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ABSTRACT 

This series of papers explores the value of and mechanisms for using a 

heterogeneity test to compare treatment differences between the individual 

outcomes included in a composite outcome. Trialists often combine a group of 

outcomes together into a single composite outcome based on the belief that all 

will share a common treatment effect. The question addressed here is how this 

assumption of homogeneity of treatment effect can be assessed in the analysis 

of a trial that uses this type of composite outcome. A class of models that can be 

used to form such a test involve the analysis of multiple outcomes per person, 

and adjust for the association due to repeated outcomes being observed on the 

same individuals. We compare heterogeneity tests from multiple models for 

binary and time-to-event composite outcomes, to determine which have the 

greatest power to detect treatment differences for the individual outcomes within 

a composite outcome. Generally both marginal and random effects models are 

shown to be reasonable choices for such tests. We show that a treatment 

heterogeneity test may be used to help design a study with a composite outcome 

and how it can help in the interpretation of trial results. 
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Introduction: The rise of composite outcomes within cardiovascular trials 

and the usefulness of heterogeneity tests 

Composite outcomes have been used to study the effectiveness of 

interventions used to treat cardiovascular disease for many years. For example, 

in 1975 the Coronary Drug Project (The Coronary Drug Project Research Group, 

1975) compared the efficacy of both Clofibrate versus placebo and Niacin versus 

placebo on the composite of any cardiovascular event including occurrence of 

any of a list of 16 fatal and non-fatal individual outcomes. In the Clinical Trials 

Dictionary, a composite outcome is defined as “an event that is considered to 

have occurred if any one of several different events or outcomes is observed.“ 

(Meinert, 1996). However, in 1990 there was a call for more extensive use of 

composite outcomes to be used as the primary outcome within cardiovascular 

trials (Califf, Harrekson-Woodlief, & Topol, 1990). Califf et al. (Califf et al., 1990) 

and then Braunwald et al. (Braunwald, Cannon, & McCabe, 1992) suggested that 

mega-trials with mortality primary outcomes, such as ISIS-2 (ISIS-2 (Second 

International Study of Infarct Survival ) Collaborative Group, 1988) and GISSI 

(Gruppo Italiano per lo Studio della Streptochinase nell'Infarcto Miocardico 

(GISSI), 1986), required sample sizes that were too large to sustain across trials 

of all potential thrombotic therapies for the treatment of myocardial infarction. 

Califf et al. (Califf et al., 1990) suggests that trials need to find a surrogate 

outcome for mortality to reduce the sample sizes needed. The authors also point 

out that some important treatment effects can been observed on non-fatal, as 
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opposed to fatal outcomes. Califf et al. (Califf et al., 1990) and Braunwald et al. 

(Braunwald et al., 1992) suggest that composite outcomes are one possible 

solution, although they have there the limitations, with Braunwald et al. 

(Braunwald et al., 1992) referring to a composite outcome as the “unsatisfactory 

outcome”. These papers, in part, lead to a rise in use of composite outcomes in 

cardiovascular randomized controlled trials. 

 There are three published overviews which document the rise in use of 

composite outcomes in cardiology between 1997 and 2008. Freemantle et al. 

(Freemantle, Calvert, Wood, Eastaugh, & Griffin, 2003) published the first 

overview of randomized trials published in nine major medical journals between 

1997 and 2001. These authors searched for randomized controlled trials where 

mortality was studied, in order to capture trials that had the potential to use 

mortality as a primary outcome. Of the 167 trials identified by their search as 

having composite outcomes, 63 (38%) were cardiovascular trials. Lim et al. (Lim, 

Brown, Helmy, Mussa, & Altman, 2008) then performed a survey of composite 

outcome used in cardiovascular trials published between 2000 and 2007 in 14 

major medical journals. During this time 1231 randomized, two-group, parallel-

design cardiovascular trials were identified and 454 (37%) had at least one 

composite outcome. These composite outcomes were the primary outcome in 

73% of the trials. The last overview of composite outcome use in trial was 

published by Cordoba in 2010 (Cordoba, Schwartz, Woloshin, Bae, & Gotzsche, 
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2010). This survey identified 40 trials published in 2008, which had a primary 

composite binary outcome. Of these 29 (73%) were cardiovascular trials. 

The use of composite outcomes has also been discussed in other fields of 

medical research. Many researchers have called for the increased use of 

composite outcome in different disease areas. It has been suggested that a more 

practical approach to studying new therapies in renal disease would involve 

composite outcomes including graft loss, death, acute rejection, renal function, 

and histological indices (Hariharan, McBride, & Cohen, 2003). The evaluation of 

antipsychotic medications in schizophrenia and Alzheimer’s disease could be 

more efficiently done using composite endpoints which combine efficacy, safety, 

cost-effectiveness, and quality of life (Davis, Koch, Davis, & LaVange, 2003). 

Tugwell et al. (Tugwell, Judd, Fries, Singh, & Wells, 2005) proposed that the 

detection of unexpected medication side effects could be improved through the 

use of composite outcomes, forming a ‘basket’ of predefined endpoints related to 

the study population but supposedly unrelated to the specific medication. 

Bergman et al. (Bergman, Feldman, & Barkun, 2006) suggest that composite 

outcomes should be used in evaluating surgical outcomes, so as to reflect the 

multidimensional nature of patient case. Ross (Ross, 2007) proposed that 

composite outcomes should be considered for use in obstetrics trials, because 

they lead to a more feasible trial sample size and faster evaluation of 

interventions. Follman et al. (Follman et al., 2007) recommend the use of 

composite endpoints including both CD4 counts and time to treatment initiation to 
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study the effectiveness of  new HIV vaccines in the new environment of 

accelerated regulatory approval processes.  

 Neaton et al. hypothesize that, “The primary rationale for considering a 

composite primary outcome instead of a single event outcome is sample size” 

(Neaton, Gray, Zuckerman, & Konstam, 2005). This is clearly the most common 

rationale given for the use of composite outcomes in trials, with the hopes that 

these outcomes will lead to earlier adoption of effective therapies (Berger, 2002; 

Bergman et al., 2006; Bjorling & Hodges, 1997; Braunwald et al., 1992; Califf et 

al., 1990; Cannon, 1997; Chi, 2005; Cordoba et al., 2010; D'Agostino Sr, 2000; 

Davis et al., 2003; DeMets & Califf, 2002; Ferreira-Gonzalez et al., 2007; Follman 

et al., 2007; Freemantle et al., 2003; Hariharan et al., 2003; Huque & Sankoh, 

1997; Kessler, 2002; Lim et al., 2008; Lubsen & Kirwan, 2002; Montori et al., 

2005; Montori, Busse, Permanyer-Miralda, Ferreira-Gonzalez, & Guyatt, 2005; 

Moye, 2003; Neaton et al., 1994; Neaton et al., 2005; Neuhauser, 2006; Ross, 

2007; Sampson, Metcalfe, Pfeffer, Solomon, & Zou, 2010; Skali, Pfeffer, Lubsen, 

& Solomon, 2006; Song, Cook, & Kosork, 2008; Tugwell et al., 2005).  However, 

this is not the only reason for their use. Diseases are often multidimensional in 

nature and the use of a composite outcome can capture this more effectively 

compared to a single outcome (Berger, 2002; Bergman et al., 2006; Cannon, 

1997; Chi, 2005; Davis et al., 2003; DeMets & Califf, 2002; Hariharan et al., 

2003; Kessler, 2002; Montori et al., 2005; Montori et al., 2005; Neuhauser, 2006).  

The composite outcome is better at representing the total disease burden in 
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patients (Cannon, 1997; DeMets & Califf, 2002; Lubsen & Kirwan, 2002). It is 

suggested that it may be wise to use a composite outcome to evaluate therapies 

for which we are uncertain which outcome will be the most important (Bergman 

et al., 2006; Freemantle et al., 2003; Neaton et al., 2005). A composite outcome 

is also one solution to the multiple testing problems faced by trialists who wish to 

evaluate the effectiveness of a therapy on multiple outcomes, without increasing 

their chance of false positive results (Freemantle et al., 2003; Huque & Sankoh, 

1997; Lubsen & Kirwan, 2002; Neuhauser, 2006). Lastly, when one outcome 

may censor or compete with the observation of another, the two outcomes may 

be combined together into a single composite outcome to avoid the effect of this 

competing risk (DeMets & Califf, 2002; Kessler, 2002; Lubsen & Kirwan, 2002; 

Neaton et al., 2005).  

 In spite of these advantages to using composite outcome in evaluating 

new medical interventions, no author has discussed their use without also 

describing their limitations (Berger, 2002; Bergman et al., 2006; Bjorling & 

Hodges, 1997; Braunwald et al., 1992; Califf et al., 1990; Cannon, 1997; Chi, 

2005; Cordoba et al., 2010; D'Agostino Sr, 2000; Davis et al., 2003; DeMets & 

Califf, 2002; Ferreira-Gonzalez et al., 2007; Follman et al., 2007; Freemantle et 

al., 2003; Hariharan et al., 2003; Huque & Sankoh, 1997; Kessler, 2002; Lim et 

al., 2008; Lubsen & Kirwan, 2002; Montori et al., 2005; Montori et al., 2005; 

Moye, 2003; Neaton et al., 1994; Neaton et al., 2005; Neuhauser, 2006; Ross, 

2007; Sampson et al., 2010; Skali et al., 2006; Song et al., 2008; Tugwell et al., 
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2005).  A composite outcome may combine together outcomes that are important 

to patients and physicians with unimportant ones (Ferreira-Gonzalez et al., 2007; 

Montori et al., 2005; Montori et al., 2005; Moye, 2003; Tugwell et al., 2005). 

Some individual outcomes included in a composite may occur very infrequently 

and other may make up the majority of the observed outcomes (Montori et al., 

2005; Montori et al., 2005; Moye, 2003). Treatment effects on individual outcome  

that occur early are more dominant within a composite outcome (Califf et al., 

1990). If a trial is sized to detect a treatment effect on a composite outcome, it 

will not have adequate statistical power to estimate the treatment effect on each 

individual outcome within the composite (Chi, 2005; D'Agostino Sr, 2000; DeMets 

& Califf, 2002; Huque & Sankoh, 1997; Kessler, 2002; Neuhauser, 2006; Ross, 

2007; Tugwell et al., 2005). Finally, the magnitude or even the direction of 

treatment effects may differ for the individual outcomes within the composite, 

making it difficult to believe that this composite outcome can reasonably 

represent the overall treatment effect (DeMets & Califf, 2002; Ferreira-Gonzalez 

et al., 2007; Freemantle et al., 2003; Montori et al., 2005; Montori et al., 2005; 

Moye, 2003; Neaton et al., 2005).  Such a composite outcome would truly be an 

“unsatisfactory outcome” (Braunwald et al., 1992). 

My dissertation discusses a possible solution to some of these problems. 

A composite outcome treatment heterogeneity test may provide some clarity in 

the use and interpretation of such outcomes. This test is based on the 

assumption that the individual outcomes within a composite outcome are 
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combined with the belief that they will share the same degree or at least direction 

of treatment effect. Such a test could allow trialists to design trials knowing what 

degree of treatment differences they could detect within their planned composite 

outcome. Based on this knowledge, they could choose to alter their design or at 

the trial’s end use this to inform their interpretation of trial results. A treatment 

heterogeneity test for composite outcomes could help in the interpretation of 

variation in treatment effect for the individual outcomes within a composite 

outcome. Without a statistical test, it is often difficult to know if observable 

variation in treatment effect for different outcome represents a notable difference 

or merely random variation. This is true for trials where the treatment estimates 

for outcomes go in opposite directions (qualitative interaction with benefit for one 

and harm for another), or even when all point estimates are in the same direction 

(quantitative interaction such as benefit for all), but show variation in the size of 

their treatment effect. Without a formal test, the acceptance of the treatment 

effect on the composite outcome as a whole becomes a matter of personal 

interpretation, rather than statistical science. A composite outcome treatment 

heterogeneity test can provide us with statistical guidance, informed by the 

amount of information collected in the trial and based on the observed treatment 

pattern on each outcome. Given any visible variation in treatment effect across 

outcomes, this test, along with clinical judgment, may help distinguish random 

variation from true differences which would suggest a trial has an un-

interpretable composite outcome.  
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 Heterogeneity tests are valued and recommended for routine use in both 

meta-analyses and subgroup analyses. For meta-analysis, a heterogeneity test 

aids in determining if all the individual trials included are evaluating the same 

treatment effect (Higgins, Thompson, Deeks, & Altman, 2008). The statistical test 

of heterogeneity in meta-analysis judges whether there is greater variation 

between trials than can be expected by chance alone (Thompson, 1994). The 

test itself sums the squared deviations of each trial’s treatment estimate from the 

overall meta-analysis estimate, weighted by trial contribution, and follows a 2 

distribution with k-1 degrees of freedom, where k is the number of trials. The 

result of this heterogeneity test is used to decide the process of data synthesis 

within a meta-analysis. It could be used to justify one of the following: the choice 

of model (fixed or random effects), deciding it is not appropriate to form a single 

summary estimate of treatment effect from these individual trials, or embarking 

on an exploration of reasons for statistical heterogeneity among the trials (Petitti, 

2001). While it is recognized that heterogeneity tests are under-powered with 

small data sets, it is universally accepted that all meta-analyses should test for 

heterogeneity and report this result in all publications (Petitti, 2001). 

In subgroup analyses, the treatment heterogeneity test is commonly 

referred to as an interaction test and it is interpreted as indicating differential 

treatment effect by subgroup (Yusuf, Wittes, Probstfield, & Tyroler, 1991). A 

subgroup is a group of trial participants characterized by a common set of 

parameters. If these parameters are measured at baseline and unaffected by 
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treatment, this has been called a “proper” subgroup (Yusuf et al., 1991). 

Subgroups are commonly used in the presentation of trial results, and are said to 

influence trial interpretation much more than they should (Assman, Pocock, 

Enos, & Kasten, 2000; Pocock, Assmann, Enos, & Kasten, 2002; Yusuf et al., 

1991). Trialists frequently do not recognize the play of chance in subgroup 

effects and interpret individual subgroup treatment p-values instead of presenting 

a proper interaction test (Assman et al., 2000; Pocock et al., 2002; Yusuf et al., 

1991).  Pocock et al. (Pocock et al., 2002) write that trialists often do not use 

interaction tests to evaluate subgroups because these tests lack statistical 

power. However, these authors argue that this is the strength of this test, and 

that  “… interaction tests recognize the limited extent of data available for 

subgroup analysis, and are the most effective statistical tool in inhibiting false or 

premature claims of subgroup findings” (Pocock et al., 2002). Proper interaction 

tests and the wise judgment of trialists are tools to evaluate possible differences 

in treatment effect between subgroups of trial participants (Assman et al., 2000; 

Pocock et al., 2002; Yusuf et al., 1991). 

Perhaps some of the benefits of using heterogeneity or interaction tests in 

subgroups and meta-analyses may hold true for the evaluations of treatment 

effects within a composite outcome. This topic is explored across different types 

of outcomes and using various statistical models. The first paper introduces the 

concept of a treatment heterogeneity test for a binary composite outcome and 

describes how power for this test may be derived. It then evaluates which 
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statistical model has the highest power to detect difference in treatment effect 

between the individual outcomes within a composite outcome. The second paper 

continues this same discussion but applies this test to a series of model to 

evaluate time-to-event data, in the presence of competing risk due to death. The 

final paper describes how to plan a trial with a multi-component (i.e. more than 

two outcomes) composite outcome and provides some advice about 

summarizing the results for a trial that does show differences in treatment effects 

within its composite outcome. 
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of a binary composite outcome in a clinical trial
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Abstract
Background: Investigators designing clinical trials often use composite outcomes to overcome many statistical issues. 
Trialists want to maximize power to show a statistically significant treatment effect and avoid inflation of Type I error 
rate due to evaluation of multiple individual clinical outcomes. However, if the treatment effect is not similar among 
the components of this composite outcome, we are left not knowing how to interpret the treatment effect on the 
composite itself. Given significant heterogeneity among these components, a composite outcome may be judged as 
being invalid or un-interpretable for estimation of the treatment effect. This paper compares the power of different 
tests to detect heterogeneity of treatment effect across components of a composite binary outcome.

Methods: Simulations were done comparing four different models commonly used to analyze correlated binary data. 
These models included: logistic regression for ignoring correlation, logistic regression weighted by the intra cluster 
correlation coefficient, population average logistic regression using generalized estimating equations (GEE), and 
random effects logistic regression.

Results: We found that the population average model based on generalized estimating equations (GEE) had the 
greatest power across most scenarios. Adequate power to detect possible composite heterogeneity or variation 
between treatment effects of individual components of a composite outcome was seen when the power for detecting 
the main study treatment effect for the composite outcome was also reasonably high.

Conclusions: It is recommended that authors report tests of composite heterogeneity for composite outcomes and 
that this accompany the publication of the statistically significant results of the main effect on the composite along 
with individual components of composite outcomes.

Background
Composite outcomes can often be difficult to interpret,
especially when the treatment effects on some of its com-
ponents individually show differences in magnitude or
even in direction. For example, in a trial of localized
intracoronary gamma-radiation therapy versus placebo
[1] the primary composite outcome of death, myocardial
infarction, or revascularization of target lesion showed an
overall benefit of gamma-radiation compared to placebo
(24.4% vs 42.1%, p = 0.02); however, myocardial infarction
individually had a non-significant effect in the opposite
direction (9.9% vs. 4.1%, p = 0.09). Many authors have
expressed concerns regarding interpretation of a treat-

ment effect for a composite outcome when it appears that
there is heterogeneity in the treatment effect across the
composite components [2-4]. How then can we best
determine the existence of important composite hetero-
geneity in treatment effect among the individual compo-
nents of a composite outcome?

A composite outcome is defined as having occurred if
one of a group of outcomes occurs. The main treatment
effect is defined as the absolute or relative difference
between treatment and control in the proportions of par-
ticipants who have at least one component of the com-
posite. The problems with interpreting composite
outcomes are well known. The treatment effect observed
on the components may go in opposite directions and
reduce the power of the trial [5,6]. The components may
not have similar importance or frequency to one another
[2-4,7]. These issues make composite outcomes difficult
to interpret in many trials.
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Despite difficulties with interpretation, trialists are
unlikely to abandon composite outcomes. Trials in car-
diovascular disease commonly use composite endpoints
as their primary outcome [8] and there are efforts in
many other areas of research to follow suit. Many authors
have expressed the need to use composite outcomes to
increase the feasibility of conducting clinical trials
research in their areas including: cardiology [9,10], HIV/
AIDS [11], organ transplantation [12], psychiatric disor-
ders [13], adverse event reporting [14], and obstetrics and
gynecology [15]. The reasons for use of composite out-
comes are well documented and include: reduced sample
size due to increased outcome rates, the ability to answer
important questions quickly, capturing the multi-dimen-
sional nature of disease, seeking a better understanding of
total disease burden, the inability to select the most
important of many outcomes, concerns with multiplicity
for testing many outcomes, and addressing competing
risks.

Various approaches have been suggested for the analy-
sis and interpretation of composite outcomes. For exam-
ple, a multivariate global test across all the components
could be used to look for simultaneous demonstrated
benefit; but readers may find it difficult to interpret such
a result [16,17]. Alternatively, if the composite shows a
statistically significant treatment effect, the component
specific tests can be performed using a closed test proce-
dure. Many authors recommend that each component of
the composite should be defined as secondary outcomes
for the trial [6]. However, it is doubtful that there would
be sufficient power to detect effects on the individual
components for the very reason that the composite out-
come was chosen (i.e. there are too few events for each
outcome). Individual tests on each component would also
inflate the overall Type I error rate for the study. Berger
[18] has suggested the use of informative preserving com-
posite endpoints and the use of omnibus test functions.
However, trialists have rarely utilized this procedure.
Finally, another method would involve analysis of the
weighted components of the composite. Although many
different weighting schemes have been suggested
[6,9,19,20], these methods are not in common use by tri-
alists [5]. Further, weighting systems can introduce their
own set of problems with interpretation, due to the per-
ceived subjectivity of the weights.

Composites may be used either under the assumption
of homogeneity of treatment effect across components or
to summarize a risk-benefit profile of an intervention. In
this manuscript we address the former use, where the
best knowledge of the disease being studied points to a
likely similarity of treatment effect on all component out-
comes, based on known physiological pathways and theo-
retical models. While the treatment effect is assumed to
be similar across each of the components in terms of

direction, it is recognized that the magnitude may differ
[2,5]. Many authors recommend reviewing suspected
treatment homogeneity through visual inspection of the
direction of relative risk estimates for individual compo-
nents of the composite in a trial [2,7]. However, it is pos-
sible to test for heterogeneity of these treatment effects
across components directly using standard methods for
correlated binary data. If significant heterogeneity is
found then the composite outcome may be invalidated or
inappropriate for use. If not, we may have more confi-
dence in the composite outcome, viewing it as meaning-
ful, interpretable to represent treatment effect as a whole,
and likely free from evidence of heterogeneity. However,
tests for heterogeneity have been shown to lack power in
meta-analyses and subgroup analyses [21]. The purpose
of this paper is to compare the power of different tests to
detect heterogeneity of treatment effect across compo-
nents of composite binary outcomes. We then explore the
usefulness of such tests for detecting composite heteroge-
neity when the power is high for the treatment compari-
son on the composite outcome as a whole.

Methods
A. Methods for analysis of correlated binary outcomes
Participants in a trial who are followed beyond their first
outcome may experience more than one component of
the composite primary outcome. For example, for a trial
with the primary outcome of myocardial infarction,
stroke or cardiovascular death, a participant may experi-
ence a stroke and then die a cardiovascular death. Thus
there is a repeated measurement of the different compo-
nent outcomes for each individual. This binary data then
has an intra cluster correlation due to repeated outcomes
on the same individuals.

All models used contain parameters that estimate the
treatment effect, the specific individual outcome compo-
nent in the composite outcome, and the interaction of
these two factors. These are presented for the jth treat-
ment group, the kth component of the composite compo-
nent outcome, and the ith participant in the trial. The test
of the interaction term will allow detection of possible
heterogeneity or difference in the study treatment effect
across the composite components.

The following models will be studied using SAS 9.1 [22]
as presented in Shoukri and Chaudhary [23]:
Model 1 Logistic regression ignoring correlation
It is possible that the intra cluster correlation seen among
outcomes in typical cardiovascular trials is too small to
make a difference to this analysis of composite homoge-
neity. We will fit a simple logistic regression to test this
hypothesis (implemented in SAS using proc logistic [22]).
The model fit will be: Logit(yijk) = β0 + β1x1 + β2x2 + β3x3 +
εijk
18
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Here yijk is a binary response representing whether an
event (i.e. one of the components of a composite out-
come) has occurred (coded 1) or not (coded 0). The fixed
factors for all participants are the intercept β0, treatment
effect β1, composite outcome component β2, and interac-
tion of treatment and outcome β3. With more than two
component outcomes to the composite, there would be
additional regression coefficients for each additional
component and an additional term for its interaction with
treatment. The error term εijk here does not take into
account the correlation of composite outcome compo-
nents within each individual. Therefore, the fitted regres-
sion coefficients are:

For example, the following matrices display the out-
comes status (Y) and independent variables (X) for the
first two participants in our simulation. Since our com-
posite outcomes has two components, the vector Y has
two rows for each participant with the first containing the
outcome status (0,1) for the first component and the sec-
ond row for the outcome on the second component. Both
of the following participants have experienced a compos-
ite outcome. Participant 1 experienced both components
of the composite outcome and participant 2 experienced
only the second component.

For this and all subsequent models, the test for hetero-
geneity will test whether β3 is significantly different from
zero at p < 0.05 level.
Model 2 Weighted logistic regression
Simple methods for the analysis of binary correlated data
have been suggested using weighted logistic regression.
Donald and Donner [24] proposed a weighting based
directly on the intra cluster correlation (ρ) calculated for
the trial overall and Rao and Scott [25] base the weights
on the variance inflation factor (υ) estimated per treat-
ment group (proc logistic [22] with weights ρ or υ). Note
that a single weight may not be appropriate with more
than two components to the composite outcome. The fit-
ted regression coefficients are:

Model 3 Population average logistic models (GEE)

Here treatment and outcome component effects are

estimated at the margin by averaging across individuals.

The generalized estimating equations (GEE) methods

will be used, which treats the correlation among individ-

uals as a nuisance factor. Correlation between outcomes

of individuals is modeled through a working correlation

matrix and adjustments for misspecification are made

using the sandwich variance formula [26]. The covari-

ance matrix will be unstructured to allow for different

variances for each composite component (proc genmod

[22]). The model is: Logit(ijk) = β0 + β1x1 + β2x2 + β3x3

where μijk = E(yijk ), the marginal expectation and the β*'s

estimate the population average response parameters.
Model 4 Random effects logistic models
This model incorporates a term for the individual in the
analysis and allows the intercept to vary across individu-
als. Individuals are considered to be randomly selected
from a population that has a normally distributed inter-
cept component [27]. The model is

Logit(E[yijk|γk]) = β0 + β1x1 + β2x2 + β3x3 + γi + ijk where
γi  is the random effect of participant with composite out-
come component clustered within individual and ijk is
the error term (proc glimmix [22]). The covariance matrix
will be unstructured, or determined by the random effect.

B. Simulation data
The purpose of this simulation was to examine the power
to detect heterogeneity among the components of a com-
posite outcome for a well-designed trial. We began with a
study design that had good power to detect a modestly
estimated main treatment effect on the odds ratio (OR).
Such a design was chosen since it is unlikely that a com-
posite outcome heterogeneity test would be performed if
the main treatment effect were not statistically signifi-
cant. The total study sample size was 2000 for a two-arm
trial with equal allocation to each treatment group, and a
50% composite outcome event rate in the control group.
This was calculated using a continuity corrected chi-
square test of equal proportion with two-sided type I
error rate of 0.05. There was 88% to detect a 25% reduc-
tion in the OR and 97% power for a 30% OR. A composite
with two components was simulated with a correlation
between the two components of ρ = 0.10 (estimated using
cardiovascular outcomes from the HOPE trial [28],
unpublished data). Simulations were run with 10,000 iter-
ations and we recorded both power for the test of treat-
ment effect on the composite outcome and for the
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heterogeneity of treatment across the composite compo-
nents for each model. We examined the power for these
tests by varying the following:

a) Degree of treatment heterogeneity of the compos-
ite components: The odds ratio of the first compo-
nent (OR1) was kept constant, while the second 
component odds ratio (OR2) was varied to simulate 
composite heterogeneity. Low heterogeneity is dem-
onstrated by both OR's showing the same direction of 
treatment effect, moderate is indicated by a neutral 
effect in one component, and large is seen where the 
OR's have opposite patterns of risk.
b) Balance of the components: Simulations included 
cases where the components occurred equally (1:1) or 
unequally. For the unequal case, the composite out-
come contained one component that occurred three 
or five times more often than the other.

Multivariate binary correlated data was generated using
the method described in Park et al. [29]. Sums of inde-
pendent Poisson random variables were generated which
share components such that the resulting sums are multi-
ple correlated Poisson variables. Indicator functions were
used to transform these variables into correlated binary
data with the desired correlational structure.

Results
As expected the power to detect heterogeneity among the
composite outcome components increased as the differ-
ence between the two component odd ratios became
larger (see Table 1 and Figure 1). The Population Average
logistic regression had the greatest power across all levels
of composite heterogeneity. The next largest power was
seen in both the independent and random effects logistic

regressions. Lastly, the weighted logistic regression dis-
played the least power for this test. It should also be
noted that the population average model had a type I
error rate of 0.053 for the case of no composite heteroge-
neity, exceeding chance level of 0.05.

When imbalance existed between the frequencies of
the two components the power to demonstrate heteroge-
neity decreased as this imbalance increased (see table 2).
This power was greater when the component displaying
moderate treatment heterogeneity was also the less fre-
quent of the two components. Note again that population
average logistic model had the greatest power, except for
the single case of 1:5 imbalances, where the component
with the larger OR was the most frequent. For this case
only, the weighted logistic regression had the greatest
power and the population average logistic regression had
the second greatest power.

Table 3 and Figure 2 show the relationship between
power for the test of treatment on the composite out-
come as a whole and power to detect treatment heteroge-
neity among it components, using the population average
model. Both the effect size of the composite outcome and
the degree of composite heterogeneity are varied to show
the relationship in power for both tests. The region in
bold for this table indicates the conditions when both
tests show greater than 50% power, over various combi-
nations of the two odd ratios for each component. This is
illustrated in Figure 2, where the region between the ver-
tical dotted lines indicates the range where both the test
of the composite outcome and the test for composite het-
erogeneity are both have 50% power or greater. When the
odds ratio for the most effective component is 0.75, this
region is the narrowest.

Table 1: Power to detect heterogeneity between the two components of a composite outcome by degree of heterogeneity 
(equal balance among components) with OR1 = 0.65

Hetero- geneity OR2
Composite 
Overall OR

Weighted DD Weighted RS Independent Random 
Effects

GEE

None 0.65 0.65 3.0 3.2 3.9 4.0 5.3

0.70 0.67 5.1 5.2 6.3 6.4 8.1

Low 0.75 0.70 13.1 13.2 15.6 15.6 17.9

0.80 0.72 26.0 26.2 29.5 29.8 33.4

Moderate 0.85 0.75 42.7 42.9 46.9 46.9 51.1

0.90 0.78 60.2 60.3 63.9 64.0 67.8

0.95 0.80 74.6 74.6 77.7 77.8 80.7

1.00 0.83 85.3 85.4 87.6 87.5 89.9

High 1.05 0.85 92.2 92.3 93.8 93.8 95.0

1.10 0.88 96.6 96.7 97.4 97.4 97.8

1.15 0.91 98.4 98.4 98.8 98.8 99.0

1.20 0.93 99.4 99.4 99.6 99.5 99.7
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Discussion
These simulations demonstrate that generally the popula-
tion average (GEE) model has the greatest power to
detect composite outcome treatment heterogeneity, of
the four methods investigated. This is further supported
by the conclusion that population average models (GEE)

are the more powerful test among possible methods for
analyzing cluster randomized trials data [30]. It should be
noted that the GEE and random effects models do not
estimate the same parameters, since GEE is a marginal
model and the random effects allows the estimation of
individual effects. For effect estimation the GEE models

Figure 1 Power for composite outcome heterogeneity by model as a function of treatment effect for the second component. Note that pow-
er curves for both weighted models completely overlap in this figure. Independent and Random Effects line also overlap to a large degree.
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Table 2: Power for detecting heterogeneity of treatment effect by varying degrees of balance among the components of 
the composite for a moderate heterogeneity pattern OR1, OR2= (0.65, 1.00) and ratio (p1:p2) of occurrence of components 
1 and 2.

Balance (p1:p2) Weighted DD Weighted RS Independent Random Effects GEE

1:1 85.3 85.8 88.1 88.2 90.0

1:3 77.0 77.1 75.4 75.4 78.7

1:5 65.0 65.0 59.4 59.4 62.8

3:1 79.1 79.1 79.5 79.9 82.3

5:1 70.3 70.3 68.2 68.6 71.1
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are known to bias model parameter estimates towards the
null, but at the same time have smaller parameter stan-
dard deviations compared to random effects models [31].
Since the focus for this application is on the test statistics
itself, rather than estimation, it seems reasonable that the
population average model would have the greatest power.
We found only one exception to this conclusion. When
there was a large imbalance between the two composite
components, where the most frequent of these had the
smaller treatment effect, the weighted regression model
had higher power, with the population average (GEE)
model being second. We should also consider the fact
that the GEE model was somewhat liberal in its type I
error rate for the case of no composite outcome heteroge-
neity.

Even small amounts of component heterogeneity, can
reduce study power to detect a treatment effect for the
composite outcome. However, we did find regions where
the power for both tests for the composite outcome and
composite heterogeneity were greater than 50%. This
indicates a range of results where tests for composite het-
erogeneity would be useful. One may only want to per-
form a test of composite outcome heterogeneity when the
main effect is statistically significant but regardless of the
statistical significance of the composite outcome, test for
composite heterogeneity may provide insight into the dif-
fering mechanisms for each component outcome. This
information could then aid in the design of future trials.
However, for the current trial, the presence of composite
heterogeneity should never lead researchers to assume
that the composite outcome as a whole would have been

statistically significant if only the mix of components
were slightly altered.

The use of models for correlated binary data to explore
composite outcome heterogeneity has some important
advantages. It can easily be implemented in common sta-
tistical software packages using currently available
repeated/recurrent outcomes methods. The methodol-
ogy suggested in this manuscript can be generalized to
other outcomes types in addition to binary, including
continuous outcomes, time to first event and time to
recurrent events. Given the ease of implementation and
application to a variety of outcome types, trialists may be
encouraged to address the issue of potential composite
heterogeneity more often and more directly in the pre-
sentation of trial results.

There are limitations to the results presented here. We
have not explored differing event rates, component corre-
lations, extreme imbalance in component ratios, and the
effects of more than two composite components. This
area will require more research and such simulations
could be a productive exercise when designing a random-
ized clinical trial. The methods presented would not be
appropriate to use when the composite components are
expected to show differing treatment directions, as in a
risk-benefit composite outcome. Lastly, failure to detect
statistically significant composite heterogeneity may be a
result of lower power, rather than true treatment homo-
geneity across the composite components. Trialists
would be wise to consider the power to detect composite
heterogeneity in the design of trials with composite out-
comes.

Table 3: Comparison of power for the main treatment effect with power for interaction test, using the population average 
model (GEE)

OR1 = 0.65 OR1 = 0.65 OR1 = 0.70 OR1 = 0.70 OR1 = 0.75 OR1 = 0.75

OR2 Treatment 
Effect

Heterogeneity 
Test

Treatment 
Effect

Heterogeneity 
Test

Treatment 
Effect

Heterogeneity 
Test

0.65 >99.9 5.3 - - - -

0.70 99.9 8.1 99.4 5.0 - -

0.75 99.6 17.9 98.2 8.3 95.7 5.5

0.80 98.2 33.4 95.7 16.7 89.8 8.3

0.85 95.5 51.1 89.5 30.5 81.5 16.0

0.90 90.7 67.8 81.6 44.1 68.7 28.6

0.95 82.2 80.7 70.4 63.5 55.5 43.7

1.00 70.7 89.9 57.8 78.8 41.5 58.9

1.05 57.7 95.0 42.9 86.3 28.2 72.4

1.10 44.6 97.8 30.2 92.8 18.9 82.4

1.15 31.3 99.0 19.6 96.8 11.3 90.5

1.20 21.5 99.7 8.1 98.3 7.2 94.8
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The methods of exploring composite outcome hetero-
geneity directly, using the tests described here, may par-
tially address the concerns raised about using composite
outcomes in many fields. When reporting trial results, it
would seem reasonable to expect to see such a test for
composite heterogeneity presented along side a statisti-
cally significant treatment effect test for the composite
outcome.

Conclusions
We compared the power of different tests to detect com-
posite heterogeneity for treatment effect across compo-
nents of a composite binary outcome. Simulations were
done comparing four different models commonly used to
analyze correlated binary data. The results of these simu-
lations are quite clear. Generally, GEE model should be

chosen for investigating possible heterogeneity among
the components of a binary composite outcome, since it
demonstrated the greatest power. This is particularly true
when the power for the test of treatment effect on the
composite outcome as a whole was also reasonably high.
It is recommended that tests of composite heterogeneity
for composite outcomes accompany the publication of
the results for statistically significant composite out-
comes along with individual components of composite
outcomes. Further simulations are still required to
explore the impact on power of differing event rates,
component correlations, extreme imbalance in compo-
nent ratios, and the effects of more than two composite
components.
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Figure 2 The power for the main effect of treatment (black line) and the power for the test of heterogeneity of the composite components 
(blue line) by degree of composite heterogeneity.
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Abstract 

There are a number of reasons why using a time-to-event composite 

outcome is a challenge to trialists. We often form a composite outcome believing 

that the treatment effect should be similar in magnitude, or at least direction, for 

all individual outcomes included (DeMets & Califf, 2002; Ferreira-Gonzalez et al., 

2007; Freemantle, Calvert, Wood, Eastaugh, & Griffin, 2003; Montori et al., 2005; 

Moye, 2003; Neaton, Gray, Zuckerman, & Konstam, 2005). Yet fatal outcomes 

may be less sensitive to treatment (Braunwald, Cannon, & McCabe, 1992; 

Cordoba, Schwartz, Woloshin, Bae, & Gotzsche, 2010; Ferreira-Gonzalez et al., 

2007; Lim, Brown, Helmy, Mussa, & Altman, 2008; Montori et al., 2005; Neaton 

et al., 2005) and will censor the observation of non-fatal events, comprising a 

competing risk that could reduce the size of the treatment effect for the 

composite outcome as a whole. Therefore, for this type of outcome it may be 
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important to detect such as effect. We explore a number of models that could be 

used to test for treatment difference between the individual outcomes in a time-

to-event outcomes with competing risk, varying the association between 

outcomes and the balance of outcomes. Through simulation we determined that 

both a marginal model and frailty model have better power to detect treatment 

heterogeneity among the outcomes within a composite outcome, although the 

frailty model overall produced the least biased estimates of interaction terms. We 

apply these models to two trial datasets to demonstrate their performance in 

trials with and without treatment heterogeneity within their time-to-event 

composite outcomes. These tests may be useful to plan and analyze trial with 

time-to-event composite outcomes, helping to distinguish random variation from 

more important treatment differences among outcomes. 
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Introduction: 

 Trialists often build composite outcomes by selecting important individual 

outcomes whose relative treatment effects are thought to be similar, at least in 

direction (DeMets & Califf, 2002; Ferreira-Gonzalez et al., 2007; Freemantle et 

al., 2003; Montori et al., 2005; Moye, 2003; Neaton et al., 2005). This type of 

composite outcome assumes treatment homogeneity is likely based on shared 

disease pathways for all outcomes and a treatment mechanism of action that 

should apply to each in varying degrees. However, analysis of time to first event 

within such a composite outcome does present multiple challenges to this 

treatment homogeneity assumption, particularly when a fatal outcome is 

included. 

In a time-to-event analysis with a composite outcome, the first outcome 

experienced by a participant defines the time of the composite outcome. Each 

type of outcome within the composite in a time-to-event analysis may have 

different risks over time or hazard rates. A hazard rate is defined as the 

conditional probability that a trial participant will experience an event within a 

defined time period, given that a person has survived event-free up until that time 

period. A time to first event composite outcome may blend together different 

hazard rates, which will be weighted more by those outcome types that tend to 

be experienced first and more commonly by participants (Califf, Harrekson-

Woodlief, & Topol, 1990). The commonly used proportional hazards model 

assumes the shape of the hazard function for treatment and control groups in a 
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trial is similar, differing over time by only a constant (Cox, 1972). Using a 

composite outcome may represent a challenge to this assumption in trials where 

treatment and control groups experience different first events and these events 

have very different treatment effects. Even if the same outcomes tend to occur 

first within a composite outcome for all treatment groups, an important difference 

in relative treatment effect on the individual outcomes within the time-to-event 

composite outcome may pose a challenge to interpretation of treatment effect. 

One can view a composite outcome as a competing risk problem, where 

observation of one outcome type prevents the observation of others. This is 

particularly true when death is included in the composite outcome. In a survey of 

composite outcomes used in cardiovascular trials, Lim et al. (Lim et al., 2008) 

found that 98% of these included death in the composite. Similarly, in a different 

survey of trials using composite outcomes that were published in 2008, Cordoba 

et al. (Cordoba et al., 2010) found 83% of trials included all cause or disease 

specific death within their composite outcomes. However, many authors have 

hypothesized that fatal outcomes may be less sensitive to treatment compared to 

non-fatal outcomes, even if these fatal outcomes are cause-specific (Braunwald 

et al., 1992; Cordoba et al., 2010; Ferreira-Gonzalez et al., 2007; Lim et al., 

2008; Montori et al., 2005; Neaton et al., 2005). Death then directly competes 

with the observation of non-fatal outcomes. In diseases where the risk of death 

does not occur early, this effect may be offset by taking time- to-first outcome, 

which emphasizes treatment effect on early outcomes over those that tend to 
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occur later (Lim et al., 2008). The inclusion of death or cause-specific death in 

the composite outcome changes the model to be one of semi-competitive risk, 

where each death prevents observation of non-fatal outcomes, but death itself 

may be observed after a non-fatal outcome during the duration of the trials. 

Typically statistical models for competing risks include an outcome of interest 

and at least one other that is a nuisance outcome, preventing observation of the 

real outcome of interest. Commonly this nuisance outcome is assumed to be 

unaffected by the treatment being studied (Faraggi & Korn, 1996). With a type of 

composite outcome that considers all components to be of interest and sensitive 

to treatment, given an a priori assumption of similar relative treatment effect. 

Methods for analyzing competing risks suggested in the past assume 

independence of hazards for the different event types and this assumption may 

be unreasonable in most clinical trials (Lagakos, 1979). In fact, all outcomes 

within this type of composite are likely to be best modeled by a gamma frailty, 

because they are all of interest and are positively correlated (Clayton, 1978; 

Hougaard, 1986). Frailty models include a dependence term for each individual 

trial participant for all time-to-multiple events, and are also known as random 

effects models. Composite outcomes that include a fatal component then prevent 

the marginal estimation of the non-fatal component due to competitive censoring 

and may require the use of more complex models (Fine, Jiang, & Chappell, 

2001). 
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Given a hypothesized lower relative treatment effect for fatal outcomes 

and their effect on censoring observation of non-fatal outcomes, the inclusion of 

death or cause-specific death presents a challenge to assessing treatment 

homogeneity across the components of a composite outcome. In this paper, we 

will study these two issues and contrast their effect on tests for composite 

outcome treatment heterogeneity in time-to-event data. It has been suggested 

that this assumption of treatment homogeneity among the outcomes within the 

composite may be examined using a heterogeneity test (Pogue, Thabane, 

Devereaux, & Yusuf, 2010). We will compare the power for such heterogeneity 

tests using the statistical models commonly used to analyze time to multiple 

outcomes per participant. We conduct a simulation study to examine these 

issues and then demonstrate the use of these models to analyses two trials, 

each with a different degree of similarity in treatment effects within a composite 

outcome composed of one fatal and one non-fatal outcome. 

 

Methods 

Data and notation: 

Assume a trial with two treatment groups of equal size (k=2), where time to a 

fatal and a non-fatal outcome (j=2) are observed for each participant (i=1,…N). 

The jth outcome type is represented by the variable “otype” (0=non-fatal and 

1=fatal). Let the ith participant be randomized to the kth treatment group 

indicated by indicator variable “treat” (0=control and 1=treatment). For the ith 
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participant in treatment group k, two follow-up times will be generated, Xi1 for the 

non-fatal outcome and Xi2 for the fatal outcome. Each is the minimum of the 

outcome time (Tij) or censoring (Cij) for each component outcome within the 

composite and Yij = I(Tij  Cij) indicates whether or not the jth outcome type was 

actually observed within the trial. 

Treatment heterogeneity test for a composite outcome: 

Most time-to-event data are analyzed using a proportional hazards model 

(Cox, 1972). This model assumes the shape of the hazard function for treatment 

and control groups in a trial is similar, differing over time by only a constant hT(t) 

= hC(t), where  is the hazard ratio and hT(t) and hC(t) are the hazard rates for 

the treatment and control groups respectively. Testing for a difference in 

treatment effect between two outcome types would involve fitting terms for 

treatment effect (1), outcome type (2) and an interaction term (3) in the 

following general proportional hazards model: 

h jk (t) = h0(t) exp(1treatk + 2otypej + 3[treat*otype]jk) 

The test of 3=0 is then the test for treatment heterogeneity of the composite 

outcome. These three parameters are assumed to be fixed effects. 

Models for multiple outcomes per participant: 

In an overview of statistical models for multiple failure time data, Wei and 

Glidden (Wei & Glidden, 1997) suggest for analysis of time to multiple distinct 

events, appropriate models to use would include: the marginal Cox model of Wei, 
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Lin, and Weissfeld (Wei, Lin, & Weissfeld, 1989), frailty models (Hougaard, 

2000), and multivariate accelerated failure time models (Lin & Wei, 1992). 

However, they suggest that this latter model may not be appropriate to handle 

competing risks. Given this we will compare the following commonly used 

models: 

1. Single Cox regression, ignoring correlation 

h jk (t) = h0(t) exp(1treatk + 2otypej + 3[treat*otype]jk) 

2. Marginal Cox model of Wei, Lin, Weissfeld (Wei et al., 1989). This 

approach estimates treatment effect averaging over the individual 

correlation, while using a sandwich estimate of the covariance matrix. 

h ijk (t) = h0(t) exp(1treatk + 2otypej + 3[treat*otype]jk) 

3. Frailty model (random effects) (Hougaard, 2000) 

h ijk (t) = h0(t) exp(1treatk + 2otypej + 3[treat*otype]jk + i) 

Our composite outcome includes a fatal outcome and a non-fatal outcome 

which are assumed to be positively correlated or associated.  The association 

between survival times Ti1 and Ti2 are commonly summarized by a global 

measure of dependence, the ranked correlation Kendal’s  (Hougaard, 2000). 

For two different outcome types (A, B), this measures the probability that a trial 

participant 1 who has outcome A before another participant 2, with also 

experience outcome B before participant 2. 
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Competing risk for the fatal outcome: 

We assume the hazard for the non-fatal component will be a latent one, only 

observed if it is not censored by the competing fatal outcome. When a participant 

has experienced a non-fatal outcome then Xi1 = Tj1 and Y i1 = I(Tj1  Ci1) = 1, 

where I() is an indicator function. For death all three times are equal, (Xi2 = Ci2 = 

Tj2 ) and Yi2 = I(Tj2  Ci2) =1. However, if Xi2 occurs prior to observation of Xi1 then 

participant follow-up is censored for observation of Xi1 and Xi1 = Tj2 and Y i1 =0. 

Note that the data generated from this model, initially has outcome time Tj and 

censoring time Cj are assumed to be independent across trial participants and 

conditionally independent given treatment group. Censoring will follow a uniform 

distribution. However, when death is used to censor both follow-up and 

observation of the non-fatal outcome a further dependency is introduced between 

the two event types. 

Simulation studies and data generation: 

The purpose of this simulation is to examine the power, relative bias and 

precision for a test of treatment heterogeneity among the components of a 

composite outcome including a fatal and non-fatal component as in a typical 

cardiovascular trial. In order to do this, realistic assumptions need to be made as 

to the nature of composite outcomes with such a trial.  

For each simulation, the data will be generated from a one-parameter 

gamma frailty for the two component outcomes. The frailty or risk of the ith 

individual is ui = exp(i). The density will be gamma with: 
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fU(u) = u 1/(-1) exp(-u / ) ,            with the expectation of U equal to 1                
                1/ (1/)                and variance . 
 
Association between outcomes is created through Kendal’s  (Hougaard, 2000) 

through the formula  =  / ( + 2). For the ith participant, the jth outcome from 

the non-fatal and fatal outcomes within the composite and the kth of two 

treatment groups, the following frailty will be assumed: 

h ijk (t) = h0(t) exp(1treatk + 2otypej + 3[treat*otype]jk + i) 

This model is a conditional one, where hazard is conditional on the individual 

participant effect, with i as the random effect for the ith participant. This model 

will be used to create different treatment hazard ratio for the two outcomes by 

altering the value of 3 to simulate heterogeneity within the composite outcome. 

The simulations will assume a trial of 5000 participants randomized 

equally to either a control or active treatment group and followed for an average 

of 2 years. The percentage of participants in the control group with a non-fatal 

and fatal outcome at 2 years of follow up are 9.5% and 4.1%, respectively. 

Assuming a negligible overlap between these two outcomes, there would be 86% 

power to detect a hazard ratio of 0.80 using a log-rank test (two-tailed with 

=0.05). 

Approximately 1,100 iterations of the simulation will be required in order to 

detect a relative bias of at least 0.01 with 90% power, assuming standard 

deviations of the regression coefficients are approximately 0.1 (Burton, Altman, 

Royston, & Holder, 2006). These simulations will be repeated 1,100 times for 
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each set of conditions, as defined below. We will study the effect on power, 

relative bias, and average standard errors of the estimated treatment 

heterogeneity by varying the following: 

a) Treatment Heterogeneity between outcomes: concordant vs. 

discordant treatment effects between the components using 

component hazard ratios for each of the components of homogeneous 

hazard ratios (HR) (both HR=0.70), mild heterogeneity in HRs (HR for 

fatal component varying from 0.75 to 1.00), and heterogeneous HRs 

(HR for fatal component varying from 1.05 to 1.25) 

b) Effect of correlation or association among the event times for each 

component of the composite outcome is measured by Kendall’s . It is 

reasonable to assume that the degree of association between the fatal 

and non-fatal outcome will influence the performance of tests. We 

wanted the association values chosen to be similar to actual clinical 

trials data sets, so we estimated them from two trials From the HOPE 

trial (The Heart Outcomes Prevention Evaluation (HOPE) Study 

Investigators, 2000a; The Heart Outcomes Prevention Evaluation 

(HOPE) Study Investigators, 2000b), the association of non-fatal MI 

and cardiovascular death is estimated to be approximately =0.65 

(unpublished data). From the POISE-1 trial (Devereaux et al., 2008) 

there is a moderate but lower association of these two outcomes with 

an estimated =0.45 (unpublished data). Given this we shall use values 
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of = (0.45, 0.65, 0.85,) to model a range of moderate to high 

association patterns. 

c) Balance of the components: The ratio of non-fatal to fatal outcomes 

occurring within the control group is varied from equal, 2.4 times and 

4.8 times (ratio of fatal to non-fatal outcomes= 1:1, 1:2.4, 1:4.8). This 

manipulation is done while maintaining the control event rate at a 

constant level, so that all models will have the same power for the time 

to first composite outcome analysis. 

All simulations were performed in R for unix version 2.11.1 (R Development Core 

Team, 2008). 

 

Results 

Simulations: 

The power to detect composite outcome treatment heterogeneity 

increased as the treatment effect between the two outcomes differed. Power was 

smallest for the single Cox regression, ignoring correlation due to multiple 

outcomes for each individual as shown in table 1. This power was largest for the 

frailty model, with power for the marginal model falling in between the other two 

models. Marginal and frailty models showed relatively similar power, with the 

power curves largely overlapping in the top middle plot of figure 1. This pattern 

was observed across all degrees of treatment heterogeneity, as the hazard ratio 
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for treatment effect on the fatal outcome became increasingly different from the 

hazard ratio for the non-fatal outcome. 

For the most part, both the Cox regression and marginal models showed a 

systematic underestimate of the interaction test for treatment differences by fatal 

or non-fatal outcome type (see table 1 relative bias columns). This negative bias 

increased monotonically as the treatment heterogeneity increased in size. For 

the frailty model, the bias was much smaller with positive bias as the fatal 

outcome treatment effect approached a hazard ratio of 1.0 and negative bias for 

values of the hazard ratio greater than one (see figure 1 middle plot). However, 

there one exception to the pattern in the case when no heterogeneity existed 

(HR=0.70 for the fatal outcome). Here the frailty model showed the greater 

relative bias, compared to the other two models. 

The marginal models had the smallest parameter standard errors of the 

three models, with the other two having similar precision (see table 1). The 

marginal model also had relatively constant average standard error estimates 

over all values of treatment heterogeneity between the two outcomes.  

Figure 1 shows the effect of changing the degree of association between 

the fatal and non-fatal outcomes on power, bias, and standard error estimates for 

the three models. The power to detect treatment heterogeneity between the fatal 

and non-fatal outcomes was greatest for all models when the two outcomes had 

the lowest degree of association (=0.45). For all models the power fell as the 

two outcomes became more associated with one another (see figure 1). Over all 
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three degrees of outcome association (=0.45, 0.65, 0.85), the marginal models 

and frailty models had similar power, but the difference between these two and 

the single Cox regression model increased with increasing outcome association. 

Figure 2 shows how the relative bias of the single Cox regression and marginal 

models increased with increasing outcome association. The marginal model’s 

standard errors were lowest for the largest degree of outcome association, where 

as that of the other two models remain relatively unchanged as outcome 

association increased (figure 1). 

Figure 2 shows the effect of changing the balance between the fatal to 

non-fatal outcomes on power, bias, and standard error estimates for the three 

models. For the marginal and frailty models, power to detect a difference in 

treatment between the fatal and non-fatal outcome was lowest when there was 

an equal ratio of the two outcome types (i.e. non-fatal to fatal ratio =1:1), and 

increased at this ratio became more imbalanced. The bias was also increased for 

the single Cox regression and marginal models when there was an equal ratio of 

the two outcome types (figure 2). There was little influence of outcome ratio on 

standard errors for these models. 

Application to two cardiovascular trials: 

We applied these models to the data from two trials: one whose outcomes 

showed a concordance of treatment effects and another where this was not 

found. We tested for treatment heterogeneity between the composite of non-fatal 

myocardial infarction and cardiovascular death for the HOPE (The Heart 
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Outcomes Prevention Evaluation (HOPE) Study Investigators, 2000a) and 

POISE (Devereaux et al., 2008) trials. The HOPE trial (The Heart Outcomes 

Prevention Evaluation (HOPE) Study Investigators, 2000a; The Heart Outcomes 

Prevention Evaluation (HOPE) Study Investigators, 2000b) had a factorial design 

comparing the effects of an ace-inhibitor and vitamin E verses their matching 

placebos on the primary outcome of time to first occurrence of non-fatal 

myocardial infarction, non-fatal stroke, and cardiovascular death at 4.5 years of 

follow-up in patients at high risk for cardiovascular disease. For this trial the 

effect of the ace-inhibitor only is presented. The POISE-1 Trial (Devereaux et al., 

2008) examined the effect of peri-operative beta-blocker versus placebo in 

participants at risk of cardiovascular events who were undergoing non-cardiac 

surgery, and its primary composite outcome was time to first occurrence of non-

fatal myocardial infarction, non-fatal cardiac arrest, or cardiovascular death within 

30 days from randomization. Figure 3 shows the individual hazard ratio estimates 

and 95% confidence intervals for time to first non-fatal myocardial infarction or 

cardiovascular death, and their composite. Marginal model and frailty model tests 

for treatment heterogeneity within these composite outcomes show a possible 

heterogeneity for the composite of non-fatal myocardial infarction and 

cardiovascular death for POISE (Devereaux et al., 2008) that was not found in 

HOPE (The Heart Outcomes Prevention Evaluation (HOPE) Study Investigators, 

2000a). These heterogeneity tests appear to confirm the patterns we see in the 

individual outcome time to first event treatment estimates for both trials. These 
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empirical results (see table 2) also confirm the results of our simulation. For  

POISE (Devereaux et al., 2008), where there was a lack of similarity in treatment 

between the two outcomes, the frailty model has the smallest p-value for the test 

of treatment heterogeneity for the composite outcome, followed by the marginal 

model and then the largest p-value for unadjusted Cox proportional hazards 

model. For both trials, the marginal model has the smallest standard errors for 

this test.  

 

Discussion 

Others have demonstrated how the use of composite outcomes can 

reduce the power of a trial, when one or more of the individual outcomes do not 

show a benefit of treatment (Freemantle et al., 2003; Pogue et al., 2010; 

Sampson, Metcalfe, Pfeffer, Solomon, & Zou, 2010; Skali, Pfeffer, Lubsen, & 

Solomon, 2006). The simulation presented here shows how the power to detect 

differences in the treatment effect between two individual outcomes also is 

reduced through the competitive censoring effect of a fatal outcome. This 

reduction in power to detect composite outcome heterogeneity is largest when 

that fatal outcome occurs equally as often as the non-fatal, providing a larger 

censoring effect. Power for this test is also lower when the association of the fatal 

with non-fatal outcomes is higher. If fatal outcomes are less sensitive to 

treatment, compared to non-fatal outcomes, testing for treatment heterogeneity 

within a composite outcome may reveal important challenges to our use of these 



Ph.D. Thesis – J. Pogue; McMaster University 
Health Research Methodology, Biostatistics Specialization 

41 
 

outcomes. These simulations showed that the frailty model had the highest 

power to detect treatment heterogeneity for a composite outcome with a fatal and 

non-fatal component and displayed the least relative bias in estimating this 

interaction term. This result is not surprising, since this model most closely 

resembled the simulated data structure. What is interesting is that the marginal 

model may also be an appropriate choice for detecting composite outcome 

treatment heterogeneity. Although the marginal model produces estimates of the 

interaction term that are biased, it’s average standard errors are smaller, and 

power to detect heterogeneity is very similar to the frailty model. For testing 

treatment heterogeneity for a binary composite outcome, Pogue et al. (Pogue et 

al., 2010) also found the marginal model had reasonable power, even greater 

than that of the mixed model. For time-to-event composite outcomes, the choice 

between the marginal and frailty model is less clear, and so other factors 

including interpretation of these models may guide this choice (Lindsey & 

Lambert, 1998; Neuhaus, Kalbfleisch, & Hauck, 1991; Wei & Glidden, 1997). 

Certainly, if it is the goal of researchers to estimate the size of the interaction, not 

just test for its existence, then the frailty model would be the better choice. 

These simulations found that the worst choice was the single Cox 

regression. Ignoring the association between time-to-event outcomes produced 

the lowest power to detect heterogeneity, highest relative bias, and highest 

average standard errors. 
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The two cardiovascular trial examples confirmed these results showing the 

ability to detect treatment heterogeneity within a composite outcome for all 

models, with the frailty model showing the smallest p-value. Certainly for the 

POISE trial (Devereaux et al., 2008), the test for treatment heterogeneity on the 

composite of non-fatal myocardial infarction and cardiovascular death aids in our 

interpretation of this composite. Most trials have low power to investigate 

treatment differences for individual outcomes represented in the primary 

composite outcome. Short of conducting a meta-analysis of these individual 

outcomes across trials, a treatment heterogeneity test can provide one more 

source of information to consider in interpretation of trial results. Heterogeneity 

tests have their limitations (Hardy & Thompson, 1998; Higgins, Thompson, 

Deeks, & Altman, 2008; Paul & Donner, 1992), but can be useful in subgroup 

analyses within trials and meta-analyses across trials. Generally, they prevent 

over-interpretation of random variation and prevent us from combining data that 

perhaps should not be combined (Pocock, Assmann, Enos, & Kasten, 2002; 

Thompson, 1994; Yusuf, Wittes, Probstfield, & Tyroler, 1991). Similar benefit 

may be derived in their use in examining composite outcomes. 

There are limitations to the simulations presented in this paper. The 

composite outcome used contained only two outcomes, one fatal and one non-

fatal. Two  systematic reviews of studies with composite outcomes have found a 

median of three individual outcomes within these composite (Cordoba et al., 

2010; Lim et al., 2008). Tests for composite outcome treatment heterogeneity 
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need to be explored for more complex composite outcomes, including a larger 

number of individual time-to-event outcomes, with differing degrees of 

association between them.  

If those planning a trial decide to use a composite time-to-event outcome, 

it may be wise to consider how differences in treatment effect among the 

individual outcomes may affect trial results. Given the large amounts of time and 

resources that go into conducting any randomized controlled trial, trialists may at 

least want to model what degree of treatment heterogeneity could be detected 

with reasonable power, given their planned trial design. This calculation may 

require simulating correlated time-to-event data for a composite outcome made 

up of multiple outcomes, with differing degrees of association between the 

various times to events. A model with a single gamma frailty, assuming a 

common association between all outcomes, would be inappropriate to model 

these composite outcomes. The likely solution to simulating more complex 

correlated failure time data would involve assuming the marginal Cox model of 

Wei, Lin, Weissfeld (Wei et al., 1989), using the approximate multivariate 

normality property of the model regression coefficients, and obtaining reasonable 

estimates of the variance-covariance between these coefficients. For this type of 

calculation, estimates from prior published trials in similar participant populations 

are required.  

Part of planning a study with a composite outcome should be 

consideration of possible treatment heterogeneity within that outcome. At the 
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analysis stage, an exploration of treatment heterogeneity between individual 

time-to-event outcomes is possible, seeking to distinguish random variation from 

more important treatment differences between outcomes. Further research into 

these tests and models is needed. A treatment heterogeneity test for composite 

outcomes may be useful for planning, analysis, and reporting in some trials. 

Future use and research into these tests will determine the benefit of their use in 

clinical trials with composite outcomes. 
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Table 1: Detecting composite treatment heterogeneity: Power, Bias, and Precision 
Ratio of fatal to non-fatal outcomes=1:2.4, = 0.65, h0(t)=0.05, 1= -0.36, 2=-0.87 

Fatal 
Treatment 

HR for 
treatment 
vs. control 

Power Relative Bias Standard Errors 

Cox PH 
model 

Margin
al 

model 
Frailty 
model 

Cox PH 
model 

Marginal 
model 

Frailty 
model 

Cox PH 
model 

Marginal 
model 

Frailty 
model 

0.70  1.4   3.0 4.0 0.01567 0.01567 0.033715 1.14034 1.11365 1.14397 
0.75        3.6 8.4 10.2 -0.00157 -0.00157 0.026715 1.14036 1.11413 1.14387 
0.80 9.7 18.9 19.8 -0.02225 -0.02225 0.013582 1.14019 1.11435 1.14360 
0.85 18.6 33.3 35.6 -0.03229 -0.03229 0.014868 1.13994 1.11443 1.14326 
0.90 31.6 47.4 50.5 -0.04763 -0.04763 0.005226 1.14015 1.11504 1.14338 
0.95 44.8 63.3 64.6 -0.05649 -0.05649 0.004376 1.14022 1.11550 1.14334 
1.00 60.7 74.5 75.8 -0.06729 -0.06729 0.000615 1.14013 1.11573 1.14318 
1.05 73.9 85.0 86.3 -0.07793 -0.07793 -0.006629 1.14039 1.11636 1.14335 
1.10 84.1 90.9 91.6 -0.08873 -0.08873 -0.013183 1.14029 1.11654 1.14320 
1.15 89.8 95.3 95.4 -0.09726 -0.09726 -0.016791 1.14049 1.11712 1.14332 
1.20 93.4 97.0 96.8 -0.10495 -0.10495 -0.021540 1.14060 1.11747 1.14337 
1.25 97.8 99.1 99.2 -0.11114 -0.11114 -0.021400 1.14056 1.11759 1.14330 
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Figure 1: Power, Bias, and Stand Errors for three models by association between outcomes (= 0.45, 0.65, 0.85), 
assuming ratio of fatal to non-fatal outcomes=1:2.4, h0(t)=0.05, 1= -0.36, 2=-0.87 
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 Figure 2: Power, Bias, and Stand Errors for three models by balance between outcomes (ratio of fatal to non-fatal 
outcomes occurring within the control group is varied from 1:1, 1:2.4, and 1:4.8.), assuming = 0.65, h0(t)=0.05, 1= 
-0.36 
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Figure 3: Test for treatment heterogeneity between non-fatal myocardial infarction and cardiovascular death in the 
HOPE (The Heart Outcomes Prevention Evaluation (HOPE) Study Investigators, 2000a) and POISE (Devereaux et 
al., 2008) trials. 
 
 



Ph.D. Thesis – J. Pogue; McMaster University 
Health Research Methodology, Biostatistics Specialization 

49 
 

Table 2: Test for treatment heterogeneity between non-fatal myocardial infarction and cardiovascular death in the 
HOPE (The Heart Outcomes Prevention Evaluation (HOPE) Study Investigators, 2000a) and POISE (Devereaux et 
al., 2008) trials. 
 

Model 
HOPE POISE 

Heterogeneity
Test p-value 

SE 
Heterogeneity
Test p-value 

SE 

Cox proportional  
Hazards model 

0.66 0.111 0.0044 0.201

Marginal model 0.64 0.104 0.0024 0.189
Frailty model 0.78 0.111 0.0012 0.203
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Abstract 

When the individual outcomes within a composite outcome appear to have 

different treatment effects, either in magnitude or direction, researchers may 

question the validity or appropriateness of using this composite outcome as a 

basis for measuring overall treatment effect in a randomized controlled trial 

(Ferreira-Gonzalez et al., 2007; Montori et al., 2005; Montori, Busse, Permanyer-

Miralda, Ferreira-Gonzalez, & Guyatt, 2005). The question remains as to how to 

distinguish random variation in estimated treatment effects from important 

heterogeneity within a composite outcome. This paper suggests there may be 

some utility in directly testing the assumption of homogeneity of treatment effect 

across the individual outcomes within a composite outcome. We describe a 

treatment heterogeneity test for composite outcomes based on a class of models 

used for the analysis of correlated data arising from the measurement of multiple 



Ph.D. Thesis – J. Pogue; McMaster University 
Health Research Methodology, Biostatistics Specialization 

 

57 
 

outcomes for the same individuals. Such a test may be useful in planning a trial 

with a primary composite outcome and at trial end with final analysis and 

presentation. We demonstrate how to determine the statistical power to detect 

composite outcome treatment heterogeneity using the POISE Trial (Devereaux et 

al., 2008) data. Then we describe how this test may be incorporated into a 

presentation of trial results with composite outcomes. We conclude that it may be 

informative for trialists to assess the consistency of treatment effects across the 

individual outcomes within a composite outcome using a formalized methodology 

and the suggested test represents one option. 
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Introduction 

Many concerns exist over the use and interpretation of composite 

outcomes in randomized controlled trials (RCTs) (Ferreira-Gonzalez et al., 2007; 

Montori et al., 2005; Montori et al., 2005).  Composite outcomes combine two or 

more individual outcomes together into a single endpoint, whereby if a patient 

experiences any of these individual outcomes, they are classified as having 

experienced a single composite outcome. However, a composite outcome may 

combine together individual outcomes that are more important to patients with 

those that are substantially less important to them (Ferreira-Gonzalez et al., 

2007; Montori et al., 2005; Montori et al., 2005; Moye, 2003; Tugwell, Judd, 

Fries, Singh, & Wells, 2005). These individual outcomes may occur at very 

different frequencies, and some components may occur in very few patients 

(Montori et al., 2005; Montori et al., 2005; Moye, 2003). When a composite 

outcome is used, there remains a need to estimate the treatment effect on its 

component outcomes individually; however, statistical power for these 

comparisons is usually limited (Chi, 2005; D'Agostino Sr, 2000; DeMets & Califf, 

2002; Huque & Sankoh, 1997; Kessler, 2002; Neuhauser, 2006; Ross, 2007; 

Tugwell et al., 2005). Trialists generally would also like to know whether there are 

important differences in treatment effects between these individual outcomes, 

such that it would not make sense to combine them. Unfortunately separate tests 

of treatment effect for each outcome within the composite will not provide such 

between outcome comparisons. Many authors have expressed concern that the 
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magnitude or even direction of treatment effects may differ for individual 

outcomes within the composite (DeMets & Califf, 2002; Ferreira-Gonzalez et al., 

2007; Freemantle, Calvert, Wood, Eastaugh, & Griffin, 2003; Montori et al., 2005; 

Montori et al., 2005; Moye, 2003; Neaton, Gray, Zuckerman, & Konstam, 2005). 

Given noticeable variation in treatment effects for the individual outcomes, it can 

become difficult to interpret the meaning of the treatment effect observed on this 

composite outcome as a whole. There may be uncertainty as to whether these 

apparent differences are due to random variation or represent important 

heterogeneity. 

In spite of these well-known limitations, many authors have put forward 

important arguments for the use of composite outcomes in RCTs. Their use can 

lead to a reduced sample size for trials or shortened follow-up times to evaluate 

therapies, leading to earlier knowledge of treatment effects for serious life-

threatening diseases (Bergman, Feldman, & Barkun, 2006; Bjorling & Hodges, 

1997; Braunwald, Cannon, & McCabe, 1992; Califf, Harrekson-Woodlief, & 

Topol, 1990; Cannon, 1997; Chi, 2005; DeMets & Califf, 2002; Follman et al., 

2007; Freemantle et al., 2003; Hariharan, McBride, & Cohen, 2003; Kessler, 

2002; Lubsen & Kirwan, 2002; Montori et al., 2005; Montori et al., 2005; Neaton 

et al., 1994; Neaton et al., 2005; Ross, 2007). Further, the associated increase in 

power may also lead to greater precision in estimating the treatment effect. The 

diseases and treatments under evaluation frequently have multiple dimensions 

and composite outcomes allow us to reflect this in trial outcomes (Berger, 2002; 
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Bergman et al., 2006; Cannon, 1997; Chi, 2005; Davis, Koch, Davis, & LaVange, 

2003; DeMets & Califf, 2002; Hariharan et al., 2003; Kessler, 2002; Montori et al., 

2005; Montori et al., 2005; Neuhauser, 2006). We can combine different events 

in a composite to build an outcome that better represents the total burden of a 

disease, compared to a single event (Cannon, 1997; DeMets & Califf, 2002; 

Lubsen & Kirwan, 2002). Some researchers use composite outcomes when they 

are uncertain as to which outcomes are the most important on which to evaluate 

a treatment (Bergman et al., 2006; Freemantle et al., 2003; Neaton et al., 2005). 

When there are competing risks (e.g. death) that may prevent observation of the 

outcome of interest, one solution is to form a composite outcome that combines 

the competing risk with the outcome of interest, even when there is no 

expectation of treatment effect on the competing outcome (DeMets & Califf, 

2002; Kessler, 2002; Lubsen & Kirwan, 2002; Neaton et al., 2005). Lastly, 

composite outcomes are a measure taken to avoid the increasing chance of one 

or more false positive results by having a single statistical test, rather than 

individual tests for each component outcome (Freemantle et al., 2003; Huque & 

Sankoh, 1997; Lubsen & Kirwan, 2002; Neuhauser, 2006).  

Some may view the disadvantages of composite outcomes as outweighing 

their advantages. Our perspective is that although the disadvantages are real, 

composite outcomes will remain a reality for most RCTs. In fact, most outcomes 

that appear as single outcomes are composites of heterogeneous events. For 

example, the single primary outcome of stroke will usually be a composite of 
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major and minor strokes or different types of stroke (e.g. intra-cerebral bleed, 

cerebral infarction, etc.) that occur at different frequencies and that may differ in 

their prognostic importance to patients. Even total mortality is a composite of 

different types of deaths, each of which may vary in response to a treatment. 

Despite the limitations of composite endpoints, the beneficial aspects related to 

sample size, cost, and clinical relevance make a persuasive argument for the 

continued use of composite outcomes in future trials. Therefore there is a need 

for guidance on how to determine when a composite outcome may not be 

appropriate to use and interpret for an individual RCT. 

We require a new way of approaching the analysis of composite outcomes 

that mirrors our assumptions in forming a valid outcome and can aid in our 

interpretation of trial results. Trialists often form a composite outcome based on 

the belief that there will be homogeneity of treatment effect (at least in direction) 

across the individual components of this composite (DeMets & Califf, 2002; 

Ferreira-Gonzalez et al., 2007; Freemantle et al., 2003; Montori et al., 2005; 

Montori et al., 2005; Moye, 2003; Neaton et al., 2005). If this treatment 

homogeneity assumption is correct, then other issues with composite outcomes 

may become less troublesome. We suggest that testing the appropriateness of 

this assumption using a heterogeneity test for the treatment effect among the 

components of the composite outcome may partially address the concerns 

previously identified (Pogue, Thabane, Devereaux, & Yusuf, 2010). Researchers 

could use this test to address the appropriateness of their initial assumption of 
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homogeneity and inform the optimal analysis for the trial data. In performing a 

subgroup analysis or a meta-analysis it is standard to use a statistical test 

examining for the assumption of homogeneity of treatment effect across 

subgroups (Assman, Pocock, Enos, & Kasten, 2000) or trials (Petitti, 2001). For 

these analyses, heterogeneity tests combined with clinical judgment help 

determine when combining data may or may not make sense. The purpose of 

this paper is to illustrate the use of formal statistical methods to assess treatment 

heterogeneity in both the design and analysis of a trial that uses a composite 

outcome. 

Sometimes composite outcomes are formed to quantify risk-benefit or 

capture competing risks. In these cases, there is no expectation that the 

treatment will have the same effect on each outcome within the composite. In 

fact, often it is expected that a new therapy may have greater efficacy and 

greater harm, than a standard one. In such a case, there is no assumption of 

homogeneity of treatment effects across the composite components and the 

methods proposed in this article would not be appropriate. Where homogeneity 

of treatment effect is assumed in forming the composite outcome, it may be wise 

to explore this assumption. 

To illustrate this methodology we use the composite outcome from the 

POISE Trial (Devereaux et al., 2008) as an example.  Given our a priori 

assumption that all components of this composite outcome would share the 

same direction and approximate magnitude of treatment effect, we present a 
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statistical analysis to address the possible contradiction of this assumption in the 

design and analysis stages.  

Methods 

The POISE trial (Devereaux et al., 2008) examined the effect of peri-

operative beta-blocker versus placebo in participants at risk of cardiovascular 

events who were undergoing non-cardiac surgery. 8351 participants were 

randomized from 190 centers in 23 countries. The primary composite outcome 

was time to first occurrence of non-fatal myocardial infarction, non-fatal cardiac 

arrest, or cardiovascular death within 30 days from randomization. The primary 

analysis used a Cox regression for the treatment comparison of time to first 

composite outcome. Results, published previously (Devereaux et al., 2008), 

visually display a lack of homogeneity of treatment effect across the components 

of the composite outcome (see figure 1).  

We would like to fit the following general model: 

f(Yijk) =  + j  + k  + ()jk  + * 

For the ith patient, all outcome types included in the composite outcome are 

analyzed in a single regression. A function (f) of the outcome for each component 

of the composite Yijk, is estimated from the following terms: j represents the 

treatment effect for j treatment groups, k  is the effect of each individual outcome 

of the composite outcome for k individual outcome components, ()jk is the 

interaction of treatment and individual outcomes, intercept , and * is an error 



Ph.D. Thesis – J. Pogue; McMaster University 
Health Research Methodology, Biostatistics Specialization 

 

64 
 

term whose structure will depend on the exact model used. The test of whether 

the interaction term ()jk is different from zero is the test of homogeneity of 

treatment effect across the individual components of the composite outcome. 

A trial where multiple outcomes are evaluated for the same participants 

can be viewed as a repeated measures design. These models include terms to 

account for the non-independence of these data due to an association or 

correlation of the multiple outcomes (i.e. components of a composite outcome) 

within a participant. Regardless of the outcome type (binary, continuous, or time 

to event) there are generally two statistical models used for this type of analysis: 

random effects and marginal models. For random effects, also known as mixed 

models, a term for individual variation is incorporated in the model, usually to 

allow the slope of the regression to vary across participants. Individuals are 

considered to be randomly selected from a population with an intercept assumed 

to follow a known distribution (McCullagh & Nelder, 1989). For the current case 

this model would include a random intercept term i assumed to vary for each 

patient from a common statistical distribution and an error term εijk: 

f(Yijk) =  + j  + k  + ()jk  + i +εijk
 

For the marginal or population-averaged model, the association of multiple 

outcomes within an individual is treated as a nuisance factor and treatment 

effects are then estimated by averaging over the variability due to the individual, 

or are obtained at the margin (Liang & Zeger, 1986). Thus, the expectation of Yijk 

is modeled as follows:  
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f[E(Yijk)] = * + j*  + k*  + ()jk*  +εijk*
 

The coefficients from these two models have different interpretations. The 

marginal model, the * indicates that the coefficients are averaged effects, while 

the random effects model produces effects specific to the individuals in the 

analysis. 

For the case of a binary composite outcome, f() would be the logit function 

for a logistic regression. It has been demonstrated that the marginal logistic 

regression model using generalized estimating equations [GEE] (Liang & Zeger, 

1986) had the greatest power to detect composite treatment heterogeneity 

(Pogue et al., 2010), compared to the random effects model (McCullagh & 

Nelder, 1989), and the weighted logistic regression model, weighted by either the 

intra-class correlation coefficient (Donald & Donner, 1987) or equivalently the 

variance inflation factor (Rao & Scott, 1992). For time to event data, either the 

random effects frailty models (Duchateau & Janssen, 2008) or marginal models 

such as that proposed by Wei, Lin and Weissfeld (Wei, Lin, & Weissfeld, 1989; 

Wei & Glidden, 1997) may be used to analyze multiple event time data. Both 

frailty models and marginal models have been shown to be useful in detecting 

treatment heterogeneity between the individual outcomes within a composite 

outcome (Pogue, Thabane, Xie, Devereaux, & Yusuf, 2011). 

Using such a model for repeated or correlated outcome data, we can 

calculate the power to detect possible heterogeneity of treatment effect across 

the individual outcomes of the composite outcome at the design stage of a trial. 
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For example, for a time to event composite outcome, we begin with estimated 

associations between outcome survival times, and then simulate correlated 

outcome data in order to calculate our chances of detecting a different treatment 

effect for one individual outcome within the composite outcome. Estimates of the 

association in survival times for individual outcomes may be taken from existing 

trials or databases of similar trial participants. Simple correlated time-to-event 

data may be simulated by creating a Cox proportional hazards model (Cox, 

1972) that contains a random frailty term sampled from a assumed distribution 

(e.g. gamma) to represent the association between two survival times within an 

individual (Duchateau & Janssen, 2008). However, for greater than two 

outcomes with different associations between them, simulation of multivariate 

survival data is best done through the marginal model. Lin and Wei (Lin & Wei, 

1992; Wei et al., 1989; Wei & Glidden, 1997) in developing a marginal model for 

multivariate time-to-event data, assumed the regression coefficients followed an 

approximately multivariate normal distribution and then derived a “working” 

correlation matrix to adjust the covariance matrix estimates for correlated data. 

The results are known as a “sandwich” estimator or “robust” covariance matrix. 

Using an estimated robust covariance matrix from a prior dataset and assuming 

normality of the regression parameters, one can sample from this multivariate 

normal distribution and insert these within the Cox proportional hazards model 

(Cox, 1972)  to generate random multivariate time-to-event data, provided that 

the estimated covariance matrix is positive-semi definite.   
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Suppose we were to design a two-group trial in a similar population to the 

POISE trial (Devereaux et al., 2008) with the same composite outcome of first 

occurrence of non-fatal myocardial infarction, non-fatal cardiac arrest, or 

cardiovascular death within 30 days from randomization. Assume that during the 

study, myocardial infarction (MI), cardiac arrest, and cardiovascular death will be 

experienced by 6%, 0.5%, and 1.5% of the control group participants, 

respectively. A further 1% of individual will die of a non-cardiovascular cause. 

From POISE (Devereaux et al., 2008) data, we could fit a marginal model to 

obtain an estimate of the covariance matrix, adjusted for multiple outcomes per 

participant. For the ith person, kth outcome type, and jth treatment group, this 

model would include time to event for each of the three outcomes per person (T1i, 

T2i, T3i) and three classification variables (Y1i, Y2i, Y3i), indicating whether each Tik 

represents an occurrence of the respective event or a censoring time due to end 

of follow-up.  Covariates in this regression would include treatment group [Gj=0 

(control) or 1 (active)] and variables that compare the different outcomes to one 

another [O1=0(MI) or 1(cardiovascular death), O2=0(MI) or 1(cardiac arrest)]. The 

following proportional hazards model would be fit: 

h ijk (t) = h0(t) exp(Gj + 1O1 + 2O2 + (1) GjO1 + (2) GjO2) 

In this model, h0(t) represent the risk or hazard of having an MI in the 

control group. The estimate of  represents the treatment effect on the MI 

outcome, while 1 and 2 represent the difference in risk or hazard between 

cardiovascular death and MI, and cardiac arrest and MI, respectively. The 
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interaction term 1 estimates the difference in treatment effect between 

cardiovascular death and MI, and lastly, the interaction term 2 compares the 

difference in treatment effect between cardiac arrest and MI. A treatment 

heterogeneity test for the composite outcome would indicate whether there are 

any significant differences between the three individual outcomes in their 

treatment effect (1=2 =0). 

Given a robust estimated covariance matrix  and estimates of h0(t), 1, 2 

from POISE, we can assume a common treatment effect or hazard ratio () for all 

three outcomes, so that set =ln(), 1=0, and 2=0. We can then vary the 

effect on a single interaction term (e.g. 1>0) to see what degree of 

heterogeneity we may have reasonable power to detect in our future trial. Given 

these estimates, we assumed that , 1, 2, (1), and (2) were multivariate 

normal with estimated robust covariance  and drew random samples of size 

8,200 (4100 active and 4100 control participants) from this multivariate 

distribution to represent replicates of our new trial. Assuming a baseline hazard 

h0(t) constant which followed an exponential distribution, we used these 

randomly sampled coefficients in the above Cox regression to generate survival 

times (T1i, T2i, T3i) and classification variables (Y1i, Y2i, Y3i) for each simulated 

participant. Censoring due to non-cardiovascular death was also assumed to 

follow an exponential distribution. Power was assessed as the number of 

simulations where a significant treatment heterogeneity test was found, divided 
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by the total number of simulations. For the first series of simulations, the 

treatment effect for MI and cardiac arrest were kept constant at a hazard ratio of 

0.70 while varying the treatment hazard ratio on cardiovascular death from 0.70 

to 2.0. Clear treatment homogeneity within the composite outcome occurs when 

all outcomes have the same hazard ratio, and heterogeneity is observed to 

greater degrees as the hazard ratio of one outcome increases. Each of multiple 

simulated datasets were then be analyzed to determine the chance of detecting 

statistically significant composite treatment heterogeneity or power, for a given 

single heterogeneous component. This process was repeated holding the 

treatment effect for cardiovascular death and MI the same, and varying this for 

cardiac arrest. Lastly, the treatment effect for cardiovascular death and cardiac 

arrest were kept constant while the treatment effect for MI was varied. 

Data were simulated and analyzed in R for Unix version 2.11.1 (R Development 

Core Team, 2008). This was calculated over 1500 iterations per condition. Based 

of an interaction term standard error (σ=0.2) from POISE(Devereaux et al., 

2008), 1500 iterations should allow us to estimate an interaction term within a 

level of accuracy of 0.01, using a two-tailed type I error rate of 0.05 (Burton, 

Altman, Royston, & Holder, 2006). 

Finally we demonstrated the use of a composite outcome heterogeneity 

test by re-analyzing the POISE (Devereaux et al., 2008)  data using a marginal 

time-to-event model (Lin & Wei, 1992; Wei et al., 1989; Wei & Glidden, 1997). 

The overall heterogeneity test compared the effect of peri-operative beta-
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blockers vs. placebo on cardiovascular death compared to myocardial infarction, 

and non-fatal cardiac arrest compared to myocardial infarction. Contrasts were fit 

comparing the effect of beta-blockers for among the three outcome types. 

Further to this, we summarized the degree of heterogeneity using an “I2 type” 

test, taking the difference of chi-square value for the composite treatment 

heterogeneity test from its degrees of freedom as a percentage of the chi-square 

value itself. This test is typically used to quantify the degree of heterogeneity 

across different studies in meta-analyses (Higgins, Thompson, Deeks, & Altman, 

2008). The test can be interpreted as the percentage of total variation due to true 

differences (i.e. not chance) in treatment effects across the components of the 

composite outcome. 

Results 

Figure 2 displays the power to detect treatment heterogeneity within the 

composite outcome as a function of the treatment effect for each outcome in the 

composite for our simulated trial. As expected, for all three outcomes the power 

to detect treatment heterogeneity within the composite outcome increased as a 

single outcomes’ hazard ratio become more different from the remaining two. 

There was 50% power to detect that MI had a hazard ratio of 1.03 and 80% 

power to detect a hazard ratio of 1.18. There was 50% and 80% power to detect 

that cardiovascular death has larger hazard ratios of 1.06 and 1.22, respectively. 

Lastly, this simulated trial had the lowest power to detect that cardiac arrest had 
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a different treatment effect compared to the other two outcomes, with 50% power 

to detect a hazard ratio of 1.25 and 80% power for a hazard ratio of 1.51.  

Therefore, with this simulated study design there is some power to detect 

one outcome within the composite to be in the neutral to harmful range, 

depending on which outcome. This design would have little chance of 

demonstrating differences between the outcomes if all showed varying degrees 

of benefit due to treatment. The amount of power for composite treatment 

heterogeneity did depend on the combined frequency of the two outcomes 

compared in each interaction term, with power being greatest for a comparison of 

cardiovascular death versus MI (and reverse) as compared to cardiac arrest 

versus MI.   

For the actual POISE trial results (Devereaux et al., 2008) the interaction 

of treatment with outcome type was statistically significant, indicating composite 

outcome heterogeneity (p=0.0072) (see table 2). Contrasts across the composite 

components provide evidence for a difference in treatment effect for 

cardiovascular death when compared to myocardial infarction (p=0.0024), but no 

statistically significant difference for cardiac arrest compared to myocardial 

infarction, although there were relatively few cardiac arrests. For this effect, the 

value of I2=79.8 (95% CI: 36.3% to 93.6%), indicating a large amount of 

heterogeneity (Higgins et al., 2008). These results re-enforce the treatment 

pattern observed for the individual components in figure 1. 
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Discussion 

When we design a trial with a composite outcome, assuming homogeneity 

of treatment effect across it component outcomes, we may need to consider our 

ability to evaluate this assumption and the appropriate course of action if this 

assumption is not met. At the design stage trialists could explore the degree of 

treatment differences that could be detected for each outcome within the 

composite, given estimated outcome rates and covariances. Such power 

calculations are possible, even for complex composite heterogeneity patterns 

across multiple individual outcomes. This information may be considered in 

selecting the final trial design and sample size. If trial sample size cannot be 

altered based on this knowledge, then at least trialists can be informed of the 

degree of composite treatment heterogeneity they can detect with their current 

design. 

It would be beneficial to include discussion of possible treatment 

differences within a composite outcome in the trial pre-specified statistical 

analysis. Any comprehensive statistical analysis plan should define the 

assumptions of the models that will be used and suggest alternative models to be 

substituted if these assumptions are not met. As in any statistical analysis, the 

appropriate model assumptions must be examined prior to estimation of the 

treatment effect, to avoid a biased treatment estimate. For example, when using 

a linear regression the analyst must check for normality and independence of the 

error terms (Montgomery & Peck, 1982). When using a proportional hazards 
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model, the assumption of proportional hazards must be examined prior to model 

fitting (Cox, 1972). Similarly, for a model analyzing a composite outcome, formed 

based on the assumption of homogeneity of treatment effect across its 

components, researchers would not want to emphasize the estimated treatment 

effect from the composite outcome if it were not a reasonable estimate of the 

overall effect. Guidance to distinguish random variation in treatment effects from 

important outcome differences may help in this decision. If there is evidence of 

composite heterogeneity, it may be unwise to proceed with the typically model. 

The composite outcome result could be presented along side with the treatment 

heterogeneity test result and possible I2 value, to clarify it interpretation. This may 

be followed by a discussion of evidence for and against the initial treatment 

homogeneity assumption. This observed effect may lead to further exploration of 

the mechanisms of action for the treatment being investigated. It could also guide 

the selection composite outcomes for future trials.  

More research is needed to investigate tests of composite outcome 

treatment heterogeneity for a variety of outcome types and RCT designs. Our 

power calculations have assumed that the estimates of both outcome rates and 

the associations between survival times from a past trial accurately estimate 

these for future trials. One could also do sensitivity analyses to see how the 

power for this test would change if these were over-estimates or under-

estimates. It would be helpful if published studies included information about the 

association or correlation between the components of commonly used composite 
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outcomes, in addition to the composite outcome event rate itself. Finally, we have 

applied the methods described to a single RCT. POISE (Devereaux et al., 2008) 

is only one example where a composite outcome heterogeneity test may have 

assisted in interpretation of trial results, and there may be other trials where such 

a test may be useful as well. This limits our inference and there is a need to 

apply these methods to more trials to provide greater insight about the patterns 

of treatment heterogeneity that commonly occurs in composite outcomes and the 

broader applicability of our proposed method. 

Conclusion 

It is clear that a new direction is needed for the analysis of composite 

outcomes. The methods outlined in this manuscript provide a possible framework 

for approaching this problem. We first must plan to explore our power to detect 

composite heterogeneity prior to beginning a trial and then describe possible 

evidence of this once the trial is completed. If composite treatment heterogeneity 

is detected, one can add this information to the presentation of trial results, and 

discuss how this influences the interpretation of these results. When composite 

treatment heterogeneity is found, we can begin an investigation of possible 

differing mechanisms of action for treatment and suggest new treatments or 

perhaps new composite outcomes to evaluate in future trials. 
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Figure 1: POISE (Devereaux et al., 2008) results for the primary composite 

outcome and individual component outcomes 

0.5 1.0 1.5 2.0 2.5
HR

Treatment
Benefit

Treatment
Harm

Primary Composite:
CV Death/MI/CA

CV Death

MI

Cardiac Arrest

HR (95% CI)

0.84 (0.70-0.99)

1.30 (0.92-1.83)

0.70 (0.57-0.86)

1.11 (0.60-2.06)

Hazard ratios and 95% confidence interval for time-to-first composite outcome 
and for each individual outcome within this composite. 



Ph.D. Thesis – J. Pogue; McMaster University 
Health Research Methodology, Biostatistics Specialization 

 

76 
 

Figure 2: Power to detect treatment heterogeneity for each individual 
outcome within the composite outcome 
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Table 1: Composite outcome treatment heterogeneity test results for the 
POISE trial (Devereaux et al., 2008) 

Heterogeneity Test for 

Treatment Effect 

p-value

Overall Composite 0.0072 

Cardiovascular death vs. MI 0.0024 

Cardiac arrest vs. MI 0.1976 
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Conclusions: The future of the “unsatisfactory outcome”(Braunwald, 

Cannon, & McCabe, 1992) 

Some authors have suggested the problems with composite outcomes 

outweigh their benefits and we should avoid using them in randomized 

trial(Cordoba, Schwartz, Woloshin, Bae, & Gotzsche, 2010; Freemantle, Calvert, 

Wood, Eastaugh, & Griffin, 2003; Cordoba et al., 2010; Lim, Brown, Helmy, 

Mussa, & Altman, 2008). These suggestions have not been taken by 

cardiovascular trialists, as the numbers of trial having a primary composite 

outcome has grown over time. For example at the Population Health Research 

Institute of McMaster University, the overwhelming majority of outcomes trials 

conducted from 1993 to 2011 have had a primary composite outcome (personal 

communication). Even the outcomes now considered to be single endpoints are 

often made up of different components that may or may not be influenced by a 

treatment. Total mortality is composed of multiple causes, each with a different 

likelihood of being altered by a cardiovascular disease treatment. A therapy may 

reduce stroke, but how likely is it to influence both ischemic and hemorrhagic 

strokes? Yet total stroke is commonly used as a “singular” outcome. In many 

ways, we use composite outcomes in trials much more often than we admit to. 

However, the popularity of composite outcomes within cardiovascular 

trials does not mean that we should use them without considering their 

limitations. Montori et al. (Montori et al., 2005; Montori, Busse, Permanyer-
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Miralda, Ferreira-Gonzalez, & Guyatt, 2005) describe a series of factors to 

consider when deciding whether to accept a composite outcome as valid or 

whether to “dump this lump”. A composite outcome heterogeneity test may be an 

additional piece of information that readers can consider when interpreting a trial 

results for a composite outcome. Such a test could help us distinguish real 

differences in outcome treatment effects within a composite from mere random 

variation. When readers examine treatment estimates on the individual outcomes 

in the composite, a heterogeneity test may discourage them from pointing to 

minor variations in treatment estimates, accompanied by non-significant 

individual p-values, and saying that the treatment “works” for one outcome and 

not for another. Use of such a test itself may reinforce the play of chance on 

individual outcome results within a trial, as was done for subgroup analysis 

(Assman, Pocock, Enos, & Kasten, 2000; Pocock, Assmann, Enos, & Kasten, 

2002; Yusuf, Wittes, Probstfield, & Tyroler, 1991). 

 From the papers in this dissertation, we can see how power for a 

treatment heterogeneity test for composite outcomes can be calculated using 

data simulation, given estimates of outcome association, outcome rates, and a 

fixed sample size. Through comparisons of statistical models for binary and time-

to-event composite outcomes we found that both marginal models and random 

effects models have similar power for these heterogeneity tests. The choice of 

which model to use may then be based on the most appropriate model 

interpretation or estimation considerations. However, more research into these 
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tests is needed. These papers have explored simple composite outcomes made 

up of two or three individual outcomes. Further research should address more 

complicated forms of these outcomes. Heterogeneity tests are known to have low 

power and the power to detect anything but large qualitative difference in 

treatment effects for individual outcomes may be low for many trials. However, 

there is something to be said for knowing what you can and cannot accomplish 

within a particular trial design. We may interpret the results of a trial more 

conservatively if we know that we only had power to detect large treatment 

difference between the individual outcomes within a composite outcome. 

We must also consider that any test can be falsely positive and a test for 

heterogeneity is no exception. A statistically significant treatment heterogeneity 

test for a composite outcome for a single trial cannot provide definitive proof of 

real treatment differences any more than a single trial can definitively show a 

treatment works. Replication across trials and meta-analyses is required for 

greater certainty about differential treatment effects for different outcomes. 

Treatment heterogeneity tests for composite outcomes may lead us on an 

exploration of potentially differing mechanisms of action, but further evidence is 

likely required to fully understand the source of this observed heterogeneity. 

Many authors have suggested that composite outcomes could be 

improved through the use of weighted analysis, rather than simply combining 

outcome or taking the first occurring outcome (Armstrong et al., 2011; Bjorling & 
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Hodges, 1997; Califf, Harrekson-Woodlief, & Topol, 1990; Hallstrom, Litwin, & 

Weaver, 1992; Lubsen & Kirwan, 2002; Sampson, Metcalfe, Pfeffer, Solomon, & 

Zou, 2010). However, to date such analyses have not been used as the primary 

analysis for large cardiovascular outcomes trials, but only as secondary 

exploratory analyses. This could be related to the subjectivity of developing 

weights and a lack of universal acceptance of any weighting system suggested 

so far. It may also be related to the difficulty in explaining and interpreting such 

models. 

The usefulness of a treatment heterogeneity test for composite outcomes 

will be demonstrated by its use, or lack there of, in future trials. If such a test can 

help clarify the interpretation of trial results, then trialists will perform this test and 

refer to in their publications. It is my hope that the use of treatment heterogeneity 

tests for composite outcomes will lead to a more informed trial design and a more 

realistic interpretation of trial results. 
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