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Abstract

Our research focuses on the development of systematic strategies and formulations for the

optimal operation of plants under partial shutdown conditions. A partial shutdown is a type of

circumscribed plant unit shutdown that permits the rest of the plant to continue operating to

some degree. The goal of a partial shutdown strategy is to be able to manipulate the available

degrees-of-freedom in a plant—during and after a shutdown—such that production is restored

in a cost optimal fashion while meeting all safety and operational constraints. This can be

accomplished through adjustments of production rates, recycles and buffer levels.

In order to compute these adjustments and to arrive at an open-loop advisory policy, we solve a

differential-algebraic-equation (DAE) based dynamic optimization problem containing a model

of the plant. Within this broad framework, we take a novel multi-tiered dynamic optimization

approach that allows us to prioritize multiple competing objectives and specify the trade-offs

from one tier to the next. The control trajectories from the solution of the dynamic optimization

problem can then be used to inform the formulation of an inventory management policy for

operating a plant during partial shutdowns.

In this work, we employ a transient model-based partial shutdown control algorithm for imple-

menting the above-mentioned policy under feedback. This permits the policy to be carried out

in the presence of uncertainty and disturbances. An economics-driven Model Predictive Control

(MPC) control structure is selected for this purpose.

We also present several parsimonious discrete modeling formulations for handling model discon-

tinuities such as shutdown thresholds, induced shutdowns and minimum shutdown durations.

The problem of minimizing the restoration time is also considered. The resulting optimization

problem is a mixed-integer dynamic optimization problem (MIDO) that can either be employed

in an open-loop advisory capacity or embedded inside a feedback control framework.

In most control applications, some degree of plant-model mismatch will invariably be present.

We investigate the use of nonlinear state and parameter estimation algorithms to moderate the

adverse effects of mismatch. The estimation algorithms are based on novel configurations of the

constrained Unscented Kalman Filter (UKF), a derivative-free observer that received considerable

attention in recent years. Constraints on the state and parameter estimates are enforced through

a simple projection method that is based on solving a quadratic program.

Plant-model mismatch can often render terminal constraints infeasible. To address this, we
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employ a form of the multi-tiered optimization problem where the objectives of dynamic

feasibility, cost-optimality, deviation from product specifications and input effort are solved in

separate tiers. The dynamic feasibility tier ensures that terminal constraints and parameters

arriving from a one-step ahead estimator are feasible for the prediction horizon in the control

optimization problem.

An accompanying contribution is a proof-of-concept modeling system for prototyping dynamic

optimization models known as MLDO (Modeling Language for Dynamic Optimization). The

modeling system reads a mathematical description of a problem and automatically generates

code in various computer languages for optimization, simulation, visualization and analysis of

dynamic optimization problems. Facilities for problem reformulation and transformations are

also included.
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Chapter 1

Introduction

In this chapter, we will acquaint the reader with the core problem that forms the basis of our

work, namely the partial shutdown problem. The objectives of our research are stated.

1.1 The Partial Shutdown Problem

In a typical chemical plant, raw materials are transported through a number of processing units

to be fashioned into some end-product. Process units are shut down from time to time either

for maintenance or due to equipment failure. Shutdowns in intermediate units constitute a

disruption in the processing chain, which can adversely affect the plant’s ability to continue

operating. They frequently also have an adverse effect on the operating economics of a plant

due to the attendant loss of production capacity.

From an operations perspective, plant shutdowns can be classified as either critical or partial,

with the former being those that lead to the shutdown of the entire plant and the latter, those

that do not. In the case of critical shutdowns, the entire system is invariably forced to shut down,

and under such circumstances the usefulness of any optimal control policy is limited.

Under partial shutdown scenarios however, it is frequently possible for an operator to pursue

certain courses of action that will permit the unaffected units to continue operating to some

degree. Possible remedial actions for handling partial shutdowns include reconfiguring the

process pathways, re-routing material streams, slowing down production, making use of buffer

capacities and so forth.

1
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In this work, we will confine our attention to the production adjustment and buffer capacity co-

ordination aspects of the remedial process, which involve the management of material flowrates

and buffer contents. However, the framework we have adopted is a general one and may be

extended to the other types of remedial actions listed above.

Unit 1 Unit 2 Unit 3Buffer 1 Buffer 2

Figure 1.1: Example of partial shutdown in unit 2. Units 1 and 3 are able to continue operating due to

the presence of buffer tanks.

In general, there are significant benefits to having judiciously placed buffer capacities in a plant,

especially for the mitigation of process variation propagation along a production line. Buffer

capacities serve to decouple various segments of a plant. They are not only able to dampen the

effects of short term fluctuations, but are also able to deal with larger processing disturbances.

In the case of partial shutdowns, they can effectively circumscribe the impact of a unit shutdown

by decoupling the offline unit(s) from the rest of the plant.

When a process unit downstream of a buffer tank fails, the tank can hold and accumulate

material for a period of time until the process unit is brought back online. Likewise, when a

process unit upstream of a buffer tank fails, the material held in the buffer tank can be slowly

discharged to the downstream units in order that downstream processing may continue. Fig. 1.1

depicts a series of units, with Unit 2 being in a state of failure. The process is able to continue

operating because Unit 1 is allowed to fill Buffer 1, while Unit 3 is allowed to draw material

from Buffer 2. In some cases, Units 1 and 3 may have to throttle down production in order to

avoid overwhelming or drying out the buffers adjacent to them. The question of how much

throttling is required is addressed in this work.

In this simple example, the buffer inventory management strategy is easy to intuit. However

in problems where multiple recycles and compositions exist in the context of an integrated

plant—a situation that we deal with in this thesis—the problem becomes more complicated.

This warrants the use of an optimization framework.

The successful management of buffer inventories, recycles and production rates during the
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shutdown period is one of the keys to minimizing the losses associated with partial shutdown

scenarios. The end-product quality during the shutdown period may violate normal specifications,

but in some cases, the material can be recycled and reprocessed. We provide an expanded

description of the various approaches to buffer inventory management in Section 2.1.

1.2 Phases of a Partial Shutdown

Steady-state Shutdown Steady-stateRestoration

tstart tend tres t f

P
ro

d
u
ct

io
n

(t
o
n
/
h
r)

Figure 1.2: Operating phases of a single process unit, under partial shutdown conditions.

Fig. 1.2 shows the different phases of the shutdown process. A process unit initially operates

at a certain steady-state point, until a disruption causes it to switch into shutdown mode. The

shutdown phase begins at tstart, when all input and output flowrates to the process unit (and

unbuffered process units adjacent to it) are forced to 0. The shutdown phase proceeds until

tend. In this work, we assume that all necessary measures are taken to repair and restart the

unit between tstart and tend. At time tend, the unit is deemed to be in a state that is ready

for operation, and the restoration phase begins. In the restoration phase, control actions are

prescribed to the plant to return it to its original steady-state operating point (or to some nearby

nominal operating point). The restoration phase terminates at time tres. At this juncture, the

plant has been successfully restored to normal operation.

1.3 Optimal Control of Units under Partial Shutdown

In this work, we concern ourselves mainly with the development of optimal control policies

for the two middle phases in Fig. 1.2: shutdown and restoration. The problem of determining

optimal control inputs for operating the plant is cast as a differential-algebraic-equation (DAE)
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dynamic optimization problem. The model is optimized with respect to an economics-based

objective function. The object of this to restore a plant from a state of partial shutdown in the

most profitable (or least unprofitable, as the case may be) fashion, while respecting physical

plant constraints.

In this dissertation, we adopt the simultaneous (full-discretization) method for solving the

resulting DAE optimization problems. The method used is orthogonal collocation on finite

elements. Numerical partial shutdown formulations involving continuous decision variables are

presented.

In order to implement the control policies calculated from the DAE optimization problem

under uncertainty, a feedback control scheme is proposed in which states (and parameters such

as downtime estimates) are used to periodically update the dynamic optimization model. A

Model Predictive Control (MPC) based framework is adopted in which a dynamic optimizer

is embedded. We also put forward the notion of a user-configurable multi-tiered approach to

dynamic optimization that allows us to prioritize multiple competing objectives and specify the

trade-offs between the tiers. The mandate of the proposed controller is strictly limited to that of

controlling the plant during the shutdown and restoration periods. We envisage a scenario where

the operator switches the plant mode from “normal operation” to “abnormal operation” at tstart,

when the partial shutdown occurs. In this abnormal operation mode, the proposed controller

is activated and takes over (from the nominal control system) the task of managing the plant.

As soon as the system is restored to its original state (at tres), the shutdown controller then

transfers control back to the nominal control system. The estimated duration of the shutdown is

a parametric feedback parameter which can be updated by the user.

1.4 Discontinuous Formulations for Partial Shutdowns

Some types of phenomena associated with partial shutdown optimization entail the use of

discrete variables. In this dissertation, we present parsimonious and efficient mixed-integer

formulations for capturing the real economic cost of induced shutdowns, for imposing minimum

shutdown durations and for minimizing the post-shutdown restoration time. In the formulation

for minimizing the restoration time, a multi-tiered approach is employed whereby the restoration

time is first minimized, and the remaining degrees-of-freedom are subsequently used to optimize

the economics and minimize the input effort required. A linear MPC-based shutdown controller

(which embeds a multi-tiered Mixed Integer Dynamic Optimzer) is presented for implementing
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the solutions obtained on plant under uncertainty.

1.5 Nonlinear Parameter and State Estimation of Plant undergoing Partial

Shutdowns

In order to moderate the effects of plant-model mismatch, we explore schemes that recursively

estimate uncertain parameters and missing states using a Constrained Unscented Kalman Filter

(UKF) algorithm. In cases where the set of uncertain parameters are known explicitly, they

are estimated directly. In other cases where the sources of the mismatch are unknown (e.g.

structural mismatch, persistent stochastic disturbances, etc.), fictitious disturbance terms are

estimated to reconcile plant behavior with model predictions.

In the presence of mismatch, the endpoint constraints required to restore the plant from a

shutdown state to its nominal steady-state operating point are potentially invalid. An appropriate

configuration of a multi-tiered optimization strategy is proposed in which an optimization

problem is solved in the first tier to compute a new feasible endpoint, as well as to ensure

the feasibility of estimated parameters through the controller’s prediction horizon. Once the

dynamic feasibility objective is satisfied, the remaining objectives are to use the system’s degrees-

of-freedom to achieve optimal economics, minimum deviations from product quality targets,

and minimum input effort, all in a prioritized fashion. We note that this is one of many possible

configurations of the multi-tiered optimization problem.

1.6 Problem Formulation and Solution Techniques

A significant amount know-how in large-scale dynamic optimization was acquired during the

course of this work. Optimization formulation and modeling techniques are documented. In the

course of this work, a proof-of-concept modeling language named MLDO (Modeling Language

for Dynamic Optimization) was developed to handle the generation of code necessary for the

solution and analysis of dynamic optimization problems. Functionality for modifying problem

formulations is included in this language.
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1.7 Research Problem Statement

The objectives of this work are:

• Propose formulations for modeling partial shutdowns in an economics-driven dynamic

optimization problem.

• Solve resulting dynamic optimization problems to arrive at a set of optimal control inputs

for controlling the process transitions during the shutdown and restoration periods.

• Propose a control framework for implementing the optimization results in a plant in the

presence of uncertainties such as plant-model mismatch and disturbances.

• Propose discrete formulations for dealing with discontinuous behaviors associated with

partial shutdowns.

• Investigate the use of a state and parameter estimation algorithm to estimate mismatched

parameters and unmeasured states, and to moderate the adverse effects of plant-model

mismatch.

• Develop relevant know-how in large-scale optimization techniques and build a modeling

system for the construction, analysis and solution of large-scale dynamic optimization

problems.

1.8 Thesis outline

This thesis is organized according to the following chapters.

In Chapter 2, we review the state-of-the-art in the approaches that have been taken in literature

to deal with partial shutdown problems. We also provide an overview of the major concepts and

techniques we employ in this thesis, such as dynamic optimization, model predictive control,

state estimation and so on.

In Chapter 3, we present a method for formulating a partial shutdown problem as an open-loop

economics-driven dynamic optimization problem. We show the use of this method to develop

policies for operating a plant under partial shutdown conditions. The Kraft fiber line process

was used in the case studies.
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In Chapter 4, we pose several efficient discrete optimization formulations for representing

certain types of discontinuous behaviors associated with partial shutdowns. These include

economic penalties for induced shutdowns and minimum shutdown durations. We also describe

a discrete optimization formulation for prioritizing an alternative goal, namely that of minimizing

restoration time before maximizing economics.

In Chapter 5, we consider the problem of performing parameter and state estimation on plants

undergoing partial shutdown. We explore using estimation techniques (based on the Unscented

Kalman Filter) to obtain parameters and states. The controller model predictions are corrected

in order to moderate the effects of plant model mismatch. We show case studies in which the

algorithm is applied to the aforementioned Kraft fiber line process.

In Chapter 6, we present problem formulation and solution details. Modeling techniques and

strategies are covered. We briefly describe the modeling system we developed. Broad concepts

related to its design and operation are discussed.

In Chapter 7, we summarize the broad themes covered in this thesis. We present a list of what

we consider to be our contributions in this area of study. Future directions are laid out.
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Chapter 2

Literature Review

This chapter aims to familiarize the reader with the body of work pertinent to this study. Topics

such as buffer inventory management, dynamic optimization, model predictive control, state

estimation, and plant-model mismatch will be reviewed.

2.1 The Buffer Inventory Coordination Problem

Many of the approaches for combating the effects of partial shutdowns rely on the use of

redundancies in the plant, and buffer tanks provide such a redundancy. The use of buffer

inventories to mitigate process variation propagation along a production line is a widely-

employed strategy.

In 1969, Pettersson [87] developed a scheme for coordinating production in a pulp and paper

mill, which included a systematic approach for managing the buffer tanks. A system comprising

nine processing units and ten buffer tanks was considered for optimization, resulting in a produc-

tion scheme for coordinating the plant in such a way that capacity restrictions were not violated.

An example with a shutdown in the evaporator system was shown. In a later publication, Pet-

tersson [88] considered the problem of producing an optimal plantwide production scheme that

could account for maintenance shutdowns, limited buffer capacity and steam restrictions. The

resulting optimal control problem was solved using Pontryagin’s Maximum Principle [89].

Lee and Reklaitis [70] proposed a method for systematically utilizing buffer capacities to

decouple upstream equipment failures from downstream processes and vice versa. Using Fourier

9
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series constructions, they derived a set of analytical expressions for determining the minimum

volume of intermediate storage required as a function of frequency of failure and of failure

durations. In a related paper, Lee and Reklaitis [69] noted that overspecified intermediate

storage led to the introduction of delays in product change-overs, thus there is considerable

economic benefit to specifying only as much capacity as is absolutely required.

Allison [5] used an analytical approach for determining a policy for averaging the loads on a set

of surge tanks in series during a transient event (which can be taken to include unit shutdowns).

In this scheme, the impact of a surge on a single tank is distributed across the plant to avoid

upper and lower level constraints on buffer capacities. Optimal control theory was employed in

the solution process.

Huang et. al. [57] advocated the idea of using a dynamic optimization approach for general

fault accommodation and control redesign, as opposed to the manual table-lookup approach

typically adopted by operators. In a follow-up publication [58], the issue of unit shutdowns—

which the authors consider to be a type of fault—in a dynamic optimization context was briefly

addressed. With regard to optimizing dynamic models with unit failure representations, the

authors suggested first removing all equations related to the unit, followed by the activation of a

set of discrete transition equations triggered using integer variables. The authors emphasized

that the integer variables only act as transition conditions, and are directly prescribed by a fault

detection module, hence the final model to be solved does not contain integer variables.

Dubé [39] investigated a buffer storage operation strategy that minimizes time away from

normal operation and prevents departmental shutdowns. This strategy was applied to a highly

integrated Kraft pulp mill with the view of maximizing production. The author addressed the

issue of determining the longest feasible shutdown time (or “independence” time). The effect of

preparation time on the production was also studied and the coordination of buffer capacities

for handling planned and unplanned shutdowns was illustrated. A numerical optimization

procedure was used in the solution process.

Continuing along the lines of Dubé’s work, Balthazaar [11] considered both a pre-emptive

and a reactive response to shutdowns in a Kraft paper mill. In the pre-emptive case, the

control problem is solved assuming knowledge of the shutdown ahead of time (as is the case

in a scheduled maintenance scenario), thus allowing the plant to take preparatory action in

anticipation of the shutdown. In the reactive case, the plant shutdown occurs without warning,

and the control system is expected to respond immediately. Balthazaar also examined the

problem of determining default steady-state buffer tank levels that are optimal for handling
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shutdowns, using information on the likelihood of process unit failure. An economics-based

objective function was employed in all the case studies.

However, several key limitations exist in the aforementioned approaches. The issue of uncertain

downtimes is not treated, as well as the handling of uncertainties due to plant-model mismatch

and disturbances in the process. In our work, we address these issues using a multi-tiered

economic MPC-type framework, described in Section 3.3 (augmented with state and parameter

estimation in Chapter 5). Also, in our framework we go beyond the scope of the surveyed

work by considering discrete formulations for assigning an economic cost to shutdowns (and

penalizing induced ones) and for minimizing the restoration time.

2.2 Dynamic Optimization

The mathematical technique of Dynamic Optimization forms the basis of our attacks on problems

of partial shutdowns. A dynamic optimization problem can be qualitatively described in the

follow terms: given a dynamic model of a process, find a set of control actions that will

extremize some specified performance criterion. Dynamic chemical processes are often modeled

as differential-algebraic-equation (DAE) systems. These DAEs typically comprise conservation

laws (mass, energy, momentum etc.), constitutive equations and equilibrium relationships,

among other things.

The methods and means for solving such systems are described below. In this work, we are

primarily interested in index-11 semi-explicit DAE optimization problems, which can be stated

as follows:

min
u(t)
Φ(x(t), z(t), u(t), p,θ , t) (2.1)

s.t. ẋ(t) = f (x(t), z(t), u(t), p,θ , t), x(0) = x0 (2.2)

h(x(t), z(t), u(t), p,θ , t) = 0 (2.3)

g(x(t), z(t), u(t), p,θ , t)≤ 0 (2.4)

for t ∈ [0, t f ]

where Φ= objective functional, x(t) ∈ Rnx = differential state vector, x0 = initial state parameter

1While higher-index problems are outside the scope of this thesis, many such problems can be reformulated into

index-1 systems through index-reduction techniques. This would make them amenable to the methods described

here.
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vector, z(t) ∈ Rnz = algebraic state vector, u(t) ∈ Rnu = control input vector, p ∈ Rnp = design

variable vector (time-invariant variables), θ ∈ Rnθ = parameter (constant) vector, t f = final

time in prediction horizon. f represents a mapping of differential equations, g is a mapping

of inequality constraints and h is a mapping of algebraic equations. We assume that the DAE

defined by 2.2 and 2.3 is solvable and of index-1, that is, the partial derivative matrix
∂ g

∂ z
must

be non-singular.

Historically, mathematical techniques (so-called indirect or variational solution methods) based on

the calculus of variations were employed for treating dynamic optimization problems that embed

continuous Ordinary Differential Equations (ODEs). The most notable of these is Pontrayagin’s

Maximum Principle [89], which uses 1st-order optimality conditions to arrive at the stationary

functions of a problem. In unconstrained problems, this leads to a multi-point boundary value

problem. For inequality constrained problems however, additional complementarity conditions

have to be satisfied and multipliers determined. This often results in a combinatorial problem

that is computationally intractable for systems of a nontrivial size.

Therefore, for most problems of practical importance, numerical methods must be employed.

Direct solution methods seek to transform infinite-dimension problems into finite dimensional

nonlinear programs by parameterizing the continuous time profiles. Unlike the indirect methods

above, these direct methods admit DAEs as well as ODEs. Direct methods generally fall into

three categories, sequential (single shooting), multiple shooting and simultaneous methods. A

brief description is given of each in the following sections.2

2.2.1 Sequential (Single-Shooting) Method

The sequential method is a two-layered solution strategy. In this method, only the control

input vector u(t) is discretized; this is referred to as “control vector parameterization”. The

nonlinear optimization and DAE integration steps are performed separately. The control profile

u(t) is typically parameterized by first dividing the optimization horizon [0, t f ] into N discrete

elements:

0= t0 < t1 < t2 < . . .< tN = t f (2.5)

2For the sake of completeness, we should mention that there exist other approaches for solving dynamic optimiza-

tion problems such as dynamic programming, metaheuristic/stochastic algorithms, and others. However, they are

outside the scope of this work, and hence will not be discussed in this survey.
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On each interval, the control profile is approximated using a basis function, such as a low-order

polynomial (often in Lagrange polynomial form) or a piecewise-constant function:

u(t) = Uk(t, ak), tk−1 ≤ t ≤ tk, k = 1 . . . N (2.6)

where ak is a vector of the coefficients of the basis function. For instance, if a piecewise-

constant function is chosen, then Uk(t, ak) = ak,0; if a linear function is chosen, then Uk(t, ak) =

ak,0+ ak,1 t; and so on. These become decision variables in the optimization problem.

Given a set of initial values for the DAE and a starting control profile, the DAE model is integrated

(using specialized DAE solvers such as DASSL or DASPK [27]) and the objective function value

evaluated. Based on the objective value and sensitivity information obtained from the system,

the optimizer tries to find a set of control actions that will improve upon the current solution.

This new set of control actions are then fixed in the DAE problem, and the integration procedure

is repeated with the new inputs. This iterative procedure continues until a set of stipulated

termination conditions is met (see Fig. 2.1 for a visual depiction).

Optimizer (NLP)

min
a,p
Φ

s.t. g(x(t), z(t), Uk(t, ak), p,θ , t)≤ 0

for tk−1 ≤ t ≤ tk, k = 1 . . . N

where a =
�

aT
1
, aT

2
, . . . , aT

N

�T

DAE Integrator

ẋ(t) = f (x(t), z(t), Uk(t, ak), p,θ , t)

h(x(t), z(t), Uk(t, ak), p,θ , t) = 0

for tk−1 ≤ t ≤ tk, k = 1 . . . N

x(0) = x0

With fixed Uk(t, ak) and p.

a, px(t),
∂Φ

∂ a
,
∂Φ

∂ p

Figure 2.1: Single-shooting method – optimizer and integrator blocks iterate until termination criteria

are met.

One attractive advantage of the sequential method is that for problems where number of state

variables far exceed the number of control variables (nx � nu, that is, relatively few degrees of

freedom are available), the nonlinear programming problem arising is usually manageably small

in size. Also, the sequential method typically provides more accurate solutions for the state

variables than the simultaneous method, as the DAE solver usually incorporates error-control
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when performing the integration.

However, in practice, sequential methods often incur significant computational expense from

having to integrate a DAE system at every single NLP iterate [1]. A large amount of computational

effort may be wasted in trying to obtain DAE solutions when the decision variables are far away

from their optimal values. Inefficiencies related to integration are particularly pronounced in

stiff systems [106]. Biegler [21] states that the sequential method is only robust for systems with

exclusively stable modes (defined as modes in which profiles remain bounded as the time goes

to infinity); otherwise, the problem may fail prematurely due to integration failure at unstable

intermediate points, even if a stable final solution exists.

Because the state variables only appear in the integration problem and not in the nonlinear pro-

gram, path constraints involving state variables cannot be directly enforced in the optimization

step. Various methods for circumventing this problem have been proposed, ranging from forcing

a constraint violation penalty to zero through an endpoint constraint [111] to using initial point

solvers that respect path constraints [45].

2.2.2 Multiple Shooting Method

Much like the sequential method, the multiple shooting method (due to Bock and Plitt [23]) also

parametrizes the control variables u(t). The primary point of divergence between the former

method and the latter is in the treatment of the continuity of the states x(t) at every control

stage k. In the multiple shooting method, state continuity is only enforced at the solution of the

optimization problem. During the optimization iterates, discontinuities in the states between

stages are allowed. In this method, the differential equation is divided into N discrete stages

(similar to the control variables):

ẋk(t) = f (xk(t), zk(t), Uk(t, ak), p,θ , t), tk−1 ≤ t ≤ tk, k = 1 . . . N (2.7)

The initial point x1(t0) is corresponds to x0. At each control stage subinterval k, decision

variables ck are used as initial values for the differential equation above:

xk(tk−1) = ck, k = 2 . . . N (2.8)

where ck are decision variables that are used to enforce continuity in the states.

The continuity in the state profile is enforced by defining a set of equality constraints in the



Z. Chong, Ph.D. thesis (McMaster University, Chemical Engineering) 15

Optimizer (NLP)

min
a,c,p
Φ

s.t. g(xk(t), zk(t), Uk(t, ak), p,θ , t)≤ 0

for tk−1 ≤ t ≤ tk, k = 1 . . . N

Continuity constraint

xk(tk) = ck+1, k = 1 . . . N − 1

where a =
�

aT
1
, aT

2
, . . . , aT

N

�T

c =
�

cT
2
, cT

3
, . . . , cT

N

�T

DAE Integrator Process(es)

ẋk(t) = f (xk(t), zk(t), Uk(t, ak), p,θ , t)

h(xk(t), zk(t), Uk(t, ak), p,θ , t) = 0

for tk−1 ≤ t ≤ tk, k = 1 . . . N

x1(t0) = x0

With fixed Uk(t, ak) and p, and

xk(tk−1) := ck, k = 2 . . . N

a, c, pxk(t),
∂Φ

∂ a
,
∂Φ

∂ c
,
∂Φ

∂ p

Figure 2.2: Multiple-shooting method – optimizer and integrator blocks iterate until termination criteria

are met.

nonlinear program:

xk(tk) = ck+1, k = 1 . . . N − 1 (2.9)

where xk(tk) are the states at point tk of the integrated solution at subinterval k, obtained from

the integrator. Conceptually, this is equivalent to partitioning the DAE into N subintervals (over

the time grid), integrating the pieces independently (with some specified initial value in each

subinterval), and enforcing continuity between the states in each subinterval upon convergence.

The procedure is depicted in Fig. 2.2.

The multiple shooting method lies at the interface between sequential and simultaneous methods,

and thus inherits many of their advantages. It gives rise to an NLP whose size lies between those

of the two aforementioned methods. As well, it permits the user to employ a DAE integrator to

obtain an error-controlled DAE solution. Through the partitioning strategy, multiple-shooting is

able to handle unstable modes more reliably than the sequential method. Because each DAE

partition can be treated independently (continuity is only enforced at the NLP solution), this

also lends the algorithm to easy and natural parallelization with respect to the DAE integration

procedure. This enables one to harness the computational power of multiple processors to
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perform each integration (over the defined subintervals) in a concurrent fashion. The efficacy

of the multiple shooting method has been demonstrated in the context of nonlinear model

predictive control applications [94]. An extensive treatment of the multiple shooting method for

optimal control can be found in Leineweber et al. [71]. A modification of the multiple shooting

method that uses collocation on finite elements for integration is presented in Tamini and Li

[102].

2.2.3 Simultaneous Method

In the simultaneous method (sometimes known as “full discretization” or “direct transcription”),

both the continuous state and control profiles are discretized over a fixed time-grid, resulting in

a large scale sparse NLP whose solution usually entails specialized solution strategies [20]. Of

note is the fact that no explicit integration step is performed because both the integration and

optimization problems are converged simultaneously at the solution point.

A widely-used method for performing full discretization is orthogonal collocation on finite

elements (OCFE) [33]. OCFE is an implicit Runge-Kutta method that converts a DAE system into

a nonlinear algebraic equation (NLE) system that can be solved with a conventional NLP solver.

We have elected to use this method in our work, and it is described in some detail in Section

6.1.1.

Simultaneous methods enjoy several advantages over sequential methods. First, path constraints

are handled naturally within the optimization formulation. Further, because the DAE system is

only solved once, unstable or nonexistent intermediate solutions are bypassed [20].

There are however disadvantages associated with simultaneous methods. As stated before, large

scale NLPs arise from this method and they can be challenging to solve. Reduced space methods

have been proposed to alleviate some of the difficulties related to large-scale problems. It is

worth noting that large scale interior-point solvers that exploit the sparsity of the problem have

been developed [114] and have proven to be successful in finding the solution to these types

of problems. The other issue with simultaneous methods is their requirement of a good initial

guess for the solution profiles in the NLP. In the sequential and multiple-shooting methods,

the profile initializations happen naturally because at each NLP iterate, the optimizer invokes

the integration of the DAE system at the current point. The simultaneous method does not

utilize such an integration, which accounts for its generally superior speed of convergence, but

the downside is a lack of an obvious procedure for warm-starting the NLP. Lang et al. [68]
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propose using the solution of a one-time DAE integration at some nominal point as the starting

guess.

2.3 Nonlinear Model Predictive Control

In order to implement dynamic optimization solutions on a plant (in the presence of uncertainty),

a feedback control scheme is required. Model Predictive Control (MPC) is an umbrella term for

a family of feedback control algorithms that exploit a model to predict the future response of

a plant given a set of manipulated variable adjustments [91]. It incorporates an optimization

routine which computes a sequence of control actions required to drive the plant to some

operating point in an optimal fashion. There are a myriad variants of MPC (surveyed in [91]),

but for this work our interest lies not with any particular variant, but instead with the feedback

architecture that forms the foundation of the MPC framework. We shall attempt to supply the

reader with a sketch of this architecture below.

The basic principles of nonlinear MPC can be understood as follows: suppose we are in possession

of a discrete (or discretized; see previous section on dynamic optimization) dynamic plant model.

This model is typically in state-space form, though many other forms are admissible. It can be

stated as follows:

xk+1 = f (xk, uk) (2.10)

yk = g(xk) (2.11)

where xk ∈ R
nx are states, uk ∈ R

nu are inputs, and yk ∈ R
ny are measured plant outputs. We

can use this model to predict the plant’s behavior in response to different values of inputs uk (in

MPC, these are decision variables to be determined by the optimizer).

At time j, the controller solves the open-loop dynamic optimization problem below to obtain the

optimal u trajectory that minimizes some objective Φ over a horizon of length ph:

min
uk∈K
Φ (2.12)

s.t. xk = x̂ j (2.13)

xk+1 = f (xk, uk), k ∈K (2.14)

yk = g(xk), k ∈K f (2.15)
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where K = { j, j+ 1, . . . , j+ ph− 1} and K f = { j, j+ 1, . . . , j+ ph}. In many standard industrial

MPC implementations, the objective function Φ is often a setpoint tracking error plus a move

suppression penalty. However, in principle the user can specify any suitable Φ based on the

application at hand. As we shall see later, the choice of an economics-based Φ is often a

reasonable one. The vector x̂ j ∈ R
nx denotes state estimates at MPC iteration j. Suppose that

at the current time j, a set of feedback measurements from the plant, ym
j
∈ Rny is obtained.

Typically, a state estimation algorithm (details provided in Section 2.5) can be used to reconstruct

the states from these measurements; that is, the state estimate vector x̂ j can be computed from

the measurements, ym
j

. In some situations, all the states in the plant are measured, thus the

state estimate term is simply x̂ j = ym
j

. This case of affairs is known as “full-state feedback”3, it

constitutes the primary means of feedback for the closed-loop framework discussed in Chapters

3 and 4 of this thesis.

The resulting output of optimization problem (2.12–2.15) is a sequence of computed control

actions, uk∈K . The first of this sequence, u j is sent to the plant. At the next sampling instance,

the MPC iteration counter is incremented ( j := j + 1) and new feedback measurements ym
j

are

read in from plant instruments and sensors. This procedure is repeated at each control interval.

Fig. 2.3 provides a broad idea of the MPC scheme in visual terms.

j

x

u

j − 1j − 2j − 3 j + 1 j + 2 j + ph

Past Actual Controller prediction

Optimized input trajectory

x̂ j, computed from measurements ym
j

u j

Figure 2.3: MPC summary: (1) Plant measurements at the current time j are used to compute a state

estimate x̂ j . (2) Based on this, the controller optimizer computes a prediction and optimal

input trajectory. (3) Only the first step of the input u j is implemented on the plant. (4) The

MPC counter j is incremented, and the process is repeated.

In most MPC deployments, a receding prediction/control horizon is used. That is, as the MPC

3In some cases, the states are a subset of the measurement vector (that is, ny > nx ). In such cases, we have

x̂ j = Ax ym
j

, where Ax is an appropriate matrix that selects the required state variable values from the measurement

vector.
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marches along, the length of the window ph remains constant, and shifts along with the current

time. In finite time applications such as batch processes, a shrinking horizon is sometimes

used, where the window decreases in size as the MPC progresses (i.e. as j increments, ph

decrements).

The many favorable properties of MPC have made it one of the most widely-used advanced

control schemes today [91]. It is an inherently multivariate controller, therefore interaction

effects are handled naturally through the model. In most variants of MPC, operating constraints

are handled easily through hard constraints in the optimization problem or soft constraints via

penalty terms in the objective function.

One of the earliest algorithms in the MPC family is Dynamic Matrix Control (DMC), a linear MPC

algorithm brought to the fore by Cutler and Ramaker [34] in 1979. DMC incorporated finite

step response (FSR) models and was capable of handling only linear dynamics. Uncertainties

were handled through feedback measurements. Although in real life many chemical processes

exhibit inherently nonlinear behavior, linear MPC algorithms continue to be pervasive, especially

in continuous processes where the predominant objective is to maintain the plant at certain

operating points (i.e. regulatory control) [91].

For transient processes however (a class of processes which partial shutdowns fall under), the

ability to move rapidly—in a constrained environment—from one operating point to another (i.e.

servo control) is arguably more important. In such control applications, process nonlinearities

can become significant. Nonlinear models are better suited to these applications, thus entailing

the use of nonlinear MPC for control.

Much of the work done in the area of applications of MPC to transient processes have been

on batch processes, whose many dynamic characteristics are shared with transient processes.

Krothapally and Palanki [66] showed an online application of MPC to a batch polymerization

process. Nagy and Braatz [83] developed a shrinking-horizon MPC algorithm which uses an

economic objective function, and showed an example of an application of their algorithm to

a batch crystallization simulation. Hillestad and Anderson [54] applied nonlinear predictive

control to the problem of grade transitions in polymerization reactors. The work of Wang et. al.

[117] involved the use of nonlinear model predictive control to manage grade transitions on a

polyethylene reactor.
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Real Time Optimization (RTO)

• Steady-state models

• Economic optimization

Model Predictive Control (MPC)

• Dynamic models

• Setpoint tracking/disturbance rejection

Plant

State/Parameter
Estimation

setpoints, ys

states, x̂

parameters, θ̂

measurements, ym

controls, u

Figure 2.4: Traditional control hierarchy in a plant. (Note: layers above the RTO (i.e. planning, schedul-

ing) are not shown here.)

2.3.1 Incorporating Economics into the Control Algorithm

In many large oil refineries, economic optimization is typically approached in a hierarchical

manner (Fig. 2.4). The control layer that performs the economic optimization is often the

Real-Time Optimization (RTO) layer, which computes the optimal operating point of a plant

(based on current economics and business decisions) and sends the relevant setpoints to a

lower-level multivariable controller, whose duty is to track them. RTO systems are typically

based on nonlinear steady-state models and operate at a lower frequency than MPC. The RTO

optimization problem can be stated as follows (Marlin & Hrymak [76]):

max
w
Φecon(w, θ̂ ) (2.16)

s.t. fss(w, θ̂ ) = 0 (2.17)

gss(w, θ̂ )≤ 0 (2.18)

wL ≤ w ≤ wU (2.19)

where Φecon is the economic objective function, θ̂ is the estimated parameter vector, w is vector

of optimization variables, and wL , wU are its lower and upper bounds respectively. The functions

fss and gss are the equality and inequality constraints that represent the steady-state plant

model. The setpoint vector ys is typically constructed from a subset of (or is identical to) the

optimization variables, hence ys = Aspw where Asp is an appropriately-sized matrix.

Given ys, lower level MPC controllers attempt to calculate the controls u that will best track the

setpoints. Measurements received from the plant are passed to a state/parameter estimator. The
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estimated parameters θ̂ are used to update the RTO model, while the estimated states x̂ are

enter the MPC model to apprise it of the plant’s current operating point.

This hierarchical structure works sufficiently well for steady-state operations, but there is some

indication that they are inadequate for nonlinear dynamic processes such as grade transitions

and batch systems [61] due to the time-scale separation and the potential conflict between

the RTO’s steady-state models and the MPC’s dynamic models. In view of that, there has

been a move towards exploring the use of dynamic models in RTO systems and making them

computationally tractable [107, 61, 120, 2], culminating in so-called Dynamic RTO (D-RTO)

strategies. A comprehensive survey of the issues surrounding the RTO approach can be found in

Engell [41].

However, there is a growing level of interest in an alternative approach named Economics-based

MPC, which involves modifying standard MPC formulations to incorporate profit as a goal and

eschewing the RTO layer altogether. The major advantage of this approach is that the economic

and control optimization occur at the same frequency, using the same model. Most standard

MPC implementations currently available are designed for the process control objectives of

setpoint tracking and disturbance rejection. Economics-based MPC proposes to exchange these

objectives for a more fundamental objective (economics) which, if posed correctly, naturally

subsumes the control objectives.

De Souza et al. [35] and Zanin et al. [122] propose a 1-layer approach where the economic

optimization problem is solved together with the MPC optimization problem. This is accom-

plished by adding an economic function as a penalty term in the objective function of the MPC

controller. Their motivation for taking a 1-layer approach as opposed to a traditional 2-layer

approach (where economics and dynamics are separated) is to address what is perceived to be

a major deficiency associated with traditional layered optimization strategies, that is, because

the controller and the optimizer are not dealing with exactly the same pieces of information,

conflicts may arise and the predicted optimal operational point may turn out to be suboptimal.

Zanin reported success in applying this algorithm to an industrial process. Their 1-layer approach

suffers from a few drawbacks, including a lack of separation of disturbance time-scales, and the

difficulty in determining the penalty weights for properly trading off economic objectives and

process objectives such as product purities. Diehl et al. [36] construct a Lyapunov function for

economic MPC and apply it to a particular class of nonlinear systems possessing the property

of strong duality in the steady-state problem. This allows for the analysis of the asymptotic

stability of the closed-loop system. Heidarinejad et al. [53] apply Lyapunov techniques to

the design of a nonlinear Economic MPC. This controller has two operation modes: in the
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first, the cost function is optimized to its maximum extent, subject to constraints that maintain

the closed-loop system states within some predefined stability region. In the second mode,

the controller drives the system to some appropriate steady-state. Lyapunov-based constraints

ensure that the closed-loop system states are bounded in the predefined stability region and also

bounded in a small region containing the origin. Zavala [16] and Huang [125] demonstrate

an advanced-step MPC algorithm for solving economic MPC problems where a precalculated

optimal solution can be rapidly updated using plant measurements and implemented on the

plant, thus avoiding the problem of optimizer-delayed solutions.

2.4 Hybrid (Discrete-Continuous) Dynamic Optimization

A hybrid system is a system containing continuous and discrete elements that need to be

considered simultaneously [73]. In chemical process systems, the variables in the plant that

evolve continuously (temperature, pressure, level, concentration, flowrates, etc.) have been the

primary focus of process control research thus far. The spectrum of hybrid systems is wide, and

encompasses classes of systems such as “switched systems”, i.e. systems that undergo mode

traversals on a macroscopic level. These systems usually transition from one mode to another in

response to an event and are frequently managed by supervisors governed by logical rulesets or

expert systems.

Broadly, switching behavior can generally be classified as “autonomous” or “controlled”. Au-

tonomous switching occurs when the states of the system meet a certain condition and switches

with no intervention from an external source; for example, a phase change in a multi-phase

system. Controlled switching, on the other hand, is solely induced by an external supervisory

system, e.g. time-switched or logic-based schedules on PLCs (Programmable Logic Controllers)

or PACs (Programmable Automation Controllers).

Engell et al. [42] provide a good overview of the hybrid phenomena typically encountered in

chemical processing plants. They noted that the most important source of hybrid interaction

in a chemical plant typically arises from the interaction of the plant with the control system.

On an operational level, switching behavior is commonly observed in batch processes, where

processing progresses in distinct phases which begin and end under certain conditions.

There are a diverse number of ways to model hybrid systems, each with a different emphasis.

Branicky [26] provides an excellent survey of the issues surrounding various hybrid model

structures. The approach in the engineering literature generally begins from continuous-variable
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description of a dynamic system and seeks to extend it by appending discrete or switching

variables. In their paper, Morari and Barić [80] remark that for a large class of hybrid systems

(which include chemical process systems), the plant often evolves continuously even though the

inputs may be discrete. Xu and Antsaklis [121] further endorse this view by noting that for most

chemical process applications, states are often continuous between switches, that is, state jumps

usually do not occur. This is an important property that simplifies analysis in many cases.

For the purposes of our work, instead of adopting a full hybrid model approach (surveyed

below), we confine our focus to the development of custom MIP-based formulations for the

dynamic optimization of partial shutdowns using a MIDO (Mixed Integer Dynamic Optimization)

approach. The binary variables in our case are used to determine the shutdown state of each

process unit in the plant. This results in an algebraic discrete-continuous dynamic optimization

problem that is solvable using any standard mixed-integer solver.

In the next few sections, we will survey a few model representations that are dominant in the

discrete-continuous modeling domain within the field of chemical engineering. We note that our

approach is somewhat distinct from most of the model-switching approaches covered below, but

nevertheless we review them for the sake of completeness.

2.4.1 Linear Hybrid Models

Mixed Logical Dynamical (MLD) Models

Bemporad and Morari [18] describe a modeling paradigm called Mixed Logical Dynamical

(MLD), designed to describe systems that exhibit discrete-continuous behavior arising from

physical laws, logical rules and operating constraints. MLDs comprise linear discrete-time

state-space equations with continuous and integer variables. The authors lay out a systematic

procedure (inspired by the work done by Raman and Grossmann [93] and Williams [118])

for transforming propositional logic (IF, AND, OR, etc.) statements into efficient and minimal

integer formulations for representing discontinuous behavior in dynamic systems. The authors

also describe techniques to handle nonlinearities such as bilinear terms, and offer a multi-model

approach for more severe nonlinearities. MLDs are solved as MILPs (Mixed Integer Linear

Programs) or MIQPs (Mixed Integer Quadratic Programs). The canonical form of an MLD can be

stated as follows:

xk+1 = Axk + B1uk + B2δk + B3zk (2.20)
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yk = C xk + D1uk + D2δk + D3zk (2.21)

E2δk + E3zk ≤ E4 xk + E1uk + E5 (2.22)

where k = discrete time-instant, xk = states, uk = inputs, yk = outputs, δk = binary vari-

ables, zk = auxiliary variables (a logic modeling construct), A, B, C , D, E = model coefficient

matrices.

Among the many examples of applications are Feather et al. [44] and their utilization MLD

models for grade transition control of a polymerization loop reactor. In Stork et al. [99] a

variation of the MLD formulation approach was used to generate a MILP model that describes the

operation of a fed-batch emulsification containing discontinuities induced by mode transitions

in the capillary number.

Bemporad and Morari [18] propose a MLD-based Mixed Integer Predictive Controller (MIPC),

where an MIQP (or MILP) generated from an MLD is solved at every time instance. In the paper,

they show that it is possible to track a reference trajectory or stabilize an MLD system to an

equilibrium point using the algorithm. In terms of online implementation, Morari and Barić

[80] showed a case study of a co-generation power plant where the MLD model generated an

MILP with 450 continuous variables, 650 integer variables and 2850 constraints. They reported

an average solve time of 100 s, shorter than the 1 hr sampling time, which makes a reasonable

case for the use of mixed-integer programming models on (almost) real-time applications. An

empirical study of the practical solvability of MILPs for dynamic problems was undertaken in

Till et al. [105]. The authors found the number of time-steps to be the dominant source of

complexity in a MILP-based dynamic problem, which implies that the MIPC method is necessarily

limited in the length of its prediction horizon.

Piecewise-Affine (PWA) Models

The precursor to MLDs is a linear hybrid model form called the Piecewise Affine (PWA) model.

PWAs were first presented in a seminal 1981 paper by E. D. Sontag [98] as means of modeling

nonlinear control problems that contained continuous and discrete dynamics. PWA models are

based on the idea of partitioning the state-space into polyhedra. Nonlinearities are addressed

by performing local linearizations, giving rise to multiple linear models. Evaluation is done

by identifying the polyhedron containing the current state and input vectors, and looking up

the corresponding values of the parameters required to fully-determine the system (Ai , Bi , . . .).

Switching is accomplished through rules which determine which polyhedral partition to activate.
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This switching behavior requires the use of discrete variables to model. A PWA takes the

following general form:

xk+1 = Ai xk + Biuk + fi (2.23)

yk = Ci xk + Diuk + gi (2.24)

for (xk, uk) ∈ Pi

where k = discrete time-instant, i = model index, xk = states, uk = inputs, yk = outputs, Pi

= polyhedral partition, fi , gi = vectors of real-values. Although it is not obvious in the above

representation, any MIP-representable switching behavior—such as event sequences—can be

modeled within the PWA framework. This is due to the fact that every MIP-representable system

has a feasible set that consists of a union of a finite number of polyhedra that represent a

disjunction of linear systems [55].

PWAs can be converted into MLDs under some non-restrictive conditions. The equivalence of

MLDs, PWAs, LCPs (Linear Complementarity Problems) and other hybrid structures is proven

in Heemels et al. [52]. For the purposes of optimization, PWAs are usually first converted into

a form treatable using methods designed for MLDs [18] and potentially, ones for LCPs. The

value of PWAs today lies primarily in the fact that they provide an intuitive means for visualizing

particular classes of hybrid systems.

2.4.2 Nonlinear Hybrid Models

While linear/multilinear models are favored for their mathematical tractability, the degree of

nonlinearity encountered in many chemical process systems may warrant the consideration of

nonlinear models for a more accurate representation of the true system. In this section, we

discuss nonlinear hybrid models developed for optimal control.

Mixed Integer Dynamic Optimization (MIDO) of ODE/DAE-based Models

In recent years, there has been growing interest in the MIDO approach [3, 4], where the discrete

behavior in a continuous ODE/DAE-based model is modeled using integer variables. In their

most general form, MIDOs are able to deal with the problem of optimizing the transitions

between modes (autonomous switching, triggered by events), the combinatorial problem of

event sequencing, and other structural discontinuities and nonsmoothness. MIDO has been used
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to solve problems in integrated design and control of distillation columns [12]. A general MIDO

problem can be formulated as:

min
u(t)
Φ(x(t), z(t), u(t),δ(t), p,θ , t) (2.25)

s.t. ẋ(t) = f (x(t), z(t), u(t),δ(t), p,θ , t), x(0) = x0 (2.26)

g(x(t), z(t), u(t),δ(t), p,θ , t)≤ 0 (2.27)

h(x(t), z(t), u(t),δ(t), p,θ , t) = 0 (2.28)

for t ∈ [0, t f ]

where Φ = objective function, x(t) ∈ Rnx = differential state vector, x0 = initial state parameter

vector, z(t) ∈ Rnz = algebraic state vector, u(t) ∈ Rnu = control input vector, p ∈ Rnp = design

variable vector (time-invariant variables), θ ∈ Rnθ = parameter (constant) vector, t f = final

time in prediction horizon. The vector δ(t) ∈ {0,1}nδ can either be treated as time invariant

(for structural discontinuities) or time-varying (for dynamic discontinuities).

Mohideen et al. [79] and Avraam et al. [8] applied the full discretization strategy in their MIDO

formulation. In their description of the solution method, Avraam et al. modeled switches with

binary variables on a time grid. This is known to generate a fairly large Mixed-Integer Nonlinear

Program (MINLP) that is challenging to solve except for problems with very small time horizons.

Despite this drawback, Avraam et al. emphasized the generality of their approach, which does

not presume knowledge of number of mode switches required.

Mohideen et al. [78] and Bansal et al. [13] both developed a decomposition method based on a

modified Generalized Benders Decomposition (GBD) for solving MIDOs in a sequential manner.

Bansal proposes an innovation that eschews the solution of an intermediate adjoint problem

to obtain the master problem. However, the authors acknowledge that the use of GBD-based

methods on nonconvex problems in conjunction with local solvers may potentially cut off the

feasible solution space in which the global solution lies. Chachuat et al. [30, 31] address this

in proposing a method to find the global solution to nonconvex MIDO problems through a

combination of bounds tightening, screening model cuts, and convex underestimation of the

subproblems in the context of an Outer Approximation type approach.

At the present time, no closed-loop implementations of nonlinear hybrid control algorithms

for chemical processes have been reported, as far as we know. The formidable computational

expense of solving a mixed-integer nonlinear (nonconvex) dynamic optimization problem

renders the approach intractable for many real-time applications (except when the problem
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instances are very small). Most nonlinear hybrid control schemes are currently only feasible for

open-loop implementation, where optimal trajectories are calculated off-line and implemented

on-line with a tracking controller.

2.5 State Estimation

A prerequisite for the successful deployment of an advanced control strategy is the availability of

accurate and up-to-date knowledge of the plant states. In a complex plant, the complete set of

states in the system is sometimes not directly measurable.

State estimation techniques utilize a model-based approach to reconstructing the current state of

the system from available plant measurements observed over time. To illustrate the estimation

problem, consider the the nonlinear discrete state-space model defined earlier as Eqns. 2.10 –

2.11, but with additive noise terms:

xk+1 = f (xk, uk) + wk, xk= j = x̂ j (2.29)

yk = g(xk) + vk (2.30)

where wk is the noise vector representing unmeasured disturbances to the process that affect

the states, and vk is the noise vector representing the error in the measurements (typically

noise/random errors in the instruments). The goal of the state estimator is to use the above

model to compute an estimate x̂ j , given a set of measurements ym
j

. The counter k indicates the

discrete time-steps in the model’s prediction horizon, whereas j is the control or closed-loop

iterate counter.

The theory for the optimal estimation of linear systems is well-developed. The Kalman Filter

(KF) [62] algorithm, introduced in the 1960s, represents a minimum-variance state estimator for

continuous linear systems with Gaussian, uncorrelated and white noise structures [96].

In the realm of nonlinear state-estimation, the Extended Kalman Filter (EKF) [82] is a technique

that is widely applied in the process industries owing to its relative simplicity. The EKF is

essentially an application of the linear Kalman Filtering algorithm to a linearized version of

a nonlinear model. In the EKF (as well as most other algorithms in the Kalman family), the

noise terms are assumed to have multivariate Gaussian distributions (i.e. wk ∼ N(0, Rw) and

vk ∼ N(0, Rv)) with a zero mean and covariances Rw and Rv respectively. The covariance of the
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estimate x̂ j is Pj . The basic EKF equations can be compactly summarized as follows:

Model linearization: A j−1 =
∂ f

∂ x

�
�
�
�
x̂ j−1,u j−1

, H j =
∂ g

∂ x

�
�
�
�
x−

j

(2.31)

A priori state prediction: x−j = f ( x̂ j−1, u j−1) (2.32)

A priori covariance prediction: P−j = A j−1Pj−1AT
j−1+ Rw (2.33)

Kalman gain calculation: K j = P−j HT
j (H j P

−
j HT

j + Rv)
−1 (2.34)

A posteriori state update: x̂ j = x−j + K j[y
m
j − g(x−j )] (2.35)

A posteriori covariance update: Pj = (I − K jH j)P
−
j (2.36)

where x−
j
= a priori state estimate, P−

j
= a priori state estimate covariance, K j = Kalman

gain. In bare terms, given a (known) tuple ( x̂ j−1, Pj−1, ym
j

, u j−1), the EKF will return the tuple

( x̂ j , Pj , K j). We note that although this formulation is specific to the ODE-derived state-space

representation above, the EKF can be trivially extended to handle DAEs by modifying the model

linearization step in Eqn. 2.31 using techniques described in Becerra et al. [17].

The Moving Horizon Estimator (MHE) [77] approach is a general recursive nonlinear state

observer that obtains its estimates by solving a nonlinear optimization problem. The fact that

the MHE involves an optimization step entails associated advantages and disadvantages. On the

positive side, because the estimation problem is posed as an mathematical programming problem,

state constraints are easily imposed in the estimation. However, the computational difficulty of

solving a nonlinear—and usually nonconvex—optimization problem at every sampling instance

(in addition to having to solve a nonlinear MPC optimization problem) may limit its use to

applications with relatively long sampling periods. However, recent advances in Advanced Step

MHE algorithms [124] may alleviate this problem. These algorithms enable the optimal solution

of the MHE estimation problem to be rapidly updated using plant measurements and be put to

use while waiting for the solution of the next MHE step.

In this work, we employ a filter known as the Unscented Kalman Filter (UKF), due to Julier

and Uhlmann [60]. The UKF is a modern derivative-free Kalman-based nonlinear observer with

comparable computational complexity vis-à-vis the EKF, but produces estimates with a higher

order of accuracy for nonlinear models by eschewing the latter’s model linearization step.
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2.5.1 The Unscented Kalman Filter (UKF)

One of the central processes in the Kalman Filter involves the propagation of the probability dis-

tribution through the system dynamics. In the EKF, this propagation is done through a linearized

model. The Unscented Kalman filter is a derivative-free nonlinear state estimation algorithm

first proposed by Julier and Uhlmann [60], and is based on the intuition that it is “easier to

approximate a probability distribution than a nonlinear function”. This approximation is done

using a technique known as an Unscented Transform. This involves generating a deterministic,

finite set of sampling points–called sigma points–that capture the mean and covariance of a

Gaussian random variable. The sigma points are propagated through a nonlinear function (a

central operation in any Kalman-based estimator), and the statistics of the transformed points are

used to reconstruct the mean and variance of the transformed Gaussian random variable.

mean

covariance

true mean

true covariancecovariance

nonlinear transformation y = f (x)

true mean

true covariance
nonlinear transformation

Υ = f (χ)

sigma points

mean

Actual

Unscented transform

transformed sigma points

Figure 2.5: The unscented transform for a hypothetical 2-dimensional system. Top figure: nonlinear

transformation of random variable x (left to right). Bottom figure: nonlinear transformation

of sigma points χ and reconstruction of propagated mean and covariance (left to right).

To illustrate this, consider Fig. 2.5, where a hypothetical variable x (with a certain mean and

covariance) undergoes a nonlinear transformation defined by the function f (x). The top figure

in Fig. 2.5 shows the true mean and true covariance of x post-transformation. In the bottom

figure, a cloud of sigma points χ are scattered around x . These sigma points are carefully

chosen such that the moments of x (mean, covariance) can be computed from them. Each

individual sigma point then undergoes a transformation f , and the mean and covariance of the

transformed points can be used to reconstruct the mean and covariance of the transformed x .

The mathematical details of the UKF algorithm can be found in Section 5.4.1.
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The UKF enjoys several advantages over the Extended Kalman Filter (EKF). Like the EKF, its

computational requirements are modest and it is easy to implement; however, unlike the EKF, it

eschews model linearization. This enables the UKF to achieve a higher order of accuracy while

propagating the states through nonlinear process dynamics [115]. A concomitant benefit is that

no derivatives/Jacobians are required, which makes it a tenable candidate for implementation

on systems for which derivatives are difficult to obtain [60]. The UKF treats the underlying

model as a black-box, making it suitable for application to DAEs and hybrid dynamic systems

(with discrete variables) without any modifications.

In terms of computation, sigma-point transformations are naturally parallelizable tasks (in that

each transformation can be performed independently and concurrently), therefore they stand to

benefit significantly from modern-day multicore computer processors.

2.5.2 Constrained Kalman Filtering

Being an unconstrained filter, the Kalman filter can potentially give estimates that are physically

unrealizable, for instance, negative concentrations in a stream. Fortunately, there exist a number

of methods for enforcing state bounds for the estimates arising from Kalman filters, giving rise

to a class of filters loosely classified as Constrained Kalman Filters.

An excellent survey of the state-of-the-art can be found in Simon [96]. One of the conclusions

was that for linear systems, all of the constrained filters that were reviewed performed identically

provided that the constraints are complete and well-posed. For nonlinear systems, no such

unification of results exists—the performance of constrained estimation methods can differ

from system to system. Kolås et al. proposed a series of modifications to the UKF in which

they use information matrices to project the sigma points into the feasible bounded space by

solving a QP (or an NLP, depending on the output function). This yields a set of points that

obey state constraints. The authors also argue that Constrained Kalman filtering may aid in

improving estimation in nonlinear (and non-Gaussian) systems with multimodal probability

density functions. This is because state constraints often impose physical meaning on the state

estimates, and solutions that lie outside realm of physical realizability are discarded.
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2.5.3 Plant-Model Mismatch

In any plant, some degree of plant-model mismatch is inevitable. This can be observed in the

deviation between the predictions of the controller model and the observed behavior in the

plant. Because plant-model mismatch can cause the incorrect or suboptimal control inputs to be

calculated, performing some sort of correction is highly desirable. In control applications, two

kinds of mismatch are generally seen:

1. Parametric Mismatch

This occurs the parameters in the model do not match the true (unknown) parameters

in a plant. This typically arises due to incorrectly identified parameters, or a parameter

whose value has shifted over time.

2. Structural Mismatch

A structural mismatch occurs when the model function is incorrect or is inadequate for

modeling the actual behavior in the plant. This can cause a divergence in model predictions

and actual plant output.

In the parametric mismatch scenario, parameter estimation can be carried out to update the

model parameters using plant measurements. However, if one does not know which parameters

are mismatched, alternative compensation schemes are required. One approach is to use time-

varying disturbance terms as degrees-of-freedom to adapt the model to match the plant’s output.

They enter the model as additive noise terms.

Before we discuss the various disturbance estimation methods, it is worth noting that in most

nonlinear MPC algorithms, full-state feedback(that is, all states in the plant are measured and

used to update the controller model) is widely used. It is capable of handling modest amounts

of mismatch; however, its only means for model adaptation is through the updating of the states

through measurements. Because of this limitation, it is generally incapable of handling drifts

and persistent stochastic disturbances due to the lack of integrating disturbances.

State Augmentation with Stochastic States

In one of the early works in joint estimation (described in Section 5.4.1), Kozub and MacGregor

[74] propose a method in which the estimation of the disturbances is treated as a parameter

estimation problem (where the parameters to be estimated are the disturbances). They do this

in the context of an Extended Kalman Filter, where the system is linearized. The augmentation is

performed on the state transition matrix and the covariance matrices. The linearized EKF model
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is augmented as follows:

xd
k+1 = Ad xk + Buk + As x s

k
, x̂k= j = x̂ j

x s
k+1 = x s

k
, x̂ s

k= j
= x̂ s

j

where xd , Ad are the state and state transition matrices of the deterministic states, x s, As are the

state and state transition matrices of the stochastic states, and B is the input coefficient matrix.

The As matrix is tunable matrix that determines the weights of the disturbances entering the

system.

The stochastic stationary process states x s
j

add integral action to the estimator. The reason is

that the state estimator will continually attempt to converge the state errors to some steady

value based on the measurements. If there is a mismatch, a persistent error is created, which the

estimator will try to eliminate, thus delivering integral action. A similar approach is discussed in

Bequette [19].

Tenny, Rawlings and Wright [103] also advocate an augmentation approach. They show a

comparison between input and output disturbance models for handling plant-model mismatch

for a nonlinear MPC system. Their nonlinear estimation model can be stated as follows:

xk+1 = f (xk, uk + Xuek, wk) (2.37)

ek+1 = ek + ξk (2.38)

yk = h(xk) + X y ek + vk (2.39)

where xk ∈ R
nx are states, uk ∈ R

nu are inputs, and yk ∈ R
ny are outputs. The terms wk, vk and

ξk are stochastic Gaussian zero-mean noise terms. The ek represents an integrating white noise

disturbance term, and Xu, X y are coefficient matrices that determine how the disturbances enter.

In the nonlinear MPC case, if the appropriate number of integrating disturbances are added,

offset elimination is either achieved or the closed-loop system is not allowed to reach a steady-

state point. This has the effect of removing offset due to unmodeled nonzero mean disturbances

and plant-model mismatch. In their work, they show that while an input disturbance model is

helpful for offset elimination, there exists a particular class of systems where an input disturbance

alone is insufficient to stabilize the system.

The authors point out that the determination of Xu, X y is an open-question; in practice, these

matrices are a complex function of the closed-loop dynamics. To the best of the our knowledge,

a constructive method for obtaining them in the general nonlinear case has not been devised.
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Therefore in most cases they are treated as tuning parameters (similar to the As in Kozub and

MacGregor [74]) and are chosen by trial-and-error [90].

Moving Horizon Estimation of Disturbances

In Huang [56], state and output disturbances are directly estimated using an advanced-step

Moving Horizon Estimator [124]. Input disturbances are not considered. The controller model

is as follows:

xk+1 = f (xk, uk) +η j , xk= j = x̂ j (2.40)

yk = h(xk) + ξ j (2.41)

where η j and ξ j are disturbance terms state and output disturbance terms respectively. Their

values are obtained by solving a maximum likelihood optimization problem in the Moving

Horizon Estimator (at every MPC iteration j) with the above perturbed plant model in the

NLP constraint set. The parameters η j and ξ j are then supplied to MPC controller’s prediction

model.

2.6 Conclusion

In this chapter, we reviewed the basic problem of buffer inventory coordination. The major

solution methods for dynamic optimization problems (simultaneous, sequential and multiple-

shooting) were described. An overview of the Model Predictive Control (MPC) framework was

offered, with a brief description on the incorporation of economic considerations into such a

control framework. This was followed by a discussion of hybrid (discrete-continuous) dynamic

optimization and a few dominant model types that are popularly found in the literature. We pro-

vide a broad overview of the nonlinear state estimation techniques, with particular emphasis on

the Unscented Kalman Filter, and the handling of constraints in such a filter. Various approaches

for dealing with plant-model mismatch using disturbance terms were surveyed.
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Chapter 3

Dynamic Optimization of Partial

Shutdowns

3.1 Introduction

In this chapter, we present several dynamic optimization formulations which we tailor to the

problem of partial shutdowns. These formulations are used in the aid of arriving at open-loop

advisory policies for operating plants under partial shutdown conditions.

We will also investigate the incorporation of a dynamic optimizer within a nonlinear MPC-type

framework for handling partial shutdowns. This model-based partial shutdown controller—

which assumes the availability of full-state measurements—provides a means of supplying

periodic feedback to the dynamic optimizer.

There are generally two types of control policies for handling process unit shutdowns:

1. Pre-emptive Policies, used in situations where a shutdown is known in advance. Pre-

emptive policies allow the control system to anticipate a shutdown and to make advance

preparations. Example: scheduled maintenance of a reactor.

2. Reactive Policies, where a shutdown is unscheduled. Example: equipment failure.

In this thesis, we will confine our attention to reactive shutdown policies. However, we note that

our proposed framework is able to accommodate pre-emptive type policies with only very minor

extensions.

35
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3.2 Partial Shutdown Optimization Problem

The partial shutdown problem entails finding a set of control trajectories that will restore a

plant to some nominal operating state in a cost-optimal fashion. This can be cast in a dynamic

optimization problem of the following canonical form:

maxΦecon(x(t), z(t), u(t)) (3.1)

s.t. ẋ(t) = f (x(t), z(t), u(t),θ ), x(0) = x0 (3.2)

h(x(t), z(t), u(t),θ ) = 0 (3.3)

g(x(t), z(t), u(t),θ )≤ 0 (3.4)

for t ∈ [0, t f ]

where Φecon = economic objective functional, x(t) ∈ Rnx = differential state vector, x0 = initial

state parameter vector, z(t) ∈ Rnz = algebraic state vector, u(t) ∈ Rnu = control input vector,

θ ∈ Rnθ = parameter vector, t f = final time in prediction horizon. f and h are functions that

define a semi-explicit differential-algebraic system, and g is a function that defines the inequality

constraints. We assume that the DAE described by 3.2 and 3.3 is of index-1; that is, g is solvable

for z (equivalently, we require that g is at least once differentiable, and that its Jacobian with

respect to z, or gz , is nonsingular).

The above DAE optimization problem can be solved in a variety of ways. In this work, we pursue

the approach where we discretize x(t), z(t) using the method of orthogonal collocation on finite

elements [33] (see Section 6.1.1 for details). This method effectively converts the above DAE

system into a finite system of algebraic equations. The resulting equations are then posed as

equality constraints in a mathematical programming problem. The mathematical modeling in this

work was accomplished using an in-house modeling system, A Modeling Language for Dynamic

Optimization (MLDO1) [32], which accepts a DAE model as input and generates the requisite

discretization constraints in the AMPL mathematical programming language [47].

In the sequel, we will consider the discretized problem directly, where variables xk = x(tk), zk =

z(tk), uk = u(tk), for k = 0, . . . , N where N = bt f /∆tc and ∆t is the discretized interval length.

Time t is partitioned and mapped into N intervals, and tk−1 ≤ t ≤ tk where k = 1, . . . , N .

1See Chapter 6 for details.
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3.2.1 Shutdown Constraints (αshut-formulation)

In engineering flowsheet models, each process unit p (where p ∈ P = set of all process units) is

often modeled individually2. Connection equations are used to connect the inputs and outputs

of each process unit model. In a chemical engineering context, these connections are often used

to couple the material and energy streams of different process units.

In order to represent shutdown behavior in individual process units within the flowsheet, we

impose constraints that shut off the material flow F through a particular unit p. Let Ip denote

the index set of all inlet flow variables associated with unit p, and Lp, the index set of all

variables associated with unit p that float when the flowrate is 0. Floating variables include

concentrations, compositions, intermediate variables, and other quantities whose values are not

defined when the material flow is 0 (see Remark 3.2.4 below). We can now write the following

formulation (we which call the αshut-formulation) for representing shutdowns in a process unit

p (for time k = 0, . . . , N − 1 and i ∈ Ip, l ∈ Lp, p ∈ P ):

Fi,k ≥ (1−α
p

shut,k
)F

p

shut
(3.5)

Fi,k ≤ (1−α
p

shut,k
)F U

i (3.6)

yl,k ≥ (1−α
p

shut,k
)y L

l +α
p

shut,k
y M

l (3.7)

yl,k ≤ (1−α
p

shut,k
)yU

l
+α

p

shut,k
y M

l (3.8)

where α
p

shut,k
∈ {0,1} = indicator variable representing status of process unit p at time k (1 =

shutdown, 0 = normal operation); yl,k = floating variable at time k; y L
l

, yU
l
= lower and upper

bound parameters corresponding to yl ; y M
l
= nominal value parameter to which yl,k is pinned

to when α
p

shut,k
= 1; Fi,k = inlet flowrate variable at time k; F U

i
= upper bound of Fi,k for all k;

F
p

shut
= a positive nonzero parameter representing the minimum flowrate threshold before a unit

is deemed to have shut down.

One of the consequences of constraints 3.5 – 3.8 is that when F j,k < F
p

shut
(that is, when the

flowrate falls below a threshold), the unit is deemed to have shut down. For instance, suppose

we wish to manually simulate a shutdown in a particular unit p′. This would entail shutdowns

in the adjacent units of p′ that have no buffer tanks surrounding them. Suppose we denote the

set of all shut down units adjacent to p′ as Pshut (where Pshut ⊂ P ). We can then explicitly

2See Appendix A for a flowsheet model description.
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impose the following constraint where the values of α
p

shut,k
are fixed as follows:

α
p

shut,k
=







1, p ∈ Pshut, k = kstart, . . . , kend

0, elsewhere
(3.9)

where kstart = btstart/∆tc = shutdown start time; kend = dtend/∆te = shutdown end time (see

Fig. 1.2 for the temporal locations of tstart and tend). Even though α
p

shut,k
is a discrete quantity,

this explicit fixing of variables (where α
p

shut,k
are specified parameters in this case) results in

the optimization problem being a continuous rather than a discrete one. That said, this αshut

formulation lends itself quite naturally to discontinuous (MILP, MINLP) formulations of state-

based shutdown triggers by simply redeclaring αshut as binary decision variable vector3.

Remark 3.2.1. In practice, the value of αshut (as well as an estimate of the value of the expected

endpoint of the shutdown, kend) at a given time may be obtained from a plant fault detection

module, or set manually by an operator based on past knowledge of similar shutdowns. The

variable αshut can be thought of as a flag or a discrete trigger that captures the operational state

of the system and allows us to activate the relevant shutdown actions at the right time, such as

setting control loops to manual, draining holding vessels etc.

Remark 3.2.2. Constraints 3.5–3.8 give rise to the following mathematical behavior (for a

particular unit p):







Fi,k ∈ [F
p

shut
, F U

i
], if α

p

shut,k
= 0

Fi,k = 0, if α
p

shut,k
= 1

, ∀ i ∈ Ip (3.10)

and,







yl,k ∈ [y
L
l

, yU
l
], if α

p

shut,k
= 0

yl,k = y M
l

, if α
p

shut,k
= 1

, ∀ l ∈ Lp (3.11)

Remark 3.2.3. The F
p

shut
quantity is directly related to a quantity familiar to industrial practi-

tioners, namely the turndown ratio, R
p
t , for a unit p:

R
p
t =

normal maximum flow

minimum controllable flow
=

F
p

U

F
p

shut

(3.12)

For instance, if due to design reasons a unit is only able to operate at a minimum of 25% of its

maximum capacity, the turndown ratio Rt = 100/25 = 4. In this context, if the unit is operating

3The case in which α
p

shut,k
is a binary decision variable vector is considered in Chapter 4 of this thesis.
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below a threshold F
p

shut
and exceeding the turndown ratio, the unit will need to be shut off.

Remark 3.2.4. Floating variables frequently occur as a result of bilinear formulations. Consider

the following stream equations example (where FP , FW , FDS are component flows, and xp is a

composition variable):

F = FP + Fw + FDS (3.13)

FP = xP F (3.14)

When component flows FP = 0, FW = 0, and FDS = 0, it follows that F = 0. We can then deduce

from Eqn. (3.14) that xP is allowed to take any value within its given bounds. Physically, xP is

meaningless when F = 0 because the composition of a stream with zero flowrate is undefined.

Allowing xp to float in an optimization problem can induce non-unique solutions. It is therefore

necessary to pin down the value of xp when Fin = 0; this is accomplished through constraints

3.7 – 3.8.

3.2.2 Shutdown Modeling Assumptions

In this work, we assume that the time to restart a failed unit is either: 1) short relative to the

overall process dynamics, and is hence neglected, or (2) included in the shutdown duration.

The implication of both these assumptions is that a unit is deemed to be immediately ready

for operation at the end of a shutdown phase (i.e. at tend; refer to Fig. 1.2). On a similar

note, we assume that the shutdown of a unit is perfectly modeled by turning off the inlet/outlet

flows to that unit, and that the appropriate shutdown procedure for a unit is carried out. This

shutdown procedure itself is not modeled; we assume that a manual or an automated procedure

for start-ups and shutdowns is in place [58].

We are disposed to believe that these are reasonable assumptions given that we are essentially

solving a macro-level inventory/production problem (that is, we are concerned with the overall

ingress and egress of material from process units, as well as the buffer inventories), which is an

abstraction level above the actual operating details of the off-line unit.

3.2.3 Restoration constraints

Once the shutdown period is over, the system undergoes a restoration phase where it is brought

back to some nominal operating condition. At the end of the restoration phase, we require the
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independent states and inputs to attain some nominal (steady-state) values. We can express this

requirement in the optimization problem by way of restoration constraints, that is, hard terminal

constraints imposed on the independent states and inputs post-restoration (during t ∈ [tres, t f ]

in Fig. 1.2). In this chapter, we assume that the number chosen for the horizon length N is high

enough to permit a feasible restoration within its defined time constraints.

Allison [5] demonstrated that in the absence of restoration constraints, the optimal course of

action in buffer inventory optimization problems is to drive the storage vessels empty. This is

clearly an undesirable outcome in our case as it would deprive the plant of the ability to handle

any further shutdowns past the end of the dynamic optimization horizon.

In our partial shutdown problem, we are interested in driving a plant toward a steady-state after

the shutdown. Ideally, at the end of the optimization horizon one would like each and every

differential state x (including the non-independent states) to return to their exact pre-shutdown

values, that is, the original steady-state.

In practice, the non-independent states may not be returnable to their original steady-state

values within our finite optimization horizon. Certain states, such as compositions for instance,

may take a long time to reach a steady-state point. The time duration required for these states

to reach steady-state may lie outside of the time horizon of our dynamic optimizer. We note

that one may, at one’s discretion, elect to extend the horizon as needed; however, this will incur

additional computational cost therefore a balanced approach is advised.

Therefore, instead of attempting to return every state to its pre-shutdown value, we aim to

return only the levels of the buffer inventories (independent) to their nominal states at the

end of the given horizon, and prescribe a set of inputs that, when held constant, will allow the

compositions (non-independent) to eventually settle to their steady-state values. This is done to

allow the plant to anticipate further shutdowns.

To steer the system toward a steady-state operating point at the end of the horizon, we employ

restoration constraints such as the following in our control optimization: (enforced at the last

n f discrete time points in the prediction horizon)

x ix
ss (1− ε)≤ x

ix

k
≤ x ix

ss (1+ ε), k ∈K f , ix ∈ I
x

ss (3.15)

uiu
ss(1− ε)≤ u

iu
k
≤ uiu

ss(1+ ε), k ∈K f , iu ∈ I
u
ss (3.16)

where K f = {N − n f , . . . , N}, N = the horizon length of the controller, x
ix

k
and u

iu
k

are elements

of the state x and input u vectors at time k, indexed by ix , iu respectively. The index sets are
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defined as I x
ss = {i|x i ∈ Xss} and I u

ss = {i|ui ∈ Uss}, and Xss, Uss are the sets of independent

state and inputs variables necessary to specify a steady-state. ε ≥ 0 is a deviation tolerance

percentage parameter, specified as a fraction. x
ix
ss , u

iu
ss are (constant) pre-shutdown values. The

time point (N − n f ) is related to restoration endpoint tres as follows:

N − n f = btres/∆tc+ 1 (3.17)

We wish to emphasize again that only independent states and inputs are to be selected for

restoration (a detailed discussion follows in Section 3.2.4 below), for electing to restore all

state and input variables to their original values may lead to an over-specified system and may

cause convergence difficulties in the presence of plant-model mismatch. In most inventory

management problems, typically Xss comprises inventory level variables, and Uss often contains

a subset of the flowrates in the plant.

3.2.4 Determining the subset of states and inputs to specify an endpoint steady-

state

A system is said to be at steady-state when its state variables do not change with time. In a

dynamic model, this corresponds to the derivatives of its differential states being 0 (that is,

ẋ = 0). A model may have a multiplicity of steady-states.

To illustrate the difference between independent and dependent states and inputs, we present

the following example. Consider a dynamic model of the form:

dm

dt
= F5− F6, m(0) = m0 (3.18)

m
d xA

d t
= F5(x

A
5 − xA), xA(0) = xA

0 (3.19)

F1 = F2+ F3 (3.20)

F2 = αF1 (3.21)

F1 xA
1 = F2 xA

2 + F3 xA
3 (3.22)

F3+ F4 = F5 (3.23)

F3 xA
3 + F4 xA

4 = F5 xA
5 (3.24)

where α, xA
1 , xA

2 , xA
4 are constant parameters; m, xA are differential state variables; F1, F4, F6 are

control input variables (decision variables for the optimizer); and F2, F3, F5, xA
3 , xA

5 are algebraic



42 Z. Chong, Ph.D. thesis (McMaster University, Chemical Engineering)

variables. There are 10 unknowns (including the inputs), and 7 equations. Therefore, 3

independent specifications are possible when the system is in transition (that is, non-steady

state), and we select the control input variables as the specifications to the system.

At steady-state however, the conditions dm/d t = 0 and d xA/d t = 0 impose additional restric-

tions on the system. They imply that F6 = F5, therefore F6 ceases to be an independent input

variable at steady-state—its value depends on F5—and therefore its value cannot be specified

arbitrarily. As well, xA = xA
5 , but it can be shown that this can be achieved with any choice of F1

and F4 that lie within some feasible operating window, therefore these are independent input

variables. Note that the variable m does not appear in the steady-state equations, therefore it

may be independently specified.

Through this kind of reasoning4, we are able to deduce a set of independent states and inputs at

steady-state comprising m, F1 and F4. If we specify the vectors x = [m, xA]T and u = [F1, F4, F6]
T,

we obtain Xss = {m}, Uss = {F1, F4}, and I x
ss = {1}, I

u
ss = {1, 2}.

If one attempts to specify simultaneously specify F1, F4 and F6 at steady-state, one may either

end up with a model whose derivatives dm/d t and d xA/d t are not exactly zero (as would be the

case in the above model), or worse, an overspecified model that is numerically infeasible.

3.2.5 Multi-Tiered Optimization

In order to explain the motivation behind the multi-tiered optimization approach, we first furnish

the reader with a brief description of the issues surrounding non-unique solutions in control

optimization problems, and the deviation of plant product qualities from their targets during the

shutdown and restoration phases.

Input regularization and non-uniqueness

Situations can arise in which the computed optimal input trajectory uk ∈ R
nu (for k = 0, . . . , N−1)

is nonunique, that is, there exists more than one input trajectory that corresponds to an identical

objective value at the optimum. In mathematical programming parlance, we say that the problem

has a set of solutions for which the Sufficient Second-order Optimality Conditions, or SSOCs,

does not hold (see Appendix C.2 for a statement of these conditions). When this occurs, a

numerical optimization procedure has no recourse for differentiating between the different

4In this work, we utilized both a computer algebra system (CAS) and engineering intuition to identify sets Xss,Uss.

In principle, these independent sets could conceivably be arrived at through some a graph-theoretic algorithm;

however this is outside the scope of our work.
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trajectories, and is thus liable to return the first solution trajectory that satisfies some given

specified termination condition. Some of these solution trajectories may exhibit a high-frequency

chatter-like behavior, while others prescribe large changes in an input variable over a short

period of time. Such trajectories, though optimal in a mathematical sense, are undesirable in an

operational sense because they give rise to actuator/valve wear and are unappealing to plant

operators due their opacity to interpretation.

To avoid the situation, a regularization term is usually added to the objective function to alter the

curvature of the objective function (and by extension, the Lagrangian) such that the solution is a

unique point. This is typically done through a move suppression penalty on the input trajectory

u:

maxΦecon(x , z, u)−
N−1∑

k=1

(uk − uk−1)
TR(uk − uk−1) (3.25)

where R= diag[ρ1, . . . ,ρnu
] is a user-specified penalty weight matrix, and ρi (for i = 1, . . . , nu)

are positive-valued penalty weights that are sufficiently-large to create the necessary curva-

ture to obtain a unique solution. The vectors x =
�

xT
0 , xT

1 , . . . , xT
N

�T
= differential states, z =

�

zT
0 , zT

1 , . . . , zT
N

�T
= algebraic states, and u =

�

uT
0, uT

1, . . . , uT
N−1

�T
= control inputs. The con-

straints in this optimization problem are assumed to satisfy the Linear Independence Constraint

Qualification (LICQ), a regularity property (see Definition C.0.2 in Appendix C).

A concomitant benefit of having this move-suppression penalty term in the objective is that

one also obtains smooth trajectories. This technique is often successfully applied in control

optimization problems where the object is either to track a setpoint or to regulate a system

around an equilibrium point.

However, in our case we have an economic objective function that is denominated in dollar terms.

Therefore there is a certain degree of arbitrariness to the selection of the value of the penalty

weights, since the penalty term is not denominated in dollar terms and does not represent any

manner of economics. An arbitrarily configured move suppression penalty is susceptible to

trading-off the original economic objective in ways that are not easy to quantify. Therefore in

this work we elect not to use the move suppression penalty approach.

Product Quality Targets during Shutdown and Restoration

Product qualities (e.g. percentage impurity, minimum concentration, etc.) are a set of variables

that are closely regulated around some target value during nominal operation. These variables

are monitored to ensure that the material at various stages of the plant have the desired
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properties for processing.

During the shutdown and restoration phases, some of these product quality variables may

be rendered incapable of reaching their targets due to the disruption caused during partial

shutdowns. In practice, this necessitates the relaxation or release of a subset of the specifications

during the transition period. This entails allowing excursions of certain product qualities outside

their normal allowable bands while maintaining the process as close to its nominal operating

state as possible.

The task of choosing the most suitable set of product quality variables to relax or release often

falls on the plant operator. This is a task that calls for either the use of engineering heuristics

or personal experience. However, we believe a case can be made for using an optimization

technique for selecting trajectories that attempt to meet the targets in the non-shutdown units

as best as possible, without sacrificing economics.

Multi-tiered Optimization

In light of the above, we propose an alternative approach to regularizing the trajectories, which

takes the form of a hierarchical optimization strategy. In this section, we put forward a multi-

tiered optimization approach, which extends the “two-tiered optimization” approach due to

Balthazaar and Swartz [101]. This approach directly exploits the non-uniqueness property of

the dynamic optimization problem by systematically selecting a solution—within the space of

optimal solutions—that meets certain desirable criteria.

The multi-tiered optimization approach allows us to prioritize several competing objectives and

specify the trade-offs between them. Separate optimization problems are solved one after the

other, with the preceding tiers providing information to the latter tiers. One configuration of a

multi-tiered optimization problem is as follows: (in all the tiers described below, we assume that

the constraint set includes the dynamic model.)

1. Tier 1: Obtain trajectory for optimal economics

We solve the dynamic optimization problem that maximizes an economic objective function,

and record the optimal value of the objective. This value represents an upper-bound on

economics achievable by the system.

Φ∗econ =maxΦecon(x , z, u) (3.26)

where Φecon(x , z, u) = economic objective function, x =
�

xT
0 , xT

1 , . . . , xT
N

�T
= differential

states, z =
�

zT
0 , zT

1 , . . . , zT
N

�T
= algebraic states, and u =

�

uT
0, uT

1, . . . , uT
N−1

�T
= control



Z. Chong, Ph.D. thesis (McMaster University, Chemical Engineering) 45

inputs. The optimal value of the economic objective (a scalar value) is stored as Φ̄econ :=

Φ∗econ(x
∗, z∗, u∗). We note that in this tier, the product quality targets are allowed to vary

within their admissible bounds. In the cases considered in this chapter, the quality targets

constitute (intermediate) operational targets that are non-critical to the final product

quality. In other applications, these targets may be essential, in which case Tiers 1 and 2

may be swapped and their trade-offs appropriately reassigned.

2. Tier 2: Minimize deviation from product quality targets

In this tier, we solve an optimization problem to deduce the minimum tolerable deviation

of product qualities from their target values during the shutdown and restoration phases,

while still remaining feasible. Let s denote the vector of product quality variables in the

plant, and s̄ their nominal targets.

Φ∗s =min

N∑

k=0

(sk − s̄)T(sk − s̄) (3.27)

s.t. Φecon(x , z, u)≥ Φ̄econ(1− εe) (3.28)

where εe ≥ 0 is the economic trade-off parameter. It is a tuning parameter representing the

maximum fraction of achievable economics (i.e. Φ̄econ) to trade-off. The squared deviation

of the product quality targets at the optimal solution (Φ̄s := Φ∗s ) is recorded and enforced

in the next tier.

3. Tier 3: Minimize control effort

The objective function is replaced with another objective that minimizes control effort,

subject to a minimum constraint on the economic performance and minimum deviation

from product quality targets.

min

N−1∑

k=1

(uk − uk−1)
T(uk − uk−1) (3.29)

s.t. Φecon(x , z, u)≥ Φ̄econ(1− εe) (3.30)

N∑

k=0

(sk − s̄)2 ≤ Φ̄s(1+ εs) (3.31)

where εs ≥ 0 is the product quality deviation trade-off parameter. It is a user-specified

tuning parameter which represents the fraction of the attainable target deviation to trade-

off in order to achieve minimum control effort. Choosing εe = 0,εs = 0 may be feasible,

but higher values should deliver smoother control profiles, which may be more desirable
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from an operations point of view. Positive values of εe and εs are also favorable from a

numerical convergence point of view, as they behave like numerical relaxation factors.

We wish to emphasize that the above set-up represents only one possible configuration of a

multi-tiered dynamic optimization problem – many more are possible. Multi-tiered optimization

can be thought of as a general technique for systematically prioritizing control objectives (an

idea explored in Swartz [100]) without resorting to using arbitrary penalty weights; instead it

allows one to specify the trade-offs between one objective and the next. The first tier represents

the most important objective and last tier represents the least important. The relaxation factors ε

are used to specify the trade-offs in each tier. Therefore the order of the individual optimization

problems can be switched around according to their importance in a particular application.

Indeed, even the optimization problems in each tier can be replaced or removed as needed. Fig.

3.1 shows a simple schematic of the multi-tiered optimization approach that we have adopted

for this chapter of the thesis. We also note that a nice property of this approach is that if the first

tier optimization problem is feasible, feasibility is guaranteed for all successive tiers.

Tier 1: Economics
Find maximum eco-
nomics achievable.

Tier 2: Deviation from Product
Quality Targets
Find minimum tolerable deviation
from product quality targets.

Tier 3: Input Effort
Find an input trajectory whose
movements are penalized.

From plant

State estimate : x̂ j

Φ̄econ

Φ̄s

To plant

Control inputs : u

Figure 3.1: Multi-tiered optimization approach.

Another attractive feature of this particular multi-tiered optimization configuration is that unlike

the move-suppression penalty approach seen in eqn. 3.25, it permits the user to decide, for

example, the exact amount of the economics to trade-off (in dollar terms as opposed to some

arbitrarily weighted quantity) in order to obtain smaller product quality deviations or smoother

input trajectories. As well, one can specify the percentage of attainable product quality deviation
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to trade-off in order to obtain smoother trajectories with the minimum input effort.

3.3 Nonlinear MPC for Partial Shutdowns

In previous sections, we have presented dynamic optimization formulations for addressing

partial shutdowns in a plant. The dynamic optimization problem can be solved off-line and its

solution used as an advisory tool for making plant operation decisions. Plant operators can use

dynamic optimization as a tool for assessing what-if scenarios, based on different hypothetical

operating strategies. This is a common way of using the results from dynamic optimization

problems.

This usage case is akin to the use of a process simulator to simulate different scenarios, except dy-

namic optimization offers the additional facility of being able to compute optimal solutions based

on different objective functions. In addition, while process simulation software often include the

ability to optimize certain time-invariant plant parameters, dynamic optimization techniques

offer the ability to optimize time-varying control input trajectories that can be made to obey

arbitrarily complex constraints (subject to feasibility). As such, open-loop dynamic optimization

is a tremendously useful tool for generating plant operating policies and heuristics.

In principle, it may be possible to directly implement the dynamic optimization solution tra-

jectories on the plant. We note that in reality, process disturbances, noise, and plant-model

mismatch may invalidate or render infeasible the calculated trajectories. For the implementation

of the solution trajectories to be practicable, they need to reflect the current realities in the

plant.

One could conceivably update the dynamic optimization problem with the latest informa-

tion available from the plant and re-solve the problem. This could be done every time an

operational decision has to be made. However, if we take the idea one step further and mecha-

nize/algorithmize the procedure, it leads us naturally to the notion of feedback control, where a

control algorithm takes an operational decision based on updated plant information at every

sampling iteration.

Model Predictive Control (MPC) [91] is a framework that is particularly well-suited to handle

this case. Toward this end, we propose a nonlinear MPC-based shutdown controller (with an

embedded dynamic optimization problem) as a means of implementing abnormal-situation

control on the plant. We selected MPC for its centralized multivariate structure and constraint-
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handling capabilities. Given that our primary objective is economics-based, the predictive

controller here is distinct from a conventional MPC controller in that its objective is not to track

given setpoints, but instead to implement manipulated variable adjustments to optimize an

economic objective (as well as satisfy lower tier objectives like minimizing deviation of product

qualities from their targets, etc.).

MPC Shutdown Controller at iteration j

α
p

shut
vector is determined from d

p
est.

Let Ks = { j . . . N}, Kt = { j . . . N − 1},
Ig = {1, . . . , ng},
and In = state-restricting constraints.
The following constraints are common to all tiers:

xk= j = x̂ j

xk+1 = f (xk, zk, uk,θ ), k ∈Kt

h(xk, zk, uk,θ ) = 0, k ∈Ks

gi(xk, zk, uk,θ )≤ 0, k = j, i ∈ Ig \ In

gi(xk, zk, uk,θ )≤ 0, k = j + 1, . . . , N , i ∈ Ig

Multi-tiered optimization

• Tier 1: Maximize Economics
• Tier 2: Minimize Deviation from Product Quality

Targets
• Tier 3: Minimize input effort

Plant DAE (One-Step Integration) at iteration j

ẋ p(t) = f p(x p(t), zp(t), uk= j ,θ
p), x p(t j) = x̄

p

j

hp(x p(t), zp(t), uk= j ,θ
p) = 0

for t ∈ [t j , t j+1]

Full-state Measurements ym
j+1 := x p(t j+1)

d
p
est

input uk= j

ym
j+1

j := j + 1

x̂ j := ym
j

Figure 3.2: MPC simulation workflow. Iterations terminate when j = N .

3.3.1 Algorithm

In our scheme, the MPC-based shutdown controller is activated at the beginning of a shutdown

(tstart), and takes over from the nominal control system. We provide a description of the steps

carried out by the MPC algorithm below.

MPC Shutdown Controller Algorithm

Fig. 3.2 summarizes the shutdown controller algorithm. Note that it is important to

distinguish between the model’s discrete time counter k, and the MPC iteration counter

j.

1. Downtime Estimate (d
p
est). At the beginning of the shutdown, a value for the

downtime estimate, d
p
est = test

end
− tstart (where test

end
is the estimated shutdown end
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time) is supplied to the shutdown controller. This downtime estimate parameter

can be manually updated during any control interval as new information about the

downtime becomes available. This is an instance of manual parameter feedback. A

detailed description can be found below, in Section 3.4. The values of α
p

shut
for all

process units p ∈ P are determined from this parameter.

2. Open-loop Dynamic Optimization. The MPC dynamic optimization problem (in

the “MPC Shutdown Controller” block) is solved using a multi-tiered optimization

approach (described in Section 3.2.5).

3. Implement Control Inputs on Plant. Only the current step (time j) of the calculated

inputs (uk= j) is implemented on the plant.

4. State Measurements. Plant state measurements at the next sample-time are taken.

In a simulation environment, a 1-step integration is performed from t j to t j+1 (in the

“Plant DAE (One-Step Integration)” block); where x p, zp = plant model variables; θ p

= plant model parameters; f p, hp = plant DAE model functions. The internal states

of the plant, x̄
p

j
are the initial values for the DAE. The vector ym

j+1 is conveyed back to

the predictive controller, where it is used as initial values for the next iteration. In

this work, we assume full-state feedback. If full state measurements are not available,

a state observer is employed.

5. Iterate. The counter j is incremented. This process is repeated from Step 1 until the

system is restored to its nominal steady state operation (at time tres, see Fig. 1.2),

after which control is handed back to the nominal control system (when j = N).

The transient processes we are considering (namely partial shutdowns) are finite in duration,

therefore the prediction/control horizon length in the controller is finite. Instead of receding

prediction and control horizons found in conventional MPC, shrinking prediction and control

horizons are used. (The prediction and control horizon lengths decrease as the the controller

advances toward the end of the time horizon.) Here, a shrinking horizon is selected for reasons

of computational efficiency and ease of problem initialization, but in practice, a receding horizon

is also admissible.

The horizon length N needs to correspond to the duration of the shutdown and restoration

combined. If a shorter length is chosen, suboptimal control may result from the controller

not having an adequate picture of the full transient process. Also, in our predictive controller,

the control horizon length equals the prediction horizon length. Economics optimization is
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integrated directly into the predictive controller, which constitutes a 1-layer MPC with economics

approach (in contrast to a layered Dynamic RTO approach).

Removal of state-restricting model constraints at the initial point

To ensure model feasibility for closed-loop applications, we require a modification to the original

dynamic optimization problem. At every MPC iteration j, inequality model constraints that

restrict the value of the initial condition vector xk= j in the MPC model are to be released. The

reason for this is that at every iteration, the values of the initial condition vector xk= j are fixed

to the current state estimate vector x̂ j . This vector is computed from plant measurements, and

constitutes a specified input to the MPC dynamic optimization model. It is not a degree-of-

freedom in the model, therefore its range of admissible values should not be constrained.

To avoid this situation, at every MPC iteration, we need to release the appropriate state con-

straints at the initial point. We can do so by partitioning the inequality constraints (and rewriting

it for our shrinking horizon case) as follows:

gi(xk, zk, uk,θ )≤ 0, k = j, i ∈ Ig \ In (3.32)

gi(xk, zk, uk,θ )≤ 0, k = j + 1, . . . , N , i ∈ Ig (3.33)

where Ig = {1, . . . , ng} is the index set of all inequality constraints, In ⊂ Ig is the index set of

the model constraints that are restricting the values of the states xk= j . This partitioned constraint

system implies that at time k = j, the state-restricting model constraints are excluded, but at

k = j+1, . . . , N , all constraints are enforced. Enforcing inequality constraints from j+1 onwards

is a practice that agrees with the nonlinear MPC formulations in Qin and Badgwell [91], in

which inequality constraints on u are enforced from time j whereas inequality constraints in y

are enforced from j + 1.

Remark 3.3.1. Because the values of the algebraic variables zk are determined from the values

of xk, uk and θ , it is possible that a given x̂ j at the initial point may cause the corresponding

z j to be in violation of certain constraints that restrict the values of zk= j, especially if those

constraints are not physical ones. If this situation is encountered, the indices of the offending

constraints should be included in the set In.
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3.4 Parametric Feedback for Addressing Uncertainty in Downtime Esti-

mate, dest

Explicitly known discrete events (such as time and duration of a planned shutdown and restora-

tion) are embedded directly into the prediction model of our proposed MPC controller. These

events are specified either through operator intervention, look-up tables, or are automatically

prescribed by a fault monitoring module. This form of process event anticipation is distinct

from traditional feedforward control in which disturbances are detected solely through plant

measurements.

The estimated duration of the shutdown (d
p
est = test

end
− tstart) is a important parameter in

calculation of the optimal trajectories because it influences the shape of the resulting trajectories.

The downtime estimate would typically be provided by the operator to the control system, based

on past operational experience or direct information about the prognosis of the shutdown. In

practice, this estimate will not correspond exactly to the actual downtime (dact) for various

reasons, not least due to the fact that it may be very difficult in most cases to make an accurate

prediction of a unit’s downtime.

Steady-state Steady-stateShutdown Restoration

dact

dest

actual

estimated

Reoptimization points

Figure 3.3: Reoptimization at various stages, with dact > dest.

One approach to addressing this issue is to treat the downtime estimate as a parametric feedback

variable. In contrast to other feedback variables, the downtime is a single parameter manually

supplied by maintenance personnel. By adopting this approach, the operator is allowed to revise

any downtime estimates dynamically. At any time during the shutdown, the operator can enter

corrected downtime estimates as information arrives and the remainder of the trajectory is

re-optimized from the current state of the system, and the controller performs what is essentially

a mid-course correction. This is in illustrated in Fig. 3.3, where the estimated downtime dest is

shorter than the actual downtime dact. The actual trajectory corresponds to those obtained after

reoptimization.
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The effectiveness of active reoptimization depends on:

1. the degrees-of-freedom available to the system at the point of reoptimization.

2. how early the reoptimization is done.

3. where the failing unit is situated with respect to buffers.

For uncertainty in the estimated downtime parameter, we have found this feedback approach

to possess considerable advantages over a multi-scenario optimization approach (see Section

6.1.4 for a brief description), in that the resulting control trajectories of the former are less

conservative than the latter. This observation arises from the fact that the duration of shutdowns

is usually inversely proportional to the economics of a plant.

3.5 Application Study

3.5.1 Process Description

The model used for this partial shutdown study is the fiber line of a Kraft pulp and paper plant.

This study was inspired by an actual industrial problem in a plant in Ontario, Canada. The

mathematical equations of the model and full nomenclature can be found in Appendix A.

A simplified schematic of the plant in shown in Fig. 3.4. There are two major buffering tanks,

the blowtank and the storage tank located before the delignification department. There are also

buffering tanks (sealtanks) in the washing department which are used for internal recycles. Each

variable name is tagged with a superscript indicating the unit it is associated with. The mapping

between the tag names and their corresponding unit names is found in Table 3.1.

Tag Unit Name Tag Unit Name

DG digester BT blowtank

HQ Hi-Q knotter WC1 brownstock washer 1

WC2 brownstock washer 2 WC3 brownstock washer 3

ST storage tank SR screeners

OF O2 feedpress MX mixer

OR O2 delignification reactor PW Post-O2 washer

Table 3.1: Variable superscript tag names and corresponding unit names.
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When a process unit shuts down, an entire department is typically usually forced to shut down

unless there is internal buffering capacity in the departments. A process unit is shut down and

taken off-line for a period of time, and is subsequently restored. Based on an estimate of the

downtime (specified by the operator), the proposed control scheme is used to compute and

implement a set of optimal control trajectories that accommodates the shutdown in the presence

of nonlinear dynamics and recycles.

The manipulated variables and their bounds are given in Table 3.2. We assume full-state

measurements are available. The sets of independent states and inputs required to specify the

steady-state at the end of the restoration period are:

I x
ss = {i|x i ∈ Xss}, Xss = {H

BT , HW C1, HW C2, HW C3, HST } (3.34)

I u
ss = {i|ui ∈ Uss}, Uss = {F

DG
in1 , FW C1

R , FW C1
3 , FW C1

2 , FW C2
R , FW C3

R , FW C3
3 } (3.35)

The capacities of the buffer tank inventory units and their nominal levels are given in Table

3.3. Table 3.4 lists product quality variables and their targets. This work uses the simultaneous

method for dynamic optimization, where both controls and states are discretized. Orthogonal

collocation was used for discretization, resulting in an optimization problem with approximately

18,200 variables, 17,600 equality constraints, 460 inequality constraints, and 53,000 nonzeros

in the constraint Jacobian.

Manipulated Variables Min (ton/hr) Max (ton/hr)

F DG
in1 0 40

F BT
S2 0 600

FW C1
3 0 600

FW C1
2 = FW C2

3 0 600

FW C1
R 0 600

FW C1
D 0 600

FW C2
2 = FW C3

3 0 600

FW C2
R 0 600

FW C2
D 0 600

FW C3
2 0 600

FW C3
R 0 600

FW C3
D 0 600

FST
out1 0 600

FSR
out1 0 600

FOF
out1 0 600

F PW
out2 0 600

Table 3.2: Decision variables and their bounds
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Tank Name Capacity, Vtank (m3) Nom. Inven.
(m3 / % of ca-
pacity)

Blowtank 2050.0 1230.0 / 60%

Sealtank #1 1067.0 248.6 / 23.3%

Sealtank #2 861.0 288.4 / 33.5%

Sealtank #3 683.0 227.4 / 33.3%

Storage tank 1620.0 972.0 / 60%

Table 3.3: Tank names, capacities and nominal inventories

Product
Quality
Variable

Description Target Value (%)

CSR
M Outlet consistency of screeners 4.5

COF
M Outlet consistency of O2 feedpress 30.0

C PW
M Outlet consistency of Post-O2 washer 6.5

Table 3.4: Product quality variables and their targets.

The economic objective function is a linear function of the cumulative profit (or loss) over the

horizon of interest:

Φecon =∆t

nm∑

m=1



Cm

 
N−1∑

k=0

Fm,k

!

 (3.36)

where ∆t is the sample time, Fm is the flowrate (in ton/hr) of some component m, Cm is the

price that component ($/ton), and nm is the total number of components. The prices Cm can be

found in Table 3.5.

Material Prices, Cm ($/ton)

Pulp 725.00

Chips -25.00

Chemicals -100.00

Energy from Black Liquor 0.35

Table 3.5: Average prices of materials [11, 48]

The solvers used in this work were IPOPT 3.8.2 [114] (a large-scale sparse solver that implements
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a primal-dual interior point method) and CONOPT 3.14G [6] (a feasible path active-set solver).

IPOPT was used in the open-loop studies, as well as to generate an initial guess for the first

iteration of the shutdown controller. CONOPT was used for closed-loop studies due to its

amenability to warm-starts. Its ability to follow a feasible path is also particularly advantageous

for efficiently solving multiple multi-tiered optimization problems, as the solution for one tier is

a feasible initial point for the next.

3.5.2 Case 1: Nominal Open-loop Optimization of Shutdowns

Description

In this case study, we demonstrate the application of aforementioned methodologies for the

dynamic optimization of three separate shutdown scenarios. In Scenario (a), the O2 Delignifier

unit is shut down, and Scenario (b) involves the shutdown of the Hi-Q knotting unit, while in

Scenario (c), the digester unit goes offline.

The plant is assumed to be operating at steady-state initially, and the shutdown occurs suddenly.

Flowrates into the shut down unit (as well as adjacent quasi-steady-state units) dip to 0. Past

the shutdown period, the optimizer responds by prescribing input actions to restore the plant to

its steady-state.

In each case below, the simulation horizon is 12 hours and the shutdown duration is 5.5 hours.

Here, we assume we know the downtime exactly and that there are no uncertainties. The details

are summarized in Table 3.6.

Case 1 Summary (Figs. 3.5)

Units shut down: Shutdown scenar-

ios (a) O2 deligni-

fier; (b) Hi-Q knot-

ter; (c) digester.

Simulation horizon (h): 12

Shutdown start time (h): 0.25

Estimated downtime, dest (h): 5

Actual downtime, dact (h): 5

Reoptimization point (h): N/A

Disturbances: None

Table 3.6: Case 1 summary, scenarios (a), (b) and (c)
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Figure 3.5: Case 1: Open-loop dynamic optimization. Solution trajectories for three distinct shutdowns.

Legend: Dashed lines = Scenario (a) delignifier shutdown. Solid lines = Scenario (b) Hi-Q

knotter shutdown. Dotted dashed lines = Scenario (c) digester shutdown.
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Results

The results of the three scenarios are as follows:

• Scenario (a): Shutdown in the O2 delignifier

The overall economics achieved was $92,963. The trajectories are represented by the

dashed lines in Fig. 3.5. The flowrate out the the storage tank, FST
out1 (Fig. 3.5m) goes to

0 during the shutdown interval t = 0.25− 5.75 h. This has the effect of shutting down

the O2 delignifier and all the surrounding units (up to the screening unit), as there are no

buffer capacities in units between it and the storage tank.

As the shutdown is progressing, we notice a rise in the storage tank level HST (Fig. 3.5h),

due to accumulation of material from upstream units. The digester outlet stream F DG
in1 (Fig.

3.5i) continues to produce material at its nominal rate, while the outlet flowrate in the

blowtank F BT
S2 (Fig. 3.5j) drops to accommodate the constriction downstream. This causes

the a rise in the blowtank level HBT (Fig. 3.5a).

After the shutdown period is over (t > 5.5 h), the system attempts to make up for lost

production by discharging the contents of the storage tank, as seen in a decline in its

level HST . Two product quality variables CSR
M (Fig. 3.5n) and C PW

M (Fig. 3.5o) (which

are associated with the screening and post-O2 washing units) can be seen to be deviating

from their targets during the restoration period, in response to the material influx during

the restoration period. All inputs and states return to their original steady-states post-

restoration.

Because a shutdown in the O2 delignifier is downstream of all the major production units

and its adjacent buffering tank is capable of absorbing the majority of the product being

produced upstream, the overall effect of this partial shutdown on the plant is less severe

than that of partial shutdowns in units upstream. This is witnessed by the fact that the

economics achieved is considerably higher than that of the next two cases.

We have included upper-bound constraints on the flowrates in this study. However

depending on the plant in question, these upper-bounds may be lower than what is

specified here. The operating windows of specific units may be accounted for through the

specification of the appropriate constraints.

• Scenario (b): Shutdown in the Hi-Q knotter

The overall economics achieved was $65,292, which is lower than that of a partial

shutdown in the downstream delignifier unit above.
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The trajectories are represented by the solid lines in Fig. 3.5. This shutdown is indicated

by the turning off of flows to all units bounded by the blowtank and the storage tank, that

is, from the Hi-Q knotter to Washer 3. The seal tanks of the washers however remain

operational as buffer capacities. The blowtank outlet flowrate F BT
S2 (Fig. 3.5j) is seen to

go to 0. All internal recycles in the washing circuit are also at 0 during the shutdown.

However, the main recycle stream from Washer 1 seal tank to the blowtank, FW C1
3 (Fig.

3.5h) continues to be a degree-of-freedom, therefore the level of the Washer 1 seal tank,

HW C1
st (Fig. 3.5b) can be seen to be changing during the shutdown.

During the shutdown period, production continues both upstream and downstream of

the blowtank and storage tank respectively. This is seen from a rise in HBT (Fig. 3.5a)

and a dip in HST (Fig. 3.5h). The production rate of the digester also drops during the

shutdown, as seen in F DG
in

(Fig. 3.5i). This is to prevent overwhelming the blowtank,

whose level HBT has an upper-bound of 90%, with material exiting the digester. The

level of the Washer 1 seal tank HW C1
st (Fig. 3.5b) also drops during the shutdown period

because its contents are recycled to the blowtank, via recycle stream FW C1
3 (Fig. 3.5k).

The restoration trajectories for F BT
S2 (Fig. 3.5j) and FW C3

2 (Fig. 3.5l) reveal the general

strategy of the optimizer. During the restoration period, the optimizer is pursuing a course

of action in which the flowrates are initially increased by a significant amount to increase

production. However, in order to meet endpoint constraints–the optimizer quickly ramps

down the said flowrates and settles at the steady-state values. As a result, the inventories in

the tank are then built back up. The dissolved solids compositions in the washer seal tanks,

namely xW C1
DS3 , xW C2

DS3 , xW C3
DS3 (Figs. 3.5c, e, g) do not appear to deviate significantly from

their steady-state values, which indicates that the shutdown did not introduce signification

variation to the compositions in the counter-current washing circuit.

For this partial shutdown case, the product qualities did not deviate significantly from the

target. This is the result of two things: (1) the product quality optimization tier minimizes

all deviations from target values; (2) the sizable capacity of the storage tank minimizes

the propagation of variation in pulp consistency to downstream units.

• Scenario (c): Shutdown in the digester

The overall economics achieved was $52,286, which is worse than the above two cases.

This can be attributed to the fact that the digester is a key unit in the process, and the pulp

it generates is the primary component for processing.

The overall strategy is similar in principle to what is described in the previous case. The
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trajectories are represented by the dotted-dashed lines in Fig. 3.5. The digester is the first

unit in this plant, therefore in this scenario we expect a greater disruption in the plant

than the above two cases.

The chip feed to the digester, F DG
in1 (Fig. 3.5i) is turned off during the shutdown period. We

assume that the combined duration of the shutdown and restartup procedures are lumped

into this downtime. The strategy is to keep all the units downstream of the blowtank

operational while the digester is down. The implementation of this strategy can be see

by a decline in the level of HBT (Fig. 3.5a), and a gradual increase during its subsequent

restoration.

During the shutdown, the washers continue to operate. However, the liquor recycle to the

blowtank from the washing circuits is turned off as seen in the figure for FW C1
3 (Fig. 3.5k).

The inventories of the 1st and 3rd sealtanks build up as a result, as observed in HW C1
st and

HW C3
st (Figs. 3.5b, f). The pulp consistencies downstream can be seen to drop, particularly

in the screeners (CSR
M , Fig. 3.5n) and post-O2 washers (C PW

M , Fig. 3.5o), due to the loss of

pulp output from the digester.

In the restoration phase, the inventories are being balanced in such a way as to enable the

system to reach its original steady-state after at the end of the restoration period.

3.5.3 Case 2: Uncertainty in downtime estimate, dest (MPC mode)

Description

This case study demonstrates the use of reoptimization as a feedback mechanism for updating

downtime estimates. The downtime estimate is an uncertain quantity that often cannot be

accurately determined from the outset. Over the course of time, as more information becomes

available, the downtime estimate can be updated and a reoptimization is performed, and a

mid-course correction strategy is implemented.

We will consider two scenarios. In Scenario (1), the actual downtime dact is shorter than

the initial estimate dest. In Scenario (2), the actual downtime dact is longer than the initial

estimate dest. In each scenario, we investigate the effect of updating the downtime estimate at

different times, that is, we assume that at a chosen reoptimization point, the operator receives

an corrected downtime estimate from the maintenance personnel. The estimate is entered into

the control system, and the MPC algorithm reoptimizes the remainder of the trajectories based

on this new estimate. In this study, we only update the downtime estimate once per scenario,
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Figure 3.6: Closed-loop results. Scenario (1), Downtime estimate reoptimization. Hi-Q knotter shutdown

(duration dact = 2.5 h< dest = 3.5 h). Reoptimization at t = 0.5, 1.25, 2.25 h.

Legend: Solid lines = (1a) reoptimized at 0.25 h. Dashed lines = (1b) reoptimized at 1.25 h.

Dotted dashed lines = (1c) reoptimized at 2.25 h.
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Figure 3.7: Closed-loop results. Scenario (2), Downtime estimate reoptimization. Hi-Q knotter shutdown

(duration dact = 4.5 h> dest = 3.5 h). Reoptimization at t = 0.5, 1.25, 2.25,2.75 h.

Legend: Solid lines = (2a) reoptimized at 0.25 h. dashed lines = (2b) reoptimized at 1.25 h.

Dotted dashed lines = (2c) reoptimized at 2.25 h. Dotted lines = (2d) reoptimized at 2.75 h.
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but in principle, it can be done as many times as required. The attributes of the two scenarios

are summarized in Table 3.7. Given that there are 3 reoptimization points in Scenario (1), and 4

reoptimization points in Scenario (2), 7 independent sub-cases are carried out.

Case 2 Summary

Scenario (1),

dest > dact, Fig.

3.6

Scenario (2),

dest < dact, Fig.

3.7

Units shut down: Hi-Q knotter Hi-Q knotter

Simulation horizon (h): 12 12

Shutdown start time (h): 0.25 0.25

Estimated downtime, dest (h): 3.5 3.5

Actual downtime, dact (h): 2.5 4.5

Reoptimization points (h): 0.25, 1.25, 2.25

h

0.25, 1.25, 2.25,

2.75 h

Disturbances: None None

Table 3.7: Case 2 summary

Results

The economics obtained in each scenario sub-case (at each reoptimization point) are listed in

Table 3.8.

Scenario sub-cases dest dact Reopt
time
(h)

Economics,
Φ∗econ ($)

Scenario (1a), dest > dact (ideal) 3.5 2.5 0.25 84,590

Scenario (1b), dest > dact 3.5 2.5 1.25 84,588

Scenario (1c), dest > dact 3.5 2.5 2.25 84,574

Scenario (2a), dest < dact (ideal) 3.5 4.5 0.25 69,158

Scenario (2b), dest < dact 3.5 4.5 1.25 69,155

Scenario (2c), dest < dact 3.5 4.5 2.25 69,153

Scenario (2d), dest < dact 3.5 4.5 2.75 69,150

Table 3.8: Economics of scenarios (a) and (b). The ideal case is when the actual downtime is known at

the start of the shutdown (at t = 0.25 h), and a reoptimization is performed at that point.

Several observations may be gleaned from the results. The ideal results correspond to the

subcases in each scenario where the reoptimization time is t = 0.25 h. This is because the

shutdown starts at t = 0.25 h, therefore if the correct downtime is given to the optimizer at this

point, it can take the necessary corrective actions without any hindrances.
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First of all, it should be obvious that a longer downtime generally corresponds to poorer economic

outcomes. Secondly, one observes that the economic outcomes generally deteriorates with

reoptimization points that occur later. This is an eminently intuitive result, because the outcome

of a reoptimization depends on the degrees-of-freedom available at the point of reoptimization.

It stands to reason that if the plant had been operated up to that point based on an incorrect

downtime, the plant may have moved to a point that is disadvantaged vis-à-vis a point that

was based on a correct downtime. Further, owing to the fact that our controller has a finite-

shrinking horizon, a later reoptimization step finds itself with few remaining degrees-of-freedom

to adjust.

Fig. 3.6 shows the trajectories obtained from the sub-cases of Scenario (1). Due to the size of

the buffers, the differences in the states HBT and HW C1
st (Figs. 3.6a, b) for the three sub-cases

are visible, though almost imperceptible despite the difference in reoptimization times. However

in Scenarios (1b) and (1c), several trajectories depart visibly from the previous two scenarios,

notably F DG
in1 , FW C1

3 and FST
out1 (Figs. 3.6c, d, e). This is because the reoptimization point in

Scenario (1c) occurs much later, therefore trajectories based on an incorrect (longer) downtime

have already been implemented up to that point. Since the controller originally assumed that the

downtime was longer than it actually is, F DG
in1 , FW C1

3 and FST
out1 (Figs. 3.6c, d, e) were adjusted

in such a way as to simultaneously decrease the amount of material entering the blowtank

(to prevent it from hitting its upper level bound) and slowing down the rate of the amount of

material being discharged from the storage tank.

In Scenario (2), depicted in Fig. 3.7, analogous adjustments are made—prior to reoptimization—

based on an incorrect (shorter) downtime. Effects of this can be seen the trajectories for F DG
in1 ,

FW C1
3 and FST

out1 (Figs. 3.7e, f, g). If we compare the trajectories for (2a) and (2d), we observe

that in the latter case—in which reoptimization occurs later—the recycle FW C1
3 (Fig. 3.7f) to the

blowtank is throttled down to avoid overwhelming the blowtank, and the storage tank discharge

FST
out1 (Figs. 3.7g) rate drops more, in order to avoid running out of material to feed downstream

units. The state trajectories for HBT , xBT
S2P , HW C1

st and HST (Figs. 3.7a – d) can all be seen to

evolve slightly differently in the different sub-cases, as do the product quality variables CSR
M and

C PW
M (Figs. 3.7h, i).

In general, parametric feedback of the downtime estimate allows the operators to be less

conservative in their original estimates, which in turn leads to smaller losses in economics owing

to the way the plant is operated during a shutdown.
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3.5.4 Case 3: Closed-loop Study with Unmeasured Disturbances

Description

In this case study, we compare the implementation of an open-loop dynamic optimization

solution (with no feedback) with that of a closed-loop solution (with feedback) in the presence

of uncertainty. In the former case, we assume that an open-loop dynamic optimization tool was

used to generate the desired input trajectories, and that the trajectories are used as a recipe for

plant operation, and the implementation is devoid of any closed-loop correction mechanism.

The purpose of this study is to compare the performance of recipe-driven operation with an

actual feedback control system on a plant.

A shutdown controller (Section 3.3) with full-state measurements is used to compute and

implement the closed-loop solution. An unmeasured step disturbance in the shower stream

of Washer 3, FW C3
2 enters in plant between t=6.25 – 8.25 hrs. During this period, the actual

flowrate of the shower stream that enters Washer 3 is 30% higher than modeled. No noise or

plant-model mismatch (except for the disturbance) is present. Table 3.9 below summarizes this

case.

Case 3 Summary (Fig. 3.8)

Units shut down: Hi-Q knotter

Simulation horizon (h): 12

Shutdown start time (h): 0.25

Estimated downtime, dest (h): 5

Actual downtime, dact (h): 5

Disturbances: Actual FW C3
2 stream flowrate in plant is 30%

higher than in model, between t=6.25 –

8.25 hrs.

Table 3.9: Case 3 summary

Results

Fig. 3.8 shows a comparison between the open-loop operation (dashed-lines) and closed-

loop operation (solid lines). The plots show the actual plant trajectories that result from the

implementation of the two different policies. We will compare the results obtained for a system

with a disturbance in the shower water flowrate.

The controller has no direct means of measuring the actual shower water flowrate FW C3
2 that

actually enters the plant; it merely assumes that the FW C3
2 input trajectory it prescribes is actually
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Figure 3.8: Closed-loop results with a disturbance entering the Washer 3 shower stream FW C3
2 between

t=6.25 – 8.25 hrs.

Legend: Dashed lines = plant trajectories from open-loop solution (no feedback). Solid lines

= plant trajectories from closed-loop solution (with feedback).
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implemented as is in the plant. Fig. 3.8f shows the shower water FW C3
2 trajectory that the

controller “thinks” it has implemented on the plant. For illustration purposes, we also show the

trajectory for “FW C3
2 (actual)” (Fig. 3.8h), which depicts the actual shower water flowrate that

enters the 3rd washer. The disturbance can be observed to occur between t=6.25 – 8.25 hrs,

where actual FW C3
2 (Fig. 3.8h) is 30% higher than the presumed FW C3

2 (Fig. 3.8f). As mentioned,

the controller is not cognizant of the actual input trajectory.

We observe the that the open-loop and closed-loop results are identical up to the point when

the disturbance enters (at t=6.25 h). The reader may notice a slight discrepancy between

the two results in FST
out1 (Fig. 3.8g); this can be ascribed to the fact that a small positive value

(1× 10−4) for the multi-tier relaxation factors εe and εs were used for numerical expediency.

The unmeasured disturbance results in an influx of material into the storage tank, which causes

its level HST (Fig. 3.8d) to rise. Through the state measurements, the shutdown controller is

able to detect this, and hence computes a change of course in the storage tank outlet flowrate,

FST
out1 (Fig. 3.8g), where the excess material is discharged in order to compensate for the influx.

Note also that the HST returns to nominal levels at the end of the restoration, as required.

In contrast, in the open-loop situation no feedback mechanism is present, therefore the distur-

bance in the shower water flowrate is not detected. The FST
out1 (Fig. 3.8g) trajectory continues

to operate as if no disturbance had occurred. As a result, the tank level HST (Fig. 3.8d) does

not return to its intended restoration target value at the end of the restoration, which is an

undesirable result as it deprives the tank from anticipating further shutdowns. Other transient

discrepancies between the open-loop and the closed-loop are seen in HW C3
st , xW C3

DS3 , and xST
out1DS

(Figs. 3.8b, c, e).

The overall economics obtained in closed-loop (Φ∗econ = $66,915) is higher than that obtained

by implementing the open-loop solution on the plant (Φ∗econ = $63,368). This demonstrates the

advantage of using a closed-loop framework for implementing dynamic optimization solutions

under uncertainty. In Chapter 5, this framework is enlarged and extended to handle cases

where some state measurements are missing and where there exists significant plant-model

mismatch.

3.6 Conclusion

The primary focus of this work has been on the use of dynamic optimization for coordinating

the buffer capacities in a plant in order to mitigate the effects of a unit shutdown. The model
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employed was a large-scale differential algebraic equation system which was solved using

the simultaneous method. Uncertainty in the downtime estimate parameter, a parameter

which has a significant effect on the optimality of the problem, was considered. Methods to

handle this uncertainty were proposed and compared. An MPC-based control framework for

implementing the above optimal control policies was tendered for the detection and correction

of disturbances and/or plant-model mismatch. Several case studies illustrating its application

were presented.



Chapter 4

Discontinuous Dynamic Optimization

Formulations for Handling Partial

Shutdowns

In this chapter, we will investigate specific discontinuous phenomena that arise in shutdown

modeling, such as shutdown thresholds, induced shutdowns, discontinuous costs, and minimum

shutdown durations. A formulation for minimizing the restoration time instead of maximizing

economics is proposed. The optimization formulations are embedded within a feedback control

framework that is based on model predictive control (MPC). The open-loop problem is cast as a

Mixed-Integer Dynamic Optimization (MIDO).

4.1 Introduction

The starting point of the formulations presented in this chapter is identical to that found in

Section 3.2, except that binary variables are present in the current formulation. We will re-state

the system found in Section 3.2 in the form of a Mixed-Integer Dynamic Optimization (MIDO)

problem here:

max
u(t)
Φecon(x(t), z(t), u(t)) (4.1)

s.t. ẋ(t) = f (x(t), z(t), u(t),δ(t),θ ), x(0) = x0 (4.2)

69
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h(x(t), z(t), u(t),δ(t),θ ) = 0 (4.3)

g(x(t), z(t), u(t),δ(t),θ )≤ 0 (4.4)

for t ∈ [0, t f ]

where Φecon = economic objective function, x(t) ∈ Rnx = differential state vector, x0 = initial

state parameter vector, z(t) ∈ Rnz = algebraic state vector, u(t) ∈ Rnu = control input vector,

δ(t) ∈ {0, 1}nδ = binary variable vector, θ ∈ Rnθ = parameter vector, t f = final time in prediction

horizon. f and h are functions that define a semi-explicit differential-algebraic system, and g is

a function that defines the inequality constraints.

We take a similar approach to that of Section 3.2 in the discretization of the above problem. In

the rest of this chapter, we will focus our discussion on the discretized system where variables

xk = x(tk), zk = z(tk), uk = u(tk), δk = δ(tk) for k = 0 . . . N where N = bt f /∆tc and ∆t is the

discretized interval length. Time t is partitioned and mapped into N intervals, and tk−1 ≤ t ≤ tk

where k = 1, . . . , N . The resulting optimization problem structure is a Mixed-Integer Program

(MIP), either of the linear or nonlinear variety.

4.1.1 Shutdown Formulation

The αshut formulation in Section 3.2.1 is similarly adopted here as well. However, the difference

here is that the α
p

shut,k
variables are now binary decision variables as opposed merely to being

fixed parameters, as they were in Section 3.2.1. We will restate the constraints for the reader’s

convenience: (for time k = 0, . . . , N − 1 and i ∈ Ip, l ∈ Lp)

Fi,k ≥ (1−α
p

shut,k
)F

p

shut
(4.5)

Fi,k ≤ (1−α
p

shut,k
)F U

i (4.6)

yl,k ≥ (1−α
p

shut,k
)y L

l +α
p

shut,k
y M

l (4.7)

yl,k ≤ (1−α
p

shut,k
)yU

l
+α

p

shut,k
y M

l (4.8)

where p = identifier index of a process unit; P = set of all process units; Ip = index set of

all inlet flow variables associated with unit p; Lp = index set of all variables associated with

unit p that float when the flowrate is 0; α
p

shut,k
∈ {0, 1} = binary indicator variable representing

status of process unit p at time k (1 = shutdown, 0 = normal operation); yl,k = floating variable

at time k; y L
l

, yU
l
= lower and upper bound parameters corresponding to yl ; y M

l
= nominal

value parameter to which yl,k is pinned to when α
p

shut,k
= 1; Fi,k = inlet flowrate variable at
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time k; F U
i
= upper bound of Fi,k for all k; F

p

shut
= a positive nonzero parameter representing

the minimum flowrate threshold before a unit is deemed to have shut down.

In order to manually simulate a user-specified known shutdown in units p ∈ Pshut (Pshut is the

set of known shut-down units), the following constraint is explicitly imposed:

α
p

shut,k
= 1, p ∈ Pshut, k = kstart, . . . , kend (4.9)

where kstart = btstart/∆tc = shutdown start time; kend = dtend/∆te = shutdown end time. These

α
p

shut,k
binary variables that are fixed above are essentially transformed into constant values;

however, unlike the approach taken in Section 3.2.1, the α
p

shut,k
of the remaining units are not

forced to 0. This means the optimizer is free to decide the course of action (whether to shut

down other units or not), given that the units in p ∈ Pshut have already shut down.

One of the consequences of constraints 4.7 – 4.8 is that when F j,k < F
p

shut
(that is, when

the flowrate falls below a threshold), the unit is deemed to have shut down, and α
p

shut,k
=

1 is automatically (as opposed to manually) triggered by the optimizer to remain feasible.

This phenomenon we refer to as an induced shutdown, and it is described in the Section 4.2

below.

αshut

F

0
0 1

Fshut

F U Inlet Stream Variable

αshut

y

0
0 1

y L

yU Floating Variable

yM

Figure 4.1: Feasible region of the αshut formulation, both discrete and relaxed.

Remark 4.1.1. We note that Fi,k belongs to a class of semi-continuous variables (variables

whose range belongs to the set {0} ∪ [L, U], where L, U are positive lower and upper bounds

respectively). The feasible region obtained by the integer-relaxation of constraints 4.5–4.8

corresponds to their convex hull. This is a favorable property that gives rise to tight bounds

for the branch-and-bound solution procedure (which is used for solving integer programs),

potentially leading to faster solutions. Fig. 4.1 shows two diagrams depicting the feasible

regions of particular inlet stream and floating variables. When αshut is 0 (non-shutdown mode),

the individual feasible regions are F ∈ [Fshut, F U] and y ∈ [y L , yU]. In shutdown mode, αshut

takes a value of 1, and the feasible regions reduce to single points, F = 0 and y = y M . In
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MIP algorithms, relaxed problems are solved in which the binary variables are converted into

continuous variables with [0,1] bounds. One can easily see that when αshut ∈ [0, 1], the regions

induced (shaded in the figures) form the convex hulls of the two disparate feasible regions

corresponding to αshut = 0 and αshut = 1 in each individual case.

4.2 Induced Shutdowns

The optimizer will occasionally produce an operating policy that prescribes the shutting off of

material flows to upstream/downstream units across the boundary of a buffer capacity (effectively

shutting them down) to accommodate the original shutdown. Henceforth we shall denote this

type of shutdown an “induced shutdown”. Note that induced shutdowns are caused by, but are

distinct from the original shutdown.

Induced shutdowns usually occur in response to long shutdown durations. A single buffer tank

has the capacity to buffer shutdowns for a limited time before it overflows or empties. Therefore,

when a long shutdown occurs, it is sometimes necessary to throttle down the production

upstream (or downstream, in the case of a recycle) in order to keep from violating the level

constraints in the buffer tanks.

However, instead of gradually reducing material flows over time, the optimizer may prescribe

flowrate trajectories that force some process units—apart from the already shut down units—to

operate below their minimum threshold F
p

shut
, that is, the flowrates F

p

shut
, ∀p ∈ P \Pshut are

run below F
p

shut
. This effectively causes an induced shutdown on those units.

Induced shutdowns are undesirable because each shutdown incurs both a fixed cost (in terms

of the manpower, time and resources required to start a unit up again) and variable cost (in

the form of lost production over time). In order to force the optimizer to avoid this scenario,

it is necessary to properly characterize the cost of induced shutdowns, and to penalize it the

objective function.

4.2.1 Economic Penalty of a Shutdown

Because our optimization formulation uses an economic objective function, it is fitting to have

a shutdown penalty term that is economic in nature, instead of using an arbitrarily weighted

penalty function. There are two components to the cost of a shutdown: a fixed cost and a variable
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cost. Fixed costs may include costs associated with equipment replacement/repairs, inspections,

testing, and other fees that are incurred per shutdown. Variable costs comprise expenses such as

hourly wages for third-party repair personnel or reassigned/diverted maintenance personnel,

lost production, etc.

In order to assign a cost to shutdowns, we need to count the number of shutdowns and calculate

their durations:

N
p

shut
=

N−1∑

k=0

D
p

k
(4.10)

W
p

tot =∆t

N−1∑

k=0

α
p

shut,k
(4.11)

where N
p

shut
= the number of shutdowns occurring in unit p over the horizon; D

p

k
= entry point

marker of each shutdown (1 when true, 0 otherwise) – obtained using the formulation below;

W
p

tot = total downtime experienced by unit p.

Due to the worst-case exponential solution complexity associated with binary variables, we

endeavor to be as parsimonious as possible with their use in our proposed discrete formulations.

We employ the following constraint formulation from Kelly and Zyngier[63] to deduce useful

time-markers (used in our formulations) from α
p

shut,k
without introducing any new binary

variables: (for time k = 1, . . . , N − 1)

α
p

shut,k
−αp

shut,k−1
= D

p

k
− U

p

k
(4.12)

α
p

shut,k
+α

p

shut,k−1
= D

p

k
+ U

p

k
+ 2Q

p

k
(4.13)

D
p

k
+ U

p

k
+Q

p

k
≤ 1 (4.14)

where D
p

k
∈ [0, 1]; U

p

k
∈ [0, 1] = exit point marker of each shutdown (1 when true, 0 otherwise);

and, Q
p

k
∈ [0,1] = auxiliary variable. See Fig. 4.2 for a graphical explanation. These time

marker variables are used in several of the formulations that follow.

A useful property of the formulation defined by constraints 4.12 – 4.14 is that its feasible region

guarantees the integrality of the continuous variables D
p

k
, U

p

k
, and Q

p

k
. Therefore, while the

overall shutdown cost characterization formulation is technically discontinuous, we are able

to avoid introducing new integer variables by effectively piggybacking on the existing ones

introduced earlier in the Section 4.1.1.
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Figure 4.2: Example of shutdown time-points for a unit p. Binary markers: α
p

shut,k
= system shutdown

state, D
p

k
= shutdown entry, and U

p

k
= shutdown exit.

The total cost of induced shutdowns can then be accounted for in the objective function:

maxΦecon = Φprod−
∑

p∈P

C
p

fix
N

p

shut
−
∑

p∈P

C p
varW

p
tot (4.15)

and the production economics term Φprod is defined:

Φprod =∆t
∑

m∈M



Cm

 
N−1∑

k=0

Fm,k

!

 (4.16)

where ∆t = sampling time, C
p

fix
= estimated fixed costs expressed as dollars per shutdown; C

p
var

= estimated variable costs expressed as dollars per time, m = materials produced or consumed,

M = set of materials consumed/produced, Cm = price of material m (positive if produced,

negative if consumed), and Fm,k = flowrate of material m at time k.

This has the effect of penalizing both the number of shutdowns and their durations on the

basis of their economics. The optimizer will then attempt to find a control policy that avoids

induced shutdowns unless they are absolutely necessary for maintaining feasibility. In some

cases, despite the costs incurred in an induced shutdown, an economic case can be made for

proceeding with one. For instance, when the raw material or energy spot prices are such that it

is disadvantageous to run the plant, the optimal course of action may be to shut down the plant
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until it becomes economically viable to operate again.

4.3 Minimum Shutdown Duration

The partial shutdown optimization problem can be thought of as a hybrid optimization problem

with mode switches (with modes corresponding to the on-line or offline status the units).

In the case of induced shutdowns, it is possible for the optimizer to trigger shutdowns of

unrealizable durations, for instance, 1 sample time. We can prevent this behavior by enforcing a

minimum downtime in the optimization. When a unit shuts down, there is usually a minimum

contiguous duration for which it has to physically stay offline. The following formulation ensures

that shutdown events for process unit p have a minimum contiguous duration of T p discrete

periods:

S
p

k
=

k+T p−1∑

i=k

α
p

shut,i
, k = 1, . . . , N − T p (4.17)

S
p

k
≥ T pD

p

k
, k = 1, . . . , N − T p (4.18)

D
p

k
= 0, k = N − T p + 1, . . . , N − 1 (4.19)

where S
p

k
= a T p-step ahead summation of α

p

shut,k
. We wish to emphasize that no new binary

variables have been introduced here.

We note that this is an aggregation-type approach which also serves to reduce the integer

problem space. A higher value of T p reduces the number of branches that need to be considered

during the integer solution process, which often translates into faster solve times.

4.4 Alternative: Optimal Restoration Time

Thus far, we have assumed that the objective of interest is monetary in nature, that is, we desire

to operate the plant in a such a way as to maximize profit (or minimize economic losses, as the

case may be). However, in some circumstances, a dynamic performance objective may be more

appropriate. For instance, if a large disturbance is imminent, an operator may wish to restore

the plant as rapidly as possible (at the expense of economics if necessary) in order to anticipate

the disturbances that may occur.
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In this section, we propose an alternative optimization formulation whose first goal is to calculate

trajectories to restore the plant to its original operating state as quickly as possible. Also, in our

experience, there are typically many degrees-of-freedom in a large scale optimization problem.

In order to exploit this fact, we propose a multi-tiered approach to computing the optimal

restoration strategy. In this approach, the economics of the restoration are not disregarded

entirely, but merely relegated to the position of a secondary objective in relation to the restoration

time. Because we are working with a discrete representation of time, binary variables are

necessary for formulating an optimization problem involving time as a decision variable.

Maximize economics

maxΦecon

s.t. tres ≤ t∗res

Minimize restoration time

min tres

Minimize input movement

min

N−1∑

k=1

(uk − uk−1)
T(uk − uk−1)

s.t. tres ≤ t∗res

α
p

shut,k
= (α

p

shut,k
)∗, p ∈ P , k = 1, . . . , N − 1

Φecon(x , z, u)≥ Φ∗econ(1− εe)

t∗res

Φ∗econ, t∗res and (α
p

shut,k
)∗

Figure 4.3: Restoration time minimization using a multi-tiered approach.

Multi-Tiered Optimization of Restoration Time

Fig. 4.3 summarizes the steps required to perform a restoration time optimization. In Tier 1, the

restoration time endpoint tres is minimized:

min tres (4.20)

Eqn. 4.31 provides the mathematical formulation for computing tres.

In Tier 2, the restoration time endpoint is locked to the optimal value t∗res obtained in the first

tier. An economic objective function Φecon is then maximized.

maxΦecon(x , z, u) (4.21)

s.t. tres ≤ t∗res (4.22)
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where the vectors x =
�

xT
0 , xT

1 , . . . , xT
N

�T
= differential states, z =

�

zT
0 , zT

1 , . . . , zT
N

�T
= algebraic

states, and u =
�

uT
0, uT

1, . . . , uT
N−1

�T
= control inputs. Note that no binary variables are fixed in

this tier, therefore this is still a mixed-integer programming problem. This is necessary to allow

the optimizer enough degrees-of-freedom to find an appropriate solution trajectories that will

maximize economics.

Finally, in Tier 3, we minimize the control effort by penalizing movement in the trajectories. The

terms tres and Φecon are locked to the optimal values obtained in previous tiers. Also, all binary

variables are fixed in this tier (to the values obtained in the previous tier); the problem reduces

to a continuous optimization problem.

min

N−1∑

k=1

(uk − uk−1)
T(uk − uk−1) (4.23)

s.t. tres ≤ t∗res (4.24)

α
p

shut,k
= (α

p

shut,k
)∗, p ∈ P , k = 1, . . . , N − 1 (4.25)

Φecon(x , z, u)≥ Φ∗econ(1− εe) (4.26)

where (α
p

shut,k
)∗ is the optimal sequence obtained in the previous tier, and εe ≥ 0 is an economic

trade-off parameter representing the maximum fraction of achievable economics (i.e. Φ∗econ) to

trade-off.

Remark 4.4.1. To decrease the time necessary for restoration, the controller typically needs to

prescribe more drastic/aggressive control actions. While eqn. 4.20 minimizes the restoration

time, no cost is assigned to induced shutdowns, therefore the optimization problem can some-

times produce solutions that cause induced shutdowns in other units. This partly defeats the

purpose of obtaining time-optimal performance (due to the re-startups that have to be performed

in the other units). In practice, induced shutdowns are indirectly penalized in the objective

function in eqn. 4.20 as follows:

min tres+
∑

p∈P

W
p

tot (4.27)

where W
p

tot = total downtime experienced by unit p. The 2nd term in the objective function

(representing total system downtime, defined in Eqn. 4.11) disincentivizes solution trajectories

that produce undesired induced shutdowns. We elected to use a time-based penalty in order

ensure that the entire objective function is denominated in time units—this is done for consistency

reasons.
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Remark 4.4.2. Economics and speed of restoration may sometimes constitute complementary

goals. If the cost of a slow restoration can be accurately quantified in economic terms, the

minimization of restoration time may be subsumed by the economic optimization tier (Tier 2),

and Tier 1 may be removed. In our case, the two are competing goals and the cost associated

with a longer restoration time is difficult to quantify, therefore it is natural to solve them in

separate tiers.

MIP Formulation for Restoration Time

In order to represent the system-wide restoration endpoint time in the optimization problem, we

introduce the following constraints:

∆αres,k = αres,k −αres,k−1, k = 1, . . . , N − 1 (4.28)

N−1∑

k=1

∆αres,k = 1 (4.29)

αres,0 = 0 (4.30)

where αres,k ∈ [0, 1] = restoration end-point marker and ∆αres,k ∈ {0, 1}. Note that by declaring

∆αres,k binary rather than αres,k, we require 1 fewer binary variable. Also, we wish to point out

that ∆αres,k in constraint 4.29 can be declared as a Special Ordered Set Type 1, a structure with

properties exploitable in MIP codes for increased solution efficiency, provided a natural ordering

of weights are known [15]. The restoration endpoint can thus be written as follows:

tres =

N−1∑

k=1

(∆αres,k)(k∆t) (4.31)

Restoration constraints, which force the independent subset of state and input variables (x
ix

k
,u

iu
k

)

to return to their original steady-state values (x
ix
ss ,u

iu
ss), are given below: (for k = 0, . . . , N −

1)

x
ix

k
≥ αres,k(x

ix
ss − ε) + (1−αres,k)x

ix

L , ix ∈ I
x

ss (4.32)

x
ix

k
≤ αres,k(x

ix
ss + ε) + (1−αres,k)x

ix

U , ix ∈ I
x

ss (4.33)

u
iu
k
≥ αres,k(u

iu
ss − ε) + (1−αres,k)u

iu
L , iu ∈ I

u
ss (4.34)

u
iu
k
≤ αres,k(u

iu
ss + ε) + (1−αres,k)u

iu
U , iu ∈ I

u
ss (4.35)

The index sets are defined as I x
ss = {i|x i ∈ Xss} and I u

ss = {i|ui ∈ Uss}, and Xss,Uss are the sets

of independent state and inputs variables necessary to specify a steady-state. ε > 0 is a deviation
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tolerance percentage parameter, specified as a fraction. The parameter vectors x
ix
ss and u

iu
ss are

pre-shutdown values. The above constraints are equivalent to:







x
ix

k
∈ [x ix

ss − ε, x
ix
ss + ε], ix ∈ I

x
ss , if tk ≥ tres

x
ix

k
∈ [x ix

L , x
ix

U ], ix ∈ I
x

ss , if tk < tres

(4.36)







u
iu
k
∈ [uiu

ss − ε, u
iu
ss + ε], iu ∈ I

u
ss, if tk ≥ tres

u
iu
k
∈ [uiu

L , u
iu
U], iu ∈ I

u
ss, if tk < tres

(4.37)

where x
ix

L , x
ix

U = upper and lower bounds of the independent states x ix ; ε = numerical relaxation

factor.

In order to further tighten our integer formulation in Eqns. 4.28–4.30, we require a good

lower bound on the variable tres. We can achieve this by introducing an MIP cut, based on

the characteristics of our problem. Temporally, the restoration endpoint cannot occur before

the endpoint of the last shutdown occurring in any process unit in the plant. Also, we may

want to declare a minimum duration of TR periods (after the endpoint of the last shutdown)

for the restoration. These requirements can be enforced via the following additional set of

constraints:

tres ≥ U
p

k
· (k+ TR) ·∆t, ∀p ∈ P , k = 0, . . . , N − 1 (4.38)

αres,k = 0, k = N − 1− TR, . . . , N − 1 (4.39)

Typically, TR ≥ 1 because it is almost always impossible for the restoration process to reach

completion immediately after the last shutdown. Constraint 4.38 forces tres to be greater than

all shutdown endpoints (U
p

k
), plus a minimum duration. Constraint 4.38 further shrinks the

integer search space by specifying that no restorations can occur in the period where there are

less than TR periods left before the endpoint is reached (since TR signifies a minimum restoration

duration).

4.5 Model-based Shutdown Controller

The MPC algorithm here is based on the one described in Section 3.3, with binary variables δk

being the major extension. This results in a Mixed-Integer Dynamic Optimization problem being
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embedded in the MPC superstructure. Fig. 4.4 depicts a visual notion of the algorithm.

The multi-tiered approach described here comprises an economics maximization tier, a product

quality deviation minimization tier, and an input effort minimization tier. In order to avoid

solving multiple mixed-integer problems while applying the multi-tiered method, the binary

values obtained from the solution of Tier 1, δ∗
k

is used to fix the δk vector in subsequent tiers.

For simplicity, we will eschew the product quality tier (described in Section 3.2.5) here.

MPC Shutdown Controller at iteration j

α
p

shut
vector is determined from d

p
est.

Let Ks = { j . . . N}, Kt = { j . . . N − 1},
Ig = {1, . . . , ng},
and In = state-restricting constraints.
The following constraints are common to all tiers:

xk= j = x̂ j

xk+1 = f (xk, zk, uk,θ ,δk), k ∈Kt

h(xk, zk, uk,θ ,δk) = 0, k ∈Ks

gi(xk, zk, uk,θ ,δk)≤ 0, k = j, i ∈ IG \ In

gi(xk, zk, uk,θ ,δk)≤ 0, k = j + 1, . . . , N , i ∈ IG

Multi-tiered optimization
Tier 1: Maximize Economics

maxΦecon

Tier 2: Minimize input effort (only for j > 0; Φ∗econ,δ∗
k

fixed from Tier 1)

min

N∑

k= j

(uk − uprev,k)
T(uk − uprev,k)

s.t. Φecon(x , z, u)≥ Φ∗econ(1− εe)

Store solution input trajectory

uprev,k := uk, k = j + 1, . . . , N

Plant DAE (One-Step Integration) at iteration j

ẋ p(t) = f p(x p(t), zp(t), uk= j ,θ
p,δ j), x p(t j) = x̄

p

j

hp(x p(t), zp(t), uk= j ,θ
p,δ j) = 0

for t ∈ [t j , t j+1]

Full-state Measurements ym
j+1 := x p(t j+1)

d
p
est

u j ,δ j

ym
j+1

j := j + 1

x̂ j := ym
j

Figure 4.4: MPC simulation workflow.

4.5.1 Multi-tiered optimization in Closed-Loop

In a closed-loop scenario, we use the multi-tiered approach (as described in Eqns. 3.26, 3.29

and 3.30, omitting the product quality tier) in the first iteration of the MPC algorithm to select

a set of smooth open-loop trajectories to initialize the MPC open-loop dynamic optimization

problem.

It is not used in subsequent iterations for when the multi-tiered method is applied successively,
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as one may obtain qualitatively different future trajectories from one iteration to the next.

Input trajectories whose shapes are very different from previously calculated ones (which is a

possibility when the problem has non-unique solutions) are not appealing to operators, and

may be difficult to interpret intuitively. Therefore, we propose a modification to the two-tiered

method when doing closed-loop control whereby the objective function in the second tier (Eqn.

3.29) is replaced with the following: (see Fig. 4.4)

min

N∑

k= j

(uk − uprev,k)
T(uk − uprev,k) (4.40)

where j = current MPC iteration, k = time counter in controller model, u = input trajectories

(decision variables) at current MPC iteration, and uprev = input trajectories calculated in previous

MPC iteration k− 1 (constants).

This multi-tiered approach produces trajectories that have a higher likelihood of having a

qualitative resemblance to the trajectories in the previous step. By penalizing the deviation

of the current input trajectory from the previous input trajectory, there is a possibility that

the disturbance rejection abilities of the controller may be rendered more sluggish. We argue

however that this issue is moderated by the fact that: (1) the penalty only occurs in the 2nd

tier, so the system is remains economically optimal; (2) dynamic performance is not the primary

or ultimate control objective here, and if there is an economic incentive for high dynamic

performance, it will captured in the Tier 1 objective.

4.6 Case Studies

4.6.1 Open-loop Mixed-Integer Nonlinear Dynamic Optimization

Background

In this section, we study the use of several of the proposed formulations (αshut, induced shut-

downs, minimum shutdown duration) on the fiber line of a Kraft pulp and paper plant. Model

equations for the Kraft fiber line are listed in Appendix A. Figs. A.1, A.4, A.5 show the plant

topology. The problem is cast as Mixed-Integer Dynamic Optimization (MIDO) problem and

discretized into a nonconvex Mixed-Integer Nonlinear Program (MINLP). At the present time,

the high computational expense of solving an MINLP—as well as the unpredictability of its solve

time—limit its utility in real-time applications such as closed-loop control. Thus we will only
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consider the open-loop control case in this nonlinear study. The closed-loop Mixed Integer Linear

Program (MILP) linear control case will be considered in a later section, Section 4.6.3.

In this study, the prediction horizon length is t f = 12 hrs, with a sampling time of ∆t = 15

minutes. The minimum shutdown duration was T p = 8 periods (or 2 hrs).

A multi-tiered solution approach (where Tier 1: economics, Tier 2: input move penalization

and all binary variables fixed) was used for regularization. We solved the Tier 1 MINLP using

Bonmin 1.4 [24], with the Branch-and-Bound algorithm selected. The Tier 2 NLP was solved

using IPOPT 3.8.2[114]. All computations were carried out on a Core 2 Duo 3 GHz machine

with 3GB RAM. For this model, the collocated problem had approximately 16,800 variables

(of which 83 are binary), 19,500 constraints, and 54,870 Jacobian nonzeros after pre-solve.

The two-tiered optimization approach (described in Section 3.2.5) was used, with the binary

variables fixed in the second tier.

As a point of rigor, we also acknowledge that for a nonconvex problem, the bounds obtained

by Bonmin via the solution of relaxed NLP subproblems using a local solver may not represent

rigorous bounds, therefore the final solution obtained may be a local optimum or merely a

feasible solution. As of the time of writing, there are few reliable MINLP codes that are capable

of solving large-scale nonconvex problems to global optimality in a reasonable amount of time.

However, for the purposes of our application, obtaining the global optimum is not strictly

necessary; we submit that a feasible (or locally optimal) solution that obeys all the given

constraints and that improves upon the nominal is often sufficient to aid the formulation of a

partial shutdown policy.

Failure in the Hi-Q department, with induced shutdown

In this study, we shall consider a partial shutdown in the knotting department. In order to induce

a shutdown (for the purposes of demonstration), we assume that the initial level of the blowtank,

HBT has been shifted from a nominal level of 60% to 65%. The duration of the failure in the

knotter (the primary shutdown) was 7.75 hours. The long shutdown duration and the shifted

levels are contrived to give rise to induced shutdowns in other units because the blowtank level

is running close to its upper operating bound of 90%, and therefore the optimizer is disposed to

pick solution trajectories that avoid the violation of this upper bound constraint.

Two MINLP cases are run. In the first instance, the economic cost of induced shutdowns was

not considered in the problem. In the second, we use the formulation in Section 4.2 to properly

account for the cost of induced shutdowns. In this latter case, induced shutdowns are indirectly
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Figure 4.5: Induced Shutdowns. A comparison between a formulations that properly accounts for induced

shutdown costs and one that does not.

Legend: Dashed lines = no induced shutdown cost. Solid lines = with induced shutdowns

cost accounted for.
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penalized, but are permitted if problem feasibility or overall economic considerations demand

it.

Fig. 4.5 shows the results of two cases. The nominal shutdown in the knotter department is

indicated by the blowtank outlet flowrate, F BT
S2 = 0 (Fig. 4.5e) during the shutdown period,

t = 0.25− 8 h.

In the first case (with no induced shutdown cost), the economics achieved was Φ∗econ = $47,236

(shutdown costs were not accounted for) and the MINLP solve time was 10 hrs. In this instance,

the optimizer prescribes an induced shutdown in the digester (as witnessed by αDG
shut
= 1, Fig.

4.5g, between t=1.75 – 8 hr) and in the delignification department (as indicated by αSR
shut
= 1,

Fig. 4.5h, between t=6.5 – 9.75 hr). The production in the digester (F DG
in1 , Fig. 4.5d) is turned

off in an effort to avoid overwhelming the blowtank with an influx of material that may cause

its level upper-bound to be violated. In the case of the delignification department, the induced

shutdown was driven by a economic motivation, which is to discharge as much of the material

in the storage tank as possible, as seen in FST
out1, Fig. 4.5f. This is because: (1) as mentioned

in Allison [5], an optimal course of action is often drive the storage vessels empty. (2) since

there is no economic disincentive for shutdowns, the optimizer will pick a solution that will

quickly discharge the tank contents and the shut off the outlet flow, which in turn causes induced

shutdowns downstream of the buffer tank. This case shows the undesirable effects of not

accounting for the costs induced shutdowns, as witnessed by the two additional shutdowns

induced by the knotter shutdown.

In the second case (with induced shutdown cost), the cost of each induced shutdown—if they

should occur—would be properly accounted for. The economics achieved was Φ∗econ = $48,346

(with shutdown costs accounted for) and the MINLP solve time was 7 hrs 36 mins. If we examine

the trajectories for αDG
shut

and αSR
shut

(Figs. 4.5g, h), we observe that as opposed to the previous

case where induced shutdown costs were not accounted for, an induced shutdown of a much

shorter duration occurs in the digester in the present case, and no induced shutdown happens

in the delignification department downstream. We deduce that the induced shutdown in the

digester in the present case was needed in order for the problem to be feasible, while the induced

shutdown in the delignification department was found to be unnecessary. With this, we show

that by properly accounting for the economics of shutdowns, the optimizer produces operating

policies reflect the proper economic trade-offs in a partial shutdown situation.

Accounting for the economic costs of induced shutdowns may also be beneficial from a compu-

tational point of view, especially for non-unique problems. The induced shutdown term in the



Z. Chong, Ph.D. thesis (McMaster University, Chemical Engineering) 85

objective function can potentially help the optimizer differentiate between similar solutions (by

acting as a “tie-breaker” for solutions that lead to the same nominal economics), which can in

turn help reduce the branch-and-bound search space. An indication of this may be seen in the

above two cases, where the solve time of the case with induced shutdown characterization is

appreciably shorter than the other case.

For highly integrated systems with recycles, it can be difficult to predict which units are most

critical to performance and profit. A model-based approach such as the one proposed here can

aid in determining these critical units, and additional capital investment for increasing reliability

can then be concentrated on them.

4.6.2 Minimization of Restoration Time with Multi-tiered Optimization

Digester

house
Bleaching

Recovery

boilers
CausticizationEvaporators

H2

F3

H1

H5H4

H3H6

F4 F5 F6

F12F11F10F9
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F8F13

F14

F1 α1
shut

α2
shut

α4
shut

α5
shut

α3
shut

F2

Figure 4.6: Leiviskä et al. pulp mill, plant topology.

Background

In this case study, we will demonstrate our restoration time minimization formulations (in

section 4.4) on a pulp-and-paper plant model adapted from Leiviskä et al. [72]. The plant model

is linear, and its topology is shown in Fig. 4.6. Only inventories are tracked; no compositions

are considered. The chip feed stream F1 is mixed with white liquor from stream F14 and

conveyed to the digester house model, where it is cooked and reacted into pulp. The pulp is then

bleached, and sent downstream for further processing. In the digester, spent liquor is produced

in stream F7, and is passed through a series of evaporators, boilers and causticizers in order to

be regenerated. The model equations are found in Appendix B.

The state variables H j ( j = 1, . . . , 6) represent the tank levels in terms of percentages. The input
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variables Fi (i = 1, . . . , 14) are stream flowrates in tons/hr. The variables α
p

shut
(p = 1, . . . , 5)

are shutdown state indicators of each process unit p. The prediction horizon length is t f = 12

hrs, with a sampling time of ∆t = 10 minutes. The minimum shutdown duration was T p = 18

periods (or 3 hrs). Shutdown thresholds correspond to a turndown ratio of 4. The cumulative

amount of material exiting the plant from stream F6 is defined as Iout(t) =
�∫ t

0
F6( t̄) d t̄

�

. The

total shutdown time was penalized in the first tier to avoid induced shutdowns.

In this case study, the evaporators are shut down for dest = 4 hours 30 minutes. The problems in

Tier 1 (MILP) and Tier 2 (MIQP) have 331 binary variables, 5,525 linear variables, and 7,441

constraints. The solver used was CPLEX 12.2, and the total solve time (all 2 tiers) was 0.62 s.

For comparison purposes, a nominal case is solved in which economics are maximized.

Discussion

The resulting optimal trajectories are shown in Fig. 4.7, with the solid lines representing the

trajectories that are minimizing the restoration time, and dashed lines representing the maximum

economics strategy. The shutdown is seen in the F8 trajectory, where the material flow rate into

the evaporators go to 0 during the shutdown period. The last shutdown ended at t = 5.67 hrs,

and the minimum restoration time was at t∗res = 7.33 hrs.

In some cases, faster restoration times may sometimes involve economic trade-offs, depending

on how the economics is represented. We point out that in the case under consideration, by

opting for a faster restoration, the overall production in the plant is diminished, as witnessed

by the reduced throughput in Iout , a quantity on which the economics of this plant is based. In

order to perform a rapid restoration, the minimum restoration time solution pursues a strategy

in which flowrates Fi , i = {1, 2, 4, 6, 12, 14} throughout the plant are throttled down rapidly to a

low level during the shutdown and then throttled up again rapidly after the shutdown to effect

the restoration as early as possible. This course of action causes a drastic drop in the overall

throughput in the entire plant during the shutdown period.

If one were to compare the trajectories in Fig. 4.7 corresponding to the maximum economics

and minimum restoration time cases respectively, one is likely to notice that in the former

case, the input variables (the flowrates F j) are adjusted in a more gradual fashion than in the

latter. As it turns out, for the selected horizon of interest, the economic maximization policy

produces a higher overall throughput (area under the F6 graph). In the economic maximization

policy, the level H3 corresponding to the buffer tank prior to the shut down unit is allowed

to accumulate material, and H5 is seen to be gradually discharging material. This means the

buffer capacities are being used more effectively in combating the partial shutdown than in the
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Figure 4.7: Minimization of restoration time in Leiviskä plant (t∗res = 7.33 hrs, Φ∗econ = $260,340).

Legend: solid lines = multi-tiered minimization of restoration time. dashed lines = nominal case,

maximizing economics. All flowrates F j are tons/hr, levels Hi and Iout is in tons)
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minimum restoration time strategy.

In the multi-tiered restoration time minimization case, the optimal restoration time and eco-

nomics are t∗res = 7.33 hrs and Φ∗econ = $260,340 respectively. In nominal economic maximization

case, they are t∗res = 11.83 hrs and Φ∗econ = $396,420. Therefore in this particular scenario, one

is incurring a 34% loss in profits in order to obtain a restoration duration that is 38% shorter.

An optimization-based tool allows decision-makers and operators to decide on the trade-off

between performance and economics.

As an aside, in this minimum restoration formulation the total shutdown time was penalized in

the first tier to avoid induced shutdowns, therefore no induced shutdowns occur. A case was

run without this penalty, and several undesirable induced shutdowns are observed because their

costs were not accounted for in the first tier.

4.6.3 Closed-loop Mixed-Integer Linear Controller

Background

In this case study, we will apply the model-based shutdown controller to the Leiviskä et al. [72]

pulp mill described in the previous section. We will consider a case in which the evaporators

are shut down for dest = 4 hours 20 minutes. The initial prediction horizon length is t f = 12

hrs, with a sampling time of ∆t = 10 minutes. The minimum shutdown duration was T p = 18

periods (or 3 hrs). Shutdown thresholds correspond to a turndown ratio of 4. A plant-model

mismatch was introduced in the model parameters γ3,2, γ9,8, γ13,12, where the values in the

plant were 15% higher than in the controller model.

In each MPC iteration, an MILP with 5591 variables (292 binaries) was solved in Tier 1, while a

QP was solved in Tier 2. The average solve time per MPC iteration (both tiers inclusive) with

CPLEX 12.2 was 0.84 s.

Discussion

In Fig. 4.8, the evaporator shutdown is seen in the trajectory of F8 = 0 from t = 1.33 to 5.33 hrs

(effected by setting α3
shut
= 1 for that period). The shutdown controller prescribes trajectories

that balance the inventories in the various buffer tanks, accounting for the recycle loop. In

order to keep the plant running upstream and downstream, the levels rise and fall in H3 and

H4 respectively, which indicates an accumulation and discharge of material in those buffer

tanks.
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Figure 4.8: Shutdown in evaporators in Leiviskä plant, with plant-model mismatch.

Legend: dashed lines = nominal open-loop trajectories. solid lines = closed-loop trajectories. All

flowrates F j are tons/hr, levels Hi and Iout is in tons)
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We also observe in Fig. 4.8 the difference between the trajectories actually implemented in

closed-loop mode and the open-loop trajectories. This difference is due to the controller

compensating for plant-model mismatch. This underlines the importance of applying feedback

when implementing control policies in the presence of uncertainty. However, we also note

that while the two sets of trajectories differ in their actual values, their qualitative behavior

(i.e. general shape) remain similar as a result of our applying the two-tiered optimization

approach. No induced shutdowns were observed to have occurred here; however, we can show

that the recovery boilers will succumb to an induced shutdown (with a downtime of 3 hrs) if the

evaporator shutdown were to be 20 minutes longer.

4.7 Conclusion

In this work, we outlined a strategy for obtaining optimal operating policies for partial shutdowns.

In particular, we presented several efficient mixed-integer linear formulations that have tight

continuous relaxations and are parsimonious in the number of binary variables they require.

The only binary variables that appear in this chapter are in the sequence α
p

shut,k
(p ∈ P , k =

0, . . . , N − 1), and if restoration time minimization if desired, αres,k (k = 0, . . . , N − 1).

Induced shutdowns are penalized in the objective by capturing the true economic cost of

shutdowns using a discontinuous formulation. Rapid switching between shutdown and non-

shutdown modes are dampened by restricting shutdowns to a given minimum duration.

As an alternative to economics maximization, we described a discontinuous optimization strategy

for minimizing the restoration time. This formulation uses a multi-tiered approach whereby the

restoration time is first minimized; the remaining degrees-of-freedom are then used to optimize

the economics and minimize the input effort required.

An economics-driven MPC shutdown controller is put forward as a means of implementing the

operating policies on a plant in the presence of uncertainties such as plant-model mismatch

and disturbances. Downtime estimates can be updated manually through parametric feedback.

In order to address the problem of solution non-uniqueness, a regularization method using

multi-tiered optimization is presented.



Chapter 5

State and Parameter Estimation applied to

Partial Shutdowns

5.1 Introduction

The implementation of a successful partial shutdown control policy (or any control policy for that

matter) entails accurate tacit and explicit knowledge of the evolution of a plant, given certain

inputs. This knowledge is frequently obtained through experience and from first principles. A

large part of this knowledge can often be codified into the form of a mathematical model. In

chemical engineering, mathematical models are usually constructed on the basis of historical

data, experimental design or through the careful application of physical laws such as the

conservation of mass, energy and momentum.

Very often, despite much care taken during the modeling process, predictions made using such

models do not match the exact behavior of the plant. There are a host of possible reasons

for this. For instance, the parameters identified during the model-building process may have

shifted over the course of the plant’s operation. Furthermore, it is frequently the case that

the true model structure is not known exactly, or the selected model structure was perhaps

(over)simplified for ease of computation. To address the discrepancy between the plant and

the model, the mechanisms of feedback and estimation are commonly employed to continually

correct the model’s notion of the plant by updating it with new plant measurements at each

sampling time.

91
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A series of such measurements taken over time can be used to reconstruct the states and

parameters of a model. In this work, we employ a modern technique—belonging to the Kalman

family of filters—known as the Unscented Kalman Filter (UKF), due to Julier and Uhlmann

[60] to perform this estimation online in a recursive fashion. UKFs are ordinarily used for state

estimation, but they can be easily extended to accommodate both the estimation of states and

uncertain parameters, as shown by Wan and Van der Merwe [109]. UKFs possess a number

of advantages over traditional estimators like the Extended Kalman Filter (EKF), among them

being the ability to handle arbitrary nonlinear—and possibly even discontinuous or nonsmooth—

models, a more accurate propagation of states through nonlinear process dynamics by eschewing

model linearization, and amenability to parallelization, which makes them computationally

attractive for implementation on modern multicore processors.

State estimation is an important tool in predictive control deployments because in order for

a model’s predictions into future to be accurate, the controller needs to be in possession of

accurate and up-to-date model states, including the values of the states that are unmeasured

(and hence must be estimated). In control deployments where no state estimation scheme is

employed, only a subset of states in process model are updated using plant measurements. This

can lead to incorrect model predictions, which in turn may lead to potentially deleterious control

actions being prescribed. Having incorrect values of model parameters can also beget similar

consequences.

We propose to moderate these plant-model mismatch effects by continually correcting our con-

troller model by estimating a selected set of parameters, as well as missing state measurements.

In cases where the exact set of mismatched parameters is known, we can estimate them directly.

For cases in which the sources of the mismatch are unknown (e.g. structural mismatch, persistent

stochastic disturbances, etc.), fictitious disturbance terms are recursively estimated. In this work,

we will investigate the use of UKF algorithms (with bound constraint handling) for performing

state and parameter estimation on a differential-algebraic equation (DAE) system. In particular,

these algorithms will be applied to systems under partial shutdown conditions.

The existence of plant-model mismatch also entails a modified approach to the implementation of

an optimal control strategy, in our case, an Economics-based Model Predictive Control (MPC). In

our MPC framework for partial shutdown handling, we typically solve an economics optimization

problem in which hard terminal restoration constraints are used to drive the plant back to its

original operating point post-shutdown. However, if a sufficiently large disturbance enters

during the period of transience, it may render such terminal constraints infeasible. We attempt

to address this problem by employing a multi-tiered dynamic optimization approach. Multi-
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tiered dynamic optimization permits the prioritization of several different objectives in order of

decreasing importance. In the first tier, a dynamic feasibility problem is solved to compute a

feasible terminal operating point. This is intended to enable the controller to move toward the

next best feasible terminal operating point in the event that the originally prescribed terminal

operating point becomes infeasible. A parameter relaxation is also performed in this tier to

ensure that the estimated parameters arriving from the parameter estimator remain feasible

throughout the prediction horizon. In the subsequent tier, an economic objective is maximized

in order to find the most profitable way to control the plant. Within the space of economically

optimal solutions, the next optimization tier attempts to maintain product quality targets as

close to their desired values as possible. In the last optimization tier, the optimizer attempts to

find a set of control trajectories that satisfy all the preceding objectives and can be implemented

on the plant with the least control effort.

In the following sections, we will describe in detail the partial shutdown problem, the effects of

plant-model mismatch, two state and parameter estimation algorithms based on the UKF, and

finally, a multi-tiered optimization approach for performing optimization under plant-model

mismatch conditions.

5.2 Partial Shutdown Problem

The partial shutdown formulation used in this chapter is identical to the one described in

Section 3.2 for the continuous case, and Section 4.1 for the discrete-continuous case. In order to

avoid repetition, we urge the reader to consult those sections for a statement of the canonical

forms.

As a matter of convention, we will adopt in next several sections a nonlinear discrete state-space

representation of the DAE system described in Eqn. 3.2 and Eqn. 3.4. This is done to simplify

discussions on control and estimation. This state-space representation can be obtained from

the aforementioned DAE form by means of a few simplifying statements. We assume that

zk is uniquely determined by uk and xk. We neglect the inequality constraints (for the sake

of simplifying the discussion, though the inequality constraints will be present in the final

optimization problem). A set of output variables y is computed from the differential (x) and

algebraic (z) states by way of the matrices H x and Hz respectively. A nonlinear state-space (M1)

of the controller at any feedback iteration j (which is to be distinguished1 from the model’s

1Throughout this chapter, we will be using j to denote the feedback iteration counter, and k to denote the model’s

prediction horizon counter.
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counter k) can then be written as follows:

Model (M1) : xk+1 = f (xk, zk, uk,θ ), xk = x̂ j , k = j, . . . , N − 1 (5.1)

h(xk, zk, uk,θ ) = 0, k = j, . . . , N (5.2)

yk = H x xk + Hzzk, k = j, . . . , N (5.3)

where k = the counter for the model prediction horizon, N = the horizon length or endpoint,

x̂ j ∈ R
nx is state estimate of the initial value at j, zk ∈ R

nz = algebraic states, and yk ∈ R
ny =

output variables. Note that because this state-space model is derived from a DAE, we include

Eqn. 5.2, which is an implicit relationship for resolving the values of the algebraic states zk. We

further require the Jacobian of h with respect to z, that is, hz to be nonsingular. H x ∈ Rny×nx

and Hz ∈ Rny×nz are matrices which provide the output relationship.

In our control algorithm, we utilize a shrinking prediction horizon (as opposed to the more

common receding horizon), therefore the endpoint N remains constant as j is incremented. The

diagram shown in Fig. 5.5 may be helpful for visualizing M1 within its correct context, that is,

inside a feedback loop.

5.3 Plant-Model Mismatch

The controller’s notion of the plant (represented by M1) constitutes an approximation to reality.

In a real plant, there exist uncertainties which M1 may not entirely capture. These uncertainties

usually take one or more of following forms [75]:

1. Plant-model mismatch

2. Transient disturbances

(a) Fast - detectable variations in the feed, conditions etc.

(b) Slow - process drifts

3. Unknown initial conditions

4. Measurement Noise

Many of these forms of uncertainties, notably forms 2, 3 and 4, have traditionally been handled

through the mechanisms of feedback and state estimation (MacGregor et al. [74]).
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Under plant-model mismatch, the behavior of a controller model is expected to deviate from

the observed behavior in the plant as time goes by. This manifests itself in a continual pattern

of divergence between the value of the controller predicted variable x j| j−1 (that is, predicted

value of the states at j, given information at j− 1) and the current state estimate, x̂ j (which is

calculated from the current measurements). Intuitively, this indicates that the controller’s future

predictions are progressively getting farther and farther away from the behavior indicated by

the measurements.

The aim of any mismatch-compensation scheme then is to adapt the controller model M1 to

match the behavior of plant based on available information. In standard control situations, there

are two primary types of mismatch, each requiring a different tack to address:

1. Parametric Mismatch

This occurs when the model parameters θ do not match that of the plant. This typically

arises due to incorrectly identified parameters in the model, or a parameter whose value has

shifted over time (e.g. fouling changes the heat transfer coefficients in heat exchangers).

2. Structural Mismatch

A structural mismatch occurs when the system is incorrectly or incompletely modeled.

In most situations, the overall plant-model mismatch is caused by a combination of the above.

In order to account for the mismatch between the controller model and the plant, we can

elect to perform a closed-loop adaptation of M1 to fit the measurement data arriving from the

plant.

If the cause of the mismatch is primarily parametric and the model structure is fairly accurate,

a direct estimation of the mismatched parameters θ can often yield good results. This was

demonstrated in the work of Huang [56].

In our work, we also attempt to estimate fictitious disturbance terms to adapt the controller

model to the plant. These terms (i.e. biases) essentially behave like regression fitting parameters

for reconciling the observed behavior of the plant (through measurements) with the model’s

predictions. We denote the following disturbance-perturbed controller model as (M2):

Model (M2): xk+1 = f (xk, zk, uk + du
j ,θ , dz

j ) + d x
j , xk= j = x̂ j , k = j, . . . , N − 1 (5.4)

h(xk, zk, uk + du
j ,θ , dz

j ) = 0, k = j, . . . , N (5.5)

yk = H x xk + Hzzk + d
y

j
, k = j, . . . , N (5.6)
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where d x
j
∈ Rnx = differential state disturbance, dz

j
∈ Rnz = algebraic state disturbance, du

j
∈ Rnu

= input disturbance, and d
y

j
∈ Rny = output disturbance, all at iteration j. In a nominal model,

all disturbance terms are 0 (d x
j
= dz

j
= du

j
= d

y

j
= 0), therefore when no disturbances are to be

estimated, model M2 reduces to model M1.

All of these quantities can be estimated by treating them as stochastic white noise processes in

the estimation problem. For the purposes of parameter estimation, these disturbances may be

subsumed under the vector θ and treated using standard methods described in Sections 5.4.1

and 5.4.2. We wish to emphasize that as a rule of thumb, the number of disturbances that can be

estimated is limited to the number of measurements2 available [90]. Therefore typically not all

disturbance terms are selected. The new θ vector may include both uncertain plant parameters

as well as the selected fictitious disturbances:

θ ¬ B tθt + Bx d x
j + Bzdz

j + Budu
j + B y d

y

j
(5.7)

where θt is original vector of uncertain physical/model parameters, and B t , Bx , Bz , B y , B y are

matrices used to incorporate selected disturbance terms.

A survey of the various disturbance estimation methods is to be found in the literature review

in Section 2.5.3. In the literature, many strategies for performing closed-loop adaptations (on

a state-space type model) are based on estimating one or more combinations of the above-

mentioned disturbances.

5.4 State and Parameter Estimation

Before we delve into the details of the estimation algorithms, we should mention the two

conceptual strategies behind the state and parameter estimation algorithms we are investigating.

They are known as joint (state and parameter) estimation and simple parameter estimation, and

will be described at some length below. These strategies will be compared and contrasted in the

case studies.

2This rule is based on the global observability property for linear systems and can be verified using observability

tests. However, for general nonlinear systems, a certificate of global observability is often difficult to obtain, therefore

this is considered a local property. This does not necessarily diminish its utility as a general rule of thumb.
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5.4.1 Joint (State and Parameter) Estimation

State Augmentation

In joint estimation (also known as the state augmentation approach [74, 90]), the UKF algo-

rithm is used to recursively compute both a state and parameter estimate ( x̂ j , θ̂ j) at iterate j

simultaneously. In order to achieve this, a transformation on the original problem is carried out

where the parameters to be estimated are treated as stationary states. This additional fictitious

stationary state appears as Eqn. 5.9 [82] via the relationship defined in Eqn. 5.7. The estimation

model can be written as follows:

x j = f (x j−1, z j−1, u j−1,θ j−1) + w j−1, x j−1 = x̂ j−1 (5.8)

θ j = θ j−1+ wθ , j−1, θ j−1 = θ̂ j−1 (5.9)

h(xk, zk, uk,θk) = 0, k = j − 1, . . . , j (5.10)

y j = H x x j + Hzz j + v j (5.11)

where w j−1 ∼ N(0, Rw) (process noise), v j ∼ N(0, Rv) (measurement noise) and wθ , j−1 ∼

N(0, Rθ ) (stochastic noise) are normally distributed random variables. The model functions

f , h and matrices H x , Hz used in estimation are identical to those of the controller model’s

(M1).

In the state estimation problem, x j−1 and θ j−1 are assumed to be a Gaussian random variables

whose means are x̂ j−1 = E[x j−1] and θ̂ j−1 = E[θ j−1] respectively. Their error covariance matri-

ces are defined as Pj−1 = E[(x j−1− x̂ j−1)(x j−1− x̂ j−1)
T] and Pθ , j−1 = E[(θ j−1− θ̂ j−1)(θ j−1−

θ̂ j−1)
T] respectively. We assume a system covariance Rθ for the parameter vector θ . These

matrices are converted into the augmented form below.

By introducing definitions for the augmented quantities, we can rewrite the above system into an

augmented form, whose form resembles a standard nonlinear state space model (we remind the

reader that Eqn. 5.13 is simply an implicit function for computing the values of zk). This makes

it amenable to any standard state-estimation algorithm. We present the augmented model (M3)

below (where the superscript “a” denotes augmented quantities):

Model (M3) : xa
j = f a(xa

j−1, z j−1, u j−1), xa
j−1 = x̂a

j−1 (5.12)

ha(xa
k
, zk, uk) = 0, k = j − 1, . . . , j (5.13)

y j = H x ,a xa
j + Hzz j (5.14)
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where

xa
k
¬




xk

θk



 , x̂a
k
¬




x̂k

θ̂k



 , k = j − 1, . . . , j

f a(xa
j−1, z j−1, u j−1)¬




f (x j−1, z j−1, u j−1,θ j−1)

θ j−1





ha(xa
k
, zk, uk)¬ h(xk, zk, uk,θk), k = j − 1, . . . , j

H x ,a
¬




H x 0

0 0





Pa
j−1 ¬




Pj−1 0

0 Pθ , j−1



 , Ra
w ¬




Rw 0

0 Rθ



 ,

Ra
v ¬ Rv

If there are bound constraints in the states and parameters, they can be similarly augmented:

xa
L ≤ xa

j ≤ xa
U , where xa

L ¬




xL

θL



 , xa
U ¬




xU

θU





These augmented quantities (along with Eqns. 5.12 – 5.14) can be fed into a standard Unscented

Kalman-type state estimator framework, such as the one described in Section 5.4.1, to perform

simultaneous state and parameter estimation with no modifications to the filter itself. Fig. 5.1

depicts the process of state augmentation and its place in the state / parameter estimation

procedure. The Constrained UKF state estimator is not explicitly aware of the augmentation;

it handles the augmented problem as it would a standard state estimation problem, that is, a

separate parameter estimation algorithm is not required.

This strategy is useful in situations where there is a significant amount of interaction between

the states and the parameters, and the user desires to estimate them simultaneously. The

disadvantage is that the state estimation framework has to deal with a larger system of equations,

which can increase the computational demands especially in an algorithm like the UKF whose

complexity scales with the number of states.
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State Augmentation
Constant matrices (tuning parameters): Rw , Rv

Augmented system with states and parameters:

xa
j
= f a(xa

j−1
, z j−1, u j−1), xa

j−1
= x̂a

j−1

ga(x a
k
, zk, uk) = 0, k = j − 1, . . . , j

y j = H x ,a xa
j
+ Hzz j

where xa
k
¬

�
xk

θk

�

, x̂a
k
¬

�

x̂k

θ̂k

�

, k = j − 1, . . . , j

f a(x a
j−1

, z j−1, u j−1)¬

�
f (x j−1, z j−1, u j−1,θ j−1)

θ j−1

�

ha(x a
k
, zk, uk)¬ h(xk, zk, uk,θk), k = j − 1, . . . , j

H x ,a
¬

�
H x 0

0 0

�

Pa
j−1
¬

�
Pj−1 0

0 Pθ , j−1

�

, Ra
w
¬

�
Rw 0

0 Rθ

�

,

Ra
v
¬ Rv

and xa
L
¬

�
x L

θL

�

, xa
U
¬

�
xU

θU

�

State Estimation with Constrained UKF
Given covariances Pa

j−1
, Ra

w
, Ra

v
,

previous estimate x̂a
j−1

, measurements ym
j

,
augmented model functions f a, ha, H x ,a, Hz , and
bounds xa

L
, xa

U
, Estimate x̂a

j

From plant: ym
j

From previous:

x̂ j−1, θ̂ j−1,

Pj−1, Pθ , j−1

Augmented: x̂a
j−1

, ym
j

, f a, ha, H x ,a, Hz

Pa
j−1

, Ra
w

, Ra
v
, xa

L
, xa

U

Deaugmented:

x̂ j ,θ j

Pj , Pθ , j

Figure 5.1: Joint (state and parameter) Estimation Problem.

The Constrained Unscented Kalman Filter (UKF) for Nonlinear State Estimation

We present here the standard form of the UKF that is used for joint state and parameter

estimation. In our UKF, we introduce a simple means for constraint handling that works on the

basis of a projection of the states calculated during certain steps in the UKF into the feasible

constrained region by solving a quadratic program (details to follow).

For convenience of abstraction, we can represent the model in Eqns. 5.12 – 5.14 as a mapping.

We define the estimation model (E1) as follows:

Model (E1) : fest : (xa
j−1, u j−1) 7→ (x

a
j , y j) (5.15)

The constrained UKF algorithm which we have synthesized from Wan and van der Merwe [115]
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and Kolås et al. [65] appears below.

UKF Algorithm Initialization (prior to starting the filter algorithm)

1. Select UKF tuning parameters α,β ,κ.

• α ∈ [1× 10−4, 1] determines the spread of sigma points from the origin (a larger

value produces a wider spread of points).

• β is set to 2 for Gaussian systems. No guidance is available for non-Gaussian systems.

However, the assumption is usually made that the system is Gaussian.

• κ is generally set to 0, although Van der Merwe and Wan [109] suggest that κ = 3−nx

may be ideal for Gaussian systems. Kolås et al. [65] note that κ < 0 may lead to

negative definite covariance calculations and care is needed when selecting this

parameter. In our experience, 0 was a good choice for maintaining the positive-

definiteness of the covariance matrix.

Note: α,β ,κ represent only one possible selection of tuning parameters. There exist other

ways of tuning a UKF, each with their own individual properties [60, 65, 115]. As far as is

known, no systematic evidence exists that any one method of tuning is superior to another

owing to the effects of nonlinearity and stochasticity.

2. Using the tunings above, calculate weight terms and other algebraic parameters used in

the UKF. The dimension of the augmented state vector is na = nx + nθ .

λ = α2(na + κ)− na (5.16)

Γ = na +λ (5.17)

W 0
m =

λ

na +λ
(5.18)

W 0
c =

λ

na +λ
+ (1−α2+ β) (5.19)

W i
m =W i

c =
0.5

na +λ
, i = 1, . . . , 2na (5.20)

3. Initialize the initial state error covariance matrix with variances of each state σ2
x on the

diagonals, P0 = diag[σ2
x ,1, . . . ,σ2

x ,nx
]. These initial variances can either be obtained from

historical data, or arbitrarily selected based on some intuitive notion of the individual

variances. Initialize x̂0 with the best available information on the initial state values.
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4. Initialize the initial parameter error covariance matrix with variances of each parameter

σ2
θ

on the diagonals, Pθ ,0 = diag[σ2
θ ,1

, . . . ,σ2
θ ,nθ
]. Again, these initial variances can either

be obtained from historical data, or arbitrarily selected based on how aggressive one

desires the estimation process to be. Also, initialize θ̂0 with the best available information.

5. Combine P0 and Pθ ,0 into an augmented error covariance matrix, Pa
0 . Also, combine x̂0

and θ̂0 into an augmented state vector x̂a
0

Recursive State Estimation using the UKF

1. A total number of 2na + 1 sigma points, χ i
j−1 (where i = 0, . . . , 2na) are generated around

the last available estimate x̂a
j−1 (at the first iteration, this would be x̂a

0).

χ0
j−1 = x̂a

j−1 (5.21)

χ i
j−1 = x̂a

j−1+Γ(
Æ

Pa
j−1)i , i = 1, . . . , na (5.22)

χ
na+i

j−1 = x̂a
j−1−Γ(

Æ

Pa
j−1)i , i = 1, . . . , na (5.23)

Note: the notation x̂a
j−1±Γ(

p
Pa

j−1)i denotes a vector x̂a
j−1 being added or subtracted to

column i of the Γ(
p

Pa
j−1) matrix. The square-root of the matrix can be obtained either by

through a Cholesky factorization or a symmetric matrix square root algorithm. The latter

has favorable properties [65] and will be used in this work.

2. Each sigma point χ i
j−1(i = 0, . . . , 2na) undergoes the nonlinear transformation defined in

(5.15). This yields a cloud of transformed sigma points for the predicted states χ
i,−
j

and

predicted outputs Υi
j

at the current time step, as follows3:

fest : (χ i
j−1, u j−1) 7→ (χ

i,−
j

,Υi
j), i = 0, . . . , 2na (5.24)

The statistics of the Gaussian random variable are estimated by computing the mean and

variance of the transformed sigma points.

3. The predicted (a priori) states x̂−
j

(mean) are calculated by taking a weighted combination

of the sigma points:

x̂−j =

2na∑

i=0

W i
mχ

i,−
j

(5.25)

3The superscript-minus (−) notation is used to denote an a priori predicted variable.
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Similarly, the predicted (a priori) covariance matrix P−
j

is computed from the transformed

sigma points:

P−j =

2na∑

i=0

W i
c (χ

i,−
j
− x̂−j )(χ

i,−
j
− x̂−j )

T+ Ra
w (5.26)

where W i
m and W i

c are determined in eqns. 5.18 – 5.20.

4. The predicted outputs are calculated by taking a weighted combination of the transformed

output sigma points:

ŷ j =

2na∑

i=0

W i
mΥ

i
j (5.27)

A covariance matrix for the outputs Py is calculated:

Py =

2na∑

i=0

W i
c (Υ

i
j − ŷ j)(Υ

i
j − ŷ j)

T+ Rv (5.28)

5. [Constraint handling step] The results of the previous step are projected into the feasible

space by means of the QP problem defined in Eqn. 5.37.

x̂−j :=Qopt( x̂
−
j , P−j , xL , xU) (5.29)

6. A matrix representing the cross-covariance between x and y is calculated:

Px y =

2na∑

i=0

W i
c (χ

i,−
j
− x̂−j )(Υ

i
j − ŷ j)

T (5.30)

The Kalman gain K j is then constructed as follows:

K j = Px y P−1
y (5.31)

7. Using the current measurement ym
j

, the predicted states x̂−
j

are updated to produce a

state estimate x̂a
j
:

x̂a
j = x̂−j + K j(y

m
j − ŷ j) (5.32)
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The updated (a posteriori) covariance matrix Pa
j

is computed:

Pa
j = P−j − K j Py KT

j (5.33)

8. [Constraint handling step] The results of the previous step are projected into the feasible

space by means of the QP problem defined in Eqn. 5.37.

x̂a
j :=Qopt( x̂

a
j , Pa

j , xa
L , xa

U) (5.34)

9. Deaugment xa
j

into x̂ j ,θ j , and Pa
j

into Pj , Pθ , j . Return to Step 1 for the next iteration.

QP Projection for Bound Constraint Handling in the UKF

A general projection quadratic program (QP) can be written as follows:

min
x
(x − x̄)T P̄−1(x − x̄) (5.35)

s.t. xL ≤ x ≤ xU (5.36)

where x̄ and P̄ are generic arguments for some state vector and covariance matrix, respec-

tively. Simon [96] notes that by choosing the weighting matrix as the inverse of a covariance

P̄−1 (otherwise known as an “information” matrix), a maximum probability estimate of

the state (under constraints) is obtained. If identity matrix I was chosen as the weighting

matrix, one obtains a least-squares estimate of the constrained states. In this work, we elect

to use an inverse covariance weighting to preserve the statistics of the estimate.

For practical computation, the above problem is often rewritten into standard quadratic

programming form:

Qopt( x̄ , P̄, xL , xU) :











minx
1

2
xTQ̄x + f̄ T x

s.t. xL ≤ x ≤ xU

where Q̄ = 1

2

�

P̄−1+ (P̄−1)T
�

f̄ = −P̄−1 x̄

(5.37)

where Q̄ = 1

2

�

P̄−1+ (P̄−1)T
�

is a symmetrized version of the information matrix P̄−1. We

have found this symmetrization to be necessary because although P̄−1 is symmetric in

theory, small amounts of numerical noise arising during the estimation may render the

matrix non-symmetric in practice. For the same reason, while the covariance matrix P̄
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is theoretically always invertible (in our algorithm, the covariance matrices are positive-

definite, and all positive-definite matrices are invertible), it may be necessary in practice to

use a Moore-Penrose pseudo-inverse (obtained through a least squares solution of a linear

system) as accumulated numerical noise during the iterations can introduce ill-conditioning

to the matrix.

In this work, we have chosen to limit the type of constraints in our UKF estimator to simple

state (and parameter) bounds because we believe it represents a choice that is congruent

with the complexity of the constraints arising in our application. In principle, one can

handle arbitrary nonlinear constraints by rewriting the problem as a nonlinear program

[65].

5.4.2 Simple Parameter Estimation

Constrained UKF Parameter Estimator
Given covariances Pj−1, Re,

previous estimates x̂ j−1 and θ̂ j−1, measurements ym
j

,

bounds θL ,θU , Estimate θ̂ j

Optional Iterative Refinement

Let θ̂ j−1 := θ̂ j . Re-run estimation. Terminate when change in innovations

between iterations below threshold ε, or maximum iterations exceeded.

θ̂ j

Final θ̂ j

x̂ j−1, θ̂ j−1, ym
j

Figure 5.2: Simple Parameter Estimation.

In situations where only parameter estimation capabilities are desired, the UKF estimation can

be modified to perform parameter estimation exclusively. In a sense, the resulting algorithm

resembles a standard Recursive Least Squares (RLS)[51] filter. However our algorithm offers

several advantages. By adopting a constrained UKF-based framework, it inherits all the advan-

tages of the UKF algorithm (no linearization step, arbitrary nonlinear model, easy parallelization,

etc.) and also adds simple bound constraint handling.

This constrained UKF parameter estimation algorithm is well-suited to situation where full-state

measurements are available, and only estimations of parameters are required. If full-state

measurements are not available, the states can be obtained from a separate state-estimator.

When the parameter estimator is paired with a state estimator, it is known as the dual estimation

approach. This decoupling of the state estimator from the parameter estimator offers several
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benefits. Firstly, the parameter estimator algorithm is often simpler (in terms of the number of

steps that need to be carried out) and potentially computationally less intensive to run than a

corresponding joint estimation algorithm. If there are a large number of parameters, this may

offer a speed advantage over a joint estimation scheme in which the parameters are subject to

the computational demands exerted by the full state estimator.

Also, because states and parameters usually evolve with different dynamics, the separation of

state and parameter estimators provides a finer level of control over the parameter estimation

process, especially through additional tuning parameters such as the exponential forgetting

factor λ f , which may improve tracking performance in some situations.

We have discovered that the parameter estimation can be improved through a numerical

refinement procedure (see Fig. 5.2 for a visual depiction). We offer the following (optional)

iterative refinement procedure:

1. Denote the iteration count as i, and the parameter estimate vector θ̂ j at iteration i as θ̂ i
j
.

In the first iteration, the parameter estimate vector θ̂1
j

is obtained from the parameter

estimator. Then, let i = 2.

2. The vector θ̂ i−1
j

is fed into the parameter estimator as an input (θ̂ j−1), and the estimation

is re-run. A new (refined) θ̂ i
j

is obtained.

3. Terminate and return the current estimate θ̂ i
j

if one of the following conditions are met:

(a) The relative change in the innovations is less than a specified numerical threshold

(ε):
||(ym

j
− y j)i − (y

m
j
− y j)i−1||

||(ym
j
− y j)i−1||

≤ ε

where (ym
j
− y j)

i is the innovations at iteration i.

(b) The maximum number of iterations (a user-specified parameter) is exceeded.

Otherwise, let i := i + 1 and return to step 2.

We consider this an optional procedure because the computational demands of repeating a full

parameter estimation may be quite substantial in larger problems. However, in our experience,

iterative refinement can lead to a significant acceleration in estimation convergence.

At this point, we remark that in a process model the uncertain parameters of interest can
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either be time-invariant or time-varying. It could be argued that if the desired parameters were

time-invariant, the estimation of parameters can be performed offline exclusively using only

historical data. While this is true, we believe that a reasonably good case could be made for

using a recursive online estimation algorithm such as the UKF, as a complement to (instead of a

replacement for) offline estimation. In practice, the true values of the parameters in the plant

may drift over the course of a plant’s operation, therefore the parameters obtained using offline

estimation of historical data may not necessarily be up to date. Recursive estimation algorithms

on the other hand use live data and provide the most up to date estimates. We see the two as

being complementary, because the parameters that obtained through offline estimation can be

used as initial guesses in the online estimation. Starting with parameter values close to the actual

values in the plant can accelerate the convergence of the online estimation considerably.

We note also that a drawback of the exclusive offline estimation approach in our context is

the limited availability of historical plant data under partial shutdowns (especially during the

restoration phase). In many plants, partial shutdowns do not usually happen very frequently,

therefore there may be a dearth of plant data under such conditions. Partial shutdowns also

usually push the plant outside of their usual ranges of operation, and nominal plant operation

data may be unsuitable for the purposes of offline parameter estimation for partial shutdowns.

These factors provide the motivation for using a online parameter estimator.

The Constrained Unscented Kalman Filter for Nonlinear Parameter Estimation

As mentioned before, although the UKF algorithm is primarily designed for state estimation, it

can easily be used for the purposes of parameter estimation. In this section, we employ a modified

UKF that is used to exclusively estimate parameters, inspired primarily by work done by Van

der Merwe and Wan [109] who outlined a modification that operates on principles similar to a

weighted recursive least squares (W-RLS) algorithm. In this work, we extend the aforementioned

work of Van der Merwe and Wan [109] by including iterative refinement and constraint handling

(similar in vein to the method described in the constrained UKF section).

At this juncture, we remind the reader that the number of parameters that can be estimated is

typically limited to the number of measurements available, nθ ≤ ny . Attempting to estimate

more parameters than available measurements can potentially lead to nonunique estimates,

which may in some cases cause deterioration in the quality of the estimation. For convenience

of abstraction, we can represent the model in Eqns. 5.12 – 5.14 as a mapping. We define the
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estimation model (E2) as follows:

Model (E2) : fp,est : (x j−1, u j−1,θ j−1) 7→ y j (5.38)

We describe the algorithm below:

Recursive Parameter Estimation using a constrained UKF algorithm

1. At a time step j, we carry out the prediction step using the following equations:

θ̂−j = θ̂ j−1 (5.39)

P−
θ , j
=

1

λ f

Pθ , j−1 (5.40)

where λ f is the exponential forgetting factor, often chosen to be 1 or less (see discussion

in box below).

2. Sigma points Θi
j−1 (where i = 0 . . . 2nθ ) are generated around the prediction θ̂−

j
.

Θ0
j = θ̂

−
j (5.41)

Θi
j = θ̂

−
j +Γ(

q

P−
θ , j
)i , i = 1 . . . nθ (5.42)

Θ
nθ+i

j
= θ̂−j − Γ(

q

P−
θ , j
)i , i = 1 . . . nθ (5.43)

Note that the notation θ̂−
j
±Γ(

Æ

P−
θ , j
)i denotes a vector θ̂ j being added or subtracted to

column i of the Γ(
Æ

P−
θ , j
) matrix.

3. Each sigma point Θi
j−1 undergoes the nonlinear transformation defined by Model E2 (eqn.

5.38). For a dynamic system, the state-space differential equation is our transformation of

interest. This yields a cloud of transformed sigma points:

fp,est : ( x̂ j−1, u j−1,Θi
j) 7→ Y i

j , i = 0 . . . 2nθ (5.44)

We assume that the state estimate x̂ j−1 here is obtained using some state estimator (e.g.

the standard UKF) or measurements (in the case of full-state feedback). The transformed

sigma points of the output variable, Y i
j

can be thought of as an output estimate resulting

from the perturbation of the parameter vector θ , and hence conveys and implicit notion of

the sensitivity of the output variables with respect to the parameters.
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The predicted outputs ŷ j (mean) are calculated by taking a weighted combination of the

sigma points:

ŷ j =

2nθ∑

i=0

W i
mY i

j (5.45)

Similarly, the predicted (a priori) output covariance matrix Py is computed from the

transformed sigma points:

Py =

2nθ∑

i=0

W i
c (Y

i
j − ŷ j)(Y

i
j − ŷ j)

T+ Re (5.46)

where Re is a tuning matrix which influences the aggressiveness of the estimator (by virtue

of its effect on the Kalman gain). A diagonal matrix whose diagonal values lie between

0.01 to 5 is typically chosen, with smaller values leading to higher Kalman gains, and

hence more aggressive estimation.

4. [Constraint handling step] The results of the previous step are projected into the feasible

space by means of the QP problem defined in Eqn. 5.37.

ŷ j :=Qopt( ŷ j , Py , yL , yU) (5.47)

5. A matrix representing the cross-covariance between θ and y is calculated:

Pθ y =

2nθ∑

i=0

W i
c (Θ

i
j − θ̂

−
j )(Y

i
j − ŷ j)

T (5.48)

The Kalman gain Kθ , j is then constructed as follows:

Kθ , j = Pθ y P−1
y (5.49)

6. Using the current measurement ym
j

, the predicted parameters θ̂−
j

are updated to produce

a parameter estimate θ̂ j:

θ̂ j = θ̂
−
j + Kθ , j(y

m
j − ŷ j) (5.50)
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The updated (a posteriori) covariance matrix Pj is computed:

Pθ , j = P−
θ , j
− Kθ , j Py KT

θ , j (5.51)

7. [Constraint handling step] The results of the previous step are projected into the feasible

space by means of the QP problem defined in Eqn. 5.37.

θ j :=Qopt(θ̂ j , Pθ , j ,θL ,θU) (5.52)

8. Return to Step 1 in the next iteration.

Exponential Forgetting Factor

In an recursive least-squares context, an exponential forgetting factor λ f ∈ (0,1] is often

used as a means of prioritizing current information over older information. Common values

of λ f are usually between 0.950 and 0.999. A lower value for the forgetting factor can

improve tracking speed, which aids convergence in situations where the parameter being

estimated is static or drifts very slowly relative to the system dynamics. In regulatory control,

the forgetting factor can also help avoid a “parameter burst” situation when the level of

persistent excitation is small — however, in our particular case this is less of an issue as the

system is in dynamic transience.

The forgetting factor is related to quantity known as the asymptotic memory length (nA),

which is the length of past steps to remember. It is defined as follows:

nA =
λ f

1−λ f

(5.53)

When λ f → 1 (the default case), nA → ∞ which implies all past information is re-

tained.

5.5 Estimation during Shutdowns

When a unit (or set of units) p ∈ Pshut undergoes a shutdown, the controller loses the measure-

ments for those particular units. As well, their states and parameters cease to exist.

In the controller model, by way of the αshut formulation, the inputs and outputs of these units are

set to 0, and the floating variables (algebraic states such as composition, concentration etc.) are
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fixed at some nominal value. This is essentially equivalent to removing the model equations and

variables for the shutdown units from the optimization problem. The αshut approach permits the

algorithm to continue solving the controller optimization problem (to determine control actions

for the rest of the plant) without fundamentally altering the structure of the model.

From a state and parameter estimation point of view however, the loss of states, parameters

and measurements from the shutdown units entails a change in the estimation problem during

the shutdown period. That is, a reduced estimator (with shrunken covariance, measurement

and state matrices to account for the loss of states, parameters and measurements) is to be

used during the shutdown duration as opposed to the nominal estimator used the rest of the

time.

To demonstrate how the matrices and vectors are reduced during the shutdown period, consider

an arbitrary covariance matrix C and state vector v that is used during nominal operation. We

also derive a corresponding matrix IC and a vector Iv containing their indices (this will be used

to map values between the full and reduced forms).

C =








c11 c12 c13

c21 c22 c23

c31 c32 c33








, v =








v1

v2

v3








, IC =








(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)








, Iv =








1

2

3








Suppose the second state v2 ceases to exist during the shutdown. We shrink the C and v quantities

(and their corresponding index matrix IC and vector Iv) accordingly, that is, the second row and

column of the two matrices, and second row of the two vectors, are eliminated:

C ′ =




c11 c13

c31 c33



 , v′ =




v1

v3



 , I ′C =




(1,1) (1,3)

(3,1) (3,3)



 , I ′v =




1

3





These reduced quantities C ′, v′ are sent to the estimator during the shutdown period. The

estimator therefore sees a smaller estimation problem, but it treats it like any other estimation

problem and produces the corresponding estimates (v̂′) and covariance update (Ĉ ′) with

conforming dimensions:

Ĉ ′ =




ĉ11 ĉ13

ĉ31 ĉ33



 , v̂′ =




v̂1

v̂3



 ,

As the estimator exits the shutdown period, the above quantities can be mapped back to their
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original dimensions using the indices I ′C and I ′v:

C(I ′C) := Ĉ ′→ C =








ĉ11 c12 ĉ13

c21 c22 c23

ĉ31 c32 ĉ33








, v(I ′v) := v̂′→ v =








v̂1

v2

v̂3








The nominal estimator then resumes estimation with the full matrices and vectors. Note that the

quantities that did not exist during the shutdown are simply resumed with their pre-shutdown

values. The relevant matrices and vectors that are to be transformed into their reduced forms

during shutdown are the following:

• Joint (state and parameter) estimation: P, Rw , Rv , x̂ j , ym
j

, θ j

The model function fest has to be adjusted to accommodate the new dimensions of the

matrices and vectors above.

• Parameter estimation: P, Rw , Re, x̂ j , ym
j

, θ j

The model function fp,est has to be adjusted accordingly.

5.6 Multi-tiered dynamic optimization

In this section, we describe a multi-tiered approach for performing control optimization that

we have embedded within the open-loop dynamic optimization portion of our MPC framework.

The general idea behind multi-tiered optimization is that at each tier, some threshold quantity

is computed using an optimization routine and is enforced in subsequent tiers. This approach

represents a means of systematically prioritizing competing objectives in a problem with non-

unique solutions. Arguably, each of the above tiers can be integrated into a single tier with

appropriate weights on their respective objectives (De Souza et al. [35] and Zanin et al. [122]

show an example where Tiers 2 and 4 are merged into a weighted objective), but the choice

of such weights can be arbitrary. We believe that a multitiered approach provides a clean and

natural separation of the objectives based on their priorities.

In Tier 1, we compute feasible restoration targets as well as perform a relaxation of the parameter

estimate throughout the horizon. In previous chapters, we have established that in a partial

shutdown situation, the controller’s optimal course of action from an economic standpoint is

to run down the tanks to their minimum levels at the end of the control horizon. Given a

finite prediction horizon, this will render the plant incapable of anticipating the next shutdown,
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Tier 1: Dynamic Feasibility
Solve for dynamic feasibility. Find
feasible terminal constraints. Re-
lax parameter estimate.

Tier 2: Economics
Find maximum eco-
nomics achievable.

Tier 3: Deviation from Product
Quality Targets
Find minimum tolerable deviation
from product quality targets.

Tier 4: Input Effort
Find an input trajectory whose
movements are penalized.

From estimator

x̂ j , θ̂ j

( x̄
ix
k

, ū
iu
k

, θ̄k)

Φ̄econ

Φ̄s

To plant: u

Figure 5.3: Multi-tiered optimization strategy.

therefore this is an unacceptable outcome. We prevent this from happening by requiring the

controller to move the system back to its original operating point (xss, uss) in the optimization

problem. The following endpoint constraints are enforced at the last n f discrete time points in

the prediction horizon:

x̄ ix
ss (1− ε)≤ x

ix

k
≤ x̄ ix

ss (1+ ε), k ∈K f , ix ∈ I
x

ss (5.54)

ūiu
ss(1− ε)≤ u

iu
k
≤ ūiu

ss(1+ ε), k ∈K f , iu ∈ I
u
ss (5.55)

where K f = {N − n f , . . . , N}, N = the horizon length of the controller, x
ix

k
and u

iu
k

are elements

of the state x and input u vectors at time k, indexed by ix , iu respectively. The index sets are

defined as I x
ss = {i|x i ∈ Xss} and I u

ss = {i|ui ∈ Uss}, and Xss,Uss are the sets of independent

state and inputs variables necessary to specify a steady-state. ε ≥ 0 is a deviation tolerance

percentage parameter, specified as a fraction. x̄
ix
ss , ū

iu
ss are (constant) pre-shutdown steady-state

values.

The restoration constraints laid out hitherto (Eqns. 5.54 – 5.55) are usually feasible under mild

plant-model mismatch conditions, where there are enough degrees-of-freedom left to adjust
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for the effects of mismatch. However, in a highly constrained system, they are liable become

infeasible in the optimization problem, particularly in the presence of large disturbances or

significant mismatch situations. One recourse is to find a new feasible operating point in the

neighborhood of the original steady-state point that is as close as possible to the original, which

is the goal of Tier 1. In Tier 2, we attempt to find the economic upper-limit for the system. In

Tier 3, we compute the maximum tolerable deviation from product quality specifications. Finally,

in Tier 4, we compute a input profile that is capable of achieving the desired control with the

least effort.

We remark that from a computational standpoint, a warm-startable feasible-path optimization

solver often gives good performance on these types of problems because the solution of each tier

constitutes a good initial guess for the next tier.

Fig. 5.3 depicts the multi-tiered optimization strategy. Separate optimization problems are

solved one after the other, with the preceding tiers providing information to the latter tiers. We

wish to emphasize that unlike the separation of concerns in the control hierarchy, this strategy

is essentially a technique to arrive at a single set of inputs u that satisfy (as best as they can)

the objectives in each tier, in the order of their priorities. Each of these optimization tiers is

considered in detail below.

Preparation

In the closed-loop algorithm, the original endpoint constraints (specified in eqns. 5.54 – 5.55)

from the problem are dropped, and the time-invariant parameter vector θ is converted into a

time-varying algebraic vector θk.

Tier 1: Solve for Dynamic Feasibility

For feasibility reasons, at each MPC iteration all inequality constraints solely involving state

variables x j at the current time j (and only at the current time j) are dropped. The value of x j

is fixed to the estimated value x̂ j , a value that may violate the constraints. See Section 3.3.1 for

details.

At MPC iterate j, we solve the original DAE optimization problem with this objective func-

tion:

min











∑

k∈Kc ,ix∈I x
ss

(x
ix

k
− x̄ ix

ss )
TAx(x

ix

k
− x̄ss) +

∑

k∈K f ,iu∈I u
ss

(u
iu
k
− ūiu

ss)
TAu(u

iu
k
− ūss)

︸ ︷︷ ︸

1© endpoint deviation
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+

N∑

k= j+1

(θk − θ̂ j)
TAθ (θk − θ̂ j)

︸ ︷︷ ︸

2© parameter relaxation










(5.56)

s.t. θ j = θ̂ j (5.57)

where Ax , Au and Aθ are user-tunable weighting matrices (often set to the identity matrix I),

θ̂ j is the parameter estimate vector for iteration j, x
ix

k
, u

iu
k

are the subset of independent states

and inputs that define a steady-state, and x̄
ix
ss , ū

iu
ss are their (constant-valued) targets — which

are set to the nominal pre-shutdown steady-state values, Kc = {max(N − n f , j + 1), . . . , N} and

K f = {N − n f , . . . , N}, where n f is the number of periods before the horizon endpoint N that

marks the post-restoration phase.

The intent of the two main parts of the objective function are as follows:

1© The endpoint deviation part of the objective aims to find a feasible independent tuple

(x
ix

k
, u

iu
k

) to be used as restoration targets that are as close as possible to the pre-shutdown

steady-state operating point ( x̄ss, ūss). As mentioned earlier, large disturbances or plant-

model mismatch may render the original endpoint infeasible, therefore this procedure

allows us to recompute a feasible endpoint at every MPC iteration. It is worth noting that

the endpoint deviation formulation represents a convenient means for computing (and

enforcing, as is done in the next tier) terminal constraints in general MPC problems.

Also, in previous chapters, we have assumed that the controller horizon length (N) is fixed

to a value that is sufficiently large to permit a feasible restoration. In practice, it is difficult

to know a priori the exact restoration time required for a given partial shutdown, therefore

one needs choose a conservatively large N that will allow for a restoration to be carried

out within the confines of the controller’s mandate. If however the length of the chosen

horizon is too short, that is, that no feasible restoration path can be found within the given

horizon length, one may elect to lengthen the horizon at the expense of increasing the

size of the optimization problem.

This dynamic feasibility tier provides an alternative (albeit perhaps suboptimal) approach

that does not entail an increase in the problem size. The endpoint deviation term causes

the controller to continually drive the system toward the desired endpoint ( x̄ss, ūss) if it is

feasible, or to the closest feasible operating point if it is not, thus circumventing difficulties

caused infeasibilities due to a horizon length that is too short.
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Finally, we note that if ( x̄ss, ūss) are achievable at the endpoint, this part of the objective

function goes to zero and the problem reduces to the standard case of affairs where

endpoint constraints are strictly enforced.

2© The parameter relaxation term in the objective is used to aid feasibility. When performing

parameter estimation using one-step-ahead estimator like a Kalman filter, it is sometimes

possible for the estimator to return a set of parameter values that are only feasible for the

next time period, but not for the entire horizon4. This is because the Kalman family of

filters typically only has a one-step-ahead view of the system. In our experience, a constant

parameter held throughout the horizon can sometimes cause state variables to exceed

bounds, especially when the estimator is tuned aggressively. Estimated disturbances and

biases, when held constant throughout the prediction horizon, are particularly prone to

causing infeasibilities.

In our approach, we relax the normally time-invariant parameter vector θ into a time-

varying algebraic variable θk. At the current time j, θk is set to the estimated value given

by the parameter estimator, θ̂ j (eqn. 5.57); this quantity is always feasible because the

estimator has a one-step-ahead view of the system, and it uses the same model as the

controller. From period j+1 onwards however, we wish to permit the value of θ to deviate

from the estimate at time j, but we penalize this deviation. This represents a kind of “soft

constraint” on the parameter estimate, and can be seen as a means for remaining feasible

in the optimization problem.

Note that if the parameter estimate θ̂ j is indeed feasible for the entire prediction horizon,

the parameter relaxation term will be equal to zero at the optimum, and the problem

reduces to the ordinary case of affairs in which the parameter relaxation term does not

exist.

The result of this optimization tier is a set of targets that are feasible for the current problem in

iterate j. These targets are recorded as follows:

x̄
ix

k
:= x

∗,ix

k
, k ∈Kc , ix ∈ I

x
ss (5.58)

ū
iu
k

:= u
∗,iu
k

, k ∈K f , ix ∈ I
x

ss (5.59)

θ̄k := θ ∗k , k = j + 1, . . . , N (5.60)

4There exists a class of estimators, namely the Moving Horizon Estimator (MHE) family, that is insusceptible to

this. MHEs solve a constrained optimization problem typically containing a multi-step prediction horizon, therefore

they are cognizant of constraints throughout the horizon. However the computational cost of solving an MHE

problem may be significant.
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where ( x̄
ix

k
, ū

iu
k

, θ̄k) are (constant-valued) targets to be fixed in the next tier. The * superscript

attached to each variable denotes its value at the optimum.

x ix

uiu

θ

j − 1 j j + 1

x̄ ix
ss

ūiu
ss

xub

x l b

x̂ j

u j

θ̂ j

(a) No dynamic feasibility tier.

x ix

uiu

θ

j − 1 j j + 1

x̄ ix
ss

ūiu
ss

xub

x l b

x̄
ix

k

x̄
ix

k

x̂ j

u j

θ̂ j

θ̄k

(b) With dynamic feasibility tier.

Figure 5.4: Under plant-model mismatch conditions, the dynamic feasibility tier is used to recompute the

endpoint targets and relax the parameters received from an estimator. The figures show the

trajectories computed in the controller model.

To illustrate the utility of the dynamic feasibility tier, let us suppose we have a hypothetical

controller affected by plant-model mismatch. In Fig. 5.4(a) (where no dynamic feasibility tier is

applied), the dashed lines represent the predicted trajectories at time j − 1. At time j, a new

state estimate x̂ j and a parameter estimate θ̂ j (which has not converged to its true value) is

received. The estimate θ̂ j is held constant through the prediction horizon. Note that these new

values for the states and parameters do not match the predictions made at time j − 1 due to

plant-model mismatch. The controller proceeds to recalculate a set of u j with x̂ j and θ̂ j and

finds that the state x
ix

k
is unable to satisfy the the terminal constraint that forces it to go to

x̄
ix
ss at the endpoint. Furthermore, holding the current unconverged value of the parameter θ̂ j

constant through the horizon causes x
ix

k
to exceed its upper-bound, xub. This is because in our

case, θ̂ j is obtained from a state-estimator that only has a one-step-ahead view of the model,

and hence returns estimates that are only guaranteed to be feasible between the current and

next sample times. The controller optimization problem is thus infeasible and the controller

cannot proceed.

Fig. 5.4(b) shows the results obtained with a dynamic feasibility tier. Instead of holding constant
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an unconverged parameter estimate θ̂ j, the parameter vector is converted into a time-varying

variable. The terminal constraints that force x
ix

k
= x̄

ix
ss and u

iu
k
= ū

iu
ss at the endpoints are relaxed.

The dynamic feasibility tier then solves a feasibility problem in order to compute new endpoint

targets ( x̄
ix

k
,ū

iu
k

) as well as relaxed parameter target trajectory θ̄k that are proximate to the

original target values. Within the solution space of these feasible targets, the controller is then

able to proceed to find a u j trajectory that optimizes lower-tier objectives.

Tier 2: Maximize Economics

In the economics optimization tier, we enforce new restoration constraints using the target tuple

obtained in the previous tier. We solve the following economic optimality problem:

maxΦecon(x , z, u) (5.61)

s.t. x̄
ix

k
(1− ε)≤ x

ix

k
≤ x̄

ix

k
(1+ ε), k ∈Kc , ix ∈ I

x
ss (5.62)

ū
iu
k
(1− ε)≤ u

iu
k
≤ ū

iu
k
(1+ ε), k ∈K f , iu ∈ I

u
ss (5.63)

θ̄k(1− ε)≤ θk ≤ θ̄k(1+ ε), k = j + 1, . . . , N (5.64)

θ j = θ̂ j (5.65)

where ε ≥ 0 is a numerical tolerance tuning parameter. The set of counters Kc ensures that

as the controller enters the post-restoration period, the terminal constraints are not enforced

at the current and past x
ix

k
(whose values are obtained from the state estimator, and fixed in

problem instance j), but only on their future values. Failure to do this may result in an infeasible

optimization problem.

Notice that the endpoint targets and parameter deviations are enforced as constraints in this

tier (relaxed by ε). From this tier, we obtain a (constant) value for target economics, Φ̄econ :=

Φ∗econ(x
∗, z∗, u∗), which is enforced in the next tier.

We point out that at this tier, the product quality targets are allowed to vary within their

admissible bounds. In the cases we are considering, the quality targets are (intermediate)

operational targets that are non-critical to the final product quality. In other applications, these

quality targets may be essential, in which case Tiers 1 and 2 may be swapped and their trade-offs

appropriately reassigned.

Tier 3: Minimize deviation from Product Quality Targets

In this tier, we perform an optimization to ensure that product quality targets are as close to



118 Z. Chong, Ph.D. thesis (McMaster University, Chemical Engineering)

their nominal values as possible.

minΦs =

N∑

k= j

(sk − s̄)T(sk − s̄) (5.66)

s.t. Φecon(x , z, u)≥ (1− εe)Φ̄econ (5.67)

x̄
ix

k
(1− ε)≤ x

ix

k
≤ x̄

ix

k
(1+ ε), k ∈Kc , ix ∈ I

x
ss (5.68)

ū
iu
k
(1− ε)≤ u

iu
k
≤ ū

iu
k
(1+ ε), k ∈K f , iu ∈ I

u
ss (5.69)

θ̄k(1− ε)≤ θk ≤ θ̄k(1+ ε), k = j + 1, . . . , N (5.70)

θ j = θ̂ j (5.71)

where sk is a vector of product quality variables, s̄ are their targets, εe is trade-off parameter

specifying the allowable fraction of the optimal economics to trade-off.

In this tier, the economics is fixed to the optimal value obtained in the previous tier. The

relaxation parameter ε allows the user to specific the exact percentage of the dollar amount to

trade off in order to the achieve the objectives in the current and subsequent tiers. The squared

deviation of the product quality targets at the optimum (Φ̄s := Φ∗s ) is recorded and enforced in

the next tier.

Tier 4: Minimize input effort

In the final tier, and the input movement is minimized. This represents a type of regularization

on the inputs.

min

N∑

k= j+1

(uk − uk−1)
T(uk − uk−1) (5.72)

s.t.

N∑

k= j

(sk − s̄)T(sk − s̄)≤ Φ̄s(1+ εs) (5.73)

Φecon(x , z, u)≥ (1− εe)Φ̄econ (5.74)

x̄
ix

k
(1− ε)≤ x

ix

k
≤ x̄

ix

k
(1+ ε), k ∈Kc , ix ∈ I

x
ss (5.75)

ū
iu
k
(1− ε)≤ u

iu
k
≤ ū

iu
k
(1+ ε), k ∈K f , iu ∈ I

u
ss (5.76)

θ̄k(1− ε)≤ θk ≤ θ̄k(1+ ε), k = j + 1, . . . , N (5.77)

θ j = θ̂ j (5.78)

where εs is the fraction allowable trade-off for the deviation of product qualities from their

targets. Fig. 5.5 shows the multi-tiered optimization existing within a closed-loop feedback
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framework.

MPC Shutdown Controller at iteration j

α
p

shut
vector is determined from d

p
est.

Let Ks = { j . . . N}, Kt = { j . . . N − 1},
Ig = {1, . . . , nG},
and In = state-restricting constraints.
The following constraints are common to all tiers:

Let xk= j := x̂ j ,θk= j := θ̂ j

xk+1 = f (xk, zk, uk,θk), k ∈Kt

h(xk, zk, uk) = 0, k ∈Ks

gi(xk, zk, uk)≤ 0, k = j, i ∈ Ig \ In

gi(xk, zk, uk)≤ 0, k ∈ { j + 1, . . . , N}, i ∈ Ig

Multi-tiered optimization

• Tier 1: Solve for Dynamic Feasibility
• Tier 2: Maximize Economics
• Tier 3: Minimize Deviation from Product Quality

Targets
• Tier 4: Minimize input effort

Plant DAE (One-Step Integration) at iteration j

ẋ p(t) = f p(x p(t), zp(t), uk= j ,θ
p), x p(t j) = x̄

p

j

hp(x p(t), zp(t), uk= j ,θ
p) = 0

y p(t) = H x ,p x p(t) +Hz,pzp(t)

for t ∈ [t j , t j+1]

Measureable output ym
j+1 = hm(y p(t j+1))

Parameter/State Estimator (UKF)
If full-state feedback: suppose x ∈ X and
y ∈ Y . Index set M represents the indices
of elements of y that are differential states,
M = {i|yi ∈ X ∩Y }.
Set ( x̂ j)l := (ym

j
)l ,∀l ∈M .

Estimation:
• Joint estimation: x̂ j , θ̂ j (used if there

are missing state measurements)
• Simple parameter estimation: θ̂ j (used

if full state feedback is available, or if
states are available separately)

Downtime estimate d
p
est

input uk= j

measurement ym
j+1

increment j := j + 1

State Est.: x̂ j

Parameter Est.: θ̂ j

Figure 5.5: Nonlinear MPC feedback loop, with multi-tiered controller, plant and parameter/state estima-

tor

5.7 Case Studies

5.7.1 Preliminaries

In this section, we will present several cases to compare and constrast the various approaches to

using state and parameter estimation to address plant-model mismatch. In order to compare the

different approaches, we use a few metrics derived from the mean-square error (MSE). For any

arbitrary time-varying variable or parameter b, the mean-squared error (and a related quantity,

the root mean squared error, or RMSE) can be stated as follows:

MSE(b) =
1

N

N∑

i=1

(bk − b̂k)
2 (5.79)

RMSE(b) =
p

MSE(b) (5.80)
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where k = 1, . . . , N is a time counter, bk is the true value of a variable (presumed to be known in

the context of a simulation, though not in practice) and b̂k is its estimate.

To compare results in between different case studies, we take the liberty of defining another

metric to capture to overall error in a particular case: the sum of mean-squared-errors (SMSE).

The SMSE is a composite metric that represents the summation of all the MSEs of either the

states or the parameters in a particular run or simulation. In the definitions below, we distinguish

between the MSE summations of differential state variables (SMSEx), algebraic state variables

(SMSEz) and parameters (SMSEθ ):

SMSEx =

nx∑

i=1

MSE(x i) (5.81)

SMSEz =

nz∑

i=1

MSE(zi) (5.82)

SMSEθ =

nθ∑

i=1

MSE(θi) (5.83)

where x i , zi ,θi are the ith elements in the set of state and parameter variable sets, respec-

tively.

For the case studies, we will be considering two different plants: the full Kraft fiber line process,

whose model equations can be found in Appendix A, and a simpler subset of the Kraft plant with

only three units (the digester, blowtank and Hi-Q knotter) which we shall call the Mini-Kraft

process.

5.7.2 The effect of tuning parameters

The UKF estimation algorithms rely on a few basic tuning parameters for their operation. Apart

from the usual covariance matrix tunings found on any standard Kalman filter, the UKF also

requires tunings that determine the spread and weight of the sigma points, (α,β ,κ). Additionally,

the UKF parameter estimator makes use of a forgetting factor λ f . Kolås et al. [65] made the

observation that a commonly used UKF tuning for tuple (α,β ,κ) is (1,2,0). The parameter β

and κ are usually based on whether the random variable being estimated is Gaussian and are

ordinarily set to their default recommended values.

The parameter α however is proportional to the spread of the sigma points, and is a tuning

parameter that influences the estimation in an interpretable way. Table 5.1 shows the effect
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Noise % λ f α SMSEθ

0.00 1.00 0.10 0.000464

0.00 1.00 0.50 0.000466

0.00 1.00 1.00 0.000473

1.00 1.00 0.10 0.033677

1.00 1.00 0.50 0.045771

1.00 1.00 1.00 0.063470

2.00 1.00 0.10 0.100438

2.00 1.00 0.50 0.341262

2.00 1.00 1.00 0.753859

Table 5.1: Effect of UKF tuning parameter α vs. noise and resulting MSE for simple parameter estimation

of Mini-Kraft system. (Smaller SMSEθ is better.)

of α on the overall parameter estimation error, SMSEθ of a simple estimation performed on

the Mini-Kraft model (shown in the next section). The cases with α ∈ {0.10,0.50,1.00} were

repeated for three noise cases, that is, assuming 0%, 1%, 2% noise on the measurements.

Interestingly, the results seem to indicate that a smaller spread produces smaller estimation

errors in all the noise cases.

A larger spread tends to capture nonlinearity and variability better, but in this case, since

the model variability was fairly low, a lower spread appears to be the better choice. In our

case studies, we have elected to use α = 0.1 across all cases to ensure a certain degree of

comparability between them.

Noise % λ f α SMSEθ

0.00 1.00 0.10 0.000464

0.00 0.99 0.10 0.000349

0.00 0.95 0.10 0.000143

1.00 1.00 0.10 0.033677

1.00 0.99 0.10 0.048992

1.00 0.95 0.10 0.109231

2.00 1.00 0.10 0.100438

2.00 0.99 0.10 0.230509

2.00 0.95 0.10 0.577144

Table 5.2: Effect of forgetting factor vs. noise % and resulting MSE for simple parameter estimation of

Mini-Kraft system. (Smaller SMSEθ is better.)

Table 5.2 shows the effect of the forgetting factors λ f ∈ {1.00,0.99,0.95} on the parameter

estimation error SMSEθ . The case λ f = 1.00 represents the nominal case, in which there is no

forgetting at all, because the asymptotic memory length nA→∞. The results indicate that when
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the amount of measurement noise is 0%, the smaller forgetting factor is better. However, when

the amount of measurement noise is 1% or 2%, a larger forgetting factor gives more favorable

results.

This outcome can be understood in terms of the role λ f plays in the estimation. The forgetting

factor λ f is often used to prioritize current information over the previous. In the parameter

UKF, it enters in the covariance prediction step as a reciprocal, P−
θ , j
= λ−1

f
Pθ , j−1 (eqn. 5.40). A

lower value of λ f in this case not only corresponds to a shorter asymptotic memory length, it

also increases the magnitude of the elements in the predicted covariance matrix. If we follow

the algorithm’s logic down to the Kalman gain computation step, we will see that this results in

a boost in the Kalman gain. Therefore, by choosing a lower value of λ f , we expect to see an

improvement in tracking speed because the estimator is made more aggressive owing to the

increased Kalman gain.

When there is very little excitation in the system, the elements of the error covariance matrix are

almost 0. Therefore a low λ f causes the Kalman filter to behave more aggressively (through

the agency of the covariance matrix), and better tracking behavior is obtained. However, when

there exists sufficient excitation in the system (from noise), a higher λ f may give rise to better

tracking, possibly by not amplifying the noise in the system.

5.7.3 Case studies on Mini-Kraft process

Description

The Mini-Kraft process (Fig. 5.6) is used to illustrate the concepts and techniques discussed

on a smaller, recycle-free (and minimally interacting) model, which makes the results easier to

interpret and explain. The Mini-Kraft process is a subset of the Kraft fiber line, with only the

digester, blowtank and Hi-Q knotter units as its consituents. The reader is referred to Appendix

A for the nomenclature and model equations.

A shutdown occurs in the Hi-Q knotter unit between t=1 – 4 hrs. Two parameters in the model

are mismatched: the liquor-to-wood ratio in the digester (rDG
lw

, value in model = 3.6, value

in plant = 3.06) and the pulp shrinkage factor term (βDG
as1 , value in model = 0, value in plant

= -9.5). These discrepancies cause the model to predict a lower pulp concentration, higher

dissolved solids concentration and higher flowrate exiting the digester than is the case in reality.

The following are the differential states x , inputs u and measurements y in this problem:

x = [HBT , xBT
S2P , xBT

S2DS]
T
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F DG
in1

F DG
in2

F DG
out2

F DG
out1ST

F DG
out3

HBT

xBT
S2P

, xBT
S2DS

F BT
in1

, xBT
in1P

, xBT
in1DS

F BT
S2

F BT
S1

F BT
stm

F
HQ

out1 , x
HQ

out1P , x
HQ

out1DS

F
HQ

in2
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HQ

out2

Digester Blowtank Knotter

F
HQ

in1

digester

blowtank

Hi-Q knotter

F DG
S1

Figure 5.6: The Mini-Kraft process.

u= [F DG
in1 , F BT

S2 ]
T

ym = [xT, xBT
in1P , xBT

in1DS , x
HQ
out1P , x

HQ
out1DS]

T

where ym is the vector of measured variables in the plant. The subscripts P and DS refer to pulp

and dissolved solid components, respectively.

Since this a subset of the full plant, our economic objective function necessarily only captures

some of the streams with economic significance. As a result, one may not get a true economic

picture of the full process, as the economics may be affected by downstream processes. Also,

the prices available are for finished products, therefore profits for unfinished products must be

discounted. In light of this, we have chosen to use a crude method for quantifying the plant

subset’s economics by calculating the profits and losses downstream, by taking the Hi-Q pulp

output F
HQ
out1P as a basis.

The main source of downstream costs is the cost of the chemicals used to delignify the pulp.

During nominal operation, at a production rate of F
HQ
out1P = 4.64 ton/hr of pulp, F MX

in1P = 4.41

ton/hr of pulp enters the delignification unit. From the model, we know that 0.25 tons/hr of

chemicals is used per ton/hr of pulp, and that the chemicals cost $100/ton. Using dimensional

analysis, we can compute the cost of chemicals used for Y ton/hr of pulp exiting the Hi-Q knotter

(F
HQ
out1P):

Mchem =
4.41

4.64




ton/hr F MX

in1P

ton/hr F
HQ
out1P



0.25

�

ton/hr chem

ton/hr F MX
in1P

�

= 0.2376




ton/hr chem

ton/hr F
HQ
out1P



 (5.84)

Φchem = −100

�
$

ton chem

�∫ t f

0

 

0.2376




ton/hr chem

ton/hr F
HQ
out1P



 · Y [ton/hr F
HQ
out1P]

!

d t (5.85)

where Mchem represents the nominal tons of chemicals used per ton of Hi-Q pulp and Φchem is
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the total cost of chemicals that would have been consumed downstream of our Mini-Kraft plant

subset, given a Hi-Q pulp output flowrate of Y .

Similarly, we know that processed pulp (at the end of the Post-O2 washer unit, F PW
out2P , see Fig.

3.4(c)) has an economic value of $725/ton. We also know that during nominal operation, 4.31

ton/hr of processed pulp is obtained at a production rate of 4.64 ton/hr of Hi-Q pulp.

Mpulp =
4.31

4.64




ton/hr F PW

out2P

ton/hr F
HQ
out1P



 = 0.9289




ton/hr F PW

out2P

ton/hr F
HQ
out1P



 (5.86)

Φpulp = 725

�

$

ton F PW
out2P

�∫ t f

0

 

0.9289




ton/hr F PW

out2P

ton/hr F
HQ
out1P



 · Y [ton/hr F
HQ
out1P]

!

d t (5.87)

where Mpulp represents the nominal tons of processed pulp per ton of Hi-Q pulp and Φpulp is the

total price of the processed pulp that would have been produced downstream of our Mini-Kraft

plant subset, given a Hi-Q pulp output flowrate of Y . All other the other economically significant

streams that exist in the Mini-Kraft subset are computed directly, and the total economics is

obtained through a summation of all the cost terms. Through this exercise, we are able to

approximate the economics of a plant subset.

We acknowledge that this method may not reflect the true absolute economics of this subset

(indeed, quantifying the true economics of a plant subset is not an easy task in general). However,

it captures the trade-offs in a way that is adequate for the purposes of our case studies, which is

to compare the economics obtained in each of the cases relative to another.

For the following case studies, we elect to use a forgetting factor λ f = 0.995 (which corresponds

to a finite memory length of 200) as a compromise between noisy and noise-free cases, as well as

a balance between having no forgetting at all and an overly aggressive forgetting factor. The UKF

tuning parameters are set to (α,β ,κ) = (0.1,2,0). For all simple parameter estimation cases,

the Iterative Refinement step5 is carried out and full-state feedback is assumed. Multi-tiered

optimization is used in all cases. State and parameter constraints are imposed. No measurement

noise was assumed in any of the cases. During the shutdown, a reduced estimator is used. We

shall consider several case studies below in which the joint and simple estimation strategies are

contrasted with the base case full-state feedback strategy.

Case 1a (Full-state feedback, no estimation): This represents the baseline case in which full-state

measurements (that is, all x variables) are available, and no estimation is performed.

5Extensive testing reveals that turning on iterative refinement invariably leads to faster convergence to the correct

parameters in almost all cases, at the expense of solving the estimation problem several times per feedback iteration.
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Case 1b (Simple parameter estimation, with full state measurements, direct parameter estimation):

in this scenario, We assume that we know the exact set of parameters that are mismatched

between the model and the plant (i.e. rDG
lw

and βDG
as1), and use a simple parameter estimator to

directly estimate these parameters from the measurements.

Case 1c (Joint estimation): This case extends Case 1b by assuming that some state measurements

are missing from ym, namely xBT
S2P and xBT

S2DS . The estimator has to estimate both the full state

vector and the mismatched parameters rDG
lw

and βDG
as1 .

Case 1d (Simple parameter estimation, with full state measurements, disturbance estimation):

we consider here a case in which we assume we do not know the exact set of mismatched

parameters. However, the gap between the sensors and the model predictions allow us make an

educated guess as to which quantities need to be corrected. In this case, due to the divergence

between model predictions and plant measurements in xBT
in1P and xBT

in1DS (pulp and dissolved

solid concentrations at the inlet of the blowtank), we can deduce the outlet concentrations of

those compounds from the digester are incorrectly captured in the model. Hence we can try to

correct for this discrepancy by adding disturbance bias terms for the component flowrates of

pulp and dissolved solids at the outlet of our digester model as follows:

F BT
in1P = F DG

out3P(1+ β
DG
out3P) (5.88)

F BT
in1DS = F DG

out3DS(1+ β
DG
out3Ds) (5.89)

where βDG
out3P and βDG

out3Ds are disturbance terms to be estimated.

Results

With respect to the figures that are to follow, in the case of the x and z state variables, the

dashed lines represent controller model’s prediction of the current step given information in

past step, i.e. x̂ j| j−1, ẑ j| j−1. In the case of parameter variables, the dashed lines represent the

parameter estimates θ̂ j| j−1. The solid lines in all cases represent the true values in the plant.

Table 5.3 summarizes the above cases and their results. Note that an SMSEθ is not defined for

Case 1d because βDG
out3P and βDG

out3DS are disturbance terms with no “true” values.

• In Case 1a (Fig. 5.7), we see that during the shutdown in the Hi-Q knotter, the outlet of

the blowtank (F BT
S2 ) is shut off and the inventory in the blowtank continues to increase

(HBT ). As soon as the shutdown is over, this inventory is discharged. Due to the persistent

mismatch in rDG
lw

and βDG
as1 , the digester outlet concentrations is being predicted incorrectly,

as witnessed by the gaps between the predicted and the actual in the xBT
in1P and xBT

in1DS

trajectories. These also give rise to a small but perceptible gaps in the differential states
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Case Mode Estimated θ Missing
States

Obj ($) SMSEx SMSEz SMSEθ

1a F - - 29,644 0.0106 21.383 -

1b P, F rDG
lw

, βDG
as1 - 30,257 0.000182 0.455 5× 10−6

1c J rDG
lw

, βDG
as1 xBT

S2P ,

xBT
S2DS

30,178 0.000236 0.455 2× 10−5

1d P, F βDG
out3P , βDG

out3DS - 30,401 0.00930 0.455 -
1Mode: F = full state feedback, P = simple parameter estimation, J = joint estimation.

Table 5.3: Summary of Mini-Kraft case studies. Mismatch in rDG
lw

, βDG
as1 in all cases. (Smaller SMSEs are

better.)

(HBT , xBT
S2P , xBT

S2DS) as witnessed by their RMSEs. A standard full-state feedback scheme

has no recourse mechanism for shrinking this gap.

• In Case 1b (Fig. 5.8), the causes of the abovementioned gaps are directly addressed by

correcting the mismatched parameters rDG
lw

and βDG
as1 using a simple parameter estimation

scheme. The trajectories for rDG
lw

and βDG
as1 show that their parameter estimates converging

to the true values in short order. In turn, this closes the gap in the xBT
in1P and xBT

in1DS

trajectories. If we were to compare this result to the results obtained in Case 1a, we

would notice a significant qualitative difference in the control actions prescribed in both

cases. Instead of immediately discharging the contents of the blowtank, the controller

continues to accumulate material in the tank and elects to discharge it toward the end of

the restoration period. The overall errors (SMSEx , SMSEz) are significantly smaller than

that of Case 1a, and the objective value is marginally improved.

• Case 1c (Fig. 5.9) depicts a scenario in which two of the differential states, xBT
S2P and xBT

S2DS

are unmeasured and have to estimated along with rDG
lw

and βDG
as1 through a joint estimation

scheme. The trajectories for xBT
S2P and xBT

S2DS indicate that the computed state estimates

track reality very well, and the estimates of the mismatched parameters converge to within

a tolerance of their true values. It is within our expectation that the state estimation

should perform well in this case because pulp and dissolved solid concentrations were

measured before and after the blowtanks, and as well, the mismatched parameters which

have a strong influence on the differential states were corrected by way of the parameter

estimates.

• Finally, in Case 1d (Fig. 5.10), we demonstrate that disturbance terms are potentially

good candidates for estimation when the true source of mismatch in a plant is unknown

(which is often the case). Because the mismatched parameters rDG
lw

and βDG
as1 in the digester
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directly affect the pulp and dissolved solid concentrations, we can compensate for their

effects by adjusting the component flows of the aforementioned compounds in the digester

outlet. The trajectories for rDG
lw

and βDG
as1 show a quick convergence to the correct values

with only a minimal disturbance-based adjustment, as seen in βDG
out3P and βDG

out3DS .

Referring to Table 5.3, we see evidence that by performing state/parameter estimation in Cases

1b, 1c and 1d, the model prediction errors are moderated and improvements in the objective

are observed vis-à-vis the base Case 1a. Comparable performance was obtained in Cases 1b,

1c and 1d with respect to each other. The qualitative behavior of the control trajectories in

Cases 1b, 1c and 1d (where the model had a corrected notion of the plant) were similar to each

other, but differed visibly from those in Case 1a (where the model had an incorrect notion of the

plant). This provides a strong motivation for the (judicious) use of an estimator in plant-model

mismatch situations.

5.7.4 Case studies on full Kraft fiber line process

Description

In this section, we will demonstrate and compare applications of the simple and joint estimation

strategies on the full Kraft fiber line process. The reader is referred to Appendix A for the

nomenclature, topology diagrams (Figs. A.1, A.4, A.5), and model equations. These cases are

similar to the previous Mini-Kraft in that a shutdown occurs in the Hi-Q knotter unit. However,

this larger model contains several recycle streams, more buffer tanks and more processing

units.

Two parameters in the model are mismatched in Cases 2a-2d below: the liquor-to-wood ratio

in the digester (rDG
lw

, value in model = 3.6, value in plant = 3.06) and the pulp shrinkage

factor term (βDG
as1 , value in model = 0, value in plant = −9.5). The shutdown occurs between

t=0.25 – 5.25 hrs. In Case 2e, an additional parameter, namely the displacement ratio bias in

Washer 1 is mismatched (βW C1
DR , value in model = 0, value in plant = 0.45). The shutdown in

this case occurs between t=0.25 – 2.25 hrs.

The following are the differential states x , inputs u and measurements y in this problem:

x = [HBT , xBT
S2P , xBT

S2DS , HW C1
st , xW C1

DS3 , HW C2
st , xW C2

DS3 , HW C3
st , xW C3

DS3 , HST , xST
out1P , xST

out1DS]
T

u= [F DG
in1 , F BT

S2 , FW C1
3 , FW C1

R , FW C1
2 , FW C2

R , FW C3
3 , FW C3

R , FW C3
2 , FST

out1]
T

ym = [xT, xBT
in1P , xBT

in1DS , x
HQ
out1P , x

HQ
out1DS]

T
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Figure 5.7: Case 1a: Mini-kraft model, with mismatch in (rDG
lw

, βDG
as1 ), and using full-state feedback.

Legend: Dashed lines = controller predicted trajectories ( x̂ j| j−1,ẑ j| j−1,θ̂ j| j−1), solid lines = actual plant

trajectories.
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Figure 5.8: Case 1b: Mini-kraft model, with mismatch in (rDG
lw

, βDG
as1), and using simple parameter

estimation to estimate parameters (rDG
lw

, βDG
as1 ). States obtained through full-state feedback.

Legend: Dashed lines = controller predicted trajectories ( x̂ j| j−1,ẑ j| j−1,θ̂ j| j−1), solid lines = actual plant

trajectories.
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Figure 5.9: Case 1c: Mini-kraft model, with mismatch in (rDG
lw

, βDG
as1 ), and using joint state and parameter

estimation to estimate mismatched parameters (rDG
lw

, βDG
as1) and missing differential states

(xBT
S2P

, xS2DS).

Legend: Dashed lines = controller predicted trajectories ( x̂ j| j−1,ẑ j| j−1,θ̂ j| j−1), solid lines = actual plant

trajectories, magenta dots = the estimates of missing state measurements.
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Figure 5.10: Case 1d: Mini-kraft model, with mismatch in (rDG
lw

, βDG
as1), and using simple parameter

estimation to estimate algebraic biases (βDG
out3P

, βDG
out3DS

). States obtained through full-state

feedback.

Legend: Dashed lines = controller predicted trajectories ( x̂ j| j−1,ẑ j| j−1,θ̂ j| j−1), solid lines = actual plant

trajectories.
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where ym is the vector of measured variables in the plant.

Product quality targets are also considered in this model. The vectors of quality variables s and

their targets s̄ are:

s = [CSR
M , COF

M , C PW
M ]T

s̄ = [4.5,30, 6.5]T

where CSR
M , COF

M , and C PW
M are the outlet consistencies (in percentages) of the screeners, O2

feedpress and post-O2 washers respectively.

The UKF tuning parameters are set at (α,β ,κ) = (0.1,2,0) and λ f = 0.995. For all the simple

parameter estimation cases, the Iterative Refinement step is carried out and full-state feedback

is assumed. Multi-tiered optimization is used in all cases. State and parameter constraints

are imposed. During the shutdown, a reduced estimator is used. Several case studies are run

in which the joint and simple estimation strategies are contrasted with the full-state feedback

strategy.

Case 2a (Full-state feedback, no estimation): The controller is run with full-state (all x variables)

measurements are available, and no estimation is performed.

Case 2b (Simple parameter estimation, with full state measurements, direct parameter estimation):

we assume that we know the exact set of mismatched parameters (i.e. rDG
lw

and βDG
as1), and

estimate them directly using a simple parameter estimator.

Case 2c (Joint estimation, missing state measurements): We extend Case 2b here by dropping

measurements for the states xBT
S2P and xBT

S2DS, thus entailing the use of the joint estimation to

perform both state estimation and parameter estimation of rDG
lw

and βDG
as1 .

Case 2d (Simple parameter estimation, with full state measurements, disturbance estimation): in

this scenario, the exact set of mismatched parameters is assumed to be unknown. Like in Case

1d, we correct for this by adding disturbance bias terms for the component flowrates of pulp and

dissolved solids at the outlet of our digester model as follows:

F BT
in1P = F DG

out3P(1+ β
DG
out3P) (5.90)

F BT
in1DS = F DG

out3DS(1+ β
DG
out3Ds) (5.91)

where βDG
out3P and βDG

out3Ds are disturbance terms to be estimated.
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Case 2e (noise, joint estimation, missing states, additional mismatch, state disturbances) represents

a distinct case (from all the other cases) in which elements of all the above cases are brought

together, and an additional parameter mismatch in βW C1
DR (a parameter involved in the calculation

of Displacement Ratio (DR) in washer 1) is considered. The measurements are corrupted with

Gaussian white noise that is 1% of the measurement values. Because βW C1
DR affects the outlet

dissolved solid concentration in the washers (and the washers are intricately linked in a counter-

current configuration, we extend our measurement vector by measuring the dissolved solid

concentrating out of washers 1, 2 and 3—namely xW C1
DS1 , xW C2

DS1 , and xW C3
DS1 —by assuming the

appropriate sensors are added to the F1 stream of all washer units. We assume that we do not

know that there is a mismatch in βW C1
DR ; however, we assume that the operator has managed to

deduce from model prediction errors in the dissolved solid concentrations of the washers (xW C1
DS1 ,

xW C2
DS1 , and xW C3

DS1 ) that there is a mismatch in model related to dissolved solids. To compensate

for that, state disturbances on dissolved solid concentrations in all washer seal tanks (βW C1
x DS3,

βW C2
x DS3, βW C3

x DS3) are estimated. These disturbances enter the differential equations for computing

the washer dissolved solid concentrations (refer to eqn. A.86 in Appendix A) in the following

way:

d xW C1
DS3

d t
=

100FW C1
D

V W C1
st ·ρ ·HW C1

st

· (xW C1
DSD − xW C1

DS3 ) + β
W C1
x DS3, xW C1

DS3 (0) = xW C1
DSD (0) (5.92)

d xW C2
DS3

d t
=

100FW C2
D

V W C2
st ·ρ ·HW C2

st

· (xW C2
DSD − xW C2

DS3 ) + β
W C2
x DS3, xW C2

DS3 (0) = xW C2
DSD (0) (5.93)

d xW C3
DS3

d t
=

100FW C3
D

V W C3
st ·ρ ·HW C3

st

· (xW C3
DSD − xW C3

DS3 ) + β
W C3
x DS3, xW C3

DS3 (0) = xW C3
DSD (0) (5.94)

Also, measurements for xBT
S2P and xBT

S2DS are assumed to be unavailable and must hence be

estimated. A joint estimation is used to perform both state and parameter estimation.

Results

Table 5.4 summarizes the above cases on the full Kraft fiber line model and their results. Note

that an SMSEθ is not defined for Case 2d because βDG
out3P and βDG

out3DS are disturbance terms with

no “true” values. In Case 2e, βW C1
x DS3, βW C2

x DS3, and βW C3
x DS3 are disturbance terms but rDG

lw
and βDG

as1

are actual uncertain parameters, hence the SMSEθ is computed based only on the latter two

actual parameters.

• Case 2a (Fig. 5.11) is the vanilla full-state feedback case. The shutdown in the Hi-Q

knotter unit causes all the washers to shut down as well. The washers are down, but the

seal tank 1 remains functional to provide liquor recycle to the blowtank through stream

FW C1
3 (Fig. 5.11f). Our multi-tiered optimization formulation attempts to keep the product
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Figure 5.11: Case 2a: Kraft model, with mismatch in (rDG
lw

, βDG
as1 ), and using full-state feedback.

Legend: Dashed lines = controller predicted trajectories ( x̂ j| j−1,ẑ j| j−1,θ̂ j| j−1), solid lines = actual plant

trajectories.
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Figure 5.12: Case 2b: Kraft model, with mismatch in (rDG
lw

, βDG
as1 ), and using simple parameter estimation

to estimate parameters (rDG
lw

, βDG
as1 ). States obtained through full-state feedback.

Legend: Dashed lines = controller predicted trajectories ( x̂ j| j−1,ẑ j| j−1,θ̂ j| j−1), solid lines = actual plant

trajectories.
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Figure 5.13: Case 2c: Kraft model, with mismatch in (rDG
lw

, βDG
as1), and using joint state and parameter

estimation to estimate mismatched parameters (rDG
lw

, βDG
as1) and missing differential states

(xBT
S2P

, xS2DS).

Legend: Dashed lines = controller predicted trajectories ( x̂ j| j−1,ẑ j| j−1,θ̂ j| j−1), solid lines = actual plant

trajectories, magenta dots = the estimates of missing state measurements.
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Figure 5.14: Case 2d: Kraft model, with mismatch in (rDG
lw

, βDG
as1 ), and using simple parameter estimation

to estimate algebraic biases (βDG
out3P

, βDG
out3DS

). States obtained through full-state feedback.

Legend: Dashed lines = controller predicted trajectories ( x̂ j| j−1,ẑ j| j−1,θ̂ j| j−1), solid lines = actual plant

trajectories.



138 Z. Chong, Ph.D. thesis (McMaster University, Chemical Engineering)

0 5 10

5

5.2

5.4

5.6

(a) x
S2P

BT
 vs. t (h),

RMSE=0.006

0 5 10

14.4

14.6

14.8

15

15.2

15.4

(b) x
S2DS

BT
 vs. t (h),

RMSE=0.005

0 5 10
22

24

26

28

30

32

(c) H
st

WC2
 vs. t (h),

RMSE=0.000

0 5 10
30

31

32

33

(d) H
st

WC3
 vs. t (h),

RMSE=0.000

0 5 10

39

39.5

40

(e) F
in1

DG
 vs. t (h)

0 5 10

140

160

180

200

(f) F
3

WC1
 vs. t (h)

0 5 10

105

110

115

(g) F
out1

ST
 vs. t (h)

0 5 10

21

22

23

24

25

(h) x
in1P

BT
 vs. t (h),

RMSE=0.603

0 5 10

14.5

15

15.5

16

16.5

(i) x
in1DS

BT
 vs. t (h),

RMSE=0.311

0 5 10

14

14.5

15

(j) x
DS1

WC1
 vs. t (h),

RMSE=0.052

0 5 10

13.5

14

14.5

(k) x
DS1

WC2
 vs. t (h),

RMSE=0.027

0 5 10

2

4

6

8

(l) x
DS1

WC3
 vs. t (h),

RMSE=0.011

0 5 10

3

3.05

3.1

(m) Estim. r
lw

DG
 vs. t (h),

RMSE=0.009

0 5 10

−10

−9.8

−9.6

−9.4

(n) Estim. β
DG

as1
 vs. t (h),

RMSE=0.152

0 5 10

−0.01

0

0.01

0.02

0.03

(o) Estim. β
xDS3

WC1
 vs. t (h)

0 5 10

−0.02

0

0.02

0.04

(p) Estim. β
xDS3

WC2
 vs. t (h)

0 5 10

−0.01

0

0.01

(q) Estim. β
xDS3

WC3
 vs. t (h)

Case 2e Obj: $96674.21

Figure 5.15: Case 2e: Kraft model, with mismatch in (rDG
lw

, βDG
as1 , βW C1

DR
), and using simple parameter

estimation to estimate algebraic biases (rDG
lw

, βDG
as1 , βW C1

x DS3, βW C2
x DS3, βW C3

x DS3). States obtained

through full-state feedback.

Legend: Dashed lines = controller predicted trajectories ( x̂ j| j−1,ẑ j| j−1,θ̂ j| j−1), solid lines = actual plant

trajectories.
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Case Mode1 Estimated θ Missing
States

Obj ($) SMSEx SMSEz SMSEθ

2a F - - 62,993 1.03× 10−3 20.8 -

2b P, F rDG
lw

, βDG
as1 - 71,020 5.00× 10−5 0.455 0.00679

2c J rDG
lw

, βDG
as1 xBT

S2P ,

xBT
S2DS

71,072 5.00× 10−5 0.460 0.0232

2d P, F βDG
out3P ,

βDG
out3DS

- 77,383 4.80× 10−4 0.457 -

2e J rDG
lw

, βDG
as1 ,

βW C1
x DS3, βW C2

x DS3,

βW C3
x DS3

xBT
S2P ,

xBT
S2DS

96,674 6.00× 10−5 0.463 0.0232

1Mode: F = full state feedback, P = simple parameter estimation, J = joint estimation.

Table 5.4: Summary of Kraft case studies. Mismatch in rDG
lw

, βDG
as1 in cases 2a-2d. Case 2e is distinct from

the others: (1) shorter downtime; (2) an additional mismatch in βW C1
DR

. (Smaller SMSEs are

better.)

qualities (CSR
M , COF

M , C PW
M ) (Fig. 5.11j, k, l) as close to their targets (4.5, 30.0, 6.5) as

possible. We observe that due to the mismatch, there is a persistent gap between the model

prediction and the plant values in the trajectories for xBT
in1P and xBT

in1DS (Fig. 5.11h, i).

There are also signs of mismatch in trajectories for xBT
S2P and xBT

S2DS (Fig. 5.11a, b), though

they are almost negligibly small compared to the magnitude of the variables. Full-state

feedback, owing to the fact that it can only update the initial differential states x j = x̂ j at

every iteration, is unable to close the prediction gap in xBT
in1P and xBT

in1DS (Fig. 5.11h, i).

• In Case 2b (Fig. 5.12), a simple parameter estimation of the mismatched parameters rDG
lw

and βDG
as1 (Fig. 5.12m, n) converges fairly quickly, and the prediction gap in xBT

in1P and

xBT
in1DS (Fig. 5.12h, i) is rapidly closed. If we compare the trajectories of this case with that

of the previous (Case 2a), we notice several things. We note that qualitative behavior of

the input trajectories are markedly different in the two cases, with the inputs of Case 2b

being more conservative and move-suppressed. The overall shapes of input trajectories in

Case 2b of F DG
in1 , FW C1

3 and FST
out1 (Figs. 5.12e, f, g) differ significantly from the full-state

feedback Case 2a (Figs. 5.11e, f, g). The product quality targets can be seen to fluctuate

less in Case 2b. The overall prediction errors in x , z and θ (as witnessed by the values of

SMSEx , SMSEz and SMSEθ ) are also significantly lower in Case 2b, and the objective is

appreciably better. This provides support to the premise that an economic improvement

may be had by making corrections to a model.

• In Case 2c (Fig. 5.13), we repeat Case 2b by making unavailable state measurements

xBT
S2P and xBT

S2DS, thus entailing the use of a joint state and parameter estimation strategy.
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The trajectories for xBT
S2P and xBT

S2DS (Fig. 5.13a, b) indicate that the state estimation

was successful in tracking the true states of the plant. The parameters rDG
lw

and βDG
as1

(Fig. 5.13m, n) were also found to converge rapidly to their true values. It is interesting

to note that although the SMSEx , SMSEz and SMSEθ for Case 2c are higher than for

Case 2b, the objective function of the former is actually marginally improved over the

latter. However, the difference is insignificant, and for most purposes we can consider the

controller performance in Cases 2b and 2c to be almost identical.

• In Case 2d (Fig. 5.14), although we estimate the disturbances instead of the mismatched

parameters, we find the results to be very similar to that of Case 2b, because finding

appropriate values for the chosen disturbances has an equivalent effect to correcting the

actual mismatched parameters. The prediction errors (SMSEx , SMSEz) in this case are

higher than that of Case 2b, but the objective value is perceptibly improved in this case.

• Case 2e (Fig. 5.15) is an attempt to investigate the performance of a joint estimation

strategy in the presence of various effects such as noise, missing state measurements, and

additional mismatch. In this case, we estimate states, state disturbances and mismatched

parameters. The trajectories of the states with missing measurements xBT
S2P and xBT

S2DS

(Fig. 5.15a, b) indicate that the estimated states closely track reality. As with the other

estimation cases, the estimator manages to quickly converge to the correct value of rDG
lw

and βDG
as1 (Fig. 5.15m, n).

In this case, we have chosen to estimate state disturbances (βW C1
x DS3, βW C2

x DS3, βW C3
x DS3, Figs.

5.15o, p, q) to compensate for a mismatch in a parameter used to calculate Displacement

Ratio (DR), βW C1
DR . A mismatch in DR would normally cause a persistent mismatch in xW C1

DS1

which would propagate to other washer models due to the highly interacting counter-

current configuration of the washers. In this case, the gap is very slight but visible in

the trajectories for xW C1
DS1 and xW C2

DS1 (Figs. 5.15j, k). The state disturbance trajectories

(Figs. 5.15o, p, q) can be seen to be attempting to to compensate for this. Because the

state disturbances correct for the velocity at which differential variables change, they

can compensate for integrating errors affecting differential state variables, which in this

case are the sealtank compositions x
W C ,i
DS3 (i = 1, . . . , 3). Their effect on the washer outlet

compositions, x
W C ,i
DS1 (i = 1, . . . , 3)—the mismatched variables—however, is indirect. In

this particular case, the state disturbances perform acceptably in closing the prediction

gap, despite the fact that they are only able to indirectly affect the variables of interest.

In general, state disturbances alone are insufficient for correcting mismatch in algebraic

variables, and therefore it is important to utilize model knowledge in the selection of
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disturbances to estimate.

We wish to emphasize that although we have shown that economic improvements can be realized

by correcting model parameters and compensating for model mismatch, it would be imprudent

for us to make the broad assertion that that this is always the case. In some scenarios, it is

possible for an incorrect model to prescribe control actions that give rise to better performance.

In reality, owing to the diverse interacting effects of nonlinearity, stochasticity, etc. it is sometimes

possible to blunder into the right with the wrong model. We see hints of this in the Kraft case

studies, where a case with a higher prediction error (SMSEx , SMSEz, SMSEθ ) can sometimes

bring about a better objective value. Therefore we offer these estimation algorithms as a tool for

situations where they are able to add value.

5.8 Conclusion

In this chapter, we applied state and parameter estimation strategies in the context of a Economic

MPC control framework applied to plants in partial shutdown conditions. Novel configurations

of a bound-constrained UKF algorithms were used for state and parameter estimation of a

large-scale differential algebraic system. In this work, we adopted two main strategies: simple

parameter estimation and joint estimation. An adaptation of the estimation algorithm was nec-

essary to accommodate partial shutdowns. This entailed solving a reduced estimation problem

during the shutdown period to account for the fact that states, parameters and measurements are

missing from offline units. The motivation for the performing estimation is to obtain estimates

for unmeasured states as well as to moderate the effects of plant-model mismatch by correcting

incorrect model parameters, with the ultimate aim of correcting the model’s predictions. Apart

from simply estimating mismatched parameters, we also demonstrate cases in which fictitious

disturbance terms are estimated to compensate for plant-model mismatch.
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In terms of algorithmic contributions, we proposed an iterative refinement feature to a con-

strained UKF parameter estimation algorithm to improve estimator performance at every feed-

back iteration. Our MPC for handling partial shutdowns uses a multi-tiered optimization

formulation that computes a set of input trajectories that are the result of prioritizing several

competing objectives. In the first tier, a dynamic feasibility ensures that terminal constraints and

parameter estimates from a one-step estimator are feasible throughout the model prediction

horizon. We believe that the utility of this simple technique reaches beyond this work, because it

represents a practical method for ensuring the feasibility of terminal constraints and parameter

values obtained from estimators whose prediction horizon is shorter than that of the control

optimization problem. An economics tier is subsequently solved to determine the maximum

economics obtainable from a given state. Within the solution space of economically optimal

trajectories, the third tier optimization attempts to find a solution that delivers the minimum

possible deviation from product quality targets during the shutdown and restoration periods. The

final tier returns a solution that satisfies all the above objectives and corresponds to minimum

input effort.



Chapter 6

Problem Formulation and Solution

Techniques

In the course of producing this thesis, we developed a software modeling system for representing

dynamic optimization problems. We present the reader with an overview of the conceptual

ideas behind the language, and a general description of the code generation process that is a

pivotal component of the modeling system. Several germane mathematical transformations

are discussed. In the second part of this chapter, we discuss modeling formulation and so-

lution techniques used in this work. General formulations and numerical experiences are

recorded.

6.1 Modeling Language for Dynamic Optimization (MLDO)

One of the contributions of this thesis to the corpus of modeling tools is a Modeling Language

for Dynamic Optimization, MLDO [32]. MLDO is a domain-specific language for describing

DAE-based dynamic optimization problems. Its syntax is minimalist and math-like by design,

and only constructs related to dynamic optimization are included in its feature set. It admits

problems of the following form:

min
u(t)
Φ(x(t), z(t), u(t),δ(t), p,θ ) (6.1)

s.t. ẋ(t) = f (x(t), z(t), u(t),δ(t), p,θ ), x(0) = x0 (6.2)

g(x(t), z(t), u(t),δ(t), p,θ )≤ 0 (6.3)

143
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h(x(t), z(t), u(t),δ(t), p,θ ) = 0 (6.4)

for t ∈ [0, t f ]

where Φ = objective function, x(t) ∈ Rnx = differential state vector, x0 = initial state parameter

vector, z(t) ∈ Rnz = algebraic state vector, u(t) ∈ Rnu = control input vector, p ∈ Rnp = design

variable vector (non-time-varying variables), δ(t) ∈ {0,1}nδ = binary (logical) variable vector,

θ ∈ Rnθ = parameter vector (constant), t f = final time in prediction horizon.

At the core of the modeling system is a software program that parses a description of a problem

(in the MLDO language) and automatically produces code in various computer languages. This

component of the modeling system we refer to as the “MLDO code generator”. Depending on

the target language selected, the output code can be variously used for simulation, optimization,

visualization, analysis or documentation. Support for various target languages is an important

feature, because for non-trivial nonlinear modeling/optimization problems, a single software

tool is rarely sufficient for performing all the tasks necessary to obtain a satisfactory solution.

Frequently, an entire ecosystem of software programs and libraries are required.

The MLDO code generator is built on the concept of “metaprogramming”, a technique in which

code in one programming language is used to generate code in another1. There has been

some interest in the process systems engineering community in employing these techniques for

improving the quality and speed of software development. An example of a metaprogramming

application is ControlH [43], a control specifications language developed at Honeywell that is

capable of generating C or Ada code. Pantelides [86], in his description of the Speedup process

simulation tool, shows the use of the Pascal programming language to generate FORTRAN code

for calculating derivatives.

Metaprogramming is particularly suited to situations where large amounts of complicated—but

repeated—computer code is required to solve a problem, and where such code is susceptible to

human error if written manually. The metaprogramming technique proposes to transfer the task

of writing the code to the computer. The user is only required to specify the particular problem

in a specially defined language (a “domain-specific language” or DSL in software parlance). A

code generator then analyzes the structure of the specified problem and generates the requisite

programming code for finding a solution.

1In languages with strong metaprogramming traditions such as Lisp, metaprogramming is done by extending the

language through meta-linguistic abstractions—this results in what is known as an Internal DSL (domain specific

language). In our metaprogramming approach, we do not extend the syntax of an existing language, but instead

construct a new one, resulting in an External DSL.
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In contrast to conventional programming languages like FORTRAN or C, modeling languages like

MLDO are usually declarative rather than imperative; that is, they contain a problem definition

rather than the explicit computer instructions required to solve the problem. This is an important

attribute that enables MLDO to output code that is clean, concise and readable.

By adopting a one-to-many (as in one model definition, many target languages) approach, MLDO

represents a single entry point to process modeling. From a business perspective, this approach

allows organizations to protect their investments in modeling effort and time—and to some

extent, prevent vendor lock-in—by enabling them to switch to newer modeling platforms as

they emerge. With the code processing and generation infrastructure already present in MLDO,

new target languages can be added to the MLDO code generator’s repertoire with relatively low

effort. This flexibility leads to easier migrations, without entailing the manual re-development

of an entire model on the new platform of choice (which, in the context of very large models,

may require significant effort and is prone to human errors). Any transformations done at the

mathematical level (e.g. manual variable/equation scaling, algebraic transformations, etc.) are

preserved, which is also an advantage from a maintenance and sustainability point of view.

In short, MLDO can serve as a platform that allows for experimentation with various numerical

software configurations and formulation ideas. It enables the user to focus on modeling aspects

without having to repeatedly deal with the lower-level boilerplate code. MLDO also has a

extensible add-on architecture for applying custom mathematical transformations on MLDO

models. It can be used as a reformulation engine to alter model formulations. As of writing,

the software implementation of MLDO is able to generate code in the following languages (for

specific tasks):

• Dynamic optimization

AMPL, FORTRAN/C++ (using DAEOC libraries), MATLAB (using INTLAB for automatic

differentiation)

• Simulation/DAE integration

gPROMS, MATLAB (plain .m, SUNDIALS-interfaced .m), C (mex code), AMPL

• Symbolic analysis

Maple

• Documentation

LATEX

• Visualization
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MATLAB (.m plotfile), HTML (Sparklines), Python (Matplotlib)

• Solution Storage

JSON2

A variety of dynamic optimization software exists in the market (ACADO, DAETools, PROPT,

APMonitor, gPROMS, JModelica, DAEOC, TACO etc.), but MLDO is currently unique in its aim

to be a modeling system that targets other modeling systems. The MLDO modeling system is

written entirely in Python, a multi-paradigm programming language.

In the following sections, we describe some of the techniques employed in MLDO. The intention

of this is not to showcase MLDO itself, but rather to use MLDO as a platform for discussing the

generic ideas and concepts behind the creation of a domain-specific modeling system. These

concepts can be extended to other usage cases and applications.

6.1.1 Simultaneous Dynamic Optimization: Orthogonal Collocation on Finite Elements

(OCFE)

q

k

j

1 2 3 4 5 6

0 1 2 3 4 5

x

u

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Initial value

Continuity node

Collocation node

Figure 6.1: Example of OCFE on ẋ = f (x , u) for nFE = 6 (number of finite elements) and nCOL = 2

(collocation points per element), where q = finite element counter, j = collocation point

counter within each finite element, k = discrete sample time.

In this work, we employ the simultaneous method for performing dynamic optimization, which

2After each optimization run, the solution point and post-optimality information (Lagrange multipliers, deduced

bounds, etc.) are encoded in this data exchange format. This facilitates importation into other software for

post-optimality analysis.
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involves solving a discretized DAE optimization problem. Orthogonal Collocation on Finite

Elements (OCFE) is a weighted-residual method for discretizing a DAE system into a set of

algebraic equations that are admissible as constraints in an optimization problem. One of the

advantages of this is that it makes the dynamic optimization problem amenable to analysis using

mostly optimization theory.

It has been demonstrated that OCFE essentially corresponds to a well-conditioned implicit

Runge-Kutta method for integrating DAEs [33]. Implicit Runge-Kutta methods have been shown

to have good numerical properties such as having matrices that possess smaller condition

numbers and are less susceptible to rounding errors [7]. Given an adequate number of finite

elements (vis-à-vis the dynamics of the model), two or three collocation points per element

are generally sufficient for a reasonably accurate approximation (Vasantharajan and Biegler

[110]). Approximation error can be further controlled using adaptive knot placement techniques

[33].

The basic idea behind OCFE is the segmentation of the continuous-time solution profile of the

DAE system into components called finite elements. Within each finite element, a residual

function containing a polynomial approximation of the solution is forced to be exactly zero

at collocation nodes (Figure 6.1). These collocation nodes are chosen as roots of orthogonal

polynomial family, such as the Jacobi polynomials. Function (and in some cases, derivative)

continuity is imposed at the boundaries of finite elements (continuity nodes, Figure 6.1). Details

of this method can be found in Cuthrell and Biegler [33].

To illustrate the method, we will derive the OCFE equations from a DAE system of the following

form:

ẋ(t) = f (x(t), z(t), u(t)), x(0) = x0 (6.5)

h(x(t), z(t), u(t)) = 0 (6.6)

for t ∈ [0, t f ]

where x(t) = vector of differential variables, z(t) = vector of algebraic variables, u(t) = vector

of control input variables (decision variables in an optimization problem). The vector u(t) is

assumed to be constant valued at every sample-time (zero-order hold); that is, the input profile

is piecewise-constant.

The time horizon [0, t f ] is partitioned into nFE finite elements (see Figure 6.1 for an example).

Within each finite element q, we introduce x̃(t) and z̃(t), which represent polynomial approx-
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imations of the differential and algebraic state profiles respectively. The input profile ũ(t) is

taken to be a piecewise-constant trajectory—whose values are typically decision variables in an

optimization problem—that are prescribed to the model. We state these as follows:

x̃(t) = x (q)(τ) =

nCOL∑

j=0

x
(q)

j
φ j(τ), q = 1, . . . , nFE (6.7)

z̃(t) = z(q)(τ) =

nCOL∑

j=0

z
(q)

j
φ j(τ), q = 1, . . . , nFE (6.8)

ũ(t) = u(q)(τ) = uk, q = 1, . . . , nFE (6.9)

where τi is a rescaled time variable at collocation point i, nCOL is the number of collocation

points per finite element, x
(q)

j
and z

(q)

j
are coefficients to be determined, k is related to q via eqn.

6.21, and φ j(τ) are Lagrange polynomial basis functions, defined as follows:

φ j(τ) =

nCOL∏

l=0

l 6= j

(τ−τl)

(τ j −τl)
(6.10)

The complete collocation procedure is described in detail below.

1. Time scaling equation

For convenience, the time ordinate is rescaled into a [0,1] interval in each finite element q

using the following equation:

τ=
t − t

(q)

0

δ
(6.11)

where q = finite element counter, t
(q)

0 = left-hand side boundary of the current finite

element q, and δ = finite element length (assumed uniform). At specific collocation nodes

τi within each finite element q, the above equation can be written thus:

τi =
t
(q)

i
− t

(q)

0

δ
, i = 0, . . . , nCOL (6.12)

where t
(q)

i
= time at finite element q and collocation counter i, nCOL = total number

of collocation points per finite element. In practice, each τi within a finite element

corresponds the root of an orthogonal polynomial family [33] over an interval [0, 1] and

are constants in the problem. The Jacobi family of orthogonal polynomials is commonly

used. Efficient FORTRAN routines for generating Jacobi roots can be found in Villadsen
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and Michelsen [112]. In the software implementation, we use a table of pre-generated

Jacobi roots for collocation. (All references to temporal variables henceforth will be made

in terms of the variable τi .)

2. Method of Ordinates: Lagrange Interpolation Polynomials

Each differential and algebraic variable is approximated with a polynomial. In lieu of

the standard coeffients-based representation for polynomials, P(τ) = a0 + a1τ+ . . .+

anτ
n (method of coefficients), Lagrange interpolation polynomials are employed in what

is referred to as the method of ordinates [112], where a polynomial is represented

thus, P(τ) = P(τ0)φ0(τ) + P(τ1)φ1(τ) + . . .+ P(τn)φn(τ) where φ j are Lagrange basis

functions, τ0, . . . ,τn are n+ 1 distinct points, and P(τ j) are the values of the polynomial

evaluated at those points. The variables at the collocation nodes τi are represented thus:

x (q)(τi) =

nCOL∑

j=0

x
(q)

j
φ j(τi) (6.13)

d x (q)(τi)

dτ
=

nCOL∑

j=0

x
(q)

j

dφ j(τi)

dτ
(6.14)

z(q)(τi) =

nCOL∑

j=0

z
(q)

j
φ j(τi) (6.15)

and,

φ j(τi) =

nCOL∏

l=0

l 6= j

(τi −τl)

(τ j −τl)
(6.16)

dφ j(τi)

dτ
=







nCOL∏

l=0

l 6= j

1

(τ j −τl)






·







nCOL∑

k=0

k 6= j

nCOL∏

l=0

l 6= j,l 6=k

(τi −τl)







(6.17)

Observe from equation (6.16) that:

φ j(τi) =

¨
1, when i = j (6.18)

0, when i 6= j (6.19)

As a consequence, it follows that the polynomial coefficients of x (q)(τi) and z(q)(τi) simply

correspond to the values of the differential and algebraic states at the collocation points

(i.e. x
(q)

i
and z

(q)

i
, respectively), thus equations (6.13, 6.15, and 6.16) can be dropped

from the problem.
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3. Control Input Vector

The control input vector is represented by the following equation:

u(q)(τi) = uk, q = 1, . . . , nFE, i = 0, . . . , nCOL (6.20)

k = b
q− 1

η
c (6.21)

where uk is the control input to the plant with a zero-order hold (piecewise constant)

and η is the number of finite elements per sample. The temporal ordinate of the control

inputs is measured in terms of sample units (k). In this implementation [9], multiple

finite elements per sample may be specified (through the η parameter) for the purpose of

improving accuracy. In a standard OCFE implementation, the length of one sample time

corresponds exactly to the length of one finite element, therefore η = 1.

4. Continuity equation

Continuity between finite elements is enforced in the differential state variables by using

the polynomial approximation derived for the previous finite element to calculate the value

of the differential variable at the left-hand side boundary of the current finite element (at

the continuity node, refer to Figure 6.1).

x
(q)

0 =

nCOL∑

j=0

x
(q−1)
j
φ j(1) for q = 2, . . . , nFE (6.22)

5. Residual equations

The differential algebraic equation system can be represented in residual form. To obtain

the residual equations, we replace the differential and algebraic state variables and the

inputs in (6.5–6.6) with the following discretized approximations (expressions 6.23–6.26).

˙̃x(t) =

�

d x (q)(τ)

dτ

�

dτ

d t

�
�
�
�
τ=τ

=






nCOL∑

j=0

x
(q)

j

dφ j(τ)

dτ






1

δ
(6.23)

x̃(t) = x (q)(τ) (6.24)

z̃(t) = z(q)(τ) (6.25)

ũ(t) = u(q)(τ) = uk (6.26)

Therefore,

R1 = ˙̃x(t)− f ( x̃(t), z̃(t), ũ(t)), x̃(0) = x0 (6.27)
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R2 = h( x̃(t), z̃(t), ũ(t)) (6.28)

where R1, R2 are residual equations. At the collocation nodes, we require the residuals to

be zero, therefore we can rewrite the above as follows:

1

δ

nCOL∑

j=0

x
(q)

j

dφ j(τi)

dτ
− f (x

(q)

i
, z
(q)

i
, uk) = 0, q = 1, . . . , nFE, i = 1 . . . nCOL (6.29)

h(x
(q)

i
, z
(q)

i
, uk) = 0, q = 1, . . . , nFE, i = 1 . . . nCOL (6.30)

x
(1)
0 = x0 (6.31)

These residual equations at collocation nodes are algebraic equations that can be enforced

as equality constraints in an optimization problem.

For a compact form of a fully-collocated dynamic optimization problem, we refer the reader to

Section 6.1.2.

6.1.2 Model Discretization for DAE Optimization in MLDO

One of the primary uses of the MLDO code generator in this thesis is for generating DAE optimiza-

tion code (simultaneous approach) that is solvable using any number of commercial/open-source

numerical optimization solvers.

To achieve this goal in the least amount of time, we elected to leverage an intermediary modeling

language, AMPL [47]. AMPL is a popular commercial mathematical programming system with a

standardized software interface to optimization solvers of various types3. This design decision

helped us to avoid having to write specific interface code for each individual solver. It also

allowed us to take advantage of a host of important features in AMPL such as automatic

differentiation (exact 1st and 2nd derivatives), sparsity structure generation, bounds checking,

model pre-processing/presolve and others.

We note that AMPL was designed as a purely algebraic modeling system, therefore in order to

pose a dynamic optimization problem in it, the problem has to first be converted into algebraic

form through discretization. Using a direct transcription (simultaneous) approach where both

controls and states are discretized, the MLDO code generator transforms the DAE model into a

set of nonlinear algebraic equations via a discretization process (either orthogonal collocation

3This not only includes a variety of nonlinear solvers (IPOPT, CONOPT, KNITRO, etc.), but also solvers for different

types of optimization problems, i.e. continuous/discrete, convex/nonconvex, linear/quadratic/general nonlinear
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[see Section 6.1.1] or backward/forward Euler). This equation system can then be posed as

constraints in a conventional nonlinear program (NLP) in AMPL.

The system in Eqns. 6.1 – 6.4 can be transformed into various (discretized) algebraic forms. The

following are canonical forms of the discretization methods supported by MLDO:

Orthogonal Collocation on Finite Elements

minΦ(x
(q)

i
, z
(q)

i
, uk,δk, p,θ ) (6.32)

s.t. D
(q)

x ,i ¬
1

∆t

nCOL∑

j=0

�

x
(q)

j

dφ j(τi)

dτ

�

, q = 1 . . . nFE, i = 1 . . . nCOL (6.33)

D
(q)

x ,i = f (x
(q)

i
, z
(q)

i
, uk,δk, p,θ ), q = 1 . . . nFE, i = 1 . . . nCOL (6.34)

g(x
(q)

i
, z
(q)

i
, uk,δk, p,θ )≤ 0, q = 1, . . . , nFE, i = 1, . . . , nCOL (6.35)

h(x
(q)

i
, z
(q)

i
, uk,δk, p,θ ) = 0, q = 1 . . . nFE, i = 1, . . . , nCOL (6.36)

x
(q)

0 =

nCOL∑

j=0

h

x
(q−1)
j
φ j(1)

i

, q = 2 . . . nFE (6.37)

x
(1)
0 = x0 (6.38)

where the following terms are pre-computed constant parameters:

φ j(1) =

nCOL∏

l=0

l 6= j

(1−τl)

(τ j −τl)
,

dφ j(τi)

dτ
=







nCOL∏

l=0

l 6= j

1

(τ j −τl)






·







nCOL∑

r=0

r 6= j

nCOL∏

l=0

l 6= j,l 6=r

(τi −τl)







k = b
q− 1

η
c, τi = i’th root of a Jacobi polynomial of degree nCOL

Backward Euler

minΦ(xk, zk, uk,δk, p,θ ) (6.39)

s.t.
xk − xk−1

∆t
= f (xk, zk, uk−1,δk, p,θ ), k = 1 . . . N (6.40)

g(xk, zk, uk,δk, p,θ )≤ 0, k = 0 . . . N (6.41)

h(xk, zk, uk,δk, p,θ ) = 0, k = 0 . . . N (6.42)

Forward Euler

minΦ(xk, zk, uk,δk, p,θ ) (6.43)
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s.t.
xk+1− xk

∆t
= f (xk, zk, uk,δk, p,θ ), k = 0 . . . N − 1 (6.44)

g(xk, zk, uk,δk, p,θ )≤ 0, k = 0 . . . N (6.45)

h(xk, zk, uk,δk, p,θ ) = 0, k = 0 . . . N (6.46)

In most situations, we would recommend using either orthogonal collocation or backward

Euler due to their superior numerical stability properties. Forward Euler is merely provided for

completeness.

6.1.3 The MLDO Code Generation Process

DAE

Model

MLDO

Model

Parser
Tokenization via a
formal grammar

Transformations

• Custom Mathematical
Transformations (add-ons)

• Text transformations

Code Assembly
Using a template
tool

Output code in

target language

Step 1: Parsing
Step 2: Transformations

Step 3: Code Assembly

MLDO Code Generator

Object

with tokens

Object

with code

blocks

Figure 6.2: Simplified code generation workflow for MLDO.

The MLDO code generation process follows the general workflow shown in Figure 6.2. This

workflow figure has been vastly simplified, but it conveys the key operations performed by the

code generator. A DAE model (in mathematical form) is the starting point. It is transcribed

into an MLDO model by the user. The MLDO Code Generator program reads in the MLDO and

outputs code in the target languages of choice. Within the code generator, the major procedures

are carried out in 3 steps. We describe them in detail below.

Step 1: Parsing

An MLDO model file is decomposed into meaningful elements. A parser is a module within

the code generator that carries out the procedure of breaking down a plain-text description

of model into its constituent elements via a process known as tokenization. It does so by

utilizing a set of rules called a formal grammar. In human languages, the syntax of a language

(English, French, etc.) is defined by their grammars. Analogously, a formal grammar is a set of

mathematical/programmatic rules that define the syntax of a computer language. To employ a

very simplified example, consider this self-explanatory grammar for a Canadian postal address

(notated in Backus-Naur Form, BNF4):

4BNF is one of several notation methods for formal grammars
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<postaladdress> ::= <name> <EOL> <streetaddress> <EOL>

<name> ::= <title> <firstname> <middleinitial> <lastname>

<streetaddress> ::= <housenumber> <streetname> <streettype> <EOL>

<townname> <province> <postalcode>

<streettype> ::= "St." | "Ave." | "Blvd."

<province> ::= "ON" | "QC" | "AB" | "BC" | "MB" | "SK" | "NL" | "NS"

where <token> are tokens, "string" are strings, EOL is the end-of-line, and the pipe symbol

| represents the OR operator. Notice that tokens can be broken down into other tokens;

for instance, the <name> token in the <postaladdress> definition is itself defined as the

combination of several other tokens, namely <title>, <firstname>, <middleinitial>, and

<lastname>. Suppose we are given the below address as an input string to the parser:

Mr John R Doe

1 Main St.

Hamilton ON L8S 4L7

Using the grammar defined above, a parser would decompose the address into tokens, generating

the following mapping:

Token String corresponding to the token

postaladdress Mr John R Doe 1 Main St. Hamilton ON L8S 4L7

name Mr John R Doe

title Mr

firstname John

middleinitial R

lastname Doe

streetaddress 1 Main St. Hamilton ON L8S 4L7

housenumber 1

streetname Main

streettype St.

townname Hamilton

province ON

postalcode L8S 4L7

Table 6.1: Parsed results of a Canadian postal address

The grammar5 that defines the MLDO language is considerably more complex than the grammar

5The MLDO parser relies on a Python library called pyparsing.
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in the example above, but it essentially operates on the same principles.

A dynamic optimization problem has a well-structured canonical form, which lends itself to a

precise grammar. An MLDO model is tokenized into, among other things, declarations of the

objective functional Φ, variables, DAE functions { f (·), h(·)}, and constraints {g(·)}. Furthermore,

variables are differentiated into 4 types: differential (x), algebraic (z), input (u) or design (p).

Note that the discrete variables (δ) do not constitute a distinct type by themselves—they are

obtained by declaring variables belonging to any of the previously described types as having

the quality of being binary. Time-invariant parameters (θ) are not variables, but they also

considered a type. In MLDO, the user is required to explicitly declare each variable’s type in the

optimization problem. The mapping of variables to their correct types ensures that the different

elements in an equation receive the appropriate treatment during the transformation stage. The

MLDO parser produces an “Object with Tokens” similar in form to that of Table 6.1, which can

then be manipulated and transformed to obtain the desired result.

We note that to add a new target language, a developer only needs to write code for Steps 2 and

3 of the code-generation process. Step 1 is common to all target languages.

Step 2: Transformations

The Object with Tokens generated in the previous step contains a generic description of the

dynamic optimization problem that has not yet been customized for any particular target

language. In this step, we carry out transformations to the object that will give results that are

particular to the desired target language. Custom mathematical transformations—implemented

as add-ons—are also applied at this stage (see Section 6.1.4 for a sampling of the types of

transformations that can be performed).

Text processing techniques are used to rewrite individual strings in Object with Tokens into

the form acceptable in the target language. Consider the following (simplified) example of

the transformation of several equations and constraints in MLDO into AMPL (with orthogonal

collocation code contrasted with Backward Euler):

Refering to Table 6.2, we notice that array indices (e.g. [FE_,COL_], [k_], etc.) in the AMPL

code differ in the collocation and Euler cases. They also vary with different variable types

(e.g. alpha is a parameter, x is a differential variable, u is a piecewise constant input variable)

because each variable has a different time representation (but which all map to a common time

grid). MLDO makes use of all the information contained in Object with Tokens to differentiate

the variable types and perform the correct mapping for each element in the model.
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MLDO Statement AMPL Statement (orthogonal collocation)

$x = -alpha * x; Derivative_x_[FE_,COL_] = -alpha * x[FE_,COL_];

x(0) = 0.0; x[1,0] = 0.0;

-1 <= x <= y; -1 <= x[FE_,COL_] <= y[FE_,COL_];

u >= 0; u[fe2samp_[FE_]] >= 0;

MLDO Statement AMPL Statement (Backward Euler)

$x = -alpha * x; Derivative_x_[k_] = -alpha * x[k_];

x(0) = 0.0; x[0] = 0.0;

-1 <= x <= y; -1 <= x[k_] <= y[k_];

u >= 0; u[k_] >= 0;

Table 6.2: Text transformations from MLDO to AMPL (collocation and Backward Euler)

We utilize a combination of several mechanisms to perform these text transformations: sub-

grammars, regular expressions and simple text substitutions. Sub-grammars are simply grammars

defined at the equation or constraint level to enable us to parse strings at a finer level. While the

grammar in the parsing step decomposed the model into equations, constraints and variables,

the sub-grammars defined in this step decompose equations and constraints into their individual

variables and operations (e.g. =,<=,>=,+,-,*,/,^ and so on). Regular expressions are codified

expressions used for matching specific patterns in a set of strings. They allow one to find

complex textual patterns in a string, and substitute them with a custom replacement string

(functionally, they can be thought of as an advanced version of the Find and Replace text feature

found in all word processors). Finally, simple text substitutions are simply fast Find and Replace

operations.

Sections Code Blocks (transformed)

minimize Φ(·)
statevars Declarations for x

controlvars Declarations for u

othervars Declarations for z

designvars Declarations for p

params Declarations for θ

dae f (·) and h(·)
init x(0)

constraints g(·)
ocfe Problem-specific parameters, e.g. t f , nFE, nCOL, etc.

Table 6.3: Major sections in Object with Code Blocks

The results of these transformations are code blocks in the target language, which we neatly

classify into different sections (see Table 6.3) in an object called “Object with Code Blocks”. The
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various pieces contained in this object can then be used to assemble the final output file.

Step 3: Code Assembly

The chief means of assembling disparate pieces of code blocks into a coherent output file is

through the use of a template tool6. A template is a text file with placeholders for various code

blocks, and a template tool fills in the placeholders with the relevant code block according

to certain pre-specified rules. Below is a vastly simplified example of an AMPL template with

placeholders for various code blocks denoted ${codeblock}:

# === AMPL file generated from MLDO ===

# --- Variable and Parameter Declarations ---

${params}

${statevars}

${controlvars}

${othervars}

${designvars}

# --- Optimization Problem ----

minimize obj: ${minimize};

subject to

${dae}

${init}

${constraints}

# --- Solution ----

${ocfe}

solve;

The template tool outputs a text file with the various codeblocks contained in the Object with

Code Blocks substituted into the placeholders’ positions. The model invariant code segments

(that is, codes that are not model-specific) are hard-coded into the template. Each individual

target language requires its own customized template. The file generated at the end of this

process can either be subject to further post-processing, or run in the target environment.

Example of MLDO code generation

Consider the following dynamic optimization example problem (due to Tjoa and Biegler

6MLDO uses the Python template library, Cheetah.
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[22]):

min
u(t)
−[1− xa(t f )− xb(t f )] (6.47)

s.t. ẋa(t) = u(t) · [10 · xb(t)− xa(t)], xa(0) = 1 (6.48)

ẋb(t) = u(t) · [xa(t)− 10 · xb(t)]− [1− u(t)] · xb(t), xb(0) = 0 (6.49)

0≤ u(t)≤ 1 (6.50)

t ∈ [0, 0.4]

where u(t) = control input variable, xa(t), xb(t) = differential variables, t f = terminal time. In

order to solve this problem in AMPL using Backward Euler (with nFE = 16 finite elements), we

transcribe it in MLDO syntax as follows:

# --- MLDO Model file ---

minimize: -(1 - xa(tf_) - xb(tf_));

statevars: xa; xb;

controlvars: u;

dae: $xa = u*(10*xb - xa);

$xb = u*(xa - 10*xb) - (1 - u)*xb;

init: xa(0) = 1;

xb(0) = 0;

constraints: 0 <= u <= 1;

ocfe: tf = 0.4; nFE = 16; mode = euler; submode = bkwd;

Any text following a hash symbol (#) is treated as a comment. The objective function resides in

the minimize section. Differential/control input variables are declared in the statevars and

controlvars section respectively. The dae section contains the differential algebraic equation

(DAE) system, and init section, their initial values. The $ sign denotes the differential operator.

Inequality constraints are written in the constraints section. The ocfe section contains

information specific to this problem instance, such as final time, no. of finite elements, etc. Each

section name is terminated by a colon (:), while each statement within a section is terminated

with a semicolon (;).

AMPL Output

A section of the AMPL code that is generated from the above MLDO model appears below

(extraneous code has been omitted for the sake of brevity):
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# === AMPL file generated from MLDO ===

# ======== Euler Parameters ========

param tf_;

param nFEperSample_;

param sampleSize_;

param nSamples_ := tf_/sampleSize_; # number of samples

param nk_ := round(nFEperSample_ * nSamples_); # number of finite elements

param delta_ := tf_/nk_; # size of finite element

set kSet_ ordered := 0 .. nk_-1;

# --- Variable and Parameter Declarations ---

var xa{k_ in kSet_};

var Derivative_xa_{k_ in 0..last(kSet_)-1};

var xb{k_ in kSet_};

var Derivative_xb_{k_ in 0..last(kSet_)-1};

var u{k_ in kSet_};

# --- Optimization Problem ----

minimize obj: -(1 - xa[last(kSet_)] - xb[last(kSet_)]);

subject to

# ==== Trial Function Definitions ===

TrialFunction1_ {k_ in 1..last(kSet_)}:

Derivative_xa_[k_] = (xa[k_] - xa[k_-1])/delta_;

TrialFunction2_ {k_ in 1..last(kSet_)}:

Derivative_xb_[k_] = (xb[k_] - xb[k_-1])/delta_;

# ======== Differential Algebraic System - Residuals ========

DAEdiff3_ {k_ in 1..last(kSet_)}:

Derivative_xa_[k_] = u[k_]*(10*xb[k_] - xa[k_]);

DAEdiff4_ {k_ in 1..last(kSet_)}:

Derivative_xb_[k_] = u[k_]*(xa[k_] - 10*xb[k_]) - (1 - u[k_-1])*xb[k_];

bkwdeuler5_: u[last(kSet_)] = u[last(kSet_)-1];

# ======== DAE Initial Conditions ========

DAEinit6_: xa[0] = 1;

DAEinit7_: xb[0] = 0;

# ======== Operating Constraints ========

OperatingCons8_ {k_ in kSet_}: 0 <= u[k_] <= 1;

# ============ Model Data =============
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data;

# ====== OCFE parameters ======

let tf_ := 0.4;

let nFEperSample_ := 1;

let sampleSize_ := 0.025;

# --- Solution ---

option solver ipopt; # Default solver for dynamic optimization problems

solve;

gPROMS Output

From the same MLDO code, the following gPROMS simulation code is generated:

{ gPROMS file generated by MLDO }

# --- gPROMS type declarations ----

DECLARE TYPE # modelfile:unsignedtype

unsignedtype = 0.5 : -1E+30 : 1E+30

END

# --- gPROMS model ----

MODEL example

VARIABLE

xa AS unsignedtype

xb AS unsignedtype

u AS unsignedtype

EQUATION

$xa = u*(10*xb - xa);

$xb = u*(xa - 10*xb) - (1 - u)*xb;

END

# --- gPROMS process ----

PROCESS example_process

UNIT

mdl AS example

EQUATION

WITHIN mdl DO

u = 0; # default value, please change.

END
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INITIAL

WITHIN mdl DO

xa = 1;

xb = 0;

END

SCHEDULE

CONTINUE FOR 0.4

END

When there is insufficient information to generate a working output file, MLDO generally makes

assumptions in the code output and informs the user of them. For instance, gPROMS—being

simulation language—requires the inputs in this case for the model to be fully specified, but the

input trajectories u(t) are typically unknown prior to optimization. In this case, MLDO sets the

input trajectory to a constant u(t) = 0 in the output and advises the user to supply an appropriate

u(t) trajectory. Note also that variable bounds are omitted in simulation mode.

6.1.4 Custom Mathematical Transformations in MLDO

Below is a small sampling of the built-in mathematical transformations that can be applied to an

MLDO-based dynamic optimization problem. The advantage of specifying these transformations

at the MLDO level is that the user is abstracted from the actual set of constraints generated

to deliver the required results. As these custom transformations do not modify the original

model, they provide a layer of separation between the mathematical description of a model

and its solution strategy. As a convenience feature, they also allow the user to effortlessly

switch between different formulations to compare results without re-writing large amounts of

code.

Complementarity Constraints

Complementarity constraints are constructs used to formulate non-smooth operators such as

max(z1, z2), min(z1, z2), |z|, and sgn(z) functions [14]. They are typically written as:

0≤ x ⊥ y ≥ 0 (6.51)
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where x , y are vectors with non-negative elements, and the ⊥ operator denotes an operation

in which the products of their individual elements are zero (that is, x i yi = 0). These gives rise

to a type of optimization problem known as Mathematical Programs with Complementarity

Constraints (MPCC).

These constraints violate regularity properties when posed as-is in a standard nonlinear program

(NLP), and must thus be handled specially. There are many different ways of reformulating them

in order to make them amenable to solution as NLPs. In MLDO, one can specify the complemen-

tarity constraints as an AMPL construct (and use a tailor-made complementarity solver such as

IPOPT-C or KNITRO to solve the resulting problem), or allow MLDO to automatically reformulate

them into the penalty formulation, which will make them amenable to any nonlinear solver

[92],

minΦ+
∑

i

ρi(x i yi) (6.52)

s.t. x ≥ 0, y ≥ 0 (6.53)

where Φ is the original objective, and ρi is a sufficiently large user-specified penalty term.

MLDO permits the user to toggle between the two options with a single directive in the MLDO

code.

Using these complementarity constraints, it is easy to build libraries of formulations that can

be accessed with simple MLDO directives. As alluded to above, max(z1, z2),min(z1, z2), |z|,

and sgn(z) are among the non-smooth functions can be modeled using complementarity con-

straints.

We have implemented one particular complementarity formulation in MLDO — the Inclusive-OR

switching formulation. Suppose we have a time-varying quantity pk and a time-varying indicator

variable yk ∈ [0,1]. The non-smooth Inclusive-OR switching behavior on the left-hand-side

below can be exactly reproduced using the complementarity formulation on the right-hand-side

(modified from Baumrucker et al. [14]):







yk = 1, pk < p̄

yk = 0, pk > p̄

yk ∈ [0, 1], pk = p̄




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
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

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





0≤ yk ≤ 1

pk − p̄ = s0
k
− s1

k

0≤ s0
k
⊥ yk ≥ 0

0≤ s1
k
⊥ (1− yk)≥ 0

s0
k
, s1

k
≥ 0





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
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

(6.54)
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for k = 0 . . . k f . This formulation can be invoked in MLDO using a single line of code.

Complementarity constraints also allow us to model linear MPC controllers that are embedded

within a large-scale plant model. One method of modeling the effects of MPC controllers on a

plant is to embed the first-order optimality (Karush-Kuhn Tucker) conditions of the quadratic

programs of linear MPCs into a dynamic plant model. MLDO has the ability to assemble the

requisite code for these controller equations, a process that includes the linearization of nonlinear

dynamic plant into state-space form and the generation of the KKT equations. MLDO was used

this capacity in Baker et al. [10].

Hard and Soft Constraints

In control applications, it is often desirable to constrain the rate-of-change of the inputs (uk, with

k = 0, . . . , N − 1) to within certain rate bounds. In MLDO, hard-constraints and soft constraints

are conveniently specified in a single directive, resulting in:

minΦ+ρ

N−2∑

k=0

(uk+1− uk)

︸ ︷︷ ︸

soft constraints

(6.55)

s.t. ∆uL ≤ uk+1− uk ≤∆uU
︸ ︷︷ ︸

hard constraints

, k = 0 . . . , N − 2 (6.56)

where Φ is the original objective, ρ is the move-suppression penalty term, ∆uL ,∆uU are hard

rate-limits on the inputs.

Multi-Scenario Method (Optimization Under Uncertainty)

Suppose there exists a model parameter vector θ̃ ∈ Rnθ̃ whose values are uncertain but bounded,

that is, θ̃L ≤ θ̃ ≤ θ̃U . In the multi-scenario method, the goal is to solve for a trajectory u(t) that

is robust to all realizations of this uncertain parameter vector. In order to do this, we can create

discrete realizations of each element of θ̃ by choosing ndisc number of parameters values that

lie between their upper bounds (θ̃U) and lower bounds (θ̃L). This results in a set of scenarios

θs, where s = 0 . . . nscen and the total number of scenarios is nscen = nθ̃ × ndisc. A set of parallel

models—comprising unique combinations of each uncertain parameter and their discretized

values—is solved simultaneously in a single NLP problem to find a single set of inputs u(t) that

are feasible for all the realizations of the parametric uncertainty. The multiscenario problem can
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be stated as follows:

min
u(t)
Φ(x0(t), z0(t), u(t),δ0(t), p0,θ0) (6.57)

s.t. ẋs(t) = f (xs(t), zs(t), u(t),δs(t), ps,θs), xs(0) = x̄0 (6.58)

g(xs(t), zs(t), u(t),δs(t), ps,θs)≤ 0 (6.59)

h(xs(t), zs(t), u(t),δs(t), ps,θs) = 0 (6.60)

for t ∈ [0, t f ] and s = 0 . . . nscen

Note that only the input trajectory u(t) and the initial value x̄0 are common through all scenarios.

We select Scenario 0 (that is, s = 0) to represent the nominal case, where the parameters are at

their nominal values. These parallel model descriptions typically result in a high-dimensional

optimization problem. However, because the all the equations and constraints are identical

(apart from the parameters) and repeated, this problem possesses a special structure that can be

exploited using specialized linear algebra techniques [67]. The ability to automatically generate

these parallel models is built into MLDO.

We wish to point out that because an MLDO model is decoupled from the underlying solu-

tion process, one can potentially write code generator that uses the same MLDO model to

automatically generate for instance, a multistage stochastic program and/or employ different

formulations of the Generalized Benders Decomposition on the stochastic program. This is one of

the conveniences of having a model form that is abstracted from the solution formulation.

6.1.5 Miscellaneous MLDO features

Apart from the above, MLDO also includes implementations of ideas that, in our experience,

are capable of providing considerable aid in the solution and analysis of dynamic optimization

problems.

Closed-Loop Simulations

MLDO can be used to generate code necessary to perform closed-loop (MPC) simulations and to

manage the message-passing between non-homogeneous environments.

Because the input/output between the different environments is sequential, that is, a program

has to wait for the previous program to complete before it can begin processing, we can employ

a very simple message-passing scheme. Currently, a file-based polling scheme (see Fig. 6.3) is

used to exchange data between different environments (in our case, AMPL and MATLAB). In
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this method, all the programs that participate in the simulation are kept open at the same time.

They each wait (by continually polling the filesystem7) for a specific file to exist. The file is then

read into memory and promptly deleted; the information that is read is then processed. The

results are then written into a file, which is to be read by the next program in the processing

chain.

This file-based polling scheme is distinct from the standard approach in which one program calls

another, and reads in the output of the called program that terminates. Although the former

requires more memory (since all the programs are held in memory and do not exit at every

iteration), it avoids the latter’s overhead of having to start various programs repeatedly. The

file-based polling scheme is programatically easier to implement. For instance, the solution of

the optimization in the current iteration is often a very good initial guess for the optimization in

the next iteration. In our scheme, the solution of each optimization problem is simply held in

memory. In the standard approach, one would have needed to write a considerable amount of

code to properly store the solution in a file8, and even more code to retrieve it.

The file-based polling scheme also allows new programs to be added to the processing chain

very easily. It has proven to be a remarkably simple, intuitive and robust way of structuring

a closed-loop simulation that comprise multiple software participants (controller, plant, state

estimator, etc.). We acknowledge the file-based polling scheme is not the most efficient means of

passing information (because disk I/O can be slow relative to memory I/O); there exists more

sophisticated way of passing data through pointers and sockets. However, not all software have

an interface for dealing with these, therefore we resort to the lowest common denominator of

a file. In our context, the disk access times were negligible compared to the time required for

solving the optimization problem, therefore this trade-off was acceptable. Furthermore, the

use of files for I/O makes errors reproducible, protects from memory-related crashes, and is

portable across different operating systems [37]. File-based I/O is the primary I/O model used

in commercial modeling languages such as AMPL and GAMS.

Apart from the message passing, MLDO also generates auxiliary code in the controller model to

perform pre- and post-optimal processing, tasks which are often crucial for solving a large-scale

nonlinear programming program—an enterprise that straddles the realms of science and art—

successfully. These include exception handling and recovery, modifications to the initial guess

(back-offs and perturbations), and other practical tasks.

7This can be done using a fairly simple and unsophisticated polling method, i.e. entering into an infinite while

loop in which the termination condition is the successful reading of a file.
8Although this may at first appear to be a trivial task, it is not the case for a large-scale optimization problem with

a shrinking horizon that affects the variable indices in the problem
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AMPL-based Controller

AMPL model (from MLDO)

1. Perform pre-optimization tasks.

2. Optimize & write uk file.

3. Perform post-optimization tasks.

4. Wait for existence of x̂k+1 file (infinite loop).

5. Read x̂k+1 file, delete.

6. k := k+ 1, go to Step 1 with x̂k.

MATLAB-based Supervisor

1. Wait for existence of controller uk file (infinite loop).

2. Read uk file, delete.

3. Send uk to Plant Model.

4. Read x̄k+1 from plant. Set yk+1 = h( x̄k+1)

5. Send info to state estimator.

6. Read info from state estimator.

7. Write x̂k+1 file. Go to Step 1.

Plant Model

1-step DAE integration

State Estimator

1-step state estimation

uk

x̂k+1

uk

x̄k+1

yk+1, uk

x̂k+1

Figure 6.3: Closed-Loop Simulation Schematic

Visualization with Sparklines

In many large-scale dynamic optimization problems, the number of solution trajectories may

range in the hundreds. Frequently, only a few trajectories are of interest, and most users will

elect to plot and examine those. There exist situations however where it may be helpful to

visualize every single trajectory in a solution set as there may be aberrant behavior in certain

unexpected variables. While plotting and examining hundreds of variables is not usually thought

of as a practical proposition, there exists a compact visualization method that will enable users

to quickly examine trends for a large number of trajectories, whether on the computer screen

or on the printed page. Statistician Edward Tufte proposed using compact word-sized graphics

called “Sparklines”[108] as an economical and high-data-density means of conveying trend

information9. MLDO has the ability to generate Sparklines10 (Fig. 6.4) for solution trajectories.

There are many variants of Sparklines. In our implementation, there are 5 basic elements in the

representation of a time-varying variable (see Fig. 6.4): 1) The starting value; 2) The pictorial

evolution of the trajectory over time; 3) The final value; 4) the minimum value attained in the

horizon of interest; and 5) the maximum value attained. In MLDO, the generated Sparklines

Figure 6.4: Use of Sparklines as compact way for displaying a large no. of trajectories.

9It is worth noting that Sparklines support was added to Microsoft’s ubiquitous Excel spreadsheet software in

2010.
10MLDO uses the PIL (Python Imaging Library) and matplotlib libraries to generate Sparklines.
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are embedded in a standard HTML document that can be served from any web server. When a

mouse pointer is hovered over a Sparkline trajectory, a detailed zoomed floating image of the

trajectory appears as a transient pop-up. In this thesis, we used successfully used Sparklines

as a means to visualize 200-300 trajectories and to identify issues in the results of dynamic

optimization problems.

Automatic Generation of Documentation

Because MLDO code very closely resembles mathematical notation, it can easily be converted

to a professionally typeset mathematical document through the intermediary of a typesetting

language, LATEX. This essentially makes MLDO code self-documenting, in that human-readable

documentation can be automatically generated from model code. This functionality facilitates

the exchange of mathematical models with parties who have no knowledge of MLDO syntax.

This also preserves the model for posterity, because although new modeling environments

(with new syntax) emerge every few years, the mathematics of a model remain unchanged.

All transformations at the mathematical level (such as numerical scaling) are preserved in the

documentation generation.

6.2 Nonlinear Modeling Techniques for Dynamic Optimization

Large-scale nonlinear modeling is a challenging endeavor that is usually aided not only by math-

ematical know-how, but also by engineering intuition. This is particularly true when modeling

for optimization applications, where the problem search space can be very large, and numerical

pitfalls abound owing to nonlinearity, non-uniqueness and non-convexity. Furthermore, the

problem becomes considerably more complicated when dynamics are involved.

In nonlinear optimization modeling, certain formulations are known to have more favorable

numerical properties than others in a given context. Knowledge of such formulations is often

crucial to finding a solution for a nonlinear dynamic model. In this section, we describe several

general formulation techniques (often unrecorded in the literature) used during the model

development phase, as well as rules-of-thumb for nonlinear modeling.

6.2.1 Variable and Equation Scaling

The task of scaling in mathematical modeling is to ensure that the absolute values of its equations,

constraints, and variables (and when possible, their non-zero derivatives as well) are roughly
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on the same order of magnitude. This is done to avoid ill-conditioning and to ensure that

the solver’s numerical tolerances can be reasonably met. This task not only requires intimate

knowledge of the ranges of values that are admissible, but also the average values that are

typically encountered. For nonlinear models especially, scaling is neither a straightforward nor a

well-defined exercise, because it can be difficult to have foreknowledge on the evolution of and

interaction between the variables, equations and constraints during the solution process. Owing

to this, scaling algorithms that attempt to automatically determine good scaling factors for a

nonlinear system are heuristics at best. In many instances, a modeler’s engineering insights may

yield more appropriate scaling factors and/or reformulations that yield better scaled models.

While it is difficult to define what constitutes good scaling (especially for nonlinear nonconvex

problems), rules of thumb are offered in Drud [38] and Wächter [113]. Here are examples of

the types of scaling methods we employed during the modeling process:

1. Equation/Constraint scaling

This is the simplest method of scaling and is often the first recourse. In this work, our

goal is to get the LHS or RHS of every equation and constraint into the range of roughly

[0, 100] by multiplying both sides of the equation by a constant scaling factor. For instance,

consider the following example in which y is in the order of magnitude of 1× 106:

y = x2+ z3 (unscaled; LHS, RHS magnitude in the order of 1× 106)

↓

(1× 10−4)y = 1× 10−4(x2+ z3) (scaled, LHS, RHS magnitude in the order of 1× 102)

2. Variable scaling

The scaling of variables, though sometimes neglected, is as important as equation scaling.

For instance, suppose we had a variable x ∈ [a, b], and the nonlinear equation:

y = f (x)

Suppose x ∈ [a, b] is deemed to be poorly scaled and we wish work in terms of a new

variable x̄ whose domain is [c,d]. The following simple formula can be used:

x =
(b− a)( x̄ − c)

d − c
+ a
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Therefore, the original equation now becomes:

y = f

�
(b− a)( x̄ − c)

d − c
+ a

�

where all instances of x are replaced by the scaling expression. As an example, in our

work we commonly encounter variables that represent fractions, compositions or other

quantities that lie in the domain [0,1]. It is frequently helpful to transform their domains

to [0,100] (and treat them as percentages). Consider this familiar chemical engineering

component balance:

(unscaled)







F1 x1+ F2 x2 = F3 x3

x1, x2, x3 ∈ [0, 1]
→ (scaled)







F1(0.01 x̄1) + F2(0.01 x̄2) = F3(0.01 x̄3)

x̄1, x̄2, x̄3 ∈ [0, 100]

In the scaled case, the x̄ variables vary in the interval [0,100] during optimization. This

type of simple scaling has been found to be beneficial to the conditioning of the problem,

especially when some of the x variables tend toward small values. After the solution is

found, the reported results (which are in terms of x̄) can be transformed back into x

values. In some cases where it is undesirable for the independent variable x to numerically

cross 0, this type of scaling can be used to project its domain into an interval where only

positive or negative values are admissible.

3. Derivative scaling

Derivative scaling in ODEs/DAEs is somewhat more subtle. For example, suppose there

is a derivative term d x/d t whose values lie in the range [0.001,0.008] s−1 (a tiny and

potentially numerically problematic range). A rescale is possible by applying the chain

rule to change the time units of the derivative. One can pre-multiply the derivative (and

only the derivative) with a scaling factor, as follows:

(unscaled)







d x

d t
= f (x)

d x

d t
∈ [0.001, 0.008]

→ (scaled)







3600 d x

d t
= f (x)

d x

d t
∈ [3.6, 28.8]

Note that the right-hand-side of the scaled equation has not changed, merely the magnitude

of the derivative. The units for d x/d t is now h−1 (3600 s = 1 h), and it evolves within

the more reasonable range of [3.6, 28.8].



170 Z. Chong, Ph.D. thesis (McMaster University, Chemical Engineering)

4. Objective function scaling

If the average magnitude of the objective function is known, it is frequently helpful to

perform a manual scaling of the objective. In a constrained optimization problem, the

objective function enters as a term in the Lagrangian expression, whose derivative is used

for obtaining first order optimality conditions. The goal therefore is to select a scaling

factor so that the objective value will have numerically the same approximate magnitude

as the constraints. Table 6.4 compares the Lagrangian of an unscaled objective and a

scaled one. Most modern solvers will attempt to perform some form of automatic objective

Unscaled Scaled

Problem minΦ(x) s.t. h(x) = 0, g(x)≤ 0 minρΦ(x) s.t. h(x) = 0, g(x)≤ 0

Lagrangian L = Φ(x) +
∑

i λihi(x) +
∑

i µ j g j(x) L = ρΦ(x) +
∑

i λihi(x) +
∑

i µ j g j(x)

Table 6.4: Unscaled and scaled objective functions, where ρ is a constant objective scaling factor, and

µ,λ are KKT multipliers.

scaling based on heuristics, but modelers can often pick a more suitable scaling factor ρ if

they have physical or numerical insights into the model.

5. State and parameter scaling (for estimation)

In order to have a well-conditioned covariance matrix for estimation, it is important to

scale the states x and the parameters θ (normally constant, but are being updated during

estimation), such that all the variances are approximately of the same magnitude.

6.2.2 Numerical Formulations

We present here a list of formulations and state the advantages of particular formulations in

terms of their amenability to numerical optimization.

1. Products preferred to quotients

In general, division by a variable are unfavorable because in the course of the solution

iterations, a division by 0 may occur. Table 6.5 shows an example of a product vs. a quotient

formulation and the properties of each. While both formulations are mathematically

equivalent, the product formulation is preferred because it does not admit undefined

values during iteration.

With respect to the quotient formulation, one can arguably write a constraint x ≥ ε to

avoid the singularity. However, the question of how small ε ought to be is not always
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Quotient Product

Equation y = 1

x
x y = 1

Expression f (w) = y − 1

x
f (w) = x y − 1

where w = [x , y]T where w = [x , y]T

Gradient ∇ fw = [
1

x2 , 1]T ∇ fw = [y, x]T

Notes
• Expression and gradient are

undefined at x = 0.

• Expression and gradient do

not succumb to division by 0

errors.

Table 6.5: Example of product formulation (preferred) vs. quotient formulation

straightforward and has to be decided on a case-by-case basis. In our model, many of

the expressions involving compositions and ratios are converted from quotient to product

form in our model. For instance, in the computer codes we rewrite eqn. A.60 (restated

below) in the knotter model as follows:

xw =
Fin2W

Fin2

(quotient) → Fin2 · xw = Fin2W (product) (6.61)

2. Sparse formulations preferred to dense

Sparser formulations are generally preferred to dense ones when: (1) the solution algo-

rithm is designed to accommodate/exploit the sparsity structure, and; (2) proper care is

taken to avoid introducing linearly dependent equations while reformulating the system

for added sparsity. For instance, this expression:

f =
2

x2
+ 5(exp(y) + log(z))2− 3= 0 (6.62)

can be equivalently expressed as:

f1 = r1 x2− 2= 0 (6.63)

f2 = r2− exp(y) = 0 (6.64)

f3 = exp(r3)− z = 0 (6.65)

f4 = r4− (r2+ r3) = 0 (6.66)

f5 = r5− 5r2
4 = 0 (6.67)

f6 = r1+ r5− 3= 0 (6.68)
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where ri , i = 1 . . . 5 are dummy variables. Although the latter system of equations (6.63 –

6.68) is much larger than 6.62, its derivatives are simpler and more mildly nonlinear.

Furthermore, a sparser formulation permits the modeler to scale and add bounds to

individual constituent expressions (or intermediate variables) in order to obtain a better

conditioned system. This is immensely useful when the variables/expressions in an

equation are of vastly different magnitudes. Sparse formulations often lead to sparser

Jacobian and Hessian matrices. Many specialized linear solvers (especially those used

in optimization solvers) are often able to take advantage of the sparse structure of these

matrices11.

The above reformulations and rules-of-thumb were borne out of our numerical experience with

nonlinear models. However, there may exist exceptional situations (for instance, numerical

effects peculiar to a solver’s algorithm) where the reformulations may give poorer than expected

performance. In such situations, the modeler’s intuition and judgment may be called upon to

select an appropriate alternate formulation for the problem at hand.

6.2.3 Modeling techniques specific to chemical engineering models

Material balances: component flow rates preferred to mass fractions

In certain situations, a component flowrate formulation may have advantages over mass fraction

formulations, particularly when the mass fraction is not required to calculate another quantity

(because the former allows us to write linear equations rather than bilinear ones). Consider the

following examples:

(mass fractions)





















F1 = F2+ F3

F1 xA
1 = F2 xA

2 + F3 xA
3

xA
1 + xB

1 = 1

xA
2 + xB

2 = 1

xA
3 + xB

3 = 1

→ (component flows)







FA
1 = FA

2 + FA
3

F B
1 = F B

2 + F B
3

where F
j

i
= component flowrate of stream i = 1,2,3 and component j = {A, B}, Fi = flowrate

of stream i, and x
j

i
= mass fraction of stream i = 1,2,3 and component j = {A, B}. In the

11In IPOPT, a sparse linear solver (in our case, HSL MA57 [40]) is used which exploits the structure of large-scale

sparse symmetric linear systems.
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component flows formulation, the system of equations is linear. In the mass fraction formulation,

there exist bilinear terms, and some of the mass fractions could potentially take very small values,

which can be numerically problematic (though this problem can be partially ameliorated using

the scaling techniques described prior). In the component flowrate formulation, if a particular

mass fraction quantity is required, it can be calculated as follows:

x i =
F i

∑nc

i=1 F i
(6.69)

where x i is the mass fraction of component i, F i is the flowrate of component i, and nc is the

number of components in the stream.

Tank modeling

Instead of modeling tank levels in terms of changes in scale-dependent properties (height,

volume, or mass) as is typically done, tracking the level changes in terms of percentages can

bring about several advantages. With a percentage model, one obtains a well-scaled derivative,

scale invariance in the differential state variable (it varies in the [0,100] range regardless of

tank size). Consider the following example, where the level of a tank is allowed to vary between

30"–270":

(textbook method)







ρAdh

d t
= Fin− Fout

30≤ h≤ 270
(percentage based)









ρAhtotal
1

100

dH

dt
= Fin− Fout

10%≤ H ≤ 90%

htotal = 300

where ρ = density, A= area of tank base, Fin, Fout = inlet and outlet flowrates respectively, h

= tank content levels, H = level as a percentage, htotal = maximum level. If the values of h

(the tank level) span a large range, the advantages of the percentage-based formulation will be

particularly pronounced as because the numerical variation of H is always in the [0,100] range.

Also, the maximum and minimum level constraints can be conveniently specified as percentages

instead of in absolute height/volume/mass numbers.

6.2.4 Understanding solver algorithms

A good understanding of the solvers in one’s toolkit is crucial for the successful solution of

large-scale nonlinear dynamic optimization models. Different solvers implement different

algorithms, and it is frequently necessary to exploit the peculiarities of a particular solver to
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one’s advantage.

In this work, we used several optimization solvers. For the continuous optimization problems,

IPOPT [114] and CONOPT [6] were employed. For the mixed-integer (discrete) optimization

problems, CPLEX [59] and Bonmin [24] were used. IPOPT implements a primal-dual interior-

point method for nonlinear optimization. CPLEX is a well-established solver for linear and

convex programs (both continuous and discrete), while Bonmin implements several algorithms

for mixed-integer nonlinear programs. Bonmin was used in branch-and-bound mode, with

IPOPT as a subsolver for the relaxed nonlinear programs.

In this section, we will present some general insights pertaining to the use of two major classes

of algorithms for solving nonlinear programs: active-set (e.g. GRG, as implemented in CONOPT)

and interior point (e.g. IPM, as implemented in IPOPT).

1. Improving performance by adding bounds and simple constraints

Active-set methods rely on enumerating inequality constraints in order to identify the

active-set, and the complexity of a problem grows exponentially with the number of

inequality constraints (see Appendix C.3). When modeling for an active-set solver, a

modeler will want to be parsimonious with the inequality constraints.

Interior point methods however have polynomial complexity and in our experience, they

appear to benefit from having more inequality constraints than fewer. The inequality

constraints are translated into bounds, which are subsequently incorporated into the

barrier term. This aids the interior point optimizer in narrowing down the feasible region

and converging to the solution.

2. Feasibility of path

Feasible-path algorithms follow a path where all the intermediate iterates are feasible

points to the original problem, once a feasible point is found. In this work, we chose to use

CONOPT for MPC studies owing to the fact that it is a feasible-path solver. At every MPC

iteration, a multi-tiered optimization problem is solved. For multi-tiered optimization, the

advantages of a feasible path solver are particularly pronounced because the algorithm

exploits the fact that the solution of every optimization tier is a feasible initial guess for the

next tier. Once the solution of Tier 1 is found, CONOPT is able to converge very quickly to

the solutions in subsequent tiers.

IPOPT on the other hand implements an interior-point method which always ensures fea-

sibility with respect to inequality constraints, but does not preserve feasibility with respect
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to equality constraints during iteration. This means that when given a feasible/optimal

initial guess, it can potentially follow a path which leads it to a region where there are

no feasible solutions satisfying the equality constraints. We can discourage excursions

from feasibility by setting an upper bound for the allowable constraint violation during

iterations (though the theta_max_fact option).

Constraint Violation Penalty Trick. In both the CONOPT and IPOPT solvers, an effective

means for deterring excursions from a feasible initial guess is to add a constraint violation

penalty in the objective (Chachuat [29]). An easy reformulation can carried out as

follows:

(Original)

minx f (x)

s.t. h(x) = 0

g(x)≤ 0

→

(Reformulated)

minx ,r f (x) + ||r||22
s.t. h(x) = r

r = 0

g(x)≤ 0

where x ∈ Rnx , f : Rnx 7→ R, h : Rnx 7→ Rnh, and g : Rnx 7→ Rng . The vector r ∈ Rnh

contains the residuals of the equality constraints h(x). We note that at the solution point,

the residual vector r = 0, therefore the solution of the original problem is not altered by

this reformulation. The constraint violation penalty (||r||22) merely provides the optimizer

a disincentive from taking large steps that increase the amount of constraint violation in

the equality constraints.

3. Warm-starting in MPC applications

In MPC-based applications, the solution of one iterate usually provides a good initial guess

to the next. It is desirable for the optimizer to take advantage of this as much as possible

[25, 125]. Interior-point methods often have difficulty exploiting a good initial guess

that is close to the solution [49, 46]. In this respect, active-set methods such as GRG in

CONOPT usually do much better when given an initial guess close to the solution, provided

that the active-set of the guess and the actual solution do not differ substantially [123].

That said, IPOPT can be made more amenable to warm starts. By default, IPOPT perturbs

the initial guess so that it is sufficiently in the interior defined by the bounds. If a

good initial guess is given, the magnitude of this perturbation can be reduced (through

bound_frac and bound_push options). As well, the initial size of the barrier parameter µ

can be made more conservative (by reducing mu_init).
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4. Non-unique optimization problems

The problems we deal with in this work tend to have non-unique solutions. To tackle

this, we use a hierarchical optimization approach (by way of our multi-tiered optimization

procedures) to regularize the problem toward a unique solution. Nevertheless, the problem

in the first-tier tends not satisfy Sufficient Second-order Optimality Conditions (SSOCs).

One of the indicators of this is that the reduced Hessian of the problem at the solution

point is non-positive definite (in the case of IPOPT—which we use to solve to open-loop

problems and to arrive at a good initial guess for the closed-loop ones—this corresponds to

projection of the augmented Hessian of the Lagrangian Wk +Rk to the constraint Jacobian

Jk not having the property of positive definiteness; see eqn. C.33 in Appendix C.3).

Given this scenario, IPOPT employs a regularization approach in which the matrix in the

augmented KKT system is perturbed by a constant value δx > 0 along its diagonal (using

a trial-and-error inertia correction heuristic) until the desired matrix inertia12 is achieved

[114]. This permits IPOPT to iterate toward a point that satisfies KKT conditions.

The implication of this is that for a non-unique problem (e.g. Tier 1 of a multi-tiered

optimization problem), IPOPT may still converge to a solution despite the lack of SSOC

fulfillment. However, it may terminate at a critical point that may not be an optimum, but

still satisfies the KKT (first-order optimality) conditions up to some numerical tolerance13.

We would argue that given the state-of-the-art, this is an acceptable situation in practice.

Further work is required to develop methods for handling non-unique optimization prob-

lems. (Note: one may argue for a regularization penalty term to be added to the objective.

However in our experience, for this to work, it is sometimes necessary to make the penalty

weight sufficiently large to induce a unique optimum. Unfortunately a very large penalty

can easily overwhelm the original objective function, which distorts the meaning of the

original optimization problem.)

Non-unique problems can cause IPOPT to struggle to identify the solution. It can slow

convergence considerably because IPOPT has to perform frequent regularization. If we

know a priori that a problem is non-unique and that the solution obtained will be a KKT

point, we can reduce the number of iterations required to reach the optimality tolerances

by scaling down the objective function with a small scaling factor.

12The inertia of a symmetric matrix is defined as I = (ip, in, iz) where each element of the tuple denotes the number

of postive, negative and zero eigenvalues respectively. The matrix is positive definite when ip = in.
13We can easily inspect IPOPT’s output to verify that this is the case: if the log regularization term lg(rg) (that is,

log10 δx ; see [114]) is not null at the solution point, then the solution may not be true minimizer.
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CONOPT however converges easily even when Tier 1 is non-unique. This can perhaps be

attributed to the fact that the GRG algorithm works in reduced (though not necessarily

orthogonal) space, where the effects of non-uniqueness are moderated.

5. Heuristic for recovering from solver failures

When performing successive nonconvex dynamic optimization in shrinking horizon MPC

mode, the numerical properties (Jacobian conditioning, matrix structures, problem size,

problem structure after presolve etc.) of the problem instance at each iteration changes.

The numerical reality is that non-feasible path optimizers can occasionally terminate at

an infeasible point. We found the following heuristic procedure (for randomly perturbing

the current initial guess) to be effective when convergence difficulties are encountered

[29, 24]. Suppose we wished to perturb the current initial guess of the following NLP

upon convergence failure:

x = arg min
x
{ f (x)|h(x) = 0, g(x)≤ 0, x ∈ Rnx } (6.70)

The perturbation procedure is as follows:

(a) Let initial guess be xinit (in MPC, this is typically the solution from the previous

iteration).

(b) Solve optimization problem in eqn. 6.70.

(c) if problem fails to converge,

i. Let xnew := xinit+ h · N(0,1) · xinit

ii. for i = 1 . . . nx , if x i
new > x i

ub
, then x i

new := x i
ub
− ε

iii. for i = 1 . . . nx , if x i
new < x i

lb
then x i

new := x i
lb
+ ε

iv. Let xinit := xnew. Go to Step 2.

else return solution.

where i = vector element, xnew ∈ R
nx = new initial guess; xinit ∈ R

nx = initial guess

in current iteration; h = perturbation magnitude (e.g. 1× 10−5); N(0,1) = normally

distributed random number with mean 0 and variance 1; xub, xlb ∈ R
nx = upper and

lower bounds of x – these can typically be obtained automatically through the modeling

language’s presolve phase; ε = a backoff factor, typically set to approximately equal to the
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constraint feasibility tolerance on the optimizer (e.g. 1× 10−6).

6.3 Conclusion

In this chapter, we provided an overview of the broad concepts behind the design of a Modeling

Language for Dynamic Optimization, MLDO. The multi-part code generation process, which is

central to MLDO’s operation, was outlined with examples illustrating the principles of parsing,

transforming and assembling code from a canonical description of a mathematical problem.

To provide a flavor of the type of transformations that can be carried out with a code gener-

ation infrastructure, we listed several notable mathematical transformations that have been

implemented in MLDO. Finally, some auxiliary helper features of MLDO were described. We

also discussed numerical modeling formulations and solution techniques used in this work, and

numerical experiences with various formulations are documented.



Chapter 7

Conclusion

The aim of this work is to develop a suite of mathematical formulations for computing and

implementing control policies on plants under partial shutdown. To reach this goal, we employed

a number of techniques such as dynamic optimization, model predictive control, state/parameter

estimation and model code generation.

The chief contributions of this work are as follows:

1. Dynamic optimization of partial shutdowns

A configurable multi-tiered economics-driven dynamic optimization formulation was

presented. The purpose of this formulation is to compute the requisite optimal control

inputs to drive the process back to nominal operation after the occurrence of an unplanned

partial shutdown. This procedure involves the coordination of production flowrates,

recycles and inventories. The problem was cast as DAE optimization problem and solved

using the simultaneous (full-discretization) method. The multi-tiered approachs permits

multiple competing objectives to be prioritized with specified trade-offs.

2. A model-based control framework for partial shutdowns

In order to implement partial shutdown policies in presence of uncertainty (e.g. plant-

model mismatch, disturbances, noise) in the plant, a feedback control framework was

adopted. The proposed controller is a transient one and has a limited mandate of manag-

ing the plant during and after partial shutdowns; once a plant is restored from a partial

shutdown to its nominal operating point, plant control is handed back to the nominal con-

trol system. In the design of this controller, we have adopted the Model Predictive Control

(MPC) paradigm, where an open-loop dynamic optimization problem is solved at every

179



180 Z. Chong, Ph.D. thesis (McMaster University, Chemical Engineering)

sampling instance. This controller also permits parametric feedback, that is, the updating

of model parameters such as “estimated downtime”, which readjusts the shutdown period

in the optimization problem, and allows the trajectories to be re-optimized in the next

time step.

3. Discrete formulations for induced shutdowns

We present efficient discrete formulations for modeling discontinuities associated with

partial shutdowns. These formulations are parsimonious with respect to the number of

binary variables required. Formulations are created for modeling shutdown thresholds,

capturing the fixed and variable costs of a shutdown, and to enforce minimum shutdown

durations. These are used in concert to handle induced shutdowns, which is a type

of shutdown resulting from another shutdown. The final problem takes the form of a

Mixed-Integer Dynamic Optimization (MIDO) problem.

4. Discrete formulations to determine the minimum restoration time

A multi-tiered MIP-based minimum restoration time formulation attempts to compute

the least possible it time it takes for a system under partial shutdown to be restored

to its nominal state, while obeying all constraints. In this formulation, the restoration

duration is optimized first. If there are degrees-of-freedom remaining, the economics and

input movements of the control trajectories are optimized. Simple MIP cuts are given for

improving the solution efficiency.

5. State and Parameter Estimation using a Constrained Unscented Kalman Filter

Novel configurations of Constrained Unscented Kalman Filter algorithms were used for

state and parameter estimation of a large-scale differential algebraic system. Two main

strategies were employed: simple parameter estimation and joint estimation. An iterative

refinement procedure was proposed in the simple parameter estimation strategy to improve

estimator performance.

The state and parameter estimation algorithms were applied in the context of performing

optimal control on a plant undergoing partial shutdowns. A reduced estimation problem

was solved during the shutdown period to account for the missing states, parameters and

measurements corresponding to the offline units. Mismatched parameters and fictitious

disturbances are recursively estimated and updated in the controller model’s in order to

correct its predictions.

The control algorithm incorporates a multi-tiered dynamic optimization problem. A

dynamic feasibility tier ensures that in the event of large disruption in the process (such as
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a shutdown), the terminal constraints and parameter estimates arriving from a one-step

estimator are feasible throughout the model prediction horizon. This represents a general

technique for handling terminal constraints and one-step ahead estimates in MPC control

optimization problems.

6. A Modeling Language for Dynamic Optimization, MLDO

An in-house modeling language was created to aid the modeling, solution, and analysis

of dynamic optimization problems. The MLDO system takes a canonical mathematical

description of a dynamic optimization problem and generates code in other program-

ming/modeling languages. As well, it generates the requisite constraints and equations

for orthogonal collocation on finite elements and for the implicit Euler method, and

supports other manners of mathematical transformations. This permits the user to do

rapid prototyping and experiment with different formulations without writing an excessive

amount of boilerplate code.

7. Modeling of Kraft fiber line

The algorithms and formulations in this thesis were tested on a model of the Kraft pulp

and paper process, in particular the fiber line subset of the full plant. The model captures

details related to buffer levels and compositions, which are the quantities of interest for

inventory optimization.

7.1 Recommendations for Further Work

Several broad candidate areas for further exploration were identified. They are:

1. Energy optimization

Our primary concern in this work was optimal inventory and production management,

therefore our models are driven by material balances. The framework we have proposed,

however, is general and may be used to include energy considerations, which may influence

the economics of a partial shutdown restoration considerably.

2. Inclusion of startup and shutdown dynamics

We have considered the macro-view of a partial shutdown in which the actual startup

and shutdown procedure of a unit is abstracted. An extension to this work would be

one that takes the micro-view and investigates the explicit procedure for unit startups

and shutdowns. The procedure usually takes the form of a sequence of manual actions
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prescribed by the operator based on experience or some standard written procedure. If

the procedure is a simple one with time-based switching and no logical paths, it can be

modeled using a multi-stage DAE model. However, if the procedure relies on state-based

switching with proposition IF-THEN-ELSE logic dictating the mode transitions, then it

can be modeled using any number of standard hybrid dynamic model paradigms. Such a

model can then be cast into an optimization framework to obtain optimal control inputs

for performing the startup and shutdown.

In principle, the startup and shutdown problem can be decoupled from the macro problem

that we are considering in this thesis. The main piece of information required in the

macro-view model is the shutdown estimate, which the micro-view model can provide.

The micro-view model on the other hand only requires the inlet flowrate and composition

information prior to shutdown. In some cases, when the startup and shutdown procedure

interacts significantly with the inventories, then iterating between the macro and micro

model may be called for.

3. Dynamic optimization using a multiple shooting method

One of the biggest challenges in the use of a full-discretization (simultaneous) method

for dynamic optimization is finding a suitable initial guess for the resulting nonlinear pro-

gram. Partial shutdown problems in particular contain trajectories that change drastically,

therefore it is difficult to make any prognostications about the shape of the state profile at

the optimal solution point. We believe that the multiple shooting method may be a good

candidate for addressing this issue. It inherits many of the advantageous properties of

the simultaneous and sequential methods, and its incorporation of a DAE solver for each

discrete element may reduce the need for a good initial guess for the entire trajectory

profile. Its computational demands are potentially higher due to the need to invoke a

DAE solver at every optimization iteration, but this may be offset by the fact that it is an

inherently parallelizable algorithm and stands to benefit from multiprocessor machines

(as opposed to the simultaneous method which can only use a single processor, unless the

solver is modified to use parallelized linear algebra routines customized for the problem

structure at hand).

4. Regularization of non-unique optimization problems

In this work, we presented a multi-tiered approach for systematically prioritizing objectives

in a non-unique optimization problem. This is done by performing multiple optimization

operations that successively “choose” specific solutions within the space of non-unique

optimal solutions based on some criteria. However, the first tier problem, being non-
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unique, does not fulfill Sufficient Second-order Optimality Conditions (SSOCs). This can

cause the solver to struggle in identifying a solution. We believe that reduced methods

that work in a well-conditioned subspace (perhaps based on QR factorization or Singular

Value Decomposition) may yield elegant solution methods for dealing with this situation.
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Appendix A

Process Description - Kraft Mill Fiber

Line

A.1 Process Overview

The Kraft pulping process is composed of various production departments that are separated

by buffer capacities. The major departments considered in this work are digestion, knotting,

washing, screening and delignification.

The Kraft process begins with digestion. The digester vessel is filled with wood chips and white

liquor (a concentrated solution of Na2S and NaOH) and heated according to a predetermined

schedule in a process known as “cooking”. The wood chips eventually disintegrate into fibers,

forming pulp. Lignin, the organic component that holds cellulose fibers in wood together,

reacts with the white liquor and is solubilized. The contents in the vessel are maintained at

approximately 170◦C for 2 hours, and then discharged into an adjacent tank. During this

reaction, the white liquor turns into black liquor. The black liquor produced is channeled to a

chemical recovery system which regenerates a part of it back into white liquor [97] and uses

the rest as fuel for producing steam. The off-vapors are sent to a heat exchanger where it used

to heat water for pulp washing. The cooked pulp is then subjected to various physical and

chemical separation processes designed to remove unprocessable wood, residual black liquor

and lignin.

The knotting department consists of knotter machines that function to remove undigested chips
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and ill-sized wood pieces known as “knots” which hinder downstream processing. Rejected chips

are recycled to the digester for further cooking.

Following that, the pulp stream is directed to the washing department and undergoes a process

known as brownstock washing (or simply, washing), where the residual black liquor is separated

from the pulp in a carefully controlled process. This involves feeding the pulp into a series of

counter-current vacuum drum washers, in which black liquor is displaced.

The washed pulp is then conveyed to the screening department for removal of “shives”, that is,

wood pieces whose sizes lie between that of processable pulp and knots. Typically, vibrating

pressure screens are employed for this task.

At this stage, the pulp stream would have been adequately prepared for delignification–the

process by which the remaining lignin in the pulp is removed. The pulp stream is first mixed with

chemical streams containing caustic soda and magnesium sulfate. This mixture is then fed in a

counter-current direction with respect to an oxygen stream running within an O2-delignification

reactor. A reaction occurs in which the lignin separates from the cellulose fibers in the pulp

stream. The delignified pulp stream is then ready for bleaching, where the pulp is whitened in a

chlorination reactor.

In the following sections, we present the reader with the mathematical details of the process

described above.

A.2 Mathematical Model Overview

The mathematical model in this thesis is based heavily on prior work done by Balthazaar [11]

and Dubé [39], with some extensions based on various literature sources. We have chosen to

model only a subset of the entire Kraft Paper mill (the fiber line) in order to focus our efforts on

analyzing the issues surrounding the optimization and control of the process under shutdown

conditions. Most units are modeled with quasi-steady-state equations. The only dynamics

assumed in the system are in the tanks.

The level of modeling detail was chosen to ensure that the macro-effects germane to our

application were adequately captured (inventories and compositions). The reader is urged to

consult Castro and Doyle [28] for a detailed PDE-based model of the Kraft process.
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A.2.1 Conventions and Nomenclature

Many of the flowrate and mass fraction variable names used in this model are codified1. They

are constructed by concatenating three pieces of information:

F[w] [i] [ j], x[i] [ j]

where the first letter F denotes a flowrate (in tons/hr), and x denotes a mass fraction. Fur-

thermore, w = type of variable (in = inlet stream flowrate, out = outlet stream flowrate), i =

stream number (i = 1, 2, . . .), j = component in stream (P = Pulp, DS = Dissolved solids, W =

water). In some units, a ST subscript refers to steam (water in vapor form) — this is done to

differentiate the stream from streams containing liquid water. If the stream number is preceded

by an S, it refers to an internal stream that does not interact directly with adjacent models. For

clarity, refer to the following examples:

Fout3DS = component flowrate of outlet stream 3, dissolved solids component

Fin4ST = steam flowrate in stream 4

FS1P = component flowrate of internal stream 1, pulp component

x1W =mass fraction of stream 1, water component

All flowrates are specified in tons/hour and compositions are given in mass fractions. Only

three types of component streams are considered in the model: pulp (P), dissolved solids (DS)

and water (W) (with steam (ST) being water in vapor form). The pulp component consists of

celullose, bound lignin, knots and shives. The dissolved solids component contains organic and

inorganic subcomponents.

The figures (Figs. A.1–A.5) show individual units with major streams labeled. The labeled

variable names in the figures are assumed to belong to the individual model’s namespace, e.g. the

digester’s Fin1 is distinct from the blowtank’s Fin1. A round black circle (•) denotes a connection

point between units.

Each variable name is tagged with a superscript indicating the unit it is associated with. The

mapping between the tag names and their corresponding unit names can be found in Table

A.1 The tags are omitted from the variable names when describing the equations for individual

units (in order to avoid clutter), but are used for disambiguation when multiple units are being

1The brownstock washing models are the exception. The nomenclature there follows an intuitive convention that

is congruent with its literature source.
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Tag Unit Name Tag Unit Name

DG digester BT blowtank

HQ Hi-Q knotter WC1 brownstock washer 1

WC2 brownstock washer 2 WC3 brownstock washer 3

ST storage tank SR screeners

OF O2 feedpress MX mixer

OR O2 delignification reactor PW Post-O2 washer

Table A.1: Variable superscript tag names and corresponding unit names.

described.

F DG
in1

F DG
in2

F DG
out2

F DG
out1ST

F DG
out3

HBT

xBT
S2P

, xBT
S2DS

F BT
in1

F BT
S2

F BT
S1

F BT
in2

F BT
stm

F
HQ

out1

F
HQ

in2

F
HQ

out2

Digester Blowtank Knotter

FW C1
3

from washer 1

To FW C1
0

washer 1

F
HQ

in1

digester

blowtank

Hi-Q knotter

F DG
S1

Figure A.1: Digester and knotter departments, with separating blowtank.

A.3 Digester (DG)

The continuous Kraft digester is the single most important unit in the Kraft process. Its primary

function is to convert solid wood chips (obtained by debarking and chipping softwood logs) into

a pulp stream. It accomplishes this by cooking the chips and reacting them with white liquor

(a concentrated solution of Na2S and NaOH). Cooking involves heating the mix from 70◦C to

170◦C and maintaining it at the latter temperature. During cooking, the organic component,

lignin (the glue that bonds cellulose fibers together) is partially removed. The major streams in

this model are shown in Fig. A.1.

Parameters

aST = 0.04 (split ratio), rlw = 3.6 (liquor to wood flow ratio), x1DS = 0.04 (mass fraction),

x1P = 0.43 (mass fraction), xw,blow = 0.62 (water fraction), βas1 = 0 (bias parameter),
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βas2 = 0 (bias parameter), Fmax = 40 (maximum inlet pulp flowrate)

Variables (Algebraic States)

FS1DS (flowrate), FS1P (flowrate), FS1W (flowrate), Fin1DS (flowrate), Fin1P (flowrate), Fin1W

(flowrate), Fin2DS (flowrate), Fin2W (flowrate), Fin2 (flowrate), Fout1ST (flowrate), Fout2DS

(flowrate), Fout2W (flowrate), Fout3DS (flowrate), Fout3P (flowrate), Fout3W (flowrate), Fout3

(flowrate), αshrink,1 (shrinkage factor 1), αshrink,2 (shrinkage factor 2), ζ (production fac-

tor)

Variables (Control)

F1 (pulp inlet flowrate)

Equations

The top section of our digester model is based on the model developed by Wisnewski and Doyle

[119]. As lignin is removed from the cellulose fibers in the cooking process, there is a loss

in pulp mass that needs to be accounted for. This loss is captured using a defined quantity

known as “pulp shrinkage factor”. The pulp shrinkage factor is related to another quantity ζ,

the production factor. The cubic relationship between these two variables was developed in

Balthazaar’s [11] work. In our plant, the shrinkage factors were almost exactly linear in the

range of feasible operation, therefore we present the linearized versions of the equations here.

The pulp shrinkage regression equations are given below:

ζ =
F1

Fmax

(A.1)

αshrink,1 =
−3.94 · ζ+ 14.59+ βas1

100
(A.2)

αshrink,2 =
−3.21 · ζ+ 12.15+ βas2

100
(A.3)

where αshrink,1 represents the pulp shrinkage occurring in the top portion of the digester, while

αshrink,2 is a similar quantity for the bottom part of the digester.

The mass fraction composition of softwood are x1P = 0.43, x1DS = 0.04 and x1W = 0.53 (Grace

[50]). The inlet component streams are defined as follows:

Fin1P = F1 · x1P (A.4)

Fin1W = F1 · x1W (A.5)

Fin1DS = F1 · x1DS (A.6)

x1P + x1W + x1DS = 1 (A.7)
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A simple mass balance (with shrinkages) governs the material flow in the top portion of the

digester.

FS1P = (1−αshrink,1) · Fin1P (A.8)

FS1DS = Fin1DS + Fin2DS +αshrink,1 · Fin1P (A.9)

FS1W = Fin1W + Fin2W − Fout1ST (A.10)

A pressure relief valve at the top of the digester releases steam during the cooking process. The

amount of steam vented from the digester, Fout1ST is related to the inlet water flow (Dubé [39])

by a proportionality factor, aST = 0.04.

Fout1ST = aST · (Fin1W + Fin2W ) (A.11)

Because the complexities within a digester are not fully understood, it is a common practice

in industry to maintain a constant liquor-to-wood flowrate ratio [50]. The rlw (liquor-to-wood

ratio) parameter, which regulates the proportion of liquor used relative to the amount of wood

chips fed, is assumed to be 3.6 by mass (Dubé [39], Grace [50]).

Fin2 = rlw · Fin1P (A.12)

The mass fraction of dissolved solids in the liquor stream entering the digester was obtained by

a stoichiometric unit conversion on the concentration of its constituents, 1.0 M NaOH and 0.8M

Na2S (Grace [50]). The dissolved solids mass fraction works out to 0.212, which means that the

water fraction in the stream is (1 - 0.212) = 0.788.

Fin2W = 0.788 · Fin2 (A.13)

Fin2 = Fin2W + Fin2DS (A.14)

The material transfer in the bottom part of the digester is modeled by mass balances (accounting

for shrinkage). A splitter at the bottom is assumed.

Fout3W = xw,blow · FS1W (A.15)

Fout2DS · Fout3W = Fout2W · Fout3DS (A.16)

Fout3 = Fout3P + Fout3W + Fout3DS (A.17)
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The xw,blow (blowline water fraction) quantity has a value of 0.62, based on industrial data

(Balthazaar, [11]). The shrinkage occurring at the bottom of the digester is given by:

Fout3P = (1−αshrink,2) · FS1P (A.18)

Fout3DS = FS1DS +αshrink,2 · FS1P − Fout2DS (A.19)

Fout3W + Fout2W = FS1W (A.20)

Similar to Balthazaar [11] and Dubé [39], we assume quasi-steady dynamics for this unit in

order to simplify the modeling and focus on the macro effects. In the event of a shutdown, we

assume the outlet stream is instantaneously redirected to a dump tank, and that the shutdown

time fully encompasses the time it takes to drain the digester and start it back up. At the end of

a shutdown, we assume the digester is in a restoration-ready state.

Typically, there exist dynamics in the compositions. In his work, Dubé [39] reported an average

digester residence time of τ = 1.56 hours. However, given the data and the configuration of this

particular model, we have observed that large changes in the input (chip feed flowrate) within

its feasible range of operation only alter the compositions very slightly. Therefore we are able to

neglect the effects of transport delay in composition with no significant loss of accuracy2.

Owing to the pressure in the digester, its output is periodically expelled (or “blown”) into an

adjacent tank called a “blowtank”—described in the next section.

Inequality Constraints

0≤ ζ ≤ 1 (A.21)

0≤ F1 ≤ Fmax (A.22)

All other variables are constrained to be non-negative.

2This fact can be demonstrated in a simulation model by adding dynamic lags (see Section A.10) that correspond

to the residence time given above. In our experiments, the compositions vary within a sufficiently narrow range that

their dynamic effects may be safely neglected. This is partly attributable to the fact that the main chip feed stream is

assumed to have a constant composition, and the incoming liquor flow is regulated according to a strict ratio to the

chip feed flowrate.
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A.4 Blowtank (BT)

In this section, we will lay down the equations that define the operation of a buffer tank. This

generic buffer tank is modeled after an integrated blowtank unit. The top of the tank, where

steam is vented (in a blowtank-type configuration), is assumed to be steady-state. The bottom

portion of the tank is agitated, therefore a perfect mixing assumption is appropriate here. The

major streams in this model are shown in Fig. A.1.

Parameters

FS2,max = 600 (maximum flowrate of FS2 stream), H0 = 60 (percentage, initial height of

tank contents), ρ = 0.900 ton/m3 (average density of contents), Vtank = 2050 m3 (total

tank capacity, volumetric), Mtank = 0.900 · 2050 (total tank capacity, in tons), xstm = 0.02

(steam fraction).

Variables (Differential States)

H (tank level, %), xS2DS (mass fraction), xS2P (mass fraction)

Variables (Algebraic States)

FS1DS (flowrate), FS1P (flowrate), FS1W (flowrate), FS1 (flowrate), FS2DS (flowrate), FS2P

(flowrate), FS2W (flowrate), Fin1DS (flowrate), Fin1P (flowrate), Fin1W (flowrate), Fin1

(flowrate), Fin2DS (flowrate), Fin2W (flowrate), Fin2 (flowrate), Fstm (flowrate), x1DS (mass

fraction), x1P (mass fraction), x1W (mass fraction), x2DS (mass fraction), x2W (mass

fraction), xS1DS (mass fraction), xS1P (mass fraction), xS1W (mass fraction), xS2W (mass

fraction)

Variables (Control)

FS2

Equations

The following equations characterize inlet streams 1 and 2: (Note: in the computer code, all

quotients are written as products to avoid division by 0 errors)

Fin1 = Fin1P + Fin1W + Fin1DS (A.23)

x1P =
Fin1P

Fin1

(A.24)

x1DS =
Fin1DS

Fin1

(A.25)
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x1P + x1DS + x1W = 1 (A.26)

Fin2 = Fin2W + Fin2DS (A.27)

x2DS =
Fin2DS

Fin2

(A.28)

x2DS + x2W = 1 (A.29)

The compositions of the internal streams S1 and S2 are characterized by the below equa-

tions:

xS1P =
FS1P

FS1

(A.30)

xS1DS =
FS1DS

FS1

(A.31)

xS1W =
FS1W

FS1

(A.32)

xS1P + xS1DS + xS1W = 1 (A.33)

xS2P =
FS2P

FS2

(A.34)

xS2W =
FS2W

FS2

(A.35)

xS2DS =
FS2DS

FS2

(A.36)

xS2P + xS2W + xS2DS = 1 (A.37)

The amount of steam vented from the tank (for tank pressure relief) is proportional to the mass

fraction of water in the stream entering the tank, and the proportionality factor xstm is 0.02

(Dubé [39]). The material balance equations for the top part of the tank is as follows:

Fin1+ Fin2 = FS1+ Fstm (A.38)

Fin1DS + Fin2DS = FS1DS (A.39)

Fin1W + Fin2W = FS1W + Fstm (A.40)

Fstm = xstm · Fin1W (A.41)

The dynamic portion of the tank is governed by the equations below. This part of the tank

represents the dynamic behavior of the buffer capacities.

Mtank · 0.01 ·
dH

dt
= FS1− FS2, H(0) = H0 (A.42)
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Mtank · 0.01 ·H ·
d xS2P

d t
= FS1P − FS1 · xS2P , xS2P(0) = xS1P(0) (A.43)

Mtank · 0.01 ·H ·
d xS2DS

d t
= FS1DS − FS1 · xS2DS , xS2DS(0) = xS1DS(0) (A.44)

The assumption of constant density is implicit in the above equations. Strictly speaking, the

overall density of materials in the tank depends on instantaneous dynamic compositions, but

the simplifying assumption of the materials having constant density is reasonable because the

compositions changes in the tank occur fairly slowly.

It should be noted that in the pulp and paper industry, concentration quantities like xS2P (mass

fraction of pulp in the tank) and xS2DS (mass fraction of dissolved solids) are directly measurable.

The former can be measured on-line using a range of methods [104], including:

• pulp slurry conductivity

• pressure drop cause by flow through a fixed length of pipe

• intensity of transmitted microwaves/ultrasonic waves/reflected light

• load on a motor operating an agitator mixer

• head needed to maintain consistent flow through viscosity tube

The latter is typically measured using conductivity measurements or measurements taken with

auto-titrators [85]. With xS2P and xS2DS known, xS2W is trivially obtained.

Inequality Constraints

0≤ FS2 ≤ FS2,max (A.45)

10≤ H ≤ 90 (A.46)

0≤ x2DS ≤ 1 (A.47)

0≤ x2W ≤ 1 (A.48)

0≤ x1DS ≤ 1 (A.49)

0≤ x1P ≤ 1 (A.50)

0≤ x1W ≤ 1 (A.51)



Z. Chong, Ph.D. thesis (McMaster University, Chemical Engineering) 205

A.5 Hi-Q knotter (HQ)

Knotters are machines designed to screen and remove large undigested chips and wood knots.

In our model, we consider two knotters operating in series, a Hi-Q knotter (manufactured

by companies such as Ingersoll-Rand and GL&V) and a Jonsson knotter (manufactured by

companies like Bird and Lamort). The pulp entering the Hi-Q knotter is mixed with wash liquor

and the coarse, undigested chips are screened from the pulp stream. Accepted pulp is channeled

to the brownstock washing department, while rejects are typically sent to the second (Jonsson)

knotter for further screening (which we do not consider here). The major streams in this model

are shown in Fig. A.1. Because the Jonsson knotter is functionally the same as the Hi-Q knotter,

and it does not participate in this section of the plant, we will confine our description to the

Hi-Q knotter equations.

Parameters

αdil1 = 0.05 (dilution fraction), αknot re j1 = 0.10 (reject fraction), xw = 0.95 (water

fraction)

Variables (Algebraic States)

Fin1DS (flowrate), Fin1P (flowrate), Fin1W (flowrate), Fin1 (flowrate), Fin2DS (flowrate),

Fin2W (flowrate), Fin2 (flowrate), Fout1DS (flowrate), Fout1P (flowrate), Fout1W (flowrate),

Fout2DS (flowrate), Fout2P (flowrate), Fout2W (flowrate), Fout1 (flowrate), Fout2 (flowrate),

xout1P (mass fraction), xout1DS (mass fraction), xout1W (mass fraction)

Equations

The Hi-Q knotter streams are defined as follows:

Fin1 = Fin1P + Fin1W + Fin1DS (A.52)

Fin2 = Fin2W + Fin2DS (A.53)

Fout2 = Fout2P + Fout2W + Fout2DS (A.54)

Fout1 = Fout1P + Fout1W + Fout1DS (A.55)

The Hi-Q knotter is governed by the following overall and component mass balances:

Fin1P = Fout1P + Fout2P (A.56)

Fin1W + Fin2W = Fout1W + Fout2W (A.57)

Fin1DS + Fin2DS = Fout1DS + Fout2DS (A.58)
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The ratio of the Fin2 stream to the Fin1 stream is measured by the dilution factor, αdil1 (Dubé,

[39]). Stream Fin2 is assumed to be made up of 95% water. The pulp loss is represented using a

knot rejection factor, αknot re j1 (Grace, [50]).

Fin2 = αdil1 · Fin1 (A.59)

xw =
Fin2W

Fin2

(A.60)

Fout2P = αknot re j1 · Fin1P (A.61)

The dilution stream Fin2 is used to control the consistency of the rejects stream Fout2 (Dubé

[39]). The pulp/water and water/dissolved solids ratios are assumed to be equal in streams

Fout1 and Fout2, and this is enforced using two bilinear equations.

Fout1W · Fout2P = Fout1P · Fout2W (A.62)

Fout2W · Fout1DS = Fout2DS · Fout1W (A.63)

The outlet component flowrates are calculated as follows:

Fout1 · xout1P = Fout1P (A.64)

Fout1 · xout1DS = Fout1DS (A.65)

xout1P + xout1W + xout1DS = 1 (A.66)

Inequality Constraints

0≤ Fin1 (A.67)

0≤ Fout1DS ≤ 100 (A.68)

0≤ Fout1W ≤ 600 (A.69)

All other variables are constrained to be non-negative.

A.6 Brownstock Washing Circuits (WC1, WC2, WC3)

Washing units (also known as brownstock washers) serve to remove residual lignin in the pulp

stream. The washing department is composed of three major process units: a header box, a

vacuum drum washer and a seal tank. The header box mixes the contents of the incoming pulp
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(F0) and recycled liquor stream (FR) and channels it to the vacuum drum washer for washing.

The washer sprays the slurry stream (FV ) with wash liquor (F2) and rejects are pushed to the seal

tank. The contents of the seal tank are recycled to the header box and in some cases, conveyed

to the agitated bottoms section of the blowtank as well. Washing circuits/stages are usually

set up in a counter-current configuration. In a normal pulp mill, there may exist one or more

washing circuits (in our model, there are three circuits). For simplicity, we will confine ourselves

to a description of a single circuit of the washing department. The brownstock washing circuit

equations in this thesis are modified from the work by Wang [116]. A schematic of a single

washing circuit is shown in Fig. A.3.

Parameters for Washer i

ρ = 0.998 (average density of tank contents), and a1 = 0.133333, a2 = -7, a3 = 1.316667

are regression coefficients for the displacement ratio. βDR = 0 is bias parameter for the

displacement ratio.

Variables (Differential States) for Washer i

Hst (tank level, %), xDS3 (mass fraction).

Variables (Algebraic States) for Washer i

CM0 (inlet consistency, pulp-free basis), CM1 (outlet consistency, pulp-free basis), DR (dis-

placement ratio), F0 (flowrate), F1 (flowrate), FV (flowrate), RW (washing liquor ratio),

xDS0 (mass fraction), xDS1 (mass fraction), xDSV (mass fraction), xDS2 (mass fraction),

xDSD (mass fraction), rl v (ratio of FV over FD).

Variables (Control) for Washer i

F3 (flowrate), F2 (flowrate), FD (flowrate), FR (flowrate)

Variables (Algebraic States) for terminal units only

Fin1P (flowrate), Fin1W (flowrate), Fin1DS (flowrate), Fin2DS (flowrate), Fin2W (flowrate),

Fout1DS (flowrate), Fout1P (flowrate), Fout1W (flowrate), Frec1DS (recycle flowrate), Frec1W

(recycle flowrate).

Specifications for Washer 1

HW C1
st0 = 43.3% (initial tank level, as percentage), V W C1

st = 1067 (m3, tank volume)

Specifications for Washer 2

HW C2
st0 = 33.5% (initial tank level, as percentage), V W C2

st = 861 (m3, tank volume)
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Specifications for Washer 3

HW C3
st0 = 33.3% (initial tank level, as percentage), V W C3

st = 683 (m3, tank volume)

xW C3
DS3 = 0.01 (dissolved solids fraction for shower water in last unit).

Circuit Connection Equations and Degrees-of-Freedom

In our model, there are 3 circuits, and 5 connection equations for each circuit.

F
W C ,i
0 = F

W C ,i−1
1

x
W C ,i
DS0 = x

W C ,i−1
DS1

C
W C ,i
M0 = C

W C ,i−1
M1

F
W C ,i
3 = F

W C ,i−1
2

x
W C ,i
DS3 = x

W C ,i−1
DS2

where i is the index for the current circuit. A special note about the degrees-of-freedom: this is

a counter-current system in which not all variables available for control are not independent

because of variable dependencies.

Terminal Unit Equations

The following equations are stream definitions in Washer 1 (i.e. the first washer in the series)

only. They convert component flowrates from the unit preceding the first washer (the Hi-Q

knotter) into a mass fraction formulation. We use a mass fraction formulation for washers due to

computations required on the compositions. These equations function as an interface between

the washer models and the rest of the plant. Fig. A.2 shows the terminal unit variables in their

context.

FW C1
0 = FW C1

in1P + FW C1
in1W + FW C1

in1DS (A.70)

xW C1
DS0 =

FW C1
in1DS

FW C1
0

(A.71)

FW C1
3 = FW C1

rec1W + FW C1
rec1DS (A.72)

xW C1
DS3 =

FW C1
rec1DS

FW C1
3

(A.73)

CW C1
M0 =

FW C1
in1P

FW C1
0 − FW C1

in1P

· 100 (A.74)

These equations are for washer 3 (the last washer) only. They are used to convert from mass

fractions back to component flows in order to interface with the rest of the plant. We compute
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the consistencies in the washers on a pulp-free basis to be consistent with product quality targets

that are specified on those terms. In the final unit, the outlet consistency CM1 is fixed to a target

value of 13.6.

FW C3
1 = FW C3

out1P + FW C3
out1W + FW C3

out1DS (A.75)

CW C3
M1 =

FW C3
out1P

FW C3
1 − FW C3

out1P

· 100 (A.76)

xW C3
DS1 =

FW C3
out1DS

FW C3
1

(A.77)

Washer 1 Washer 2 Washer 3

FW C1
in1P

, FW C1
in1W

FW C1
in1DS

FW C1
0

, CW C1
M0

xW C1
DS0

FW C3
1

, CW C3
M1

xW C3
DS1

FW C3
out1P

, FW C3
out1W

FW C3
out1DS

FW C1
3

, xW C1
DS3

FW C1
rec1W

, FW C1
rec1DS

Figure A.2: Terminal unit connections.

Equations

Generic stream and composition balance equations, for all washers (see Fig, A.3).

FV = rl v · FD (A.78)

FV = F0+ FR (A.79)

FV + F2 = F1+ FD (A.80)

FV · xDSV = F0 · xDS0+ FR · xDS3 (A.81)

FV · xDSV + F2 · xDS2 = F1 · xDS1+ FD · xDSD (A.82)

The definitions of the Displacement Ratio (DR) and Wash Liquor Ratio (RW ) are stated below.

The displacement ratio (DR) measures the washing efficiency of the solid in terms of percent

dissolved solids removal (Noël et. al., [85]). This ratio easily be obtained by collecting samples

on the washers. The displacement ratio is regressed against RW using data from Grace et al.

[50]. (Note: in the computer code, all quotients are written as products to avoid division by 0

errors)

DR =
xDS1− xDS2

xDSV − xDS2

= a1R3
W + (0.1)a2R2

W + a3RW + βDR (A.83)
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RW =
F2

F1

(A.84)

The seal tank serves to create sufficient vacuum through the drop leg for proper washer operation.

It is also used to store filtrate necessary for startup and functions as a buffer as well. The seal

tank can be modeled simply as a continuously stirred tank.

Vst ·ρ · 0.01 ·
d

d t
Hst = FD − F3− FR, Hst(0) = Hst0 (A.85)

Vst ·ρ · 0.01 ·Hst ·
d

d t
xDS3 = FD · (xDSD − xDS3), xDS3(0) = xDSD(0) (A.86)

Header box Vacuum Drum

Seal Tank

Hst , xDS3

Wash Liquor

F2 , xDS2

Pulp in

F0 , CM0 , xDS0

Pulp out

F1 , CM1 , xDS1

Circuit Recycle

FR , xDS3

Recycle to previous circuit

F3 , xDS3

Filtrate

FD , xDSD

Slurry

FV , xDSV

Figure A.3: A single brownstock washing circuit

Inequality Constraints

0≤ F0 ≤ 600 (A.87)

0≤ F2 ≤ 600 (A.88)

0≤ F3 ≤ 600 (A.89)

0≤ FR ≤ 600 (A.90)

0≤ FV ≤ 600 (A.91)

0≤ FD ≤ 600 (A.92)

0≤ RW ≤ 10 (A.93)
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0≤ CM1 ≤ 100 (A.94)

0≤ CM0 ≤ 100 (A.95)

10≤ Hst ≤ 90 (A.96)

0≤ xDS3 ≤ 1 (A.97)

0≤ xDSD ≤ 1 (A.98)

0≤ xDS0 ≤ 1 (A.99)

0≤ xDSV ≤ 1 (A.100)

0≤ xDS1 ≤ 1 (A.101)

0≤ xDS2 ≤ 1 (A.102)

All other variables were constrained to non-negative values. All 3 brownstock washers are

connected in countercurrent fashion, shown in Fig. A.4.

FW C1
0

drum

seal tank

HW C1
st

, xW C1
DS3

FW C1
3

recycle to blowtank

FW C2
V

FW C1
1

FW C1
D

FW C1
R

FW C1
2

FW C2
0

drum

seal tank

HW C2
st

, xW C2
DS3FW C2

3

FW C2
V

FW C2
1

FW C2
D

FW C2
R

FW C2
2

FW C3
0

drum

seal tank

HW C3
st

, xW C3
DS3

FW C3
V

FW C3
1

FW C3
D

FW C3
R

FW C3
2

FW C3
3

to storage
tank

Washer 1 Washer 2 Washer 3

from knotter

F
HQ

out1

Figure A.4: Brownstock washing department, washing circuits in series.

A.7 Storage tank (ST)

The storage tank is a stirred tank buffer capacity between the brownstock washers and the

screening units. Similar to the blowtank, it is modeled with a set of stirred tank equations (with

assumptions of perfect mixing). The major streams in this model are shown in Fig. A.5.

Parameters

Fout1max = 600 (maximum outlet flowrate), H0 = 60 (initial tank height, %), Mtank =

0.900·1620 = 1458 tons (tank capacity), Vtank = 1620 m3 (tank capacity, volumetric)
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Variables (Differential States)

H (tank level, %), xout1DS (mass fraction), xout1P (mass fraction)

Variables (Algebraic States)

Fin1DS (flowrate), Fin1P (flowrate), Fin1W (flowrate), Fin1 (flowrate), Fout1DS (flowrate),

Fout1P (flowrate), Fout1W (flowrate), x in1DS (mass fraction), x in1P (mass fraction), x in1W

(mass fraction), xout1W (mass fraction)

Variables (Control)

Fout1 (flowrate)

Equations

The following equations characterize the inlet and outlet streams of the tank:

Fin1 = Fin1P + Fin1W + Fin1DS (A.103)

x in1P =
Fin1P

Fin1

(A.104)

x in1DS =
Fin1DS

Fin1

(A.105)

x in1P + x in1DS + x in1W = 1 (A.106)

Fout1P = xout1P · Fout1 (A.107)

Fout1W = xout1W · Fout1 (A.108)

Fout1DS = xout1DS · Fout1 (A.109)

xout1P + xout1W + xout1DS = 1 (A.110)

The dynamic equations with respect to the mass and compositions are as follows:

Mtank · 0.01 ·
d

d t
H = Fin1− Fout1, H(0) = H0 (A.111)

Mtank · 0.01 ·H ·
d

d t
xout1P = Fin1P − Fin1 · xout1P , xout1P(0) = x in1P(0) (A.112)

Mtank · 0.01 ·H ·
d

d t
xout1DS = Fin1DS − Fin1 · xout1DS , xout1DS(0) = x in1DS(0) (A.113)

Inequality Constraints

0≤ Fout1 ≤ Fout1max (A.114)

10≤ H ≤ 90 (A.115)
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All other variables are constrained to non-negative values.

A.8 Screening and Delignification Departments

Delignification

storage tank

screeners

O2 feed press

FOF
out2

Post O2 washer

reactor

O2

mixer

ScreeningStore tank

HST , xST
out1P

xST
out1DS

FST
in1

FST
out1

FSR
in2

FSR
out2

FSR
in1

FSR
out1

FOF
in1

FOF
out1

F MX
in1

F MX
in2

F MX
in3

F MX
in4ST

F MX
out1

FOR
in1

FOR
out1

F PW
in1

F PW
out2

F PW
in2

F PW
out1

Figure A.5: Screening and delignification departments

A.8.1 Screening (SR)

Shives are a type of wood whose size is between that of processable pulp and knots. They

hinder the bleaching process and cause deformities in formed sheets, and therefore need to be

removed. A simplified pressure screen model is used. The function of pressure screens is to filter

shives from the process stream. Balthazaar [11] offers a three-step screen model, which we

have simplified into a one stage model while retaining the macro-effects and properties of the

multi-stage process. The major streams in this model is shown in Fig. A.5.

Parameters

cploss = 0.95 (pulp loss coefficient), xw = 0.8 (water fraction)

Variables (Control)

Fout1 (flowrate)

Variables (Algebraic States)

Fout2 (flowrate), Fin1DS (flowrate), Fin1P (flowrate), Fin1W (flowrate), Fin1 (flowrate),

Fin2DS (flowrate), Fin2W (flowrate), Fin2 (flowrate), Fout1DS (flowrate), Fout1P (flowrate),
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Fout1W (flowrate), Fout2DS (flowrate), Fout2P (flowrate), Fout2W (flowrate), CM (consistency,

%)

Equations

The stream definitions in this units are:

Fin1 = Fin1P + Fin1W + Fin1DS (A.116)

Fin2 = Fin2W + Fin2DS (A.117)

Fout1 = Fout1P + Fout1W + Fout1DS (A.118)

Fout2 = Fout2W + Fout2DS (A.119)

A component mass balance relates the component streams:

Fin1P = Fout1P + Fout2P (A.120)

Fin1W + Fin2W = Fout1W + Fout2W (A.121)

Fin1DS + Fin2DS = Fout1DS + Fout2DS (A.122)

Composition ratios are assumed to be equal across streams 1 and 2: (Note: in the computer

code, all quotients are written as products to avoid division by 0 errors)

Fout1W

Fout1P

=
Fout2W

Fout2P

(A.123)

Fout1P

Fout1DS

=
Fout2P

Fout2DS

(A.124)

5% of pulp is lost in a screening unit due to the extraction of shives, therefore the pulp

loss coefficient, cploss = 0.95. The target output consistency for downstream processing in

O2-delignification unit is 4.5%, so CM = 4.5 (however, this value is relaxed during a partial

shutdown and enforced during non-shutdown periods). Note that the consistency of pulp here

is computed on a mass percent basis, as opposed to the pulp-free basis in the brownstock

washers—this is done to be consistent with the specifications. The dilution stream is taken to

have a water content of 80%, which means xw = 0.8.

Fout1P = cploss · Fin1P (A.125)

Fout1P =
CM

100
· (Fout1P + Fout1W + Fout1DS) (A.126)

Fin2W = xw · (Fin2W + Fin2DS) (A.127)
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The rejects from the screening department are discarded.

Inequality Constraints

0≤ Fout1 ≤ 600 (A.128)

0≤ CM ≤ 100 (A.129)

All other variables are constrained to non-negative values.

A.8.2 Delignification Department

At this stage of the process, the pulp is typically still dark in color due to the bound lignin

and will be required to undergo bleaching. Unfortunately bleaching entails the use of chlorine,

the emissions of which have a deleterious effect on the environment. In order to reduce the

utilization of chlorine in bleaching, delignification is performed to remove as much as of the

residual lignin as possible. This has the favorable effect of reducing the amount of chlorine

required by the chlorination reactor in the bleaching department downstream.

In delignification, the pulp stream is heated with steam and mixed with caustic and then run

down the O2 reactor in a counter-current fashion. In this process, the impregnated pulp streams

reacts with oxygen and a separation of lignin from the cellulose fibers occurs. It should be

mentioned that if this were to be carried out too far, carbohydrate degradation also occurs,

which results in an undesirable drop in viscosity. Process conditions must therefore be tightly

controlled to preserve the integrity of the pulp.

The O2 delignification department is made up of several units. The major ones are the O2

feed presses, mixer, reactor and the post-O2 washer. The O2 feed press functions to raise the

consistency of the pulp from 4.5% to 30% and is modeled by a simple mass balance. The mixer

mixes the pulp with steam and caustic, while the reactor is the main vehicle for performing the

delignification. The post-O2 washer removes remaining dissolved solids and is modeled by a

straightforward pass-through balance.
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A.8.3 O2 feed press (OF)

Variables (Control)

Fout1 (flowrate)

Variables (Algebraic States)

Fout2 (flowrate), Fin1DS (flowrate), Fin1P (flowrate), Fin1W (flowrate), Fin1 (flowrate),

Fout1DS (flowrate), Fout1P (flowrate), Fout1W (flowrate), Fout2DS (flowrate), Fout2W

(flowrate), CM (outlet consistency, %), CM0 (inlet consistency, %)

Equations

The feed press equations consistent of simple mass balances and splits. Refer to Fig. A.5. (Note:

in the actual model, all quotients are written as products to avoid division by 0 errors)

Fin1 = Fin1P + Fin1W + Fin1DS (A.130)

Fout1 = Fout1P + Fout1W + Fout1DS (A.131)

Fout2 = Fout2W + Fout2DS (A.132)

Fin1P = Fout1P (A.133)

Fin1W = Fout1W + Fout2W (A.134)

Fin1DS = Fout1DS + Fout2DS (A.135)

CM

100
· Fout1 = Fout1P (A.136)

CM0

100
Fin1 = Fin1P (A.137)

Fout1W

Fout1DS

=
Fout2W

Fout2DS

(A.138)

The target output consistency for this unit is 30%, so CM = 30 (however, this value is relaxed

during a partial shutdown and enforced during non-shutdown periods). Note that the consistency

of pulp here is computed on a mass percent basis, as opposed to the pulp-free basis in the

brownstock washers—this is done to be consistent with the specifications.

Inequality Constraints

0≤ CM ≤ 100 (A.139)

CM0 ≤ CM (A.140)
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0≤ Fout1 ≤ 600 (A.141)

All other variables are constrained to non-negative values.

A.8.4 Delignification Mixer (MX)

Parameters

Cp,pulp1 = 3.972 MJ/ton·K (specific heat of pulp), Hre f = 2547.3 MJ/ton (reference

enthalpy, saturated steam at 298K), Hstm = 3267.5 MJ/ton (enthalpy of medium pressure

steam (49 bar, 415◦C), Tin,chem = 25◦C (temperature of incoming chemicals), Tin,pulp = 25◦C

(temperature of incoming pulp), Tre f = 25◦C (reference temperature), Tset = 100◦C

(setpoint temperature), gM gSO4 = 0.002 (magnesium sulfate dosage, fraction), gNaOH =

0.02 (caustic dosage, fraction)

Variables (Algebraic States)

Fin1DS (flowrate), Fin1P (flowrate), Fin1W (flowrate), Fin1 (flowrate), Fin2DS (flowrate),

Fin2W (flowrate), Fin2 (flowrate), Fin3DS (flowrate), Fin3W (flowrate), Fin3 (flowrate), Fin4ST

(flowrate), Fout1DS (flowrate), Fout1P (flowrate), Fout1W (flowrate), Fout1 (flowrate)

Equations

The delignification mixer is modeled as a perfect steady-state mixer [11]. A mass balance around

the mixer yields the following equations: (Refer to Fig. A.5).

Fin1 = Fin1P + Fin1W + Fin1DS (A.142)

Fin2 = Fin2W + Fin2DS (A.143)

Fin3 = Fin3W + Fin3DS (A.144)

Fout1 = Fout1P + Fout1W + Fout1DS (A.145)

Fin1P = Fout1P (A.146)

Fin1DS + Fin2DS + Fin3DS = Fout1DS (A.147)

Fin1W + Fin2W + Fin3W + Fin4ST = Fout1W (A.148)

The pulp stream (Fin1) enters the mixer at 25◦C; likewise for the caustic (Fin2) and magnesium

sulfate (Fin3) streams. Magnesium sulfate is added for pulp protection. Fin4ST is the stream con-

taining medium-pressure steam. The energy balance is used to calculate the steam consumption
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of the system.

Fin4ST (Hstm− Hre f ) = Fout1 · Cp,pulp1 · (Tset − Tre f ) (A.149)

Using a reference temperature of Tre f = 25◦C, the reference enthalpy of saturated steam is

Hre f = 2547.3 MJ/ton. The enthalpy of medium-pressure steam, Hstm = 3267.5 MJ/ton at 49

bar and 415◦C. This steam is used to heat the mixture to the required temperature of a setpoint

temperature of Tset = 100◦C. Cp,pulp1 is the average heat capacity of the exiting pulp, whose

value is 3.972 MJ/ton·K. The terms representing the other streams are canceled out due to our

choice of reference temperature.

The chemical dosage equations which determine the composition of the inlet streams are as

follows:

Fin2DS = gNaOH · Fin1P (A.150)

Fin3DS = gM gSO4 · Fin1P (A.151)

0.92 · Fin2W = 0.08 · Fin2DS (A.152)

0.955 · Fin3W = 0.045 · Fin1DS (A.153)

where gNaOH = 0.02 ton NaOH/ton pulp and gM gSO4 = 0.002 ton MgSO4/ton pulp [50]. The

concentrations of the NaOH and MgSO4 streams are 8% and 4.5% respectively, and their ratios

are be directly calculated using the equations above.

Inequality Constraints

All variables are constrained to non-negative values.

A.8.5 O2 delignification reactor (OR)

Parameters

aO2 = 2.301 (shrinkage factor)

Variables (Algebraic States)

Fin1DS (flowrate), Fin1P (flowrate), Fin1W (flowrate), Fin1 (flowrate), Fout1DS (flowrate),

Fout1P (flowrate), Fout1W (flowrate), ζ (production factor)

Equations

The O2 delignification reactor is a counter-current reactor where the lignin in the pulp stream
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reacted with oxygen. The model presented here is regression-based model that is greatly

simplified. The major streams in this model is shown in Fig. A.5. The following equations are

derived from a mass balance in the reactor.

Fin1 = Fin1P + Fin1W + Fin1DS (A.154)

Fout1P = (1− 1× 10−2 · aO2) · Fin1P (A.155)

Fout1DS = Fin1DS + 1× 10−2 · aO2 · Fin1P (A.156)

Fout1W = Fin1W (A.157)

where aO2 is a shrinkage factor to account for the fact that pulp shrinkage occurs in the reactor

[11]. This factor is related to the production factor, ζ (see eqn. A.1 for the definition) by

nonlinear function obtained by performing regression on industrial data [11]:

aO2 = a0+ a1ζ+ a2ζ
2+ a3ζ

3 (A.158)

The values of the coefficients are a0 = 2.301, a1 = −0.0022, a2 = 0.0116, a3 = −0.0113.

However, we found that in operating range of this plant (ζ ∈ [0, 1]), the variation in the value of

aO2 was negligible, therefore we elected to substitute the above cubic equation with a constant

(with aO2 = 2.301) to remove the nonlinearity from the constraint set.

Inequality Constraints

All variables are constrained to non-negative values.

A.8.6 Post-O2 Washers (PW)

Parameters

adil = 0.05 (dilution factor), xw = 0.98 (water fraction), a1 = 0.133333, a2 = -7, a3 =

1.316667 are regression coefficients for the displacement ratio.

Variables (Control)

Fout2 (flowrate)

Variables (Algebraic States)

Fin1DS (flowrate), Fin1P (flowrate), Fin1W (flowrate), Fin1 (flowrate), Fin2DS (flowrate),

Fin2W (flowrate), Fin2 (flowrate), Fout1DS (flowrate), Fout1W (flowrate), Fout2P (flowrate),

Fout2W (flowrate), DR (displacement ratio) RW (wash liquor ratio)
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Equations

The equations for the post-O2 washers consist mostly of mass balances and splits: (see Fig.

A.5). (Note: in the actual model, all quotients are written as products to avoid division by 0

errors)

Fin1 = Fin1P + Fin1W + Fin1DS (A.159)

Fin2 = Fin2W + Fin2DS (A.160)

Fout2 = Fout2P + Fout2W + Fout2DS (A.161)

Fin1P = Fout2P (A.162)

Fin1W + Fin2W = Fout1W + Fout2W (A.163)

Fin1DS + Fin2DS = Fout1DS + Fout2DS (A.164)

Fout2P =
CM

100
· Fout2 (A.165)

Fin2W + Fin2DS = adil · Fin1 (A.166)

Fin2W = xw · Fin2 (A.167)

The target output consistency for this unit is 6.5%, so CM = 6.5 (however, this value is relaxed

during a partial shutdown and enforced during non-shutdown periods). Note that the consistency

of pulp here is computed on a mass percent basis, as opposed to the pulp-free basis in the

brownstock washers—this is done to be consistent with the specifications.

To calculate the dissolved solids exiting the washer, we employ the following equations:

RW =
Fin2

Fout2

(A.168)

DR = a1R3
W + (0.1)a2R2

W + a3RW (A.169)

Fout2DS

Fout2

= DR

�
Fin1DS

Fin1

− (1− xw)

�

+ (1− xw) (A.170)

Inequality Constraints

0≤ Fin2 ≤ 600 (A.171)

0≤ Fout2 ≤ 600 (A.172)
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All variables are constrained to non-negative values.

A.9 Composite Model and Connectivity

The individual models above are connected by component flowrates to form a composite model

of the Kraft plant. These connections occur at points marked by a round black circle (•) in Figs.

A.1, A.4 and A.5. Connectivity equations are posed as equality constraints that equate stream

components. Consider, for instance, the connection between the digester and the blowtank in

Fig. A.1. They can be written as follows:

F DG
out3P = F BT

in1P (A.173)

F DG
out3W = F BT

in1W (A.174)

F DG
out3DS = F BT

in1DS (A.175)

where F are component flowrates, and the superscripts DG and BT are used to refer to the

digester and blowtank’s variables respectively. Other connections in the composite model are

made in a similar fashion.

A.10 Virtual Dynamic Lags

Most process units in this work are modeled with the assumptions of quasi-steady-state operation

due to their fast dynamics. In some units, the composition dynamics may be significant. Dynamics

often occur in the form of a delay or temporal lag in a variable. If an approximation these

dynamics is desired, one can employ a mathematical construction that involves writing the

equations for a train of virtual mixing models, and appending them to the outlet of quasi-steady-

state unit (Schweiger and Floudas [95]).

x1
i

. . . x
j−1

i x
j

i
. . . x

nc

i

F, x0
i F, x

nc

i

Figure A.6: Virtual dynamic lags used to model a transport delay.

The following set of coupled differential equations serve to approximate a transport delay in the
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compositions of a stream:

d x
j

i

d t
=

F

M
(x

j−1
i
− x

j

i
), i = 1 . . . nc , j = 1 . . . n j (A.176)

where x i is the mass fraction of component i, F is the stream flowrate, M is mass of the

virtual tank’s contents, x i,in is the inlet mass fraction of component i, and nc is the number of

components. The values of M and n j are tuning parameters that can be adjusted to mimic the

time constant/dead time behavior in the actual system. As n j increases, the response becomes

more sluggish, while M influences the shape of the lagged response. A visual depiction of this is

shown in Fig. A.6.

Example. Consider a quasi-steady state model in the Kraft process, with outlet flow F , and

compositions xP , xW and xDS. Suppose we wish to lag these compositions to reflect the

delay present in the system when the compositions change. For n j = 3 and M = 10, we can

write:

d x1
P

d t
=

F

10
(xP − x1

P) (A.177)

d x1
W

d t
=

F

10
(xW − x1

W ) (A.178)

d x2
P

d t
=

F

10
(x1

P − x2
P) (A.179)

d x2
W

d t
=

F

10
(x1

W − x2
W ) (A.180)

d x3
P

d t
=

F

10
(x2

P − x3
P) (A.181)

d x3
W

d t
=

F

10
(x2

W − x3
W ) (A.182)

x3
P + x3

W + x3
DS = 1 (A.183)

where x3
P , x3

W are the lagged mass fractions. The mass fraction x3
DS , also lagged, is computed via

a difference.



Appendix B

Pulp and Paper Mill Inventory Model

Parameters

Flowrate bounds (tons/hr): F U
1 = 131.25, F U

2 = 225, F U
3 = 100, F U

4 = 100, F U
5 = 125,

F U
6 = 125, F U

7 = 125, F U
8 = 125, F U

9 = 31.25, F U
10 = 31.25, F U

11 = 62.5, F U
12 = 62.5,

F U
13 = 93.75, F U

14 = 93.75

Initial mass in tanks (tons): Mini t,1 = 625, Mini t,2 = 360, Mini t,3 = 500, Mini t,4 = 156.25,

Mini t,5 = 1175, Mini t,6 = 1531.25

Tank capacity limits (tons): Mmax ,1 = 1500, Mmax ,2 = 1500, Mmax ,3 = 2000, Mmax ,4 = 800,

Mmax ,5 = 1600, Mmax ,6 = 2000

Flow ratios: γ11,10 = 2.0, γ13,12 = 1.5, γ3,2 = 0.4444, γ5,4 = 1.25, γ9,8 = 0.25

Variables (Differential States)

H1, H2, H3, H4, H5, H6 (tank levels, %)

Variables (Algebraic States)

F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14 (flowrates, tons/hr)

Variables (Control)

F1, F4, F6, F8, F10, F12, F14 (flowrates, tons/hr)

Equations

In this section, we describe a linear model of a pulp and paper mill adapted from work by

223
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Digester

house
Bleaching

Recovery
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CausticizationEvaporators

H2
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Figure B.1: Leiviskä et al. pulp mill, plant topology.

Leiviskä et al. [72]. The plant topology is shown in Fig. B.1. Only inventories are tracked. No

compositions are considered. The resulting model is linear. The chip feed stream F1 is mixed

with white liquor from stream F14 and conveyed to the digester house, where it is cooked and

reacted into pulp. The pulp is then bleached, and sent downstream for further processing. In the

digester, spent liquor is produced in stream F7, and is passed through a series of evaporators,

boilers and causticizers in order to be regenerated.

The inventory equations for each tank are:

Mmax ,1 · 0.01 ·
dH1

d t
= F5− F6 (B.1)

Mmax ,2 · 0.01 ·
dH2

d t
= F3− F4 (B.2)

Mmax ,3 · 0.01 ·
dH3

d t
= F7− F8 (B.3)

Mmax ,4 · 0.01 ·
dH4

d t
= F9− F10 (B.4)

Mmax ,5 · 0.01 ·
dH5

d t
= F11− F12 (B.5)

Mmax ,6 · 0.01 ·
dH6

d t
= F13− F14 (B.6)

The initial conditions for the above differential equations are:

H j(0) =
Mini t, j

Mmax , j

· 100, j = 1, . . . , 6 (B.7)

Simple flow ratios are used to model the relationship between the outlet and and inlet flowrates
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of individual processing units:

F2 = F3+ F7 (B.8)

F3 = γ3,2 · F2 (B.9)

F5 = γ5,4 · F4 (B.10)

F9 = γ9,8 · F8 (B.11)

F11 = γ11,10 · F10 (B.12)

F13 = γ13,12 · F12 (B.13)

The mixing point before the digester is modeled as follows:

F2 = F1+ F14 (B.14)

Inequality Constraints

The flowrates are allowed to vary between defined bounds, and the tank levels may fluctuate

between 15 – 85% of their maximum capacities.

0≤ Fi ≤ F U
i , i = 1, . . . , 14 (B.15)

15≤ H j ≤ 85, j = 1, . . . , 6 (B.16)



Appendix C

Basic results in continuous nonlinear

optimization

A continuous nonlinear constrained optimization problem (P) can be expressed in the following

canonical form:

(P) min f (x) (C.1)

s.t. gi(x)≤ 0, i = 1, . . . , ng (C.2)

h j(x) = 0, j = 1, . . . , nh (C.3)

where x ∈ X ⊆ Rnx , f : Rnx 7→ R is the objective function, gi : Rnx 7→ R are inequality

constraints, and h j : Rnx 7→ R are equality constraints. The functions f , gi and h j are assumed

to be twice-continuously differentiable.

Definition C.0.1 (The active set). The active set is the index set of inequality constraint expres-

sions whose values are at the constraint boundaries (that is to say, they are “active”) at some

feasible point x . We define the active-set as follows:

A(x) = {i|gi(x) = 0} (C.4)

Definition C.0.2 (Linear independence constraint qualification, LICQ). Given a point x , we say

that the LICQ holds if the union of the sets of equality and active inequality constraint gradients,

that is, {∇xh j(x)| j = 1, . . . , nh} ∪ {∇x gi(x)|i ∈ A(x)}, is linearly independent.

Definition C.0.3 (The Lagrangian and its Hessian). The Lagrangian expression is defined as

226
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follows:

L(x ,µ,λ) = f (x) +

ng∑

i=1

µi gi(x) +

nh∑

j=1

λ jh j(x) (C.5)

where µ= [µi , . . . ,µng
]T, λ= [λ1, . . . ,λnh

]T are KKT multipliers (see KKT section below). The

Hessian of the Lagrangian is:

H(x ,µ,λ) =∇x x L(x ,µ,λ) =∇x x f (x) +

ng∑

i=1

µi∇x x gi(x) +

nh∑

j=1

λ j∇x xh j(x) (C.6)

Many favorable properties accrue from the convexity of a problem. The following theorem states

the criteria for convexity.

Theorem C.0.1 (Convexity). The problem is convex if and only if (1) f and every gi are convex;

(2) every h j is affine; and (3) the set X is a convex set.

C.1 First-Order Optimality Conditions

The first-order necessary conditions for optimality (also known as KKT conditions) gives the

conditions under which a point x∗ may be considered to be a stationary point.

Theorem C.1.1 (Karush-Kuhn-Tucker (KKT) conditions / First-order Necessary Conditions).

Suppose that x∗ is a local solution of problem P. Let us also suppose that: (1) f , each gi and each

h j are continuously differentiable at x∗; and (2) x∗ satisfies a constraint qualification (e.g. LICQ).

Then there exists a set of constants µi and λ j that fulfills the following criteria:

Stationarity condition: ∇x L =∇x f (x∗) +
∑

i∈A(x∗)

µi∇x gi(x
∗) +

nh∑

j=1

λ j∇xh j(x
∗) = 0 (C.7)

Primal feasibility: gi(x
∗)≤ 0, i = 1, . . . , ng (C.8)

Primal feasibility: h j(x
∗) = 0, j = 1, . . . , nh (C.9)

Dual feasibility: µi ≥ 0, i = 1, . . . , ng (C.10)

Complementarity condition: µi gi(x
∗) = 0, i = 1, . . . , ng (C.11)
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Remarks on KKT conditions:

1. If the problem is convex, then the local minimum x∗ is also a global minimum and the

above necessary conditions are also sufficient conditions for optimality.

2. When LICQ holds, the values of µi and λ j at x∗ are unique.

C.2 Second-Order Optimality Conditions

Definition C.2.1 (Linearized feasible direction set, F (x)). Given a feasible point x and active

set A(x), the linearized feasible direction set may be defined as follows:

F (x) = {d|dT∇xh j(x) = 0 for all j, dT∇x gi(x)≤ 0 for all i ∈ A(x)} (C.12)

Definition C.2.2 (Critical cone, C (x∗,µ∗)). Given a linearized feasible direction set at x∗,

F (x∗) and a KKT multiplier vector at x∗, µ∗, we define the critical cone as follows:

C (x∗,µ∗) = {w ∈ F (x∗)|∇x gi(x
∗)Tw = 0, for all i ∈ A(x∗) with µ∗i > 0} (C.13)

Theorem C.2.1 (Sufficient Second-Order Optimality Conditions, SSOC). Suppose x∗ is a point

that satisfies the KKT conditions for problem P, and the corresponding KKT multipliers are λ∗,µ∗.

The point x∗ is a strict local solution if:

wTH(x∗,λ∗,µ∗)w > 0, for all w ∈ C (µ∗) \ 0 (C.14)

where H(x∗,λ∗,µ∗) is the Hessian of the Lagrangian at x∗.

The above description of the SSOC however does not provide any practical means for checking

SSOC for a particular problem. The reader is advised to consult Kelly and Kupferschmid [64],

Nocedal and Wright [84] and Morrow [81] for numerical means of verifying the SSOC.

C.3 The IPOPT algorithm and active-set methods

In order to provide some mathematical context for some of the arguments related to active-set

methods and IPOPT’s interior-point algorithm, we will supply a brief sketch of the two strategies.
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Consider the following optimization problem:

min f (x) (C.15)

s.t. c(x) = 0 (C.16)

x ≥ 0 (C.17)

where x ∈ Rnx , f : Rnx 7→ R, c : Rnx 7→ Rnc . We note that general inequality constraints can be

trivially converted to the above form by introducing bounded slack variables. The first-order

optimality conditions (KKT conditions) for the above problem can be written as follows:

∇x f (x) +∇x c(x)λ− ν = 0 (C.18)

c(x) = 0 (C.19)

X Ve = 0 (C.20)

x ,ν ≥ 0 (C.21)

where λ ∈ Rnλ ,ν ∈ Rnν are KKT multipliers, X = diag(x), V = diag(ν) and e = [1, . . . , 1]T. This

result assumes that constraint qualifications are satisfied.

The active-set method. In the active-set method, the goal of algorithm is to determine the

active-set on which the solution lies. A simplified version of the steps involved is described below

(adapted from [123]). We define the element j of a vector x as x j . The active-set is the subset

of the inequality constraints that are active. In our case, because x ≥ 0 defines our inequality

constraint set, the elements of x that lie at 0 define the active set.

1. Start with a trial guess for active-set, A(x) = { j|x j = 0}.

2. Solve the optimization problem, with the trial active-set enforced.

min f (x)

s.t. c(x) = 0

x j = 0, j ∈ A(x)

Check to see if problem converges to a point that satisfies the KKT system defined in

C.18 – C.21.

3. If the solution is a KKT point, accept the point and terminate. We denote the solution s∗ as

a tuple s∗ = (x∗,λ∗,ν∗), where the * superscript indicates an optimal point. The solution
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active-set is A(x∗) = { j|x∗j = 0}.

Otherwise, proceed with another trial guess for A(x) and return to Step 2.

There exist various methods and heuristics for arriving at a trial guess quickly, and for discarding

poor guesses quickly. However, in general the problem of selecting the correct active-set is a

combinatorial one and has a worst-case exponential complexity with respect to the number of

inequality constraints.

The interior-point method. IPOPT eschews the combinatorial problem of active-set deter-

mination by adopting an interior-point (also known as a barrier) approach. The problem in

C.15 – C.17 can be transformed into the following barrier problem [114]:

minφ(x;µ) =




 f (x)−µ

nx∑

j=1

ln(x j)




 (C.22)

s.t. c(x) = 0 (C.23)

where µ is a barrier parameter and φ(x;µ) is the barrier objective function. Notice that for any

µ > 0, the log barrier term causes the barrier objective φ(x;µ) to approach∞ if any of the x j

terms approaches 0. The basic idea is to solve a series of barrier problems for decreasing values

of the parameter µ, with µ eventually converging to 0. This can be thought of as a homotopy

method applied to the following primal-dual system modified from C.18 – C.21:

∇x f (x) +∇x c(x)λ− ν = 0 (C.24)

c(x) = 0 (C.25)

X Ve = µe (C.26)

where the complementarity constraints X Ve = 0 have been relaxed to X Ve = µe, and the explicit

condition x ,ν ≥ 0 removed. As we will see later, the latter condition is enforced implicitly as

the algorithm proceeds in such as way as to always satisfy x ,ν ≥ 0 during the iteration process.

At the solution point, µ = 0 and x ,ν ≥ 0, therefore the original KKT system in C.18 – C.21 is

recovered.

An issue to note here is that the KKT system only provides conditions to determine a stationary

point. In this problem, a local minimum is a stationary point, but so are local maxima and saddle

points. To address this issue, IPOPT incorporates a Hessian regularization scheme that attempts

to avoid maxima and saddle points.
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To explain how this regularization works, let us suppose that we are solving the barrier prob-

lem in C.22 – C.23, and our current iterate is given by the tuple (xk,λk,νk). As mentioned

before, the iterates are selected in such a way as to always strictly satisfy xk,νk ≥ 0. Let us

denote the Hessian of the Lagrangian (eqn. C.24) as Wk, and proceed the give the following

definition:

Wk ¬∇x x f (xk) +

nc∑

i=1

λi∇x x ci(xk) (C.27)

where ci(xk) is the i’th equality constraint in c(xk), and λi is the i’th element of the KKT

multiplier λ. Let us also define the Jacobian J (of constraint system c(x)) at iteration k

as:

Jk ¬∇x c(xk) (C.28)

For a fixed current value of the barrier parameter µ = µ̄, we use a Newton step to compute

the search direction. The Newton step equation for C.24 – C.26 can be written as a linear

system:








Wk Jk −I

JT
k

0 0

Vk 0 Xk















∆xk

∆λk

∆νk







= −








∇x f (xk) +∇x c(xk)λk − νk

c(xk)

XkVke− µ̄e








(C.29)

However, the above linear system is unsymmetric, which is unappealing from a numerical linear

algebra perspective. In order to exploit the efficiencies of symmetric linear solvers, the authors

of IPOPT propose solving an equivalent but smaller—and symmetric—linear system (obtained

by eliminating the last block row in C.29):




Wk + Rk Jk

JT
k

0








∆xk

∆λk



 = −




∇xφ(xk; µ̄) + Jkλk

c(xk)



 (C.30)

where Rk ¬ X−1
k

Vk. Note that ∆νk can now be obtained explicitly through:

∆νk = µ̄X−1
k

e− νk − Rk∆xk (C.31)

In order to guarantee selected descent properties, we need to ensure that Wk + Rk, when

projected to the null-space of the constraint Jacobian Jk, is positive definite. More explicitly, we
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require the reduced barrier Hessian:

ZT
k WkZk � 0 (C.32)

where Zk ∈ R
nx×(nx−nλ) is a matrix whose columns form the null-space of Jk. We use the notation

Y � 0 to indicate that some matrix Y is positive-definite. We emphasize that this reduced barrier

Hessian term is never actually formed in IPOPT, therefore an indirect check is done by way of the

inertia1 of the augmented matrix. As well, a solution to C.30 may not exist if Jk is non-full-rank.

Therefore, a further modification to C.30 is required, which results in:




Wk + Rk +δw I Jk

JT
k

−δc I





︸ ︷︷ ︸

Kk




∆xk

∆λk



 = −




∇xφ(xk; µ̄) + Jkλk

c(xk)



 (C.33)

where δw ,δc ≥ 0 are perturbation parameters chosen using a heuristic method (inertia correction

procedure; see [114]). The negative sign is attached to δc in the matrix to avoid generating too

many positive eigenvalues. Various values of δw ,δc are tried until the inertia of the augmented

matrix Kk indicates that it is positive definite.

For problems that do not satisfy Sufficient Second Order Conditions (i.e. many large-scale DAEs,

ill-posed formulations, or problems with non-unique solutions, in our case), the value of δw > 0

at the solution point, therefore the reported value for log10δw (lg(rg) in IPOPT’s output) will

be nonzero.

Once the Newton step (∆xk,∆λk,∆νk) is obtained, a line-search routine is run to compute step

sizes. A fraction-to-boundary rule is used to calculate maximum step sizes that will strictly satisfy

the condition x ,ν ≥ 0. The fraction-to-boundary parameter is τ =min(0.99, µ̄). The maximum

step sizes αx
max,k

,αν
max,k

are determined by:

αx
max,k =max{a ∈ (0, 1]|xk + a∆xk ≥ (1−τ)xk} (C.34)

ανmax,k =max{a ∈ (0, 1]|νk + a∆νk ≥ (1−τ)νk} (C.35)

Then, a filter is applied to a sequence of trial step-sizes for x . The sequence is αx
l,k
= 2−lαx

max,k

for l = 0, 1, . . . , nl . A trial step-size is deemed acceptable under the filter method if it sufficiently

decreases either the objective function φ(x;µ), or the l1-norm of the constraint violation,

||c(x)||1. If an acceptable step-size is found, the step is taken and a new set of iterate values is

1The inertia of a symmetric matrix is defined as I = (ip, in, iz) where each element of the tuple denotes the number

of postive, negative and zero eigenvalues respectively. The matrix is positive definite when ip = in.
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obtained:

xk+1 = xk +α
x
l,k∆xk (C.36)

λk+1 = λk +α
x
l,k∆λk (C.37)

νk+1 = xk +α
ν
max,k∆νk (C.38)

We draw the reader’s attention to the fact that a different step-size is used for νk (i.e. αν
max,k

)

vis-à-vis the other variables (αx
l,k

). The authors claim that this is done for efficiency purposes, in

order to not restrict the steps.

The above procedure is repeated until the iterates converge to the solution. Note that many

details have been omitted in this simplified description of the primal-dual interior-point algorithm

used in IPOPT. The reader is urged to consult [114] for full implementation information.


