermal diffusivity m
2 

s
-1 

  Growth parameter - 

  Thermal boundary layer 

thickness 
m 

 Viscosity kg-m
-1

s
-1 

  Temperature profile  K 

1 2,   
Arc angles rad 

  Fluid density kg-m
-
³ 

 Density of liquid kg-m
-
³ 

 Density of vapour kg-m
-
³ 

 Surface tension N-m
-1 

  Viscous stress N-m
-
² 

  Temporal limit angle    rad 

  
Bubble degree of sphericity - 

  Perpendicular distance from the 

bubble interface 
m 

  
Fluid depth m 

   

 



l

v


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Superscripts 

P  Normalized pressure / (2 / )oP R  

1

iR
 Normalized principal radius 1 o

i

i

R
R

R

   

t̂  Normalized time: / Jat t  

*t  Normalized time: / bt t   

t  Normalized time:  
*V t  

*V  Normalized volume :
32

3

V

b
 

¢V  
Normalized flow rate: / crV V  

  
Normalized thermal boundary layer 

thickness 
Jat







 

  Normalized length: / lL  

*  Normalized length: /b  

 

 Normalized length: / d   

  Derivative with respect to time: 
d

dt


 

 

Subscripts 

amb Ambient 

b Buoyancy 

bub Bubble 

c Capillary 
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cr Critical 

d Detachment 

dp Submerged depth 

eq Equivalent 

face Interface 

frustum Conical frustum 

g Growth period 

gm Gas momentum 

hemi Hemisphere 

hydro Hydrostatic 

i Coordinate index 

l Liquid 

m Measured 

min Minimum 

mod Modified 

neck Bubble neck 

NG Numerically generated 

o Initial condition; Apex origin 

P Pressure 

pr Predicted 

sat Saturated 

sph Sphere 

tr Truncated 
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wall Wall 

v Gas/vapour 

w Waiting period 

z Vertical component 

  Far field 
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1. INTRODUCTION 

 Many industrial practices create large amounts of heat. Thermal control of 

the site, industrial instruments and electrical components is vital to the industries 

running capacity and is managed with heat exchangers. For this reason, industrial 

needs have motivated a large number of studies of the underlying physics of 

nucleate pool boiling and forced convection boiling for their capacity to generate 

high heat transfer rates. The common goal of these studies is to, through a deeper 

understanding of the fundamental mechanisms that govern boiling, effectively 

apply pool boiling and forced convection boiling to diverse industrial processes 

that require the removal of large amounts of heat or that require a near constant 

temperature boundary condition.  

 In particular, whether in pool boiling or convective boiling applications, 

the extremely high heat transfer rates associated with the nucleate pool boiling 

phenomenon are intimately linked to the vapour bubbles which form, grow and 

depart at the heated surface. Energy is introduced into the liquid by conduction 

from the heated solid surface and is stored within a thin thermal boundary layer 

adjacent to that surface. This stored energy is ultimately used to vaporize the 

liquid and cause bubbles to form and grow. In addition to evaporative cooling 

effects, fluid motions induced by bubble activity disrupt the thermal boundary 

layer in the vicinity of the bubbles causing enhanced mixing and improved heat 

transfer in these regions (Dhir, 1991). As detailed by  Dhir (2006), in the past a 

number of purely empirical and mechanism-based correlations have been 
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developed for predicting nucleate pool boiling heat transfer rates. The empirical 

approach has resulted in correlations which show different functional dependence 

on the important boiling parameters. Very often, the predictive capabilities of the 

empirical correlations fall off rapidly once outside of the range in which the 

correlations were developed. 

 Mechanism-based correlations combine information about the underlying 

sub-phenomena including, but not limited to, bubble waiting time, growth times, 

heat flux contributions of the micro layer and transient conduction. This is 

combined with information about the active site density and natural convection to 

predict the boiling heat transfer rates. A particularly insightful and practical model 

was put forth by Judd & Hwang (1976). Here, the contributions of transient 

conduction through the liquid, micro layer evaporation and natural convection 

during single bubble events were combined with information about the bubble 

emission frequency in an attempt to formulate a straightforward and mechanistic 

model which could predict the wall heat fluxes during boiling. 

 An alternative approach is the development of accurate numerical 

simulations of boiling (Dhir, 2006). In fact, the beginning of this century has seen 

a notable increase in the number of archival publications related to numerical 

modelling of heterogeneous bubble growth in partial nucleate boiling along with 

many other boiling scenarios such as convective boiling, bubble merger and 

boiling in mini/micro channels  (Bai & Fujita, 2000; Robinson & Judd, 2001; 
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Yoon et al., 2001; Genske & Stephan, 2006; Fuchs et al., 2006; Wu et al., 2007; 

Mukherjee & Kandlikar, 2007;  Stephan & Fuchs, 2009; Robinson et al., 2010). 

 Due to the highly non-linear, transient multi-physics phenomenon 

involving the coupled interaction of three phases with extreme gradients, in 

particular near the triple contact line, the computational expense is very high. As a 

result, the numerical models must incorporate some simplifying assumptions 

which largely depend on the aim of the particular investigation. For example, in 

Bai & Fujita (2000), Yoon et al. (2001), Genske & Stephan (2006), Fuchs et al. 

(2006), Wu et al. (2007),  Mukherjee & Kandlikar (2007) and Stephan & Fuchs 

(2009), the simulated bubbles were initially unrealistically large compared with 

that of an actual nucleation cavity to ensure that the vapour temperature remains 

at the saturation temperature corresponding with the system pressure during the 

entire growth period. This assumption can be rationalized in these cases since the 

primary focus was on the bubble dynamics and heat transfer for bubbles growing 

in the thermally controlled bubble growth domain.   

 Robinson & Judd (2001) developed a model in which bubble growth on a 

heated surface was initiated from a sub-micron nucleus. The numerical simulation 

was able to resolve bubble growth over several time and length scales due to a 

hemispherical bubble shape assumption, which allowed the moving interface to be 

tracked without skewing of the mesh, as well as the implementation of a 4
th

 order 

Runge-Kutta scheme. The mathematical modelling of the problem resulted in a 

set of three coupled differential equations; one for the time rate of change of the 
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vapour temperature, one for the time rate of change of the radius and one for the 

interface velocity. Even though this methodology provided the required temporal 

and spatial resolution for numerically simulating heterogeneous bubble growth 

over many time and length scales, the equation set is only valid for hemispherical 

bubbles such as those measured experimentally by  Lee & Merte (1996) in their 

microgravity experiments. A similar numerical method was employed by 

Robinson et al. (2010) for spherically symmetric bubble expansion in an initially 

uniform superheated and unbounded liquid. However, the equation set is only 

valid for spherical bubbles.  

Recalling that a common goal of these investigations is to gain a deeper 

understanding of the fundamental mechanisms responsible for bubble growth, the 

present work of this document exposes the need for more accurate bubble shape 

modeling. In particular, bubbles are commonly assumed to be spherical despite 

clear evidence that a bubble experiences a drastic shape transition during its 

growth cycle.  

 In this work, bubble growth models highlighting the importance of shape 

modeling when predicting bubble growth characteristics are presented. To 

facilitate the model development, the mechanics of bubble growth are initially 

examined by considering adiabatic bubble growth and then diabatic bubble 

growth. The benefits are twofold: firstly, an industrial application using an 

analytical model can adapt its operating conditions in parallel with changing 
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environmental parameters. Secondly, an analytical model provides more insight 

into the mechanisms at work during bubble growth.  

 In particular, chapter 4 derives a bubble geometric detachment relation 

based on a mass balance at detachment. This provides analytical closure to the 

bubble growth problem when including the observed necking phenomenon in the 

geometric model. This relation is strictly derived from bubble geometry and the 

principle of conservation of mass and does not require any force balance. This 

proposed bubble geometric detachment relation was first experimentally observed 

by Oguz & Prosperetti (1993). The developed bubble growth model is validated 

for gas injected adiabatic quasi-static bubble growth from a submerged orifice.  

The adopted geometric model is, in chapter 5, appropriately applied to 

bubble growth due to vaporization on a heated plane, that is to say, nucleate 

bubble growth. In a collaborative effort with INSA Lyon, the model is 

experimentally validated for heat-induced vapour bubble growth conditions in 

which the bubble base is fixed to an artificial nucleation site and in which micro-

layer vaporization is negligible. 

 All of the bubble growth results presented in this work require a bubble 

geometric model. This allows for integral analysis over the surface of the bubble 

when analytically solving the conservation equations. It also allows for forces 

acting on the bubble, represented as vectors having magnitude and direction, to be 

evaluated. In this particular work, spherical bubble geometry has not been 

assumed, rather a bubble geometric model that changes in shape and in size as is 
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observed in reality is adopted. This novel approach builds on past analytical 

models; in order to alleviate the complexity in the analysis, many previous works 

make spherical assumptions when analysing data and developing numerical, 

empirical or analytical models. 

 In an effort to better understand bubble shape behaviour, the physical 

mechanisms dictating bubble deviation from a spherical shape is investigated in 

chapter 3 by quantifying the magnitude of the bubble’s spherical tendencies as the 

bubble’s degree of sphericity. Similarly, the bubble’s tendency to be a truncated 

spherical shape is quantified in terms of, as introduced in this work, the bubble 

degree of Modified sphericity. To this end, a numerical procedure is detailed 

solving the capillary equation providing the bubble profile from which bubble 

shape analysis may be performed.  

This numerical treatment of the Capillary equation providing bubble profiles 

has been benchmarked for quasi-static adiabatic bubble growth for both a fixed 

and growing foot radius by Gerlach et al. (2005) and for bubble growth due to gas 

diffusion by Mori & Baines (2001). In this study, this same numerical simulation 

of the pressure balance experienced by a bubble during bubble growth is 

benchmarked for bubble growth due to vaporization with a fixed foot radius and 

bubble growth due to gas injection with a fixed foot radius.  Furthermore, the 

Bond number, with the fixed foot radius as its characteristic length, is identified as 

the principle parameter responsible for a bubble’s deviation from a sphericity of 
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unity. In the following chapter 2, a review of the primary contributions in bubble 

growth modeling relating to nucleate boiling on a superheated plane are outlined. 

A common theme throughout this work is the importance in properly 

modeling bubble shape prior to modeling bubble growth. In particular, the 

majority of the contributions to the understanding of nucleate boiling on a heated 

plane assume the individual bubbles to be spherical with exception to 

microgravity consideration in which the bubbles are correctly assumed to be 

hemispherical. However, a spherical bubble assumption on a heated plane clearly 

misrepresents the bubble shape thereby requiring the model to adjust with 

empirically deduced correction factors. The correction factors often only apply to 

the conditions in which they were deduced and provide little insight into the 

mechanisms responsible for bubble growth. 
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2. LITERATURE REVIEW 

It is the goal of this study to provide a geometric starting point in the modeling 

of bubble growth that more accurately describes bubble shape during quasi-static 

bubble growth. In what follows is an account of important contributions which are 

in fact the building blocks of this study.  

  

2.1. Early Bubble Growth Models 

 It was common practice in early bubble growth models to make the two 

following assumptions.  

 

1. Bubble growth was assumed to be spherical from inception to 

departure. In this way, all bubble characteristics, such as volume, surface 

area, centre of gravity, centre of curvature, etc... , could be deduced from a 

single parameter: bubble radius. 

 

2. A bubble growth parameter  was introduced such that the bubble 

radius growth curve be the following root function, 

  2-1  tR 5.0 . 

 The most commonly used bubble growth models would incorporate 

Equation 2-1 with the parameter Ja
2

1

4 












 , which was proposed by (Fritz & 
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Ende, 1936), or the parameter Ja
2

1

3
4 













 , proposed by (Plesset & Zwick, 

1954), or again the parameter    2

3

2

1

5 Ja  , proposed by (Cole & Shulman, 

1966) in which Ja is the Jakob number. 

 Physically, the Jakob number represents the ratio of sensible to latent 

energy injected into the bubble from its surroundings. These different   factors 

were empirically developed and would fall off rapidly once outside the range in 

which the correlations were developed. Furthermore, the models provide little 

insight into the physical mechanisms at work during bubble growth. 

 In order to predict the bubble detachment diameter, Eq. 2-1 was combined 

with a simple force model that did not include the necking phenomenon and that 

was derived through empirical means. Kiper (1971) predicted a minimum bubble 

detachment diameter of 

4

3
min 0.935D Ja  when using the parameter 

Ja
2

1

4 












 , 

4

3
min 1.95D Ja

 
when using the parameter Ja

2

1

3
4 













  and 

JaD 7.2min   when using the parameter    2

3

2

1

5 Ja  . The minimum 

diameter predictions proposed by Kiper (1971) were validated using data from 

Cole & Shulman (1966).  

 The shortcomings of these early models were a fixed spherical geometry 

and bubble detachment diameters based on empirical results. These are aspects of 

bubble growth theory with potential for improvement since a fixed spherical 
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bubble does not respect the observed physical realities of a growing bubble on a 

heated plane. 

 

2.2. Rayleigh Equation  

 The most fundamental equation describing spherical bubble growth is the 

Rayleigh equation (Rayleigh, 1917; Plesset & Zwick, 1954; Scriven, 1959; Plesset 

& Prosperetti, 1977; Prosperetti, 1982). It is often used as a starting point in the 

development of numerical models of bubble growth (Oguz & Prosperetti, 1993; 

Robinson et al., 2010).  

 Due to the importance of this equation in bubble growth modeling, it is 

developed fully from the principle of conservation of mass (detailed in Appendix 

7.5). The following two definitions (Panton, 1993) are used in the terminology of 

this text: 

 

1. A Material Region, noted MR, is a region whose surface moves 

with the local velocity of the material. That is to say for an MR, v w  in 

which v  is the fluid velocity and w  is the surface velocity of the bulk. 

 

2. An Arbitrary Region, noted AR, is a region whose surface may or 

may not move with the local velocity of the material. That is to say, for an 

AR, v  and w  are not necessarily equal. 
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 The conservation of mass principle implies that the change of mass inside 

a control volume is due to any flux in or out of that control volume. Expressed as 

an equation, the conservation of mass principle states that the rate of change of 

mass per unit volume for a control volume is equal to the rate of increase of 

volume occupied by the mass, 

2-2 0
d

u
dt


  . 

 In the above,   represents the fluid density, u  represents the fluid 

velocity for an MR. Equation 2-2 is often referred to as the continuity equation 

and is developed fully in Appendix 7.5. For steady state incompressible flow this 

Eq. 2-2 is reduced to 0 u


, which in spherical coordinates becomes, 

2-3     
1 1 1

² sin 0
sin sin

r

u
r u u

r r r


 

   

 
  

  
 

in which r is the position coordinate. 

 Since a growing bubble in quiescent liquid is commonly assumed to be 

symmetrical about the vertical axis due to the absence of any cross flow, any 

derivation with respect to   or   is zero. Equation 2-3 reduces to,  

2-4  
1

² 0rr u
r r





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implying that rur ²  is a function of time only and therefore constant with respect to 

position.  

 The fluid velocity for an MR at the bubble interface (r = R) is equal to the 

rate of change of the bubble radius with respect to time implying,  

2-5 
R

dR
u

dt
 . 

This coupled with the fact that rur ²  is constant with respect to position 

implies the following equality,  

2-6 ² ² ²r R

dR
r u R u R

dt
   

yielding, 

2-7  
²

²
r

R dR
u

r dt
 .  

 Differentiating the above with respect to time and with respect to position 

yields, 

2-8  

2
1 ²

2 ²
² ²

rdu dR d R
R R

dt r dt dt

  
      

 

and  
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2-9 

2

3

2rdu R dR

dr r dt
  . 

 

 Substituting Equations 2-8 and 2-9 into the r-direction Navier-Stokes 

equation for motion, 

2-10 
21 1

²
² ²

r r r r
r

l l

du du du udP d
u r

dt dr dr r dr dr r



 

  
      

  
   

reduces the above to, 

2-11  
dr

dP

dt

dR

r

R

dt

Rd

r

R

dt

dR

r

R

l

12

²

²

²

²

²

2
2

5

42


















.

 

 Finally, integrating Eq. 2-11 from the bubble boundary R to the liquid 

bulk, noted ∞, reduces Eq. 2-11 to,  

2-12 

2
² 3

² 2

R

l

p pd R dR
R

dt dt 
 

  
  .

 

 The Young-Laplace balance of pressure (detailed in the forthcoming Eq. 

3-10), 
2

v l rrp p
R


    in which rr  is the viscous term, coupled with Stoke’s 

assumption, 
dt

dR

R
rr




4
  (Panton, 1996), and Eq. 2-12 yields the extended form 

of the Rayleigh equation,  
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 It should be noted that the more commonly used form of the Rayleigh 

equation assumes quasi-static growth thereby making the viscous term (the last 

term on the right hand side of Eq. 2-13) negligible,  

2-14  
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 The above governing equation relates the bubble radius rate of change 

directly with the pressure inside the bubble, the pressure outside the bubble and 

the surface tension. It applies to spherical bubble growth for Newtonian fluids in 

which the cavity interface does not contribute to any exchange of mass 

(Prosperetti, 1982). It is once again noted that a limiting factor of the model is the 

spherical assumption as it would not physically apply to bubble growth on a 

heated plane since such a bubble is visibly not spherical. 

 The Rayleigh equation can be solved numerically for simplified cases with 

given initial and boundary conditions within the heat-transfer controlled bubble 

growth regime. It can be solved analytically within the inertia controlled bubble 

growth regime.  

In the inertia controlled bubble growth regime, the temperature is 

considered uniform and thermal effects on growth rate are negligible. Bubble 

growth is governed by its momentum’s ability to drive adjacent fluid outwards. 
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 In the heat-transfer controlled bubble growth regime (often referred to as 

the thermally controlled regime or again the diffusion controlled regime) the 

vapour bubble pressure is near the bulk fluid pressure minimizing inertia effects 

on bubble growth. In the heat-transfer controlled regime, bubble growth is 

attributed to heat transport to the bubble interface causing vaporization (Carey, 

1992; Brennan, 2005).  

In particular, in the inertia controlled regime, the Clapeyron equation 

which assumes thermodynamic equilibrium for the pressure, entropy, temperature 

and volume of a liquid-vapour interface (Faghri & Zhang, 2006), 

2-15 
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can be applied to the Rayleigh equation and solved as follows.  

By assuming the liquid specific volume to be negligible relative to the 

vapour specific volume and applying the working conditions of a spherical vapour 

bubble in a superheated liquid, the Clapeyron equation can be expressed as, 

2-16 
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With the above and the condition that the initial bubble radius be zero, the 

Rayleigh equation solves for the bubble radius such that, 
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 Equation 2-17 represents the bubble growth radius at time t for spherical 

inertia-controlled bubble growth in a superheated liquid. 

 In the present study, a full shape growth history providing all bubble 

growth characteristics for heat-transfer controlled bubble growth on a heated 

plane is developed by adopting non-spherical bubble geometry. The geometric 

model is based on the results of a numerical study of bubble shape detailed in 

chapter 3. 

 

2.3. Bubble Detachment  

In order to estimate bubble detachment radius Fritz (1935) postulated that 

bubble detachment would occur when the buoyancy and surface tension effects 

balance. In considering the bubble to be spherical yet growing from an orifice of 

radius b, Fritz (1935) equated the buoyancy with the capillary force (a detailed 

account of the capillary force for a cavity radius b is found in section 4.3), 

2-18 
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Isolating Rd yields a bubble detachment radius for a spherical bubble (Fritz, 

1935),  
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It is important to note that Eq. 2-18 yielding Eq. 2-19 is geometrically 

contradictory. In particular, the left hand side of Eq. 2-18 is a buoyancy force for 

a sphere and the right hand side is the capillary force for a bubble with a foot 

radius b and therefore a non spherical shape. The Fritz (1935) detachment radius 

has proven itself useful for its predictive capabilities but does not provide an 

accurate account of bubble shape.  

In the present study, a similar force balance is adopted and validated in 

section 4.3 using a geometric model in which no bubble shape contradictions 

arise.    

2.3.1. Bond number  

In nucleate boiling, a bubble grows and detaches; and then, this ebullition 

cycle repeats. Typically, two factors are considered to dictate the thermal 

transport resulting from this phenomenon: bubble detachment volume and the 

ebullition cycle frequency. However, the frequency of bubble detachment is 

dependent on the volume that the bubble attains. A model’s ability to predict heat 

transfer due to boiling is therefore limited to its ability to predict bubble 

detachment volume. To this end, many empirical correlations have been 

developed predicting bubble detachment diameter in which the bubble is assumed 

to be spherical. The non dimensional Bond number with characteristic length 
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equal to the detachment diameter is often central to the correlation.  It represents a 

ratio of gravitational to surface tension forces and is defined as, 

2-20 
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 Fritz (1935) developed the following empirical correlation for the bubble 

detachment diameter of a vapour bubble growing from a heated plane in which   

is the contact angle,  

2-21 0.0208
dDBo  . 

 For bubble growth in a uniformly heated liquid and a constant heated 

plane temperature, Zuber (1959) developed the following empirical correlation,  
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 Cole & Shulman (1966) and Cole (1967) proceeded to develop a 

correlation relating the detachment diameter Bond number to the wall temperature 

Jakob number for a bubble growing from a heated plane. The non dimensional 

wall superheat Jakob number is defined as,  

2-23 
  l p wall sat

v lv

c T T P
Ja

h






 . 

The resulting empirical correlation was simply,  
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2-24 0.04
dDBo Ja . 

In a comprehensive study comparing bubble detachment correlations with 

available data in the literature, Jensen & Memmel (1986) concluded that an 

empirical correlation developed by Kuteladze & Gogonin (1979) had the best fit 

with a standard deviation of 45.4 %. Jensen & Memmel (1986) refined the 

Kuteladze & Gogonin (1979) correlation to a standard deviation of 44.4% in 

presenting the following empirical correlation for bubble detachment diameter,  
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 The importance in these above mentioned bubble detachment empirical 

correlations lies in that they all incorporate the non dimensional Bond number 

implying that the Bond number plays a central role in bubble growth analysis.  

It is commonly observed that under the same operating conditions, different 

nucleation sites on a heated plane will produce bubbles at different frequencies 

and thus at different detachment volumes (Carey, 1992). Therefore, the 

characteristics of the nucleation cavity, namely its orifice size, play an important 

role in bubble detachment volume. Despite this, the empirical correlations of Eq. 

2-21 to Eq. 2-25 do not incorporate cavity size in the bubble detachment 

correlations. Understandably, such a correspondence between bubble detachment 

volume and the radius of the cavity from which the bubble grows is not easily 

validated; this is due to the typically minute size of a nucleation site.  
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An anomaly in these correlations is that the bubble is assumed to be spherical, 

implying an infinitesimally small point of contact with the heated plane, while the 

empirical correlations incorporating the Bond number imply that the surface 

tension plays a central role.  Since the surface tension is a consequence of contact 

between the bubble and the heated plane, the empirical correlations themselves 

suggest that the bubble shape is not spherical and has a significant contact with 

the bubble growth site further suggesting that the nucleation cavity size should be 

incorporated into bubble growth modeling. 

In this study, the importance of the Bond number on bubble growth 

characteristics is strongly recognized in the bubble shape analysis. Furthermore, 

the proposed bubble geometry includes bubble foot contact with the heated plane 

justifying the importance of the surface tension in bubble growth and detachment.  

In an effort to identify the Bond number as a parameter of the experimental 

conditions rather than a combination of the experimental conditions and the 

experimental results, in their bubble pinch-off study of adiabatic bubble growth, 

Quan & Hua (2008) defined the Bond number with characteristic length equal to 

the orifice radius rather than the bubble detachment radius. Similarly, in the 

present study, the characteristic length of the Bond number is set to be the radius 

of the cavity from which the bubble is issuing in order to include cavity size in the 

bubble shape analysis. The cavity/orifice radius is noted b and the non 

dimensional Bond number with characteristic length equal to b is defined 
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 In order to validate elementary results relating bubble growth and 

detachment characteristics to the cavity radius, controlled bubble growth 

experiments are necessary in which the parameters influencing the bubble are 

limited and in which the bubble is large enough to image process the observed 

bubble growth. Recently, Siedel et al. (2008) conducted bubble growth 

experiments particularly well adapted to such model validations. In particular, n-

pentane vapour bubbles growing from a constant temperature low superheat plane 

were observed and image processed in which the growth operating conditions 

yielded quasi-static bubble growth from a large 90 µm radius nucleation cavity. In 

these bubble growth experiments, the bubble foot remained fixed to the perimeter 

of the cavity from inception to detachment.  These novel results effectively reduce 

the number of varying parameters in bubble shape and growth analysis. In this 

way, validating data for this study’s shape analysis of vapour bubble growth that 

incorporates the nucleation site radius is provided. 

 

2.4. Adiabatic Bubble Growth 

 In an important study of adiabatic bubble growth, Oguz & Prosperetti 

(1993) adopted a numerical model based on that of Davidson & Schuler (1960) 

which approximates the bubble as spherical during its growth period. In this way, 

Oguz & Prosperetti (1993) were able to combine the Rayleigh equation with 
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empirical relations for spherical bubbles to develop an approximate model for 

bubble detachment size.  

 In order for Oguz & Prosperetti (1993) to fully develop their model to the 

point of bubble detachment, a criterion for detachment of a needle injected vapour 

bubble was developed. Adopted through observation, it was stated that at the 

moment of detachment, the centre of curvature of the bubble is of the order of the 

bubble radius plus the needle tip radius, 

2-27  
d dC R b   

in which Cd is the centre of curvature at detachment, b is the orifice radius and Rd 

is the detachment radius.  

Equation 2-27 is helpful in reducing the number of unknowns in an analytical 

attempt to solve the bubble growth problem. It is however, an empirical find 

lacking any physical reasoning.  

In the present study, a similar bubble geometric detachment relation based on 

a proposed geometric model and the principle of conservation of mass is 

developed. 

 

2.5. Vapour Bubble Growth 

Han & Griffith (1965) observed that the rapid early stage of bubble growth is 

such that a large portion of the thermal layer is translated vertically upwards 

thereby supporting a one-dimensional temperature profile. 
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Based on this observation, Mikic & Rohsenow (1969) presented an analytical 

model for vapour bubble growth from a heated plane by considering a two part 

one-dimensional transient conduction temperature profile detailed in the 

following section 2.5.1 and resulting in  
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2.5.1. Temperature Profile of Mikic & Rohsenow (1969) 

The temperature profile of Mikic & Rohsenow (1969) is built on the 

following assumption. Once a vapour bubble detaches from a nucleation site, a 

vapour pocket is entrapped in the cavity from which the bubble grows. A 

superheated layer forms adjacent to the surface due to the no slip condition. This 

superheated layer then provides the energy needed to generate bubble growth due 

to vaporization. During the bubble growth period, the temperature within the 

superheated layer decreases in a non-uniform manner.  

The period of time in which the heated plate induces the super heated layer 

prior to nucleation is referred to as the bubble growth waiting period and its time 

length is noted tw; tw shall be referred to as the waiting time. In the discussion that 

follows, time -tw corresponds to the beginning of the waiting period and time 0 
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corresponds to the end of the waiting period and subsequently to the beginning of 

the bubble growth period.  

The temperature profile is solved for as a function of time and of position 

and is noted  ,T y t . The perpendicular distance from the bubble interface on the 

heated plane is noted y. During the waiting period, the temperature profile is 

solved for assuming that the bubble interface remains level with the heated plane.  

The initial and boundary conditions are identified as follows:  

During the waiting period, 0wt t   , 
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During the bubble growth period, that is to say 0 dt t  , in which dt  is 

the time at bubble detachment, the temperature at the bubble interface 

(corresponding to 0y  ) is taken to be the fluid saturation temperature yielding 

boundary conditions, 
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 These boundary conditions, for both the waiting period and the growth 

period, are illustrated in Figure 2-1. 
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Figure 2-1: Schematic representation of the adopted boundary conditions in the 

solution procedure of the Heat Equation. (Top) Boundary conditions during the 

waiting period, 0wt t   . (Bottom) Boundary conditions during the growth 

period, 0 dt t  . The arrows indicate the advancement of time. 

 

For convenience in the calculations, the temperature profile is defined 

relative to the bulk temperature such that,  

2-31    , ,y t T y t T   . 

The corresponding boundary conditions for the waiting period, in which

0wt t   , are 
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and for the growth period, in which 0 dt t  , the boundary conditions are,  
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In the forthcoming arguments, the temperature profile is developed by 

coupling the solutions to the heat equation for the waiting period and for the 

growth period, noted w  and 
g  respectively, such that 

2-34      , , ,w gy t y t y t    . 

 

2.5.1.1. Waiting Period Temperature Profile 

The boundary conditions for the waiting period temperature profile 

 ,w y t  are those of the temperature profile, listed in Eq. 2-32, since the growth 

period has not yet influenced the temperature profile.  

The one dimensional heat equation representing the energy balance 

between the heated wall and the adjacent liquid in terms of  ,w w y t   is,  
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The solution procedure to Eq. 2-35 requires reducing the heat equation to 

an ordinary differential equation by applying the following change of variables,  
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A simple calculation of the partial derivatives of w , 
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and 
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substituted into Eq. 2-35, yields the heat equation as the following ordinary 

differential equation,  
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From the definition of   in Eq. 2-36,  
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The boundary conditions are subsequently expressed in terms of  , 
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which simplifies to the following two conditions,  
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Equation 2-35 is now expressed as a first order differential equation by 

defining w   as the first order derivative of w , that is to say 
w

w

d

d





  . The heat 

equation is reduced to,  
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Straightforward integration of Eq. 2-43 yields, ln ² lnw K      in of 

which K is a constant dependent on the boundary condition. Rearranging in order 

to isolate w   yields, 

2-44 ²

w Ke    . 

Integrating with use of the boundary conditions solves for the unknown K, 
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As detailed in Appendix 7.8, the integral on the right hand side of Eq. 2-45 

is simply,  

2-46 
²

0 2
e d 




  .  

Equation 2-45 combined with the boundary conditions of Eq. 2-42 solve 

for K,  
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reducing Eq. 2-44 to,  
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Integrating once more from 0  to  , considering once again the boundary 

condition that  0w wallT T   , yields 
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Defining the erf function as   ²

0

2
erf e d


 



  , and substituting in 

 4 w

y

t t






, yields the temperature profile for the waiting period as a 

function of time, 
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Figure 2-2 illustrates the predicted temperature profile during the waiting 

period, given in Eq. 2-50, for a fluid at saturation temperature. The input 

conditions used are those of the experiments performed by Samuel Siedel 

(detailed in section 3.4). In particular, the wall superheat is 2.1 K and the working 

fluid properties are those of n-pentane with a saturation temperature of 35.7 °C.  

The waiting period is chosen arbitrarily to be tw = 0.001 sec. and is purely for 

illustrative purposes.  

In the graphical representation of Figure 2-2, the upper-horizontal frame 

axis corresponds to the wall temperature and the lower-horizontal corresponds to 

the liquid saturation temperature. The graphical representation of the temperature 

profile during the waiting period illustrates that the thermal boundary layer 

thickness increases with time and that the temperature of the fluid transitions from 

close to wall temperature to fluid saturation temperature within the thermal 

boundary layer.  
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Figure 2-2: Graphical representation of the predicted temperature profile during 

the waiting period, 0wt t   . The arrow indicts the advancement of time. 

 

2.5.1.2. Growth Period Temperature Profile 

The end of the waiting period implies the beginning of the bubble growth 

period. Bubble growth causes the temperature profile to change. As the bubble 

grows, it draws heat from its surroundings through vaporization, and as it departs, 

it causes an influx of cooler fluid near the heated plate.  

The boundary conditions for the growth period, stated earlier in Eq. 2-30, 

are solved for by considering the growth period temperature profile definition of 

Eq. 2-34, the boundary conditions of Eq. 2-33 and by solving for  ,w y t   and 

 0,w t  with Eq. 2-50.  

satT

wallT
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From Eq. 2-50,  , 0w y t    (refer to the definition of the erf function and 

the integral of Appendix 7.8 for y approaching infinity) and  0,w wall satt T T   . 

The boundary conditions for the growth period temperature profile are 

therefore,  

2-51 
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The one dimensional heat equation representing the energy balance 

between the bubble interface and the adjacent liquid in terms of  ,g g y t   is,  
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. 

The solution procedure requires reducing the heat equation to an ordinary 

differential equation by applying the following change of variables,  

2-53 
4

y

t



 . 

It is noted that the waiting time is appropriately absent from the solution 

procedure of the growth period temperature profile.  

In a similar approach as to the calculation of the previous section, the heat 

equation is solved as an ordinary differential equation with respect to  , 
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of which the boundary conditions are, 
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Solving the above heat equation with these boundary conditions in the 

same manner as in the previous section yields the temperature profile for the 

growth period, 
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Combining Eq. 2-56 with Eq. 2-50 yields the final form of the temperature 

profile adjacent to the heated plane,  
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In an attempt to account for the moving vapour-liquid boundary, Mikic & 

Rohsenow (1969) proposed a shape factor value of 3 . In assuming the bubble 

to be spherical throughout its growth, they solved the interfacial mass-energy 
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balance (detailed in Eq. 5-3:   dATk
dt

dV
h lvlv


 ) with the temperature profile 

of Eq. 2-28 and included an unknown constant, noted C, into the solution,  
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The constant C was solved to be 3  by equating the above with the limiting 

solution of spherical bubble growth in an infinite uniformly superheated liquid 

(Plesset & Zwick, 1954), 

2-59 3 v
lv v

T TdR
h k

dt t




   

and setting the bubble vapour temperature to the liquid saturation temperature. 

A similar development, yielding a similar result, uses the spherical bubble 

growth in a uniformly superheated pool analysis of Forster & Zuber (1954) to 

deduce / 2  as the value of the constant C. 

In the Mikic & Rohsenow (1969) analysis, the bubble volume is calculated by 

assuming the bubble to be a perfect sphere and by integrating Eq. 2-58 thereby 

solving for the bubble radius, 
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The importance in the result of Eq. 2-60 relative to the general study of 

this document is that the bubble is spherical during its entire growth cycle yet 

sitting on a heated plane.  

In a similar study, Han & Griffith (1965) linearized the temperature profile 

and assumed the bubble to grow spherically on the heated plane. The resulting 

bubble radius growth curve,  
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includes many shape correction terms. In particular, 
c  is a curvature factor such 

that 1 3c   and 
vh  is the heat transfer coefficient deduced empirically. Also, 

s , 
v  and 

b  are the surface, base and volume factors respectively and are 

dependent of the contact angle. Physically, a spherical bubble resting on a plane 

would necessarily have a contact angle of zero. However, it is understood that the 

contact angle is measured when observing the bubble’s actual shape on the plane 

and that in the Han & Griffith (1965) model development, spherical bubble 
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growth has been assumed in order to ease the calculations. In doing so, the 

physical significance of the terms is lost. 

 Van Stralen & Sluyter (1969) developed a spherical equivalent radius 

growth model for a heat-transfer controlled vapour bubble growing on a heated 

plane. It was assumed that a thin thermal layer providing the necessary latent heat 

of vaporization was driven outwards by the growing bubble. The resulting 

equivalent radius growth curve was found to be, 
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In the above B is an empirical growth parameter with a maximum value of 

1 and td is the time of bubble detachment. In addition, Van Stralen et al. (1975) 

put forth a bubble equivalent radius growth curve for either the inertia-controlled 

or the heat-transfer controlled growth regimes such that the spherical equivalent 

radius growth curve was, 
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in which,  
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and  
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More recently, Zhao et al. (2002) solved for the bubble radius of an 

individual growing bubble on a heated plane by considering the bubble to be a 

hemisphere sitting on a microlayer situated between it and the heated plane. The 

energy-mass balance is assumed to take place at the bubble-microlayer interface 

resulting in the following bubble radius growth curve,  
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The presence of 0.64 in the root denominator is the result of an empirical 

estimation of the microlayer thickness when compared with the experimental 

results of Cooper et al. (1978). 

A recurring theme in all of the above mentioned studies is oversimplified 

bubble geometry compensated with corrective empirical shape factors. In this 

study, a bubble geometry transitioning in shape and size is adopted throughout the 

model development providing a model of bubble growth on a heated plane that 
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more accurately describes the trends of bubble growth characteristics during the 

growth cycle.  

2.5.2. Waiting Time 

 The waiting time is defined as the time necessary to initiate bubble growth. 

It is a required input for some of the previously mentioned models of vapour 

bubble growth on a heated plane. This is due to the fact that the waiting time is 

intimately linked with the amount of energy that is available for latent heat 

vaporization in the superheated layer adjacent to the plane. For a given wall 

superheat, the longer the waiting time the more energy injected into the 

superheated layer. For this reason, Han & Griffith (1965) solved for the waiting 

time in the following way. 

The waiting time was conveniently identified as the moment in which the 

fluid adjacent to the heated plane is brought to the temperature of the bubble, 

noted bubT  (Scriven, 1959). This temperature was identified by use of the 

Clapeyron equation (Eq. 2-15) in which the Young-Laplace equation was applied 

without the viscous term (detailed in the forthcoming Eq. 3-10), 2 /v lp p R  . 

By assuming the incipient hemispherical bubble to be of radius equal to the cavity 

radius, by considering the temperature differential to be bubT T  and by taking 

the liquid specific volume to be negligible in comparison with the vapour specific 

volume, the following relation was established, 
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 The temperature identifying the end of the waiting period was therefore 

identified as,  
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 The waiting time was solved for by setting the temperature of the fluid 

adjacent to the heated plane to the bubble vapour temperature. This is due to occur 

at time zero, corresponding to the beginning of bubble growth. The waiting time 

is therefore calculated by setting the temperature of Eq. 2-50 to bubT  at time 0t   

and isolating tw, 
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. 

 However, since the right hand side of the above equation contains an erf 

function, it is necessary to approximate it as a linear function in order to isolate tw. 

Approximating the erf function to the first term of its polynomial expansion,

 
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      , Eq. 2-69 reduces to  
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In order to illustrate the validity of the linear form of the erf function in the 

context of the temperature profile, Figure 2-3 illustrates that the thermal boundary 

layer is well approximated with the linear form of the erf function; it is 

particularly well approximated for the higher temperatures near the heated plane. 

The input values used in Figure 2-3 are those in which the working fluid is n-

pentane and the wall superheat is 2.1 K. In Figure 2-3, y represents the 

perpendicular distance from the heated plane. The input waiting time is calculated 

from Han & Griffith (1965) in the forthcoming Eq. 2-72, however, the purpose of 

Figure 2-3 is meant to be illustrative of the linear erf approximation. 

 

Figure 2-3: Comparison of the temperature profile generated using the erf 

function versus using the linear approximation of the erf function. 

  

T

wallT

0.075wt 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

41 

 

Combining Eq. 2-68 with Eq. 2-70 yields, 
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Han & Griffith (1965) further assume that the incipient hemispherical 

bubble was isolated by an isothermal layer at the bubble vapour temperature in 

which there occurs tangential conduction causing the bubble to grow. The 

distance from the top point of this conduction layer to the heated plate was 

approximated to 
3
2
b . Therefore, Han & Griffith (1965) solved Eq. 2-71 for 

3
2

y b  expressing the waiting time in terms of the wall temperature and the fluid 

properties as,  
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Similarly, Mikic & Rohsenow (1969) solved Eq. 2-71 for y b  yielding 

the waiting time,  
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2.5.3. Boundary Layer Thickness 

As illustrated in Figure 2-3, the boundary layer thickness can be approximated 

as the distance from the heated plane in which the temperature profile reaches 

bulk fluid temperature (Han & Griffith, 1965). The boundary layer thickness, 

noted  , can be solved for by setting the temperature of Eq. 2-50 to the bulk fluid 

temperature at time zero:   0, wt . In using the linearized erf function, Eq. 

2-50 reduces to,  
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Isolating   in the above yields the following approximate thermal boundary 

layer at the end of the waiting time,  

2-75 
wt  . 

 

2.6. Asymmetric Bubble Growth 

 In an effort to further understand the shape behaviour of a bubble during 

its growth evolution, Lesage et al. (2009) proposed a model including the 

acceleration term that is due to an asymmetric gain of mass.  

In particular, for approximately hemispherical bubble growth, the sum of 

the forces acting on the bubble was deemed negligible compared with the 

asymmetric term making the momentum due to centre of gravity motion non-
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negligible. For non-hemispherical bubble growth, this component in the equation 

of motion was deemed very significant during the initial rapid growth phase as a 

bubble transitions from a near hemisphere to a truncated spherical geometry. 

An equation describing the bubble radius growth cycle was developed by 

solving the integral form of the momentum equation and conserving the term 

representing the asymmetric gain of mass. The model was developed by first 

expressing the principle of conservation of mass in the form of an equation of 

motion for the centre of mass of an arbitrary bulk as detailed in Panton (1996),  

2-76 ( )( )mH vdV n v w r H dS       . 

The first term on the right hand side represents the momentum of the 

vapour bubble and the second term represents the momentum due to the 

movement of the centre of gravity of the bubble resulting from an asymmetric 

gain or loss of mass from the region. The importance of this expression lies in the 

fact that the product of the mass and the instantaneous rate of change of the 

bubble’s centre of mass is not necessarily equal to the momentum of the bubble. 

 An example of this would be a quiescent liquid drop on a superheated 

surface in which evaporation only occurs along the bottom portion of the drop. 

Since the liquid within the drop has no bulk velocity its momentum is zero. 

However, if the drop is vaporizing asymmetrically, the centre of gravity will 

move and this can be described by the asymmetric loss term provided that 
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sufficient information is available to model the vaporization dynamics and drop 

geometry.  

Similarly, from the momentum principle, a general expression for the 

motion of the centre of mass of an arbitrary bulk of variable mass growing 

asymmetrically was detailed (Panton, 1996), 

2-77  ( )( ) ( )( )
d

mH n v w v H dS n v w r H dS F
dt

            . 

In the above equation, the first and last terms on the right hand side 

account for the momentum of the gas/vapour crossing the interface and the sum of 

the forces acting on the bubble respectively. The second term on the right hand 

side, however, was typically unaccounted for in all prior bubble growth models in 

that it accounts for the acceleration of the centre of mass due to asymmetric 

growth. In particular, the integral ( )( )n v w v H dS    , represents the 

momentum that leaves the bubble with mass flux ( )n v w    and the second of 

the above integrals, ( )( )
d

n v w r H dS
dt

    , accounts for the movement of the 

centre of mass due to asymmetric mass loss or gain. With this, Lesage et al. 

(2009) considered a scenario to exemplify the significance of their modelling 

approach in which a bubble grows in microgravity initiating from a small 

nucleation site on a superheated surface. Bubble growth was considered to initiate 

at the end of a waiting time and to grow as a near perfect hemisphere as is the 

case with the space microgravity experiments of Lee & Merte (1996). For this 
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particular scenario, Robinson (2002) showed that during the early growth stages, 

the thermal boundary layer adjacent to the heated surface was very large 

compared with the size of the bubble. Therefore, the superheat around the bubble 

dome was nearly constant and vaporization could be approximated as uniform 

over the bubble surface. It was argued that if this were approximately the case, 

then the mass flux ( )n v w    could be integrated over the vapour-liquid surface 

area, noted A, establishing the following uniform vaporization condition,  

2-78 ( )
m

n v w
A

    . 

Lesage et al. (2009) showed that Eq. 2-77 combined with Eq. 2-78, the 

fact that 0s   for a hemispherical bubble (implying that the centre of curvature 

sits at the foot of the bubble), the symmetry of the problem and the fact that the 

linear momentum was assumed negligible the equation of motion for the centre of 

gravity (Eq. 2-77) simplified to, 

2-79  
1

( )
8

z

d
mH m v H mR F

dt
   

.
 

In the microgravity scenario the buoyancy force is zero due to the absence 

of gravity. Due to the geometry of the bubble the contact pressure force and the 

capillary force were shown to be equal and offsetting which cause the sum of the 

forces to be exactly zero. This was provided that the drag force could be 

considered very small, which in this case was rational since the expansion was 
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almost radially symmetric making the liquid flow quasi-irrotational. With this, 

Lesage et al. (2009) obtained the following expression,  

2-80 
2 1

3 3
mR mR mR   . 

The main result of this scenario was that the linear momentum of the 

bubble is zero, in that it was not a force imbalance that caused the centre of 

gravity to accelerate. That is to say, as illustrated below, the motion of the centre 

of gravity was solely described by geometric and mass transfer factors as opposed 

to mechanistic influences. 

 

Figure 2-4 : Hemispherical bubble growth due to vaporization at the liquid-vapour 

interface.  

 

Furthermore, Lesage et al. (2009) developed an equation of motion for 

bubble formation due to a constant flow rate gas injection through a submerged 

orifice in which the bubble foot was assumed to stay fixed to the perimeter of the 
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issuing cavity. The model was based on the asymmetric mass flux. In particular, 

the linear momentum of the gas bubble growing in a quasi-static formation was 

considered to be negligibly small and as such the bulk linear momentum term of 

Eq. 2-76 was neglected reducing Eq. 2-76 to,  

2-81   ( )z z
A

mH v w r H dS    .  

The above simply states that the momentum of the centre of gravity of the 

bubble is solely due to the asymmetric mass flux term. In the treatment of quasi-

static gas injected bubble growth from a submerged orifice, it was assumed that 

the mass flux be uniform making Eq. 2-78 applicable. With this assumption, 

Lesage et al. (2009) successfully reduced Eq. 2-81 with the hemispherical 

inception condition to the following relation which expresses the bubble radius as 

a function of time in implicit terms, 

2-82 
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It is important to recall that the above non-empirical analytical result was 

developed neglecting bulk linear momentum and thus only considering the 

momentum due to the asymmetric gain of mass. The model was shown to have 

predictive capabilities for quasi-static low Bond number bubble growth thereby 

highlighting the role of the momentum due to the motion of the centre of gravity 

resulting from an asymmetric gain of mass.  
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The model is limited by the geometric shape of the bubble in that it was 

assumed to remain a section of a sphere with a bubble foot attached to the orifice. 

The lack of inclusion of the necking phenomenon implies that the model is not 

able to predict the bubble’s centre of gravity correctly. This is due to the fact that 

the necking phenomenon near the end stage of bubble growth causes the bubble’s 

centre of gravity to increase rapidly. This common shortcoming in analytical 

models attempting to describe bubble growth as spherical or truncated spherical is 

often compensated by the inclusion of empirical constants adjusting the results to 

the validating data. However, even with the inclusion of an empirical constant, 

any model with a spherical or truncated spherical geometric assumption that does 

not include the necking phenomenon cannot predict a centre of gravity vertical 

component to surpass the magnitude of the bubble radius. Otherwise, the result 

would be in contradiction with its own geometric model. It is however observed 

to be consistently true that the centre of gravity vertical component surpasses the 

radius in magnitude (Duhar &Colin, 2006; Di Bari & Robinson, 2009) once again 

highlighting the importance of accurate bubble shape modeling. 

In the present study, the importance in understanding bubble shape prior to 

any bubble growth model development is highlighted. Bubble modeling in this 

study begins with an appropriate geometric bubble shape and is followed by the 

physical mechanics affecting the bubble during its growth cycle as it continues to 

change in shape. 
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3. NUMERICAL STUDY OF BUBBLE SPHERICITY  

3.1. Introduction 

 In this chapter, bubble degree of sphericity is investigated by first 

benchmarking a numerical procedure for adiabatic bubble growth and for bubble 

growth due to vaporization and then by analysing the results of numerically 

generated bubble profiles under varying operating conditions. In particular, the 

Bond number as defined in Eq. 2-26 is varied with respect to the gravitational 

field strength and then varied with respect to the characteristic length. The shape 

evolution is observed to be dependent on the Bond number exposing the physical 

mechanisms quantified by the Bond number as the dictating factor in a bubble’s 

deviation from a spherical shape. This is found to be true irrespective of the size 

of the bubble. By introducing the notion of modified sphericity, the behaviour of a 

bubble’s growth shape is shown to be a transition from hemispherical to spherical 

with an elongation due to neck formation near the end of the growth cycle. In 

addition, the magnitude of this elongation is shown to be dependent on the Bond 

number.  

In this numerical study the validity of assuming a sphericity of unity is 

investigated and the physical mechanism that promotes deviation from sphericity 

of unity is identified. Furthermore, a detailed shape analysis leads to a bubble 

geometry postulation for low Bond number applications. With exception of the 

microgravity conditions, the low Bond number geometric postulation considers 

the bubble to be hemispherical at inception transitioning to spherical with a 
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growing cylindrical neck driving the bulk of the bubble upwards. In the 

microgravity consideration, the buoyancy force is negligable and therefore the 

Bond number –  being efffectively a ratio of the buoyancy to surface tension 

forces – does not play an important role in the microgravity bubble evolution. For 

this reason, the bubble shape evolution dependance on the Bond number 

postulated in this work does not apply to microgravity considerations.# This 

would then make the  

 

3.2.  Degree of sphericity 

 A numerical procedure is developed with the objective of measuring shape 

behaviour of a bubble during its growth cycle and at detachment.  

 A convenient way to quantify the spherical behaviour of a bubble is to 

evaluate its degree of sphericity. The bubble degree of sphericity, noted  , is the 

ratio of the bubble’s volume equivalent spherical area to the bubble’s actual 

surface area. It is solved for by first evaluating the radius of a volume equivalent 

sphere, noted 
eqR  defined as,  

3-1   
3

1 43 m
eq sph m

V
R V V



   

in which 
1

sphV 
 is the inverse function of   34

3sphV R R  and Vm is the measured 

volume. The area of the volume equivalent sphere is noted 
eqA and defined as, 
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3-2  
1 ( )eq sph sph mA A V V  

in which   24sphA R R . The ratio of 
eqA  to mA  yields the bubble degree of 

sphericity, 

3-3
 

   
2/3

1 6 msph sph m

m m

VA V V

A A



     

in which mA  is the bubble’s measured surface area including the bubble foot area. 

 An illustrative example is the degree of sphericity of the unit cube. Figure 

3-1 illustrates that despite having the same volume, the unit cube appears to have 

a larger surface area than its volume equivalent sphere of radius 3
4

3


 with 

coinciding centre. Indeed, the degree of sphericity for the unit cube is calculated 

from Eq. 3-3 to be   806.06/
3/1
  . This result implies that the surface area 

of the unit cube’s volume equivalent sphere is less than the surface area of the unit 

cube.  

 

Figure 3-1: The unit cube and its volume equivalent sphere with coinciding 

centres. 
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 It is important to note that if the bubble’s entire surface area is considered, 

its maximum possible sphericity is unity corresponding to a perfect sphere.  In 

most if not all of the available data, an equivalent radius to that of a sphere of 

equal volume is used as the physical parameter from which the bubble growth 

characteristics are measured. This implies that the available data already has made 

a result influencing geometric assumption when providing measurements of 

bubble growth characteristics. The numerical procedure described in the 

following section provides the bubble’s surface area and the bubble’s volume 

measured from the bubble’s image processed contour. This makes it possible to 

experimentally benchmark a numerical solution of the bubble profile. From these 

results, the bubble degree of sphericity is investigated.  

 

3.3. Numerical Model of Bubble Profile 

 Bubble profile simulations are run by solving the capillary equation 

numerically yielding the bubble contour from which the sphericity of a bubble is 

obtained. In this process, a frustum geometric analysis of the bubble’s profile is 

applied. The solution procedure is benchmarked against image processing results 

of two sets of experiments: 

 

1. Gas injected adiabatic bubble growth with a fixed foot radius and a 

constant volumetric flow rate.  
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2. Bubble growth due to vaporization from a heated plane with a 

constant superheat and fixed foot radius. 

 

 The Capillary equation is the result of a pressure balance during the quasi-

static bubble formation in which the interfacial pressure balance is dictated by the 

Young-Laplace equation. A full development of the capillary equation follows. 

 

3.3.1. The Young-Laplace Equation 

 The application of the Young-Laplace equation to bubble growth is used to 

predict the difference between the external and internal pressures across the 

vapour-liquid bubble interface thereby relating this pressure difference to the 

surface tension. It is developed here in a similar fashion as to Faghri & Zhang 

(2006).  

Consider the infinitesimal interfacial segment illustrated in Figure 3-2 in 

which the area of the curved surface is expanding outwards. The x direction 

length of the infinitesimal segment increases as does the y direction length. These 

lengths, noted x and y, are considered to be arc lengths with associated angles 2  

and 1  respectively and associated radii 2R  and 1R  respectively. The radii 2R  and 

1R  are the principal radii of curvature of the infinitesimal surface since their 

respective principal directions x and y are perpendicular. 
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Figure 3-2: Arbitrarily curved surface with two radii of curvature. 

 

 For an arbitrarily curved surface with two radii of curvature 1R  and 2R , an 

infinitesimal area on a curved surface is approximated by its length times its width 

as if it were a flat surface. An infinitesimal variation in the area A  is thus 

approximated in the following way in which second order length variations are 

considered to be negligible. 

3-4  ( )( )A x x y y xy y x x y          

 By definition of surface tension, noted  , the work done on the system in 

order to increase the area by an amount A  is, 
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 3-5 W A z     

in which z  is normal to the x-y plane. 

This results in a pressure difference across the surface, noted

, ,face v face l faceP P P    and a viscous stress term normal to the surface, noted  . 

This interfacial pressure difference is often referred to as the capillary pressure. 

The force acting on the system is thus resulting from the sum of the pressure 

difference across the normal surface and the shear stress on that surface, 

3-6   faceW P xy   . 

 Combining Eq. 3-5 and Eq. 3-6 above in terms of the infinitesimal lengths 

illustrated in Figure 3-2 establishes the following work balance, 

3-7     faceP xy xy z y x x y        . 

 Relating the arc lengths to their respective angles illustrated in Figure 3-2 

yields the following relations between the principal radii of curvature and their arc 

lengths,  

3-8  

1

1 1 1

2

2 2 2

y y y y z
y

R R z R

x x x x z
x

R R z R





  
    

 

  
    

 

 . 

 Substituting the x  and y  terms from Eq. 3-8 into Eq. 3-7 yields, 
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3-9   
2 1

face

x z y z
P xy z y x

R R
 

  
     

 
 

which when simplified provides the final form of the Young-Laplace Equation,  

3-10  
2 1

1 1
faceP

R R
 
 

    
 

.  

 The above Young-Laplace equation describing the infinitesimal segment 

interfacial pressure balance may be applied to a pressure balance at any interfacial 

point over the entire bubble in the development of the capillary equation.  

 

3.3.2. Capillary Equation 

 The capillary equation is a result of a balance of pressure at the bubble 

interface. It is developed here in a similar fashion as to Mori & Baines (2001), 

Gerlach et al. (2005), and Di Marco et al. (2005). 

  Consider a coordinate system such that the origin is situated at the 

bubble’s apex and such that the z-axis is positive in the downward direction as is 

illustrated in the Figure 3-3. In Figure 3-3,   represents the liquid submerged 

depth of the plane, dpz  represents the liquid submerged depth of the bubble apex 

and b represents the cavity radius on which the bubble foot sits.  
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Figure 3-3: Coordinate system used when developing the capillary equation. 

 

 Within the quasi-static regime, it is assumed that the viscous stresses are 

negligible thereby considering the pressure balance at the interface as described 

by the Young-Laplace equation (Eq. 3-10) without the viscous term  . Therefore, 

the pressure balance at any given position can be expressed as,  

3-11    
   1 2

1 1
v lP z P z

R z R z

 

    
 

. 

By including the hydrostatic pressures, the vapour pressure and the liquid 

pressure are expressed in terms of their respective pressures at the apex such that,  
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3-12    0v v vP z P gz   

and 

3-13    0l l lP z P gz  . 

Due to symmetry at the bubble’s apex, the pressure difference at the apex 

origin, in which z = 0, is easily found from Eq. 3-11 to be, 

 3-14    
2

0 0v l

o

P P
R


   

in which Ro is the principal radius of curvature at the apex origin. 

 Subtracting Eq. 3-13 from Eq. 3-12, combining the resulting equation with 

Eq. 3-11 and Eq. 3-14 and dividing all terms by   yields the following form of 

the capillary equation, 

3-15 
 

1 2

1 1 2 l v

o

gz

R R R

 




   . 

 The above relation holds at any point along the bubble interface at a 

vertical distance z from the apex origin. The last term on the right hand side 

appropriately becomes less significant as the point along the profile approaches 

the apex origin at which time the bubble is more spherical. Conversely, this term 

becomes more significant as z increases, implying that the hydrostatic pressure 

becomes more influential near the base of the bubble. Therefore, the magnitude of 
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the last term on the right hand side of Eq. 3-15, representing the buoyancy force to 

surface tension at that point, dictates bubble shape. 

 The pressure change that the bubble experiences from hemispherical 

inception to detachment is evaluated by taking the ratio of the pressure of the 

incipient bubble at the apex and the pressure of the detaching bubble at the apex. 

From Eq. 3-11 and referring to Figure 3-3 the pressure in the gas bubble at the 

apex origin is easily shown to be 

3-16  ,

2
v o atm l bub

o

P P g h
R


     . 

The ratio of the gas pressure at the apex origin at bubble inception to the 

gas pressure at the apex origin at bubble detachment is therefore, 

3-17 
 

 

,

,
,

2

2

atm l
v hemi

v d
atm l bub d

d

P g bP b

P
P g h

R


 


 

  



  

. 

Equation 3-17 dissolves to unity for bubble growth in an infinite body of 

liquid since atm lP g   becomes the dominate term of both the denominator and 

the numerator. This in turn implies that, for ideal gases, the ratio of the gas 

densities at inception and at departure are of the same order.  

The radii of curvature may be defined in terms of x and z as, 

 
3/2

2

1 1 /R z z    and  
1/2

2

2 1 /R x z z    (Gerlach et al., 2005).  Combining 
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with Eq. 3-15 provides the following final form of the capillary equation to which 

a numerical treatment is applied,  

3-18 

   

 
3/2 1/2

2 2

2

1 1

l v

o

gz z
z

Rz x z

 



 
  

   .

 

 By multiplying all terms by the cavity radius, the above is conveniently 

normalized and expressed in terms of the Bond number with the cavity radius as 

its characteristic length, 

3-19  
  2

l v

b

gb
Bo

 






.
 

The normalized term 
* / b   and the non-dimensional derivatives are 

transformed such that 
*

*

dz dz

dx dx
  and 

2 2 *

2 *2

1d z d z

dx b dx
  thereby respecting the 

infinitesimal normalized length scale, 
* /dz dz b . Equation 3-18 is expressed in 

non-dimensional terms, 

3-20  

   

* *
*

3/2 1/2 *
* 2 * * 2

2

1 1
b

o

z z
Bo z

R
z x z

 
  

  

.  

 The solution to the above is not only dependent on the Laplace length 

  
1/2

/l l vL g  


   which would make it only dependent on fluid properties 

and gravitational field strength, but also on the bubble foot radius. This is due to 
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the fact that for a fixed bubble foot radius there is only one possible value of *

oR  

yielding a solution to the above capillary equation.  This was highlighted by 

Gerlach et al. (2005) who identified the foot radius and the Laplace constant as 

the only parameters of which quasi-static bubble shape is dependent. Gerlach et 

al. (2005) did not go on to evaluate the influence that these parameters have on 

bubble shape. 

 In this study, the influence of these parameters on quasi-static bubble 

formation is investigated by identifying the Bond number with characteristic 

length equal to the fixed bubble foot radius, 
2 2

b lBo L b , as the dependent 

parameter. The Bond number has physical meaning in that it is the ratio of a 

characteristic buoyancy force to surface tension providing insight into the 

physical mechanism influencing bubble shape.   

 To this end, Eq. 3-20 is solved numerically assuming that the bubble foot 

is fixed to the orifice (or nucleation site) perimeter. For this reason, a contact 

point with the cavity perimeter is used making the solution dependent on the 

cavity radius. A fixed bubble foot to the perimeter has been observed in numerous 

adiabatic bubble growth experiments such as those observed in Di Bari & 

Robinson (2009) and has also been observed in the heat-induced n-pentane vapour 

bubble growth experiments of Siedel et al. (2008). Furthermore, as previously 

stated, ebullition cycle frequency from a uniformly heated plane varies from one 

nucleation site to another (Incorpera et al., 2007). This implies that the nucleation 
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cavity size influences bubble growth and detachment making cavity radius an 

appropriate parameter in the bubble profile solution procedure. 

 An interpolation code, using Mathematica software, numerically solves 

the capillary equation expressed as an ordinary differential equation in which z is 

a function of x. The boundary conditions are  0 0z   and  0 0z 
 
at the apex 

as illustrated in Figure 3-4. It is important to note that the downward z axis of 

Figure 3-3 is represented as the horizontal axis of Figure 3-4 illustrating that x is 

expressed as a function of z in the solution procedure of the forthcoming Eq. 3-23. 

 
 

Figure 3-4: Arbitrary bubble profile produced when solving the capillary 

equation; bubble apex is at (0,0). 

 

 The initial condition in the solution procedure is an arbitrary principal 

radius of curvature at the apex origin, noted oR . The equation is then solved for z 

by interpolation up until the point on the bubble profile in which 1z  . This point 

is identified as  ba,
 in Figure 3-4. Recalling that the solution of Eq. 3-18 yields a 

solution to z in terms of x, if the numerical treatment continues beyond the point 
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 ba, , an error is produced as the slope of the tangent to the curve 
dz

dx
 approaches 

infinity. It is therefore necessary to repeat the numerical treatment of the capillary 

equation with x expressed as a function of z. In this way, no error is generated 

since, with exception to the apex origin  0,0 , x is a well defined function of z 

despite that z may not be a well defined function of x. To this end, care is taken 

expressing Eq. 3-18 as a function of z rather than x by noting that the chain rule 

and product rule imply, respectively,  

3-21  
 
1

z x
x z

 


 

and  

3-22  
 

  
3

x z
z x

x z


  


. 

 Substituting the above into Eq. 3-18 yields the capillary equation of which 

the solution yields x as a function of z,  

3-23 
   

 
1/2 3/2

2 2

1 2

1 1

l v

o

gx
z

Rx x x

 




  

  
. 

 Equation 3-23 is conveniently normalized by multiplying all terms by the 

cavity radius b yielding the following form in which the normalized terms are 

noted 
* / b  , 
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3-24 

   

*
*

1/2 3/2 *
* * 2 * 2

1 2

1 1
b

o

x
Bo z

R
x x x


  

  

. 

 The point  ba,  of the numerical treatment of Eq. 3-18 is used as the initial 

condition for a numerical treatment of Eq. 3-23. Once again, it is noted that this 

chain of events is necessary since the solution in terms of z(x) is not a proper 

function beyond  ba, ; and x(z) does not yield a solution at the apex origin since 

the slope of the tangent to the curve  x z  is not well defined at the apex origin. 

However, the apex origin provides the overall initial condition for the numerical 

treatment making it necessary to include both Eq. 3-18 and Eq. 3-23 in the 

solution procedure. For an arbitrary principal radius of curvature at the apex, the 

solution procedure provides a bubble profile that is not necessarily in contact with 

the perimeter of the cavity. Through iteration, a single Ro is found yielding one 

possible profile in which the bubble base is in contact with the cavity perimeter.  

The above described procedure solves the capillary equation and yields a 

bubble profile for a chosen bubble height. 

As previously discussed, the significance of the last term on the right hand 

side of Eq. 3-24 is that the relative magnitude of the buoyancy force to surface 

tension affects bubble deformation. In particular, the more influence this term has 

on the relation, the more deformed from spherical the bubble will be. This is 

quantified in terms of the Bond number and the forthcoming arguments shall 
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show that small Bond numbers yield more spherical bubbles and that large Bond 

numbers yield more elongated bubbles irrespective of size.  

 

3.4. Benchmarking the Numerical Procedure 

 The bubble profiles resulting from the described procedure described in 

section 3.4 are benchmarked to two test cases: 

 

1. Adiabatic quasi-static bubble growth due to gas injection with a 

constant flow rate in which the bubble foot is fixed to the perimeter of the 

submerged orifice.  

 

2. Bubble growth due to vaporization within the heat transfer 

controlled growth regime in which the bubble foot is fixed to the perimeter 

of the nucleation cavity.  

 

 These benchmarking results of the numerical treatment of the capillary 

equation build on the results of Mori & Baines (2001) and of Gerlach et al. 

(2005). Gerlach et al. (2005) compared the resulting profile of the solution to the 

capillary equation with image processed bubble profiles. The images were taken 

during bubble formation due to constant injected air at 0.01 ml/min into water 

through an orifice of radius 0.259 mm with a bubble foot fixed to the orifice 

perimeter. Mori & Baines (2001) compared the numerical solution of the capillary 
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equation to bubble growth contours due to gas diffusion. In these gas diffusion 

experiments, bubble formation takes place at an artificial nucleation cavity of 

radius 1.04 mm in saturated carbonated water.  The present investigation builds 

on these works by testing the ability of the capillary equation to accurately predict 

the bubble profiles of bubble growth due to vaporization. The heat-transfer 

controlled bubble growth regime resulting from a constant and low superheat 

provides the vapour bubble test case in which the vapour bubble growth is most 

quasi-static (Carey, 1992).  

 

3.4.1. Adiabatic Bubble Growth 

 The adiabatic bubble growth test case is a result of a collaborative effort 

with Trinity College Dublin in which Sergio Di Bari performed the following 

experiments.  

 Images of bubbles growing from a submerged orifice at the bottom of a 

small Perspex basin made large enough such that the influence of the side walls 

can be considered negligible are captured with digital video footage with high 

spatial and temporal resolution operating up to 1000 frames/second. The top of 

the vessel is open to the atmosphere and the vessel is partially filled with pre-

boiled and distilled water at room temperature to a height of 21 mm above the 

base. A Hamilton 1750 CX 500 lw/Stop(1/4-28) with an inner volume of 500μl 

syringe is used to issue air at a flow rate controlled by a Kd Scientific Model 200 

syringe pump. Air bubbles are injected through an aluminum orifice at a constant 
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volumetric flow rate of 10 ml/h into an otherwise quiescent pool of water at room 

temperature with an orifice radius of 0.525 mm. The experiment is repeated for an 

orifice radius of 0.8 mm. 

 The first of the adiabatic test cases is illustrated in Figure 3-5 showing a 

comparison of the measured bubble contours from the images captured during 

bubble formation from a 0.8 mm orifice at 10 ml/h. The numerical simulation 

deviates slightly from the measured contour near detachment along the wall of the 

neck. Otherwise the numerical solution is within the uncertainty of the 

measurements of the processed bubble images in which the uncertainty is set to ± 

1 pixel length. The uncertainty in the x-direction and the y-direction are 

represented by the height and width of the diamond coordinate point plot marker 

of the measured bubble profile. It is important to note that the bubble foot is fixed 

to the orifice perimeter and that the bubble height is measured along the 

horizontal y axis. Furthermore, the bubble is symmetric about the y axis due to the 

absence of cross flow. It is also assumed that any fluid flow induced by bubble 

formation is negligible due to the quasi-static nature of the growth.  
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Figure 3-5: Bubble profiles during bubble evolution as predicted by the solution 

of the capillary equation compared with adiabatic gas injected bubble growth 

profiles from an orifice of radius 0.8 mm and an injection rate of 10 ml/h. 

 

 The second of the adiabatic test cases is illustrated in Figure 3-6 showing a 

comparison of the measured bubble contours from the images captured during 

bubble formation from a 0.525 mm orifice at 10 ml/h. Once again, the bubble 

profile resulting from the numerical simulation only deviates outside of the 

0.0857bBo 
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uncertainty range of  ± 1 pixel length along the bubble neck in the last frame prior 

to departure.  

It is important to note that the non-dimensional Bond number with 

characteristic length equal to the orifice radius is smaller for the more spherical 

bubbles of Figure 3-6 than the less spherical profiles of Figure 3-5. This 

phenomenon is investigated thoroughly in this study.  
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Figure 3-6: Bubble profiles during bubble evolution as predicted by the solution 

of the capillary equation compared with adiabatic gas injected bubble growth 

profiles from an orifice of radius 0.525mm and an injection rate of 10 ml/h. 
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3.4.2. Bubble Growth due to Vaporization 

 The bubble growth due to vaporization test case is a result of a 

collaborative effort with INSA Lyon in which Samuel Siedel performed the 

following experiments.  

 Bubble growth from a copper heated plate is filmed with a Photon 

Fastcam 1024 PCI high speed camera recording images of single bubble growth 

up to 3000 fps. The plate is polished in order to minimize nucleation near the 90 

μm radius artificial nucleation site. Also, the plate is made 40 μm thin favouring a 

radial temperature drop and thereby preventing nucleation on the edges of the 

plate. The working fluid is degassed n-pentane contained in a tank of dimensions 

250 × 250 × 180 mm³. Due to the high thermal diffusivity of copper 

(approximately 
41.1 10  m²/s) and the small size of the growing bubble (0.5 mm 

maximum radius) in comparison to the 2.5 mm radius copper pin on which it sits, 

less than 1% of the heat flux to the bubble from the heated plate is of the form of 

latent heat transfer (Siedel et al., 2008). For this reason, the local heat flux 

variations are deemed negligible and the wall temperature is assumed to be 

constant and homogeneous favouring the heat-transfer controlled bubble growth 

regime for low wall superheats (Carey, 1992). The result is bubble formation due 

to vaporization with a bubble foot fixed to the perimeter of the nucleation cavity. 

The experiment is repeated for constant wall superheats of 2.1 K and 4.7 K in 

which the saturation temperature of n-pentane is 35.7 
o
C at 1 bar. 
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 Although the bubble profile resulting from the numerical treatment of the 

capillary equation has been validated for gas injection and gas diffusion bubble 

formation scenarios by Gerlach et al. (2005) and Mori & Baines (2001) 

respectively, the numerical treatment of the capillary equation has not been, to the 

best of the author’s knowledge, validated for bubble formation due to 

vaporization as it is in the forthcoming result.  

 With exception to the neck profiles in the final frames, Figure 3-7 and 

Figure 3-8 illustrate that the bubble profiles resulting from the numerical 

treatment of the capillary equation are within the ± 1 pixel uncertainty with the 

experimentally observed profiles of the heat-induced vapour bubble formations 

resulting from the constant wall superheats of 4.7 K and 2.1 K. 

It is important to note that the foot of the bubble base remains fixed to the 

nucleation site allowing the model to produce a unique solution for each bubble 

profile. It is also noted that the Bond number with characteristic length equal to 

the nucleation site radius for both illustrations is the same since only one working 

fluid and one cavity are considered. Highlighted in the forthcoming sections of 

this document is that similar Bond numbers, despite varying working conditions, 

provide bubbles of similar shape. 
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Figure 3-7: Bubble profile during bubble evolution as predicted by the solution of 

the capillary equation compared with bubble growth due to vaporization profiles 

from a nucleation site radius of 90 μm and a wall superheat of 4.7 K. 
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Figure 3-8: Bubble profiles during bubble evolution as predicted by the solution 

of the capillary equation compared with bubble growth due to vaporization 

profiles from a nucleation site radius of 90 μm and a wall superheat of 2.1 K. 

 

3.5. Contact angle analysis 

 For any liquid, gas and substrate combination at equilibrium, a surface 

tension balance exists that is dependent on the liquid's affinity to the solid. This 

0.00332bBo 
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phenomenon is known as the wettability of the liquid for a substrate and is 

quantified by the Young contact angle, noted Y , illustrated in Figure 3-9.  
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Figure 3-9: (Left) Mode A gas/vapour bubble growth in a wetting liquid. (Right) 

Mode B: gas/vapour bubble growth in a non-wetting liquid. 
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 In the case of gas/vapour bubble growth issuing from an orifice, there are 

two modes of growth possible relative to the contact angle: Mode A and Mode B 

(Gerlach et al., 2005).  

 In Mode A, the Young contact angle (contact angle at equilibrium) 

remains inferior to the instantaneous contact angle throughout the growth of the 

bubble. This is attributed to the liquids strong affinity for the surface and as such 

the bubble foot is prevented from expanding outwards.  

 Conversely, in Mode B, the liquid has a weak affinity for the surface and it 

yields to the gas bubble's expansion. In this mode, during the bubble growth 

cycle, the instantaneous contact angle equals the Young contact angle and the 

bubble foot expands to a radius greater than that of the orifice.  

 In this study, Mode A bubble growth is considered. For this reason, the 

benchmark experiments use liquids and substrates in which the wettebility is  such 

that the bubble foot remains fixed to the orifice. In this mode, the contact angle 

varies throughout the growth cycle due to the fixed foot radius. In particular, the 

contact angle is large as the bubble emerges from the orifice decreasing during 

mid growth and increasing near detachment. A comparison of the measured 

contact angles with the numerically generated contact angles for the given 

conditions detailed in section 3.4.1 is provided in Figure 3-10 and Figure 3-11.  
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Figure 3-10: (Top) Bubble contact angle evolution as predicted by the solution of 

the capillary equation compared with adiabatic gas injected bubble measurements 

from an orifice of radius 0.525 mm and an injection rate of 10 ml/h. (Bottom)  

Near orifice comparison of numerical and experimental results.  
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Figure 3-11: (Top) Bubble contact angle evolution as predicted by the solution of 

the capillary equation compared with adiabatic gas injected bubble measurements 

from an orifice of radius 0.8 mm and an injection rate of 10 ml/h. (Bottom)  Near 

orifice comparison of numerical and experimental results. 

 

3.6. Bubble Volume, Area and Centre of Gravity from Bubble 

Profile  

 In this study, a purpose built Mathematica code is written in order to 

define the coordinates of the bubble contour enabling the measurement of the 

bubble volume, surface area and centre of gravity. The bubble profiles to which 
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the code is applied are the result of the numerical simulation of the capillary 

equation and the result of image processing of captured bubble growth images. 

Mathematica software is used to identify a finite number of coordinate points of 

the vapour-liquid interface detailed in Appendix 7.2. This code approximates the 

bubble volume, bubble vapour-liquid surface area and the bubble centre of gravity 

by defining frustum cones as illustrated in Figure 3-12. The following describes 

the procedure in detail. 

Two arbitrary points on the bubble contour are identified as  ,i ix y  and 

 1 1,i ix y   representing two sequential points in a series of points defining the 

bubble profile.  
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Figure 3-12: Coordinate system used in the code for approximating the bubble 

volume, vapour-liquid surface area and centre of gravity. Background bubble 

image captured by Sergio Di Bari. 

 

 A rotation about the vertical axis of a lateral section identified by two 

sequential bubble contour points defines a frustum cone. This conical frustum is 

illustrated in Figure 3-13. All necessary information in solving for the conical 

frustum’s surface area, volume and centre of gravity are deduced from two 

coordinate points  1 1,i ix y   and  ,i ix y .  
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Figure 3-13: Frustum cone resulting from the coordinate points identified along 

the contour of the bubble.  

 

 The height of the cone, the base radius and the top radius are defined in 

terms of the point coordinates as, respectively,  

3-25  

1

1 1

i i

i i

i i

h y y

r x

r x



 

 





. 

 The liquid-vapour area is approximated by considering the lateral area of 

an interface segment of two adjacent coordinate points and integrating about the 

central vertical axis. This yields the area of the conical frustum,  

3-26  
2 2

1 1( )frustum i i i iA r r r r h      . 

 The sum of Eq. 3-26 over all interface coordinate points represents the 

sum of the generated conical frustum surface areas and thus yields the total liquid-

vapour surface area of the bubble, 

  22

1 hrr ii 
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 Similarly, the volume of the conical frustum illustrated in Figure 3-13 

 is the area of the segment integrated about the central vertical axis, 

3-28   2 2

1 1

1

3
frustum i i i iV h r r r r     . 

 The sum of Eq. 3-28 over all interface coordinate points represents the 

sum of the generated conical frustum volumes and thus yields the total volume of 

the bubble, 
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 By the definition of the centre of mass, the centre of gravity of the conical 

frustum illustrated in Figure 3-13 is found by dividing the weighted integral of y 

over the frustum yielding a centre of gravity along the vertical axis, 

3-30 
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 The sum of the above over all interface coordinate points represents the 

sum of the generated conical frustum centre of gravity vertical positions and thus 

yields the centre of gravity of the bubble, 

3-31   
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 It is noted that Equation 3-31 is in fact the calculation of the centre of mass 

of the bubble. However, in a uniform gravitational field the above calculation 

yields the mean location of the gravitational force acting on the bubble. All 

gravitational fields in this document shall be considered constant over the mass 

distribution of the bubble making the terms Centre of Mass and Centre of Gravity 

interchangeable (Serway, 1982).  

 For each bubble profile obtained throughout this chapter, either through 

numerical simulation or through image processing of captured bubble images, the 

frustum calculated bubble volume and bubble liquid-vapour surface area shall be 

used to calculate the bubble degree of sphericity and the bubble degree of 

Modified sphericity defined in sections 3.2 and 3.7 respectively. 

 

3.7. Numerical Simulations: Results and Discussion 

 Having benchmarked the numerical procedure in its capacity to accurately 

predict bubble contours during bubble formation, numerical simulations are run in 

an effort to isolate the physical mechanism causing a bubble’s shape to deviate 
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from a sphericity of unity. The following table presents the conditions for which 

the numerical simulations in this section are run and their resulting Bond number.  

 

Table 3-1 : Bond number for conditions tested 

Cavity radius b  

(mm) 

Gravitational Constant g 

(m/s²) 

  ²l v

b

gb
Bo

 




  

1 0.1 0.00137 

1 1 0.0137 

1 2 0.0273 

1 9.807 0.134 

1 20 0.273 

1 40 0.546 

0.1 9.807 0.00134 

0.25 9.807 0.00837 

0.5 9.807 0.0335 

1.5 9.807 0.134 

2.25 9.807 0.678 
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3.7.1. Numerical Solution Bubble Growth Cycle 

 The numerical treatment of the capillary equation is used to solve for the 

contour of air bubble growth in water with a fixed bubble foot radius at terrestrial 

conditions. Numerical computations are run for increasingly large bubbles until 

no solution to the capillary equation is possible for the specified bubble foot 

radius. This ultimate frame in the numerical simulation’s bubble growth cycle is 

the predicted bubble growth profile at detachment for this model (Gerlach et al., 

2005). This is illustrated in the Figure 3-14 which shows the family of solutions 

that is generated by the capillary equation. One solution can be distinguished by 

the contact angle of the foot radius. In the case of Mode A bubble growth, the 

bubble foot stays fixed to the orifice perimeter and therefore the unique solution 

within the family is chosen as that which the bubble foot radius is equal to the 

cavity radius.  

 Within the family of solutions to the capillary equation there exists a 

solution with a minimal inner foot radius. This solution represents the minimal 

contact with the surface that is capable of contouring the buoyancy of the bubble 

in order to keep the bubble fixed its cavity. As the bubble grows, the buoyancy 

term becomes more prominent and the minimum foot radius required to counter 

the buoyancy increases. For Mode A bubble growth, when the minimum foot 

radius in the family of solutions is equal to the cavity radius, the detachment 

frame has been attained and any length step forward will yield a family of 
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solutions in which the minimum foot radius is larger than the cavity radius 

meaning that the bubble has detached. 

 

  

Figure 3-14: (Left) Family of solutions to the capillary equation for a given height 

prior to detachment. (Right) Family of solutions to the capillary equation at 

detachment. 

 

To illustrate this, in Figure 3-15, the last frame profile on the numerical 

treatment is compared with the measured profiles from the adiabatic bubble 

growth test cases near detachment. In addition, Figure 3-16 compares the last 

frame profile of the numerical treatment with the measured profiles from the 

diabatic vapour bubble growth test cases near detachment. 
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Figure 3-15: Measurements from the last captured image prior to detachment 

compared with the largest bubble profile produced from the numerical 

computation of the Capillary equation for a gas injected bubble with a foot radius 

of 0.525 mm (Left) and for a gas injected bubble with a foot radius of 0.8 mm 

(Right).  
 

 
 

 

Figure 3-16: Measurements from the last captured image prior to detachment 

compared with the largest bubble profile produced from the numerical 

computation of the Capillary equation for an n-pentane vapour bubble from a 

nucleation cavity of 90 µm on a heated plane with superheat 2.1 K (Left) and 4.7 

K (Right).  
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 This detachment postulate implies that running the simulations for bubble 

profiles that increase in size until no computational solution is possible provides 

the bubble profiles for the entire bubble growth cycle where the no solution length 

step implies detachment.  

In this way, the bubble growth cycle for the numerically generated bubble 

profiles is defined and normalized by defining Growth Cycle* as the ratio of the 

numerically generated bubble height, noted bubh , to its height near detachment, 

noted 
;bub dh , yielding the following definition,  

3-32 
;

* bub

bub d

h
GrowthCycle

h
 . 

 The growth cycle is therefore complete and the bubble is near detachment 

once Growth Cycle* attains unity. Recalling that the Capillary equation is not 

dependent on time, it is noted that Growth Cycle* is a non-dimensional height 

scale rather than a time scale. 

 

3.7.2. Bubble Growth Cycle for Terrestrial Gravity 

 A sample of the solutions to the capillary equation providing the bubble 

profiles throughout the bubble growth cycle is illustrated in Figure 3-17. Air 

bubble growth in water is simulated for terrestrial conditions. The simulations are 
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repeated for increasing bubble foot radius (ranging from 0.1 mm to 2.25 mm), 

fixed fluid properties and terrestrial gravitational field strength.  

 

 

 

 

 

 

Figure 3-17 : Bubble profile evolution with Bond number varying with respect to 

the bubble foot radius.  

 

 Figure 3-17 shows that an increase in Bond number corresponds with a 

decrease in the spherical shape of the bubble. In particular, for constant fluid 

properties and terrestrial gravitational conditions, an increase in Bond number is a 

result of an increase in the orifice radius from which the bubble is growing.  
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For this particular scenario in which the gravitational field strength is 

constant, an increase in bubble foot radius implies larger bubbles growing taller 

thereby experiencing weakened hydrostatic pressure and thus being more 

influenced by the force of buoyancy. This causes them to elongate and to deviate 

from a sphericity of unity. The fixed gravitational field strength with increasing 

bubble foot radius increases the Bond number implying that larger Bond numbers 

yield less spherical bubbles.  

 

3.7.3. Bubble Growth Cycle for Increasing Gravitational 

Constant 

 Numerical computations are run generating bubble contours during bubble 

formation with a fixed foot radius of 1mm and fixed fluid properties in which air 

is the gas make up of the bubble and water is the surrounding liquid. The 

simulations are repeated for increasing values of the gravitational constant 

ranging from 0.1 m/s² to 40 m/s².  

In this series of simulations, the bubble foot radius is constant and the 

gravitational field strength is increased thereby increasing the Bond number. 

Figure 3-18 illustrates the results showing that, in keeping with the 

previous section’s results, a smaller Bond number, in this case resulting from 

smaller gravitational field strength, yields a more spherical bubble.   
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Figure 3-18 : Bubble profile evolution for a fixed foot radius of 1mm and a Bond 

number varying with respect to the gravitational constant. Note the scale 

difference in the two columns. 

 

 The results of the simulations of Figure 3-18 and the simulations of Figure 

3-17 can be summarized for constant fluid properties in the following table in 

which the terms small, large, spherical and non-spherical are used rather loosely. 

These characteristics will be quantified more precisely in the following sections in 

terms of the bubble degree of sphericity relative to the Bond number. 

 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

92 

 

Table 3-2 : Bubble characteristics relative to Bond number 

Parameter Figure 3-17 results Figure 3-18 results 

g Terrestrial Terrestrial Small Large 

b Small Large 1 mm 1 mm 

 
b

l vg
Bo

 




  Small Large Small Large 

Bubble Profile Spherical 
Non-

spherical 
Spherical 

Non-

spherical 

Bubble Volume Small Large Large Small 

 

 The commonality between the simulations of Figure 3-18 and the 

simulations of Figure 3-17, as highlighted in the above table, is that a decrease in 

Bond number implies an increase in bubble spherical shape tendencies implying 

that the bubble shape is dictated by the Bond number 
  2

b

l vg b
Bo

 




 .  

 For strictly terrestrial conditions, the bubble volume appears to be only 

dependent on the Bond number as was observed by Mori & Baines (2001). 

However, a small Bond number resulting from a small gravitational constant 

yields a much larger bubble than the same Bond number due to a small bubble 
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foot radius. The bubble volume relative to the Bond number is investigated in the 

following section.  

 

3.7.4. Bubble Volume Evolution 

 The bubble’s volume throughout the bubble growth cycle with respect to 

the Bond number is investigated. In what follows, the growth cycle of the 

numerically simulated bubble profile is generated up until the computations no 

longer provide a solution to the capillary equation; refer to section 0.  

 In Figure 3-19 the bubble volume evolution resulting from the numerically 

generated bubble profiles is illustrated for a fixed bubble foot radius of 1 mm in 

which the Bond number is varied by varying the gravitational constant only. The 

fluid properties are that of air in water. Figure 3-20 compares the bubble profiles 

near detachment for decreasing Bond numbers due to decreasing gravitational 

field strengths. The results show that for weaker gravitational field strengths, 

corresponding to smaller Bond numbers, the bubble grows more spherical than for 

strong gravitational field strengths corresponding to larger Bond numbers.  

This result can be attributed to the fact that for weaker gravitational forces, 

bubble detachment is delayed due to weakened buoyancy allowing the bubble to 

grow larger; the weakened buoyancy does not cause a significant bubble 

elongation that would otherwise deform the bubble. 
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Figure 3-19 : Bubble volume evolution from numerical simulations for a fixed 

foot radius of 1mm and a Bond number varying with respect to the gravitational 

constant.  

 

 

Figure 3-20 : Bubble profile near detachment for a fixed foot radius of 1mm and a 

Bond number decreasing due to a decreasing gravitational field strength: 6, 4, 3, 

2, 1, 0.5 and 0.1 (m/s²). 
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 In Figure 3-21, the bubble volume evolution resulting from the 

numerically generated bubble profiles is illustrated for terrestrial conditions in 

which the Bond number is varied by varying the bubble foot radius only. The 

fluid properties are that of air in water. Figure 3-22 compares the bubble profiles 

near detachment for decreasing Bond numbers due to decreasing bubble foot 

radii. 

 The results show that for larger bubble foot radii, as a result of a larger 

orifice or a larger nucleation site, and corresponding to larger Bond numbers, the 

bubble grows to a larger volume with a less spherical shape than for smaller 

bubble foot radii corresponding to smaller Bond numbers.  

 This result can be attributed to the fact that for terrestrial conditions, a 

larger orifice (or nucleation site) yields a larger hemispherical bubble than a 

smaller cavity. The larger bubble grows and experiences a smaller hydrostatic 

pressure than a smaller bubble since the former’s apex is less submerged. This 

effect subsequently elongates the larger bubble since the buoyancy force is 

relatively strong. Conversely, bubbles growing from smaller cavities with smaller 

Bond numbers experience a weakened capillary force due to the shortened cavity 

perimeter. This implies that for a smaller cavity, the capillary force is not 

sufficiently strong to counter the buoyancy force that is necessary for bubble 

deformation and that the bubble will detach prior to significant bubble 

deformation; this also implies that the bubble will detach at a smaller volume than 

for larger cavity radii. It is important to note that, once again, for the smaller Bond 
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numbers, the bubble profiles are more spherical. The Bond number dictates shape 

but not volume.  

 
Figure 3-21 : Bubble volume evolution from numerical simulations at terrestrial 

conditions and a Bond number varying with respect to bubble foot radius.  

 

 

 
Figure 3-22 : Bubble profile near detachment for terrestrial conditions and a Bond 

number increasing due to an increasing cavity radius: 0.05, 0.2, 0.4, 1.0 and 1.75 

(mm).  
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In general, Figure 3-19 to Figure 3-22 compare bubble volume, during 

bubble growth evolution and near detachment, indicating the Bond number bBo  

for the given conditions. It is shown that a decrease in bBo  implies a more 

spherical bubble shape irrespective of size. 

 

3.7.5. Bubble Vapour-Liquid Surface Area Evolution 

 In order to be able to quantify the influence of the Bond number on bubble 

shape, the bubble’s degree of sphericity is investigated. To this end, the bubble 

vapour-liquid surface area generated from the numerically simulated bubble 

profiles is evaluated.  

 In Figure 3-23, the vapour-liquid surface area evolution resulting from the 

numerically generated bubble profiles is illustrated for a fixed bubble foot radius 

of 1 mm in which the Bond number is varied by varying the gravitational constant 

only. The fluid properties are that of air in water.  

 In Figure 3-24, the vapour-liquid surface area evolution resulting from the 

numerically generated bubble profiles is illustrated for terrestrial conditions in 

which the Bond number is varied by varying the bubble foot radius only. The 

fluid properties are that of air in water. 

 The results show similar trends as to the volume growth curves. 

 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

98 

 

 
Figure 3-23 : Bubble gas-liquid surface area evolution from numerical simulations 

for a fixed foot radius of 1mm and a Bond number varying with respect to the 

gravitational constant.  

 

 
Figure 3-24 : Bubble gas-liquid surface area evolution from numerical simulations 

at terrestrial gravity and a Bond number varying with respect to bubble foot 

radius.  
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3.7.6. Bubble Centre of Gravity Evolution  

 In this document, all gravitational fields are assumed uniform making the 

terms Centre of mass and Centre of gravity interchangeable. For this reason, the 

derivation of the centre of gravity of a bubble, meaning the mean location of the 

gravitational force acting on the bubble, is simply the derivation of the Centre of 

mass of a bubble growing in a uniform gravitational field. 

 In Figure 3-25, the bubble centre of gravity evolution resulting from the 

numerically generated bubble profiles is illustrated for a fixed bubble foot radius 

of 1 mm in which the Bond number is varied by varying the gravitational field 

strength only. The fluid properties are that of air in water.  

 The results show that a decrease in gravitational field strength increases 

the vertical position of the centre of gravity of the bubble.  This is to be expected 

since such a gravitational field strength decrease was previously observed to 

increase the volume of the bubble. 

 In Figure 3-26, the bubble centre of gravity evolution resulting from the 

numerically generated bubble profiles is illustrated for terrestrial conditions in 

which the Bond number is varied by varying the bubble foot radius only. The 

fluid properties are that of air in water.  

 The results show that an increase in bubble foot radius implies an increase 

in Centre of gravity vertical position. Once again, this is to be expected since it 

was previously observed that an increase in orifice radius yields an increase in 

bubble volume.  
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Figure 3-25 : Bubble centre of gravity evolution from numerical simulations for a 

fixed foot radius of 1mm and a Bond number varying with respect to the 

gravitational constant.  

 

 
Figure 3-26 : Bubble centre of gravity evolution from numerical simulations at 

terrestrial gravity and a Bond number varying with respect to bubble foot radius. 
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3.7.7. Bubble Aspect Ratio Evolution 

 Thus far, the increasing Bond number due to an increase in gravitational 

field strength and the increasing Bond number due to an increase in bubble foot 

radius have had inverse effects on the bubble growth characteristics of bubble 

volume, vapour-liquid surface area and centre of gravity. Conversely, the 

increasing Bond number due to an increase in gravitational field strength and the 

increasing Bond number due to an increase in bubble foot radius have had parallel 

effects on the bubbles shape tendencies (refer to Figure 3-17 and Figure 3-18). It 

is therefore necessary to define a bubble characteristic that quantifies the shape of 

the bubble irrespective of size.  

 To this end, the simple and commonly used Aspect Ratio of the 

numerically simulated bubble is investigated. The Aspect Ratio, noted AR, as 

defined by Iacono et al. (2006) and Chen et al. (2007), is simply the ratio of the 

major axis length hbub to the minor axis length wbub. These lengths are illustrated 

in Figure 3-27 for an arbitrary bubble. The AR is sometimes referred to as the 

bubble shape factor and noted   (Nieuwland et al., 1996). 
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Figure 3-27 : Shematic representation of the major axis length of an arbitrary 

bubble, noted hbub, and the minor axis length, noted wbub. 

 

 The Aspect Ratio is defined as,  

3-33: bub

bub

h
AR

w
 . 

 In Figure 3-28, the bubble AR evolution resulting from the numerically 

generated bubble profiles is illustrated for a fixed bubble foot radius of 1 mm in 

which the Bond number is varied by varying the gravitational field strength only. 

The fluid properties are that of air in water.  

 In Figure 3-29, the bubble AR evolution resulting from the numerically 

generated bubble profiles is illustrated for terrestrial conditions in which the Bond 
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number is varied by varying the bubble foot radius only. The fluid properties are 

that of air in water. 

 The results are significant in that they show similar bubble AR trends for 

varying Bond numbers irrespective of the manner in which the Bond number is 

varied. Figure 3-28 shows increased AR values near detachment for higher Bond 

numbers due to increased gravitational field strengths. Similarly, Figure 3-29 

shows increased AR values near detachment for higher Bond numbers due to 

increased orifice radii. In particular, for smaller Bond numbers, irrespective of 

bubble size, the bubble AR is closer to unity throughout the bubble growth cycle 

and near detachment than for larger Bond numbers. 

 Recalling that a perfect sphere has an AR of unity, the upward AR trends 

illustrated in Figure 3-28 and Figure 3-29 during early growth correspond to the 

bubble transitioning from hemispherical to spherical. During mid growth, an AR 

of unity is obtained corresponding to the most spherical shape attained during the 

bubble growth cycle. From this point onwards to detachment, the AR continues to 

increase for values greater than unity. This is attributed to bubble elongation due 

to the necking phenomenon. In addition to this, the deviation from an AR of unity 

during the bubble growth cycle is more prominent for larger Bond numbers and is 

independent of bubble volume.  
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Figure 3-28 : Bubble aspect ratio evolution from numerical simulations for a fixed 

foot radius of 1mm and a Bond number varying with respect to the gravitational 

constant.  

 

 
Figure 3-29 : Bubble aspect ratio evolution from numerical simulations at 

terrestrial gravity and a Bond number varying with respect to bubble foot radius.  
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The results illustrated in Figure 3-28 and Figure 3-29 lead to the 

postulation that deviation from a spherical shape for quasi-static bubble growth is 

intimately linked to the ratio of the surface tension to buoyancy forces, that is to 

say, to the Bond number. The influence of the Bond number on the bubble degree 

of sphericity is investigated in the following sections. 

 

3.7.8. Bubble Deformation with respect to Bond Number 

 The influence of the Bond number on the bubble shape highlighted in the 

previous section’s AR investigation can best be illustrated with a non-dimensional 

comparison of bubble profiles for varying Bond numbers. In the normalized 

bubble profiles illustrated in Figure 3-30, the Bond number is varied due to a 

change in the gravitational field strength with a fixed bubble foot radius of 1 mm. 

The profile comparisons are repeated with terrestrial gravity conditions, the 

results of which are also illustrated in Figure 3-30, for varying Bond numbers due 

to a varying orifice radius. The fluid properties are that of air in water.  

 The vertical y-axis is normalized by identifying the bubble height, noted 

hbub, resulting from the numerically generated bubble profile sequence, as the 

characteristic length. This characteristic length divides the vertical component of 

the bubble contour as well as its horizontal component yielding vertical and 

horizontal normalized lengths.  

Since the Capillary equation is not dependent on time, the terms Early 

Growth, Mid Growth and Late Growth are defined in the following non temporal 
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way. In Figure 3-30, the term Early Growth makes reference to the most 

hemispherical bubble profile generated by the numerical computations for the 

given conditions. Early Growth therefore corresponds to the bubble profile in 

which, 

3-34 
1

2

bub

bub

h

w
 .  

 The term Mid Growth is set to be the moment in which the bubble height, 

resulting from the numerically generated bubble contour, is half the detachment 

bubble height, noted 
;bub dh . In particular, for Mid Growth 

3-35 
;

1
*

2

bub

bub d

h
GrowthCycle

h
  . 

 It is noted once more that the numerical simulation detachment profile 

corresponds to the last possible solution computed by the numerical treatment. 

The term Late Growth is defined as the frame in which the bubble height 

generated from the numerical simulations attains its maximum height in the 

growth cycle. Therefore, Late Growth implies that Growth Cycle* has attained 

unity,  

3-36 
;

* 1bub

bub d

h
GrowthCycle

h
  . 
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 The results illustrated in Figure 3-30 show that a relatively strong 

gravitational field imposes an inward constraint on the bubble thereby causing the 

bubble shape to deviate from a spherical shape. Conversely, a weak gravitational 

field favours a more spherical bubble shape for Mid Growth to Late Growth and a 

more hemispherical shape for Early Growth.  

 The results show similar behaviour when the bubble foot radius is varied. 

A larger foot radius yields a bubble profile that is more “bullet” shaped than 

spherical at Mid Growth and then elongated with neck formation at Late Growth. 

A small bubble foot radius yields a more spherical bubble shape for Mid Growth 

to Late Growth and a more hemispherical shape for Early Growth when compared 

with the bubble profiles of larger bubble foot radii.  

 Summarizing, a small Bond number, resulting from a weak gravitational 

field strength or a small cavity radius, favours a truncated spherical shape 

transitioning from hemispherical to spherical. A large Bond number, resulting 

from a strong gravitational field or a large cavity radius favours an elongated 

bubble shape transitioning from hemispherical to oblique with a strong neck 

formation.  This analysis shows a bubble shape dependence on the Bond number: 

  2

l v

b

g b
Bo

 




 . 
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Figure 3-30 : Comparison of normalized bubble profiles in Early, Mid and Late 

Growth for (Left) varying gravitational field strengths and a bubble foot radius of 

1mm and (Right) varying orifice radii under terrestrial conditions. 
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3.7.9. Bubble Degree of sphericity during Bubble Growth 

 Having established the presence of a relationship between the Bond 

number and the bubble profile produced, the bubble degree of sphericity as a 

function of the Bond number is investigated. Analysis of the bubble degree of 

sphericity quantifies the Bond number’s influence on the bubble shape, as did the 

AR, while providing more insight than the AR into the actual shape of the bubble. 

As previously mentioned in section 3.2, the bubble degree of sphericity is the ratio 

of the bubble’s spherical volume equivalent area to its measured surface area. 

 In Figure 3-31, the bubble degree of sphericity evolution resulting from 

the numerically generated bubble profiles is illustrated for a fixed bubble foot 

radius of 1 mm in which the Bond number is varied by varying the gravitational 

field strength only. The fluid properties are that of air in water.  

In Figure 3-32, the bubble degree of sphericity evolution resulting from 

the numerically generated bubble profiles is illustrated for terrestrial conditions in 

which the Bond number is varied by varying the bubble foot radius only. The 

fluid properties are that of air in water. 

 The results show similar trends for all Bond numbers tested. Generally, 

during early growth, a bubble’s degree of sphericity increases towards unity. 

Recalling that the maximum attainable degree of sphericity is unity corresponding 

to a perfect sphere, this is attributed to a transitioning phase from hemispherical to 

spherical. During mid growth, a maximum sphericity is attained representing the 

bubble’s most spherical shape followed by a decrease in sphericity. The end stage 
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decrease in sphericity is attributed to neck formation causing the bubble to 

elongate and become more oblique.  

 Furthermore, the results show that the deviations from sphericity during 

the mid and late stages of the bubble formation are more pronounced for larger 

Bond numbers. In addition, the maximum attainable degree of sphericity is less 

for bubble growth with larger Bond numbers.  

 In keeping with the AR investigation, the bubble degree of sphericity 

dependence on the Bond number is consistent for Bond numbers varying due to a 

change in gravitational field strength and for Bond numbers varying due to base 

radius variations. In general, a small Bond number, resulting from a weak 

gravitational field strength or a small cavity radius, yields a degree of sphericity 

that is closer to unity throughout the growth cycle than large Bond numbers.  
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Figure 3-31 : Bubble degree of sphericity evolution from numerical simulations 

for a fixed foot radius of 1mm and a Bond number varying with respect to the 

gravitational constant.  

 

 
Figure 3-32 : Bubble degree of sphericity evolution from numerical simulations at 

terrestrial gravity and a Bond number varying with respect to bubble foot radius. 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

112 

 

 In order to better visualize the spherical evolution quantified in terms of 

the bubble degree of sphericity in the above figures, two bubble formation 

sequences are provided below depicting bubble growth for two different Bond 

numbers. The sequence of images in Figure 3-33 are a sample of the experiments 

described in section 3.4.  

 

 

Figure 3-33: (Top) Bubble images captured by Sergio Di Bari of air injected into 

water through a 0.525 mm orifice in which 0.0369bBo  . (Bottom) Bubble 

images captured by Sergio Di Bari of air injected into water through a 0.8 mm 

orifice in which 0.0857bBo  . 

 

 The images in the above figure show bubbles transitioning from 

hemispherical to spherical with an elongation due to neck formation. Indeed, the 

images above support the sphericity analysis showing that smaller Bond numbers 

imply a more spherical bubble evolution and that a bubble deviates from a 

spherical shape near inception and near detachment. This phenomenon is 

0.0857bBo 

0.0369bBo 
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quantified in Figure 3-31 and Figure 3-32 showing that the degree of sphericity is 

indeed dependent on the Bond number only, even for different gravitational field 

strengths.  

 This analysis provides insight into the shape evolution of a bubble during 

its growth cycle suggesting that a truncated spherical geometry elongated due to 

neck formation is more appropriate for bubble growth modeling then a spherical 

assumption. Furthermore, the results suggest that the magnitude with which the 

bubble neck elongates is also in a one-to-one dependence with the Bond number.  

 

3.7.10. Bubble Degree of Modified sphericity 

 The results of the bubble degree of sphericity study of the previous section 

show that a spherical bubble shape assumption in bubble growth modeling, which 

would correspond to a sphericity of unity, can lead to erroneous results. In light of 

this, as a starting point in the development of more appropriate bubble geometric 

modeling, the validity of a truncated spherical geometric bubble shape with a 

fixed base radius, illustrated in Figure 3-34, is investigated.  
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Figure 3-34: Truncated spherical bubble with bubble foot fixed to cavity 

perimeter.  

 

 To this end, the bubble degree of Modified sphericity, noted mod , is 

introduced. It is defined as the ratio of the area including the base of the bubble’s 

volume equivalent truncated spherical segment with base radius b to the bubble’s 

measured area,  

3-37 
 1

mod

tr tr m

m

A V V

A



 
.
 

 In the above, Am and Vm are the bubble’s measured surface area (including 

the base) and the bubble’s measured volume respectively. They are measured 

from the bubble profile using the frustum method described in section 3.5. From 
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the geometric constraints illustrated in Figure 3-34, the surface area (including the 

base area) of a truncated spherical segment with base radius b is,  

3-38   2 2 2( ) 2trA R R R b b    
 
 

and the volume of a truncated spherical segment with base radius b is, 

3-39    
2

2 2 2 21
( ) 2

3
trV R R R b R b R     . 

 It is postulated that, by minimizing the available gas/vapour-liquid surface 

area, the truncated spherical segment, with base fixed to the perimeter of the 

cavity from which the bubble emerges, is a more appropriate geometric 

assumption than a spherical assumption. The accuracy of this postulation is 

measured in terms of the Modified sphericity in which a Modified sphericity of 

unity is the validating criterion.  That is to say, a Modified sphericity of unity 

corresponds to a truncated spherical bubble with base radius equal to the orifice 

radius. Furthermore, the physical mechanism responsible for a deviation from a 

Modified sphericity of unity is investigated. It is noted that any bubble elongation 

would yield a bubble degree of Modified sphericity less than unity; during early 

growth, any inward deformation from hemispherical to a more pyramid shape 

would result in a bubble degree of Modified sphericity greater than unity. 

 The procedure of calculating the bubble degree of Modified sphericity first 

solves for the equivalent radius of the truncated spherical segment with base 
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radius b by solving for,  1

tr mV V
 in which 1

trV   is the inverse function of Eq. 3-39.  

With this equivalent radius and Eq. 3-38, the equivalent truncated spherical area is 

solved. Subsequently, Eq. 3-37 is used to solve for the bubble degree of Modified 

sphericity.  

 In Figure 3-35, the bubble degree of Modified sphericity evolution 

resulting from the numerically generated bubble profiles is illustrated for a fixed 

bubble foot radius of 1 mm in which the Bond number is varied by varying the 

gravitational field strength only. The fluid properties are that of air in water. 

In Figure 3-36, the bubble degree of Modified sphericity evolution 

resulting from the numerically generated bubble profiles is illustrated for 

terrestrial conditions in which the Bond number is varied by varying the bubble 

foot radius only. The fluid properties are that of air in water. 
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Figure 3-35 : Bubble degree of Modified sphericity evolution from numerical 

simulations for a fixed foot radius of 1mm and a Bond number varying with 

respect to the gravitational constant. 

 

 
Figure 3-36 : Bubble degree of Modified sphericity evolution from numerical 

simulations at terrestrial gravity and a Bond number varying with respect to 

bubble foot radius. 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

118 

 

 The results illustrated in Figure 3-35 show that during early growth the 

bubble degree of Modified sphericity is very close to unity for low gravitational 

field strengths. For the larger gravitational field strengths, the hemispherical shape 

is altered by inward compressions of the bubble outer walls yielding Modified 

sphericity degrees greater than unity. After attaining unity, during mid growth, the 

bubble degree of Modified sphericity begins to decrease; this is attributed to 

bubble elongation due to neck formation. The deviation from a Modified 

sphericity of unity is more pronounced for stronger gravitational field strengths 

corresponding to larger Bond numbers. In addition, the deviation from a Modified 

sphericity of unity is delayed for weaker gravitational fields corresponding to 

smaller Bond numbers. 

 Similarly, the results illustrated in Figure 3-36 show that bubble degree of 

Modified sphericity during early growth is close to unity for all cavity radii tested 

with exception to the larger cavity radii in which the bubble degree of Modified 

sphericity is greater than unity during early growth. Further deviation from unity 

occurs during mid to late stages in the growth cycle. This deviation from unity is 

shown to be more pronounced and to occur earlier in the growth cycle for bubbles 

emmerging from larger cavities corresponding to relatively larger Bond numbers. 

Generally, it is shown that in all bubble formations tested, the bubble’s 

degree of Modified sphericity remains closer to unity than the bubble’s degree of 

sphericity throughout the growth cycle. This implies that a truncated spherical 

assumption is more accurate than a spherical assumption. 
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 In addition, it is shown that a bubble deviates from a bubble degree of 

Modified sphericity of unity with increasing Bond numbers. This is the case when 

the Bond number increases due to an increase in gravitational field strength; it is 

also the case when the Bond number increases due to an increase in cavity radius. 

The deviation to a Modified sphericity of less than unity is attributed to a vertical 

elongation in the bubble shape. This investigation isolates the Bond number as the 

quantifier of the physical parameters responsible for bubble elongation due to 

neck formation. 

 The results can be summarized as follows: larger Bond numbers imply 

larger buoyancy to surface tension ratios favouring earlier neck formation and 

more pronounced neck formation near detachment. It is important to recall that 

this relation between the bubble profile and the Bond number applies to the 

bubble shape only. That is to say, two bubbles with the same Bond number will 

have similar shapes but may have very different size and volume. 

 The effect of the Bond number on the shape of the bubble may be 

explained in the following way: 

1. Large Bond numbers due to large gravitational field 

strengths will result in a large buoyancy force countering the 

hydrostatic forces thereby elongating the bubble and favouring 

neck formation. 
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2. Large Bond numbers due to large orifice (or nucleation 

cavity) radii produce larger bubbles with greater bubble height. 

These larger bubbles experience weakened countering hydrostatic 

forces due to their height thereby elongating the bubble and 

favouring neck formation. 

 

3.7.11. Bubble Shape Dependence on Bond Number 

The previous sections have illustrated, through analysis of the bubble 

Aspect Ratio and the bubble degree of Modified sphericity, that a bubble’s shape 

tendency is dictated by its Bond number. To further illustrate this phenomenon, 

Figure 3-37 compares the bubble profiles generated by the numerical treatment of 

the capillary equation in which the Bond number is invariant.  

In one case, an air bubble grows in water from an orifice of radius 2.02 

mm under terrestrial conditions yielding a Bond number of 0.546. The other 

bubble profile simulates air bubble growth in water from an orifice of radius 1 

mm under a gravitational field strength of 40 m/s² also yielding a Bond number of 

0.546. The sequence shows the respective bubbles transitioning from Early to Mid 

to Late growth. The resulting graphical representation shows that the bubbles are 

of similar shape despite having very different volumes.  
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Figure 3-37: Comparison of bubble profiles of a bubble growing under terrestrial 

conditions from a cavity of radius 2.02 mm with a bubble growing in a 

gravitational field strength of 40 m/s² from a cavity of radius 1 mm. The Bond 

number for both sets of conditions is 0.546.  

 

 In order to compare the relative bubble shapes of the two growing bubbles 

considered in Figure 3-37, the bubble profiles are normalized by dividing the 

horizontal and vertical components by their respective bubble heights, noted hbub. 

The results illustrated in Figure 3-38 show that the bubble shapes are essentially 

identical despite having very different size.  
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Figure 3-38 : Comparison of normalized bubble profiles of different size bubbles 

with the same Bond number 0.546 in Early, Mid and Late Growth. 

 

In light of this result, from this point onward, the only contributing factor 

considered in the analysis of bubble shape is the Bond number.  

 

3.7.12. Bubble Deformation due to Local Stresses 

The following pressure balance analysis investigates the hydrostatic 

pressure distribution and the capillary pressure distribution over a growing 

bubble. The capillary equation is numerically solved for different Bond numbers 

over various stages of the bubble growth cycle. It is carefully noted that the 

variations in Bond number expose the influence of the gravitational field strength 

on bubble shape as well as the influence of the cavity radius on bubble shape. 

Indeed, an increase in Bond number with fixed fluid properties may be considered 
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to be due to an increase in gravitational field strength or to an increase in cavity 

radius.  

In order to further understand the influence of local stresses on bubble 

shape, the principal radii of curvature resulting in changes in the pressure 

distribution are also investigated.  

The principal radii of curvature at any point on the bubble interface, noted 

R1 and R2, are normalized by the radius of curvature at the bubble apex, noted Ro, 

such that, 

3-40 
1 o

i

i

R
R

R

  . 

 Similarly, the hydrostatic pressure and the capillary pressure, noted Phydro 

and Pc respectively, are normalized by the capillary pressure at the bubble apex, 

noted Pc,o, such that,  

3-41 
, 2 /c o o

P P
P

P R
  . 

Recalling from Eq. 3-15 that the capillary equation represents the balance 

of pressure at a point along the bubble interface,  

3-42  
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the capillary equation may be conveniently expressed in terms of the normalized 

pressures,  

3-43  
,

1 1 * *1 1
1 22 2

1

c o hydro
c

b o

P PP

R R Bo z R    . 

Before analysing the results, it is important to recall the physical 

significance of the principal radii of curvature. Illustrated in Figure 3-39 are the 

principal radii of curvature R1 and R2 at two arbitrarily chosen points along an 

arbitrary bubble profile. The principal radii of curvature represent the curvature in 

two planes perpendicular to the surface of the infinitesimal segment neighbouring 

a chosen point.  

An important feature for bubble growth is that 
1

1R
 can at no point 

dissolve to zero since this would imply that R1 tends to infinity effectively making 

the bubble width tend to infinity. This can be visualized as a gas bubble which 

planes over the surface on which it sits as if there were no surface tension forces.  

Furthermore, a change in the sign of 
1

2R
 implies a change in concavity. In 

the specific case of the capillary equation, a negative 
1

2R
 value implies an 

outward curvature (relative to the central symmetric bubble axis) causing an 

inward bubble deformation from spherical. Consequentially, 
1

2 0R   represents 

the location of an inflexion point and appears as a straight portion, possibly 

infinitely short, of the bubble profile and serves to identify the beginning of the 
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necking phenomenon. Therefore, if a negative 1

2R

 
occurs and is located along the 

bubble profile away from the foot of the bubble, the location of the minimum 

negative value of 1

2R  would appear as an inward pinching of the neck of the 

bubble. The inward pinching would be accompanied by smaller values of 1R . For 

this reason, the minimum negative value of 1

2R  attained along the bubble profile, 

paralleled by the maximum value of 1

1R  attained along the bubble profile, 

identifies the most inward pinch that will occur along the bubble profile.  

To summarize, deformation from a truncated spherical shape can by 

identified as the moment in which the minimum and maximum values of 1

2R  and 

1

1R  respectively are located away from the foot of the bubble.  
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Figure 3-39: Representation of the principal radii of curvature at two arbitrary 

locations along an arbitrary bubble contour.  

 

The hydrostatic pressure distribution and capillary pressure distribution 

over a growing bubble analysis begins with bubble shapes at detachment 

corresponding to the moment in the growth cycle in which deformation from 

truncated spherical is most apparent. The profiles resulting from three different 

Bond numbers are compared. 

Figure 3-40 illustrates the principal radii of curvature distribution as well 

as the pressure distribution over a bubble at detachment, noted Growth Cycle
*
 = 1, 
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for three different Bond numbers: 0.00137, 0.134 and 0.546. Once again, the 

bubble contour coordinate points are normalized by the bubble height hbub. 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

Figure 3-40: (Top) Bubble contours near detachment. (Middle) Principal radii of 

curvature profile along the bubble contour. (Bottom) Pressure distribution over the 

bubble.  
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The results show that a low Bond number favours a spherical bubble shape 

near detachment. This is demonstrated by the principle radii of curvature being 

equal to each other over the majority of the bubble contour for the small Bond 

number simulation. In addition, the absolute maximums values of 1

2R  and 1

1R  are 

located at the bubble foot implying little deformation due to inward pinching. In 

contrast, the larger Bond number simulation yields principal radii of curvature 

that are only equal near the bubble apex implying a less spherical bubble at 

detachment. Furthermore, the maximum value of 1

1R , paralleled by the minimum 

negative value of 1

2R , occurs along the neck of the bubble for larger Bond 

numbers. This implies that larger Bond numbers favour deformation in the way of 

inward pinching relative to the central axis. This is attributed to the observation 

(illustrated in the bottom frames of Figure 3-40) that for larger Bond numbers, in 

late stage bubble growth the hydrostatic pressure dominates in the lower section 

of the bubble causing bubble deformation from spherical. In the lower Bond 

number late stage bubble growth scenario, the hydrostatic pressure does not have 

such a dominant role at any point along the bubble contour. This defining feature 

between larger and smaller Bond numbers is found in the forthcoming arguments 

to provide a pivot between what is considered to be a small or large Bond number 

at 0.06032. 

In order to further understand the influence of the hydrostatic pressure 

relative to the capillary pressure on bubble shape during the bubble growth cycle, 

the principal radii of curvature distribution and the pressure distribution over the 
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bubble contour are investigated during bubble growth from inception to 

detachment.  

Figure 3-41 to Figure 3-43 illustrate the evolution of the pressure 

distribution over a bubble growing from a hemispherical inception to detachment 

for a Bond number of 0.00137. The simulations are repeated for growing bubbles 

with larger Bond numbers 0.134 and 0.546, the results of which are illustrated in 

Figure 3-44 to Figure 3-49.  
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Figure 3-41: (Top) Bubble contours during early stage growth for Bond number 

0.00137. (Middle) Principal radii of curvature profile along the bubble contour. 

(Bottom) Pressure distribution over the bubble.  
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Figure 3-42: (Top) Bubble contours during mid stage growth for Bond number 

0.00137. (Middle) Principal radii of curvature profile along the bubble contour. 

(Bottom) Pressure distribution over the bubble. 
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Figure 3-43: (Top) Bubble contours during late stage growth for Bond number 

0.00137. (Middle) Principal radii of curvature profile along the bubble contour. 

(Bottom) Pressure distribution over the bubble. 

 

Figure 3-44 to Figure 3-46 illustrate the evolution of the pressure 

distribution over a bubble growing from a hemispherical inception to detachment 

for a Bond number of 0.134. It is important to note that for larger Bond numbers, 
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the hydrostatic pressure plays a more influential role and as such, bubble 

deformation from spherical is more significant. 

 

 

 

 

 

 

 

 

 

 
 

Figure 3-44: (Top) Bubble contours during early stage growth for Bond number 

0.134. (Middle) Principal radii of curvature profile along the bubble contour. 

(Bottom) Pressure distribution over the bubble. 
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Figure 3-45: (Top) Bubble contours during mid stage growth for Bond number 

0.134. (Middle) Principal radii of curvature profile along the bubble contour. 

(Bottom) Pressure distribution over the bubble. 
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Figure 3-46: (Top) Bubble contours during late stage growth for Bond number 

0.134. (Middle) Principal radii of curvature profile along the bubble contour. 

(Bottom) Pressure distribution over the bubble. 

 

Figure 3-47 to Figure 3-49 illustrate the evolution of the pressure 

distribution over a bubble growing from a hemispherical inception to detachment 

for a Bond number of 0.546. Once again, in the analysis of this evolution, it is 

important to note the role of the hydrostatic pressure. In particular, the hydrostatic 
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pressure is more dominant than the capillary pressure at some point along the 

bubble profile for the majority of the bubble growth cycle for the larger Bond 

number of 0.546. As a result, the neck formation is significant in the bubble shape 

evolution. 

 

 

 

 

 

 

 

 

 
 

Figure 3-47: (Top) Bubble contours during early stage growth for Bond number 

0.546. (Middle) Principal radii of curvature profile along the bubble contour. 

(Bottom) Pressure distribution over the bubble. 
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Figure 3-48: (Top) Bubble contours during mid stage growth for Bond number 

0.546. (Middle) Principal radii of curvature profile along the bubble contour. 

(Bottom) Pressure distribution over the bubble. 
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Figure 3-49: (Top) Bubble contours during late stage growth for Bond number 

0.546. (Middle) Principal radii of curvature profile along the bubble contour. 

(Bottom) Pressure distribution over the bubble. 

 

The behaviour of the principal radii of curvature featured in Figure 3-41 to 

Figure 3-49 parallel the results of the Modified sphericity study. In particular, the 

inverses of the principal radii of curvature are observed to diverge from each other 

and obtain their maximum absolute values, interrelated to the inward pinching on 
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the walls of the bubble neck, earlier in the growth cycle for relatively large Bond 

numbers. This corresponds well with the observed trends of deviation from a 

Modified sphericity of unity. What the above analysis provides is a closer look at 

the mechanism that is causing the bubble to deviate from a Modified sphericity of 

unity. In particular, the slope of 
1

2R
 with respect to y/hbub is positive for the entire 

bubble profile until the hydrostatic pressure becomes dominant. The bubble 

profile at points in which the slope of 
1

2R
 is negative yields an inward pinching 

trend. For the relatively large Bond numbers, the maximum absolute values of 

1

1R  and 1

2R  are attained along the neck of the bubble away from the bubble foot 

during the mid to late growth stages. Prior to this occurrence in the growth cycle, 

the bubble appears to remain a spherical portion with straightening outer walls 

near the bubble foot. It is therefore postulated here that, prior to the hydrostatic 

pressure dominating the capillary pressure, a reasonable bubble shape 

approximation that would simplify any analytical attempts to solving the bubble 

growth problem would be to assume the bubble be a truncated spherical portion 

rising due to a cylindrical neck at its base.  

This crucial location in bubble shape transformation in which the 

hydrostatic pressure becomes dominant can be identified by the following 

inequality,  

3-44 
hydro cP P . 
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Recalling the normalized capillary equation (Eq. 3-43), 

3-45 1 c hydroP P   

and combining with the inequality of Eq. 3-44 yields the following condition for 

bubble deformation due to a dominant hydrostatic pressure,  

3-46 
1

2
hydroP  . 

The above is easily shown to dissolve to,  

3-47 
* * 1
o

b

R z
Bo

  

in which bubz h y  . 

 When analysing the above inequality, it is useful to consider its 

significance at the foot of the bubble when y = 0. This is due to the fact that, if the 

hydrostatic pressure surpasses the capillary pressure in magnitude, the bubble foot 

is the first location on the bubble profile during the growth cycle to experience the 

effects of a dominant hydrostatic pressure on the bubble shape. At the base of the 

bubble 3-47 becomes,  

3-48 
* * 1
o bub

b

R h
Bo

 . 
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 This result is significant in that it illustrates the dependence of bubble 

shape on the Bond number. Notably, for very small Bond numbers, the product on 

the left hand side must be very large to satisfy the inequality making bubble 

deformation due to hydrostatic pressure dominance less likely.  

Since the dominant hydrostatic pressure manifests itself first at the foot of 

a bubble during the bubble growth cycle, the smallest Bond number for which 

bubble deformation due to a dominant hydrostatic pressure term occurs is solved 

for by equating both sides of the inequality of Eq. 3-48 yielding, 

3-49 *

*

1
o

b bub

R
Bo h

 . 

When including Eq. 3-49 into the numerical treatment of the capillary 

equation for a detaching bubble, the Capillary equation solution procedure 

provides one possible Bond number: 0.06032. 

In this way, it is calculated that for Bond numbers strictly less than 

0.06032, bubble deformation due to a dominant hydrostatic pressure term does not 

occur at any moment during the bubble growth cycle. For bubble growth in which 

the Bond number is larger than 0.06032, bubble deformation due to a dominant 

hydrostatic pressure term will occur during the bubble growth cycle. As illustrated 

in Figure 3-50, for bubble growth in which the Bond number is exactly 0.06032, 

the hydrostatic pressure is equal to the capillary pressure at the foot of the bubble 

at the moment of detachment.   
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Figure 3-50: Limiting case for a truncated sphere rising due to a growing 

cylindrical neck assumption. (Top) Bubble contours: Early, Mid and Late stage 

growth for Bond number 0.06032. (Middle) Principal radii of curvature profile 

along the bubble contour. (Bottom) Pressure distribution over the bubble. 

 

 In light of this result, in the forthcoming chapter, a limiting 

condition for the proposed geometric model in which a bubble grows as an 
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idealized truncated spherical bubble rising due to a growing cylindrical neck is set 

to be a Bond number that is less than or equal to 0.06.  

To summarize, the results lead to the following generalization. A small 

Bond number is considered to be less than or equal to 0.06 and results in bubble 

growth that can be idealized as a truncated sphere transitioning from 

hemispherical to spherical while rising due an elongated cylindrical neck.  In 

contrast, a large Bond number is considered to be greater than 0.06 and features, 

at some point in its growth cycle, a hydrostatic pressure that dominates over the 

capillary pressure causing bubble deformation in the form of an inward pinching 

of the neck walls.  

 

3.8. Limitations of Numerical Model 

The numerical treatment of the Capillary equation can generate bubble 

profiles in which the hydrostatic pressure is greater than the capillary pressure at 

the bubble apex, that is to say, it provides solutions for which 
, 1hydro c oP P  . 

However, this provides a physically unrealistic solution since Eq. 3-43 implies 

that in this case, the pressure term 
cP  would be negative effectively inverting the 

interfacial pressure balance. For this reason, the applicability of the numerical 

treatment of the capillary equation is limited to hydrostatic pressures satisfying 

the following inequality,  
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3-50 1hydroP   

which dissolves into,  

3-51 
* * 2
o

b

R z
Bo

 . 

The limiting case of the applicability of the capillary equation is therefore 

that in which a hydrostatic pressure 1hydroP   is included into the solution at the 

point in which 
hydroP  unity is first attained: the bubble foot. The equality  

3-52 
* * 2
o bub

b

R h
Bo

  

is thus included into the numerical treatment of the capillary equation for a 

detaching bubble. For this restrictive condition, the Capillary equation solution 

procedure provides one possible Bond number: 0.9941. 

In this way, it is calculated that the capillary equation numerical treatment 

is applicable to bubble shape profiles for Bond numbers less than or equal to 

0.9941. This limiting case is illustrated in Figure 3-51 featuring 1hydroP   and 

0cP   in the detachment frame. 
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Figure 3-51: Limiting case for the applicability of the capillary equation. (Top) 

Bubble contours: Early, Mid and Late stage growth for Bond number 0.9941. 

(Middle) Principal radii of curvature profile along the bubble contour. (Bottom) 

Pressure distribution over the bubble. 

 

 Further model limitations are due to the fact that, in the development of 

the numerical model, the Young-Laplace equation was used neglecting the 

viscous term. In order to justify this assumption, it is imperative that bubble 
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growth simulations remain within the quasi-static regime. Furthermore, the 

capillary equation is deemed valid for bubble profiles transitioning from an AR of 

½ (approximately hemispherical) to detachment. Indeed, experimentally measured 

bubble growth from nucleation to hemispherical is not observed as quasi-static 

and therefore cannot bench mark the capillary equation bubble profiles prior to an 

AR of ½. 

 

3.9. Conclusion 

A numerical treatment of the capillary equation is benchmarked against 

bubble profiles for quasi-static bubble growth due to gas injection and for heat-

transfer controlled bubble growth due to vaporization. Due to a limited 

applicability of the hydrostatic pressure term, the solution procedure is deemed 

valid for bubble growth applications in which the Bond number with 

characteristic length equal to the bubble foot radius is less than or equal to 0.9941. 

This study of bubble degree of sphericity demonstrates that a fixed base 

truncated spherical geometry more accurately describes bubble shape during 

bubble growth than a spherical geometric assumption. Furthermore, it is shown 

that bubble shape is strictly dependent on the Bond number. The results may be 

summarized as follows: smaller Bond numbers favour a more spherical bubble 

shape. The results remain true for Bond numbers varying due to a varying 

gravitational constant as they do for Bond numbers varying due to a varying 
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bubble foot radius. In particular, bubbles of very different size with the same 

Bond number are shown to have the same shape profile.  

Furthermore, it is shown that for small Bond numbers less than or equal to 

0.06 the hydrostatic pressure does not dominate the capillary pressure at any stage 

during the bubble growth cycle and consequently the bubble behaves as an 

approximate truncated sphere rising due to the elongation of a cylindrical neck. 

For large Bond numbers greater than 0.06, this geometric simplification is no 

longer valid due to inward pinching in the lower section of the bubble attributed 

to a hydrostatic pressure term that is of greater magnitude than the capillary 

pressure term.   
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4. GAS INJECTED ADIABATIC BUBBLE GROWTH 

4.1. Introduction 

 A common shortcoming of analytical attempts to describe bubble growth 

and/or bubble detachment stem from  geometric models which over constrain the 

shape of the bubble as it transitions from inception to detachment.  

 In this investigation, a geometric model is proposed in which the bubble 

evolves from a hemisphere into a truncated sphere with a fixed base radius while 

rising due to the formation and elongation of a cylindrical neck at its base. An 

adiabatic bubble growth model is developed in the quasi-static regime in order to 

validate the bubble geometry. This same bubble shape will then be adopted in a 

forthcoming chapter to heat-induced vapour bubble growth.  

The key assumptions are: 

1. Early in the growth cycle the bubble attains a hemispherical shape. 

This is due to the fact that in this early stage, buoyancy is not a 

dominant force and the bubble will take a hemispherical shape in 

order to minimize its free energy. 

2. The bubble will grow as a spherical segment rising due to an 

elongating cylindrical neck with a radius equal to the orifice radius. 

3. Subsequent to departure a mass equivalent to that of a 

hemispherical bubble is left behind. This is depicted in Figure 4-1 

in which the centre of curvature of the bulk of the bubble is noted 

C.  
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The geometric shape assumption is a result of the numerical treatment of 

bubble shape evolution in chapter 3 for applications in which the Bond number is 

less than or equal to 0.06.  

The incipient hemispherical bubble assumption is due to the relatively 

instantaneous event that is the transition from an absence of vapour at a nucleation 

site to the presence of a hemispherical bubble. Indeed, for the relatively slow n-

pentane vapour bubble growth experiments with a wall superheat of 2.1K carried 

out by Siedel et al. (2008), the transition from an inactive nucleation site to the 

presence of a hemispherical bubble made up for less than 0.22% of the bubble 

growth cycle and is therefore inertia driven. The hemispherical inception 

assumption is deemed appropriate for quasi-static bubble growth analysis. 

 Recalling that a bubble idealized to be a perfect sphere is fully described 

by a single parameter - its radius - the proposed geometry of Figure 4-1 requires 

three shape parameters for its full geometric description: the radius of the 

truncated spherical segment, the height of the cylindrical neck, and the radius of 

the base of the cylindrical neck. In this way, the analytical treatment of bubble 

growth becomes more complex. The advantage of the proposed geometry of 

Figure 4-1 is that it more accurately describes low Bond number quasi-static 

bubble formations thereby leading to more accurate bubble characteristic 

predictions. Furthermore, the proposed geometry of Figure 4-1 alleviates the 

contradictory notion that a perfect sphere with at most a singularity in contact 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

150 

 

with a solid surface could have a surface tension capable of opposing the 

buoyancy of the bubble. 

 

 
 

Figure 4-1: Geometry of growing bubble with formation of a cylindrical neck. 

 

 Considering the geometry of Figure 4-1, the centre of curvature of the 

bubble is related to the bubble radius, noted R, the orifice radius, noted b, and the 

height of the cylindrical neck, noted h, in the following expression, 

4-1 hbRC  ²²  . 

 Admittedly this is a simple geometry. Even still, the bubble will grow and 

elongate with the development of the neck resulting in a centre of gravity vertical 
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component that surpasses the magnitude of the radius of the bubble as is observed 

in reality (Lesage et al., 2009). Conversely, bubble growth that is modeled as a 

perfect sphere or as a truncated sphere with a fixed base radius has a centre of 

gravity vertical component that, due to geometric constraints, remains inferior in 

magnitude to the bubble radius which is contrary to what we know is true . 

 In what follows, a geometric detachment relation is developed based on a 

postulated mass balance at the moment of bubble detachment. This relation is 

dependent on the proposed geometric shape of a bubble. A force balance based on 

the proposed bubble geometric model is coupled with the geometric detachment 

relation into a fully analytical bubble growth model for adiabatic gas injected 

bubble growth from a submerged orifice with a constant volumetric flow rate.  

 

4.2. Geometric Detachment Relation 

 At the moment of detachment the bubble is assumed to split into two 

segments such that the first is a detaching spherical bubble and the second is a 

new hemispherical bubble with radius b fixed to the orifice. This assumption is 

supported in Figure 4-2; captured bubble images from Sergio Di Bari’s 

experiments described in section 2.4 are presented during the rapid bubble pinch-

off at detachment. It is shown that an approximate hemispherical bubble is left at 

the orifice from which the bubble emerged. The lengths are normalized by the 

orifice radius and time is normalized by the time of bubble detachment, 
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4-2 

*

*

/

/

/ d

x x b

y y b

t t t
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
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 It is noted that in the geometric detachment postulation of this paper, the 

process of a bubble detaching into two segments is considered to be an 

instantaneous event. Indeed, the moment of neck formation is often equated with 

the moment of bubble detachment since the life of the neck portion of the bubble 

compared with the growth cycle of the bubble makes the formation of the neck 

and detachment of the bubble nearly simultaneous event (Van der Geld, 2009). 

Furthermore, bubble pinch-off is only a fraction of the necking phenomenon and 

is idealized here as instantaneous. Indeed, experimental results of bubble pinch-

off illustrated in Figure 4-2 show bubble pinch-off to make up less than 0.2 % of 

the bubble growth cycle. 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

153 

 

 

Figure 4-2: Non-dimensional bubble contours of bubble pinch-off. Bubble images 

providing the profiles captured by Sergio Di Bari. 

 

 Similar pinch-off phenomenon's were observed by Buwa et al. (2007); in 

their experimental and numerical study, air was injected into a quiescent liquid at 

constant flow rates ranging from 100 cm³/min to 1700 cm³/min through 

submerged orifices of diameters ranging from 2 mm to 10 mm. At the moment of 

bubble detachment, it was consistently observed that the bulk of the bubble 

0.998t 

0.999t 

1t 
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detached itself from an approximate hemispherical bubble that remained fixed to 

the orifice. Further experimental results exposing this detachment phenomenon 

are detailed in Burten et al. (2005), Kiem et al. (2006), Thoroddsen et al. (2007) 

and Thoroddsen et al. (2008). 

 The interfacial pressure difference at the apex of the bubble at the moment 

of detachment is deduced from Eq. 3-11 to be,

 

4-3 
,

2
o d

d

P
R


   

in which Rd is the principal radius of curvature of the detaching segment. 

However, assuming that Rd is larger than b, a greater interfacial pressure 

difference at the apex of the hemispherical bubble is required, 

4-4 ,

2
o hemiP

b


  . 

Specifically, the difference in the gas pressure at the apex of the detaching 

bubble to the gas pressure necessary to maintain a hemispherical shape at the 

orifice is greater than zero. In particular, from Eq. 3-16 

4-5   0
11

2 ,,,,, 







 bhg
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PP dbubl

d

dovhemiov   
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in which hbub,d is the height of the bubble at detachment, Pv,o,hemi is the vapour 

pressure at the apex of the incipient hemispherical bubble and Pv,o,d is the vapour 

pressure at the apex of the detaching bubble. 

This implies that the pressure in the gas of the detaching bubble is less 

than the pressure required for the hemispherical bubble: dovhemiov PP ,,,,  .  

Therefore, post detachment; the hemispherical bubble that is left attached to the 

orifice will experience a downward force that is dependent on the relative size of 

the detaching segment’s radius to the orifice radius. This can contribute to 

deformation from a hemispherical shape and to weeping into the cavity. Weeping 

occurs when liquid flows down the inner walls of a submerged orifice from which 

gas is issuing (Zhang & Tan, 2000). 

It is postulated here that this moment of detachment occurs once there is 

sufficient vapour mass in the neck of the bubble to complete the spherical portion 

of the detaching vapour bubble and to leave behind enough vapour mass to also 

form a hemispherical vapour bubble of radius b at the tip of the orifice. Further 

assuming that the vapour density is uniform, this detachment relation requires the 

volume of the cylindrical neck portion to be equal to the volume necessary to 

complete the truncated spherical portion into a sphere and the volume necessary 

to leave a hemispherical bubble of radius b at the tip of the orifice.  

 Equating these volumes, 
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yields the following geometric detachment relation relating the height of the 

cylindrical neck at the moment of detachment with the bubble detachment radius 

and the orifice radius, 

4-7 
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 In order to compare this detachment relation to the similar empirically 

developed detachment relation of Oguz & Prosperetti (1993), the vertical 

component of the centre of curvature at the moment of detachment, noted Cd, is 

expressed in terms of the bubble detachment radius of Eq. 4-7. To this end, Eq. 

4-7 is substituted into Eq. 4-1 yielding the following centre of curvature vertical 

component at the moment of detachment which is a result of the geometric 

detachment relation, 

4-8 
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. 

 A comprehensive study of bubble detachment from submerged orifices 

was performed by Oguz & Prosperetti (1993) in which it was observed that the 

centre of curvature was of the order of the bubble radius plus the orifice tip radius 
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at bubble detachment. In order to run a numerical treatment of the bubble growth 

problem, the following detachment relation, resulting from experimental 

observations, was put forth by Oguz & Prosperetti (1993):  

4-9 d dC R b   (Oguz & Prosperetti, 1993).  

 It can be argued that the geometric detachment relation of Eq. 4-8 

dissolves into Eq.4-9 since the ratio of the bubble radius to orifice was commonly 

large for the experimental conditions of Oguz & Prosperetti (1993). Assuming 

then that 2 2

d dR b R  , Eq. 4-8 reduces to,  

4-10 2
3

2 d
d d

d d

R
C R b

R R
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
. 

 The above shows that the geometric detachment relation of Eq. 4-8 is of 

the same order of magnitude as the empirically developed relation of Oguz & 

Prosperetti (1993).  

 In order to validate this geometric detachment relation with experimentally 

measured values, it is compared with bubble detachment radius and bubble 

detachment centre of gravity coordinates that are the result of measurements from 

image processed bubbles of Sergio Di Bari’s experiments described in section 3.4.  

 To this end, the geometric detachment relation is presented in terms of the 

bubble centre of gravity vertical coordinate at the moment of bubble detachment. 
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The centre of gravity vertical coordinate for the proposed geometry is illustrated 

in Figure 4-3 below.  

 

 

Figure 4-3 : Area of integration for the calculation of the centre of gravity. 

 

 Adopting the geometry of Figure 4-3, the centre of gravity vertical 

component, noted H, is deduced from the general vector definition of the centre of 

gravity, 

4-11 0
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
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 Assuming the bubble to be symmetric about the vertical axis due to an 

absence in cross flow, solving 4-11 expresses the centre of gravity vertical 

component in terms of the height of the cylindrical portion, the radius of the 

spherical portion and the centre of curvature (refer to Appendix 7.6). The 

detachment relation in terms of the centre of gravity is expressed as the following 

condition, 

4-12 
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. 

 It is important to note that, by substituting Eq.4-7 and Eq. 4-8 into the 

above, the geometric detachment centre of gravity relation is expressed in terms 

of the detachment radius and the orifice radius only.  

 

4.2.1.  Non-Dimensional Forms of the Geometric Detachment 

Relation 

 The geometric detachment relation described in Eq. 4-7, Eq. 4-8 and Eq. 

4-12 can be conveniently expressed in non-dimensional terms by defining the 

orifice radius as the characteristic length thereby defining the normalized 

parameters as, 

4-13 
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 Dividing all terms of Eq. 4-7 by b and all terms of the Eq. 4-8 by b, the 

non-dimensional forms of the geometric detachment relation for the neck height 

and for the centre of curvature are, respectively, 

4-14 
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and 

4-15 
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 Finally, the expression of the geometric detachment relation used to 

compare with the validating data is the non-dimensional form of Eq. 4-12, that is 

to say, the normalized bubble centre of gravity, 

4-16 
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4.2.2. Geometric Detachment Relation Validation 

 The experimental validation of the geometric detachment relation is 

illustrated in Figure 4-4. Experimental measurements from Sergio Di Bari’s 

captured images of adiabatic bubble growth, described in section 3.4 of this 
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document, for all orifice radii tested and all flow rates tested are compared with 

the geometric detachment relation of this section.  

 In particular, the normalized bubble detachment radius versus the 

normalized bubble centre of gravity predicted by the detachment relation is 

plotted against their experimentally measured values.  

 

 

Figure 4-4: Experimental validation of Eq. 4-16 plotting the normalized bubble 

detachment radius versus the normalized bubble centre of gravity. 

 

 The results show that the geometric detachment relation is within the error 

lines of ±7 % with the experimentally measured values.  

 

lines 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

162 

 

4.3. Force Balance Detachment Criterion 

 A detachment criterion based on a force balance is developed in an attempt 

to bring analytical closure to the gas injected adiabatic bubble growth problem. To 

this end, the forces acting on the bubble are identified in consideration of the 

geometric bubble assumption of this chapter illustrated in Figure 4-3. Once these 

are quantified, a force balance is applied which predicts the bubble radius at the 

moment of detachment.  

 

4.3.1. Forces Acting on Growing Bubble 

 The applicable forces acting on a bubble with the geometric bubble 

assumption of this chapter are illustrated in Figure 4-5. They are identified as the 

capillary force, the buoyancy force, the force due to contact pressure, the force 

due to gas momentum and the force due to drag. 
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Figure 4-5: Forces acting on a growing bubble. 

 

4.3.1.1. Capillary Force 

 The downwardly directed capillary force, noted cF , acts along the triple 

contact line at the base of the bubble. For an arbitrary injected vapour bubble that 

is symmetric about the vertical axis, the triple contact line is the perimeter of the 

orifice from which the bubble is issuing. Integrating about this line, considering 

the orifice radius to be b, yields the capillary force,  

4-17  
0

2cF b t d
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 In the above equation t


 is a unit vector tangent to the interface of the 

bubble and normal to the contact line for which the negative sign represents the 

inward direction of the force (Klausner et al., 1993; Duhar & Colin, 2006). This 

vector and the resultant capillary force are illustrated in Figure 4-6 for an arbitrary 

bubble issuing from an orifice of radius b.  

 

 

Figure 4-6: Capillary force representation. 

 

 The components of t


 are defined by the magnitude of the vector, the 

contact angle, noted  , and an angle   in the x-y plane:  
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 When integrating over the contact line, the resulting x and y directional 

components of the capillary force vector have zero magnitude leaving only the z 

directional component. In light of the spherical symmetry, the z component is 

independent of , it is unchanged along the perimeter of the orifice. Therefore, 

only the vertical component of the Capillary force is non-zero. Equation 4-17 

reduces to the following z-directional force,  

4-19 
0

2 sin 2 sincF b t d b t


         . 

 Applying this to the geometric assumption of this chapter (Figure 4-3), in 

which the contact angle is a right angle at the triple contact line, and recalling that 

t  is a unit vector, the capillary force is reduced to its final form representing a 

downward force, 

4-20 2cF b   . 

 

4.3.1.2. Buoyancy Force 

 The upwardly directed buoyancy force, noted bF  is obtained by integrating 

the hydrostatic component of the liquid pressure over the bubble cap only,  
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4-21 ( )b l vF gdV   .  

 For the spherical segment of the proposed geometric model, this implies 

the volume of the region with liquid both above and below it. This region is 

illustrated in Figure 4-7. 

 

 

Figure 4-7: Representation of volume of region on which the buoyancy force is 

acting. 
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 The volume of the bubble that has liquid above and below it is simply the 

volume of the spherical segment minus the volume of the central silo segment 

illustrated in Figure 4-7. In particular, 

4-22  
4

( )²(2 ) 2 ³ 3 ² 5 ³ ³
3 3 3

bub siloV V R s R s R sR s s
 

         

in which ² ²s R b  . 

 The buoyancy force acting on a truncated spherical bubble is therefore the 

upward force, 

4-23 
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 It is noted that the buoyancy force correctly approaches zero for a 

hemispherical bubble, that is to say, when R approaches b. 

 

4.3.1.3. Force due to Contact Pressure 

 The upwardly directed force due to contact pressure, noted 
pF , sometimes 

referred to as a buoyancy correction force (Cohran and Aydelott, 1966), is 

obtained by integrating along the bubble base, 

4-24 ( )pF n pI dS   . 
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 In the above, I is an identity matrix such that pI is a tensor making the 

product n pI  a vector. 

Due to the symmetry about the vertical z-axis, only the z directional 

component of the force vector is considered reducing 4-24 to,  

4-25   ( ) ²p z v lF n p dS p p b   .
 

 The negligible dynamic actions on the gas-liquid interface within the 

quasi-static regime permit the application of the Young-Laplace equation for a 

truncated sphere, 2 /v lp p R   (Eq. 3-11). 

 Applying the Young-Laplace equation to the above yields the final form of 

the upward force due to contact pressure, 

4-26 
2 ²

p

b
F

R


 . 

 It is noted that for a bubble model that retains the shape of a spherical 

segment without any necking phenomenon, the force due to contact pressure and 

the capillary force are equal yet opposite and thus have exactly offsetting effects 

on the growth of the bubble. This is due to the fact that, for a truncated sphere 

without necking, the term sin  of Eq. 4-19 is equal to the ratio of the orifice 

radius to bubble radius.  
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4.3.1.4. Force due to Gas Momentum 

 For a bubble growing due to gas injection, the momentum of the injected 

gas, and its resultant force, noted 
gmF , may not be negligible (Kasimsetty et al., 

2007). It is defined as,  

4-27 
gm gF mv . 

 For bubble growth due to gas injection at a constant volumetric flow rate, 

the conservation of mass principle applies such that the flow rate is expressed in 

terms of the velocity of the injected gas, noted 
gv , issuing from the orifice,  

4-28 ² gV b v . 

 Assuming the gas density to be constant with respect to time, the force due 

to gas momentum entering the bubble is expressed in terms of the gas injection 

flow rate, the gas density and the orifice radius. The resulting upward force due to 

gas momentum is, 

4-29 2

²

v
gm g v gF mv V v V

b





   . 
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4.3.1.5. Force due to Drag 

 The force due to drag on an object in a steady stream, which, in the case of 

bubble growth in a quiescent liquid would be the fluid velocity adjacent to the 

bubble induced by the bubble formation, is defined as (White, 2008),  

4-30 
1

²
2

D l DF u C A . 

 In the above, u is the stream velocity, DC  is the drag coefficient and A is 

the characteristic area identified as the projected area normal to the flow direction. 

Considering that the bubble is being injected into a motionless fluid and that the 

above definition is for an object that is not growing, the radial expansion shall 

account for the stream velocity that is creating the drag force, that is to say u R .  

 Without resorting to solving the fully viscous governing equations for the 

flow around the bubble, an approximate approach is typically used to calculate the 

influence of the drag force (Kasimsetty et al., 2007). Due to the symmetry about 

the vertical axis of the bubble, the resultant drag force is in the negative z-

direction only. For a truncated sphere with a cylindrical neck whose neck radius is 

less than the bubble radius, as for a sphere, the characteristic area is the cross 

sectional area ²R . For this reason, Eq. 4-30 can be expressed as,  

4-31 2 21

2
D l DF C R R  . 
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 The drag force is generally quite small and often inviscid liquids are 

assumed in the theoretical modelling of quasi-static bubble growth (Buyevich & 

Webben, 1996). In this force balance, in light of the quasi-static assumption, the 

force due to drag shall be deemed negligible. 

 

4.3.1.6. Sum of the Forces 

 The sum of the vertical directional forces acting on the bubble influencing 

its upward momentum is approximately, 

4-32 D c p b gm

downward upward
forces forces

F F F F F F     . 

 Bubble detachment is postulated to take place at the moment in which the 

sum of the above forces is zero since this is when it would be transitioning from a 

negative sum holding the bubble to the cavity to a positive sum translating the 

bubble vertically away from the cavity (Fritz, 1935). The detachment radius can 

therefore be deduced by solving the following equation for Rd, 

4-33 
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4.3.2. Quasi-static Bubble Growth Regime 

In the case of bubble growth due gas injection, it is postulated here that the 

quasi-static regime can be identified as the regime for which the force due to gas 

momentum is negligible. For an orifice radius b, the magnitude of this upward 

force due to gas momentum (detailed in section 4.3.1.4) is 

4-34  
2

²

v
gmF V

b




 .  

 In this study, the influence due to gas momentum shall be deemed 

negligible when it is sufficiently opposed by the downward capillary force 

(detailed in section 4.3.1.1)  

4-35  2cF b  . 

The condition for quasi-static bubble growth is set here to be such that the 

ratio of the force due to gas momentum to the capillary force be less than 
510
. 

That is to say, the quasi-static regime in this document shall be identified by the 

following inequality,  

4-36 

2
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 

 . 

 This inequality places the critical volumetric flow rate at,  
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4-37 
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 


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 The critical volumetric flow rate implies that any gas injected flow below 

the critical volumetric flow rate will yield bubble growth within the quasi-static 

regime. A normalized flow rate in terms of the critical flow rate is defined,  

4-38 
¢

cr

V
V

V
 . 

Bubble growth is therefore deemed within the quasi-static regime if the 

following inequality holds,  

4-39 1¢ V .  

 This critical flow rate is validated in the following section. 

 

4.3.3. Force Balance Detachment Criterion Validation 

 The predicted detachment radius resulting from the force balance 

detachment criterion is compared with measurements from Sergio Di Bari’s 

captured bubble images detailed in section 3.4 for all flow rates tested and all 

orifice radii tested. It is further compared with experimentally measured values 

for different fluids, different injection rates and different orifice radii that are 

available in the literature. In particular, experimentally measured data of bubble 

detachment radii for air bubbles growing in water through an orifice of 2mm 
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radius (Oguz & Prosperetti, 1993), for air bubbles growing in silicon through an 

orifice of radius 0.15 mm (Duhar & Colin, 2006) and for nitrogen bubbles 

growing in ethanol, FC-72, water and HFE (Di Marco et al., 2005) are compared 

with the model’s force balance bubble detachment criterion. These comparisons 

are compiled in Figure 4-8 in which 
, ,/d m d prR R  unity shows agreement between 

predicted and measured detachment radii and in which values of 
¢V  less than 

unity indicate that the bubble formation is taking place within the quasi-static 

regime. 

The results show that within the quasi-static regime, the force balance 

detachment criterion yielding the bubble detachment radius of Eq. 4-33 is within 

the error lines of ± 7% of the experimental results.  
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Figure 4-8: Experimental validation of Eq. 4-33. Comparison of the ratio of 

measured detachment radius to predicted detachment radius for different fluids 

and orifice radii. 

 

 The results illustrated in Figure 4-8 show that beyond the critical flow rate, 

the predicted values generally underestimate the bubble detachment radius for all 

fluids and orifice radii tested. This is attributed to the inertia from the gas 

momentum expanding the bubble walls, thereby creating larger bubbles prior to 

lines 
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detachment and to the presence of the force due to drag delaying detachment 

thereby allowing the bubble to grow larger. 

 

4.3.4. Non-dimensional Form of Detachment Criterion 

 For the present work, the viscous and inertial dynamic forces are assumed 

negligible which limits the applicability to very low gas injection rates such that 

buoyancy and capillary forces are dominant (Gerlach et al., 2007). These low 

rates are categorized as the quasi-static regime. Physically, this regime is such that 

the dynamical actions are negligible when defining the gas-liquid interface 

making the Young-Laplace equation viable. Analytically, this regime is dependent 

on the gas flow rate, fluid characteristics and the orifice radius from which the 

bubble is issuing.  

 Experimental results have shown that the volumetric flow rate has little 

influence on bubble detachment radius within the quasi-static regime (Nahra & 

Kamotani, 2003; Di Marco et al., 2005). Recalling that the quasi-static regime is 

identified by assuming the force due to gas momentum negligible relative to the 

capillary force, this phenomenon is now considered in the force balance 

detachment criterion of Eq. 4-33 without a significant change in the resulting 

detachment radius within the quasi-static bubble growth regime. It is simplified 

by neglecting the force due to gas momentum and by defining the normalized 

detachment radius bRR dd /*   as the ratio of the detachment radius and the 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

177 

 

orifice radius. Dividing all terms by b and neglecting the force due to gas 

momentum, Eq. 4-33 reduces to, 

4-40 

 

*

3/2
* *2

1 2

31

d
b

d d

R
Bo

R R





 . 

 Equation 4-40 implies that the force balance bubble detachment criterion 

is dependent only on the Bond number and not the volumetric flow rate, which, as 

earlier mentioned, is justifiable within the quasi-static bubble growth regime.  

 Figure 4-9 compares the measured normalized detachment radius 

parameter *

dR  to its predicted value generated by Eq. 4-40. The experimentally 

measured bubble detachment radii used in the comparison of Figure 4-9 are those 

among the experimental data used in the earlier validation of the force balance 

criterion of Figure 4-8 for which the bubble formation was deemed to be within 

the quasi-static regime.  

The results show that, for quasi-static bubble growth, the detachment 

criterion of Eq. 4-40 predicts the measured detachment radii within the ± 7% error 

lines. 
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Figure 4-9: Normalized detachment radius with respect to Bond number for quasi-

static bubble growth.  

 

4.4. Bubble Detachment Volume  

 The bubble detachment volume is calculated by coupling the geometric 

detachment relation and the force balance detachment criterion with the postulated 

bubble growth geometry illustrated in Figure 4-1. The detachment volume is 

easily shown to be related to the normalized detachment radius, calculated with 

Eq. 4-40, and the normalized detachment neck height, calculated with Eq. 4-14, 

such that,  

4-41   * * * * * *1 3
2

2 2
d d d d d dV R s R s h    . 

b
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In this document, bubble volumes are normalized by the initial 

hemispherical volume such that,  

4-42 
*

32
3

V
V

b
 . 

Figure 4-10 compares the model predicted bubble detachment volume of 

Eq. 4-41 with the numerically generated detachment volumes from the numerical 

treatment of the Capillary equation described in chapter 3.  

 

 

Figure 4-10: Model predicted versus numerically simulated bubble detachment 

volume for varying Bond numbers.  
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Figure 4-10 shows that the proposed geometric model coupled with the 

geometric detachment relation and the force balance detachment criterion is in 

good agreement with the numerical solutions for bond numbers less than or equal 

to 0.06; it is within ± 7% of the numerical solution for these Bond numbers.  

As was previously discussed in chapter 3, for Bond numbers larger than 

0.06, the hydrostatic pressure near the base of the detaching bubble overcomes the 

capillary pressure causing the neck walls to pinch inwards thereby making the 

cylindrical neck assumption no longer valid. Once again, the geometric model 

proposed in this chapter is deemed suitable in describing bubble growth for Bond 

numbers less than or equal to 0.06.  

 

4.5. Model Development 

 A fully analytical bubble growth model for quasi-static gas injected bubble 

growth from a submerged orifice is developed; the model is based on the 

geometric detachment relation and the force balance detachment criterion of the 

previous section. The model is applicable to adiabatic quasi-static bubble growth 

for which the working conditions are such that the Bond number is less than or 

equal to 0.06. The model’s bubble detachment conditions are summarized in the 

following table. 
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Table 4-1 : Bubble Detachment  

 Equation Description 

Geometric 

Detachment 

Relation 

Eq. 4-14 

  
 

* * * *

*

* *

2 2

3

d d d d

d

d d

R s R s
h

R s

 
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
 Relates bubble neck height to 

bubble detachment radius. 

Force Balance 

Detachment 

Criterion 

Eq. 4-40 
 

*

3/2
* *2

1 2

31

d
b

d d

R
Bo

R R





 Relates bubble detachment 

radius to Bond number. 

 

4.5.1. Bubble Radius Growth Curve 

 In the particular case of constant flow rate gas injected adiabatic bubble 

growth, a simple mass balance is used to dictate the bubble volumetric growth 

rate. That is to say, for a fixed injection rate V , assuming that there is no mass 

diffusion through the bubble interface and that the injected gas feeds the truncated 

spherical segment of the bubble directly,  the time in which the bubble radius has 

a magnitude R is, 

4-43  ( ) ( )tr trV R V b
t

V


  . 
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 The time t is expressed explicitly in terms of R by considering the volume 

of a truncated spherical segment with radius R and base radius b,  

   2 2² ² ² 2
3

trV R R b R R b


     , yielding,  

4-44    
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2222 22
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V
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4.5.1.1. Non-dimensional Form of Bubble Radius 

 The bubble radius growth curve takes on its non-dimensional form by 

defining the characteristic length to be the orifice radius, noted b, the 

characteristic volume to be the incipient hemispherical bubble, noted 
32

3oV b , 

and the characteristic time to be the inverse of the normalized volumetric flow 

rate, thereby defining the non-dimensional parameters as,  
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 Multiplying both sides of the equality of Eq. 4-44 by 
*V  yields its non-

dimensional form,  

 4-46    
2

* * * *1
2 1

2
t R s s R     . 

 

4.5.2. Bubble Centre of Gravity 

 In order to develop a centre of gravity growth curve, it is necessary to 

account for the rise of the spherical segment of the bubble due to neck formation 

at its base. The rise of the centre of gravity during bubble growth is therefore 

considered in this chapter to be due to the growing spherical segment with radius 

R described by Eq. 4-46 coupled with the rise of the bulk of the bubble due to the 

necking phenomenon.  

 To this end, the bubble shape of Figure 4-1 is adopted geometrical relating 

the centre of gravity of the bubble, noted H and detailed in Appendix 7.6, to the 

bubble radius, the orifice radius and the height of the bubble neck, noted h,  

4-47 
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 Once again, the term ² ²s R b   represents the centre of curvature 

position of the spherical segment above the neck of the bubble placing the centre 

of curvature of the bubble at a height C s h  .  
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Recalling that throughout this document all length terms divided by the 

orifice radius are noted 
* / b  , the centre of gravity is normalized,  

4-48 
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. 

4.5.2.1. Bubble Neck Growth Curve 

 The only term on the right hand side of Eq. 4-48 not accounted for by Eq. 

4-46 is the normalized height of the cylindrical neck, *h . This term is solved for 

by coupling the neck growth trend illustrated in Figure 3-36 with the geometric 

detachment relation and the force balance detachment criterion of this chapter.  

 Throughout this document, all bubble characteristics during the growth 

cycle can be normalized by its value at bubble detachment and are noted 

/ d     in which d  is the value of an arbitrary bubble characteristic   at 

detachment. In what follows, the neck height h
 is solved for in terms of t  by 

first postulating a neck height growth trend from the results of chapter 3.  

 In particular, Figure 3-36 of chapter 3 demonstrated that the phenomenon 

of bubble deviation from a truncated spherical shape is more pronounced, and 

manifests itself earlier, for larger Bond numbers. This deviation from a Modified 

sphericity of unity during bubble growth is attributed to neck formation.  

 Illustrated in Figure 4-11 are the findings of Figure 3-36 with a postulated 

bubble neck growth trend that would account for the bubble elongation as a 

function of the Bond number.  The non-dimensional bubble neck growth curve, 
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h
 is postulated to have the growth trend of a monomial function dependent on 

the non-dimensional time t


. 
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Bo
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
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Figure 4-11 : (Top) Modified sphericity quantification of shape deviation from a 

truncated spherical segment relative to Bond number. (Bottom) Postulated bubble 

neck formation accounting for the necking phenomenon relative to Bond number. 
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 The described bubble neck monomial growth curve in Figure 4-11 is 

represented symbolically with the arbitrary constants C1 and C2,  

4-49 
2

1

C
h C t  . 

 In the above, C1 is clearly 1 since unity for h
+
 and t

+
 coincide. A 

distinguishing feature of the proposed bubble neck growth curve is that the slope 

of h
+
 at detachment, for which 1t   and which is noted 

1t

dh

dt 







, increases with 

decreasing Bond number bBo . Furthermore, 
1t

dh

dt 







 tends towards infinity as 

bBo  approaches zero. A term exhibiting such trends while being in a one-to-one 

functional relation with bBo  is *

dR  as is shown by Eq. 4-40. For this reason, the 

following equality is established,  

4-50 *

1

d

t

dh
R

dt 







 . 

 With this, a derivation of Eq. 4-49 with respect to t  and solving for C2  

yields an expression of h
 in its final form,  

4-51 
*
dR

h t  . 
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 In Eq. 4-51, 
*

dR  is solved for with Eq. 4-40 of the force balance 

detachment criterion. In Figure 4-12, Eq. 4-51 is shown to yield the desired 

growth trend accounting for the more prominent bubble elongations associated 

with larger Bond numbers.  

 

Figure 4-12: Normalized predicted growth histories of bubble neck formation for 

different Bond numbers. 

 

4.5.2.2. Centre of Gravity Growth Curve 

 Recalling that it is *h  that will provide closure to the bubble centre of 

gravity growth curve of Eq. 4-48, Eq. 4-51 is expressed in non-dimensional terms 

relative to the orifice radius,  

4-52 

*

* *

dR

d

d

t
h h

t

 
  

 
. 
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 From the geometric detachment relation Eq. 4-14, *

dh  is expressed in terms 

of *

dR , from Eq. 4-46, 
dt  is expressed in terms of *

dR  and from the force balance 

detachment criterion *

dR  is solved for in terms of the Bond number. This implies 

that coupling Eq. 4-52 with Eq. 4-48 yields the centre of gravity growth curve 

with only the Bond number as an input value. The model therefore predicts the 

centre of gravity growth curve with the following inputs: fluid densities, surface 

tension, gravitational constant and orifice radius. 

 The following table describes the equation set solving for the centre of 

gravity growth curve. 

Table 4-2 : Bubble Centre of Gravity Growth Curve 

Equation Description 

     
    

2* * * * * * * * * *

*

* * * * * *

6 4 4

4 3 1

h R s s h R h R s R
H

h R s R s R

     


   
 

Geometric constraint,  

Eq. 4-48 

*

**

dR

d

d
t

t
hh 














 

Neck height modeling,  

Eq. 4-52 

  
2

* * * *1
2 1

2
t R s s R    

 

Mass balance for constant 

volumetric flow, Eq. 4-46 

  
 

* * * *

*

* *

2 2

3

d d d d

d

d d

R s R s
h

R s

 
 


 

Geometric detachment 

relation, Eq. 4-14 

 

*

3/2
* *2

1 2

31

d
b

d d

R
Bo

R R





 Force balance detachment 

criterion, Eq. 4-40 
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4.5.3. Results and Discussion 

 The model described in the preceding sections is compared with the 

bubble growth characteristics generated by the numerical treatment of the 

Capillary equation detailed in chapter 3. These benchmarked numerical 

simulations are used to provide validating curves of bubble growth characteristics. 

In this way, a wide range of conditions that are not easily tested experimentally, 

such as a very small Bond number due to a weak gravitational field strength 

and/or a small cavity radius, are compared with the analytical models ability to 

predict bubble growth characteristics. Indeed the low flow rates required to inject 

a gas through a small orifice while maintaining a bubble growth rate within the 

quasi-static regime are increasingly difficult to attain for increasingly small orifice 

radii. Similarly, extreme gravitational field strengths are not easily simulated in 

laboratory experiments. 

The model predicts the bubble volume to be that of a truncated sphere with 

a foot radius equal to the cavity radius rising due to a cylindrical neck such that,  

4-53    
2

* * * * * *1 3
2

2 2
V R s R s h    . 

The model predicts the bubble Aspect Ratio to be,  

4-54 

* * *

*2

R s h
AR

R

 
  
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and the Modified sphericity as it is defined in Eq. 3-37. The normalized radius 

and neck height, *R  and 
*h  respectively, are detailed in Table 4-2; the volume 

has been normalized by the incipient hemispherical bubble,
*

32
3

V
V

b
  and the 

normalized bubble centre of gravity *H  is calculated from Eq. 4-48. 

 In Figure 4-13 to Figure 4-15, analytical model predicted bubble growth 

characteristics for Bond numbers ranging from 0.00137 to 0.06032 are compared 

with numerically generated growth curves. The normalized time parameter used 

as an input value for the analytical model is quantified from the numerically 

generated bubble volume such that,  

4-55 
* 1NGt V    

in which 
*
VNG is the normalized numerically generated bubble volume. 

The results show that the analytical model predicted bubble growth curves 

are in agreement with the growth trends generated from the numerical treatment 

of the Capillary equation for Bond numbers less than or equal to 0.06. In 

particular, from inception to detachment for a small Bond number of 0.00137, the 

analytical treatment is within 0.05%, 11%, 15% and 1% with the numerical 

treatment of the bubble volume, centre of gravity, AR, and Modified sphericity 

growth curves respectively. It is also shown that the centre of gravity increases in 

a root function trend to a certain point during mid growth at which time it 
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transitions to an exponential growth curve. This transition is attributed to the 

formation of the bubble neck and is accounted for in the analytical model. 

 

Figure 4-13: Model predicted versus numerically simulated bubble growth 

characteristics for conditions in which the Bond number is 0.00137.   
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Figure 4-14: Model predicted versus numerically simulated bubble growth 

characteristics for conditions in which the Bond number is 0.0137. 
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Figure 4-15: Model predicted versus numerically simulated bubble growth 

characteristics for conditions in which the Bond number is 0.06032. 
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4.6. Model Limitations 

4.6.1. Bond number 

As previously discussed, a bubble growing as a spherical segment that is 

rising due to a growing cylindrical neck is limited to applications in which the 

Bond number is less than or equal to 0.06. Indeed, it was shown in chapter 3 that 

for larger Bond numbers, the hydrostatic pressure becomes more dominant than 

the capillary pressure near the base of the bubble at some point during the bubble 

growth cycle. This causes the outer walls of the cylindrical bubble neck to pinch 

inwards making the cylindrical neck assumption inadequate for larger Bond 

numbers.  

As an illustrative example of this limitation, Figure 4-16 compares the 

model predicted bubble growth characteristics to the numerically generated results 

for bubble growth in which the Bond number is 0.546, much larger than 0.06. It is 

important to recall that this is still within the numerical treatments Bond number 

limitation of 0.9941.  
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Figure 4-16: Model predicted versus numerically simulated bubble growth 

characteristics for conditions in which the Bond number is 0.546. 
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4.6.2. Quasi-static Bubble Growth Regime 

 The proposed model is limited to the quasi-static regime defined by the 

normalized critical flow rate such that 
¢ 1

cr

V
V

V
   in which 

3

100 5
cr

v

b
V

 


 . 

Indeed, Figure 4-8 shows that beyond this critical flow rate, the force balance 

detachment criterion of the model is no longer valid thereby limiting the model to 

the quasi-static bubble growth regime. The erroneous results produced by the 

model once outside the quasi-static bubble growth regime are well illustrated in 

the following Figure 4-17 which considers bubble formation due to gas injection 

at a constant flow rate of 100 ml/h through an orifice of radius 0.29 mm in which 

the measured data is a result of the experiments of Sergio Di Bari described in 

section 3.4. The ratio of flow rate to resulting critical flow rate yields a 

normalized critical flow rate of 
¢ 1.64V   which is greater than 1 placing the 

bubble growth outside the quasi-static regime. 

  Figure 4-17 illustrates that the model predicted growth trend, for this non 

quasi-static bubble formation, is not in agreement with the experimentally 

measured growth curve. For this case, the model appears to under-predict the 

experimental data and does not account for any oscillation in the bubble radius 

during growth. This is attributed to the added inertia driven growth that the bubble 

is experiencing in which its momentum helps to drive the adjacent liquid 

outwards. 
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  It is carefully noted that the first frame in the sequence of captured images 

during the bubble formation at 100 ml/h through an orifice radius of 0.29 mm 

yielded a bubble radius greater than the orifice radius. In light of the 

hemispherical assumption of this chapter’s model, the experimental comparison 

of Figure 4-17 was rendered difficult and should be understood as approximate.    

 

Figure 4-17: Theoretical versus measured bubble centre of gravity normalized 

growth curves from an orifice of radius 0.29 mm. The flow rate is 100 ml/h and 

the bubble growth is subsequently not quasi-static, 
* 1.64V  . 

 

t
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4.7. Conclusion 

 An analytical model is presented that describes the observed geometries 

of bubble growth in the quasi-static regime for low Bond number applications 

thereby contributing to the understanding of the fundamental mechanics behind 

pool boiling heat transfer.  

 In particular, a geometric model including the necking phenomenon for 

applications in which the Bond number is less than or equal to 0.06 is adopted; the 

geometric model is a consequence of the analysis of the results of chapter 3. 

Subsequently, a bubble geometric detachment relation and a force balance bubble 

detachment criterion are validated by showing them to be within ± 7% of the 

available experimental data for quasi-static adiabatic bubble growth. An analytical 

model based on the proposed geometry, the geometric detachment relation, and 

the force balance detachment criterion is developed and compared to bubble 

growth characteristics generated from the benchmarked numerical treatment of 

the problem thereby enabling a comparison of small Bond number applications.  

 The model has been validated against the following numerically 

generated bubble growth characteristics: bubble volume during the growth cycle 

and at detachment; bubble centre of gravity; bubble AR and bubble Modified 

sphericity. The model is deemed valid for quasi-static adiabatic bubble growth 

applications in which the Bond number is less than or equal to 0.06.  
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5. BUBBLE GROWTH DYNAMICS IN A NON-UNIFORM 

TEMPERATURE FIELD 

5.1.  Introduction 

Boiling is an effective means of heat transfer. Despite many studies 

yielding numerical models and empirical correlations, the mechanism that 

governs bubble growth during nucleate boiling is not fully understood. Such an 

understanding would facilitate the optimization of industrial heat exchangers 

rendering them more cost effective.  

To this end, many studies have brought insight to bubble formation 

mechanisms by investigating the idealized case of spherical bubble growth in an 

extensive pool of uniformly superheated liquid. In particular, for spherical bubble 

formation in an extended pool of superheated liquid, Forster and Zuber (1954), 

Plesset & Zwick (1954) and Scriven (1959) provided extended versions of 

Raleigh’s equation (Raleigh, 1917) in describing the momentum balance driving 

bubble growth during the inertia-controlled growth regime. Plesset & Zwick 

(1954) and Scriven (1959), with an energy balance analysis, provide analytical 

solutions to spherical bubble growth within the heat-transfer controlled growth 

regime. Bubble growth may transition from one regime to another, and for this 

reason, Mikic et al. (1970) developed a relation that is applicable for the entire 

bubble growth cycle. Riznic et al. (1999) examined the influence of the curved 

vapour-liquid interface on the temperature field during heat-induced bubble 

growth. In these studies, it was globally shown that during the inertia-controlled 
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growth regime, the bubble radius growth curve is approximately linear relative to 

time, while in the heat-transfer growth regime, the radius growth curve is an 

approximate root function relative to time. Prosperetti & Plesset (1978) showed 

that large superheats are required for inertia-controlled bubble growth and that 

otherwise, the heat-transfer controlled regime dominated bubble growth. 

Robinson & Judd (2004) identified the working parameters for which bubble 

growth would be inertia controlled or heat-transfer controlled for spherical bubble 

growth such that,  

5-1 

2
1  Inertia controlled2

1  Heat-transfer controlled3 3
R

l

b
I

Ja



 

 
  

  
. 

The heat-transfer controlled regime favours bubble growth due to a mass 

transfer at the interface rather than the inertia driven bubble expansion of the 

inertia controlled regime. The commonality between quasi-static adiabatic gas 

injected bubble growth in which the momentum is considered negligible and heat-

transfer vapour bubble growth is that in both of these regimes, bubble growth is 

dictated by mass transfer.  

In application, industrial heat exchangers exploiting the thermal transport 

due to the phase change boiling phenomenon generally favour nucleate pool 

boiling issuing from cavities on heated planes rather than spherical bubble growth 

in an extended pool of superheated liquid. Despite this, these previously 

mentioned studies are useful in investigating bubble growth from a heated plane 

since, despite noteworthy differences, bubble growth in an infinite pool of 
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superheated liquid exhibits similar growth regimes (Carey, 1992). In the particular 

case of bubble growth from a heated plane in a non-uniform temperature field, 

Mikic & Rohsenow (1969) developed a model based on a one-dimensional 

analysis of the heat equation for the waiting period and then again for the growth 

period in assuming that the bubble’s interface is at saturation temperature. The 

resulting Mikic & Rohsenow (1969) model contains a shape factor, accounting for 

the moving and curved interface, which is solved for by considering the limiting 

case of a spherical bubble in an extended pool of superheated liquid put forth by 

Plesset & Zwick (1954). In the treatment of the problem, the calculation of the 

waiting time is necessary and is done so by Han & Griffith (1965) in considering 

a thin isothermal layer adjacent to the bubble interface that acts as a conduction 

layer for the bubble. Mikic et al. (1970) provide a unified relation for both 

regimes, inertia-controlled and heat-transfer controlled, that is dependent on a 

Kinetic Energy balance containing an empirical constant. Further vapour bubble 

growth correlations depending on empirical results are detailed in chapter 2.  

A common feature of these studies is a restrictive bubble geometry, which 

in the case of bubble growth on a heated plane, unrealistically simplifies bubble 

growth to spherical. The resulting models often compensate for this by including 

empirical correction terms in order to match validating data thereby impeding our 

understanding of the mechanisms responsible for bubble growth.  

In order to validate a bubble shape proposition, either spherical or not, a 

bubble growth experiment was necessary that reduces the number of varying 
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parameters, while still producing growing vapour bubbles due to the phase change 

phenomenon. This was accomplished by Samuel Siedel of INSA Lyon (Siedel et 

al., 2008; Siedel et al.,2011) in which boiling conditions are tailored such that a 

single bubble grows from an artificial nucleation site while the bubble foot 

remains fixed to the perimeter of the cavity throughout its growth cycle. 

In this study, a geometric model, validated for adiabatic bubble growth in 

the previous chapter 4, is adapted to heat-transfer controlled bubble formation. In 

a collaborative effort with Samuel Siedel of INSA Lyon, the validating 

experiments are idealized to favour the conditions of the model featuring a bubble 

foot that is fixed to the perimeter of an artificial nucleation site; the experiments 

are described in detail in section 3.4. The experiments feature heat-induced low 

saturation temperature n-pentane vapour bubbles growing from an artificial 

nucleation cavity of 90 µm on a heated plane; the wall superheat is between 2K 

and 6K since outside of this range the nucleation site deactivates or bubble 

coalescence occurs; the heat flux is low (ranging from 6 to 9 kW/m²) in order to 

minimize microlayer vaporization and to maintain bubble growth within the heat-

transfer controlled regime (Siedel et al., 2008; Siedel et al., 2011). 

 

5.2. Saturated Bulk Fluid Temperature 

In this study, the particular case of bubble growth due to vaporization in 

which the bulk fluid is at saturation temperature is investigated. 
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For this scenario, Eq. 2-57, combined with the initial boundary layer 

thickness provided by Eq. 2-75, reduces the temperature profile adjacent to the 

heated plane to,  

5-2    
  2

,
4 4 /
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y t T T erf erf

t t
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  
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The above is the temperature profile for the liquid adjacent to the heated 

plane for a constant wall temperature of Twall. 

It is carefully noted that the bubble interface and the heated plane positions 

have coincided in the modeling of the temperature field. The fact that the bubble 

interface is in fact moving away from the heated plane is addressed in the 

forthcoming section 5.3.  

Strictly for illustrative purposes, Figure 5-1 shows the predicted 

temperature profile during the growth period of Eq. 5-2 for a fluid at saturation 

temperature. The input conditions are that of n-pentane with a wall superheat of 

2.1 K. This graphical representation of the temperature profile during the growth 

period illustrates that the thermal boundary layer’s peak temperature diminishes in 

time corresponding to the energy absorbed during bubble formation. Furthermore, 

the temperature near the wall decreases and the boundary layer’s peak 

temperature advances away from the plate with time. Arbitrary initial normalized 
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boundary layer thicknesses of 0.1 and 10 are used in the illustration in which the 

nucleation cavity radius is the characteristic length. 

 

 

Figure 5-1: Graphical representation of the predicted temperature profile during 

the growth period, 0 dt t  . The arrows indicate the advancement of time. 

 

5.3. Moving Interface  

As previously mentioned, the temperature profile assumes the boundary 

condition  0, satT t T  during the growth period to be located at position 0y 

corresponding to the bubble interface location. Since the bubble is growing, is 

curved and is expanding, the boundary is therefore moving. This phenomenon has 

not yet been accounted for in the model. It does however have an influence on 

bubble growth rate since the mass balance at the bubble interface requires that the 
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mass flow rate of vapour be proportional to the heat transfer rate at the bubble 

interface, 

5-3 
lv v l

dV
h k T dA

dt
  

.
 

In particular, accounting for the variable interfacial area in the temperature 

profile will have an effect on the temperature gradient of the above Eq. 5-3.  

In an attempt to account for the moving boundary, Mikic & Rohsenow (1969) 

proposed a shape factor value of 3 . In assuming the bubble to be spherical 

throughout its growth, they solved the interfacial mass-energy balance Eq. 5-3 

with the temperature profile of Eq. 2-57 and included an unknown constant, noted 

C, into the solution,  

5-4 

  2 /

wall sat wall
v lv

o

T T T TdR
h Ck

dt t t


   



 
   

  
 

. 

The initial thermal boundary layer thickness o  is a function of the waiting 

time (Eq. 2-75). The unknown C was solved for by equating the above with the 

limiting solution of spherical bubble growth in an infinite uniformly superheated 

liquid Plesset & Zwick (1954), 

5-5 3 v
lv v

T TdR
h k

dt t




  , 
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and by setting the bubble vapour temperature to the liquid saturation temperature. 

In the Mikic & Rohsenow (1969) analysis, the bubble volume is calculated by 

integrating Eq. 5-4 which solves for the bubble radius and by assuming the bubble 

to be a perfect sphere. 

 

5.3.1. Shape factor 

The thickness of the thermal boundary layer above and near the bubble is 

altered by the presence of the bubble. This has a direct consequence on the 

temperature gradient effectively scaling down the vertical position by the shape 

factor. This increases the temperature gradient as if the medium were reduced in 

thickness. It is postulated here that this reduction in thickness is due to a 

movement upwards of the thermal boundary layer initiated by the bubble itself 

making the 3  shape factor of Mikic & Rohsenow (1969) a simple ratio of the 

calculated thermal boundary thickness   and the thermal boundary thickness 

affected by the bubble interface, noted d. Indeed, Han & Griffith (1965) observed 

that during the rapid expansion of early bubble growth, a large portion of the 

thermal layer is translated vertically upwards.  

Illustrated in Figure 5-2 are the thermal boundary thickness, noted  , as 

conceptualized by the temperature field model and the adjusted thickness, noted d, 

that is reduced in thickness due to bubble formation. The position term y is the 

perpendicular distance from the heated plane and the position term   is the 

perpendicular distance from the bubble interface. 
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

y

d



Thermal boundary affected by bubble formation

Thermal boundary in absence of bubble

 

Figure 5-2 : Effects of bubble growth on the thermal boundary layer. 

 

The shape factor 3  is therefore the ratio / d  and is incorporated into 

the temperature profile with the following change of variable. 

5-6 3y
d


   . 

The temperature profile described by Eq. 5-2 can therefore be expressed in 

terms of  , 
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Equation 5-7 represents the temperature profile adjacent to the heated 

plane in which a shape factor 3  is included and  is the distance from the 

bubble interface.  

 

5.4. Radius Growth Curve 

The temperature profile of Eq. 5-7 is applied to the energy-mass balance of 

Eq. 5-3. Due to the symmetry of the problem, the temperature profile is one 

dimensional. Furthermore, in light of the numerical study on bubble sphericity of 

chapter 3, truncated spherical bubble geometry is adopted, illustrated in Figure 

3-34, in which the bubble vapour-liquid surface area and bubble volume are  

5-8   2 2( ) 2trA R R R b  
 
 

and Eq. 3-39 respectively. It is also assumed that the temperature gradient at the 

interface is uniform over the interface. With these conditions, Eq. 5-3 is expressed 

as, 
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The importance in Eq. 5-10 lies in that the evolving shape of the bubble is 

considered in the integration of the interfacial mass-energy balance equation. 

Typically, the bubble shape is fixed to spherical and the bubble only changes in 

size. However, the interfacial mass-energy balance is greatly affected by the shape 

of the bubble and therefore requires accurate bubble geometry for an accurate 

account of interfacial mass and energy transfer.  

From Eq. 5-7, the one dimensional temperature gradient is calculated to 

be,  
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The integrand of the left hand side of Eq. 5-10 is calculated to be,  
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Integrating Eq. 5-10 fully with the initial condition that the bubble radius 

equals the cavity radius at the beginning of the growth period yields an equation 

which implicitly solves for the bubble radius during the growth cycle as a function 

of time,  
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 Simplifying with the use of the Jakob number, noted Ja, and defined 

relative to the wall superheat, 

5-14 
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reduces Eq. 5-13 to,  
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 Equation 5-15 is conveniently expressed in non-dimensional terms by 

identifying the cavity radius, noted b, as the characteristic length and the 

characteristic time as,  
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The non dimensional terms are defined as,  
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 With these parameters, Eq. 5-13 is reduced to,  

5-18  * * 2ˆ ˆ1 3 o oR s t t        . 

Equation 5-18 is the governing equation for nucleate bubble growth in a 

non-uniform temperature field with a bubble foot that is fixed to the perimeter of 

the nucleation cavity. It is dependent on the fluid properties, the initial thermal 

boundary layer thickness, the wall superheat and the nucleation site radius.  

 

5.5. Results and Discussion  

In a collaborative effort with Samuel Siedel of INSA-Lyon, the model is 

tested against bubble growth experiments from an artificial nucleation site of 

cavity radius 90 μm. The working fluid is n-pentane due to its low saturation 

temperature at 1 bar of 35.7 
o
C. These experiments are particularly well adapted 

to such a model since the ratio of heat flux transmitted directly from the heated 

plane to the bubble is very low (approximately 1%) making any microlayer 

vaporization contribution negligible. The wall temperature can then be assumed to 

be kept constant allowing it to be used as a reference. This is a key component in 

the testing of the model as a constant surface temperature had been assumed. With 

this and heat flux measurements, a range of initial thermal boundary layer 

thickness is generated from the uncertainties in the measurements. Despite the 

non-uniform temperature field, the n-pentane experiments provide a heat-transfer 

controlled environment. This is due to the low wall superheat (2.1 K and 4.7 K), a 
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low imposed heat flux, a moderate contact angle (33 degrees which is a result of 

the wetting properties of n-pentane) and a high latent heat of evaporation 25.9 

kJ/mole. Such conditions result in slower bubble growth minimising the effects of 

inertia thereby requiring heat and mass transfer at the bubble interface for bubble 

growth. Furthermore, mass transfer due to microlayer vaporization is considered 

negligible. This is due to several factors: the low Bond number value implies a 

more spherical shape (refer to chapter 3) thus minimizing the microlayer; 

microlayer contribution to vapour bubble growth is negligible in the heat-transfer 

controlled regime (Carey, 1992); Judd & Huang (1976) showed that microlayer 

evaporation is negligible for low heat fluxes.   

Shape and size of bubbles are recorded with a high speed camera, and 

computed by an automatic processing of the images. Rather than measuring the 

volume of the bubble from an equivalent radius measurement requiring that the 

measurements themselves impose some type of bubble geometry, the volume is 

measured from the image processed bubble contours using a conical frustum 

geometric analysis described in section 3.5; the volume is therefore identified as 

the varying parameter. 

 

5.5.1. Model Bubble Volume  

 The model’s bubble volume is calculated assuming that the bubble grows 

as a truncated spherical segment rising due to an elongating cylindrical neck. 

Furthermore, the foot of the bubble is assumed to be fixed to the perimeter of the 
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nucleation site. For this geometric constraint, as described in chapter 4, the 

volume is related to the bubble radius and bubble neck height in the following 

way,  

5-19    
2
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2 2
V R s R s h    . 

Once again, the normalized terms used in the above are such that, for an 

arbitrary value  , 
* / b   and the volume is normalized by the incipient 

hemispherical bubble with volume (2 / 3) ³oV b  such that 
* / oV V V . 

The neck height represented in the last term on the right hand side of Eq. 

5-19 is related to the detachment radius and the growth time in the same 

formulation as in chapter 4 such that,  
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in which the geometric detachment relation of section 4.2 requires that,  

5-21 .  

The detachment radius is calculated by setting the sum of the forces acting 

on the bubble is quasi-static growth identified in section 4.3 to zero, 
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Equation 5-22 is normalized by the cavity radius reducing Eq. 5-22 to, 
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The model’s ability to accurately predict bubble volume during bubble 

formation for the vapour bubble experimental conditions described in section 3.4 

is illustrated in Figure 5-3 to Figure 5-6. The working fluid is n-pentane, the wall 

superheats are 2.1 K and 4.7 K, the nucleation cavity radius is 90 µm and the 

contact angle for n-pentane is measured to be 33 degrees. From Eq. 5-1, bubble 

growth is deemed within the heat-transfer controlled regime for working 

conditions in which the following inequality is satisfied,  

5-24 
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3 3 l

b
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The above inequality is easily satisfied for the low wall superheats of the 

working conditions. The bubble growth is therefore deemed entirely within the 

heat-transfer controlled regime due to the low Jakob numbers which are 2.83 and 

6.32 corresponding to wall superheats of 2.1 K and 4.7 K respectively. The model 
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is also compared with those of Han & Griffith (1965), Van Stralen (1966), Mikic 

& Rohsenow (1969) and Zhao et al. (2002) detailed in chapter 2.  

 

 

Figure 5-3: Predicted versus measured bubble volume growth histories. The wall 

superheat is 2.1 K, the bulk liquid is saturated n-pentane and the artificial 

nucleation cavity radius is 90 μm. The wall superheat Jakob number is 2.83. 

 

 

1969
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Figure 5-4: Predicted versus measured bubble contour growth histories. The wall 

superheat is 2.1 K, the bulk liquid is saturated n-pentane and the artificial 

nucleation cavity radius is 90 μm. The wall superheat Jakob number is 2.83. 
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Figure 5-5: Predicted versus measured bubble volume growth histories. The wall 

superheat is 4.7 K, the bulk liquid is saturated n-pentane and the artificial 

nucleation cavity radius is 90 μm. The wall superheat Jakob number is 6.32. 
 

1969
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Figure 5-6: Predicted versus measured bubble contour growth histories. The wall 

superheat is 4.7 K, the bulk liquid is saturated n-pentane and the artificial 

nucleation cavity radius is 90 μm. The wall superheat Jakob number is 6.32. 
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 The initial thermal boundary layer is a required input parameter for the 

present model, the Mikic & Rohsenow (1969) model and the Han & Griffith 

(1965) model. From the validating data, the maximum initial thermal boundary 

layer possible is calculated from the heat flux measurements for the wall 

superheat of 2.1 K and the wall superheat of 4.7 K detailed in Siedel et al. (2011). 

The most appropriate initial thermal boundary layer within the limit was inputted 

into the models. The table below details the initial thermal boundary layers used 

in generating the growth curves for the respective models. The initial thermal 

boundary layer is normalized by the bubble foot radius such that 
* /o o b  .  It is 

noted that the best fit thermal boundary layer thickness for the Han & Griffith 

(1965) and Mikic & Rohsenow (1969) models was the maximum resulting from 

the Siedel et al. (2011) heat flux measurements.  

 

Table 5-1 : Initial thermal boundary layer 

 
2.1wallT K   4.7wallT K   

Present Model 
*

o = 1.526 
*

o = 0.553 

Mikic & Rohsenow 

(1969) 
*

o = 1.559 
*

o = 0.739 

Han & Griffith (1965) 
*

o = 1.559 
*

o = 0.739 
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5.5.2. Centre of gravity 

 The rise of the centre of gravity provides insight into the elongation of the 

bubble. The model predicted bubble centre of gravity is once again deduced from 

the bubble geometry of chapter 4, illustrated in Figure 4-3, in which the centre of 

gravity is shown to be geometrically related to the vertical position of the bubble 

neck height and the bubble radius,  

5-25
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The model’s ability to accurately predict the bubble centre of gravity 

during bubble formation is illustrated in Figure 5-7  and Figure 5-8 below for the 

same experimental conditions as in Figure 5-3 and Figure 5-5 respectively.  
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Figure 5-7: Predicted versus measured bubble centre of gravity growth histories. 

The wall superheat is 2.1 K, the bulk liquid is saturated n-pentane and the 

artificial nucleation cavity radius is 90 μm. The wall superheat Jakob number is 

2.83. 

 

 

1969
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Figure 5-8: Predicted versus measured bubble centre of gravity growth histories. 

The wall superheat is 4.7 K, the bulk liquid is saturated n-pentane and the 

artificial nucleation cavity radius is 90 μm. The wall superheat Jakob number is 

6.32. 

 

 The results show that the model under predicts the centre of gravity 

position. It does however correctly predict the centre of gravity growth trend. In 

particular, a common short coming of a spherical assumption or a truncated 

spherical assumption that does not include the necking phenomenon, is that the 

centre of gravity vertical position plateaus near the end of the growth cycle. 

However, it is experimentally observed that the centre of gravity vertical position 

increases near the end of the growth cycle as the bubble prepares to detach. The 

model proposed in this chapter correctly predicts this trend yet under predicts the 

magnitude of the centre of gravity vertical position. 

1969
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5.5.3. Aspect Ratio 

The rise of the centre of gravity in this document has been attributed to the 

asymmetric growth of the bubble which is responsible for its changing shape. The 

bubble has been assumed to transition from hemispherical to spherical with its 

bulk rising due to the necking phenomenon. The combination of the rise and 

transforming shape of the bubble can be described in a simple term as bubble 

elongation. A convenient method of quantifying bubble elongation is the bubble 

Aspect Ratio, noted AR and detailed in section 3.7.7, which is defined as the ratio 

of bubble height to bubble width.  

The model predicts the bubble height, illustrated in Figure 4-3, to be, 

5-26 * * * *

bubh R s h  
.
 

The model’s ability to accurately predict the bubble AR during bubble 

formation is illustrated in Figure 5-9 and Figure 5-10. The predictive capabilities 

of the Han & Griffith (1965), Van Stralen (1966), Mikic & Rohsenow (1969) and 

Zhao et al. (2002) models are represented by an AR of unity due to the spherical 

assumptions of these models.  

 

 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

224 

 

 

Figure 5-9: Predicted versus measured bubble AR growth histories. The wall 

superheat is 2.1 K, the bulk liquid is saturated n-pentane and the artificial 

nucleation cavity radius is 90 μm. The wall superheat Jakob number is 2.83. 
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Figure 5-10: Predicted versus measured bubble AR growth histories. The wall 

superheat is 4.7 K, the bulk liquid is saturated n-pentane and the artificial 

nucleation cavity radius is 90 μm. The wall superheat Jakob number is 6.32. 

 

 

The results show that the model correctly predicts the AR trend of sharply 

increasing during early growth (attributed to the bubble’s transition from 

hemispherical to spherical) to a stabilized value of AR that is close to unity 

(corresponding to a more spherical bubble during mid growth) and finishing with 

a sharp increase in AR near the end stage (attributed to neck formation prior to 

detachment). Figure 5-10 shows that the model of this chapter correctly predicts 

the bubble elongation trends. 
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5.6. Conclusion 

The results show that the presented model provides bubble growth curves that 

follow the observed bubble growth trends for a vapour bubble growing on a 

heated plane. In contrast, these experimentally measured growth trends are not 

produced from the previous analytical models that were limited by the spherically 

geometric bubble assumption.  

The novelty of the presented model lies in that it assumes the bubble to 

change in size as well as in shape while maintaining a fixed bubble foot to the 

nucleation cavity. The force balance calculation subsequently becomes non 

contradictory and the interfacial mass-energy balance (Eq. 5-3) is solved for 

considering the transitioning bubble rather than an unrealistic fixed spherical 

shape. Indeed, the interfacial mass-energy balance is sensitive to the adopted 

geometric form when integrating over the vapour-liquid surface; as such, 

spherical assumptions lead to erroneous growth trends. Furthermore, no empirical 

correction factors have been used in the presented model thereby providing 

insight into the physical mechanisms responsible for bubble growth.  

The presented model applies to low Bond number heat-transfer controlled 

bubble growth in which inertial effects from accelerating fluids are negligible and 

in which the hydrostatic pressure is less than the capillary pressure at all points 

along the bubble interface. The model is restricted to working conditions yielding 

Bond numbers that are less than or equal to 0.06 and in which the bubble foot 

remains fixed to the nucleation cavity.   
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The comparison between the experimentally measured growth curves and the 

presented analytical model is made possible by Samuel Siedel’s novel 

experimental results in which a heat-induced vapour bubble grows in a pool of n-

pentane from a nucleation site on a heated plane such that the bubble foot remains 

fixed to the cavity perimeter.  

 

5.7. Model Limitations 

 The proposed model is deemed suitable for low Jakob numbers, as defined 

by Eq. 5-14, which, for fixed fluid properties, entails low wall superheats. 

Physically, the Jakob number represents the ratio of sensible energy to latent 

energy transfer at the bubble interface. Since the model was built on an interfacial 

mass-energy balance and not on an inertia driven momentum balance, the model 

will deviate from measured values for higher Jakob numbers. That is to say, high 

Jakob numbers favour the inertia-controlled bubble growth regime where as low 

Jakob numbers favour the heat-transfer controlled regime which, in this study, is 

the bubble growth regime investigated. In particular, for higher wall superheats, 

the bubble experiences growth due to the bubble’s momentum-induced ability to 

do work on the neighbouring fluid rather than growth due to a heat-induced mass 

transfer. Subsequently, for higher Jakob numbers, the bubble interface 

temperature is not necessarily at the fluid’s saturation temperature rendering the 

model’s assumption of such non valid. Specifically, the model is limited to 
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working conditions yielding a Jakob number that satisfies the inequality of Eq. 

5-24. 

 The geometric constraint proposed in which the bubble grows as a 

truncated spherical segment rising due to an elongating cylindrical neck with a 

foot fixed to the cavity perimeter is limited to applications in which the Bond 

number is less than or equal to 0.06. This restriction is detailed in chapter 3 and is 

attributed to the fact that for Bond numbers larger than 0.06, the hydrodynamic 

force becomes more dominant than the capillary force near the base of the bubble 

causing the neck walls to pinch inwards and thereby deviate from the model’s 

geometric assumption of a cylindrical neck. 

Further limitations require the bubble foot to stay fixed to the perimeter of 

the nucleation cavity, the wall superheat to be constant, and the micro layer 

vaporization to be negligible. In the case of the Siedel n-pentane experiments 

described earlier, the experiments conform well to the model for wall superheats 

between 2 K and 6 K. For superheats less than 2 K the nucleation site deactivates 

and for superheats greater than 6K bubble coalescence occurs (Siedel et al., 

2008).  

The ensemble of these limiting conditions make the Siedel n-pentane 

experiments with wall superheats of 2.1 K and 4.7 K the only available validating 

data for the presented model at the time of this writing.  
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6. CONCLUSION 

6.1. Discussion 

A mathematical model is presented that more accurately describes the 

observed geometries of bubble growth in the quasi-static regime and the heat-

transfer controlled regime than previous analytical models and without empirical 

correction factors thereby contributing to the understanding of the fundamental 

mechanics behind pool boiling heat transfer.  

Bubble shape behaviour is first investigated by considering the bubble degree 

of sphericity of numerically generated bubble contours for both adiabatic bubble 

growth and for bubble growth due to vaporization. The numerical treatment of the 

capillary equation generating bubble profiles is benchmarked with image 

processed bubble contours for gas injected bubble growth. Furthermore, the novel 

benchmarking of the capillary equation with bubble growth due to vaporization 

from an artificial nucleation cavity is made possible by the unique bubble growth 

experiments of Samuel Siedel in which a vapour bubble grows from a nucleation 

cavity in a quasi-static manner while its bubble foot remains fixed to the cavity 

perimeter.  

The analysis of the numerical results shows a strict dependence of bubble 

shape on the Bond number. In particular, bubble elongation due to the necking 

phenomenon begins earlier and is more pronounced for bubble formation with a 

larger Bond number. This result can be summarized in saying that a bubble with a 
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small Bond number is more spherical than a bubble with a larger Bond number 

regardless of the bubble’s size.  

Subsequently, a geometric model for low Bond number applications in which 

the bubble changes in size and in shape and which includes the necking 

phenomenon, is introduced in conjunction with a newly developed geometric 

detachment relation. A novel feature of the presented geometric model is that the 

tendency of the bubble to elongate, an observed bubble growth phenomenon, is 

dictated by the physical mechanisms quantified by the Bond number. The 

geometric detachment relation is validated with quasi-static adiabatic bubble 

growth experiments.  

In addition, the adopted low Bond number geometry allows for a force 

balance calculation in which the surface tension and buoyancy force each employ 

the same bubble geometry. This alleviates the contradictory statement in the much 

used Fritz (1935) buoyancy-surface tension balance bubble detachment criterion 

in which the bubble is assumed spherical for the buoyancy force calculation (and 

thus having at most an infinitesimal in contact with the heated plane) while having 

a bubble foot in contact with the nucleation site for the surface tension 

calculation.  

Bubble growth curves predicting bubble volume, centre of gravity, aspect 

ratio and contours are generated from the resulting geometric model and are 

validated with the benchmarked numerical solution for quasi-static bubble growth 

in which the Bond number is less than or equal to 0.06.  
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The geometric model is applied to heat-induced vapour bubble growth in 

which the bubble foot is fixed to the cavity perimeter. It is validated with n-

pentane heat-transfer controlled vapour bubble growth from a heated plane of low 

wall superheat.  

The presented models tell a complete analytical story of bubble growth 

characteristics such as bubble volume, centre of gravity, centre of curvature, 

height, neck height, truncation, contour, sphericity and aspect ratio. 

 

6.2. Contribution 

The notion of the bubble degree of Modified sphericity is introduced showing 

that it is necessary to consider the asymmetric shape of a bubble throughout its 

growth cycle when predicting bubble characteristics. In particular, the bubble 

degree of bubble Modified sphericity is shown to be close to unity during the 

bubble growth cycle with a deviation from unity near detachment; this deviation 

is attributed to bubble neck formation near the base of the bubble. It is shown, in a 

novel result, that this behaviour is dictated by a Bond number for which the 

characteristic length is the cavity radius. 

In addition, the numerical solution to the capillary equation is benchmarked 

with bubble formation due to vaporization. Indeed, The validation of the bubble 

profiles generated from the numerical treatment of the capillary equation was 

made possible by the novel vapour bubble experiments of Siedel et al. (2008) in 

which a heat-induced bubble grows due to vaporization within the heat-transfer 
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controlled growth regime with the bubble foot fixed to the perimeter of the cavity. 

At the time of this writing, to the best of the author’s knowledge, the numerical 

solution of the capillary equation had only been validated for gas injected bubble 

growth (Gerlach et al., 2005; Di Marco et al. 2005) and for bubble growth due to 

gas diffusion (Mori & Baines, 2001).  

A geometric detachment relation links bubble growth characteristics, such as 

bubble detachment radius and bubble detachment centre of gravity, which can 

provide closure to problems that are one relation away from solving a system of 

equations associated with bubble growth. Such use of this geometric detachment 

relation resulting in a more accurate bubble growth model than previous analytical 

models appears in this study for both adiabatic bubble growth and bubble growth 

due to vaporization for applications in which the Bond number with characteristic 

length equal to the cavity radius is less than or equal to 0.06. 

 

6.3. Recommended Future Work 

Further validation of the numerical treatment of the capillary equation for 

bubble growth due to vaporization is recommended. In particular, there is very 

little model validation of the postulation that bubble detachment occurs when the 

numerical treatment no longer provides a solution (Mori & Baines, 2001; Gerlach 

et al. 2005).  

Incorporating the phenomenon of bubble pinch-off at detachment is 

recommended. This process is very rapid and is often left as an instantaneous 
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event; however, there are a growing number of numerical studies on the subject 

(Quan & Hua, 2008) and an analytical model would provide insight into the 

physical mechanisms responsible for bubble pinch-off.  

Finally, a natural continuation of this work would be to develop a similar 

bubble shape model for Bond numbers greater than 0.06 thereby including the 

inner neck pinching resulting from a dominant hydrostatic pressure.  
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7. Appendix 

7.1. Capillary Equation as a function of z 

In order to express Eq. 3-18 as a function of z rather than as a function of x, 

the respective first order derivatives are related in the following way. Implicitly 

differentiating  x x z  with respect to z yields, 

7-1  1 dz
dx

x z  . 

The above in turn implies Eq. 3-21. Implicitly differentiating Eq. 7-1 yields,  

7-2    
2 2

2
0

dz d z
x z x z

dx dx

 
   

 
 

yielding,  

7-3 

 

 

2

2

2

dz
x z

d z dx

dx x z

 
  

  


 

which when combined with Eq. 3-21 yields Eq. 3-22. 

 

7.2. Mathematica Code 

To measure the bubble volume, vapour-liquid surface area and bubble centre 

of gravity from the image processed bubble profiles, a Mathematica code is 

written using a conical frustum geometric analysis described in Figure 3-12. The 
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input data is a set of coordinates representing half of the bubble contour for a 

bubble that is symmetric about the vertical axis as illustrated in Figure 3-12. 

 

Input data:   data= ... 

n=Length[data]; 

r[i_]:=data[[i+1]][[1]] 

   R[i_]:=data[[i]][[1]] 

   h[i_]:=data[[i+1]][[2]]-data[[i]][[2]] 

   v[i_]:=(1/3)*h[i](r[i]^2+r[i]*R[i]+R[i]^2) 

   a[i_]:=(r[i]+R[i])Sqrt[(R[i]-r[i])^2+h[i]^2] 

z[i_, data_] := (hi[i,data] (r[i, data]^2 + 2r[i, data]*R[i, data] 

+ 3 R[i, data]^2))/(4 (r[i, data]^2 + r[i, data]*R[i, data] + 

R[i, data]^2)); 

 

Volume:    Sum[v[i],{i,1,n-1}] 

Surface Area:    Sum[a[i],{i,1,n-1}] 

Centre of Gravity:   Sum[z[i, data], {i, 1, n[data] - 1}] 

 

7.3. Leibniz’s Theorem 

Let R be a region with surface area S and a surface velocity of w


. If   is a 

scalar, vector or tensor function with time parameter t, then 
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7-4 
( )R t R S

d d
dV dV n w dS

dt dt


      . 

 

7.4. Gauss’s Theorem 

Let R be a region that is bound by the closed surface S. Let v


 be a vector 

function with continuous partial derivatives. Gauss’ Theorem states that, 

7-5 
R S
divvdV n vdS   . 

 

7.5. The Continuity Equation 

The continuum assumption states that the time rate of change of mass of a 

Material Region is zero. Symbolically, 

7-6 0
MR

d
dV

dt
  . 

       Applying Leibniz’s Theorem to the Material Region with wv


  (Recalling 

that for a Material Region the surface velocity w


 is equal to the fluid velocity v


), 

7-7   0
MR MR

dV n v dS
t





  

  . 

Applying Gauss’ Theorem, 
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7-8 0v dV
t




 
  

 
 . 

The above integrand must be zero since the Material Region was chosen 

arbitrarily yielding the differential form of the continuity equation which for a 

Material Region with fluid velocity v


is stated as,  

7-9 0v
t





  


. 

 

7.6. Prinipal Radius of Curvature at the Apex Evolution 

 The bubble principal radius of curvature at the apex origin, noted Ro, is 

investigated with the numerical treatment detailed in chapter 3. 

 In Figure 7-1, the principal radius of curvature at the apex origin evolution 

resulting from the numerically generated bubble profiles is illustrated for a fixed 

bubble foot radius of 1 mm in which the Bond number is varied by varying the 

gravitational constant only. The fluid properties are that of air in water.  

 In Figure 7-2, the principal radius of curvature at the apex origin evolution 

resulting from the numerically generated bubble profiles is illustrated for 

terrestrial conditions in which the Bond number is varied by varying the bubble 

foot radius only. The fluid properties are that of air in water. 

 



P h . D .  T h e s i s -  F . J . L e s a g e ;  M c M a s t e r  U n i v e r s i t y -

M e c h a n i c a l  E n g i n e e r i n g  

238 

 

 
Figure 7-1 : Bubble principal radius of curvature at the apex origin evolution from 

numerical simulations for a fixed foot radius of 1mm and a Bond number varying 

with respect to the gravitational constant.  

 

 
Figure 7-2 : Bubble principal radius of curvature at the apex origin evolution from 

numerical simulations at terrestrial gravity and a Bond number varying with 

respect to bubble foot radius.  
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 Figure 7-3 illustrates the dependence of the normalized principal radius of 

curvature at the apex origin on the Bond number. 

 

 

Figure 7-3 : Normalized bubble principal radius of curvature at the apex origin 

evolution from numerical simulations relative to Bond number.  

 

7.7. The Centre of Gravity of a Truncated Sphere with Cylindrical Neck 

at its Base 

The centre of gravity of the geometric form represented in Figure 4-3 is solved 

for in the following sequence beginning with the definition of the centre of 

gravity,  

7-10 0

0

R C

R C

r dV
H

dV












. 
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Since the density is assumed uniform and the geometry of the growing 

bubble is symmetric about the vertical z axis, the z component of the centre of 

gravity can be expressed as an integration of the z component of the position 

vector r

. The centre of gravity in terms of the centre of curvature and the bubble 

radius is calculated in which A(z) is the cross sectional surface perpendicular to 

the z axis: 

7-11 





CR

zz dVr
V

H
0

1

 

 
0

1 R C

zA z dz
V



   

  




   

h CR

h
dzzxzdzzb

V 0

2
²



 

  




   

h CR

h
dzCzRzdzzb

V 0

22²


 

     ³ 4 3 ³ 3
12

h C h R C R C
V


       . 

The volume, noted V, of the geometric form illustrated in Figure 4-3 is, 

7-12    ² 2 ²
3

V R s R s b h


    . 
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Rearranging the above and expressing the volume of the bubble in terms of the 

bubble centre of curvature, bubble neck height and bubble radius yields,  

7-13      2 2 ²
3

V R C h R C R C h h


       . 

Substitution yields the final expression for the centre of gravity of the bubble, 

7-14 
      

   
3 2 2

4 2 2 ²

R C h R C h R C h h R C h R C h
H

R C R C h h

          


   
 

in which ² ²C R b h   . 

 

7.8. Solution to 
2

0
e d 




   

In what follows, a numerical value of the integral I, defined as
2

0
I e d 


  , 

is solved for. By definition of I, for two arbitrary variables 1  and 2 ,  

7-15 
2 2

1 2

1 2
0 0

I e d e d
  

 
 

   . 

2I  is expressed as a double integral,  

7-16  1 21 2
² ²² ²

1 2 1 2
0 0 0 0

²I e d e d e d d
     

      
     . 

Setting the variables 1  and 2  to 1 cos    and 2 sin   , the above is 

solved for in terms of   and  , 
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7-17 
   

1

2 ² cos² sin ²2 ²

0 0 04 4
I e d d e


    

  
        . 

Therefore,  

7-18 
2

0 2
I e d 




  .  
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