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Abstract

This thesis considers the problems of modelling and control of batch processes, a class of finite
duration chemical processes characterized by their absence of equilibrium conditions and
nonlinear, time-varying dynamics over a wide range of operating conditions. In contrast to
continuous processes, the control objective in batch processes is to achieve a non-equilibrium
desired end-point or product quality by the batch termination time. However, the distin-
guishing features of batch processes complicate their control problem and call for dedicated
modelling and control tools.

In the initial phase of this research, a predictive controller based on the novel concept
of reverse-time reachability regions (RTRRs) is developed. Defined as the set of states from
where the process can be steered inside a desired end-point neighbourhood by batch termi-
nation subject to input constraints and model uncertainties, an algorithm is developed to
characterize these sets at each sampling instance offline; these characterizations subsequently
play an integral role in the control design. A key feature of the resultant controller is that it
requires the online computation of only the immediate control action while guaranteeing
reachability to the desired end-point neighbourhood, rendering the control problem effi-
ciently solvable even when using the nonlinear process model. Moreover, the use of RTRRs
and one-step ahead type control policy embeds important fault-tolerant characteristics into
the controller.

Next, we address the problem of the unavailability of reliable and computationally man-
ageable first-principles-based process models by developing a new data-based modelling
approach. In this approach, local linear models (identified via latent variable regression
techniques) are combined with weights (arising from fuzzy c-means clustering) to describe
global nonlinear process dynamics. Nonlinearities are captured through the appropriate
combination of the different models while the linearity of the individual models prevents
against a computationally expensive predictive controller. This modelling approach is also
generalized to account for time-varying dynamics by incorporating online learning abil-
ity into the model, making it adaptive. This is accomplished by developing a probabilistic
recursive least squares (PRLS) algorithm for updating a subset of the model parameters.

The data-based modelling approach is first used to generate data-based reverse-time
reachability regions (RTRRs), which are subsequently incorporated in a new predictive

controller. Next, the modelling approach is applied on a complex nylon-6,6 batch poly-
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merization process in order to design a trajectory tracking predictive controller for the key
process outputs. Through simulations, the modelling approach is shown to capture the major
process nonlinearities and closed-loop results demonstrate the advantages of the proposed
controller over existing options. Through further simulation studies, model adaptation (via
the PRLS algorithm) is shown to be crucial for achieving acceptable control performance
when encountering large disturbances in the initial conditions.

Finally, we consider the problem of direct quality control even when there are limited
quality-related measurements available from the process; this situation typically calls for
indirectly pursuing the control objective through trajectory tracking control. To address
the problem of unavailability of online quality measurements, an inferential quality model,
which relates the process conditions over the entire batch duration to the final quality, is
required. The accuracy of this type of quality model, however, is sensitive to the prediction of
the future batch behaviour until batch termination. This “missing data" problem is handled
by integrating the previously developed data-based modelling approach with the inferential
model in a predictive control framework. The key feature of this approach is that the causality
and nonlinear relationships between the future inputs and outputs are accounted for in
predicting the final quality and computing the manipulated input trajectory. The efficacy of
the proposed predictive control design is illustrated via simulations of the nylon-6,6 batch

polymerization process with a different control objective than considered previously.
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CHAPTER

Introduction

1.1 BATCH PROCESSES

Batch (and semi-batch') processes constitute a class of chemical processes that play an im-
portant role in the production and processing of a wide range of value-added products.
Specialized sectors of the chemical industry operate exclusively in the batch modes. Addition-
ally, batch processes may serve as start-up/intermediate steps in continuous processing units.
For these cases, conditions at batch termination can ultimately dictate process performance

upon the transition to continuous mode of operation (e.g. see [1]).

A typical batch process (see Figure 1.1) consists of the following steps:

1. Charging the reactor with a recipe of raw materials whose properties are usually

recorded.

2. Processing under controlled conditions for a finite duration of time (the batch termina-
tion time) during which the process inputs are varied according to a specified control

policy and measurements are collected.

3. Discharging the final product and performing a range of quality measurements (which
are recorded) on a product sample to determine if the final product meets required

specifications.

The final product quality is dependent on the initial conditions (i.e., raw material proper-

ties), the process variable trajectories (and their cumulative effects) over the batch duration,

'A semi-batch process is a special class of batch process in which material may be fed (i.e., a fed-batch
process) or removed during the process. The terms, batch and semi-batch, will be used interchangeably for the
remainder of this thesis.
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and the ability of the control policy to reject disturbances. The appeal of batch processes
(over continuous processes) is the flexibility to achieve a wide range of end-point/terminal
conditions, which do not have to be equilibrium conditions, by changing the initial con-
ditions and process variable trajectories. This flexibility is particularly important in the
specialty product industries. Key examples include the production of certain bio-chemicals

(e.g., ethanol) and polymers (e.g., nylon-6,6) as well as numerous pharmaceutical prod-

ucts.
Initial Conditions Final Quality
~N N
= o % n
& o —>| Batch Process > = 5
S =
Variable 1 Variable 1
Input Trajectories Online Measurements

Input
Output

Time

Figure 1.1: Schematic of a batch process

Mathematically, the class of batch processes considered in this work can be described by

the general model form shown below.

x(t) = f (x,u,w)
y(t)=g(x,u,w)+v (1.1)

t € [to, tend]

where x € R"*! is a vector of the physical states of the process and y € R?*! denotes a vector
of noise corrupted output (measurable) variables with v representing the measurement
noise. The vector, u € Y c R™, denotes the constrained inputs to the process, taking
values in a non-empty convex subset, U, of R” where U = {u € Rmx1 | min < ¥ < Umax}
with #min € R™! and up,y € R™ denoting the minimum and maximum allowable u
(respectively). The vector, w € VW c RY, collects any bounded, possibly time-varying
model uncertainties where W = {w € RT! | wpin < w < wiay} with wi € R7*! and
Winax € R denoting the minimum and maximum realizations of w. The times, f; and
tend> denote the initial time and batch termination times, respectively. The vector function,
f() : R" xU x W — R”", contains ordinary differential equations (ODEs) for the state

2
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variables (row-wise) and g(-) : R” x U x W — RP is the measurement function for the

outputs.

1.2 BATCH PROCESS CONTROL

The primary control objective in batch processes is to reach a specified product quality,
which typically corresponds to a non-equilibrium point, by batch termination. In the past,
batch-to-batch operation entailed implementing predetermined input trajectories that were
either optimized offline, determined through data-mining, or historically yielded on-spec
product®. Consistent results were achieved through precise sequencing and automation of
all the stages in the batch operation. This type of open-loop operation policy, however, made
the final product quality susceptible to disturbances encountered during the process and/or
in the initial conditions (i.e., from raw material impurities). Motivated by the increased
demands of consistently producing high quality products, numerous batch-to-batch and

within-batch control strategies have been adopted.

The idea behind batch-to-batch control is to improve the batch recipe and operating
trajectories for the upcoming batch using data collected from previously completed batches
in an attempt to bring the new batch’s quality closer to the specified value. This approach,
however, represents an entirely offline strategy and lacks any real-time feedback mechanism
for rejecting disturbances encountered during batch evolution. This motivates the use of

real-time, within-batch control approaches, which is the focus of this research.

The within-batch control problem is complicated by many of the distinguishing fea-
tures of batch processes. These include a finite duration of operation and the absence of
equilibrium conditions coupled with strong nonlinear and time-varying dynamics over a
wide range of operating conditions. In contrast, continuous processes are characterized by
operation around a steady-state with a relatively narrower range of operating conditions.
The literature on within-batch control strategies is extensive at this point’. The selection
of an appropriate strategy is largely dictated by the availability and properties of a process
model and the observability of the process. For instance, in many industrial batch processes,
real-time measurements of the quality variables are unavailable or the quality variables are
not observable from the available process measurements. Under these circumstances, a
within-batch control strategy must rely on inferential techniques to estimate the quality for

direct quality control or pursue the control objective indirectly in some fashion.

?In any case, these open-loop input trajectories incorporated the desired end-point properties in some fashion
but did so offline.
Many techniques will be reviewed throughout the course of this thesis.

3
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1.2.1 Model Predictive Control

One control method that has been the foundation for many within-batch control strategies
(including those proposed in this work) is model predictive control (MPC) [2]. MPC is a
centralized control approach where the process dynamics and interactions can be accounted

for when computing the control action through the use of a process model.

In MPC (see Figure 1.2), the sequence of steps shown below is executed at each sampling
instance once a new measurement becomes available. It is repeated at each sampling instance

in order to account for any information obtained from the newly available measurement.

1. The process model is initialized at the new plant measurement. This represents a
feedback mechanism to account for plant-model mismatch. When using a state-space

process model, this step calls for an appropriately designed state estimator.

2. An optimization problem is solved in which:

a) The process model is used to predict the future outputs over a prediction horizon

(denoted by P in Figure 1.2) for candidate input trajectories.

b) An input trajectory is computed that minimizes an objective function while
satisfying any constraints. The most common examples of constraints are input
constraints that arise from the physical limitations of control actuators. An ex-
ample objective function is a quadratic function of the predicted process outputs’
deviations from their corresponding set-points, summed over the prediction

horizon.

3. The first element of the computed input trajectory is implemented on the process.

set-point trajectory

predicted output trajectory

implemented

—————

)
I~==--- :l computed

input trajectory

k k+1 k+P

Figure 1.2: Tllustration of the basic idea behind MPC. The schematic shows some of the key
trajectories at the end of the MPC calculation.
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The underlying model in a MPC formulation may be the first-principles, usually non-
linear model*, a linearized version of this model, or a linear, data-based model. For many
batch processes, the rigorous, first-principles model is unavailable or unreliable as it is difficult
to fully characterize all the chemistry, mixing, and heat transfer phenomena occurring in the
process. Additionally, even when a first-principles model is available, many of the simplifying
assumptions made during its derivation can break down in practice, it may become too
difficult to maintain, or the resulting MPC formulation may be too computationally expensive

for real-time application.

In the literature and in practice, linear models® (first-principles-based or data-based) have
been more popular for MPC formulations, partly because the resulting MPC optimization
problem is computationally tractable for real-time application and the dynamics of continuous
processes can be reasonably approximated by a linear model for control purposes [3, 4]. The
latter is true because continuous processes tend to operate in a relatively narrow range
of conditions around a steady-state operating point. A similar approximation of linear
dynamics, however, applied to batch processes will result in poor control performance due
to the presence of strong nonlinearities and time-varying dynamics over a much wider
range of operating conditions compared to continuous processes. A key contribution of
this research is the development of a data-based modelling technique that can capture the
nonlinear, time-varying nature of batch dynamics while remaining amenable for real-time

MPC applications.

One topic in the MPC literature that has been largely overlooked has been the design of
fault tolerant control designs specific to batch processes. In general, faults in processing or
auxiliary equipment (sensors, actuators, etc.) are ubiquitous in the chemical process industry
and can have a serious impact on product quality and negatively impact the overall process
productivity and economy. Batch process productivity is particularly susceptible to faults as
there is an emphasis on final product quality, and a fault during a batch may can ruin the entire
batch product or invalidate the desirable properties of a control design. While there has been
significant work on fault detection and isolation for batch processes (see, e.g., [5-9]), fault
tolerant control structures (FTCS) specific to batch processes have received limited research
attention. The majority of the extensive research on FTCS for continuous processes cannot
be applied to batch processes due to the absence of equilibrium points and fundamental
differences in the control objectives between batch and continuous processes. One result
from this research is the design of a predictive controller with embedded fault-handling

properties specifically from a batch process perspective.

“In the literature, this is also sometimes referred to as the deterministic, mechanistic, or fundamental process
model.

>The linear model may take the form of a state-space or transfer function model with the state-space
representation being more convenient for multiple-input-multiple-output systems.
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1.3 THESIS OUTLINE

Motivated by the discussion above, in this thesis, we are considering the problem of designing
computationally efficient, fault-tolerant predictive controllers for batch processes that are
designed to achieve a desired final product quality by batch termination. The rest of this

thesis is organized as follows:

Chapter 2: The novel concept of reverse-time reachability regions (RTRRs) is introduced.
Defined as the set of states from where the process can be driven to a desired end-point
by batch termination subject to input constraints and model uncertainties, an algorithm
to mathematically characterize RTRRs offline at every sampling instance is given. These
characterizations are subsequently used to formulate a computationally efficient, nonlinear
MPC design with good fault-handling properties. The effectiveness of the predictive controller
is demonstrated in both a faulty and fault-free environment via simulations of a fed-batch

reactor process.

Chapter 3: A data-based multi-model approach is developed for modelling batch processes
in which multiple local linear models are identified using latent variable regression tech-
niques and combined using an appropriate weighting function that arises from fuzzy c-means
clustering. The resulting model is integrated with the previously developed RTRR framework
to relax the requirement of a first-principles process model. Specifically, the model is used
to generate and characterize data-based or empirical RTRRs that are subsequently incorpo-
rated in a MPC design. Simulation results (with and without faults) of a fed-batch reactor
process under the proposed RTRR-based design are presented. The data-based modelling
methodology is then applied on an industrially relevant nylon-6,6 batch polymerization
process in order to design a predictive controller that tracks time-varying set-points of the

key measurable process variables.

Chapter 4: The data-based modelling methodology developed in Chapter 3 is generalized
to account for time-varying dynamics by incorporating online learning ability into the
model, making it adaptive. First, the standard recursive least squares algorithm with a
forgetting factor is applied to update the model parameters. To address the drawbacks with
this algorithm, namely that it may lead to an unnecessary update of all local linear models, a
probabilistic recursive least squares estimator (also with a forgetting factor) is developed.
The adaptation algorithms are compared by implementing them on the models developed for
the nylon-6,6 batch polymerization process in Chapter 3. The adaptive models are then used
in the trajectory tracking MPC design in Chapter 3 to demonstrate the benefits of model

adaptation.
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Chapter 5:  Up to this point, the data-based modelling methodology has been integrated
with the RTRR framework and used for trajectory tracking control. The former requires
extensive process measurements while the latter represents an indirect way to achieve qual-
ity control that is sensitive to process disturbances. In this chapter, the problem of direct
quality control with limited process measurements is addressed. To address the problem of
unavailability of online quality measurements, an inferential quality model, which relates the
process conditions over the entire batch duration to the final quality, is first developed. The
accuracy of this type of quality model, however, is sensitive to the prediction of the future
batch behaviour until batch termination, which is unknown at a given sampling instance.
This “missing data" problem is handled by integrating the previously developed data-based
modelling methodology in Chapter 3 with the inferential model in a MPC framework. The
efficacy of the proposed predictive control design is illustrated via closed-loop simulations of
the nylon-6,6 batch polymerization process with a different control objective than considered

previously.

Chapter 6: The contributions of the research are summarized and suggestions for related

future work are presented.
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2.1 INTRODUCTION

The primary control objective in batch processes is to reach a desired product quality by batch
termination. Naturally, this calls for control designs that specifically account for the desired
end-point product properties in computing the control action such as end-point based MPC.
In end-point-based MPC, the MPC optimization problem directly incorporates the desired
end-point in the objective function and/or constraints. Despite the significant reduction
of computational times of real-time optimization algorithms and increased availability of
computational resources, the main impedance to the application of end-point-based MPC
designs is the computational demand associated with repeatedly solving the MPC optimiza-
tion problem. Inherent to the MPC formulation, the optimal solution consists of the entire
input trajectory from the time at which the problem is solved to batch termination, implying

significant computational effort especially during the start of the batch.

A general way to reduce the computational costs of a MPC design is to reduce the com-
plexity of the underlying model. By employing a linear model instead of the first-principles,
nonlinear model, the MPC optimization problem can be made convex, provided the con-
straints and objective function remain convex', and there are several solvers available for
efficiently solving convex optimization problems such that they can be solved in real-time
(e.g. cvx [4]). However, due to the strong nonlinearities present in most batch processes,
MPC performance with linear models is severely limited. Successive linearization techniques
and scheduling of multiple linear models represent some of the workarounds to overcome
these performance limitations (see [5] for a review). Recently, an input parameterization
strategy, designed specifically with batch processes in mind, has been proposed for reducing
the computational cost [6, 7]. In this approach, the batch control objective is first cast as an
optimization problem that is solved offline (using a first-principles model), yielding a nominal
set of optimal input trajectories. These trajectories are then systematically characterized and
only the required adjustments to the nominal inputs for maintaining optimality are computed
online (as opposed to the entire trajectory). The limiting assumption in this framework is
that the active set of the solution that is determined offline does not change online. However,
in practice, with modelling errors and process noise, the true plant optimum (and therefore

the active set) can differ considerably from that determined offline.

In addition to the computational cost, another issue with MPC is the uncertainty in the
underlying predictive model. Model uncertainties can result in significant discrepancies
between the predicted and actual behaviour of the process. For instance, a predictive model
integrated forward in time with a nominal realization of the uncertainties can indicate the
process will be driven to the desired end-point for a specific control move, but applying

the identical control move on the actual process can lead to a violation of product end-use

'If the objective function is quadratic and the constraints are linear (with respect to the decision variables,
the inputs), the MPC optimization problem becomes a quadratic program.
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properties and/or safety constraints due to inaccurate nominal parameter values. There-
fore, incorporating model uncertainties into the control calculation either by modifying
the conventional MPC optimization problem (e.g., see [5, 8, 9]) or by reducing biases in
state estimates arising from model uncertainties is essential (e.g., see [10-13]) for obtaining
acceptable performance. While several end-point-based MPC formulations that explicitly
account for model uncertainties using a min-max optimization framework are available (e.g.,
see [5, 9]), these approaches are often more computationally prohibitive. This is because
the control moves are computed by taking into account the worst-case realization of the
uncertainties which are computed using a second, embedded optimization problem within

the original MPC optimization problem.

The variability in the raw material availability adds another layer of complexity to the
batch control problem and motivates designing methods for determining the suitability
of running a batch with the given raw material. In particular, for a given control law, it is
important to ascertain the initial conditions (without running the batch in its entirety) for
which the desired control objectives are obtainable to minimize resource and time wastage.
While there exist MPC designs for continuous processes that allow the explicit characterization
of the set of initial conditions from where stability is achievable [14-16], these results are
not applicable for batch systems because the desired end-point is not an equilibrium point.
Currently, there exist no end-point-based MPC designs for batch systems that provide an
explicit characterization of a feasibility region from where it can be guaranteed that the

desired control objectives can be met.

For batch (as well as continuous) processes, the occurrence of a fault can invalidate the
desirable properties of a control design. Compared to batch systems, there has been extensive
research on fault-tolerant control structures (FTCS) for continuous processes. Most of the
existing methods for FTC rely on the assumption of availability of sufficient control effort or
redundant control configurations to maintain operation at the nominal equilibrium point
in the presence of faults. These methods can be categorized within robust/reliable control
approaches (also called passive FTC; see e.g. [17]) and reconfiguration-based fault-tolerant
control approaches (also called active FTC, see e.g., [18-24]). More recently, the control of
nonlinear, continuous processes subject to input constraints and faults that preclude the
possibility of operation at the nominal equilibrium point during a fault has been studied.
This led to the development of a safe-parking framework in [25]. The safe-parking FTC
framework specifically considers the class of equipment failure that does not allow continued
operation at the nominal operating point due to input constraints. The framework answers
the problem of choosing what steady-state to operate the plant during fault rectification such
that a smooth transition back to the nominal (i.e., fault-free) equilibrium point is feasible

and optimal with respect to some measure of plant economics.

11
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The extensive results for handling faults for continuous processes (including the safe-
parking framework in [25]), however, do not carry over to batch processes. Specifically, the
absence of equilibrium points in batch processes and fundamental differences in the control
objectives between batch and continuous processes prevent the direct applicability of much
of the research results for continuous processes. For batch processes, the majority of the
FTCS are passive, essentially relying on the robustness of the control design to handle faults
as disturbances during the failure period (e.g, see [9, 26]). The fault-tolerant characteristic in
these formulations stems from the underlying assumption of availability of sufficient control
effort such that the primary control objective remains achievable even in the presence of the
fault. However, processes often encounter faults where the nominal control objective cannot
be achieved if the fault persists, and furthermore, in the absence of a framework for explicitly
handling such faults in batch processes, continuation of the implementation of controllers
with limited fault-tolerant properties can lead to a missed opportunity to implement control

action that could enable achieving the primary control objective after fault repair.

In the absence of a framework for handling faults in batch processes, continuation of the
implementation of controllers to drive the process to the desired end-point may not be the
best option. For instance, if one of the inputs fails (i.e., its actuator is “stuck” at its fail-safe
value), it is likely that the conventional end-point-based MPC optimization problem becomes
infeasible during the faulty period because the desired end-point properties can no longer be
reached with the limited available input for the rest of the batch duration. On the other hand,
if the fault is repaired sufficiently fast, it may still be possible to reach the desired end-point.
However, without the knowledge of the fault repair time, traditional end-point-based MPC
approaches (during fault rectification) would dictate computing the input trajectories using
the reduced control effort until batch termination (therefore yielding an infeasible solution).
By repeatedly applying saturated versions of infeasible input trajectories, the process can be
driven to a point from where it is no longer possible to meet desired end-point properties even
if the fault is repaired in due time. Therefore, the batch process control problem may continue
to remain infeasible even after fault rectification, and the desired end-point properties will
not be reached. This could result in the loss of the batch product as well as significant wastage
of time and money for reactor cleanup, if required. A desirable property in a framework for
handling faults in the context of batch systems, therefore, would be one that can identify
input trajectories (if they exist) without requiring any prior knowledge of the fault repair

time to ensure end-point reachability upon fault repair.

Motivated by these considerations, in this chapter, we consider the problem of designing
a computationally efficient, nonlinear MPC design for batch processes subject to input
constraints, faults in the control actuators, and model uncertainties. Specifically, faults
are considered that cannot be handled via robust control approaches and (if not rectified)

preclude the reachability to the desired end-point with limited control effort. The rest of this

12
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chapter is organized as follows: First, the class of processes considered is presented followed
by a review of a conventional end-point-based MPC formulation. Next, we design a reverse-
time reachability region-based predictive controller that requires the online computation of
only the immediate control move. In doing so, we first introduce the notion of reverse-time
reachability regions and propose an algorithm for mathematically characterizing them offline.
These characterizations are subsequently used to formulate the MPC optimization problem.
Then, after formulating the safe-steering problem, a safe-steering framework is developed that
utilizes the MPC design to ensure the process states can be driven inside a desired end-point
neighbourhood if the fault is repaired sufficiently fast. Closed-loop simulation results of
a fed-batch process subject to actuator failure, model uncertainties, limited availability of
measurements, and sensor noise are presented to illustrate the efficacy of the proposed MPC

design and the details of the safe-steering framework. Finally, we summarize our results.

2.2 PRELIMINARIES

In this section, the class of batch processes considered is presented followed by a representative

formulation of a nonlinear, end-point-based predictive controller.

2.2.1 Process Description

We consider batch processes that can be described by the process description in Equation (1.1).

For the results in this chapter, we also assume the following:

o The vector function, f(-) : R" xi x W — R", in Equation (1.1) is continuous on

(x,u,w) and locally Lipschitz in x on D x U x W, where D c R".

o Forany u € U and w € )V, the solution of the model in Equation (1.1) exists and is

continuous V¢ € [to, tend]-

« The desired end-point quality can be expressed as a corresponding state vector denoted

by x4es, Which is specified at the process design phase.

Note that for some cases, not all the elements of x4 are explicitly specified at the process
design phase. In these cases, the objective may be to maximize or minimize a certain
performance objective (i.e., maximize product concentration). Accordingly, for these cases,
a nominal optimization problem can be solved offline with the appropriate performance

objective, and x 4.5 can be taken to be the state vector at t,q from the optimal state trajectories.
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2.2.2  End-point-based Model Predictive Control

In this section, a representative formulation of a shrinking horizon, nonlinear end-point-
based predictive controller is presented. This formulation is not meant to generalize all
variations of published MPC formulations of this type but only meant to convey the key idea
in most existing formulations, which is the computation of the input trajectories from the

current time to the end of the batch.

Consider the batch process described by Equation (1.1), the control action at each sam-

pling instance is computed by solving the following dynamic optimization problem:

fend
u(nrl)i?u JE = Mg (x(t0), X(tend — 1), Xdes) + /; Lg (%,u) dr (2.1a)
subject to: £(0) = x(t) (2.1b)
tend—t
#(tend — 1) = £(0) + / f(% u)dr 2.10)
0
"E(tend - t) = Xdes (Z-Id)

where Mg (-) and Lg(+) represent the Mayer and Lagrangian terms, respectively. The Mayer
term explicitly involves the initial and final conditions while the Lagrangian term is frequently
used to implement soft constraints on the control rate or minimize deviations from some
nominally optimal state and input trajectories. Equation (2.1b) represents the initialization
of the optimization problem at the current process conditions/states and can be understood
as the feedback mechanism to account for plant-model mismatch. In the absence of full state
measurements, this calls for estimating x () using a suitable state estimator?. Equation (2.1c)
represents the model integration to the end of the batch, and the terminal constraint, Equa-
tion (2.1d), specifies that the model should be driven to the desired end-point x4 in the
remaining batch time or f.,q — ¢. The minimizing control action is directly implemented on
the process over the interval [t, t + &), where § is the sampling period, and this procedure is

repeated until batch termination.

The evaluation of the objective function, Equation (2.1a), and terminal constraint, Equa-
tion (2.1d), necessitates the integration of the nonlinear model and optimization of the inputs
up to fenq at each sampling instance. Thus, the optimization problem becomes computation-
ally expensive regardless of the optimization strategy (sequential or simultaneous). Note
that in the absence of model uncertainties, the solution to the optimization problem is only
required at the first sampling instance because the solution at the j-th time step is simply the

initial solution trajectory from (j + 1)d to tenq (i.e., the “tail" of the solution - see Figure 2.1).

? A variety of state estimators that are capable of handling nonlinearities can be used such as the extended
Kalman filter, unscented Kalman Filter, or a moving horizon estimator. A review of these algorithms is beyond
the scope of this thesis.
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“tail" of the solution at k
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Figure 2.1: Illustration of the “tail" of a MPC optimization problem solution at sampling
instance k

With the presence of model uncertainties, the “tail" of the initial solution is no longer a
solution for subsequent MPC optimization problems. While the solution at a certain time
step can serve as a good initial guess for the next time step, significant computation time may

still be required to arrive at a solution in the presence of uncertainties.

While we present a “nominal” MPC formulation to emphasize the fact that the control
calculation at every instance requires the solution of the entire input trajectories, a min-max
dynamic optimization problem can, in principle, be employed to handle the problem of
uncertainties. The solution to such a min-max problem would be input trajectories from the
current time to the end of the batch that minimize (using the inputs as decision variables)
the maximum (over all realizations of the uncertainties) value of the objective function. This
added layer of optimization renders min-max based MPC approaches for batch processes
even more computationally expensive than the nominal end-point-based MPC formulation
in Equations (2.1a) to (2.1d) and motivates the development of a computationally efficient

and robust nonlinear MPC design for batch processes.

2.3 REVERSE-TIME REACHABILITY REGION-BASED MODEL

PREDICTIVE CONTROL

In this section, we present a nonlinear predictive controller for batch processes. The key idea
behind this design is to require the computation of only the immediate values of the inputs
while ensuring the desired end-point remains attainable throughout the batch. Preparatory
to the controller design, we first introduce the notion of reverse-time reachability regions
(RTRRs), which are essential in the control design and analysis. Initially, we assume no model
uncertainties to establish the fundamentals and then define robust RTRRs that explicitly take

model uncertainties into account.
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2.3.1 Reverse-time Reachability Regions

As previously discussed, the objective in batch processes is to reach a desired end-point, x ges,
and of interest is the set of states from where x4 can be reached. This set can be expressed

in the form of reverse-time reachability regions (RTRRs), which are formally defined below.

Definition 2.1 (Reverse-time Reachability Region): For the batch process described by Equa-
tion (1.1) without model uncertainties, the reverse-time reachability region (RTRR) at time t,
R(t), is the set:

RE) = x0 | xCto) = 50+ [ Fro0) 4 = xas Fue) U1 (1, tna]}

The RTRR at time ¢, R(t), therefore, consists of all process states from where the process can
be steered to x4 by the end of the batch (i.e., in a time f.,g — ¢) while satisfying the input
constraints. The reason behind naming this set the “reverse-time reachability region" is as
follows. Note that a reachability region for both batch and continuous processes is defined as
the set of states that can be reached from a given initial condition in a time ¢ subject to input
constraints. If the “reverse-time" version of the process is considered (i.e., x(t) = —f (x, u)),
and the reachability region for this reverse-time process is computed (setting the initial
condition as the desired end-point of the original process), this in turn yields the set of states
from where the desired end-point can be reached for the original process (and hence the

name reverse-time reachability region).

While R(¢) is defined allowing for u(t) to take values in ¢/, computation of the RTRRs
can only be carried out by discretizing the control action (i.e., subject to a control action
held constant for a predefined period of time). Below we define the discrete time version of
RTRRs where the control action is held for a time § at each sampling instance until batch

termination.

Definition 2.2 (Discrete Reverse-time Reachability Region): For the batch process described
by Equation (1.1) with sampling period, 6, and without model uncertainties, the discrete reverse-

time reachability region (RTRR) at time t = t,,q — 20, indexed by z, is the set:

R. = {x0 | %(tens) =0+ | 1 F () dr = g Fu(t) = {ulil} U

Vi=1,...,z}

where u[i] = u(id) and satisfies u(t) = u[i| Vt € [iJ, (i +1)9).

Generating Reverse-time Reachability Regions

One way to compute R is to scan the state-space and test the feasibility of an optimization

problem that requires the end-point constraint to be met subject to the input constraints
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and to include every state for which the optimization has a feasible solution. However, the
understanding of these sets as being the reachability regions of the reverse-time version of
the process allows their sequential determination (of an estimate) without having to solve

optimization problems.

In particular, for a given x4, the reverse-time process model, (i.e., x(t) = —f (x,u)),
can be integrated backwards in time for the duration of §, holding the value of the inputs
constant. Performing this integration for all possible (appropriately discretized) values of the
inputs (see Figure 2.2) in turn yields an (under) estimate of R, (the fact that the computation
yields an underestimate, however, does not negatively impact its use within the controller
design). A finer discretization in terms of the inputs naturally yields a better estimate of the
RTRR. R; can, in turn, be determined by repeating the process for all elements in R;, and

the process repeated to yield the RTRR for the initial time.

Uz . c .
e Discretization points
U (admissible u)
U2 max —0—0—0—0—0—0—0
® ©6 6 ¢ ¢ 6 o © o© o
® ©6 6 ¢ ¢ ¢ o © o© o
® ©6 6 ¢ ¢ ¢ o o o o
U2,min o—0—0—0—0—0—0—20
ul,min U1,max U

Figure 2.2: Illustration of discretized u between ui, and #m,y for 2 inputs.

The computational demands of generating RTRRs increase when computing R, com-
pared to R; (since R; is the set of initial conditions from where a state in R; can be reached,
compared to R;, which is the set of initial conditions from where only a single point, X ges,
can be reached). In general, the increase in the computational demands is related to the
increase in size of the RTRRs as we go back in time. However, it is worth noting that the size
of these sets does not necessarily grow as fast when going back in time for processes where

the desired end-point is an equilibrium point (i.e., continuous processes - see Remark 2.3).

In addition to being dependent on the size of the previously generated RTRR, the compu-
tational demand is also generally dependent on the number of process states and inputs. For
processes with a high number of states, the required computational effort is influenced by the
efficiency of the integrator as well as its ability to handle large scale systems. In these cases,
one of the host of efficient large scale integration software available in the public domain
(see [27]) can be utilized. While a higher number of states makes the RTRR generation more

complex through internal computations (i.e., the Jacobian) performed by the integrator, the
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number of inputs affects the number of necessary integrations. The number of integrations,
in fact, grows exponentially with the number of inputs. The generation algorithm, however,
has an important feature in that integrations of the (reverse-time) model equations may be
done independently for different values of the inputs and initial conditions. Accordingly,
to alleviate potential computational issues associated with having a high number of inputs,
starting from a given RTRR, the integrations may be done independently, which, in turn,
implies parallel computing schemes can be readily employed to significantly reduce the

computation times.
Pseudo-code on the construct of RTRRs is presented in Algorithm 2.1 to clarify the
algorithm described in this section. First, we establish some of the algorithm notations. Let:
o z:= (tena — t)/8 ={0,..., Z} index the sampling instances
o Nyisc be the number of combinations of the inputs following their discretization

o Ugisc € R™Ndisc be a matrix holding the discretized inputs

Algorithm 2.1 RTRR GENERATION WITHOUT MODEL UNCERTAINTIES

Require: x4e5, Ugise, 6
z<0
X < Xdes
forz=0toz=Zdo
n, < number of columns in X,
fori =1to n, do
for j = 1to Ny do
x, < i-th column of X,
u* « j-th column of U,
X =X) +f05 —f(x,u") dr
Store x_, in X ;4 (column-wise)
end for
end for
end for
return X1, X5, -, X'z as point set estimates of Ry, R, -+, Rz

Remark 2.1: The RTRR generation algorithm outlined above describes how RTRRs can be
constructed via only integrations of the reverse-time model of the system, x(t) = —f(x, u).
With the assumptions that —f(x, u) is continuous on (x,u#) and is locally Lipschitz in x
on D x U (see Section 2.2.1), the continuity of the solutions of x(¢) = —f(x,u) in terms of
the initial conditions and inputs is guaranteed. As a result, these assumptions ensure that
RTRRs generated at each sampling instance will be compact sets. While these continuity
assumptions ensure against disjointed sets, no such general assumptions can be made to

guarantee the convexity of RTRRs.
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Remark 2.2: Existing Lyapunov-based control designs can be very well used in the context
of batch process control; however, the fact that the desired end-point in a batch is typically
not an equilibrium point precludes the use of Lyapunov-based techniques to determine the
set of initial conditions from where a desired end-point can be reached in finite time. To
begin with, the basic assumption in Lyapunov-based control designs, that of f(xges,0) = 0, is
not satisfied in the case of batch processes. Note that this cannot be achieved by a coordinate
transformation because x4 is simply not an equilibrium point of the process. Of course,
a positive-definite function V. can be defined such that V. (x4e5) = 0. The set of states for
which V. can be made negative, however, does not form a neighbourhood around x 4,
which, in turn, precludes the construction of “invariant" sets around x 4;. In summary, in
contrast to continuous processes where the desired operating point is an equilibrium point,
Lyapunov-based techniques do not allow for computing the set of states from where the

process can be guaranteed to be steered towards the desired end-point.

Remark 2.3: While seemingly conceptually similar, RTRRs in the context of continuous
processes are inherently different from those in the context of batch processes. In particular,
when considering stabilization to an equilibrium point, the RTRRs, with the time tending to
infinity, yield the so called null-controllable regions (the set of initial conditions from where
a process can be stabilized at an equilibrium point). For stabilization at an equilibrium point,
R(t1) ¢ R(t,) when # < t, (see Figure 2.3).

R(t)
X2

R(t2)

X1

Figure 2.3: llustration of R(#;) c R(t,) when #; < t; and x4 is an equilibrium point

To understand this, consider the set of states which constitute R(t,); there naturally
exists a subset of states within R (,) that can be steered to X 4¢s in a time fe,q — £, and simply
kept there until f,q as x4e is an equilibrium point. The set of points for which this time is
equal to f.ng — t; constitutes R(#;). In contrast, when x4, is not an equilibrium point, just
because a point is in R(#;) does not ensure that it is in R(#,) since the process cannot be

“parked” at x ges.

Remark 2.4: The presence of input constraints has significant implications on the ability to
control continuous (e.g., see [28]) as well as batch systems. Despite their differences, one

common property among null-controllable regions for continuous processes and RTRRs
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for batch processes is that they are both dependent only on the process dynamics and input

constraints and do not depend on a specific control law.

2.3.2  Reverse-time Reachability Region-based Model Predictive Controller

A predictive controller that utilizes explicit characterizations of RTRRs is presented in this
section. To this end, consider the process described by Equation (1.1) for which the RTRRs
have been characterized for a given x4es. The control action at sampling instant z := (feng —

t)/d is computed by solving the optimization problem shown below.

min Jg (2.2a)

u[z] el
subject to: £(0) = x(t) (2.2b)
#(8) = #(0) + /0 " (& u2]) dr (2.20)
#(8) € Ry (2.2d)

The objective function Jr can be chosen to meet desired performance objectives. For instance,
to minimize discrepancies between the state trajectories and some nominally optimal state

trajectories, xpom, and prevent against large successive input changes, a possible Jp is:

é
JR:fO 1%(7) = *nom(7) |2 dT + |u[z] - u[z +1]|4 (2.3)

—
=)

%, refers to the weighted norm, defined by || x|z = x'Ex. The matrices,

where the notation, || - |
E and II, are positive-definite weighting matrices to trade-oft the relative importance of the
2 terms. As evidenced by Equation (2.2d), implementation of the RTRR-based controller
necessitates an explicit characterization of RTRRs. By definition, RTRRs take the desired
end-point into account; consequently, any existing terminal constraints in end-point-based
MPC designs can be replaced with a constraint that requires, at each sampling instance, the
process states to remain in the RTRR at the next sampling instance (Equation (2.2d)). The
key idea behind this is to maintain the states within RTRRs for the duration of the batch as
shown in Figure 2.4. Implications on the reachability guarantees to the desired end-point

through this replacement are formalized in Theorem 2.1.

R(to) R(f0+8) R(t0+28)
< ) O
[} [ ) { e [ ]
C/ Xdes
Time
to to+0 to + 20 fend

Figure 2.4: Illustration of the key idea behind the RTRR-based MPC design. The RTRR
characterizations are shown as ellipsoids for illustrative purposes.
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Theorem 2.1: Consider the batch process described by Equation (1.1) without model uncertain-
ties under the RTRR-based controller in Equations (2.2a) to (2.2d). Ifand only if x(t() € R(to),
the MPC optimization problem remains feasible V't € [to, tenq] and x(teng) = X es.

Proof: (Necessity) We first show the only if part of the theorem. To this end, consider
an initial condition x(¢y) ¢ R(tp). If the constraint of Equation (2.2d) is feasible and it
is implemented in closed-loop, then there exists a sequence of inputs that takes the states
to Xges DY feng> in turn implying that x(#p) € R(tp). This argument can be repeated at
every sampling instance, eventually leading to the optimization problem in Equations (2.2a)
to (2.2d) remaining feasible V¢ € [#g, fenq] and x(feng) = Xqes only if x(29) € R(tp).

(Sufhiciency) We now show the if part of the condition. To this end, consider the case
when x(ty) € R(ty). By definition, there exists a sequence of inputs that takes the states to
Xdes DY tend. For such a sequence of inputs (and the associated state trajectory), this must
imply that the state trajectory at ¢ + 0 resides within R (o + §) (invoking the necessity of
the condition proved earlier for x (o + §)). In essence, this implies that there exists a feasible

solution to the constraint of Equation (2.2d). This completes the proof of Theorem 2.1.

The statement of Theorem 2.1 essentially formalizes that the existence of the states in
RTRRs is a necessary and sufficient condition for the states to be steered to the desired
end-point. The necessity of the condition has an important implication in that if at any time
during the batch, the states are driven outside the RTRRs, the desired end-point simply
cannot be reached. In other words, the condition of continued existence in successive RTRRs
cannot be relaxed because if the states go outside the RTRRs, it is simply not possible (whether
using the proposed RTRR-based predictive controller or any other control law) to steer the
states back into the RTRRs and then to the desired end-point by the batch termination time.

Remark 2.5: When using Algorithm 2.1, the true RTRRs are estimated as point sets. Depend-
ing on the specific process under investigation, the shape and orientation of the point sets
may permit different strategies for their explicit characterization technique. In any case, the
explicit characterization must be either an exact characterization (which is unlikely) or an
underestimate of the true set. With a characterization that represents an overestimate, a state
vector can be incorrectly identified as belonging to the true RTRR. Hence, the constraint in
Equation (2.2d) can be satisfied initially even when the states are not contained in the true
RTRR, invalidating the guarantees of successive feasibility of the MPC optimization problem.
In contrast, if the explicit characterization is an underestimate (generated appropriately), suc-
cessive feasibility of the optimization problem can be still guaranteed. This idea is illustrated

in Figure 2.5.
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Overestimate of R,

X2
° Misclassified point

nderestimate of R,

True R,

X1

Figure 2.5: Illustration of a misclassified point as a result of an overestimated RTRR. Note
that the underestimate prevents against misclassification.

Remark 2.6: With the attainment of the desired end-point achieved via Equation (2.2d), the
objective function in the MPC formulation can be utilized to satisfy performance (as shown
in Equation (2.3)) or even robustness objectives. Specifically, to enhance disturbance rejection
and robustness, the objective function can be used to penalize the Euclidean distance between
the process states and the centres of the RTRRs. This would tend to drive the states through
the RTRR centres, thereby reducing the chances of disturbances driving the process to a

point from where the desired end-point becomes unreachable.

2.4 ROBUST REVERSE-TIME REACHABILITY REGION-BASED

MODEL PREDICTIVE CONTROL

The reverse-time reachability regions (RTRRs) in the previous section are estimated by inte-
grating the reverse-time process model; consequently, the shapes and sizes of the estimated
regions are sensitive to modelling errors. Due to the possibility of discrepancies between
the estimated and true RTRRs in the presence of modelling errors, there is the potential of
misclassifying states as being contained within a true RTRR. In such cases, the reachabil-
ity guarantees provided by the nominal RTRR-based controller do not hold, and its direct
application could very likely result in off-spec product and a wasted batch. In this section,
we redesign the nominal RTRR-based predictive controller to explicitly account for model

uncertainties by incorporating bounds for the uncertainties in the generation of RTRRs.

2.4.1 Robust Reverse-time Reachability Regions

In order to define robust RTRRs, we first note that in batch process control, the implication
of model uncertainties is that in general, exact end-point reachability guarantees cannot be
made, regardless of the control law. Instead, only reachability to a certain neighbourhood

around the desired end-point can be guaranteed.
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To understand this, consider a batch process described by Equation (1.1) subject to a
predictive controller. At time t = te,q — §, the MPC optimization problem is solved to
compute the inputs that drive the process to the desired end-point in time § for nominal
values of the uncertainty, wyom. However, if the same control moves are implemented on the
process, there is no guarantee that the process will be driven to x4 because it is unknown if

Wnom represents the actual realization of the uncertainties. This is illustrated in Figure 2.6.

B(xdes)

Model | Wnom

Plant | w # Whom

x(tend - 6) ( )
® X(fend

Time

fend — ) fend

Figure 2.6: Illustration of the effects of uncertainties on batch process control. The vector
Waom denotes the nominal realization of the uncertainties that is assumed for the
control calculation, but it may not equal the actual realization w.

Based on this argument, a desirable property of a robust MPC design is to guarantee the
existence of inputs to drive the states inside a neighbourhood around the desired end-point,
which is denoted by B(x4es). This neighbourhood can be chosen based on the acceptable
level of variance in the desired end-point quality. Accordingly, of interest is the set of states
from where B(x4es) can be reached in the presence of model uncertainties while satisfying

input constraints. These sets are termed robust RTRRs and defined below.

Definition 2.3 (Robust Reverse-time Reachability Region): For the batch process described
by Equation (1.1) with sampling period, 8, the robust reverse-time reachability region (RTRR)
at time t = t,,q — 20, indexed by z, is the set:

~ ten
R ={x0 | x(tena) = x0 + / df(x,u,w) dr € B(x4es) VW(T) e WV T € [t tonal
t
Ju(t) ={ul[i]}eUVi=1,...,2}
where u[i] = u(id) and satisfies u(t) = u[i|Vt € [i, (i +1)0).
Note that for the special case of z = 0, R, is defined to be B(x4cs ). Prior to presenting an

algorithm to generate robust RTRRs, the existence of these regions must first be established.

This is formalized in Theorem 2.2.
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Theorem 2.2: For the batch process described by Equation (1.1), given VW and a non-empty
R._1, there exists a sampling period, 8*, such that for any § < 8*, R, # @ (i.e., R, is non-
empty).

Proof: Consider an element x,_; om in the interior of R ,_1 and the point x; nom given by3 :

t+0
Xznom = Xz—L,nom + f — (%, ttnom> Wnom) dT
t

where ¢ is to be determined and w0y and wye, are nominal values of the inputs and
uncertainties, respectively. It follows that

t+4
Xz-tnom = Xznom + [ f(x, unom> Wnom ) d7

Define:

t+6
Xz-1=Xznom T , f(x’ Unom> W) dr

i.e., x,_ is the state vector at t + §, starting at t from x, om subject to the actual realization
of the uncertainties. From the continuity of f(-) on (x, u, w) and that it is locally Lipschitz
in x on D x U x W, the continuity of solutions of x(¢) = f(x, u, w) from x, with respect to
parameters (and therefore, the uncertainties) follows from [29, Theorem 3.5]. From the proof
of [29, Theorem 3.5], it follows that given a desired bound on the discrepancy between the
evolution of the nominal and perturbed system (i.e., | X1 = Xz-1,nom | < p*), there exists a
value §* such that if the sampling period, § < §* then it is guaranteed that |[x,_; —X,_1 nom| <
p*. Therefore, x, nom is an element of R, showing R, # @. This completes the proof of
Theorem 2.2.

In the absence of model uncertainties, the existence of non-empty RTRRs is guaranteed
simply from the existence of a solution over a finite time. When considering uncertainties,
however, the size of the robust RTRRs depends on the size of the desired end-point neigh-
bourhood and also the sampling period in the batch. For example, if we consider a fixed
B(x4es ), robust RTRRs may cease to exist as we proceed towards the initial time if the given &
is too large. Theorem 2.2 is therefore important in establishing the trade-off between B(x ges)
and 8. From a practical perspective, for a specified B(xges ), the result of Theorem 2.2 implies
that the sampling period can be used to mitigate the reduction in the size of robust RTRRs as

we proceed towards the initial time.

3By the interior of R,_;, we mean there exists a prsuchthatZ,; = {x|||lx —x.-1| <p*} c R,
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Generating Robust Reverse-time Reachability Regions

Next, we develop a methodology to sequentially generate robust RTRR estimates offline.
More specifically, starting at z = 1, for a given B(x4e;), an explicitly characterized estimate of
R is identified from where the process can be driven inside R, in the presence of model
uncertainties. The explicit characterization is also a necessity for the practical implementation

of the MPC formulation to be presented in the next section.

In this work, we use n-dimensional ellipsoids to mathematically express estimates of

robust RTRRs at each sampling instance as show below*.
R.~{x||x- EZ||%Z <1} (2.4)

where the vector ¢, € R” denotes the ellipsoid’s centre point, the positive-definite, symmetric
matrix P, € R™" defines its size and orientation, and z indexes the batch sampling instances
as before. Note that because z = 0 corresponds to teng, €0 = Xges and Py is a user defined

matrix based on the acceptable variance level of the final product quality.

To determine if an ellipsoid defined by (EZ, f’z) is a valid estimate of R, we solve, for a
given &, W, and R, estimate defined by (c"z_l, f’z_l), the following multi-level nonlinear

program (NLP):

min J;=0 (2.5a)
X0
subject to: ||xo — EZ||%Z <1 (2.5b)
21 (2.5¢)
i —1%(8) = &2
min I = ||%(5) CZ‘1|PZ-1 (2.5d)
8
subject to: () = xo + / f(%,u,w)dr (2.5€)
0
_E = 2
max J3 = |%(8) = &5, (2.5)
. b
subject to: x(8) = xo + / f(x,u,w)dr (2.5g)
0

If this NLP is infeasible, we deem the estimate to be a valid robust RTRR. To understand this,
consider the different levels of the NLP. For a given initial state within R ,_j, x¢, the 2 bottom
most layers solve the (min-max) robust control problem. In other words, the bottom 2 levels
compute the inputs that, for the worst-case realization of the uncertainties, drive the states
to the lowest level set of the n-dimensional RTRR ellipsoid at the next sampling instance.
The top level problem then searches over all initial conditions within the given R, to find

(if they exist) initial conditions for which the states at the next sampling instance end up

4Note that our results are not limited to this choice of the characterization; the use of n-dimensional ellipsoids
is simply to illustrate our results.
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being driven outside the robust RTRR at the next sampling instance. If the NLP is feasible, it
implies that there are no guarantees that the process starting within the given estimate of
the robust RTRR will be driven inside the robust RTRR at the next sampling instance in the
presence of uncertainties even when implementing the robust control action. On the other
hand, if the problem is infeasible, this implies that for every initial condition in the given
robust RTRR, the states are always contained within the robust RTRR at the next sampling
instance, even for the worst-case effect of the uncertainties. An infeasible solution therefore

represents that a valid robust RTRR estimate has been found.

In principle, one can add another layer to the NLP wherein (Ez, f’z) are decision variables
and the objective is to maximize the “volume" of the n-dimensional ellipsoid. Even if carried
out offline, the determination of the largest robust RTRR ellipsoid would become an unwieldy
problem. In this work, we address this problem by appropriately pre-selecting (EZ, f’z).
In particular, Algorithm 2.1 is first performed for 1 sampling period with points in R,
substituted for x4 to yield a point set. That is, the system is reverse-time integrated from
all the elements in R,_; (using nominal values of the uncertainties) and all possible input
combinations (after discretization)®. Then, a minimum volume enclosing ellipsoid (MVEE)
is found that best covers this point set. This ellipsoid can be found by solving a convex
optimization problem as shown in [31, Chapter 8]. The resulting ellipsoid is the starting
( ¢z 132) for the NLP in Equations (2.5a) to (2.5g). If the NLP is feasible for this ellipsoid, the
ellipsoid is scaled down by pre-multiplying the ellipsoid matrix by a coefficient greater than
1, and the problem is resolved until the NLP becomes infeasible. On the other hand, if the
problem is infeasible to begin with, the set is scaled up and this process is repeated until the
NLP becomes feasible. The final ellipsoid obtained through this (iterative) procedure then
represents the (approximately) largest estimate of the robust RTRR, given the pre-selected

orientation and centre point of the ellipsoid. The iterative procedure is shown in Figure 2.7.

Remark 2.7: The problem of determining robust RTRRs cannot be addressed by extending
the method for generating nominal RTRRs by reverse-time integrating for discretized values
of the uncertainties. The only conclusion that can be drawn for a point in such a set is that
there exists a pair of inputs and realization of the uncertainties such that the process can
be driven to the RTRR at the next sampling instance. No guarantees can be made for the
existence of inputs for any allowable realization of the uncertainties. This necessitates the
development of the multi-level optimization-based method proposed in this section. Note
also that the objective in this work is not to characterize the true robust RTRR (that is to
determine all points that are contained within the robust RTRR) but to generate a workable
estimate for which the existence and determination of the inputs to drive the process inside

the next robust RTRR can be guaranteed.

> Algorithms for generating uniformly distributed points inside an ellipsoid are reviewed in [30].
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R, ellipsoid: (c“z,l, P, )

Generate points inside R, ellipsoid

Point set: X',

Apply Algorithm 2.1 for § |

Point set: X,

MVEE optimization problem:
9 50
i Jum = log (det Pz)

ztz

subject to: |x,; — Eng—,g <1
(&,P.)

NLP in Equations (2.5a) to (2.5g) I

Yes | Scale R ellipsoid:
y— ~

— 5
Feasible? P, =y.,P, where y, > 1

No

Accept R, ellipsoid

Figure 2.7: Iterative procedure to determine the R, ellipsoid estimate

2.4.2 Robust Reverse-time Reachability Region-based Model Predictive Controller

In this section, we present a MPC design that utilizes robust RTRR estimates to steer a batch
process inside a desired end-point neighbourhood. As with the RTRR-based formulation,
most of the computational burden associated with this design is offline, and the controller is
therefore amenable to online implementation. To this end, consider a batch process described

by Equation (1.1) for which robust RTRR estimates have been characterized (as ellipsoids).
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The control action at sampling instance z := (feng — t)/6 is computed by solving the following
bi-level NLP:

min g (2.62)
subject to: £(0) = x(t) (2.6b)
#(8) = #(0) + /:)Bf(i,u[z],w) dr (2.6¢)
|%(8) - &3 <1 (2.6d)
max Jy, = £(8) - &llp_, (2.6¢)
subject to: #(8) = #(0) + /0 " (% ulz],w) dr (2.6f)

where the objective function, ], can take the form in Equation (2.3). This NLP is formulated
in a similar fashion as the bottom 2 levels in the robust RTRR generation NLP in Equa-
tions (2.5d) to (2.5g). Following initialization at the current process states (Equation (2.6b)),
the worst-case realization of the uncertainties are found from the maximization problem in
Equations (2.6e) to (2.6f). The worst-case realization is defined to be the one which drives
the states to the highest level set of the R,_; estimate. For this worst-case realization, the top
level searches for inputs that minimize the objective function while ensuring that the states
at the next time step are contained within the corresponding robust RTRR estimate. The
algorithm used to compute the robust RTRR estimates guarantees the feasibility of this MPC
optimization problem with full state feedback. Additionally, by definition, robust RTRRs take
into account the requirement to drive the process to a desired end-point neighbourhood. The
implications on the guarantees of feasibility and driving the system to a desired end-point

neighbourhood are formalized below in Theorem 2.3.

Theorem 2.3: Consider the batch process described by Equation (1.1) under the robust RTRR-
based controller in Equations (2.6a) to (2.6f) with full state feedback. If x(ty) € R(to), the
MPC optimization problem remains feasible for all t € [ty, tonq] and x(teng) € B(%ges)-

Proof: 'The sufficiency of the condition in Theorem 2.3 can be shown by considering any
x(ty) € R(to). From the properties of the generation algorithm for R(t), there exists a set
of inputs that take the states inside R (¢ + &) in a time &. Repeating this for the duration of
the batch implies that the states are driven inside B(Xges) by feng for all possible realizations
of the uncertainties. In essence, this implies that there always exists a feasible solution to the
MPC optimization problem in Equations (2.6a) to (2.6f) Vt € [ g, tend] and x(feng) € B(Xdes)-
This completes the proof of Theorem 2.3.

In Theorem 2.3, the condition, x(ty) € R(to), guarantees the existence of a sequence of

inputs (via guaranteed feasibility of the robust RTRR-based MPC optimization problem)
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to drive the states inside B(x4es) in the presence of uncertainties. This condition, however,
is not a necessary condition for driving the states inside B(x4.s) even if we consider exact
characterizations of the true robust RTRRs. Consider the case where x(t,) ¢ R(t). While
we cannot guarantee the existence of a sequence of inputs to ensure x(feng) € B(xges), this
sequence may still exist because it might be possible to drive the states inside B(x4es) for
some realization of the uncertainties (if not for all realizations as required by the robust
RTRR definition). The theorem, however, does establish that the robust RTRR-based MPC

problem will remain initially and successively feasible and drive the process inside B(x4es)-

Remark 2.8: One characteristic of batch processes is that the desired end-point, which is
based on the values of quality variables at batch termination, typically remains consistent
batch-to-batch unless a new product is being manufactured. The main source of variation
between batches is usually the initial condition as this is dictated by raw material properties,
which are subject to variance depending on their source. The robust RTRR-based controller is
designed with these key properties in mind as robust RTRRs are generated for specific values
of the quality variables at batch termination and also provide an explicit characterization of
initial conditions for which the desired end-point quality can be met. Note that if the end-
point quality is subject to change and discrete values of the other possible end-point qualities
are known, robust RTRRs corresponding to all possible desired end-points can be generated

beforehand and the suitable robust RTRRs can be used during controller implementation.

2.5 SAFE-STEERING FRAMEWORK

In the previous section, we first presented a (robust) RTRR-based predictive controller that
was designed with a fault-free assumption. As discussed in Section 2.1, for batch processes,
the problem of fault tolerance is fundamentally different than in continuous processes.
Specifically, a FTC framework for batch processes must be designed with the desired end-
point in mind, which is rarely an equilibrium point. In this section, we utilize the (robust)
RTRR-based MPC design to develop what we call the safe-steering framework. First, the

safe-steering problem is formulated and then the safe-steering framework is presented.

2.5.1 Problem Definition

For processes described by Equation (1.1), we consider faults in the control actuators under
the assumption that upon failure, the available control effort is reduced. Without loss of
generality, we characterize the fault occurring in the first control actuator at a time g
which is repaired at time, trepair a8 #1,min, fault < 41(#) < U1 max, fault Y € [ Fault> Frepair) Where
u; denotes the i-th component of # and u; yin, fault a0d U] max, faule denote the minimum and

maximum values of u; during the fault (respectively)®.

SIf £, is not an integer multiple of the sampling period, it can be taken to be at the upcoming integer
multiple, and the safe-steering framework can be implemented as presented in this section.
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Reduced control effort corresponds to a situation where 1) min, fault > %1,min and U1 max, fault <
U1 max, fault @5 sShown in Figure 2.8. In the case where an actuator reverts to a completely open

or shut position, we have u; nin fault = Y1,max, fault-

uz .. .
, , Admissible u during fault
1 1
1 1 U (fault-free admissible u)
U2, max
1 1
1 1
Uz max,fault == = === == ‘iaininiaininininl === -
1 )
1 1
1 1
U2 min,fault =f= =9 ===== ‘I' --------- : ------ --
. 1 1
U2 min T T
1 1
1 1
1 1
1 1
1 1

U1, min U1, min,fault Ul,max,fault  U1,max U

Figure 2.8: Illustration of the reduced available control effort during a fault. Note the smaller
area corresponding to the admissible # during the fault.

We define the safe-steering problem as the one of identifying a sequence of the functioning
inputs during the fault rectification period (without requiring the value of t epair Or an estimate
thereof to be known a priori) in the presence of model uncertainties that will ensure the

process can be driven inside B(x4es) upon recovery of the full control effort.

2.5.2  Safe-steering to a Desired End-Point Neighbourhood

The key idea in the safe-steering problem is to preserve the states within robust RTRRs
during the failure period by employing the robust RTRR-based MPC design. By doing so,
the robust RTRR-based MPC design is able to drive the process inside B(x4s) following
fault repair. Note also that the ability to steer the process inside B(x4.s) after fault repair is
dependent on the duration of the fault. To this end, consider a batch process described by
Equation (1.1) for which the first control actuator fails at ¢, and is repaired at tepair, and
the robust RTRR estimates for fault-free operation have been characterized for all sampling
instances in the fault rectification period. We formalize the requirements for safe-steering
the batch in Theorem 2.4.

Theorem 2.4: Consider the batch process described by Equation (1.1) with x(ty) € R(to)
under the robust RTRR-based controller in Equations (2.6a) to (2.6f). If the MPC optimization
problem remains feasible V't € [tgur trepair]s then x(tenq) € B(X ges).

Proof: 'The proof of this theorem follows from Theorem 2.3. Equating trepair to to results in
the satisfaction of the requirements of Theorem 2.3, and therefore, the MPC optimization
problem in Equations (2.6a) to (2.6f) continues to remain feasible Yt € [frepair» tend] and

X(tend) € B(xges) follows. This completes the proof of Theorem 2.4.
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The key idea formally expressed in Theorem 2.4 is that if a fault is repaired sufficiently
fast, meaning if there exists an implementable sequence of inputs during the fault repair
period and one after fault repair, the robust RTRR-based MPC design finds this sequence
via preserving the states within robust RTRRs. The implication of this is that process states
at trepair Will then belong to R(trepair), and according to the definition of robust RTRRs,
the process can then be driven inside B(x4c;). Therefore, maintaining the process within
the robust RTRRs provides a sufficient condition to ensure that B(x4.s) can be reached
upon fault recovery. In other words, the proposed robust RTRR-based MPC design is able to
identify the sequence of inputs during faulty operation (if one exists) that will enable reaching
B(x4es) upon fault recovery. In contrast, end-point-based MPC approaches can fail to find
this sequence even if it exists. The end-point-based MPC problem can become infeasible
because it simply may not be possible to satisfy the terminal constraint with reduced control
effort, which implies (appropriately truncated) infeasible solutions have to be implemented
on the process. By repeatedly applying saturated versions of the infeasible solutions during
the failure period, the states can be driven to an unrecoverable point from where reaching

B(x4es) is impossible even after fault recovery.

Theorem 2.4 provides sufficient conditions for fault-tolerant control in batch processes.
To address the issue of necessary conditions, we note that if the fault is repaired too late, it can
become impossible to preserve the states within robust RTRRs using reduced control effort at
some point between fg,j¢ and trepair. In this case, the states escape the robust RTRRS by trepairs
however, this does not necessarily imply that the states at batch termination will be outside
B(x4es ). This is because the states at trepair in this situation could reside in a region for which
there exists a specific realization of the uncertainties and corresponding sequence of inputs
that can drive the process inside B(x4e). This can occur since X (trepair) € ﬁ(trepair) isa

sufficient but not necessary condition for driving the process inside B(% ges).

Remark 2.9: The safe-parking and safe-steering frameworks for continuous and batch sys-
tems, respectively, address the problem of how to operate a process during fault recovery,
and both frameworks address the kind of faults that prevent the desired plant operation
under nominal control laws. Safe-parking handles faults that preclude operation at a nominal
equilibrium point while safe-steering addresses the kind of faults that preclude driving the
states to a desired end-point. The safe-steering and safe-parking framework both answer
the question of how to compute the inputs between fault occurrence and recovery such that
the desired nominal operation can be preserved or resumed. This is where the similarity
between the approaches ends. In the presence of faults that prevent operation at a desired
equilibrium point, safe-parking [16, 25] involves transition to a new safe-park (equilibrium)
point that allows the transition back to the nominal equilibrium in some optimal way fol-
lowing fault recovery. Prior to considering any optimality criteria regarding the transitions,

the safe-parking framework must locate the feasible operating points that allow such tran-
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sitions, and the main criteria used in locating these “safe-park points” is the existence of
such equilibrium points and then preserving process stability by utilizing stability region
characterization [14, 32] for the nominal and safe-park points. In particular, the nominal
equilibrium point must be contained within the stability region of the safe-park point and
vice versa. Neither the safe-park points, nor the controller designs for continuous processes
or the associated stability regions remain applicable in the context of batch processes. In
particular, the primary concern in the safe-steering framework is reachability. In the absence
of equilibrium points, the process cannot be “parked"”, but possibly “steered” in a way that al-
lows for desired end-point reachability if the fault is rectified sufficiently fast. This is achieved
in the safe-steering framework via using the proposed robust RTRR-based MPC design.

2.6 SIMULATION EXAMPLE: FED-BATCH REACTOR

In this section, we first consider a fault-free environment and demonstrate the need for
accounting for uncertainty when using a RTRR-based control design. We then illustrate the
safe-steering framework by considering an actuator failure. To this end, consider a fed-batch

reactor where an irreversible, first-order exothermic reaction of the form:
ka
A— B

takes place. The state-space model (derived using regular modelling assumptions) for this

process takes the following form:

E/(1 1 -
xl(t):—kAoexp{—(———)}x1+M (2.7a)
R\Trx x, X3
- - E/(1 1 AH
=0 ) o (B(1 DY ns
pCpx3 X3 R\Tr x2/) pC,
fC3(t) = Uy (2.7¢)

The states are the concentration of reactant A, reactor temperature, and volume, which are
4

denoted by C4, T, and V (respectively); thus, we have: x = [C 2w T V] . Uncertainties in

the inlet temperature, Ti, (K), and the heat exchanger coeflicient, UA (cal/(h - K)), of +5%

4
around their nominal values were considered. That is, w = [Ti UA] with bounds defined

by Wiin = [278.35 9.50 x 103], and Wiy = [307.65 1.05 x 104],- The uncertainty in T,
is representative of a process disturbance whereas the heat transfer coefficient is a model
parameter that is often not known precisely and varies with time due to the effects of fouling.
The inputs were taken to be the heating coil temperature Ty (K), and inlet feed rate, F (L/h);
thus, we had u = [ThX F], with constraints, #y,i, = [0 285], and U = [25 400],. The

physical meaning of the model parameters and their nominal values can be found in Table 2.1.
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Table 2.1: Parameters of the fed-batch reactor model in Equations (2.7a) to (2.7¢)

Parameter  Description Value Unit
ka0 Reaction rate constant at T for A — B at Ty 0.15 1/h

E Activation energy for A — B 10* cal/mol
Tr Reference temperature at which ko is computed 290 K

Cao Inlet A concentration 5 mol/L
UA Heat transfer coeficient x Area 10* cal/(h - K)
P Density of the solution and inlet feed 1 kg/L

Cy Heat capacity of the solution and inlet feed 65 cal/(kg - K)
T; Temperature of inlet feed stream 293 K

AH Heat of reaction A — B —4000 cal/mol
R Universal gas constant 1.986  cal/(mol - K)

To demonstrate the applicability of the proposed RTRR-based controllers with limited
measurements, we considered the case where only noisy measurements of T and V were
available, y = [T V]l. The noise was assumed to be normally distributed with zero-mean
and standard deviations of 0.15 and 0.05 for T and V, respectively. To estimate C4 using
these measurements, an extended Luenberger observer (ELO) of the form shown below was

used’.

J%(t) = f(%, 4, Wpom) + L(y — ) (2.8a)
§=Ck (2.8b)

A A A ! A A !
where x = [C 4 T V] and y = [T V] denote vectors of the estimated states and outputs
(respectively), L is an ELO gain matrix, and C is given by:

010
0 0 1

For this example, the model was successively linearized at the current state estimates, the
computed input values, and the nominal realization of the model parameters and uncer-
tainties, and L was computed using the typical procedure used for linear dynamic systems.
Specifically, the eigenvalues of the matrix, A — LC, were placed on the left side of the complex

plane where the (i, j) element of A was given by:

i

a,-,j =
ax] X,U,Wnom

"This meant that the observer system in Equations (2.8a) to (2.8b) was simulated along with the plant, and
the states of the observer system were used to initialize the controller.
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where f; is the differential equation associated with state i. A schematic of this process is

given in Figure 2.9.

Controller
£(1)
State Estimator: ELO

Sensors: T,V

Figure 2.9: Schematic of the fed-batch reactor process

The primary control objective considered was to achieve the desired end-point of x 4.5 =
[0.1 465 65],. The desired neighbourhood around x4es, B(%4es), was chosen to be an
ellipsoid with Py = diag {104, 4, ll.li} and €y = x4es. The total batch time was taken to be
tend = 0.5 hours with a sampling period of § = 0.01 hours.

2.6.1 Fault-free Closed-loop Results

To demonstrate the need for accounting for uncertainties, closed-loop simulations were
performed using the nominal RTRR-based MPC design in Section 2.3.2 and the robust
design in Section 2.4.2 under fault-free conditions. First, for the given B(x4¢; ), bounds of
the uncertainties, and input constraints, nominal and robust RTRRs were generated and
characterized with ellipsoids for all sampling instances using the algorithm described in
Section 2.4.1%.

The nominal RTRR-based MPC formulation could encounter infeasibility (due to the
reachability constraint) since the nominal RTRRs were generated assuming no model un-
certainties. Additionally, while the robust RTRR-based formulation explicitly accounted
for uncertainties, state estimation errors could potentially result in its MPC optimization
problem turning infeasible. To avoid this infeasibility problem, the desirable reachability
properties of the controllers were achieved through the objective function (as opposed to

hard constraints) wherein the deviation between the process states and the centre of the

$When generating RTRR ellipsoids without uncertainties, the lowest layer of the NLP in Equations (2.5a)
to (2.5g) was removed.
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RTRR ellipsoid at the next time step was penalized”. The final form of the objective function,

which also included a move suppression term, took the following form:

Jiriy = 1%(8) = Elg,  + |ulz +1] - ul2] %

Using this objective function was useful for ensuring the process states were maintained in a

region of the state-space from where the control objective was always within reach.

The tuning parameters, initial conditions, and results for both controllers are summarized
in Table 2.2. The initial states and their estimates were both chosen such that they resided in
the suitable (nominal or robust) RTRR at ¢.

Table 2.2: Tuning parameters, initial conditions, and results for the nominal and robust
RTRR-based MPC designs in a fault-free environment

Nominal RTRR-based MPC  Robust RTRR-based MPC

Move suppression matrix, IT: diag {5 x107%,9 x 10_4}
ELO eigenvalues: {-0.9,-1.05,-1.1}

! !
Initial states, x(0): [2.65 27516 59.88] [2.65 279.40 58.48]
Initial state estimates, £(0): [2.68 276.79 59.09] [2.66 28102 58.69]
Mean CPU time/MPC calculation:" 0.146 seconds 1.507 seconds

! !
Final states, % (fend): [0.19 466.45 64.21] [0.099 464.84 64.82]
| % (tena) = Eoll3,: 82.16 0.49

T This was computed using the Matlab functions, tic and toc, on an Intel Quad Core Machine.
The MPC optimization problem was solved using the fmincon function in Matlab.

For the nominal case, x(tpq) corresponded to a level set of 82.16 of B(x4es ), which was
well outside the desired end-point neighbourhood'’. On the other hand, the robust RTRR-
based controller was able to steer the process inside (x4 ) as its final states corresponded to
a level set of 0.49. These results indicate the practical importance of explicitly accounting for
uncertainties in the controller design. The computation times for both controllers indicate
that they would be amenable for real-time implementation. The higher average CPU time per
MPC calculation for the robust controller was certainly expected as the MPC optimization
problem was more complex; however, this computational trade-off is well worth the savings

acquired from achieving an end-point within the desired neighbourhood.

2.6.2  Safe-steering Results

Next, to demonstrate the effectiveness of the safe-steering framework, we considered a fault

in a control actuator. Specifically, we considered the scenario where at tg,; = 0.25 hours, the

°In other words, the hard reachability constraints were made soft constraints.
!"This follows from the definition of an ellipsoid in Equation (2.4).
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heating coil actuator failed. During the failure period, the heating coil could supply limited
heat to the reactor, and the heating coil temperature was restricted to 285 K < Ty, < 300 K.

At trepair = 0.32 hours, the fault was rectified and full control effort was recovered.

For these simulations, the robust RTRR-based MPC design was bench-marked against a
generic end-point-based MPC formulation. For the end-point-based controller, the objective

function shown below was used (see Equations (2.1a) to (2.1d)).

K
Jp = [&(tena = 1) = &ollg, + 3 luli] - uli - 1]]n
i=k

where k is the current batch sampling instance and K is the sampling instance corresponding
to tend. The objective function for the RTRR-based MPC design was kept the same as in the
fault-free simulations. Table 2.3 summarizes the tuning parameters, initial conditions, and

results from both control designs.

Table 2.3: Tuning parameters, initial conditions, and results for the robust RTRR-based and
end-point-based MPC designs in a faulty environment

RTRR-based MPC End-point-based MPC
Move suppression matrix, II: diag {5 X 1075, 5x 1076}
ELO eigenvalues: {-0.9,-1.05,-1.1}
Initial states, x(0): [2.65 28271 58.49]
Initial state estimates, £(0): [2.66 284.34 58.70],
Total simulation time:" 2.13 minutes 2.32 hours
Final states, (fend): [0.10 464.88 64.85] [0.12 464.66 64.69]
| % (tend) = Eoll3,: 0.39 5.99

* This was computed using the Matlab functions, tic and toc, on an Intel Quad Core
machine. The MPC optimization problem was solved using the fmincon function
in Matlab.

From Table 2.3, we first note that the total simulation time required for the robust
RTRR-based MPC was significantly shorter compared to the end-point-based MPC design.
The reasoning behind reporting the total simulation time as opposed to the CPU time
per MPC calculation was that in the end-point-based controller, the number of decision
variables changed at each sampling instance due to the shrinking horizon nature of the MPC
problem. By comparison, the RTRR-based controller always considered only one step ahead.
Simulations of a process with a higher number of states and/or inputs would exhibit an
even more substantial difference in the simulation times. Moreover, with additional model
uncertainties, wider uncertainty ranges, and the introduction of disturbances into the system,
the end-point-based MPC design would require additional computational time because

the solution at a given sampling instance would become a poorer initial guess for the next
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sampling instance. On the other hand, because the robust RTRR-based MPC formulation
accounts for the presence of the uncertainties and its bounds in offline calculations (which
would certainly increase), the computation time for online control calculations would not

increase significantly.

The level set of B(x4es) corresponding to x(tenq) were 0.38 and 5.99 for the RTRR and
end-point-based MPC designs (respectively); thus, in contrast to the RTRR-based MPC
design, end-point-based MPC was unable to recover the process following fault repair. The

states at batch termination (relative to B(x4e)) and input profiles for the two MPC designs

are shown in Figure 2.10 and Figure 2.11, respectively.

o RTRR
4 End-point

65 |

V(L)

465

o T (K)

0.1”
C4 (mol/L)

Figure 2.10: States at batch termination from the RTRR and end-point-based MPC designs
with a finite duration actuator fault for the fed-batch process
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Figure 2.11: Input profiles prescribed by the RTRR and end-point-based MPC designs with
with a finite duration actuator fault for the fed-batch process. The failure period
is shaded.
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During the failure period, the heating coil temperatures prescribed by both controllers
were saturated at 300 K (the maximum fault value) while the flow rate trajectories were
markedly different. Using only the flow rate, the end-point MPC design was unable to
compute a sequence that steered the process inside the desired end-point neighbourhood.
Due to the repeated application of a truncated version of these poor input trajectories, the
process was driven to a point by frepair from where it could not be steered inside B(x4es)
even after fault recovery. In contrast, the robust RTRR-based MPC design prescribed flow
rates during the failure period which maintained the process states from where the batch

could be driven inside B(x4es) upon recovery of the full control effort.

2.7 CONCLUSIONS

In this chapter, we considered the control of batch processes subject to input constraints,
model uncertainties, and faults with the objective of reaching a desired end-point neighbour-
hood. To this end, a computationally efficient, nonlinear robust MPC design based on robust
RTRRs was formulated. Prior to the MPC formulation, a multi-level optimization-based
algorithm was developed to generate/characterize robust RTRRs as ellipsoids for specified
bounds of the model uncertainties, sampling period, and desired end-point neighbourhood.
Following the controller design, we considered the problem of finite duration faults in the
control actuators that cannot be handled via robust control approaches. Using the robust
RTRR-based controller as the main tool, the robust safe-steering framework was developed to
address the problem of how to operate the functioning inputs during the fault repair period
to ensure that the process can be driven inside the desired end-point neighbourhood upon
recovery of the full control effort. The computational efficiency and control performance of
the robust RTRR-based MPC and its usefulness in the robust safe-steering framework were

demonstrated using simulations of a fed-batch reactor process.
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3.1 INTRODUCTION

Existing batch control approaches (model-based or otherwise) can be classified according
to whether the desired end-point is specified directly or indirectly in the control design.
For the RTRR-based controller in Chapter 2, the desired end-point was pursued directly
because of the assumptions that the final product quality was specified through the states
(i.e., X4es) and that the states were observable from the process measurements. In some batch
processes, however, measurements related to the final end-use quality are unavailable and
quality measurements are only made offline after batch completion, making direct control
to the desired end-point impractical. For these cases, one response has been to indirectly

pursue the control objective through trajectory tracking approaches.

In trajectory tracking methods, trajectories for a set of measurable process variables
related to the end-use quality are generated offline or recalculated at specific time points
during the batch by solving a dynamic optimization problem. These trajectories are sub-
sequently tracked using local, model-based controllers or proportional-integral-derivative
(PID) controllers, possibly modified with gain-scheduling [5] or feed-forward [6] terms
to partially account for process nonlinearities. Even with the improvements proposed in
existing literature [5, 6], PID controllers remain inherently based on a decentralized (single-
input-single-output) framework that cannot account for interactions between the different
control loops, process constraints, and optimality. Explicitly nonlinear model-based tracking
controllers have been proposed in the form of feedback linearizing differential geometric con-
trollers [6-8] and model predictive control (MPC) [9-13]. A differential geometric controller
takes the form of an algebraic control law that is obtained by appropriately inverting the
process model; these controllers, however, can be sub-optimal for a given control objective
and are generally incapable of handling process constraints. MPC, on the other hand, as

discussed in Chapter 1 is well-suited for handling constraints and optimality.

A common, underlying assumption in the significant literature addressing MPC for batch
processes is the availability of an accurate, first-principles-based deterministic process model.
In deterministic modelling, differential equations for the process states are derived from
first-principles’ with some parameters in the equations to be determined from experimental
data. One of the limitations with the development of these models is the lack of sufficient
measurements to uniquely determine the key model parameters, and even when available,
many of the simplifying assumptions taken during model development can be violated in
specific situations in practice and/or the model is inapplicable for online control applications
due to the nature of the equations. For instance, the number of states may be excessive
and/or the differential equations overly complex (i.e., discontinuities, etc.) for use in any

model-based control design.

"This includes conservation equations (i.e., mass and energy balances) and models for reaction kinetics
(dictated by the reaction chemistry).
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Some of the limitations with deterministic modelling can be overcome through empirical
or data-based modelling. Empirical model development imposes a simpler model structure
(often linear) on the process dynamics, and the model parameters are subsequently deter-
mined entirely from plant/experimental data. Identification experiments (to build empirical
models), such as those in which a pseudo-random binary signal (PRBS) is applied on the
process, while suitable for model identification at steady-states, are often too expensive to
justify for batch processes since they result in expensive wasted batches. For batch processes,
most of the identification data takes the form of historical databases, which consist of process
variable measurements taken at regular sampling intervals until batch termination for a
number of previous batches. Furthermore, batch process dynamics are highly nonlinear and
time-varying, making conventional system identification approaches where a single linear
model is identified, ill-suited for identifying accurate models. The high expenses associated
with every batch dictate the need for the development of dedicated modelling tools for batch
processes that minimize wasted batches in the model development process and yet provide a

model that captures the essential nonlinear and complex nature of the process.

A popular technique to improve the quality of data-based batch process models has
been to exploit the availability of measurements in the databases beyond those designated
as inputs and outputs. While these measurements are often (auto and/or cross) correlated,
they contain important information about the states, implying an accurate model could be
identified if they are utilized in the model development. This has motivated the application
of latent variable modelling methods, particularly partial least squares (PLS) regression, for

identifying batch process models.

Latent variable modelling methods are useful for reducing the dimensions of a large
correlated data set into a set of fewer uncorrelated variables. This is achieved by projecting the
data set onto subspaces, called latent variable spaces, defined by principal components. In PLS
regression, the regressor and response matrices are both projected onto their corresponding
latent variable spaces, and the idea is to find the orientation of these two subspaces such
that the correlation among them is maximized (see [14] for a tutorial on PLS regression).
Although conventionally applied to static (i.e., steady-state) data, by introducing lagged data
matrices into the PLS regression algorithm, a dynamic model can be readily obtained (e.g., see
(15, 16]). Although latent variable tools are useful for utilizing all the available information in
batch databases, the inherent limitation with existing approaches is the assumption of a linear
relationship between the latent variables, which is often not valid in batch processes. Some
approaches to incorporate nonlinear relationships into the PLS framework include the work
in [17-19]; the predictive capability of these models, however, depends on an appropriate

choice for the nonlinear mapping (quadratic functions, neural networks, splines, etc.).

One general strategy to describe nonlinear behaviour while retaining the simplicity of

linear models is to partition/cluster the training data into a number of different regions,
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identify local linear models for each region, and combine them with appropriate weights
to describe the global nonlinear behaviour. This idea has been formalized in piece-wise
affine (PWA) [20, 21], Takagi, Sugeno, and Kang (TSK) [22], and operating-regime based
[15] modelling. Note also that there exist predictive controller designs that can explicitly
accommodate multiple linear models (e.g. see [23-25]). In this chapter, we propose a
new multi-model approach specific to batch processes that unifies the concepts of auto-
regressive exogenous (ARX) modelling, latent variable regression techniques, fuzzy c-means
clustering, and multiple local linear models in an integrated framework capable of capturing
the nonlinearities and multivariate nature of batch data. The key delineating aspects of this
work is the bringing together of the clustering algorithm used to partition the training data,
the use of latent variable tools to estimate the model parameters, and the derivation of a
generalized continuous weighting function that is entirely data dependent and does not
require precise process knowledge. Additionally, the resulting model is readily applicable in
a MPC framework.

As discussed in Chapter 2, the ability to handle faults is an intrinsic requirement of
the control design for batch processes since a fault can ruin the entire batch. With data-
based MPC designs, it also becomes imperative for the model to maintain its validity for
a wide range of operating conditions since faults can drive the process significantly away
from typical operating conditions. The existing fault-tolerant control structures (FTCS) for
batch processes are mostly robust control designs that employ a deterministic model and
treat faults as disturbances. However, upon fault occurrence, the final product quality can
become unreachable if the fault is not repaired sufficiently fast. Additionally, implementing
inputs prescribed by controllers with limited fault-tolerant properties can drive the states to
a point from where the final quality becomes permanently unreachable. In response to these
issues, we developed the control and safe-steering framework in Chapter 2 that utilized a
first-principles model and presented a computationally efficient MPC design that addressed
the problem of determining how to utilize functioning inputs during fault rectification to
enable desired product properties reachability following fault repair. The proposed design
represented a computationally efficient framework that is amenable for integration with

appropriately derived data-based models for FTC of batch processes.

Motivated by the above considerations, this chapter considers the problem of designing
an integrated framework seamlessly merging data-based models with nonlinear control
tools for the control of batch processes. The rest of this chapter is organized as follows:
First, the class of processes considered is presented followed by reviews of the key concepts
required to understand the modelling technique, namely ARX modelling, PLS regression,
and fuzzy c-means clustering. We also review latent variable MPC, which was proposed
in [26] and later serves as a basis of comparison for the simulations. Next, a framework

is presented for developing a data-based model for a batch process that makes use of all
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existing measurements in a preexisting database and captures the nonlinearities of the process.
The resulting model is then incorporated within the RTRR-based MPC and safe-steering
frameworks. Specifically, an algorithm is presented to generate RTRRs using the data-based
model for their subsequent use within a RTRR-based MPC design. Then, simulation results
(fault-free and faulty) of a fed-batch reactor process subject to the data-based RTRR-based
MPC design are presented. This is followed by the presentation of simulation results of a
nylon-6,6 batch polymerization process wherein the control objective is trajectory tracking
and the data-based modelling technique is used to develop the models used in a generic

trajectory tracking controller. Finally, we summarize our results.

3.2 PRELIMINARIES

In this section, we first describe the class of batch processes considered. Then, we give an
overview of auto-regressive exogenous (ARX) modelling, a popular technique for developing
linear input-output models, and then illustrate how latent variable regression tools, such as
partial least squares (PLS) regression, can be used within the ARX modelling framework to
utilize all available measurements (beyond those designated as the inputs and outputs). Then,
we review fuzzy c-means clustering, a key concept used in the data-based modelling frame-
work. Finally, we review latent variable MPC (LV-MPC), which was originally developed in

[26] and is later used as a point of comparison in our simulation studies.

3.2.1 Process Description

We consider batch processes described by the model in Equation (1.1), which is restated

below for convenience.

£(6) = f (x,u,w)
y(t)=g(x,u,w)+v (3.1

t € [to, tend]

Unlike in Chapter 2, no additional assumptions are made regarding the continuity of ODEs.

3.2.2  Auto-regressive Exogenous Models

In auto-regressive exogenous (ARX) modelling, the outputs at a specific sampling instance
depend linearly on the previous process conditions defined by the process outputs and inputs.

Mathematically, the ARX model prediction for output i, y; is defined as:

k=Y alylk -1+ Bulk - jl+y (3.2)
j=1 j=1
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where {al, e ocny} and {[31, Ce ﬂnu} are model coefficient vectors, y is a bias term, which
is important if the model is not identified around a steady-state, and n, and n, denote the
number of lags in each output and input variable (respectively) and define the model order.
For notation simplicity, Equation (3.2) is shown with the same number of lags in each output

and input variable (i.e., all output and input variables are lagged ., and n,, times, respectively).

To facilitate the estimation of the ARX model coefficients, Equation (3.2) can be rewritten

in vector form as follows:
(3.3)

where

is a vector of model coefficients and

x[k] = [y'[k—l] o Ylk-ny] u'[k-1] - u’[k—nu]],

is a vector of lagged concatenated outputs and inputs. Given plant data, a response vector,
¥, and regressor matrix, X, can be constructed with columns corresponding to y; [k] and
[i'[k] 1] (respectively) by sorting the data sample-wise. The model coefficients can be

subsequently estimated using ordinary least squares (OLS) as shown below.

b= (X%,) " Xy,

However, for cases when the process data is highly correlated and/or co-linear, the co-variance
matrix, X X, will be nearly singular (rank deficient), leading to imprecise model coefficient
estimates with large variances. This problem is particularly pertinent in batch data since
many of the columns in X, can be auto correlated (correlated with each other at the same
sampling instance) because they describe the same underlying phenomena in the process.
Moreover, the process variables can also be cross correlated (correlated with each other
and other variables at different sampling instances) when the data is collected under closed-
loop conditions (e.g., see [27-30] for explicit system identification methods for closed-loop

data), which introduces relationships between the process outputs and previous inputs. The

*While closed-loop data can cause numerical problems, unlike in continuous processes, there can be sufficient
information in such data to identify acceptable input-output models. This is because in batch processes, set-points
vary over a wide range of operating conditions throughout the batch and the inputs are adjusted in response,
keeping the process persistently excited.
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sensitivity of the variance to correlated and co-linear data in OLS regression can be addressed

using latent variable regression techniques such as partial least squares (PLS) regression.

3.2.3 Partial Least Squares Regression

When using partial least squares (PLS) regression in the context of ARX modelling, the
coefficients for all p outputs are estimated simultaneously. This calls for constructing a p
column response matrix, Y;,, in which the columns correspond to the outputs sorted sample-
wise. Given the regressor and response matrices, in PLS modelling, the variables (columns)
in X;, and Y}, are projected onto orthogonal subspaces of A-pairs of latent variables. Each
pair of latent variables accounts for a certain percentage of the variance in the regressor and
response matrices. Mathematically, PLS regression consists of decomposing X, and Yy, as

the sum of the outer products of a score and loading vector as follows:

A

Xp =) tjp;+E.=TP' +E, (3.4a)
j=1
A

Y, =) riq;+E, =RQ +E, (3.4b)
j=1

where ¢; and r; are the input and output scores representing the projections of the variables in
X, and Y}, on their subspaces, p i and q j define the orientation of the corresponding subspaces,
the matrices, T, P, R, and Q, contain their corresponding vectors, and E(,) denotes residual
matrices. The noise reduction property of PLS regression stems from the idea that the lesser
principal components are typically a consequence of measurement and process noise and

therefore can be discarded during the regression.

Because it is desired to obtain a useful relationship between the original data matrices,

X, and Y, the two matrices are linked by an inner relation between their scores of the form:
rj:bjtj+ej, fOI‘jE[l,A]

where b; are the coefficients and e; are the residuals of the inner relationship. In naive PLS
algorithms, PLS is performed as follows. The 2 matrices are decomposed using principal
component analysis (PCA) and then the inner relationship coefficients are computed using
linear regression. The flaw with this approach is that because the orthogonal subspaces for
both matrices are computed independently, the inner relationship can be weak. Thus, in
common PLS algorithms, such as nonlinear iterative partial least squares (NIPALS), the
subspace orientation and scores for both matrices are determined simultaneously so as to
maximize the correlation between X, and Y}, and therefore obtain the optimal fit for the
inner relationship. The properties and steps of the NIPALS algorithms can be found in [14]

with the rigorous mathematical details available in [31]. The final result from PLS regression
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is a linear model between X, and Yp where the coeflicients are functions of the scores and

loadings from the matrix decompositions.

Remark 3.1: When there are only a few output variables, and they are known to be fairly
uncorrelated, a viable alternative to PLS regression is principal component regression (PCR).
In PCR,

1. PCA is performed on the regressor matrix, X,, yielding T and P.

2. OLS regression is subsequently performed between T and each output variable, yielding

a linear model for each output.

Thus, the variables in the regressor matrix in OLS regression are essentially replaced by new
ones (the scores) with better properties (orthogonality) that also span the original space.
The orthogonality property improves the numerical properties of the required inversion
during OLS regression. Additionally, by leaving out the unimportant principal components
in the PCA step, PCR retains the noise reduction properties of PLS and other latent variable

modelling methods.

Remark 3.2: Although ARX PLS/PCR models are capable of describing high order linear
systems, they can still be poor representations of inherently nonlinear processes, owing to the
assumption of linearity between the latent variables. Additionally, the lesser latent variables
in a PLS/PCR model for highly nonlinear systems can contain important information about
the nonlinearities and therefore cannot be discarded. In response to this, PLS algorithms have
been expanded to incorporate nonlinearities by modifying the inner relationship between the
scores while retaining the useful statistical properties of the linear PLS modelling approach
[17-19]. The ability of these approaches to capture the nonlinear behaviour is, however,

contingent on the appropriate choice of the nonlinear mapping.

3.2.4 Fuzzy c-Means Clustering

An important step in the proposed multi-model approach in Section 3.3 is to locate operating
points around which individual local linear models are identified. One approach to find
this set of operating points is to partition the historical batch database into a number of
clusters (i.e., a group of points in the database that are mathematically similar). Subsequently,
a corresponding linear model can be identified for each cluster. For the current work, we

employ fuzzy c-means clustering (see for [32] a review) to partition the database.

Let
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be a [(p x ny) + (m x n,)] x N, matrix where each column is a different instance of
concatenated lagged outputs and inputs from the database and Ny, is the number of lagged
vectors that can be constructed from a given database. The lagged output-input space in X
can be partitioned into L different clusters using fuzzy clustering, which assigns each sample,
%;, a degree of belonging to a cluster ¢ € [1, L]. The partition information can be represented
by a membership matrix, U = {u,;} € RE*Nobs| where each row contains the membership
information for the ¢-th cluster for all N points. In fuzzy clustering, the elements in U must

satisfy the following conditions [33]:

pei€[0,1], for€e[1,L],i€[1, Nops) (3.5a)
L
> uei=1, forie 1, Nob] (3.5b)
=1
Nobs
0< Z pei < Nops, for€e[1,L] (3.5¢)

i=1

Equation (3.5b) requires that the total membership of each observation, which ranges from
0 to 1 (Equation (3.5a)), equals 1. The majority of fuzzy clustering algorithms is based on
minimizing the total variance in the data from cluster centres. Mathematically, this idea is
expressed by minimizing the following (nonlinear) objective function [32, 34] (the so-called

c-means functional):

Nobs L
Jecm = ), ZM{JDii (3.6)
i=1 =1
where Dy ; := |%; — c¢|| denotes the Euclidean distance between point i and the ¢-th cluster

centre and ¢, € RI(Pxmy)+(mxn) X1 genotes the £-th cluster’s centre, which has to be deter-
mined for € € [1, L]. The weighting exponent parameter, f, determines the fuzziness of the
clusters with f = 1implying hard, non-overlapping partitions. For this work, (as is typically

the case) we choose f = 2.

The partition matrix elements, 4y ;, and cluster centres, ¢, that minimize Equation (3.6)
and satisfy the constraints in Equations (3.5a) to (3.5c) have been shown to be (for f > 1) [32,
34]:

1
pei = (3.7)
and
Ziolbs V{,e’zi
N S G8)
2 Mg
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From Equation (3.8), it can be seen that the centre point of each cluster is also the mean
of all the points, weighted by their membership degrees. Note that Equations (3.7) to (3.8)
constitute a set of nonlinear equations, which can be solved using successive iterations [35],
with the iterations terminated when changes in the membership matrix between two iterations
become smaller than some predefined tolerance. As this is a nonlinear set of equations, this
procedure can possibly terminate at a point that is not a true solution; therefore, the procedure
is usually repeated numerous times starting from different initial memberships, and the
results are selected for the instance that yields the minimum objective function value in

Equation (3.6). The steps of the iterative algorithm are shown in Algorithm 3.1.

Algorithm 3.1Fuzzy ¢-MEANS CLUSTERING

Require: X, ¢ (termination tolerance), L, and f
j<0
Initialize membership function matrix randomly to U(/)
repeat
jej+l
Compute the cluster centres:

KON Zi\iolbs (:”z(,jeil))f’_‘i
e )

Compute the Euclidean distances:

D;, = |%i - ng) |, foree[1,L],ie€ 1, Nops]

Update the membership function matrix:

() _ 1 N
et = ST (D DD € [1,L]), i € [1, Nobs]

until [UD) —UUD | <&
return ¢, ¢,...,CL

For the case of f = 2, Equation (3.7) reduces to the following form:

_xi—ee]™?
Ue,i

I e (39)
Y % - ce| 2

In view of this, in fuzzy clustering, the degree of %; belonging to cluster € is essentially taken
to be inversely proportional to the squared distance between the point and cluster centre, c,

(i.e., pte,; o< | %; — c¢| %), which is then normalized across all clusters.
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In the above discussion on fuzzy c-means clustering, points that are mathematically
“similar" according to the Euclidean 2-norm are clustered, resulting in (overlapping) spherical
clusters. One way to influence the cluster shapes is to use a norm-inducing matrix, Arcy, in

computing D} ; as shown below.
2 s 2
Dy, = |%i - cellazey

In the discussion above, Agcm = I, which gives the standard Euclidean norm. In the simula-
tion examples, to account for the different variances (i.e., from having different units) in the
directions of the coordinate axes of X, Apcy was specified to be a diagonal matrix comprised

of the inverse variance of each variable as its elements:

Apcym = diag{(l/aiz)}, i€ [1, [(pxny)+(mx ”u)]]

where o; denotes the standard deviation of variable i. While the Euclidean norm induces
spherical clusters, this choice for Apcy generated ellipsoidal clusters with the axes of the
ellipsoids parallel to the coordinate axes (i.e., it induced a diagonal norm on RLUpxny)+(mxma) ]y
To accommodate other types of non-spherical clusters, extensions of fuzzy c-means clustering
that consider different weighted norms (i.e., the Mahalanobis norm) or different shapes (e.g.,
see [36, 37]) can be utilized.

The number of clusters is another essential parameter in fuzzy c-means clustering. Well-
defined criteria (based on the cluster geometry) to iteratively refine the number of clusters
have been presented in [38-40]. To evaluate the goodness of the final fuzzy partitions, many
validation measures have also been introduced (e.g., see [40, 41]) with the most popular being
the Xie-Beni index [41], which is a ratio of the total within-cluster variance to the separation
of the cluster centres (and therefore should be minimal for the best partition). In this work,
as described in Section 3.3, we iteratively refined the number of clusters based on how well
an independent validation data set was predicted. Thus, there was a balancing of the number

of clusters and prediction error from the final model.

Remark 3.3: From the definition of X in this section, the dimension of the space required to
be clustered is (p x n,) + (m x n,), which can be prohibitively high. The dimensionality
problem was addressed in this work by first projecting the variables in X onto a lower
dimensional subspace or latent variable space using PCA and subsequently clustering the
resulting latent variable or score space. The resulting loading matrix from PCA, P, can
be used to relate the original cluster space variables to the latent variables according to:
T = XP where T denotes the projections of each row in X onto the subspace (i.e., the scores).
Typically, a much lower number of principal components (compared to (p x 1, ) + (m x n,))

is required to completely characterize X since X can include many lagged variables and
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therefore correlations among the columns. In short, PCA is a natural choice to sift through

extraneous data and identify the core dimensionality of the dynamics prior to clustering.

3.2.5 Latent Variable Model Predictive Control

In [26], a modelling and control approach is presented for tracking batch process variables
called latent variable MPC (LV-MPC). In this section, we give a brief overview of the LV-
MPC modelling procedure and show how it can be used to formulate a trajectory tracking
predictive controller. Note that in this work, we consider a simple version of LV-MPC as
an example of a prominent batch modelling and control approach only to benchmark our

proposed approach.

In the LV-MPC modelling approach, lag and lead parameters for a dynamic PCA model
are the key user inputs. Suppose a lag and lead of M and P sampling instances (respectively)
are chosen. All the information from batch b (of B total batches) is collected in the matrix
X}, in which each row corresponds to a specific sampling instance, denoted generally by k,

and is comprised of the following vector:

X,y [K] = [xp[Kk] xd[k]]

where:

xp[k] = [y [k-M] o K] yiglk-M] o yilk+P] wlk-M] - w[k-1]]
xk]=[y'Tk+1] - y[k+P] w'[k] - u'[k+P]]

where y_ ([ k], y[k], and u[k] denote the output reference, output, and input vectors at
sampling instance k. Thus, each row in X}, is partitioned into a vector of known and unknown
variables at k, denoted by xp[k] and x¢[k] (respectively). Note that the vector of known
variables includes the future reference trajectories since the reference trajectories for the

batch duration are known before the batch run begins.
The matrices for all previous batches are then stacked vertically in © as shown below.
Xy
Q=]:
X3
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Next, Q is mean centred and scaled to unit variance and then decomposed using PCA,

yielding the following relationships:

PI

H >
I} I}
o =

P

where € is the model prediction of Q, and T and P denote the score and loading matrices.

Based on all the known information at any point during the batch, the PCA model
extracted from Q can be used for simultaneously computing the current control action and
the future input and output behaviour (up to P time steps). To this end, the loading matrix is

partitioned into corresponding blocks as follows:

P

(o 2]

where P, and Py correspond to x;, and xy, respectively. For a new batch to maintain the
same correlation structure as the historical database at k (that is, for the new batch to remain

statistically consistent with previous batches), we require:
xi{k] = ¥'[k]Pf

where #[k] is the score vector of the new batch. One way to compute the unknown x¢[k]
vector is to treat it as missing data and employ the PCA missing data estimation algorithm
[42]. According to this algorithm, we have (for details, refer to [26, 42]):

xe[k] = x,[k]P, (PP,) " P} (3.10)

Since x¢[ k] includes the current control action, Equation (3.10) represents the closed form
LV-MPC control law. As in PID control, input constraints can be imposed by “clipping" the
prescribed inputs appropriately.

To explicitly account for input constraints or to incorporate a move suppression factor,

the inputs can be alternatively computed by solving the following optimization problem.

?Ei? Jiv = [#[k] = [xp[k]Pp + xc[K]P] |2 + e[ k] - u[k 1] |y (3.11a)
subject to: x¢[k] = £ [k]P} (3.11b)
ul <t[kP.<ul (3.11¢)

The decision variables in this problem are the elements of the desired score vector, £[k],
which are related to the future outputs and inputs by Equation (3.11b). In Equation (3.11c),

the matrix P, refers to the elements of P¢ which correspond specifically to the inputs. This
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constraint ensures the computed inputs are maintained between u i, and #y,.x. The first
term in Equation (3.11a) attempts to minimize the distance between the desired score vector
and the score vector obtained by projecting all the known and predicted variables of the
current batch (i.e., x, and x¢) onto the latent variable subspace. When E = I, this distance is

commonly referred to as the “squared prediction error” (SPE).

For the closed form LV-MPC control law in Equation (3.10), the SPE is forced to be zero,
implying the implicitly computed score vector lies exactly on the latent variable subspace. In
contrast, when computing £[ k] using the optimization problem, there is flexibility for the
score vector to lie off the model plane such that the input constraints are satisfied and large
successive input changes are penalized (according to the second term in Equation (3.11a)). In
using this optimization problem or Equation (3.10), note that the inputs are not explicitly
“optimized" to meet the desired set-point trajectories. Instead, the set-point information is
implicitly incorporated in the model, and the inputs are computed using the PCA missing

data estimation algorithm.

Remark 3.4: In addition to M and P, the number principal components retained in the PCA
model is another important user input. In our case, the number of principal components
was specified such that 99% of the variation in Q was explained by the model. The number
of lags and leads were selected based on the “reconstruction error” in the input predictions as
explained in [26]. Specifically, for a given number of validation batches, the PCA model was
used to predict the input moves at each time step (after M time steps) using Equation (3.10).
The number of lags and leads were chosen such that they minimized the average sum of
absolute errors (over the batch duration) between the predicted and database (i.e., actual)

inputs.

Remark 3.5: During the first M sampling instances of a new batch, the complete past infor-
mation data vector, xf, which is needed for solving Equation (3.10), is unavailable. In this
work, during this time period, the inputs prescribed by a tightly tuned PI controller was
implemented on the process. Another alternative is to simply implement the nominal inputs
during this period. A similar missing information problem occurs around batch termination.
Specifically, during the end of the batch, future y_ [ k] vectors are required up to P sampling
instances to complete the x,, vector. For P > 1, this calls for set-point information beyond
the batch termination time. One solution for this case (as suggested in [26]) is to simply
assume the last elements in the original y, ¢ k] vectors hold after the batch duration. This
amounts to assuming the unknown output reference trajectories remain consistent with the

last known reference trajectory trends.

Remark 3.6: The data arrangement in the LV-MPC modelling approach is commonly re-
ferred to as the “variable-wise unfolding" of batch data. The end result of this approach is a

single, “average" PCA model of the batch, implying just 1 correlation structure of the batch
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process variables for the batch duration. In other words, there is an inherent assumption
associated with “variable-wise" unfolding of batch data of a constant correlation structure for
the batch duration. However, this assumption often does not hold for batches that proceed
in distinct multiple phases during which the correlations among the process variables can
change substantially. In the proposed multi-model approach, by clustering the batch database
appropriately prior to the model fitting, we essentially capture the different phases (if any) of

the process and identify their corresponding models.

3.3 DATA-BASED MODEL DEVELOPMENT

In this section, we present the multi-model approach and explain the model development

process. Assuming a database of previous batches exists, the main identification steps involve:

1. Clustering the X space (or the score space after decomposing X using PCA) of the

database using fuzzy c-means clustering

2. Using linear regression (i.e., OLS regression, PLS regression, or PCR) to identify ARX

models around the cluster centre points

In the final model form, the local linear models are combined with weights to describe the

global nonlinear dynamics. Mathematically, this idea is expressed as follows:

L ny ny
Pilk] = we[k] (Z ag,jy[k -]+ Zﬁ;,ju[k -]+ )/g) (3.12a)

e=1 j=l j=1

1

= i we[k]6; F[k]] (3.12b)
£=1

where %[ k] denotes a vector of lagged concatenated outputs and inputs (as before), w,[k] is
the weight given to model £ of the L total models, and ay,j, B, ;» and ye define the £-th ARX

model. The vector, 0, stores £-th model’s coefficients. Using the following definitions,

©:=[6 - 6, - o’L]’ (3.13)
W[k] = lwl[k][’z[lk]] [k]!k[lk]] . wL[k][’z[lk]” (3.14)

yilk] = v'[k]® (3.15)
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If the weights corresponding to the training data are computed independently from the
model coefficients, Equation (3.12a) is linear with respect to the model coefficients, reducing
the system identification problem to a regression problem. Since all the local models can
potentially contribute during prediction, it is important to identify them simultaneously.
To facilitate this regression, a regressor matrix with columns corresponding to y[k] and a
response vector corresponding to y;[ k] are constructed, denoted by ¥ and ¥, Tespectively.
Next, a linear regression technique is used to estimate the coefficients, ®’. Note that when
it is desired to estimate models for multiple outputs simultaneously (i.e., using PLS regres-
sion), a response matrix (instead of a vector), Yp, has to be constructed with the columns

corresponding to the different outputs, and @ is a matrix as opposed to a vector.

With full state measurements, n,, = n, = 1is a natural choice for all the outputs (states)
and inputs in the ARX model in Equation (3.2), reducing it to the state-space model described
by:

R[k] = ax[k-1]+Pulk-1]+y (3.16a)
x[k-1]
= [oc B y] ulk-1] (3.16b)
1

where o € R™" B € R™™ and y € R™! define the ARX model. Accordingly, for the

multi-model approach with full state measurements, the matrix to be clustered, X, consists
!/

of state and input measurements; that is, [ k] = [x’ [k—1] u'[k- 1]] and the final model

takes the form shown below.

x[k]:;we[k] [oe B, ye|[ulk-1] (3.17)

Intuitively, from the process description in Equation (3.1), the weights placed on the
local linear models should depend on the current value of the states and inputs since they
define the process dynamics. In other words, the local models should be weighted according
to the current process conditions. In the absence of state measurements, a combination of
lagged outputs and inputs can be used to infer the current process conditions. In this work,
to determine the weights for the training data, the normalized fuzzy clustering membership
function in Equation (3.9) is used; thus, for data point i in the training data, we have

we[i] = pe,i, and in general, we have:

orfi] - JE[K] el

b %K) -] (3.18)
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Because the membership function quantifies the degree to which a lagged output-input
vector belongs to each cluster, it is also indicative of which local models should be given more
weight than the others. For instance, if a lagged output-input vector nearly coincides with a
specific cluster’s centre point, the local linear model corresponding to that cluster should be
given most of the weight. This is consistent with Equation (3.18) as the membership function
value corresponding to that cluster will be close to 1 while for the remaining clusters, the

membership function value will be near 0.

The key model parameters that have to be specified in this modelling approach are the lags
in the output and inputs variables, 7, and n,, and the number of clusters for L. In this work,
we iterated over different combinations of these parameters and selected the combination
which minimized the root mean squared prediction error (RMSE) when predicting back an
independent validation data set. The RMSE in the i-th output was defined to be:

RMSE; = \J %% >y ERIGERO] (319)
b=1k=1
where b indexes the batch number, and B and K are the number of validation batches
and sampling instances in each batch (respectively). When PLS regression was used to
estimate the model parameters, an additional loop for determining the “optimum" number
of principal components to retain was also included. Generally, retaining a high number
of principal components will result in a very low residuals for the training data, but the
predictive capabilities of the model will be reduced due to over-fitting. This is because with
an excessive number of principal components, the model begins to fit the random noise

element in the data.

The iterative procedure for balancing the number of model parameters with the prediction

error is shown below as Algorithm 3.2. The necessary user inputs are summarized in Table 3.1.

Table 3.1: Input parameters for Algorithm 3.2

Input Description

y,min Minimum number of lags in the outputs
1y,max Maximum number of lags in the outputs
My min Minimum number of lags in the inputs
My, max Maximum number of lags in the inputs
Lmin Minimum number of clusters

Limax Maximum number of clusters

PLS flag  Flag indicating if PLS regression will be used - (“yes" or “no")
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Algorithm 3.2 COMPUTATION OF THE MODEL PARAMETERS

Require: 7y min, 7y,max> Mu,min> Mu,max> Lmin> Lmax> and PLS flag
for i = 1 min t0 1y, max do
for j = 1y min t0 1y, max do
for £ = Lyin t0 Linax do
Construct ¥ with i and j lags and ¢ local linear models (see Equation (3.14))
if PLS Flag = “yes" then
Construct Y,
Npcmax < Number of columns in ¥
for n = 1to Npcmax do
®; j.ne < PLS Regression with: (Yp, v, n)
RMSE; j ¢,» < RMSE in validation data with @; ¢,
end for
else if PLS Flag = “no" then
Construct Yp

@, j; < OLS regression/PCR with: ( Yoo ‘I’)
RMSE; j ¢ < RMSE in predicted validation data with @; ; ,
end if
end for
end for
end for
if PLS Flag = “yes" then
return O corresponding to minimum RMSE; ; ¢ x
else if PLS Flag = “no" then
return @ corresponding to minimum RMSE; ;
end if

Remark 3.7: A key difference between this modelling approach and the PWA framework
in [20] is the clustering algorithm used to partition the training data. In PWA modelling,
the clustering algorithm, k-means, induces artificial boundaries between the partitions (i.e.,
hard or crisp clusters) and only samples belonging to a specific partition can contribute in
determining its corresponding model. In contrast, fuzzy c-means clustering permits adjacent
clusters to overlap, and surrounding data around each cluster plays a role in determining
the cluster’s model. This becomes important for accurately modelling periods of transition
in the process when it is evolving from one operating region to another (i.e., one cluster to
another) or when an output-input combination is encountered that belongs to many clusters
with varying degrees. PWA models also use a discrete weighting function wherein only one
model from the bank of models is used for prediction. By comparison, in this multi-model
approach, multiple models can simultaneously contribute in coming up with a prediction
through the continuous weighting function, resulting in overall smoother predictions. The
discrete model selection feature in the PWA framework also negatively impacts its use in

any optimization-based control design by requiring the solution of an optimization problem
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that includes continuous (the control action) as well as discrete (the choice of the model)

variables (i.e., a mixed integer problem).

Remark 3.8: The clustering algorithm and weighting function are also the important differen-
tiating features of the method described in this section from TSK and operating-regime-based
modelling. Specifically, in the proposed approach, the entire model input space and possible
correlations among the variables are considered during the clustering step and therefore in
generating the weighting function. In TSK modelling, each model input variable is clustered
separately and potential interactions/correlations among the variables are ignored. Moreover,
there is no systematic way to choose the weighting function form in TSK modelling. The
weighting function selection is also ambiguous in operating-regime-based modelling as it is
derived from an understanding of the system mechanism and is therefore problem specific
[15]. An appropriate set of measurable process variables with which to compute the weights
also have to be first correctly identified. The proper identification of these variables may
be difficult (if not impossible) for complex batch processes. Even after suitably identifying
these variables, the weighting function form is essentially obtained through a trial and error

process where several candidate forms are attempted.

3.4 EMPIRICAL REVERSE-TIME REACHABILITY

REGION-BASED MODEL PREDICTIVE CONTROL

Reverse-time reachability regions (RTRRs) were used in Chapter 2 to design predictive
controllers for batch processes with useful reachability and fault-tolerant characteristics.
However, the currently available algorithm for generating RTRRs requires a first-principles
process model, which, in many cases, may be unavailable. In this section, assuming full state
measurements, we present a methodology to generate and characterize RTRRs using the
data-based modelling approach developed in the previous section. Then, we formulate a

MPC design that utilizes these characterizations.

3.4.1 Empirical Reverse-time Reachability Regions

Due to unavoidable discrepancies between a process and its empirical model, instead of
considering exact reachability to a desired end-point, we consider reachability to a desired
end-point neighbourhood (as before), B(x4s). We define a data-based/empirical version
of a RTRR as the set of states from where the data-based/empirical process model can be
driven inside B(x4es) by batch termination. The formal definition of an empirical RTRR is

stated below.

Definition 3.1 (Empirical Discrete Reverse-time Reachability Region): For the batch pro-
cess described by Equation (3.1) with sampling period 8, which has been modelled using the form
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in Equation (3.17), the empirical reverse-time reachability region(RTRR) at time t = t,,4 — 20,
indexed by z, is the set:

L x[k-1]
ﬁz:{x[onx[k]:;we[k][ae Be v]|ulk-11| fork=1,...,2
=1 1

Julk] € U such that x(t.ng) € B (x4e5) }
where u[ k] = u(kd) which satisfies u(t) = u[k] Vt € [kJ, (k +1)9).

Generating Empirical Reverse-time Reachability Regions

In formulating an empirical RTRR-based predictive controller, explicit characterizations
of the RTRRs are required. In this work, as before, we choose ellipsoids to mathematically

express empirical RTRR estimates as follows:
Rew{x||x-é&lp, <1} (3.20)

where ¢, € R™! denotes the ellipsoid’s centre point and the positive-definite, symmetric
matrix P, € R™" defines its size and orientation. Note that because z = 0 corresponds to
tend> €0 = Xdes and Py is a user defined matrix based on the acceptable variance level of the

final product quality.

An equivalent representation of an ellipsoid was used in this work in which the ellipsoid
is expressed as the image of an unit ball under an affine transformation. That is, consider the
unit ball in R":

S(0,1) :={x | |x|* <1}
and the affine transformation:
T(x):=Hx+d

where H € R™*" is a positive-definite, symmetric rotation matrix and d € R" is a translation

vector. Applying the affine transformation to a point on the unit ball, we have:
z=Hx+d->x=H"'(z-d)
An ellipsoid can then be expressed through an affine transformation of the unit ball:

1(8(0,1)) = {z | [H ' (z~ ) <1} = {z | |z - d]}- <1} (321
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where V = HH' € R"*" is a positive-definite, symmetric matrix. Thus, from Equation (3.21),
defining H, and d,, is equivalent to defining the ellipsoid parameters, P, and ¢,, in Equa-
tion (3.20).

Starting at z = 1, an ellipsoidal estimate of 7R, is identified from where the model states
can be driven inside the ellipsoidal estimate of R,_;. This procedure is repeated until an
empirical RTRR ellipsoid is identified at every sampling instance. Given the RTRR ellipsoid
parameters at z — 1 and N, (predetermined) points (generated from a uniform distribution)
on the surface of an unit ball denoted by {xl,ub, cesXpuby e es X Nub,ub}’ the following NLP

is solved to determine the ellipsoid parameters, H, and d, (and therefore P, and é,):

min J; =detH, (3.22a)
H,d,u,cl
subject to: x, = Hyx, up +dg, forme[L, Nyp] (3.22b)
L Xn
Xnext = Z we [O(g B yg] u, (3.22¢)
=1 )
! ! ! -2
H [xn un] - Cf”
wp = . 7 (3.22d)
Seal[x, uh] - el
Hxnext - CAZ—IH%;Z_1 <1 (3.226)
H,=L.L] (3.22f)

The independent decision variables in this NLP are the ellipsoid parameters, H, and d, and
Ny control moves corresponding to the Ny, initial conditions on the surface of the ellipsoid.
The NLP is formulated to maximize the volume of the current RTRR ellipsoid while ensuring
for Nyp uniformly distributed points on the surface of this ellipsoid, there exists a control
action (as prescribed by a predictive controller using the data-based model) that can drive the
ellipsoid surface point inside the next RTRR’s ellipsoid. Equation (3.22b) represents the affine
transformation of the Ny, unit ball points into the ellipsoid surface points. Equation (3.22f)
represents the Cholesky decomposition of H,, where L, € R"*" is a lower triangular matrix,
and ensures H; is positive-definite and symmetric. Note that ascertaining the feasibility of
the optimization problem for the Ny, surface points does not guarantee the feasibility of all
points on the surface, or for that matter, for the internal points. While the nonlinear and
non-convex nature of the optimization problem prevents such guarantees, in practice this
conclusion can be reached by choosing a sufficiently large N;,. To ensure that the Ny, chosen
is sufficiently large, in this work, Ny, was increased until changes in the solution were below

a predefined tolerance.

To further verify that a control action exists to drive the states inside the next RTRR for

the internal points of the ellipsoid, the NLP defined earlier in Equations (2.5a) to (2.5g) was
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solved after substituting the data-based model for the first-principles model, 13(,) and ¢y for

f’(_) and €(.), and removing the bottom-most layer.

3.4.2 Empirical Reverse-time Reachability Region-based Model Predictive Controller

In this section, using the ellipsoidal characterizations of the empirical RTRRs, we formulate
a MPC design to steer a batch process inside B (x4es). To this end, consider a batch process
described by Equation (3.1) for which empirical RTRR estimates have been characterized for
a given & and B(x4e;). The control action at sampling instance z := (tepg — t)/d is computed

by solving the following NLP:

P
min i = D R[] = éaily, + [uli] - uli - 1] (3.232)
u|t)e i=1
subject to: £[0] = x(t) (3.23b)
L ®[k-1]
£[k] =" we[k] [ocg B, Ye] ulk-1]|, forke[0,P] (3.23¢)
=1
1

I w'[k-1]] -l

= - (3.23d)
Sial[#1k-1 wik-1] —e|?

The objective function, J, is formulated to minimize variations in the control moves and
maintain the process states inside the empirical RTRRs over the prediction horizon, P. The
relative importance of the two terms in J; can be traded off using the move suppression
matrix, IT. The predictive model, specifically the nonlinear weighting function, makes this
optimization problem a NLP, which can potentially be too computationally expensive for
real-time application. However, this nonlinearity, while capturing the process dynamics
much better than a single linear model, is likely to be much less severe compared to nonlin-
earities typically found in first-principles-based deterministic models. Consequently, the

optimization problem should remain efficiently solvable even for moderate values of P.

Due to the unavoidable plant-model mismatch, the proposed MPC formulation does not
offer any guarantees regarding the reachability of the process inside B(x4e;). In particular,
even if one were to impose a constraint in the MPC formulation requiring the states to go
inside the next RTRRSs ellipsoid, the feasibility of the constraint (guaranteed if the current
states are in the corresponding RTRR) would not guarantee that the states would be inside
the RTRR at the next sampling instance. Yet, the determination of the RTRRs, specifically the
ellipsoid matrices, provide useful weighting matrices to penalize state deviations to enforce
the states to never significantly diverge from conditions where B(x4s) can be reached. This

also results in important fault-tolerant characteristics as discussed next.
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If a fault occurs during batch operation, in the absence of any knowledge of the fault
repair time, the only meaningful control objective is to take control action at the current time
such that if full control effort were to be restored at the next sampling instance, reachability
to B(x4es) can be achieved. The RTRR-based MPC design, by trying to preserve the states
within RTRRs during the fault repair period, implements exactly this control objective. In
contrast, end-point-based predictive controllers try to achieve a (potentially) inherently
unachievable objective - that of driving the process inside B(x4.s) subject to the reduced
control effort, and in doing so, could drive the process to a point from where B(x4es) is

unreachable even after fault repair.

Remark 3.9: In order to generate empirical RTRRs in the state-space, the database must
include state measurements. If the number of states is known and a deterministic process
model is available but overly complex for online applications, the states can be back calculated
offline from the database measurements using a variety of state estimation tools (i.e., a moving
horizon estimator or an extended Kalman filter). The resulting states can be used to populate
the database, and a state-space model of the form in Equation (3.17) can be developed. This
model will capture nonlinearities, is more amenable to online applications, and is usable for

generating empirical RTRR estimates (and a corresponding RTRR-based MPC design).

3.5 SIMULATION EXAMPLES

In this section, 2 simulation examples are presented. The first one illustrates the details of
the proposed modelling approach and RTRR-based control design subject to varying initial
conditions, time-varying uncertainties, and faults. Next, the modelling approach is applied to
a process with limited measurements in order to identify models for the key process outputs.

These models are subsequently used to design a trajectory tracking controller.

3.5.1 Fed-batch Reactor

In this section, a data-based model of a fed-batch process is extracted from an artificially
generated historical database using the proposed modelling approach. The resulting model
is utilized to design an empirical RTRR-based predictive controller. To this end, consider a

fed-batch reactor where a series of reactions of the form:

k k
2A =5 B =5 3C
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take place. The state-space process model is available in [43, pp. 625 - 627] and reproduced

below.
CaAin— X
a(t) =n+ 20Ty, (3.24a)
X5
1 X
Xz(t) =—=11+1— —2u1 (3.24b)
2 X5
23(t) = =3 - 2u (3.24¢)
X5
wo(ty —x4) + CainCpratt1(w; —x4) + (AHyr1 + AHprp) x
sa(t) = 2(Uz — x4) A,inCp,A 1(wi —x4) + (AHin 212) X5 (3.24d)
(xlcp,A + xZCp,B + x3cp,C) X5 + Ncath,cat
xs5(t) = u (3.24e)

where the reaction rates, r; and r,, are given according to:

E /(1 1
r = —k1x1 = —k10 €Xp( ! (— - —))x1

R T1 X4
E, (1 1
r 2X2 20 €Xp R\T x X2

The state vector is x = [CA Cg Cc T V], where C4 (mol/L), Cg (mol/L), and C¢
(mol/L) denote the concentrations of species A, B, and C (respectively), and T (K) and V
(L) denote the reactor temperature and volume (respectively). The inputs were taken to be
the inlet feed rate, F (L/h), and heating coil temperature, Ty (K), u = [F Thx]/- The input

l4 A
constraints were #m;, = [0 288] and Uy, = [20 360] . In all the simulations, the vector

of model uncertainties was w = [Ti UA]/ where Ti, (K) is the inlet temperature and UA
(cal/(h - K)) is the heat exchanger coefficient. To simulate disturbances, Ti, was stochastically
varied throughout the duration of each batch around its nominal value in the range 295 - 305
K. For the heat exchanger coeflicient, at the start of each batch, UA was assigned a value in the
range 28, 620 — 30, 349 cal/(h - K) and then decreased exponentially to simulate fouling. The

physical meaning of the model parameters and their nominal values are shown in Table 3.2.
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Table 3.2: Parameters for the fed-batch reactor model in Equations (3.24a) to (3.24e)

Parameter  Description Value Unit
Cain Inlet A concentration 4 mol/L

T; Inlet temperature 300 K

UA Heat transfer coefficient x Area 30,000 cal/(h - K)
Cp.a Heat capacity of species A 30 cal/(mol - K)
Cp.B Heat capacity of species B 60 cal/(mol - K)
Cp.c Heat capacity of species C 20 cal/(mol - K)
Cp.cat Heat capacity of catalyst 35 cal/(mol - K)
Neat Amount of catalyst 100 mol
AH, Heat of reaction for A — %B -6,500 cal/mol A
AH, Heat of reaction for B — 3C 8,000 cal/mol B
k1o Reaction rate constant at T for A — %B 1.05 1/h

kao Reaction rate constant at T for B — 3C 0.05 1/h

Ti Reference temperature at which ki is computed 340 K

T, Reference temperature at which ko is computed 300 K

E, Activation energy for A — 1B 9,900 cal/mol
E, Activation energy for B — 3C 7,000 cal/mol

R Universal gas constant 1.986 cal/(mol - K)

The primary control objective considered was to drive the process inside an ellipsoidal

/
neighbourhood around é = ¥es = [2.752 1601 0.8422 365.756 112.425] . The ellip-
soid matrix was specified as Py = diag {25, 400,100, 0.04,1}. The batch termination time,

tend> Was taken to be 1 hour with a sampling period of § = 0.025 hours. The control per-

formance was assessed by the level set of the desired end-point neighbourhood ellipsoid

corresponding to x(f.,q) with a value of less than 1 indicating x(fenq) € B(Xdes)-

Data-based Model Development

A database of 40 batches was generated (using the state-space model) with 10 batches set aside

as the validation batches. With 2 inputs, reference trajectories of Cp and T (see Figure 3.1)

were chosen to be tracked by manipulating F and Ty (respectively) using 2 PI controllers.
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Figure 3.1: Reference Cp and T profiles for the fed-batch process. These profiles were tracked
using 2 PI controllers when generating the database.

Both PI controllers were tightly tuned for 1 set of initial conditions and fixed for the
remaining 39 batches. The tuning criteria was to minimize the integral of time-weighted
absolute error (ITAE) while achieving reasonably smooth input trajectories. For a more
realistic representation of plant data, sensor noise was also considered. The range of initial

conditions and sensor noise levels are summarized in Table 3.3.

Table 3.3: Simulation parameters used for database generation for the fed-batch process

State  Range of initial conditions  Sensor noise

Ca 4.861 — 5.106 mol/L +2.2% of original signal
Cs 0.692 - 0.801 mol/L +2.8% of original signal
Cc 0.446 — 0.539 mol/L +2.1% of original signal
T 280.931 — 300.057 K 0.10 standard deviation

97.952 —101.959 L 0.10 standard deviation

Given the database, Algorithm 3.2 was carried out with PLS regression. Because full
state measurements were assumed, all lags were set to 1. The number of clusters was varied
from Lyi, = 10 to Ly = 100. The lowest RMSE was obtained with L = 20 clusters and 142
principal components®. Figure 3.2 illustrates the predictive capabilities of the final data-based
model* for a set of initial conditions and input trajectories in the validation data set. The
temperature range in the figure is significantly larger compared to the concentration ranges
because its initial value (and values for the batch duration) was an order of magnitude greater

than all the concentrations. As a result, the prediction errors for the concentrations are far

*Note that the number of columns in ¥ (the regressor matrix) was 160 because there were 5 states, 2 inputs,
and a bias term (8 total terms) for 20 local models
“Note that the volume, V, has been omitted.
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more noticeable. Overall, the multi-model approach was able to capture the major process

nonlinearities.
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Figure 3.2: Comparison of the data-based model’s outputs with the corresponding trajectories
in the validation data for the fed-batch process

Closed-loop Results

Next, the RTRR-based MPC design proposed in Section 3.4.2 was implemented, and the
control performance was compared with PI control. Closed-loop simulations were performed
for 10 new initial conditions, which were all within the empirical RTRR ellipsoid at the initial
time. The PI controller tunings were set to those used during database generation. The
MPC tuning parameters were set as follows: IT = diag {0.01, 0.005} and P = 18. The control
performance is summarized in Table 3.4. The RTRR-based MPC design was able to drive the
process inside B(x4es) for all the initial conditions whereas PI control failed in more than

half of the cases. In Figure 3.3, a representative set of closed-loop profiles is presented.

Table 3.4: Final B(x4) level sets from PI control and the RTRR-based MPC with no faults
for the fed-batch process

Initial condition: 1 2 3 4 5 6 7 8 9 10
PI control: 248 722 044 197 223 081 0.68 405 0.46 119

RTRR-based MPC: 0.70 094 024 093 0.16 016 0.026 0.088 015 0.19
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Figure 3.3: Representative state and input profiles from PI control and RTRR-based MPC
with no faults for the fed-batch process

As evidence that the RTRR-based MPC optimization problem is efficiently solvable
despite being a NLP, we note that with P = 18, the longest CPU time required time to solve
the NLP was 0.45 seconds using GAMS with IPOPT as the solver on Intel Quad Core machine.

To demonstrate the fault-tolerance of the RTRR-based MPC design, we considered
faults in both control actuators and compared the performance of the MPC design with
PI control. Starting from x(t) = [4.98 0.76 0.54 289.49 100.46],, we considered the
scenario where at g = 0.25 hours, the actuators associated with both inputs failed, and their
maximum values were reduced to ¢ = [10 310], (from [20 360],). At trepair = 0.45
hours, the faults were rectified and full control effort was recovered. The closed-loop profiles

for this case are shown in Figure 3.4.
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Figure 3.4: State and input profiles from PI control and RTRR-based MPC with finite duration
actuator failures for the fed-batch process. The failure period is shaded.

The batch was driven to x(tenq) = [3,65 1.24 0.71 339.08 110.76], with PI control,
corresponding to a final level set of 104.39, which was well outside B(x4es). On the other
hand, the final level set for the RTRR-based controller was 0.17. Note that during the failure
period, the prediction horizon in the RTRR-based MPC design was reduced from P = 18
to P = 1to avoid having to assume the failure situation any longer than necessary. The PI
controller prescribed the heat exchanger temperature to remain saturated during the failure
period whereas the RTRR-based controller prescribed a more meaningful input trajectory
towards the latter stages of the fault. As a result, the RTRR-based controller was able to
recover the process after the fault and essentially began to track the nominal state trajectories
which terminated at the desired end-point. Also note that the states at the onset of the fault

differed for the 2 controllers since the inputs prescribed up to tg,,; were different.
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3.5.2  Nylon-6,6 Polymerization

In this section, we apply the data-based modelling approach on a complex, nonlinear nylon-
6,6 batch polymerization process to extract models for the key output variables. Subsequently,
we employ these models in a trajectory tracking predictive controller and compare its tracking

performance against PI control and LV-MPC (see Section 3.2.5).

While there exist several chemical routes to produce nylon-6,6 polymer, for this work, we
focused on its production by the amidation of adipic acid and hexamethylenediamine (HMD)
in a batch reactor. In this polymerization, the reactor is initially charged with molten adipic
acid and HMD (from an evaporator) in approximately stoichiometric (1 : 1) proportions.

The reaction model is summarized by the following equations.

Degradation C — SE+W (3.25a)
L—-SE+A (3.25b)
Polyamidation A+CsSL+W (3.25¢)

where A is an amine end group, C is a carboxyl end group, W is a water molecule, L is a
polymer link, and SE is a (non-reactive) stabilized end group. The polymerization reaction
is treated as a second order, reversible reaction of a-a/b-b type that is commonly described
in terms of functional groups for simplicity (see [44]). During the polymerization reaction
(given by Equation (3.25¢)), amine end groups (A) in HMD or the polymer chain react with
carboxylic end groups (C) on either the adipic acid or polymer chain, forming a polymer
link (L) and a water molecule (W). The degradation reactions, Equations (3.25a) to (3.25b),
are considered due to their effect on the reaction mixture temperature. In order to meet the
typical desired end-use quality, a high extent of reaction (over 99%) is required, which, in
turn, calls for shifting the polymerization reaction towards completion by vaporizing water
and then venting the vaporized water. Consequently, the polymerization is typically carried
out in an autoclave reactor equipped with a steam jacket for providing the heat needed for

vaporization (and reaction) and a valve for venting vaporized water.
The polymerization occurs in 3 main phases as described below.
Heating phase: The vent valve is closed to prevent the loss of volatile HMD, and heat is

supplied through the steam jacket, driving the polymerization reaction. After a certain

extent of reaction, the valve is opened, initiating the boiling phase.

Boiling phase: Excess water is removed, which is important for achieving high molecular
weight of the final polymer. After venting water for an appropriate amount of time,

the vent is closed, and the finishing phase begins.
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Finishing phase: The vent remains closed and the final quality characteristics of the polymer

are developed.

To illustrate the proposed modelling and control approach, we utilized the mathematical
model of this process in [44]. The modelling assumptions (and their explanations), parameter
values, and kinetic relationships are available in [44, 45] and omitted here for brevity. The
final state-space model, which takes the form shown in Equation (3.1), consists of 9 coupled
ODE:s with the state vector comprised of the molar amounts of each functional group and

evaporated HMD, the reaction medium mass, temperature, and volume, and reactor pressure.

One difference between the model in [44] and the one used in this work is that we did
not neglect the reactor pressure dynamics. In [44], the reactor pressure is treated as a process
input due to the assumption of fast dynamics whereas we appended the model equations
with an ODE for the pressure that is equal to the product of a (negative) gain term and the
vent rate. In other words, we considered the reactor pressure as an additional state compared
to the model in [44] and modelled it using a simple linear, first order ODE with respect to
the vent rate: % = Kv where K is the negative gain. In this way, the reactor pressure was
treated as a control variable that was influenced by the vent rate, and the control problem (to

be discussed shortly) was a multiple-input-multiple-output problem.

The process outputs, y, were taken to be the reaction mixture temperature, T (K), and
reactor pressure, P (psi). The temperature and pressure measurements were corrupted by
normally distributed, zero-mean white noise with standard deviations of 0.16 K and 0.17
psi, respectively. The inputs, u, were taken to be the steam jacket pressure, P; (psi), and vent

rate, v (kg/h). Thus, the output and input vectors were defined as follows: y = [T P]/ and
u= [Pj v]l. The physical limitations in the process design were assumed to impose the

!/ !/
following input constraints: #p, = [700 0] and U,y = [1800 2000] . The duration of
the batch was 3 hours with a sampling period of 60 seconds. A schematic of the process is
shown in Figure 3.5.

Controller

Sensors: T, P

Figure 3.5: Schematic of the nylon-6,6 batch polymerization process
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Nylon-6,6 polymer quality is defined by its molecular weight, MW, and residual amide
concentration, Ry,. Accordingly, the control objective is to achieve target values of these 2
quality variables. However, these variables are rarely measured online, making direct control
to desired qualities impractical. Instead, the product quality is usually monitored through sec-
ondary process variable measurements, such as the temperature and reactor pressure. Thus,
a common control strategy has been to track reference trajectories of these measurable vari-
ables that are obtained through offline optimization, from historical batch data, or from high
level controllers which periodically re-optimize the trajectories in response to encountered
disturbances (i.e., mid-course corrections as shown in [46]). In [44], industrially popular
tracking control strategies specific to this process are evaluated in terms of their ability to
produce the desired product qualities when encountering common disturbances. For this
work, we chose to track trajectories of the reaction medium temperature, T, and reactor
pressure, P, by manipulating the steam jacket pressure, P; and vent rate, v. We assumed
reference trajectories for T and P, denoted by T and Py (respectively), were identified

appropriately in some fashion, and Figure 3.6 presents these specific trajectories.

550
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Figure 3.6: Reference T and P profiles for the nylon-6,6 batch polymerization process. These
trajectories are required to be tracked in the control objective.

The trajectories in Figure 3.6 were assumed to yield a nominal desired polymer quality at
batch termination. However, even under perfect tracking during a new batch, there is no
guarantee that the desired quality will be met because unavoidable disturbances encountered
during the batch can effectively alter the relationship between the quality and the process
outputs. Thus, the reference trajectories may no longer yield the desired polymer quality,
and they essentially have to be “re-optimized" in some fashion. The development of an
inferential quality model, which can be used to predict the final product quality from the
process outputs and inputs and then the subsequent integration of this model within a control
design is outside the scope of this chapter but later addressed in Chapter 5. In this chapter,

we specifically focus on the complexities associated with the trajectory tracking problem.
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Data-based Model Development

Data-based models for the 2 outputs are developed in this section from an artificially gener-
ated batch database comprised only of input and output measurements. The database was
generated by simulating the state-space model 15 times from different initial conditions with
5 batches reserved as the validation data set. To mimic a typical industrial batch database,
which consists mostly of “successful” batches, the reference profiles in Figure 3.6 were tracked
using 2 PI controllers for the database generation. For the control loop pairing, the vent
rate was used to track the reactor pressure while the steam jacket pressure was used to track
the reaction mixture temperature. Both controllers were tightly tuned for 1 set of initial
conditions and fixed for the 14 remaining batches. The tuning goal was to minimize the ITAE

while attaining acceptable input trajectories.

Because the reactor pressure dynamics were significantly faster than the temperature
dynamics, there was a weak correlation between the 2 outputs. Consequently, individual
models for the outputs were identified with PCR as opposed to a single PLS model that
predicted both outputs simultaneously. The model identification procedure in Algorithm 3.2
was carried out for T and P separately. The minimum number of lags considered was 0,
which meant the variable was not included in the model, and the maximum number was
2. The clusters were varied from Ly, = 2 to Lyin = 20. The lag structure and number of
clusters, L, for the 2 outputs that yielded the lowest RMSE values are tabulated in Table 3.5.

Table 3.5: Final lag structures, number of clusters, L, and RMSE values of the data-based
models for the nylon-6.6 batch polymerization process

Lags
Output T P P; v L RMSE
T 1 0 1 1 5 1.65
P 0 1 0 1 1 0.18

From Table 3.5, the reactor pressure was not used in predicting the temperature, and
its dynamics were best captured with a single linear, first order model. These results were
consistent with the fundamental process model; the significantly faster pressure dynamics led
to a decoupling of the pressure from the other states (i.e., the pressure did not influence any
of the other states and vice versa), and the pressure ODE was simply the product of a constant
gain term and the vent rate (a linear, first order model). Note that despite the decoupling of
the outputs, the control problem cannot be decomposed into 2 single-input-single-output
problems because the vent rate affected both outputs. Another observation from Table 3.5
is that the lag structure for the 5 temperature models corresponds to a first order model

between the outputs and inputs. One explanation for this behaviour is the assumption of the
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same lag structure for all the local models. With this assumption, using all first order models

minimized the possibility of over-fitting, and in this case, yielded the lowest RMSE values.

In Figure 3.7, we compare database trajectories with the data-based model for a random
set of initial conditions in the validation data set. Overall, the multi-model approach captured

the major nonlinearities and provided relatively reliable predictions of both outputs.

550
200
—~ 500 -~
= &
= 100
450
| | 0 | |
0 1 2 3 0 1 2 3
Time (h) Time (h)

Figure 3.7: Comparison of the data-based models’ outputs with the corresponding trajectories
in the validation data for the nylon-6,6 batch polymerization process

Closed-loop Results

In this section, we use the models identified in the previous section to design a trajectory
tracking controller, and then benchmark its performance against PI control and LV-MPC.
For the proposed trajectory tracking controller, the control action at each sampling instance

was computed by solving the NLP shown below.

P

min Jr =" [ §[k] - y[k]|Z + |u[k] - ulk -1][5 (3.26a)
ulk]eld =

subject to: y[0] = y(¢) (3.26b)

Equation (3.15) for y; = Tand y, =P, fork € [L,P] (3.26¢)

The first term in the objective function penalized discrepancies between the predicted output,
9, and the reference, y ., trajectories over the prediction horizon®, P, and the second term
penalized the control rate. The positive-definite matrices, E and II, traded-off the relative
importance of the output and input performances. Equation (3.26¢) states that the data-based
models were the underlying predictive models in the MPC formulation, and Equation (3.26b)

represents the initialization of the optimization problem at the plant conditions.

*Because this MPC formulation is a shrinking horizon optimization problem (as is the case for batch
processes), the prediction horizon must be appropriately shortened when necessary so as not to exceed the batch
duration.
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Closed-loop simulations for 10 new initial conditions were performed using the proposed
trajectory tracking MPC design, and the performance was compared against PI control and
the LV-MPC approach that was reviewed in Section 3.2.5. All initial conditions were ensured
to be within the range of initial conditions in the training data. All controllers were tuned
once for a specific set of initial conditions and left unchanged for the remainder of the
simulations to avoid confounding the results with tuning. The tuning parameters for the
proposed MPC and LV-MPC designs are presented in Table 3.6.

Table 3.6: Tuning parameters for the proposed MPC and LV-MPC designs during closed-loop
simulations of the nylon-6,6 batch polymerization process

Proposed MPC LV-MPC

B diag {2.75,27.5}  diag{l,...,1}
1| diag {0.02,0.02} 0
M (lags) - 5
p 12 10

Note that with P = 12, the proposed MPC design was efficiently solvable; the average
CPU time required time to solve the MPC optimization problem (as reported by the Matlab
functions, tic and toc) was 0.69 seconds (using GAMS with IPOPT as the solver on Intel Quad
Core machine). For LV-MPC, the closed form control law in Equation (3.10) (after clipping
for input constraints) yielded better performance compared to solving the optimization
problem in Equations (3.11a) to (3.1lc), and the corresponding results are shown in this

section. The results from all 3 controllers are summarized in Table 3.7 in terms of the ITAE.

Table 3.7: Tracking performance with PI control, the proposed MPC design, and the LV-MPC
design for 10 new initial conditions for the nylon-6,6 batch polymerization process

Temperature ITAE Pressure ITAE

Initial Condition PI Proposed MPC LV-MPC PI Proposed MPC  LV-MPC
1 9.10 2.18 8.34 3.08 1.01 2222
2 10.18 1.51 7.00 3.46 1.22 13.91
3 333 1.33 5.80 5.02 1.47 28.75
4 4.95 1.76 7.76 2.71 2.03 20.93
5 12.99 2.98 10.53 1.93 143 15.33
6 6.99 1.21 6.82 10.29 1.04 9.51
7 13.29 2.72 9.38 5.18 157 29.53
8 3.14 L19 6.54 1.20 0.860 18.44
9 14.63 1.90 8.89 1.43 131 15.73
10 4.91 1.89 750 4.61 1.58 27.62

Average ITAE: 8.35 1.87 7.86 3.89 135 20.20
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On average, for temperature tracking, both predictive controllers were superior to the
PI controller. The proposed MPC design offered a significant advantage of approximately
78% with LV-MPC yielding a 6% average improvement. For pressure tracking, the proposed
MPC design yielded the most desirable results followed by the PI controller then LV-MPC.
In all simulations, the proposed predictive controller outperformed PI control and LV-MPC

for both temperature and pressure tracking.

One explanation for the poor results obtained using LV-MPC was the database used to
develop the PCA model. For the proposed modelling approach and LV-MPC modelling, an
identical database of closed-loop PI runs was used. However, in generating the databases used
to develop the PCA models in [26], dither signals were added on top of all the inputs to help
meet identifiability conditions. This was not required in the proposed modelling approach.
Another possible explanation is that the correlation structure determined by the PCA model
did not hold for the new initial conditions due to strong nonlinearities and/or there were
significant changes in the correlation structure as the batch proceeded (see Remark 3.6). The
key point of the simulations presented though is to the show the superior performance of
the proposed MPC design compared to PI control strategies and to benchmark it against a

“simple" implementation of LV-MPC (not necessarily the best implementation of LV-MPC).

A representative set of closed-loop profiles is presented in Figure 3.8. For this set of
initial conditions, the ITAEs for the proposed predictive controller improved on the PI
controller by 77% and 26% and on the LV-MPC design by 72% and 91% for temperature and
pressure tracking (respectively). Overall, the simulation results demonstrated the advantages
of implementing the proposed trajectory tracking predictive controller over PI control and
LV-MPC.
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Figure 3.8: Representative tracking error and input profiles from PI control, the proposed
MPC design, and the LV-MPC design for the nylon-6,6 batch polymerization
process

3.6 CONCLUSIONS

In this chapter, we addressed the problem of uniting empirical/data-based modelling ap-
proaches with nonlinear control tools for the control of batch processes. In the proposed
modelling approach, we exploited the availability of historical batch data, the simplicity of
local linear models, the data extraction capabilities of PLS/PCR, and the use of appropriate
clustering and weighting techniques in conjunction with multiple models to capture the
nonlinearities of batch processes. The resulting model from this approach was employed to
generate empirical RTRRs, which were subsequently incorporated in a predictive control
design. The efficacy of the RTRR-based MPC design and superior performance, as well as

fault-handling ability, compared to PI control was demonstrated through a fed-batch reactor

simulation example.

The data-based modelling approach was also applied to develop models for use in a
trajectory tracking MPC design for a nylon-6,6 batch polymerization process with limited
measurements. The resulting models were used to develop a predictive controller for tracking
reference trajectories of the key process outputs, namely the reaction mixture temperature

and reactor pressure. Closed-loop simulation results (subject to noise and disturbances in the
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feed conditions) clearly demonstrated the advantages of using the proposed control design

over PI control and a simple implementation of LV-MPC.
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4.1 INTRODUCTION

In the previous chapter, we proposed a multi-model approach that unifies the concepts of
auto-regressive exogenous (ARX) modelling, latent variable regression techniques, fuzzy
c-means clustering, and multiple local linear models. While this modelling approach is
capable of capturing nonlinear process dynamics, it does not explicitly account for time-
varying dynamics. As a result, in this chapter we generalize the modelling approach to
incorporate the ability to capture time-varying dynamics by using information available from
new operating conditions immediately (instead of waiting until batch termination to update
the model).

In general, adding an adaptive element to model-based control designs wherein the
model’s parameters are updated online at each sampling instant has been a popular method
for improving closed-loop performance. The existing contributions in adaptive, model-
based control for batch processes can be broadly divided according to the type of model,
deterministic [3-8] or empirical [9-12], being adapted. Updating a deterministic model
consists of estimating a subset of the uncertain (possibly time-varying) parameters in the state-
space model whereas with empirical models, the entire set of model parameters is typically
updated. In either case, the key to success of using an adaptive model is a well-designed

real-time, recursive parameter estimation algorithm.

For nonlinear state-space models, a nonlinear estimator, such as an extended or un-
scented Kalman filter, is typically necessary. In most cases, since a state estimator is used in
conjunction with the state-space model, the parameter estimation problem is embedded in
the state estimation by augmenting the state vector with a vector of uncertain parameters.
This calls for defining a dynamic model for each parameter; however, this is usually unknown
(note that in some instances, a dynamic model can be hypothesized for some of the parame-
ters using process knowledge [7]) and a random walk model (to approximate time-varying
parameters) is therefore assumed. Using an adaptive input parameterization technique has
been another popular approach for improving closed-loop performance, particularly for
bio-processes [8]. In this approach, a nominal solution of the MPC problem is first obtained
offline (based on the deterministic model) and then subsequently characterized in terms
of the qualitative behaviour of the specific growth and production rates. Using available
measurements, the growth and productions rates are updated online (using Kalman filters or
Luenberger type observers) thereby resulting in an update of the pre-characterized optimal

solution, which, in turn, makes the controller adaptive.

The recursive least squares (RLS) algorithm (a linear estimator) is most commonly used
for updating empirical model parameters due to the model’s assumed linear form (with
respect to the parameters). One drawback of conventional RLS algorithms is an inherent

assumption of static/stationary model parameters. The RLS framework can straightforwardly
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accommodate a random walk model for handling time-varying parameters, but the more
popular method to accomplish this has been to discount past data in an exponentially
weighted manner with a forgetting factor. The use of a forgetting factor (or, in fact, any
mechanism to account for time-varying dynamics) is particularly important for maintaining
the validity of empirical models of batch processes. In particular, because of using a linear
model (or an appropriate combination of linear models) to describe the inherently nonlinear
process, new operating conditions can be encountered during a batch around which the
model is highly inaccurate or completely invalid, specifically if such conditions were absent
from the “training" data set. By updating the model more aggressively based on the current
operating conditions, the newly encountered local dynamics can be modelled to some extent,

helping to preserve the model’s accuracy and validity.

Motivated by the above considerations, in this work, we add online learning ability to
our previously developed modelling approach and use the resulting adaptive model in a
trajectory tracking predictive controller. Two algorithms are used: (1) the standard RLS
algorithm with a forgetting factor and (2) a probabilistic RLS (PRLS) algorithm (also with a
forgetting factor) specifically developed for the modelling approach. The rest of this chapter
is organized as follows: We begin by showing how the standard RLS algorithm can be applied
in a straightforward manner to update the ARX model coefficients of the local linear models.
This is followed by the development of a PRLS estimator for each local model that takes
each model’s probability of being representative of the current plant dynamics into account
during the update. Simulation results of the nylon-6,6 batch polymerization process are then
presented. Specifically, we take its models that were developed in Section 3.5.2 in Chapter 3
and make them adaptive using the RLS and PRLS algorithms. Subsequently, we demonstrate
the improved closed-loop performance achieved from using the adaptive model (over a
non-adaptive model) in the trajectory tracking predictive controller. Finally, we summarize

our results.

4.2 ONLINE ESTIMATION OF THE DATA-BASED MODEL

PARAMETERS

Recall that in the modelling approach in the previous chapter, the final model for output i,

¥i» took the following form:

Jilk] =3 wel k] (Z apy[k - j]+ %ﬁz,ju[k -jl+ ye) (41)
=1 j=1 j=1
= iwe[k]ﬂé F[lk]] (4.2)
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where X[ k] is defined as before (a vector of lagged concatenated outputs and inputs with n,,

and n,, lags, respectively) and w,[ k] is the (normalized) weight given to model ¢:

&[] - co|
welk] =
= S el

The vectors, ae,j and B, ;, and the scalar, y,, define the £-th local ARX model while the vector

0, stores €-th model’s coefficients. Using the following definitions,

o=[0; - 0, - 0] (43)
y[k] = [wl[k][’_‘[lk]] wg[k][’z[lk]] wL[k][x[lk]” (4.4)

Equation (4.1) can be rewritten in the common least squares vector form:
yilk]=v/[k]® (4.5)

The parameters to be identified in the final model form are the:

1. Cluster centre points, ¢i, €3, -+, €¢, that define the weighting function

2. ARX model coeflicients, @

One way to adapt this model is where both sets of parameters are updated at every sampling
instance using the plant measurements. In this work, we look at a subset of this problem
by assuming that the originally computed cluster centre points hold for the current batch,
and we focus on updating only the ARX model coefficients during the batch. We deem this
assumption reasonable because the initially identified cluster centre points span the range of
operating conditions in previous batches, making it unlikely for a new batch to encounter
operating conditions that would significantly change the centre points. Note that once the
current batch is finished, its data can be added to the existing database, and the cluster centres

along with the ARX model coefficients can be updated.

In this section, we address the problem of how to recursively update the ARX model
coefficients during a batch as measurements become available. We start by demonstrating
that the standard RLS algorithm is a natural solution for this problem and bring attention
to a few issues regarding its implementation. Next, we develop a probabilistic RLS (PRLS)
algorithm specific to the multi-model approach that adopts a localized, probabilistic approach
to the model updates.
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4.2.1 Recursive Least Squares Parameter Estimation

Consider the scenario where OLS regression or PCR has been used to estimate the ARX model
coefficients and their co-variances, denoted henceforth by ®[0] and P[0] (respectively). The
ARX model coefficient estimates can be updated based on the error between the predicted
output and the plant measurement by rearranging the regression solution in a recursive form,
yielding the standard recursive least squares (RLS) algorithm [13]. The updated estimates given
by RLS are equivalent to those that would be obtained from OLS/PCR after appending the
response and regressor matrices with new rows corresponding to the current measurement. In
this way, the old training data is given just as much importance as the new data. With limited
training data (as is the case for batch processes), operating conditions can be encountered
during a new batch that are not originally modelled. Under these circumstances, it is desirable

to update the models more aggressively based on the new plant data.

One extension of RLS to cover this situation is to replace the conventional least squares

criterion with one having time-varying weighting of the data as shown below.

2

N
V(O.N) = = AN (il - v/[j)e} (46

y j=l
where N is the number of observations, 0)2, is the measurement noise variance, and the scalar,
0 < A <1, is a forgetting factor. With the inclusion of A, the most recent data is given unit
weight while data that is # time units old is weighted down by A”. The effective memory
length of the data (i.e., the number of observations used at any sampling instance for the
update), Ny, is given by [13]:

N, = (4.7)

b
1-1

The set of recursive equations shown in Equations (4.8a) to (4.8d) for updating @[ k]
and its co-variance, P[k], can be derived for the least squares criterion in Equation (4.6)
[13]. Note that by starting from a time-varying criterion, the inherent assumption of static
model parameters associated with RLS without a forgetting factor is removed. This becomes

important if the process has time-varying uncertainties.

v[k] = yi[k] - ¥'[k]®[k 1] (4.8a)

O[k] = Ok - 1] + k[k]v[k] (4.8b)
_ Pk — 1]y[k]

MK = Tl 1y k] + 12 (4.8¢)

P[k] - % (1 k[k]y/[K]} P[k ~1] (4.8d)
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In this set of recursive equations, v[ k] is the prediction error or innovation, y;[ k] is the plant
measurement of output i, and k[k] is a gain vector. The initial estimate and co-variance can
be initialized at the solution of the original regression problem, ®[0] and P[0]. For A =1,
Equations (4.8b) to (4.8d) reduce to the standard RLS algorithm, and the effective memory
length of the data is oo, signifying all the data is used with equal weight. Additionally, Equa-
tion (4.8d) indicates that the estimate co-variance always decreases as the batch progresses
for A = 1. This can be understood as the level of uncertainty in the estimates decreasing with

time as more information (i.e., the inverse of uncertainty) is being used for the estimation.

When A < 1, as new data becomes available, old data is continuously discounted. While
this behaviour is necessary for adapting more aggressively based on new data, it becomes
problematic when there is no information in the new data. This is referred to as periods of
low excitation. During low excitation periods, data loss occurs since old data is discounted
while the new data has no information. Consequently, the co-variance matrix elements can
increase unboundedly and become ill-conditioned, leading to the estimates “blowing-up"
or “bursting". In a closed-loop environment, periods of low excitation can occur when the
controller begins to track constant or slowly varying set-points during which the inputs and
outputs show little variation between successive sampling instances and no information is
obtainable from the plant data while the old (useful) data continues to be discounted. A
common practice to keep the plant persistently excited has been to add small dither signals

on top of the inputs that do not significantly affect the closed-loop behaviour.

Low excitation periods are less common in batch processes, particularly when considering
the trajectory tracking problem, compared to continuous processes. Recall that the set-point
trajectories for batch processes are typically computed oftline or regenerated periodically
during the batch by solving a dynamic optimization problem. These set-point trajectories tend
to vary throughout the batch duration while covering a wide range of operating conditions.
The inputs are continually adjusted in response, keeping the process more or less persistently
excited. The flexibility to use complex, time-varying set-point trajectories is, in fact, one of
the main reasons for the popularity of batch processing. Nevertheless, there may be periods
when the set-point trajectories plateau specifically during the initial and/or finishing stages of
the batch. There have been many techniques proposed to handle the effects of low excitation
(see [13, Chapter 11] for a review). Two approaches that require limited modifications to
the RLS framework include using a variable forgetting factor [14] such that the information
content in the filter remains constant or the constant trace algorithm [13, Chapter 11] wherein
the co-variance matrix is explicitly bounded by scaling it at each iteration such that its trace

remains constant.

87



PH.D THESIS - S. AuMI Chemical Engineering | McMaster University

4.2.2  Probabilistic Recursive Least Squares Parameter Estimation

The standard RLS algorithm with a forgetting factor in Equations (4.8a) to (4.8d) simultane-
ously updates all of the local ARX model coefficients based on the prediction error. Suppose
that at a given sampling instance, model ¢ is a substantially better representation of the pro-
cess dynamics compared to the other models. In this situation, model € should be updated to
a greater extent than the other models once the measurement becomes available. However,
with the standard RLS algorithm, models known to be a poor representation of the current
dynamics can be unnecessarily updated. This motivates the idea of adopting a more local
update approach. To this end, we develop the probabilistic recursive least squares (PRLS)
algorithm for each model that takes the probability of the plant measurement originating

from the different models into account.

Denote the original ARX model coefficient estimates and their co-variance for the ¢-th
model as 0,[0] and P,[0] (respectively). In alocal update approach, L estimators are operated
independently of each other (i.e., each estimator only considers its corresponding model).

As a result, the following L events are mutually exclusive in each estimator:
Ee : yi[ k] originated from plant dynamics representable by model ¢, for €€ [1,L] (4.9)

For the development of the PRLS equations, we first introduce the following assumptions.

Assumption 4.1: There is negligible prediction error from the originally identified model
such that:

E{yi[k]} = yi[K] (4.10)

where E {-} denotes the expected value and j;[k] is the model prediction of the plant mea-

surement, y;[ k], from Equation (4.1).

Assumption 4.2: At a given sampling instance, the plant dynamics are representable by
a linear combination of the L local linear models in Equation (4.1). Thus, the events in

Equation (4.9) are exhaustive (in addition to being mutually exclusive in each estimator):

zL:Pr{Eg} =1

where Pr {-} denotes the probability of an event.

As an initial step, we compute the posterior probability of y;[ k] originating from model

¢ using a Bayesian approach. This is formalized below in Theorem 4.1.
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Theorem 4.1: Consider L estimators (corresponding to the L models) operating independently
and subject to Assumptions 4.1 to 4.2. The posterior probability, {s[ k], that the plant measure-
ment, y;[ k], originated from plant dynamics representable by model € is given by:

N (yilk]; Jielk ] [ ])H’E[ ]-cel™
ZjLle()’Z[ Iy )| 1-¢l

where N (x; 78 02) represents the value of x on a normal distribution with mean y and variance

Ce[k] = (4.11)

02, and §; ¢[k] and o} k] are given by:

] =x'[k]0c[k -1] (4.12)

o7 (k] = ' [k]Pc[k —1]%[k] + 0, (4.13)

>

~

|
b

Proof: Using the total probability theorem with respect to the events in Equation (4.9), the
expected value of the plant measurement at sampling instance k, given measurements up to

k — 1, can be written as:

M=

E{yilk] | v/} = S E{pilk] | &0, v/ Y pr {ge | v} (4.14)

~
1l

1

[k-1]

where Y; denotes the measurement sequence up to k — 1. We have used the fact that the

events in Equation (4.9) are mutually exclusive and exhaustive. Note that this follows from

the total probability theorem, which, in general, can be stated as:

E{x} = Z;E{x | &} Pr{&}

where x is a continuous random variable and {&,, . .., €L } are mutually exclusive and exhaus-

tive events.

With no prediction error (Assumption 4.1), the expected value of the plant measurement,
conditioned on the event that the ¢-th model represents the plant dynamics, follows from
Equation (4.1) with w,[k] = 1and w;[k] = 0 for j # € where j € [1, L].

E{yi[k] | € Y"1} = % [K16.[k-1]

Using this result and Equation (4.10), which implies E{ yilk] | Yi[kfl]} = 9i[k], Equa-

tion (4.14) can be expressed as:

ZL: x ~1ppe{&, | v (4.15)

¢=1
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Comparing Equation (4.1) and Equation (4.15), we have:

|%[k] = el

(4.16)
i & (k] - o]

Pr{&, | YU} < wp[k] =

Thus, the prior probability of £ (based on information up to k — 1) can be estimated with
model ¢’s weight (i.e., its membership function value). The prior probability can be corrected
once the plant measurement becomes available using Bayes’ rule. Denoting this posterior

probability as {,[ k], the application of Bayes’ rule yields:

p(rilkl 1Y &) Pe{ee | v )
p(wilk] [ ¥/*Y)
p(nlk 1 Y, &) & 0K] - o] 2

= (4.17)
p (k] | YI) L 2 (K] - ¢ 2

o[k = Pr{é’g | yi[k], y}k-ll} -

1

where Yi[k] has been partitioned as {yi[k], Y.[k_l]} and p (y,-[k] | Yi[k_l], Sg) is the prior
likelihood of the measurement conditioned on &,. This conditional likelihood is simply the
measurement’s height on the probability density function (pdf) of model €’s prediction. With
zero-mean Gaussian measurement noise, the pdf of the prediction is a normal distribution
with mean J; o[ k] and variance o;[k]. These pdf parameters are given by Equation (4.12)
and Equation (4.13), respectively. The mean is simply the prediction from only using model
¢ (i.e., the pdf is centred at the model’s prediction). The variance equation follows from
the assumed linear model form and its derivation procedure is identical to the one for the

innovation co-variance in the Kalman filter. Thus, p ( yilk] | Yl.[k_l], 55) is given by:

P(yi[k] | Y,‘[kfl],r‘/’e) =N (yi[k]; ielk], 07 [K]) (4.18)

The denominator in Equation (4.17) can be rewritten by invoking the total probability theorem
with respect to the events in Equation (4.9) and using the results in Equation (4.16) and
Equation (4.18):

p(y,-[k] | Yi[k_l]) B ZL;P()’i[k] | Y,-[k_l],&') Pr {Ej | Yi[k_l]}
P

SN (ilkDs ilk] o [K]) [%[K] - ;]
SL|&K] - e 2

(4.19)

Substituting Equation (4.18) and Equation (4.19) in Equation (4.17) yields the final expression
for the posterior probability in the theorem, completing the proof.
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A standard assumption of zero-mean, normally distributed measurement/sensor noise
is made for the result in Theorem 4.1, but its key idea holds even when this is not the
case. If the noise distribution’s parameters are known, the likelihood expressions derived
in Equation (4.18) and Equation (4.19) can be modified accordingly. In the absence of
any information about the noise characteristics, the assumption of zero-mean, normally
distributed noise is a meaningful way to determine the likelihoods that are required for the

result in the theorem.

In this theorem, we use the model weights (obtained from the membership function)
as the prior probabilities when applying Bayes’ rule. To rigorously show the equivalence
between the prior probabilities and model weights, an assumption of negligible prediction
error is made. In practice, this assumption will of course not hold because of unavoidable
plant-model mismatch. Hence, the weights essentially represent an estimate of the prior
probabilities with the quality of the estimate depending on the model quality. Note also that
the prior probabilities are corrected to some extent once the measurement becomes available
from Bayes’ rule, and the level of plant-model mismatch can also be reduced as the model is
continually updated online. As presented in the sequel, if the initial model built using the
multi-model approach is of good quality, the result of this theorem provides a mechanism
to update the individual models within the RLS framework in a probabilistic sense. This is

formalized below in Theorem 4.2.

Theorem 4.2: Consider the problem of probabilistically updating each model’s coefficients
(using independent estimators) at sampling instance k when we have y; and u measurements
up to k and k — 1, respectively. The coefficients for model € that minimize the time-varying least

squares criterion in Equation (4.6) in a probabilistic sense at k are given by:

ve[k] = yi[k] - %'[k]0c[k 1] (4.20a)
0c[k] = 0,k —1] + Ce[k]ke[k]ve[K] (4.20b)

(4.20¢)

Po[k] = Po[k —1]{1- {[k]} + @ {1- Ke[k]&'[k]} Pe[k — 1] + Po[k] (4.20d)

where Po[k] = ko[k]{(e[k]vi[k] - Ce[k]*vi[k]} ke[K]'.

Proof: Note that this proof is a modification of the probabilistic data association filter deriva-
tion in [15]. Given the plant measurement, y;[k], the following complementary, mutually

exclusive, and exhaustive events are possible in the ¢-th estimator:

Ee : yi[ k] originated from plant dynamics representable by model ¢ (421)

&o ¢ yi[ k] did not originate from plant dynamics representable by model ¢
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Next, we derive the recursive equations for the coefficient estimate and co-variance updates
that take the posterior probabilities for each model into account. For the events in Equa-
tion (4.21), the estimate of model €’s coefficients can be expressed using the total probability

theorem as follows:

0c[K] = E{0c[k] | Y™}
= E{0c[k] | €0, Y/} Pe{&o | Y[} + B{0.[K] | £ v} Pr {0 | /M)
= 047 [k] {1- G[K]} + 037 [K]Ce[ k] (4.22)

where (;[k] is given by Equation (4.11) and 0?) [k] denotes the coefficient estimates at k
conditioned on &;. For &, the model coefficient estimates and their co-variance should
remain unchanged from their previous estimates since the plant dynamics represented by

model ¢ did not play a role in generating the measurement. Accordingly, we have:

6\ [K] = Oe[k 1]
P (k] = o[k - 1]

where Pgi) [k], denotes the co-variance of 02:‘) [k] (i.e., the co-variance conditioned on &;).
For &, the standard RLS equations with a forgetting factor, written specifically for model ¢,

can be used to update model £’s coefficients and their co-variance:

velk] = yi[k] - %'[k]0,[k 1]
0$1k] = o[k — 1] + ko[k]ve[k]
P,k - 1]%[k]
"[k]Pg[k ~1]%[K] + Ao?

k[k] =

Pk {1 — ke[KJ%'[K]} Po[k —1]

Combining the expressions for ego) [k] and ege) [k] into Equation (4.22) yields the update
equation in the theorem (Equation (4.20b)). Equation (4.22) shows that the final estimate
is a weighted sum of 2 conditional estimates. In this case, the final estimate’s co-variance
is a weighted sum of the two conditional co-variances, Pgo) [k—1] and Pge) [k —1],and an
additional co-variance term, P,[k], arising from the measurement origin uncertainty. This
term, given by Po[k {(g - (o[ k] } ko[k]’, is similar to the “spread of
the means" term in the co-variance of a random Varlable that is the sum of two random
variables. Its lengthy derivation is available in existing literature [15] and omitted here for
brevity. The final co-variance update equation is given by:

ng] {1 - ko[k]Z[k]} Po[k — 1] + P[k]

Po[k] = Pelk —1]{1-{[k]} +
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In summary, by weighting the updated model coeflicients (and their co-variance) by the
probability that they should have been updated and by using the standard RLS equations to
compute the updated coeflicients, the final coefficient estimates minimize the least squares

criterion in Equation (4.6) in the probabilistic sense.

Compared to the standard RLS algorithm, using the PRLS algorithm for updating each
model’s coefficients provides more flexibility for controlling the adaptation. First, the for-
getting factor for each estimator can be tuned independently. More importantly, the local
adaptations can be made more aggressive while maintaining more precise coefficient es-
timates. This is because the co-variance increase from discounting old data is weighted
by the (posterior) probability, {;[k]. In this way, co-variance increases only occur during
the appropriate periods when the local model adaptation is active. With the standard RLS
algorithm, the co-variance associated with all the models can increase at every sampling

instance whether or not the model should have been updated.

Remark 4.1: In general, no conclusions can be drawn as to which RLS update strategy, con-
ventional or probabilistic, will perform better in practice. The 2 strategies adopt different
approaches in updating the models. In the PRLS algorithm, the models are updated inde-
pendently/locally according to their (posterior) probabilities of being consistent with the
current plant dynamics. This approach is more suitable for specific situations than a global
update of all model coefficients. For instance, when a batch is operating near a cluster’s centre
point, it is more meaningful to update the cluster’s corresponding model rather than all the
models during this period. Note also that due to the probabilistic nature of the update, the
PRLS algorithm is still capable of meaningful adaptations when the operating conditions are

somewhere between different cluster centre points.

Remark 4.2: One advantage of the proposed PRLS algorithm is that it has lower computa-
tional requirements than the standard RLS algorithm (for L > 1). Since the standard RLS

algorithm for a given output is interpret-able as a Kalman filter for the following system [13]:

=
—
=
—
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its computational requirements are approximately proportional to (L x ng,)® where ng, is the
number of coefficients in each local model. This follows from the fact that the computational
requirements of a Kalman filter are proportional to n* where n = max {n, p} with n and p
denoting the number of states and outputs (respectively) for the system under consideration
[15]. By comparison, since each model is updated individually in the PRLS algorithm, its
computational requirements are proportional to Y'5_, nge =L x nge. Thus, the computational

requirements are lower by a factor of L?, which may be significant for a large L.
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4.3 SIMULATION EXAMPLE: NYLON-6,6 BATCH

POLYMERIZATION

In this section, we revisit the nylon-6,6 batch polymerization example in Section 3.5.2 in
Chapter 3 and investigate the advantages of adding model adaptation. For more details on

this process, see Section 3.5.2.

As before, the control objective we considered was to track reference trajectories for
the reaction mixture temperature, T (K), and reactor pressure, P (psi), denoted by Tief
and Py (respectively), by manipulating the steam jacket pressure, P; (psi), and vent rate, v

(kg/h). Thus, we had: y = [T P]/ and u = [Pj v]/. The inputs were constrained between
Umin = [700 0], and Uy = [1800 2000],. The duration of the batch was t.,q = 3 hours,

and it was sampled every 1 minute. The reference trajectories (see Figure 3.6) were assumed

to be identified appropriately in some fashion.

4.3.1 Data-based Model Development

The data-based models for T and P developed in the previous chapter were designated to be
the non-adaptive models (see Section 3.5.2 for the details on how the artificial database was
generated and the model fitting procedure) in this chapter. Table 4.1 shows the key model
parameters, namely the lags and number of clusters/models and the final RMSE values. A

discussion of these results is available in Section 3.5.2.

Table 4.1: Final lag structures, number of clusters, L, and RMSE values of the data-based
models for the nylon-6.6 batch polymerization process

Lags
Output T P P; v L RMSE
T 1 0 1 1 5 1.65
P 0 1 0 1 1 0.18

The outputs from the data-based models are compared with those from a batch in the
validation data set in Figure 4.1. Validation batches were chosen (one for each output) for
which the data-based models displayed the poorest predictions (highest RMSE values)'. The
predicted temperature, particularly during the finishing stages, demonstrated the need/room
for improvement of the temperature model. This is addressed in the next section by incor-
porating online learning ability into the model using the RLS and PRLS algorithms. The

pressure model, on the other hand, did not require any further improvements.

'In Figure 3.7, a random validation batch was chosen for both outputs, explaining the difference between
the results in Figure 3.7 and Figure 4.1
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Figure 4.1: Comparison of the data-based models’ outputs with the corresponding trajectories
in the validation data for the nylon-6,6 batch polymerization process. The database
trajectories selected correspond to the highest RMSE values for each output.

4.3.2  Online Update of the Temperature Model

In this section, we use an adaptive temperature model to predict the temperature of the
validation batches. The adaptation performance was evaluated according to prediction
accuracy and precision of the model coefficient estimates. The prediction accuracy was
quantified using the RMSE metric while the precision was quantified using the co-variance
matrix as follows. At sampling instance k for batch b, the sum of the variances of the
coeflicient estimates is trace {P(b) [k]} The average of this trace over the batch duration and
number of batches was termed the mean sum of the variances (MSV) and used as the metric

to asses the estimation precision.

=

11
MSV =

B
2.
b=1

trace {P(h)[k]}

|
Al

k

The results from applying the RLS and PRLS algorithms on the temperature model with
various forgetting factors are summarized in Table 4.2. The forgetting factor in each PRLS

estimator was kept the same for simplicity.
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of the nylon-6,6 batch polymerization process

RLS PRLS
A RMSE MSV RMSE MSV
1 0.9074 7.861 0.8219  5.657
0.995 0.7927 12.49 0.8073  5.918
0.95 0.4980  3.349 x 10° 0.6721  11.57
0.90 0.4399  1.465x 10° 0.5631 50.83

The improved prediction accuracy obtained by adapting the model is evident by com-
paring the RMSE value in Table 4.1 with those in Table 4.2. Adapting the model with A =1
improved the prediction accuracy by 45% (RLS) and 50% (PRLS). As the forgetting factor
was decreased to make the adaptation more aggressive, there was a trade-off between the
prediction accuracy and parameter precision. However, the loss in precision was significantly
less sensitive for the PRLS algorithm, permitting more aggressive adaptation (lower values of
A) with acceptable parameter variances. Thus, the PRLS algorithm was concluded to offer a
better management of the trade-off between the prediction accuracy and parameter precision.
The temperature prediction error magnitude, | T' — T/, for the batch in Figure 4.1 is shown
in Figure 4.2 before and after incorporating model adaptation. Forgetting factors of 0.995
and 0.90 for the RLS and PRLS estimators (respectively) were selected for a fair comparison
since they resulted in comparable estimation precision. These forgetting factors were also

used for adapting the model in the closed-loop simulations.

T
8 Non-adaptive
- = = Adaptive: RLS
__ 6| —— Adaptive: PRLS
¥
oy
<~ "
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2 'l |‘ 'I “ 'r‘
l' |\ - ! ‘|
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Figure 4.2: Prediction error magnitudes (for the batch in Figure 4.1) for the data-based T
model of the nylon-6,6 batch polymerization process

4.3.3 Closed-loop Results

Closed-loop simulation results of a trajectory tracking predictive controller that uses the

adaptive data-based temperature model as its underlying model are presented in this section.
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The temperature model is updated at each sampling instance prior to the controller computa-
tions, making the controller adaptive. The inputs at each sampling instance are computed
by solving the optimization problem presented earlier in Equations (3.26a) to (3.26b). The
controller was tuned for the non-adaptive model and left unchanged for the adaptive cases
to avoid confounding the results with tuning. The tuning parameters were set as follows:
8 = diag {20, 50}, IT = diag {0.05,0.05}, and P = 10.

The performance of the adaptive predictive controller was compared against the non-
adaptive version when encountering disturbances in the initial conditions. Note that the
superior tracking ability of the non-adaptive version of the design over existing trajectory
tracking approaches, namely PI control and latent variable MPC [16], have already been
established in Chapter 3. Thus, in this section, we are mainly concerned with highlighting

the potential gains in closed-loop performance from including model adaptations.

Two initial conditions, 1 within and 1 outside the range of initial conditions in the training
data, were considered for the simulations. The metric used to assess tracking performance
was the ITAE. The closed-loop performance is summarized in Table 4.3 and Table 4.4 for

both initial conditions.

Table 4.3: Tracking performance with the proposed MPC design for initial conditions within
the training data range for the nylon-6,6 batch polymerization process

Adaptation algorithm

None RLS(A=0.995) PRLS (A =0.95)
Temperature ITAE:  2.825 1.108 1.034

Pressure ITAE: 4.146 2.805 1.357

Table 4.4: Tracking performance with the proposed MPC design for initial conditions outside
the training data range for the nylon-6,6 batch polymerization process

Adaptation algorithm
None RLS(1=0.995) PRLS (A=0.95)
Temperature ITAE:  30.70 1.676 1.211

Pressure ITAE: 29.20 2.881 1.474

Focusing first on the case when the initial conditions were within the training data
range, incorporating standard RLS with A = 0.995 offered improvements of 61% and 32%
in temperature and pressure tracking, respectively. The temperature and pressure tracking
were further improved by by 7% and 50% (respectively) when the PRLS algorithm was used.
These results illustrate that considerably better tracking can be achieved by using an adaptive

model in the controller.
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From the results in Table 4.4, model adaptation was crucial for achieving acceptable
closed-loop performance for large disturbances in the initial conditions (i.e., when the initial
conditions were outside the training data range). The tracking errors and input profiles for

these initial conditions are shown in Figure 4.3.
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Figure 4.3: Tracking error and input profiles with the proposed MPC design (for initial
conditions outside the training data range) for the nylon-6,6 batch polymerization
process

There was substantial deviation from the reference trajectories during the finishing stages
of the batch with the non-adaptive controller. With these initial conditions, foreign operating
conditions (and therefore dynamics) were likely encountered that were not originally mod-
elled by the temperature model. This led to poor temperature predictions in the controller
calculations, and the coupled nature of the control problem led to poor tracking for both
outputs. The adaptive designs, on the other hand, were able to learn the new dynamics using
the plant measurements, leading to more accurate predictions and significantly improved
tracking performance. While there is no general guarantee that the PRLS algorithm will
always outperform standard RLS, among the two adaptation approaches, using the PRLS
algorithm produced lower ITAE values for both outputs consistently for this simulation

example.

98



PH.D THESIS - S. AuMI Chemical Engineering | McMaster University

4.4 CONCLUSIONS

In this chapter, online learning ability was integrated within a previously developed data-based
modelling methodology for batch processes. First, it was demonstrated how the standard
RLS algorithm with a forgetting factor can be applied in a straightforward manner to provide
online updates of the model parameters. Next, a probabilistic RLS (PRLS) estimator (also
with a forgetting factor) was developed that updated each model individually according to its
probability of being representative of the local dynamics. The advantage of the PRLS algorithm
was tuning flexibility. Specifically, the forgetting factors for the individual estimators can be
tuned independently and also more aggressively than in standard RLS while maintaining
good precision (i.e., low parameter variances). The benefits from incorporating the 2 RLS
algorithms in the modelling approach were demonstrated via simulations of the nylon-6,6
batch polymerization process considered in Chapter 3. Open-loop simulations verified
that the precision of the PRLS algorithm is less sensitive to the adaptation aggressiveness
compared to conventional RLS. Closed-loop simulations indicated that both RLS algorithms
can help improve the performance of a trajectory tracking predictive controller, particularly

for large disturbances in the initial conditions.
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5.1 INTRODUCTION

The control objective in batch processes is to achieve a specified product quality by batch
termination. The economic benefits from batch processing are realized from the consistent
production of on-spec product. However, as mentioned in Chapter 1, direct control to a
specified quality is often impractical because quality measurements are unavailable online and
only made offline after batch completion. Over time, motivated by the increased demands of
consistent production of high quality products, numerous batch-to-batch (offline) and within-

batch (online) control strategies have been adopted to improve batch process reproducibility.

The idea behind batch-to-batch control is to refine the batch recipe and operating trajec-
tories for the upcoming batch using past data in an attempt to bring the new batch’s quality
closer to the specified value (e.g., see [3]). Batch-to-batch control strategies range from
updating model parameters and then recomputing the batch input trajectories (and/or batch
recipe) to directly updating the process variable trajectories using an optimization-based
algorithm (e.g. [4]) or the iterative learning control (ILC) framework (e.g., see [5]). The
former drives the process towards a specified optimum batch-wise while the latter exploits
the repetitive nature of batch systems by using the error in the quality from the last batch to

update the process variable trajectories and/or initial conditions.

Batch-to-batch control strategies represent an entirely offline strategy and lack any real-
time feedback mechanism for rejecting disturbances encountered during batch evolution.
This motivates the use of real-time, within-batch control approaches. In many cases, par-
ticularly in an industrial setting, a reliable first-principles-based process model that is also
computationally amenable for control applications is unavailable, and there is also an absence
of quality-related measurements such that the product quality is not observable. For these
cases, within-batch control approaches rely on data-based models and can be be broadly

divided into trajectory tracking and inferential quality control.

Trajectory tracking is common once the batch recipe has been fixed and reference output
trajectories (such as for the reactor temperature) have been optimized to meet the specified
quality. As discussed previously, the trajectory tracking control problem is the one of tracking
these reference trajectories batch after batch using local controllers. For good tracking
performance, advanced control designs that are capable of compensating for the effects
of nonlinearities and tracking over a wide operating range are required. While trajectory
tracking controllers can reject some disturbances, even with perfect tracking, there is no
guarantee that the desired quality will be met. This is because disturbances encountered
during a new batch can significantly alter the complex relationships between the quality and
output variables. Thus, implementing the same reference trajectories batch-to-batch is not

guaranteed to consistently produce on-spec product. To partially counter this problem, the
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reference profiles can be “re-optimized” periodically during the batch through a within-batch

control approach that employs an inferential quality model.

Inferential quality control is most commonly achieved through multivariate statistical
process control (SPC) approaches, particularly those utilizing latent variable tools, such
as principal component analysis (PCA) or partial least squares (PLS) regression [6]. For
batch processes, the model development for the majority of SPC applications begins with
the so-called “batch-wise" unfolding of multiway batch data [7, 8]. The unfolded data is
regressed (commonly via PLS regression) onto a matrix of final quality measurements to
obtain an inferential PLS quality model (e.g., see [9]) that is usable for predicting the final
quality prior to batch completion. For batches with multiple phases or stages with distinct
dynamics, multiple phase specific (and transition) models can also be constructed (e.g., see
(10, 11]). By processing only successful batches through the resulting model, time-varying
control charts for systematically monitoring the quality can be constructed. During the batch
evolution, the final quality can be predicted (at every sampling instance or predetermined
decision points), and if the prediction exceeds the control limits, appropriate remedial action
can be taken to correct the batch. The nature of the corrective action may be heuristics or
knowledge-based or more systematic wherein the quality model is inverted (one way or
another) to directly compute the future input trajectories that recover the batch. The latter
approach has been classified as a mid-course correction (MCC) control strategy (e.g., see [12,
13]). Since it requires model inversion, the effectiveness of a MCC approach is particularly
dependent on the quality of the underlying quality model and in general, demands richer
training data that spans a wider operating range and exhibits more input variation compared

to modelling for conventional SPC (e.g., see [14]).

An important issue that arises in SPC and MCC approaches is that future online mea-
surements that are required to predict the quality are incomplete. More specifically, the data
arrangement in the model building process calls for the entire batch trajectory to predict the
quality of the batch. However, during a batch, measurements are only available up to the
current time, and the future data is required to be completed in some fashion. The choice
of the data completion technique plays a key role in the overall performance of the control
design. Prediction error in the future data is propagated to the quality prediction error,
and both of these errors add uncertainty to any control action computed using the model.
This problem is particularly prevalent during the early stages of the batch when most of
the information is unknown. In fact, with poor prediction of the future batch behaviour,
inputs determined from using the model can drive the batch to a point from where good
quality product cannot be produced. This characteristic is typical of methods that lack a
causal relationship between the inputs and outputs, and in turn, the quality, which leads to

the treatment of the future trajectories as a “missing data" problem (e.g., see [12]).

103



PH.D THESIS - S. AuMI 