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Abstract

In this thesis, we explore several stochastic models associated with the two-parameter
Poisson-Dirichlet distribution and population genetics. The impacts of mutation,
selection and time on the population evolutionary process will be studied by focusing
on two aspects of the model: equilibrium and non-equilibrium.

In the first chapter, we introduce relevant background on stochastic genetic mod-
els, and summarize our main results and their motivations.

In the second chapter, the two-parameter GEM distribution is constructed from a
linear birth process with immigration. The derivation relies on the limiting behavior
of the age-ordered family frequencies.

In the third chapter, to show the robustness of the sampling formula we derive
the Laplace transform of the two-parameter Poisson-Dirichlet distribution from Pit-
man sampling formula. The correlation measure of the two-parameter point process
is obtained in our proof. We also reverse this derivation by getting the sampling
formula from the Laplace transform. Then, we establish a central limit theorem for
the infinitely-many-neutral-alleles model at a fixed time as the mutation rate goes
to infinity. Lastly, we get the Laplace transform for the selection model from its
sampling formula.

In the fourth chapter, we establish a central limit theorem for the homozygosity
functions under overdominant selection with mutation approaching infinity. The
selection intensity is given by a multiple of certain power of the mutation rate.
This result shows an asymptotic normality for the properly scaled homozygosities,
resembling the neutral model without selection. This implies that the influence of
selection can hardly be observed with large mutation.

In the fifth chapter, the stochastic dynamics of the two-parameter extension of
the infinitely-many-neutral-alleles model is characterized by the derivation of its
transition function, which is absolutely continuous with respect to the stationary
distribution being the two-parameter Poisson-Dirichlet distribution. The transition
density is obtained by the expansion of eigenfunctions. Combining this result with
the correlation measure in Chapter 3, we obtain the probability generating function
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of a random sampling from the two-parameter model at a fixed time.
Finally, we obtain two results based on the quasi-invariance of the Gamma process

with respect to the multiplication transformation group. One is the quasi-invariance
property of the two-parameter Poisson-Dirichlet distribution with respect to Marko-
vian transformation group. The other one is the equivalence between the quasi-
invariance of the stationary distributions of a class of branching processes and their
reversibility.
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Chapter 1

Background and Statement of
Results

In this chapter, we provide an introduction to the background of stochastic genetic
models, and then summarize main results and their motivations. The future work is
briefly discussed in the end.

1.1 Background

Population genetics is the study about changes of allele frequency distribution over
time under the influences of various forces. It was primarily founded by Fisher,
Haldane and Wright in the 1920’s and 1930’s based on the Mendelian hereditary
mechanism. Over the years mathematical modeling has been extensively applied
during the development of population genetics. Even though these mathematical
models are highly idealized, many of their theoretical predictions on the patterns
of genetic variations in actual populations turn out to be consistent with empirical
data.

The following terminologies are frequently used in population genetics. Alleles
refer to distinct types of each gene. Different alleles may lead to different biological
traits. Mutation means a sudden change in the DNA sequence. Selection is described
as certain alleles having stronger ability to live and to produce offspring; this ability
is called the fitness of individual. A mutation that brings no change to the fitness
of an individual is called neutral. The random change in allele frequencies caused by
random sampling of genes from one generation to the next is referred as a random
genetic drift.

A probability measure-valued stochastic process is commonly used to model the
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variation of the frequency distribution of different alleles in the population over time
under the influences of mutation, selection, and random genetic drift. Therefore, we
first introduce some basic concepts from stochastic process theory.

A discrete time homogeneous Markov chain {Xn, n = 0, 1, . . .} with finite states
S = {S1, . . . , Sr} is a stochastic process given by transition matrix P = (pij)r×r,
whose entry pij denotes the transition probability from state i to state j in one step.
An initial probability distribution defined on S specifies the starting state of the
process. Suppose that the law of initial state X0 is given by a row probability vector
w with the property wP = w. Then, the probability of being in the various states
after n steps is wP n = w, and is the same on all steps. The process starting with
this method is called a stationary process and w is called the stationary distribution
or the equilibrium state of the process.

By changing the scale of time and space, many Markov chains can be approxi-
mated by diffusion processes {Xt, t ≥ 0}, which is a continuous time Markov process
with continuous sample paths and state space S. Given the past history up to time
s, the conditional probability

P (Xt ∈ dy|Xs = x,Xui = xui , 0 ≤ ui < s, xui ∈ S,∀i = 1, 2, . . .)

of the process at a future time t is given by the transition function

P (Xt ∈ dy|Xs = x) = P (s, x, t, dy), t > s.

This thesis only considers the homogeneous case, where

P (s, x, t, dy) = P (0, x, t− s, dy).

Hereafter, we always denote the transition probability P (0, x, t, dy) by P (t, x, dy).
Generally, diffusion process can be characterized by several tools, such as the Markov
semigroup, infinitesimal generator, transition function, martingale problem, etc. The
Markov semigroup of the process {Xt, t ≥ 0} starting from X0 = x is a family of
linear operators Tt, t ≥ 0 on C(S) the space of continuous functions on S such that

Ttf(x) = Ex[f(Xt)] =

∫
S

f(y)P (t, x, dy).

The infinitesimal generator L of the semigroup Tt is given by

Lf = lim
t→0

Ttf − f
t

2
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with a properly defined domain. Assume that the law of X0 is given by a probability
measure µ on S satisfying ∫

S

P (t, x, dy)µ(dx) = µ(dy)

for any t > 0. Then, the process Xt starting with µ has the same distribution µ at
any time t > 0. In this case, we call Xt a stationary process, and µ is the stationary
distribution. Equivalently, for the semigroup Tt of the process the stationary measure
µ satisfies ∫

S

Ttf(x)µ(dx) =

∫
S

f(x)µ(dx)

for f ∈ C(S). Finally, the process with Markov semigroup Tt is reversible with a
probability measure µ such that∫

S

f(x)Ttg(x)µ(dx) =

∫
S

g(x)Ttf(x)µ(dx)

for all f, g ∈ C(S). Abundant literature on Markov processes can be found in such
as [16] and references therein.

The classic discrete time Markov chain models include the Wright-Fisher, Moran’s
and Cannings models. Furthermore, we can employ the diffusion approximation
technique to the above models and generate continuous time diffusion models. Refer
to [16] and [20] for a comprehensive survey of genetic models.

The Wright-Fisher model is considered as the simplest genetic model, in which the
randomness comes from random genetic drift during reproduction. It assumes that a
population of fixed size N with two alleles evolves according to the binomial sampling
between non-overlapping generations. Thus, the frequency of one allele among the
nth generation with n = 0, 1, . . . can be modeled by a Markov chain Xn with state
space {0, 1

N
, . . . , N−1

N
, 1} and specific transition matrix. However, the population

under this framework will eventually be fixed with one allele. If there is two-way
mutation no such fixation occurs. A more general model can be constructed by
introducing more than two alleles, including mutation factor and applying diffusion
approximation. As a result, we obtain the K-allele Wright-Fisher diffusion model
{Xt = (X1(t), X2(t), . . . , XK(t)), t ≥ 0} for K = 2, 3, . . ., where Xi(t) denotes the
frequency of the ith allele in the population at time t. Therefore, it is a diffusion
process on the K-dimensional simplex

∆K =

{
x = (x1, . . . , xK) :

K∑
i=1

xi = 1, 0 < xi < 1, i = 1, . . . , K

}

3
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with infinitesimal generator given by

LKf(x) =
1

2

K∑
i,j=1

aij(x)
∂2f

∂xi∂xj
+

K∑
i=1

bi(x)
∂f

∂xi
, (1.1)

where aij(x) = xi(δij − xj), bi(x) =
∑

j 6=i xjuji −
∑

j 6=i xiuij and uij ≥ 0 is the
scaled mutation rate from type i to type j. With symmetric mutation where uij is
independent of i and j and equals to u/(K− 1) for some u ≥ 0, the K-allele Wright-
Fisher diffusion is shown in [66] to be stationary with the K-dimensional symmetric
Dirichlet distribution with parameter ε = 2u/(K − 1). Denote this distribution as
D(ε, . . . , ε). The probability density is given by

f(x1, . . . , xK) =
Γ(Kε)

Γ(ε)K
(x1 · · ·xK)ε−1,

where x = (x1, . . . , xK) ∈ ∆K and Γ(·) is the gamma function given by

Γ(z) =

∫ ∞
0

tz−1e−t dt, z > 0.

If selection is introduced into the model (c.f.[17] for the construction of the pro-
cess), the stationary distribution in a special case is given by

f(x1, . . . , xK) = CesH2(x)(x1 · · ·xK)ε−1,

where H2(x) = x2
1 + x2

2 + · · · + x2
K is called the homozygosity function, s ∈ R is

the selection intensity and C is the appropriate normalization constant. This special
selection assumes that in a diploid population, all homozygotes (pair of alleles of the
same type) have equal fitness 1+s and all heterozygotes (pair of alleles with different
types) have fitness 1. When s > 0, the homozygote has selective advantage over
heterozygote and this kind of selection is called underdominant selection. Otherwise,
when s < 0 it is called overdominant selection.

Consider the order statistics (x(1), x(2), · · · , x(K)) of K-dimensional Dirichlet dis-
tribution D(ε, . . . , ε), where we arrange the alleles by the order of their own family
sizes. The joint distribution of (x(1), x(2), · · · , x(K)) is given by the density

f(x(1), x(2), . . . , x(K)) =
K!Γ(Kε)

Γ(ε)K
(x(1) · · ·x(K))

ε−1,

where x(1) ≥ x(2) ≥ . . . ≥ x(K) ≥ 0 and
∑
x(i) = 1. Letting K → ∞ in a way such

that Kε → θ > 0, Kingman [43] showed that the distribution of the above order

4
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statistics under the projection onto the infinite-dimensional ordered simplex

∇∞ =

{
(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi = 1

}

converges, and named the limiting distribution as the Poisson-Dirichlet distribution
with parameter θ, and is denoted by PD(θ). In population genetics, the parameter
θ denotes the suitably normalized mutation rate.

Ethier and Kurtz [15] apply the same limitation procedure to the K-allele diffu-
sion model and obtain the infinitely-many-neutral-alleles (IMNA) model

{Xt = (X1(t), X2(t), . . .), t ≥ 0},

where Xi(t) denotes the frequency of the ith largest family at time t in the population
with infinite alleles. The model is a diffusion process on ∇∞ with generator

L =
1

2

∞∑
i,j=1

xi(δij − xj)
∂2

∂xi∂xj
− θ

2

∞∑
i=1

xi
∂

∂xi
. (1.2)

The domain of L is D(L) = span{1, ϕ2, ϕ3, . . .} ⊂ C(∇∞), where ϕn(x) =
∑∞

i=1 x
n
i

is defined on ∇∞ and extends continuously to ∇∞, the closure of ∇∞ in the product
space [0, 1]∞. Hereafter, the topologies of ∇∞ and ∇∞ are inherited from [0, 1]∞.
The parameter θ denotes the scaled mutation rate. Ethier and Kurtz [15] also prove
the convergence of the corresponding invariant measures. This can be seen as a new
proof of Kingman’s derivation of PD(θ) in [43]. Equivalently speaking, the Poisson-
Dirichlet distribution is the stationary distribution of the IMNA model. Hereafter,
IMNA will be used as an acronym for infinitely-many-neutral-alleles.

Consider a population composed of countable types labeled by {1, 2, . . .}. Sup-
pose that the proportion of each type is denoted by a random vector (p1, p2, . . .)
such that pi > 0 and

∑
pi = 1. A size-biased permutation of (p1, p2, . . .) is a ran-

dom vector (p̃1, p̃2, . . .) on the infinite simplex ∆∞ with conditional probabilities
P (p̃1 = pi|(pi)∞i=1) = pi and for j ≥ 2, n = 1, 2, . . . ,

P
(
p̃j = pn|(pi)∞i=1, (p̃i)

j−1
i=1

)
=

pn

1−
∑j−1

i=1 p̃i
1{pn /∈{p̃i}j−1

i=1 }
,

where 1 is the indicator function. The above conditional probabilities can be in-
terpreted as follows. The first individual is picked randomly in the population. p̃1

represents the proportion of individuals belonging to the type of the first sample.

5
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Then all the individuals with the same type of previous sample are removed. Iter-
ations of these two steps generate an infinite sequence (p̃1, p̃2, . . .) corresponding to
the frequencies of alleles in the order of their appearances in the sample.

The size-biased permutation of the Poisson-Dirichlet distribution, known as the
GEM distribution, has a very simple structure which readily lends itself to calcula-
tion. The GEM is defined as below.

Definition 1.1. Consider a vector (V1, V2, . . .) defined by

V1 = U1, Vn = (1− U1) · · · (1− Un−1)Un, n ≥ 2, (1.3)

where (Ui)
∞
i=1 are independent identically distributed Beta(1, θ) random variables

with density function θ(1−x)θ−1, 0 < x < 1. The distribution of (V1, V2, . . .) is called
the GEM distribution with parameter θ denoted by GEM(θ).

GEM was termed by Ewens [19] after Griffiths, Engen and McCloskey, who con-
tributed to its development and application in the fields of genetics and ecology.

It is easy to verify that the GEM distribution concentrates on the unordered
infinite simplex

∆∞ =

{
(x1, x2, . . .) : xi ≥ 0 ∀i,

∞∑
i=1

xi = 1

}
equipped with the topology inherited from [0, 1]∞. The GEM distribution is the size-
biased permutation of the Poisson-Dirichlet, and the Poisson-Dirichlet is the ranked
permutation of GEM. This result, due originally to Patil and Taillie [50], is used
continuously throughout the literature. Proofs of this result have been provided by
Hoppe [40], and more explicitly by Donnelly and Joyce [9].

The scheme (1.3) used to generate a random discrete distribution (Vi) from inde-
pendent (Ui) is known as a residual allocation model. As a generalization, Perman,
Pitman and Yor [51] introduce the two-parameter Poisson-Dirichlet distribution by
bringing another parameter α ∈ [0, 1) into the model.

Definition 1.2. For 0 ≤ α < 1 and θ > −α, let Uk, k = 1, 2, . . . be a sequence of
independent random variables such that Uk has Beta(1−α, θ+kα) distribution with
density function given by

f(x) =
Γ(θ + 1 + (k − 1)α)

Γ(1− α)Γ(θ + kα)
x−α(1− x)θ+kα−1, 0 < x < 1.

Set (V1, V2, . . .) in the same way as in (1.3). Arrange (V1, V2, . . .) in descending order
and denote it as P = (P1, P2, . . .). Then the law of P is called the two-parameter

6
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Poisson-Dirichlet distribution denoted by PD(α, θ). The law of (V1, V2, . . .) is called
the two-parameter GEM distribution denoted by GEM(α, θ).

Since
∑∞

i=1 Vi = 1 with probability one, the two-parameter Poisson-Dirichlet
distribution is still concentrated on the ordered infinite simplex ∇∞. Pitman [55]
showed that GEM(α, θ) is the only non-degenerate residual allocation model which
is invariant under size-biased permutation.

Overall, the Poisson-Dirichlet distribution and its two-parameter generalization
have similar structures, including the urn construction in [39] and [25], GEM repre-
sentation, sampling formula, etc. Carlton [4] obtained a general moments formula for
the two-parameter Poisson-Dirichlet distribution and provided several methods for
estimating the two parameters θ and α. Readers can also refer to [22] and references
therein for a comprehensive study of this family of distributions.

The study of the Poisson-Dirichlet distribution is closely related to population
genetics. The IMNA model is often used to serve as the null-hypothesis model in
testing the neutral theory of molecular evolution. The literature of this model can
be found in [65], [32], [31], [15], etc. In practice, one cannot observe the entire
population. Instead, one must make inferences based on information in a finite
sample. A basic tool in this statistical analysis is Ewens sampling formula, which
assumes stationarity of the IMNA model. It describes the probabilities associated
with counts of how many different alleles are observed a given number of times in
the sample. The formula was first obtained by Ewens [18].

Recently stochastic dynamics associated with the two-parameter model was dis-
cussed in several papers. For example, Bertoin [3] constructed a continuous time
Markov chain through an exchangeable fragmentation-coalescence process. The two-
parameter Poisson-Dirichlet distribution was shown to be the unique reversible mea-
sure of the process. In [28], a class of diffusion processes was constructed from a
sequence of independent Wright-Fisher diffusion processes on [0, 1]. The process
is reversible with the two-parameter GEM distribution. [52] and [26] used different
methods to construct a two-parameter extension of the IMNA model. It is an infinite
dimensional symmetric diffusion process with state space ∇∞ and generator

Lθ,α =
1

2

{
∞∑

i,j=1

xi(δij − xj)
∂2

∂xi∂xj
−
∞∑
i=1

(θxi + α)
∂

∂xi

}
(1.4)

defined on the same domain with (1.2). Its unique reversible measure is given by the
PD(α, θ) distribution.

7
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1.2 Summary of Main Results

In this thesis, we mainly study the impacts of mutation, selection and time on the
evolutionary process of the population by focusing on two major aspects of the model:
equilibrium and non-equilibrium.

Regarding to the equilibrium, we study the characterization and asymptotic be-
havior of the stationary distribution associated with several models. We derive the
Laplace transform of the two-parameter Poisson-Dirichlet distribution from the Pit-
man sampling formula, and vice versa. We also study the Laplace transform and
asymptotic behavior of the stationary distribution of the selection model as the mu-
tation rate goes to infinity. In the last chapter, we study the quasi-invariance of
the PD(α, θ) distribution. The study of the non-equilibrium aspect is mainly based
on the transition function of the process. With the transition density of the IMNA
model, we obtain a Gaussian limit theorem for the homozygosites at a fixed time
when mutation goes to infinity. We also give the transition density of the two-
parameter extension model, and use it to derive the probability generating function
of random sampling from the two-parameter model at each time point. In the end,
the quasi-invariance of the stationary distribution of a class of branching process
with immigration is employed to characterize the reversibility of the process.

Generally, our results illustrate the impact of large mutation and selection on the
model at equilibrium and non-equilibrium states. The time effect can be studied
from the transition function and further inferred from the model’s limiting behaviors
at different periods.

In the following sections, we will proceed to summarize these main results and
the corresponding motivations.

1.2.1 The Two-parameter GEM Distribution

Our first result presents a construction of the two-parameter GEM distribution from
the linear growth model given in Feng and Hoppe [25] by studying the asymptotic
behavior of the population at infinite time. The urn construction of the model is
used to derive the Pitman sampling formula. This intuitively implies that the model
is associated with the GEM distribution. In the second chapter, we give an explicit
derivation of this result.

The GEM distribution was previously found to be associated with several genetic
models. For instance, Donnelly and Tavaré [10] proved that for a sample of size
n whose genealogy is described by a coalescent process with ages, the age-ordered
sample frequencies converge in distribution to the GEM as n → ∞. Donnelly and

8
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Tavaré [11] constructed an infinite coalescent with ages in which the frequencies of
age-ordered alleles at equilibrium are distributed as GEM(θ). Hoppe [40] showed
that the frequencies of age-ordered alleles are distributed as GEM in any population
with the property that the genealogy of a sample of arbitrary size n is described
by a coalescent with mutation. Ethier [12] showed that the distribution of the fre-
quencies of the oldest, second-oldest, third-oldest, ... alleles in the stationary IMNA
model is given by the GEM distribution. Tavaré [61] showed that the GEM gives
the limiting distribution of the age-ordered family proportion of a linear birth pro-
cess with immigration when time goes to infinity. Our conclusion can be seen as a
two-parameter generalization of Tavaré’s result, which implies the interconnection
between the age-ordered family size process and the genealogical structure of the
IMNA model.

The process we consider here was constructed in [25] as follows. Let I(t) be the
immigration process such that I(t) is a pure birth process with I(0) = 0 and birth
rate

λk = lim
h→0

1

h
P (I(t+ h)− I(t) = 1|I(t) = k),

given by λk = kα+ θ, k ≥ 0. Upon their arrivals, immigrants independently initiate
their own families according to a common pure birth process {X(t), t ≥ 0} with
birth rate bn = n − α starting at X(0) = 1. Therefore, the population is composed
of families initiated by immigrants. At time t, denote the size of the ith oldest
family by ηi(t) and N(t) as the total number of individuals in the population with
N(0) = 0. Finally we find that the limiting behavior of genealogy structure of the
model coincides with the distribution of GEM(α, θ), as the following theorem states.

Theorem 1.3.

N(t)−1(η1(t), η2(t), . . .)→ (P1, P2, . . .) a.s. as t→∞,

where Pi is the asymptotic fraction of the ith oldest family size in the population.
Furthermore, {Pi}∞i=1 has a joint distribution the same as a size-biased permutation
of the two-parameter Poisson-Dirichlet distribution. That is, let {Ui}∞i=1 be a sequence
of independent random variables such that Ui has Beta(1 − α, θ + iα) distribution.
Then

Pi
D
= (1− U1)(1− U2) · · · (1− Ui−1)Ui, i ≥ 2 and P1 = U1. (1.5)

Our derivation is through the description of asymptotic behaviors of family sizes
and total population size. Since they are all pure linear birth processes, we first show
that they achieve infinity at exponential rate as time increases up. Furthermore,
we obtain the limiting distribution by properly scaling. Based on these results, we

9
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calculate the joint density function for the asymptotic family frequencies, which gives
the final conclusion. Lacking of identical distribution property in the two-parameter
GEM adds more complexity of the calculation than the one parameter case.

The key factor leading to the conclusion of Theorem 1.3 is the embedded jumping
chain, which has the structure of a two-parameter Pólya-like urn structure described
in [54] and [56]. The urn scheme, originated from Bayesian statistics, is of significance
in deriving the two-parameter sampling formula.

1.2.2 The Sampling Formula and Laplace Transform

In practice, one cannot observe the entire population. Instead, one must make infer-
ences based on information in a finite sample. A basic tool in the statistical analysis
is Ewens’ sampling formula, which describes the probabilities associated with counts
of how many different alleles are observed a given number of times in the sample.

The composition of a sample can be represented in the following way. For a
random sample of size n, a vector An = (a1, . . . , an) called the allele frequency
spectrum denotes its allelic partition, in which ai is the number of alleles appearing
in the sample exactly i times. Thus, ai ≥ 0 and

∑n
i=1 iai = n. The number of

distinct alleles in the sample is given by k =
∑n

i=1 ai.
However, statistics inference based on population genetics models is complicated

by the randomness of both population and sample. The composition of the current
population is just one of many possibilities that arise under the given evolutionary
scenario. Given a sample drawn from the population, there are two probability
distributions of interest: the conditional probability and unconditional probability
of observing the sample. Suppose that all allele frequencies are given by vector x =
(x1, x2, . . .). In [44] the conditional sampling probability P (An = (a1, a2, . . . , an)|X =
x) is given as multinomial sampling function:

P (An = (a1, a2, . . . , an)|X = x) =
n!∏n

i=1(i!)ai

∑
n

xn1
1 x

n2
2 · · · ,

where the summation is over the set {n = (n1, n2, . . .) ∈ Z+ × Z+ × · · · : ](i : ni =
j) = aj}. It represents the set of allele counts which are consistent with the partition
An. When all the allele frequencies are distributed as µ, the unconditional sampling
probability is given by

P (An = (a1, a2, . . . , an)) =

∫
∇∞

P (An = (a1, a2, . . . , an)|X = x)µ(dx).

10
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When the alleles frequencies distribution µ is the PD(θ) distribution, the above
unconditional probability is given by the Ewens sampling formula

P (An = (a1, a2, . . . , an)) =
n!

θ(n)

n∏
j=1

(
θ

j
)aj

1

aj!
, (1.6)

where θ(n) = θ(θ + 1) · · · (θ + n − 1). This formula was first obtained by Ewens
[18]. It motivates the constructions of several well-known combinatoric structures.
For example, Antoniak [1] derived the Ewens sampling formula from the Blackwell-
MacQueen description of sampling from a Dirichlet prior distribution. Hoppe [39]
devised an urn scheme to obtain (1.6). Furthermore, a genealogical interpretation
of Hoppe’s Urn model was given by Donnelly [8]. He equates the urn scheme to the
construction using the Poisson-Dirichlet paintbox. That is, one can think of colouring
balls by dipping a paintbrush at random into a paintbox of which a fraction x1 of
the paint is of one colour, x2 of a second colour, and so on. Assume that x =
(x1, x2, . . .) ∈ ∇∞ has the law of the Poisson-Dirichlet distribution. The distribution
of the partition induced by the colours of the first n balls can be given by the Ewens
sampling formula. Hoppe [40] further explained the relationship between the urn
model and the age distribution of the infinitely many alleles diffusion model as well
as Kingman’s coalescent with mutation.

As a two-parameter generalization of Ewens sampling formula, Pitman [53] de-
rived the Pitman sampling formula corresponding to the two-parameter Poisson-
Dirichlet distribution. That is, when X ∼ PD(α, θ) the sampling probability is
given by

P(An = (a1, a2, . . . , an)) =
n!

θ(n)

k−1∏
l=0

(θ + lα)
n∏
j=1

(1− α)
aj
(j−1)

(j!)aj(aj!)
. (1.7)

We also find similar urn model for the two-parameter sampling formula in [25] and
Blackwell-MacQueen urn scheme in [53]. Under the framework of Kingman’s random
partitions theory, PD(α, θ) is the distribution of random mass partition and the
Pitman sampling formula (1.7) is the corresponding partition function. Kingman
[45] sets up a one-to-one correspondence between the partition function and random
mass partition.

In our thesis, we apply the sampling formula (1.7) to derive the Laplace transform
of the two-parameter distribution. The Laplace transform as a probability generat-
ing functional of random vector X with the PD(α, θ) distribution is first given by

11
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Pitman, Yor [57] by using the α-stable subordinator. It is given as

λθ

Γ(θ + 1)

∫ ∞
0

sθ−1e−λsE[
∞∏
i=1

(1 + g(sXi))]ds

for appropriate function g, where (X1, X2, . . .) has the PD(α, θ) distribution. The
special form of Laplace transform can be seen as a result of Campbell’s theorem
from the Poisson point process theory (e.g. see [46]). Handa [38] adopts a different
approach to get the same Laplace transform through the theory of point process.
In addition, as shown in [38] the Laplace transform can be used as a tool to derive
several essential results for PD(α, θ), including the joint probability density, the
moment formula, the limiting theorem, etc. In Chapter 3, we use this tool to derive
the sampling formula.

Before giving the main result, we first introduce the two-parameter Poisson-

Dirichlet point process defined as ξ :=
∞∑
i=1

δXi in [38] where (Xi) ∼ PD(α, θ). For

any positive integer n, the nth correlation measure of ξ, if it exists, is defined to be
a σ-finite Borel measure µn such that for any nonnegative measurable function f on
Rn

E

[ ∑
i1,...,in 6=

f(Xi1 , · · · , Xin)

]
=

∫
Rn

f(x1, . . . , xn)µn(dx1 · · · dxn),

where the subscript on the left side denotes that the sum is taken over n-tuple of
distinct indices (this notation will be used continuously throughout the thesis). If
µn has a density with respect to the n-dimensional Lebesgue measure, the density is
called the nth correlation function of ξ. When α = 0 the correlation measure of ξ was
obtained by Watterson [65] and referred as the multivariate frequency spectra. Us-
ing this result Griffiths computed the probability density and marginal distribution
for the PD(θ) in [34]. Regarding the two-parameter point process, the correlation
function was first obtained by Handa [38], and was used to obtain the Laplace trans-
form. His derivation is through the size-biased permutation of the two-parameter
Poisson-Dirichlet distribution. Here we obtain the correlation functions only based
on the Pitman sampling formula (1.7).

Theorem 1.4. Suppose that the sampling formula (1.7), which is equivalent to the
following equation

E

[ ∑
i1,...,ik 6=

Xn1
i1
· · ·Xnk

ik

]
=

k−1∏
l=0

(θ + lα)

θ(n)

k∏
i=1

(1− α)(ni−1), (1.8)

12
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holds for a random element (Xi)
∞
i=1 ∈ ∇∞. Then the kth correlation function of the

point process ξ =
∑∞

i=1 δXi for each k = 1, 2, . . . is as follows:

qk(x1, . . . , xk) = ck,α,θ

k∏
i=1

x
−(α+1)
i (1−

k∑
j=1

xj)
θ+αk−11∆k

(x1, . . . , xk), (1.9)

where

∆k =

{
(x1, . . . , xk) : x1 ≥ 0, . . . , xk ≥ 0,

k∑
i=1

xi ≤ 1

}
and

ck,α,θ =
k∏
i=1

Γ(θ + 1 + (i− 1)α)

Γ(1− α)Γ(θ + iα)
.

It is known that correlation functions appear in the expansion of the “probability
generating function” of a random point process

∑
δXi . Therefore, from the above

correlation functions we derive the Laplace transform of the two-parameter Poisson-
Dirichlet point process, which is the same as Handa’s result [38].

Theorem 1.5. Suppose that g : (0,∞)→ C is a measurable function such that

λα(g) := inf

{
λ > 0 :

∫ ∞
0

e−λz

zα+1
|g(z)| dz <∞

}
<∞.

Put

λ∗α(g) = inf

{
λ > λα(g) :

Cα
λα

∫ ∞
0

e−λz

zα+1
|g(z)| dz ∈ C \ [1,∞)

}
,

so that in particular λ∗0(g) = λ0(g). The correlation measure of ξ =
∑∞

i=1 δXi is given
by (1.9). Then

E[
∞∏
i=1

(1 + |g(sXi)|)] <∞

a.e. s > 0, and for λ > λ∗α(g)

λθ

Γ(θ + 1)

∫ ∞
0

sθ−1e−λs(E[
∞∏
i=1

(1 + g(sXi))− 1]) ds

=


1
θ

exp(θ
∫∞

0
e−λz

z
g(z) dz)− 1

θ
, α = 0, θ > 0,

1
θ
(1− Cα

λα

∫∞
0

e−λz

zα+1 g(z) dz)−
θ
α − 1

θ
, 0 < α < 1, θ 6= 0

− 1
α

log(1− Cα
λα

∫∞
0

e−λz

zα+1 g(z)) dz), 0 < α < 1, θ = 0.

13
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Inversely, we utilize the Laplace transform of the PD(α, θ) point process to obtain
the sampling formula (1.7).

Corollary 1.6. Suppose that the above Laplace transform exists for sufficiently large
λ > 0, then the sampling formula corresponding to X = (X1, X2, . . .) ∈ ∇∞ coincides
with the Pitman sampling formula (1.7).

Given the alleles frequencies with the PD(θ) distribution, Joyce et al. [41] ob-
tain a Gaussian limit distribution of properly scaled homozygosity functions as the
mutation rate θ goes to infinity. Their result further shows that the conditional
probability distribution can be approximated by the unconditional probability dis-
tribution if θ is large. Here we study the limiting behavior of homozygosity functions
associated with the IMNA model (1.2) at a fixed time as the mutation rate θ goes to
infinity. We find a similar Gaussian limit behavior of properly scaled homozygosity
functions comparing with Joyce et al.’s result at equilibrium state. This implies that
the distribution of the IMNA model at any finite time is similar to the equilibrium
state when mutation is quite strong.

Theorem 1.7. Consider the IMNA model

X(t) = (X1(t), X2(t), . . .) ∈ ∇∞

with generator given by (1.2) and starting point x = (x1, x2, . . .) ∈ ∇∞. For any
time t > 0, set

Wp(t) =
√
θ(

θp−1

(p− 1)!
Hp(t)− 1),

where Hp(t) =
∑∞

i=1 Xi(t)
p denotes the pth homozygosity at time t for p = 2, 3, . . ..

Then as θ → ∞, Wp(t) converges in law to a normal random variable with mean 0
and variance σ2

p = Γ(2p)/Γ(p)2 − p2, which is strictly positive.

The result is proved through the convergence of the characteristic function. The
key element in the proof is the explicit expression of the Laplace transform of X(t),
which is obtained from the transition density of X(t) and the correlation measure.

The other model considered in the third chapter is a non-neutral case involving
a special case of selection. As shown previously in the finite alleles model with
selection, the stationary distribution is absolutely continuous with respect to the
neutral one. In [17] a similar density is also found for an infinite alleles model with
selection. The density is given under the Poisson-Dirichlet distribution by

esH2(X)/C, X = (X1, X2, . . .) ∈ ∇∞,

14
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where H2(X) =
∑
X2
i denotes the homozygosity function and the selection intensity

s is any real number. The Radon-Nikodym derivative can be generalized to

PDs,q(θ)

PD(θ)
(dX) = esHq(X)/C, X = (X1, X2, . . .) ∈ ∇∞,

where Hq(X) =
∑
Xq
i , q = 2, 3, . . . denotes the qth order homozygosity, s is the selec-

tion intensity and C is the normalization constant. Under the resulting distribution
PDs,q(θ), Handa [37] obtains the corresponding sampling formula as

Pθ,s,q(An = a) = E[esHq(X)ψn(X)]/E[esHq(X)], (1.10)

where

ψn(x) =
n!

n1! · · ·nk!a1! · · · an!

∑
i1,...,ik 6=

xn1
i1
· · · xnkik , (1.11)

n = (n1, . . . , nk) is a partition of n ≥ 1, ai = ]{j : nj = i} and the sum is taken over
n-tuple of distinct indices. The expectation is taken under the PD(θ) distribution.
The Laplace transform in this case is computed as follows.

Theorem 1.8. Suppose that g(z) is a measurable function such that

λ(g) := inf{λ > 0 :

∫ ∞
0

e−λz

z
|g(z)| dz <∞} <∞,

and the random element (Xi)
∞
i=1 has the PDs,q(θ) distribution. Then∫ ∞

0

e−λttθ−1E[
∞∏
i=1

(1 + g(tXi))] dt =
Γ(θ)

λθ
+ C−1

∞∑
k=1

θk

k!
Mk,

where

Jl(t) =

∫
∆l

l∏
j=1

(est
qxqj − 1)(1−

l∑
β=1

xβ)θ−1 dx1 · · · dxl
x1 · · · xl

,

Fs(t) =
∞∑
l=0

θl

l!
Jl(t),

and

Mk =

∫
(0,∞)k

k∏
j=1

(g(xj)x
−1
j e−λxj) dx1 · · · dxk

∫ ∞
0

e−λttθ−1

k∏
j=1

e

sx
q
j

(t+
∑k
j=1

xj)q

Fs

(
t

t+
∑k

j=1 xj

)
dt.
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1.2.3 The Transformed Two-parameter Poisson-Dirichlet Dis-
tribution

Motivated by the above selection density, we apply it to generate a transformed
two-parameter Poisson-Dirichlet Distribution. Define the two-parameter Poisson-
Dirichlet distribution with selection denoted by PDσ(α, θ) with the Radon-Nikodym
derivative

PDσ(α, θ)

PD(α, θ)
(dx) =

e−σHm(x)

C(σ, θ, α)
,

where Hm(x) =
∑∞

i=1 x
m
i , x = (x1, x2, . . .) ∈ ∇∞, m = 2, 3, . . . denotes the mth

order homozygosity, σ > 0 and C(σ, θ, α) =
∫
∇∞ e

−σHm(x) PD(α, θ)(dx) is the nor-
malization constant. Though the application of the two-parameter Poisson-Dirichlet
distribution in population genetics is not found yet, for convenience we still call
PDσ(α, θ) the two-parameter Poisson-Dirichlet distribution with selection.

The property we want to investigate is the limiting behavior of PDσ(α, θ) as the
parameter θ goes to infinity with fixed α. The motivation of studying asymptotic
behavior for large θ is from Gillespie’s work [30], where he considered various models
with fixed mutation rate and increased population size. This corresponds to the
scaled mutation rate θ = 4Nu going to infinity in the IMNA model, where N is
the effective population size and u is the individual mutation rate. For the Poisson-
Dirichlet distribution with parameter θ, there are numerous results concerning the
limiting behavior for large θ such as a limit theorem of Griffiths [33], the associated
large deviation estimates shown by Dawson and Feng [7], the moderate principle by
Feng and Gao [23] and the central limit theorem obtained by Joyce, Krone and Kurtz
[41].

Due to the similarity between the Poisson-Dirichlet distribution and its two-
parameter counterpart, it is natural to expect similar limiting behaviors between
these two models. Such results include the large deviation principle in [21], the
moderate principle in [24] and central limit theorem for the homozygosity functions
in [38].

On the other hand, Gillespie [30] presented simulations for several models in-
cluding an infinite alleles model with selective overdominance. He observed that the
asymptotic behavior in non-neutral case looks like that in neutral model as the se-
lection intensity and mutation rate get large with the same rate. Therefore, in [42] a
rigorous theoretical study was carried out for the model with overdominant selection
when the selection intensity and mutation rate get large together through Gaussian
fluctuations. As a result, the central limit theorem obtained in [41] can be seen as a
special case of the conclusion in [42] with selection intensity being zero.
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To study the impact of selection in the two-parameter model, we establish a
central limit theorem for the transformed two-parameter Poisson-Dirichlet distribu-
tion PDσ(α, θ). Our result indicates similar limiting behaviors between the selection
model and the neutral one PD(α, θ) for large mutation.

The neutral case was considered by Handa [38]. He studied the asymptotic
behavior of PD(α, θ) for large θ and fixed α as follows. For p = 2, 3, . . . and
X = (X1, X2, . . .) ∼ PD(α, θ), define

Zp,θ =
√
θ

(
Γ(1− α)

Γ(p− α)
θp−1Hp(X)− 1

)
, (1.12)

where Hp(X) denotes the pth homozygosity of X. A central limit theorem for
(Zp,θ)

∞
p=2 was established in [38].

Lemma 1.9 ([38]). Let (Z2,α, Z3,α, . . .) be multivariate normal with mean 0 and the
covariance of Zi,α and Zj,α given by

Γ(1− α)Γ(i+ j − α)

Γ(i− α)Γ(j − α)
+ α− ij. (1.13)

Then, as θ →∞, we have

(Z2,θ, Z3,θ, . . .)⇒ (Z2,α, Z3,α, . . .),

where, here and hereafter ⇒ denotes convergence in distribution.

Similarly, for Y = (Y1, Y2, . . .) ∼ PDσ(α, θ), where σ = cθm−
1
2
−β, m = 2, 3, . . . , β ≥

0 and c > 0 is a constant, we define

Zβ
p,θ =

√
θ

(
Γ(1− α)

Γ(p− α)
θp−1Hp(Y )− 1

)
. (1.14)

This is our final conclusion.

Theorem 1.10. Suppose that Y = (Y1, Y2, . . .) ∼ PDσ(α, θ) and the selection inten-

sity σ is given by cθm−
1
2
−β, β ≥ 0, where c > 0 is a constant and m = 2, 3, . . .. Let

(Zβ
2,θ, Z

β
3,θ, . . .) be defined as (1.14) and (Z2,α, Z3,α, . . .) given as in the above lemma.

As θ →∞,

(Zβ
2,θ, Z

β
3,θ, . . .)⇒

{
(Z∗2,α, Z

∗
3,α, . . .), if β = 0,

(Z2,α, Z3,α, . . .), if β > 0,

where Z∗p,α = Zp,α − cbp, bp = (1− α)(p−1) cov(Zp,α, Zm,α) and for p = 2, 3, . . .

(1− α)(p−1) =
Γ(p− α)

Γ(1− α)
= (1− α) · · · (p− 1− α).
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The limiting distribution shows a phase transition depending on the relative
strength of the selection intensity and the mutation rate. The proof is based on
a fluctuation argument through the previous result in Lemma 1.9. The main part of
proof is devoted to the uniform integrability of exp{−tZp,θ}. Instead of the common
tool the two-parameter GEM, we employ a representation of the PD(α, θ) distri-
bution in [53] and [57] through PD(θ) and an i.i.d. sequence of PD(α, 0) random
variables.

1.2.4 Transition Function of the Two-parameter Model

Besides the semigroup and infinitesimal generator, the transition function is one of
the common tools to characterize a stochastic process. For the IMNA model (1.2),
Griffiths [32] first obtained the transition function as a limit of transition densities of
finite-dimensional Wright-Fisher diffusions, based on the symmetric expansion with
a series of orthogonal polynomials. Ethier [13] rederived the same transition density
by an expansion of eigenfunctions, which makes the derivation more transparent.

Even recently, Petrov [52] and Feng and Sun [26] have used different approaches
to develop the two-parameter extension of the IMNA diffusion model Xθ,α(t) with
generator (1.4). It is reversible with respect to the two-parameter Poisson-Dirichlet
distribution. Petrov [52] identified the set of eigenvalues for the generator (1.4). It
is the same as that for the IMNA model (1.2). But we are still unable to find a
proper finite-dimensional approximation of the two-parameter model like the IMNA
model does. Therefore, we derive the transition density of the two-parameter model
(1.4) via the eigenfunction expansion as [13]. The result is given as follows. Set
λm = m(m+ θ − 1)/2,m = 2, 3, . . . and

ψn(x) =
n!

n1! · · ·nk!a1! · · · an!

∑
i1,...,ik 6=

xn1
i1
· · ·xnkik ,

where n = (n1, . . . , nk) is a partition of n ≥ 1, ai = ]{j : nj = i} and the sum is
taken over n-tuple of distinct indices.

Theorem 1.11. The transition function of the process Xθ,α(t) ∈ ∇∞ with the gen-
erator (1.4) has a density function p(t, x, y) with respect to its invariant measure
PD(α, θ) given by

p(t, x, y) = 1 +
∞∑
m=2

e−λmtqm(x, y) x, y ∈ ∇∞, (1.15)
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where

qm(x, y) =
2m− 1 + θ

m!

m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)Pn(x, y),

where Pn(x, y) is defined as follows.

Pn(x, y) =
∑

~n∈N∞:|~n|=n

ψ~n(x)ψ~n(y)

PSF (~n)
,

where ~n is taken over all the partitions of integer n, and PSF (~n) is the Pitman
sampling formula (1.7). Moveover, there exists a constant c > 1 such that

p(t, x, y) ≤ ctc(log t)/t, t > 0, x, y ∈ ∇∞. (1.16)

Since the main idea of proof is similar to that in [13], we focus only on the
derivations of results that require additional efforts due to the introduction of the
additional parameter α. We also obtain a uniform upper bound for the transition
density function, which leads to explicit super-Poincar—/log-Sobolev inequalities
for the two-parameter diffusion as [27]. Recall the work in [59] where it was shown
that a log-Sobolev inequality holds for the Fleming-Viot process (FV) with parent
independent mutation if and only if the number of alleles or type space S is finite.
The invalidity of the log-Sobolev inequality indicates the extreme singularity in the
Fleming-Viot process when there are infinite number of alleles. The Fleming-Viot
process is seen as a labeled version of the IMNA model, since in the FV process we
monitor both the type and frequency of alleles. The IMNA model can be derived
from the Fleming-Viot process by dropping off the type of alleles and looking at
atom masses which are in decreasing order. It can be inferred that the singularity is
reduced by this mapping from the validity of a super log-Sobolev inequality for the
two-parameter unlabeled infinite-alleles diffusion.

With the correlation function obtained previously and the transition function, we
compute the probability generating function of random sampling from Xα,θ(t). This
result can be seen as a two-parameter generalization of Theorem 1 in [31]. There,
the author’s approach is based on the fact that the IMNA diffusion process can be
approximated by the finite-alleles Wright-Fisher diffusion model. However, a finite-
dimensional approximation of the two-parameter model has not yet been found. That
is why we turn to the correlation measure of the two-parameter point process. The
difference between the sampling formula at a fixed time and at the equilibrium state
can be found from our result.
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Theorem 1.12. Consider the two-parameter diffusion process Xα,θ(t) with genera-
tor Lα,θ (1.4) and initial value x = (x1, x2, . . .) ∈ ∇∞. The probability generating
function

E[
n∏
i=1

uaii |X(0) = x]

of a sample a = (a1, a2, . . . , ar) of size r at time t is the coefficient of ϕr in

G0 +
∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)Gn,

where

G0 = G1 =
r!

θ(r)

(
1− α

r∑
l=1

(1− α)(l−1)ulϕ
l/l!

)−θ/α
,

Gm = r!
θn

θ(n+r)

∑
n=(n1,...,nk)

ψn(x)

(
1− α

r∑
l=1

(1− α)(l−1)ulϕ
l/l!

)(−k+ θ
α

)

k∏
i=1

(
1 +

r∑
l=1

(ni − α)(l)ϕ
lul/l!

)
.

1.2.5 The Quasi-invariance Property

On a probability space S with measure µ, the quasi-invariance of µ with respect to
a measurable transformation group G on S is defined as follows: given any mapping
T ∈ G, the image measure Tµ and the original measure µ are mutually absolutely
continuous. A classical example is the Girsanov formula for additive perturbations
of Brownian motion.

Our study is motivated by the quasi-invariance of the gamma process, which is
a random discrete measure η =

∑
XiδSi , where Si are i.i.d. random variables on a

compact Polish space S with common distribution ν and (Xi)
∞
i=1 are distinct points

in a Poisson point process with mean measure θx−1e−xdx, x > 0. Denote by Pν the
law of gamma process.

The gamma process has been studied extensively by several authors, including
Tsilevich el al. [62], [63], Handa [35] and Yor [69]. A strong parallelism is shown
between the gamma process and Brownian motion from various aspects. Tsilevich el
al. show that stable process can be considered as a deformation from the Brownian
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motion to the gamma process. Both of them correspond to the extreme values of
the parameter α ∈ [0, 2]. They also prove the quasi-invariance of the gamma process
with respect to the linear transformation group defined by

Maη(ds) = a(s)η(ds),

where the multiplicator a is nonnegative measurable function on S. The quasi-
invariance of Pν means that the induced measure MaPν and the original measure Pν
are equivalent.

The normalized gamma process η̄ is the so-called Dirichlet process defined as

η̄ = η(ds)/η(S) =
∑ Xi∑

Xj

δSi ,

where η =
∑
XiδSi is the gamma process. The normalized process η̄ is independent of

the total mass η(S). Using this property, Handa [35] shows that the quasi-invariance
is preserved for the Dirichlet process under the induced transformation group on the
space of probability measure. The image of probability measure η̄ under the induced
mapping Sa is given by

Saη̄(ds) = a(s)η(ds)/〈a, η〉,

where 〈a, η〉 denotes the integration of a Borel measurable function a with respect
to η.

M.-K. von Renesse et al. [64] unify and extend the quasi-invariance properties of
the gamma and Dirichlet processes to a class of subordinators with respect to a large
class of non-linear sample path transformations. The quasi-invariance property can
also yield easily an integration by parts formula on the path space.

The PD(θ) distribution is the law of the ordered atom masses of Dirichlet process
denoted by

P = (P1, P2, . . .) = Φ(
X1∑
Xj

,
X2∑
Xj

, . . .),

where Φ is a map that arranges the coordinates in non-increasing order and (Xi) are
the atom masses of the gamma process.

Tsilevich et al. [63] use this property to show the quasi-invariance of the Poisson-
Dirichlet distribution based on the induced Markovian transformations Sa on the
ordered atom masses P = (P1, P2, . . .) ∈ ∇∞ of the Dirichlet process. The mapping
is as follows

SaP = Φ(a(S1)P1/ρ, a(S2)P2/ρ, . . .),

where ρ =
∑
a(Si)Pi.
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We note that the PD(α, 0) distribution is invariant under the above transfor-
mation Sa for certain multiplicator a in [2]. In Chapter 6, we generalize the quasi-
invariance property to the two-parameter Poisson-Dirichlet distribution under the
transformation group Sa. This also allows us to treat the previous results about
PD(θ) and PD(α, 0) within a unified framework.

Theorem 1.13. Suppose that {Si, i = 1, 2, . . .} is a sequence of i.i.d. ν0 distributed
random variables on S and a is is a bounded nonnegative Borel measurable func-
tions on S with infs a(s) > 0. Independently, set P = (Pi)

∞
i=1 ∼ PD(α, θ) and

SaP = Φ(a(S1)P1/ρ, a(S2)P2/ρ, . . .), where ρ =
∑
a(Si)Pi, Φ is a map that arranges

the coordinates in non-increasing order. Then the two-parameter Poisson-Dirichlet
distribution PD(α, θ) with θ 6= 0 is quasi-invariant under the operator Sa and

SaPα,θ
Pα,θ

(dp) = 〈aα, ν0〉−θ/α
1

Γ(θ)

∫ ∞
0

σθ−1

∞∏
i=1

Eνα0 [e−σa
−1(Xi)pi ]dσ.

Our argument is based on the α-stable subordinator whose atom masses after
normalization distribute as PD(α, 0). Under the transformation Ma, we found that
the distribution of normalized atom masses is invariant, while the location of atom
is shifted with a density function. The proof also utilizes the absolute continuity of
PD(α, θ) with respect to PD(α, 0). The density we get covers the previous two cases
with α or θ being zero. This also provides an alternative perspective to look at the
result obtained by Arguin [2] for PD(α, 0).

Another application of the quasi-invariance property is to show the reversibility
for a class of measure-valued branching process with immigration. By reversibility
it means that ∫

ΦLΨdΠ =

∫
ΨLΦdΠ, Φ,Ψ ∈ D(L),

where L is the generator of process and Π is the stationary distribution.
For finite-dimensional diffusion processes, conditions for the process to be re-

versible have been studied intensively such as [47] and [49] through integration by
parts. The reversible distributions are identified by potential function whose gradient
coincides with the negative of the drift. Previously Handa [36] considered the same
kind of problem for an infinite-dimensional diffusion process, the Fleming-Viot pro-
cess. From his result, we know that the condition for the Fleming-Viot process with
parent-independent mutation to be reversible can be given by the quasi-invariance
of Dirichlet process, which is the stationary distribution of the process.

We also note that for the gamma process, the density given by the quasi-invariance
property corresponds to the exponential martingale in [69]. Stannat [60], associated
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the quasi-invariance of the gamma process with an analogue of the Cameron-Martin-
Girsanov theorem for the classical Wiener measure.

Here, we use this quasi-invariance property with respect to the multiplication
group to characterize the reversibility of a class of measure-valued branching pro-
cesses. The quasi-invariance property is the behavior of the stationary distribution
under the mapping over the state space. On the other hand, reversibility can be seen
the behavior under the semigroup. Thus, our conclusion implicitly associates these
two mappings for the stationary distribution.

Theorem 1.14. Suppose the branching process with immigration {νt, t ≥ 0} is de-
fined by generator L,

LF (µ) =

∫
S

µ(dx)a(x)
δ2F (µ)

δµ(x)2
+

∫
S

(ν(dx)− µ(dx)b(x))
δF (µ)

δµ(x)
, (1.17)

for suitable F . Let Π be a Borel probability measure on M(S) the set of finite
positive Borel measures on S. Then L is reversible with respect to Π if and only if
Π is quasi-invariant w.r.t. the transformation Sf where Sfµ(ds) = efµ(ds), where
f is a bounded measurable function on S. It means that the image measure SfΠ is
absolutely continuous with respect to Π. The density is given by eΛ(f,µ) where

Λ(f, µ) =

∫ 1

0

〈f/a, c(Suf (µ))〉du,

and
〈f, c(µ)〉 = 〈f, ν〉 − 〈bf, µ〉.

This result is similar to Handa’s [36] for the Fleming-Viot process. When a
and b are both constants in generator L (1.17), the gamma process is the reversible
measure of the process. Since the quasi-invariance of Dirichlet process is resulted
from the gamma process, our conclusion can be seen as an analogy relationship of
the reversibility between the branching process and Fleming-Viot process. These two
processes are closely connected in several ways.

1.3 Future Work

The study of the two-parameter Poisson-Dirichlet distribution is in the middle of
rapid development over the last few years. There are still a number of problems
remaining unsolved for the two-parameter model. A particular example is the con-
struction of the two-parameter measure-valued process generalizing the Fleming-Viot
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process with parent independent mutation. The immediate projects will include the
construction of this model and finding more applications of the two-parameter related
models in other areas.
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Chapter 2

The Genealogical Structure of the
Linear Birth Process with
Immigration

2.1 Abstract

In this chapter, we give an explicit construction of the two-parameter GEM from
a linear birth process with immigration given in Feng and Hoppe [25]. Immigrants
arrive according a linear birth process and produce their own offsprings. Based on
some preliminary results on linear birth process, we obtain the limiting distribution
of scaled family and total population sizes as time goes to infinity. In the end, we
calculate the joint probability density function for the limiting age-ordered family
proportions, which coincides with the two-parameter GEM distribution.

2.2 Introduction

A continuous time Markov chain is a process {X(t), t ≥ 0} with values in N =
{0, 1, 2, . . .} such that transition function satisfying the following Markov property:

P (X(t+ s) = i|X(s) = j,X(u) = x(u), 0 < u < s) = P (X(t+ s) = i|X(s) = j)

for all t, s ≥ 0 and all states i, j, x(u). The process is homogeneous such that the
transition matrix P (t) consists of

Pij(t) = P (X(t+ s) = j|X(s) = i),
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and P (0) = I. The process is usually characterized by a matrix Q = (qij), i, j ∈ N
consisting of transition rates qij defined by

P (X(t+ h) = j|X(t) = i) = qijh+ o(h), i 6= j.

The row sum of a conservative Q-matrix is zero, yielding

qii = −
∑
j 6=i

qij.

A pure birth process with birth rate `i is a continuous time homogenous Markov
chain with the conservative Q-matrix consisting of elements qi,i+1 = `i and other
off-diagonal elements being 0 for i = 0, 1, 2, . . ..

Here, we associate a pure birth process with the the two-parameter GEM dis-
tribution defined as follows. For 0 ≤ α < 1 and θ > −α, let Uk, k = 1, 2, . . . be
a sequence of independent random variables such that Uk has Beta(1 − α, θ + kα)
distribution with density function given by

f(x) =
Γ(θ + 1 + (k − 1)α)

Γ(1− α)Γ(θ + kα)
x−α(1− x)θ+kα−1, 0 < x < 1.

Set (V1, V2, . . .) as

V1 = U1, Vn = (1− U1) · · · (1− Un−1)Un, n ≥ 2. (2.1)

The random points (V1, V2, . . .) are in the unordered infinite simplex

∆∞ =

{
(x1, x2, . . .) : xi ≥ 0 ∀i,

∞∑
i=1

xi = 1

}

equipped with topology inherited from [0, 1]∞. Arrange (V1, V2, . . .) in descending or-
der and denote it as P = (P1, P2, . . .). Then, the law of P is called the two-parameter
Poisson-Dirichlet distribution denoted by PD(α, θ). The law of (V1, V2, . . .) is called
the two-parameter GEM distribution denoted by GEM(α, θ). Since the infinite-
dimensional ordered simplex

∇∞ =

{
(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi = 1

}

is contained in ∆∞, PD(α, θ) can be thought of as a probability on ∆∞ which
concentrates on ∇∞.
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The two-parameter GEM distribution is the size-biased permutation of the two-
parameter Poisson-Dirichlet distribution, and the two-parameter PD distribution is
the ranked permutation of GEM.

Tavaré [61] shows that the GEM distribution where α = 0 gives the asymptotic
family frequencies of an age-ordered infinite alleles model, which is a pure birth
process with immigration. In particular, we notice that in Tavaré’s model the jump
chain embedded corresponds to the Hoppe’s Urn model [39], which leads to Ewens
sampling formula (1.6), while the two-parameter urn construction [25] implied the
two-parameter sampling formula, i.e. the Pitman sampling formula (1.7). Therefore,
as a two-parameter extension of Tavaré’s model, we shown the two-parameter GEM
distribution corresponds to the equilibrium state of a linear birth model constructed
by Feng and Hoppe [25].

In the next section, we give some results on linear birth processes. Following
that, we introduce an age-ordered infinite alleles model constructed from linear birth
process with immigration. The main results are laid out in the last section.

2.3 Linear Birth Process

The linear birth process is a time-homogeneous Markov process taking values in N.
Suppose that Y (t) is a pure birth process with birth rate `i = ρi+ c, ρ, c > 0. Thus,
the process has the conservative Q-matrix consisting of elements qi,i+1 = ρi+ c with
other off-diagonal elements being 0 for i = 0, 1, 2, . . .. It followed that the forward
equation for the transition probability Pij(t) has the form

P′ij(t) = `j−1Pi,j−1(t)− `jPi,j(t), t ≥ 0. (2.2)

Since this is a pure birth process, Pij(t) = 0 for j < i and t > 0. For j = i, we have

P′ii(t) = −`iPii(t), t ≥ 0. (2.3)

Solving the ODE (2.3) with initial condition Pii(0) = 1, we conclude that

Pii(t) = e−`it = e−(ρi+c), t ≥ 0.

Following (2.2), we get an iteration equation:

Pij(t) = `j−1

∫ t

0

e−`j(t−s)Pi,j−1(s) ds (2.4)
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for j > i and t > 0. Particularly for j = i+ 1, we have

Pi,i+1(t) = `ie
−`i+1t

et(`i+1−`i) − 1

`i+1 − `i
= (i+

c

ρ
)e−t(ρi+c)(1− e−tρ).

By induction we have for general j ≥ i ≥ 0 and t > 0

Pij(t) =

( c
ρ

+ j − 1

j − i

)
e−t(ρi+c)(1− e−ρt)j−i.

In our case with Y (0) = 0 it follows that

P(Y (t) = n|Y (0) = 0) =

(
c
ρ

+ n− 1

n

)
e−ct(1− e−ρt)n, n = 0, 1, . . . (2.5)

In addition, the processes e−ρtY (t) are nonnegative submartingales with respect
to their respective natural filtration. Thus the limit as t goes to infinity almost surely
exists. Furthermore, the limit random variable has a gamma distribution. This is
because of the convergence of the moment generating functions. By (2.5), letting
p = e−ρt we have for λ < 1

E[eλpY (t)] =
∞∑
n=0

enpλ
(
c
ρ

+ n− 1

n

)
e−ct(1− e−ρt)n

= e−ct(1− epλ(1− e−ρt))−c/ρ

= (eρt(1− epλ(1− e−ρt)))−c/ρ →
(

1

1− λ

)−c/ρ
,

as t→∞. Therefore, we conclude that

lim
t→∞

e−ρtY (t) = Γc/ρ almost surely,

where Γd denotes the gamma(d,1) random variable with density f(x) = xd−1e−x

Γ(d)
, x >

0. Applying similar arguments to Y (t) starting at Y (0) = 1, we have

P(Y (t) = n|Y (0) = 1) =

( c
ρ

+ n− 1

n− 1

)
e−(ρ+c)t(1− e−ρt)n−1, n = 1, 2, . . .

and
e−ρtY (t)→ Γ1+ c

ρ
a.s.,

as t→∞.
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2.4 Age-ordered Infinite Alleles Model

The evolution of the total population is modeled by a linear birth process {N(t), t ≥
0} with N(0) = 0. The immigration process I(t) is a pure birth process with I(0) = 0
and birth rate

λk = lim
h→0

1

h
P (I(t+ h)− I(t) = 1|I(t) = k),

given by λk = kα+ θ, k ≥ 0. Each family is initiated by an immigrant according to
a pure birth process {X(t), t ≥ 0} starting at X(0) = 1 with birth rate bn = n− α.
For i = 1, 2, . . . let {Xi(t)} be independent copies of X(t) and Ti be the arrival times
of the ith immigrant. Then Xi(t− Ti) would be the population size at time t of the

ith family and N(t) =
∑I(t)

i=1 Xi(t− Ti). The birth rate of N(t) is

rn = lim
h→0

1

h
P (N(t+ h)−N(t) = 1|N(t) = n) = θ + n,

since

P (N(t+ h)−N(t) = 1|N(t) = n)

= E

[
(θ + I(t)α +

I∑
i=1

(t)(Xi(t− Ti)− α))h+ o(h)|N(t) = n

]
= (θ + n)h+ o(h).

Therefore, we have
e−tN(t)→ Γθ a.s. (2.6)

and
e−tX(t)→ Γ1−α a.s. (2.7)

as t→∞.

Let the stochastic process {η(t), t ≥ 0} record the sizes of families in the order
of their appearances in the population. Thus, define ηi(t) = Xi(t− Ti)1{t≥Ti}. Then
η(t) = (η1(t), η2(t), . . .), t > 0 with η(0) = (0, 0, . . .). From the result of (2.7), let
E1, E2, . . . be independent copies of Γ1−α satisfying e−tXi(t) → Ei, a.s. as t → ∞.
Consider the ith oldest family size ηi(t) at time t , then

e−tηi(t) = e−tXi(t− Ti)1{t≥Ti}
= e−Tie−(t−Ti)Xi(t− Ti)1{t≥Ti}
→ e−TiEi, a.s.

as t→∞. We get the following general result.
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Theorem 2.1. The age-ordered family size {η(t) = (η1(t), η2(t), . . .)} has asymptotic
structure given by

e−t(η1(t), η2(t), . . .)→ (e−T1E1, e
−T2E2, . . .) (2.8)

almost surely as t→∞.

Proof. Fix n ∈ N. We have

e−t(η1(t), . . . , ηn(t)) =
n−1∑
i=1

e−t(X1(t− T1), . . . , Xi(t− Ti), 0, . . . , 0)1{Ti≤t<Ti+1}

+ e−t(X1(t− T1), . . . , Xn(t− Tn))1Tn≤t

→ (e−T1E1, . . . , e
−TnEn), a.s. as t→∞

by an argument analogous to the above. Intersecting the sets on which the a.s. con-
vergence occurs for each n gives a set of probability one on which the convergence
holds for each n, and the theorem is proved. ut

We will be interested in the asymptotic behavior of the fraction of the population
that belong to the oldest, next oldest,...families in the process. We need the following
result.

Theorem 2.2. Let σi = e−TiEi, i = 1, 2, . . . be the limiting random variables in the
above theorem. Then

e−tN(t) =
∑
j≥1

e−tηj(t)→
∑
j≥1

σj =: σ, a.s. as t→∞,

where σ has the gamma(θ,1) distribution.

Proof. Following the result of (2.6) we know that e−tN(t) converges almost
surely to Y with the gamma(θ,1) distribution. By Fatou’s lemma we also have

e−tN(t) =

I(t)∑
i=1

e−(t−Ti)Xi(t− Ti)e−Ti

≥ 1{I(t)≥r}

r∑
i=1

e−(t−Ti)Xi(t− Ti)e−Ti .
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Letting t goes to infinity on both sides we have Y ≥
∑r

i=1 σi for any r ∈ N. Thus,
Y ≥

∑∞
i=1 σi.

On the other side, we have E[
∑∞

i=1 σi] =
∑∞

i=1E[e−TiEi] = (1− α)
∑∞

i=1 E[e−Ti ].

We know that Ti =
∑i

j=1 τj, where τj’s are independent random variables with the

exponential distribution whose mean is 1
θ+(j−1)α

. Thus,

∞∑
i=1

E[e−Ti ] =
∞∑
i=1

i∏
j=1

Ee−τj

=
∞∑
i=1

i∏
j=1

θ + (j − 1)α

θ + (j − 1)α + 1

=
Γ((θ + 1)/α)

Γ(θ/α)

∞∑
i=1

i∏
j=1

θ/α + j − 1

(θ + 1)/α + j − 1
· Γ(θ/α)

Γ((θ + 1)/α)

=
Γ((θ + 1)/α)

Γ(θ/α)

∞∑
i=1

Γ(θ/α + i)

Γ((θ + 1)/α + i)

=
Γ((θ + 1)/α)

Γ(θ/α)Γ(1/α)

∞∑
i=1

Beta(θ/α + i, 1/α)

=
Γ((θ + 1)/α)

Γ(θ/α)Γ(1/α)
Beta(θ/α + 1, 1/α− 1)

=
θ

1− α
.

Therefore, E[
∑∞

i=1 σi] = θ. Since EY = θ, we have Y =
∑∞

i=1 σi a.s.. ut

Combining Theorem 2.1 with Theorem 2.2, we immediately get the following
result.

Corollary 2.3.

N(t)−1(η1(t), η2(t), . . .)→ (P1, P2, . . .) a.s. as t→∞,

where

Pi = σi/σ = e−TiEi/

(∑
i≥1

e−TiEi

)
, i = 1, 2, . . .

The random variable Pi gives the asymptotic proportion of the ith oldest family
size. The next theorem describes the structure of {Pi}.
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Theorem 2.4. Suppose that {Ui}∞i=1 is a sequence of independent random variables
such that Ui has beta(1−α, θ+ iα) distribution given by the density function f(x) =
Γ(1−α)Γ(θ+iα)
θ+1+(i−1)α

x−α(1− x)θ+iα−1, 0 < x < 1. Then

Pi
D
= (1− U1)(1− U2) · · · (1− Ui−1)Ui, i ≥ 2 and P1 = U1. (2.9)

Proof. For any r ∈ N, we calculate the joint distribution of (σ1, . . . , σr,
∑

j>r σj).
Since

(σ1, . . . , σr,
∑
j>r

σj) = (e−T1E1, . . . , e
−TrEr, e

−Tr
∑
j>r

e−(Tj−Tr)Ej)

= (e−T1E1, . . . , e
−TrEr, e

−Trσ∗),

where σ∗ is independent of E1, . . . , Er, T1, . . . , Tr with the gamma(θ + rα,1) distri-
bution. Then the joint probability of (e−T1E1, . . . , e

−TrEr, e
−Trσ∗):

P(e−τ1E1 ≤ x1, e
−(τ1+τ2)E2 ≤ x2, . . . , e

−(τ1+···+τr)Er ≤ xr, e
−(τ1+···+τr)σ∗ ≤ xr+1)

=

∏r
i=1(θ + (i− 1)α)

Γ(1− α)rΓ(θ + rα)

∫
A

r∏
i=1

e−(θ+(i−1)α)τi

r∏
i=1

z−αi e−zizθ+rα−1
r+1 e−zr+1dτdz,

where A denotes the set of {(z, τ)} satisfying the following inequalities

e−τ1z1 ≤ x1

e−(τ1+τ2)z2 ≤ x2
...
e−(τ1+···+τr)zr ≤ xr
e−(τ1+···+τr)zr+1 ≤ xr+1.

After a change of variables by letting νi =
∑i

j=1 τj, yi = e−νizi for i = 1, . . . , r + 1,

we have the Jacobian matrix |J | = e
∑r
i=1 νi+νr and do the integration on the region

of {0 ≤ ν1 ≤ · · · ≤ νr <∞} we get the density function for (σ1, . . . , σr,
∑

j>r σj) is

f(x1, . . . , xr+1) =

∏r
i=1(θ + (i− 1)α)

∏r
i=1 x

−α
i xθ+rα−1

r+1 e−(
∑r+1
i=1 xi)

Γ(1− α)rΓ(θ + rα)(xr+1 + xr) · · · (xr+1 + · · ·+ x1)
.

Hence, the joint density of (σ1/σ, . . . , σr/σ, σ) is

g(y1, . . . , yr+1) =
Γ(θ)

∏r
i=1(θ + (i− 1)α)

∏r
i=1 y

−α
i (1− y1 − · · · − yr)θ+rα−1

Γ(1− α)rΓ(θ + rα)(1− y1 − · · · − yr−1) · · · (1− y1)

yθ−1
r+1e−yr+1

Γ(θ)
.

Thus, σ is independent of (σ1/σ, . . . , σr/σ). After a standard calculation it is shown
that the above density is exactly the joint density of (P1, . . . , Pr) defined in (2.9). ut
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Chapter 3

The Sampling Formula and
Laplace Transform

3.1 Abstract

A basic tool in the statistical inference of population genetics is Ewens sampling
formula, which describes the probabilities associated with counts of how many dif-
ferent alleles are observed a given number of times in the sample. In this chapter,
we show the robustness of the sampling formula by using it to derive the Laplace
transform of the two-parameter Poisson-Dirichlet distribution. Then, we reverse this
derivation by using the Laplace transform to get the sampling formula. Our result
can be seen as an interpretation of Kingman’s conclusion on the equivalence between
the sampling formula and random mass partition.

Then, we proceed with two examples: the IMNA model and selection model.
In Section 3.5, we first obtain the Laplace transform of the IMNA model at a

fixed time. Then, we use it to derive a Gaussian limit theorem for the homozygosity
functions at each fixed time as the mutation rate goes to infinity.

In Section 3.6, the Laplace transform associated with a non-neutral infinite alleles
model with a special selection is obtained from its sampling formula.

It should be noted that this chapter is originated from the accepted paper [68].
The references of the chapter are indexed to adapt to the thesis, therefore differ from
those in the original paper.
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3.2 Introduction

We start with the random partition structure associated with the two-parameter
Poisson-Dirichlet distribution with parameter 0 ≤ α < 1, θ > −α, which concentrates
on the infinite dimensional ordered simplex

∇∞ :=
{

x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,
∞∑
i=1

xi = 1
}

with the topology inherited from [0.1]∞. For 0 ≤ α < 1 and θ > −α, let Uk, k =
1, 2, . . . be a sequence of independent random variables such that Uk has Beta(1 −
α, θ + kα) distribution with density function given by

f(x) =
Γ(θ + 1 + (k − 1)α)

Γ(1− α)Γ(θ + kα)
x−α(1− x)θ+kα−1, 0 < x < 1.

Set (V1, V2, . . .) as

V1 = U1, Vn = (1− U1) · · · (1− Un−1)Un, n ≥ 2. (3.1)

Arrange (V1, V2, . . .) in descending order and denote it as P = (P1, P2, . . .). Then,
the law of P is called the two-parameter Poisson-Dirichlet distribution denoted by
PD(α, θ). The law of (V1, V2, . . .) is called the two-parameter GEM distribution de-
noted by GEM(α, θ). PD(0, θ) is the Poisson-Dirichlet distribution with parameter
θ usually denoted as PD(θ).

The exchangeable random partition functions associated with PD(θ) and PD(α, θ)
are known as Ewens sampling formula and Pitman sampling formula. Consider a
random sample of n individuals. The composition of the sample can be given by a
partition vector n = (n1, . . . , nk) of n, which indicates there are k different types of
alleles in the sample and each family consists of ni individuals. The partition struc-
ture of sample n is often denoted by a different but equivalent vector a = (a1, . . . , an),
where ai is the number of families containing i individuals. Therefore ai ≥ 0 and∑n

i=1 iai = n. Given x = (x1, x2, . . .) ∈ ∇∞ where xi denotes the frequency of the
ith largest family in the population, the conditional probability of a random sample
of size n with partition structure An = a is expressed as

P (An = a|x = (x1, x2, . . .)) =
n!∏n
i=1 i!

ai

∑
n

xn1
1 x

n2
2 · · · ,

where the summation is over the set {n = (n1, n2, . . .) : ]{i : ni = j} = aj, ni ≥ 0}.
When x ∼ PD(θ) the probability

P (An = a) =

∫
∇∞

P (An = a|x = (x1, x2, . . .))PD(θ)(dx)
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is given by Ewens sampling formula (ESF)

P (An = a) =
n!

θ(n)

n∏
j=1

(
θ

j
)aj

1

aj!
, (3.2)

where θ(n) = θ · · · (θ + n − 1). In the two-parameter case, i.e. x ∼ PD(α, θ), the
corresponding formula was obtained by Pitman [54] known as the Pitman sampling
formula (PSF)

P (An = a) =
n!

θ(n)

k−1∏
`=0

(θ + `α)
n∏
j=1

(1− α)
aj
(j−1)

(j!)aj(aj!)
. (3.3)

The sampling formula has numerous applications in population genetics. It includes
the estimation of mutation rate θ and comparison between the neutral model and
non-neutral one. Here, neutral means we only consider the mutation factor in the
evolution. The proof of the sampling formula also leads to recursive constructions
of some well-known partition structures, such as Hoppe’s Urn model, Blackwell-
MacQueen urn and Chinese restaurant process (see e.g. [56]). In this thesis, we
give an alternative derivation of the sampling formula from the Laplace transform
associated with the PD(α, θ) distribution. We show that the Laplace transform can
also be obtained from the sampling formula.

Pitman, Yor [57] and Handa [38] characterized the two-parameter Poisson-Dirichlet
distribution by the Laplace transform of a probability generating functional of the
random vector x with the PD(α, θ) distribution. The special form of the Laplace
transform can be seen as a result of Campbell’s theorem from the Poisson point pro-
cess theory (see [46]). It is also based on the connection of PD(θ) and PD(α, θ) with
some subordinators in [57]. It can be seen that in [38] the key to derive the Laplace
transform is the correlation measure of the point process, which is obtained based
on the size-biased permutation of PD(α, θ) given by the GEM(α, θ) distribution.
In this thesis, we derive the correlation measure directly from the sampling formula
(3.3), which can be regarded as an interpretation of Kingman’s conclusion that the
partition function and random mass partition are unique to each other. We gather
the above result and the proof in the fourth section followed by introducing several
necessary definitions and notations in the third section.

In Section 3.5, we apply the Laplace transform to the IMNA model with mutation
rate θ at a fixed time. It leads to the establishment of a central limit theorem
associated with the homozygosity functions at time t as θ goes to infinity. Comparing
with the limiting behavior corresponding to the equilibrium state studied by Joyce et
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al, we conclude the similarity of the population at any finite time and the equilibrium
state when the mutation is quite strong. If we look at the transition function of the
IMNA model obtained in [13], it can be further inferred that the descendants of the
ancestors disappear quickly and the population is dominated by the mutants as the
mutation rate goes to infinity.

In the end, we consider a non-neutral model involving a special selection. In the
finite alleles diffusion model with selection, the stationary distribution is shown to
be absolutely continuous with respect to the neutral one with the density esH2(X)/C,
where H2 =

∑
X2
i is the homozygosity function, s ∈ R denotes the selection intensity

and C is the normalization constant. In an infinite alleles model with selection [17],
the stationary distribution PDs,q(θ) is also absolutely continuous with respect to the
Poisson-Dirichlet distribution PD(θ) with the Radon-Nikodym derivative

esHq(X)/C, X = (X1, X2, . . .) ∈ ∇∞,

where Hq(X) =
∑
Xq
i , q = 2, 3, . . . denotes the qth order homozygosity. Handa [37]

considers a more general partition structure under this distribution

Pθ,s,q(An = a) = E[esHq(X)ψn(X)]/E[esHq(X)], (3.4)

where

ψn(x) =
n!

n1! · · ·nk!a1! · · · an!

∑
i1,...,ik 6=

xn1
i1
· · ·xnkik (3.5)

and the sum is taken over n-tuple of distinct indices. The expectation is taken under
the PD(θ) distribution. In the last section, we derive the correlation function and
Laplace transform for this selection model.

3.3 Preliminaries and Notations

First, we briefly introduce some definitions in the theory of point process. Readers
can refer to [5] for details. The random element (Xi)

∞
i=1 governed by the PD(α, θ)

distribution can be viewed as a random point process ξ :=
∞∑
i=1

δXi , which is called the

(two-parameter) Poisson-Dirichlet point process with parameters (α, θ) or simply the
PD(α, θ) process discussed in [38]. For any positive integer n, the nth correlation
measure of ξ, if it exists, is defined to be a σ-finite Borel measure µn such that for
any nonnegative measurable function f on Rn

E

[ ∑
i1,...,in 6=

f(Xi1 , · · · , Xin)

]
=

∫
Rn

f(x1, . . . , xn)µn(dx1 · · · dxn),
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where the subscript on the left side denotes that the sum is taken over n-tuple of
distinct indices. If µn has a density with respect to the n-dimensional Lebesgue
measure, the density is called the nth correlation function of ξ.

Another thing we need to point out here is that the sampling formula (3.3) is
equivalent to the following statement: given an arbitrary partition (n1, . . . , nk) of n,
we have

Eα,θ

[ ∑
i1,...,ik 6=

Xn1
i1
· · ·Xnk

ik

]
=

k−1∏
l=0

(θ + lα)

θ(n)

k∏
i=1

(1− α)(ni−1), (3.6)

where Eα,θ means the expectation is taken w.r.t. the PD(α, θ) distribution. This
is the key to show our first result about the correlation function of the PD(α, θ)
process ξ in the following part.

3.4 The Sampling Formula and Laplace Transform

Theorem 3.1. Suppose the sampling formula (3.3), which is equivalent to (3.6),
holds for a random element (Xi)

∞
i=1 ∈ ∇∞. Then the kth correlation function of the

point process ξ =
∑∞

i=1 δXi for each k = 1, 2, . . . is as follows:

qk(x1, . . . , xk) = ck,α,θ

k∏
i=1

x
−(α+1)
i (1−

k∑
j=1

xj)
θ+αk−11∆k

(x1, . . . , xk), (3.7)

where

∆k =

{
(x1, . . . , xk) : x1 ≥ 0, . . . , xk ≥ 0,

k∑
i=1

xi ≤ 1

}
and

ck,α,θ =
k∏
i=1

Γ(θ + 1 + (i− 1)α)

Γ(1− α)Γ(θ + iα)
.

Proof. In fact, we only need to show that for any nonnegative measurable function
f(x1, . . . , xk) on ∆k, the identity

E

[ ∑
i1,...,ik 6=

f(Xi1 , · · · , Xik)

]
=

∫
∆k

f(x1, . . . , xk)qk(x1, . . . , xk) dx1 · · · dxk (3.8)
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holds. Set f(x1, . . . , xk) = xn1
1 · · ·x

nk
k . Then, the right side of the above (3.8) equals

to

ck,α,θ

∫
∆k

k∏
i=1

xni−α−1
i (1−

k∑
j=1

xj)
θ+αk−1dx1 · · · dxk

=
k∏
i=1

Γ(θ + 1 + (i− 1)α)

Γ(1− α)Γ(θ + iα)

k∏
i=1

Γ(ni − α)Γ(θ + kα)

Γ(θ + n)

=

k∏
i=1

(1− α)(ni−1)

k−1∏
i=0

(θ + iα)

θ(n)

,

which indicates that (3.8) holds for all the polynomial functions on ∆k. Let L be
the set of all the nonnegative functions satisfying (3.8). It is easy to check that L
is a λ− system, which means L satisfies the following three conditions:

1. 1 ∈ L ;

2. L is closed under finite linear combinations;

3. If fn ∈ L , fn ↑ f , then f ∈ L .

If we can show that L contains all the nonnegative bounded continuous functions on
∆k, then L contains all nonnegative measurable functions on ∆k by the monotone
theorem.

Since ∆k is compact, by the Stone-Weierstrass theorem any continuous function
f ∈ C(∆k) can be approximated by a sequence of polynomial functions uniformly.
Thus, for any nonnegative f ∈ C(∆k), there exists a sequence of polynomials {Bm}
such that sup

∆k

|Bm(x) − f(x)| → 0, as m → ∞. Without loss of generality, we can

assume {Bm} are also nonnegative. We consider the following two cases.
Case 1:

∫
∆k
f(x1, . . . , xk)qk(x1, . . . , xk) dx1 · · · dxk <∞. Denote the interior of ∆k

by ∆◦k and set Qk
⋂

∆◦k = {q1, q2, . . .}, since it is a countable set. For any ε > 0, and

q1 = (q11, . . . , q1k), since f(q1) < f(q1)+ε
∏k

j=1 q1j and Bm(q1)→ f(q1), we can find a

subsequence of Bm named B1m such that B1m(q1) ≤ f(q1) + ε
∏k

j=1 q1j. For the same
reason we can get another subsequence of B1m named B2m for q2 such that B2m(q2) ≤
f(q2) + ε

∏k
j=1 q2j. Repeating this process for each qi and using the diagonal method,

we can get a sequence which we still call Bm such that Bm(qi) ≤ f(qi)+ε
∏k

j=1 qij, for
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any i = 1, 2, . . . . By the continuity of Bm, we have Bm(x) ≤ f(x) + ε
∏k

j=1 xj,∀x =

(x1, . . . , xk) ∈ ∆k, since
∫

∆◦k
(f(x) + ε

∏k
j=1 xj)qk(x1, . . . , xk) dx1 · · · dxk <∞. By the

dominated theorem, we get∫
∆◦k

f(x)qk(x) dx = lim
m→∞

∫
∆◦k

Bm(x)qk(x) dx.

On the other hand, we have
∫

∆k
f(x)qk(x) dx =

∫
∆◦k
f(x)qk(x) dx and

∫
∆k
Bm(x)qk(x) dx =∫

∆◦k
Bm(x)qk(x) dx, since the boundary of ∆k has zero Lebesgue measure. Therefore,

lim
m→∞

E

[ ∑
i1,...,ik 6=

Bm(Xi1 · · ·Xik)

]
= lim

m→∞

∫
∆k

Bm(x)qk(x) dx

= lim
m→∞

∫
∆◦k

f(x)qk(x) dx

=

∫
∆◦k

f(x)qk(x) dx

=

∫
∆k

f(x)qk(x) dx.

Following Fatou’s lemma, we have

E

[ ∑
i1,...,ik 6=

f(Xi1 , · · · , Xik)

]
≤ lim

m→∞
E

[ ∑
i1,...,ik 6=

Bm(Xi1 · · ·Xik)

]
. (3.9)

Since Bm(Xi1 · · ·Xik) ≤ f(Xi1 , · · · , Xik) + ε
∏k

j=1 Xij , a.s.. Thus

lim
m→∞

E[
∑

i1,...,ik 6=

Bm(Xi1 · · ·Xik)] ≤ E[
∑

i1,...,ik 6=

f(Xi1 , · · · , Xik)] + ε.

Letting ε ↓ 0 and combining with (3.9), we have

E

[ ∑
i1,...,ik 6=

f(Xi1 , · · · , Xik)

]
= lim

m→∞
E

[ ∑
i1,...,ik 6=

Bm(Xi1 · · ·Xik)

]
,

which gives the identity
∫

∆k
f(x)qk(x) dx = E[

∑
i1,...,ik 6=

f(Xi1 , · · · , Xik)].
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Case 2:
∫

∆n
f(x)qn(x) dx =∞. By Fatou’s lemma, we have

lim
m→∞

∫
∆n

Bm(x)qn(x) dx ≥
∫

∆n

f(x)qn(x) dx

and

lim
m→∞

∫
∆n

Bm(x)qn(x) dx = lim
m→∞

E[
∑

i1,...,ik 6=

Bm(Xi1 · · ·Xik)] =∞.

By the same method as above, we can find a subsequence of Bm which we still denote
as Bm such that Bm(x) ≤ f(x) +

∏n
j=1 xj,∀x = (x1, . . . , xn) ∈ ∆◦n. So

Bm(Xi1 · · ·Xik) ≤ f(Xi1 , · · · , Xin) + 1 a.s.,

and

lim
m→∞

E

[ ∑
i1,...,ik 6=

Bm(Xi1 · · ·Xin)

]
≤ E

[ ∑
i1,...,in 6=

f(Xi1 , · · · , Xin)

]
a+ 1.

Thus, E
[∑

i1,...,in 6= f(Xi1 , · · · , Xin)
]

=∞. ut

With the correlation function of the point process ξ derived, we can obtain the
Laplace transform of the probability generating function which is proved in Theorem
3.1 of [38].

Theorem 3.2 ([38]). Suppose that g : (0,∞) → C is a measurable function such
that

λα(g) := inf

{
λ > 0 :

∫ ∞
0

e−λz

zα+1
|g(z)| dz <∞

}
<∞.

Put

λ∗α(g) = inf

{
λ > λα(g) :

Cα
λα

∫ ∞
0

e−λz

zα+1
|g(z)| dz ∈ C \ [1,∞)

}
,

so that in particular λ∗0(g) = λ0(g). The correlation measure of ξ =
∑∞

i=1 δXi is given
by (3.7). Then

E[
∞∏
i=1

(1 + |g(sXi)|)] <∞
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a.e. s > 0, and for λ > λ∗α(g)

λθ

Γ(θ + 1)

∫ ∞
0

sθ−1e−λs(E[
∞∏
i=1

(1 + g(sXi))− 1]) ds

=


1
θ

exp(θ
∫∞

0
e−λz

z
g(z) dz)− 1

θ
, α = 0, θ > 0,

1
θ
(1− Cα

λα

∫∞
0

e−λz

zα+1 g(z) dz)−
θ
α − 1

θ
, 0 < α < 1, θ 6= 0

− 1
α

log(1− Cα
λα

∫∞
0

e−λz

zα+1 g(z)) dz), 0 < α < 1, θ = 0.

As a corollary of the above Laplace transform, we have the following result which
gives the sampling formula.

Corollary 3.3. Suppose the above Laplace transform exists for sufficiently large
λ > 0, then the sampling formula corresponding to X = (X1, X2, . . .) ∈ ∇∞ coincides
with the Pitman sampling formula (3.3) which equals to (3.6).

Proof. Following the uniqueness of Laplace transformation or Lemma 3.1 in [38] and
taking the inverse of it we have

F (s) = E[
∞∏
i=1

(g(sXi) + 1)]− 1

=
∞∑
n=1

cn,α,θ
n!

∫
∆n

n∏
i=1

g(sxi)

xα+1
i

(1−
n∑
j=1

xj)
θ+αn−1 dx1 · · · dxn,

such that g(z) satisfies the condition that there exists some λ > 0, such that∫∞
0

e−λz

zα+1 |g(z)| dz <∞. Set s = 1 and g(z) = t1z
n1 + · · ·+tkznk , where n1, . . . , nk ≥ 1.

It is obvious that
∫∞

0
e−λz

zα+1 |g(z)| dz <∞, ∀λ > 0. Then, we have

∂k

∂t1 · · · ∂tk
|t1=···=tk=0

∞∏
i=1

(1 + g(Xi)) =
∑

i1,··· ,ik 6=

Xn1
i1
· · ·Xnk

ik
.

Therefore,

E[
∑

i1,··· ,ik 6=

Xn1
i1
· · ·Xnk

ik
]

=
∂k

∂t1 · · · ∂tk
|t1=···=tk=0E

∞∏
i=1

(1 + g(Xi))

=
∂k

∂t1 · · · ∂tk
|t1=···=tk=0

[1 +
∞∑
n=1

cn,α,θ
n!

∫
∆n

n∏
i=1

g(sxi)

xα+1
i

(1−
n∑
j=1

xj)
θ+αn−1 dx1 · · · dxn].
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Furthermore, by interchanging the differentiation and integration processes, we have

∞∑
n=1

cn,α,θ
n!

∫
∆n

∂k

∂t1 · · · ∂tk
|t1=···=tk=0

n∏
i=1

g(sxi)

xα+1
i

(1−
n∑
j=1

xj)
θ+αn−1 dx1 · · · dxn

=
ck,α,θ
k!

∫
∆k

k!
n∏
i=1

xni−α−1
i (1−

n∑
j=1

xj)
θ+αn−1 dx1 · · · dxn

= ck,α,θ
Γ(n1 − α) · · ·Γ(nk − α)Γ(θ + kα)

Γ(θ + n)

=

∏k
i=1(1− α)(ni−1)

θ(n)

k−1∏
l=0

(θ + lα),

which implies (3.6). ut

3.5 Non-equilibrium of the IMNA model

3.5.1 The Laplace Transform of the IMNA Model

As mentioned in the Introduction, the Poisson-Dirichlet distribution PD(θ) corre-
sponds to the equilibrium of the IMNA process X(t) with the following generator

L =
1

2

∞∑
i,j=1

xi(δij − xj)
∂2

∂xi∂xj
− θ

2

∞∑
i=1

xi
∂

∂xi
,

whose domain is D(L) = span{1, ϕ2, ϕ3, . . .} ⊂ C(∇∞), and ϕn(x) =
∑∞

i=1 x
n
i is

defined on ∇∞ and extends continuously to its closure ∇∞, the closure of ∇∞ in
[0, 1]∞. In [13] it is shown that the transition probability P(t,x, A) of X(t) starting
from x = (x1, x2, . . .) ∈ ∇∞ is absolutely continuous with respect to the stationary
distribution PD(θ). Suppose that pn is defined as

pn(x, y) =
∑

n:|n|=n

ψn(x)ψn(y)

E[ψn(z)]
,

where ψn is defined as (3.5). The expectation E[ψn(z)] is taken w.r.t. the PD(θ)
distribution, which thus is given by the Ewens sampling formula (3.2). The transition
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density function q(t, x, y) is given as

q(t, x, y) = 1 +
∞∑
m=2

2m− 1 + θ

m!
e−λmt (3.10)

·
m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)pn(x, y), x, y ∈ ∇∞,

where λm = m(m−1+θ)
2

,m = 2, 3, . . .. The type of expansion (3.10) was first de-
rived by Griffiths [32]. A very similar transition function was also obtained by
Ethier and Griffiths [14] for the labeled version of IMNA model, which is a measure-
valued Fleming-Viot process with parent-independent mutation. Here, we consider
the Laplace transform of X(t) = (X1(t), X2(t), . . .) with initial value x.

Theorem 3.4. Suppose that g(z) is a measurable function such that

λ(g) := inf{λ > 0 :

∫ ∞
0

e−λz

z
|g(z)| dz <∞} <∞.

Then for fixed time t, the Laplace transform of the IMNA process X(t) starting from
x ∈ ∇∞ is given by∫ ∞

0

e−λττ θ−1Ex[
∞∏
i=1

(1 + g(τXi(t)))] dτ

=
Γ(θ)

λθ
exp{θ

∫ ∞
0

e−λz

z
g(z) dz}

+
∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)

∑
n=(n1,...,nk)∑k

i=1
ni=n

ψn(x)

[
Γ(θ)

λθ
+ ESF (n)−1

∞∑
`=1

1

`!

`∧k∑
r=0

∑
B⊂{1,...,k}
|B|=r

(
`

r

)
θk+`−rHk,`,B],

where

Hk,`,B =

∫
(0,∞)k+`−r

yn1
1 · · · y

nk
k (
∏
j∈B

g(yj))g(yk+1) · · · g(yk+`−r)

(
k+`−r∏
i=1

y−1
i e−λyi)dy1 · · · dyk+`−r

∫ ∞
0

e−λτ (τ +
k+`−r∑
j=1

yj)
−nτ θ−1 dτ,
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and ESF (n) is given by Ewens sampling formula as

ESF (n) =
θk

θ(n)

(n1 − 1)! · · · (nk − 1)!.

Proof. For an arbitrary fixed time t > 0,

Ex

[
∞∏
i=1

(1 + g(τXi(t)))

]
= E

[
∞∏
i=1

(1 + g(τYi))q(t, x, Y )

]

= E

[
∞∏
i=1

(1 + g(τYi))

]

+
∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)

E

[
∞∏
i=1

(1 + g(τYi))pn(x, Y )

]
,

where Y = (Y1, Y2, . . .) has the Poisson-Dirichlet distribution PD(θ). Since

∞∏
i=1

(1 + g(τYi))pn(x, Y ) =
∑

n=(n1,...,nk)∑k
i=1

ni=n

∞∏
i=1

(1 + g(τYi))φn(Y )ψn(x)ESF (n)−1,

where φn(Y ) =
∑

i1,...,ik 6= Y
n1
i1
· · ·Y nk

ik
. Hence, we have

∞∏
i=1

(1 + g(τYi))φn(Y )

=
∞∏
i=1

(1 + g(τYi))
∑

i1,...,ik 6=

Y n1
i1
· · ·Y nk

ik

=
∑

i1,...,ik 6=

Y n1
i1
· · ·Y nk

ik
+
∞∑
`=1

1

`!

∑
j1,...,j` 6=
i1,...,ik 6=

g(τYj1) · · · g(τYj`)Y
n1
i1
· · ·Y nk

ik

=
∞∑
`=0

1

`!

`∧k∑
r=0

∑
B⊂{1,...,k}
|B|=r

`!

(`− r)!
∑

i1,...,ik+`−r 6=

Y n1
i1
· · ·Y nk

ik
(
∏
j∈B

g(τYij))

g(τYik+1
) · · · g(τYik+`−r)
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Therefore,

E[
∞∏
i=1

(1 + g(τYi))φn(Y )]

= ESF (n) +
∞∑
`=1

1

`!

`∧k∑
r=0

∑
B⊂{1,...,k}
|B|=r

`!

(`− r)!

∫
∆k+`−r

yn1
1 · · · y

nk
k

(
∏
j∈B

g(τyj))g(τyk+1) · · · g(τyk+`−r)µk+`−r(dy1 · · · dyk+`−r).

By substituting the correlation measure, the above equals

ESF (n) +
∞∑
`=1

1

`!

`∧k∑
r=0

∑
B⊂{1,...,k}
|B|=r

`!

(`− r)!
θk+`−r

∫
∆k+`−r

yn1
1 · · · y

nk
k

(
∏
j∈B

g(τyj))g(τyk+1) · · · g(τyk+`−r)(1−
k+`−r∑
i=1

yi)
θ−1 dy1 · · · dyk+`−r

y1 · · · yk+`−r
.

Define

Hk,`,B :=

∫ ∞
0

e−λττ θ−1 dτ

∫
∆k+`−r

yn1
1 · · · y

nk
k

(
∏
j∈B

g(τyj))g(τyk+1) · · · g(τyk+`−r)(1−
k+`−r∑
i=1

yi)
θ−1 dy1 · · · dyk+`−r

y1 · · · yk+`−r
.

Using Fubini’s theorem, we have

|Hk,`,B| ≤ Γ(θ)(

∫ ∞
0

e−λz|g(z)|
z

dz)`.

Consequently, the series
∑∞

`=1
1
`!

∑`∧k
r=0

∑
B⊂{1,...,k}
|B|=r

`!
(`−r)!θ

k+`−rHk,`,B is absolutely conver-

gent, with upper bound given by Γ(θ)eθMθk(1 +M)k, where

M =

∫ ∞
0

e−λx|g(x)|x−1 dx <∞.

In addition, we have obtained previously∫ ∞
0

e−λττ θ−1E[
∞∏
i=1

(1 + g(τYi))] dτ =
Γ(θ)

λθ
exp{θ

∫ ∞
0

e−λz

z
g(z) dz}.
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Therefore,∫ ∞
0

e−λττ θ−1Ex[
∞∏
i=1

(1 + g(τXi(t)))] dτ

=

∫ ∞
0

e−λττ θ−1E[
∞∏
i=1

(1 + g(τYi))]dτ +
∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(−1)m−n(
m

n

)
(n+ θ)(m−1)

∫ ∞
0

e−λττ θ−1E[
∞∏
i=1

(1 + g(τYi))pn(x, Y )] dτ

=
Γ(θ)

λθ
exp{θ

∫ ∞
0

e−λz

z
g(z) dz}+

∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(−1)m−n(
m

n

)
(n+ θ)(m−1)

∑
n=(n1,...,nk)∑k

i=1
ni=n

ψn(x)[
Γ(θ)

λθ
+ ESF (n)−1

∞∑
`=1

1

`!

`∧k∑
r=0

∑
B⊂{1,...,k}
|B|=r

`!

(`− r)!
θk+`−rHk,`,B],

where

Hk,`,B =

∫
(0,∞)k+`−r

yn1
1 · · · y

nk
k (
∏
j∈B

g(yj))g(yk+1) · · · g(yk+`−r)
dy1 · · · dyk+`−r

y1 · · · yk+`−r∫ ∞
∑k+`−r
j=1

e−λττ−n(τ −
k+`−r∑
j=1

yj)
θ−1 dτ

=

∫
(0,∞)k+`−r

yn1
1 · · · y

nk
k (
∏
j∈B

g(yj))g(yk+1) · · · g(yk+`−r)

k+`−r∏
i=1

(y−1
i e−λyi)dy1 · · · dyk+`−r

∫ ∞
0

e−λτ (τ +
k+`−r∑
j=1

yj)
−nτ θ−1 dτ.

The upper bound of
∑∞

`=1
1
`!

∑`∧k
r=0

∑
B⊂{1,...,k}
|B|=r

`!
(`−r)!θ

k+`−rHk,`,B guarantees the absolute

convergence of the above series.
ut
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3.5.2 CLT for the IMNA Model

Furthermore, the above Laplace transform enable us to derive the central limit the-
orem associated with the distribution of the IMNA process X(t) with starting point
x = (x1, x2, . . .) ∈ ∇∞.

Theorem 3.5. For any time t > 0, set Wp(t) =
√
θ( θp−1

(p−1)!
Hp(t)− 1), where Hp(t) =∑∞

i=1 Xi(t)
p denotes the pth order homozygosity at time t for p = 2, 3, . . .. Then

as θ → ∞, Wp(t) converges in law to a normal random variable with mean 0 and
variance σ2

p = Γ(2p)/Γ(p)2 − p2, which is strictly positive.

Proof. To prove the central limit theorem for Wp(t), it suffies to show that the charac-

teristic function of Wp(t) which is ψp(x) = E[exp(ixWp(t))] converges to exp(−σ2
p

2
x2)

as θ →∞.
Recall from Theorem 3.1, for any fixed time t > 0 we have

1

Γ(θ)

∫ ∞
0

e−ττ θ−1Ex[
∞∏
i=1

(1 + g(τXi(t)))] dτ

= exp{θ
∫ ∞

0

e−z

z
g(z) dz}

+
∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)

∑
n=(n1,...,nk)∑k

i=1
ni=n

ψn(x)

[1 +
1

Γ(θ)
ESF (n)−1

∞∑
`=1

1

`!

`∧k∑
r=0

∑
B⊂{1,...,k}
|B|=r

(
`

r

)
θk+`−rHk,`,B], (3.11)

where Hk,`,B and ESF (n) is defined as in Theorem 4.1. Set g(z) = exp(c1z
p+d1z)−1,

where c1 = ix
Γ(p)
√
θ

and d1 = −ix√
θ

for x ∈ R. Then, Ex[
∏∞

i=1(1 + g(τXi(t)))] =

Ex[exp(c1τ
pHp(t) + d1τ)] and the first term of (3.11) becomes

I = exp{θ
∫ ∞

0

e−z

z
(exp(

ix√
θ

zp

Γ(p)
− ix√

θ
z)− 1) dz}

= exp{θ
∫ ∞

0

e−z

z
[(
ix√
θ

zp

Γ(p)
− ix√

θ
z)− x2

2θ
(
zp

Γ(p)
− z)2] dz + o(1)}

= exp{−x
2

2
(σ2

p + (p− 1)2) + o(1)}, as θ →∞.
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Next, we show that the second term of (3.11) converges to zero as θ → ∞. Since

|Hk,`,B| ≤ Γ(θ)(
∫∞

0
e−z |g(z)|

z
dz)`, we have

|Hk,`,B| ≤ Γ(θ)(

∫ ∞
0

e−z

z
| x√
θ

(
zp

Γ(p)
− z)| dz)` ≤ Γ(θ)(

2x√
θ

)`.

∀ θ ≥ 1 we have

∣∣ ∞∑
`=1

1

`!

`∧k∑
r=0

∑
B⊂{1,...,k}
|B|=r

`!

(`− r)!
θk+`−r

Γ(θ)
Hk,`,B

∣∣ ≤ ∞∑
`=1

1

`!

`∧k∑
r=0

∑
B⊂{1,...,k}
|B|=r

`!

(`− r)!
θk+`−r(

2x√
θ

)`

= θk
∞∑
`=1

`∧k∑
r=0

∑
B⊂{1,...,k}
|B|=r

1

(`− r)!
θ`−r(

2x√
θ

)`

= θk
k∑
r=0

(
k

r

) ∞∑
`=r∨1

1

(`− r)!
θ`−r(

2x√
θ

)`

≤ θke2x
√
θ

k∑
r=0

(
k

r

)
(

2x√
θ

)r

= θke2x
√
θ(1 +

2x√
θ

)k ≤ θne2x
√
θ(1 + 2x)n.

Following
∑

n=(n1,...,nk)∑k
i=1

ni=n

ψn(x) = 1 and ESF (n) = (n1 − 1)! · · · (nk − 1)! θ
k

θ(n)
, we have

∑
n=(n1,...,nk)∑k

i=1
ni=n

ψn(x)ESF (n)−1 ≤ θ(n). Thus the second term of (3.11) is bounded as

|II| ≤
∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(
m

n

)
(n+ θ)(m−1)

+
∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(
m

n

)
(n+ θ)(m−1)θ(n)θ

ne2x
√
θ.

If we can show that the above two series are uniformly convergent, then they converge
to zero as θ →∞ since every term in the series goes to 0.
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First of all, we can see that

∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(
m

n

)
(n+ θ)(m−1) ≤

∞∑
m=2

(2m− 1 + θ)(m+ θ)(m−1)

m!
e−λmt2m

=
∞∑
m=2

(m+ θ)(m)

m!
e−λmt2m.

Since

(m+ θ)(m)e
−λmt ≤ (θ + 2m− 1)me−

m(m−1+θ)
2

t ≤ (
2(θ + 2m− 1)

t(m− 1 + θ)
e−1)m ≤ (

4

te
)m.

Thus,

∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(
m

n

)
(n+ θ)(m−1) ≤

∞∑
m=2

(
4

te
)m

1

m!
≤ exp{ 8

te
} ≤ ∞,

i.e. the series converges uniformly. Similarly, we have the bound for the second term:

∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(
m

n

)
(n+ θ)(m−1)θ(n)θ

ne2x
√
θ

≤
∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(
m

n

)
θ(n+m−1)θ

ne2x
√
θ

≤
∞∑
m=2

θ(2m)

m!
e−λmt(θ + 1)me2x

√
θ.

and

θ(2m)(θ + 1)me−
m(m−1+θ)

2
t+2x

√
θ ≤ ((θ + 2m− 1)(θ + 1)e−

m−1+θ
2

t+2x
√
θ/m)m ≤ Cm.

The second series in II is uniformly convergent. Therefore, the right side of Laplace
transform converges to exp{−x2

2
(σ2

p + (p− 1)2)}.
On the other hand, the left side becomes

1

Γ(θ)

∫ ∞
0

e−ττ θ−1Ex[exp(c1τ
pHp(t) + d1τ)] dτ

= (

∫ ∞
0

e−θττ θ−1Ex[exp(c1θ
pτ pHp(t) + d1θτ)] dτ)(

∫ ∞
0

τ θ−1e−θτ dτ)−1

= (

∫ ∞
0

e−θh(τ)τ−1ψp(xτ
p) exp(ix

√
θ(τ p − τ)) dτ)(

∫ ∞
0

τ θ−1e−θh(τ) dτ)−1,
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where h(τ) = τ − log τ − 1. So we only need to prove that∫∞
0
e−θh(τ)τ−1ψp(xτ

p) exp(ix
√
θ(τ p − τ)) dτ∫∞

0
τ θ−1e−θτ dτ

− ψp(x)e−(p−1)2x2/2 → 0.

Readers can refer the rest proof to that of Theorem 6.2 in [38]. The only thing
left is to show sup

θ>1
E[|Wp(t)|] < ∞. Since q(t, x, y) → 1, as θ → ∞, we have

supθ>1 q(t, x, y) ≤ K, ∀θ ≥ 1. Since

(Ex[|Wp(t)|])2 ≤ Ex[|Wp(t)|2] = E[W 2
p q(t, x, Y )2] ≤ K2(V ar(Wp) + (E[Wp])

2),

where Wp is defined as Wp(t) with the replacement of (Xi(t))
∞
i=1 by Y = (Yi)

∞
i=1

with the PD(θ) distribution. Then, var(Wp) + (E[Wp])
2 → σ2

p, as θ → ∞, and
supθ>1 E[|Wp(t)|] <∞.

ut

3.6 Symmetric Selection

The Poisson-Dirichlet distribution with selection PDs,q(θ) is defined as an absolutely
continuous distribution with respect to the Poisson-Dirichlet distribution PD(θ) with
density

PDs,q(θ)(dx)

PD(θ)(dx)
= esHq(x)/C, x = (x1, x2, . . .) ∈ ∇∞,

where s is an arbitrary real number, C is the normalization constant and Hq(x) =∑
xqi , q = 2, 3, . . . The sampling formula with selection was obtained in [37] as

Pθ,s,q(n1, . . . , nk) = EPD(θ)[e
sHq(X)ψn(X)]/EPD(θ)[e

sHq(X)]

= C−1θk
∞∑
l=0

θl

l!
Il(a),

where

Il(a) =

∫
∆l+k

k∏
α=1

(xnαα esx
q
α)

k+l∏
α=k+1

(esx
q
α − 1)(1−

k+l∑
β=1

xβ)θ−1 dx1 · · · dxk+l

x1 · · ·xk+l

and

C = E[esHq(X)] = 1 +
∞∑
l=1

θl

l!

∫
∆l

l∏
α=1

(esx
q
α − 1)(1−

l∑
β=1

xβ)θ−1 dx1 · · · dxl
x1 · · ·xl

.
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Since the correlation measure and sampling formula are determined by each other,
we can obtain the correlation measure in the selection case. The proof is similar to
that of in Theorem 3.1. It suffices to replace f by the polynomial functions in (3.8)
and the correlation measure is found as follows. Denote

Jl(t) =

∫
∆l

l∏
j=1

(est
qxqj − 1)(1−

l∑
β=1

xβ)θ−1 dx1 · · · dxl
x1 · · · xl

,

and Fs(t) =
∑∞

l=0
θl

l!
Jl(t). The correlation measure is given by

µk(dx1, . . . , dxk)

= C−1θk
k∏
j=1

(esx
q
jx−1

j )(1−
k∑
j=1

xj)
θ−1Fs(1−

k∑
j=1

xα)1∆k
(x1, . . . , xk)dx1 · · · dxk.

We obtain the Laplace transform with selection in the next theorem.

Theorem 3.6. Suppose that g(.) is a measurable function such that

λ(g) := inf{λ > 0 :

∫ ∞
0

e−λz

z
|g(z)| dz <∞} <∞.

The random element (Xi)
∞
i=1 has the PDs,q(θ) distribution. Then∫ ∞

0

e−λttθ−1E[
∞∏
i=1

(1 + g(tXi))] dt =
Γ(θ)

λθ
+ C−1

∞∑
k=1

θk

k!
Mk,

where

Mk =

∫
(0,∞)k

k∏
j=1

(g(xj)x
−1
j e−λxj) dx1 · · · dxk

∫ ∞
0

e−λttθ−1

k∏
j=1

e

sx
q
j

(t+
∑k
j=1

xj)q Fs(
t

t+
∑k

j=1 xj
) dt.

Proof. Since we have got the correlation measure, it is obvious that

E[
∞∏
i=1

(1 + g(tXi))]

= 1 + C−1

∞∑
k=1

θk

k!

∫
∆k

k∏
j=1

(esx
q
jg(txj)x

−1
j )(1−

k∑
j=1

xj)
θ−1Fs(1−

k∑
j=1

xj) dx1 · · · dxk.
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Thus, ∫ ∞
0

e−λttθ−1E[
∞∏
i=1

(1 + g(tXi))] dt

=
Γ(θ)

λθ
+ C−1

∞∑
k=1

θk

k!

∫ ∞
0

e−λttθ−1 dt

∫
∆k

k∏
j=1

(esx
q
jg(txj)x

−1
j )(1−

k∑
j=1

xj)
θ−1Fs(1−

k∑
j=1

xj) dx1 · · · dxk

=
Γ(θ)

λθ
+ C−1

∞∑
k=1

θk

k!

∫
(0,∞)k

k∏
j=1

(g(xj)x
−1
j e−λxj) dx1 · · · dxk

∫ ∞
0

e−λttθ−1

k∏
j=1

e

sx
q
j

(t+
∑k
j=1

xj)q Fs(
t

t+
∑k

j=1 xj
) dt.

Since for 0 < x < 1, we have

|esxq − 1| = xq|
∫ s

0

eux
q

du| ≤ (1 ∨ es)xq|s|.

Then

|Jl(t)| ≤
∫

∆l

(1 ∨ esl)(tq|s|)l
l∏

i=1

xqi (1−
l∑

i=1

xi)
θ−1dx1 · · · dxl

x1 · · ·xl

= (1 ∨ esl)(tq|s|)lΓ(q)lΓ(θ)

Γ(ql + θ)
,

|Fs(t)| ≤
∞∑
l=0

θl

l!
|Jl(t)|

≤
∞∑
l=0

θl(1 ∨ esl)(tq|s|)lΓ(q)lΓ(θ)

l!Γ(ql + θ)

≤ exp{K(1 ∨ esl)tq|s|Γ(q)θ1−q},

where K is a constant. Thus,
∏k

j=1 e

sy
q
j

(t+
∑k
j=1

yj)q |Fs( t

t+
∑k
j=1 yj

)| ≤ m(θ, q, s), and the

second term in the above i.e. the series can be controlled by

m(θ, q, s)
∞∑
k=1

θk

k!
(

∫ ∞
0

g(z)z−1e−λz dz)kΓ(θ)/λθ.
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Since
∫∞

0
e−λx|g(x)|x−1 dx < ∞, the above series is absolutely convergent, which

completes the proof.
ut
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Chapter 4

The Transformed Two-Parameter
Poisson-Dirichlet Distribution

4.1 Abstract

The goal of this chapter is to investigate the impact of selection in the two-parameter
model with overdominant selection with mutation going to infinity. To this end, we
obtain a Gaussian limiting theorem for the homozygosity functions under the two-
parameter Poisson-Dirichlet distribution with selection. The selection intensity is
given by a multiple of the mutation rate raised to different powers, which leads to
a phase transition in the limiting distribution depending on the relative strength of
selection intensity over the mutation rate. This result suggests that the selection
model resembles the neutral model when the mutation rate and selection intensity
go to infinity together.

It should be noted that this chapter is originated from a published paper [67].
The references of the chapter are indexed to adapt to the thesis, therefore differ from
those in the original paper.

4.2 Introduction

For 0 ≤ α < 1 and θ > −α, let Uk, k = 1, 2, . . . be a sequence of independent random
variables such that Uk has Beta(1 − α, θ + kα) distribution with density function
given by

f(x) =
Γ(θ + 1 + (k − 1)α)

Γ(1− α)Γ(θ + kα)
x−α(1− x)θ+kα−1, 0 < x < 1.
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Set (V1, V2, . . .) as

V1 = U1, Vn = (1− U1) · · · (1− Un−1)Un, n ≥ 2. (4.1)

Arrange (V1, V2, . . .) in descending order and denote it as P = (P1, P2, . . .). Then
the law of P is called the two-parameter Poisson-Dirichlet distribution denoted by
PD(α, θ). The law of (V1, V2, . . .) is called the two-parameter GEM distribution
denoted by GEM(α, θ). PD(α, θ) is a probability concentrating on the infinite-
dimensional ordered simplex

∇∞ =

{
(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi = 1

}

equipped with the topology inherited from [0, 1]∞. PD(0, θ) corresponds to the
Poisson-Dirichlet distribution with parameter θ.

Recall that in the infinite alleles model with overdominant selection intensity σ >
0, the stationary distribution denoted by PDσ(θ) is absolutely continuous with the
Poisson-Dirichlet distribution PD(θ). The corresponding Radon-Nikodym derivative
is given explicitly in a special selection case by [17] as

e−σH2(x)

C(σ, θ)
,

where the population homozygosity H2(x) =
∑∞

i=1 x
2
i , σ is the selection intensity, x=

(x1, x2, . . .) ∈ ∇∞ and C(σ, θ) =
∫
∇∞ e−σH2(x) PD(θ)(dx) is a normalizing constant.

Here, we generalize the selection density to the two-parameter case. For convenience,
we name it the two-parameter Poisson-Dirichlet distribution with selection though
the two-parameter Poisson-Dirichlet distribution does not find a direct application
in population genetics. Define the two-parameter Poisson-Dirichlet distribution with
selection denoted by PDσ(α, θ) as

PDσ(α, θ)

PD(α, θ)
(dx) =

e−σHm(x)

C(σ, θ, α)

where Hm(x) =
∑∞

i=1 x
m
i , x = (x1, x2, . . .) ∈ ∇∞, m = 2, 3, . . . denotes the mth

order homozygosity and C(σ, θ, α) =
∫
∇∞ e−σHm(x) PD(α, θ)(dx).

For p = 2, 3, . . ., let X = (X1, X2, . . .) have the distribution PD(α, θ) and define

Zp,θ =
√
θ

(
Γ(1− α)

Γ(p− α)
θp−1Hp(X)− 1

)
, (4.2)
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where Hp(X) denotes the pth homozygosity of X. Similarly for Y = (Y1, Y2, . . .) ∼
PDσ(α, θ), where σ = cθm−

1
2
−β, m = 2, 3, . . . , β ≥ 0 and c is a constant, put

Zβ
p,θ =

√
θ

(
Γ(1− α)

Γ(p− α)
θp−1Hp(Y )− 1

)
. (4.3)

The main ingredient used in the proof of our theorem is the following central
limit theorem for (Zp,θ)

∞
p=2 obtained by Handa [38].

Lemma 4.1. Let (Z2,α, Z3,α, . . .) ∈ R∞ be multivariate normal with mean 0 and the
covariance of Zi,α and Zj,α given by

Γ(1− α)Γ(i+ j − α)

Γ(i− α)Γ(j − α)
+ α− ij. (4.4)

Then, as θ →∞, we have

(Z2,θ, Z3,θ, . . .)⇒ (Z2,α, Z3,α, . . .).

Here and in what follows, ⇒ denotes convergence in distribution. The next
theorem is the main result of this chapter.

Theorem 4.2. Suppose that Y = (Y1, Y2, . . .) ∼ PDσ(α, θ) and σ = cθm−
1
2
−β, β ≥ 0,

where c > 0 is a constant and m = 2, 3, . . .. Let (Zβ
2,θ, Z

β
3,θ, . . .) ∈ R∞ be defined as

(4.3) and (Z2,α, Z3,α, . . .) given as the above lemma. As θ →∞,

(Zβ
2,θ, Z

β
3,θ, . . .)⇒

{
(Z∗2,α, Z

∗
3,α, . . .), if β = 0,

(Z2,α, Z3,α, . . .), if β > 0,

where Z∗p,α = Zp,α− cbp, bp = (1−α)(p−1) cov(Zp,α, Zm,α) and (1−α)(p−1) = Γ(p−α)
Γ(1−α)

=

(1− α) · · · (p− 1− α) for p = 2, 3, . . ..

The uniform integrability for exp{−tZp,θ} is essential in the proof of theorem.
This is proved in the next section. In Section 4.4 we give the proof of Theorem 4.2
based on the establishing the convergence of the relevant characteristic function.

4.3 Uniform Integrability

To get the uniform integrability of e−tZp,θ , it suffices to prove the following lemma.
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Lemma 4.3. Suppose that for any fixed t > 0 and p ≥ 2, Zp,θ is defined as in (4.2).
Then there exists θ0 = θ0(t) <∞ such that

sup
θ>θ0

E(e−tZp,θ) <∞.

We firstly need to introduce an important result of Pitman and Yor [57] as the
following lemma.

Lemma 4.4 ([57]). Suppose that (X ′n) is given by the Poisson-Dirichlet distribution
with parameter θ > 0. Independent of (X ′n), let (Umn),m = 1, 2, . . . be a sequence
of independent copies of (Un) which has the two-parameter Poisson-Dirichlet dis-
tribution with θ = 0 and α > 0, i.e. PD(α, 0). Let (Xn) be defined by ranking
the collection of products {X ′mUmn,m, n ∈ N}. Then (Xn) has the two-parameter
Poisson-Dirichlet distribution with parameter θ, α, i.e. PD(α, θ).

In virtue of the above representation, we can rewrite the homozygosity corre-
sponding to the two-parameter P-D distribution as well as Zp,θ in the form that
keeps the i.i.d property .

Suppose that Wm, m = 1, 2, . . . is a sequence of i.i.d random variables as copies
of
∑∞

n=1 U
p
n for fixed p ≥ 2. Therefore, 0 < Wm ≤ 1 and its moments depend on α

alone.
For any p = 2, 3, . . ., by the GEM representation and exchangeability of Hp as a

function of (Xn)∞1 we have

Hp =
∞∑
n=1

Xp
n =

∞∑
m,n=1

(X ′m)pUp
mn

D
=

∞∑
m=1

(X ′m)
p
Wm = V p

1 W1 + (1− V1)pH̃p,

where V1 ∼ Beta(1, θ) and H̃p is a random variable with the same distribution as Hp

and independent of V1,W1. Here
D
= denotes the equality in distribution.

Since Zp,θ =
√
θ(Γ(1−α)

Γ(p−α)
θp−1Hp − 1) =

√
θ( θp−1

(1−α)(p−1)
Hp − 1), we deduce that

(1− α)(p−1)Zp,θ =
√
θ(θp−1Hp − (1− α)(p−1))

D
=
√
θ(θp−1V p

1 W1 + θp−1(1− V1)pH̃p − (1− α)(p−1))

=
√
θ(θp−1V p

1 W1 + (1− V1)p(1− α)(p−1) − (1− α)(p−1)

+(1− V1)p(θp−1H̃p − (1− α)(p−1)))

= fp(V1,W1) + (1− α)(p−1)(1− V1)pZ̃p,θ,

where
fp(V1,W1) =

√
θ(θp−1V p

1 W1 − (1− α)(p−1)(1− (1− V1)p)), (4.5)
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and Z̃p,θ =
√
θ( θp−1

(1−α)(p−1)
H̃p− 1) with the same distribution as Zp,θ is independent of

V1,W1. Since 0 < 1− (1− V1)p ≤ 2pV1 and 0 < W1 ≤ 1,

1√
θ

(θpV p
1 W1 − (1− α)(p−1)2

pθV1) ≤ fp ≤
1√
θ

(θpV p
1 W1 + (1− α)(p−1)2

pθV1). (4.6)

Also,

|fp(V1,W1)| ≤ 1√
θ

(θpV p
1 + (1− α)(p−1)2

pθV1).

For k ≥ 1,

E|fp(V1,W1)|k ≤ θ−
k
2 E(θpV p

1 + (1− α)(p−1)2
pθV1)k

≤ θ−
k
2 2k[E(θV1)pk + (1− α)k(p−1)2

pkE(θV1)k]

≤ (2/
√
θ)k[(pk)! + (1− α)k(p−1)2

pkk!] ∼ O(θ−
k
2 ),

where in the last step we use 0 ≤ E(θV1)j = j!θj

(θ+1)···(θ+j) ≤ j!, j ≥ 1.

Lemma 4.5. For p ≥ 2, let fp(V1,W1) be defined as in (4.5), where V1 ∼ Beta(1, θ),
and W1 has the same distribution as the pth homozygosity corresponding to alleles
frequencies with the distribution PD(α, 0). Then, for θ > 1 and each j ≥ 1, there is
a positive function gp,j(t,W1) increasing in t such that, for all t > 0,

|
∞∑
k=j

(−tfp)k

k!
| ≤ tjgp,j(t,W1)|fp|j.

Proof. Note that

|
∞∑
k=j

(−tfp)k

k!
| = |tfp|j|

∞∑
k=j

(−tfp)k−j

k!
| = tj|fp|jgj(tfp),

where

0 < gj(x) =
∞∑
k=j

(−x)k−j

k!
=

{
e−x−

∑j−1
k=0(−x)k/k!

(−x)j
, x 6= 0,

1
j!
, x = 0.

Define f(x) = W1x
p − (1 − α)(p−1)2

px. Hence f has a lower bound on [0,∞). Let

x∗ = (
(1−α)(p−1)2

p

W1p
)

1
p−1 be the point in [0,∞) at which f(x) achieves its minimum,

that is, f(x∗) = W
− 1
p−1

1 (
(1−α)(p−1)2

p

p
)

p
p−1 (1− p) < 0. By (4.6),

fp ≥
f(θV1)√

θ
≥ f(x∗)√

θ
> f(x∗)
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for θ > 1. Since gj(x) is a decreasing function of x ∈ (−∞,∞), and gj(tfp) ≤
gj(tf(x∗)) =: gp,j(t,W1) for all t > 0. ut

The next lemma shows that the moments of Zp,θ are uniformly bounded for large
θ.

Lemma 4.6. Let Zp,θ be defined by (4.2). Then, for all integers r ≥ 1 and p ≥ 2,

sup
θ>1

E(|Zp,θ|r) <∞. (4.7)

Proof. Suppose that (X ′1, X
′
2, . . .) ∼ Πθ. Set H ′p =

∑
n(X ′n)p, and

Z ′p,θ =
√
θ(

θp−1

(p− 1)!
H ′p − 1).

By the sampling formulas of the Poisson-Dirichlet distribution and the two-parameter
Poisson-Dirichlet distribution we know that E(Z ′p,θ)

2r and E(Zp,θ)
2r have the same

highest finite order of θ. Thus,

lim
θ→∞

E(Zp,θ)
2r

E(Z ′p,θ)
2r

= k <∞.

Following the result obtained in Lemma 5 of [42], we know that

sup
θ>1

E|Z ′p,θ|r <∞.

Since E|Zp,θ|r ≤
√

E(Zp,θ)2r, it follows that supθ>1 E|Zp,θ|r <∞. ut

Now we are ready to give the proof of Lemma 2.1.
Proof of Lemma 2.1. For each integer r, define

Z̃θ = (1− α)(p−1)Z̃p,θ and µr,θ = (1− α)r(p−1)E(Zr
p,θ).

Since supθ>1 E(|Zp,θ|r) < ∞ for each r, we only need to show that, for t > 0, there
exist finite values l = l(t) and θ0 = θ0(l, t) such that

sup
θ>θ0

|
∞∑
r=l

(−t)r

r!
µr,θ| <∞.
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It is obvious that

[(1− α)(p−1)Zp,θ]
r D

= (fp(V1,W1) + (1− α)(p−1)(1− V1)pZ̃p,θ)
r

=
r∑

k=0

(
r

k

)
fkp (V1,W1)[(1− α)(p−1)Z̃p,θ]

r−k(1− V1)p(r−k)

= (1− V1)pr[(1− α)(p−1)Z̃p,θ]
r

+
r∑

k=1

(
r

k

)
fkp (V1,W1)(1− V1)p(r−k)[(1− α)(p−1)Z̃p,θ]

r−k.

Taking expectation on both sides and using independence, we have

µr,θ = E(1− V1)prµr,θ +
r∑

k=1

(
r

k

)
E(fkp (V1,W1)(1− V1)p(r−k))µr−k,θ.

Thus,

µr,θ =
pr + θ

pr

r∑
k=1

(
r

k

)
E(fkp (V1,W1)(1− V1)p(r−k))µr−k,θ.

Define two sequences of random variables:

Mk :=
fkp
k!
, Nl :=

(Z̃θ(1− V1)p)l

l!
.

Therefore,

|
∞∑
r=l

(−t)r

r!
µr,θ| = |

∞∑
r=l

pr + θ

pr

(−t)r

r!

r∑
k=1

(
r

k

)
µr−k,θE(fkp (V1,W1)(1− V1)p(r−k))|

= |E(
∞∑
r=l

r∑
k=1

(1 +
θ

pr
)MkNr−k(−t)r)|

≤ |E(
∞∑
r=l

r∑
k=1

MkNr−k(−t)r)|+ |E(
∞∑
r=l

r∑
k=1

θ

pr
MkNr−k(−t)r))|

=: |E(A1)|+ |E(A2)|.

By the inequality in Lemma 6 of [42] and interchanging the order of summation,
we obtain

|A1| ≤ |
∞∑
j=1

(−t)jMj

∞∑
q=0

(−t)qNq|+ tK1l(t),
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where

K1l(t) :=
l−1∑
j=1

|Mj|tj−1

l−j−1∑
i=0

|Ni|ti

is an increasing function of t. By Lemma 4 we obtain

|
∞∑
j=1

(−t)jMj| = |
∞∑
j=1

(−tfp)j

j!
| ≤ tgp,1(t,W1)|fp|,

and

|
∞∑
q=0

(−t)qNq| = exp{−tZ̃θ(1− V1)p}

≤ max{1, exp{−tZ̃θ}}
≤ 1 + exp{−tZ̃θ}.

Hence
|A1| ≤ tgp,1(t,W1)|fp|(1 + exp{−tZ̃θ}) + tK1l(t).

It follows that

|E(A1)| ≤ E|A1|
≤ tE(gp,1(t,W1)|fp|) + tE(fp,1(t,W1)|gp|)E exp{−tZ̃θ}+ tE(K1l(t)).

Since E|fp(V1,W1)|k ∼ O(θ−
k
2 ) and Egp,1(t,W1) only depends on α, there exists

θ0 = θ0(t) < ∞ such that tE(gp,1(t,W1)|fp|) < 1
4

for all θ > θ0(t) by the Hölder’s
inequality. In addition, K1l(t) is a sum of a finite number of random variables, and
note that mean of each random variable is bounded for all θ. Thus, sup

θ>1
E(K1l(t)) <

∞. Set α1(t) = sup
θ>1

tE(K1l(t)) + 1
4
. Then, for θ > θ0(t),

|E(A1)| ≤ 1

4
E exp{−tZ̃θ}) + α1(t) =

1

4

∞∑
r=0

(−t)r

r!
µr,θ + α1(t).

We also have the same inequality for A2:

|E(A2)| ≤ 1

4

∞∑
r=0

(−t)r

r!
µr,θ + α2(t).
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Since A2 involves the factor θ
pr

, it needs a more delicate estimation but the argument

is similar to that of A1. Readers can find a similar detailed proof in Lemma 9 of [42],
which we will not repeat here.

By the inequalities for A1 and A2 as above, we have

|
∞∑
r=l

(−t)r

r!
µr,θ| ≤

1

2

∞∑
r=0

(−t)r

r!
µr,θ + α1(t) + α2(t).

Thus,

|
∞∑
r=l

(−t)r

r!
µr,θ| −

1

2

∞∑
r=l

(−t)r

r!
µr,θ ≤

1

2

l−1∑
r=0

tr

r!
|µr,θ|+ α1(t) + α2(t).

It follows that

1

2
|
∞∑
r=l

(−t)r

r!
µr,θ| ≤

1

2

l−1∑
r=0

tr

r!
|µr,θ|+ α1(t) + α2(t).

Therefore, |
∑∞

r=l
(−t)r
r!
µr,θ| is bounded by a sum of a finite number of terms, which

are uniformly bounded for θ. It can be concluded that

sup
θ>θ0

|
∞∑
r=l

(−t)r

r!
µr,θ| <∞.

ut

4.4 The Proof of Theorem

Proof. For σ = cθm−
1
2
−β, β ≥ 0 and m = 2, 3, . . ., we know that the characteristic

function of Zβ
p,θ can be calculated as follows:

ψp(x) = E[exp(ixZβ
p,θ)] =

E[eixZp,θe−σHm ]

E[e−σHm ]
=

E[eixZp,θ−c(1−α)(m−1)θ
−βZm,θ ]

E[e−c(1−α)(m−1)θ
−βZm,θ ]

.

Based on Lemma 1.1,

(Z2,θ, Z3,θ, . . .)⇒ (Z2,α, Z3,α, . . .)
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as θ goes to infinity, where (Z2,α, Z3,α, . . .) is multivariate normal with mean 0 and
the covariance matrix Σ given by (4.4).

For β = 0, combining the uniform integrability of e−tZp,θ with Zp,θ ⇒ Zp,α for any
p = 2, 3, . . . we have

E[e−c(1−α)(m−1)Zm,θ ]→ E[e−c(1−α)(m−1)Zm,α ],

as θ →∞. Therefore,

E[eixZp,θ−c(1−α)(m−1)Zm,θ ]→ E[eixZp,α−c(1−α)(m−1)Zm,α ].

It follows that when θ goes to infinity,

ψp(x)→ exp{−x
2

2
varZp,α − icx(1− α)(m−1) cov(Zp,α, Zm,α)}.

Define bp = (1− α)(m−1) cov(Zp,α, Zm,α) and let Z∗p,α = Zp,α − cbp, it follows that

Zβ
p,θ ⇒ Z∗p,α for p = 2, 3, . . . , as θ →∞.

Using the same method of calculating the characteristic function of finite linear
combination of Zp,θ, we obtain

(Zβ
2,θ, Z

β
3,θ, . . .)⇒ (Z∗2,α, Z

∗
3,α, . . .), as θ →∞.

For β > 0, θ > 1,

exp{−c(1− α)(m−1)θ
−βZm,θ} ≤ max{exp{−c(1− α)(m−1)Zm,θ}, 1}.

From the dominated convergence theorem, we have

E[e−c(1−α)(p−1)θ
−βZq,θ ]→ 1,

as θ →∞. Therefore, (Zβ
2,θ, Z

β
3,θ, . . .)⇒ (Z2,α, Z3,α, . . .), as θ →∞. ut
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Chapter 5

Transition Function of the
Two-Parameter Diffusion Process

5.1 Abstract

To characterize a Markov process, we rely on three basic tools: transition func-
tion, semigroup and generator. Ethier [13] derived the transition function of the
IMNA model through an expansion of eigenfunctions. In this chapter, we use this
method to derive the transition function for the two-parameter extension of the
IMNA model. An explicit transition density is given in Section 5.3 with respect to
the two-parameter Poisson-Dirichlet distribution being the stationary distribution of
the process. We give .

Combining this transition density with the two-parameter correlation measure
derived in Chapter 3, we obtain the probability generating function of random sam-
pling from the two-parameter model at a fixed time point in Section 5.4. This result
can be further used to compare with the equilibrium result which corresponds to the
Pitman sampling formula.

It should be noted that this chapter is part of a published paper coauthored with
Professor Feng, Professor Sun and Professor Wang [27], to which the author of the
thesis is an equal contributor. The references of the chapter are indexed to adapt to
the thesis, and therefore they differ from those in the original paper.
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5.2 Introduction

Consider a continuous time Markov process {Xt, t ≥ 0} with continuous sample
paths and state space S. Such process is also called the diffusion process. Given the
past history up to time s, the conditional probability

P (Xt ∈ dy|Xs = x,Xui = xui , 0 ≤ ui < s, xui ∈ S,∀i = 1, 2, . . .)

of the process at a future time t is given by the transition function

P (Xt ∈ dy|Xs = x) = P (s, x, t, dy).

The process considered here is time homogeneous in a sense that

P (s, x, t, dy) = P (0, x, t− s, dy).

For convenience, denote the transition probability P (0, x, t, dy) by P (t, x, dy). The
corresponding Markov semigroup operator is a family of linear operators Tt, t ≥ 0 on
C(S) the space of continuous functions on S such that

Ttf(x) = Ex[f(Xt)] =

∫
S

f(y)P (t, x, dy).

The infinitesimal generator L of the semigroup Tt is defined as

Lf = lim
t→0

Ttf − f
t

with properly defined domain. Assume that the law of X0 is given by a probability
measure µ on S satisfying ∫

S

P (t, x, dy)µ(dx) = µ(dy)

for any t > 0. Then, the process Xt starting with µ has the same distribution at
any time as the initial state. Such process is called a stationary distribution and µ
is the stationary distribution. Equivalently, under the semigroup Tt of the process
the stationary measure µ satisfies∫

S

Ttf(x)µ(dx) =

∫
S

f(x)µ(dx)
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for f ∈ C(S). Finally, the process with Markov semigroup Tt is reversible with a
probability measure µ such that∫

S

f(x)Ttg(x)µ(dx) =

∫
S

g(x)Ttf(x)µ(dx)

for all f, g ∈ C(S).
For any 0 ≤ α < 1 and θ > −α, the two-parameter extension model is a sym-

metric diffusion process taking values in infinite dimensional ordered simplex

∇∞ = {(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,
∞∑
i=1

xi = 1}

with generator

Lθ,α =
1

2

{
∞∑

i,j=1

xi(δij − xj)
∂2

∂xi∂xj
−
∞∑
i=1

(θxi + α)
∂

∂xi

}
. (5.1)

The domain of Lθ,α is D(Lθ,α) = span{1, ϕ2, ϕ3, . . .} ⊂ C(∇∞), where ϕn(x) =∑∞
i=1 x

n
i is defined on ∇∞ and extends continuously to ∇∞ which is the closure of

∇∞ in [0, 1]∞. The process was first established by Petrov [52] and lately has been
further studied by Feng and Sun [26].

The process is reversible with respect to the two-parameter Poisson-Dirichlet
distribution PD(α, θ) which is defined as follows. Let Uk, k = 1, 2, . . ., be a sequence
of independent random variables such that Uk has Beta(1− α, θ + kα) distribution
with density function given by

f(x) =
Γ(θ + 1 + (k − 1)α)

Γ(1− α)Γ(θ + kα)
x−α(1− x)θ+kα−1, 0 < x < 1.

Set
V1 = U1, Vn = (1− U1) · · · (1− Un−1)Un, n ≥ 2.

Arrange (V1, V2, . . .) in descending order and denote it as P = (P1, P2, . . .). Then the
law of P is called the two-parameter Poisson-Dirichlet distribution.

The case α = 0 corresponds to the IMNA diffusion model constructed in [15],
where the generator of the process is given by

L =
1

2

∞∑
i,j=1

xi(δij − xj)
∂2

∂xi∂xj
− θ

2

∞∑
i=1

xi
∂

∂xi
(5.2)
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with the same domain of Lθ,α. The process has the unique reversible measure given
by the Poisson-Dirichlet distribution with parameter θ i.e. PD(0, θ). From [13]
we know that the complete set of eigenvalues of L consists of 0,−λ2, λ3, . . . , where
λm = m(m−1+θ)/2, m ≥ 2. 0 is a simple eigenvalue and for m ≥ 2, the multiplicity
of λm is π(m)− π(m− 1), where π(m) is the number of partitions of the integer m.
The transition probability is obtained in [13] and the transition density also exists
with respect to the invariant measure.

We could compare this model with its labeled version which is the Fleming-Viot
process with parent independent mutation. Let S denote the type space which is
a Polish space and P(S) be the set of probability measure on S equipped with the
usual weak topology. Cb(S) denotes the set of bounded, continuous functions on S.
Fleming-Viot process is a P(S)-valued process with the generator

(Lφ)(µ) =
1

2

∫
S

∫
S

µ(dx)(δx(dy)− µ(dy))
δ2φ(µ)

δµ(x)δµ(y)
(5.3)

+

∫
S

µ(dx)A

(
δφ(µ)

δµ(·)

)
(x),

where δφ(µ)/δµ(x) = limε→0+ ε
−1(φ(µ + εδx) − φ(µ)) and A called the mutation

operator is the generator of a Feller semigroup on C(S). The domain of L is defined
as follows D(L) = {φ : φ(µ) = f(〈ϕ1, µ〉, . . . , 〈ϕk, µ〉), f ∈ C∞b (Rk), ϕ1, . . . , ϕk ∈
Cb(S)

⋂
D(A), µ ∈ P(S), k ≥ 1}, where 〈ϕ, µ〉 =

∫
S
ϕdµ and C∞b (R) denotes the set

of all bounded, infinitely differentiable functions on R. Particularly we consider the
parent independent mutation operator which is given by

(Af)(x) =
1

2
θ

∫
S

(f(ξ)− f(x))ν0(dξ), f ∈ Cb(S) (5.4)

with θ > 0 and ν0 ∈ P(S). It is shown that the stationary distribution for the labeled
model is the distribution of

∑∞
i=1 Piδξi where (P1, P2, . . .) has the Poisson-Dirichlet

distribution PD(θ), and ξ1, ξ2, . . . are i.i.d. random variables on S distributed as ν0

independent of (P1, P2, . . .). The distribution of
∑∞

i=1 Piδξi is also known as Dirich-
let process. An explicit transition function of the process is obtained in [14] and
transition density does not exist. The transition function implies that the process
concentrates on pure atomic probability measure on S. Stannat [59] shows that a
log-Sobolev inequality holds for the Fleming-Viot process with parent independent
mutation if and only if the number of alleles or type space S is finite.

To associate these two models, we consider the mapping Φ(µ) defined as the
sequence of descending order statistics of the masses of the atoms of µ. Clearly the
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image of the Fleming-Viot process defined as above under the projection of Φ is
exactly the neutral infinite alleles model with generator L characterized by [15]. But
in the case of S = [0, 1], ν0 being the Lebesgue measure, the set of eigenvalues of the
generator L has one more element −λ1 than that of L. Comparing these two models,
it implies that the ordering and un-labeling increase the spectral gap by an amount
of 1 + θ/2.

In the two-parameter case Lθ,α, the structure of eigenvalues and eigenfunctions
are similar to the IMNA diffusion model. The description of this fact will be given
in the following theorem. We aim to obtain an explicit expression of the transition
function. The Pitman sampling formula is of vital importance in our derivation, and
will be presented in the next section with various known properties of this formula.

5.3 Preliminaries

In this section, we summarize several important results that are known or are easy
to derive. First, we need to introduce some notation. Let N denote the set of
non-negative integers. Set a(0) = a[0] = 1 and for n ∈ N,

a(n) = a(a+ 1) · · · (a+ n− 1), a[n] = a(a− 1) · · · (a− n+ 1), n ≥ 1.

For k ∈ N set
Jk = {~n = (n1, · · · , nk) ∈ Nk : n1 ≥ · · ·nk ≥ 2}

and J =
⋃∞
k=1 Jk. Let |~n| = n1 + · · · + nk and ϕ~n = ϕn1 · · ·ϕnk , ~n ∈ Jk. For each

` ∈ N, ~m = (m1, . . . ,m`) ∈ N`, set

p◦~m(x) =
∑

i1,...,i`distinct

xm1
i1
· · ·xm`i`

and

p~m(x) =

(
m

m1 · · ·m`

)
1

α1! · · ·αm!
p◦~m(x), x ∈ ∇∞,

where m = m1 + · · · + m` and αi = #{j : mj = i}. For each n ∈ N define
Pn ∈ C(∇∞ ×∇∞) by

Pn(x, y) =
∑

~n∈I:|~n|=n

p~n(x)p~n(y)∫
∇∞ p~n(x)PD(α, θ)(dx)

,

where I =
⋃∞
i=1 Il and Il = {~n = (n1, · · · , nl) ∈ Nl : n1 ≥ · · · ≥ nl ≥ 1}.
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Theorem 5.1. (1) The generator Lθ,α defined on D(Lθ,α) is closable in C(∇∞). The
closure, denoted by Lθ,α for notational simplicity, generates a ∇∞-valued diffusion
process Xθ,α(t), the two-parameter unlabeled infinite-alleles diffusion process;

(2) The process Xθ,α(t) is reversible with respect to PD(α, θ);
(3) For each k ≥ 1, ~n = (n1, . . . , nl) in Nl,∫

∇∞
p~n(x)PD(α, θ)dx =

n!

θ(n)

l−1∏
r=0

(θ + rα)
n∏
j=1

((1− α)(j−1))
αj

(j!)αjαj!
,

where l =
∑n

j=1 aj.

Proof. (1) and (2) are obtained in [52]. Alternate proof of (1) using Dirichlet forms
can be found in [26]. The formula (3) is the well-known Pitman sampling formula
(cf. [53]). ut

Let L2(θ, α) denote the space of square integrable measurable functions on the
probability space (∇∞, PD(α, θ)). Replace 2 with any p ≥ 1, we can define Lp(θ, α)
and ‖ · ‖Lp(θ,α) accordingly.

Theorem 5.2. (1) The spectrum of Lθ,α is {0,−λ2,−λ3, . . .}. 0 is a simple eigen-
value and for m ≥ 2, the multiplicity of −λm is π(m)− π(m− 1), where π(m) is the
total number of partitions of integer m;

(2) For m = 0, 2, 3 . . . , let Wm be the eigenspace corresponding to eigenvalue −λm
and ⊕ denote the direct sums. Then

L2(θ, α) = ⊕mWm;

(3) For k ≥ 1, let Jk = {~m = (m1, . . . ,mk) ∈ Nk : m1 ≥ m2 · · · ≥ mk ≥ 2}, and
J = ∪∞i=1Ji. The space L2(α, θ) has an orthonormal basis {1} ∪ {χm : ~m ∈ J} such
that {χm : ~m ∈ J, |~m| = m} is an orthonormal basis for Wm.

Proof. The spectrum in (1) is identified in [52] and the multiplicity is verified in [26].
(2) and (3) can be derived following an argument similar to that used in the proof
of Theorem 2.3 in [13]. ut

Now we are ready to give the main result of this chapter.
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5.4 Transition Density Function

We first give the following essential lemma to derive the density function.

Lemma 5.3. For any ~m = (m1, . . . ,mk) in J satisfying |~m| = m ≥ 2, and any
n ≥ m, ∫

∇∞
Pn(x, ·)p~m(x)PD(α, θ)(dx)−

n[m]

(n+ θ)(m)

p~m(·)

is a polynomial of order m− 1 or less.

Proof. Fix ~m = (m1, . . . ,mk), |~m| = m ≥ 2. For each ` ∈ N, ~n ∈ I`, ~n = n ≥ m,∫
p◦~mp

◦
~n PD(α, θ)(dx)∫

p◦~n PD(α, θ)(dx)

=
`∧k∑
j=0

`+k−j−1∏
t=`

(θ + tα)
∑

Λ⊂{1,...,k}
|Λ|=j

∑
σ:Λ→{1,...,`}

one to one

∏
i∈Λ

(nσ(i) − α)(mi)

∏
i/∈Λ

(1− α)(mi−1)
1

(n+ θ)(m)

.

Since (nσ(i) − α)(mi) = (−α)(1− α)(mi−1) +
∑mi

ri=1 cmiri(α)(nσ(i))[ri], we have

∏
i∈Λ

(nσ(i) − α)(mi) =

j∑
γ=0

∑
Γ⊂Λ
|Γ|=γ

(−α)j−γ
∏
i∈Λ\Γ

(1− α)(mi−1)

∑
~r∈Γ(~m,Γ)

∏
i∈Γ

cmiri(α)(nσ(i))[ri],

where
Γ(~m,Γ) = {~r = (r1, . . . , rk) : 1 ≤ ri ≤ mi, i ∈ Γ; ri = 0, i 6∈ Γ}.

Thus,∫
p◦~mp

◦
~n PD(α, θ)(dx)∫

p◦~n PD(α, θ)(dx)

=
`∧k∑
j=0

`+k−j−1∏
t=`

(θ + tα)
∑

Λ⊂{1,...,k}
|Λ|=j

∑
σ:Λ→{1,...,`}

one to one

j∑
γ=0

∑
Γ⊂Λ
|Γ|=γ

(−α)j−γ
∑

~r∈Γ(~m,Γ)

∏
i∈Γ

cmiri(α)(nσ(i))[ri]

∏
i/∈Γ

(1− α)(mi−1)
1

(n+ θ)(m)

.
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By interchanging the order of summation, we have the above

=
`∧k∑
j=0

`+k−j−1∏
t=`

(θ + tα)
∑

Λ⊂{1,...,k}
|Λ|=j

j∑
γ=0

∑
Γ⊂Λ
|Γ|=γ

(−α)j−γ
∏
i/∈Γ

(1− α)(mi−1)

∑
σ:Γ→{1,...,`}

one to one

(`− γ)!

(j − γ)!

∑
~r∈Γ(~m,Γ)

∏
i∈Γ

cmiri(α)(nσ(i))[ri] ·
1

(n+ θ)(m)

=
`∧k∑
j=0

`+k−j−1∏
t=`

(θ + tα)

j∑
γ=0

∑
Γ⊂{1,...,k}
|Γ|=γ

(
k − γ
j − γ

)
(−α)j−γ

(`− γ)!

(j − γ)!

∏
i/∈Γ

(1− α)(mi−1)

∑
σ:Γ→{1,...,`}

one to one

∑
~r∈Γ(~m,Γ)

∏
i∈Γ

cmiri(α)(nσ(i))[ri] ·
1

(n+ θ)(m)

=
`∧k∑
γ=0

(
`∧k∑
j=γ

`+k−j−1∏
t=`

(θ + tα)

(
k − γ
j − γ

)
(−α)j−γ

(`− γ)!

(j − γ)!

) ∑
Γ⊂{1,...,k}
|Γ|=γ

∏
i/∈Γ

(1− α)(mi−1)

∑
σ:Γ→{1,...,`}

one to one

∑
~r∈Γ(~m,Γ)

∏
i∈Γ

cmiri(α)(nσ(i))[ri] ·
1

(n+ θ)(m)

.

Also, we have

`∧k∑
j=γ

`+k−j−1∏
t=`

(θ + tα)

(
k − γ
j − γ

)
(−α)j−γ

(`− γ)!

(j − γ)!

=
`∧k∑
j=γ

(θ + `α) · · · (θ + (`+ k − j − 1)α)

(k − j)!

(
`− γ
j − γ

)
(−α)j−γ(k − γ)!

=
`∧k∑
j=γ

( θ
α

+ `) · · · ( θ
α

+ `+ k − j − 1)

(k − j)!

(
`− γ
j − γ

)
(−1)j−γαk−γ(k − γ)!

= αk−γ(k − γ)!

(`−γ)∧(k−γ)∑
j=0

(
θ
α

+ `+ k − j − γ − 1

k − j − γ

)(
`− γ
j

)
(−1)j

= αk−γ(k − γ)!

(
θ
α

+ k − 1

k − γ

)
= (θ + γα) · · · (θ + (k − 1)α),
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where the last but one equality will be verified at the end of proof. Therefore,∫
p◦~mp

◦
~n dPD(α, θ)∫

p◦~n dPD(α, θ)

=
`∧k∑
γ=0

(θ + γα) · · · (θ + (k − 1)α)
∑

Γ⊂{1,...,k}
|Γ|=γ

∏
i/∈Γ

(1− α)(mi−1)

∑
σ:Γ→{1,...,`}

one to one

∑
~r∈Γ(~m,Γ)∏

i∈Γ

cmiri(α)(nσ(i))[ri]
1

(n+ θ)(m)

.

Thus, we have∫
Pn(x, y)p~m(x) dPD(α, θ)

=
∑
`=1

∑
~n∈I`
|~n|=n

(
m

m1 · · ·mk

)
1

β1! · · · βm!

∫
p◦~mp

◦
~n dPD(α, θ)∫

p◦~n dPD(α, θ)
p~n(y)

=
∑
`=1

∑
~n∈I`
|~n|=n

(
m

m1 · · ·mk

)
1

β1! · · · βm!

`∧k∑
γ=0

(θ + γα) · · · (θ + (k − 1)α)
∑

Γ⊂{1,...,k}
|Γ|=γ∏

i/∈Γ

(1− α)(mi−1)

∑
σ:Γ→{1,...,`}

one to one

∑
~r∈Γ(~m,Γ)

∏
i∈Γ

cmiri(α)(nσ(i))[ri]
p~n(y)

(n+ θ)(m)

=
n[m]

(n+ θ)(m)

(
m

m1 · · ·mk

)
1

β1! · · · βm!

k∑
γ=0

(θ + γα) · · · (θ + (k − 1)α)

∑
Γ⊂{1,...,k}
|Γ|=γ

∏
i/∈Γ

(1− α)(mi−1)

∑
~r∈Γ(~m,Γ)

n[r]

n[m]

∏
i∈Γ

cmiri(α)

·{
n∑

`=γ∨1

∑
~n∈I`
|~n|=n

∑
σ:Γ→{1,...,`}

one to one

∏
i∈Γ(nσ(i))[ri]

n[r]

p~n(y)},

where the expression in the braces is exactly p◦~r(y). To see this, we first notice that
for ~r = (r1, . . . , rγ), p

◦
~r(y) is the probability of a random sampling of size r = |~r| from

a population with allele frequencies y1, y2, . . . with γ types and each type contains
ri individuals for 1 ≤ i ≤ γ. The probability of this event can be calculated in an
alternative way. Suppose we select a random sample of size n with ` types (` ≥ γ)
and each type has ni alleles for 1 ≤ i ≤ `. The probability of getting such a sample is
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p~n(y). Then we choose γ types denoted by σ out of ` types from this sample. Since
for each type we only need to select ri individuals. the corresponding probability

would be
∏
i∈Γ(nσ(i))[ri]

n[r]
. Equating the probability of there two procedures we get

p◦~r(y) =
n∑

`=γ∨1

∑
~n∈I`
|~n|=n

∑
σ:Γ→{1,...,`}

one to one

∏
i∈Γ(nσ(i))[ri]

n[r]

p~n(y).

In the following we show the proof of the combinatorics identity. To prove

(`−γ)∧(k−γ)∑
j=0

(
θ
α

+ `+ k − j − γ − 1

k − j − γ

)(
`− γ
j

)
(−1)j =

(
θ
α

+ k − 1

k − γ

)
,

we only need to show that

`∧(k−γ)∑
j=0

(
θ
α

+ k + `− j − 1

k − γ − j

)(
`

j

)
(−1)j =

(
θ
α

+ k − 1

k − γ

)
, (5.5)

where we put ` instead of `− γ. Consider the Taylor expansion of (1− x)−( θ
α

+γ), we
have

(1− x)−( θ
α

+γ) =
∞∑
i=0

(
θ
α

+ γ + i− 1

i

)
xi,

since (1 − x)−n =
∑∞

i=0

(−n
i

)
(−x)i =

∑∞
i=0

(
n+i−1

i

)
xi. The coefficient of xk−γ in the

expansion is
( θ
α

+γ+k−γ−1

k−γ

)
=
( θ
α

+k−1

k−γ

)
which in the right side of (1). In addition, since

(1− x)−( θ
α

+γ) = (1− x)−( θ
α

+`+γ) · (1− x)`, and

(1− x)−( θ
α

+`+γ) =
∞∑
i=0

(
θ
α

+ `+ γ + i− 1

i

)
xi,

(1− x)` =
∑̀
i=0

(
`

i

)
(−1)ixi,

we have

(1− x)−( θ
α

+`+γ) · (1− x)` =
∞∑
i1=0

∑̀
i2=0

(
θ
α

+ `+ γ + i1 − 1

i1

)(
`

i2

)
(−1)i2x

i1+i2 .
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Thus, the coefficient of xk−γ is

∑
i1+i2=k−γ

(
θ
α

+ `+ γ + i1 − 1

i1

)(
`

i2

)
(−1)i2 =

`∧(k−γ)∑
i2=0

(
θ
α

+ k + `− i2 − 1

k − γ − i2

)(
`

i2

)
(−1)i2 ,

which is the left side of 5.5. Equating the coefficients in these two ways, we got the
identity. ut

Let T (t) denote the semigroup defined on C(∇∞) generated by Lθ,α, and {1, χ~m :
~m ∈ J} be the orthonormal basis of L2(θ, α) in Theorem 5.2. Then for f in C(∇∞),
the following equality holds

T (t)f(x) = (f, 1) +
∞∑
m=2

e−λmt
∑

~m∈J :|~m|=m

(f, χ~m)χ~m(x),

where (·, ·) denotes the scalar product in L2(θ, α). Thus, if

∞∑
m=2

e−λmt
∑

~m∈J :|~m|=m

χ2
~m ∈ L1(θ, α), (5.6)

then T (t) has a transition density

p(t, x, y) = 1 +
∞∑
m=2

e−λmtqm(x, y)

with
qm(x, y) =

∑
~m∈J :|~m|=m

χ~m(x)χ~m(y), x, y ∈ ∇.

As in [13], we can show that for any m ≥ 1,

⊕mn=0Wn = span{p~n : ~n ∈ {0} ∪ J, |~n| ≤ m},

and Lemma 5.3 can be applied to the orthonormal basis {χ~m : ~m ∈ J}, and for any
~m, ~m′ ∈ 0 ∪ J with m = |~m| ≤ |~m′| ≤ n,

∫
∇∞

∫
∇∞

Pn(x, y)χ~m(x)χ~m′(y)PD(α, θ)(dx)PD(α, θ)(dy) =
n[m]

(n+ θ)m
δ~m~m′ . (5.7)
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Write pn(x, y) as a linear combination of {χ~m(x)χ~m′(y) : |~m| ∨ |~m′| ≤ n}. It
follows from 5.7 that the coefficient of χ~m(x)χ~m′(y) is zero if ~m 6= ~m′. Therefore, we
get a linear expression of pn(x, y) in terms of {qm(x, y) : m ≤ n}.

Pn(x, y) = 1 +
n∑

m=2

n[m]

(n+ θ)(m)

∑
~m∈J :|~m|=m

χ~m(x)χ~m(y)

= 1 +
n∑

m=2

n[m]

(n+ θ)(m)

qm(x, y).

Solving qm(x, y) in terms of Pn(x, y), yields that for any m ≥ 2,

qm(x, y) =
2m− 1 + θ

m!

m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)Pn(x, y)

where P0(x, y) = 1. Since
∫
∇∞ p~n dPD(α, θ) = n!

n1!···n`!α1!···αn!

`−1∏
i=0

(θ+iα)

θ(n)

∏̀
i=1

(1−α)ni−1, it

follows that

||Pn||∞ ≤ max
~n∈I:|~m|=n

(

∫
∇∞

p~n dPD(α, θ))−1 ≤
θ(n)

(θ(1− α))n ∧ 1
.

Then, for m ≥ 2 there exist C, d > 1 such that

||qm||∞ ≤ (2m− 1 + θ)
m∑
n=0

(n+ θ)m−1

θ(n)

(θ(1− α))n ∧ 1
≤ (cmd)m. (5.8)

which leads to (5.6) and the following upper bound for the transition density function.

Theorem 5.4. The transition function of the process Xθ,α(t) has a density function
p(t, x, y) with respect to PD(α, θ) given by

p(t, x, y) = 1 +
∞∑
m=2

e−λmtqm(x, y), (5.9)

and there exists a constant c > 1 such that

p(t, x, y) ≤ ctc(log t)/t, t > 0, x, y ∈ ∇∞. (5.10)
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Proof. Obviously, (5.6) follows from (5.8) and that λm = m(m − 1 + θ)/2. So, it
suffices to prove (5.10). Since supx,y p(t, x, y) is decreasing in t, we only have to
consider the case that t ∈ (0, 1/2]. By (5.8), (5.9) and the fact that λm = 1

2
m(m −

1 + θ), we have

p(t, x, y) ≤ 1 +
∞∑
m=2

2−m exp[Ψt(m)], (5.11)

where

Ψt(m) = −1

2
m(m− 1 + θ)t+m log(2C) + dm logm, m ≥ 2.

Noting that

d logm ≤ mt

4
+ d log

4d

t
− d,

we conclude that

Ψt(m) ≤ −m
2t

4
+ c1m log t−1 ≤ c2(log t−1)2

t
, t ∈ (0, 1/2]

holds for some constants c1, c2 > 0 and all m > 0. The proof is then completed by
combining this with (5.11).

ut

5.5 Random Sampling at Time t

Using the above transition density, we find the transient sampling distribution for
the two-parameter diffusion model. Our result can be seen as a two-parameter gener-
alization of Theorem 1 in [31]. There the author’s approach is based on the fact that
the IMNA diffusion process can be approximated by the finite alleles Wright-Fisher
model. However, a finite-dimensional approximation of the two-parameter model is
not found yet. Therefore, we turn to use the correlation measure of the two-parameter
Poisson-Dirichlet point process obtained in Chapter 3 in our derivation.

Theorem 5.5. Consider the two-parameter diffusion process X(t) with generator
Lα,θ (5.1) with initial value x = (x1, x2, . . .). The probability generating function

E[
n∏
i=1

uaii |X(0) = x]
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of a sample a = (a1, a2, . . . , ar) of size r at time t is the coefficient of ϕr in

G0 +
∞∑
m=2

2m− 1 + θ

m!
e−λmt

m∑
n=0

(−1)m−n
(
m

n

)
(n+ θ)(m−1)Gn,

where

G0 = G1 =
r!

θ(r)

(
1− α

r∑
l=1

(1− α)(l−1)ulϕ
l/l!

)−θ/α
,

and for m ≥ 2

Gm = r!
θn

θ(n+r)

∑
n=(n1,...,nk)

ψn(x)

(
1− α

r∑
l=1

(1− α)(l−1)ulϕ
l/l!

)(−k+ θ
α

)

k∏
i=1

(
1 +

r∑
l=1

(ni − α)(l)ϕ
lul/l!

)

Proof. Since the probability generating function is r!× the coefficient of ϕr in

E[
∞∏
i=1

(1 +
r∑
l=1

(ϕXi(t))
lul/l!)|X(0) = x]

Due to the expression of transition density q(t, x, y) we only need to compute

E[
∞∏
i=1

(1 +
r∑
l=1

(ϕXi)
lul/l!)] (5.12)

and

PSF (n)−1E[ψn(X)
∞∏
i=1

(1 +
r∑
l=1

(ϕXi)
lul/l!)], (5.13)

where n = (n1, . . . , nk),

PSF (n) =
θ(θ + α) · · · (θ + (k − 1)α)

θ(n)

(1− α)(n1−1) · · · (1− α)(nk−1)

and the expectation is taken with respect to the PD(α, θ) distribution. For simplicity
we only give the proof of (5.12). (5.13) can be computed similarly using the argument
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in Theorem 3.1. Setting g(z) =
∑n

l=1 ϕ
lzlul/l! and using the correlation function

obtained in Theorem 3.1, we have

E[
∞∏
i=1

(1 +
r∑
l=1

(ϕXi(t))
lul/l!)]

= 1 +
∞∑
n=1

cn,α,θ
n!

∫
∆n

n∏
i=1

g(vi)

v1+α
i

(1−
n∑
j=1

vj)
θ+αn−1 dv1 · · · dvn

= 1 +
∞∑
n=1

cn,α,θ
n!

r∑
l1,...,ln=1

ϕl1+···+lnul1 · · ·uln
l1! · · · ln!

Γ(l1 − α) · · ·Γ(ln − α)Γ(θ + αn)

Γ(l1 + · · ·+ ln + θ)

= 1 +
∞∑
n=1

Γ(θ)αn

n!

(
θ

α

)
(n)

r∑
l1,...,ln=1

ϕl1+···+lnul1 · · ·uln(1− α)(l1−1) · · · (1− α)(ln−1)

l1! · · · ln!Γ(l1 + · · ·+ ln + θ)
.

Therefore, the coefficient of ϕr in the above corresponds to the coefficient of ϕr in
the Taylor expansion of G0/θ(r). It is also worth noticing that by letting α→ 0, the
limit of G0 is r!θ−1

(r) exp{θ
∑r

l=1 ulϕ
l/l}, which coincides with the result obtained by

Griffiths in [31]. This is also true for Gm,m ≥ 2.
ut
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Chapter 6

The Quasi-invariant Property and
Its Application

6.1 Abstract

Suppose that S is a Borel space with probability measure µ and G is a group consist-
ing of measurable transformations on S. The quasi-invariance of µ with respect to
the transformation group G means that for any element T ∈ G , the image measure
Tµ and the original measure µ are mutually absolutely continuous. We obtain two re-
sults based on the quasi-invariance property of the gamma process a discrete random
measure on S under the multiplication transformation group. Under the induced
transformation on the normalized atom masses, we establish the quasi-invariance
property of the two-parameter Poisson-Dirichlet distribution. On the other hand, we
show the equivalence between the reversibility of a class of measure-valued branch-
ing process and the quasi-invariance property of their stationary distributions with
respect to the multiplication group. In the reversible case, the cocycle of the quasi-
invariance is given by the integral of the drift term along a specific transformation
flow.

6.2 Introduction

A subordinator (xt, t ≥ 0) is an increasing process with stationary independent
increments. Assume that (xt) has no drift component, the corresponding Laplace
transform is

E[exp(−λxt)] = exp(−t
∫ ∞

0

(1− exp(−λz))Λ(dz)),
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where the Lévy measure Λ on (0,∞) is the intensity measure for the Poisson point
process of jumps (xs − xs−, s ≥ 0). The gamma process denoted by (γs, s ≥ 0) is a
subordinator with Lévy measure given by

Λ(dx) = x−1e−xdx, x > 0. (6.1)

Therefore, the Laplace transform of the gamma process is

E[exp{−λγs}] = exp{−s
∫ ∞

0

(1− exp(−λx))x−1e−xdx} =
1

(1 + λ)s
,

indicating that the marginal distribution of γs is the gamma(s) distribution, i.e. for
s ≥ 0

P(γs ∈ dx) = Γ(s)−1xs−1e−xdx, x > 0,

where Γ(s) =
∫∞

0
λs−1e−λdλ.

Another typical subordinator is the α-stable process τs with Lévy measure

Λα(x,∞) = Cx−α, x > 0

for some constant C > 0, and thus the Laplace transform is

E[exp{−λτs}] = exp{−sKλα}, K = CΓ(1− α).

In fact, the above pure jump subordinators can be realized as a random discrete
measure

η =
∑

ZiδSi ,

where the sizes of jumps (Z1, Z2, . . .) are distinct points of a Poisson point process
on [0,∞) with mean measure given by the Lévy measure of subordinator. Indepen-
dently, the jumping locations (S1, S2, . . .) forms a sequence of i.i.d. random variables
on a standard Borel space S with a non-atomic probability measure ν. As a random
discrete measure on the space (S, ν) the Laplace transform of η is

E[exp{−〈a, η〉}] = exp{〈logψΛ(a), ν〉},

where a is an arbitrary non-negative bounded Borel function on S and

ψΛ(a) = exp{−
∫ ∞

0

(1− e−xa)dΛ(x)}.

Here and after 〈a, η〉 always represents
∫
S
a(s)η(ds).
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Consider the gamma process γ(θ), which is equivalent to η =
∑
ZiδSi with the

Lévy measure Λ(dx) = θx−1e−xdx, x > 0. Its Laplace transform is given by

E[exp{−〈a, η〉}] = exp{−θ〈log(1 + a), ν〉}.

Denote the law of the gamma process η by Pν .
It follows that the law Pν is concentrated on the cone

D = {
∑

ziδsi : zi > 0, si ∈ S,
∑

zi <∞}

consisting of finite positive discrete measures on S with infinite number of atoms and
equipped with the usual weak convergence topology. We decompose η =

∑
ZiδSi into

two components as
η = (η̄, η(S)),

where the first coordinate η̄ =
∑

Zi∑
Zj
δSi =

∑
YiδSi is the probability measure after

normalization, and the second denotes the total mass
∑
Zi.

Furthermore, the normalized random measure η̄ =
∑

Zi∑
Zj
δSi =

∑
YiδSi called

the Dirichlet process is independent of the total mass of η(S) =
∑
Zj = γ(θ). Denote

the distribution of η̄ as Πθ,ν . The Dirichlet process has extensive applications in the
Bayesian statistics (see e.g. [29]).

Consider the following transformation on M(S) i.e. the space of finite positive
Borel measures on S with the topology of weak convergence:

Maη(ds) = a(s)η(ds),

where a belongs to the space of nonnegative bounded measurable functions on S with
infs a(s) > 0. The induced transformation on P(S) the set of probability measure
on S with weak convergence topology is given by

Saη̄(ds) = a(s)η(ds)/〈a, η〉.

Note that both Ma and Sa form a transformation group on M(S) and P(S):

Ma+bη = Ma(Mbη),

and
Sa+bη̄ = Sa(Sbη̄).

In particular, (Ma)
−1 = Ma−1 and (Sa)

−1 = Sa−1 . [62] and [63] show that for the
gamma process the image measure MaPν and Pν are mutually absolutely continuous
and the density is given by

MaPν
Pν

(dη) = exp{−〈log a, ν〉 − 〈a−1 − 1, η〉}, Pν − a.s..
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For the Dirichlet process Πθ,ν , the quasi-invariance also holds with the density given
by [35] as

SaΠθ,ν

Πθ,ν

(dη̄) = exp{−θ〈log a, ν̄〉+ log〈a−1, η̄〉}, Πθ,ν − a.s.. (6.2)

Denote the cone

C = {x = (y1, y2, . . .) : y1 ≥ y2 ≥ · · · ≥ 0,
∑

yi <∞} ⊆ `1.

We define a map T : D → C by arranging the atom masses in decreasing order

Tη = (z1, z2, . . .), if η =
∑

ziδsi ,

and
T η̄ = (z1/

∑
zi, z2/

∑
zi, . . .) = (Y1, Y2, . . .).

When η is the gamma process, the corresponding T η̄ has the law of the Poisson-
Dirichlet distribution with parameter θ. In the same manner, the PD(α, 0) distri-
bution can be derived as the law of T η̄ when η is the α-stable subordinator.

In [62] the authors use this property to show the quasi-invariance of the Poisson-
Dirichlet distributions denoted by PD(θ). The induced mapping on the ordered
atom masses (Y1, Y2, . . .) of the Dirichlet process is defined as

SaY = Φ(a(S1)Y1/ρ, a(S2)Y2/ρ, . . .),

where ρ =
∑
a(Si)Yi and Φ is a map that arranges the coordinates in non-increasing

order. It is easy to see that Sa also forms a transformation group on the ordered
infinite-dimensional simplex space

∇∞ = {(y1, y2, . . .) : y1 ≥ y2 ≥ · · · ≥ 0,
∑

yi = 1}

with topology inherited from [0, 1]∞.
Under the mapping Sa, it is shown that the image distribution SaPD(θ) is equiv-

alent to the PD(θ) distribution. Furthermore, Arguin [2] utilizes this transformation
to characterize the PD(α, 0) distribution. He shows that the PD(α, 0) distribution
is invariant under Sa with proper multiplicators a. Here, we further show that the
quasi-invariance of the two-parameter Poisson-Dirichlet distribution PD(α, θ) still
holds with respect to the transformation group Sa parametrized by bounded Borel
measurable functions a on S with infs a(s) > 0 and a sequence of i.i.d. ν0 distributed
random variables S1, S2, . . . on S.
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6.3 Quasi-invariance of the PD(α, θ) distribution

First recall the definition of the two-parameter Poisson-Dirichlet distribution. For
0 ≤ α < 1 and θ > −α, let Uk, k = 1, 2, . . . be a sequence of independent random
variables such that Uk has Beta(1 − α, θ + kα) distribution with density function
given by

f(x) =
Γ(θ + 1 + (k − 1)α)

Γ(1− α)Γ(θ + kα)
x−α(1− x)θ+kα−1, 0 < x < 1.

Set (V1, V2, . . .) as

V1 = U1, Vn = (1− U1) · · · (1− Un−1)Un, n ≥ 2. (6.3)

Arrange (V1, V2, . . .) in descending order and denote it as P = (P1, P2, . . .). Then
the law of P is called the two-parameter Poisson-Dirichlet distribution denoted by
PD(α, θ). The law of (V1, V2, . . .) is called the two-parameter GEM distribution
denoted by GEM(α, θ). PD(α, θ) is a probability concentrating on ∇∞. PD(0, θ)
corresponds to the Poisson-Dirichlet distribution with parameter PD(θ).

The α-stable process on the space (S, ν0) with ν0(S) = 1 is a subordinator with
Lévy measure

dΛα =
cα

Γ(1− α)
x−α−1dx,

where x > 0, 0 < α < 1 and c > 0. Denote the law of the α-stable process by P ν0
α,c.

The Laplace transform of P ν0
α,c is

EP
ν0
α,c

[exp{−〈b, τ〉}] = exp{−c〈bα, ν0〉}

for an arbitrary nonnegative measurable function b on S with 〈bα, ν0〉 <∞. Consider
(Maτ)(ds) = a(x)τ(ds) such that a is a bounded nonnegative Borel measurable
functions on S with infs a(s) > 0. Then the Laplace transform of MaP

ν0
α,c is

EMaP
ν0
α,c

[exp{−〈b, τ〉}] = EP ν0α,c [exp{−〈ab, τ〉}]
= exp{−c〈aαbα, ν0〉}

= exp{−cAα〈bα,
aαν0

Aα
〉}

= E
P
να0
α,cAα

[exp{−〈b, τ〉}],

where Aα = 〈aα, ν0〉 and να0 (ds) = aα(s)ν0(ds)/Aα. Therefore, we have the following
equivalence of the distributions

MaP
ν0
α,c = P

να0
α,cAα

. (6.4)
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Pitman and Yor [57] show that the two-parameter Poisson-Dirichlet distribution
PD(α, θ) with θ 6= 0 is absolutely continuous with respect to the PD(α, 0) distribu-
tion. Namely, consider the law P c,ν0

α,θ which has the density

P c,ν0

α,θ

P ν0
α,c

(dη) =
cα,θ
η(S)θ

with respect to the α-stable law P ν0
α,c. Here the normalizing constant cα,θ = cθ/α Γ(θ+1)

Γ(θ/α+1)
.

The simplicial part T η̄ where η distributed as (P c,ν0

α,θ ) has the two-parameter Poisson-
Dirichlet distribution PD(α, θ). This is essential obtaining the main result.

Theorem 6.1. Suppose that {Si, i = 1, 2, . . .} is a sequence of i.i.d. ν0 distributed
random variables on a Borel space S and a is is a bounded nonnegative Borel measur-
able functions on S with infs a(s) > 0. Independently, set P = (Pi)

∞
i=1 ∼ PD(α, θ)

and SaP = Φ(a(S1)P1/ρ, a(S2)P2/ρ, . . .), where ρ =
∑
a(Si)Pi, Φ is a map that

arranges the coordinates in non-increasing order. Then the two-parameter Poisson-
Dirichlet distribution PD(α, θ) with θ 6= 0 is quasi-invariant under the operator Sa
and

SaPD(α, θ)

PD(α, θ)
(dp) = 〈aα, ν0〉−θ/α

1

Γ(θ)

∫ ∞
0

σθ−1

∞∏
i=1

Eνα0 [e−σa
−1(Xi)pi ]dσ.

Proof. Since the simplicial part T (P c,ν0

α,θ ) and T (P ν0
α,c) correspond to PD(α, θ) and

PD(α, 0) distributions for θ 6= 0. Therefore, we have

E[Φ((
a(Si)Pi∑
a(Si)Pi

)∞i=1)] = EMaP
c,ν0
α,θ

[Φ(T (η))]

= EP c,ν0α,θ
[Φ(T (Maη))]

= EP ν0α,c [Φ(T (Maη))
cα,θ
η(X)θ

]

EP ν0α,c [Φ(T (Maη))
cα,θ

〈a−1,Maη〉θ
]

= EMaP
ν0
α,c

[Φ(T (η))
cα,θ

〈a−1, η〉θ
]

= E
P
να0
α,cAα

[Φ(T (η))
cα,θ

〈a−1, η〉θ
]

= E
P
cAα,ν

α
0

α,θ

[Φ(T (η))
cα,θ

(cAα)α,θ

η(S)θ

〈a−1, η〉θ
]
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We further have the above equals to

= E
P
cAα,ν

α
0

α,θ

[Φ(T (η))
1

A
θ/α
α 〈a−1, η̄〉θ

]

= EPD(α,θ)[Φ((Pi)
∞
i=1)E(να0 )∞ [

1

A
θ/α
α (
∑
a−1(Si)Pi)θ

]].

This means that

SaPD(α, θ)

PD(α, θ)
(dp) = E(να0 )∞ [

1

A
θ/α
α (
∑
a−1(Si)pi)θ

],

where 1/A
θ/α
α = 〈aα, ν0〉−θ/α. Using λ−θ =

∫∞
0

σθ−1

Γ(θ)
e−λσdσ we can rewrite

E(να0 )∞ [
1

(
∑
a−1(Si)pi)θ

] = E(να0 )∞ [

∫ ∞
0

σθ−1

Γ(θ)
e−σ

∑
a−1(Si)pidσ]

=
1

Γ(θ)

∫ ∞
0

σθ−1

∞∏
i=1

Eνα0 [e−σa
−1(Si)pi ]dσ.

Therefore,

SaPD(α, θ)

PD(α, θ)
(dp) = 〈aα, ν0〉−θ/α

1

Γ(θ)

∫ ∞
0

σθ−1

∞∏
i=1

Eνα0 [e−σa
−1(Si)pi ]dσ.

ut

Remark 6.2. It is easily seen that when θ = 0, the density equals one, which means
that SaPα,θ and Pα,θ are identically distributed which coincides with Arguin’s result
[2]. On the other hand, by letting α→ 0, we have

〈aα, ν0〉−θ/α → exp{−θ〈log a, ν0〉}

and να0 = ν0 when α = 0. This means the density we obtained is consistent with
that for the Poisson-Dirichlet distribution PD(θ) [62].

6.4 Reversibility of Branching Processes

Recall that the Dirichlet process Πθ,ν is the stationary distribution of Fleming-Viot
process with parent independent mutation defined as follows. Let S denote the type
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space which is a compact Polish space, and P(S) be the set of probability measure on
S equipped with the usual weak convergence topology. Fleming-Viot process (FV)
with parent independent mutation is a P(S)-valued process with the generator given
by

(Lφ)(µ) =
1

2

∫
S

∫
S

µ(dx)(δx(dy)− µ(dy))
δ2φ(µ)

δµ(x)δµ(y)
+

∫
S

µ(dx)A

(
δφ(µ)

δµ(·)

)
(x),

where δφ(µ)/δµ(x) = lim
ε→0+

ε−1(φ(µ+ εδx)− φ(µ)), and mutation operator

(Af)(x) =
1

2
θ

∫
S

(f(ξ)− f(x))ν(dξ).

Here and after, we always assume ν is a probability measure. The domain of L is
given by the space of function Φ of the form Φ = P (〈f1, µ〉, . . . , 〈fn, µ〉) where P is
a polynomial function with n variables and f1, . . . , fn ∈ D(A). Handa [36] used the
quasi-invariance of Πθ,ν to characterize the reversibility of FV process with parent
independent mutation. Reversibility means that the FV process is reversible with
respect to Πθ,ν i.e.∫

P(S)

ψ(µ)Lφ(µ)Πθ,ν(dµ) =

∫
P(S)

Lψ(µ)φ(µ)Πθ,ν(dµ), ψ, φ ∈ Dom(L).

The condition for FV process incorporating mutation and selection to be reversible
was dealt with by Li et.al. [48]. Handa [36] solved a more general case, in which he
considered the recombination factor.

The gamma process is the stationary distribution of a typical measure-valued
branching process with immigration. Together with FV process, they are two typical
superprocesses. Readers can refer to [6] for a general account of superprocess. A
measure-valued branching diffusion with immigration (MBI) takes values in M(S),
the set of finite positive Borel measures on S with the topology of weak convergence.
The generator of MBI is

L̃(φ)(µ) =
1

2

∫
S

µ(dx)
δ2φ(µ)

δµ(x)2
+

1

2
θ

∫
S

ν(dx)
δφ(µ)

δµ(x)
− 1

2
λ

∫
S

µ(dx)
δφ(µ)

δµ(x)
, (6.5)

where λ ∈ R and θ, ν is defined as above. As pointed by Shiga [58], the above process
is reversible with respect to the gamma process Pν when λ = 1.
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Here we look into a general branching process with immigration µt with the
following generator:

LF (µ) =

∫
S

µ(dx)a(x)
δ2F (µ)

δµ(x)2
+

∫
S

µ(dx)

∫ ∞
0

n(x, ds)(F (µ+ sδx)− F (µ)

−sδF (µ)

δµ(x)
) +

∫
S

(ν(dx)− µ(dx)b(x))
δF (µ)

δµ(x)
(6.6)

+

∫
S

µ(dx)(A
δF (µ)

δµ(·)
)(x),

where the domain of L is

D(L) = {F (µ) = Φ(〈f1, µ〉, . . . , 〈fn, µ〉);n ≥ 1, fi ∈ D(A)
⋂

C(S)+,Φ ∈ C2
0(Rn)}.

In this case, the branching mechanism can be characterized as follows. Define

Ψ(x, λ) = −a(x)λ2 +

∫ ∞
0

(1− e−λs − λs)n(x, ds)− b(x)λ,

where a ≥ 0, a, b ∈ C(S),

sup
x∈S

∫ ∞
0

s ∧ s2n(x, ds) <∞

and

(x, λ) 7→
∫ ∞

0

(1− e−λs − λs)n(x, ds) ∈ C(S ×R+).

The solution of the following equation

∂ψt(f)

∂t
= Aψt(f) + Ψ(x, ψt(f)),

with ψ0(f) = f gives the Laplace transform of µt in the form of

Eµ[e−〈f,µt〉] = exp{−
∫ t

0

〈ψs(f), ν〉ds− 〈ψt(f), µ〉}.

The corresponding Carré du champ is

Γ(F,G) =
1

2
{L(FG)− LF ·G− F · LG}

= 〈a(x)
δF (µ)

δµ(x)

δG(µ)

δµ(x)
, µ〉

+〈
∫ ∞

0

n(x, ds)(F (µ+ sδx)− F (µ))(G(µ+ sδx)−G(µ)), µ〉,
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where F,G ∈ D(L). In order to satisfy the following equation

Γ(FH,G) + Γ(HG,F )− Γ(H,FG) = 2HΓ(F,G), (6.7)

which is essential in our proof, we have to set n(x, ds) = 0. Suppose that the process
L is reversible with respect to some measure Π onM(S), which is equivalent to say∫

ΦLΨdΠ =

∫
ΨLΦdΠ, Φ,Ψ ∈ D(L).

Define
〈f, c(µ)〉 = 〈f, ν〉 − 〈bf, µ〉+ 〈Af, µ〉

and

Λ(f, µ) =

∫ 1

0

〈f/a, c(Suf (µ))〉du, (6.8)

where Sfµ(dx) = efµ(dx). Sf forms a transformation group on M(S), where f is a
bounded measurable function on S such that

Sf+gµ = Sf (Sgµ),

and (Sf )
−1 = S−f . Let K be a linear subspace of bounded measurable functions of

S and Λ : K ×P(S)→ R be such that for each f ∈ K the function µ : µ→ Λ(f, µ)
is Borel measurable. Next we will try to show that Π ◦ Sf and Π are equivalent and
the density is given by eΛ(f,µ) for f ∈ K. It means that Π is K-quasi-invariant with
cocycle Λ(f, µ). As a result, Λ(f, µ) has to satisfy the cocycle identity:

Λ(f + g, µ) = Λ(f, Sgµ) + Λ(g, µ).

So as to let Λ defined by (6.8) satisfy the cocycle identity it can be seen that
A = 0. In this case, Λ(f, µ) = 〈f/a, ν〉 − 〈(ef − 1)b/a, µ〉.

Theorem 6.3. Suppose the branching process with immigration {νt, t ≥ 0} is defined
by generator L (6.6) with A = n = 0 and a, b ∈ C(S), a ≥ 0. The domain of L is
given by

D(L) = {F (µ) = Φ(〈f1, µ〉, . . . , 〈fn, µ〉);n ≥ 1, fi ∈ C(S)+,Φ ∈ C2
0(Rn)}.

Let Π be a Borel probability measure on M(S). Then L is reversible with respect to
Π if and only if Π is quasi-invariant under the transformation Sf with f a bounded
measurable function on S and density given by eΛ(f,µ) defined by (6.8) .
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Proof. We first show that the reversibility implies the quasi-invariance. Define

µt = S−atfµ

and
Φt(µ) = Φ(µt) = Φ(〈f1, µt〉. . . . , 〈fn, µt〉),

where Φ ∈ D(L), fi ∈ B(S), i = 1, 2, . . . , n. Set

Z(t) =

∫
Φ(µt)e

−Λ(atf,µt)Π(dµ).

We will obtain the quasi-invariance by showing Z ′(t) = 0. First we note that

d

dt
Φ(µt) =

n∑
i=1

∂Φ

∂xi
〈fi(−af), µt〉

and
δΦt(µ)

δµ(x)
=

n∑
i=1

∂Φ

∂xi
fie
−atf .

As a result, the above two identities lead to

〈af δΦt(µ)

δµ(x)
, µ〉 =

n∑
i=1

∂Φ

∂xi
〈affie−atf , µ〉 =

n∑
i=1

∂Φ

∂xi
〈affi, µt〉 = − d

dt
Φ(µt).

Therefore,

Λ(atf, µt) =

∫ 1

0

〈tf, c(Suatf (µt))〉du

= t

∫ 1

0

〈f, c(S−(1−u)atf (µ))〉du

= t

∫ 1

0

〈f, c(S−uatf (µ))〉du

=

∫ t

0

〈f, c(S−uaf (µ))〉du

=

∫ t

0

〈f, c(µu)〉du.

From this, we have

d

du
〈f, c(µu)〉 = −〈µ, af δ〈f, c(µu)〉

δµ(x)
〉.
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Define Φ̃t(µ) = Φ(µt)e
−Λ(atf,µt). Then we obtain the following

δΦ̃t(µ)

δµ(x)
=
δΦt(µ)

δµ(x)
e−Λ(atf,µt) − Φ̃t(µ)

∫ t

0

δ〈f, c(µu)
δµ(x)

du,

and

〈af δΦ̃t(µ)

δµ(x)
.µ〉 = 〈af δΦt(µ)

δµ(x)
, µ〉e−Λ(atf,µt) − Φ̃t(µ)

∫ t

0

〈af δ〈f, c(µu)〉
δµ(x)

, µ〉du

= − d

dt
Φ(µt)e

−Λ(atf,µt) + Φ̃t(µ)(〈f, c(µt)〉 − 〈f, c(µ)〉).

Therefore,

Z ′(t) =

∫
d

dt
Φ(µt)e

−Λ(atf,µt) − Φ̃t(µ)〈f, c(µt)〉Π(dµ)

=

∫
−〈af δΦ̃t(µ)

δµ(x)
.µ〉+ Φ̃t(µ)(〈f, c(µt)〉 − 〈f, c(µ)〉)− Φ̃t(µ)〈f, c(µt)〉Π(dµ)

=

∫
−〈af δΦ̃t(µ)

δµ(x)
.µ〉 − Φ̃t(µ)〈f, c(µ)〉Π(dµ).

Let Ψ(µ) = 〈f, µ〉. Then LΨ(µ) = 〈f, c(µ)〉 and δΨ(µ)
δµ(x)

= f(x). The above is equiva-
lent to

Z ′(t) =

∫
−Γ(Φ̃t,Ψ)− Φ̃tLΨ Π(dµ).

Clearly, Φ̃t,Ψ ∈ D(L). If L is reversible w.r.t. the measure Π(dµ), then Z ′(t) = 0.
Therefore, Z(1) = Z(0) which is equivalent to∫

Φ(S−afµ)e−Λ(af,S−afµ)Π(dµ) =

∫
Φ(µ)Π(dµ).

Thus, we have ∫
Φ(S−fµ)e−Λ(f,S−fµ)Π(dµ) =

∫
Φ(µ)Π(dµ),

for any f ∈ B(S). Replacing Φ(µ) by Φ(µ)eΛ(f,µ), we have∫
Φ(S−fµ)Π(dµ) =

∫
Φ(µ)eΛ(f,µ)Π(dµ),

i.e.
∫

Φ(µ) Π ◦ Sf (dµ) =
∫

Φ(µ)eΛ(f,µ) Π(dµ).
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Secondly, we try to show the above quasi-invariance implies reversibility. From
the above argument, we can see that if Π ◦ Sf � Π with the density eΛ(f,µ), then
Z(t) must be a constant. This induces that Z ′(t) = 0. Hence

0 = Z ′(0) =

∫
−〈af δΦ(µ)

δµ(x)
.µ〉 − Φ(µ)〈f, c(µ)〉Π(dµ).

Therefore,

0 =

∫
−Γ(Φ,Ψ)− ΦLΨΠ(dµ), (6.9)

for Φ ∈ D(L) and Ψ = 〈f, µ〉. Suppose Ψ(µ) = Ψ1(µ)Ψ2(µ) = 〈f1, µ〉〈f2, µ〉. Using
(6.7), we have

−
∫

ΦL(Ψ1Ψ2)Π(dµ) =

∫
Φ{−2Γ(Ψ1,Ψ2)− LΨ1 ·Ψ2 −Ψ1LΨ2}Π(dµ)

= −
∫

(Γ(ΦΨ1,Ψ2) + Γ(ΦΨ2,Ψ1)− Γ(Φ,Ψ1Ψ2))Π(dµ)

+

∫
Γ(ΦΨ1,Ψ2) + Γ(ΦΨ2,Ψ1)Π(dµ)

=

∫
Γ(Φ,Ψ1Ψ2)Π(dµ).

This indicates that (6.9) holds for Ψ(µ) =
∏n

i=1〈fi, µ〉, for fi ∈ C(S). Therefore,
(6.9) holds for Ψ ∈ D(L). ut

Example 6.4. Consider the following generator:

L1F (µ) =
1

2

∫
S

µ(dx)
δ2F (µ)

δµ(x)2
+ +

1

2

∫
S

(θν0(dx)− λµ(dx))
δF (µ)

δµ(x)
,

where a(x) = 1
2
, ν(dx) = θ

2
ν0(dx), ν0 ∈ P(S) and b(x) = λ

2
, A = 0. The cocycle

Λ(f, µ) = 〈f/1

2
, θν0/2〉 − 〈(ef − 1)

λ

2
/

1

2
, µ〉 = θ〈f, ν0〉 − λ〈ef − 1, µ〉.

On the other hand, it is known that L1 is reversible w.r.t. the random measure Γλ
−1

θ,ν0

whose Laplace transform is given by∫
e−〈f,µ〉Γλ

−1

θ,ν0
(dµ) = exp{−θ〈log(1 + λ−1f), ν0〉}.
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Then, we have∫
e−〈g,S−fµ〉Γλ

−1

θ,ν0
(dµ) =

∫
e−〈e

−fg,µ〉Γλ
−1

θ,ν0
(dµ)

= exp{−θ〈log(1 + λ−1e−fg), ν0〉}
= exp{−θ〈log e−f + log(ef + λ−1g).ν0〉}
= exp{θ〈f, ν0〉} exp{−θ〈log(1 + λ−1(λef + g − λ).ν0〉}

= exp{θ〈f, ν0〉}
∫
e−〈λe

f+g−λ,µ〉Γλ
−1

θ,ν0
(dµ)

which also gives the density of Γλ
−1

θ,ν0
◦ Sf w.r.t Γλ

−1

θ,ν0
is exp{θ〈f, ν0〉}e−〈λe

f−λ,µ〉

Remark 6.5. The quasi-invariance property of the gamma process was also considered
by Stannat [60]. He associated this property with an analogue of the Cameron-
Martin-Girsanov theorem for the classical Wiener measure. The transformed gamma
process is the symmetrizing measure for the process whose generator is a first-order
perturbabtion of the original one.
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Chapter 7

Summary

In this thesis we study the impact of various influential factors on the population
evolutionary process.

In Chapter 2, we study the limiting distribution of age-ordered family frequen-
cies of a linear birth process with immigration as time goes to infinity. The result
shows that the cumulative effect of time let the distribution of age-ordered family
proportions converge to the two-parameter GEM distribution.

In Chapter 3 we first use the sampling formula to derive the Laplace transform of
the two-parameter Poisson-Dirichlet distribution. Also, the sampling formula is de-
rived from the Laplace transform. This indicates the robustness of sampling formula
which is used a basic tool in statistical inference of population genetics. Further-
more, letting mutation rate go to infinity we obtain a Gaussian limit distribution of
the scaled homozygosity functions for the IMNA model at a fixed time. Since there
exists a similar behavior at the equilibrium state, we conclude that with any starting
point the model will look like its equilibrium in a finite time under the influence of
large mutation. In the end of Chapter 3, we use the sampling formula of the selection
model to derive the Laplace transform.

The selection impact is further studied for the two-parameter model in Chapter 4.
We consider the selection intensity given by different powers and study the limiting
behavior as mutation goes to infinity. The asymptotic behavior for the two-parameter
Poisson-Dirichlet distribution with selection looks like the neutral model. Therefore,
the impact of selection is hardly detected when mutation rate and selection intensity
both approach infinity.

Chapter 5 considers the generalized two-parameter infinite alleles model. The
behavior of the model at finite time is described by the transition function, which
is absolutely continuous w.r.t. the stationary distribution PD(α, θ). The transition
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density is derived by the eigenfunction expansion. With the transition density we
find the probability generating function of random sampling from the two-parameter
extension model at a fixed time, as a comparison of the sampling formula at equilib-
rium.

In the last chapter, we establish the quasi-invariance property of the PD(α, θ) dis-
tribution with respect to the Markovian transformation group. In the other aspect,
we show the equivalence between the reversibility of a class measure-valued branch-
ing process with immigration and the quasi-invariance of its invariant measure with
respect to the multiplication transformation group. This conclusion implicitly es-
tablishes the connection of the stationary distribution under two different kinds of
mappings.
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