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Abstract

In this work we propose and validate a computational method for reconstruct-

ing constitutive relations (material properties) in complex multiphysics phe-

nomena based on incomplete and noisy measurements which is applicable to

different problems arising in nonequilibrium thermodynamics and continuum

mechanics. The parameter estimation problem is solved as PDE–constrained

optimization using a gradient–based technique in the optimize–then–discretize

framework. The reconstructed material properties taken as an example here

are the transport coefficients characterizing diffusion processes such as the vis-

cosity and the thermal conductivity, and we focus on problems in which these

coefficients depend on the state variables in the system. The proposed method

allows one to reconstruct a smooth constitutive relation defined over a broad

range of the dependent variable. This research is motivated by questions

arising in the computational analysis and optimization of advanced welding

processes which involves modelling complex alloys in the liquid phase at high

temperatures.
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Chapter 1

Introduction

1.1 Motivation

Reliable mathematical and computational modelling of physical processes de-

pends on our knowledge of the relevant properties of the materials involved.

Obtaining such properties is particularly challenging when the materials are of

a less common type. For example, when investigating thermo–fluid phenom-

ena occurring in liquid metals, one needs to know the coefficients of viscosity,

thermal diffusivity, surface tension, etc., for the specific alloys. This task is

often made more difficult by the fact that these coefficients tend to depend

on the temperature in a complicated way. As a result, precise information

about such material properties is rarely available, except for some common

materials. The main goal of the investigation, this thesis is devoted to, is to

propose and validate a suite of computational techniques that will allow one

to reconstruct such material properties based on some measurements available

for a particular process (e.g., heat conduction) and a particular material. The

specific motivation for this investigation comes from the research on optimiza-
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tion of multiphysics phenomena involved in advanced welding processes [1],

where accurate data concerning material properties is quite important. While

our intended applications concern more complicated systems, for the sake of

clarity our approach is first developed and validated based on a fairly simple

model problem, namely the reconstruction of a temperature–dependent heat

conductivity coefficient in a steady–state heat equation discussed in Chapter

2. Then, we extended this approach to more complex phenomena to validate

its applicability for time–dependent systems where the reconstructed property

used in one conservation equation is a function of a state variable governed by

a different conservation equation. Thus, as an example of such complex “mul-

tiphysics” phenomena in Chapters 3 and 4 we consider a reconstruction of the

temperature dependence of the viscosity coefficient used in the momentum

equation where the temperature is governed by a separate energy equation.

Both models are considered under the assumption that the systems consist of

a single homogenous phase; some questions concerning parameter estimation

in multi–phase systems are mentioned in Chapter 5.

1.2 Parameter Reconstruction as an Inverse

Problem

We start with general definitions and some notations for direct and inverse

problems. Let A : X1 → X2 be an operator in mapping the state of the

system, denoted x, to a set of parameters, or inputs, b

Ax = b, (1.1)

2
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where the inputs b are known. The problem of solving (1.1) with respect to x is

usually called a direct problem. Following the definition given by Hadamard [2],

the problem (1.1) is considered as well–posed (or, well–defined) if (i) there exists

a solution for (1.1), (ii) this solution is unique and (iii) it depends continuously

on the data in b in some reasonable topology, i.e., the solution x is stable with

respect to perturbations in b.

In practice, one often has to solve a different problem in which one is

given some incomplete and possibly noisy measurements x̃ of the state x, and

on the basis of this information one seeks to reconstruct the system input b.

Such problems are referred to as inverse problems and the broad family of

parameter estimation problems represents a typical example of inverse prob-

lems. We remark that given the approximate nature of the measurements, the

vectors x̃ and b do not satisfy equation (1.1) exactly which typically leads to

different forms of ill–posedness mentioned above. One family of approaches

devised to deal with such problems relies on the variational (least–squares)

formulation of (1.1), namely min ‖A x̃ − b‖. A major technical difficulty in

solving such inverse problems tends to be lack of continuous dependence of

the solution b on the data x̃.

There exists a group of mathematical techniques, known as regulariza-

tion methods, that have been developed to deal with this ill–posedness. For

example, for discrete data models one of the useful and widely used techniques

is the singular value decomposition (SVD) method [3] which consists in apply-

ing a regularizing filter function, e.g. of the Tikhonov-Phillips type, to small

singular values division by which causes the instability problem. To obtain the

convergence utilizing the SVD method requires some prior information about

the noise level in the input data and about the true solution, which in practice

is rarely available.

3



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

In problems dealing with very large systems, which require the singular

value decomposition of very large matrices, implementation of Tikhonov reg-

ularization can be possible in a form of alternate variational representations

applying one of the techniques from the range of variational regularization

methods based on the total variation representation and using the Calculus of

Variations and Euler–Lagrange Multiplier Theorem [4].

Statistical estimation approach, where the notion of the inverse problem

is based on conditional probabilities and the Bayes’ Theorem, also provides

very useful tools to work with measurement errors and to regularize the solu-

tion using, for example, Bayesian or Monte Carlo (random) estimations [5].

Methods to solve inverse problems using gradients of the fit–to–data

functionals and iterative procedures to minimize such functionals are called it-

erative regularization methods. While these methods require many iterations,

and, though, are computationally costly, they are also able to generate an

accurate regularized solution and are in use where eliminating dependence of

the approach on the model’s discrete structure is desirable, see e.g. [6]. In this

work we in fact use methods from this category, and the main concept of iter-

ative regularization via the adjoint–based gradient method will be illustrated

on our model problems in Chapters 2 and 3.

In principle, as regards the inverse problem of parameter estimation,

one can consider two distinct formulations:

• material properties depending on the space variable x (i.e., the indepen-

dent variable in the problem), and

• material properties depending on the state variable T (i.e., the dependent

variable in the problem).

Problems of the first type have in fact received quite a lot of atten-

4



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

tion in the literature, and we may refer to the monographs [7] and [5, 8] for

surveys of the mathematical and more applied aspects of these problems, re-

spectively. For example, as the reconstructed parameters are functions of the

space variables, these problems represent the foundation of numerous imaging

techniques in medical diagnostics, such as, e.g., X–ray tomography [8], as well

as in geosciences [9, 10]. Problems of this type are at least in principle rela-

tively well understood, and there exist several established methods for their

solution.

In this work our focus will be exclusively on parameter estimation prob-

lems of the second type in which we want to determine the material properties

as a function of the state (i.e., dependent) variable, e.g., the temperature T ,

rather than the position in space (the independent variable). In other words,

we seek a relationship between the material property and the state variable

that holds uniformly at every point x of the domain Ω in which the problem is

formulated. This problem seems to have received less attention in the litera-

ture than the problem of estimating the space–dependent material properties.

Foundations of an optimization–based approach to the solution of this problem

were laid in the work of Chavent and Lemonnier [11] (which to the best of our

knowledge never appeared in the English language), where the authors estab-

lished the existence of solutions to the problem and derived expressions for the

gradient of the least–squares error functional. They also showed the results

of computations in which the cost functional gradients were obtained based

on a suitably–defined adjoint system. Similar problems were also considered

by Alifanov et al. [12, 13], except that in their formulation the dependence

of the material property on the state variable was assumed in the form of

a spline interpolant, effectively resulting in a finite–dimensional optimization

problem. A computational approach also based on a least–squares error func-

5
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tional and a linearization of the problem via a suitable change of variables

was considered by Tai and Kärkkäinen [14]. An alternative technique utilizing

the adjoint equations, but without making use of the error functional, was

proposed by DuChateau et al. [15], whereas Janicki and Kindermann stud-

ied a method combining Green’s functions and Landweber’s iteration applied

to the parameter–to–measurements map [16]. A different approach, based on

the “equation error method”, was pursued by Hanke and Scherzer [17] who

also considered a discrete formulation. Some mathematical aspects of the in-

verse problem of determining the state–dependent diffusion coefficients were

addressed by Kügler [18, 19] who investigated the Tikhonov regularization,

by Neubauer [20] who studied regularization using adaptive grids and also

by DuChateau et al. [21,22]. Limited–memory algorithms applicable to large–

scale non–smooth optimization problems are discussed in [23]. Some analytical

results concerning this problem posed in an infinite domain were also reported

in [24].

1.3 Challenges in the Reconstruction of State–

Dependent Parameters

While adjoint analysis is now routinely used to solve partial differential equa-

tion (PDE)–constrained optimization problems [25], we emphasize that the

structure of the gradients in the present investigation will in fact be shown

to be quite different from what is encountered in typical problems [6]. The

reason is that the optimization variable is a function of the dependent, rather

than independent, variables in the problem. We also add that, in contrast to

the results reported in some of the references quoted in the present Chapter,

6
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our approach is formulated in the “optimize–then–discretize” framework, i.e.,

while we ultimately discretize the problem for the purpose of a numerical so-

lution, our optimality conditions and the cost functional gradients are derived

in the continuous (PDE) setting. As a consequence,

• the main constituents of our approach are independent of the specific

discretization used,

• the method provides explicit control on regularity of the obtained recon-

struction and

• the approach is more elegant from the point of view of mathematical

derivation.

An issue which typically appears in this class of state–dependent recon-

struction problems is that the gradient generates the sensitivity information

only over a specific range of a state variable, namely the identifiability region

(precise definition will be given later in Chapter 2), which tends to be smaller

than the desired interval of the reconstruction. While the cost functional gra-

dient may be formally extended outside this identifiability interval, such tech-

niques are not capable of accurately reconstructing the material properties for

broader values of the state variable. Thus, a systematic approach is proposed

to modify the inputs to the system, so that the reconstructed constitutive

relation can be estimated over the desired range of the temperature.

We reiterate also that the main goal of our research is to develop and

validate a self–contained suite of computational techniques for reconstructing

solution–dependent material properties for a broad range of problems arising

in nonequilibrium thermodynamics and continuum mechanics. This implies

an ability of the proposed approach to be easily extended for multiphysics

7
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problems of different degree of complexity, in different dimensions and on

domains with different geometry. In a view of such possible extensions, we may

note that applying these methods to more complex multiphysics problems will

lead in complications of technical character only, e.g. in the derivation of the

cost functional gradient, while adding the time–dependency and/or changing

the model geometry (increasing dimensions or the domain complexity) will

affect only the computational aspect of the solution.

1.4 Outline of the Thesis and Summary of the

Results

The thesis focuses on an optimization–based approach to estimation of a state–

dependent material property and the main contributions of this work are as

follows. For the first simplified model

• we provide a novel expression for the gradient of the cost functional which

is more computationally tractable than the formula originally derived

in [11].

We then extend this approach to derive an expression for the gradient in

a complex multiphysics problem. We also show the applicability of the en-

tire approach, first developed and validated for the simple “toy” problem,

for complex problems, including multiphysics, time–dependence and higher

dimensions, addressing, in particular, the following issues:

• recognizing that in the standard formulation (based on the L2 inner prod-

ucts) the cost functional gradients may be discontinuous or at least do

not show required regularity, we develop an approach ensuring a required

degree of smoothness of the reconstructed material properties,

8
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• noting that in a given problem reconstruction is normally limited to the

corresponding identifiability region, we propose a systematic experimen-

tal design procedure that allows one to tune inputs to the system, so

that the constitutive relation can be reconstructed over a broader range

of the state variable, and

• in view of the general ill-posedness of the parameter estimation prob-

lems, in the sense that measurement noise results in instabilities of the

solutions, we analyze the performance of the approach in the presence

of noise and assess the efficiency of Tikhonov regularization.

We also address a number of computational challenges related to ac-

curate and efficient evaluation of cost functional gradients. As in 2D and 3D

these gradients are given in terms of integrals over manifolds defined by a level-

set function, we analyze and compare three different methods for evaluation

of cost functional gradients. In particular

• we demonstrate, both theoretically and computationally, the superior

accuracy and efficiency of a novel numerical approach to the evaluation

of gradients which is elaborated in this thesis.

The structure of the thesis is as follows: in the next Chapter we formu-

late and validate the optimization–based approach to estimation of a state–

dependent material property based on a simple 1D model problem involving

a steady–state heat equation. Chapter 3 is devoted to extension of this ap-

proach to more complex multiphysics phenomena to validate its applicability

for time–dependent systems where the reconstructed material property ap-

pearing in one conservation equation is a function of a state variable governed

by a different conservation equation. More specifically, we consider the re-

construction of the temperature dependence of the viscosity coefficient in the

9
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momentum equation, where the temperature is governed by a separate energy

equation. In Chapter 4 we present extensive computational results concerning

the reconstruction in a such complex multiphysics system, whereas in Chapter

5 we outline briefly other possible extensions for the proposed approach and

open the discussion for future research problems; summary and conclusions are

deferred to Chapter 6. We also add that at the core of the thesis there are two

papers, with Chapter 2 built on the material presented in an already published

work [26], and with Chapters 3 and 4 containing results which will be reported

in another manuscript [27], currently in the final stages of preparation.

10



Chapter 2

Formulation of the Problem

based on a Simplified Model

2.1 Description of the Simplified Model

In order to ensure applicability of our proposed approach to a broad array

of problems in continuum mechanics and nonequilibrium thermodynamics, we

formulate it in terms of reconstruction of constitutive relations. Thus, we will

consider optimal reconstruction of isotropic constitutive relationships between

thermodynamic variables based on measurements obtained in a spatially–

extended system. In other words, assuming the constitutive relation in the

following general form

⎡
⎣thermodynamic

flux

⎤
⎦ = k (state variables)

⎡
⎣thermodynamic

“force”

⎤
⎦ , (2.1)

our approach allows us to reconstruct the dependence of the transport coeffi-

cient k on the state variables consistent with the assumed governing equations.

11
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Constitutive relations in form (2.1) arise in many areas of nonequilibrium ther-

modynamics and continuum mechanics. To fix attention, but without loss of

generality, in the first simple model problem we focus on a heat conduction

problem in which the heat flux q represents the thermodynamic flux, whereas

the temperature gradient ∇T is the thermodynamic “force”, so that relation

(2.1) takes the specific form

q(x) = −k(T )∇T (x), x ∈ Ω, (2.2)

where Ω ⊂ Rd, d = 1, 2, 3, is an open domain in which the problem is for-

mulated. We note that by assuming the function k : R → R to be given by

a constant, we recover the well–known linear Fourier law of heat conduction.

While expressions for the transport coefficients such as k(T ) are typically ob-

tained using methods of statistical thermodynamics or just empirically, in the

present investigation we will show how to reconstruct the function k(T ) based

on some available measurements of the spatial distribution of the state vari-

able T combined with the relevant conservation law. Such a technique could

be useful, for example, to systematically adjust the form of a constitutive

relationship derived theoretically to better match actual experimental data.

Combining constitutive relation (2.2) with an expression for the conservation

of energy, we obtain a partial differential equation describing the distribution

of the temperature T in the domain Ω corresponding to the distribution of

heat sources g : Ω → R and suitable boundary conditions (for example, of

the Dirichlet type), i.e.,

−∇ · [k(T )∇T ] = g in Ω, (2.3a)

T =T0 on ∂Ω, (2.3b)
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where T0 denotes the boundary temperature. Instead of (2.3b), we could

also consider Neumann boundary conditions involving k(T )∂T
∂n
, where n is

the unit vector normal to the boundary ∂Ω and pointing out of the domain,

and our subsequent analysis would essentially be unchanged. In regard to

reconstruction of constitutive relations, it is important that such relations

be consistent with the second principle of thermodynamics [28]. There exist

two mathematical formalisms, one due to Coleman and Noll [29] and another

one due to Liu [30], developed to ensure in a very general setting that a

given form of the constitutive relation does not violate the second principle

of thermodynamics. In continuous thermodynamical and mechanical systems

this principle is expressed in terms of the Clausius–Duhem inequality [31]

which in the case of the present simple model problem (2.2)–(2.3) reduces

to the statement that k(T ) > 0 for all values of T . At the same time, the

condition k(T ) > 0 is also required for the mathematical well–posedness of

elliptic boundary value problem (2.3). In addition, to ensure the existence

of classical (strong) solutions of (2.3), we will assume that the heat source

g(x) > 0 is at least a continuous function of x. This appears reasonable

taking into account possible physical phenomena represented by this term.

The positivity of g allows us to establish a lower bound on classical solutions

of problem (2.3), cf. Appendix A.

We should also define two intervals:

• [Tα, Tβ] � [minx∈Ω T (x),maxx∈Ω T (x)] which represents the range spanned

by the solution of problem (2.3); we note that, as demonstrated in Ap-

pendix A, the minimum Tα is attained at the boundary ∂Ω; follow-

ing [19], we will refer to the interval I � [Tα, Tβ] as the identifiability

interval,

13
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• L � [Ta, Tb], where Ta ≤ Tα and Tb ≥ Tβ ; this will be the interval on

which we will seek to obtain a reconstruction of the constitutive relation;

we note that in general the interval L will be larger than the identifia-

bility interval, i.e., I ⊆ L.

It is assumed that the constitutive relations k(T ) are differentiable functions

of the state variable (temperature) and belong to the following set

K = {k(T ) piecewise C1 on L; 0 < mk < k(T ) < Mk, ∀T ∈ L}, (2.4)

where mk,Mk ∈ R+, whereas solutions of problem (2.3) belong to H1(Ω), i.e.,

the Sobolev space of functions defined on Ω with square–integrable derivatives.

The specific parameter estimation problem that we address in this in-

vestigation is formulated as follows. Given a set of continuous “measure-

ments” T̃ (x), x ∈ Σ, of the state variable (temperature) T acquired on the

sensing domain Σ ⊆ Ω, we seek to reconstruct the constitutive relation k(T )

for T ∈ L such that the solutions of problem (2.3) obtained with this re-

constructed function k(T ) will best match the available measurements in the

least–squares sense. Therefore, the constitutive relation k(T ) can be regarded

as the “cause”, whereas the measurements of the temperature field as the “ef-

fect”. The general reconstruction problem is set up here based on continuous

measurements, as required for consistency with the PDE–based formulation

of the optimization problem. However, when we perform actual computa-

tions based on discretized PDEs, continuous measurements will be expressed

in terms of suitable pointwise measurements which are more relevant from

the application point of view. While our main goal in this investigation is

to develop an efficient computational algorithm for this problem, some basic

mathematical results concerning differentiability of the system outputs (mea-
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surements) with respect to the constitutive relation are recalled in Appendix

B. Parameter estimation problems in general tend to be ill–posed [5], in the

sense that measurement noise usually results in instabilities of the computed

solutions. Therefore, we will analyze the performance of our method in the

presence of noise, and will also assess the efficiency of Tikhonov regularization.

2.2 Parameter Estimation as an Optimization

Problem

We will assume that the set K consisting of constitutive relations k(T ) defined

on L is embedded in a Hilbert (function) space X to be specified below. Solving

our parameter estimation problem is therefore equivalent to finding a solution

to the operator equation

F(k) = T, (2.5)

where F : K → L2(Σ) is the map from the constitutive relations to the

measurements. An approach commonly used to solve such problems consists

in reformulating them as least–squares minimization problems which in the

present case can be done by defining the cost functional J : X → R as

J (k) � 1

2

∫
Σ

[
T̃ (x)− T (x; k)

]2
dx, (2.6)

where the dependence of the temperature field T (·; k) on the form of the con-

stitutive relation k = k(T ) is given by governing equation (2.3), and “�”

means “equal to by definition”. We will find minimizers of (2.6) using meth-

ods of gradient–based optimization and the required differentiability of map

(2.5) with respect to k when X = H1(I) is established in Appendix B. The
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optimal reconstruction k̂ is therefore obtained as an unconstrained minimizer

of cost functional (2.6), i.e.,

k̂ = argmin
k∈X

J (k). (2.7)

It is characterized by the first–order optimality condition which requires the di-

rectional differential of cost functional J , defined as J ′(k; k′) = limε→0 ε
−1[J (k+

εk′)−J (k)], to vanish for all perturbations k′ ∈ X [32], i.e.,

∀k′∈X J ′(k̂; k′) = 0. (2.8)

The (local) optimizer k̂ can be computed with the following gradient descent

algorithm as k̂ = limn→∞ k(n), where

⎧⎨
⎩
k(n+1) = k(n) − τ (n)∇kJ (k(n)), n = 1, . . . ,

k(1) = k0,
(2.9)

in which ∇kJ (k) represents the gradient of cost functional J (k) with respect

to the control variable k (we will adopt the convention that a subscript on

the operator ∇ will be used when differentiation is performed with respect

to variables other than x), τ (n) is the length of the step along the descent

direction at the n–th iteration, whereas k0 is the initial guess taken, for in-

stance, as a constant corresponding to a linear version of constitutive relation

(2.2), or some other approximate theoretical prediction. For the sake of clar-

ity, formulation (2.9) represents the steepest–descent algorithm, however, in

practice one typically uses more advanced minimization techniques, such as

the conjugate gradient method, or one of the quasi–Newton techniques [33].

We note that, since minimization problem (2.6)–(2.7) is in general nonconvex,
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condition (2.8) characterizes only a local, rather than global, minimizer. We

reiterate that the constitutive property is required to satisfy the additional

positivity condition k(T ) > 0 for all T ∈ L. Therefore, to be more precise,

the optimal reconstruction k̂ should be obtained as an inequality–constrained

minimizer of cost functional (2.6), i.e.,

k̂ = argmin
k∈X ,

k(T )>0, T∈L

J (k). (2.10)

We add that in problems involving constitutive relations depending on several

state variables the inequality constraint k(T ) > 0 will be replaced with a more

general form of the Clausius–Duhem inequality [31]. Inequality–constrained

problem (2.10) can be transformed to an unconstrained formulation analogous

to (2.7) using for example the barrier function approach [34]. Other computa-

tional techniques for solution of inequality–constrained parameter estimation

problems are discussed in [4]. However, in the computational studies per-

formed for our current model problem and reported in Section 2.6 all solutions

we found satisfied the condition k(T ) > 0, ∀T ∈ L, without having to enforce

this condition explicitly. Hence, this issue will not be considered in the present

Chapter, although we revisit it in the context of more complicated problem in

Chapter 3.

2.3 Cost Functional Gradients via Adjoint–based

Analysis

The key ingredient of minimization algorithm (2.9) is computation of the cost

functional gradient ∇kJ (k). We emphasize that, since k = k(T ) is a contin-
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uous variable, the gradient ∇kJ (k) represents in fact an infinite–dimensional

sensitivity of J (k) to perturbations of k(T ). Since our constitutive relations

belong to set K, cf. (2.4), we will seek to reconstruct k(T ) as elements of the

Sobolev space H1(L), so that the gradient ∇kJ will need to be obtained with

respect to the corresponding inner product. However, in order to make the

derivation procedure easier to follow, we will first obtain an expression for the

gradient in the space L2(L), and only then will obtain the Sobolev gradients

which will be eventually used in the solution of optimization problem (2.7).

In both steps our transformations will be formal. We begin by computing the

directional differential of cost functional (2.6) which yields

J ′(k; k′) =
∫
Σ

[T (x; k)− T̃ (x)]T ′(x; k, k′) dx, (2.11)

where the perturbation variable T ′(xi; k, k
′) satisfies the perturbation system

obtained from (2.3). Next, we invoke the Riesz representation theorem [35]

for the directional differential J ′(k; ·), which yields

J ′(k; k′) = 〈∇kJ , k′〉X , (2.12)

where 〈·, ·〉 represents an inner product in the Hilbert space X (we will first

set X = L2(L) and afterwards change that to X = H1(L)). We note that

the expression on the right–hand side (RHS) in (2.11) is not consistent with

Riesz representation (2.12), since the perturbation variable k′ is hidden in

the system defining T ′(k, k′). However, this expression can be transformed to

Riesz form (2.12) with the help of a suitably–defined adjoint variable. Since

our derivation of this result for the present problem is in fact quite different

from the approach followed in [11], we state it in the form of the following
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theorem.

Theorem 2.1 Let Ω be a smooth bounded open set and k′ ∈ X = L2(L). We

assume that the function g and the solution T of (2.3) are sufficiently smooth.

Then, the Riesz representation of directional differential (2.11) has the form

J ′(k; k′) =
∫ Tb

Ta

[∫
Ω

χ[Tα, T (x)](s)ΔT
∗ dx−

∫
∂Ω

χ[Tα, T (x)](s)
∂T ∗

∂n
dσ

]
k′(s) ds,

(2.13)

where χ[a,b](s) is the characteristic function for an interval [a, b] defined as

follows

χ[a,b](s) =

⎧⎨
⎩

1, s ∈ [a, b],

0, s /∈ [a, b],

whereas the adjoint state T ∗ is defined as the solution of the system

k(T )ΔT ∗ = [T̃ (x)− T (x)]χΣ(x), in Ω, (2.14a)

T ∗ = 0, on ∂Ω, (2.14b)

where

χΣ(x) =

⎧⎨
⎩

1, x ∈ Σ,

0, x /∈ Σ,

denotes the characteristic function of the sensing domain Σ.

Proof. While in principle the proof could be formulated based on the original

form of governing system (2.3), the derivation and structure of the result-

ing expressions for the gradient ∇kJ are simplified by a change of variables

known as the “Kirchhoff transformation” [36]. We thus introduce an auxiliary
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function V : I → R defined as follows

V (T ) �
∫ T

Tα

k(s) ds. (2.15)

Noting that in fact T = T (x), we have ∇V (x) = k(T (x))∇T (x), and govern-

ing system (2.3) can be expressed as

−ΔV = g in Ω, (2.16a)

V (x) =

∫ T0(x)

Tα

k(s)ds on ∂Ω. (2.16b)

(Using one symbol V to denote functions depending on T and x admittedly

represents an abuse of notation, yet is justified here by simplicity.) Let T ∗ :

Ω → R be an adjoint variable. We integrate (2.16a) against T ∗ to obtain

−
∫
Ω

(ΔV ) T ∗dx =

∫
Ω

g T ∗dx,

and then integrating by parts we get

∫
Ω

∇V ·∇T ∗ dx−
∫
∂Ω

∂V

∂n
T ∗ dσ =

∫
Ω

g T ∗dx. (2.17)

Next we differentiate (2.17) with respect to k

∫
Ω

∇V ′ ·∇T ∗dx−
∫
∂Ω

∂V ′

∂n
T ∗dσ = 0,

where the perturbation variable V ′ can be expressed as [cf. (2.15)]

V ′(T ) =
∫ T

Tα

k′(s) ds+ k(T )T ′(k, k′), (2.18)

20



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

so that after integrating by parts one more time we obtain

−
∫
Ω

[∫ T (x)

Tα

k′(s)ds

]
ΔT ∗dx−

∫
Ω

k(T )T ′ΔT ∗dx

+

∫
∂Ω

[∫ T (x)

Tα

k′(s)ds+ k(T )T ′
]
∂T ∗

∂n
dσ −

∫
∂Ω

∂V ′

∂n
T ∗dσ = 0.

(2.19)

We now require that the adjoint variable T ∗ satisfy system (2.14). We note

that owing to the judicious choice of the RHS term in (2.14a), the second term

in relation (2.19) is in fact equal to the directional differential J ′(k; k′), so that

we have

J ′(k; k′) =
∫
Ω

[∫ T (x)

Tα

k′(s) ds

]
ΔT ∗ dx−

∫
∂Ω

[∫ T (x)

Tα

k′(s) ds

]
∂T ∗

∂n
dσ. (2.20)

We also notice that the boundary terms in (2.19) having T ′ and T ∗ as fac-

tors vanish due to the boundary conditions on the state and adjoint variables,

respectively, (2.3b) and (2.14b). Finally, expression (2.13) for the Riesz rep-

resentation of directional differential (2.11) can be obtained from (2.20) using

the characteristic function χ[Tα,T (x)](s) and reversing the order of integration

with respect to x and s, where this last step is justified by Fubini’s theorem.

�
With the Riesz representation established in (2.13), we now proceed to

identify expressions for the cost functional gradient ∇kJ according to (2.12).

While this is not the gradient that we will use in actual computations, we

analyze first the “simplest” case when X = L2(L), i.e., the space of functions

square integrable on [Ta, Tb], as it already offers some interesting insights into

the structure of the problem. The L2 gradient of the cost functional hence
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takes the form

∇L2
k J (s) =

∫
Ω

χ[Tα, T (x)](s)ΔT
∗ dx−

∫
∂Ω

χ[Tα, T (x)](s)
∂T ∗

∂n
dσ. (2.21)

We will now show that (2.21) is in fact equivalent to the cost functional gra-

dient derived by Chavent and Lemonnier in [11] and adapted to the present

time–independent problem. Let us consider the differentiation in (2.21) in the

sense of distributions. Integration by parts of the first term on the RHS in

(2.21) and the resulting cancelation of the second term yield

∇L2
k J (s) = −

∫
Ω

∇χ[Tα, T (x)](s) · ∇T ∗ dx. (2.22)

The characteristic function χ[Tα,T (x)](s) is a combination of Heaviside functions

with respect to T . Therefore, its distributional derivative with respect to x

can be expressed using the chain rule and a Dirac delta function as follows

∇L2
k J (s) = −

∫
Ω

δ(T (x)− s)∇T · ∇T ∗ dx =
d

ds

∫
Ω

χ[Tα,T (x)−s](s)∇T · ∇T ∗ dx

(2.23)

which is essentially the form of the cost functional gradient obtained in [11].

We note that the expression on the RHS in (2.23) involves differentiation of an

integral with respect to the level set defining the integration region, an opera-

tion that is rather difficult to perform accurately in numerical computations.

Using (2.14a) we can transform expression for cost functional gradient (2.21)

to a form more convenient from the point of view of numerical computations,

namely

∇L2

k J (s) =

∫
Σ

χ[Tα, T (x)](s)
T̃ (x)− T (x)

k(T (x))
dx−

∫
∂Ω

χ[Tα, T (x)](s)
∂T ∗

∂n
dσ,

(2.24)
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where the numerical differentiation (with respect to x) is only required in the

second integral term.

The L2 gradients have been used in numerous computational studies

involving PDE–constrained optimization problem. In regard to the possibility

of using the gradient ∇L2
k J in the computations for the present problem, the

following comments are in place:

1. gradient (2.21), or (2.24), is nonvanishing for s ∈ I, and therefore the

sensitivity of the functional J (k) to perturbations of k can only be de-

termined on the identifiability region I which is typically smaller than

the region L over which one would wish to reconstruct the constitutive

relation; the relationships between the interval L and the identifiability

region I, the physical and the state spaces are illustrated in Figure 2.1

where we assumed Ω = (−1, 1),

2. in view of the structure of expression (2.24), the L2 gradient ∇L2
k J is in

general a discontinuous function.

Evidently, in view of the issues mentioned above, the L2 gradients are

unsuitable for the reconstruction of the constitutive relations with the required

properties, cf. (2.4). We will show that these difficulties can be overcome us-

ing cost functional gradients defined in the Sobolev space consistent with the

functional setting of the problem, here H1(L) [37, 38]. Such gradients are

guaranteed to be sufficiently smooth and are obtained in a straightforward

way from the L2 gradients. Furthermore, these gradients can be defined on

the entire interval [Ta, Tb] without an artificial extension by zero and can be

naturally combined with a technique to shift the identifiability region. The

Sobolev gradients are discussed below, whereas shifting the identifiability re-

gion is introduced in Section 2.5.
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Figure 2.1: Schematic showing (left) the solution T (x) of governing system
(2.3) and (right) the corresponding constitutive relation k(T ) defined over their
respective domains, i.e., Ω = (−1, 1) and the identifiability region I. The thick
dotted line represents the extension of the constitutive relation k(T ) from I to
the interval L. In the figure on the right the horizontal axis is to be interpreted
as the ordinate.
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When defining Sobolev gradients in a PDE–constrained optimization

problem one needs to specify suitable boundary conditions characterizing the

behavior of the gradient on the boundary of its domain of definition. In “clas-

sical” problems in which the control parameter is a function of the indepen-

dent variables in the problem, the choice of these boundary conditions usually

follows quite naturally from the structure of the governing PDE. This is, how-

ever, not the case in the present problem where it is not obvious what behavior

should be imposed on the gradient at the limits of the interval L. Out of several

different possibilities, we choose to examine the following two approaches.

In the first approach we construct the Sobolev gradients ∇H1

k J by

assuming that X = H1(L), where the Sobolev space H1(L) is endowed with

the following inner product

〈z1, z2〉H1(L) =
∫ Tb

Ta

[
z1z2 + �2

dz1
ds

dz2
ds

]
ds, z1, z2 ∈ H1(L) (2.25)

in which � ∈ R is a parameter with the meaning of a length–scale [we note

that the L2 inner product is obtained by setting � = 0 in (2.25)]. Next, we

again invoke the Riesz representation theorem, however, now we assume that

k′ ∈ H1(L), so that we obtain

J ′(k; k′) = 〈∇L2

k J , k′〉L2(L) = 〈∇H1

k J , k′〉H1(L)

=

∫ Tb

Ta

[
∇H1

k J k′(s) + �2
d(∇H1

k J )

ds

dk′

ds

]
ds.

(2.26)
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Performing integration by parts and imposing the homogeneous Neumann

boundary conditions on the Sobolev gradient, i.e., d
ds
∇H1

k J Ta,Tb
= 0, we obtain

J ′(k; k′) =
∫ Tb

Ta

∇L2
k J k′(s) ds =

∫ Tb

Ta

[
∇H1

k J − �2
d2

ds2
∇H1

k J
]
k′(s) ds.

(2.27)

Noting that relation (2.27) must be satisfied for any arbitrary k′, we conclude

that the Sobolev gradient ∇H1

k J can be determined as a solution of the fol-

lowing inhomogeneous elliptic boundary–value problem

∇H1

k J − �2
d2

ds2
∇H1

k J = ∇L2
k J on (Ta, Tb), (2.28a)

d

ds
∇H1

k J = 0 for s = Ta, Tb. (2.28b)

On the other hand, in the second approach we construct the Sobolev

gradients ∇H1

k J by first assuming that X = H1(I), where the Sobolev space

H1(I) is endowed with an inner product analogous to (2.25), except that

integration is now from Tα to Tβ. Proceeding as above and imposing the

homogeneous Neumann boundary conditions at the end points of the identifi-

ability interval I we obtain the gradient ∇H1

k J as a solution of the following

inhomogeneous elliptic boundary–value problem

∇H1

k J − �2
d2

ds2
∇H1

k J = ∇L2
k J on (Tα, Tβ), (2.29a)

d

ds
∇H1

k J = 0 for s = Tα, Tβ. (2.29b)

In order to be able to reconstruct the relation k(T ) over the entire interval L

we need to extend the Sobolev gradient defined in (2.29) onto L. We do this

26



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

by prescribing

∇H1

k J (s) = ∇H1

k J (Tα) for s ∈ [Ta, Tα], (2.30a)

∇H1

k J (s) = ∇H1

k J (Tβ) for s ∈ [Tβ, Tb] (2.30b)

which preserves the continuity of the Sobolev gradient. Extraction of gradi-

ents in spaces of smoother functions, such as the Sobolev spaces considered

here, is a well–known device in adjoint–based optimization of PDEs [38, 39]

where it is often regarded as a form of preconditioning. We also emphasize

that by changing the value of the length–scale parameter � we can control the

smoothness of the gradient ∇H1

k J (k), and therefore also the relative smooth-

ness of the resulting reconstruction of k(T ). More specifically, as it was shown

in [38], a clear interpretation of this approach can be made in Fourier space.

Using ·̂ to denote the corresponding Fourier coefficient at wavenumber m and

applying Fourier transform to either (2.28a) or (2.29a), we obtain

̂∇H1

k J = Flp(m)̂∇L2
k J , (2.31)

where Flp(m) � m2
0

m2
0 +m2

is a low–pass filter applied to the L2 gradient with

the quantity �−2 representing the “cut-off” scale by settingm0 = 1/�, cf. Figure

2.2.

In addition, both approaches described by (2.28) and (2.29)–(2.30) can

be considered as a special case of data extrapolation in regard to reconstruction

of the constitutive relations outside the identifiability region I, as no additional

measurement data is provided to construct Sobolev gradients ∇H1

k J (k). In

Section 2.6 we will compare the computational performance of the two ap-

proaches proposed and will discuss certain additional reasons why Sobolev
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Figure 2.2: Interpretation of the preconditioning techniques (2.28)–(2.29)
in Fourier space as a low–pass filter; m0 represents the cut–off wavenumber
m0 = 1/� [38].

gradients are a useful device for the present problem.

We finally conclude that iterative reconstruction of the constitutive

relation k(T ) involves the computations described in Algorithm 1.

2.4 Reconstruction in the Presence of Mea-

surement Noise

In this Section we discuss the important issue of reconstruction in the presence

of noise in the measurements. As can be expected based on the general proper-

ties of parameter estimation problems [5], and as will be confirmed in Section

2.6.3, incorporation of random noise in the measurements leads to an insta-

bility in the form of small–scale oscillations appearing in the reconstructed

constitutive relations. In the optimization framework a standard approach to

mitigate this problem is Tikhonov regularization [40] in which original cost
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Algorithm 1 Algorithm for reconstructing k(T ) on a single identifiability
interval I
• set n = 0

• set k0 as the initial guess

repeat

• set n = n + 1

• obtain the solution for direct problem (2.3)

• obtain the solution for adjoint problem (2.14)

• compute the cost functional gradient ∇L2
k J (k(n)) following (2.24)

• compute the cost functional gradient ∇H1
k J (k(n)) following the precon-

ditioning scheme (2.28) or (2.29)–(2.30)

• determine step length τ (n) in (2.9) via line minimization

• update the reconstructed property k(n) following gradient descent algo-

rithm (2.9)

until the termination condition on k(n) is satisfied

functional (2.6) is replaced with a regularized expression of the form

Jλ(k) � J (k) +
λ

2
‖k − k‖2Y(I), (2.32)

where λ ∈ R+ is an adjustable regularization parameter, k(T ) represents a

constitutive relation which our reconstruction k(T ) should not differ too much

from, whereas ‖ · ‖Y(I) is the Hilbert space norm in which we measure the

deviation (k− k). Thus, the regularization term in (2.32), i.e., the second one

on the RHS, involves some additional information which needs to be specified

a priori, namely, the choice of the reference constitutive relation k(T ) and the

space Y(I). As regards the reference function k(T ), one natural possibility is to

consider a constant value corresponding to a linearized version of constitutive

relation (2.1). As regards the choice of the space Y(I), we will consider the

following two possibilities:
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1. Y(I) = L2(I), so that the regularization term in (2.32) becomes (λ = λ1)

λ1
2
‖k − k‖2L2(I)

=
λ1
2

∫ Tβ

Tα

(k − k)2ds (2.33)

yielding the following L2 gradient of the regularized cost functional

∇L2
k Jλ1(s) =

∫
Ω

χ[Tα, T (x)](s)ΔT
∗ dx

−
∫
∂Ω

χ[Tα, T (x)](s)
∂T ∗

∂n
dσ + λ1(k − k),

(2.34)

2. Y(I) = Ḣ1(I), where Ḣ1(I) denotes the Sobolev space equipped with

the semi–norm ‖z‖Ḣ1(I) �
∫ Tβ

Tα

(
∂z
∂s

)2
ds, ∀z∈H1(I); the regularization term

in (2.32) becomes (λ = λ2)

λ2
2
‖k − k‖2

Ḣ1(I)
=
λ2
2

∫ Tβ

Tα

(
dk

ds
− dk̄

ds

)2

ds (2.35)

yielding the following L2 gradient of the regularized cost functional

∇L2
k Jλ2(s) =

∫
Ω

χ[Tα, T (x)](s)ΔT
∗ dx

−
∫
∂Ω

χ[Tα, T (x)](s)
∂T ∗

∂n
dσ − λ2

d2k

ds2
|s∈[Tα,Tβ ];

(2.36)

we remark that in obtaining (2.36) integration by parts was applied to the

directional derivative of the regularization term together with boundary

conditions (2.29b).

Expressions (2.34) and (2.36) can now be used to obtain suitable Sobolev

gradients as discussed in Section 2.3. Computational tests illustrating the

performance of the two forms of the Tikhonov regularization on a problem

with noisy data will be presented in Section 2.6.3. In that Section we will also

30



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

analyze the effect of the regularization parameters λ1 and λ2. We add that the

stability and convergence of Tikhonov regularization using the Sobolev norm

H1 in the regularization term and applied to a very similar inverse problem

was established rigorously in [19].

2.5 Shifting the Identifiability Interval

In Section 2.3 it was argued that the sensitivity of the cost functional J is

essentially available on the identifiability interval I only, cf. Figure 2.1. The

cost functional gradient may be formally extended outside this interval using

the “extrapolation” techniques described at the end of Section 2.3, however,

in the absence of additional measurement data these techniques merely en-

sure that the gradient is defined on the desired interval L and as such do

not generate any new sensitivity information. Since, as demonstrated by our

computational results reported in Section 2.6, such techniques are not capable

of accurately reconstructing the relation k(T ) on an interval larger than the

identifiability region, in the present Section we propose an approach to “shift”

the identifiability region, so that the relation k(T ) can be reconstructed on

a larger interval. We note that this method in fact cannot be related to any

data extrapolation techniques discussed earlier, as it relies on the availability

of additional experimental measurements corresponding to a suitably modified

experimental set–up, such as the heat source distribution and boundary con-

ditions. We also add that the “shifting” technique, described in detail below,

may be hard to employed if there exist some limitations on generating new

measurements in actual experiments.

In the limit, after performing several such shifts, the constitutive re-

lation k(T ) can be reconstructed on the entire interval L which is of interest
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in a given problem. The idea behind shifting the identifiability region is to

modify the data, such as the RHS source term and the boundary conditions,

in problem (2.3), so that the solution of the modified problem spans a shifted

interval I(1) = [Tα + h, Tβ + h], where h ∈ R. Hereafter we will adhere to

the convention that the indices enumerating shifts of the identifiability inter-

val will appear as subscripts. This will allow us to distinguish them from the

indices enumerating iterations in the solution of the optimization problem on

a given identifiability region, cf. (2.9), which appear as superscripts. If the

index representing the shifts of the identifiability region is skipped, the inter-

val I(0) is implied. Our approach is motivated by the following experimental

procedure, described in Algorithm 2, designed to reconstruct the constitutive

relation k(T ) on an interval L larger than an individual identifiability interval.

Algorithm 2 Algorithm for shifting the identifiability region I
• apply the heat sources g(0)(x) = g(x) and the boundary conditions T0,(0) =

T0 to the actual experimental system and obtain the measurements T̃(0)(x),

x ∈ Σ; use these measurements to reconstruct k(T ) on the identifiability

region I(0) = I using relations (2.9), (2.21), (2.29) and (2.30)

• set j = 0

repeat

• set j = j + 1

• determine new heat source distribution g(j)(x) and boundary conditions

T0,(j)

• apply the new heat source distribution and boundary conditions to the

experimental system and obtain new measurements T̃(j)(x), x ∈ Σ

• use the new measurements T̃(j)(x), x ∈ Σ to reconstruct k(T ) on a new

identifiability interval I(j) using (2.9), (2.21), (2.29) and (2.30)

until
⋃j

p=1 I(p) ⊃ L, i.e., until the union of all shifted identifiability re-

gions I(0), . . . , I(j) covers the interval L where we seek to reconstruct the

constitutive relation
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This sequence of steps is illustrated schematically in Figure 2.3. While

all other elements of Algorithm 2 should be obvious, the goal of the present

Section is to show how to choose the RHS source term g(j)(x) and the boundary

condition T0,(j), so that the identifiability interval I(j) will be approximately

shifted by a prescribed value h. Let us suppose that T(0) is a known solution

of problem (2.3) spanning the identifiability interval I(0) which we now want

to shift by h > 0. We thus obtain

−∇ ·
[
k(T(0) + h)∇(T(0) + h)

]
= g(1) in Ω, (2.37a)

T0,(0) + h =T0,(1) on ∂Ω, (2.37b)

which can be regarded as equations defining the new source distribution g(1)

and new boundary condition T0,(1) required for this shift. Since the function

g(1) depends on the magnitude h of the shift, for small values |h| � 1 we can

bypass this inconvenience using the Taylor series expansion

k(T(0)(x) + h) = k
(
T(0)(x)

)
+ h

dk

dT

(
T(0)(x)

)
+O(h2) (2.38)

which holds for all x ∈ Ω, so that (2.37a) becomes

−∇ ·
[
k
(
T(0)

) ∇T(0)
]
− h∇ ·

[
dk

dT

(
T(0)

) ∇T(0)

]
= g(1) +O(h2). (2.39)

Thus, the source distribution corresponding to the shifted identifiability region

I(1) can be approximated to the leading order as

g(1)(x) ≈ g(0)(x)− hΔ
[
k
(
T(0)(x)

)]
, (2.40)

where g(0)(x) is the source distribution corresponding to the original (“un-
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shifted”) identifiability interval. Expression (2.40) can be used in Algorithm

2 employing the most up–to–date estimate of the relation k(T ) resulting in

g(j+1)(x) ≈ g(j)(x)− hΔ
[
k(j)

(
T(j)(x)

)]
. (2.41)

We note that in general the distance h may be allowed to vary from one shift to

another. Shifting the identifiability interval has the effect of generating the sen-

sitivity information over a different range of the state variable T . This might

potentially have a detrimental effect on the reconstruction of k(T ) obtained

on “earlier” identifiability intervals. In order for the reconstructions carried

out on shifted intervals I(j), j ≥ 1, not to destroy the earlier reconstructions

on I(0), . . . , I(j−1), optimization on shifted intervals will be performed using a

cost functional augmented with a Tikhonov–type penalty term, namely,

J(j)(k) � J (k) +
γ

2

∫ Tβ,(j−1)−δ

Tα,(0)

[k(s)− k(j−1)(s)]
2ds, (2.42)

where J (k) is defined in (2.6) and γ, δ ∈ R+ are parameters. The purpose of

including this additional term is to ensure that the reconstruction performed

on the new (shifted) identifiability interval I(j) preserves the estimate already

constructed on the union of the previous intervals I(0), . . . , I(j−1). It will also

have the additional effect of regularizing the reconstruction procedure against

measurement noise (cf. Section 2.4). We remark that if all the measurements

{T̃(j)}Pj=1 were available from the beginning, then at least in principle one could

consider an alternative approach based on solution of a single optimization

problem on the union
⋃P

j=1 Ij of all identifiability intervals. However, the

difficulty with such an approach is that there would not be unique heat sources

and boundary conditions defined on the composite identifiability interval. The
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Figure 2.3: Schematic illustrating the procedure for shifting the identifiabil-
ity region. Notation is the same as in Figure 2.1. The left and middle graphs
correspond to reconstructions performed at two consecutive intervals I(j) and
I(j+1).

methodology proposed in this Section is in our opinion well suited for an

actual experimental procedure, as the experimental conditions (represented

by the heat sources g(j)(x) and boundary conditions T0,(j)) are adjusted in an

adaptive fashion devised to produce temperature measurements in a desired

identifiability region. Computational results illustrating Algorithm 2 combined

with update formula (2.41) and augmented functional (2.42) will be presented

in Section 2.6.4.

2.6 Computational Results

In this Section we describe the computational results obtained with our pro-

posed method. Following a brief description of the numerical approaches used

to solve the governing and the adjoint problem, we present some diagnostic

tests concerning computation of the gradient at a given iteration. Next, we

present the solution of the parameter estimation problem on a single identifi-

ability interval with and without noise. Finally, we discuss the solution of a
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sequence of parameter estimation problems on a set of identifiability regions

shifted with respect to each other using the algorithm described in Section 2.5.

For the sake of simplicity, our sample computations will be performed for a

one–dimensional (1D) version of problem (2.3) with Ω = (−1, 1).

Governing system (2.3) and adjoint system (2.14) are discretized on a

uniform grid with Nx = 100 grid points using the second–order central dif-

ferences combined with the cubic spline interpolation of the function k(T (x)).

For the purpose of this interpolation the interval L is discretized using an

equispaced grid with NT = 200 points, unless stated otherwise. The actual

constitutive relation we seek to reconstruct is given by the function

k̃(T ) = arctan (T − 2.5) + b, b = 2, (2.43)

whose locally steep slope makes it representative of a range of constitutive

relations typically encountered in thermodynamic systems. In parallel with

discretization of the governing PDE, we also discretize the continuous mea-

surements using pointwise measurement data which is typically available in ac-

tual experiments. We will assume that such pointwise measurements, denoted

{T̃i}Mi=1, are available at a set of measurement points {xi}Mi=1. We will in addi-

tion assume that the sensing domain can be regarded as a union Σ =
⋃M

i=1Σi

of disjoint subdomains Σi � xi, i = 1, . . . ,M , whose sizes |Σi| are of the order

of the grid size Δx = 2
Nx−1

, so that
∫
Σi
[T̃ (x)−T (x)]2 dx ≈ [T̃ (x)−T (x)]2 |Σi|,

i = 1, . . . ,M (see Figure 2.4). In the computational tests reported below we

used M = 10 (tests performed with different values of M yielded qualitatively

similar results). To mimic an actual experimental procedure, on each identifia-

bility interval I(j), j > 0, relation (2.43) is used in combination with governing

system (2.3) to obtain pointwise measurements {T̃i,(j)}Mi=1. Relation (2.43) is
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Figure 2.4: Schematic showing discretization of continuous measurements
T̃ (x), x ∈ Σ with pointwise measurements available at the discrete points
x1, . . . ,xM . Hatched areas represent the individual sensing domains Σi, i =
1, . . . ,M .

then “forgotten” and is reconstructed using gradient–based algorithm (2.9) on

a single (Section 2.6.2), or several identifiability intervals (Section 2.6.4). We

also notice that for the sake of simplicity all our computations used equispaced

measurement locations {xi}Mi=1 which coincide with the grid points of the dis-

cretized domain Ω. In a general case one may consider more flexibility in

choosing sensor locations. One may also consider the question of determining

optimal locations of the measurement points. While this problem is outside

the scope of the present work, it might be worthwhile to consider it in future

research.

While in the calculations validating our basic formulation (presented in

Sections 2.6.1, 2.6.2 and 2.6.4) no noise was present in the measurements, its

effect is addressed systematically in Section 2.6.3. In terms of the initial guess

on the first identifiability region I(0) we take a constant approximation k0 to

(2.43), whereas for the reconstruction problems on the shifted identifiability

regions I(j) we take k̂(j−1)(T ), i.e., the approximation of the constitutive rela-

tion obtained with the data on the interval I(j−1). The initial distribution of

the heat sources was g(0) = − (ex−2x)2

1+(ex−x2−0.5)2
−[arctan(ex − x2 − 0.5) + 2] (ex−2)

resulting in the identifiability region I(0) = [1.3679, 3.7183]. The interval over

which we seek to reconstruct the constitutive relation is L = [0, 5.0862].

37



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

2.6.1 Validation of Gradients

In this Section we present results demonstrating the consistency of the cost

functional gradients obtained with the approach described in Section 2.3. In

Figure 2.5 we present the L2 and several Sobolev H1 gradients obtained at the

first iteration. In the first place, we observe that as discussed in Section 2.3 the

L2 gradients do indeed exhibit discontinuities which makes them unsuitable for

the reconstruction of constitutive relations with required properties, cf. (2.4).

On the other hand, the gradients extracted in the Sobolev space H1 are char-

acterized by the required smoothness and therefore hereafter we will solely use

the Sobolev gradients. We also observe that the two techniques for extend-

ing the gradients discussed in Section 2.3 [equations (2.28) and (2.29)–(2.30)]

result in quite different behavior of the Sobolev gradients outside the identi-

fiability region I. These different behaviors will result in different quality of

reconstruction of the constitutive relation. Next, in Figure 2.6 we present the

results of a diagnostic test commonly employed to verify the correctness of the

cost functional gradient [43]. It consists in computing directional differential

(2.12) in two different ways, namely, using a finite–difference approximation

and using the adjoint field, and then examining the ratio of the two results

κ(ε) � ε−1 [J (k + εk′)− J (k)]∫ Tb

Ta
∇kJ (s) k′(s) ds

(2.44)

for a range of values of ε. We emphasize that in view of Riesz identity (2.12)

it does not matter which inner product (i.e., L2 vs. H1) is adopted in the

expression in the numerator in (2.44). If the gradient ∇kJ (k) is computed

correctly, then for intermediate values of ε, κ(ε) should be close to the unity.

Remarkably, this behavior can be observed in Figure 2.6 over a range of ε
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Figure 2.5: Comparison of (solid line) the L2 gradient ∇L2J and the Sobolev

gradients ∇H1J defined (a) in (2.28) and (b) in (2.29)–(2.30) for different
values of the smoothing coefficient (dashed line) � = 0.05 and (dash–dotted
line) � = 0.2 at the first iteration with the initial guess k0 = const = 2.13.
The vertical dotted lines represent the boundaries of the identifiability interval
I(0).

spanning about 10 orders of magnitude for two different perturbations k′(T ).

Furthermore, we also emphasize that refining the discretization of the interval

L yields values of κ(ε) much closer to the unity. As can be expected, the

quantity κ(ε) deviates from the unity for very small values of ε, which is due

to the subtractive cancelation (round–off) errors, and also for large values of

ε, which is due to the truncation errors.

2.6.2 Reconstruction on a Single Identifiability Interval

We solve minimization problem (2.7) using the BFGS (Broyden–Fletcher–

Goldfarb–Shanno) algorithm [33] and, unless indicated otherwise, Sobolev gra-

dients computed with � = 0.2 which was found by trial–and–error to maximize

the rate of convergence of iterations (2.9). The termination condition used
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Figure 2.6: The behavior of κ(ε) for different perturbations (circles) k′(T ) =
exp(−T 2/10) and (triangles) k′(T ) = −0.1T 2 + 10 using different discretiza-
tions of the interval L: (empty symbols) NT = 200 and (filled symbols)
NT = 2000.
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was
∣∣∣J (k(n))−J (k(n−1))

J (k(n−1))

∣∣∣ < 10−6. The behavior of the cost functional J (k(n)) as

a function of the iteration count n is shown in Figure 2.7a for the Sobolev

gradients defined in (2.28) and in (2.29)–(2.30). We note that while in both

cases a decrease over several orders of magnitude is observed in just a few

iterations, in the first case the cost functional eventually drops to very small

values. The effect of the different values of the constant initial guess k0 on

the decrease of the cost functional is illustrated in Figure 2.7b. We note

that the cost functional J (k(n)) decreases rapidly for all investigated values

of the constant k0, although the iterations saturate at different levels. It is

interesting to observe that the best results were obtained for the initial guess

k0 =
1

M

∑M
i=1 k̃(T̃i) = 2.1499 which is the algebraic mean of the values of

the true constitutive relation k̃(T ) evaluated at the “measured” temperatures.

Reconstructions k̂(T ) of the constitutive relation obtained using the Sobolev

gradients defined in (2.28) and in (2.29)–(2.30) are shown in Figures 2.8 and

2.9, respectively. We note that while the quality of the reconstruction on the

identifiability region I is comparable in the two cases, outside the identifiabil-

ity region the second approach clearly offers superior accuracy. In Figure 2.10

we show the reconstructions k̂(T ) of the constitutive relation obtained for dif-

ferent values of the constant initial guess k0 (the same values as used in Figure

2.7b). We conclude that, since the reconstructed relations are quite different,

the iterations starting from different initial guesses converge in fact to different

local minimizers. However, these differences notwithstanding, all reconstruc-

tions shown in Figure 2.10 capture the main features of the true constitutive

relation (2.43). We also emphasize that there is a range of values of the initial

guess k0 for which the quality of reconstruction is excellent (cf. Figure 2.9 and

2.10d). Next, in Figure 2.11a we show the solutions T (x; k) to problem (2.3)
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corresponding to the reconstructed conductivity k̂(T ), cf. Figure 2.9, and the

true conductivity k̃(T ), cf. (2.43), together with the measurements {T̃i}10i=1

used as data in the solution of the problem. We note excellent agreement of

the solutions obtained based on the reconstructed and measured constitutive

relations. Since the solutions T (x) corresponding to the reconstructed and

true constitutive relations cannot be distinguished in Figure 2.11a, in Figure

2.11b we show the error |T (x; k̂) − T (x; k̃)| corresponding to the reconstruc-

tion k̂ obtained using the two definitions of the Sobolev gradients given in

Section 2.3. Finally, we remark that, although the Sobolev gradients defined

in (2.28) resulted in a larger decrease of the cost functional in Figure 2.7a and

smaller errors evident in Figure 2.11b, this is in fact offset by the more fa-

vorable behavior of the Sobolev gradients defined in (2.29)–(2.30) outside the

identifiability region. Thus, this second approach will be used in the sequel to

perform reconstruction on shifted identifiability regions.

2.6.3 Reconstruction in the Presence of Noise

In this Section we first assess the effect of noise on the reconstruction with-

out Tikhonov regularization and then study the efficiency of the regulariza-

tion techniques introduced in Section 2.4. In Figure 2.12 we revisit the case

presented first in Figure 2.9, now for measurements contaminated with 1%,

3%, 5% and 10% uniformly distributed noise and without Tikhonov regu-

larization. To incorporate noise, say of ξ%, into the measurements {T̃i}Mi=1,

we replace these measurements with a new set {T̃ ξ
i }Mi=1, where the random

variables T̃ ξ
i have a uniform distribution with the mean T̃i and the standard

deviation Δξ =
1

M

∑M
i=1 T̃i ·

ξ

100%
. As expected, we see that increasing levels

of noise lead to oscillatory instabilities developing in the reconstructed con-
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Figure 2.7: (a) Decrease of the cost functional J (k(n)) with iterations n

using the Sobolev gradient ∇H1J defined (asterisks) in (2.28) and (circles)
in (2.29)–(2.30) with � = 0.2; the initial guess was k0 = 2.13, (b) decrease
of the cost functional J (k(n)) with iterations n for different initial guesses:
(diamonds) k0 = 2.5, (asterisks) k0 = 1.5, (triangles) k0 = 2, and (circles)

k0 =
1

M

∑M
i=1 k̃(T̃i) = 2.1499 obtained with the Sobolev gradients defined in

(2.29)–(2.30).
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Figure 2.8: Reconstruction k̂(T ) of the constitutive relation obtained using
the Sobolev gradients defined in (2.28) on (a) the interval L and (b) close–up
view showing the identifiability interval I(0). The dash–dotted line repre-
sents the true constitutive relation (2.43), the solid line is the reconstruction,
whereas the dashed line represents the initial guess k0 = 2.13; the vertical dot-
ted lines in the figure on the left represent the boundaries of the identifiability
interval I(0).
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Figure 2.9: Reconstruction k̂(T ) of the constitutive relation obtained us-
ing the Sobolev gradients defined in (2.29)–(2.30) on (a) the interval L and
(b) close–up view showing the identifiability interval I(0). The dash–dotted
line represents the true constitutive relation (2.43), the solid line is the recon-
struction, whereas the dashed line represents the initial guess k0 = 2.13; the
vertical dotted lines in the figure on the left represent the boundaries of the
identifiability interval I(0).
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Figure 2.10: Reconstruction k̂(T ) of the constitutive relation obtained using
different initial guesses (a) k0 = 2.5, (b) k0 = 1.5, (c) k0 = 2 and (d) k0 =
1

M

∑M
i=1 k̃(T̃i) = 2.1499, and the Sobolev gradients defined in (2.29)–(2.30).

The dash–dotted lines represent the true constitutive relation (2.43), the solid
lines are the reconstructions, whereas the dashed lines represent initial guesses;
the vertical dotted lines represent the boundaries of the identifiability interval
I(0).
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Figure 2.11: (a) Solution T (x, k) of governing equation (2.3) corresponding
to (solid line) the reconstructed constitutive relation k̂, (dashed line) the initial
guess k0 = 2.13, and (dash–dotted line) the true constitutive relation k̃; aster-
isks represent the measurement data {T̃i}10i=1, (b) the error |T (x; k̂)− T (x; k̃)|
between the solution of governing equation (2.3) corresponding to k̂ obtained
using the Sobolev gradients defined (solid line) in (2.28) and (dashed line) in
(2.29)–(2.30), and the solution corresponding to the true constitutive relation
(2.43). Irregularity visible in Figure (b) is an artefact of “log–log” plotting at
the points where the error |T (x; k̂)− T (x; k̃)| becomes close to zero.
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stitutive relations k(T ). We further observe that this instability is somewhat

less pronounced in reconstructions performed with “smoother” gradients [i.e.,

corresponding to larger values of the length–scale parameter � in (2.29a)]. This

regularizing effect of the Sobolev gradients was already discussed in [38].

The effect of the Tikhonov regularization is studied in Figure 2.13 where

we illustrate the performance of the two techniques described in Section 2.4,

cf. (2.33) and (2.35), on the reconstruction problem with 10% noise in the

measurement data (i.e., the “extreme” case presented in Figure 2.12). We

conclude that regularization with the Sobolev Ḣ1(I) term tends to give some-

what better results than regularization with the L2 term, cf. Figures 2.13(a,b)

and 2.13(c,d). In both cases, with increasing values of the regularization pa-

rameters λ1 and λ2 the reconstructed constitutive relations become smoother

at the price however of larger reconstruction errors which is a well–known

trade–off involved in Tikhonov regularization. Systematic methods for deter-

mining optimal values of regularization parameters are discussed for instance

in [40–42]. Finally, in Figure 2.14 we present the relative reconstruction errors

‖k̂ − k̃‖L1(I) / ‖k̃‖L1(I) obtained using the approaches discussed in Section 2.4

for data with different noise levels and averaged over 100 noise samples. We

note that on the whole regularization with the Sobolev Ḣ1(I) term performs

slightly better than regularization with the L2(I) term. Reconstructions em-

ploying the Sobolev gradients alone with no Tikhonov regularization produce

significantly poorer results especially for larger noise amplitudes. We close this

Section by concluding that Tikhonov regularization performs as expected in

problems with significant noise levels in the measurement data. To improve

the performance further one may use

• different norms ‖ · ‖Y(I) in (2.32),
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• different reference fields k̄(T ) and

• more rigorously chosen regularization parameters λ, cf. [40–42].

2.6.4 Reconstruction on Shifted Identifiability Intervals

In this Section we implement the approach for shifting the identifiability region

described in Section 2.5. We reiterate that the goal is to extend the range of

the state variable T on which one can accurately reconstruct the constitutive

relation so as to cover the entire interval L. As implied by Algorithm 2, we

do this by solving a sequence of reconstruction problems, each with the cost

functional, the RHS source term and boundary conditions in governing equa-

tion (2.3) chosen as described in Section 2.5. From the practical point of view,

this mimics performing a sequence of laboratory experiments, each in suitably

chosen conditions represented by g(j) and T0,(j), to generate the data for the

reconstruction process on different identifiability intervals. Results obtained

with this approach and performing shifts in one direction only, i.e., towards

larger values of T , are shown in Figures 2.15 and 2.16 for P = 12 and P = 50

shifts, respectively. The shifts were performed assuming h = 0.1 in (2.41) and

γ = 12 in (2.42). The parameter δ in (2.42) was equal to 6% and 3% of the

width of the current identifiability interval respectively in the problems with 12

and 50 shifts. All of these parameters were chosen empirically to maximize the

quality of the reconstruction. We observe that, as compared to the reconstruc-

tion performed on I(0) only, now a good estimate of the constitutive relation

k(T ) is obtained for a much broader range of T , although the quality of this re-

construction slowly degrades as the number of shifts is increased. Moreover, as

is evident from Figures 2.9b, 2.15c, and 2.16c, this is achieved at the cost of a
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Figure 2.12: Reconstruction k̂(T ) of the constitutive relation obtained using
the Sobolev gradients defined in (2.29)–(2.30) with (a,b) � = 0.2 and (c,d)
� = 0.4 and different noise levels in the measurement data: (thick solid line)
no noise, (dashed line) 1%, (dash–dotted line ) 3%, (thin solid line) 5%, and
(thick dashed line) 10%. The dashed horizontal line represents the initial
guess k0 = 2.13, whereas the vertical dotted lines in the figures on the left
represent the boundaries of the identifiability interval I(0). Figures (a) and (c)
correspond to the interval L, whereas figures (b) and (d) show a close–up view
of the identifiability interval I(0).
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Figure 2.13: Effect of Tikhonov regularization on the reconstruction from the
measurement data with 10% noise using (a,b) regularization term (2.33) and
(c,d) regularization term (2.35). In Figures (a) and (b) the following values of
the regularization parameter were used: (thick dashed line) λ1 = 0, (circles)
λ1 = 0.01, (dashed line) λ1 = 0.05, (thin solid line) λ1 = 0.1, (dash–dotted
line) λ1 = 0.2, and (dots) λ1 = 0.4. In Figures (c) and (d) the following
values of the regularization parameter were used: (thick dashed line) λ2 = 0,
(circles) λ2 = 0.001, (dashed line) λ2 = 0.003, (thin solid line) λ2 = 0.005,
(dash–dotted line) λ2 = 0.01, and (dots) λ2 = 0.02. The dashed horizontal
line represents the initial guess k0 = 2.13, whereas the vertical dotted lines in
the figures on the left represent the boundaries of the identifiability interval
I(0). Figures (a) and (c) correspond to the interval L, whereas figures (b) and
(d) show a close–up view of the identifiability interval I(0).
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Figure 2.14: Relative L1 reconstruction errors ‖k̂ − k̃‖L1(I) / ‖k̃‖L1(I) ob-
tained in the presence of noise with the amplitude indicated and averaged
over 100 samples: (dash–dotted line) reconstruction with Sobolev gradients
and without Tikhonov regularization [(circles) � = 0.2, (triangles) � = 0.4],
(dashed line) reconstruction with L2 Tikhonov regularization term (2.33)
[(circles) λ1 = 0.01, (triangles) λ1 = 0.1], and (solid line) reconstruction
with Ḣ1 Tikhonov regularization term (2.35) [(circles) λ2 = 0.005, (trian-
gles) λ2 = 0.003]. The thick dashed line represents the “error” in the exact
constitutive relation (2.43) obtained by adding noise to T .
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slight deterioration of the final reconstruction k̂(P )(T ) on the original identifia-

bility interval I(0) as compared to the reconstruction k̂(0)(T ) obtained without

any shifts. Finally, in Figure 2.17 we present the reconstruction k̂(2P )(T ) of the

constitutive relation obtained by shifting the identifiability region in both di-

rections. This is achieved by performing the shifts towards larger and smaller

values of T in an interchanging manner. The parameters used were h = 0.1,

γ = 8 and δ = 4% × [width of the current identifiability region]. We observe

that in this problem as well good reconstruction of the constitutive relation

k(T ) was obtained on the entire interval L.

2.7 Summary of Results for the Simplified Model

In this Chapter we investigated a novel computational approach to reconstruc-

tion of constitutive relations based on incomplete measurement data. This

parameter estimation problem is solved using a gradient–based optimization

technique in which the sensitivities of the cost functional with respect to the

form of the constitutive relation are computed using a suitably–defined ad-

joint system. We studied the problem in the context of the “optimize–then–

discretize” approach to PDE–constrained optimization and demonstrated how

using the Kirchhoff transformation one can obtain an expression of the cost

functional gradient more convenient from the computational point of view

than derived in earlier studies [11]. We also argued that the traditional L2

cost functional gradients are discontinuous and therefore unsuitable for recon-

struction of smooth constitutive relations. It was shown that this difficulty

can be resolved by using the Sobolev gradients defined consistently with the

functional setting of the problem in the optimization algorithm. Finally, we

proposed and validated a procedure allowing one to shift the identifiability re-
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Figure 2.15: Reconstruction k̂(P )(T ) of the constitutive relation on an union
of P = 12 shifted identifiability regions: (a) the interval L, (b) magnification
of the region where the different identifiability intervals overlap, and (c) the
initial identifiability interval I(0). The dash–dotted line represents the true

constitutive relation (2.43), the solid line is the reconstruction k̂(P )(T ) after

P = 12 shifts, whereas the dotted line represents the reconstruction k̂(0)(T )
obtained without any shifts; the vertical lines represent the boundaries of
(dotted) the interval I(0) and (solid) the interval I(12).
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Figure 2.16: Reconstruction k̂(P )(T ) of the constitutive relation on an union
of P = 50 shifted identifiability regions: (a) the interval L, (b) magnification
of the region where the different identifiability intervals overlap, and (c) the
initial identifiability interval I(0). The dash–dotted line represents the true

constitutive relation (2.43), the solid line is the reconstruction k̂(P )(T ) after

P = 50 shifts, whereas the dotted line represents the reconstruction k̂(0)(T )
obtained without any shifts; the vertical lines represent the boundaries of
(dotted) the interval I(0) and (solid) the interval I(50).
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Figure 2.17: Reconstruction k̂(2P )(T ) of the constitutive relation obtained
with the original identifiability region shifted interchangeably towards larger
and smaller values of T : (a) interval L, (b) the initial identifiability interval
I(0), and (c,d) magnification of the regions where the different identifiability
intervals overlap. The dash–dotted line represents the true constitutive rela-
tion (2.43), the solid line is the reconstruction k̂(2P )(T ) after P = 12 shifts in

each direction, whereas the dotted line represents the reconstruction k̂(0)(T )
obtained without any shifts; the vertical lines represent the boundaries of (dot-
ted) the interval I(0) and (solid) the union ∪2P

j=0I(j).
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gion, and in this way reconstruct the constitutive relation over a much broader

range of the state variable. Computational tests demonstrated the feasibility

of the proposed approach on a simple 1D model problem, and constitute a

proof of concept for the method.
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Chapter 3

Extension of the Proposed

Approach to a 2D

Time–Dependent Multiphysics

Problem

In this Chapter we extend the computational approach introduced earlier in

Chapter 2 to the reconstruction of material properties in complex multiphysics

phenomena based on incomplete and possibly noise measurements. By the

“multiphysics” aspect we mean situations in which the material property used

in one conservation equation is a function of a state variable governed by a

different conservation equation, e.g., reconstruction of the temperature depen-

dence of the viscosity coefficient used in the momentum equation, where the

temperature is governed by a separate energy equation, which is the specific

model problem investigated in this study. We preserve the way of solving such

inverse problem as to formulate it as optimization problem focusing on the

57



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

“optimize–then–discretize” paradigm in which the optimality conditions are

formulated at the continuous (PDE) level and only then discretized. The goal

of the current investigation is to extend the approach formulated in Chapter 2

for a simple model to a multiphysics problem involving time–dependent fluid

flow in a two–dimensional (2D) domain.

As a key contribution of this work we address a number of computa-

tional challenges related to accurate and efficient evaluation of cost functional

gradients which are critical to the implementation of the approach. More

specifically, these gradients are given in terms of integrals of expressions involv-

ing state and adjoint variables defined on a grid over contours given by the level

sets of the temperature field. A number of techniques have been proposed for

the numerical evaluation of integrals defined over manifolds defined by level–

set functions. Some of them rely on regularized Dirac delta and Heaviside

functions [44,45], or discretization of the Dirac delta function [46–48]. Similar

approaches based on approximations of the Dirac delta functions obtained us-

ing the level–set function and its gradient computed via finite differences were

developed by Towers [49, 50]. A family of geometric approaches, proposed by

Min and Gibou in [51,52], relies on a decomposition of the entire domain into

simplices. We emphasize that the problem discussed here is in fact more com-

plicated, as the computation of cost functional gradients requires evaluation

of the corresponding integrals for the level–set values spanning the entire state

space of interest, hence there are additional issues related to the discretization

of the state space which are outside the scope of references [44–52]. In order

to address these questions and assess the different trade–offs we will compare

the computational performance of three different methods for the evaluation

of cost functional gradients.
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3.1 Description of the Model

Let Ω ⊂ Rd, d = 2, 3, be the spatial domain on which our model problem

is formulated. To fix attention, but without loss of generality, in the present

investigation we focus on the problem of a reconstruction of the temperature

dependence of the viscosity coefficient μ : R → R+ in the momentum equation

(Navier-Stokes equation) where the temperature T is governed by a separate

energy equation (in 2D or 3D):

∂tu+ u ·∇u+∇p−∇ ·
[
μ(T )[∇u+ (∇u)T ]

]
=0 in Ω, (3.1a)

∇ · u =0 in Ω, (3.1b)

∂tT + u ·∇T −∇ · [k∇T ] =0 in Ω, (3.1c)

subject to appropriate Dirichlet (or Neumann) boundary and initial conditions

u = ub on ∂Ω, (3.2a)

T = Tb on ∂Ω, (3.2b)

u(·, 0) = u0, T (·, 0) = T0 in Ω. (3.2c)

The specific inverse problem we address in this investigation is formulated as

follows. Given a set of time–dependent “measurements” {T̃i(τ,x)}Mi=1 of the

state variable (temperature) T at a number of points {xi}Mi=1 in the domain Ω

(or along the boundary ∂Ω) and obtained within the time window τ ∈ [0, tf ],

we seek to reconstruct the constitutive relation μ = μ(T ) such that solutions

of problem (3.1) obtained with this reconstructed function will fit best the

available measurements.
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In regard to reconstruction of constitutive relations in general, it is im-

portant that such relations be consistent with the second principle of thermo-

dynamics [28]. There exist two mathematical formalisms, one due to Coleman

and Noll [29] and another one due to Liu [30], developed to ensure in a very

general setting that a given form of the constitutive relation does not violate

the second principle of thermodynamics. In continuous thermodynamical and

mechanical systems this principle is expressed in terms of the Clausius–Duhem

inequality [31] which in the case of our present model problem (3.1)–(3.2) re-

duces to the statement that μ(T ) > 0 for all values of T .

In our discussion below we will also need definitions of the following

intervals, cf. Figure 3.1:

• [Tα, Tβ] � [minx∈Ω T (x),maxx∈Ω T (x)] which represents the temperature

range spanned by the solution of problem (3.1); thus, following [19], we

will refer to the interval I � [Tα, Tβ] as the identifiability interval,

• L � [Ta, Tb], where Ta ≤ Tα and Tb ≥ Tβ ; this will be the temperature

interval on which we will seek to obtain a reconstruction of the material

property; we note that in general the interval L will be larger than the

identifiability interval, i.e., I ⊆ L, and

• M � [min1≤i≤M min0<t≤tf T̃i(t),max1≤i≤M max0<t≤tf T̃i(t)] which defines

the temperature range spanned by the measurements {T̃i}Mi=1; this inter-

val is always contained the identifiability interval I, i.e., M ⊆ I; we will

refer to the interval M as the measurement span.
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Figure 3.1: Schematic showing (left) the solution T (t0, x) at some fixed time
t0 and (right) the corresponding constitutive relation μ(T ) defined over their
respective domains, i.e., Ω = (−1, 1) and the identifiability region I. The
thick dotted line represents the extension of the constitutive relation μ(T )
from I to the interval L. In the Figure on the right the horizontal axis is to
be interpreted as the ordinate.

3.2 Statement of Optimization Problem

3.2.1 Parameter Estimation as an Optimization Prob-

lem

It is assumed that the constitutive relations μ(T ) are differentiable functions

of the state variable (temperature) and belong to the following set

Sμ = {μ(T ) piecewise C1 on L; 0 < mμ ≤ μ(T ) ≤Mμ, ∀T ∈ L}, (3.3)

where mμ,Mμ ∈ R+. We will also assume that the set Sμ consisting of consti-

tutive relations μ(T ) defined on L is embedded in a Hilbert (function) space X

to be specified below. Solving our parameter estimation problem is therefore
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equivalent to finding a solution to the operator equation

F(μ) = T, (3.4)

where F : Sμ → L2(Ω) is the map from the constitutive relations to the

measurements. An approach commonly used to solve such problems consists

in reformulating them as least–squares minimization problems which in the

present case can be done by defining the cost functional J : X → R as

J (μ) � 1

2

∫ tf

0

M∑
i=1

[
T (τ,xi;μ)− T̃i(τ)

]2
dτ, (3.5)

where the dependence of the temperature field T (·;μ) on the form of the

constitutive relation μ = μ(T ) is given by governing system (3.1). We will

assume that the functions μ = μ(T ) characterizing the constitutive relation

are defined for T ∈ L and belong to a Hilbert (function) space X . The optimal

reconstruction μ̂ is obtained as an unconstrained minimizer of cost functional

(3.5), i.e.,

μ̂ = argmin
μ∈X

J (μ). (3.6)

We recall that the constitutive property is required to satisfy the additional

positivity condition μ(T ) > 0 for all T ∈ L. Therefore, the optimal recon-

struction μ̂ should in fact be obtained as an inequality–constrained minimizer

of cost functional (3.5), i.e.,

μ̂ = argmin
μ∈X ,

μ(T )>0, T∈L

J (μ). (3.7)
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We add that in problems involving constitutive relations depending on sev-

eral state variables the inequality constraint μ(T ) > 0 will be replaced with a

more general form of the Clausius–Duhem inequality [31]. Different computa-

tional approaches for converting inequality–constrained optimization problems

to unconstrained formulations are surveyed in [4,34]. Here we follow a straight-

forward approach based on the so-called “slack” variable [53]. We define a new

function θ(T ) : R → R such that

μ(T ) = θ2(T ) +mμ, (3.8)

where mμ is a lower bound for μ(T ), cf. (3.3). This change of variables allows

us to transform the inequality–constrained optimization problem (3.7) to a

new unconstrained one

θ̂ = argmin
θ∈X

J (θ) (3.9)

where the constraint μ(T ) > 0 is satisfied automatically when minimization is

performed with respect to the new variable θ(T ). In a view of (3.3), we note

that the new optimization variable θ belongs to the following set

Sθ = {θ(T ) piecewise C1 on L; |θ(T )| <
√
Mμ −mμ, ∀T ∈ L}. (3.10)
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The governing PDE system (3.1) can thus be rewritten in the form

∂tu+ u ·∇u+∇p−∇ ·
[
(θ2(T ) +mμ)[∇u+ (∇u)T ]

]
= 0 in Ω,

(3.11a)

∇ · u = 0 in Ω,

(3.11b)

∂tT + u ·∇T −∇ · [k∇T ] = 0 in Ω,

(3.11c)

subject to Dirichlet boundary and initial conditions (3.2). The new problem

(3.9) requires redefining cost functional (3.5) in terms of the new variable

J (θ) � 1

2

∫ tf

0

M∑
i=1

[
T (xi; θ)− T̃i

]2
dτ. (3.12)

Problem (3.9) is characterized by the first–order optimality condition which

requires the Gâteaux differential of cost functional (3.12), defined as J ′(θ; θ′) =

limε→0 ε
−1[J (θ + εθ′)− J (θ)], to vanish for all perturbations θ′ ∈ X [32], i.e.,

∀θ′∈X J ′(θ̂; θ′) = 0. (3.13)

The (local) optimizer θ̂ can be computed with the following gradient descent

algorithm as θ̂ = limn→∞ θ(n), where

⎧⎨
⎩
θ(n+1) = θ(n) − τ (n)∇θJ (θ(n)), n = 1, . . . ,

θ(1) = θ0,
(3.14)

in which ∇θJ (θ) represents the gradient of cost functional J (θ) with respect

to the control variable θ (we will adopt the convention that a subscript on
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the operator ∇ will be used when differentiation is performed with respect

to variables other than x), τ (n) is the length of the step along the descent

direction at the n–th iteration, whereas θ0 =
√
μ0 −mμ is the initial guess

taken, for instance, corresponding to a constant μ0, or some other approximate

theoretical prediction. For the sake of clarity, formulation (3.14) represents

the steepest–descent algorithm, however, in practice one typically uses more

advanced minimization techniques, such as the conjugate gradient method, or

one of the quasi–Newton techniques [33]. We note that, since minimization

problem (3.9) is in general nonconvex, condition (3.13) characterizes only a

local, rather than global, minimizer.

The key ingredient of minimization algorithm (3.14) is computation

of the cost functional gradient ∇θJ (θ). We emphasize that, since θ = θ(T )

is a continuous variable, the gradient ∇θJ (θ) represents in fact an infinite–

dimensional sensitivity of J (θ) to perturbations of θ(T ). This gradient can be

determined based on suitably defined adjoint variables (Lagrange multipliers)

obtained from the solution of the corresponding adjoint system. Since this

derivation differs in a number of imported technical details from analogous

derivations in “standard” PDE–constrained optimization problems, it will be

reviewed in Section 3.2.2. The expression for the gradient is then validated for

consistency in Section 4.3.

3.2.2 Cost Functional Gradients via Adjoint–based Anal-

ysis

Since the new variable θ(T ) belongs to set Sθ, cf. (3.10), we will seek to re-

construct θ(T ) as elements of the Sobolev space H1(L), so that the gradient

∇θJ will need to be obtained with respect to the corresponding inner product.
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However, in order to make the derivation procedure easier to follow, we will

first obtain an expression for the gradient in the space L2(L), and only then

will obtain the Sobolev gradients which will be eventually used in the solution

of optimization problem (3.9). In all these steps our transformations will be

formal. We begin by computing the directional (Gâteaux) differential of cost

functional (3.12) which yields

J ′(θ; θ′) =
∫ tf

0

M∑
i=1

[T (xi; θ)− T̃i]T
′(xi; θ, θ

′)dτ, (3.15)

where the perturbation variable T ′(xi; θ, θ
′) satisfies the perturbation system

obtained from (3.11). Next, we invoke the Riesz representation theorem [35]

for the directional differential J ′(θ; ·), which yields

J ′(θ; θ′) =
〈
∇θJ , θ′

〉
X
, (3.16)

where 〈·, ·〉X represents an inner product in the Hilbert space X (we will first

set X = L2(L) and afterwards change that to X = H1(L)). We note that

the expression on the right–hand side (RHS) in (3.15) is not consistent with

Riesz representation (3.16), since, as will be shown below, the perturbation

variable θ′ is hidden in the system defining T ′(θ, θ′). However, this expression

can be transformed to Riesz form (3.16) with the help of a suitably–defined

adjoint variable which is stated in the form of the following theorem. The main

aspect in which this derivation differs from standard adjoint analysis [6] is that

the inner product in Riesz identity (3.16) is defined using the state variable

(temperature) as the integration variable, whereas the variational formulation

is defined using integration with respect to the independent variables (x and

t).
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Theorem 3.1 Let Ω be a sufficiently regular open bounded domain and θ′ ∈

X = H1(L). We assume that the solutions u and T of (3.11) are sufficiently

smooth. Then, the Riesz representation of directional differential (3.15) has

the form

J ′(θ; θ′) = −2

∫ ∞

−∞

∫
Ω

δ(T (x)−s) θ(s)
[∫ tf

0

[∇u+ (∇u)T ] : ∇u∗ dτ
]
θ′(s) dx ds,

(3.17)

where δ(·) denotes Dirac delta function and the adjoint state {u∗, T ∗} is defined

as the solution of the system

−∂tu∗ − u ·∇u∗ −∇ · σ∗ + u∗ · (∇u)T + T ∗∇T = 0 in Ω,

(3.18a)

∇ · u∗ = 0 in Ω,

(3.18b)

−∂tT ∗ − u ·∇T ∗ −∇ · [k∇T ∗] + 2θ(T )
dθ

dT
(T )[∇u+ (∇u)T ] : ∇u∗

=

M∑
i=1

[T (xi; θ)− T̃i]δ(x− xi) in Ω,

(3.18c)

where σ∗ � −p∗I+(θ2(T )+mμ)
[∇u∗ + (∇u∗)T

]
, with the following boundary

and terminal conditions

u∗ = 0 on ∂Ω,

T ∗ = 0 on ∂Ω,

u∗(·; tf) = 0, T ∗(·; tf) = 0 in Ω.

(3.19)
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Proof. We will denote the stress tensor σ � −pI+(θ2(T )+mμ)
[∇u+ (∇u)T ]

]
and rewrite the governing system (3.11) as

∂tu+ u ·∇u−∇ · σ = 0 in Ω,

∇ · u = 0 in Ω,

∂tT + u ·∇T −∇ · [k∇T ] = 0 in Ω

(3.20)

with the boundary and initial conditions as described previously in (3.2). Per-

turbing the state variables u, p and T , which are functions of time and space,

we get

u = u0 + εu′ +O(ε2),

p = p0 + εp′ +O(ε2),

T = T0 + εT ′ +O(ε2),

(3.21)

so that the corresponding expansion of the constitutive relation θ(T ) will have

the following form

θ(T ) = θ0(T )+ εθ
′(T )+O(ε2) = θ0(T0)+ ε

dθ

dT
(T0) T

′+ εθ′(T0)+O(ε2), (3.22)

where the subscript “0” is used to denote the unperturbed (reference) material

property, whereas the prime denotes the corresponding perturbation. We also

have

θ2(T ) = θ20(T0) + 2εθ0(T0)
dθ

dT
(T0) T

′ + 2εθ0(T0)θ
′(T0) +O(ε2). (3.23)
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Substituting (3.21) and (3.23) into (3.20), collecting terms corresponding to ε

in different powers and denoting

σ̂ � −p′I + (θ2(T ) +mμ)
[∇u′ + (∇u′)T

]
σ̃ �

(
2θ(T )

dθ

dT
(T ) T ′ + 2θ(T ) θ′(T )

)[∇u+ (∇u)T
]
,

we now obtain the perturbation (sensitivity) system corresponding to (3.11)

∂tu
′ + u′ ·∇u+ u ·∇u′ −∇ · (σ̂ + σ̃) = 0 in Ω, (3.24a)

∇ · u′ = 0 in Ω, (3.24b)

∂tT
′ + u′ ·∇T + u ·∇T ′ −∇ · [k∇T ′] = 0 in Ω, (3.24c)

with the following boundary and initial conditions

u′ = 0 on ∂Ω, (3.25a)

T ′ = 0 on ∂Ω, (3.25b)

u′(·, 0) = 0, T ′(·, 0) = 0 in Ω. (3.25c)

Then, integrating equation (3.24a) against u∗, equation (3.24b) against p∗,

and equation (3.24c) against T ∗ over the space domain Ω and time [0, tf ],

integrating by parts and factorizing u′, T ′ and p′, we arrive at the following
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relation

∫ tf

0

∫
Ω

[
−∂tu∗ + u∗ · (∇u)T − u ·∇u∗ −∇ · σ∗ + T ∗∇T

]
· u′dx dτ

−
∫ tf

0

∫
Ω

(∇ · u∗)p′dx dτ

+

∫ tf

0

∫
Ω

[
− ∂tT

∗ − u ·∇T ∗ −∇ · (k∇T ∗)

+ 2θ(T )
dθ

dT
(T )[∇u+ (∇u)T ] : ∇u∗

]
T ′dx dτ

+

∫ tf

0

∫
Ω

2θ(T )θ′(T )[∇u+ (∇u)T ] : ∇u∗dx dτ = 0.

(3.26)

We now require that the adjoint variables u∗, p∗ and T ∗ satisfy system (3.18)–

(3.19). We also note that owing to the judicious choice of the RHS term

in (3.18c), the last term in relation (3.26) is in fact equal to the directional

differential J ′(θ; θ′), so that we have

J ′(θ; θ′) =

− 2

∫ tf

0

∫
Ω

θ(T (x, τ))θ′(T (x, τ)) [∇u(x, τ) + (∇u(x, τ))T ] : ∇u∗(x, τ) dx dτ,

(3.27)

where, for emphasis, we indicated the integration variables as arguments of

the state and adjoint variables. We note that this expression is still not in

Riesz form (3.16), where integration must be performed with respect to the

state variable (temperature T ). Thus, we proceed to express for any given

function f(T ) its pointwise evaluation at T (x) through the following integral

transform. We define a “change–of–variable” operator, denoted Π, such that

for given functions f : R → R and T : Ω → R, we have

f(T (x)) =

∫ +∞

−∞
δ(T (x)− s)f(s) ds � (Πf)(x). (3.28)
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Using this transform to express f(T (x)) = θ(T (x, τ))θ′(T (x, τ)) in (3.27) and

changing the order of integration (Fubini’s Theorem) we obtain expression

(3.17) which is the required Riesz representation (3.16) of directional differen-

tial (3.15). �
We remark that we were able to prove an analogous result using a

simpler approach based on the Kirchhoff transform in Chapter 2, where both

the constitutive relation and the state variable were governed by the same

equation (i.e. the problem was not of the “multiphysics” type). We also add

that even though the result proved in the Theorem 3.1 is a bit similar to the

results obtained by means of Theorem 2.1 in Chapter 2, the method we used

here for the proof is in fact quite different as the Kirchhoff transform is not

possible in a view of the current multiphysics problem.

With the Riesz representation established in (3.17), we now proceed to

identify expressions for the cost functional gradient ∇θJ according to (3.16)

using different spaces X . While this is not the gradient that we will use in

actual computations, we analyze first the “simplest” case when X = L2(L),

i.e., the space of functions square integrable on [Ta, Tb], as it already offers

some interesting insights into the structure of the problem. The L2 gradient

of the cost functional hence takes the form

∇L2
θ J (s) = −2

∫ tf

0

∫
Ω

δ(T (x)− s) θ(s) [∇u+ (∇u)T ] : ∇u∗ dx dτ. (3.29)

As was discussed at length in Section 2, the L2 gradients are not suitable for the

reconstruction of material properties in the present problem, because in addi-

tion to lacking necessary smoothness, they are not defined outside the identifia-

bility region (other than perhaps through a trivial extension with zero). Given

the regularity required of the constitutive relations, cf. (3.10), the cost func-
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tional gradients should be elements of the Sobolev space H1(L) of functions

with square–integrable derivatives on L. Using (3.16), now with X = H1(L),

we obtain

J ′(θ; θ′) = 〈∇L2
θ J , θ′〉L2(L) = 〈∇H1

θ J , θ′〉H1(L)

=

∫ Tb

Ta

[
∇H1

θ J θ′ + �2
d(∇H1

θ J )

ds

dθ′

ds

]
ds

(3.30)

in which � ∈ R is a parameter with the meaning of a length–scale [we note

that the L2 inner product is recovered by setting � = 0 in (3.30)]. Performing

integration by parts with the assumption that the Sobolev gradient ∇H1

θ J

satisfies the homogeneous Neumann boundary conditions at T = Ta, Tb and

noting that relation (3.30) must be satisfied for any arbitrary θ′, we conclude

that the Sobolev gradient can be determined as a solution of the following

inhomogeneous elliptic boundary–value problem where the state variable acts

as the independent variable

∇H1

θ J − �2
d2

ds2
∇H1

θ J = ∇L2

θ J on (Ta, Tb), (3.31a)

d

ds
∇H1

θ J = 0 for s = Ta, Tb. (3.31b)

We recall that by changing the value of the length–scale parameter � we can

control the smoothness of the gradient ∇H1

θ J (θ), and therefore also the rel-

ative smoothness of the resulting reconstruction of θ(T ), and hence also the

regularity of μ(T ). More specifically, as was discussed earlier at the end of Sec-

tion 2.3, extracting cost functional gradients in the Sobolev spaces Hp, p > 0,

is equivalent to applying a low–pass filter to the L2 gradient with the quantity

� representing the “cut-off” length scale. There are also other ways of defining

the Sobolev gradients in the present problem which result in gradients charac-

terized by a different behavior outside the identifiability region. As we stated
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earlier, these methods can be interpreted as a special case of data extrapolation,

as no additional measurement data is provided to construct Sobolev gradients

∇H1

k J (k). These approaches were thoroughly investigated in Chapter 2, and

since they typically lead to inferior results, they will not be considered here.

We finally conclude that iterative reconstruction of the constitutive relation

μ(T ) involves the following computations

1. solution of direct problem (3.11) with boundary and initial conditions

(3.2),

2. solution of adjoint problem (3.18)–(3.19),

3. evaluation of expression (3.29) for the cost functional gradient,

4. computation of the smoothed Sobolev gradients by solving (3.31).

While steps (1), (2) and (4) are fairly straightforward, step (3) is not and will

be thoroughly investigated in Section 3.3.1. We finally conclude that itera-

tive reconstruction of the constitutive relation μ(T ) involves the computations

described in detail in Algorithm 3.

As we discussed in detail in Chapter 2, while the Sobolev gradient

∇H1

θ J may be defined on an arbitrary interval L ⊃ I, the actual sensitivity

information is essentially available only on the identifiability interval I (see

Figure 3.1). In other words, extension of the gradient outside I via (3.31)

does not generate new sensitivity information. Since, as demonstrated by our

computational results reported in Chapter 2, such techniques are not capa-

ble of accurately reconstructing the relation μ(T ) on an interval larger than

the identifiability region, here we mention a different possibility to “extend”

the identifiability region, so that the relation μ(T ) can be reconstructed on a

larger interval. This can be done simply by choosing suitable time–dependent
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Algorithm 3 Algorithm for reconstructing μ(T ) on a single identifiability
interval I
• set n = 0

• setup μ0 as the initial guess

• compute θ0 using change of variable formula (3.8)

repeat

• set n = n + 1

• obtain the solution of direct problem (3.11) with boundary and initial

conditions (3.2)

• obtain the solution of adjoint problem (3.18)–(3.19)

• compute the cost functional gradient ∇L2
θ J (θ(n)) following (3.29)

• compute the cost functional gradient ∇H1

θ J (θ(n)) following the precon-

ditioning scheme (3.31)

• determine step length τ (n) in (3.14) via line minimization

• update the reconstructed property θ(n) following gradient descent algo-

rithm (3.14)

until the termination condition on θ(n) is satisfied

• compute the final reconstruction μ̂(T ) based on θ(n) using (3.8)

boundary conditions for temperature Tb in (3.2b), so that one can have es-

sentially any arbitrary identifiability region I and the measurement span M.

Computational results illustrating the performance of our approach with dif-

ferent identifiability regions will be presented in Section 4.4.1. We remark

that extending the identifiability region in this way is not possible in time–

independent problems where more computational iterative approaches have to

be used, cf. Chapter 2.
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3.2.3 Reconstruction in the Presence of Measurement

Noise

In this Section we discuss the important issue of reconstruction in the presence

of noise in the measurements. As can be expected based on the general proper-

ties of parameter estimation problems [5], and as will be confirmed in Section

4.4.2, incorporation of random noise into the measurements leads to an in-

stability in the form of small–scale oscillations appearing in the reconstructed

constitutive relations. In the optimization framework a standard approach to

mitigate this problem is Tikhonov regularization [40] in which original cost

functional (3.12) is replaced with a regularized expression of the form

Jλ(θ) � J (θ) +
λ

2

∥∥θ − θ̄
∥∥2
Y(I), (3.32)

where λ ∈ R+ is an adjustable regularization parameter, θ̄(T ) represents a

constitutive relation which our reconstruction θ(T ) should not differ too much

from, whereas ‖ · ‖Y(I) is the Hilbert space norm in which we measure the

deviation (θ − θ̄). Thus, the regularization term in (3.32), i.e., the second

one on the RHS, involves some additional information which needs to be

specified a priori, namely, the choice of the reference relation θ̄(T ) and the

space Y(I). As regards the reference function θ̄(T ), one natural possibility

is to consider a constant value corresponding to a constant material prop-

erty, and this is the solution we will adopt below. We recall here that θ(T )

is in fact a “slack” variable and is related to the actual constitutive relation

via (3.8). As regards the choice of the space Y(I), we will follow the dis-

cussion in Chapter 2 and consider a regularization term involving derivatives,

namely Y(I) = Ḣ1(I), where Ḣ1(I) denotes the Sobolev space equipped with
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the semi–norm ‖z‖Ḣ1(I) �
∫ Tβ

Tα

(
∂z
∂s

)2
ds, ∀z∈H1(I); the regularization term in

(3.32) then becomes

λ

2

∥∥θ − θ̄
∥∥2
Ḣ1(I) =

λ

2

∫ Tβ

Tα

(
dθ

ds
− dθ̄

ds

)2

ds (3.33)

yielding the following L2 gradient of the regularized cost functional

∇L2
θ Jλ(s) =− 2

∫ tf

0

∫
Ω

δ(T (x)− s) θ(s) [∇u+ (∇u)T ] : ∇u∗ dx dτ

+ λ

{
dθ

ds
[δ(s− Tβ)− δ(s− Tα)]−

d2θ

ds2

}
.

(3.34)

We remark that in obtaining (3.34) integration by parts was applied to the

directional derivative of the regularization term. Expression (3.34) can now

be used to compute the Sobolev gradients as discussed in Section 3.2.2. We

add that penalty term (3.33) is defined on the identifiability interval I which

is contained in the interval L on which the Sobolev gradients are computed.

Computational tests illustrating the performance of the Tikhonov regulariza-

tion on a problem with noisy data will be presented in Section 4.4.2. In that

Section we will also briefly analyze the effect of the regularization parameter

λ. We add that the stability and convergence of Tikhonov regularization us-

ing the Sobolev norm H1 in the regularization term and applied to an inverse

problem with similar mathematical structure, but formulated for a simpler

PDE than (3.1), was established rigorously in [19].
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3.3 Computational Aspects

3.3.1 Numerical Approaches to Gradient Evaluation

Without loss of generality, hereafter we will focus our discussion on the 2D

case. For some technical reasons we will also assume that

∀t∈[0,tf ] meas {x ∈ Ω, |∇T (t,x)| = 0} = 0, (3.35)

i.e., that temperature gradient may not vanish on subregions with finite area.

(This assumption is naturally satisfied when the temperature evolution is gov-

erned by equation of the parabolic type (3.1c).

A key element of reconstruction algorithm (3.14) is evaluation of the

cost functional gradients given, in the L2 case, by expression (3.29). The

difficulty consists in the fact that, for every value of s (i.e., the dependent

variable), one has to compute a line integral defined on the level set

Γs � {x ∈ Ω, T (x) = s} (3.36)

of the temperature field T (x). The integrand expression in such integrals is

given in terms of solutions of the direct and adjoint problems (3.1)–(3.2) and

(3.18)–(3.19) which are approximated on a grid. As will be shown below, this

problem is closely related to approximation of one–dimensional Dirac measures

in Rd, an issue which has received some attention in the literature [44–52]. We

will compare different computational approaches to this problem, and in order

to better assess their accuracy, we will first test them on the generic expression

f(s) =

∫
Ω

δ(φ(s,x))g(x) dx (3.37)
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for which the actual formula for the cost functional gradient (3.29) is a spe-

cial case (except for the time integration). In (3.37) the function φ(s,x) :

R × Ω → R represents the field whose s-level sets define the contours of

integration Γs, whereas the function g(x) : Ω → R represents the actual in-

tegrand expression. We note that by setting φ(s,x) = T (x) − s, g(x) =

2θ(T (x))[∇u(x)+ (∇u(x))T ] : ∇u∗(x) and adding time integration in (3.37),

we recover the original expression (3.29) for the cost functional gradient. We

emphasize, however, that the advantage of using (3.37) with some simple

closed–form expressions for φ(s,x) and g(x) as a testbed is that this will

make our assessment of the accuracy of the proposed methods independent of

the accuracy involved in the numerical solution of the governing and adjoint

PDEs (needed to approximate u, T and u∗).

In anticipation of one of the proposed numerical approaches, it is useful

to rewrite (3.37) explicitly as a line integral

f(s) =

∫
Γs

g(x)

|∇φ| dσ (3.38)

which is valid provided |∇φ| �= 0 for every x ∈ Γs (proof of the equivalence

of expressions (3.37) and (3.38) is provided in Appendix C). Formula (3.38)

makes it clear that for a fixed value of s expression (3.29) for the cost func-

tional gradient can be interpreted as a sum of line integrals defined on the

instantaneous s–level sets of the temperature field T (t,x).

The problem of accurate numerical evaluation of the expressions given

by either (3.37) or (3.38) has received much attention, especially since the

invention of the level-set approach by Osher and Sethian [54]. Traditionally,

the problem of integration over codimension–1 manifolds defined by a level–set

function φ(x) is studied in terms of the numerical evaluation of either the left–
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hand side or right–hand side expression in the following relation, analogous to

(3.37)–(3.38),

∫
Γ: φ(x)=0

h(x)dσ =

∫
Ω

δ(φ(x))|∇φ(x)|h(x) dx, (3.39)

where, by absorbing the factor |∇φ(x)|−1 into the definition of the function

h : Ω → R, one bypasses the problem of the points x ∈ Γs where |∇φ(x)| = 0.

These approaches fall into two main groups:

A reduction to a line (contour) integral, cf. (3.38), or the left–hand side of

(3.39), and

B evaluation of an area integral, cf. (3.37), or the right–hand side of (3.39).

In the context of this classification, the methods of geometric integration de-

veloped by Min and Gibou [51, 52] fall into the first category. This approach

is based on decomposing the domain Ω into simplices, which in the simplest

2D case can be achieved via a regular triangulation, and then approximating

the level–sets given by φ(x) = 0 with piecewise splines inside each simplex.

Expression (3.38) then breaks up into a number of definite integrals which can

be evaluated using standard quadratures.

In practice, however, area integration techniques seem to have become

more popular. One family of such techniques relies on regularization δε of

the Dirac delta function with a suitable choice of the regularization parameter

ε which characterizes the size of the support. While in the simplest case

in which the parameter ε is determined based on the mesh size the error is

O(1) [45], recently developed approaches [44, 45] achieve higher accuracy by

adjusting ε based on the local gradient |∇φ| of the level–set function. Another

family of area integration approaches is represented by the work of Mayo [47]
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further developed by Smereka [46] where an approximation δ̃ of the Dirac

delta function is obtained by analyzing the truncation error resulting from the

application of the discrete Laplacian to Green’s function. This approach can

also be regarded as yet another way to regularize delta function δ(φ(x)) using

a fixed compact support in the one–dimensional (1D) space of values φ(x). In

the second group of approaches we also mention consistent approximations to

delta function obtained by Towers in [49, 50] using the level–set function and

its gradient computed via finite differences.

In our present reconstruction problem, we have to evaluate the gradi-

ent expression (3.29) for the whole range of T ∈ L, hence the discretization

of the interval L will also affect the overall accuracy of the reconstruction,

in addition to the accuracy characterizing evaluation of the gradient for a

particular value of T . This is an aspect of the present problem which is out-

side the scope of earlier investigations concerning evaluation of the contour

integrals of grid–based data [44–52]. Thus, we need to understand how the

interplay of the discretizations of the physical space Ω and the state space s

affects the accuracy of the reconstruction the respective step sizes will denoted

h and hT . In principle, one could also consider the effect of discretizing the

time interval [0, tf ], however, the corresponding step size is linked to h via the

CFL condition, hence this effect will not be separately analyzed here. There

are also questions concerning the computational complexity of the different

approaches. Therefore, we will consider the following three methods to eval-

uate expression (3.37), or equivalently (3.38), which are representative of the

different approaches mentioned above

#1 line integration over approximate level sets which is a method from group

A based on a simplified version of the geometric integration developed
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by Min and Gibou in [51, 52],

#2 approximation of Dirac delta measures developed by Smereka in [46]

which is an example of a regularization technique and utilizes the area

integration strategy group B, and

#3 approximation of contour integrals with area integrals, a method which

also belongs to group B and combines some properties of regularization

and discretization of Dirac delta measures discussed above [44–46]; more

details about this approach, including an analysis for its accuracy, are

provided in Section 3.3.1.

To fix attention, we now introduce two different finite–element (FEM)

discretizations of the domain Ω

• using triangular elements Ω�
i , i = 1, . . . , N�, such that

Ω =

N�⋃
i=1

Ω�
i , and (3.40)

• quadrilateral elements Ω�
i , i = 1, . . . , N�, such that

Ω =

N�⋃
i=1

Ω�
i , (3.41)

where N� and N� are the total numbers of the elements for each type of

discretization (in case of uniform triangulation one has N� = 2N�). In our

computational tests we will assume that the functions φ(s,x) and g(x) are

given either analytically or in terms of the following FEM representations

φ(s,x)|Ω�
i
= Σ3

k=1φ
i
kψ

i
k(x), g(x)|Ω�

i
= Σ3

k=1g
i
kψ

i
k(x), i = 1, . . . , N�, (3.42)
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φ(s,x)|Ω�
i
= Σ4

k=1φ
i
kψ

i
k(x), g(x)|Ω�

i
= Σ4

k=1g
i
kψ

i
k(x), i = 1, . . . , N�, (3.43)

where φi
k and gik are the given nodal values of the functions φ(s,x) and g(x),

whereas ψi
k(x) are the basis functions (linear in (3.42) and bilinear in (3.43)

[55]). We also discretize reconstruction interval (solution space) L = [Ta, Tb]

with the step size hT as follows

Ti = Ta + i hT , i = 0, . . . , NT , hT =
Tb − Ta
NT

. (3.44)

Line Integration Over Approximate Level Sets

This approach is a variation of the geometric integration technique developed

by Min and Gibou [51, 52]. The main idea behind both methods is decompo-

sition of the domain Ω into simplices, which in our simplest 2D case is repre-

sented by triangulation (3.40), and then approximating the level-sets given by

φ(s,x) = 0 with piecewise linear splines inside each simplex (triangle). While

in the geometric integration approach of Min and Gibou uses linear interpola-

tion to refine locally the simplices which contain the level sets φ(s,x) = 0 and

then the second–order midpoint rule for approximating line integrals over the

selected simplices, in the present method we employ these approximations of

the level–sets to reduce line integral (3.38) to a 1D definite integral which is

then evaluated using standard quadratures.

The starting point for this approach is formula (3.38). For a fixed value

of s the corresponding level set can be described as

Γs =

M(s)⋃
j=1

Γj
s, (3.45)

where Γj
s ⊂ Ω�

j and M(s) is the total number of the finite elements containing
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segments of the level set Γs. We thus need to approximate
∫
Γj
s

g(x)

|∇φ(s,x)| dσ,

i.e., the line integral over the part of the level–set curve contained in the j-

th finite element Ω�
j . In view of (3.42) the integrand expression �(s,x) �

g(x)

|∇φ(s,x)| can be approximated as

�̃(s,x)|Ω�
i

∼= Σ3
k=1�

i
kψ

i
k(x),

where �ik are the known nodal values of the function �(s,x). An approximation

Γ̃j
s of the part of the level–set Γj

s corresponding to the j-th finite element can

be obtained in an explicit form y = y(x), x ∈ [x′, x′′], or a parameterized

form x = x(t), y = y(t) with t ∈ [t′, t′′], based on representation (3.42) of the

level–set function φ(s,x). This leads to the following two possible reductions

of the line integral to a definite integral

∫
Γ̃j
s

�̃(s,x)dσ =

∫ x′′

x′
�̃(x, y(x))

√(
dy

dx

)2

+ 1 dx (3.46a)

∫
Γ̃j
s

�̃(s,x)dσ =

∫ t′′

t′
�̃(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt (3.46b)

which can be evaluated using standard quadratures for 1D definite integrals.

We then have

f(s) ≈ Σ
M(s)
j=1

∫
Γ̃j
s

�̃(s,x) dσ. (3.47)

We note that the accuracy of this approach is mainly determined by the order

of integration used to represent the level set Γ̃j
s and the integrand expression

�̃(s,x) which tend to depend on the type of the finite element (simplex) used

[55]. (The error of the quadrature employed to evaluate (3.46) does not have

a dominating effect.) As was mentioned in [51], the use of triangulation (3.40)
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together with linear interpolation of φ(s,x) and �(s,x) results in the second–

order accuracy of this method.

Approximation of Dirac Delta Measures

This approach has formula (3.37) for its starting point and relies on a discrete

approximation of the Dirac delta function obtained by Smereka in [46]. It is

derived via truncation of the discrete Laplacian of the corresponding Green’s

function. Suppose the domain Ω is covered with a uniform Cartesian grid

corresponding to (3.41), i.e., xi = x0 + ih, yj = y0 + jh, where i, j are integer

indices, x0, y0 ∈ R and h is the step size. The first–order accurate approxima-

tion of the discrete Dirac delta function at the node (xi, yj) is

δ̃(φi,j) = δ̃
(+x)
i,j + δ̃

(−x)
i,j + δ̃

(+y)
i,j + δ̃

(−y)
i,j , (3.48)

where

δ̃
(+x)
i,j �

⎧⎪⎨
⎪⎩

|φi+1,jD
0
xφi,j|

h2|D+
x φi,j||∇ε

0φi,j|
if φi,jφi+1,j ≤ 0,

0, otherwise,

δ̃
(−x)
i,j �

⎧⎪⎨
⎪⎩

|φi−1,jD
0
xφi,j|

h2|D−
x φi,j||∇ε

0φi,j|
if φi,jφi−1,j < 0,

0, otherwise,

δ̃
(+y)
i,j �

⎧⎪⎪⎨
⎪⎪⎩

|φi,j+1D
0
yφi,j|

h2|D+
y φi,j||∇ε

0φi,j|
if φi,jφi,j+1 ≤ 0,

0, otherwise,

δ̃
(−y)
i,j �

⎧⎪⎪⎨
⎪⎪⎩

|φi,j−1D
0
yφi,j|

h2|D−
y φi,j||∇ε

0φi,j|
if φi,jφi,j−1 < 0,

0, otherwise,
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where for the discretized level set function φi,j � φ(s, xi, yj) we have the fol-

lowing definitions

D+
x φi,j �

φi+1,j − φi,j

h
, D−

x φi,j �
φi,j − φi−1,j

h
, D0

xφi,j �
φi+1,j − φi−1,j

2h

and

|∇ε
0φi,j| �

√
(D0

xφi,j)2 + (D0
yφi,j)2 + ε,

in which ε � 1 is used for regularization. The expressions D+
y φi,j, D

−
y φi,j,

D0
yφi,j are defined analogously. Using the definition of the discrete delta func-

tion from (3.48), the value f(s) in (3.37) can be thus approximated in the

following way

f(s) ≈ h2
∑
i,j

δ̃i,j gi,j, (3.49)

where gi,j are the nodal values of the function g(x). We note that this method

was validated in [46] exhibiting the theoretically predicted first order of ac-

curacy only in cases in which the level sets Γs do not intersect the domain

boundary ∂Ω, a situation which may occur in the present reconstruction prob-

lem.

Approximation of Contour Integrals with Area Integrals

Our third method, in which the level–set integral (3.37) is approximated with

an area integral defined over a region containing the level set Γs, cf. (3.36), is

a new approach and will be presented in some detail here. It consists of the

following three steps

1. for a fixed value of the state variable s = Ti we define the interval
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[Ti− 1
2
, Ti+ 1

2
] = [s− 1

2
hT , s+

1
2
hT ] ⊂ L; then we have

f(s) ≈ 1

hT

∫ s+ 1
2
hT

s− 1
2
hT

f(ζ) dζ. (3.50)

2. now we define a subdomain Ωs,hT
⊂ Ω which contains all the points of

Ω that lie between the two level–set curves Γs− 1
2
hT

and Γs+ 1
2
hT

Ωs,hT
�
{
x ∈ Ω, T (x) ∈

[
s− 1

2
hT , s+

1

2
hT

]}
, (3.51)

see Figure 3.2a; we then approximate Ωs,hT
with the region

Ω̃s,hT
�

Ns,hT⋃
j=1

Ω�
s,hT ;j, T (x0

j ) ∈
[
s− 1

2
hT , s+

1

2
hT

]
, x0

j ∈ Ω�
s,hT ;j,

(3.52)

see Figure 3.2b, which consists of the quadrilateral finite elements Ω�
s,hT ;j,

j = 1, . . . , Ns,hT
, with the center points x0

j satisfying the condition

T (x0
j) ∈ [s− (1/2)hT , s+ (1/2)hT ],

3. in view of (3.50), expression (3.37) is approximated with an area inte-

gral over the region contained between the level–set curves Γs− 1
2
hT

and

Γs+ 1
2
hT
, which is in turn approximated by the FEM region Ω̃s,hT

given

by (3.52); finally, the integral over this region is approximated using the

standard 2D compound midpoint rule as

f(s) ≈ 1

hT

∫ s+ 1
2
hT

s− 1
2
hT

∫
Ω

δ(s(x)− ζ)g(x) dx dζ ≈ h2

hT

Ns,hT∑
j=1

g(x0
j). (3.53)

As regards the accuracy of this approach, we have the following
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Theorem 3.2 Formula (3.53) is second order accurate with respect to the

discretization of the space domain and first order accurate with respect to the

discretization of the state domain, i.e.,

f(s) =

∫
Ω

δ(T (x)− s)g(x) dx =
h2

hT

Ns,hT∑
j=1

g(x0
j) +O(h2) +O(hT ). (3.54)

Proof. We start by integrating both sides of (3.37) over the interval [Ti− 1
2
;Ti+ 1

2
] =

[s− 1
2
hT ; s+

1
2
hT ] obtaining

∫ s+ 1
2
hT

s− 1
2
hT

f(ζ) dζ =

∫
Ω

[∫ s+ 1
2
hT

s− 1
2
hT

δ(T (x)− ζ) dζ

]
g(x) dx

=

∫
Ω

χ[s− 1
2
hT ,s+ 1

2
hT ](T (x)) g(x) dx,

(3.55)

where the characteristic function

χ[T ′,T ′′](T (x)) =

⎧⎨
⎩

1 for T (x) ∈ [T ′, T ′′],

0 for T (x) /∈ [T ′, T ′′],

describes the subdomain Ωs,hT
introduced earlier in (3.51), cf. Figure 3.2a.

Now, using a second–order accurate midpoint rule for 1D integration, we can

express the LHS of (3.55) as

∫ s+ 1
2
hT

s− 1
2
hT

f(ζ) dζ = f

(
Ti− 1

2
+ Ti+ 1

2

2

)
· hT +O(h2T ) = f(s)hT +O(h2T ). (3.56)

Approximation of the RHS in (3.55) takes place in two steps. In the first step

we approximate the actual integration domain Ωs,hT
with the union of the
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finite elements Ω̃s,hT
, cf. (3.52). In order to estimate the error

E1 �
∣∣∣∣∣
∫
Ωs,hT

g(x) dx−
∫
Ω̃s,hT

g(x) dx

∣∣∣∣∣
of this step, we divide the set of cells Ω̃s,hT

into two subsets, see Figure 3.2b,

Ω̃s,hT
= Ω̃∗

s,hT
∪ Ω̃′

s,hT
,

where Ω̃∗
s,hT

consists of the cells with all 4 vertices {xk}4k=1 satisfying the

condition T (xk) ∈ [s − 1
2
hT , s +

1
2
hT ]. The subregion Ω̃′

s,hT
, defined as the

compliment of Ω̃∗
s,hT

in Ω̃s,hT
, represents the union of “truncated” cells, i.e.,

cells which have at least one node outside Ωs,hT
. This region is in turn further

subdivided into two subsets, i.e.,

Ω̃′
s,hT

= Ω̃′
s,hT ;in ∪ Ω̃′

s,hT ;out,

where

Ω̃′
s,hT ;in �

{
x ∈ Ω̃′

s,hT
, T (x) ∈

[
s− 1

2
hT , s+

1

2
hT

]}
,

Ω̃′
s,hT ;out �

{
x ∈ Ω̃′

s,hT
, T (x) /∈

[
s− 1

2
hT , s+

1

2
hT

]}
.

We have to define one more set Ω̃′′
s,hT

which consists of the cells with at least

one vertex {xk}4k=1 satisfying the condition T (xk) ∈ [s − 1
2
hT , s +

1
2
hT ], but

whose the center points x0
j lie outside Ωs,hT

. We also further subdivide this

set into two subsets

Ω̃′′
s,hT

= Ω̃′′
s,hT ;in ∪ Ω̃′′

s,hT ;out,
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where

Ω̃′′
s,hT ;in �

{
x ∈ Ω̃′′

s,hT
, T (x) ∈

[
s− 1

2
hT , s+

1

2
hT

]}
,

Ω̃′′
s,hT ;out �

{
x ∈ Ω̃′′

s,hT
, T (x) /∈

[
s− 1

2
hT , s+

1

2
hT

]}
.

We thus have

∫
Ωs,hT

g(x) dx =

∫
Ω̃∗

s,hT

g(x) dx+

∫
Ω̃′

s,hT ;in

g(x) dx+

∫
Ω̃′′

s,hT ;in

g(x) dx, (3.57)

∫
Ω̃s,hT

g(x) dx =

∫
Ω̃∗

s,hT

g(x) dx+

∫
Ω̃′

s,hT

g(x) dx

=

∫
Ω̃∗

s,hT

g(x) dx+

∫
Ω̃′

s,hT ;in

g(x) dx+

∫
Ω̃′

s,hT ;out

g(x) dx,

(3.58)

so that the domain approximation error can be estimated as follows

E1 =

∣∣∣∣∣
∫
Ω̃′

s,hT ;out

g(x) dx−
∫
Ω̃′′

s,hT ;in

g(x) dx

∣∣∣∣∣
≤
∣∣∣∣∣
∫
Ω̃′

s,hT ;out

g(x) dx

∣∣∣∣∣+
∣∣∣∣∣
∫
Ω̃′′

s,hT ;in

g(x) dx

∣∣∣∣∣
≤ max

x∈Ω
|g(x)|

(∣∣∣Ω̃′
s,hT

∣∣∣ + ∣∣∣Ω̃′′
s,hT

∣∣∣) = O(h2),

(3.59)

where |Ω| � meas Ω. The second error in the approximation of the RHS of

(3.55) is related to the accuracy of the quadrature applied to
∫
Ω̃s,hT

g(x) dx

and for the spatial 2D compound midpoint rule is E2 = O(h2), so that we

obtain ∣∣∣∣∣∣
∫
Ωs,hT

g(x) dx−
Ns,hT∑
j=1

g(x0
j) h

2

∣∣∣∣∣∣ = O(h2). (3.60)
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Ω̃′
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s,hT ;in

Ω̃′′
s,hT ;out

(b)

Figure 3.2: Illustration of the third approach where the contour (line) integral
(3.37) is approximated with an area integral (see Section 3.3.1): (a) region
Ωs,hT

which lies between the two level–set curves Γs− 1
2
hT

and Γs+ 1
2
hT

and (b)

its approximation with the region Ω̃s,hT
= Ω̃∗

s,hT
∪ Ω̃′

s,hT
; (checked) Ω̃′

s,hT
and

(shaded) Ω̃∗
s,hT

. Figure (b) also shows a part of region Ω̃′′
s,hT

= Ω̃′′
s,hT ;in∪Ω̃′′

s,hT ;out

represented by 2 elements in the top right corner.

Comparing (3.53) with (3.56) and dividing both sides into hT we finally obtain

(3.54) which completes the proof. �
So far, we have considered the discretizations of the physical and state

spaces, Ω and s, as independent. We remark that using the identity

min
x∈Ω

|∇T (x)| · h ≤ hT ≤ max
x∈Ω

|∇T (x)| · h. (3.61)

one could relate the corresponding discretization parameters h and hT to each

other.
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Chapter 4

Computational Results

4.1 General Model Settings and Solver Vali-

dation

4.1.1 Models for Constitutive Relations

For validation purposes one needs an algebraic expression to represent the

dependence of the viscosity coefficient on temperature which could serve as the

“true” material property we will seek to reconstruct. The dynamic viscosity

in liquids is usually approximated by exponential relations [56] and one of

the most common expression for the coefficient of the dynamic viscosity is

the law of Andrade (also referred to as the Nahme law) which is given in the

dimensional form valid for T expressed in Kelvins in (4.1) below

μ̃(T ) = C1e
C2/T , (4.1)

where C1, C2 > 0 are constant parameters. As regards the thermal conductiv-

ity k, since it typically reveals a rather weak dependence on the temperature,
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for the sake of simplicity we will treat it as a constant setting k = 0.002 in all

computations presented in the present Chapter.

4.1.2 Solver, Flow Geometry and Model Parameters

We start by defining the following functional spaces V = [H1(Ω)]2, V0 =

[H1
∂Ω(Ω)]

2 = {v ∈ V, v = 0 on ∂Ω},Q = L2(Ω), W = H1(Ω), W0 = H1
∂Ω(Ω) =

{ϑ ∈ W, ϑ = 0 on ∂Ω}. We look for the solution of system (3.1)–(3.2) given

by {u(t), p(t), T (t)} ∈ Vb×Q×Wb, where the functional spaces are defined as

Vb = {u ∈ V, u = ub on ∂Ω} and Wb = {T ∈ W, T = Tb on ∂Ω}, where ub

and Tb are the boundary conditions defined in (3.2). To solve the governing

system numerically we first obtain a weak formulation for (3.1)–(3.2) which

takes the following form

∫
Ω

(∂tu+ u ·∇u) · v dx+ 2

∫
Ω

μ(T )D(u) : ∇v dx

−
∫
Ω

p(∇ · v) dx = 0 in Ω, (4.2a)∫
Ω

q(∇ · u) dx = 0 in Ω, (4.2b)∫
Ω

(∂tT + u ·∇T ) ϑ dx+

∫
Ω

k∇T ·∇ϑ dx = 0 in Ω, (4.2c)

∀{v, q, ϑ} ∈ V0×Q×W0. We denote the strain rate tensorD(u) � 1
2

[∇u+ (∇u)T
]
.

We note that weak formulation (4.2) incorporates boundary conditions (3.2)

via definition of the solution spaces Vb and Wb. Next, we discretize system

(4.2) in time using a semi-implicit approach which yields the following set of
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equations defined at the time instant ti

∫
Ω

(
3ui − 4ui−1 + ui−2

2Δt
+ ui−1 ·∇ui

)
· v dx

+2

∫
Ω

μ(Ti−1)D(ui) : ∇v dx−
∫
Ω

pi(∇ · v) dx = 0 in Ω, (4.3a)∫
Ω

q(∇ · ui) dx = 0 in Ω, (4.3b)∫
Ω

(
3Ti − 4Ti−1 + Ti−2

2Δt
+ ui ·∇Ti

)
ϑ dx

+

∫
Ω

k∇Ti ·∇ϑ dx = 0 in Ω, (4.3c)

where the subscripts i, i − 1 and i − 2 denote, respectively, the quantities

defined at the current time ti and previous time instants ti−1 and ti−2. Space

discretization is carried out using triangular finite elements (3.40) and the P2

piecewise quadratic (continuous) representations for the velocity u and the

temperature T fields, and the P1 piecewise linear (continuous) representation

for the pressure p field. Applying such spatial discretization to system (4.3) we

thus obtain a system of algebraic equations which at every time step is solved

with UMFPACK, a direct solver for nonsymmetric sparse linear systems. We add

that incompressibility is ensured by solving equation (4.3b) simultaneously

with (4.3a). The choice of the time step Δt ensures stability by satisfying the

following CFL condition

∣∣∣∣Δt
(
umax

hx
+
vmax

hy

)∣∣∣∣ ≤ 1. (4.4)

The same numerical technique is used for discretizing and solving the adjoint

problem (3.18)–(3.19).

To fix attention, all our computations are performed using a 2D square
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domain Ω = [0, 1]2, cf. Figure 4.1. Governing system (3.1)–(3.2) and adjoint

system (3.18)–(3.19) are discretized on a uniform mesh with N = Nx = Ny =

32 grid points in every direction using triangular finite elements combined with

the cubic spline interpolation of the function μ(T (x)). The rather modest spa-

tial resolution used is a consequence of the fact that in a single reconstruction

problem the governing and adjoint systems need to be solved O(103 − 104)

times. Unless stated otherwise, the interval L = [100.0, 700.0] is discretized

using an equispaced grid with NT = 600 points. The actual constitutive rela-

tion μ̃(T ) we seek to reconstruct is given by Andrade law (4.1) with C1 = 0.001

and C2 = 103.

In the computational tests reported below we usedM = 9 measurement

points distributed uniformly inside the cavity (Figure 4.1). To mimic an actual

experimental procedure, relation (4.1) is used in combination with governing

system (3.1) to obtain pointwise temperature measurements {T̃i}Mi=1. Relation

(4.1) is then “forgotten” and is reconstructed using gradient–based algorithm

(3.14). As in the simplified problem considered in Chapter 2, here as well we

consider equispaced measurement locations {xi}Mi=1 which coincide with the

grid points of the discretized domain Ω. In general, more flexibility is possible

in determining sensor locations, and these choices do not have any effect on

the formulation of the algorithm. In terms of the initial guess in (3.14), unless

stated otherwise, we take a constant approximation μ0 to (4.1), given by μ0 =

1
2
(μ̃(Tα) + μ̃(Tβ)) = C1

2

(
eC2/Tα + eC2/Tβ

)
which translates into the following

expression for the new optimization variable θ, cf. (3.8), θ0 =
√
μ0 −mμ,

where mμ = 1
2
μ̃(Tβ) = C1

2
eC2/Tβ . Since in the present problem the viscosity

μ(T ) is a function of the temperature, the Reynolds number is defined locally

(both in space and in time) and varies in the range Re = 0.05÷ 240.

Unless stated otherwise, the boundary conditions for the temperature
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x(0,0) (1,0)

(0,1)

T̃1 T̃2 T̃3

T̃4 T̃5 T̃6

T̃7 T̃8 T̃9

ub|top

Figure 4.1: Geometry of the 2-D lid-driven (shear-driven) cavity.

are Tb|top = Tβ = 500 and Tb|else = Tα = 300 which result in the identifiabil-

ity region I = [300.0, 500.0]. The velocity boundary conditions ub = [ub, vb]
T

are given by ub|top = U0 cos(αt), U0 = 1, α = 2π and vb|top = 0 on the top

boundary segment and ub|else = 0 on the remaining boundary segments. Their

time–dependent character ensures that the obtained flow is unsteady at the

values of the Reynolds number for which self–sustained oscillations do not

spontaneously occur (the study of higher Reynolds numbers was restricted by

the numerical resolution used, see comments above). We may also note that

the CFL stability condition (4.4) still holds for time–dependent boundary con-

ditions as the oscillation period Tcos = 1 in the top boundary condition ub|top
is sufficiently large in comparison with the step size Δt in time discretization.

The initial conditions {u0, T0} used in the reconstruction problem correspond

to a developed flow obtained at t = 10 from the following initial and boundary

conditions Tb|top = 500, Tb|else = 300 and ub|top = 1, vb|top = 0, ub|else = 0,

T0 = 300, u0 = 0. We emphasize that adjoint system (3.18)–(3.19) is in fact a
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terminal–value problem which needs to be integrated backwards in time, and

its coefficients depend on the solution {u, T} of the direct problem around

which linearization is performed at the given iteration. Our reconstructions

are performed using the following time windows [0, tf ], tf =
{

1
4
, 1
2
, 1
}
, which

are all discretized with the time step Δt = 5 · 10−3 in both the direct and ad-

joint problems. The choice of the time step Δt ensures stability by satisfying

the CFL condition (4.4).

In Figure 4.2 we present sample solutions of direct (3.1)–(3.2) and ad-

joint (3.18)–(3.19) problems for the lid–driven cavity flow with settings de-

scribed in the current Section. The figures show the direct and adjoint vortic-

ity fields ω � ∇×u and ω∗ � ∇×u∗, and the direct and adjoint temperature

fields T and T ∗ at different time level inside the window [0, 1]. We add that the

time–dependent temperature field T (t,x) determines the level–sets on which

the expression (3.29) for the cost functional gradients needs to be evaluated.

4.1.3 Validation of PDE solvers

Due to the simplicity of its geometry and boundary conditions, the lid–driven

cavity flow problem has been used for a long time to validate novel solution

approaches and codes [57,58]. Numerical results are available for different as-

pect ratios and the problem was solved for both laminar and turbulent regimes

using different numerical techniques. Thus, this problem is a useful testbed

as there is a great deal of numerical data that can be used for comparison.

Furthermore, it is relatively straightforward to implement the required solvers

using available libraries. The code for solving direct problem (3.1)–(3.2) and

adjoint problem (3.18)–(3.19) has been implemented using FreeFem++ [59].

This is a high–level, open–source integrated development environment for the
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(f) ω∗ at t = 0.95
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Figure 4.2: Direct and adjoint vorticity and temperature fields ω (a,b,c),
ω∗ (d,e,f), T (g,h,i), T ∗ (j,k,l) at the time levels t = 0.05 (a,d,g,j), t = 0.5
(b,e,h,k), t = 0.95 (c,f,i,l).
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numerical solution of PDEs based on the Finite Element Method created by

F. Hecht, O. Pironneau, J. Morice and A. Le Hyaric. The direct solver has

been validated against available benchmark data from [57, 58, 60, 61] for the

case when μ = const, and all details are reported in the following Sections.

Solver for the Mass and Momentum Equations

For validation purposes the solution for the velocity field u obtained by solving

(3.1) (or, more precisely, (3.11)), with boundary conditions (3.2) is compared

with the benchmark data taken from Ghia et al. in [58]. Our tests consists in

comparing the velocity field, namely the relative horizontal component of the

velocity u/U0, for the lid–driven cavity flow when it reaches the steady state

for approximately low Reynolds numbers. As expected, using the flow geom-

etry described in Section 4.1.2 and the time–independent boundary condition

ub|top = 1 solutions of the initial–value problem tend to a steady–state solution

for Re = 100 and different resolutions N = 10, 20, 40, 80. To qualify when the

steady state is reached in the different cases, we use a criterion defined as

∣∣∣∣ ddt‖u‖L2

∣∣∣∣ < γ, (4.5)

where
d

dt
‖u‖L2

∼= ‖ui+1‖L2 − ‖ui‖L2

Δt

and ui is a velocity field at discrete time ti. The time ts satisfying the condition

(4.5) for different values of parameter γ is shown in Table 4.1. Comparison

for the velocity field u/U0 along the line x = 0.5 versus vertical coordinate y

is shown in Figure 4.3. As is evident from the data shown in Figure 4.3, our

results approach the benchmark data of Ghia et al. [58] as the resolution is
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Table 4.1: Terminal time ts satisfying the condition (4.5) for γ = 0.01 and
γ = 0.001 for benchmark data test taken from [58].

γ = 0.01 γ = 0.001

N Δt ts N Δt ts

10 5 · 10−2 2.30 10 5 · 10−2 6.50
20 1 · 10−2 2.38 20 1 · 10−2 6.70
40 5 · 10−3 2.45 40 5 · 10−3 6.80
80 1 · 10−3 2.48 80 1 · 10−3 6.84

refined.

We also compare our results against the data, taken from Bruneau &

Saad [57] as well as from the references [58, 60, 61], characterizing the vortex

established in the cavity in the steady state at Re = 1000, i.e., the maximum

of the stream–function ψmax, vorticity ω and the location of the center xv, yv.

The steady state is defined by the following condition

|‖ui+1‖L2 − ‖ui‖L2 |
‖ui‖L2

< δ, (4.6)

where δ = 10−12. The parameters characterizing the steady–state vortex in

the cavity computed using our solver with different resolutions are shown in

Table 4.2 where they are compared against available data from the literature.

As the spatial resolution is refined a good quantitative agreement is noted with

the benchmark results. The values of the time ts satisfying condition (4.6) are

not available for the results taken from [57, 58, 60, 61].

Finally, we compared the values for the global quantities obtained at

the steady state in our computations, namely

• the kinetic energy E =
1

2

∫
Ω
‖u‖2dx,
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Figure 4.3: The profile of the velocity field (relative horizontal component
u/U0) along the line x = 0.5 obtained with steady–state criterion (a) γ = 0.01
and (b) γ = 0.001 versus vertical coordinate y (N×N mesh, N = 10, 20, 40, 80)
compared with available benchmark data in [58].

Table 4.2: Comparison of the parameters characterizing the steady–state
vortex at Re = 1000 computed with our solver (described in Section 4.1.2)
against benchmark results from the literature [57, 58, 60, 61].

Scheme Grid ψmax ω xv yv ts

Bruneau 128× 128 0.11786 2.0508 0.46875 0.5625 N/A
et al. [57]
Ghia 128× 128 0.117929 2.04968 0.4687 0.5625 N/A
et al. [58]
Schreiber 140× 140 0.11603 2.026 0.47143 0.56429 N/A
et al. [60]
Vanka 320× 320 0.1173 – 0.4562 0.5625 N/A
et al. [61]

Our 10× 10 0.0900198 1.61278 0.46 0.5812 250.7
solver 20× 20 0.0981879 1.72559 0.4624 0.5735 259.7
(Section 40× 40 0.107882 1.88543 0.4656 0.5688 253.125
4.1.2) 80× 80 0.11327 1.97481 0.4674 0.5669 240.565

128× 128 0.115369 2.00935 0.4681 0.5663 230.632
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Table 4.3: Comparison of the global quantities (total kinetic energy E, en-
strophy Z, palinstrophy P ) obtained with our solver against the benchmark
data from [57].

Scheme Grid E Z P ts

64× 64 0.021564 4.6458 0.56113× 104 N/A
Bruneau 128× 128 0.022315 4.7711 0.70138× 104 N/A
et al. [57] 256× 256 0.022542 4.8123 0.78165× 104 N/A

512× 512 0.022607 4.8243 0.82699× 104 N/A

Our 10× 10 0.0266381 4.47098 0.331354× 104 276.35
solver 20× 20 0.0235366 4.80921 0.621106× 104 267.975
(Section 40× 40 0.0228494 4.85833 0.790261× 104 258.475
4.1.2) 64× 64 0.0227809 4.84722 0.843061× 104 248.625

128× 128 0.0227678 4.83427 0.868976× 104 242.24

• the enstrophy Z =
1

2

∫
Ω
‖ω‖2dx,

• the palinstrophy P =
1

2

∫
Ω
‖∇ω‖2dx

with the corresponding results reported at Re = 1000 by Bruneau & Saad

in [57]. In contrast to previous test cases, the steady solution is obtained

using a regularized velocity boundary conditions ub|top = −16x2(1− x)2. The

steady state condition is the same as in the previous case and given in (4.6).

The results shown in Table 4.3 demonstrate good quantitative agreement as

the resolution is refined with the benchmark data from [57].

We conclude by saying that the results shown in Figure 4.3 and in

Tables 4.2 and 4.3 clearly demonstrate the validity of our solution method for

the mass and momentum equations.

Solver for the Coupled Mass, Momentum and Energy Equations

In the absence of any quantitative data concerning the temperature fields in

the lid–driven cavity flows, we restrict our validation to a convergence study
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Figure 4.4: The profile of the temperature field T at the time t0 = 5 along
the line x = 0.5 versus the vertical coordinate y (for different resolutions N×N
with N = 10, 20, 40, 80).

with respect to mesh refinement. We consider the case with Re = 100 and

the velocity boundary conditions ub|top = 1, and in Figure 4.4 show the tem-

perature profile along the line x = 0.5 obtained at some fixed time t0 = 5

using different resolution. A clear uniform (in y) convergence to some limiting

profile is observed as the resolution is refined. (We reiterate that in view of

the CFL stability condition, cf. (4.4), refinement of the spatial discretization

also implies the refinement of the time discretization).

4.2 Comparison of Different Approaches to Gra-

dient Evaluation

In this Section we discuss the accuracy and efficiency of the three methods for

evaluation of expression (3.37) presented in Sections 3.3.1, 3.3.1 and 3.3.1. In
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order to assess their utility for the parameter reconstruction problem studied

in this work, we will consider the following three test cases

(i) single (fixed) value of s with φ(s,x) and g(x) given analytically,

(ii) parameter s varying over a finite range with φ(s,x) and g(x) given an-

alytically,

(iii) parameter s varying over a finite range with φ(s,x) and g(x) given in

terms of solutions of the direct and adjoint problem.

Tests (ii) and (iii) with s spanning the entire interval L are particularly relevant

for the present reconstruction problem, as they help us assess the accuracy of

the cost functional gradients over their entire domains of definition, including

the values of s for which the level sets Γs intersect the domain boundary ∂Ω.

Results of tests (i)–(iii) are presented below.

Tests for a Single Value of s with φ(s,x) and g(x) Given Analytically

Here we employ our three methods to compute numerically the value of a line

integral over the circle x2 + y2 = 1

(a) in domain Ω1 = [−2, 2]2 which contains the entire curve

Iex,1 =

∫
x2+y2=1

(3x2 − y2) dσ = 2π (4.7)

(this test problem is actually borrowed from [46]),

(b) and in domain Ω2 = [0, 2]2 which contains only a part of the curve in the

first quadrant

Iex,2 =

∫
x2+y2=1, x,y>0

(3x2 − y2) dσ =
π

2
. (4.8)
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Figure 4.5: Relative error | Iex,i
Ih

− 1|, i = 1, 2, versus discretization step

h = Δx = Δy in the numerical approximation Ih of (a) line integral (4.7) and
(b) line integral (4.8) (See Section 4.2). Triangles represent the line integration
approach (method #1), circles represent the results obtained using the delta
function approximation (method #2), whereas asterisks show the data for the
area integration approach (method #3).

The main difference between test cases (a) and (b) is that while in (a) the con-

tour is entirely contained in the domain Ω1, it intersects the domain boundary

∂Ω2 in case (b). As shown in Figure 4.5, methods #1 (line integration) and #3

(area integration) in both cases show the expected accuracy of O(h2), where

h = Δx = Δy = 2−(3+i), i = 1 . . . 6, while method #2 (delta function approx-

imation) is O(h3/2) accurate in case (a) and only O(h1) accurate in case (b).

We also add that the line integration method exhibits the smallest constant

prefactor characterizing the error.
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Tests for s Varying Over a Finite Range with φ(s,x) and g(x) Given

Analytically

In order to analyze this case we will introduce a new diagnostic quantity. We

begin with the integral transform formula (3.28) applied to some perturbation

μ′(T (x))

μ′(T (x)) =
∫ +∞

−∞
δ(φ(s,x))μ′(s) ds, (4.9)

where φ(s,x) = T (x) − s. Multiplying both sides of (4.9) by g(x), integrat-

ing over the domain Ω and changing the order of integration we obtain the

following useful identity

∫
Ω

μ′(T (x))g(x) dx =

∫ +∞

−∞
f(s)μ′(s) ds (4.10)

with f(s) defined in (3.37), where the RHS has the structure of the Riesz

identity for the Gâteaux differential of the cost functional, cf. (3.30), whereas

the LHS is a simple area integral which can be easily evaluated using high–

accuracy quadratures. Given the formal similarity of the RHS of (4.10) and the

Riesz formula (3.30), this test is quite relevant for the optimization problem

we are interested in here. We will thus use our three methods to evaluate

the RHS of (4.10) and compared it to the LHS, which is evaluated with high

precision on a refined grid in Ω, so that it can be considered “exact”. Our

tests are based on the following data

• spatial domain Ω = [0, 1]2 discretized with h = Δx = Δy = 2−(4+i),

i = 1 . . . 7,

• hT =
Tb − Ta
NT

, where Ta = 100, Tb = 700, whereas NT = 200; 1000; 10000

(for methods #2 and #3) and NT = 200; 2000; 20000 (for method #1),
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• T (x) = 100(x2 + y2) + 300, g(x) = cos(x) + 3 sin(2y − 1),

• perturbations used μ′
1(s) = exp(− s

1000
), μ′

2(s) =
10
s2

and μ′
3(s) = − s2

90000
+

2s
225

+ 2
9
, s ∈ [Ta, Tb].

As is evident from Figure 4.6, all three methods show similar qualitative

behavior, namely, the error decreases with decreasing h until it saturates which

is due to the error terms depending on hT becoming dominant. The saturation

value of the error depends on the state space resolution hT and is different

for the different methods. Method #3 (area integration) reveals accuracy

O(h2), whereas method #2 (delta function approximation) is again only of

accuracy about O(h) for the same discretization of the interval L. Method

#1 (line integration) performs better and shows accuracy up to O(h5), but

requires much finer resolution in the state space, namely NT > 20, 000 is

needed (hT < 0.03) for this behavior to be visible. On the other hand, method

#3 (area integration) leads to the smallest errors for all the cases tested.

Analogous data is plotted in Figure 4.7 now as a function of the state

space resolution hT with h acting as a parameter. Similar trends are observed

as in Figure 4.6, namely, the errors decrease with hT until they eventually

saturate when the error terms depending on h become dominant. Methods #1

and #2 reveal accuracy O(hT ), whereas method #3 has accuracy O(h1.5÷2
T )

which is actually better than stipulated by Theorem 3.2, cf. (3.54). Method

#3 is also characterized by the smallest value of the constant prefactor leading

to the smallest overall errors.

106



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h5

#1

h

|ξ
−

1
|

 

 
N

T
 = 200

N
T
 = 2,000

N
T
 = 20,000

(a)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h0.75

#2

h
|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(b)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h2

#3

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(c)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h4.5

#1

h

|ξ
−

1
|

 

 
N

T
 = 200

N
T
 = 2,000

N
T
 = 20,000

(d)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

#2

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(e)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h2

#3

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(f)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h5

#1

h

|ξ
−

1
|

 

 
N

T
 = 200

N
T
 = 2,000

N
T
 = 20,000

(g)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h

#2

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(h)

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

h2

#3

h

|ξ
−

1
|

 

 

N
T
 = 200

N
T
 = 1,000

N
T
 = 10,000

(i)

Figure 4.6: Relative error |ξ−1|, where ξ = LHS of (4.10)
RHS of (4.10)

, versus discretization

step h = Δx = Δy in approximating the RHS in (4.10). The first, second and
third rows of figures show the results for μ′

1, μ
′
2 and μ′

3, respectively, while
the figures in the first, second and third columns represent line integration
(#1), delta function approximation (#2) and area integration (#3) methods,
respectively.
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Figure 4.7: Relative error |ξ − 1|, where ξ = LHS of (4.10)
RHS of (4.10)

, versus discretiza-

tion step hT in the state space L in approximating the RHS in (4.10). The
first, second and third rows of figures show the results for μ′

1, μ
′
2 and μ′

3, re-
spectively, while the figures in the first, second and third columns represent
line integration (#1), delta function approximation (#2) and area integration
(#3) methods, respectively.
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Figure 4.8: The fields (a) T (x) (level set contours) and (b) g(x) = [∇u(x)+
(∇u(x))T ] : ∇u∗(x) obtained by solving (3.1)–(3.2) and (3.18)–(3.19).

Tests for s Varying Over a Finite Range with φ(s,x) and g(x) Given

by Solutions of Direct and Adjoint Problem

We now repeat the test described in Section 4.2 using φ(s,x) = T (x)− s and

g(x) = [∇u(x) + (∇u(x))T ] : ∇u∗(x), where the fields u, T and u∗ come

from solutions of the direct and adjoint problem (3.1)–(3.2) and (3.18)–(3.19)

at some fixed time t, see Figure 4.8 (details of these computations will be given

in Section 4.4.1). As before, we discretize the domain Ω = [0, 1]2 with the step

h = Δx = Δy = 2−(4+i), i = 1 . . . 7, and the state space L = [Ta, Tb], Ta = 100

and Tb = 700, with the step hT = 0.06 (NT = 10, 000).

The data shown in Figure 4.9 confirms our findings from Sections 4.2

and 4.2, namely, that in this case as well the error of all three methods decreases

with h until it eventually saturates when the errors depending on hT become

dominant. Method #3 is again characterized by the smallest prefactor and

hence leads to much smaller overall errors than in methods #1 and #2. The

computational complexity of our three approaches is addressed in Figure 4.10,
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Figure 4.9: Relative error |ξ−1|, where ξ = LHS of (4.10)
RHS of (4.10)

, versus discretization

step h = Δx = Δy in estimating the RHS in (4.10), where φ(s,x) = T (x)− s,
and g(x) = [∇u+ (∇u)T ] : ∇u∗ obtained by solving (3.1)–(3.2) and (3.18)–
(3.19). Figures (a), (b) and (c) show the results for μ′

1, μ
′
2 and μ

′
3, respectively,

using the same discretization of the state space L with NT = 10000. Triangles
represent the line integration approach (#1), circles show the results for the
method of the delta function approximation (#2), while asterisks show the
data from the area integration approach (#3).

where Ne is defined as a number of computational elements, e.g. Ne = N� or

Ne = N� using (3.40) or (3.41), respectively. We see that, while the complexity

of methods #1 and #2 scales as O(
√
Ne), method #3 exhibits the scaling of

O(Ne). On the other hand, however, method #3 has the smallest prefactor

and, at least in the range of resolutions considered here, results in the shortest

execution time.

In conclusion, these observations make the area integration approach

(method #3) the method of choice for the present parameter reconstruction

problem, and this is the approach we will use in all subsequent computations.

4.3 Validation of Gradients

In this Section we present results demonstrating the consistency of the cost

functional gradients obtained with the approach described in Section 3.2.2.
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Figure 4.10: CPU time (in seconds) versus the number Ne of computational
elements used in the different approaches, namely, (triangles) finite elements
Ω�

i in the line integration approach (method #1), (circles) nodes in the method
of the delta function approximation (#2) and (asterisks) finite elements Ω�

i

in the area integration approach (#3). The data shown corresponds to the
estimation of the RHS in (4.10) for μ′

1 using the same discretization of the state
space with NT = 10000, φ(s,x) = T (x)− s and g(x) = [∇u+ (∇u)T ] : ∇u∗

obtained by solving (3.1)–(3.2) and (3.18)–(3.19).

In Figure 4.11 we present the L2 and several Sobolev H1 gradients obtained

at the first iteration. In the first place, we observe that as anticipated in

Section 3.2.2 the L2 gradients indeed exhibit quite irregular behaviour lack-

ing necessary smoothness which makes them unsuitable for the reconstruction

of constitutive relations with required properties, cf. (3.10). On the other

hand, the gradients extracted in the Sobolev space H1 are characterized by

the required smoothness and therefore hereafter we will solely use the Sobolev

gradients. Next, in Figure 4.12 we present the results of a diagnostic test com-

monly employed to verify the correctness of the cost functional gradient [43].

It consists in computing directional Gâteaux differential J ′(θ; θ′) for some se-

lected perturbations θ′ in two different ways, namely, using a finite–difference

approximation and using (3.29) which is based on the adjoint field, and then
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examining the ratio of the two quantities, i.e.,

κ(ε) � ε−1 [J (θ + εθ′)− J (θ)]∫ +∞
−∞ ∇θJ (s) θ′(s) ds

(4.11)

for a range of values of ε. If the gradient ∇θJ (θ) is computed correctly, then

for intermediate values of ε, κ(ε) will be close to the unity. Remarkably, this

behavior can be observed in Figure 4.12 over a range of ε spanning about 6

orders of magnitude for three different perturbations θ′(T ). Furthermore, we

also emphasize that refining the time step Δt used in the time–discretization

of (3.1)–(3.2) and (3.18)–(3.19) yields values of κ(ε) closer to the unity. The

reason is that in the “optimize–then–discretize” paradigm adopted here such

refinement of discretization leads to a better approximation of the continuous

gradient (3.29). We add that the quantity log10 |κ(ε) − 1| plotted in Figure

4.12b shows how many significant digits of accuracy are captured in a given

gradient evaluation. As can be expected, the quantity κ(ε) deviates from the

unity for very small values of ε, which is due to the subtractive cancelation

(round–off) errors, and also for large values of ε, which is due to the truncation

errors, both of which are well–known effects.

4.4 Reconstruction Results

4.4.1 Reconstructions on Different Identifiability Inter-

vals

We solve minimization problem (3.9) using the Steepest Descent (SD), Con-

jugate Gradient (CG) and BFGS (Broyden–Fletcher–Goldfarb–Shanno) algo-

rithms [33] and, unless indicated otherwise, using Sobolev gradients computed
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Figure 4.11: Comparison of (thin solid line) the L2 gradient ∇L2J and

the Sobolev gradients ∇H1J defined in (3.31) and for different values of the
smoothing coefficient (thick dashed line) � = 2.5, (thick dash–dotted line)
� = 10.0 and (thick solid line) � = 200.0 (scaled with multiplier 10) at the first
iteration with the initial guess μ0 = const = 0.0177. The vertical dashed lines
represent the boundaries of the identifiability interval I.

113



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

10
−15

10
−10

10
−5

10
0

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

ε

κ
(ε

)

(a)

10
−15

10
−10

10
−5

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

ε

|κ
(ε

)
−

1
|

(b)

Figure 4.12: The behavior of (a) κ(ε) and (b) log |κ(ε)−1| as a function of ε

for different perturbations (triangles) θ′(T ) = 10
T
, (circles) θ′(T ) = e−

T
1000 and

(asterisks) θ′(T ) = − T 2

90000
+ 2T

225
+ 2

9
. The time steps used in the time integration

of (3.1)–(3.2) and (3.18)–(3.19) are (dash–dotted line) Δt = 5.0·10−3 and (solid
line) Δt = 5.0 · 10−4.

with � = 200.0 which was found by trial–and–error to result in the fastest

rate of convergence of iterations (3.14). The termination condition used was∣∣∣J (θ(n))−J (θ(n−1))

J (θ(n−1))

∣∣∣ < 10−6. The behavior of the cost functional J (θ(n)) as a

function of the iteration count n is shown in Figure 4.13a for all three mini-

mization algorithms (SD, CG and BFGS). We note that in all cases a decrease

over several orders of magnitude is observed in just a few iterations. Despite

the fact that steepest descent and conjugate gradient methods show approxi-

mately the same performance in terms of rate of convergence, hereafter we will

use only the steepest descent method for our computations in this work. This

choice is supported by outstanding results shown by SD in further computa-

tions producing higher rate of convergence and termination at lower values of

cost functional J (θ) than CG method. Poorer than anticipated performance

of the CG and also the BFGS methods in the current problem can be explained

in the following way. Both methods are known to exhibit rate of convergence
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superior to the SD approach in the case when the objective functional can be

well approximated by a quadratic function. In the present problem we may

suspect that this is happening only within the neighbourhoods of the local

minimizers which are actually quite small.

The effect of the different initial guesses μ0 on the decrease of the cost

functional is illustrated in Figure 4.13b. Again, in all cases the sufficient de-

crease over 5–6 orders of magnitude is observed for all types of initial guesses

the correspondent reconstruction results for which are presented in Figures

4.14a and 4.15. Reconstructions μ̂(T ) of the constitutive relation obtained us-

ing the initial guess μ0 = C1

2

(
eC2/Tα + eC2/Tβ

)
= 0.0177 and the optimization

time windows with tf = 1
4
, 1
2
, 1 are shown in Figure 4.14. Comparing the ac-

curacy of the reconstruction obtained for these different time windows, we can

conclude that better results are achieved on shorter time windows tf = 1
4
, 1
2
.

Given considerations of the computational time, hereafter we will therefore

focus on the case with tf = 1
4
.

In Figure 4.15 we show the reconstructions μ̂(T ) of the constitutive

relation obtained from different initial guesses such as constant values of μ0,

μ0(T ) varying linearly with the temperature T and μ0 given as a rescaling

of the true relationship μ̃. As mentioned earlier, the correspondent decrease

of the cost functional for each reconstruction is shown in Figure 4.13b. The

best results are obtained in the cases where some prior information about

the true material property is already encoded in the initial guess μ0, such

as the slope, cf. Figure 4.15c, or the exponent, cf. Figure 4.15d. We may

also conclude that, since all the reconstructions shown in Figures 4.14 and

4.15 are rather different, the iterations starting from different initial guesses

converge in fact to different local minimizers. However, it should be empha-

sized that in all cases the reconstructions do capture the main qualitative
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Figure 4.13: (a) Decrease of the cost functional J (θ(n)) with iterations n

using the Sobolev gradient ∇H1J defined in (3.31) and obtained with (solid
line) steepest descent, (dash dotted line) conjugate gradient and (line with
dots) BFGS methods with � = 200.0 and initial guess μ0 = 0.0177. (b)
Decrease of the cost functional J (θ(n)) with iterations n for different initial
guesses: (dots) μ0 = μ̃(Tα) = 0.0280, (dash–dotted line) μ0 = μ̃(Tb) = 0.0042,
(dashed line) varying linearly between μ̃(Tα) and μ̃(Tβ), (thin solid line) μ0 =
1
2
μ̃(T ) and (thick solid line) μ0 = 0.0177.

features of the actual material property with differences becoming apparent

only outside the measurement span interval M. In order to make our tests

more challenging, in the subsequent computations we will use the initial guess

μ0 = 1
2
(μ̃(Tα) + μ̃(Tβ)) = 0.0177 (cf. Figure 4.14) which contains little prior

information about the true material property.

In the remainder of this Section we illustrate two approaches for extend-

ing the identifiability region I. We recall that the goal is to extend the range of

the state variable T on which one can accurately reconstruct the constitutive

relation so as to cover the entire interval L. As already indicated in Section

3.2.2, this is accomplished by making a suitable choice of the time–dependent

temperature boundary conditions (3.2b).
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Figure 4.14: Reconstruction μ̂(T ) of the constitutive relation obtained using
the Sobolev gradients defined in (3.31) on (a,b,c) the interval L and (d) close–
up view showing the interval outside the identifiability region I with the time
window [0, tf ], where (a) tf = 1

4
(b) tf = 1

2
and (c) tf = 1. The dash–dotted line

represents the true constitutive relation (4.1), the thick solid, dashed and dash
dotted lines are the reconstructions for (a,d) tf = 1

4
, (b,d) tf = 1

2
and (c,d)

tf = 1 correspondingly, whereas the dashed line represents the initial guess
μ0 = 0.0177; the vertical dash–dotted and dotted lines represent respectively
the boundaries of the identifiability interval I and the measurement span M.
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Figure 4.15: Reconstruction μ̂(T ) of the constitutive relation obtained using
different initial guesses (a) μ0 = μ̃(Tα) = 0.0280, (b) μ0 = μ̃(Tb) = 0.0042,
(c) μ0(T ) varying linearly between μ̃(Tα) and μ̃(Tβ) and (d) μ0 = 1

2
μ̃(T ),

and the Sobolev gradients defined in (3.31) on the interval L. The dash–
dotted line represents the true constitutive relation (4.1), the solid line is the
reconstruction, whereas the dashed line represents the initial guess μ0; the
vertical dash–dotted and dotted lines represent, respectively, the boundaries
of the identifiability interval I and the measurement span M.
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Firstly, we do this by solving a new reconstruction problem where

boundary conditions (3.2b) are chosen to vary in time as described in Sec-

tion 3.2.2, namely

Tb = T 0
b +

he
Δt

t, (4.12)

where T 0
b are boundary conditions which provide reconstruction on the identi-

fiability interval I0 = [Tα, Tβ], e.g. set up as described in Section 4.1.2, he is an

extension step and Δt is the step in time discretization. Applying boundary

conditions (4.12) allows one to perform the reconstruction on the new identifi-

ability interval I = [Tα, Tβ+he] if he > 0 and I = [Tα−he, Tβ] if he < 0, hence

performing the extension of I to higher and lower temperatures, respectively.

Results obtained with this approach extending the identifiability inter-

val in one direction only (towards larger values of T ) are shown in Figure 4.16.

The identifiability region I is extended from its initial range I0 = [300.0, 500.0]

to new ranges of [300.0, 600.0] and [300.0, 700.0], corresponding to he = 100.0

and he = 200.0, respectively, in (4.12). We observe that, as compared to the

reconstruction performed on I0, now a good estimate of the material prop-

erty μ(T ) is obtained for a much broader range of T , although the quality of

this reconstruction slowly degrades in the direction in which the interval I. is

extended, i.e., towards larger values of T .

Then in Figure 4.17 we present the reconstruction μ̂(T ) where the

identifiability region I is extended from its initial range I0 to new ranges

[290.0, 500.0] and [250.0, 500.0] which is performed using he = −10 and he =

−50, respectively, in (4.12). Even though the decrement he = −10 causes ap-

proximately the same relative changes in the values of μ(T ) as the increment

he = 200, as evident from Figures 4.17(a,b), the reconstruction μ̂(T ) is rather

poor on the new interval [290.0, 300.0]. Extension of the interval I0 towards
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smaller values with a larger decrement, e.g. he = −50, performs slightly bet-

ter, as shown in Figures 4.17(c,d), however, at the cost of deterioration of

smoothness of μ̂ on the original identifiability interval I0.

In our second approach we performed reconstructions of the constitutive

relation μ(T ) assuming that the identifiability interval I coincides with the

reconstruction interval L by specifying the boundary condition in (3.2b) as

follows

Tb|top = Tb,

Tb|else = Ta

(4.13)

ensuring that I = L. We thus perform reconstructions on the intervals

[300, 600] (Figures 4.18(a,b)), [300, 700] (Figures 4.18(c,d)), [290, 500] (Fig-

ures 4.19(a,b)) and [250, 500] (Figures 4.19(c,d)) which are in fact equivalent

to extending the original identifiability interval I0, respectively, using the in-

crements he = 100, 200 and the decrements he = −10,−50. As is evident from

both Figures 4.18 and 4.19, these reconstructions produce much better results.

Finally, in Figure 4.20 we present the reconstruction μ̂(T ) extending

the identifiability region I0 in both directions, so that the new identifiability

region is [250.0, 700.0]. Figures 4.20(a,b) show the reconstruction obtained

by means of the first approach described in Section 3.2.2 and formula (4.12),

while the Figures 4.20(c,d) show the reconstruction μ̂(T ) performed with the

second approach discussed above (setting I = L in (4.13)). We observe that

in this case as well good reconstruction of the constitutive relation μ(T ) was

obtained on the entire interval L with the use of the second approach.

We close this Section by concluding that the accurate reconstruction on

different intervals L can be achieved by adjusting the identifiability region via

a suitable choice of temperature boundary conditions (3.2b). This process can
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be interpreted as adjusting the conditions of the experiment used to obtain

the measurements {T̃i}Mi=1.

4.4.2 Reconstruction in the Presence of Noise

In this Section we first assess the effect of noise on the reconstruction without

the Tikhonov regularization and then study the efficiency of the regulariza-

tion techniques introduced in Section 3.2.3. In Figure 4.21(a,b) we revisit

the case already presented in Figure 4.14a (reconstruction on the interval

L = [100.0, 700.0] with identifiability region I = [300.0, 500.0]), now for mea-

surements contaminated with 0.05%, 0.1%, 0.3%, 0.5% and 1.0% uniformly

distributed noise (in the same way as described in Section 2.6.3) and without

Tikhonov regularization. We may note that the noise level we implement for

the current problem is much lower than those which we used for the simple

“toy” problem in Chapter 2 where the maximum noise level was 10%. Due to

the time dependency of our multiphysics model, uniformly distributed noise

is incorporated into measurements at every time step, and therefore tends to

accumulate the error in the solution for the direct problem (3.1)–(3.2). As

expected, we see that increasing level of noise from 0% to 1.0% leads to oscil-

latory instabilities developing in the reconstructed constitutive relations μ(T )

comparable to those seen earlier for the simple model in Chapter 2.

The effect of the Tikhonov regularization is studied in Figure 4.21(c,d),

where we illustrate the performance of the technique described in Section 3.2.3,

cf. (3.33), on the reconstruction problem with 1.0% noise in the measurement

data (i.e., the “extreme” case presented in Figures 4.21(a,b)). In terms of the

(constant) reference function we take θ =
√
μ0 −mμ, where μ0 = 0.0177. We

note that by increasing the values of the regularization parameter λ in (3.33)
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Figure 4.16: Reconstruction μ̂(T ) of the constitutive relation on the ex-
tended identifiability region: (a,c) the interval L, (b,d) magnification of the
new identifiability region. The dash–dotted line represents the true consti-
tutive relation (4.1), the solid line is the reconstruction μ̂(T ) after extending
the identifiability interval I0 using formula (4.12) with the increments (a,b)
he = 100.0 and (c,d) he = 200.0. The dashed line represents the initial guess
μ0, the vertical dash–dotted and dotted lines represent respectively the bound-
aries of the initial identifiability interval I0 = [300.0, 500.0] and the measure-
ment span M, while the dashed vertical line shows the right boundary of the
new identifiability interval (a,b) Tβ = 600 and (c,d) Tβ = Tb = 700.
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Figure 4.17: Reconstruction μ̂(T ) of the constitutive relation on the extended
identifiability region: (a,c) the interval L, (b,d) magnification of the new iden-
tifiability region. The dash–dotted line represents the true constitutive relation
(4.1), the solid line is the reconstruction μ̂(T ) extending the identifiability in-
terval I0 using formula (4.12) with the decrements (a,b) he = −10.0 and (c,d)
he = −50.0, whereas the dashed line represents the initial guess μ0; the verti-
cal dash–dotted and dotted lines represent respectively the boundaries of the
initial identifiability interval I0 = [300.0, 500.0] and the measurement spanM,
while the dashed vertical line shows the left boundary of the new identifiability
interval (a,b) Tα = 290 and (c,d) Tα = 250.
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Figure 4.18: Reconstruction μ̂(T ) of the constitutive relation on the new
identifiability region I using formula (4.13) equivalent to extending I0 with the
increments (a,b) he = 100.0 and (c,d) he = 200.0; (a,c) the interval L, (b,d)
magnification of the identifiability region. The dash–dotted line represents
the true constitutive relation (4.1), the solid line is the reconstruction μ̂(T ),
whereas the dashed line represents the initial guess μ0; the vertical dash–
dotted and dotted lines represent respectively the boundaries of the original
identifiability interval I0 = [300.0, 500.0] and the measurement span M, while
the dashed vertical line shows the right boundary of the new identifiability
interval (a,b) Tβ = 600 and (c,d) Tβ = Tb = 700.
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Figure 4.19: Reconstruction μ̂(T ) of the constitutive relation on the new
identifiability region I using formula (4.13) equivalent to extending I0 with the
decrements (a,b) he = −10.0 and (c,d) he = −50.0: (a,c) the interval L, (b,d)
magnification of the identifiability region. The dash–dotted line represents
the true constitutive relation (4.1), the solid line is the reconstruction μ̂(T ),
whereas the dashed line represents the initial guess μ0; the vertical dash–
dotted and dotted lines represent respectively the boundaries of the original
identifiability interval I0 = [300.0, 500.0] and the measurement span M, while
the dashed vertical line shows the left boundary of the new identifiability
interval (a,b) Tα = 290 and (c,d) Tα = 250.
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Figure 4.20: Reconstruction μ̂(T ) of the constitutive relation on the extended
identifiability region in both directions: (a,c) the interval L, (b,d) magnifica-
tion of the new identifiability region using (a,b) extending techniques described
in Section 3.2.2 and formula (4.12) and (c,d) in formula (4.13). The dash–
dotted line represents the true constitutive relation (4.1), the solid line is the
reconstruction μ̂(T ), whereas the dashed line represents the initial guess μ0;
the vertical dash–dotted and dotted lines represent respectively the boundaries
of the original identifiability interval I0 = [300.0, 500.0] and the measurement
span M, while the dashed vertical line shows the boundaries of the new iden-
tifiability interval [250.0, 700.0].
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from 0 (no regularization) to 2500 we manage to eliminate the instabilities

caused by the presence of noise in the measurements and obtain as a result

smoother constitutive relations, cf. Figure 4.21(c,d). We add that, while after

introducing the Tikhonov regularization the reconstructed solutions converge

in fact to different local minimizers (in comparison with the reconstructions

without noise), however, we emphasize that this does not prevent the recon-

structions from capturing the main qualitative features of the actual material

property. Systematic methods for determining optimal values of regularization

parameters are discussed for instance in [40–42]. Finally, in Figure 4.22 we

present the relative reconstruction errors ‖μ̂ − μ̃‖L1(I) / ‖μ̃‖L1(I) obtained us-

ing the approach reported earlier in Section 3.2.3 for data with different noise

levels and averaged over 10 noise samples. From Figure 4.22 we conclude that

larger values of the regularization parameter λ are required for more noisy

measurements. We close this Section by concluding, in agreement with our

earlier results reported in Chapter 2, that Tikhonov regularization performs

as expected in problems with noise present in the measurement data. We also

discussed the ways of improving the performance of this regularizing approach

earlier at the end of Section 2.6.3.

4.5 Summary of Results for the Multiphysics

Problem

In Chapters 3 and 4 we extended the approach of the reconstruction of the

solution–dependent material properties to more complex multiphysics phe-

nomena to validate its applicability for time–dependent systems where the

reconstructed property used in one conservation equation is a function of a
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Figure 4.21: (a,b) Reconstruction μ̂(T ) of the material property obtained
in the presence of different noise levels in the measurement data: (thick solid
line) no noise, (dotted line) 0.05%, (dashed line) 0.1%, (dash–dotted line)
0.3%, (thin solid line) 0.5%, and (thick dashed line) 1.0% on (a) the interval
L and (b) close–up view showing the identifiability interval I. (c,d) Effect
of Tikhonov regularization on the reconstruction from the measurement data
with 1.0% noise using regularization term (3.33) on (c) the interval L and (d)
close–up view showing the identifiability interval I. In both figures (c,d) the
following values of the regularization parameter were used: (thick dashed line)
λ = 0, (circles) λ = 2.5, (dashed line) λ = 6.25, (thin solid line) λ = 25.0,
(dash–dotted line) λ = 250.0, and (dots) λ = 2500.0. For all figures the
horizontal dashed line represents the initial guess μ0 = 0.0177; the vertical
dash–dotted and dotted lines represent, respectively, the boundaries of the
identifiability interval I and the measurement span M. The arrows indicate
the trends with increasing (a) noise level ξ and (c) regularization parameter
λ.
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Figure 4.22: Relative L1 reconstruction errors ‖μ̂ − μ̃‖L1(I) / ‖μ̃‖L1(I) ob-
tained in the presence of noise with the amplitude indicated and averaged
over 10 samples: (dash–dotted line) reconstruction with Sobolev gradients
and without Tikhonov regularization, and (solid line) reconstruction with Ḣ1

Tikhonov regularization term (3.33) [(circles) λ = 2.5, (triangles) λ = 250.0].
The thick dashed line represents the “error” in the exact material property
(4.1) obtained by adding noise to T and averaging over time steps.

state variable governed by a different conservation equation. This approach

was first developed and validated based on a fairly simple model problem dis-

cussed previously in Chapter 2. As an example of complex “multiphysics”

phenomena in Chapters 3 and 4 we considered a reconstruction of the temper-

ature dependence of the viscosity coefficient used in the momentum equation

where the temperature is governed by a separate energy equation. As a model

problem we considered two–dimensional unsteady flows in a lid–driven cavity

involving also heat transfer. We showed that an elegant and computationally

efficient solution of this inverse problem is obtained by formulating it as a

PDE–constrained optimization problem which is solved within the “optimize–

then–discretize” framework using a gradient–based descent method. We may

note that other approaches are also available for the class of problems con-

sidered in Chapters 3 and 4. One may use, for example, a simple approach

129



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

for reconstructing the coefficients C1 and C2 in Andrade law given by (4.1)

assuming that the reconstructed material property could be approximated us-

ing a known mathematical expression with some unknown coefficients. We

may refer to similar problems considered by Alifanov et al. [12, 13], where

in their formulation the dependence of the material property on the state

variable was assumed in the form of a spline interpolant, effectively resulting

in a finite–dimensional optimization problem usually referred as “discretize–

then–optimize” approach. Although good reconstructions were reported for

that method, they were obtained for different problems, and therefore direct

quantitative comparison with our results presented in Chapters 3 and 4 is not

possible. At the same time, implementing a “discretize–then–optimize” ap-

proach to the present problems, in addition to the work already described,

would be outside the scope of this thesis. We also discussed three different

approaches to evaluation of the cost functional gradients which are given in

terms of integrals defined on the level sets of the temperature field. The re-

sults obtained in computational experiments demonstrate good performance of

the algorithm, in particular, it is demonstrated that by suitably adjusting the

boundary conditions in the governing system we can stretch the identifiability

region.
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Chapter 5

Extensions and Open Research

Problems

5.1 Simultaneous Reconstruction of Several Ma-

terial Properties

For the future research, we may consider extensions of the approaches devel-

oped in the present work (for both models) and apply them to more com-

plicated problems involving systems of coupled PDEs depending on time and

defined on domains in two or three dimensions. In the context of such systems

an interesting issue is the reconstruction of constitutive relations in systems

involving phase changes. As an example one may consider a problem described

in Chapter 3 extended to the multiphase case. At a physical level, it can be

described as the spatial domain Ω ⊂ Rd, d = 2, 3 is divided into N subdomains

each occupied by a material in a different phase. Suppose the material in sub-

domain Ωi ⊂ Ω, i = 1, . . . , N , has temperature–dependent viscosity coefficient

μi : R → R+. The system of governing PDEs for the i-th phase can be defined
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in a way similar to a problem described in Section 3.1, namely

∂tu+ u ·∇u+∇p−∇ ·
[
μi(T )[∇u+ (∇u)T ]

]
=0 in Ωi, (5.1a)

∇ · u =0 in Ωi, (5.1b)

∂tT + u ·∇T −∇ · [ki∇T ] =0 in Ωi, (5.1c)

subject to appropriate initial and interface boundary conditions. The opti-

mal reconstruction μ̂ may be obtained as an unconstrained minimizer of cost

functional J (μ1, μ2, . . . , μN), i.e.,

μ̂ = [μ̂1, μ̂2, . . . , μ̂N ]
T = argmin

μi∈Xi i=1,...,N
J (μ1, μ2, . . . , μN). (5.2)

A problem described in Chapter 3 may also be extended to recon-

structing both viscosity μ and heat conductivity k assuming their simultane-

ous dependence on temperature. The governing system which describes the

single–phase problem may be written in the following form

∂tu+ u ·∇u+∇p−∇ ·
[
μ(T )[∇u+ (∇u)T ]

]
=0 in Ω, (5.3a)

∇ · u =0 in Ω, (5.3b)

∂tT + u ·∇T −∇ · [k(T )∇T ] =0 in Ω, (5.3c)

and the optimal reconstruction [μ̂, k̂]T may be obtained as an unconstrained

minimizer of cost functional J (μ, k), i.e.,

[μ̂, k̂]T = argmin
μ∈Xμ, k∈Xk

J (μ, k) (5.4)

or with the help of dimensionless parameter D(T ) =
μ(T )

k(T )
resulting in optimal
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reconstruction in the simpler form

D̂ = argmin
D∈X

J (D). (5.5)

5.2 Free–Boundary Problem

Another example of a similar challenging problem is the recovery of the tem-

perature dependence of the surface tension coefficient in a two–phase flow. As

an example of such a system one could consider a droplet falling down in the

field of a significant temperature gradient, cf. Figure 5.1. We add that this

problem was in fact brought to our attention by our industrial collaborators

as a motivation for the research discussed in this dissertation.

In order to describe such a model problem mathematically, we may

assume that ΩL and ΩG are respectively the liquid (droplet) and gas (ambient

environment) domains, ΩL,ΩG ⊂ Rd, d = 2, 3, and the model system will

involve the following dependent variables: velocity u : (Ω̄L∪Ω̄G)×(0, tf ] → Rd,

pressure p : (Ω̄L∪ Ω̄G)× (0, tf ] → R, temperature T : (Ω̄L∪ Ω̄G)× (0, tf ] → R

and position of the free surface (ΓLG � Ω̄L∩ Ω̄G)×(0, tf ] ∈ Sd, d = 2, 3. Thus,

we may consider the following equations governing the fluid flow in the two

phases and the energy equations governing the temperature fields TL and TG

(subscripts L and G denote quantities defined in the corresponding phases)

ρL
∂uL

∂t
+ ρL(uL ·∇)uL −∇ · σL = ρLg in ΩL, (5.6a)

∇ · uL = 0 in ΩL, (5.6b)
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ρG
∂uG

∂t
+ ρG(uG ·∇)uG −∇ · σG = ρGg in ΩG, (5.7a)

∇ · uG = 0 in ΩG, (5.7b)

∂TL
∂t

+ uL ·∇TL − kLΔTL = 0 in ΩL, (5.8a)

∂TG
∂t

+ uG ·∇TG − kGΔTG = 0 in ΩG, (5.8b)

where ρL and ρG are the densities, μL and μG are the viscosities, kL and

kG are the heat conductivities in the liquid and gas phase, respectively, and

g = [0, gy]
T is the gravitational acceleration. System of PDEs (5.6), (5.7)

and (5.8) is subject to the following boundary conditions on the liquid–gas

interface ΓLG

uL = uG on ΓLG, (5.9a)

TL = TG on ΓLG, (5.9b)

kL
∂TL
∂n

= kG
∂TG
∂n

on ΓLG, (5.9c)[
σ
]G
L
.n = γ(TL) κ n on ΓLG, (5.9d)

where n is the unit normal vector on the interface ΓLG, κ is the interface

curvature and γ(TL) the surface tension (a temperature–dependent material

property). For simplicity, on the far boundary Γ0, cf. Figure 5.1, we may use
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simple Dirichlet type boundary condition

uG = 0 on Γ0, (5.10a)

TG = Tb on Γ0. (5.10b)

The role of the “experimental” input, i.e. measurements in this problem, will

be played by the series of M snapshots of the shape of the falling droplet. In

other words, one can record the M locations of the interface {Γ̃LG(ti)}Mi=1 at

different discrete times {ti}Mi=1, ti ∈ [0, tf ]. Therefore, the parameter estima-

tion problem can be formulated as follows. Given a set of “measurements”

{Γ̃LG(ti)}Mi=1 of the interface ΓLG, we seek to reconstruct the constitutive re-

lation γ = γ(TL) such that the solutions of the problem (5.6)–(5.10) obtained

with this reconstructed function γ(TL) will best match the available measure-

ments Γ̃LG.

g

ΓLG(t0)

ΓLG(ti)

ΓLG(tM)

ΩL

ΩG

Γ0 ∇T∇T

(a) t = t0

(b) t = ti

(c) t = tM

Figure 5.1: Falling droplet model: (a) initial shape of the interface ΓLG at
time t0 = 0 and two snapshots recorded at time (b) t = ti and (c) t = tM from
the series of measurements {Γ̃LG(ti)}Mi=1.
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The idea is to extend the methodology devised in this work to recon-

struct a material property defined on an interface from information about the

evolution of this interface. While there is a number of technical issues related

to solution of PDE–constrained optimization problem in variable domains [62],

this reconstruction problem at least in principle appears amenable to treat-

ment with the approach devised in this study.
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Chapter 6

Summary and Conclusions

In this study we investigated a novel computational approach to reconstruc-

tion of constitutive relations based on incomplete and noisy measurement data.

This parameter estimation problem is solved using a gradient–based optimiza-

tion technique in which the sensitivities of the cost functional with respect to

the form of the constitutive relation are computed using a suitably–defined

adjoint system. The main challenge inherent in this problem follows from the

fact that the control variable is a function of the state, rather than the in-

dependent variable in the governing system. We studied the problem in the

context of the “optimize–then–discretize” approach to PDE–constrained op-

timization and demonstrated how one can obtain an expression of the cost

functional gradient. We also argued that the traditional L2 cost functional

gradients are discontinuous, or do not have a required degree of regularity,

and therefore are unsuitable for reconstruction of smooth constitutive rela-

tions. It was shown that this difficulty can be resolved by using the Sobolev

gradients defined consistently with the functional setting of the problem in the

optimization algorithm. We also proposed and validated a procedure allowing
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one to shift, or extend, the identifiability region, and in this way reconstruct

the constitutive relation over a much broader range of the state variable. A

first set of computational tests demonstrated the feasibility of the proposed

approach on a simple 1D model problem providing a proof of concept for

the method. We then extended this approach to more complex multiphysics

phenomena to demonstrate its applicability to time-dependent systems where

the reconstructed property used in one conservation equation is a function of a

state variable governed by a different conservation equation. We also addressed

the important issue of reconstruction in the presence of random noise in the

measurement data, and showed that the classical Tikhonov regularization is

able to stabilize the reconstruction process. Our computations indicated that

the use of suitable Sobolev gradients in the reconstruction process may also

have some regularizing effect. We also addressed a number of computational

challenges related to accurate and efficient evaluation of cost functional gradi-

ents, which are at a heart of the reconstruction procedure. As these gradients

are given in terms of integrals over manifolds defined by a level-set function

(in 2D and 3D), we analyze and compare three different methods for evalua-

tion of cost functional gradients. We also demonstrate, both theoretically and

computationally, the superior accuracy and efficiency of our novel numerical

approach to the evaluation of these gradients.

In regard to the possibility of using the proposed computational ap-

proach to reconstruct the constitutive relations in other problems, the follow-

ing comments are in place:

• The accurate reconstruction on different intervals L can be achieved by

adjusting the identifiability region I via a suitable choice of temperature

boundary conditions. As it was shown for our both model problems,
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extension of the identifiability region I in time–dependent and steady–

state problems can be employed in a different way pursuing better per-

formance in reconstruction. For time–dependent problem in general this

can be accomplished by making a suitable choice of the time–dependent

temperature boundary conditions. The steady–state problem in contrast

requires repeating the optimization procedure with new sets of param-

eters (boundary conditions and/or source terms) to perform extensions

in a stepwise manner.

• As expected, the increasing level of noise incorporated into measure-

ments leads to oscillatory instabilities developing in the reconstructed

constitutive relations. We note that in the time–independent problem a

stable reconstruction of the material property was possible in the pres-

ence of a much higher noise level than in the time–dependent problem.

This can be explained by accumulation of the error in the solution of the

direct time–dependent problem when the uniformly distributed noise is

incorporated into measurements at every time step.

• We also note that the use of the cost functional of the quadratic form

(in the least square sense) combined with a nonlinear governing PDE

leaves the minimization problems in general nonconvex. In our current

work as well as in other similar problems this results in the fact that the

optimality conditions may characterize only a local, rather than global,

minimizer. We add that development of the methods applicable for

finding the global minima is beyond the scope of the problems considered

in this thesis.

• In regard to reconstruction of constitutive relations in general, it is im-
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portant that such relations be consistent with the second principle of

thermodynamics. In continuous thermodynamical and mechanical sys-

tems this principle is expressed in terms of the Clausius–Duhem inequal-

ity. This may therefore require additional constraints whose structure

will depend on the complexity of the problem considered. For our present

work, it was possible to reduce this principle to the positivity of the re-

constructed constitutive relations which can be easily enforced by apply-

ing the “slack” variable technique (in the second model problem). This

in fact may not be feasible in more complicated multiphysics problems

where other specific constraints must be introduced.
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Appendices

A Minimum Principle for Problem (2.3)

Theorem A.1 Let T ∈ C2(Ω) ∩ C0(Ω) be a solution of (2.3). If k(T ) > 0,

∀T ∈ I,and g(x) > 0, ∀x ∈ Ω, then

min
x∈Ω

T (x) = Tα = min
x∈∂Ω

T0(x),

i.e., the minimum is attained on the boundary ∂Ω.

Proof. Although Theorem A.1 may be obtained as a special case from a more

general result given in [63], we present here the proof for the sake of com-

pleteness. We prove this theorem by contradiction. Let us assume that the

minimum of the solution T is attained at an interior point x̃ ∈ Ω. Since

∇T (x̃) = 0, Equation (2.3a) takes form −k(T )ΔT = g at the point x̃. There-

fore, by continuity, we would have ΔT < 0 in a small neighborhood of x̃ which

would contradict the assumption that T (x̃) is a minimum. �

B Differentiability of Map (2.5)

In this Appendix we outline the proof of a theorem concerning the differen-

tiability of map (2.5) from the constitutive relations to measurements. In its
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main idea our proof is analogous to the proof presented in [11] for a different

(time–dependent) problem, however, a number of intermediate estimates are

different. We thus consider problem (2.3) in a general bounded domain Ω with

a C1,1 boundary and start by defining the following functional spaces for the

dependent variable T

T = {T ∈ H1(Ω);T = 0 on ∂Ω}, H = L2(Ω), T ′ = H−1(Ω), (B.1)

where for simplicity we have assumed homogeneous Dirichlet data. The inner

product ((·, ·))∗ in the dual space T ′ is defined as

((u, v))∗ = (D−1u,D−1v)H1, (B.2)

where D = Δ is the canonical isomorphism between T and T ′, i.e.,

if u ∈ T =⇒ Du = Δu ∈ T ′. (B.3)

We consider two weak formulations of governing system (2.3), namely, a vari-

ational formulation in the space T defined as follows

∫
Ω

k(T )∇T · ∇u dx =

∫
Ω

g u dx, T, u ∈ T , (B.4)

and a weaker one obtained from (B.4) by setting u = D−1w

∫
Ω

V (T ) · w dx = ((g, w))∗, ∀w ∈ H, (B.5)

where V (T ) is defined in (2.15). Now, we state a differentiability result for the

solution T = T (x; k) of equation (B.4) in which the solution T (x; k) is treated
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as an element of L2(Ω), cf. (2.5) and (3.5).

Theorem B.1 Assume that mk, cf. (2.4), is sufficiently large and solutions

of (2.3) satisfy ‖∇T‖L∞(Ω) <∞. Then the map k → T (·; k) from K to L2(Σ)

defined by (B.4) is Fréchet–differentiable in the norm H1(I).

Proof. Let k′ denote the variation of k such that k, ǩ � k + k′ ∈ K ⊂ H1(I).

To show differentiability of the map k → T (·; k) we need to prove the existence

of the Fréchet differential T ′, such that

lim
‖k′‖H1(I)→0

‖T (k + k′)− T (k)− T ′(k; k′)‖L2(Σ)

‖k′‖H1(I)
= 0. (B.6)

For simplicity, we shall use the following notation

R � T (k + k′)− T (k)− T ′(k; k′), Ť � T + T ′ +R, δT � T ′ +R. (B.7)

Writing equation (B.5) for Ť and T , and subtracting we obtain

∫
Ω

[
V (Ť )− V (T )

]
w dx = −

∫
Ω

V ′(Ť )w dx, (B.8)

where, in analogy with (2.15), the integrand on the RHS is defined as

V ′(Ť ) =

Ť∫
Tα

k′(s) ds

so that V (Ť ) = V (T )−V ′(Ť ). Next, we postulate that the Fréchet differential

T ′ satisfy the following equation

∫
Ω

k(T ) T ′w dx = −
∫
Ω

V ′(T )w dx. (B.9)
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Existence of solutions of (B.9) is established via a straightforward application

of Lax–Milgram lemma, since (B.9) is a linear elliptic boundary–value problem.

Therefore, our goal now is to prove that ‖R‖L2(Σ), cf. (B.7), vanishes faster

that ‖k′‖H1(I). Subtracting (B.9) from (B.8) yields

∫
Ω

[
V (Ť )− V (T )− k(T ) T ′] w dx = −

∫
Ω

[
V ′(Ť )− V ′(T )

]
w dx. (B.10)

Since k(T ) ∈ H1(I), it follows from Taylor’s theorem that there exist θ ∈ [0, 1]

such that

V (Ť ) = V (T ) + k(T ) δT +
1

2
k̇(T + θδT )(δT )2, (B.11)

almost everywhere in T , where k̇ denotes the derivative of k with respect to

its argument. Therefore, the left hand side of (B.10) simplifies to

∫
Ω

[
k(T )R+

1

2
k̇(T + θ δT )(δT )2

]
w dx, (B.12)

whereas for the right hand side of (B.10) we use

V ′(Ť ) = V ′(T ) + k′(T + θ′ δT )δT, (B.13)

where θ′ ∈ [0, 1]. Transforming equation (B.10) with expressions (B.12) and

(B.13) yields

∫
Ω

k(T )Rw dx = −
∫
Ω

[
1

2
k̇(T + θδT )(δT )2 + k′(T + θ′δT )δT

]
w dx.

(B.14)
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This is a linear elliptic boundary–value problem for which there exist an a

priori estimate (see, for example, Section 2.3 in [63])

‖R‖L2(Ω) �
∥∥∥∥12 k̇(T + θδT )(δT )2 + k′(T + θ′δT )δT

∥∥∥∥
L2(Ω)

. (B.15)

For k ∈ K we can reduce inequality (B.15) to the form

‖R‖L2(Ω) � C1‖(δT )2‖L2(Ω) + ‖k′‖L2(I) ‖δT‖L2(Ω). (B.16)

We now proceed to demonstrate that the RHS of (B.16) vanishes faster than

‖k′‖H1(I), i.e., as ‖k′‖qH1(I) for some q > 1. In relation (B.16) and hereafter the

symbols C with subscripts and primes will denote different positive constants.

We start with the term ‖δT‖L2(Ω). Writing the original weak form (B.4)

for k and ǩ, subtracting and setting u = δT produces

∫
Ω

ǩ(Ť ) (∇δT )2 dx+

∫
Ω

[
k(Ť ) + k′(Ť )− k(T )

]
∇δT · ∇T dx = 0. (B.17)

For ǩ ∈ K we have the following estimate for the first term in (B.17)

∫
Ω

ǩ(Ť ) (∇δT )2 dx � mk ‖∇δT‖2L2(Ω). (B.18)

Now we need to assume that C2 = ‖∇T‖L∞(Ω) < ∞, cf. [11]. Then, for the

second term in (B.17) we have

∫
Ω

[
k′(Ť ) + k̇(T + θδT )δT

]
∇δT · ∇T dx

� C2

∫
Ω

[
k′(Ť ) + k̇(T + θ δT )δT

]
|∇δT | dx.

(B.19)
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Next, we combine (B.18) and (B.19) to obtain the inequality

mk ‖∇δT‖L2(Ω) � C ′
1 ‖k′‖L2(I) + C ′

2 ‖δT‖L2(Ω). (B.20)

Using the following Poincare inequality ‖δT‖L2(Ω) � C3‖∇δT‖L2(Ω) we see that

mk

C3

‖δT‖L2(Ω) � C ′
1‖k′‖L2(I) + C ′

2‖δT‖L2(Ω),

mk ‖∇δT‖L2(Ω) � C ′
1 ‖k′‖L2(I) + C ′

2C3 ‖∇δT‖L2(Ω).

Assuming that mk is sufficiently large, so that mk − C ′
2C3 > 0, we obtain

‖δT‖L2(Ω) �
C ′

1C3

mk − C ′
2C3

‖k′‖L2(I),

‖∇δT‖L2(Ω) �
C ′

1

mk − C ′
2C3

‖k′‖L2(I).
(B.21)

Next we estimate ‖(δT )2‖L2(Ω) ≡ ‖δT‖2L4(Ω). As a consequence of the Sobolev

embedding theorem (see, e.g., Theorem 4.12 in [64]), we have the following

inclusion

T ⊂ H1(Ω) =W 1,2(Ω) ⊂ L6(Ω), n � 3.

Therefore, for δT ∈ T and in the light of estimates (B.21), we obtain

‖δT‖L6(Ω) � C ‖δT‖H1(Ω) � C ′‖k′‖L2(I). (B.22)

We then use the interpolation theorem (see e.g., Theorem 2.11 in [64]) for the

Lp spaces which states that for ξ ∈ Lp ∩Lq, 1 � p � r � q � ∞ and t ∈ [0, 1],

we have

‖ξ‖Lr � ‖ξ‖tLp
‖ξ‖1−t

Lq
⇐⇒ 1

r
=
t

p
+

1− t

q
.
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Applying this result to ‖δT‖2L4(Ω) with r = 4, p = 2, q = 6 we obtain using

(B.21) and (B.22)

‖δT‖L4(Ω) � ‖δT‖
1
4

L2(Ω) ‖δT‖
3
4

L6(Ω)

=⇒ ‖(δT )2‖L2(Ω) = ‖δT‖2L4(Ω) � C ′′‖k′‖2L2(I).
(B.23)

Finally, substituting estimates (B.21) and (B.23) for ‖δT‖L2(Ω) and ‖(δT )2‖L2(Ω)

into (B.16) we obtain

‖R‖L2(Ω) � C1 ‖(δT )2‖L2(Ω) + ‖k′‖L2(I) ‖δT‖L2(Ω)

� C ′′′ ‖k′‖2L2(I) � C ′′′′ ‖k′‖2H1(I),
(B.24)

This demonstrates that ‖R‖L2(Ω) vanishes faster than ‖k′‖H1(I). Therefore

k −→ T (·; k) is Fréchet–differentiable from H1(I) to L2(Σ). �
We remark that, as is evident from (B.24), T (·; k) is also differentiable

from L2(I) to L2(Σ).

C Proof of Equivalence of Contour Integral

(3.38) and Area Integral (3.37)

To rewrite the integral, given also in (3.37),

f(s) =

∫
Ω

δ(φ(s,x))g(x) dx (C.1)

explicitly as a line integral, we introduce first a local coordinate system (ξ, η),

where ξ and η are chosen as the coordinates in the direction tangent and normal

to the s–level set of the function φ(s,x), see Figure C.1. The coordinates (ξ, η)

are scaled, so that the Jacobian J(G) of the transformation G : (x, y) → (ξ, η)
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is identically equal to the unity, i.e., we require

dx = dx dy = det J(G) dξ dη = dξ dη. (C.2)

This condition is satisfied by defining the transformation G in the following

affine form

x = αξ/xξ cos γ − αη/yη sin γ + x0,

y = αξ/xξ sin γ + αη/yη cos γ + y0,

where tan γ = f ′(x) at the point (x0, y0) and the curve y = f(x) is defined by

the zero–level set φ(s,x) = φ(s, x, f(x)) = 0, cf. Figure C.1; αξ/x, αη/y ∈ R.

So that

det J(G) = ∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

= αξ/xαη/y cos
2 γ + αξ/xαη/y sin

2 γ = αξ/xαη/y = 1.

(C.3)

One may require the coordinate ξ to increase at a uniform rate along the curve

y = f(x). To ensure this, we fix dξ = dσ =
√
(dx)2 + (dy)2 =

√
1 + [f ′(x)]2dx

and, using (C.3), define dη =
dy√

1 + [f ′(x)]2
. We thus have

dη =

(
∂φ

∂η

)−1

dφ

which, when used in (C.1), yields

f(s) =

∫
Ω

δ(φ(s,x))g(x) dx =

∫
Ω

δ(φ(s,x))g(x) dξ dη

=

∫
Ω

δ(φ(s,x))g(x)

(
∂φ

∂η

)−1

dφ dξ =

∫
Γs

g(x)

(
∂φ

∂n

)−1

dσ,

(C.4)
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Ω

σd

Ω

ξ

η

Γs

y

x

γ

x0

Figure C.1: Level set Γs and the local coordinate system (ξ, η) used in the
derivation of line integral (3.38).

where we used the standard property of the Dirac delta measure and the fact

that ∂
∂η

≡ ∂
∂n
. The derivative of φ(x) in the direction normal to the level set

Γs can be then expressed as follows

∂φ

∂n
= ∇φ(x, y) · n = φx

φx√
φ2
x + φ2

y

+ φy
φy√
φ2
x + φ2

y

=
√
φ2
x + φ2

y = |∇φ|,

so that we finally obtain for (C.1)

f(s) =

∫
Γs

g(x)

|∇φ| dσ (C.5)

which is valid provided |∇φ| �= 0 for every x ∈ Γs.
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[19] Ph. Kügler, “Identification of a Temperature Dependent Heat Conduc-

tivity from Single Boundary Measurements”, SIAM J. Numer. Anal. 41,

1543–1563, (2003).

[20] A. Neubauer, “Identification of a Temperature Dependent Heat Conduc-

tivity via Adaptive Grid Regularization”, Journal of Integral Equations

and Applications 20, 229–242, (2008).

[21] J. R. Cannon and P. DuChateau, “An Inverse Problem for a Nonlinear

Diffusion Equation”, SIAM J. Appl. Math. 39, 272–289, (1980).

[22] P. DuChateau, “An Inverse Problem for the Hydraulic Properties of

Porous Media”, SIAM J. Math. Anal. 28, 611–632, (1997).

[23] J. L. Steward, I. M. Navon, M. Zupanski, and N. Karmitsa, “Impact

of Non–Smooth Observation Operators on Variational and Sequential

Data Assimilation for a Limited–Area Shallow–Water Equation Model”,

In Early View in the Quart. Jour. Roy. Met. Soc. (2011).

152



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES

[24] D. Luo, L. He, S. Lin, T.–F. Chen, and D. Gao, “Determination of Tem-

perature Dependent Thermal Conductivity by Solving IHCP in Infinite

Regions”, Int. Comm. Heat Mass Transfer 30, 903–908, (2003).

[25] L. T. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloe-

men Waanders, Real–time PDE–constrained Optimization, SIAM (2007).

[26] V. Bukshtynov, O. Volkov, B. Protas, “On Optimal Reconstruction of

Constitutive Relations”, Physica D 240, 1228–1244, (2011).

[27] V. Bukshtynov, B. Protas, “Optimal Reconstruction of Material Proper-

ties in Complex Multiphysics Phenomena” (in preparation).

[28] W. Muschik, “Aspects of Non-Equilibrium Thermodynamics”, World Sci-

entific, (1989).

[29] B. D. Coleman and W. Noll, “The Thermodynamics of Elastic Materials

with Heat Conduction and Viscosity”, Arch. Rat. Mech. Anal 13, 167–

178, (1963).

[30] I.-S. Liu, “Method of Lagrange Multipliers for Exploitation of the Entropy

Principle”, Arch. Rat. Mech. Anal 46, 131–148, (1972).

[31] V. Triano, Ch. Papenfuss, V. A. Cimmelli, andW. Muschik, “Exploitation

of the Second Law: Coleman–Noll and Liu Procedure in Comparison”,

J. Non-Equilib. Thermodyn. 33, 47–60, (2008).

[32] D. Luenberger, Optimization by Vector Space Methods, John Wiley and

Sons (1969).

[33] J. Nocedal and S. Wright, Numerical Optimization, Springer (2002).

153



PhD Thesis – V. Bukshtynov McMaster – CESPhD Thesis – V. Bukshtynov McMaster – CES
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