
 

 

 

 

 

 

 

 

 

 

A SUITE OF CASE STUDIES IN RELATIONAL 

DATABASE DESIGN 

  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 

 

 

 
  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 

 

A SUITE OF CASE STUDIES IN RELATIONAL DATABASE DESIGN 

 

 

 

By 

WEIGUANG ZHANG 

 

Computer Science 

 

 

A Thesis 

Submitted to the School of Graduate Studies 

In Partial Fulfillment of the Requirements 

For the Degree 

Master of Science 

 

McMaster University 

 

© Copyright by Weiguang Zhang January 2012



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  ii 

 

MASTER OF SCIENCE  (Jan, 2012)       McMaster University 

(Computer Science)                                    Hamilton, Ontario 

 

TITLE:  A SUITE OF CASE STUDIES IN RELATIONAL DATABASE 

DESIGN  

 

AUTHOR:           WEIGUANG ZHANG 

SUPERVISOR:   Dr. Antoine Deza and Dr. Frantisek Franek 

 

                              

NUMBER OF PAGES:  x & 107 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  iii 

 

Abstract 
 

Typical relational database design examples in textbooks and undergraduate courses are 

small and do not provide any real opportunity to practice the design, they simply illustrate 

and illuminate the principles. On the other end of the spectrum are typical industrial 

databases whose designs are complex and extensive, and so not suitable as a project for a 

one term database course. The objective of this thesis is to design and develop a 

collection of ten projects  that would be usable as term projects in relational database 

system design for a typical undergraduate database course. To this end a suite of ten case 

studies are presented. Each project is taken from its informal specification to a relational 

schema using entity-relationship modeling and its translation to relational model, to 

database schema, to implementation of the database, to interactive SQL querying of the 

installed database and finished with a simple application programmed in C using the 

installed database and accessing it via embedded SQL.  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  iv 

 

Acknowledgments 
 
 

I would like to express my gratitude to all of those who made it possible to complete this 

thesis, in particular to my supervisors Dr. Antoine Deza and Dr. Frantisek Franek. 

I appreciate the great aid and support from all the members of the Advanced Optimization 

Laboratory. 

I would also like to thank my family for their understanding and continuous support. 

  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  v 

 

Abbreviations 

IBM:   International Business Machines 

ACM:   Association of Computing Machinery 

DBMS:  Database Management System 

SQL:   Structured Query Language 

ODBC:  Open Database Connectivity 

JDBC:   Java Database Connectivity 

ER:   Entity Relationship 

PHP:   Personal Home Page 

API:   Application Programming Interface 

CLI:   Call Level Interface: 

ESQL:  Embedded Structured Query Language 

IE:   Information Engineering 

IDEF1X:  Integrated Definition for Information Modeling 

  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  vi 

 

Terminologies and Symbols of ERwin IE Format 

Identifying relationship: Shown with a solid line. An identifying relationship is a 

relationship between two entities in which the child entity is dependent on its associated 

parent entity, and the primary key of the parent entity is the part of the primary key of the 

child entity. 

Non-identifying Relationship: Shown with a dashed line. A non-identifying relationship 

is a relationship between two entities in which the child entity is independent on its 

associated parent entity, and the primary key of the parent entity is the non-key attribute 

instead of the key attribute in the child entity. 

Max relationship cardinality: Shown with a short perpendicular line across the 

relationship near its line end to signify “one” and with a “crow’s foot” on the line end to 

signify “many”. 

Min relationship cardinality: Shown with a small circle near the end of the line to 

signify “zero” (participation in the relationship is optional) or with a short perpendicular 

line across the relationship line to signify “one” (participation in the relationship is 

mandatory). 

 

Dependent Entity: 

 

Independent Entity: 

 

Zero:  

 

One:                        

 

Many: 

 

Customer 

Customer Email      



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  vii 

 

List of Figures 
 

Figure 1:    Summary of aspects of the Logical and Physical Models ............................... 7 

Figure 2:    The University System Logical Model ......................................................... 10 

Figure 3:    The University System Physical Model ........................................................ 11 

Figure 4:    The Airline Reservation Logical Model ....................................................... 27 

Figure 5:    The Airline Reservation Physical Model ...................................................... 28 

Figure 6:    The Movie Rental Logical Model ................................................................ 35 

Figure 7:    The Movie Rental Physical Model ............................................................... 36 

Figure 8:    The Car Rental Logic Model ........................................................................ 44 

Figure 9:    The Car Rental Physical Model .................................................................... 45 

Figure 10:  The Course Registration Logical Model ....................................................... 52 

Figure 11:  The Course Registration Physical Model...................................................... 53 

Figure 12:  The Emergency Room Logical Model.......................................................... 61 

Figure 13:  The Emergency Room Physical Model ........................................................ 62 

Figure 14:  The Property Rental Logical Model ............................................................. 70 

Figure 15:  The Property Rental Physical Model ............................................................ 71 

Figure 16:  The Software Project Logical Model ............................................................ 81 

Figure 17:  The Software Project Physical Model .......................................................... 82 

Figure 18:  The Tour Operator System Logical Model ................................................... 89 

Figure 19:  The Tour Operator System Physical Model .................................................. 90 

Figure 20:  The Warehouse System Logical Model ........................................................ 99 

Figure 21:  The Warehouse System Physical Model..................................................... 100 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  viii 

 

 

 

Contents 

Abstract ........................................................................................................................ iiii 

Acknowledgments ....................................................................................................... ivv 

Abbreviations .............................................................................................................. viv 

Terminologies and Symbols of ERwin IE Format  ...................................................... iv 

List of Figures ............................................................................................................ viiii 

Chapter 1: Introduction ................................................................................................ 1 

Chapter 2: Objectives, Decisions, and Methods ........................................................... 4 

Chapter 3: University System ....................................................................................... 8 

3.1   UNIVERSITY SYSTEM INFORMAL DESCRIPTION .................................................................................8 

3.2   UNIVERSITY SYSTEM LOGICAL MODEL .......................................................................................... 10 

3.3   UNIVERSITY SYSTEM DB2 PHYSICAL MODEL ................................................................................ 11 

3.4   UNIVERSITY SYSTEM DB2 SCHEMA ............................................................................................... 12 

3.5   UNIVERSITY SYSTEM INTERACTIVE QUERIES ................................................................................. 14 

3.6   UNIVERSITY SYSTEM APPLICATION PROGRAM ............................................................................... 16 

Chapter 4: Airline Reservation ................................................................................... 25 

4.1   AIRLINE RESERVATION INFORMAL DESCRIPTION ............................................................................ 25 

4.2   AIRLINE RESERVATION LOGICAL MODEL ....................................................................................... 27 

4.3   AIRLINE RESERVATION DB2 PHYSICAL MODEL ............................................................................. 28 

4.4   AIRLINE RESERVATION DB2 SCHEMA ............................................................................................ 29 

4.5   AIRLINE RESERVATION INTERACTIVE QUERIES ............................................................................... 31 

 

Chapter 5: Movie Rental ............................................................................................. 34 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  ix 

 

5.1   MOVIE RENTAL INFORMAL DESCRIPTION ....................................................................................... 34 

5.2   MOVIE RENTAL LOGICAL MODEL .................................................................................................. 35 

5.3   MOVIE RENTAL PHYSICAL DB2 MODEL......................................................................................... 36 

5.4   MOVIE RENTAL DB2 SCHEMA ....................................................................................................... 37 

5.5   MOVIE RENTAL INTERACTIVE QUERIES ......................................................................................... 39 

Chapter 6: Car Rental ................................................................................................. 42 

6.1   CAR RENTAL INFORMAL DESCRIPTION ........................................................................................... 42 

6.2   CAR RENTAL LOGICAL MODEL ...................................................................................................... 44 

6.3   CAR RENTAL PHYSICAL DB2 MODEL ............................................................................................ 45 

6.4   CAR RENTAL DB2 SCHEMA ........................................................................................................... 46 

6.5   CAR RENTAL INTERACTIVE QUERIES ............................................................................................. 48 

Chapter 7: Course Registration .................................................................................. 51 

7.1   COURSE REGISTRATION INFORMAL DESCRIPTION ........................................................................... 51 

7.2   COURSE REGISTRATION LOGICAL MODEL ...................................................................................... 52 

7.3   COURSE REGISTRATION PHYSICAL DB2 MODEL............................................................................. 53 

7.4   COURSE REGISTRATION DB2 SCHEMA ........................................................................................... 54 

7.5   COURSE REGISTRATION INTERACTIVE QUERIES.............................................................................. 58 

Chapter 8: Emergency Room ...................................................................................... 60 

8.1   EMERGENCY ROOM INFORMAL DESCRIPTION ................................................................................. 60 

8.2   EMERGENCY ROOM LOGICAL MODEL ............................................................................................ 61 

8.3   EMERGENCY ROOM PHYSICAL DB2 MODEL ................................................................................... 62 

8.4   EMERGENCY ROOM DB2 SCHEMA ................................................................................................. 63 

8.5   EMERGENCY ROOM INTERACTIVE QUERIES .................................................................................... 66 

Chapter 9: Property Rental......................................................................................... 69 

9.1   PROPERTY RENTAL INFORMAL DESCRIPTION ................................................................................. 69 

9.2   PROPERTY RENTAL LOGICAL MODEL ............................................................................................. 70 

9.3   PROPERTY RENTAL PHYSICAL DB2 MODEL ................................................................................... 71 

9.4   PROPERTY RENTAL DB2 SCHEMA .................................................................................................. 72 

9.5   PROPERTY RENTAL INTERACTIVE QUERIES .................................................................................... 77 

Chapter 10: Software Project...................................................................................... 80 

10.1   SOFTWARE PROJECT INFORMAL DESCRIPTION .............................................................................. 80 

10.2   SOFTWARE PROJECT LOGICAL MODEL ......................................................................................... 81 

10.3   SOFTWARE PROJECT PHYSICAL DB2 MODEL ................................................................................ 82 

10.4   SOFTWARE PROJECT DB2 SCHEMA .............................................................................................. 83 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  x 

 

10.5   SOFTWARE PROJECT INTERACTIVE QUERIES ................................................................................. 85 

Chapter 11:Tour Operator System ............................................................................. 87 

11.1   TOUR OPERATOR SYSTEM INFORMAL DESCRIPTION...................................................................... 87 

11.2   TOUR OPERATOR SYSTEM LOGICAL MODEL ................................................................................. 89 

11.3   TOUR OPERATOR SYSTEM PHYSICAL DB2 MODEL ................................................................................... 90 

11.4   TOUR OPERATOR SYSTEM DB2 SCHEMA ...................................................................................... 91 

11.5   TOUR OPERATOR SYSTEM INTERACTIVE QUERIES ........................................................................ 94 

Chapter 12: Warehouse System .................................................................................. 97 

12.1 WAREHOUSE SYSTEM INFORMAL DESCRIPTION ............................................................................. 97 

12.2   WAREHOUSE SYSTEM LOGICAL MODEL ....................................................................................... 99 

12.3   WAREHOUSE SYSTEM PHYSICAL DB2 MODEL............................................................................ 100 

12.4   WAREHOUSE SYSTEM DB2 SCHEMA .......................................................................................... 101 

12.5   WAREHOUSE SYSTEM INTERACTIVE QUERIES............................................................................. 103 

Conclusion and Future Work.................................................................................... 106 

Bibliography .............................................................................................................. 107 

 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  1 

 

Chapter 1: Introduction  
 

Database Management Systems are really ubiquitous in this age of Internet commerce. 

Although the development of relational database system theory and practice can be traced 

to the 1970 seminal paper A Relational Model of Data for Large Shared Data Banks by 

E.F. Codd [1], the explosive growth of the use of relational database management systems 

came with the advent of Internet. Databases not only represent significant infrastructure 

for computer applications, but they also process the transactions and exchanges that drive 

most of the world economy. A significant and growing segment of the software industry, 

known as the database industry includes IBM Corporation, Oracle Corporation, Informix 

Corporation, Sybase Incorporated, Teradata Corporation and Microsoft Corporation. 

E. F. Codd found the database technologies of the late 1960’s taking the old-fashioned 

view “that the burden of finding information should be on users ...” unsatisfactory. He 

proposed what he called a “relational model”  based on two fundamental premises: What 

Codd called the "relational model" rested on two key points: 

1. It provided means of describing data with its natural structure only—that is, 

without any formatting aspects, i.e. superimposing any additional structure for 

machine representation purposes.  

 

2. Between application programs on the one hand and the database system on the 

other. Accordingly, it provided a natural and consistent basis for a high level 

query language which facilitated maximal independence 

These aspects are utilized every second all over the world as most of the Internet 

traffic and most of the Internet commerce rely on database access of some form. The 

relational databases allow various applications in various programming languages to 

access and modify a databases. 

There are many drawbacks to the relational model and in many ways it is quite 

obsolete, see [2] or in particular the ACM blog by M. Stonebraker, one of the pioneers of 

the relational database management systems, [3]. In general , the disadvantages of the 

relational approach can be summarized by: 

1. They are slow and cumbersome; in the early days they were slow - relational 

DBMS (database management systems) have to employ many tables to conform 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  2 

 

to the various normalization rules. This can make them slow and resource 

inefficient.  However most contemporary relational DBMS do not have 

performance problems now. 

 

2. Restricted attribute sizes.  Attribute lengths are usually capped by a maximum 

size. This can lead to occasional practical problems e.g. a company with a 400 

character name - not frequent, but it can happen. 

 

3. SQL does not provide an efficient way to browse alphabetically through an index. 

Thus some systems cannot provide a simple title A-Z browse. 

 

4. To fine-tune a SQL query is not a simple task and its performance may often 

depend on the SQL query engine having up-to-date statistics of the database. 

 

5. They do not “storing” of objects, in essence, objects must be “disassembled” 

before storing them in a relational database, and “assembled” when they are 

fetched. 

Yet, despite these deficiencies an obsoleteness, the use of relational databases 

proliferates. The major advantages could be summarized as follows: 

1. Overwhelmingly, the most popular type of DBMS in use and as a result technical 

development effort ensures that advances appear quickly and reliably. 

 

2. A multitude of third party tools that are designed to work with the popular 

relational DBMS via standards such as Open Database Connectivity (ODBC) or 

Java Database Connectivity (JDBC). 

 

3. A multitude of third party design and modeling tools for the relational model, such 

as ERwin
©
 modeler used in this thesis. 

 

4. Very well developed management tools and security with automatic data logging 

and recovery. 

 

5. Referential integrity controls ensuring data consistency. 

 

6. Transactional processing ensuring that incomplete transactions do not occur. 

Based on the robust demand for relational databases, all Canadian universities offer 

database management course in their Computer Science programmes.  A typical database 

management course covers  mostly the relational database systems and a significant 

portion of the practical aspect of any such course deals with the modeling, design and 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  3 

 

installation of relational databases, and querying of databases using SQL both 

interactively and via application programs. 

The majority of textbooks dealing with databases as well as the majority of on-line 

database tutorials provide a comprehensive set of examples concerning all five aspects 

mentioned above: modeling, design, and installation of a database, and interactive SQL 

querying and SQL application programming. However, these examples are usually very 

simple and very small, just to illustrate or illuminate a concept or principle. They are not 

sufficient for practicing of these aspects. The real-world projects are on the other hand 

rather complex and extensive, not suitable to a typical one-term undergraduate course in 

database design and applications. 

The objective of this thesis is to design and develop a suite of projects that are of 

some substance to provide a real practice ground for modeling, design, and installation of 

a relational database, and SQL interactive querying and SQL application programming, 

yet be of a complexity and extent that would allow it to be used in a one-term 

undergraduate course. To this end, a set of ten projects is presented, each leading to a 

reasonably small database of 20 to 30 tables, yet exhibiting a comprehensiveness of larger 

projects. 

The structure of each project presented here is the same: 

1. An informal specification of the project in simple English. 

2. An Entity-Relationship (ER) model is constructed using Erwin 
©
 software 

and presented in the form of what is called in Erwin’s terminology  the Logical 

and the Physical models. 

3. The DB2 database schema is produced based on the ER model. 

4. Several SQL queries that can be used to query of the installed database are 

presented. 

5. A simple application program in C is presented that utilize embedded SQL to 

work with the installed database -- usually performing the same queries used in 

the part 4. 

Since the size of the thesis is already large enough and so only for the first project the 

source code of the C application programs is presented, for all other projects the source 

codes are listed in the Appendix. 

  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  4 

 

Chapter 2: Objectives, Decisions, 

and Methods 
 

One of important decisions of this thesis was whether the classical ER modeling diagrams 

were to be used, i.e. the diagrams as proposed by Peter Chen in his pivotal 1976 paper 

The Entity-Relationship Model: Toward a Unified View of Data, see [4]. The typical 

arguments in favour include the facts that majority of database textbooks present the 

original diagrams and that the original diagrams facilitate better understanding of the 

concepts and methods. They are simple to draw, so ER models can easily be done by 

hand as long as the overall size is not too big. 

On the other hand, the original diagrams are bulky and unwieldy, and so even a 

simple design requires many pages.  Moreover, the ER models must be translated to 

relational model before a database schema can be produced. The industrial and 

commercial software modelers typically use approach that is closer to the relational 

model than to the ER model, and for good reasons. Graphically, such models are much 

more compact and more wieldy and though conceptually a bit more challenging than the 

ER approach, they are still relatively easy to learn and master. The arguments in favour of 

employing the more industrial approach won and the models in this thesis were created 

using a professional design software Erwin 
©

.  

A decision concerning application programming affected the selection of the DBMS 

for our projects. Any application program must access a database, usually using a 

software tool or an interface provided by the vendor of the DBMS.  Among languages 

popular for database application programming, Python and PHP stand out. Python 

accesses the database using API -- application programming interface. If Python was just 

chosen as the language of application programming, the students would have to know or 

learn Python and learn the appropriate API -- a too steep requirement to fit into a single 

term, database course that should be focused on the DBMS rather than Python or API of 

the DBMS. PHP access the database using Microsoft ODBC.  Similarly as for Python, the 

students would have to know or learn PHP and learn the “language” of ODBC, moreover 

the ODBC is a software that must be purchased independently from the DBMS. Another 

popular language for database application is Java that accesses a database using JDBC. 

Even though this is a less stringent requirement than PHP and ODBC, it still is too 

stringent.  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  5 

 

Using embedded SQL in C programs is the least stringent requirement as the students 

do not have to learn any new language as by the time they take the database course, 

practically all students know enough of C, they cover SQL in the database course, so the 

expenditure for learning both static embedded SQL and dynamic embedded SQL is 

significantly less than learning ODBC, or JDBC, or API etc. Embedded SQL, though not 

limited to C, works best with C as the CLI -- call level interface -- to which embedded 

SQL are translated by the pre-processor is well defined in C as they are all actually 

programmed in C. For these reasons, we opted for application programming based on 

embedded SQL and C. 

Another important  decision concerned which of the concrete database management 

systems (DBMS for short) should be used for thesis. The original idea to include several 

major ones -- Oracle, DB2, and MySQL -- was rejected as the resulting thesis would be 

just too large.  For each system, we looked at several criteria:   

• How available it is to students, and McMaster students in particular? 

• How commercially successful and practical the system is? 

• Does ERwin provide modeling support for it? 

• Does the system provide a native support -- i.e. set of tools -- for embedded 

SQL programming in C? 

      On availability to students, all three DBMS considered scored equally as they all offer 

free versions: DB2 has a free student version, Oracle provided free Oracle Database 

Express Edition, and MySQL that started as an Open Software is in public domain.  On 

particular availability to McMaster students DB2 scored the highest as it is the DBMS of 

choice for the undergraduate database course and its graduate variant. 

     In commercial success and practicality, Oracle is a bit ahead of DB2 that is a bit ahead 

of MySQL, however the differences were not significant enough for our purposes. 

     Contemporary version of ERwin provides modeling support for all three DBMS 

considered equally. 

     For embedded SQL (ESQL for short), both DB2 and Oracle provide a very good 

support, while MySQL lacks any native support for ESQL, third-party providers have 

been promising ESQL tools (pre-processor) for some time, but none is still available. 

     Based on the above criteria and the fact that due to the size, for this thesis we had to 

consider a single DBMS, DB2 was chosen over Oracle due to better availability in 

particular to McMaster students. MySQL was rejected for the lack of ESQL support.  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  6 

 

     For the data modeling part of our projects, we decided to use ERwin modeling tool. In 

real world, most data models are the form of ER diagrams that visually represent entities, 

attributes, and relationships. As mentioned in the introduction, the original Chen’s format 

is not very suitable as it is too bulky. Most of available software modeling tools thus 

provide ER models that are closer to the relational model than to the pure ER model. 

ERwin is no exception, and supports both the Information Engineering format (IE, most 

popular format) and the IDEF1X format. Moreover ERwin is user friendly and easy to 

learn, provides free Community Edition of Erwin Data Modeler, and for most of the 

DBMS we considered generates database schemas automatically. 

     ERwin models have two forms, so-called Logical Model and Physical Model. The 

Logical Model is a representation of an organization’s data,  organized in terms of entities 

and relationships and independent of any particular data management technology. It 

includes all entities and relationships among them, all primary keys for all entities are 

specified, i.e. weak entities are resolved, all attributes for each entity are specified, all 

foreign keys are specified.  Normalization occurs at this level, if needed.  

     The basic steps in producing the Logical Model are: 

• Specify all entities. 

• Find attributes for each entity. 

• Specify primary keys for all entities. 

• Find the relationships between different entities. 

• Resolve many-to-many relationships. 

• Perform normalization. 

     The Physical Model represents how the model will be built/stored  in the database. A 

physical database model shows all table structures, including column names, column data 

types,  column constraints, primary keys, foreign keys, and relationships between tables .  

The features of the Physical Model include the specification all tables and columns,  

foreign keys are used to identify relationships between tables, intentional de-

normalization may occur at this level based on user requirements. The physical 

considerations may cause the Physical Model to be quite different from the Logical 

Model, thus the Physical Model will be different for different DBMS. For example, data 

type for a column maybe different between DB2 and SQL Server. 

     The basic steps in producing the Physical Model are: 

• Convert entities into tables. 

• Convert relationships into foreign keys. 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  7 

 

• Convert attributes into columns. 

• Modify the physical data model based on physical constraints/requirements. 

 

 

Figure 1: Summary of aspects of the Logical and Physical Models 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  8 

 

Chapter 3: University System  

3.1   University System Informal Description 

 

ABC University is a large institution with several campuses. Each campus has a different 

name, address, distance to the city center and the only bus running to the campus. Each 

campus has one club. The name of the club, the building in which the club is located, the 

phone number of the club and the multiple sports which club offers, should all be 

recorded.  

The University consists of a number of faculties, such as the Art Faculty, the 

Science Faculty, and so on. Each faculty has a name, dean and building. A faculty may be 

divided into a number of schools, for example, the Science Faculty has a School of 

Physics and a School of Chemistry. Each school belongs to one faculty only and is 

located on just one campus, but one campus maybe the location of many schools.  

Every school has name and an building assigned to. Each school offers different 

programmes and each programme can be offered by only one school. Each programme 

has a unique code, title, level and duration. Each programme comprises several courses, 

different programmes have different courses. Each course has a unique code and course 

title. Some courses may have one or more prerequisite courses and one course can be the 

prerequisite course of some other courses. 

Each of the students is enrolled in a single programme of study which involves a 

fixed core of courses specific to that programme as well as a number of electives taken 

from other programmes. Students work on courses and are awarded a grade in any course 

if he/she passes the course. Otherwise the student has to re-take the failed course. The 

system needs to record the year and term in which the course was taken and the grade 

awarded to the student. Every student has a unique ID. The system also keeps the student 

name, birthday and the year he/she enrolled in the course. 

The school employs lecturers to teach the students. A lecturer is allowed to work 

for one school only. Each lecturer is assigned an ID which is unique across the whole 

university. The system keeps the lecturer’s name, title and the office room. A supervisor 

maybe in charge of several lecturers, but a lecturer, however reports to only one 

supervisor.  A lecturer can teach many different courses. A course may also have been 

taught by many different lecturers. 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  9 

 

The university is operated by committees. Each faculty has to have a number of 

committees with the same titles across the university, such as the Faculty Executive, the 

Post Graduate Studies Committee, the Health and Sanity Committee, and so on. The 

committees meet regularly, such as weekly or monthly. The frequency is determined by 

the faculty involved. A committee’s members are all lecturers. A lecturer may be a 

member of several committees. 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  10 

 

3.2   University System Logical Model 

 

Figure 2: The University System Logical Model



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  11 

 

3.3   University System DB2 Physical Model 

                                     

Figure 3: The University System Physical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  12 

 

3.4   University System DB2 Schema 
 

CREATE TABLE CAMPUS( 

   CMPSNM                VARCHAR(20) NOT NULL,  

   CMPSADDR              VARCHAR(50),  

   DIST                  NUMERIC(8, 2),  

 BUSNO                 VARCHAR(10), 

    PRIMARY KEY (CMPSNM) 

) 

CREATE TABLE FACULTY( 

 FACNM                 VARCHAR(30) NOT NULL,  

 DEANNM                VARCHAR(20),  

 FACBLD                VARCHAR(20), 

 PRIMARY KEY (FACNM) 

) 

CREATE TABLE SCHOOL( 

 SCHLNM                VARCHAR(30) NOT NULL,  

 CMPSNM                VARCHAR(20) NOT NULL,  

 FACNM                 VARCHAR(30) NOT NULL,  

 SCHLBLD               VARCHAR(20), 

   PRIMARY KEY (SCHLNM), 

   FOREIGN KEY (CMPSNM) REFERENCES CAMPUS  (CMPSNM), 

   FOREIGN KEY (FACNM) REFERENCES FACULTY  (FACNM) 

) 

CREATE TABLE PROGRAMME( 

 PROGCD                CHAR(11) NOT NULL,  

 SCHLNM                VARCHAR(30) NOT NULL,  

 PROGTITL              VARCHAR(20),  

 PROGLVL               VARCHAR(10),  

 PROGLEN               VARCHAR(20), 

 PRIMARY KEY (PROGCD), 

   FOREIGN KEY (SCHLNM) REFERENCES SCHOOL  (SCHLNM) 

) 

CREATE TABLE STUDENT( 

 STUID                 INTEGER NOT NULL,  

 PROGCD                CHAR(11) NOT NULL,  

 STUNM                 VARCHAR(30),  

 STUBRTH               DATE,  

 YRENRL                INTEGER, 

   PRIMARY KEY (STUID), 

   FOREIGN KEY (PROGCD) REFERENCES PROGRAMME  (PROGCD) 

) 

CREATE TABLE COURSE( 

 CRSECD                CHAR(10) NOT NULL,  

 PROGCD                CHAR(11) NOT NULL,  

 CRSETITL              VARCHAR(20), 

   PRIMARY KEY (CRSECD), 

    FOREIGN KEY (PROGCD) REFERENCES PROGRAMME  (PROGCD) 

) 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  13 

 

CREATE TABLE COURSE_STUDENT( 

   CRSECD                CHAR(10) NOT NULL,  

 STUID                 INTEGER NOT NULL,  

 YRTKN                 CHAR(4),  

 SEMTKN                VARCHAR(20),  

 GRDAWRD               VARCHAR(10), 

   PRIMARY KEY (CRSECD, STUID), 

   FOREIGN KEY (STUID) REFERENCES STUDENT  (STUID), 

   FOREIGN KEY (CRSECD) REFERENCES COURSE  (CRSECD) 

) 

CREATE TABLE CLUB( 

 CLBNM                 VARCHAR(20) NOT NULL,  

 CMPSNM                VARCHAR(20) NOT NULL,  

 CLBBLD                VARCHAR(20),  

 PHNNO                 CHAR(12), 

   PRIMARY KEY (CLBNM), 

   FOREIGN KEY (CMPSNM) REFERENCES CAMPUS  (CMPSNM) 

) 

CREATE TABLE SPORT( 

 SPRTNM                VARCHAR(20) NOT NULL,  

 CLBNM                 VARCHAR(20) NOT NULL, 

   PRIMARY KEY (SPRTNM, CLBNM), 

   FOREIGN KEY (CLBNM) REFERENCES CLUB  (CLBNM) 

) 

CREATE TABLE PRE_COURSE( 

   CRSECD                CHAR(10) NOT NULL,  

 PRECRSECD             CHAR(10) NOT NULL, 

   PRIMARY KEY (CRSECD, PRECRSECD), 

   FOREIGN KEY (CRSECD) REFERENCES COURSE  (CRSECD), 

   FOREIGN KEY (PRECRSECD) REFERENCES COURSE  (CRSECD) 

) 

CREATE TABLE LECTURER( 

 STFID                 INTEGER NOT NULL,  

 SCHLNM                VARCHAR(30) NOT NULL,  

 SUPID                 INTEGER,  

 LECTNM                VARCHAR(20),  

 LECTTITL              VARCHAR(30),  

 OFFROOM               VARCHAR(10), 

   PRIMARY KEY (STFID), 

   FOREIGN KEY (SCHLNM) REFERENCES SCHOOL  (SCHLNM), 

   FOREIGN KEY (SUPID) REFERENCES LECTURER  (STFID) 

) 

CREATE TABLE LECTURER_COURSE( 

 STFID                 INTEGER NOT NULL,  

 CRSECD                CHAR(10) NOT NULL, 

 PRIMARY KEY (STFID, CRSECD), 

   FOREIGN KEY (CRSECD) REFERENCES COURSE  (CRSECD), 

   FOREIGN KEY (STFID) REFERENCES LECTURER  (STFID) 

) 

CREATE TABLE COMMITTEE( 

 COMMTITL              VARCHAR(30) NOT NULL,  

 FACNM                 VARCHAR(30) NOT NULL,  

 MTFREQ                VARCHAR(10), 

   PRIMARY KEY (COMMTITL, FACNM), 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  14 

 

      FOREIGN KEY (FACNM) REFERENCES FACULTY  (FACNM) 

) 

CREATE TABLE COMMITTEE_LECTURER( 

 STFID                 INTEGER NOT NULL,  

 COMMTITL              VARCHAR(30) NOT NULL,  

   FACNM                 VARCHAR(30) NOT NULL, 

 PRIMARY KEY (STFID, COMMTITL, FACNM), 

   FOREIGN KEY (STFID) REFERENCES LECTURER  (STFID), 

   FOREIGN KEY (COMMTITL, FACNM) REFERENCES COMMITTEE  (COMMTITL,  

                    FACNM) 

) 

3.5   University System Interactive Queries 
 

Query 1:   List all the schools are located in 'Toronto Campus', and sort them by school 

                 name. 

 
SELECT SCHLNM AS SCHOOL_NAME 

FROM SCHOOL 

WHERE CMPSNM = 'Toronto Campus' 

ORDER BY SCHLNM 

 

Query 2:   List all the programmes provided by 'science faculty'. 

 
SELECT P.PROGCD AS PROGRAMME_CODE 

FROM PROGRAMME P 

INNER JOIN SCHOOL S ON P.SCHLNM = S.SCHLNM 

INNER JOIN FACULTY F ON S.FACNM = F.FACNM 

WHERE F.FACNM = 'science faculty' 

 

Query 3:   Give all the names of the lecturers who are the members of the  committee and  

                 sort by their name. 

 
SELECT DISTINCT L.LECTNM AS LECTURER_NAME 

FROM COMMITTEE_LECTURER CL 

JOIN LECTURER L ON CL.STFID = L.STFID 

ORDER BY L.LECTNM 

 

Query 4:   List all supervisor's name and the name of the lecturer they manage. Please sort  

                 by supervisor name and lecturer name. 

 
SELECT SUP.LECTNM AS SUPERVISOR_NAME,L.LECTNM AS LECTURER_NAME 

FROM LECTURER SUP 

INNER JOIN LECTURER L ON SUP.STFID = L.SUPID 

ORDER BY SUP.LECTNM,L.LECTNM 

 

 

Query 5:   Give all the lecturers who are not the member of the committee. 
 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  15 

 

SELECT STFID AS STAFF_ID 

FROM LECTURER 

WHERE STFID NOT IN (SELECT DISTINCT STFID FROM COMMITTEE_LECTURER) 

 

Query 6:   Give the total number of courses for each programme. 
 

SELECT PROGCD AS PROGRAMME_CODE,COUNT(CRSECD) AS NUMBER_OF_COURSE 

FROM COURSE 

GROUP BY PROGCD 

 

Query 7:   Give all the lecturers with the courses they are teaching. Sort by lecturer name. 
 

SELECT L.LECTNM AS LECTURER_NAME,C.CRSETITL AS COURSE_TITLE 

FROM LECTURER_COURSE LC 

INNER JOIN LECTURER L ON LC.STFID = L.STFID 

INNER JOIN COURSE C ON LC.CRSECD = C.CRSECD 

ORDER BY L.LECTNM 

 

Query 8:   Give all the course titles and their corresponding prerequisite course titles. 
          

SELECT C1.CRSETITL AS COURSE_TITLE,C2.CRSETITL AS PRE_COURSE_TITLE 

FROM PRE_COURSE PC 

INNER JOIN COURSE C1 ON PC.CRSECD = C1.CRSECD 

INNER JOIN COURSE C2 ON PC.PRECRSECD = C2.CRSECD 

 

Query 9:   Give the top 5 courses which have more students involved. 
 

SELECT C.CRSECD AS COURSE_CODE,COUNT(SS.STUID) AS NUMBER_OF_STUDENTS 

FROM COURSE_STUDENT SS 

LEFT JOIN COURSE S ON SS.SUBJCD = S.SUBJCD 

LEFT JOIN COURSE C ON S.CRSECD =  C.CRSECD 

GROUP BY C.CRSECD 

ORDER BY NUMBER_OF_STUDENTS DESC 

FETCH FIRST 5 ROWS ONLY 

 

Query 10:   Give any of the prerequisite courses was not took by any of the students who  

                   enrolled into the university in 2010, and were taking the courses in 2011. 

 
SELECT DISTINCT STUID,PC.PRECRSECD AS PRE_COURSE 

FROM COURSE_STUDENT CS 

RIGHT JOIN PRE_COURSE PC ON CS.CRSECD = PC.CRSECD 

WHERE STUID IN (SELECT STUID FROM STUDENT WHERE YRENRL = 2010) 

AND YRTKN = 2011  

EXCEPT 

SELECT STUID,CRSECD 

FROM COURSE_STUDENT 

WHERE STUID IN (SELECT STUID FROM STUDENT WHERE YRENRL = 2010) 

AND YRTKN = 2010  

 

 

 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  16 

 

3.6   University System Application Program 
 

Write a simple C program using embedded SQL. The program is to excute and display 

the results on the screen in the same format as the DB2. It is to execute any of the ten 

queries listed in the previous section based on what action the user chooses, or all ten 

queries together. Assume the name of the databse is OURDB. 

 
#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

EXEC SQL INCLUDE SQLCA; 

 

void query1(); 

void query2(); 

void query3(); 

void query4(); 

void query5(); 

void query6(); 

void query7(); 

void query8(); 

void query9(); 

void query10(); 

void do_all(); 

 

int connected=0; 

 

void sqlerr(char* x) { 

  if (SQLCODE!=0) {  

    printf("error %s (%d)\n",x,SQLCODE);  

    if (connected) { 

      EXEC SQL CONNECT RESET;  

      printf("disconnected from OURDB\n"); 

    } 

    exit(1);  

  } 

} 

 

void connect() { 

  EXEC SQL CONNECT TO OURDB; 

  sqlerr("CONNECT TO OURDB"); 

  printf("Connected to OURDB\n"); 

  connected = 1; 

} 

 

void disconnect() { 

  EXEC SQL CONNECT RESET; 

  sqlerr("CONNECT RESET"); 

  printf("Disconnected from CS3DB3\n"); 

  connected = 0; 

} 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  17 

 

 

void depad(char* s) { 

  int i; 

  i=strlen(s)-1; 

  while(s[i]==' ') s[i--]='\0'; 

} 

 

char buffer[300]; 

 

int main() { 

  int i, j; 

  connect(); 

  while(1) { 

     A: printf("enter number of query you want to execute " 

               "(1-10),\n 0 to quit, anything else all queries\n"); 

        fgets(buffer,300,stdin); 

        if (buffer[0]=='\n') { 

          printf("nothing entered\n"); 

          continue; 

        } 

        i=j=0; 

        while(buffer[j]!='\n') { 

          if (buffer[j]>='0' && buffer[j]<='9') 

            i = 10*i+buffer[j]-'0'; 

          else{ 

            printf("incorrect entry\n"); 

            goto A; 

          } 

    j++; 

     } 

     if (i == 0) break; 

     else if (i == 1) query1(); 

     else if (i == 2) query2(); 

     else if (i == 3) query3(); 

     else if (i == 4) query4(); 

     else if (i == 5) query5(); 

     else if (i == 6) query6(); 

     else if (i == 7) query7(); 

     else if (i == 8) query8(); 

     else if (i == 9) query9(); 

     else if (i == 10) query10(); 

     else { 

       do_all(); 

       break; 

     } 

  } 

 

  disconnect(); 

  return 0; 

} 

int count, len, len1; 

char buf1[80]; 

  

EXEC SQL BEGIN DECLARE SECTION; 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  18 

 

  char school_name[30]; 

  char programme_code[11]; 

  char lecturer_name[20]; 

  char supervisor_name[20]; 

  sqlint32 staff_id;              

  sqlint16 number_of_course;   

  char course_title[20];    

  char pre_course_title[20]; 

  sqlint16 number_of_students; 

  sqlint32 student_id; 

  char pre_course[10]; 

EXEC SQL END DECLARE SECTION; 

 

void query1() {   

  printf("displaying result of query 1\n"); 

  EXEC SQL DECLARE cur1 CURSOR FOR 

       SELECT SCHLNM AS SCHOOL_NAME  

       FROM SCHOOL 

       WHERE CMPSNM = 'Toronto Campus' 

       ORDER BY SCHLNM; 

  sqlerr("OPEN cur1"); 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur1 INTO :school_name; 

                            

    if (SQLCODE!=0) break; 

    if (count==0) { 

      printf("SCHOOL_NAME\n"); 

      printf("-----------------\n"); 

    } 

    depad(school_name); 

    printf("%s\n",school_name); 

    count++; 

  } 

 

  EXEC SQL CLOSE cur1; 

  sqlerr("CLOSE cur1"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void query2() {   

  printf("displaying result of query 2\n"); 

  EXEC SQL DECLARE cur2 CURSOR FOR 

       SELECT P.PROGCD AS PROGRAMME_CODE 

       FROM PROGRAMME P 

       INNER JOIN SCHOOL S ON P.SCHLNM = S.SCHLNM 

       INNER JOIN FACULTY F ON S.FACNM = F.FACNM 

       WHERE F.FACNM = 'science faculty'; 

  sqlerr("DECLARE cur2"); 

 

  EXEC SQL OPEN cur2; 

  sqlerr("OPEN cur2"); 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  19 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur2 INTO :programme_code; 

    if (SQLCODE!=0) break; 

    if (count==0) { 

      printf("PROGRAMME_CODE\n"); 

      printf("---------------\n"); 

    } 

    depad(programme_code); 

    printf("%s\n",programme_code); 

    count++; 

  } 

 

  EXEC SQL CLOSE cur2; 

  sqlerr("CLOSE cur2"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void query3() {   

  printf("displaying result of query 3\n"); 

  EXEC SQL DECLARE cur3 CURSOR FOR 

       SELECT DISTINCT L.LECTNM AS LECTURER_NAME 

       FROM COMMITTEE_LECTURER CL 

       JOIN LECTURER L ON CL.STFID = L.STFID 

       ORDER BY L.LECTNM; 

  sqlerr("DECLARE cur3"); 

 

  EXEC SQL OPEN cur3; 

  sqlerr("OPEN cur3"); 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur3 INTO :lecturer_name; 

    if (SQLCODE!=0) break; 

    if (count==0) { 

      printf("LECTURER_NAME\n"); 

      printf("------------------\n"); 

    } 

    printf("%s\n",lecturer_nam); 

    count++; 

  } 

 

  EXEC SQL CLOSE cur3; 

  sqlerr("CLOSE cur3"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void query4() { 

  int i;   

  printf("displaying result of query 4\n"); 

 

  EXEC SQL DECLARE cur4 CURSOR FOR 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  20 

 

  SELECT SUP.LECTNM AS SUPERVISOR_NAME,L.LECTNM AS LECTURER_NAME 

      FROM LECTURER SUP 

      INNER JOIN LECTURER L ON SUP.STFID = L.SUPID 

      ORDER BY SUP.LECTNM,L.LECTNM; 

  sqlerr("DECLARE cur4"); 

 

  EXEC SQL OPEN cur4; 

  sqlerr("OPEN cur4"); 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur4 INTO :supervisor_name, 

                           :lecturer_name; 

    if (SQLCODE!=0) break; 

    if (count==0) { 

     printf("SUPERVISOR_NAME           LECTURER_NAME\n"); 

      printf("------------------------------------------\n"); 

    } 

    depad(supervisor_name); 

    depad(lecturer_name); 

    printf("%s",supervisor_name); 

    for(i = 20-strlen(supervisor_name); i>=0; i--) fputc(' ',stdout); 

    printf("%s\n",lecturer_name); 

    count++; 

  } 

  EXEC SQL CLOSE cur4; 

  sqlerr("CLOSE cur4"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void query5() { 

  printf("displaying result of query 5\n"); 

  EXEC SQL DECLARE cur5 CURSOR FOR 

 SELECT STFID AS STAFF_ID 

    FROM LECTURER 

    WHERE STFID NOT IN  

                (SELECT DISTINCT STFID FROM COMMITTEE_LECTURER); 

  sqlerr("DECLARE cur5"); 

 

  EXEC SQL OPEN cur5; 

  sqlerr("OPEN cur5"); 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur5 INTO :staff_id; 

    if (SQLCODE!=0) break; 

    if (count==0) { 

      printf("STAFF_ID\n"); 

      printf("-----------\n"); 

    } 

    depad(staff_id); 

    printf("%s\n",staff_id); 

    count++; 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  21 

 

  } 

 

  EXEC SQL CLOSE cur5; 

  sqlerr("CLOSE cur5"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void query6() { 

  int i;   

  printf("displaying result of query 6\n"); 

  EXEC SQL DECLARE cur6 CURSOR FOR 

       SELECT PROGCD AS PROGRAMME_CODE,COUNT(CRSECD) AS NUMBER_OF_COURSE 

       FROM COURSE 

       GROUP BY PROGCD; 

  sqlerr("DECLARE cur6"); 

 

  EXEC SQL OPEN cur6; 

  sqlerr("OPEN cur6"); 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur6 INTO :programme_code, 

                             :number_of_course; 

 

    if (SQLCODE!=0) break; 

    if (count==0) { 

      printf("PROGRAMME_CODE        NUMBER_OF_COURSE\n"); 

      printf("-----------------------------------------\n"); 

    } 

    depad(programme_code);    

    depad(number_of_course); 

    printf("%s",programme_code); 

    for(i = strlen(programme_code); i<11; putchar(' '), i++); 

    printf("%s",number_of_course); 

    count++; 

  } 

 

  EXEC SQL CLOSE cur6; 

  sqlerr("CLOSE cur6"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void query7() { 

  int i;   

  printf("displaying result of query 7\n"); 

  EXEC SQL DECLARE cur7 CURSOR FOR 

       SELECT L.LECTNM AS LECTURER_NAME,C.CRSETITL AS COURSE_TITLE 

       FROM LECTURER_COURSE LC 

       INNER JOIN LECTURER L ON LC.STFID = L.STFID 

       INNER JOIN COURSE C ON LC.CRSECD = C.CRSECD 

       ORDER BY L.LECTNM; 

  sqlerr("DECLARE cur7"); 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  22 

 

  EXEC SQL OPEN cur7; 

  sqlerr("OPEN cur7"); 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur7 INTO :lecturer_name, 

                             :course_title;     

    if (SQLCODE!=0) break; 

    if (count==0) { 

      printf("LECTURER_NAME      COURSE_TITLE\n"); 

      printf("-------------------------------------\n"); 

    } 

    depad(lecturer_name); 

    depad(course_title); 

    printf("%s",lecturer_name); 

    for(i = strlen(lecturer_name); i<9; putchar(' '), i++); 

    printf("%s",course_title); 

    count++; 

  } 

 

  EXEC SQL CLOSE cur7; 

  sqlerr("CLOSE cur7"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void query8() { 

  int i;   

  printf("displaying result of query 8\n"); 

  EXEC SQL DECLARE cur8 CURSOR FOR 

       SELECT C1.CRSETITL AS COURSE_TITLE,C2.CRSETITL AS  

              PRE_COURSE_TITLE 

       FROM PRE_COURSE PC 

       INNER JOIN COURSE C1 ON PC.CRSECD = C1.CRSECD 

       INNER JOIN COURSE C2 ON PC.PRECRSECD = C2.CRSECD; 

  sqlerr("DECLARE cur8"); 

 

  EXEC SQL OPEN cur8; 

  sqlerr("OPEN cur8"); 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur8 INTO :course_title, 

                             :pre_course_title; 

    if (SQLCODE!=0) break; 

    if (count==0) { 

      printf("COURSE_TITLE     PRE_COURSE_TITLE\n"); 

      printf("--------- ---------------------------------\n"); 

    } 

 

    depad(course_title); 

    printf("%s",course_title); 

    for(i = strlen(course_title); i<10; putchar(' '), i++); 

    printf("%.24f\n",pre_course_title); 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  23 

 

    count++; 

  } 

 

  EXEC SQL CLOSE cur8; 

  sqlerr("CLOSE cur8"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void query9() { 

  int i;   

  printf("displaying result of query 9\n"); 

  EXEC SQL DECLARE cur9 CURSOR FOR 

       SELECT P.PROGCD AS PROGRAMME_CODE,COUNT(CS.STUID) AS   

              NUMBER_OF_STUDENTS 

       FROM COURSE_STUDENT CS 

       LEFT JOIN COURSE C ON CS.CRSECD = C.CRSECD 

       LEFT JOIN PROGRAMME P ON P.PROGCD =  C.PROGCD 

       GROUP BY P.PROGCD 

       ORDER BY NUMBER_OF_STUDENTS DESC 

       FETCH FIRST 5 ROWS ONLY; 

  sqlerr("DECLARE cur9"); 

 

  EXEC SQL OPEN cur9; 

  sqlerr("OPEN cur9"); 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur9 INTO :programme_code, 

                             :number_of_students; 

    if (SQLCODE!=0) break; 

    if (count==0) { 

      printf("PROGRAMME_CODE    NUMBER_OF_STUDENTS\n"); 

      printf("----------------------------------------\n"); 

    } 

    depad(programme_code); 

    depad(number_of_students); 

 

    printf("%s",programme_code); 

    for(i = strlen(programme_code); i<12; putchar(' '), i++); 

    printf("%s\n",number_of_students); 

    count++; 

  } 

 

  EXEC SQL CLOSE cur9; 

  sqlerr("CLOSE cur9"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void query10() { 

  int i;  

  printf("displaying result of query 10\n"); 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  24 

 

EXEC SQL DECLARE cur10 CURSOR FOR 

     SELECT DISTINCT STUID,PC.PRECRSECD AS PRE_COURSE 

     FROM COURSE_STUDENT CS 

     RIGHT JOIN PRE_COURSE PC ON CS.CRSECD = PC.CRSECD 

     WHERE STUID IN (SELECT STUID FROM STUDENT WHERE YRENRL = 2010) 

     AND YRTKN = 2011  

     EXCEPT 

     SELECT STUID,CRSECD 

     FROM COURSE_STUDENT 

     WHERE STUID IN (SELECT STUID FROM STUDENT WHERE YRENRL = 2010) 

     AND YRTKN = 2010; 

  sqlerr("DECLARE cur10"); 

 

  EXEC SQL OPEN cur10; 

  sqlerr("OPEN cur10"); 

 

  count=0; 

  while(1) { 

    EXEC SQL FETCH cur10 INTO :student_id, 

                              :pre_course; 

    if (SQLCODE!=0) break; 

    if (count==0) { 

      printf("STUDENT_ID      PRE_COURSE\n"); 

      printf("-----------------------------------\n"); 

    } 

 

    depad(student_id); 

 

    printf("%s",student_id); 

    for(i = strlen(student_id); i<10; putchar(' '), i++); 

    printf("%d\n",pre_course); 

    count++; 

  } 

 

  EXEC SQL CLOSE cur10; 

  sqlerr("CLOSE cur10"); 

 

  printf("\n  %d record(s) selected.\n",count); 

} 

 

void do_all() { 

  query1(); 

  query2(); 

  query3(); 

  query4(); 

  query5(); 

  query6(); 

  query7(); 

  query8(); 

  query9(); 

  query10(); 

}



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  25 

 

Chapter 4: Airline Reservation 

4.1   Airline Reservation informal description 
 

There are 6 different airlines in 6 different countries: Canada  – AirCan,  USA - USAir, 

UK - BritAir, France - AirFrance, Germany - LuftAir, Italy - ItalAir. Their flights involve 

the following 12 cities: Toronto and Montreal in Canada, New York and Chicago in US, 

London and Edinburgh in UK, Paris and Nice in France, Bonn and Berlin in Germany, 

Rome and Naples in Italy. In each of the 12 cities, there is a (single) booking office. You 

are going to design a central air-reservation database to be used by all booking offices. 

 The flight has a unique flight number, air line code, business class indicator, 

smoking allowed indicator. Flight availability has flight number, date + time of departure, 

number of total seats available in business class, number of booked seats in business 

class, number of total seats available in economy class, and number of booked seats in 

economy class. 

 The customers may come from any country, not just the 6 above, and from any 

province/state, and from any city. Customer has first & last name, mailing address, zero 

or more phone numbers, zero or more fax numbers, and zero or more email addresses. 

Mailing address has street, city, province or state, postal code and country. Phone/fax 

number has country code, area code and local number. Email address has only one string, 

and no structure is assumed. A customer can book one or more flights. Two or more 

customers may have same mailing address and/or same phone number(s) and/or same fax 

number(s). But the email address is unique for each customer. First and last names do not 

have to be unique. 

 Booking has an unique booking number, booking city, booking date, flight 

number, date + time of departure (in local time, and time is always in hours and minutes), 

date + time of arrival (in local time), class indicator, total price (airport tax in origin + 

airport tax in destination + flight price – in local currency. The flight price for business 

class is 1.5 times of the listed flight price), status indicator (three types: booked. Canceled 

– the customer canceled the booking, scratched – the customer had not paid in full 30 

days prior to the departure), customer who is responsible for payment, amount-paid-so far 

(in local currency), outstanding balance (in local currency), the first & last names to be 

printed on the ticket. The airport taxes must be stored in local currencies (i.e. Canadian 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  26 

 

dollars, US dollars, British Pounds, French francs, German marks, and Italian Liras). 

Since the exchange rates change daily, they also must be stored for calculations of all 

prices involved. 

Though France, Germany, and Italy have had a common currency for a while, we 

used the names of their original currencies to involve in this exercise currency exchange 

rates and their changes. 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  27 

 

4.2   Airline Reservation Logical Model 

 

Figure 4: The Airline Reservation Logical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  28 

 

4.3   Airline Reservation DB2 Physical Model 

  

Figure 5: The Airline Reservation Physical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  29 

 

4.4   Airline Reservation DB2 Schema 
 

CREATE TABLE CUSTOMER ( 

   CUSTID                INT NOT NULL,  

   FNAME                 VARCHAR(20) NOT NULL,  

   LNAME                 VARCHAR(20) NOT NULL,  

   STREET                VARCHAR(50) NOT NULL,  

   CITY                  VARCHAR(30) NOT NULL,  

   PROVINCE              VARCHAR(30) NOT NULL,  

   COUNTRY               VARCHAR(30) NOT NULL,  

   POSTCODE              VARCHAR(20) NOT NULL, 

   PRIMARY KEY (CUSTID) 

) 

CREATE TABLE PHONE ( 

 PCRTYCODE             CHAR(2) NOT NULL,  

 PAREACODE             CHAR(3) NOT NULL,  

 PNUMBER               CHAR(7) NOT NULL,  

 CUSTID                INT NOT NULL, 

 PRIMARY KEY (CUSTID, PCRTYCODE, PAREACODE, PNUMBER), 

 FOREIGN KEY (CUSTID) REFERENCES CUSTOMER  (CUSTID) 

) 

CREATE TABLE FAX ( 

 FAREACODE             CHAR(3) NOT NULL,  

 FCTRYCODE             CHAR(2) NOT NULL,  

 FNUMBER               CHAR(7) NOT NULL,  

 CUSTID                INT NOT NULL, 

   PRIMARY KEY (CUSTID, FCTRYCODE, FAREACODE, FNUMBER), 

   FOREIGN KEY (CUSTID) REFERENCES CUSTOMER  (CUSTID) 

) 

CREATE TABLE EMAIL ( 

 EMAIL                 VARCHAR(50) NOT NULL,  

 CUSTID                INT NOT NULL, 

 PRIMARY KEY (CUSTID, EMAIL), 

   UNIQUE (EMAIL),  

   FOREIGN KEY (CUSTID) REFERENCES CUSTOMER  (CUSTID) 

) 

CREATE TABLE COUNTRY ( 

 CTRYCD                CHAR(2) NOT NULL,  

 CTRYNM                VARCHAR(30), 

    PRIMARY KEY (CTRYCD) 

) 

CREATE TABLE AIRLINE ( 

 AIRLINECD             VARCHAR(10) NOT NULL,  

    CTRYCD                CHAR(2) NOT NULL, 

   PRIMARY KEY (AIRLINECD), 

   FOREIGN KEY (CTRYCD) REFERENCES COUNTRY  (CTRYCD) 

) 

CREATE TABLE FLIGHT ( 

 FNO                   VARCHAR(10) NOT NULL,  

 SMALLOW               CHAR(1) NOT NULL,  

 BCAVL                 CHAR(1),  

 AIRLINECD             VARCHAR(10) NOT NULL, 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  30 

 

   PRIMARY KEY (FNO), 

   FOREIGN KEY (AIRLINECD) REFERENCES AIRLINE  (AIRLINECD) 

) 

CREATE TABLE CURRENCY ( 

 FCURR                 CHAR(3) NOT NULL,  

 TCURR                 CHAR(3) NOT NULL, 

 EXCHRATE              DECIMAL(8, 4) NOT NULL, 

   PRIMARY KEY (FCURR, TCURR) 

) 

CREATE TABLE CITY ( 

 CITYNM                VARCHAR(30),  

 CITYID                INT NOT NULL,  

 CTRYCD                CHAR(2) NOT NULL,  

 PRIMARY KEY (CITYID), 

   FOREIGN KEY (CTRYCD) REFERENCES COUNTRY  (CTRYCD)   

) 

CREATE TABLE AIRPORT ( 

 CITYID                INT NOT NULL,  

 AIRPORTCD             CHAR(3) NOT NULL,  

 AIRPORTNM             VARCHAR(50),  

 AIRPORTTAX            DECIMAL(6, 2) NOT NULL, 

 PRIMARY KEY (AIRPORTCD), 

   FOREIGN KEY (CITYID) REFERENCES CITY  (CITYID) 

) 

CREATE TABLE CITY_CURRENCY ( 

 CITYID                INT NOT NULL,  

 FCURR                 CHAR(3) NOT NULL, 

 TCURR                 CHAR(3) NOT NULL, 

   PRIMARY KEY (CITYID,FCURR,TCURR), 

   FOREIGN KEY (CITYID) REFERENCES CITY  (CITYID), 

   FOREIGN KEY (FCURR,TCURR) REFERENCES CURRENCY  (FCURR,TCURR) 

) 

CREATE TABLE FLIGHT_AVAILABILITY ( 

 FLEN                  VARCHAR(30) NOT NULL,  

 DEPTTIME              VARCHAR(30) NOT NULL,  

 ARRTIME               VARCHAR(30) NOT NULL,  

 FNO                   VARCHAR(10) NOT NULL,  

 BBUSSEAT              INT NOT NULL,  

 BECOSEAT              INT NOT NULL,  

 TBUSSEAT              INT NOT NULL,  

 TECOSEAT              INT NOT NULL,  

 DEST                  CHAR(3) NOT NULL,  

 ORIG                  CHAR(3) NOT NULL, 

 PRIMARY KEY (FNO, ORIG, DEST, DEPTTIME, ARRTIME), 

 FOREIGN KEY (FNO) REFERENCES FLIGHT  (FNO), 

   FOREIGN KEY (DEST) REFERENCES AIRPORT  (AIRPORTCD), 

   FOREIGN KEY (ORIG) REFERENCES AIRPORT  (AIRPORTCD) 

) 

CREATE TABLE CLASS ( 

 CLASSID               INT NOT NULL,  

 CLASS                 VARCHAR(10), 

 PRIMARY KEY (CLASSID) 

) 

CREATE TABLE STATUS ( 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  31 

 

 STATUSID              INT NOT NULL,  

 STATUS                VARCHAR(10),  

 PRIMARY KEY (STATUSID) 

) 

CREATE TABLE BOOKING ( 

 BKGNO                 INT NOT NULL,  

 BKGDATE               date NOT NULL,  

 BAL                   DECIMAL(8, 2),  

 TOTPRICE              DECIMAL(8, 2),  

 PAIDAMT               DECIMAL(8, 2) NOT NULL,  

 FPRICE                DECIMAL(8, 2) NOT NULL,  

 FNO                   VARCHAR(10) NOT NULL,  

 DEPTTIME              VARCHAR(30) NOT NULL,  

 ARRTIME               VARCHAR(30) NOT NULL,  

 DEST                  CHAR(3) NOT NULL,  

 ORIG                  CHAR(3) NOT NULL,  

 BKGCITY               INT NOT NULL,  

 CUSTID                INT NOT NULL,  

 PAIDBY                INT NOT NULL,  

 CLASSID               INT NOT NULL,  

 STATUSID              INT NOT NULL, 

 PRIMARY KEY (BKGNO), 

       FOREIGN KEY (FNO, ORIG, DEST, DEPTTIME, ARRTIME) REFERENCES  

       FLIGHT_AVAILABILITY  (FNO, ORIG, DEST, DEPTTIME, ARRTIME), 

   FOREIGN KEY (BKGCITY) REFERENCES CITY  (CITYID), 

   FOREIGN KEY (CUSTID) REFERENCES CUSTOMER  (CUSTID), 

   FOREIGN KEY (PAIDBY) REFERENCES CUSTOMER  (CUSTID), 

   FOREIGN KEY (CLASSID) REFERENCES CLASS  (CLASSID), 

   FOREIGN KEY (STATUSID) REFERENCES STATUS  (STATUSID) 

) 

4.5   Airline Reservation Interactive Queries 

Query 1: Give all the customers who lives in Canada and sort by customer_id. 
 

SELECT CUSTID AS CUSTOMER_ID 

FROM CUSTOMER 

WHERE COUNTRY = 'Canada' 

ORDER BY CUSTID 

 

Query 2: List all different customers who made bookings. 
 

SELECT DISTINCT CUSTID AS CUSTOMER_ID 

FROM BOOKING 

 

Query 3: Display all currency exchange rate is greater than 1. Please sort them by  

               from_currency and to_currency. 
 

SELECT FCURR AS FROM_CURRENCY,TCURR AS TO_CURRENCY,EXCHRATE AS 

     EXCHANGE_RATE  

FROM CURRENCY 

WHERE EXCHRATE > 1 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  32 

 

ORDER BY FCURR,TCURR 

 

Query 4: List all the flight availabilities between Toronto (airport code is 'YYZ') and New  

              York (airport code is 'JFK'). Please display flight_no, origin, destinatin,  

              depature_time, and arrival_time. Please sort them by flight_no. 
 

SELECT FNO AS FLIGHT_NO,ORIG AS ORIGIN,DEST AS DESTINATION,DEPTTIME 

ASDEPATURE_TTIME,ARRTIME AS ARRIVAL_TIME 

FROM FLIGHT_AVAILABILITY 

WHERE ORIG = 'YYZ' AND DEST = 'JFK' 

OR ORIG = 'JFK' AND DEST = 'YYZ' 

ORDER BY FNO 

 

Query 5: List all customers who did not place any booking. Please display customer_id  

               only, and sort records by customer_id. 
 

SELECT CUSTID AS CUSTOMER_ID 

FROM CUSTOMER 

WHERE CUSTID NOT IN (SELECT DISTINCT CUSTID FROM BOOKING) 

ORDER BY CUSTID 

 

Query 6: Display all customer's first_name, last_name, phone_no (format like 416-111- 

               2222) and email. Please sort them by customer_id. 
 

SELECT C.CUSTID AS CUSTOMER_ID, 

       C.FNAME AS FIRST_NAME, 

       C.LNAME AS LAST_NAME, 

       P.PCRTYCODE||'-'||P.PAREACODE||'-'||P.PNUMBER AS PHONE_NO, 

       E.EMAIL AS EMAIL 

FROM CUSTOMER C 

RIGHT JOIN PHONE P ON C.CUSTID = P.CUSTID 

RIGHT JOIN EMAIL E ON C.CUSTID = E.CUSTID 

ORDER BY C.CUSTID 

 

Query 7: List all canceled bookngs. please display booking_no, customer_id, flight_no,  

               origin, destination, class, status, and booking_city. Please also sort by  

               booking_no, customer_id and flight_no. 
 

SELECT BKGNO AS BOOKING_NO,CUSTID AS CUSTOMER_ID,FNO AS FLIGHT_NO, 

       ORIG AS ORIGIN,DEST AS DESTINATION,C.CLASS AS CLASS, 

       S.STATUS AS STATUS,CITY.CITYNM AS BOOKING_CITY 

FROM BOOKING B  

INNER JOIN STATUS S ON B.STATUSID = S.STATUSID 

INNER JOIN CLASS C ON B.CLASSID = C.CLASSID 

INNER JOIN CITY ON B.BKGCITY = CITY.CITYID 

WHERE S.STATUS = 'Canceled' 

ORDER BY BKGNO,CUSTID,FNO 

 

Query 8: List total_price, total_payment and total_balance for each city. Please exclude  

               canceled bookings and sort records by city_name. 
 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  33 

 

SELECT C.CITYNM AS CITY,SUM(TOTPRICE)AS TOTAL_PRICE, 

       SUM(PAIDAMT) AS TOTAL_PAYMENT,SUM(BAL) AS TOTAL_BALANCE 

FROM BOOKING B 

INNER JOIN CITY C ON B.BKGCITY = C.CITYID 

WHERE STATUSID <> 2 

GROUP BY C.CITYNM 

ORDER BY C.CITYNM 

 

Query 9: Calculate new total_price for each booking if origin airport tax increase by 0.01  

               and destination airport tax decrease by 0.005. Please display booking_no,  

               origin, destination, flight_price, previous_total_price and new_total_price. 
 

SELECT BKGNO AS BOOKING_NO,ORIG AS ORIGIN, 

       DEST AS DESTINATION,FPRICE AS FLIGHT_PRICE, 

      TOTPRICE AS PREVIOUS_TOTAL_PRICE, 

      FPRICE*(1+(O.AIRPORTTAX+0.01)+(D.AIRPORTTAX-0.005)) AS 

             NEW_TOTAL_PRICE 

FROM BOOKING B 

INNER JOIN AIRPORT O ON B.ORIG = O.AIRPORTCD 

INNER JOIN AIRPORT D ON B.DEST = D.AIRPORTCD 

 

Query 10: List number_of_bookings, number_of_emails, number_of_phones and  

                 mumber_of_faxs for each customer. 
 

SELECT C.CUSTID AS CUSTOMER_ID 

       ,(SELECT COUNT(CUSTID) FROM BOOKING WHERE CUSTID=C.CUSTID) AS  

         NUMBER_OF_BOOKINGS 

      ,(SELECT COUNT(CUSTID) FROM EMAIL WHERE CUSTID=C.CUSTID) AS  

        NUMBER_OF_EMAILS 

      ,(SELECT COUNT(CUSTID) FROM PHONE WHERE CUSTID=C.CUSTID) AS  

        NUMBER_OF_PHONES 

      ,(SELECT COUNT(CUSTID) FROM FAX WHERE CUSTID=C.CUSTID) AS  

        NUMBER_OF_FAXS  

FROM CUSTOMER C 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  34 

 

Chapter 5: Movie Rental  

5.1   Movie Rental Informal Description 
 

The movies are rented out in stores and there are several stores. Each store has a unique 

distributor that supplies the store with tapes. A distributor may supply more than one 

store. Each distributor has a name, an address, and a phone number. Each store has a 

name,  an address, and a  phone number. For each employee we must keep the following 

information: working store, a name, a supervisor, an address , a phone number, SIN 

(social insurance number) and the date when the employee was hired. For each customer 

we have to keep the following information:  a name, an address,  and a phone number (if 

any).  

For each rental,  we must keep track of which employee served the customer, 

which movie and which copy (i.e. type) the customer rented, information about payment, 

the date and the time of the rental, the status (rented, returned_in_time, returned_late), the 

rate (i.e. the price), and if applicable, due date and overdue charges. About the payment 

we have to keep which of the employees accepted the payment (does not have to be the 

same employee who rented the tape), the type of payment (i.e. cash, check, credit card, 

direct debit – for each type you must provide for relevant information to be kept, e.g. 

credit card number if credit card is used), the amount of the payment, date + time of the 

payment, payment status (completed if cash or the money have been received, approved if 

debit or credit card go through, pending if the check has not cleared yet). About each tape 

we have to keep information in what condition the tape is and what movie is on the tape. 

About each movie we have to keep its title, director’s name, simple description, the name 

of a (single) major star, the movie’s rating (use numbers 1-5). 

 

 

 
 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  35 

 

5.2   Movie Rental Logical Model 

 

Figure 6: The Movie Rental Logical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  36 

 

5.3   Movie Rental Physical DB2 Model 

 

Figure 7: The Movie Rental Physical Model



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  37 

 

5.4   Movie Rental DB2 Schema 
 

CREATE TABLE DISTRIBUTOR( 

 DISTID                INTEGER NOT NULL,  

 DISTNM                VARCHAR(20),  

 DISTSTR               VARCHAR(30),  

 DISTCITY              VARCHAR(20),  

 DISTPRVN              CHAR(2),  

 DISTPC                CHAR(6),  

 DISTPNO               CHAR(12), 

 PRIMARY KEY (DISTID) 

) 

CREATE TABLE STORE( 

 STORENM               VARCHAR(20),  

 STORESTR              VARCHAR(30),  

 STORECITY             VARCHAR(20),  

 STOREPVN              CHAR(2),  

 STOREPC               CHAR(6),  

 STOREPNO              CHAR(12),  

 STOREID               INTEGER NOT NULL,  

 DISTID                INTEGER NOT NULL, 

   PRIMARY KEY (STOREID), 

   FOREIGN KEY (DISTID) REFERENCES DISTRIBUTOR  (DISTID) 

) 

CREATE TABLE EMPLOYEE( 

 EMPSIN                CHAR(9) NOT NULL,  

 MGRSIN                CHAR(9),  

 EMPNM                 VARCHAR(20),  

 EMPSTR                VARCHAR(30),  

 EMPCITY               VARCHAR(20),  

 EMPPVN                CHAR(2),  

 EMPPC                 CHAR(6),  

 EMPPNO                CHAR(12),  

 EMPHIREDT             DATE,  

 STOREID               INTEGER NOT NULL, 

   PRIMARY KEY (EMPSIN), 

   FOREIGN KEY (MGRSIN) REFERENCES EMPLOYEE  (EMPSIN), 

   FOREIGN KEY (STOREID) REFERENCES STORE  (STOREID) 

) 

CREATE TABLE CUSTOMER( 

 CUSTID                INTEGER NOT NULL,  

 CUSTNM                VARCHAR(20),  

 CUSTSTR               VARCHAR(30),  

 CUSTCITY              VARCHAR(20),  

 CUSTPVN               CHAR(2),  

 CUSTPC                CHAR(6),  

 CUSTPNO               CHAR(12), 

   PRIMARY KEY (CUSTID) 

) 

CREATE TABLE MOVIE( 

 MOVIETITL             VARCHAR(20),  

 MOVIEDESC             VARCHAR(50),  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  38 

 

 DIRECTOR              VARCHAR(20),  

 RATING                INTEGER,  

 STARNM                VARCHAR(20),  

 MOVIEID               INTEGER NOT NULL, 

 PRIMARY KEY (MOVIEID) 

) 

CREATE TABLE STORE_MOVIE( 

 MOVIEID               INTEGER NOT NULL,  

 STOREID               INTEGER NOT NULL, 

 PRIMARY KEY (MOVIEID, STOREID), 

   FOREIGN KEY (MOVIEID) REFERENCES MOVIE  (MOVIEID), 

   FOREIGN KEY (STOREID) REFERENCES STORE  (STOREID) 

) 

CREATE TABLE TAPE( 

 TAPEID                INTEGER NOT NULL,  

 CONDITION             VARCHAR(20),  

 MOVIEID               INTEGER NOT NULL,  

 STOREID               INTEGER NOT NULL, 

 PRIMARY KEY (TAPEID, MOVIEID, STOREID), 

   FOREIGN KEY (MOVIEID, STOREID) REFERENCES STORE_MOVIE  (MOVIEID,  

       STOREID) 

) 

CREATE TABLE PAYMENT_STATUS( 

 PSTATUSID             INTEGER NOT NULL,  

 PDESC                 VARCHAR(20), 

   PRIMARY KEY (PSTATUSID) 

) 

CREATE TABLE PAYMENT_TYPE( 

 PTID                 INTEGER NOT NULL, 

 PTDESC               VARCHAR(10), 

 PRIMARY KEY (PTID) 

) 

CREATE TABLE PAYMENT( 

 PAYID                 INTEGER NOT NULL,  

 AMT                   DECIMAL(8, 2),  

 PAYDTTM               TIMESTAMP,  

 EMPSIN                CHAR(9) NOT NULL,  

 CUSTID                INTEGER NOT NULL,  

 PSTATUSID             INTEGER NOT NULL, 

 PTID                  INTEGER NOT NULL, 

 PRIMARY KEY (PAYID), 

   FOREIGN KEY (EMPSIN) REFERENCES EMPLOYEE  (EMPSIN), 

   FOREIGN KEY (CUSTID) REFERENCES CUSTOMER  (CUSTID), 

   FOREIGN KEY (PSTATUSID) REFERENCES PAYMENT_STATUS  (PSTATUSID), 

   FOREIGN KEY (PTID) REFERENCES PAYMENT_TYPE  (PTID) 

) 

CREATE TABLE RENTAL_STATUS( 

 RSTATUSID             INTEGER NOT NULL,  

 RDESC                 VARCHAR(20), 

   PRIMARY KEY (RSTATUSID) 

) 

CREATE TABLE MOVIE_RENTAL( 

 DUEDT                 DATE,  

 OVERDUECRG            DECIMAL(8, 2),  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  39 

 

 RDTTM                 TIMESTAMP NOT NULL,  

 EMPSIN                CHAR(9) NOT NULL,  

 CUSTID                INTEGER NOT NULL,  

 TAPEID                INTEGER NOT NULL,  

 RRATE                 DECIMAL(8, 2),  

 PAYID                 INTEGER,  

 MOVIEID               INTEGER NOT NULL,  

 STOREID               INTEGER NOT NULL,  

 RSTATUSID             INTEGER NOT NULL, 

   PRIMARY KEY (TAPEID, MOVIEID, STOREID, RDTTM), 

   FOREIGN KEY (EMPSIN) REFERENCES EMPLOYEE  (EMPSIN), 

   FOREIGN KEY (CUSTID) REFERENCES CUSTOMER  (CUSTID), 

   FOREIGN KEY (TAPEID, MOVIEID, STOREID) REFERENCES TAPE  (TAPEID,  

                    MOVIEID, STOREID), 

   FOREIGN KEY (PAYID) REFERENCES PAYMENT  (PAYID), 

   FOREIGN KEY (RSTATUSID) REFERENCES RENTAL_STATUS  (RSTATUSID) 

) 

CREATE TABLE DEBIT_CARD( 

 DNO                   INTEGER,  

 DTYPE                 VARCHAR(20),  

 DEXPR                 CHAR(5),  

 PAYID                 INTEGER NOT NULL, 

   PRIMARY KEY (PAYID), 

 FOREIGN KEY (PAYID) REFERENCES PAYMENT  (PAYID) 

) 

CREATE TABLE CREDIT_CARD( 

 CNO                   INTEGER,  

 CTYPE                 VARCHAR(20),  

 CEXPR                 CHAR(5),  

 PAYID                 INTEGER NOT NULL, 

 PRIMARY KEY (PAYID), 

 FOREIGN KEY (PAYID) REFERENCES PAYMENT  (PAYID) 

) 

CREATE TABLE CHECK( 

 CHECKNO               VARCHAR(30),  

 BANKNO                VARCHAR(20),  

 BANKNM                VARCHAR(30),  

 PAYID                 INTEGER NOT NULL, 

   PRIMARY KEY (PAYID), 

   FOREIGN KEY (PAYID) REFERENCES PAYMENT  (PAYID) 

) 

5.5   Movie Rental Interactive Queries 
 

 Query 1: Give all the customers who lives in Hamilton. Display customer_id and  

                 customer_name. 

 
SELECT CUSTID AS CUSTOMER_ID,CUSTNM AS CUSTOMER_NAME 

FROM CUSTOMER 

WHERE CUSTCITY='Hamilton' 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  40 

 

Query 2:  Display the total payment are received by each employee, and sort by empsin. 

 
SELECT EMPSIN AS EMPLOYEE_SIN,SUM(AMT) AS TOTAL_AMT 

FROM PAYMENT 

GROUP BY EMPSIN 

ORDER BY EMPSIN 

 

Query 3: Display the total movies are rented out by each store, and sort by storeid. 

 
SELECT STOREID,COUNT(TAPEID) AS MOVIE_RENTED 

FROM MOVIE_RENTAL 

GROUP BY STOREID 

ORDER BY STOREID 

 

Query 4: Display all the tapes are never rented out in every store, and sort by movieid  

               & tapeid. 
 

SELECT DISTINCT T.MOVIEID,T.TAPEID 

FROM TAPE T 

LEFT JOIN MOVIE_RENTAL R ON T.MOVIEID=R.MOVIEID AND T.TAPEID=R.TAPEID 

WHERE R.MOVIEID IS NULL 

ORDER BY T.MOVIEID,T.TAPEID 

 

Query 5: Display all customers who did not rent any movie so far and sort by custid. 
 

SELECT CUSTID,CUSTNM 

FROM CUSTOMER 

WHERE CUSTID NOT IN (SELECT DISTINCT CUSTID FROM MOVIE_RENTAL) 

ORDER BY CUSTID 

 

Query 6: Display the total amount received by different payment type, and sort by 

               ptdesc. 
 

SELECT TP.PTDESC AS PAYMENT_TYPE,SUM(AMT) AS TOTAL_AMT 

FROM PAYMENT P 

INNER JOIN PAYMENT_TYPE TP ON P.PTID = TP.PTID  

GROUP BY TP.PTDESC 

ORDER BY TP.PTDESC 

 

Query 7. Display the number of movies rented out based on the movie rating, and sort by  

               rating. 
 

SELECT M.RATING,COUNT(MR.MOVIEID) AS NO_OF_MOVIES 

FROM MOVIE_RENTAL MR 

INNER JOIN MOVIE M ON MR.MOVIEID = M.MOVIEID 

GROUP BY M.RATING 

 

Query 8: Display top 5 customers based on their total payment, and sort their total  

               payment decreased.  
 

SELECT CUSTID,SUM(AMT) AS TOTAL_AMT 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  41 

 

FROM PAYMENT 

GROUP BY CUSTID 

ORDER BY TOTAL_AMT DESC 

FETCH FIRST 5 ROWS ONLY 

 

Query 9: List all the movies customer rented. Please display the columns: movie_title, 

               rental_status, rental_rate, rental_employee, the employ accept the    

               payment, payment_type and payment_status. 
 

SELECT M.MOVIETITL AS MOVIE_TITLE, 

 RS.RDESC AS RENTAL_STATUS, 

 MR.RRATE AS RENTAL_RATE, 

 E1.EMPNM AS RENTAL_EMPLOYEE, 

 E2.EMPNM AS CASHIER_EMPLOYEE, 

 PT.PTDESC AS PAYMENT_TYPE, 

 PS.PDESC AS PAYMENT_STATUS        

FROM MOVIE_RENTAL MR 

INNER JOIN CUSTOMER C ON MR.CUSTID = C.CUSTID 

INNER JOIN MOVIE M ON MR.MOVIEID = M.MOVIEID 

INNER JOIN RENTAL_STATUS RS ON MR.RSTATUSID = RS.RSTATUSID 

INNER JOIN EMPLOYEE E1 ON MR.EMPSIN = E1.EMPSIN    

LEFT JOIN PAYMENT P ON MR.PAYID = P.PAYID 

LEFT JOIN EMPLOYEE E2 ON P.EMPSIN = E2.EMPSIN 

LEFT JOIN PAYMENT_STATUS PS ON P.PSTATUSID = PS.PSTATUSID 

LEFT JOIN PAYMENT_TYPE PT ON P.PTID = PT.PTID 

WHERE C.CUSTNM = 'customer1' 

 

Query 10: List all the manager's name and the name of employee they manage.  

                 Please sort by manager sin & employee sin. 
 

SELECT MGR.EMPNM AS MANAGER_NAME,E.EMPNM AS EMPLOYEE_NAME 

FROM EMPLOYEE E 

INNER JOIN EMPLOYEE MGR ON E.MGRSIN = MGR.EMPSIN 

ORDER BY MGR.EMPSIN,E.EMPSIN 

 

 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  42 

 

Chapter 6: Car Rental 

6.1   Car Rental Informal Description 

 

Our company does car rental business and has several locations with different address 

(address consist of street or rural route with the number, city, province and postal code). 

The cars are classified as subcompacts, compacts, sedans, or luxury. Each car has a 

particular make, model, year made, and color. Each car has a unique identification 

number and a unique license plate. 

The cars rented in a particular location may be returned to a different location (so-

called drop off). For every car we keep the odometer reading before it is rented and after 

it is returned. Since we trust our customers, we do not record the defect when the car is 

rent out and returned back. However, we rent the car with full tank and record the volume 

of gas in the tank when the car is returned, but we only indicate if the tank is empty, 

quarter full, half full, three quarters full, or full. 

We keep track of which day a car was rented, but not of the time, similarly for car 

returning. If a customer requests a specific class (say sedan), we may rent the customer a 

higher-class car if we do not have the requested class in the stock, but we will price it at 

the level the customer requested (so-called upgrade). Each car class has its own pricing, 

but all cars in the same class are priced the same. We have rental policies for 1 day, 1 

week, 2 weeks, and 1 month. Thus, if a customer rents a car for 8 days, it will be priced as 

1 week + 1 day. The drop-off charge only depends on the class of the rented car, the 

location it was rented from and the location it is returned to. 

About our customers, we keep their names, addresses, possibly all phone 

numbers, and the number of the driver’s license (we assume a unique license per person). 

About our employees we keep the same information (we require that all our employees 

have a driver’s license). We have several categories of workers, drivers, cleaners, clerks, 

and managers. Any of our employees can rent a car from our company for a 50% 

discount, if the rental is less than 2 weeks. However, for  any longer rental they must pay 

90% of the regular price. Every employee works in one location only. We have 

headquarters in Hamilton. The people who work there are all classified as managers, one 

of them is the president, two of them are the vice-presidents, one for operation, the other 

for marketing). 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  43 

 

For certain weeks we have promotional rentals that are usually 60% of the regular 

price, but may be also of different percentage. They always affect only a single class of 

cars – i.e. we may have a promotion for subcompacts, but during that week we do not 

have any promotions for compacts, sedans or luxury cars. During some years we can have 

many promotions, in some we have none. The promotions cannot be applied to the 

employees. 

  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  44 

 

6.2   Car Rental Logical Model 

 

Figure 8: The Car Rental Logic Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  45 

 

6.3   Car Rental Physical DB2 Model 

 

Figure 9: The Car Rental Physical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  46 

 

6.4   Car Rental DB2 Schema 

 

CREATE TABLE ADDRESS ( 

       ADDRESSID INTEGER NOT NULL, 

       SNUMBER CHAR(10) NOT NULL, 

       STREET CHAR(100) NOT NULL, 

       CITY CHAR(20) NOT NULL, 

       PROVINCE CHAR(2) NOT NULL, 

       PCODE CHAR(6) NOT NULL, 

       IS_HQUARTERS CHAR(1) NOT NULL, 

       PRIMARY KEY (ADDRESSID),  

       UNIQUE (SNUMBER,STREET,CITY,PROVINCE), 

       CHECK(ADDRESSID > 0), 

       CHECK(PROVINCE IN ('AL', 'BC','MA','NB','NL','NT','NS','NU', 

                          'ON','PE','QU','SA','YT')), 

       CHECK (IS_HQUARTERS IN ('H','0')) 

) 

CREATE TABLE CLASSTABLE ( 

       CLASS CHAR(1) NOT NULL, 

       CDESC VARCHAR(20) NOT NULL,  

       PRIMARY KEY (CLASS), 

       CHECK (CLASS IN ('B','C','S','L')) 

) 

CREATE TABLE CAR ( 

       CARID INTEGER NOT NULL, 

       MAKE CHAR(10) NOT NULL, 

       MODEL CHAR(20) NOT NULL, 

       YEAR CHAR(4) NOT NULL, 

       COLOUR CHAR(10) NOT NULL, 

       LPLATE CHAR(8) NOT NULL, 

       CLOCATION INTEGER, 

       CLASS CHAR(1), 

       PRIMARY KEY (carid),  

       FOREIGN KEY (CLOCATION) REFERENCES ADDRESS (ADDRESSID),  

       FOREIGN KEY (CLASS) REFERENCES CLASSTABLE, 

       CHECK (CARID > 0) 

) 

CREATE TABLE PERSON ( 

       DLICENSE CHAR(20) NOT NULL, 

       FNAME CHAR(50) NOT NULL, 

       LNAME CHAR(50) NOT NULL, 

       ADDRESSID INTEGER NOT NULL, 

       PRIMARY KEY (DLICENSE),  

       FOREIGN KEY (ADDRESSID) REFERENCES ADDRESS 

) 

CREATE TABLE PHONE ( 

       DLICENSE CHAR(20) NOT NULL, 

       PHONE CHAR(20) NOT NULL, 

       PRIMARY KEY (DLICENSE,PHONE), 

       FOREIGN KEY (DLICENSE) REFERENCES PERSON 

) 

CREATE TABLE ETYPETABLE ( 

       ETYPE CHAR(1) NOT NULL, 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  47 

 

       PRIMARY KEY (ETYPE), 

       CHECK (ETYPE IN ('D', 'C', 'K', 'M')) 

) 

CREATE TABLE EMPLOYEE (  

       DLICENSE CHAR(20) NOT NULL, 

       LOCATION INTEGER NOT NULL, 

       ETYPE CHAR(1) NOT NULL, 

       IS_PRES CHAR(1) NOT NULL, 

       IS_VIP CHAR(1) NOT NULL, 

       PRIMARY KEY (DLICENSE), 

       FOREIGN KEY (DLICENSE) REFERENCES PERSON, 

       FOREIGN KEY (LOCATION) REFERENCES ADDRESS (ADDRESSID),  

       FOREIGN KEY (ETYPE) REFERENCES ETYPETABLE, 

       CHECK (IS_PRES IN ('P','0')), 

       CHECK (IS_VIP IN ('M','P','0')), 

       CHECK ((IS_PRES='P' AND ETYPE='M') OR 

              (IS_VIP='M' AND ETYPE='M') OR 

              (IS_VIP='P' AND ETYPE='M') OR 

              (IS_VIP='0' AND IS_PRES='0')), 

       CHECK ((IS_PRES='P' AND IS_VIP='0') OR 

              (IS_PRES='0' AND IS_VIP='M') OR 

              (IS_PRES='0' AND IS_VIP='P') OR 

              (IS_PRES='0' AND IS_VIP='0')) 

) 

CREATE TABLE CUSTOMER ( 

       DLICENSE CHAR(20) NOT NULL, 

       PRIMARY KEY (DLICENSE), 

       FOREIGN KEY (DLICENSE) REFERENCES PERSON 

) 

CREATE TABLE PRATE ( 

       DURATION CHAR(1) NOT NULL, 

       CLASS CHAR(1) NOT NULL, 

       AMOUNT DECIMAL(8,2) NOT NULL, 

       PRIMARY KEY (DURATION,CLASS),  

       FOREIGN KEY (CLASS) REFERENCES CLASSTABLE, 

       CHECK (DURATION IN ('D', 'W', 'T', 'M')) 

) 

CREATE TABLE PROMO ( 

       DURATION CHAR(1) NOT NULL, 

       CLASS CHAR(1) NOT NULL, 

       FROM_DATE DATE NOT NULL, 

       PERCENTAGE DECIMAL(4,2) NOT NULL, 

       PRIMARY KEY (DURATION,CLASS), 

       FOREIGN KEY (DURATION,CLASS) REFERENCES PRATE           

)  

CREATE TABLE RENTAL ( 

       RENTALID INTEGER NOT NULL, 

       DLICENSE CHAR(20) NOT NULL,  

       CARID INTEGER NOT NULL, 

       FROM_LOCATION INTEGER NOT NULL, 

       DROPOFF_LOCATION INTEGER NOT NULL, 

       FROM_DATE DATE NOT NULL, 

       TO_DATE DATE, 

       TANK CHAR(1) NOT NULL, 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  48 

 

       INIT_ODO INTEGER NOT NULL, 

       RETURN_ODO INTEGER, 

       PRIMARY KEY (RENTALID),  

       UNIQUE (CARID,FROM_DATE),  

       FOREIGN KEY (CARID) REFERENCES CAR, 

       FOREIGN KEY (DLICENSE) REFERENCES CUSTOMER, 

       FOREIGN KEY (FROM_LOCATION) REFERENCES ADDRESS (ADDRESSID), 

       FOREIGN KEY (DROPOFF_LOCATION) REFERENCES ADDRESS (ADDRESSID), 

       CHECK (RENTALID > 0), 

       CHECK (TANK IN ('F','T','H','Q','E')), 

       CHECK ((FROM_DATE < TO_DATE) OR (TO_DATE IS NULL)), 

       CHECK ((INIT_ODO < RETURN_ODO) OR (RETURN_ODO IS NULL)) 

) 

CREATE TABLE RENTALRATE ( 

       RENTALID INTEGER NOT NULL, 

       DURATION CHAR(1) NOT NULL, 

       CLASS CHAR(1) NOT NULL, 

       COUNT INTEGER NOT NULL, 

       PRIMARY KEY (RENTALID,DURATION,CLASS),  

       FOREIGN KEY (RENTALID) REFERENCES RENTAL, 

       FOREIGN KEY (DURATION,CLASS) REFERENCES PRATE, 

       CHECK (COUNT > 0) 

) 

CREATE TABLE DROPOFFCHARGE ( 

       CLASS CHAR(1) NOT NULL, 

       FROM_LOCATION INTEGER NOT NULL, 

       TO_LOCATION INTEGER NOT NULL, 

       CHARGE DECIMAL(4,2) NOT NULL, 

       PRIMARY KEY (CLASS,FROM_LOCATION,TO_LOCATION),  

       FOREIGN KEY (CLASS) REFERENCES CLASSTABLE, 

       FOREIGN KEY (FROM_LOCATION) REFERENCES ADDRESS (ADDRESSID),  

       FOREIGN KEY (TO_LOCATION) REFERENCES ADDRESS (ADDRESSID) 

) 

 

6.5   Car Rental Interactive Queries 
 

Query 1: Give last name of all customers who are now renting a car from our company.  
 

SELECT LNAME 

FROM CUSTOMER, PERSON, RENTAL 

WHERE CUSTOMER.DLICENSE=RENTAL.DLICENSE AND CUSTOMER.DLICENSE = 

PERSON.DLICENSE AND TO_DATE IS NULL 

 

Query 2: Give make and color of all cars currently rented out. 
 

SELECT MAKE,COLOUR 

FROM CAR,RENTAL 

WHERE CAR.CARID=RENTAL.CARID AND TO_DATE IS NULL 

 

Query 3: For each completed rental, give the rental price and rental_id. 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  49 

 

SELECT SUM(CHARGE), RENTALID 

FROM (SELECT RENTALID,AMOUNT*COUNT 

      FROM RENTALRATE,PRATE 

      WHERE RENTALRATE.DURATION=PRATE.DURATION 

      AND RENTALRATE.CLASS=PRATE.CLASS) AS T(RENTALID,CHARGE) 

GROUP BY RENTALID 

   

Query 4: List last name of all managers. 

 
SELECT LNAME  

FROM EMPLOYEE, PERSON 

WHERE ETYPE='M' AND EMPLOYEE.DLICENSE=PERSON.DLICENSE 

 

Query 5: List last and first names of all customers. 

 
SELECT LNAME, FNAME  

FROM CUSTOMER, PERSON 

WHERE CUSTOMER.DLICENSE=PERSON.DLICENSE 

 

Query 6: Give a query that answers the question "Is any of our employee also our  

               customer"? 

 
SELECT * 

FROM EMPLOYEE, CUSTOMER 

WHERE EMPLOYEE.DLICENSE=CUSTOMER.DLICENSE 

 

Query 7: Does our president work in the headquarters? 

 
SELECT * 

FROM EMPLOYEE, ADDRESS 

WHERE IS_PRES='P' AND LOCATION=ADDRESSID AND ADDRESS.IS_HQUARTERS='H' 

 

Query 8: Find rental_id of all shortest (completed) rentals. 

 
SELECT RENTALID  

FROM RENTAL 

WHERE TO_DATE IS NOT NULL AND (DAYS(TO_DATE)-DAYS(FROM_DATE)) IN 

      (SELECT MIN(DAYS(TO_DATE) - DAYS(FROM_DATE))  

       FROM RENTAL 

       WHERE TO_DATE IS NOT NULL) 

 

Query 9: Find the value of the cheapest (completed) rental. We will  utilize query 3 as the  

               inner query. 

 
SELECT MIN(CHARGE) 

FROM (SELECT SUM(CHARGE), RENTALID 

      FROM (SELECT RENTALID,AMOUNT*COUNT 

            FROM RENTALRATE,PRATE 

            WHERE RENTALRATE.DURATION=PRATE.DURATION 

            AND RENTALRATE.CLASS=PRATE.CLASS) AS T(RENTALID,CHARGE) 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  50 

 

            GROUP BY RENTALID) AS T1(CHARGE,RENTALID) 

   

Query 10: Give makes of the cars that have never been rented. 

 
SELECT DISTINCT MAKE FROM CAR 

EXCEPT 

SELECT DISTINCT MAKE FROM CAR, RENTAL WHERE CAR.CARID=RENTAL.CARID 

 

 

 

 

 

 

 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  51 

 

Chapter 7: Course Registration  

7.1   Course Registration Informal Description 
 

In our college, students need to register for courses before new semester start. All of 

programs in our college take four years to finish.  

Each course has a unique designation, title, description, year (in which year of 

study the course is to be taken, for instance 2
nd

 year course), and classroom. A course can 

have no or many tutorial sections, and no or many lab sections.  Each course is taught by 

exactly one instructor. Each instructor has a unique id, name, departmental affiliation, 

office room, phone extension, and a unique email address. Each student has a unique id, 

name, and the year of his/her study. A student cannot be an instructor. A course can have 

zero or many tutorial sections unique to the course (i.e. tutorial sections are not shared by 

different courses). Each tutorial section has exactly one TA assigned. A TA can tutor 

more than one tutorial section for the same course, and any number of tutorials for 

different courses. A TA cannot be an instructor, however a student can work as a TA (in 

that case his/her student id is used as TA id). A course can have zero or many lab sections 

unique to the course (i.e. lab sections are not shared by different courses). Each lab 

section has exactly one LA assigned. An LA can oversee more than one lab section for 

the same course, and any number of labs for different courses. An LA cannot be an 

instructor, however a student can work as a LA (in which case his/her student id is used 

as the LA id). In fact, a student can work as a TA and an LA simultaneously. Thus, a TA 

may or may not be a student, an LA may or may not be a student. A person can work as 

both, a TA and a LA. TA has the same attributes as instructor, the same goes for LA. 

Each course has zero to many courses designated as its prerequisites and zero to 

many courses designated as its anti-requisites. Prerequisite courses are of the same or 

lower year, anti-requisite courses are of the same year. In the system we keep information 

of what courses a student has taken and what courses the student is registering. All 

courses are either Pass or Fail. A student can register a course only if he/she has passed 

all the prerequisites and has not passed any or is not  registered in any of the anti-

requisites. A student can only register a course of the appropriate year, i.e. a student in 

year X of study can only register and take course of year X. 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  52 

 

7.2   Course Registration Logical Model 

 

Figure 10:The Course Registration Logical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  53 

 

7.3   Course Registration Physical DB2 Model 

 

Figure 11: The Course Registration Physical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  54 

 

7.4   Course Registration DB2 Schema 
 

CREATE TABLE COURSE (  

     DESIG CHAR(5) NOT NULL, 

    TITLE CHAR(30) NOT NULL,  

   DESCR  CHAR(150) NOT NULL,  

    CLASSROOM CHAR(5) NOT NULL,  

   PRIMARY KEY(DESIG) 

) 

CREATE TABLE Y1COURSE (  

    DESIG CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG) 

) 

CREATE TABLE Y2COURSE (  

    DESIG CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG) 

) 

CREATE TABLE Y3COURSE (  

    DESIG CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG) 

) 

CREATE TABLE Y4COURSE (  

    DESIG CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG) 

) 

CREATE TABLE PREREQ11 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2) 

) 

CREATE TABLE PREREQ12 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y1COURSE (DESIG), 

       FOREIGN KEY (DESIG2) REFERENCES Y2COURSE (DESIG), 

       CONSTRAINT PREREQ12_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE PREREQ13 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y1COURSE (DESIG), 

    FOREIGN KEY (DESIG2) REFERENCES Y3COURSE (DESIG), 

    CONSTRAINT PREREQ13_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE PREREQ14 (  

     DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y1COURSE (DESIG), 

    FOREIGN KEY (DESIG2) REFERENCES Y4COURSE (DESIG), 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  55 

 

    CONSTRAINT PREREQ14_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE PREREQ22 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y2COURSE (DESIG), 

    FOREIGN KEY (DESIG2) REFERENCES Y2COURSE (DESIG), 

    CONSTRAINT PREREQ22_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE PREREQ23 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y2COURSE (DESIG), 

    FOREIGN KEY (DESIG2) REFERENCES Y3COURSE (DESIG), 

    CONSTRAINT PREREQ23_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE PREREQ24 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y2COURSE (DESIG), 

    FOREIGN KEY (DESIG2) REFERENCES Y4COURSE (DESIG), 

    CONSTRAINT PREREQ24_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE PREREQ33 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y3COURSE (DESIG), 

       FOREIGN KEY (DESIG2) REFERENCES Y3COURSE (DESIG), 

       CONSTRAINT PREREQ33_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE PREREQ34 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y3COURSE (DESIG), 

    FOREIGN KEY (DESIG2) REFERENCES Y4COURSE (DESIG), 

    CONSTRAINT PREREQ34_C3 CHECK (DESIG1<>DESIG2) 

)  

CREATE TABLE PREREQ44 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y4COURSE (DESIG), 

       FOREIGN KEY (DESIG2) REFERENCES Y4COURSE (DESIG), 

       CONSTRAINT PREREQ44_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE ANTIREQ1 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  56 

 

    FOREIGN KEY (DESIG1) REFERENCES Y1COURSE (DESIG), 

    FOREIGN KEY (DESIG2) REFERENCES Y1COURSE (DESIG), 

    CONSTRAINT ANTIREQ1_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE ANTIREQ2 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y2COURSE (DESIG), 

    FOREIGN KEY (DESIG2) REFERENCES Y2COURSE (DESIG), 

    CONSTRAINT ANTIREQ2_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE ANTIREQ3 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y3COURSE (DESIG), 

    FOREIGN KEY (DESIG2) REFERENCES Y3COURSE (DESIG), 

    CONSTRAINT ANTIREQ3_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE ANTIREQ4 (  

    DESIG1 CHAR(5) NOT NULL, 

    DESIG2 CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG1,DESIG2), 

    FOREIGN KEY (DESIG1) REFERENCES Y4COURSE (DESIG), 

 FOREIGN KEY (DESIG2) REFERENCES Y4COURSE (DESIG), 

    CONSTRAINT ANTIREQ4_C3 CHECK (DESIG1<>DESIG2) 

) 

CREATE TABLE PERSON (  

    ID CHAR(7) NOT NULL, 

    NAME CHAR(20) NOT NULL, 

    PRIMARY KEY(ID) 

) 

CREATE TABLE STUDENT (  

    ID CHAR(7) NOT NULL, 

    YEAR INTEGER NOT NULL,  

       PRIMARY KEY(ID), 

    FOREIGN KEY (ID) REFERENCES PERSON (ID) 

) 

CREATE TABLE INSTRUCTOR (  

    ID CHAR(7) NOT NULL, 

    DEPT CHAR(4) NOT NULL, 

    ROOM CHAR(5) NOT NULL, 

    EXTENSION CHAR(5) NOT NULL, 

    EMAIL CHAR(20) NOT NULL, 

    PRIMARY KEY(ID), 

    FOREIGN KEY (ID) REFERENCES PERSON (ID), 

    CONSTRAINT INSTRUCTOR_C2 UNIQUE (EMAIL) 

) 

CREATE TABLE STAFF (  

    ID CHAR(7) NOT NULL, 

    DEPT CHAR(4) NOT NULL, 

    ROOM CHAR(5) NOT NULL, 

    EXTENSION CHAR(5) NOT NULL, 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  57 

 

    EMAIL CHAR(20) NOT NULL, 

    PRIMARY KEY(ID), 

    FOREIGN KEY (ID) REFERENCES PERSON (ID), 

    CONSTRAINT STAFF_C2 UNIQUE (EMAIL) 

) 

CREATE TABLE LAB (  

    DESIG CHAR(5) NOT NULL, 

    SECTION INTEGER NOT NULL, 

    LABROOM CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG,SECTION), 

    FOREIGN KEY (DESIG) REFERENCES COURSE (DESIG) 

) 

CREATE TABLE TUTORIAL (  

    DESIG CHAR(5) NOT NULL, 

    SECTION INTEGER NOT NULL, 

    CLASSROOM CHAR(5) NOT NULL, 

    PRIMARY KEY(DESIG,SECTION), 

    FOREIGN KEY (DESIG) REFERENCES COURSE (DESIG) 

) 

CREATE TABLE TA (  

    ID CHAR(7) NOT NULL, 

    PRIMARY KEY(ID), 

    FOREIGN KEY (ID) REFERENCES STAFF (ID) 

) 

CREATE TABLE LA (  

    ID CHAR(7) NOT NULL, 

    PRIMARY KEY(ID), 

    FOREIGN KEY (ID) REFERENCES STAFF (ID) 

)  

CREATE TABLE HASTA (  

    DESIG CHAR(5) NOT NULL, 

    SECTION INTEGER NOT NULL, 

    ID CHAR(7) NOT NULL, 

    PRIMARY KEY(DESIG,SECTION), 

    FOREIGN KEY (DESIG,SECTION) REFERENCES TUTORIAL (DESIG,SECTION), 

    FOREIGN KEY (ID) REFERENCES TA (ID) 

) 

CREATE TABLE HASLA (  

    DESIG CHAR(5) NOT NULL, 

    SECTION INTEGER NOT NULL, 

    ID CHAR(7) NOT NULL, 

    PRIMARY KEY(DESIG,SECTION), 

    FOREIGN KEY (DESIG,SECTION) REFERENCES LAB (DESIG,SECTION), 

    FOREIGN KEY (ID) REFERENCES LA (ID) 

) 

CREATE TABLE HASI (  

    DESIG CHAR(5) NOT NULL, 

    ID CHAR(7) NOT NULL, 

    PRIMARY KEY(DESIG), 

    FOREIGN KEY (DESIG) REFERENCES COURSE (DESIG), 

    FOREIGN KEY (ID) REFERENCES INSTRUCTOR (ID) 

) 

CREATE TABLE L1 (  

    ID CHAR(7) NOT NULL, 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  58 

 

    DESIG CHAR(5) NOT NULL, 

    STATUS CHAR(1) NOT NULL CHECK (STATUS IN ('P','F','R')), 

    PRIMARY KEY(ID,DESIG), 

     FOREIGN KEY (ID) REFERENCES STUDENT (ID), 

    FOREIGN KEY (DESIG) REFERENCES Y1COURSE (DESIG) 

) 

CREATE TABLE L2 (  

    ID CHAR(7) NOT NULL, 

    DESIG CHAR(5) NOT NULL, 

    STATUS CHAR(1) NOT NULL CHECK (STATUS IN ('P','F','R')), 

    PRIMARY KEY(ID,DESIG), 

    FOREIGN KEY (ID) REFERENCES STUDENT (ID), 

    FOREIGN KEY (DESIG) REFERENCES Y2COURSE (DESIG) 

) 

CREATE TABLE L3 (  

    ID CHAR(7) NOT NULL, 

    DESIG CHAR(5) NOT NULL, 

    STATUS CHAR(1) NOT NULL CHECK (STATUS IN ('P','F','R')), 

    PRIMARY KEY(ID,DESIG), 

     FOREIGN KEY (ID) REFERENCES STUDENT (ID), 

     FOREIGN KEY (DESIG) REFERENCES Y3COURSE (DESIG) 

)  

CREATE TABLE L4 (  

    ID CHAR(7) NOT NULL, 

    DESIG CHAR(5) NOT NULL, 

    STATUS CHAR(1) NOT NULL CHECK (STATUS IN ('P','F','R')), 

    PRIMARY KEY(ID,DESIG), 

    FOREIGN KEY (ID) REFERENCES STUDENT (ID), 

    FOREIGN KEY (DESIG) REFERENCES Y4COURSE (DESIG) 

) 

7.5   Course Registration Interactive Queries 
 

Query 1: List all triples (student name, course designation, status) of courses taken or  

               registered by students with id '0000041' and '0000042'. status is the status of  

               each course (i.e. 'P' for passed, 'F' for failed, 'R' for registered).  
 

SELECT  NAME,DESIG,STATUS 

FROM  STUDENT, PERSON,L1 

WHERE  STUDENT.ID=L1.ID  

AND  (STUDENT.ID='0000041' OR STUDENT.ID='0000042')  

AND  STUDENT.ID=PERSON.ID 

UNION 

SELECT  NAME,DESIG,STATUS 

FROM  STUDENT, PERSON,L2 

WHERE  STUDENT.ID=L2.ID 

AND  (STUDENT.ID='0000041' OR STUDENT.ID='0000042') 

AND  STUDENT.ID=PERSON.ID 

  

Query 2: List names of all students in year 1. 

 
SELECT PERSON.NAME 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  59 

 

FROM PERSON, STUDENT 

WHERE PERSON.ID=STUDENT.ID AND STUDENT.YEAR=1 

 

Query 3: List names of all instructors teaching year 1 courses. 

 
SELECT PERSON.NAME 

FROM PERSON, INSTRUCTOR, HASI, Y1COURSE 

WHERE PERSON.ID=INSTRUCTOR.ID 

AND HASI.ID=INSTRUCTOR.ID AND HASI.DESIG=Y1COURSE.DESIG 

 

Query 4: List designation of all courses that have tutorials. No designation can repeat. 

 
SELECT DISTINCT DESIG FROM TUTORIAL 

 

Query 5: List designation of all courses that have labs with more than 1 section. No  

               designation can repeat. 

 
SELECT DISTINCT DESIG FROM LAB WHERE SECTION=2 

 

Query 6: List names of instructors that teach at least one course with multiple sections  

               labs. No name can repeat. 

 
SELECT DISTINCT NAME 

FROM PERSON,INSTRUCTOR,HASI 

WHERE (INSTRUCTOR.ID=PERSON.ID) AND (HASI.ID=PERSON.ID) 

AND HASI.DESIG IN (SELECT COURSE.DESIG FROM COURSE,LAB 

WHERE COURSE.DESIG=LAB.DESIG AND SECTION=2) 

 

Query 7: List names of instructors that teach only courses with single-sections labs or no  

               labs. No name can repeat. 

 
SELECT DISTINCT NAME 

FROM PERSON, INSTRUCTOR 

WHERE (PERSON.ID=INSTRUCTOR.ID) 

AND NAME NOT IN (SELECT DISTINCT NAME FROM PERSON,INSTRUCTOR,HASI 

                 WHERE (INSTRUCTOR.ID=PERSON.ID) AND (HASI.ID=PERSON.ID) 

                 AND HASI.DESIG IN (SELECT COURSE.DESIG FROM COURSE,LAB 

                                    WHERE COURSE.DESIG=LAB.DESIG 

                                    AND SECTION=2)) 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  60 

 

Chapter 8: Emergency Room  

8.1   Emergency Room Informal Description 
 

In our Emergency Room (ER), we have three distinct types of workers: receptionists, 

nurses, and doctors. Any of the workers can in fact be a patient. Each person in the 

proposed system, be it a patient or a worker has a last, a first, possibly a middle name, and 

one or more addresses. An address consists of a country, province, city, street and street 

number. Each person can have none or more email addresses, none or more telephone 

numbers. 

The workers work in ER in shifts. A shift consists of start and end time. The shifts 

do not overlap, but they are consecutive, i.e. there is a shift on at any given time and day. 

We are assuming that the model we are creating (and eventually the database we will 

design) covers some extended period of time. Each worker will thus be assigned to many 

shifts in that period. Exactly two receptionists are assigned to each shift, a group of two or 

more nurses is assigned to each shift, a group of two or more doctors is assigned to each 

shift, one of the doctors assigned to a shift is the shift’s triage doctor. 

When a patient comes to ER, it happens during a particular shift. The patient is 

admitted by a particular receptionist, is seen by the triage doctor of the shift. The patient 

may be send home, prescribed some medication by the triage doctor and send home, or is 

staying in ER – in which case the patient is assigned a bed and case doctors (one of the 

doctors on each shift best qualified for the particular problem of the patient). Each bed is 

supervised by a single nurse during a shift, but a nurse may supervise many beds, or none 

at all. The case doctor(s) may prescribe a medication that is administered to the patient by 

a single nurse in each shift for the duration of the patient taking the medicine. Each 

medication has a name, and for each patient there may be a different dosage and different 

number of times a day to take it. 

 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  61 

 

8.2   Emergency Room Logical Model 

 

Figure 12: The Emergency Room Logical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  62 

 

8.3   Emergency Room Physical DB2 Model 

 

Figure 13: The Emergency Room Physical Model



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  63 

 

8.4   Emergency Room DB2 Schema 
 

CREATE TABLE PERSON( 

       ID INTEGER NOT NULL, 

       LASTNAME CHAR(10) NOT NULL,  

       FIRSTNAME CHAR(10) NOT NULL,  

       MIDDLENAME CHAR(10), 

       PRIMARY KEY (ID) 

) 

CREATE TABLE PATIENT( 

       PID INTEGER NOT NULL, 

       PRIMARY KEY (PID), 

       FOREIGN KEY (PID) REFERENCES PERSON (ID) 

) 

CREATE TABLE WORKER( 

       WID INTEGER NOT NULL, 

       PRIMARY KEY (WID), 

       FOREIGN KEY (WID) REFERENCES PERSON (ID) 

) 

CREATE TABLE RECEPTIONIST( 

       RID INTEGER NOT NULL, 

       PRIMARY KEY (RID), 

       FOREIGN KEY (RID) REFERENCES WORKER (WID) 

) 

CREATE TABLE NURSE( 

       NID INTEGER NOT NULL, 

       PRIMARY KEY (NID), 

       FOREIGN KEY (NID) REFERENCES WORKER (WID) 

) 

CREATE TABLE DOCTOR( 

       DID INTEGER NOT NULL, 

       PRIMARY KEY (DID), 

       FOREIGN KEY (DID) REFERENCES WORKER (WID) 

) 

CREATE TABLE EMAIL( 

       EADDRESS CHAR(20) NOT NULL, 

       PRIMARY KEY (EADDRESS) 

) 

CREATE TABLE PHONENO( 

       AREACODE CHAR(3) NOT NULL, 

       NUMBER CHAR(7) NOT NULL, 

       PRIMARY KEY (AREACODE,NUMBER) 

) 

CREATE TABLE ADDRESS( 

       PROVINCE CHAR(2) NOT NULL,  

       CITY CHAR(10) NOT NULL, 

       STREET CHAR(10) NOT NULL, 

       STREETNO CHAR(6) NOT NULL, 

       PRIMARY KEY (PROVINCE,CITY,STREET,STREETNO) 

) 

CREATE TABLE MEDICATION( 

       NAME CHAR(30) NOT NULL, 

       PRIMARY KEY (NAME) 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  64 

 

) 

CREATE TABLE BED( 

       NUMBER CHAR(3) NOT NULL, 

       PRIMARY KEY (NUMBER) 

) 

CREATE TABLE SHIFT( 

       SHIFTID INTEGER NOT NULL, 

       FROM TIMESTAMP NOT NULL, 

       TO TIMESTAMP NOT NULL, 

       PRIMARY KEY (SHIFTID), 

       UNIQUE (FROM,TO), 

       CHECK (FROM < TO) 

) 

CREATE TABLE HASE( 

       ID INTEGER NOT NULL, 

       EADDRESS CHAR(20) NOT NULL, 

       PRIMARY KEY (ID,EADDRESS), 

       FOREIGN KEY (ID) REFERENCES PERSON (ID), 

       FOREIGN KEY (EADDRESS) REFERENCES EMAIL (EADDRESS) 

) 

CREATE TABLE HASP( 

       ID INTEGER NOT NULL, 

       AREACODE CHAR(3) NOT NULL, 

       NUMBER CHAR(7) NOT NULL, 

       PRIMARY KEY (ID,AREACODE,NUMBER), 

       FOREIGN KEY (ID) REFERENCES PERSON (ID), 

       FOREIGN KEY (AREACODE,NUMBER) REFERENCES PHONENO(AREACODE,NUMBER) 

) 

CREATE TABLE HASA( 

       ID INTEGER NOT NULL, 

       PROVINCE CHAR(2) NOT NULL, 

       CITY CHAR(10) NOT NULL, 

       STREET CHAR(10) NOT NULL, 

       STREETNO CHAR(6) NOT NULL, 

       PRIMARY KEY (ID,PROVINCE,CITY,STREET,STREETNO), 

       FOREIGN KEY (ID) REFERENCES PERSON (ID), 

       FOREIGN KEY (PROVINCE,CITY,STREET,STREETNO) REFERENCES ADDRESS  

                   (PROVINCE,CITY,STREET,STREETNO) 

) 

CREATE TABLE RONS( 

       RID INTEGER NOT NULL, 

       SHIFTID INTEGER NOT NULL, 

       PRIMARY KEY (RID,SHIFTID), 

       FOREIGN KEY (RID) REFERENCES RECEPTIONIST (RID), 

       FOREIGN KEY (SHIFTID) REFERENCES SHIFT (SHIFTID) 

) 

CREATE TABLE NONS( 

       NID INTEGER NOT NULL, 

       SHIFTID INTEGER NOT NULL, 

       PRIMARY KEY (NID,SHIFTID), 

       FOREIGN KEY (NID) REFERENCES NURSE (NID), 

       FOREIGN KEY (SHIFTID) REFERENCES SHIFT (SHIFTID) 

) 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  65 

 

CREATE TABLE DONS( 

       DID INTEGER NOT NULL, 

       SHIFTID INTEGER NOT NULL, 

       PRIMARY KEY (DID,SHIFTID), 

       FOREIGN KEY (DID) REFERENCES DOCTOR (DID), 

       FOREIGN KEY (SHIFTID) REFERENCES SHIFT (SHIFTID) 

) 

CREATE TABLE MED( 

       PX INTEGER NOT NULL, 

       PID INTEGER NOT NULL, 

       DID INTEGER NOT NULL, 

       MED CHAR(30) NOT NULL, 

       DOSAGE INTEGER NOT NULL, 

       MEDFROM DATE NOT NULL, 

       MEDTO DATE NOT NULL, 

       HOWOFTEN INTEGER NOT NULL, 

       PRIMARY KEY (PX), 

       UNIQUE (PID,MED), 

       FOREIGN KEY (PID) REFERENCES PATIENT (PID), 

       FOREIGN KEY (DID) REFERENCES DOCTOR (DID), 

       FOREIGN KEY (MED) REFERENCES MEDICATION (NAME) 

) 

CREATE TABLE MEDA( 

       PX INTEGER NOT NULL, 

       NID INTEGER NOT NULL, 

       SHIFTID INTEGER NOT NULL, 

       PRIMARY KEY (PX,SHIFTID,NID), 

       FOREIGN KEY (PX) REFERENCES MED (PX), 

       FOREIGN KEY (NID,SHIFTID) REFERENCES NONS (NID,SHIFTID) 

) 

CREATE TABLE BEDA( 

       PID INTEGER NOT NULL, 

       BEDNO CHAR(3) NOT NULL, 

       FROM TIMESTAMP NOT NULL, 

       TO TIMESTAMP NOT NULL, 

       PRIMARY KEY (PID, BEDNO), 

       FOREIGN KEY (PID) REFERENCES PATIENT (PID), 

       FOREIGN KEY (BEDNO) REFERENCES BED (NUMBER) 

) 

CREATE TABLE CASEDOC( 

       PID INTEGER NOT NULL, 

       DID INTEGER NOT NULL, 

       SHIFTID INTEGER NOT NULL, 

       PRIMARY KEY (PID,SHIFTID,DID), 

       FOREIGN KEY (PID) REFERENCES PATIENT (PID), 

       FOREIGN KEY (DID,SHIFTID) REFERENCES DONS (DID,SHIFTID) 

) 

CREATE TABLE SUPBY( 

       BEDNO CHAR(3) NOT NULL, 

       NID INTEGER NOT NULL, 

       SHIFTID INTEGER NOT NULL, 

       PRIMARY KEY (BEDNO,SHIFTID,NID), 

       FOREIGN KEY (BEDNO) REFERENCES BED (NUMBER), 

       FOREIGN KEY (NID,SHIFTID) REFERENCES NONS (NID,SHIFTID) 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  66 

 

) 

CREATE TABLE ADM( 

       PID INTEGER NOT NULL, 

       RID INTEGER NOT NULL, 

       SHIFTID INTEGER NOT NULL, 

       ADMISSION TIMESTAMP, 

       PRIMARY KEY (PID), 

       FOREIGN KEY (PID) REFERENCES PATIENT (PID), 

       FOREIGN KEY (RID,SHIFTID) REFERENCES RONS (RID,SHIFTID) 

) 

CREATE TABLE TRIAGEBY( 

       PID INTEGER NOT NULL, 

       DID INTEGER NOT NULL, 

       PRIMARY KEY (PID), 

       FOREIGN KEY (PID) REFERENCES PATIENT (PID), 

       FOREIGN KEY (DID) REFERENCES DOCTOR (DID) 

) 

8.5   Emergency Room Interactive Queries 
  

Query 1: The query returns an empty set if con1 is satisfied. 

 
((SELECT RID FROM RECEPTIONIST) INTERSECT (SELECT NID FROM NURSE)) 

UNION 

((SELECT RID FROM RECEPTIONIST) INTERSECT (SELECT DID FROM DOCTOR)) 

UNION 

((SELECT NID FROM NURSE) INTERSECT (SELECT DID FROM DOCTOR) 

 

Query 2: The query returns an empty set if con2 is satisfied. 

 
SELECT EADDRESS FROM EMAIL 

EXCEPT  

SELECT EADDRESS FROM HASE 

 

Query 3: The query returns an empty set if con3 is satisfied. 

 
SELECT AREACODE,NUMBER FROM PHONENO  

EXCEPT  

SELECT AREACODE,NUMBER FROM HASP 

 

Query 4: The query returns an empty set if con4 is satisfied. 

 
SELECT PROVINCE,CITY,STREET,STRETNO  FROM ADDRESS  

EXCEPT  

SELECT PROVINCE,CITY,STREET,STREETNO FROM HASA 

  

Query 5: The query returns an empty set if con5 is satisfied. 

 
SELECT ID FROM PERSON 

EXCEPT  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  67 

 

SELECT ID FROM HASA 

 

Query 6: The query returns an empty set if con6 is satisfied. 

 
((SELECT SHIFTID FROM RONS) 

 EXCEPT 

((SELECT T.SHIFTID FROM RONS AS T,RONS AS R 

  WHERE T.RID <> R.RID AND T.SHIFTID = R.SHIFTID) 

  EXCEPT 

  (SELECT T.SHIFTID FROM RONS AS T,RONS AS R,RONS AS Q 

   WHERE T.SHIFTID = R.SHIFTID AND T.SHIFTID = Q.SHIFTID 

   AND T.RID <> R.RID AND T.RID<>Q.RID AND R.RID<>Q.RID)) 

) 

  

Query 7: The query returns an empty set if con7 is satisfied. 
 

(SELECT SHIFTID FROM SHIFT) EXCEPT (SELECT SHIFTID FROM RONS) 

UNION 

(SELECT RID FROM RECEPTIONIST) EXCEPT (SELECT RID FROM RONS) 

 

Query 8: The query returns an empty set if con8 is satisfied. 

 
SELECT SHIFTID FROM SHIFT 

EXCEPT 

SELECT T.SHIFTID FROM NONS AS T,NONS AS R 

WHERE T.NID <> R.NID AND T.SHIFTID = R.SHIFTID 

  

Query 9: The query returns an empty set if con9 is satisfied. 

 
(SELECT SHIFTID FROM SHIFT) EXCEPT (SELECT SHIFTID FROM NONS) 

UNION  

(SELECT NID FROM NURSE) EXCEPT (SELECT NID FROM NONS) 

 

Query 10: The query returns an empty set if con10 is satisfied. 

 
((SELECT SHIFTID FROM SHIFT) 

EXCEPT 

(SELECT T.SHIFTID 

 FROM DONS AS T,DONS AS R 

 WHERE T.DID <> R.DID AND T.SHIFTID = R.SHIFTID)) 

 

Query 11: The query returns an empty set if con11 is satisfied. 

 
((SELECT SHIFTID FROM SHIFT) EXCEPT (SELECT SHIFTID FROM DONS)) 

UNION 

((SELECT DID FROM DOCTOR) EXCEPT (SELECT DID FROM DONS)) 

 

Query 12: The query returns an empty set if con12 is satisfied. 

 
((SELECT PID FROM CASEDOC) EXCEPT (SELECT PID FROM BEDA)) 

  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  68 

 

Query 13: The query returns an empty set if con13 is satisfied. 

 
((SELECT PID FROM BEDA) EXCEPT (SELECT PID FROM CASEDOC)) 

 

Query 14: The query returns an empty set if con14 is satisfied. 

 
((SELECT BED.NUMBER,SHIFTID FROM BED,SHIFT) 

 EXCEPT 

 (SELECT BED.NUMBER,SHIFTID FROM BED,SUPBY 

  WHERE BED.NUMBER=SUPBY.BEDNO)) 

 

Query 15: The query returns an empty set if con15 is satisfied. 

 
(SELECT FROM,TO,ADMISSION FROM SHIFT,ADM 

 WHERE SHIFT.SHIFTID=ADM.SHIFTID 

 AND (ADMISSION < FROM OR TO < ADMISSION)) 

 

Query 16: The query returns an empty set if con16 is satisfied. 

 
((SELECT PID FROM TRIAGEBY) 

  EXCEPT 

 (SELECT TRIAGEBY.PID FROM DONS,ADM,TRIAGEBY 

  WHERE TRIAGEBY.PID=ADM.PID AND ADM.SHIFTID=DONS.SHIFTID 

  AND DONS.DID=TRIAGEBY.DID)) 

 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  69 

 

Chapter 9: Property Rental 

9.1   Property Rental Informal Description 
 

Our company arranges rentals of properties owned by both private and business owners. 

We assign every property owner a unique owner number for identification, we record its 

address  (consisting of a street, street number, town or city, and province), the owner’s 

name (consisting of first, middle, and last name for a person or name of a business), and 

the owners email addresses and the owner phone numbers. For a business owner, we 

record the type (description) of its business. Each property is identified by a unique 

property number, we record its address and its type. Each property may be placed in 

several advertisements. Each such advertisement may be displayed in many newspapers 

on several dates. The newspapers are identified by unique names. 

 The term renter refers to a private person or a business who signed a rental 

agreement for a property. Each such rental agreement is identified in our database by a 

unique rental number. We record the date of the singing of the rental agreement, the 

starting and ending date of the rental agreement.  A renter can rent many properties. A 

renter, prior to accepting the rental agreement may view the property repeatedly and we 

record the date of viewing. For each renter, we record its address, its name, its email 

address and phone numbers. Each renter has a unique renter number in our database. 

 Our agency is organized into branches and every staff member is allocated to 

exactly one branch. Each branch has one manager who is a member of the staff. In our 

database, we identify the staff by a unique staff number. For each staff member we record 

address, name, email address, phone numbers, sex, position,  and salary. Each property is 

in care of one of our branches. Each renter refers to the branch that is in care of the 

property it rents. Each property is overseen by a unique staff member. Each branch has an 

address, phone number, and a unique branch number. 

 

 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  70 

 

9.2   Property Rental Logical Model 

 

Figure 14: The Property Rental Logical Model



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  71 

 

9.3   Property Rental Physical DB2 Model 

 

Figure 15: The Property Rental Physical Model



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  72 

 

9.4   Property Rental DB2 Schema 
CREATE TABLE BRANCH ( 

       BRANCH_NO CHAR(4) NOT NULL, 

       STREET_NO CHAR(4) NOT NULL, 

       STREET CHAR(10) NOT NULL, 

       CITY CHAR(10) NOT NULL, 

       PROVINCE CHAR(2) NOT NULL, 

       POSTAL_CODE CHAR(6) NOT NULL, 

       MANAGER CHAR(4) NOT NULL, 

       PRIMARY KEY (BRANCH_NO), 

       CHECK (PROVINCE IN ('AL','BC','MA','NB','NF','NT','NS', 'NU', 

                           'ON','PE','QB','SA','YU')), 

       CHECK (('A'<=SUBSTR(POSTAL_CODE,1,1) AND  

             SUBSTR(POSTAL_CODE,1,1)<='Z') AND 

         ('0'<=SUBSTR(POSTAL_CODE,2,1) AND SUBSTR(POSTAL_CODE,2,1)<='9')    

         AND 

         ('A'<=SUBSTR(POSTAL_CODE,3,1) AND SUBSTR(POSTAL_CODE,3,1)<='Z') 

         AND 

         ('0'<=SUBSTR(POSTAL_CODE,4,1) AND SUBSTR(POSTAL_CODE,4,1)<='9')  

         AND 

         ('A'<=SUBSTR(POSTAL_CODE,5,1) AND SUBSTR(POSTAL_CODE,5,1)<='Z')  

         AND 

         ('0'<=SUBSTR(POSTAL_CODE,6,1) AND   

          SUBSTR(POSTAL_CODE,6,1)<='9')), 

       UNIQUE(MANAGER) 

) 

CREATE TABLE STAFF ( 

       STAFF_NO CHAR(4) NOT NULL, 

       LAST_NAME CHAR(20) NOT NULL, 

       FIRST_NAME CHAR(10) NOT NULL, 

       MIDDLE_NAME CHAR(10), 

       STREET_NO CHAR(4) NOT NULL, 

       STREET CHAR(10) NOT NULL, 

       CITY CHAR(10) NOT NULL, 

       PROVINCE CHAR(2) NOT NULL, 

       POSTAL_CODE CHAR(6) NOT NULL, 

       SEX CHAR(1) NOT NULL, 

       SALARY DECIMAL(9,2) NOT NULL, 

       ALLOCATED_TO CHAR(4) NOT NULL, 

       PRIMARY KEY (STAFF_NO), 

       FOREIGN KEY (ALLOCATED_TO) REFERENCES BRANCH, 

       CHECK (PROVINCE IN ('AL','BC','MA','NB','NF','NT','NS',  

                           'NU','ON','PE','QB','SA','YU')), 

       CHECK (SEX IN ('F','M','N')), 

       CHECK (SALARY > 0), 

       CHECK (('A'<=SUBSTR(POSTAL_CODE,1,1)  

       AND SUBSTR(POSTAL_CODE,1,1)<='Z')  

       AND ('0'<=SUBSTR(POSTAL_CODE,2,1)  

       AND SUBSTR(POSTAL_CODE,2,1)<='9') 

       AND ('A'<=SUBSTR(POSTAL_CODE,3,1)  

       AND SUBSTR(POSTAL_CODE,3,1)<='Z')  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  73 

 

       AND ('0'<=SUBSTR(POSTAL_CODE,4,1)  

       AND SUBSTR(POSTAL_CODE,4,1)<='9') 

       AND  ('A'<=SUBSTR(POSTAL_CODE,5,1)  

       AND SUBSTR(POSTAL_CODE,5,1)<='Z')  

       AND ('0'<=SUBSTR(POSTAL_CODE,6,1)  

       AND SUBSTR(POSTAL_CODE,6,1)<='9'))     

) 

CREATE TABLE OWNER ( 

       OWNER_NO CHAR(4) NOT NULL, 

       NAME CHAR(20) NOT NULL, 

       FIRST_NAME CHAR(10), 

       MIDDLE_NAME CHAR(10), 

       STREET_NO CHAR(4) NOT NULL, 

       STREET CHAR(10) NOT NULL, 

       CITY CHAR(10) NOT NULL, 

       PROVINCE CHAR(2) NOT NULL, 

       POSTAL_CODE CHAR(6) NOT NULL, 

       TYPE_OF_BUSINESS CHAR(2), 

       PRIMARY KEY (OWNER_NO), 

       CHECK (PROVINCE IN ('AL','BC','MA','NB','NF','NT','NS','NU',  

                           'ON','PE','QB','SA','YU')), 

  CHECK (('A'<=SUBSTR(POSTAL_CODE,1,1) AND SUBSTR(POSTAL_CODE,1,1)<='Z')  

  AND ('0'<=SUBSTR(POSTAL_CODE,2,1) AND SUBSTR(POSTAL_CODE,2,1)<='9')  

  AND ('A'<=SUBSTR(POSTAL_CODE,3,1) AND SUBSTR(POSTAL_CODE,3,1)<='Z') 

  AND ('0'<=SUBSTR(POSTAL_CODE,4,1) AND SUBSTR(POSTAL_CODE,4,1)<='9')  

  AND ('A'<=SUBSTR(POSTAL_CODE,5,1) AND SUBSTR(POSTAL_CODE,5,1)<='Z')  

  AND ('0'<=SUBSTR(POSTAL_CODE,6,1) AND SUBSTR(POSTAL_CODE,6,1)<='9')), 

  CHECK(TYPE_OF_BUSINESS IS NULL OR (FIRST_NAME IS NULL AND MIDDLE_NAME  

        IS NULL)) 

) 

CREATE TABLE RENTER ( 

       RENTER_NO CHAR(4) NOT NULL, 

       NAME CHAR(20) NOT NULL, 

       FIRST_NAME CHAR(10), 

       MIDDLE_NAME CHAR(10), 

       STREET_NO CHAR(4) NOT NULL, 

       STREET CHAR(10) NOT NULL, 

       CITY CHAR(10) NOT NULL, 

       PROVINCE CHAR(2) NOT NULL, 

       POSTAL_CODE CHAR(6) NOT NULL, 

       TYPE_OF_BUSINESS CHAR(2), 

       PRIMARY KEY (RENTER_NO), 

  CHECK (PROVINCE IN ('AL','BC','MA','NB','NF','NT','NS','NU','ON',  

                      'PE','QB','SA','YU')), 

  CHECK (('A'<=SUBSTR(POSTAL_CODE,1,1) AND SUBSTR(POSTAL_CODE,1,1)<='Z')  

  AND ('0'<=SUBSTR(POSTAL_CODE,2,1) AND SUBSTR(POSTAL_CODE,2,1)<='9')  

  AND ('A'<=SUBSTR(POSTAL_CODE,3,1) AND SUBSTR(POSTAL_CODE,3,1)<='Z') 

  AND ('0'<=SUBSTR(POSTAL_CODE,4,1) AND SUBSTR(POSTAL_CODE,4,1)<='9') 

  AND ('A'<=SUBSTR(POSTAL_CODE,5,1) AND SUBSTR(POSTAL_CODE,5,1)<='Z') 

  AND ('0'<=SUBSTR(POSTAL_CODE,6,1) AND SUBSTR(POSTAL_CODE,6,1)<='9')), 

  CHECK(TYPE_OF_BUSINESS IS NULL OR (FIRST_NAME IS NULL AND MIDDLE_NAME 

  IS NULL)) 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  74 

 

) 

CREATE TABLE PROPERTY ( 

       PROPERTY_NO CHAR(4) NOT NULL, 

       STREET_NO CHAR(4) NOT NULL, 

       STREET CHAR(10) NOT NULL, 

       CITY CHAR(10) NOT NULL, 

       PROVINCE CHAR(2) NOT NULL, 

       POSTAL_CODE CHAR(6) NOT NULL, 

       OVERSEEN_BY CHAR(4) NOT NULL, 

       OWNED_BY CHAR(4) NOT NULL, 

       TYPE CHAR(2) NOT NULL, 

       PRIMARY KEY (PROPERTY_NO), 

       FOREIGN KEY (OVERSEEN_BY) REFERENCES STAFF, 

       FOREIGN KEY (OWNED_BY) REFERENCES OWNER, 

  CHECK (PROVINCE IN ('AL','BC','MA','NB','NF','NT','NS','NU','ON', 

                      'PE','QB','SA','YU')), 

  CHECK (('A'<=SUBSTR(POSTAL_CODE,1,1) AND SUBSTR(POSTAL_CODE,1,1)<='Z') 

  AND ('0'<=SUBSTR(POSTAL_CODE,2,1) AND SUBSTR(POSTAL_CODE,2,1)<='9')  

  AND ('A'<=SUBSTR(POSTAL_CODE,3,1) AND SUBSTR(POSTAL_CODE,3,1)<='Z')  

  AND ('0'<=SUBSTR(POSTAL_CODE,4,1) AND SUBSTR(POSTAL_CODE,4,1)<='9')  

  AND ('A'<=SUBSTR(POSTAL_CODE,5,1) AND SUBSTR(POSTAL_CODE,5,1)<='Z') 

  AND ('0'<=SUBSTR(POSTAL_CODE,6,1) AND SUBSTR(POSTAL_CODE,6,1)<='9')) 

) 

CREATE TABLE RENTAL_AGREEMENT ( 

       PROPERTY_NO CHAR(4) NOT NULL, 

       RENTAL_NO CHAR(4) NOT NULL, 

       SIGNING_DATE DATE NOT NULL, 

       STARTING_DATE DATE NOT NULL, 

       ENDING_DATE DATE NOT NULL, 

       RENTER_NO CHAR(4) NOT NULL, 

       PRIMARY KEY (PROPERTY_NO,RENTAL_NO), 

       FOREIGN KEY (PROPERTY_NO) REFERENCES PROPERTY, 

       FOREIGN KEY (RENTER_NO) REFERENCES RENTER, 

       CHECK (SIGNING_DATE <= STARTING_DATE), 

       CHECK (STARTING_DATE <= ENDING_DATE) 

) 

CREATE TABLE RENTER_EMAIL ( 

       EMAIL_ADDR CHAR(20) NOT NULL, 

       RENTER_NO CHAR(4) NOT NULL, 

       PRIMARY KEY (EMAIL_ADDR,RENTER_NO), 

       FOREIGN KEY (RENTER_NO) REFERENCES RENTER 

) 

CREATE TABLE STAFF_EMAIL ( 

       EMAIL_ADDR CHAR(20) NOT NULL, 

       STAFF_NO CHAR(4) NOT NULL, 

       PRIMARY KEY (EMAIL_ADDR,STAFF_NO), 

       FOREIGN KEY (STAFF_NO) REFERENCES STAFF 

) 

CREATE TABLE OWNER_EMAIL (   

       EMAIL_ADDR CHAR(20) NOT NULL, 

       OWNER_NO CHAR(4) NOT NULL, 

       PRIMARY KEY (EMAIL_ADDR,OWNER_NO), 

       FOREIGN KEY (OWNER_NO) REFERENCES OWNER 

) 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  75 

 

CREATE TABLE BRANCH_EMAIL ( 

       EMAIL_ADDR CHAR(20) NOT NULL, 

       BRANCH_NO CHAR(4) NOT NULL, 

       PRIMARY KEY (EMAIL_ADDR,BRANCH_NO), 

       FOREIGN KEY (BRANCH_NO) REFERENCES BRANCH 

) 

CREATE TABLE RENTER_PHONE ( 

       AREA_CODE CHAR(3) NOT NULL, 

       PHONE_NO CHAR(7) NOT NULL, 

       EXTENSION VARCHAR(5), 

       RENTER_NO CHAR(4) NOT NULL, 

       PRIMARY KEY (AREA_CODE,PHONE_NO,RENTER_NO), 

       FOREIGN KEY (RENTER_NO) REFERENCES RENTER, 

  CHECK(('0'<=SUBSTR(AREA_CODE,1,1) AND SUBSTR(AREA_CODE,1,1)<='9')  

  AND ('0'<=SUBSTR(AREA_CODE,2,1) AND SUBSTR(AREA_CODE,2,1)<='9')  

  AND ('0'<=SUBSTR(AREA_CODE,3,1) AND SUBSTR(AREA_CODE,3,1)<='9')), 

  CHECK(('0'<=SUBSTR(PHONE_NO,1,1) AND SUBSTR(PHONE_NO,1,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,2,1) AND SUBSTR(PHONE_NO,2,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,3,1) AND SUBSTR(PHONE_NO,3,1)<='9')    

  AND ('0'<=SUBSTR(PHONE_NO,4,1) AND SUBSTR(PHONE_NO,4,1)<='9')     

  AND ('0'<=SUBSTR(PHONE_NO,5,1) AND SUBSTR(PHONE_NO,5,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,6,1) AND SUBSTR(PHONE_NO,6,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,7,1) AND SUBSTR(PHONE_NO,7,1)<='9')) 

) 

CREATE TABLE STAFF_PHONE ( 

       AREA_CODE CHAR(3) NOT NULL, 

       PHONE_NO CHAR(7) NOT NULL, 

       EXTENSION VARCHAR(5), 

       STAFF_NO CHAR(4) NOT NULL, 

       PRIMARY KEY (AREA_CODE,PHONE_NO,STAFF_NO), 

       FOREIGN KEY (STAFF_NO) REFERENCES STAFF, 

  CHECK(('0'<=SUBSTR(AREA_CODE,1,1) AND SUBSTR(AREA_CODE,1,1)<='9')  

  AND ('0'<=SUBSTR(AREA_CODE,2,1) AND SUBSTR(AREA_CODE,2,1)<='9')  

  AND ('0'<=SUBSTR(AREA_CODE,3,1) AND SUBSTR(AREA_CODE,3,1)<='9')), 

  CHECK(('0'<=SUBSTR(PHONE_NO,1,1) AND SUBSTR(PHONE_NO,1,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,2,1) AND SUBSTR(PHONE_NO,2,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,3,1) AND SUBSTR(PHONE_NO,3,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,4,1) AND SUBSTR(PHONE_NO,4,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,5,1) AND SUBSTR(PHONE_NO,5,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,6,1) AND SUBSTR(PHONE_NO,6,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,7,1) AND SUBSTR(PHONE_NO,7,1)<='9')) 

) 

CREATE TABLE OWNER_PHONE ( 

       AREA_CODE CHAR(3) NOT NULL, 

       PHONE_NO CHAR(7) NOT NULL, 

       EXTENSION VARCHAR(5), 

       OWNER_NO CHAR(4) NOT NULL, 

       PRIMARY KEY (AREA_CODE,PHONE_NO,OWNER_NO), 

       FOREIGN KEY (OWNER_NO) REFERENCES OWNER, 

  CHECK(('0'<=SUBSTR(AREA_CODE,1,1) AND SUBSTR(AREA_CODE,1,1)<='9')  

  AND ('0'<=SUBSTR(AREA_CODE,2,1) AND SUBSTR(AREA_CODE,2,1)<='9')  

  AND ('0'<=SUBSTR(AREA_CODE,3,1) AND SUBSTR(AREA_CODE,3,1)<='9')), 

  CHECK(('0'<=SUBSTR(PHONE_NO,1,1) AND SUBSTR(PHONE_NO,1,1)<='9') 

  AND ('0'<=SUBSTR(PHONE_NO,2,1) AND SUBSTR(PHONE_NO,2,1)<='9')   



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  76 

 

  AND ('0'<=SUBSTR(PHONE_NO,3,1) AND SUBSTR(PHONE_NO,3,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,4,1) AND SUBSTR(PHONE_NO,4,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,5,1) AND SUBSTR(PHONE_NO,5,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,6,1) AND SUBSTR(PHONE_NO,6,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,7,1) AND SUBSTR(PHONE_NO,7,1)<='9')) 

) 

CREATE TABLE BRANCH_PHONE ( 

       AREA_CODE CHAR(3) NOT NULL, 

       PHONE_NO CHAR(7) NOT NULL, 

       EXTENSION VARCHAR(5), 

       BRANCH_NO CHAR(4) NOT NULL, 

       PRIMARY KEY (AREA_CODE,PHONE_NO,BRANCH_NO), 

       FOREIGN KEY (BRANCH_NO) REFERENCES BRANCH, 

  CHECK(('0'<=SUBSTR(AREA_CODE,1,1) AND SUBSTR(AREA_CODE,1,1)<='9')  

  AND ('0'<=SUBSTR(AREA_CODE,2,1) AND SUBSTR(AREA_CODE,2,1)<='9')  

  AND ('0'<=SUBSTR(AREA_CODE,3,1) AND SUBSTR(AREA_CODE,3,1)<='9')), 

  CHECK(('0'<=SUBSTR(PHONE_NO,1,1) AND SUBSTR(PHONE_NO,1,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,2,1) AND SUBSTR(PHONE_NO,2,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,3,1) AND SUBSTR(PHONE_NO,3,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,4,1) AND SUBSTR(PHONE_NO,4,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,5,1) AND SUBSTR(PHONE_NO,5,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,6,1) AND SUBSTR(PHONE_NO,6,1)<='9')  

  AND ('0'<=SUBSTR(PHONE_NO,7,1) AND SUBSTR(PHONE_NO,7,1)<='9')) 

) 

CREATE TABLE VIEWING ( 

       PROPERTY_NO CHAR(4) NOT NULL, 

       RENTER_NO CHAR(4) NOT NULL, 

       VIEWING_DATE DATE NOT NULL, 

       PRIMARY KEY (PROPERTY_NO,VIEWING_DATE,RENTER_NO), 

       FOREIGN KEY (PROPERTY_NO) REFERENCES PROPERTY, 

       FOREIGN KEY (RENTER_NO) REFERENCES RENTER 

) 

CREATE TABLE NEWSPAPER ( 

       PAPER_NAME CHAR(20) NOT NULL, 

       PRIMARY KEY (PAPER_NAME) 

) 

CREATE TABLE ADVERTISEMENT ( 

       PAPER_NAME CHAR(20) NOT NULL, 

       AD_NO CHAR(4) NOT NULL, 

       AD_DATE DATE NOT NULL, 

       PROPERTY_NO CHAR(4) NOT NULL,   

      PRIMARY KEY (PAPER_NAME,AD_NO), 

      FOREIGN KEY (PAPER_NAME) REFERENCES NEWSPAPER, 

      FOREIGN KEY (PROPERTY_NO) REFERENCES PROPERTY 

) 

ALTER TABLE BRANCH 

ADD CONSTRAINT MANAGER_CNST FOREIGN KEY (MANAGER) REFERENCES 

STAFF(STAFF_NO) 

 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  77 

 

9.5   Property Rental Interactive Queries 
 

Query 1: Give the staff number of each of the staff members whose salary is greater than  

               5000. Please, sort them by the staff number. 
 

SELECT STAFF_NO FROM STAFF 

WHERE SALARY > 5000 

ORDER BY STAFF_NO 

 

Query 2: Give the renter number of each of the renters who has a viewing record. Please  

               avoid duplications. 
 

SELECT DISTINCT RENTER_NO FROM VIEWING 

 

Query 3: Give the dates of all the advertisements posted in THE GLOBE AND MAIL in 

               2005. Please, avoid duplications. 
 

SELECT DISTINCT AD_DATE FROM ADVERTISEMENT  

WHERE PAPER_NAME = 'THE GLOBE AND MAIL' AND AD_DATE>='2005-01-01'  

AND AD_DATE<='2005-12-31' 

ORDER BY AD_DATE 

 

Query 4: Give the email addresses and the renter number for all the private renters.  

               Please, sort them by the renter number. 
 

SELECT EMAIL_ADDR, RENTER.RENTER_NO 

FROM RENTER_EMAIL, RENTER 

WHERE RENTER_EMAIL.RENTER_NO = RENTER.RENTER_NO  

AND TYPE_OF_BUSINESS IS NULL  

ORDER BY RENTER.RENTER_NO 

 

Query 5: Find the properties that are already advertised but not yet rented. Please, avoid 

               duplications. 
 

SELECT DISTINCT PROPERTY_NO FROM ADVERTISEMENT 

WHERE PROPERTY_NO NOT IN (SELECT DISTINCT PROPERTY_NO  

                          FROM RENTAL_AGREEMENT) 

 

Query 6: Give the names and the branch numbers of all the staff members working  in the 

               branch which is located in Hamilton. The names should be listed in an 

               alphabetic order (by last, then by first, then by middle names). 

 
SELECT FIRST_NAME,MIDDLE_NAME,LAST_NAME,BRANCH_NO 

FROM STAFF,BRANCH 

WHERE STAFF.ALLOCATED_TO=BRANCH.BRANCH_NO  

AND BRANCH.CITY='HAMILTON' 

ORDER BY LAST_NAME,FIRST_NAME,MIDDLE_NAME 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  78 

 

Query 7: Give the staff numbers and the names of all the workers who live on the same 

               street, city, and province as their manager. The names should be listed in an  

               alphabetic order (by last, then by first, then by middle names).  

 
SELECT STAFF.STAFF_NO, FIRST_NAME, MIDDLE_NAME, LAST_NAME 

FROM STAFF,(SELECT STAFF_NO, BRANCH_NO, STAFF.STREET, STAFF.CITY,  

            STAFF.PROVINCE FROM STAFF,BRANCH 

            WHERE STAFF.STAFF_NO = BRANCH.MANAGER) AS T 

WHERE STAFF.ALLOCATED_TO = T.BRANCH_NO AND  

      STAFF.STAFF_NO != T.STAFF_NO AND  

      STAFF.STREET = T.STREET AND  

      STAFF.CITY = T.CITY AND  

      STAFF.PROVINCE = T.PROVINCE 

ORDER BY LAST_NAME, FIRST_NAME, MIDDLE_NAME 

 

Query 8: Find the branch number and the average salary of the branch that has the highest 

               average salary. Please, call the branch number as branch_no and the 

               average salary as avg_salary. 
 

(SELECT ALLOCATED_TO AS BRANCH_NO, AVG(SALARY) AS AVG_SALARY 

 FROM STAFF GROUP BY ALLOCATED_TO) 

EXCEPT 

(SELECT T1.ALLOCATED_TO AS BRANCH_NO, T1.AVG_SALARY 

 FROM (SELECT ALLOCATED_TO, AVG(SALARY) AS AVG_SALARY 

       FROM STAFF GROUP BY ALLOCATED_TO) AS T1, 

      (SELECT ALLOCATED_TO, AVG(SALARY) AS AVG_SALARY 

       FROM STAFF GROUP BY ALLOCATED_TO) AS T2 

 WHERE T1.AVG_SALARY < T2.AVG_SALARY) 

 

Query 9: Find the owners and renters who have 2 or more phone numbers. Call the  

              owner/renter number as customer_no, set the value of       

              type_of_customer to 'owner' if the customer is an owner, and to  

              'renter' if he/she is a renter. Please, only list the customer_no and 

              type_of_customer. 
    

(SELECT OWNER_NO AS CUSTOMER_NO, 'OWNER' AS TYPE_OF_CUSTOMER 

 FROM OWNER  

 WHERE OWNER_NO IN (SELECT OWNER_NO FROM OWNER_PHONE 

                    GROUP BY OWNER_NO HAVING COUNT(*) >= 2)) 

UNION 

(SELECT RENTER_NO AS CUSTOMER_NO, 'RENTER' AS TYPE_OF_CUSTOMER 

 FROM RENTER 

 WHERE RENTER_NO IN (SELECT RENTER_NO FROM RENTER_PHONE 

                     GROUP BY RENTER_NO HAVING COUNT(*) >= 2)) 

 

Query 10: Assuming that each advertisement costs 100 dollars, give the branch 

                 number and the amount spent on the advertisements for each branch. Name  

                 the branch number as branch_no, and the amount as ad_cost. 
 

SELECT T2.ALLOCATED_TO AS BRANCH_NO, SUM(C)*100 AS AD_COST 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  79 

 

FROM (SELECT PROPERTY_NO, COUNT(*) AS C 

      FROM ADVERTISEMENT GROUP BY PROPERTY_NO) AS T1,  

      (SELECT PROPERTY_NO, ALLOCATED_TO FROM PROPERTY,STAFF 

WHERE PROPERTY.OVERSEEN_BY = STAFF.STAFF_NO) AS T2 

WHERE T1.PROPERTY_NO = T2.PROPERTY_NO 

GROUP BY T2.ALLOCATED_TO 

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  80 

 

Chapter 10: Software Project 

10.1   Software Project Informal Description 
  

Our website manages software projects for downloads to users. Each software project has 

a unique project id (8 characters long), can be assigned one or more categories (the 

categories are A, B ,C and D), has a status (D or P), and has a description (text of at most 

256 characters). Some projects may depend on other projects and we keep track of the 

dependency. Each project is developed and owned by a single developer (who is our 

subscriber), and uploaded to our website in one or more transactions. 

 Our users are identified by name (at most 20 characters), email (at most 20 

characters), and a unique user id (8 characters long). They can be either guest users or 

subscribed users (subscribers for short). The subscribers have passwords (at most 8 

characters) and we keep the date of the subscription. They need the password to access 

our website to file bug reports or upload software projects or update patches. A user can 

download any project, the number of downloads per user per project is recorded. The 

subscribers can file bug reports for any project. Every bug identified has an id (a positive 

integer) and a description (text of at most 256 characters). The bug id’s must be unique 

for all bugs concerning the same project. The date of filing of a bug report is recorded. 

Each bug report deals with a single project and can report a single bug. Each bug report is 

made by a single subscriber. 

  Some of our subscribers are developers. They develop the software projects and 

also software updates for their own projects. Each update for a project has an id (8 

characters long), a name (at most 20 characters), a status (P or U), a description (text of at 

most 256 characters), and is assigned a particular type (the type are 1, 2 and 3). Each 

update for a project is created by a single developer, the one who originally created the 

project. Each update patch is uploaded to our website in a transaction. 

  Each transaction has an id (6 characters long) and a date when it took place. The 

transaction id’s must be unique for all transactions concerning the same project.



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  81 

 

10.2   Software Project Logical Model 

 

Figure 16: The Software Project Logical Model



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  82 

 

10.3   Software Project Physical DB2 Model 

 

Figure 17: The Software Project Physical Model



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  83 

 

10.4   Software Project DB2 Schema 
CREATE TABLE USER ( 

       USER_ID CHAR(8) NOT NULL, 

       NAME CHAR(20) NOT NULL, 

       EMAIL CHAR(20), 

       NOF_DOWNLOADS INTEGER NOT NULL, 

       PRIMARY KEY (USER_ID) 

) 

CREATE TABLE GUEST ( 

       USER_ID CHAR(8) NOT NULL, 

       PRIMARY KEY (USER_ID), 

       FOREIGN KEY (USER_ID) REFERENCES USER 

) 

CREATE TABLE SUBSCRIBER ( 

       USER_ID CHAR(8) NOT NULL, 

       SUBSCRDATE DATE NOT NULL, 

       PASSWORD CHAR(8) NOT NULL, 

       PRIMARY KEY (USER_ID), 

       FOREIGN KEY (USER_ID) REFERENCES USER 

) 

CREATE TABLE NONDEVELOPER ( 

       USER_ID CHAR(8) NOT NULL, 

       PRIMARY KEY (USER_ID), 

       FOREIGN KEY (USER_ID) REFERENCES SUBSCRIBER 

) 

CREATE TABLE DEVELOPER ( 

      USER_ID CHAR(8) NOT NULL, 

      PRIMARY KEY (USER_ID), 

      FOREIGN KEY (USER_ID) REFERENCES SUBSCRIBER 

) 

CREATE TABLE PROJECT ( 

       PROJECT_ID CHAR(8) NOT NULL, 

       STATUS CHAR(1) NOT NULL, 

       DESCRIPTION CHAR(254), 

       OWNED_BY CHAR(8) NOT NULL, 

       PRIMARY KEY (PROJECT_ID), 

       FOREIGN KEY (OWNED_BY) REFERENCES DEVELOPER 

) 

CREATE TABLE DEPENDS ( 

       PROJECT_ID CHAR(8) NOT NULL, 

       DEPENDS_ON CHAR(8) NOT NULL, 

       PRIMARY KEY (PROJECT_ID,DEPENDS_ON), 

       FOREIGN KEY (PROJECT_ID) REFERENCES PROJECT, 

       FOREIGN KEY (DEPENDS_ON) REFERENCES PROJECT 

) 

CREATE TABLE CATEGORY ( 

       PROJECT_ID CHAR(8) NOT NULL, 

       CAT CHAR(1) NOT NULL, 

       PRIMARY KEY (PROJECT_ID,CAT), 

       FOREIGN KEY (PROJECT_ID) REFERENCES PROJECT 

) 

 

CREATE TABLE DOWNLOAD ( 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  84 

 

       PROJECT_ID CHAR(8) NOT NULL, 

       USER_ID CHAR(8) NOT NULL, 

       PRIMARY KEY (USER_ID,PROJECT_ID), 

       FOREIGN KEY (USER_ID) REFERENCES USER, 

       FOREIGN KEY (PROJECT_ID) REFERENCES PROJECT 

)  

CREATE TABLE BUG ( 

       PROJECT_ID CHAR(8) NOT NULL, 

       BUG_ID INTEGER NOT NULL, 

       DESCRIPTION CHAR(254), 

       DATE DATE NOT NULL, 

       PRIMARY KEY (PROJECT_ID,BUG_ID), 

       FOREIGN KEY (PROJECT_ID) REFERENCES PROJECT 

) 

CREATE TABLE BUGREPORT ( 

       USER_ID CHAR(8) NOT NULL, 

       PROJECT_ID CHAR(8) NOT NULL, 

       BUG_ID INTEGER NOT NULL, 

       PRIMARY KEY (PROJECT_ID,BUG_ID), 

       FOREIGN KEY (PROJECT_ID,BUG_ID) REFERENCES BUG, 

       FOREIGN KEY (USER_ID) REFERENCES USER 

) 

CREATE TABLE TRANSACTION ( 

       TRANSACT_ID CHAR(6) NOT NULL, 

       PROJECT_ID CHAR(8) NOT NULL, 

       DATE DATE NOT NULL, 

       PRIMARY KEY (PROJECT_ID,TRANSACT_ID), 

       FOREIGN KEY (PROJECT_ID) REFERENCES PROJECT 

) 

CREATE TABLE DEVELTRAN ( 

       TRANSACT_ID CHAR(6) NOT NULL, 

       PROJECT_ID CHAR(8) NOT NULL, 

       PRIMARY KEY (PROJECT_ID,TRANSACT_ID), 

       FOREIGN KEY (PROJECT_ID,TRANSACT_ID) REFERENCES TRANSACTION 

) 

CREATE TABLE UPDATETRAN ( 

       TRANSACT_ID CHAR(6) NOT NULL, 

       PROJECT_ID CHAR(8) NOT NULL, 

       PRIMARY KEY (PROJECT_ID,TRANSACT_ID), 

       FOREIGN KEY (PROJECT_ID,TRANSACT_ID) REFERENCES TRANSACTION 

) 

CREATE TABLE PATCH ( 

       PROJECT_ID CHAR(8) NOT NULL, 

       TRANSACT_ID CHAR(6) NOT NULL, 

       PATCH_ID CHAR(8) NOT NULL, 

       NAME CHAR(20) NOT NULL, 

       STATUS CHAR(1) NOT NULL, 

       DESCRIPTION CHAR(254), 

       TYPE CHAR(1) NOT NULL, 

       PRIMARY KEY (PROJECT_ID,TRANSACT_ID,PATCH_ID), 

       FOREIGN KEY (PROJECT_ID,TRANSACT_ID) REFERENCES TRANSACTION 

) 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  85 

 

10.5   Software Project Interactive Queries 
Query 1: Give user id and name of all developers who own a project. 
 

SELECT DEVELOPER.USER_ID,USER.NAME 

FROM DEVELOPER,USER 

WHERE DEVELOPER.USER_ID=USER.USEr_ID 

AND DEVELOPER.USER_ID IN (SELECT OWNED_BY FROM PROJECT 

                          WHERE OWNED_BY IS NOT NULL) 

 

Query 2: Give project id of all projects that have more than two update patches. 

 
SELECT PROJECT_ID 

FROM (SELECT PROJECT.PROJECT_ID,C 

      FROM PROJECT, (SELECT PROJECT_ID,COUNT(*) AS C 

                     FROM PATCH GROUP BY PROJECT_ID) AS T 

      WHERE PROJECT.PROJECT_ID=T.PROJECT_ID) 

WHERE C > 2 

 

Query 3: For each project, give the number of all update patches and the number of all  

               downloads. 

 
SELECT T.PROJECT_ID,PATCH_COUNT,DOWNLOAD_COUNT 

FROM (SELECT PROJECT_ID,COUNT(*) AS PATCH_COUNT 

      FROM PATCH GROUP BY PROJECT_ID) AS T, 

     (SELECT PROJECT_ID,COUNT(*) AS DOWNLOAD_COUNT 

      FROM DOWNLOAD GROUP BY PROJECT_ID) AS S 

WHERE T.PROJECT_ID=S.PROJECT_ID 

 

Query 4: Give the project id of the projects with the most downloads. 

 
SELECT PROJECT_ID 

FROM (SELECT PROJECT_ID,COUNT(*) AS DOWNLOAD_COUNT 

      FROM DOWNLOAD GROUP BY PROJECT_ID), 

     (SELECT MAX(DC) AS MAXDC 

      FROM (SELECT COUNT(*) AS DC FROM DOWNLOAD 

            GROUP BY PROJECT_ID)) 

WHERE DOWNLOAD_COUNT=MAXDC 

   

Query 5: Give the project id of the projects with the most update patches. 
 

SELECT PROJECT_ID 

FROM (SELECT PROJECT_ID,COUNT(*) AS PATCH_COUNT 

        FROM PATCH GROUP BY PROJECT_ID), 

       (SELECT MAX(PC) AS MAXPC 

        FROM (SELECT COUNT(*) AS PC 

              FROM PATCH GROUP BY PROJECT_ID)) 

WHERE PATCH_COUNT=MAXPC 

 

Query 6:  For each project, give project id of all projects that the project depends on. 
 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  86 

 

SELECT * 

FROM DEPENDS 

 

Query 7: Give project id of all projects that do not depend on any other project. 

 
(SELECT distinct PROJECT_ID FROM PROJECT) 

EXCEPT 

(SELECT PROJECT_ID FROM DEPENDS) 

 

Query 8: Give the project id of the projects that depend on the most other projects. 

 
SELECT T.PROJECT_ID 

FROM (SELECT PROJECT_ID,COUNT(*) AS DEPEND_COUNT 

      FROM DEPENDS GROUP BY PROJECT_ID) AS T, 

     (SELECT MAX(DC) AS MAXDC  

      FROM (SELECT COUNT(*) AS DC 

            FROM DEPENDS GROUP BY PROJECT_ID)) 

WHERE T.DEPEND_COUNT = MAXDC 

 

Query 9: Give description, bug id, and project id of all bug reports for all projects that  

               have most bug reports. 

 
SELECT BUG_ID,BUG.PROJECT_ID,DESCRIPTION 

FROM BUG, (SELECT T.PROJECT_ID,T.BC 

           FROM (SELECT PROJECT_ID,COUNT(*) AS BC 

                 FROM BUG GROUP BY PROJECT_ID) AS T, 

                (SELECT MAX(BC1) AS MAXBC 

                 FROM (SELECT COUNT(*) AS BC1 

                 FROM BUG GROUP BY PROJECT_ID)) 

           WHERE T.BC=MAXBC) AS S 

WHERE BUG.PROJECT_ID=S.PROJECT_ID 

 

Query 10:  Give user id of a developer with the least amount of bug reports. 

 
SELECT USER_ID 

FROM (SELECT USER_ID,COUNT(*) AS BPD 

      FROM (SELECT BUG_ID,BUG.PROJECT_ID,USER_ID 

            FROM BUG,PROJECT,DEVELOPER 

            WHERE BUG.PROJECT_ID=PROJECT.PROJECT_ID 

            AND OWNED_BY=USER_ID) 

      GROUP BY USER_ID) 

WHERE BPD IN (SELECT MIN(BPD) AS MINBPD 

               FROM (SELECT USER_ID,COUNT(*) AS BPD 

               FROM (SELECT BUG_ID,BUG.PROJECT_ID,USER_ID 

                     FROM BUG,PROJECT,DEVELOPER 

                     WHERE BUG.PROJECT_ID=PROJECT.PROJECT_ID 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  87 

 

Chapter 11:Tour Operator System 

10.1   Tour Operator System Informal Description 
 

The system need to keep track of people. For each person, it records all his/her address, of 

which exactly one is designated as the mailing address (so each person has at least one 

address). Each address consists of country, province/state, city, street, street number, P.O. 

Box number, and a list (possible empty) of phone numbers to the location of the address 

and a list (possible empty) of fax numbers to the location of the address. In addition to the 

list of addresses for each person it records a list (possible empty) of cell phone numbers 

and a list (possible empty) of email address. Each person in the database can be an old 

customer (have taken a tour of the company), a current customer (is booked to take a tour 

or is on a tour right now), a tour guide, an employee (works for the tour company), or any 

mixture of these (for instance an employee can take a tour and so can be a customer as 

well, or an employee can work as a tour guide for a particular tour and hence be an 

employee and a guide at the same time etc.). The sex and age of each person must also be 

recorded, a date-of-birth is optional for an external worker, a contract reference for each 

of the tours the guide is doing must be included. A guide contract references the tour (see 

below) and the total amount the tour guide will be paid for the tour. The guides do not 

pay for the accommodation and the meals. 

The system also keeps track of all tours, past and future. Each tour has a unique 

designation, itinerary, guide (at least one, but may be more than one), its status 

(completed, in-progress, in-the-future), and the list of participants (not including the 

guides). The itinerary consists of list of the dates the tour covers and for each date it 

includes the place of breakfast, the place of lunch, the place of diner, and the place of 

accommodation. For each of the places there is a contract reference. Each day in the 

itinerary also includes and a simple English description of the activities during that day. 

An accommodation can be a hotel, or a rented room or rooms from a rental 

company, or a rented room or rooms from a private person. A meal (breakfast, lunch, 

dinner) can be in hotel, restaurant, or a private place. The contract for accommodation or 

meal must bear the date of the contract becomes valid, the date or dates it covers, what 

the contract is for (accommodation, breakfast, lunch, dinner) if the pricing is per person 

or per group or per room or per the whole facility, per night or per a certain period and the 

corresponding price. It also may stipulate the minimum and the maximum of people for 

the accommodation/meal for each day it covers, financial penalty if less than minimum 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  88 

 

uses the accommodation. All prices are assumed to be in Canadian dollars, not conversion 

is involved, regardless where the place is. Each place is identified by a single address. 

Each provider of accommodation or meal has a unique designation. 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  89 

 

11.2   Tour Operator System Logical Model 

 

Figure 18: The Tour Operator System Logical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  90 

 

11.3   Tour Operator System Physical DB2 Model 
 

 

Figure 19: The Tour Operator System Physical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  91 

 

11.4   Tour Operator System DB2 schema 
 

CREATE TABLE PERSONS( 

       PID SMALLINT NOT NULL, 

       NAME VARCHAR(20) NOT NULL, 

       SEX CHAR(1) NOT NULL CHECK (SEX IN ('M','F')), 

       AGE SMALLINT NOT NULL CHECK (AGE BETWEEN 0 AND 150), 

       BIRTHDATE DATE NOT NULL, 

       PRIMARY KEY(PID), 

       CONSTRAINT AGECHECK CHECK (2003-YEAR(BIRTHDATE)=AGE) 

) 

CREATE TABLE HASE( 

       PID SMALLINT NOT NULL, 

       EADDR VARCHAR(30) NOT NULL, 

       PRIMARY KEY(PID,EADDR), 

       FOREIGN KEY (PID) REFERENCES PERSONS (PID) 

) 

CREATE TABLE HASCE( 

       PID SMALLINT NOT NULL, 

       PHONENO VARCHAR(20) NOT NULL, 

       PRIMARY KEY(PID,PHONENO), 

       FOREIGN KEY (PID) REFERENCES PERSONS (PID) 

)  

CREATE TABLE ADDRESSES( 

       adID SMALLINT NOT NULL, 

       COUNTRY CHAR(3) NOT NULL, 

       CITY VARCHAR(10) NOT NULL, 

       STREET VARCHAR(10), 

       STRNO VARCHAR(10), 

       POBox VARCHAR(10), 

       PRIMARY KEY(adID), 

       CONSTRAINT ADDRCHECK1  

       CHECK (NOT ((STREET IS NOT NULL) AND (POBox IS NOT NULL))), 

       CONSTRAINT ADDRCHECK2  

       CHECK (NOT ((STRNO IS NOT NULL) AND (POBox IS NOT NULL))), 

       CONSTRAINT ADDRCHECK3  

       CHECK (NOT ((STREET IS NOT NULL) AND (STRNO IS NULL))), 

       CONSTRAINT ADDRCHECK4  

       CHECK (NOT ((STRNO IS NOT NULL) AND (STREET IS NULL))) 

)  

CREATE TABLE HASA( 

       PID SMALLINT NOT NULL, 

       adID SMALLINT NOT NULL, 

       PRIMARY KEY(PID,adID), 

       FOREIGN KEY (PID) REFERENCES PERSONS (PID), 

       FOREIGN KEY (adID) REFERENCES ADDRESSES (adID) 

) 

CREATE TABLE PHONES( 

             PHONENO VARCHAR(20) NOT NULL, 

             PRIMARY KEY(PHONENO) 

) 

CREATE TABLE FAXES( 

       PHONENO VARCHAR(20) NOT NULL, 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  92 

 

       PRIMARY KEY(PHONENO) 

) 

CREATE TABLE HASP( 

       adID SMALLINT NOT NULL, 

       PHONENO VARCHAR(20) NOT NULL, 

       PRIMARY KEY(PHONENO), 

       FOREIGN KEY (adID) REFERENCES ADDRESSES (adID), 

       FOREIGN KEY (PHONENO) REFERENCES PHONES (PHONENO) 

) 

CREATE TABLE HASF( 

       adID SMALLINT NOT NULL, 

       PHONENO VARCHAR(20) NOT NULL, 

       PRIMARY KEY(PHONENO), 

       FOREIGN KEY (adID) REFERENCES ADDRESSES (adID), 

       FOREIGN KEY (PHONENO) REFERENCES FAXES (PHONENO) 

) 

CREATE TABLE EMPLOYEES( 

       PID SMALLINT NOT NULL, 

       PRIMARY KEY(PID), 

       FOREIGN KEY (PID) REFERENCES PERSONS (PID) 

) 

CREATE TABLE CUSTOMERS( 

       PID SMALLINT NOT NULL, 

       PRIMARY KEY(PID), 

       FOREIGN KEY (PID) REFERENCES PERSONS (PID) 

)  

CREATE TABLE GUIDES( 

       PID SMALLINT NOT NULL, 

       PRIMARY KEY(PID), 

       FOREIGN KEY (PID) REFERENCES PERSONS (PID) 

) 

CREATE TABLE TOURS( 

       DESIG VARCHAR(5) NOT NULL, 

       STATUS CHAR(3) NOT NULL CHECK (STATUS IN ('P','I','F')), 

       PRIMARY KEY(DESIG) 

) 

CREATE TABLE PARTICIP( 

       PID SMALLINT NOT NULL, 

       DESIG VARCHAR(5) NOT NULL, 

       PRIMARY KEY (PID,DESIG), 

       FOREIGN KEY (PID) REFERENCES CUSTOMERS (PID), 

       FOREIGN KEY (DESIG) REFERENCES TOURS (DESIG) 

) 

CREATE TABLE HASCO( 

       PID SMALLINT NOT NULL, 

       DESIG VARCHAR(5) NOT NULL, 

       AMOUNT DECIMAL(9,2) NOT NULL, 

       PRIMARY KEY (PID,DESIG), 

       FOREIGN KEY (PID) REFERENCES GUIDES (PID), 

       FOREIGN KEY (DESIG) REFERENCES TOURS (DESIG) 

) 

CREATE TABLE ITINERARIES( 

       DESIG VARCHAR(5) NOT NULL, 

       DATE DATE NOT NULL, 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  93 

 

       DESCR VARCHAR(256), 

       PRIMARY KEY (DESIG,DATE), 

       FOREIGN KEY (DESIG) REFERENCES TOURS (DESIG) 

) 

CREATE TABLE PROVIDERS( 

       DESIGN VARCHAR(10) NOT NULL, 

       PRIMARY KEY (DESIGN) 

) 

CREATE TABLE PLACES( 

       adID SMALLINT NOT NULL, 

       DESIGN VARCHAR(10) NOT NULL, 

       PRIMARY KEY (adID), 

       FOREIGN KEY (adID) REFERENCES ADDRESSES (adID), 

       FOREIGN KEY (DESIGN) REFERENCES PROVIDERS (DESIGN) 

) 

CREATE TABLE ISBP( 

       AMOUNT DECIMAL(9,2) NOT NULL, 

       VALID_DATE DATE NOT NULL, 

       PRICING CHAR(1) NOT NULL CHECK (PRICING IN ('G','P')), 

       FROMD DATE NOT NULL, 

       TOD DATE NOT NULL, 

       MINP SMALLINT NOT NULL, 

       MAXP SMALLINT NOT NULL, 

       PENALTY DECIMAL(9,2) NOT NULL, 

       DESIG VARCHAR(5) NOT NULL, 

       DATE DATE NOT NULL, 

       adID SMALLINT NOT NULL, 

       PRIMARY KEY (DESIG,DATE), 

       FOREIGN KEY (DESIG,DATE) REFERENCES ITINERARIES (DESIG,DATE), 

       FOREIGN KEY (adID) REFERENCES PLACES (adID), 

       CONSTRAINT ISBP_DATE1 CHECK (VALID_DATE < FROMD), 

       CONSTRAINT ISBP_DATE2 CHECK (FROMD <= TOD), 

       CONSTRAINT ISBP_DATE3 CHECK (FROMD <= DATE), 

       CONSTRAINT ISBP_DATE4 CHECK (DATE <= TOD), 

       CONSTRAINT ISBP_PER1 CHECK (MINP <= MAXP) 

) 

CREATE TABLE ISLP( 

       AMOUNT DECIMAL(9,2) NOT NULL, 

       VALID_DATE DATE NOT NULL, 

       PRICING CHAR(1) NOT NULL CHECK (PRICING IN ('G','P')), 

       FROMD DATE NOT NULL, 

       TOD DATE NOT NULL, 

       MINP SMALLINT NOT NULL, 

       MAXP SMALLINT NOT NULL, 

       PENALTY DECIMAL(9,2) NOT NULL, 

       DESIG VARCHAR(5) NOT NULL, 

       DATE DATE NOT NULL, 

       adID SMALLINT NOT NULL, 

       PRIMARY KEY (DESIG,DATE), 

       FOREIGN KEY (DESIG,DATE) REFERENCES  ITINERARIES (DESIG,DATE), 

       FOREIGN KEY (adID) REFERENCES PLACES (adID), 

       CONSTRAINT ISLP_DATE1 CHECK (VALID_DATE < FROMD), 

       CONSTRAINT ISLP_DATE2 CHECK (FROMD <= TOD), 

       CONSTRAINT ISLP_DATE3 CHECK (FROMD <= DATE), 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  94 

 

       CONSTRAINT ISLP_DATE4 CHECK (DATE <= TOD), 

       CONSTRAINT ISLP_PER1 CHECK (MINP <= MAXP) 

) 

CREATE TABLE ISDP( 

       AMOUNT DECIMAL(9,2) NOT NULL, 

       VALID_DATE DATE NOT NULL, 

       PRICING CHAR(1) NOT NULL CHECK (PRICING IN ('G','P')), 

       FROMD DATE NOT NULL, 

       TOD DATE NOT NULL, 

       MINP SMALLINT NOT NULL, 

       MAXP SMALLINT NOT NULL, 

       PENALTY DECIMAL(9,2) NOT NULL, 

       DESIG VARCHAR(5) NOT NULL, 

       DATE DATE NOT NULL, 

       adID SMALLINT NOT NULL, 

       PRIMARY KEY (DESIG,DATE), 

       FOREIGN KEY (DESIG,DATE) REFERENCES ITINERARIES (DESIG,DATE), 

       FOREIGN KEY (adID) REFERENCES PLACES (adID), 

       CONSTRAINT ISDP_DATE1 CHECK (VALID_DATE < FROMD), 

       CONSTRAINT ISDP_DATE2 CHECK (FROMD <= TOD), 

       CONSTRAINT ISDP_DATE3 CHECK (FROMD <= DATE), 

       CONSTRAINT ISDP_DATE4 CHECK (DATE <= TOD), 

       CONSTRAINT ISDP_PER1 CHECK (MINP <= MAXP) 

) 

CREATE TABLE ISSP( 

       AMOUNT DECIMAL(9,2) NOT NULL, 

       VALID_DATE DATE NOT NULL, 

       PRICING CHAR(1) NOT NULL CHECK (PRICING IN ('G','P')), 

       FROMD DATE NOT NULL, 

       TOD DATE NOT NULL, 

       MINP SMALLINT NOT NULL, 

       MAXP SMALLINT NOT NULL, 

       PENALTY DECIMAL(9,2) NOT NULL, 

       DESIG VARCHAR(5) NOT NULL, 

       DATE DATE NOT NULL, 

       adID SMALLINT NOT NULL, 

       PRIMARY KEY (DESIG,DATE), 

       FOREIGN KEY (DESIG,DATE) REFERENCES  

                           ITINERARIES (DESIG,DATE), 

       FOREIGN KEY (adID) REFERENCES PLACES (adID), 

       CONSTRAINT ISSP_DATE1 CHECK (VALID_DATE < FROMD), 

       CONSTRAINT ISSP_DATE2 CHECK (FROMD <= TOD), 

       CONSTRAINT ISSP_DATE3 CHECK (FROMD <= DATE), 

       CONSTRAINT ISSP_DATE4 CHECK (DATE <= TOD), 

       CONSTRAINT ISSP_PER1 CHECK (MINP <= MAXP) 

) 

11.5   Tour Operator System Interactive Queries 
 

Query 1: list all customers, old and current.  

 
SELECT CUSTOMERS.PID,NAME FROM CUSTOMERS,PERSONS  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  95 

 

WHERE CUSTOMERS.PID=PERSONS.PID 

 

Query 2: List all customers with all their addresses. 

 
SELECT CUSTOMERS.PID,NAME,COUNTRY,CITY,STREET,STRNO,POBox  

FROM CUSTOMERS,PERSONS,ADDRESSES,HASA 

WHERE CUSTOMERS.PID=HASA.PID 

AND HASA.adID=ADDRESSES.adID AND CUSTOMERS.PID=PERSONS.PID 

 

Query 3: For a given guide, find all the tours he/she guided or will guide and the amount 

               he/she got/will get for the guiding the tour  

 
SELECT HASCO.PID,NAME,DESIG,AMOUNT FROM HASCO,PERSONS 

WHERE HASCO.PID=0 AND PERSONS.PID=0 

 

Query 4: List all customers that are also guides. 

 
SELECT CUSTOMERS.PID,NAME FROM PERSONS,CUSTOMERS,GUIDES 

WHERE CUSTOMERS.PID=GUIDES.PID AND CUSTOMERS.PID=PERSONS.PID 

 

Query 5: List all guides that guided a tour that had a lunch in a given place. 

 
SELECT DISTINCT HASCO.PID,NAME FROM HASCO,ISLP,PERSONS 

WHERE HASCO.DESIG=ISLP.DESIG AND ISLP.adID=100 AND HASCO.PID=PERSONS.PID 

 

Query 6: List all contracts that cover dinners in a given place.  

 
SELECT DISTINCT AMOUNT,VALID_DATE,PRICING,FROMD,TOD, 

                MINP,MAXP,PENALTY,DESIG 

FROM ISDP WHERE adID=103 

 

Query 7: List all providers that provide sleeping accommodation. 
 

SELECT DISTINCT PLACES.DESIGN  

FROM PLACES,ISSP WHERE PLACES.adID=ISSP.adID 

         

Query 8: List the tours that will have breakfast at a given place on a given date . 

 
SELECT TOURS.DESIG FROM TOURS,ISBP 

WHERE TOURS.DESIG=ISBP.DESIG AND ISBP.DATE='12/18/2002' AND adID=100 

 

Query 9: List all employees that have guided or will guide a tour or who have taken or  

               will taken a tour. 

 
SELECT DISTINCT EMPLOYEES.PID,NAME 

FROM EMPLOYEES,GUIDES,CUSTOMERS,PERSONS 

WHERE (EMPLOYEES.PID=GUIDES.PID OR   EMPLOYEES.PID=CUSTOMERS.PID) 

AND EMPLOYEES.PID=PERSONS.PID 

 

Query 10: List all customers booked for a tour starting later or on a given date. 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  96 

 

 
SELECT DISTINCT PARTICIP.PID,NAME FROM PARTICIP,ITINERARIES,PERSONS 

WHERE PARTICIP.DESIG=ITINERARIES.DESIG 

AND ITINERARIES.DATE >= '12/18/2003' AND PARTICIP.PID=PERSONS.PID 

AND NOT EXISTS (SELECT ITINERARIES.DATE FROM ITINERARIES 

                WHERE ITINERARIES.DATE < '12/18/2003' 

                AND ITINERARIES.DESIG=PARTICIP.DESIG)  

 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  97 

 

Chapter 12: Warehouse System 

12.1 Warehouse System Informal Description 
 

Our company has several warehouses, each warehouse is designated by a unique 4-letter 

symbol (by a letter we mean a..z and A..Z). Each warehouse has several bins that are 

identified uniquely by numbers (unsigned integers), i.e. each warehouse has bins 0, 1, 2, 

3,  … Each bin has a particular capacity. In our warehouses (more precisely in the bins in 

our warehouses) we store parts. Each part is designated by a unique part number (a 5-

symbol sequence of digits and letters). Several parts together can form another part. We 

call such a part “assembly”. In the warehouses we store only the constituent parts, but we 

record the assemblies in our database as it were a part. Assemblies cannot be parts of 

other assemblies. A part can be a constituent part in at most in one assembly parts arrive 

in batches. Each batch for a particular part has a unique batch number (unsigned integer) 

and arrives on a particular date. Each batch has a size, i.e. the number of items in the 

batch. All items from the same batch are stored together in the same bin (no batch is 

stored in more than 1 bin). Each item in a batch has a unique item number (unsigned 

integer). For example: part A1, batch 27, item 1 or part A1, batch 23, item 1 etc. 

 When a batch arrives, its date-in is recorded. A particular manager checks its 

arrival, and this fact must be recorded in the database. 

 Some parts may be backordered. A part can be backordered only by a manager. 

The manager, the date of the backorder are recorded, and also the quantity backordered. 

When a backorder shipment arrives, the backorder’s remaining quantity is updated (the 

number of items arrived is subtracted from the remaining quantity), and if it is less or 

equal to 0, the backorder is deleted, but must be kept for record. There may be only a 

single current (active) backorder for any parts. Assemblies cannot be backordered, only 

their constituent parts. 

 When an item is shipped out of the warehouse, its date-out is recorded together 

with the employee who checked its shipping. 

 Employee has a unique employee number (a 6-digit number), phone number(s) (it 

consists of a 3-digit area code and a 6-digit number an employee can have 0 to many 

phone numbers), name(s) (it consists of an up=to-10-characters fist name, an up-to-10-

characters middle name, and an up-to-20-characters last name, an employee can have 1 to 

many names), address(s) (it consists of an up-to-6-characters street number, an up-to-20-



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  98 

 

characters street name, an up-to-20-characters city name, and a 2-character abbreviation 

of the province, an employee can have 1 to many address). Some of the employees are 

managers. Every employee who is not a manager works under supervision of a single 

manager. Managers do not work under other managers. 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

  99 

 

12.2   Warehouse System Logical Model 

 

Figure 20: The Warehouse System Logical Model



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 100 

 

12.3   Warehouse System Physical DB2 Model 

 

Figure 21: The Warehouse System Physical Model 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 101 

 

12.4   Warehouse System DB2 Schema 
 

CREATE TABLE EMPLOYEE ( 

       EMPLOYEENO CHAR(6) NOT NULL, 

       PRIMARY KEY (EMPLOYEENO), 

CHECK (('0' <= SUBSTR(EMPLOYEENO,1,1) AND SUBSTR(EMPLOYEENO,1,1) <= '9') 

AND  ('0' <= SUBSTR(EMPLOYEENO,2,1) AND SUBSTR(EMPLOYEENO,2,1) <= '9') 

AND  ('0' <= SUBSTR(EMPLOYEENO,3,1) AND SUBSTR(EMPLOYEENO,3,1) <= '9') 

AND  ('0' <= SUBSTR(EMPLOYEENO,4,1) AND SUBSTR(EMPLOYEENO,4,1) <= '9') 

AND  ('0' <= SUBSTR(EMPLOYEENO,5,1) AND SUBSTR(EMPLOYEENO,5,1) <= '9') 

AND  ('0' <= SUBSTR(EMPLOYEENO,6,1) AND SUBSTR(EMPLOYEENO,6,1) <= '9')) 

) 

CREATE TABLE MANAGER ( 

       EMPLOYEENO CHAR(6) NOT NULL, 

       PRIMARY KEY (EMPLOYEENO), 

       FOREIGN KEY (EMPLOYEENO) REFERENCES EMPLOYEE 

) 

CREATE TABLE WORKER ( 

       EMPLOYEENO CHAR(6) NOT NULL, 

       MANAGERNO CHAR(6) NOT NULL, 

       PRIMARY KEY (EMPLOYEENO), 

       FOREIGN KEY (EMPLOYEENO) REFERENCES EMPLOYEE, 

       FOREIGN KEY (MANAGERNO) REFERENCES MANAGER(EMPLOYEENO) 

) 

CREATE TABLE HASPHONE ( 

       EMPLOYEENO CHAR(6) NOT NULL, 

       AREA_CODE CHAR(3) NOT NULL, 

       NUMBER CHAR(6) NOT NULL, 

       PRIMARY KEY (EMPLOYEENO,AREA_CODE,NUMBER), 

       FOREIGN KEY (EMPLOYEENO) REFERENCES EMPLOYEE, 

  CHECK (('0' <= SUBSTR(AREA_CODE,1,1) AND SUBSTR(AREA_CODE,1,1) <= '9')  

  AND ('0' <= SUBSTR(AREA_CODE,2,1) AND SUBSTR(AREA_CODE,2,1) <= '9')  

  AND ('0' <= SUBSTR(AREA_CODE,3,1) AND SUBSTR(AREA_CODE,3,1) <= '9')), 

  CHECK (('0' <= SUBSTR(NUMBER,1,1) AND SUBSTR(NUMBER,1,1) <= '9')  

  AND ('0' <= SUBSTR(NUMBER,2,1) AND SUBSTR(NUMBER,2,1) <= '9')  

  AND ('0' <= SUBSTR(NUMBER,3,1) AND SUBSTR(NUMBER,3,1) <= '9') 

  AND ('0' <= SUBSTR(NUMBER,4,1) AND SUBSTR(NUMBER,4,1) <= '9')  

  AND ('0' <= SUBSTR(NUMBER,5,1) AND SUBSTR(NUMBER,5,1) <= '9') 

  AND ('0' <= SUBSTR(NUMBER,6,1) AND SUBSTR(NUMBER,6,1) <= '9')) 

) 

CREATE TABLE HASNAME ( 

       EMPLOYEENO CHAR(6) NOT NULL, 

       FIRST VARCHAR(10) NOT NULL, 

       MIDDLE VARCHAR(10), 

       LAST VARCHAR(20) NOT NULL, 

       PRIMARY KEY (EMPLOYEENO,FIRST,LAST), 

       FOREIGN KEY (EMPLOYEENO) REFERENCES EMPLOYEE 

) 

CREATE TABLE HASADDRESS ( 

       EMPLOYEENO CHAR(6) NOT NULL, 

       STRNO VARCHAR(6) NOT NULL, 

       STREET VARCHAR(20) NOT NULL, 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 102 

 

       CITY VARCHAR(20) NOT NULL, 

       PROVINCE CHAR(2) NOT NULL, 

       PRIMARY KEY (EMPLOYEENO,STRNO,STREET,CITY,PROVINCE), 

       FOREIGN KEY (EMPLOYEENO) REFERENCES EMPLOYEE 

) 

CREATE TABLE PART ( 

       PARTNO CHAR(5) NOT NULL, 

       PRIMARY KEY (PARTNO), 

       CHECK ((('0' <= SUBSTR(PARTNO,1,1) AND SUBSTR(PARTNO,1,1) <= '9')  

       OR ('a' <= SUBSTR(PARTNO,1,1) AND SUBSTR(PARTNO,1,1) <= 'z') 

       OR ('A' <= SUBSTR(PARTNO,1,1) AND SUBSTR(PARTNO,1,1) <= 'Z')) 

       AND (('0' <= SUBSTR(PARTNO,2,1) AND SUBSTR(PARTNO,2,1) <= '9')  

       OR ('a' <= SUBSTR(PARTNO,2,1) AND SUBSTR(PARTNO,2,1) <= 'z')  

       OR ('A' <= SUBSTR(PARTNO,2,1) AND SUBSTR(PARTNO,2,1) <= 'Z')) 

       AND (('0' <= SUBSTR(PARTNO,3,1) AND SUBSTR(PARTNO,3,1) <= '9')  

       OR ('a' <= SUBSTR(PARTNO,3,1) AND SUBSTR(PARTNO,3,1) <= 'z')  

       OR ('A' <= SUBSTR(PARTNO,3,1) AND SUBSTR(PARTNO,3,1) <= 'Z'))) 

) 

CREATE TABLE SUBPART ( 

       PARTNO CHAR(5) NOT NULL, 

       ASSEMBLYNO CHAR(5) NOT NULL, 

       PRIMARY KEY (PARTNO,ASSEMBLYNO), 

       FOREIGN KEY (PARTNO) REFERENCES PART, 

       FOREIGN KEY (ASSEMBLYNO) REFERENCES PART(PARTNO) 

) 

CREATE TABLE WAREHOUSE ( 

       WAREHOUSEID CHAR(4) NOT NULL, 

       PRIMARY KEY (WAREHOUSEID), 

       CHECK ((('a' <= SUBSTR(WAREHOUSEID,1,1)  

       AND SUBSTR(WAREHOUSEID,1,1) <= 'z') 

 OR('A' <= SUBSTR(WAREHOUSEID,1,1) AND SUBSTR(WAREHOUSEID,1,1) <= 'Z')) 

 AND(('a' <= SUBSTR(WAREHOUSEID,2,1) AND SUBSTR(WAREHOUSEID,2,1) <= 'z')   

 OR ('A' <= SUBSTR(WAREHOUSEID,2,1) AND SUBSTR(WAREHOUSEID,2,1) <= 'Z')) 

 AND(('a' <= SUBSTR(WAREHOUSEID,3,1) AND SUBSTR(WAREHOUSEID,3,1) <= 'z')    

 OR ('A' <= SUBSTR(WAREHOUSEID,3,1) AND SUBSTR(WAREHOUSEID,3,1) <= 'Z')) 

 AND(('a' <= SUBSTR(WAREHOUSEID,4,1) AND SUBSTR(WAREHOUSEID,4,1) <= 'z') 

 OR('A' <= SUBSTR(WAREHOUSEID,4,1) AND SUBSTR(WAREHOUSEID,4,1) <= 'Z'))) 

) 

CREATE TABLE BIN ( 

       WAREHOUSEID CHAR(4) NOT NULL, 

       BINNO INTEGER NOT NULL, 

       CAPACITY INTEGER NOT NULL, 

       PRIMARY KEY (WAREHOUSEID,BINNO), 

       FOREIGN KEY (WAREHOUSEID) REFERENCES WAREHOUSE, 

       CHECK (BINNO >= 0), 

       CHECK (CAPACITY >= 0) 

) 

CREATE TABLE BATCH ( 

       PARTNO CHAR(5) NOT NULL, 

       BATCHNO INTEGER NOT NULL, 

       SIZE INTEGER NOT NULL, 

       DATE_IN DATE NOT NULL, 

       MANAGERNO CHAR(6) NOT NULL, 

       WAREHOUSEID CHAR(4) NOT NULL, 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 103 

 

       BINNO INTEGER NOT NULL, 

       PRIMARY KEY (PARTNO,BATCHNO), 

       FOREIGN KEY (PARTNO) REFERENCES PART, 

       FOREIGN KEY (MANAGERNO) REFERENCES MANAGER(EMPLOYEENO), 

       FOREIGN KEY (WAREHOUSEID,BINNO) REFERENCES BIN, 

       CHECK (BATCHNO >= 0), 

       CHECK (SIZE > 0) 

) 

CREATE TABLE ITEM ( 

       PARTNO CHAR(5) NOT NULL, 

       BATCHNO INTEGER NOT NULL, 

       ITEMNO INTEGER NOT NULL, 

       CHECKED_OUT CHAR(6), 

       DATE_OUT DATE, 

       PRIMARY KEY (PARTNO,BATCHNO,ITEMNO), 

       FOREIGN KEY (PARTNO,BATCHNO) REFERENCES BATCH, 

       FOREIGN KEY (CHECKED_OUT) REFERENCES EMPLOYEE(EMPLOYEENO), 

       CHECK (ITEMNO >= 0) 

) 

CREATE TABLE CURRENT_BACKORDER ( 

       PARTNO CHAR(5) NOT NULL, 

       ORIG_QUANTITY INTEGER NOT NULL, 

       REMAINING_QUANTITY INTEGER NOT NULL, 

       BO_DATE DATE NOT NULL, 

       BACKORDERED_BY CHAR(6) NOT NULL, 

       PRIMARY KEY (PARTNO), 

       FOREIGN KEY (PARTNO) REFERENCES PART, 

       FOREIGN KEY (BACKORDERED_BY) REFERENCES MANAGER(EMPLOYEENO), 

       CHECK (ORIG_QUANTITY > 0), 

 CHECK (REMAINING_QUANTITY >= 0 AND REMAINING_QUANTITY <= ORIG_QUANTITY) 

) 

CREATE TABLE OLD_BACKORDER ( 

       PARTNO CHAR(5) NOT NULL, 

       ORIG_QUANTITY INTEGER NOT NULL, 

       BO_DATE DATE NOT NULL, 

       BACKORDERED_BY CHAR(6) NOT NULL, 

       FULFILLED TIMESTAMP NOT NULL, 

       PRIMARY KEY (PARTNO,BO_DATE,FULFILLED), 

       FOREIGN KEY (PARTNO) REFERENCES PART, 

       FOREIGN KEY (BACKORDERED_BY) REFERENCES MANAGER(EMPLOYEENO), 

       CHECK (DATE(FULFILLED) >= BO_DATE) 

) 

12.5   Warehouse System Interactive Queries  
 

Query 1: give all employee_no for all the workers that work under manager with the first  

               name Tony7 and the last name Tona7 with no middle name. 
 

SELECT WORKER.EMPLOYEENO 

FROM WORKER, 

     (SELECT MANAGER.EMPLOYEENO 



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 104 

 

      FROM MANAGER,HASNAME 

      WHERE MANAGER.EMPLOYEENO=HASNAME.EMPLOYEENO 

      AND HASNAME.FIRST='TONY7' AND HASNAME.MIDDLE IS NULL 

      AND HASNAME.LAST='TONA7') AS T 

WHERE WORKER.MANAGERNO=T.EMPLOYEENO 

 

Query 2: give all the names and employee_no for all the workers the names should be 

               listed in an alphabetic order (by last, then by first, then by middle) 
 

SELECT WORKER.EMPLOYEENO,FIRST,MIDDLE,LAST ROM WORKER,HASNAME 

WHERE WORKER.EMPLOYEENO=HASNAME.EMPLOYEENO 

ORDER BY LAST, FIRST, MIDDLE 

 

Query 3: give all the phones and employee_no for all the managers. 
 

SELECT MANAGER.EMPLOYEENO,AREA_CODE,NUMBER 

FROM MANAGER,HASPHONE 

WHERE MANAGER.EMPLOYEENO=HASPHONE.EMPLOYEENO 

 

Query 4: list all parts that are assemblies they should be listed in a lexicographic order. 
 

SELECT DISTINCT ASSEMBLYNO FROM SUBPART ORDER BY ASSEMBLYNO 

 

Query 5: for each manager, list all current backorders done by the manager. 
 

SELECT MANAGER.EMPLOYEENO,PARTNO,ORIG_QUANTITY,REMAINING_QUANTITY,  

       BO_DATE, BACKORDERED_BY 

FROM MANAGER,CURRENT_BACKORDER 

WHERE MANAGER.EMPLOYEENO=CURRENT_BACKORDER.BACKORDERED_BY 

 

Query 6: For each manager, list all current and old backorders done by the manager. For  

               each backorder you have to list the part_no, backorder date, and fulfilled date.  

               For current backorders, list a phony fulfilled date '2000-01-01'. 

 
(SELECT MANAGER.EMPLOYEENO, PARTNO, BO_DATE, '2000-01-01' AS FD 

 FROM MANAGER,CURRENT_BACKORDER 

 WHERE MANAGER.EMPLOYEENO=CURRENT_BACKORDER.BACKORDERED_BY 

 UNION 

 SELECT MANAGER.EMPLOYEENO, PARTNO, BO_DATE,DATE(FULFILLED) AS FD 

 FROM MANAGER,OLD_BACKORDER 

 WHERE MANAGER.EMPLOYEENO=OLD_BACKORDER.BACKORDERED_BY 

) ORDER  BY EMPLOYEENO 

 

Query 7: For each warehouse bin, give the remaining capacity of the bin. Call the 

               remaining capacity remaining_capacity. 

 
SELECT T1.WAREHOUSEID, T1.BINNO, CAPACITY-C AS REMAINING_CAPACITY 

FROM  (SELECT WAREHOUSEID, BINNO, CAPACITY FROM BIN) AS T1,   



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 105 

 

(SELECT BATCH.WAREHOUSEID, BATCH.BINNO, COUNT(ITEMNO) AS C 

 FROM ITEM, BATCH  WHERE ITEM.PARTNO=BATCH.PARTNO 

 AND ITEM.BATCHNO=BATCH.BATCHNO 

 GROUP BY BATCH.WAREHOUSEID, BATCH.BINNO) AS T2 

 WHERE T1.WAREHOUSEID=T2.WAREHOUSEID AND T1.BINNO=T2.BINNO 

 

 

Query 8: Give employee_no and number of workers managed for all the managers with  

               The smallest number of workers managed. 
 

SELECT MANAGERNO, NUMBER_MANAGED 

FROM (SELECT MANAGERNO,COUNT(*) AS NUMBER_MANAGED 

      FROM WORKER GROUP BY MANAGERNO) AS T1 

EXCEPT 

SELECT T1.MANAGERNO, T1.NUMBER_MANAGED 

FROM (SELECT MANAGERNO,COUNT(*) AS NUMBER_MANAGED 

      FROM WORKER GROUP BY MANAGERNO) AS T1, 

     (SELECT MANAGERNO,COUNT(*) AS NUMBER_MANAGED 

      FROM WORKER GROUP BY MANAGERNO) AS T2 

WHERE T1.NUMBER_MANAGED > T2.NUMBER_MANAGED 

  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 106 

 

Conclusion and Future Work 
 

In this thesis we presented a suite of ten projects designed for undergraduate students 

taking a database course to practise certain aspects of dealing with relational databases. 

Their main utility and our main objective was to provide projects that are not too simple 

and that are not too complex, projects that would allow students to practise the most 

important aspects of dealing with databases. To this end,  each project takes a student 

through four major aspects of dealing with databases: 

• Design of the database. 

• Implementation of the database. 

• SQL querying of the installed database. 

• Application programming.  

     Our projects address some of what we consider most important issues associated with 

each of the four major aspects, and, of course, leave many other issues untouched. 

• In design, every project practises the ER/relational modeling in the context of 

ERwin modeling tool. 

• In implementation, every project practises the creation of the DB2 schema derived 

from the ER/relational model. 

• In SQL querying, in every project simple  to moderately complex SQL queries are 

practised in interactive form. 

• In application programming, C and embedded SQL are used. For pedagogical 

reasons, queries that were first practiced in the interactive querying are used in the 

application program to illustrate and highlight the differences and the similarities 

of ESQL and SQL. 

     For the future work, Oracle and Microsoft SQL Server in addition to DB2 must be 

included. One of the important omissions in the projects concerns normalization on the 

level of ER/relational modeling  and a problem related to, the intentional de-

normalization of  the design for performance gains. This omission must be addressed in 

the future work on this suite of projects. In order to allow more complex applications, 

ESQL-based application programming in C++ should be also considered for inclusion in 

near future. 

  



Master Thesis – Weiguang Zhang    McMaster University- Computing and Software 

 107 

 

Bibliography 
 

[1]   E.F. Codd, A Relational Model of Data for Large Shared Data Banks, 

    Communications of ACM, Volume 13, Number 6, 1970, 377--387 

 

[2]   Pioneer calls relational database technology obsolete,  

       http://www.computerworlduk.com/news/applications/5059/pioneer-calls-relational-

database-technology-obsolete/ 

 

[3]  Michael Stonebraker, The End of a DBMS Era (Might be Upon Us) 

       http://cacm.acm.org/blogs/blog-cacm/32212-the-end-of-a-dbms-era-might-be-upon-

us/fulltext 

[4]  Peter Pin-shan Chen, The Entity-Relationship Model: Toward a Unified View of 

       Data, ACM Transactions on Database Systems, Volume 1, 1976, 9--36 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


