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Abstract

Hourly archived rainfall records are separated into individual rainfall events with

an Inter-Event Time Definition. Individual storms are characterized by their depth,

duration, and peak intensity. Severe events are selected from among the events for

a given station. A lower limit, or threshold depth is used to make this selection,

and an upper duration limit is established. A small number of events per year are

left, which have relatively high depth and average intensity appropriate to small

to medium catchment responses. The Generalized Pareto Distributions are fitted

to the storm depth data, and a bounded probability distribution is fitted to storm

duration. Peak storm intensity is bounded by continuity imposed by storm depth

and duration. These physical limits are used to develop an index measure of peak

storm intensity, called intensity peak factor, bounded on (0, 1), and fitted to the Beta

distribution. The joint probability relationship among storm variables is established,

combining increasing storm depth, increasing intensity peak factor, with decreasing

storm duration as being the best description of increasing rainstorm severity. The

joint probability of all three variables can be modelled with a bivariate copula of

the marginal distributions of duration and intensity peak factor, combined simply

with the marginal distribution of storm depth. The parameters of the marginal

distributions of storm variables, and the frequency of occurrence of threshold-excess

events are used to assess possible shifts in their values as a function of time and

temperature, in order to evaluate potential climate change effects for several stations.

Example applications of the joint probability of storm variables are provided that

illustrate the need to apply the methods developed.

The overall contributions of this research combine applications of existing prob-

abilistic tools, with unique characterizations of rainstorm variables. Relationships

between these variables are examined to produce a new description of storm severity,

and to begin the assessment of the effects of climate change upon severe rainstorm

events.
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CHAPTER 1

Introduction

Rainfall-runoff modelling is a necessary component in a variety of water resources

management and design tasks. Rainfall inputs are processed through a model that

mimics the real-world processes of rainfall infiltration, and runoff of rainfall excess on

catchment surfaces, then concentration and routing of flows through stream chan-

nels. Assessment of risk and uncertainty, rather than simply modelling responses

deterministically is of critical importance. Risk and uncertainty are evaluated by

incorporating the probability distributions of variables which influence the ultimate

outputs of the modelling processes. Chief among these variables are those describing

rainfall inputs.

Rainfall variables are measures such as depth of rainfall as measured over a de-

fined time interval, storm duration, and measures of storm shape such as temporal

location of the peak of rainfall intensity, and rainfall peak intensity. By characteriz-

ing the probability distributions of these variables, as well as the correlations between

them, the likelihood of occurrence of a combination of values, ranges, or limits de-

fined by particular values of the variables may be determined. These probabilistic

characterizations are typically the probability of exceedence of given combinations

of storm variables, or return period in years.

In this thesis, unique approaches were developed for the measurement of storm

variables, focusing upon extreme events (those storms with much greater than av-

erage depths, and their associated durations and peak intensities). The probability

distributions of these variables, and their dependencies are developed so that the

results may be applied by practitioners. Potential shifts in statistical parameters

and changes in correlations between rainstorm variables as a result of climate change

are also examined.
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1. Problem statement

Rainstorms are observed as individual events, but conventional definitions suffer

from a number of problems:

• The most commonly used definitions are measures of rainfall accumulation

over prescribed time intervals, not related to the start and end of actual

rainstorm events (Adams et al., 1986).

• When rainstorms are identified as individual events there are a mixture of

definitions (Karl et al., 1998), or a mixture of climatological measures are

used (Karl and Trenberth, 2003; Groisman et al., 1999; Groisman, 2010).

• Rainstorms are characterized by their depth, duration, and peak intensity.

In the examination of extreme, severe events, conventional approaches ef-

fectively ignore actual storm durations, and assume that the peak intensity

has no impact upon the frequency of occurrence of rainstorms.

• Where some researchers have begun to examine the joint probabilities of

storm depth, duration, and peak intensity for extreme events, they have

used annual maximum statistics. However, this requires a priori, arbitrary,

pre-selection of annual maximum measures. The result may lead to biased

probabilistic models (Kao and Govarindju, 2010).

• There is much discussion about the effects of climate change upon extreme

rainstorm events. The same problems of event definition plague the ex-

amination of changes in patterns of rainstorms as a function of time and

temperature, and those relationships to climate change forcings.

The underlying problems of storm event definition, and appropriate probabilistic

modelling of the measures of storms as random variables is addressed in the research

described in this thesis.

The balance of this chapter briefly summarizes the subsequent chapters, along

with the principal contributions in each.

2
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2. Threshold analysis of rainstorm depth and duration statistics at

Toronto, Canada

Chapter 2 in this thesis introduces the initial application of threshold analysis

to the definition and characterization of extreme rainstorm events. One of the key

contributions is the discovery that, for storms with depths exceeding a high thresh-

old, storm depth and duration are not correlated, a rupture with the conventional

paradigm of an assumed coupling between the two variables. This chapter has been

reformatted from a paper presented by the author and Dr.Y. Guo in the Journal of

Hydrology, vol. 348, published in January 2008. Following is the abstract of this

paper, together with the Keywords which precede the body of the paper:

Abstract - Storm-event based probabilistic models characterizing the probability

distributions of storm depth and duration are developed. They overcome the pri-

mary limitation of conventional rainfall Depth-Duration-Frequency (DDF) analysis.

The application of threshold-excess extreme-value analysis techniques to storm-event

statistics provides a simple, statistically efficient means of characterizing frequency of

extreme storm event depths and durations. The best-fit probability density functions

of storm-event depth and duration are used to derive storm-event depth-duration fre-

quency combinations. The resulting models may be used to develop design storms

based upon actual storm-event statistics. Comparisons between conventional and

Storm Event Analysis (SEA) models highlights the improvements and benefits of

using storm-event-based probability distributions, and brings into question the ap-

plication of conventional DDF techniques for design storm development.

Keywords: Design Storms; Storm Event Analysis; Inter-Event Time Definition;

Annual maximum series; Threshold analysis; Generalized Pareto Distribution; Joint

Probability.

The mathematical basis of this chapter/paper is the application of threshold sta-

tistics, applied through the Generalized Pareto Distributions (GPD). This family of

distributions has unique similarities to the Generalized Extreme Value Distributions,

typically used with annual maximum statistics.

3
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3. A probabilistic description of rain storms incorporating their peak

intensity

In Chapter 3, the techniques developed in the previous chapter are expanded to

incorporate a measure of peak intensity into an expression for the joint probability of

storm depth, duration, and peak intensity for extreme rainstorms. In the process, a

unique measure of peak intensity is developed. This material prepared by the author,

under the supervision of Dr. Y. Guo, was published in the Journal of Hydrology,

vol. 409, October, 2011. The abstract and key words from the paper are presented

in the following two paragraphs.

Design storms with standardized hyetograph shapes and selected combinations of

storm depths and durations are widely used in engineering hydrology. The key dis-

tinguishing feature between equal-duration design storms is their distinct intensity

distributions. Differences in design storm hyetographs do not affect storm frequency,

since only the frequency of the combination of storm depth and duration are deter-

mined through the use of Depth-Duration-Frequency curves. Probability distribu-

tions of peak intensity within rainfall events are not determined in current practice.

Some current research applies copulas to joint distributions of rainstorm variables,

but most of these are limited to bivariate distributions, and those that are devel-

oped for trivariate distributions do not address key variables important to everyday

practice, or are limited by complexity of analysis. An alternative approach to char-

acterizing peak storm intensity, intensity peak factor, together with its probability

distribution is developed in this paper. An Archimedean copula is applied to describe

the joint probability distribution of storm duration with intensity peak factor. That

joint distribution is combined with the probability distribution of storm depth, to

produce a joint probability distribution for storm depth, duration, and peak inten-

sity. The result is a simple approach to fully characterizing the storm variables of

direct interest to practitioners, thereby providing a complete probabilistic description

of the return period or frequency of a selected design storm.

Keywords: Design Storms; Storm Event Analysis; Peak Intensity; Beta Distribu-

tion; Joint Probability; Copula.
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Rainfall data from two meteorological stations in Toronto were evaluated and

compared, providing a level of validation to the techniques developed in Chapter

two. The key contributions in Chapter 3 include:

• the identification of an index measure of relative rainstorm intensity that is

independent of storm depth

• the application of bivariate copulae to the joint probability of storm duration

and intensity peak factor

• identification of the combination of storm variables that lead to increasing

storm severity

• combining these primary contributions, the joint probability of all major

variables quantifying a rainstorm event was developed.

4. Changes in heavy rain storm characteristics with time and

temperature at four locations.

The popular scientific literature provides projections of increasing rainstorm sever-

ity, manifested in increasing rainfall depth, and increasing storm intensities (Flan-

nery, 2005). The explanations tend towards high-level descriptions of basic causal

linkages between increasing atmospheric temperature and available precipitable at-

mospheric water vapour. The objective is public education, so explanations of the

effects of increasing concentrations of greenhouse gases must be clear. When the

detailed references from within the popular literature are examined, the evaluations

of rainfall data tend towards the assessment of accumulations of rainfall, and the

analysis of conventional rainfall accumulation over fixed time spans. The definition

and analysis of rainstorms as measured individual events is performed by smaller

numbers of researchers, with a wide variety of storm-event definitions. An opportu-

nity exists to define and analyze rainstorms with models and definitions that are a

close match to their actual manifestation.

The techniques developed in prior chapters were applied to three US stations in

the state of Illinois, and one Canadian station. Marginal distributions, based upon

5
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estimation of statistical parameters of storm depth, duration, and intensity peak

factor were established, applying techniques developed in Chapters 2 and 3. How-

ever, the fitting techniques are not reviewed in detail. The objective of the research

described in Chapter 4 was the evaluation of changes in statistical parameters of rain-

storm variables, and shifts in dependencies between them, as a function of time and

temperature. The available data was split into two groups; events occurring prior to

1980, and events occurring since 1979. The split in data is at 00:01, 1980-01-01. In

order to avoid confusion, the data spans will be referred to pre-1980, and post-1980,

even though the correct description would be pre-1980, and post-1979.

In general, mean values of storm variables and frequency estimators did not

change significantly over the time ranges of available data, pre-1980 and post-1980.

Comparison of empirical distributions of storm variables between the two data sets

showed some significant differences, but differences in distributions between the two

time spans did not follow patterns across the stations. Because the sizes of the data

sets are reduced due to the division of the population of the whole set, and the time

spans for each set are therefore shorter, there is a risk that the effects of decadal and

multi-decadal climactic trends resulting in changes in distribution of storm variables

may either cause an apparent trend that does not exist, or alternatively, hide a trend

within long-period cycles.

Evaluation of rainfall variables in relation to mean monthly temperature provided

the clearest indications of direct linkages between temperature, storm variables, and

storm frequencies. Storm duration is inversely correlated with temperature, while

intensity peak factor is directly correlated with mean monthly temperature. Those

relationships did not change between the two time spans into which the storm events

were divided. Storm depth correlation with temperature generally decreased in the

post-1980 time span, compared to the pre-1980 time span.

The most remarkable difference between the two time spans was a significant

increase in frequency of storms occurring in the highest temperature range for each

station examined. Average of mean monthly temperature for storm events did not

change significantly; an indication of the complexity of factors contributing to pro-

vision of precipitable water in the lower atmosphere.

6



Ph.D. Thesis - Barry Palynchuk McMaster - Civil Engineering

The primary contribution of this chapter is in the application of clear rainstorm

event definition to the analysis of the effects of temperature upon mean values of

storm variables. Previous analysis of the influence of climate change provided in-

dications of increases in extreme storm depth and intensity. Unfortunately, those

conclusions were often inferred from analysis of data that does not clearly identify

individual storm events. Research in this thesis establishes clearly the relationships

between temperature and mean values of storm variables, as well as an increasing

frequency of occurrence of storm events during warmer temperatures.

A brief review of conventional trend analysis techniques is carried out. Limita-

tions in conventional time-series trend analysis are demonstrated, as explanation for

use of more basic techniques of trend analysis developed in this chapter.

5. Example Applications

From the theory developed into methods in Chapters 2 and 3, two applications

are shown. The first illustrates the difference in storm frequency when the full joint

probability of storm depth, duration and intensity peak factor is applied. The second

demonstrates maximization of output discharge from a catchment, when storms with

identical return periods, but different combinations of input storm variables are used

as inputs to the hydrologic system.

In the following chapters, equation, table, and figure numbering will incorporate

chapter and sequence number within the chapter. References within the text will

refer to numbering within the chapter, rather than using the chapter prefix. This is

done primarily to avoid modifying text references within those chapters that have

been published already. For a similar reason, references are organized by chapter,

in order to respect the form and format of those chapters that have already been

published.

7





CHAPTER 2

Threshold analysis of rainstorm depth and duration

statistics at Toronto, Canada

1. Introduction

Rainfall, as the input to a hydrologic system, has been characterized in a few

basic ways:

• Continuous series records of distribution of rainfall depths on a temporal

basis may be used as input to a continuous simulation model. The outputs

of the model may then be calibrated against actual output measurements.

• Actual storm events, such as the Hurricane Hazel rainstorm which occurred

in Ontario, Canada in 1954, are analyzed. The distribution of rainfall depth

with time is determined from measurements, and used in rainfall-runoff mod-

els to determine outputs from a single extreme event.

• Design Storms constructed from Intensity Duration Frequency (IDF) curves

A design storm is a standardized distribution of rainfall intensity with time,

for a selected total storm duration. Records of rainfall accumulation occur-

ring over defined time intervals are fitted to an appropriate extreme value

distribution. Depth-Duration-Frequency (DDF) relationships result. IDF

curves are produced by dividing depth by the corresponding time interval.

Rainfall depth or intensity for a given time interval and return period may

then be determined. These values are applied to the prescribed temporal

distribution of rainfall intensity to create design storm hyetographs.

• Storm-Event Analysis (SEA) external measures of actual rainstorm events

are analyzed and fitted to appropriate probability density functions (PDFs).

9
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Typically, exponential distributions are used to characterize event duration,

depth, and inter-event time (Adams et al., 1986; Adams and Papa, 2000).

Each technique has its appropriate use. Continuous simulation, if carried out with

a sufficiently long series of rainfall records, could be used to characterize the return

period of hydrologic outputs such as peak discharge. However, the computational

burden would be heavy, and the precision of the simulated outputs will necessarily be

a function of the runoff model parameters, and the calibration of the model against

measured outputs. The technique does not, in itself, provide any characterization of

frequency of occurrence of rainfall input events.

Extreme actual storm events provide an ultimate test of a hydrologic system, but

the return period of the event is not possible to determine, since this type of event

occurs so infrequently as compared to existing periods of rainfall record.

Extensive research has been conducted on the frequency characteristics of rainfall

depth accumulation during prescribed time intervals, usually on the basis of anal-

ysis of annual maximums (Wenzel, 1982; U.S.NWS, 2002; Boni et al., 2006). The

result of this effort has been the development of conventional DDF curves. These

may take the form of plots of depth or intensity versus duration for various return

periods (Carr, 1987), or isohyetal maps of rainfall accumulation for prescribed time

intervals and return period (Hershfield, 1961). Rainfall depth accumulations are the

subject of analysis; appropriate extreme value distributions, typically GEV I (Gum-

bel distribution) (Chow, 1988; Stedinger et al., 1993), are fitted to rainfall depth

accumulations for each selected time interval. Recent work has made use of Two-

component extreme value distributions to characterize the probability distributions

of extreme rainfall depth accumulations, and developed techniques for regional char-

acterization (Boni et al., 2006). It is important to point out that storm duration is

not measured and considered in these conventional DDF development procedures,

nevertheless, there is an underlying assumption that the time intervals correspond

to storm durations when DDF curves are used to develop design storms. It has been

recognized for some time that these conventional techniques do not provide an ap-

propriate characterization of individual storm events, but includes portions of events

10
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(Wenzel, 1982). The application of DDF curves in the development of design storms

has been criticized in many respects:

• The return period of rainfall depth is equated to that of all characteris-

tics of a given design storm hyetograph, when each measure of a rainstorm

(depth, duration, intensity measures) will have its own frequency character-

istic (Adams and Howard, 1986).

• The original purpose of DDF/IDF curves was to permit determination of

peak discharge from a catchment by means of the Rational equation (Adams

and Papa, 2000). Extension of DDF curves to characterize return periods of

rainstorm depth, duration, and hyetographs goes well beyond their original

purpose; forcing the DDF technique, and making some broad assumptions

equating rainfall depth accumulation for a prescribed time with storm depth

and duration.

• IDF curves are not measures or characteristics of storm events, so that their

current application in design storm modeling may not be fundamentally

sound, particularly in characterizing return periods of hydrologic outputs.

Because of the lack of clarity in definition of the time element in conventional

rainfall statistical analysis, the term time interval will be used when referring to con-

ventional IDF/DDF analysis, rather than duration. Duration implies measurement

of the time elapsed between the start and end of an event, rather than the arbitrary

selection of a span of time during which a process, i.e., rainfall, is observed.

Inspite of the many drawbacks inherent in the application of DDF curves, their

use, combined with the design storm approach is common practice. Alternatives to

the DDF approach are based upon the definition of individual storm events. While

much research has been conducted on the spatial and temporal distribution of rainfall

within individual events (Huff, 1993; Watt et al., 1986), there has been less research

on storm-event statistics. The statistical characterization of rainstorms by their ex-

ternal measures of depth, duration, inter-event time, and internal intensity measures

has been done by those researchers involved with application of derived probability

distribution theory to rainfall-runoff modeling (i.e., Eagleson, 1972; Adams et al.,

11
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1986; Guo and Adams 1998a, b; Adams and Papa, 2000; Goel et al., 2000; Guo,

C. Y.J., 2002; Rivera et al., 2005). More recently, Zhang and Singh (2007) devel-

oped bivariate rainfall frequency distributions using copulas to address correlation

between rainstorm depth, intensity and duration for annual maximum storm-event

measures at three sites in Louisiana, U.S.A. Characterization of storm event statis-

tics based upon hourly rainfall data has been carried out for portions of the U.S.

Southwest (Asquith et al., 2006). Much of that effort was focused upon developing

regional characterization of storm measures of depth, duration, and interevent time.

Both Kappa and exponential distributions have been applied in that analysis. In

this paper, we apply SEA through threshold-excess techniques in order to provide a

new approach to developing design storms.

2. Definition of Rainstorm Events

In order to study the statistics of actual rainstorm events, separate events must

first be identified. For the purpose of identifying individual events, an Inter-Event

Time Definition (IETD) must be adopted. Individual storm events consist of con-

secutive hourly records of rainfall preceded and followed by a minimum period of

time greater than or equal to the IETD. The IETD used is a function of applica-

tion, but is usually selected so as to minimize serial correlation between storm events

(Restrepo-Posada and Eagleson, 1982). Six hours is used as the IETD in the analysis

of hourly rainfall statistics used in this paper. Design storms are often developed

for use with small urban catchments where the time of concentration is usually less

than six hours. Since the minimum IETD is greater than the time of concentration,

the runoff response of successive storm events can be treated independently. Other

rationales have been suggested for the selection of appropriate IETDs. These other

rationales are primarily based upon treatment criteria and performance requirements

applied to stormwater management practices (Wanielista and Yousef, 1993). How-

ever, caution needs to be exercised in this regard, since there is a risk of diluting a

fair statistical model of storm events to fit a design strategy. Increasing the IETD be-

yond that required for statistical independence between individual events may result

in the lumping of separate real storm events together.

12
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The steps followed in the analysis are summarized below:

• Rainfall data, based upon reported depth during hourly intervals is analyzed.

• If adjacent hourly time blocks with some rainfall are separated by dry times

less than the IETD (in this case, 6 hours) then those blocks are aggregated

as part of the same rainstorm event.

• When hourly time blocks with rainfall are separated by at least the IETD,

then separate events are recorded.

• Each event is characterized by its external measures of storm depth v, storm

duration t, and inter-event time b

The fundamental difference between conventional rainfall statistics used to de-

velop DDF curves and SEA is that the former ignores actual storm events, and

measures rainfall accumulation within prescribed time intervals. SEA is based on

actual storm events which are identified with the adoption of a suitable IETD. This

then permits the measurement of the magnitude and duration of individual rain

storm events.

Recent work (Guo and Adams, 1998a) has made use of single-parameter expo-

nential distributions of rainstorm event depth, duration, and inter-event time. The

typical form of the probability density function (PDF) is:

fv(v) = ζ exp(−ζv), ζ = 1/v̄

where v is the storm depth as a random variable, is the average of the depths

of all events. Rainstorm duration (t) and inter-event time (b) statistics are similarly

fitted to exponential PDFs. The exponential distributions of storm depth, duration,

and inter-event time are applied to derive the probability distribution of a hydrologic

output, such as peak discharge.

From the hourly rainfall data recorded at the Toronto Pearson International

Airport (Meteorological Services Canada, Station No.6158733), it was found that

the one-parameter exponential distribution underestimates storm depth for extreme

13
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Figure 2.1. The plotting point distribution of rainstorm data is com-
pared with the one-parameter exponential distribution. Crosses are
used to represent actual measures of storm depth.

events (return periods exceeding 2 years) while providing a good fit for more frequent

events. This is indicated in Figure 1. Improvement or redefinition of probability

distributions may lead to a better fit between extreme event models and observed

(empirical) distributions.

For the development of more representative design storms, the object of this

study is the frequency of occurrence and characteristics of extreme events. A better

fit of the probabilistic model to extreme events is required and is the first step.

3. Extreme Value Probability Distributions and Parameter Estimation

Generalized Pareto Distributions (GPD), applied through threshold-excess mea-

sures of rainstorm depth are used to characterize storm-event depths in this paper.

A brief review of applicable forms, and duality with the Generalized Extreme Value

(GEV) models follows.
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Nomenclature.

V, v Rainstorm depth.
T, t Storm duration.
Mn = max{} Maximum value of a set of random variables.
Pr{X} Probability
fX(x) Probability density function
ξ Shape parameter GEV or Generalized Pareto distributions
σ Scale parameter
µ Location parameter
uv Rainstorm depth threshold parameter
n Total number of rainstorm events
m Number of rainstorm events exceeding threshold
Ju Probability of exceedence of storm depth threshold
θ0 Average number of rainstorm events per year
θu Average number of rainstorm events per year exceeding threshold
tmax Maximum value of storm duration
k Number of unique values of ordered measures of storm depth
A2 Anderson-Darling Statistic
ρ Correlation coefficient

Extreme value theory models the statistical behavior of large values from series

of identically distributed, independent random variables with a common distribution

function. If the time block is the calendar year, the annual maxima of the annual

blocks of rainfall measurements are modelled. Block maxima are modelled with the

GEV distribution function:

GV (v) = exp

{
−
[
1 + ξ (v−µ)

σv

]− 1
ξ

}
. ξ is the shape parameter, σV and µ are

the scale and location parameters respectively. The value of the shape parameter

provides a means of classification of the GEV into three types:

• Type I or Gumbel distribution, ξ = 0, is widely used to characterize hydro-

logic extremes. The GEV is evaluated in the limit as ξ → 0. σv should be

invariant with threshold selection within sampling error.

• Type II or Frechet distribution, ξ > 0, the distribution has no upper limit.

• Type III or Weibull distribution, ξ < 0, the distribution has an upper bound.
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If the block maxima of the set of random variables can be modeled with the GEV,

then an alternative approach is to model the behavior of large values of the variable,

greater than a high threshold value, from the entire set of random variables. When a

high threshold uv is selected so that large values of the independent random variable

are modeled, then the conditional probability of exceedence of those high values is

the Generalized Pareto Distribution (GPD):.

Pr{V > v|V > uv} =

[
1 + ξ

(v − uv)
σ̃v

] 1
ξ

, ξ 6= 0 (2.1)

where σ̃v is the scale parameter for the Pareto distribution. The shape parameter

ξ has identical value and meaning in the two distributions (GEV and GPD) and serves

to classify the model type in the same fashion. Eq. (1) corresponds to Type II and

III distributions. The GPD Type I distribution is obtained by evaluating Eq. (1) in

the limit as ξ → 0,

Pr {V > v} = exp [−(v − uv)/σ̃v] (2.2)

The relationship between Pareto and GEV scale parameters is σ̃v = σv+ξ(uv−µ).

The distinction between the two will be dropped in the balance of the review. The

equivalent Pareto distributions will be used exclusively in characterizing threshold

excess-based distributions of storm event depth v. It should be noted that for Type I

distributions, since ξ = 0, GEV and Pareto scale parameters are equal, and that the

GPD Type I distribution is a 2-parameter exponential distribution. The Generalized

Pareto model is attributable to Pickands (1975), while the threshold approach applied

to the generalized Pareto distribution was developed by Davison and Smith (1990).

A discussion on the relationship between GEV and GPD can be found in Coles

(2001).

Since Pr {V > v} = Pr {V > uv}Pr {v > v|V > uv}, that is the probability of

exceedence of storm depth can be obtained from the conditional probability of ex-

ceedence, multiplied by the threshold exceedence probability, then letting Pr{V >

uV } = Ju and combining with Eq. (1):

Pr{V > v} = Ju [1 + ξ(v − uv)/σv]
1
ξ , ξ 6= 0 (2.3)

16



Ph.D. Thesis - Barry Palynchuk McMaster - Civil Engineering

For ξ = 0, combining Ju with Eq. (2):

Pr{V > v} = Ju exp[−(v − uv)/σv] (2.4)

Ju, the probability of exceedence at the threshold value uv may be estimated as:

Ĵu = m/n where n is the total number of rainstorm events and m is the total number

of events with depth exceeding the threshold value.

A common form of expressing risk of occurrence of an extreme event is to use

the return period. Thus a quantile may be expressed as the Tv - year return period

rainstorm depth, i.e. the depth that will be exceeded on average once every Tv -

years. The probability of exceedence of vT given an average of θ0 rainstorms per year

is 1/(Tvθ0). Substituting into Eq. (3):

Ju [1 + ξ(v − uv)/σv]
1
ξ = 1/(Tvθ0), then solving for vT , the following is ob-

tained:

vT = uv + (σv/ξ)(Tvθ0Ju)
ξ − 1], ξ 6= 0 (2.5)

Or in the limit as ξ → 0.

vT = uv + σv ln(Tvθ0Ju) (2.6)

The total number of events equals the average number of events per year times

the number of years of record n = θ0yr. θu is the average number of events per

year, where storm depth exceeds the threshold value, so that m = θuyr. Therefore

Ĵu = θu/θ0.

The variance of Ĵu is: V ar(Ĵu) = Ĵu(1− Ĵu)/n (Coles, 2001). Expressed in terms

of average number of events per year, V ar(Ĵu) = θu(θ0− θu)/(yrθ0
3) . Provided that

a relatively high threshold value is taken, so that θ0 >> θu, this expression has a very

low value. Ju, and by extension, θu, are treated therefore, as constants. Substituting

the estimate of Ju into Eqs. (5) and (6):

vT = uv + (σv/ξ)(Tvθu)
ξ − 1], ξ 6= 0 (2.7)

vT = uv + σv ln(Tvθu), ξ = 0 (2.8)
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The equivalent expression for the GEV I (Gumbel) distribution, based upon

annual maximum statistics (Stedinger et al., 1992) is:

vT = v̄A − (
√

6/π)[0.5772 + ln(1/Tv)]σvA (2.9)

Return periods based upon annual maximum statistics differ slightly from those

derived from threshold statistics. For the sake of uniformity in this example all return

periods are expressed as or converted to those based upon threshold statistics. The

relationship between the two methods is Tv = [ln(TvA/(TvA−1))]−1 (Stedinger et al.,

1992) where the subscript A refers to annual maximum statistics.

In order to estimate the values of the parameters of any potential PDF from

observed data, two common approaches are the method of moments, and the method

of maximum likelihood. Maximum-likelihood estimators are generally agreed to be

more efficient than those determined by the method of moments (Kite, 1977). The

method of L-moments provides a third alternative, and is used increasingly in the

analysis of rainstorm data (Asquith et al., 2006). L-moments are not used in this

paper because maximum likelihood estimators are appropriate for GPD I and III

distributions (Stedinger et al., 1992).

Since the GPD Type I threshold-based distribution is a 2-parameter exponential

distribution, maximum likelihood estimates of distribution parameters have analyti-

cal solutions, σ̂v = v̄ − uv(Johnson and Kotz, 1970). Maximum likelihood estimates

of the scale and shape parameters for GPD Types II and III may be obtained by

maximizing the log-likelihood function:

`(σv, ξ) = −m lnσv − (1 + 1/ξ)
∑m

i=1 ln[1 + ξ(vi − uv)/σv], ξ 6= 0.

Eq. (7) is recast so that σv is the dependent variable, σv = [(vT −uv)ξ]/[(Tvθu)ξ−
1], or noting that Tv = i/θ0, where (n−m) < i ≤ n then σv = [(vi−uv)ξ]/[(iθu/θ0)ξ−
1]. Values of vi are obtained from ordered statistics, and the log-likelihood function

may be maximized iteratively to solve for the shape parameter ξ (Coles, 2001).

Probability distributions fitted to the data using parameters estimated with these

maximum likelihood techniques may be compared visually with the data using a

suitable plotting position equation. The form used was that proposed by Gringorten
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(Cunane, 1978) which is unbiased when the true distribution is GEV I or exponential:

Fi = (i− 0.44)/(n+ 0.12), where Fi is the CDF of the ith ordered statistic, and n is

the total number of observations, i.e., x1 ≤ x2 ≤ ...xn.

4. Example Analysis of Hourly Rainfall Data from Toronto, Canada

4.1. Storm depth.

Forty-two years of hourly rainfall data for the months of March through Novem-

ber inclusive recorded at Toronto L.B.Pearson International Airport (TPIA, Meteo-

rological Services Canada, formerly Atmospheric Environment Service, Station No.

6158733) ending in 2001 were reviewed. Individual storm events were identified,

based upon an IETD of 6 hours. Storms of durations greater than 12 hours were

excluded. This was done for several reasons.

• Shorter duration storms will have the greatest impact on small, or urban

catchments, the object of much of this research.

• Rainstorms at this location are formed by two primary mechanisms; con-

vective storms are of short duration, while cyclonic storms are of longer

duration. Long duration cyclonic storms will be excluded from this anal-

ysis because different probability distribution models may be required to

describe their frequency of occurrence.

• Correlation between storm depth and duration is minimized; when the SEA

statistics were analyzed using a storm depth threshold of 25 mm (uv = 25

mm) correlation between storm depth and duration was near zero, (ρv,t =

0.028). Evaluation of scatterplots between v and t did not disclose any

relationship, so that v and t were treated as independent random variables.

This independence is a prerequisite for the convenient application of design

storms.

Maximum likelihood estimates for GPD parameters were made. The value of

the shape parameter ξ, for Type II or III (ξ 6= 0) was found to be less than zero,

indicating a Type III distribution. Two distributions, GPD Type I and GPD Type
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Figure 2.2. Comparison of the plotting point distribution with Type
I and III distributions, storm threshold depth uv = 25 mm. Solid line
shows GPD Type I modeled storm depths, dashed line plots Type III.

III were compared to the plotting position distribution for the ordered statistics in

Figure 2. Visually, either distribution appears to fit well for return periods less

than about 20 years. Beyond that point, the two distributions start to diverge, as

expected, since the Type III distribution will have an upper limiting value, while the

Type I does not.

Goodness-of-Fit was evaluated by means of the Anderson-Darling-Statistic:

A2 = −(1/k){
∑k

i=1(2i−1)[ln(H(vi−u))+ ln(1−H(vk+1−i−u))]}−k (Stephens,

1974, 1977; Evans et al., 1995). k is the number of unique, ordered values of the

random variable v. A2 is adjusted, based upon sample size and assumed distribution

(see Table 1). The adjusted value is called the modified Anderson-Darling Statistic.
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Table 2.1. Rainstorm depth parameters and test statistics.

Parameter TPIA Values Notes
Sample

uv 25 Storm volume threshold, mm
m 78 Number of events exceeding uv
θ0 68.643 Avg. number of Rainstorm events per year
θu 1.857 Avg. number of Rainstorm events per year,

exceeding u
µv 35.537 Estimate of mean Rainstorm volume, mm.
ρv,t 0.028 Correlation of rainstorm depth v,

with storm duration t.
Value of 1 indicates perfect correlation.

Value of 0, random variables are not correlated.
GPD

Type I Type III
σ̂ 10.537 11.626 Max. Likelihood estimates of scale parameter

(standard deviation).
ξ 0.000 -0.083 GEV/GPD shape parameter.
k 64 64 Number of unique values of Rainstorm volume;

points in plotting position estimate of CDF.
A2(1 + 6/10k) 1.504 Modified Anderson-Darling Statistic,

Type I distribution (Stephens, 1974)
A2(1 + 0.2/k0.5) 0.980 Modified Anderson-Darling Statistic,

Type III distribution (Evans et al, 1995).
Upper tail hypothesis Accept at α-level if Modified Anderson-Darling

limit Statistic less than limit value.
α = 0.10 1.062 0.626 Type I rejected, Type III rejected.
α = 0.05 1.321 0.744 Type I rejected, Type III rejected.
α = 0.025 1.591 0.846 Type I accepted, Type III rejected.
α = 0.01 1.959 1.019 Types I and III accepted.

The modified A2 is compared to standardized values that represent upper-tail (α) sig-

nificance levels. The hypothesis is that the assumed distribution H (Type I or Type

III in this case) is a good fit to the empirical distribution of the ordered, independent,

random variables. It is accepted, if the calculated value of the modified Anderson-

Darling statistic is less than the standardized α-level value. The standardized values
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are a function of assumed distribution and number of parameters estimated. Table

1 summarizes storm depth parameters and goodness-of-fit tests.

Type I and III distributions provide reasonable representations of probability

density functions for extreme rainfall volume statistics from the Toronto Pearson

Airport, based upon the depth threshold and duration limits applied. The choice of

distribution may be based upon a number of factors:

• Type I provides a better fit on the basis of the Modified Anderson-Darling

Statistic.

• Final application While both PDFs are relatively simple mathematical ex-

pressions, it may be that Type I provides a more tractable solution in a

given application.

• Physical constraints Probable Maximum Precipitation events are estimates

of the upper limit of rainfall depth for a given duration over a particular area.

Extreme rainfall events in a region are examined, then potential rainfall is

calculated by maximizing physical variables, such as moisture content, and

lapse rate effects which contribute to the mass of precipitable moisture and

the rate of rainfall formation (Smith, 1993). If a theoretical or measured

upper limit of rainstorm volume is considered a criterion for fitting of an

appropriate GPD distribution, then the Type III upper bound of: vmax =

−(uv − σ)/ξ could be applied. However, this value is highly sensitive to

small differences in the shape parameter estimate. Based upon Type III

parameters from Table 1, a calculated upper limit of 161 mm is obtained.

This limit has already been exceeded at a nearby meteorological station for a

short-duration storm on August 19, 2005 (175 mm at Thornehill Grandview,

MSC Station No.6158255) . Further, the probable maximum precipitation

for a 6-hour duration in this region is estimated as 559 mm (Hansen et al.,

1982).

Since the Type I distribution provides a better fit using the modified Anderson-

Darling statistic, and the upper limit of storm depth estimated for the Type III

distribution is below observed and estimated maximum rainfall depths estimated
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following the probable maximum procedure, Type I is selected as the distribution of

storm depths for the TPIA observations.

4.2. Storm Duration.
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Figure 2.3. Figure 3a (left). Storm duration histogram based upon
hourlyrainfall records, using IETD = 6 hours to define individual
events. Figure 3b (right). Storm duration histogram, adjusted for
start and finish time uncertainty.

The available rainfall records are reported at 1 hour increments, so that there is

no way of knowing when rainfall may have started or stopped within each hourly

increment. For that reason, the true rainstorm duration has a range of possible

values, between that calculated on the basis of the IETD, and a value up to 2

hours less. A storm event may have started at any time between the beginning

and the end of the initial hourly block, and finished at any time between the start

and the finish of the final hourly block: tIETD ≥ t > tIETD − 1, if tIETD ≤ 2;

tIETD ≥ t > tIETD − 2 if tIETD > 2; where tIETD is the storm duration established

from analysis of hourly rainfall records. Of course, for durations of one hour, the

actual duration cannot be less than zero. The effect of this will be to smooth the

distribution, and increase frequency of shorter duration ranges. If the actual start and

end of rainfall are assumed to be uniformly distributed within their reported hourly

block, then the number of events reported for each IETD-based storm duration range

may be redistributed across the range betweentIETD and tIETD−2. The IETD-based

storm duration histogram is compared to the redistributed true duration distribution

in Figures 3a and 3b respectively.
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The adjusted distribution appears to be relatively uniform, with no strong evi-

dence of a central tendency.

The uniform distribution has mean, variance, and PDF described by the following

equations: µt = (tmax−tmin/2, σ2 = (1/12)(tmax−tmin)2, fT = 1/(tmax−tmin). Since

the lower limit of storm duration tmin is zero, these reduce to:

µt = tmax/2, σ2 = (1/12)t2max, fT = 1/tmax.

In order to evaluate the applicability of the uniform distribution to storm dura-

tion, the Chi-squared goodness-of-fit test was performed. This test is based upon a

standardized difference between measured and modeled frequencies, comparing the

computed difference to critical test statistics (Snedecor and Cochran, 1989). The

results are summarized in Table 2. In addition, mean and sample standard deviation

determined by conventional method of moments, as well as the central moments of

the uniform distribution are compared.

Sample mean value is well within 95% confidence limits of the maximum like-

lihood value, and estimate of sample standard deviation is within 4% of that for

the uniform distribution. χ2 test shows that the rainstorm duration follows a uni-

form distribution at all standard significance levels. Therefore, the TPIA SEA-based

storm event duration statistics may be modelled with the uniform distribution. The

CDF of this distribution is:

FT = t/tmax (2.10)

where t is a value of storm duration, and tmax is 12 hours in this example.

4.3. Comparison of Storm-Event Depths with DDF Accumulations.

Individual storm events are established with the IETD. An individual event is

then described by its depth and duration. Any definition of the probability of oc-

currence of an individual storm must be based upon the joint probabilities of depth

and duration. In general, the probability of exceedence of storm depth is of interest.

Storm duration is often selected, for design purposes, as a function of catchment re-

sponse (Marsalek and Watt, 1984). A single point value of storm duration has a zero
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Table 2.2. Rainstorm duration parameters and test statistics.

Parameter TPIA Sample Notes
Values

tmax 12 Maximum storm duration, hours.
tmin 0 Minimum value of storm duration.
m 80 Number of events exceeding u.

Note that this is 2 greater than number used
for parameter estimation of v.

This is because the IETD storm duration at
t=13 hours must be included to account for

the number of storms with 11¡t¡12 hours.
t̄ 6.744 Estimate of mean Rainstorm duration (hours)

using method of moments
σ̂t 3.332 Estimate of standard deviation,

using method of moments

σ̂t/
√

12 0.962 Standard error of the estimate of mean
Uniform

Distribution
µt 6 Mean.
σt 3.464 Standard deviation.
j 6 Number of observed frequency intervals.

Observations were grouped
into 6, 2-hour intervals.

Parameter TPIA Sample Notes
Values

χ2 3.692 Calculated value of χ2 Statistic.
Degrees of Freedom 5 No parameter estimates required

for uniform distribution.
Upper tail Hypothesis Calculated χ2 value must be lower than

limit test limit to accept null hypothesis
at given significance level.

α = 0.10 9.236 Uniform distribution accepted.
α = 0.05 11.070 Uniform distribution accepted.
α = 0.025 12.830 Uniform distribution accepted.
α = 0.01 15.090 Uniform distribution accepted.

25



Ph.D. Thesis - Barry Palynchuk McMaster - Civil Engineering

probability of occurrence, and therefore a range of storm durations must be evaluated

based upon the appropriate probability distribution. For hydrologic design purposes,

the probability of occurrence of storm durations being equal to or less than a selected

value is often required. Combining probability of exceedence of storm depth with

the CDF of storm duration, the joint probability of storm depth and duration may

be established. The joint probability of the CDF of storm duration and probability

of exceedence of storm depth is equal to their product since depth and duration are

independent random variables:

Pr{(T ≤t) ∩ (V > v)} = Pr{T ≤ t}Pr{V > v}.

Substituting Eq. (4), and Eq. (10) the joint probability may be established as

follows:

Pr{(T ≤t) ∩ (V > v)} = Ju(t/tmax) exp[−(v − uv)/σv] (2.11)

Then the return period for a given t and v can be evaluated as:

Tv,t =
1

Pr{T ≤ t}Pr{V > v}θ0

=
tmax

θu exp[−(v − uv)/σv]
(2.12)

Eq. (11) states that the probability that a particular storm depth v will be

exceeded, given storm duration being less than or equal to a selected value t is the

product of the CDF of storm duration with the probability of exceedence of storm

depth, adjusted for the threshold value of storm depth. Eq. (12) is evaluated for

durations from 0.5 through 12 hours using parameters determined from TPIA hourly

rainfall statistics, and the results are shown in Figure 4, for a return periods of 5,

25, and 100 years.

Table 2.3. Statistical moments for conventional DDF annual maxi-
mum series.

DDF Annual Maximum Parameters,
TPIA, 1950 - 1998

parameter DDF Time Interval, hours
1/2 1 2 6 12

µ̂, mm 21.8 24.9 29.4 38.6 44.4
σ̂, mm 7.9 8.7 10.8 15.6 17.9
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Comparison of Storm-event Depth with DDF Rainfall Accumulation, 
T = 5, 25, 100 years 
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Figure 2.4. 100, 25 and 5-year return period storm-event depth-
durations are compared with conventional DDF rainfall accumulation.
Box symbol indicates conventional DDF GEV I-modeled rainfall accu-
mulation. Cross symbol is used to show SEA GPD Type I-modelled
depth.

For comparison, conventional DDF parameters (by method of moments) for TPIA

rainfall measures (Meteorological Services Canada/AES, 1998) shown in Table 3 are

applied with Eq. (9) (Gumbel annual maximum distribution) to determine rainfall

depth/duration combinations for return periods of 5, 25, and 100 years.

The results are plotted in Figure 4. Both SEA/GPD and DDF/GEV curves are

monotonically increasing, and have similar values of storm depth/rainfall accumu-

lation at short durations/time intervals. SEA/GPD values at short durations are
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lower than DDF/GEV, for short return periods, with differences decreasing with

increasing return periods. With increasing storm duration/time interval, the differ-

ences between the two techniques increase. Conventional DDF curves model greater

rainfall depth accumulations than those of SEA/GPD. This is expected because con-

ventional DDF analysis procedures capture the highest-intensity portion of an actual

storm for a pre-selected time interval regardless of the true duration of the actual

storm. In order to demonstrate this difference between the two methods of rainfall

frequency analysis further, annual maximums from SEA (rather than threshold ex-

cess events) are compared to DDF annual maximum rainfall accumulations where

there is an overlap in the period of record (1960-1998). In this way, the number of

individual storm events actually captured by DDF analysis can be assessed. These

records were compared on a cumulative basis for comparable durations or time in-

tervals. While all data are obtained from the same meteorological station, the DDF

statistics, curves, and parameters are based upon the period from 1950 to 1998.

1998 was the last year for which the rainfall accumulation data has been analyzed

and published at the time of writing. Hourly rainfall data has been archived at this

station since 1960, and was last published in 2001.

At the 1 hour SEA duration/DDF time interval only 4 of the 39 values shown

in Figure 5 were equal. In all other cases, the DDF values for rainfall depth were

much greater than annual maximum storm-event depths, confirming that most short

time interval measurements of rainfall depth in conventional analysis are portions of

longer storm events. SEA threshold-based storm event analysis excludes non-extreme

events below the threshold value (25 mm in this example). Therefore the majority

of the SEA 1-hour duration annual maximum storm events plotted in Fig. 5 was

excluded. This is the main reason that the two methods still result in similar rainfall

depths at short durations/time intervals.

For longer durations, two comparisons between storm event annual maximum

depths and conventional DDF rainfall accumulation were made. Storm events less

than or equal to 6 hours duration were compared to 6-hour DDF rainfall accumulation

measures in Figure 6. Fig. 6 shows that there were 13 of the 39 years of record where

storm depth and rainfall accumulation were identical.
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Figure 2.5. Comparison of event-based and DDF annual maximum
rainfall depths, for durations/time intervals of one hour. Actual con-
ventional DDF depths are shown with a box symbol. SEA measures
of storm depth are shown with a cross.

Storm events less than or equal to 12 hours in duration were compared to con-

ventional 12 hour rainfall accumulation measures in Figure 7. 17 of the 39 years of

record had identical rainfall depths.

All DDF annual maximum measures equal or exceed SEA measures. It is clear

from this review that DDF measures are not composed entirely of single events of

duration equal to or less than the standard DDF time intervals. Rather they most

often measure rainfall accumulations greater than the depth of individual events for

the selected time interval. This is reflected in the DDF over estimation of rainfall
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Figure 2.6. Comparison of event-based annual maximum storm
depths for durations of 6 hours or less and DDF annual maximum
depths for the 6-hour time interval.

accumulation, compared to the storm-event model, with increasing duration/time

interval. Since DDF time intervals are unrelated to storm duration, a given measure

of rainfall accumulation may represent:

• The rainfall of a single storm event of duration less than or equal to the

time interval,

• A portion of an event of duration exceeding the time interval,
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Figure 2.7. Comparison of event-based annual maximum storm
depths for durations of 12 hours or less, and DDF annual maxima
rainfall accumulations for the 12-hour time interval.

• Portions of multiple events, provided that the time interval exceeds the

IETD.

Conventional analysis does not explicitly address the joint probability of rainfall

accumulation and time interval, but implicitly does so by separate characterization of

the extreme value probability distribution at each of the successive time intervals. An

example of this implicit cumulative analysis from TPIA statistics is the incorporation

of rainfall depths of the same event in 1979 as the annual maximum statistic for 1, 2,

6, and 12 hour time intervals. Since prescribed time intervals are treated with equal
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weight in development and application of DDF curves, time interval probability

distribution is implicitly assumed to be uniform.

5. Summary and Conclusions

In this paper using the maximum likelihood method for parameter estimation and

a goodness-of-fit test, it is demonstrated that the Generalized Pareto Distribution

Type I is an acceptable model of rainstorm depth for long-return period events, for

the data set examined. The review of storm event identification led to modifications

of storm duration estimation, arising from an understanding of the differences be-

tween reporting interval and actual storm duration within those reporting intervals.

A simple uniform distribution of rainstorm duration may be applied to describe the

probability density function. The current practice in the use of design storms is to se-

lect the storm duration in accordance with the catchment time of concentration only,

with no regard to the probability of occurrence of different duration storms. That is,

all durations are assumed to have an equal probability of occurrence, equivalent to a

uniform probability density. The finding in this paper that extreme rainstorm even

durations have a uniform probability density function provides confirmation that the

implicit assumption used in practice is justifiable.

The depths of design storms as determined from conventional DDF curves was

found to be much higher than those determined following the SEA/GPD procedure

for longer durations.

As shown in this paper, the event-based joint probability of storm depth and du-

ration provides a theoretical basis for a simple storm-event depth-duration-frequency

model that explicitly incorporates the probability distributions of both storm depth

and duration. Comparing the SEA procedure with the conventional DDF analysis

procedure, the following implications arise:

• The prescribed time intervals used in conventional DDF analysis are not

often a match to the actual duration of storm events.
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• Conventional DDF methods make use of the Gumbel distribution for rainfall

depths within each prescribed time interval, and so implicitly incorporate

the joint probability of rainfall depth accumulation and time interval.

• Application of the SEA-based depth-duration curve to design-storm rainfall-

runoff models may result in lower estimates of runoff volume and peak dis-

charge as compared to the results from conventional DDF curves, for larger

catchments where longer duration design storms need to be applied. SEA-

based methods are more realistic because the design storms developed are

based upon a probabilistic model that considers both depth and duration of

actual storms. Conventional DDF techniques do not measure storm events

explicitly and their application to design storms assumes concurrence be-

tween rainfall accumulations and storm depth. This assumption is not jus-

tified based upon the comparisons in this study.

SEA combined with threshold-excess models as described herein provide an im-

mediate means of improving the quality and accuracy of describing design storm

depths and durations. Accuracy is improved because more complete use is made of

available data. The entire set of rainstorm data is used to describe the probability of

exceedence at the storm depth threshold. That starting point for the GPD is firmly

established with a low-variance parameter, so that the balance of the distribution

is determined by measures of storm depth that are clearly those of extreme events,

through appropriate selection of the storm depth threshold. By contrast annual max-

imum analysis is based upon the assumption of sufficient number of measures within

the annual block so that parameter estimates approach asymptotic values (Coles,

2001). This may not be the case if the number of independent measures of rainfall

depth in the annual block is insufficient.

Efficient management of runoff quantity and quality requires accurate estimation

of peak flows and runoff event volumes of various return periods. Design storms de-

veloped using conventional DDF techniques will produce more conservative estimates

than SEA methods, incorporating an implicit factor of safety, and so may appear to

be initially attractive. However, models applied for design purposes should be as re-

alistic as possible, so that designers, policy makers, and system operators have a clear
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understanding of actual system performance and safety limits. With an improved

understanding achieved through SEA-based models, costs can be more accurately

determined so that design and operational alternatives are properly assessed. The

more realistic assessment of runoff volume may be especially important, since runoff

volume storage required as a result of urbanization imposes high costs in terms of

construction, land occupancy, and treatment. The improvements provided by the

threshold-based SEA procedures make it a sound alternative to conventional DDF

techniques. It is therefore proposed that this alternative be tested for other locations.

Upon successful testing, these threshold techniques may be used for the development

of more representative design storms that reflect the frequency of occurrence of short

duration convective storms more accurately. Similar methods of analysis are being

applied to long duration rainstorm measures (t > 12 hours), so that the full range of

extreme rainstorm events may be characterized.
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CHAPTER 3

A probabilistic description of rain storms incorporating

their peak intensity

1. Introduction

Most day-to-day engineering hydrology involves the use of design storms as input

to a rainfall-runoff model. Design storms are prescribed distributions of rainfall

intensity. Rainstorms have wide variation in intensity within their durations, and

in order to describe or model this variation, a number of design storm intensity

distribution patterns or hyetographs have been developed and applied (e.g., Marsalek

and Watt, 1984). Some of the common design storm hyetographs include the Chicago

Storm, the NRCS storm, and the Canadian AES (Atmospheric Environment Service,

now Meteorological Services Canada) storm distributions. Some of these hyetographs

are based upon the analysis of actual storm intensity distributions (Watt et al., 1986;

Huff, 1967, 1993). Others, such as the Chicago Storm distribution (Kiefer and Chu,

1957) are constructs that make use of curve fitting equations. Once the Design Storm

hyetograph is selected for a total rainfall depth and duration, then the return period

of the event is that of the selected storm depth and duration. Typically, Depth-

Duration-Frequency (DDF) curves, or related Intensity-Duration-Frequency (IDF)

curves are used to establish the return period of total depth accumulation over the

duration of a design storm.

In application, the effect of the storm hyetograph upon the frequency of the event

is usually ignored. Provided that the storm depths and durations are equal, there is

no difference in the frequency of occurrence between a Chicago, Huff, or AES event.

While convenient, this assumption, when examined critically, is not plausible. This

aspect was recognized early in the development of design storms (Kiefer and Chu,

1957). The DDF curves used as the basis for determination of return period for
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design storm depth/duration combinations themselves do not provide measures of

actual storm depth. The time intervals selected for design storm durations are not

based upon storm event durations, but are in fact moving time-windows which are

unrelated to the measurement of the start and end of actual storms (Palynchuk and

Guo, 2008). In conventional rainfall frequency analysis, rainfall amounts contained

within a moving time-window with fixed duration may in fact fall throughout the

duration or any sub-duration within the moving window. The rainfall data used to

develop probability distributions as the basis of DDF curves are based upon a mix of

rainfall accumulation within actual events, or parts of multiple storm events within

prescribed time intervals.

In order to improve upon the design storm approach, Storm-Event Analysis

(SEA) (Adams et al, 1986; Restrepo-Posado and Eagleson, 1982), employing a mini-

mum inter-event time or dry period definition (IETD), has been used in order to iden-

tify individual rain storm events at a meteorological station near Toronto, Canada

(Palynchuk and Guo, 2008). The depth and duration measures of those events were

then screened. Storms less than a selected upper duration limit (i.e. 12 or 24 hours),

but with depths exceeding a high threshold (i.e. 25mm) were analyzed, in order

to determine the distributions and dependencies of those measures. Storms with

depths exceeding a high threshold are selected, in order to establish an appropri-

ate tail distribution. Generalized Pareto Distribution (GPD) (Coles, 2001) were

examined, because of their appropriate application to threshold statistics. Applying

goodness-of-fit tests GPD Type I was found to provide the best fit from within the

GPD family. The bounded empirical distribution of the storm durations (between

1 and 24 hours) were found to fit the uniform distribution. The frequency distribu-

tion of storms of various magnitudes was then characterized by the joint probability

distribution of storm depth and storm duration.

The threshold-based probabilistic model of storm depth and duration is con-

structed as follows. First, the probability of exceedence for storm depth is:

Pr {V > v} = Ju exp [−(v − uv)/σv] (3.1)
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where Ju = Pr{V > uv} is the probability of storm depth (V, v) being greater

than the threshold value uv. The threshold value is selected on the basis of a number

of factors; statistical independence between storm depth and duration and stability

in estimation of the shape parameter σv being the two most important criteria. Ju
is estimated as the ratio between the number of storm events exceeding the depth

threshold and the total number of events.

Second, the probability density function (PDF) of storm duration (T, t), given

storms with depth greater than uv, and duration less than or equal to the maximum

duration considered (tmax), is modeled with a uniform distribution. The probability

that storm duration is less than or equal to a particular value, t is:

Pr {T ≤ t|T ≤ tmax} = t/tmax (3.2)

Since V and T were found to be statistically independent for events exceeding

the selected threshold, the joint probability of depth and duration is:

Pr[(T ≤ t)(V > v)] = (t/tmax)Ju exp[−(v − uv)/σv] (3.3)

This work as detailed in Palynchuk and Guo (2008), advances the design storm

approach by:

• characterizing depth and duration of actual individual events,

• developing explicitly their joint probabilities.

Conceptually, this work clearly expresses the severity of a rainstorm event in

both probabilistic and practical terms. For drainage design purposes, rainstorm

events increase in severity with increasing depth and decreasing duration. This is

reflected in Eq. (3), which is the joint probability of storm depth exceeding a given

value, and storm duration being less than or equal to a selected value. In a similar

fashion, in the development of conventional design storms, when a storm duration is

selected, in the ensuing frequency analysis, the occurrence of events with durations

less than or equal to the selected duration are actually evaluated. For purposes of

design, the designer establishes the likelihood of a given event, together with all more

serious events.
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Design storms are used as input for rainfall-runoff modelling. Peak rainfall inten-

sity is a key factor in the determination of time of concentration and peak discharge

from a catchment. Analysis of actual and modeled rainfall-runoff data leads to sim-

ilar conclusions. For example, Fig. 1 below shows results of regression analysis

of actual hydrograph data from the Mimico Creek catchment in Toronto, Ontario,

Canada (Environment Canada, Canada Centre for Inland Waters, Mimico Creek

Stage-Discharge data, Station 02HC033, 2009). The dependent variable is peak dis-

charge (Qp) in mm/h, with independent variables of runoff volume (vr) and peak

hourly rainfall intensity (ip):

Qp = c1vr+c2ip, where c1 and c2 are coefficients of regression. For this particular

data set, R2 = 0.975.

While it is clear that peak intensity is an important variable needed to describe

design storms (since it has an important influence on hydrologic outputs), neither

the conventional probabilistic models of rainfall employing DDF curves nor the joint

probability model of Palynchuk and Guo (2008) explicitly address the distribution

of intensity within rainstorms as a random variable. Since peak intensity is itself a

random variable, the probabilistic description of storm frequency based solely upon

storm depth and duration is incomplete. In order to improve the probabilistic de-

scription of design storms, the joint probability of storm depth, duration and peak

intensity is required. This is the primary objective of this paper.

Some research has been carried out examining the influence of peak intensity

upon frequency of storm events. Yue (2000a, 2000b) has applied bivariate Normal

and bivariate GEV I distributions to develop joint and conditional return periods of

storm depth and peak daily intensity for very long-duration (several days) storms

in Japan. Another line of research has examined peak intensity within extreme

rainfall events identified with a prescribed IETD from hourly rainfall data (Zhang

and Singh, 2007a). The marginal distributions of storm variables were established

first. Bivariate frequency distributions were then developed using copulas to relate

the distributions of any two variables. Both of these approaches have been applied

to annual maximum statistics, expanding from the conventional univariate approach

to estimate rainfall event return periods.
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A further refinement has been described by both Grimaldi and Serinaldi (2006)

and Zhang and Singh (2007b), where one-parameter 3-copula functions are used to

relate the marginal distributions of three rainstorm variables. Kao and Govindaraju

Figure 3.1. Plot showing actual peak discharge for Mimico Creek
(Ontario, Canada) catchment on y-axis, and predicted by regression
equation on x-axis. Independent variables for regression equation are
runoff depth and peak hour intensity.
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(2008) have applied the Plackett family of copulas in order to develop trivariate dis-

tributions of rainstorm variables. These approaches will be discussed and compared

later with the techniques developed in this paper.

The conventional DDF approach is to estimate return period from the cumulative

distribution function for rainfall depth (usually from annual maximum statistics), for

a particular rainfall interval. The SEA-threshold-based approach applies Eq. (3) to

determine storm return period Tv,t, based upon the joint probabilities of storm depth

and duration: Tv,t = 1/{Pr[(V > v)(T ≤ t)]θ0]} where θ0 is the average number of

storm events each year.

The bivariate distribution approaches make use of bivariate cumulative distri-

bution functions (CDFs) or copulas and marginal distributions of two random vari-

ables to determine joint return periods (Yue, 2000a, 2000b): Tv,i = 1/[1−FV,I(v, i)],
where FV,I(v, i) = Pr[(V ≤ v)(I ≤ i)]; and conditional return periods: Tv|i =

1/[1 − FV |I(v|i)], where FV |I(v|i) = Pr[V ≤ v|I ≤ i]; so that the joint effects of

storm depth and intensity may be considered. Trivariate copula methods incorpo-

rate information upon the greatest number of random variables. Each technique

calculates the annual probability that a storm of a particular combination of mea-

sures will be exceeded. The return period is then the inverse of the annual probability

of exceedence. Conventional DDF approaches incorporate the least amount of infor-

mation on storm descriptors (i.e., rainfall depth for a selected time interval). The

SEA-threshold approach incorporates storm depth and duration in its formulation.

The bivariate frequency distributions can incorporate any two storm variables. The

3-copula joint frequency distributions have the potential to incorporate any 3 storm

measures, but the focus has been primarily upon development of the underlying

mathematics, together with techniques for parameter estimation. None of the cop-

ula techniques is well suited at this point, to advancing and improving the design

storm approach as used in day-to-day engineering hydrology since they do not in-

corporate the key measures of rainstorms. Clearly, the next development must be

of frequency distributions that incorporate those rainstorm variables that impact

directly upon hydrologic outputs, and that lends itself to consistent application by

practitioners familiar with the conventional design storm approach.
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The SEA approach, using threshold analysis to examine extreme rainfall events,

results in rainfall data, organized or grouped on the basis of individual storm events.

While peak intensity within individual events was not previously evaluated, the in-

formation is available as a result of the analysis process. Building upon previous

work, hourly rainstorm data from two meteorological stations near Toronto, Canada

were analyzed, in order to develop probability distributions for storm depth and du-

ration, and to begin the characterization of storm peak intensity. The results of the

analysis are presented in detail in the Appendix to this paper. A summary of the

results is as follows:

• Storm depth is well described using the GPD I distribution, judged by the

modified Anderson-Darling test statistic at α = 0.05;

• Storm duration, for t ≤ 24 hours may be fitted to a uniform probability

distribution, judged by the χ2 test statistic at α = 0.05;

• storm depth and duration are uncorrelated at α = 0.05;

• Storm peak intensity and storm duration are negatively correlated;

• Storm peak intensity and storm depth are positively correlated.

The balance of this paper will examine the following:

• An alternative approach for characterization of peak-storm intensity;

• The fitting of a probability distribution to a new measure of peak intensity;

• Development of the joint probability of storm depth, duration, and the new

measure of peak intensity.

2. Alternative Approaches to Rainstorm Peak Intensity Characterization

So far, characterization of the frequency distribution of storm peak intensity

has followed an approach similar to those of Yue (2000a, b), Zhang and Singh

(2007a, 2007b), Grimaldi and Serinaldi (2006), and Kao and Govindaraju (2008).

41



Ph.D. Thesis - Barry Palynchuk McMaster - Civil Engineering

In these works, direct measures of the peak intensity are fitted to probability distri-

butions.

Conventional design storm approaches rely on the assumption that hyetograph

shape can be characterized independently of storm depth (Huff, 1967; Yen and Chow,

1980; Watt et al, 1986). Some effort should be spent on determining whether this

traditional practice has some validity. A description of storm shape should bear a

direct relationship to peak storm intensity and provide some indication of relative

concentration of rainfall within the storm. These characteristics would facilitate

application to design storm techniques, and provide a means of direct comparison

with traditional design storm patterns.

Available rainfall data in the region of interest and of sufficient period of record

are archived on an hourly basis, so that depth recorded for a given hour is the

average hourly intensity. The peak hourly intensity, in the context of a storm event,

has upper and lower bounds. The lower bound of peak intensity is the average storm

intensity; ilow = v/t. The upper limit of peak storm intensity would correspond to

the case where nearly all of the storm depth occurs within a single hourly interval;

iup = v/1. Peak hourly storm intensity on its own does not aid in characterizing

storm hyetograph shape. A measure incorporating the upper and lower bounds of

peak intensity as well as the relative concentration of total storm depth within the

peak hour would permit such a description. Using the bounded nature of hourly peak

intensity, a reduced variate (Ipf , ipf ) on [0, 1] may be established by substituting the

upper and lower bounds of hourly peak intensity into the standard expression for

the reduced variate of a bounded variable, ipf = (ip − a)/(b− a); where a and b are

lower and upper bounds respectively:

ipf =
ip − v/t
v/1− v/t

=
(ip/v)t− 1

t− 1
, t > 1 (3.4)

The reduced variate is defined as intensity peak factor, which is a relative measure

of the ”peakiness” of a given rainstorm event. Note that for a storm duration of one

hour, then the upper and lower values of peak storm intensity are identical. For that

reason, the evaluation of the reduced variate is only valid for storm durations greater

than one hour.
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Table 3.1. Correlation of intensity peak factor with storm depth and duration.

Toronto TPIA
(MSC 6158350) (MSC 6158733)

Correlation coefficient (Ipf − T ) -0.552 -0.585
Correlation coefficient (Ipf − V ) 0.099 0.033

Upper tail limit α = 0.05 |0.126| |0.141|
Accept/reject independence (Ipf − V ) Accept Accept

The intensity peak factor is a new concept introduced in this paper. It is a

reduced variate describing the peak hourly intensity in terms of its position between

minimum and maximum possible values. The minimum and maximum values of peak

hour intensity are not independent of storm depth and duration. Rather, within this

framework, storm intensity is correctly described in terms of the limits imposed by

the external measures of storm depth and duration and basic principals of continuity.

The balance of much of this paper is the consequence of applying this concept to the

probabilistic description of rainstorm events.

When the intensity peak factor was evaluated for correlation with storm depth

and duration, it was found to be uncorrelated with storm depth, and negatively

correlated with storm duration. The values for the two meteorological stations for

which data have been analyzed are shown in Table 1, together with corresponding

critical values for correlation coefficient ρ at α = 0.05. The correlations of Ipf − T
are high in relation to the critical value of ρ, so those two variables are correlated.

The correlations of Ipf − V are below the critical value of ρ, so are independent at

the selected α value.

The independence of the form of rainfall distribution (hyetograph) with storm

depth has only been used in the past as a simplification to aid in the prescription

of standardized forms of storm events, and not as a means of enhancing their prob-

abilistic description. The implicit assumption of independence of storm depth and

hyetograph form continues to be applied. Al-Rawas and Valeo (2009) applied the

techniques originally developed by Huff (1967) in characterization of the temporal

distribution of rainfall depth within rain storms in Oman wherein the possible effect

of storm depth on distribution of rainfall within a storm is neglected. In the past,
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this independence was assumed, but the results in Table 1 provide statistical confir-

mation that a measure of the relative concentration of rainfall depth within a storm

is independent of storm depth.

A bounded plotting position equation was applied to Ipf , for storm durations

greater than 1 hour (t > 1hr):

Fpp{Ipf ≥ ipf} =


0, ipf = 0
k

n+2
, 1 < k ≤ n

1, ipf = 1

(3.5)

where n is the sample size and k is the rank of the variate ipf . The lower and

upper bounds of the reduced variate necessarily have cumulative probabilities of 0

and 1 respectively, and so upper unbounded plotting position formulas such as the

Weibull plotting position ( 1
n+1

) cannot be applied.

The bounded nature of intensity peak factor limits the selection of probability

distributions. The sample moment estimators presented in Table 2 indicate that the

distribution is not symmetric, ruling out a number of distributions (bounded normal,

raised cosine, Irwin-Hall, U-quadratic). Many bounded distributions are simply par-

ticular forms of the Beta distribution (uniform, triangular, Kumaraswamy). There-

fore, the Beta distribution was selected and fitted to the plotting point distribution,

using sample moment estimators. The results are shown in Fig. 2 below for the

Toronto station.

The Beta distribution CDF (Johnson et al., 1994) has the following form:

FIpf (ipf ) =

∫ ipf
0

xp−1 (1− x)q−1 dx

β (p, q)
(3.6)

where p, q > 0 are distribution parameters. β(p, q) is the beta function, and x is

a dummy variable of integration.

The distribution parameters p and q were estimated using the method of moments

(MM) (National Institute of Standards and Technology, 2006):

p = ¯ipf ( ¯ipf (1− ¯ipf )/σ̂
2
ipf
− 1)
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q = (1− ¯ipf )( ¯ipf (1− ¯ipf )/σ̂
2
ipf
− 1)

Table 3.2. Beta distribution parameters for intensity peak factor.

Parameter Toronto TPIA
MSC 6158350 MSC 6158733

¯ipf 0.317 0.321
ˆσIpf 0.214 0.210
p 1.190 1.262
q 2.562 2.667

Kolmogorov-Smirnov test statistic 0.0994 0.1000
Critical value, 5% 1.36/

√
n+ 1 0.1037 0.1388

Accept/Reject Accept Accept

Figure 3.2. Plotting point or empirical distribution of intensity peak
factor (Ipf , ipf ), based upon Eq. (5), together with Beta distribution
in solid line, fitted by method of moments.
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Where ¯ipf and σ̂ipf are respectively, the mean and standard deviation of the

sample of ipf . The estimated Beta distribution parameters are shown for the two

meteorological stations in Table 2. In addition, Kolmogorov-Smirnov (K-S) test sta-

tistics and critical test values for the 5% level of signficance are shown, providing an

assessment of the goodness-of-fit of the Beta distribution to the empirical distribution

of the ordered statistics.

The close visual fit between the Beta and plotting position distributions, and the

K-S goodness-of-fit statistic suggest that Beta distributions are suitable models for

the frequency distribution of the intensity peak factor, for storm durations greater

than one hour, i.e., the time interval for rainfall measurement. Other researchers

(Kao and Govindaraju, 2008) apply Beta distributions to summary measures of

rainfall accumulation and relative peak temporal location within storm events, rec-

ognizing the bounded nature of such measures.

3. Joint Probability of Storm depth, duration and Intensity Peak Factor

3.1. Joint probability model and its assumptions.

Eq. (6) can be used for the determination of the CDF of intensity peak factor.

Eqs. (1) and (2) are used to determine the marginal distributions of storm depth

and duration respectively. The joint probability of storm intensity peak factor, storm

depth, and storm duration, in the context of describing increasing storm severity may

be expressed as:

Pr{(V > v)(Ipf > ipf )(1 < T ≤ t)} = Pr{(V > v)[(Ipf > ipf )(1 < T ≤ t)]}

Note that storms with t ≤ 1 are excluded by virtue of the definition of Ipf .

Applying the conditional probability theorem (Ang and Tang, 1975):

Pr{(V > v)[(Ipf > ipf )(1 < T ≤ t)]}

= Pr{(V > v)|[(Ipf > ipf )(1 < T ≤ t)]}Pr{(Ipf > ipf )(1 < T ≤ t)}
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That is, the probability of storm depth conditional upon intensity peak factor

and storm duration, times the joint probability of intensity peak factor and storm

duration equals the joint probability of all three events. Furthermore, if Pr{V > v}
is independent of the joint event {(Ipf > ipf )(1 < T ≤ t)}, then,

Pr{(V > v)(Ipf > ipf )(1 < T ≤ t)} = Pr{(V > v)}Pr{(Ipf > ipf )(1 < T ≤ t)}

(3.7)

The probability terms in the right-hand side of Eq. (7) are:

• the probability of exceedence of V , Eq.(1) if V is independent of the joint

event of intensity peak factor and duration; and

• the joint probability of Ipf > ipf and 1 < T ≤ t.

3.2. Initial test of the assumption of independence between V and the

joint event of Ipf and T .

Table 3.3. Correlation of intensity peak factor with storm depth
(Ipf − V ) for three separate ranges of storm duration..

Duration Range Toronto TPIA
MSC 6158350 MSC 6158733

2 to 9 hours 0.066 -0.020
- Upper tail limit α = 0.05 |0.220| |0.235|

10 to 15 hours 0.095 0.153
- Upper tail limit α = 0.05 |0.216| |0.251|

16 to 24 hours 0.051 0.074
- Upper tail limit α = 0.05 |0.224| |0.254|

Accept/reject independence (Ipf − V ) Accept Accept

Although earlier analyses showed that V is independent of the marginal distribu-

tions of both Ipf and T , this is still not sufficient to ensure that V is independent of

the joint probability distribution of T and Ipf . Since it is not possible to theoretically

prove if V is independent of the joint probability distribution of Ipf and T , an ini-

tial empirical test was performed to verify the validity of an assumed independence.

The rainfall data were split into three different groups according to storm duration.
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Three groups were used in order to ensure that sample size remained large; increasing

the number of groups reduces the size of each sample and leads to poor estimates.

Correlation between V and Ipf was calculated for each of the three storm duration

groups, for the two meteorological stations. If the correlation coefficient is very low

for each group (as it is for the whole set of data), then it would be an indication that

the assumption of independence is valid. The results of this test are shown in Table

3, together with the critical value of the correlation coefficient for acceptance of the

null hypothesis that correlation coefficient ρ = 0 corresponding to α = 0.05.

Results of this first test show that correlation is not significant, regardless of

the storm duration range. The assumption of independence of V with respect to

the joint distribution of Ipf and T is supported since grouping by storm duration

leads only to small, statistically insignificant changes in correlation. Further testing

of the assumption of independence will be performed, following development of a

joint probability distribution, in order to confirm the validity of the assumption of

independence for both stations.

3.3. Joint Probability of Ipf and T .

An approach for determining the joint distribution of two marginal distributions

is through the application of Copulas. A copula function has the following general

form (Balakrishnan and Lai, 2009):

F (x, y) = Cα [FX (x) , FY (y)] (3.8)

where F (x, y) is the joint CDF of X and Y , FX(x) and FY (y) are respectively

the marginal CDFs of X and Y , and Cα is the copula function with parameter α. In

order to simplify presentation, FX(x) will be represented by Fx, and FY (y) by Fy in

the development and formulation of copulas.

Eq. (8) states that there is a unique copula function C that relates the marginal

CDFs of two correlated random variables, such that the result is the joint CDF of the

two (i.e., Sklar Theorem; see, e.g. Nelson, 2006). In hydrology, the Archimedean class

of copulas is frequently applied, because of their relative simplicity and successful
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application to problems of joint probability. This class has the general form of:

Cα(Fx, Fy) = ψ−1 [ψ (Fx) + ψ (Fy)] (3.9)

where ψ is a generator function which is strictly decreasing and convex. Given

the negative correlation of intensity peak factor and storm duration, there are two

particular groups of Archimedean copulas that apply (Zhang and Singh, 2007a): the

Ali-Mikhail-Haq (AMH) and Frank families. The AMH family of copulas (following

reduction of the general form) is:

Cα (Fx, Fy) =
FxFy

1− α (1− Fx) (1− Fy)
(3.10)

for which the parameter α is estimated from Kendall’s τ (Balakrishnan and Lai,

2009):

τ =

(
3α− 2

α

)
− 2

3

(
1− 1

α

)2

ln (1− α) (3.11)

The Frank family of copulas has the following reduced form:

Cα (Fx, Fy) = − 1

α
ln

[
1 +

(exp (−αFx)− 1) (exp (−αFy)− 1)

exp (−α)− 1

]
(3.12)

for which the parameter α is estimated from Kendall’s τ :

τ = 1− 4

α
[D1(−α)− 1] (3.13)

where D1 is the Debye function, D1 (α) = 1
α

∫ α
0

z
ez−1

dz, D1 (−α) = D1 (α) + α
2
,

and z is a dummy variable of integration.

One of the objectives of this paper is to evaluate the joint probability, Pr[(Ipf >

ipf )(1 < T ≤ t)] of intensity peak factor and storm duration per Eq. (7). Both

distributions describe the probability of more severe occurrences; greater intensity

peak factor and shorter storm events. The copula evaluates the joint probability of

the CDFs of two dependent random variables. To evaluate the joint probability, the

CDFs of Ipf and of cT must be substituted into the the copula, where cT = tmax−T
is the complementary of T . These probability distributions will be abbreviated as Fi
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and Fct respectively. The copula, is then in its turn, substituted within the following

expression (Balakrishnan and Lai, 2009) in order to evaluate the joint probability of

exceedence of the two dependent random variables, Ipf and cT :

Pr[(Ipf > ipf )(cT > ct)] = 1− Fi − Fct + Cα (Fi, Fct) (3.14)

Note that, to be consistent with the definition of intensity peak factor, then values

of cT ≤ 23 are only considered, which is equivalent to values of T > 1. Values of

T ≤ 1, or cT > 23 will be considered later in the paper.

Table 3.4. Kendall’s τ for intensity peak factor and storm duration
(Ipf - T ), Ali-Mikhail-Haq and Frank copula parameters α.

Parameter Toronto TPIA
MSC 6158350 MSC 6158733

Kendall’s τ -0.4191 -0.4562
AMH α 0.5219 0.5149
Frank α -4.433 -4.993

Values of the copula parameter α for each meteorological station, and for each of

the AMH and Frank Copulas are shown in Table 4.

The tail dependence coefficient for upper-tail dependence (Joe, 1997), λU =
lim

Fx→1−
[1− 2u+ C(Fipf (u), FcT (u))]/(1− u) was evaluated for both Frank and AMH

copulas, and were found to both approach 0 in the limit. This indicates that both

copulae are upper tail independent. This further supports the suitability of either of

the Frank or AMH copulae, for the degree of dependence between the two random

variables.

Based upon Eq. (7), substituting the expressions for the probability of exceedence

of V and the copula-based joint probability of exceedence of Ipf and of cT , the

following expressions are obtained.

For the AMH Copula:

Pr{(V > v)(Ipf > ipf )(1 < T ≤ t)}

= Ju exp[−(v − uv)/σv]
[
1− Fi − Fct +

FiFct
1− α (1− (Fi)) (1− Fct)

]
(3.15)
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For the Frank Copula:

Pr{(V > v)(Ipf > ipf )(1 < T ≤ t)}

= Ju exp[−(v − uv)/σv]{
1− Fi − Fct −

1

α
ln

[
1 +

(exp (−αFi)− 1) (exp (−αFct)− 1)

exp (−α)− 1

]}
(3.16)

The distributions of Ipf and cT applied in both cases are:

Fi =

∫ ipf
0

xp−1 (1− x)q−1 dx

β (p, q)
(3.17)

Fct = 1− (t− 1)/tmax (3.18)

The uniform distribution is used as the marginal distribution of T , but 1 hour

events are excluded, so Pr[1 < T ≤ t] = t/tmax − 1/tmax which reduces to Pr[1 <

T ≤ t] = (t− 1)/tmax. Since decreasing storm duration is associated with increasing

storm severity and decreasing probability, then the CDF of cT must be used in the

copula function. This will have the form of Pr[cT ≤ tmax − t|cT ≤ 23] = Pr[T >

t|T > 1] = 1− Pr[1 < T ≤ t], leading to Eq. (18).

Since the probability distribution of Ipf applies only to storm durations greater

than 1 hour, the joint probability must also account for cases when T < 1. The total

probability should be:

Pr{(V > v)(Ipf > ipf )(T ≤ t)}

= Pr(V > v){Pr[(Ipf > ipf )(1 < T ≤ t)] + Pr[(V > v)(T ≤ 1)]}

For a storm duration of 1 hour or less, Ipf is always equal to 1 and is independent of

T , therefore Pr[(Ipf > ipf )(T ≤ 1)] = Pr(T ≤ 1) = 1/tmax. The expression for the

total joint probability of exceedence of storm depth, intensity peak factor, and CDF

of storm duration is, after reducing:

Pr{(V > v)(Ipf > ipf )(T ≤ t)}
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= Ju exp[−(v − uv)/σv]
{

1− Fi − Fct +
FiFct

1− α (1− Fi) (1− Fct)
+ 1/tmax

}
(3.19)

for the AMH copula model and:

Pr{(V > v)(Ipf > ipf )(T ≤ t)}

= Ju exp[−(v − uv)/σv]

{
1− Fi − Fct −

1

α
ln

[
1 +

(exp (−αFi)− 1) (exp (−αFct)− 1)

exp (−α)− 1

]
+ 1/tmax

}
(3.20)

for the Frank copula model.

3.4. Second test of the assumption of independence between V and the

joint distribution of Ipf and T .

A second empirical test was performed in order to determine whether the as-

sumption of the independence between V and the joint distribution of Ipf and T

was acceptable for practical applications. This test compares the empirical joint fre-

quency distribution of Ipf , T and V based upon plotting positions of the joint event,

applying techniques described by Yue (2001), with the joint probability for the same

values calculated using the theoretical distribution models as shown in Eq. (19) and

Eq. (20).

The following plotting position equation was used to estimate a conditional prob-

ability first:

Pr{[(V > v)(Ipf > ipf )(T ≤ t)]|[(V > uv)(T ≤ t)]}

= (l + 0.56)/(n+ 0.12), l ≤ n (3.21)
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In Eq. (21), n is the total number of events in a subset of data, where T ≤ t

and V > uv; and l is the number of events within that subset where V > v and

Ipf > ipf . The empirical probability estimated this way is the conditional exceedence

probability of a selected storm event with particular values of v, ipf , and t. The

Gringorten plotting position equation was selected as being appropriate to variables

described by Generalized extreme value Type I (GEV I), or GPD I extreme value

distributions (GPD I is used as the theoretical distribution for storm depth).

Events for which V > v, Ipf > ipf , and T ≤ t was extracted from the full set of

threshold rainstorm data. For a particular event of duration t having storm intensity

peak factor ipf and storm depth v, the number of events with T ≤ t, Ipf > ipf , and

V > v was counted. The number of such events meeting these criteria was then

l.

In order to remove the conditions from Eq.(21), Pr{V > uv}, the probability

of exceedence of the storm depth threshold uv, and the CDF of storm duration,

Pr{T ≤ t}, must be estimated. Pr{V > uv} = Ju is estimated directly from the

storm frequency parameters in Table 1. To estimate the CDF of storm duration,

the following plotting position equation was applied to the full set of rainstorm

data:

Pr{T ≤ t} = k/N, k ≤ N, (3.22)

where k is the total number of storm events with T ≤ t, and N is the total

number of storm events in the entire set of storm data for a given station as ob-

tained from Table 1. This plotting position equation is consistent with design storm

modelling where storm duration is treated as having uniform distributions. The es-

timates of Pr{T ≤ t} and Pr{V > uv} were applied to Eq.(21) as follows given the

independence between V and T :

Pr{[(V > v)(Ipf > ipf )(T ≤ t)]|[(V > v)(T ≤ t)]}Pr{V > uv}Pr{T ≤ t}

= Pr{(V > v)(Ipf > ipf )(T ≤ t)}

= [(l − 0.44)/(n+ 0.12)]Ju[k/N ] (3.23)
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The conditional joint probability of occurence of v, ipf , and t estimated on the

basis of the plotting position Eq.(21) is then combined with the plotting position

estimates of probability of exceedence of storm depth threshold and Pr{T ≤ t}.

This exercise was carried out for storm events of 6, 12, 14, and 23 hours. Empirical

plotting position distribution results are compared with results from the use of the

theoretical distributions, applying both AMH and Frank Copulas, and are shown

below in Figure 3a for the Toronto station, and Figure 3b for the TPIA station.

For comparison, simple joint probabilities, assuming complete independence between

storm depth, duration, and intensity peak factor is also shown for each station:

Pr{(V > v)(Ipf > ipf )(T ≤ t)}

= Pr{V > v}Pr{Ipf > ipf}Pr{1 < T ≤ t}+ Pr{V > v}Pr{T ≤ 1} (3.24)

The results based upon the theoretical distributions are plotted on the x-axis,

while those based upon the plotting positions (for the same event) are plotted on the

y-axis. Should a given theoretical method produce identical results with the empirical

distribution, then the points on the chart would appear on the 45-degree line. A

higher probability of exceedence from the theoretical model than that estimated from

the empirical model places the point for a particular event below the 45-degree line.

Where the Frank copula is used to model the joint distribution of storm duration

and intensity peak factor, the theoretical and plotting position methods produce

very similar results. The bias of the simple joint probability model (i.e., Eq. (24)) is

visually apparent, and the AMH copula produces results between those of the Frank

copula and the simple joint probability. As a measure of goodness-of-fit, several

standard ranking criteria were considered:

• AIC - The primary value of this ranking criteria is for comparison of models

with varying number of parameters. This is not applicable in this case.

• The RMSE =
√

1
n

∑n
i=1 (xi − x̂i)2 is a relative measure of goodness-of-fit

applied in this case by comparing differences between plotting point dis-

tribution probabilites and those of the theoretical models. Lower RMSE
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Figure 3.3. Comparisons of plotting position and theoretical joint
probability distributions. Plotting position empirical distribution es-
tablished with Eq. (23) plotted on y-axis. Theoretical distributions
based upon Eq. (19) for AMH copula, Eq. (20) for Frank copula,
and Eq. (24) for simple joint probability plotted along x-axis. Figure
3(a) for Toronto station, Figure 3(b) for TPIA. Points falling closest to
45-degree line indicate best fit between empirical and theoretical mod-
els. 55
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values for a particular theoretical model compared to another would indi-

cate a better fit with the empirical distribution. There is no indication of

bias provided by this measure.

• The Nash-Sutcliffe model efficiency coefficient Ef provides a measure of

reduction in variance. Ef = 1 −
[∑n

i=1 (xi − x̂i)2/
∑n

i=1 (xi − x̄)2], so that

an increasing value of Ef up to a value of 1, indicates better predictive power

for a theoretical model in comparison to observed values.

• A simple measure of difference between empirical and theoretical models

was also adopted: δ = 1
n

∑n
i=1 (xi − x̂i). With this, bias can be estimated.

For each of the above goodness-of fit criteria, n is the total number of events

evaluated for both their empirical and theoretical probabilities and i is the counter

that identifies individual events. The joint probability of exceedence of each event

considered, Pr{(V > v)(Ipf > ipf )(T ≤ t)}i = xi for the observed values established

by means of the plotting point distribution, and x̂i for the modeled joint probabili-

ties.

Table 5 provides RMSE, Ef , and average difference for theoretical joint probabil-

ities based upon AMH and Frank copulas, as well as for the simple joint probability

expressed in Eq. (24).

• RMSE provides differentiation between the three theoretical models applied

to data for the two stations, and provides some indication that the theoreti-

cal model incorporating the Frank Copula provides a closer fit to the plotting

point distribution than either the AMH Copula or simple joint models. The

RMSEs for the Frank copula model are 82.8% and 70.9% of that for the

AMH model for the Toronto and TPIA data respectively.

• Ef provides an indication of reduction in variance between each of the three

models and the observed plotting point joint distribution. While differences

are small, the Frank copula model leads to the largest values of Ef for rain-

storm data from both stations, indicating the greatest reduction in variance

when compared to the plotting position model. The AMH copula model has
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a greater reduction in variance than the simple joint model, when each is

compared to the plotting position model.

• The average difference, δ, between empirical and predicted estimates of joint

probability provides clear indication that for data from both stations, the

model incorporating the Frank copula has the lowest average difference in

comparison to the plotting position event joint probabilities. The Frank

copula model slightly overestimates the joint probability, but in absolute

terms, the performance of the Frank copula model is much better than that

of the AMH model. The absolute values of δ for the Frank copula is 60.8%

and 6.2% of those for the AMH model for the Toronto and TPIA stations

respectively. AMH and simple joint probability both underestimate the joint

probability of exceedence in comparison to the empirical, or plotting position

joint probabilities.

Table 3.5. Relative Goodness-of-fit, Theoretical models compared to
Empirical Plotting Point Distribution.

Parameter Toronto MSC 6158350 TPIA MSC 6158733
RMSE Frank 0.00116 0.000829
RMSE AMH 0.00140 0.00117

RMSE Simple Joint 0.00164 0.00160
Ef Frank 0.967 0.976
Ef AMH 0.955 0.950

Ef Simple Joint 0.944 0.909
δ Frank −0.000572 −0.0000648
δ AMH 0.000940 0.00104

δ Simple Joint 0.00144 0.00152

The visual comparisons in Fig. 3a and Fig. 3b support the selection of the GPD

I distribution for storm depth with the Frank copula linking the uniform distribution

for duration, and Beta distribution for intensity peak factor, as providing the best

model for the joint probability distribution of storm depth, duration, and intensity

peak factor in comparison to the empirical joint probability distribution. The close

match to the plotting position and improvement compared to simple joint probabili-

ties confirms the applicability of the independence assumption invoked (that of storm

depth being independent of the joint event of intensity peak factor and duration).
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Thus, Eq. (20), completed by Eq. (17) and Eq. (18) is an acceptable model for

the joint probability distribution of the three rainstorm measures at least for two

stations in Toronto, Canada.

4. Conclusions

Intensity peak factor, as defined in this paper, shows promise as a simple but

general measure of the degree to which rainstorm depth is concentrated in a peak

hourly interval within a storm. This variable has upper and lower bounds; for two

stations in Toronto, Canada it is correlated with storm duration but has no corre-

lation with storm depth. Intensity peak factor was found to follow well the Beta

probability distribution. Although the hourly archiving interval for rainstorm depth

accumulation sets some limits upon characterizing true storm durations and peaked-

ness, the application of the intensity peak factor still allows a practical description of

a storm’s peak intensity. In fact, it takes advantage of the averaging effect of hourly

archiving.

The findings about the statistical independence between storm depth and du-

ration, as well as between storm depth and intensity peak factor, partially support

some aspects of the current approach in specifying design storms. The joint proba-

bility distribution of storm depth, duration, and intensity peak factor developed in

this paper provides a better probabilistic description of rainstorm events than that

proposed by other researchers since all measures having an important effect upon

peak discharge from a catchment are considered in characterizing the frequency of

occurrence of different storm events. This new approach also avoids a priori de-

termination of annual maximum events. In order to explain these assertions, some

contrast with other techniques follows.

The one-parameter 3-copulae methods developed by Grimaldi and Serinaldi (2006)

and by Zhang and Singh (2007b) are not applicable to the case of negative correlation

between storm intensity and duration found for the two Toronto area sets of rainfall

data (Kao and Govindaraju, 2008).
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The application of Plackett 3-copulas by Kao and Govindaraju (2008) does not

have the limitation imposed by the single-parameter 3-copula. They select the annual

maximum rainstorm events on the basis of plotting point estimation of the maximum

joint probability of storm depth and peak intensity. The use of annual maximum

statistics reduces the sample size, and may bias the selection of annual maximum

events, since annual maxima are selected on the basis of an empirical joint probability

of two of the three measures. They applied Beta distributions to hyetograph shape

variables (relative location of storm peak, cumulative proportions of storm depth

accumulation), in recognition of the bounded nature of such measures, in a similar

fashion to the techniques developed in this paper. This paper has established the

statistical independence of storm depth with respect to the joint event of intensity

peak factor and storm duration, based upon the rainfall data examined for two

meteorological stations in Toronto, Canada. Because of this independence, there is

no need to apply the more complex 3-copula.

Other researchers have not recognized that storm peak intensity is necessarily

bounded in the context of the external measures of storm depth and duration. With

the recognition of this necessary relationship and the inclusion of a bounded measure

of peak storm intensity as a random variable, all major measures of rainstorm events

having significant effects on catchment peak discharge and runoff depth have been

incorporated into the probabilistic description of storm events in this paper. The

combination of threshold analysis of rain storm data together with the multivariate

plotting point estimation of joint probability eliminates the shortcomings of annual

maxima data used by others. Further, the random variables are employed in every-

day practice, or may be easily derived from available rainfall data. Thus, the storm

variables of interest to designers and planners are addressed. Three joint probabil-

ity distributions incorporating the marginal distributions of storm depth, duration,

and intensity peak factor were developed and compared to an empirical distribution.

As expected, joint distributions incorporating 2-copulas provided a better fit than

a simple joint distribution. The intensity peak factor variable is a unique develop-

ment that incorporates the fundamental limits upon peak storm intensity within a

rainstorm event, and creates a measure that addresses one of the key assumptions

in traditional design storm practice: the heuristic that storm hyetograph shape is
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invariant with storm depth. While this is an oversimplification, the measure of storm

peak introduced in this paper, intensity peak factor, is indeed independent of storm

depth. This characteristic lends itself well to application of the methods developed

in this paper to the advancement of design storm techniques, and facilitating their

adoption by practitioners familiar with traditional concepts.

Apart from development of practical applications in design and risk assessment,

further research will include evaluation of data from different climatological zones,

in order to broaden the geographic range over which these techniques may be em-

ployed. Refinement of the techniques presented in this paper are merited. Although

at an early developmental stage, a concise, probabilistic description of storm peak

characteristics has been presented. The easy-to-implement method leads to a more

comprehensive and practical characterization of storm frequency that can be readily

incorporated into the current design storm-based engineering practice.
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6. Appendix Rainfall Data Analysis

Hourly rainfall data from two nearby stations in Toronto, Canada, operated by

Meteorological Services Canada were obtained. The two stations were Toronto,

MSC6158350, and Toronto Pearson International Airport (TPIA), MSC6158733.

The data from the two stations were subject to SEA using an Intervent Time Defini-

tion (IETD) of 6 hours. That is, individual storm events are defined by minimum dry

periods of 6 hours between hourly intervals recording rainfall. The identified rain-

storm events were then subject to threshold analysis. Events exceeding a threshold of

25 mm, with durations less than or equal to 24 hours were fitted to The Generalized

Pareto Distribution Type I (GPD I) for storm depth (see Eq.1). The upper limit
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of duration was selected for a variety of reasons. Longer duration events are of less

interest in urban stormwater management, the numbers of events exceeding both 24

hours in duration and 25 mm in depth are relatively few, and the average intensities

at this threshold are very low, so of little direct interest in stormwater management.

These long duration events will require some other method of analysis.

Following procedures described in Palynchuk and Guo (2008), storm durations

were found to fit a uniform distribution (Eq.2). Because of the limitations inherent in

the use of hourly archived rainfall, the finest temporal definition for storm duration

is one hour. Thus, the durations established for individual events must be viewed

as an interval. In particular, a one-hour duration rainstorm must be understood to

be a storm up to one hour in duration, but may be of shorter duration greater than

zero.

Peak hourly intensities within each storm event were identified and then reviewed

for correlation with storm depth and duration.

The results of this analysis are summarized in Table A1.

This analysis showed that:

• for the two stations, GPD I probability distribution parameters, mean and

standard deviation of storm depth, are very similar in value.

• GPD I (two-parameter exponential distribution) is a good fit for storm

depth, applying the Anderson-Darling test statistic to data from both sta-

tions.

• Similarly, the χ2 test showed that the uniform distribution is acceptable at

both sites for storm duration. The fitting of a uniform distribution to the

durations of extreme rainfall events is consistent with conventional design

storm practice, wherein rainstorm duration may be selected for design pur-

poses based upon some measure of catchment response, such as time of con-

centration. Effectively, current application assumes that all storm durations

less than the maximum duration have an equal likelihood of occurrence.
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Table 3.6. Table A1. Summary of statistical analysis results for two
stations in Toronto, Canada.

Toronto (MSC 6158350) TPIA (MSC 6158733)
Period of record 1939 - 1998, 56 yrs 1960 - 2001, 42 yrs
Annual coverage April-October March-November

Maximum storm duration, tmax 24 hours 24 hours
Threshold storm depth,uv 25 mm 25 mm

Location µ 35.549 mm 35.094 mm
Scale σv 10.549 mm 10.094 mm

GPD I fit, V calculated A2 0.236 0.636
Upper tail limit, α = 0.05 1.321 1.321

Accept/reject Accept Accept
Uniform distribution, T , calculated χ2 13.034 7.569

Upper tail limit α = 0.05, d.f.=11 19.68 19.68
Accept/reject Accept Accept

Storms/year, θ0 64.446 storms/yr 77.286 storms/yr
Storms/year, V > uv , θu 3.071 storms/yr 3.357 storms/yr

Correlation (V − T ) -0.043 -0.016
Upper tail limit p = 0.05 |0.126| |0.139|

Accept/reject independence Accept Accept
Correlation (Ip − T ) -0.579 -0.555
Correlation (Ip − V ) 0.519 0.479

• Storm depth and duration are uncorrelated. The critical test value of cor-

relation for α = 0.05 is included. Sample correlation values less than the

test value are uncorrelated, with an α = 0.05 risk of false rejection of the

null hypothesis. The physical explanation for the lack of correlation may

be due to the two major rainstorm producing mechanisms present in this

region. Cyclonic events tend to produce long duration, low average intensity

storms, while convective storms are of relatively shorter duration and higher

average intensity. Both processes result in events within a similar range.

• Peak hourly storm intensity (Ip, ip) is positively correlated with storm depth,

and negatively correlated with storm duration.

A review of some of the parameters from Table A1 for the purpose of charac-

terizing extreme rainfall events on the basis of threshold analysis is merited, since
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most similar approaches make use of annual maximum statistics. Storm depths ex-

ceeding a threshold of 25mm of storm depth occur between 3 and 4 times per year

in the Toronto area. The sample size is therefore larger than that available under

the annual maximum approach, and provides information on arrival time between

significant rainfall events. The threshold ”filters” out minor events in a way that

annual maximum statistics may not. Annual maximum statistical analysis is pred-

icated upon the assumption that there are sufficient numbers of annual rainstorm

events so that the selection of the maximum value from among the set of all annual

events satisfies the asymptotic requirements inherent in the Generalized Extreme

Value family of probability distributions (Gumbel, 1958). This last assumption may

not be met, and in fact, would not be met in the Toronto Area, since there are

only between 64 and 78 total rainstorm events per year, while Gumbel suggests that

greater than 100 events per year would be desirable. The use of threshold statistics

permits determination of return periods of rainstorm events of less than one year.

Effectively threshold statistics, applied through appropriate probability distributions

provide a greater range of frequency prediction than do annual maximum statistics,

while at the same time providing other important measures, such as time between

large events.

The combined application of IETD for identifying individual rainstorm events

with threshold-based analysis of extreme events provides a major advantage in ex-

amining the probabilistic behaviour of rainstorms, in comparison to the use of annual

maximum rainstorm statistics. If univariate analysis is being carried out, then the

identification of annual maximum data is straightforward. In the context of evalu-

ating joint probabilities of several measures of rainstorms, then it becomes difficult

to define the annual maximum rainstorm event. Two alternatives exist: 1) An a pri-

ori definition must be employed in order to determine a combination of, say, storm

depth and peak intensity , in advance of statistical analysis; 2) Make use of statistics

based solely upon a single measure, typically storm depth. Either alternative risks

bias to the subsequent examination of joint probabilities of measures of storms. No

such limitation exists when threshold statistics are employed, so that the marginal

distributions of each storm variable may be evaluated, without any predetermination

of annual maximum criteria for joint events.
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CHAPTER 4

Changes in heavy rainstorm characteristics with time and

temperature at four locations.

1. Introduction

There has been much speculation with regards to the effect of climate change

upon changing patterns of rainfall. One of the major assertions has been that rainfall

intensity will increase, or that severe events will become more frequent (IPCC, 2007).

This prediction has arisen, in part as a result of modelling studies, as well as from

analysis of rainfall statistics. A brief review of recent research, organized upon the

basis of evaluation of modeled results versus statistical analysis of trends in rainfall

data follows. A further discussion of the definitions of statistical rainfall events is

presented.

1.1. Model-based predictions.

Modelling based results include downscaling of GCM results. Kharin and Zwiers

(2000) used the results of GCMs to predict changes in extreme daily accumulated

rainfall in future climate scenarios. Guo (2003) used 24-hour accumulated rainfall

predicted by CGCM1, under the IS92a forcing scenario for the period from 2000 to

2100 to obtain annual maximum rainfall data. 24-hour annual maximum rainfall from

Toronto, Canada between 1938 and 2001 for a station from within the same GCM

grid square was compared, using a standard plotting position equation. The results

showed an increase in rainfall depth for a given frequency between the historical and

modelled data.
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Mailhot et al. (2007) regionalized available moving-window annual maximum

rainfall depth accumulation data (as used in conventional DDF analysis) from South-

ern Quebec in order to compare to rainfall modelled by a regional climate model

with 45 km grid-cell size. The Canadian Regional Climate Model was used, under

the SRES-A2 GHG scenario. Results compared reasonably well with annual max-

imum, moving-window rainfall accumulation statistics, with a bias towards larger

rainfall depths for station data, attributable to characteristic storm size reduction

with decreasing storm duration. Modelled control and future rainfall depths were

compared, showing a future trend of increasing storm depth for annual maximum

events for comparable moving-window durations. Simulated data from individual

grid squares was aggregated in order to upscale to a regional level.

Douville et al. (2001) used rainfall precipitation modelling from the Centre Na-

tional de Recherche Méteorologique (CNRM) of Méteo-France. A base case using

1950 Green-House Gas (GHG) concentrations was modelled. A second case, based

upon the SRES-B2 GHG scenario was run. The time spans of both model runs was

150 years, and there was some validation of modelling against current climatology.

Rainfall results were compared, and model prediction was about a 5 percent increase

beyond current average rainfall, with some indications of seasonal shifts, depend-

ing upon the region. The results of the modelling further lead to an inference that

an increase in atmospheric moisture content combines with a decreased efficiency

in the hydrologic cycle leading to a modest increase in rainfall. The dwell time of

atmospheric moisture increases.

Rosenberg et al. (2010) used Regional Climate Models to project possible changes

in rainfall in Washington State, and as a basis of comparison to historical records.

While increases in rainfall precipitation were predicted at some locations, results

were not statistically significant.
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1.2. Statistial analysis of historic rainfall data.

1.2.1. Statistical events as daily rainfall.

Angel and Huff (1997) used 24-hour annual maximum rainfall accumulation sta-

tistics from the U.S. Midwest, for time spans of 1901-1947 and 1949-1994 and found

a statistically significant difference. Greater accumulations were found in the sec-

ond half of the Century. Guo (2006) used the results of this analysis, applying

techniques developed in his 2003 paper referenced above, to develop a temporal

downscaling technique, based upon a widely accepted empirical intensity-duration-

frequency equation. The objective of this analysis was to demonstrate the impact

of climate change upon urban stormwater infrastructure, and to propose a tech-

nique for applying the results of climate change research to the design of stormwater

infrastructure.

Groisman (2010) has recently reported the results of analysis of rainfall data

from the Continental US. Patterns of more frequent extreme rainstorms were re-

ported. No statistically significant increase in total rainfall was detected when two

30-year spans of data over a total 60-year block were compared. Rosenberg et al

(2010) performed analysis of trends based upon rainfall records from several Pacific-

Northwest US rainfall stations, but found few significant trends; potential decreases

in the numbers of events, and possible increases in storm depth for medium duration

events. Earlier analysis by Karl and Knight (1998), projected increasing trends in

heavy rainfall.

1.2.2. Moving-window statistical analysis.

Adamowski et al (2009) reviewed conventional annual maximum Intensity-Duration-

Frequency (IDF) analysis from Ontario in Eastern Canada and found statistically

significant trends over relatively short durations (10 to 20 years). However, there

are decadal and multidecadal cycles in rainfall which put into question the validity

of any rainfall trend analysis over single and double decade time spans (Yang and

Goodrich, 2008).
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1.3. Objectives of this chapter.

There have been predictions made, on the basis of increased atmospheric GHG

concentrations, that extreme rainfall events would increase in frequency and severity.

Extreme rainstorms need some high-level definition. Broadly, they are events that

exceed norms, and that do not occur very frequently. Extreme rainfall events occur

on an annual, or less frequent basis, and result in runoff events that result in hillside

and streambank erosion, with peak stream and sewer flows that will tax the capacity

of channels and conduits.

Climate models themselves are effective at describing long term trends and av-

erage rainfall, but their physical scale does not adapt them very well to modelling

relatively small geographic and time scale individual storm events (Groisman et al.,

2004). Even the finer scale of regional climate models requires upscaling of point rain-

fall data in order to permit comparisons of modelled and actual data (Mailhot et al.,

2007). Statistical analysis of rainfall data suffers from a variety of event definitions,

which, particularly in the case of moving-window analysis, may prevent the identifi-

cation of rainstorm event variables. For example, the use of a fixed moving window

prevents the identification of storm duration, and because storm duration is not de-

fined, then individual event-based description of storm depth and peak intensity are

not identified either. The 24-hour event definition may lead to the aggregation of

multiple short, but separate events.

Standard techniques of trend analysis, typically making use of the Mann-Kendall

Test (Mann, 1945; Kendall, 1955) are sensitive to the starting point of the analysis,

and so may give inaccurate indication of trends, depending upon the time-span of

the data set, as well ast the starting point of the trend analysis in comparison to

decadal and multi-decadal climate cycles (Chen and Grasby, 2009). This is described

in greater detail in Section 4. of this chapter.

In order to examine possible changes in rainstorm characteristics with time, or

with changes in temperature, an alternate storm event definition, Inter-Event Time

Definition (IETD) will be used to identify individual, infrequent, rainstorm events.

This technique separates records of rainfall based upon a minimum time interval

between hourly archived rainfall records. The individual rain storm events may
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then be characterized by their total depth, duration, and peak intensity. Because

of the comparative granularity of event definition produced by this technique, these

random variables may then be analyzed in terms of their probability distributions

and associated statistical parameters. From that analysis, the effects of climate scale

temperature on mean values of storm variables may be evaluated. As well, potential

changes over time will be assessed. The duration of rainfall data of sufficient precision

is limited to 50 to 60 years in many areas of North America, so that trend analysis

is at risk of being distorted by multi-decadal cycles. Indeed, initial Mann-Kendall

trend analysis using a moving-window approach simply reflected those same cycles.

A basic approach will be taken, with the objectives of assessing:

• The effects of temperature, on a climatic basis, upon storm variables

• Shifts in mean values of storm variables, between major time spans within

the period of record of the selected meteorological stations

• The relationship between climatological measures of atmospheric tempera-

ture, and shifts in rainstorm frequency.

The over-arching objective is to employ a storm-event definition that identifies

the key variables of individual storm events, assess the potential changes in storm

parameters over time, and the effects of climatic temperature upon those variables.

With that assessment, the underlying assumption of stationarity may be tested.

Changes in rain storm parameters with time and temperature may be used to project

future directions in rainstorm variable analysis.
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2. Storm event definition and analysis

2.1. Threshold analysis under the assumption of stationarity.

Rainstorms are observed as discrete events; they have a start, a finite duration,

then an end. Identification and measurement of individual events from rainfall data

is unfortunately, subject to a variety of definitions. Conventional probabilistic defini-

tions of rainfall as applied through Depth-Duration-Frequency (DDF) and Intensity-

Duration-Frequency (IDF) curves ignore the identification of individual events. They

instead make use of a moving window of prescribed duration, then measure the annual

maximum depth of rainfall occurring within that moving window. Some definitions

use a daily or 24-hour window as the basis for describing a rain storm (Karl and

Knight, 1998).

A common definition for many researchers is the Inter-Event Time Definition

(IETD). Rainfall records are examined, and individual storms are defined by means

of a minimum period of time between recorded rainfall. One of the earliest descrip-

tions of this was by Eagleson (1972), (Restrepo-Posada and Eagleson, 1982). Other

researchers have employed this definition for a variety of purposes. Adams et al.,

(1986) examined the basis for selection of the IETD, and applied the concept for the

purpose of characterizing the marginal distributions of rain storm depth, duration,

and inter-event time. Other researchers (Guo and Adams, 1998a, 1998b; Goel et

al., 2000) have used this definition of rainstorm events to characterize the marginal

distribution or rainstorm random variables in order to develop derived probability

distributions of hydrologic outputs such as peak discharge, or runoff depth. More

recently, the technique has been used to characterize the probability distribution of

extreme storm events. Storm data is analyzed by application of threshold exceedance

analysis to storm depth (Palynchuk and Guo, 2008). The probability distribution

of high values of storm depth is determined by applying Generalized Pareto Distri-

butions, and the marginal distributions of storm duration is determined for those

events as well. Similar techniques have been applied to include measures of peak

storm intensity (Palynchuk and Guo, 2011).
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Table 4.1. Station Descriptions, Threshold Analysis of Rainstorm
Events March-November, ≤ 24hours

- Name/ Springfield Peoria O’Hare Pearson
Description Sta. ID IL8719 IL6711 IL1549 6158733

Latitude, degrees N 39.848◦ 40.668◦ 41.995◦ 43.677◦

Longitude, degrees W 89.664◦ 89.684◦ 87.934◦ 79.631◦

Years, hourly rainfall 1949-2006 1949-2006 1962-2006 1960-2003
Total no. rainstorms, m 4567 4615 3777 3172

In this work, hourly-archived rainfall data was analyzed for 4 stations; airport sta-

tions at Peoria, Springfield, Chicago(O’Hare), all in the State of Illinois, USA, as well

as Pearson, the international airport serving Toronto, Canada. Peoria and Spring-

field were selected as being relatively rural meteorological stations, but with long

continuous records. Chicago and Toronto were selected for relatively long records

in urbanized areas. Basic information on each station is shown in Table 1. Data

for Pearson has been obtained from Meteorological Services Canada, as referenced

in Chapters 2 and 3. U.S. weather data has been sourced through Earthinfo, Inc.,

assembled from U.S. National Weather Service and other data providers.

The entire record for each station was subject to threshold analysis, in order to

develop the dataset of extreme events. The techniques are fully described in the

author’s previous work, but are summarized as follows for convenience:

• Hourly-archived rainfall data is separated into individual events, using the

IETD. The start of a storm event is separated by at least the IETD from

the end of the last rainfall record. This current analysis used a minimum

inter-event time definition of 6 hours.

• Limit storms to durations less than or equal to 24 hours. This selection is

made for several reasons:

– 1) The analysis of the probability distribution of storm duration is

simplified,
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– 2) in the context of urban hydrology (the objective of much of this

investigation) events of long duration but low average intensity are of

less interest because of the lower level of risk of damage,

– 3) storms of durations exceeding 24 hours must be characterized sepa-

rately, because of their infrequent nature, and low average intensity.

• Select a high storm depth threshold uv, so that there are about 3 to 5 events

per year on average exceeding this depth.

• Evaluate statistical parameters of storm depth (V, v), duration (T, t), and

peak intensity (Ip, ip)

• Fit Generalized Pareto Distribution Type I (GPD I) to storm depth, and a

bounded distribution to storm duration:

Pr{V > v} = Ju exp[−(v − uv)/σv] (4.1)

(Where uv is the selected storm depth threshold, and Ju is a natural esti-

mator of the probability of exceedance of uv)

Pr{T ≤ t|T ≤ tmax} = t/tmax (4.2)

where tmax is the selected maximum duration of storms under consideration,

in this case, 24 hours. A uniform distribution is shown in this case, but other

bounded equations in the Beta family may be fitted as appropriate.

• Normalize peak hourly intensity, calculating the Intensity peak factor, fol-

lowing Eq. (3):

Ipf = [(Ip/v)t− 1]/(t− 1) (4.3)

then calculate moments of this reduced variate, to fit to a bounded distri-

bution, usually from the Beta family:

Fipf =

∫ ipf
0 xp−1 (1− x)q−1 dx

β (p, q)
(4.4)
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where Ipf , ipf is the dimensionless index of peak-hour storm intensity. p

and q are Beta distribution parameters, p = ¯ipf

(
¯ipf

(1− ¯ipf)
σ2
ipf

− 1

)
, and q =

(1− ¯ipf )

(
¯ipf

(1− ¯ipf)
σ2
ipf

− 1

)
• Statistical parameters were estimated by Maximum Likelyhood for storm

depth, method of moments for storm duration (because hourly archiving

results in values that can only be estimated as being within a range, and

so must be treated as discrete), and method of moments for intensity peak

factor (Johnson et al, 1994).

• Goodness-of-Fit was established by comparison of each marginal distribu-

tions with empirical distributions. The Modified Anderson-Darling test was

used for V, v, χ2 for T, t, and Kolmigorov-Smironov for Ipf , ipf .

• Depending upon the type of engineering problems, the marginal distribu-

tions of V , T , and Ipf may be combined into joint probabilities in order to

assess the return periods of extreme storm events. Generally, it has been

found that storm depth V is independent of storm duration T as well as in-

tensity peak factor Ipf , while T and Ipf are correlated, in previous analysis

carried out at two Toronto, Canada stations. That correlation is addressed

with an Archimedean Copula (Palynchuk and Guo, 2011).

Table 4.2. Threshold statistics

Springfield Peoria O’Hare Pearson
Parameter IL8719 IL6711 IL1549 6158733

Storm depth threshold, uv,mm 39 37 37 25
Total no. of rainstorms, n, v > uv 184 238 172 144

Average storm depth, v̄ 58.298 51.543 52.881 34.962
Standard deviation, σ̂v 19.298 15.543 15.881 9.962

Average duration, t̄ 13.201 12.036 12.034 11.927
Standard deviation, σ̂t 6.091 8.668 5.800 6.287

Average intensity peak factor, ¯ipf 0.294 0.299 0.296 0.339
Standard deviation, σ̂pf 0.187 0.191 0.171 0.229
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This brief review is to simply establish that standard techniques are applied to

ensure that there are probability distributions that model well the marginal distri-

butions of the random variables that describe rainstorm events. Table 2. provides a

summary of the parameters estimated for each of the four meteorological stations for

which data was evaluated, over the entire time duration for which hourly-archived

rainfall data was available.

2.2. Methods.

The following sections evaluate differences between mean values, correlations be-

tween variables, and differences between distributions. Comparisons are between

storm events divided into time spans within the overall period of record, or tempera-

tures associated with storm events. P-values will be used to assess significance. The

p-value is the risk of falsely rejecting the null hypothesis, which is the hypothesis that

there is no difference between test parameters. The p-value threshold for statistical

significance will be taken as p < 0.10, but higher values will be shown as well so

that the possibility of a trend may be considered, even though statistical significance

acceptance criteria are not otherwise met. In some instances, when p-values are in

excess of 0.20, the values may be omitted altogether for clarity. Tests will be for

differences between means of storm variables, χ2 tests for differences between dis-

tributions, product moment correlation significance, and differences of percentages

of numbers of events between temperature categories. The tests are all in routine

use, described in many texts on probability and statistics, and largely based upon

normality of the estimates of means. In the case of product-moment correlation, the

z-statistic is approximated by z = r
√

(n − 1), where n is the sample size, and r is

the product-moment correlation.

2.3. Storm-event analysis - time spans.

2.3.1. Storm variables.

The full set of extreme events were broken into two subsets; events occurring

prior to 1980, and those occurring in 1980 through to the end of the available data.

This division of data provided relatively large sample sizes for early and later events.
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Table 4.3. Difference in values, pre- and post-1980, of statistical parameters.

Springfield Peoria O’Hare Pearson
Parameter Time Span IL8719 IL6711 IL1549 6158733
Avg. storm depth, v̄ ≤ 1979 58.495 51.305 51.410 34.667
Avg. storm depth, v̄ ≥ 1980 58.091 51.922 53.720 35.188
Avg. duration, t̄ ≤ 1979 13.154 11.670 12.105 11.896
Avg. duration, t̄ ≥ 1980 13.244 12.522 11.968 11.957
Avg. intensity peak factor,
¯ipf ≤ 1979 0.307 0.303 0.283 0.372
¯ipf ≥ 1980 0.280 0.294 0.304 0.313

Significance of differences post-1980 IL8719 IL6711 IL1549 6158733
>pre-1980
or post-1980
<pre-1980

Avg. storm depth, v̄ >
p-value 0.173

The same statistical parameters were estimated as was done for the full dataset, and

simple, single-sided tests of the significance of the difference of means were performed.

Table 3 provides the values of the parameters, the hypothesis of differences in means

between the two time periods, and p-value, only when p < 0.20.

There has been no significant shift in mean values of storm variables describing

depth, duration, or intensity peak factor (V , T , Ipf ). There may be a trend of

increasing mean storm depth at the O’Hare station, but the p-value is larger than

normally applied levels of significance.

2.3.2. Threshold-event frequency.

The parameter Ju is the estimator of the probability of exceedence of the storm

depth threshold, uv. It is simply:

Ju = n/m (4.5)

where n and m are the total number of events exceeding the threshold of storm

depth, uv and the total number of rainstorm events, respectively.
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The variance of Ju is (Coles, 2001):

V ar(Ju) = Ju(1− Ju)/m (4.6)

Table 4.4. Ju, average probability of exceedence of uv, pre- and post-1980.

Springfield Peoria O’Hare Pearson
Parameter Time Span IL8719 IL6711 IL1549 6158733
Total no. of storms, m ≤ 1979 2446 2430 1480 1416
Total no. of storms, m ≥ 1980 2121 2185 2297 1756
Total storms, n, v > uv ≤ 1979 94 146 62 63
Total storms, n, v > uv ≥ 1980 90 92 110 81
Ju = n/m ≤ 1979 0.038 0.060 0.0419 0.044
Ju = n/m ≥ 1980 0.042 0.042 0.047 0.046
Significance post 1980>pre IL8719 IL6711 IL1549 6158733

or post 1980<pre
Ju = n/m < >
p-value 0.003 0.199

The significance in the change in the estimate of Ju is evaluated in Table 4., where

this parameter is estimated for the two major time spans.

There is a significant decrease in the frequency of occurrence of extreme events

exceeding the storm depth at Peoria, where the p-value of the test of the difference

of means is well below accepted levels for determination of significance (p < 0.10).

At O’Hare, there is an apparent trend of increasing frequency of extreme events, but

the p-value is 0.199, well above normally accepted levels of significance.

2.3.3. Empirical distributions of storm variables.

Storm variables were clustered into groups by 3-hour ranges of storm duration

values, i.e., 21 to 24 hours, 18 to 20 hours, etcetera. The frequency of occurrence

of all of the events were compared between events occurring pre- and post-1980.
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The 3-hour ranges of duration were selected in order to ensure that there were suffi-

cient threshold exceedence events in each grouping for sufficient sample size testing

requirements.

Table 4.5. χ2 analysis of difference between pre- and post-1980 em-
pirical distributions of storm variables.

Equation/test Springfield Peoria O’Hare Pearson
Variable {

∑n
i=1[(Oi − Ei) IL8719 IL6711 IL1549 6158733

/
√
E]}2

Storm Depth, χ2 9.080 2.790 12.822 5.678
V p-value 0.106 0.025
Storm Duration, χ2 17.552 5.476 24.192 9.16
T p-value .007 0.0005 0.156
Intensity Peak Factor, χ2 1.141 9.998 13.961 10.421
Ipf p-value 0.040 0.007 0.034

The results of one of the time spans were used to estimate the expected frequency

in the other, then the differences in the expected and observed frequencies were com-

pared using the χ2 test, with the significance expressed as a p-value. The results are

shown in Table 5, but only displaying p-values less than 0.20. This comparison pro-

vides a non-parametric basis for comparing the empirical distributions as measured

pre- and post-1980. The χ2 test provides a statistical test of the significance of the

difference. Thus, no assumption of probability distribution is required, other than

normality of the differences.

There has been only one significant shift in the empirical distribution of storm

depth V , as indicated in Table 5, and that is for O’Hare. One of the primary

contributors to that significant difference is a series of storms, 2 in 1987-88, and 2 in

2001-02 each of which exceeded 100mm. The largest event was 246mm occurring in

1987.

Table 5 results indicate that there has been significant change in the empirical

probability distribution of storm durations at Springfield and O’Hare, to a high

degree of significance, reflected in very low p-values. There is some indication of a

change in distribution of storm durations between periods prior to 1980, and the
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period since that time at Pearson, but the p-value nonetheless exceeds the values

normally accepted as indicating statistical significance. Both Springfield and O’Hare

show similar patterns of a reduction in the frequency of storms in the 7 to 9 hour

duration range, with increases in shorter duration ranges, as shown in Figure 1.
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Figure 4.1. Storm duration frequency by 3-hour duration incre-
ments, pre- and post-1980

A significant change between the empirical distributions of intensity peak factor

is apparent from the p-values in Table 5 for all stations, except Springfield. There is

no clear pattern of changes in intensity peak factor among the frequencies for stations

at Peoria, O’Hare, and Pearson.
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2.3.4. Correlation between storm variables.

One of the key steps in developing a joint probability distribution between storm

variables is the determination of the degree of dependence between them. Pearson’s

r, the product-moment correlation coefficient, was determined for correlations of V

and T , V and Ipf , and Ipf with T , with results shown in Table 6.

Correlation between Ipf and T is strongly negative and significant at all stations

under both time spans examined. Correlation between V and Ipf is low, and not

significant in most cases. Where the correlation is significant at p < 0.10, it would

not be at p < 0.05.

Table 4.6. Correlation analysis between V , T , and Ipf , pre-1980 and
post-1980.

Springfield Peoria O’Hare Pearson
Test, Parameter Time Span IL8719 xxIL6711 IL1549 6158733
r, V -T ≤ 1979 0.201 0.043 -0.115 -0.047
p-value 0.026 0.277 0.186 0.355
r, V -T ≥ 1980 -0.214 0.159 0.134 0.055
p-value 0.021 0.081 0.096 0.311

r, V -Ipf ≤ 1979 -0.111 -0.128 -0.066 0.176
p-value 0.142 .061 0.304 0.083
r, V -Ipf ≥ 1980 0.115 -0.149 -0.104 -0.071
p-value 0.139 .077 0.140 0.264

r, Ipf -T ≤ 1979 -0.652 -0.546 -0.593 -0.677
p-value 0.0000 0.0000 0.0000 0.0000
r, Ipf -T ≥ 1980 -0.419 -0.538 -0.572 -0.604
p-value 0.000 0.000 0.000 0.0000

The results for correlations between V and T between the two time spans are more

mixed. For 3 of the 4 stations, Peoria, O’Hare, and Pearson, correlation increases,

but individual r values are not significant, or marginally significant at p = 0.10,

and would not be significant at p = 0.05. For Springfield, there is a change from a

positive, to a negative correlation between early and later time spans, with p values

indicating that correlation is significant in both cases.
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2.4. Storm-event analysis - temperature.

2.4.1. Storm variable - temperature correlation.

Table 4.7. Correlation analysis between the mean monthly temper-
ature (MMT ) when storm events occur and V , T , Ipf , pre- and post-
1980.

Springfield Peoria O’Hare Pearson
Test, Parameter Time Span IL8719 IL6711 IL1549 6158733
r, V −MMT ≤ 1979 0.112 0.164 0.277 0.148
p-value 0.141 .024 0.0147 0.122
r, V −MMT ≥ 1980 0.252 0.093 0.165 -0.038
p-value 0.009 .187 0.096

r, T −MMT ≤ 1979 -0.341 -0.486 -0.434 -0.456
p-value 0.0004 .0000 0.0003 0.0001
r, T −MMT ≥ 1980 -0.461 -0.538 -0.324 -0.455
p-value 0.00000 .00000 0.005 0.00000

r, Ipf −MMT ≤ 1979 0.361 0.504 0.202 0.417
p-value 0.0002 .00000 0.056 0.0005
r, Ipf −MMT ≥ 1980 0.356 0.538 0.304 0.500
p-value 0.0003 .00000 0.008 0.00000

The mean monthly temperature (MMT ) for the month of occurrence of any

given extreme rainstorm was obtained, and storm variables were assessed against

this climatological measure, using the product-moment correlation statistic, r. Table

7. provides the values of correlation coefficients and the p-values, when they are less

than 0.20.

All stations show similar patterns of significant (p < 0.10) negative correlation

between temperature and storm duration, and significant positive correlation be-

tween intensity peak factor (Ipf ) and mean monthly temperature, regardless of time

span. Three of the four stations show a decrease in correlation between storm depth

and mean monthly temperature. r values in the time span of post 1980, as com-

pared to pre-1980 decrease, and p-value increased for Peoria, O’Hare, and Pearson.

One station only, Springfield, shows an increased correlation between V and mean

monthly Temperature.
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2.4.2. Temperature range analysis and time-spans.
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Figure 4.2. Mean storm depth versus mean monthly temperature
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Figure 4.3. Mean storm duration and mean intensity peak factor,
versus mean monthly temperature

The events were grouped into temperature ranges, where the ranges were selected

so as to ensure that there are more than 10 samples in each range. Mean values of V ,

T , and Ipf in each range were calculated, and the results are shown in Figures 2 and 3

for the Pearson station, as a typical example. Product-moment correlation tests first

led to indications of strong positive correlation between mean monthly temperature
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and Intensity peak factor, with strong negative correlation between storm duration

and temperature. Fig. 2 shows visually, little correlation between mean storm depth

and mean monthly temperature. Fig. 3 confirms the negative correlation between

mean storm depth and temperature,and the positive correlation between mean storm

intensity peak factor and mean monthly temperature.
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Figure 4.4. Storm frequency versus temperature ranges. p-value of
difference in proportions shown on reverse scale, significance assessed
as p < 0.10

Using these same temperature ranges, the proportions of storms within these

temperature ranges were examined for the two time spans under investigation. Fig.

4 shows bar charts for each of the stations comparing the frequency of storms for

each time span (pre-1980 and post-1980). The p-values of the differences between
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frequencies for a given temperature range are shown in a reverse scale. This was

done to visually compare the relative significance of the difference of the frequencies

of storms between the two time spans. Thus, a low p-value appears near the top

of the chart area, indicating a highly significant difference between proportions of

events between the two time spans.

For all stations, the frequency of occurrence of storms is significantly higher in

the highest temperature range for each station post-1980. There is a corresponding

reduction in frequency (between earlier and later time spans) in the next two lower

temperature ranges. While a reduction in the proportion of events occurring in

the lowest temperature ranges might be expected, this is not always the case, and

there is no consistent pattern in change in the proportions of storms occurring in

the lowest temperature ranges, between the two time spans among the 4 stations

examined.

2.4.3. Average of Mean Monthly Temperature (MMT ).

Table 4.8. Average of mean monthly temperature when threshold-
excess storm events occurred, pre- and post-1980.

Springfield Peoria O’Hare Pearson
Parameter Time Span IL8719 IL6711 IL1549 6158733

¯MMT ≤ 1979 16.430 17.091 16.104 15.213
σ̂ ≤ 1979 7.087 6.821 6.678 5.668

¯MMT ≥ 1980 17.653 16.498 16.350 15.609
σ̂ ≥ 1980 6.686 7.436 6.543 5.871
p-value 0.116 0.270 0.408 0.343

The mean monthly temperature associated with each threshold-excess event has

been used as a means of evaluating the relationships between storm variables and

average temperature. The average of this mean monthly temperature was calculated

for the two time spans, and the significance of the difference between the averages is

presented in Table 8.
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None of the differences is significant at p < 0.10. Three of the four stations

show a small increase in the average of mean monthly temperature. One of the sta-

tions, Peoria, indicates a decrease in the average of mean monthly temperature when

threshold-excess events occurred. This is associated with a significant increase in the

proportion of storm events occurring in the 5 to 9 degree temperature range.
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3. Review of analysis - rainstorm parameter changes with time and

temperature

3.1. Summary of statistical test results.

• Section 4.3 Storm-event analysis - time spans:

– Table 3 - Means of storm variables did not show any significant change

between the time span prior to 1980, and that following.

– Table 4 - Average probability of exceedance of threshold events was not

significantly different between the two time spans, with the excepetion

of Peoria, where a significant decrease in the frequency of occurrence of

threshold events appears.

– Table 5 - Empirical distributions - O’Hare storm depth indicates a sig-

nificant difference between earlier and later time spans, but that dif-

ference is driven by 4 storms of depth exceeding 100 mm occurring in

the later time span. Inspite of the results shown in Table 3, two of

the four stations, Springfield and O’Hare, have significantly different

distributions of storm duration between the time span pre-1980, and

post-1980. The Pearson and Peoria stations χ2 test results indicate

that there is no significant difference in storm duration distributions

between the two time spans. The intensity peak factor empirical distri-

bution is significantly different for 3 of the 4 stations between the two

time spans.

– Table 6 - Strong correlations between storm duration and intensity

peak factor were unchanged between time spans. Correlations, or lack

of correlation between storm depth and intensity peak factor did not

change between time spans. Correlations between storm depth and

duration increased negatively for Springfield and positively for Peoria.

• Section 4.4. Storm-event analysis - temperature correlation:
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– Table 7 - Significant 1) negative correlation between mean monthly tem-

perature and storm duration, and 2) positive correlation between inten-

sity peak factor and mean monthly temperature are common across all

stations and time spans. Storm depth has a low positive correlation

with temperature at all four stations prior to 1980. Post-1980, cor-

relation decreased to insignificant levels at two of the stations, Peoria

and Pearson, and decreased at O’Hare to a marginally significant level.

Only at Springfield did correlation increase and reach a level that was

significant (p << 0.10).

– Fig. 4 - All stations have a significant increase (p < 0.10) in the pro-

portion of storms occurring at the highest mean monthly temperature

ranges, with decreases, or no significant change, in the next two lower

temperature ranges.

– Table 8 - Average of mean monthly temperatures associated with thresh-

old excess storm events has not changed between early and late time

spans significantly. Three of the four stations have an increase, while

one station, Peoria has a decrease in the average of mean monthly tem-

perature.

Table 9 summarizes qualitatively the significant changes in statistical character-

istics between time spans, and in relation to MMT. Small and insignificant changes

have been omitted. Some added statistical testing was performed on changes in the

product-moment correlation coefficient, r. In particular, where a change in sign of r

between time-spans was noted, the statistical significance of the change was tested.

Double-shafted arrows are used to indicate the direction of change for significant

changes, single shaft arrows show the direction of changes that are not statistically

significant. ”NC” stands for no change, ∆ stands for changes between time spans.

%n is the proportion of total threshold exceedence events in the highest temperature

range of mean monthly temperature evaluated for each station.
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Table 4.9. Summary of major time-span and temperature changes
and trends

Section - Springfield Peoria O’Hare Pearson
Subsection Test, Change IL8719 IL6711 IL1549 6158733
4.3 Storm-event analysis - time spans
Threshold-event freq. ∆Ju NC ⇓ NC NC
Empirical Dist V ∆fV ;χ2 NC NC Change NC
Empirical Dist T ∆fT ;χ2 Change NC Change NC
Empirical Dist Ipf ∆fIpf ;χ

2 NC Change Change Change
Correl. storm var. ∆r; V - T ⇑ (−) ⇑ NC NC

4.4. Storm-event analysis - temp.
v, T , Ipf - MMT ∆r, V ⇑ ⇓ ⇓ ⇓
correl - MMT
Temp. range vs. ∆%n, ⇑ ⇑ ⇑ ⇑
time top MMT
Avg. of MMT ∆ ¯MMT (NS) ↑ ↓ ↑ ↑

3.2. Discussion and comparison.

Mean values of storm variables did not change significantly between earlier and

later time spans, but the empirical distributions of some storm variables at each of

the stations did change significantly. In particular:

• The distribution of storm depth at O’Hare changed significantly between

pre-1980, and the later time span. That difference in distribution is driven

in part by the temporal location of a few very large storms in the post-1979

time span. While this may be an indication of climate change effects, it may

also be simply due to the division of the overall rainfall record into 2 spans

at the end of 1979. The years of record prior to 1980 is relatively short,

17 years, which is a short period of time in which to assess the statistical

characteristics of extreme rain storms.

• Storm durations did change significantly at two of the locations, Springfield

and O’Hare. There were common elements between the two stations, a shift
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from 7 through 9 hour duration events to shorter durations. However, the

relatively short duration of the span of rainfall records prior to 1980 may

call into question the validity of the comparison between the two time spans,

particularly in assessing the probability distributions of extreme rain storm

events. Care in fitting of an appropriate probability distribution would need

to be exercised, as more data becomes available.

• The distribution of intensity peak factor changed significantly between the

two time spans, for Peoria, O’Hare, and Pearson stations. There was no

discernible pattern of changes among the three stations. Again, the short

period of record prior to 1980 for O’Hare and Pearson in particular may be

a factor.

There is a significant increase in the frequency of storms at the highest tempera-

ture ranges into which each span of records was divided. Storms occurring at higher

temperatures will, on average be of shorter duration, and have a greater concentra-

tion on storm depth within the peak hour. This conclusion is supported by both the

correlation analysis summarized in Table 7, and the results of estimates of means

of storm variables as a function of temperature ranges shown in Fig. 2 and Fig. 3.

This is further supported by the summary of Karl and Trenberth (2003) where they

stated that:

...whereas additional atmospheric water vapour

increases the risk of heavy precipitation events

(14). Basic theory (15), climate model simula-

tions (2), and empirical evidence (Fig. 2) all con-

firm that warmer climates, owing to increased

water vapor, lead to more intense precipitation

events even when the total precipitation remains

constant, and with prospects for even stronger

events when precipitation amounts increase (16-

18).

Note that references within quotation are:
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• (14) Trenberth et al 2003

• (15) Clausius Clayperon Equation (Wark, 1988)

• (2) Haughton et al, 2001

• (16) Katz, 1999

• (17) Groisman, 1999

• (18) Karl and Knight, 1998

Fig. 2 in Karl and Trenberth (2003) provides empirical evidence that greater

daily depths of rain fall in heavy (> 40mm) and extreme (> 100mm) categories as

temperature regime increases.

The review of Karl and Trenberth (2003) still suffers from a lack of clear storm

definition. Th original research in this thesis provides the first clear evidence of

the changes in intensity within storms over time. Further, it is demonstrated that,

for these mid-North-American stations, the primary effects of increasing climatic

temperature are decreasing storm duration, and increasing peak-hour intensity. It is

not clear that storm depth increases with temperature. There is, in fact, a decreasing

correlation between storm depth and temperature between pre- and post-1980 storms

at 3 of the 4 stations examined. This may be a result of increasing CO2 leading to

a decrease in the intensity of the hydrological cycle, because of a reduction in the

rate of upward radiation of latent heat flux through the troposphere released by

precipitation (Allen and Ingram, 2002).

Some of the anomolous effects, particularly in rural Illinois, may be due to non-

GHG climate change effects. Groisman (2010) and Changnon et al (2003) have both

provided evidence that changes in crop practices may have a greater impact upon

changes in rainfall than GHG-driven warming. This may account for the contrary

changes at Springfield and Peoria.
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3.2.1. Sensitivity of storm variables to temperature change.

The product-moment correlation statistics and their associated p-values provide

some indication of average sensitivity of storm variables to changes in mean monthly

temperature. Using the Springfield station as an example, then the r-values from Ta-

ble 7, for the time span post-1980 provide a measure of the average change in storm

variables per degree-change in MMT . Thus, a one degree increase in mean tempera-

ture would lead, on average, to a .252 mm increase in average threshold storm depth

at Springfield, while that same increase in temperature would lead to a reduction

in average storm duration of 0.461 hours. That same change in temperature would

lead to an increase in intensity peak factor of 0.356. Thus, generally, temperature

increases will lead to greater change in storm duration and intensity peak factor,

than to increase in average storm depth. In fact, based upon Table 7, mean monthly

temperature increase will lead to significant increases in average intensity, because of

reduction in storm duration, coupled with significant increases in peak intensity, as

measured by Ipf . Those results are consistent between the two time spans into which

storm data was divided. Storm depth, on the other hand, is either not correlated

with temperature, or the average rate of increase of storm depth is low, and the rate

of increase of storm depth with temperature has decreased in the time span after

1979, at 3 of the 4 stations examined.

4. Time series trend analysis - Background

As stated in Sub-section 1.3 of this chapter, initial attempts were made to evaluate

potential trends in storm variables, by use of the the Mann-Kendall trend test. The

test statistic is relatively simple; i.e., the double summation of the sign of differences

between successive values in a time series, as expressed in the following equation

S =

j∑
l=1

i∑
k=1

(aij), i < j, aij = sgn (xi − xj) =


−1 xi − xj < 0

0 xi − xj = 0

1 xi − xj > 0

(4.7)
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where aij is the sign of the difference between successive values of a random variable

x. As the size of the sample increases, the distribution of the Mann-Kendall statistic

S tends towards normality. This characteristic forms the basis of tests for significance

of trends.

It has long been recognized that hydrological variables, both rainfall inputs and

discharge outputs follow long-cycle climatological trends. Because of this, statistical

parameters, in particular, mean values are non-stationary. The standard error of

the estimate of means is, as a result, not as ”narrow” as for independent, identically

distributed random variables. The estimate of the standard error is then

StD[X̄] = σ/n(1−H) (4.8)

where X̄ is the mean value of a hydrologic variable, StD is the standard error of the

estimate of the mean, σ is the standard deviation of the variable X, n is the sample

or population size, and H is the Hurst parameter, which has a value between 0.5 and

1.

At a value of 0.5, Eq. (4.8) becomes the conventional standard error of the

estimate of the mean. As H increases towards 1, then the standard error value

increases, for a given value of the standard deviation of the random variable X.

Because the test for significance of trends is essentially based upon normality of the

distribution of the Mann-Kendall statistic S, then as the value of the Hurst parameter

increases, the confidence in the assessment of positive trends decreases. The Hurst

parameter increases with an increasing degree of non-stationarity of the mean of a

given random variable.

Trend testing, making use of the Mann-Kendall statistic S as the method of

analysis was not conducted in this thesis for a variety of reasons:

• Significance of trends was marginal, and the direction of trends depended upon

the starting point, as noted earlier in this chapter.

• Literature reviews pointed towards an overestimation of positive trends, be-

cause the effect of the Hurst phenomenon was not always taken into account
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when assessing the significance of trends in hydrologic time series (Hamed, 2008;

Koutsoyannis, 2006).

• Application of the Mann-Kendall tests for trends requires an annualization of

data, in order to filter out seasonality, leading to a reduction in the granularity

provided by threshold statistics. This makes the assessment of the effects of

climatic oscillations, by estimation of the Hurst parameter, more difficult.

• Some estimation of the Hurst parameter was carried out, but the combined

effects of annualization of data, and the short overall time span of data did not

permit accurate estimation of the Hurst parameter H.

• A 20-year moving window calculation of the S statistic showed variation, and

change in trend direction on a decadal cycle for all stations. An example of this

analysis is illustrated in Fig. 4.5.
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Figure 4.5. Mann-Kendall test statistic for Peoria station, on a 20-
year moving window basis.
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5. Conclusions

There is a clear increase in the frequency of rainstorms occurring at the highest

values of mean monthly temperature in the period post- 1980, as compared to the

period pre- 1980. However, inspite of strong correlations between mean monthly

temperature/storm duration and MMT/intensity peak factor, there has not been a

shift in mean values of storm variables between the two time spans. The only signif-

icant change between the two time spans are changes in the shape of the empirical

probability density functions of some storm variables at some locations. The average

of mean monthly temperatures associated with occurrence of heavy rainstorms has

not changed significantly, indicating that despite the clear increase in frequency of

rainstorm occurrence at the highest temperatures, increases in frequency at lower

temperatures results in little increase in the average of mean monthly temperature

of extreme or severe storms between the two time spans.

Correlation of storm variables with temperature is relatively low for storm depth

V in all cases, but negative correlation between mean monthly temperature and

storm duration T , and positive correlation with intensity peak factor Ipf are both

significant. It is clear that increases in mean monthly temperatures for months during

which heavy rainfall occurs will lead to reductions in average storm duration, and

increases in mean intensity peak factor.

Section 4 summarizes concerns with the use of the Mann-Kendall test for trends

in hydrologic data. The problems were encountered in initial attempts to make use

of the widely used technique. The conclusion reached is that the test will provide

evidence of trends over the time span of the available data, and because there is

indication of a series of overlapping climatic cycles over a variety of periods, then

the relatively short duration of accurate rainfall data may be insufficient on it’s own,

to provide conclusive evidence of changes in rainfall characteristics. For that reason,

simpler statistical tests were performed upon rainstorm data in this chapter. The

strengths of these simple test of differences in rainstorm parameters are multiple and

include:
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• Clear definitions of rainstorm variables, rather than the vague accumulations of

storm depth used by most researchers

• Expansion upon clear relationships between storm duration and intensity peak

factor established in Chapter 3 as a means of detecting potential differences in

storm characteristics over time.

• The start of an assessment of the influence of climatic temperature upon rain-

storm variables, that will ultimately lead to linkages with the underlying physics

of the formation of rainstorms.
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CHAPTER 5

Example applications

1. Introduction

In chapter 3, a joint probability distribution model is developed to estimate the

true return period of rainstorms, based upon the three most important variables

describing extreme storm events. Incorporating all of the important measures of

rainstorms in a probabilistic framework advances several major concepts in hydro-

logic design:

• Assessment of the true level of protection: Event return period is used to specify

the level of protection provided by a given design. Until now, that specification

has been incomplete. In conventional DDF-based design storm applications,

only storm depth, conditioned upon duration has been incorporated. Using

other probabilistic approaches, planning and design risk assessment are not fully

developed. Now three measures, depth, duration and peak intensity, may be

evaluated and incorporated in an approach that addresses risk assessment in a

more complete sense. Alternative design concepts may be compared so as to

determine the true level of protection provided.

• Assessment of uncertainty in design: All of the important measures of storm

events may now be incorporated in the evaluation of an output function that

expresses a measure of hydrologic output with a desired return period. This

output, recognized as having the same return period, may now be maximized,

to identify critical combinations of inputs. The potential range of output values

and the levels of uncertainty may be objectively assessed.

In the following two sections, two potential applications of the theory and meth-

ods developed in Chapters 2 and 3 are demonstrated. The first section illustrates
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the effect of hyetograph shape upon storm-event return period. In the subsequent

section, an example of maximization of a catchment’s response function is provided,

taking full advantage of the joint probability of rainstorm inputs.

2. Application of the joint probability distribution to evaluate

conventional design storm hyetographs

As noted in the introduction, the effect of the actual shape of the storm hyeto-

graph upon design storm frequency is currently not taken into account in conventional

design practice. In order to evaluate the effect of different standard hyetographs, two

examples were evaluated; a simple symetric triangular intensity distribution (Yen

and Chow, 1980) and the Chicago storm distribution (Kiefer and Chu, 1957). De-

sign storms are six-hours in duration, with a 100-year return period for storm depth,

estimated using the GPD I - uniform distribution joint probability, for the Toronto

and Pearson (Toronto, Canada) rainstorm data. A 6-hour event with a storm depth

of 71 mm was determined to have a 100-year return period for Toronto and 70 for

Pearson.

The triangular hyetograph has a peak-hour intensity occurring on the hourly

interval centred on the storm peak which occurs at a time of one-half of the storm

duration. The depth of rainfall occurring during the peak hour of the storm is:

vpeakhour =
v(2t− 1)

(t− 1)

Substitution this expression into Eq. (3.4) for the intensity peak factor then the

following equation results:

ipf =
[(2t− 1)/t2]− 1

(t− 1)
(5.1)

The Chicago design storm distribution is based upon the Modern Sewer Design

fitting equation parameters (AISI, 1980). This equation is a fitting equation used

to relate average rainfall intensity to a prescribed time interval t for a given return
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period. The form of this equation is:

i = A/(t+ C)B (5.2)

Where A is constant for a given return period, while B and C are constants

independent of return period (Wenzel, 1982). Storm depths and durations between

1 and 24 hours, for the 100-year return period estimated based upon Eq. (4.3) from

Chapter 4 for the Toronto data, were fitted to Eq. (2). The values for Toronto

are: A = 54.7, B = 0.856, and C = 0.067. The form of the Chicago storm is then

obtained from the following equation for the rising limb of the storm.

ibefore = A[(1−B)tbefore/r + C]/(tbefore/r + C)1+B (5.3)

where ibefore is the intensity of the design storm before the peak intensity, cal-

culated as a function of tbefore, tbefore = tpeak − tfromstart and r is the peak location

ratio; tpeak and tfromstart are the time to peak rainfall intensity and the time from

the start of the storm respectively. A symetrical distribution will be used, so that

r = 0.5. The descending limb of the Chicago storm is described by.

iafter = A[(1−B)tafter/(1− r) + C]/[tafter/(1− r) + C]1+B (5.4)

where iafter is the intensity of the design storm after the peak intensity, calculated

as a function of tafter, tafter = tfromstart − tpeak. Since r = 0.5, the rising and

descending limbs are identical in shape, for this example. The intensity peak factor

was determined for the 6-hour, 71 mm event, for the 1-hour interval centered on the

storm peak. The equations were solved and integrated numerically, and the peak-

hour intensity was substituted into Eq. (3.4) in order to determine the intensity peak

factor.

Return period may be calculated using Eq.(3.20), restated as.

Tt,v,ipf =

1

Ju exp[−(v − uv)/σv]
{
− 1
α

ln
[
1 + (exp(−α(1−Fi))−1)(exp(−αFt)−1)

exp(−α)−1

]
+ 1

tmax

}
θ0

(5.5)
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where θ0 is the average number of storm events per year. Refer to Chapter 2,

section 3 for full details.

Table 5.1. Intensity peak factor and return periods of different design
storm hyetographs.

Parameter/Station Toronto Pearson
Station Number 6158350 6158733
v, for t = 6 and Tv,t = 100 70.8 69.7
Triangular Storm Distribution ipf 0.167 0.167
Triangular Storm Distribution Tipf ,v,t 105 100+
Chicago Storm Distribution ipf 0.688 0.688
Chicago Storm Distribution Tipf ,v,t 316 246

Table 1 summarizes the results of evaluating storm intensity peak factor and re-

turn period arising from applying Eq. (5.5) for the two design storm distributions. It

is clear that incorporating the probability distribution of intensity peak factor results

in significantly different frequencies for the two design storms, where conventional

analysis, incorporating only storm depth and duration (i.e., rainfall depth and pre-

scribed time interval) attributes the same frequency to both storms, in spite of their

significantly different distributions of rainfall intensity over the same duration.

The fact that the triangular hyetograph has a return period relatively close to

100 years suggests that it is a better design storm model for the Toronto region.

The Chicago Storm hyetograph, or intensity peak factor values arising from the

Chicago Storm does not occur very frequently in this region, so that the return period

calculated from the joint probability of storm depth, duration, and intensity peak

factor is significantly greater than that calculated from the joint probability of storm

depth and duration alone. In fact, because the return period is so large, compared

to the period of record available, the calculated value of return period should simply

be taken as confirmation that the data available for this station does not support

the use of the Chicago Design Storm. Measured intensity peak factors of sufficient

magnitude to match those produced in the Chicago design storm hyetograph occur

very rarely at the Toronto and Pearson stations. The triangular hyetograph intensity

peak factor occurs frequently enough that the return period calculated from the joint
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probability of storm depth, duration, and intensity peak factor is not very different

from the return period calculated from storm depth and duration alone.

3. Application of the joint probability distribution to identify critical

combinations and levels of uncertainty

Inspection of Eq. (5.5) indicates that there will be a variety of combinations of

storm depth, duration, and intensity peak factor which will lead to the same joint

probability of exceedence. Assessing the effect resulting from variations in storm

intensity peak factor, depth, and duration requires some basis for evaluation. In

order to identify critical combinations of variables, some output function needs to be

identified first. One of the common objectives of design hydrology is the evaluation

of catchment response, arising from rainfall inputs. Accordingly, a regression equa-

tion for Mimico Creek catchment in Toronto, Ontario, Canada (discussed previously

in the introduction of Chapter 4) was used. This equation has peak discharge as

the dependent (i.e., response or output) variable, with runoff depth and peak hour

intensity as independent variables:

Qp = 0.088(vr) + 0.012(ip) (5.6)

Runoff depth is storm depth less total abstractions, while peak hour intensity

is intensity peak factor times storm depth. Eq. (5.5) was evaluated using a range

of intensity peak factor values, applying Beta distribution parameters developed for

intensity peak factor, and storm depth and duration distributions for the Toronto

meteorological station data. Return period was kept constant over the range of

intensity peak factor values and storm depths. Storm duration was kept constant

at 6 hours. The resulting peak catchment discharge was then calculated with Eq.

(5.6); vr was calculated by subtracting a total abstraction from storm depth (for all

storms) of 25 mm (selected as being representative for the catchment), and ip by

substituting ipf , v, and t into Eq. (3.4) from Chapter 3. The results are shown in

Fig. 1, where intensity peak factor is plotted along the x-axis, and peak discharge

along the y-axis. Storm depth is also plotted against a second y-axis.
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Figure 5.1. Maximization of peak discharge for 100-year joint return period.

There are a range of storm depths and intensity peak factors that result in the

same joint return period, as shown by the dashed line in Fig. 1 relating ipf to v

for the same return period of 100 years. The catchment output varies, as shown by

the solid line in Fig.1, reaching a maximum value at a critical combination of storm

depth and intensity peak factor of about 70.05 mm and 0.21.

Fig. 1 shows that, output peak discharge (Qp) can vary widely, even though all

input rainstorms have the same joint return period of 100 years. A range of intensity

peak factors typically employed in design storms, can lead to a range in storm depths

from about 58 mm to 71 mm, or a range width of 18% of the maximum storm depth.

The Qp values range from 3.43 mm/hr to 4.25 mm/hr; the width of the range is 19%

of the maximum value. Comparable variations in runoff volume are expected. These
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results demonstrate quantitatively the level of uncertainties that may be expected if

intensity peak factor is not incorporated as a measure of design storms.

4. Conclusions

The example developed in Section 2 provides clear evidence that, in order to

provide an assessment of the true input or load upon a hydrological system, the joint

effects of storm depth, duration, and peak intensity must be evaluated. Therefore, the

assessment of level of risk must incorporate the joint probability of those inputs. If

the effect of peak intensity upon return period is ignored, there is risk of understating

the value of the return period of the storm event. While using conservative values

for load upon a system is prudent, gross overstatement is misleading and sometimes

wasteful.

Section 3 illustrates that the response of a system must be carefully evaluated;

presumed use of input values, without understanding of the system response, and

the frequency of occurrence of the combination of inputs may lead to serious under-

estimation of the output values. In the particular example, there is clear indication

that the presumption by some practitioners that the Chicago Design Storm provides

the maximum peak-discharge response of a catchment is shown to not be the case in

this case at least.
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CHAPTER 6

Conclusions and Recommendations

1. Approach

Chapters 2 and 3 were written as stand-alone articles and have been published in

the Journal of Hydrology, and Chapter 4 is drafted with a view towards submission

as an article as well. Therefore, conclusions and recommendations form parts of each

of those chapters. The material in this final chapter will limit repetition, and focus

upon the interactions between the research presented in the three primary chapters,

as well as over-arching results and directions for future research.

2. Threshold Analysis of Rainstorm Depth and Duration Statistics at

Toronto, Canada

The theory and methods developed in chapter 2 are being incorporated by others

into new means of design storm event definition (Jobin et al., 2010). Opportunities

in this regard should be developed and pursued.

The independence of storm depth and duration determined in this chapter for the

Pearson rainfall station data was confirmed in Chapter 3 for a second, nearby station,

then the analysis performed in Chapter 4 provides strong indication that, at three

stations in Illinois, storm depth and duration are uncorrelated, or the correlation

coefficient is low, for events exceeding a high threshold. One of the key findings

is that the predicted storm depth and duration combinations are lower than those

predicted by conventional DDF analysis, in spite of the fact that identical data has

been used for the two methods of analysis. While those differences are thoroughly

reviewed and explained in Chapter 2, the consequence would be generally lower runoff
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depth, and possibly, lower peak discharge. This consequence, having important

policy implications, would merit much further investigation.

3. A probabilistic description of rain storms incorporating their peak

intensity

The development of an index measure of peak-hour storm intensity is a major

contribution to the characterization of the joint probability of storm depth, duration,

and Intensity peak factor. The independence of Ipf with respect to storm depth V ,

established for the two Toronto, Canada stations in Chapter 3, and the strong in-

dications of independence provided in Chapter 4 simplify the development of joint

probability models. Another key contribution is the establishment of the combina-

tions of storm variables that constitute extreme events. It is clear that increasing

storm depth and increasing peak intensity lead to the risk of flooding and damage

from runoff. In fact increases in the values of storm depth v and intensity peak factor

ipf , with decreasing storm duration t leads to the most severe consequences in small

to medium-sized catchments. The probabilistic models developed in Chapter 3, the

joint probability of increasing v and ipf , and decreasing t, allows modelling of the

corresponding physical phenomena. Chapter 2 started the development of the prob-

abilistic model, developing the joint probability of storm depth, and storm duration.

The full expression, in probabilistic terms, was completed in Chapter 3. Indeed,

the otherwise under-examined relationship between storm depth and duration is tied

to the false paradigm among many researchers and practitioners of assumed strong

correlation between depth and duration for severe rainstorms.

The dependency between Ipf and storm duration T is essentially strong and

invariant with time and temperature, as demonstrated in Chapter 4. Some exami-

nation of the physical basis for this would lead to improvements in modelling, and

prediction of potential climate change impacts.

Other areas of research which are suggested by the results of Chapter 3, together

with the trends suggested in Chapter 4 include:
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• Examination of alternative probability distributions that may be applicable to

storm duration and intensity peak factor;

– the analysis of empirical distributions suggests that there may be some

shift, as a result of changes with time, driven by changes in temperature

associated with storm events, between the time spans analyzed;

– this may apply to both storm duration and intensity peak factor.

• Application of these techniques to a broader range of output functions that are

of interest in hydrologic design.

Dunkerley (2008) has raised concerns with the wide variation in definition or

identification of individual storm events. The selection of IETD (called minimum

inter-event time in his paper) has a significant influence on other measures of rain-

storm events, in particular, the variability of intensity within an event increases

with rising IETD. The intensity peak factor would provide a standardized measure

of rainfall variability within an event, providing a means of comparison between

storm-events identified with varying IETD..

4. Changes in heavy rainstorm characteristics with time and

temperature at four locations

In general, mean values of storm variables and threshold event frequency es-

timators (Ju) did not change significantly between the time spans into which the

time-range of available data was subdivided. The two times spans ranged between

1949 to 1979, and 1980 to 2006. Comparison of empirical distributions between the

two data sub-sets showed some significant differences, but differences in distributions

between the two time spans did not follow any common patterns across all stations

examined. Because the sizes of the data sets are reduced, and the time spans shorter,

there is a risk that the effects of decadal and multi-decadal climactic trends may ei-

ther cause an apparent trend that does not exist, or alternatively, hide a trend within

long-period cycles.
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It is clear that there has been a trend towards an increasing frequency of occur-

rence of storm events occurring during the highest mean monthly temperatures, when

early and late time spans are compared. Storm depth correlations with temperature

have decreased with time in most cases.

The remaining primary question can only be answered with time: Is the increasing

frequency of warmer rainstorm events a long-term trend, or part of a cyclical climatic

pattern?

5. Overall conclusions

This thesis uniquely combines several key concepts developed by others, namely,

inter-event time definition, threshold excess statistics, and the Generalized Pareto

distribution (GPD). The major unique contributions of this thesis are the application

of bounded distributions to appropriate rainstorm variables, the identification of an

index measure of rainstorm peak intensity (intensity peak factor), and the correct

formulation of the joint probabilities of rainstorm depth, duration, and intensity peak

factor. Future research should investigate and solve remaining theoretical problems.

The major objective, and challenge, will be to work with practitioners in order to

provide understandable and useable tools, so that the evaluation of uncertainty in

design and modelling is improved beyond the current state.
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