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Abstract 

Rheumatoid arthritis (RA) is a systemic disease that can affect the nervous 

system, lungs, heart, skin, reticuloendothelium and joints. Currently, the gold-

standard measurement for tracking the progression of the disease involves a semi-

quantitative assessment of bone erosion, bone marrow edema and synovitis, as 

seen in magnetic resonance (MR) images, by a musculoskeletal radiologist. The 

work presented in this thesis identifies how computer automation can be used to 

quantify bone erosion volumes in MR images without a radiologists' expert and 

time consuming intervention. 

A new semi-automated hybrid segmentation algorithm that combines two 

established techniques: region growing and level-set segmentation, is described 

and evaluated for use in a clinical setting. A total of 40 participants with RA were 

scanned using a 1-Tesla peripheral MR scanner. Eight of the participant scans 

were used to train the algorithm with the remaining used to determine the 

accuracy, precision, and speed of the technique. The reproducibility of the hybrid 

algorithm and that of manual segmentation were defined in terms of intra-class 

correlation coefficients (ICCs). Both techniques were equally precise with ICC 

values greater than 0.9. According to a least squares fit between erosion volumes 

obtained by the hybrid algorithm with those obtained from manual tracings drawn 

by a radiologist, the former was found to be highly accurate ( m=1.030, b=1.385: 

r-squared=0.923). The hybrid algorithm was significantly faster than manual 

segmentation, which took two to four times longer to complete. 

In conclusion, computer automation shows promise as a means to quantitatively 

assess bone erosion volumes.  The new hybrid segmentation algorithm described 

in this thesis could be used in a clinical setting to track the progression of RA and 

to evaluate the effectiveness of treatment.   
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1.1 Rheumatoid Arthritis (Hochberg et al. 2003) 

1.1.1 History 

Rheumatoid Arthritis (RA) was given its name by Sir Alfred Baring Garrod in 

1859. The first detailed medical description of RA was recorded by Landre-

Beauvais of Paris in 1800 (Snorrason 1952, Short 1974). However, other 

descriptions of RA include Flemish paintings depicting joint deformities 

suggesting the occurrence of RA in the 15th, 16th and 20th centuries (Dequeker 

1977, 1987), ancient descriptions by Hippocrates (460 BC) and Galen (2nd 

century) (Dieppe 1988), and new world paleopathological findings denoting RA-

like erosive changes in bones dating as far back as 6500 BC (Rothschild and 

Woods 1990). 

It is still not known when RA originated. Until recently, there was no evidence of 

the existence of RA prior to the 17th century. Unlike other forms of arthritis such 

as spondylitis, osteoarthritis (OA) and gout, unequivocal evidence of RA had not 

been identified in paleopathology. Due to the recent findings in the skeletal 

remains of pre-Columbian native-Americans and lack of such findings in the old 

world, it has been hypothesized that RA originated in the Americas and was 

transported back by explorers (Rothschild and Woods 1990). However, opposition 

to this theory include neolithic skeletal remains found in Sweden denoting erosive 

change compatible with RA (Leden et al. 1988), and disputes concerning the 
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interpretation of ancient skeletal remains (Rogers and Dieppe 1990). Overall, 

there is still no undeniable proof as to whether or not RA is a modern illness, or 

where it originated. Today, RA is identified by classification criteria created in 

1958 and since revised in 1987 by Arnett et al. 

1.1.2 Economics 

RA imposes a staggering burden on the health care system and the lives of those 

affected by the disease. This burden is usually separated into two categories: 

direct costs, which include all health care costs, and indirect costs, which include 

lost wages and productivity. Due to the debilitating nature of RA, the indirect 

costs are usually equal to or greater than the direct costs of the disease, making it 

important to consider both types of economic burden. 

A comprehensive study of the economics of RA and OA determined the direct 

and indirect costs to be US$64.8 billion in the United States in 1992, which is in 

the same order as the cost of coronary heart disease (Callahan 1998). The average 

annual individual direct cost of RA ranged from $2298 to US$13,549 in North 

America from 1981 to 2000 (Kvien 2004) and €1812 to €11,792 in North 

America and Europe from 1978 to 2002 (Rat and Boissier 2004). Maetzel et al. 

(2004) compared the economic burden of RA, OA and high blood pressure in 

Ontario, Canada, and found that direct costs of RA were 63% higher than OA and 
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138% higher than high blood pressure. Furthermore, they reported the indirect 

costs to be up to five times greater. 

1.1.3 Classification 

The classification of RA has changed several times over the study of the 

condition.  The American Collage of Rheumatology (ACR) 1987 revised criteria 

for the classification of RA, defined by Arnett et al. (1988), is the currently 

accepted paradigm though it has recently been updated by the 2010 Rheumatoid 

Arthritis Classification Criteria (Aletaha et al. 2010).  The criteria include seven 

features of interest (table 1.1) of which at least four must be fulfilled for a 

diagnosis of RA. Alternatively, classification of RA can be defined by a decision 

tree formulation (figure 1.1), where alternative variables based on swelling of the 

metacarpophalangeal (MCP) joints in place of radiographic changes and swelling 

of the wrist in place of rheumatoid factor are proposed. A number of studies 

examining the validity of the ACR 1987 criteria in clinical settings against the 

gold standard of physician diagnosis found that the sensitivity and specificity of 

the four of seven and decision tree formats of the criteria to be 66% to 95% and 

74% to 98% for the four of seven format, respectively, and 71% to 96% and 89% 

to 96% for the decision tree format, respectively (Moens et al. 1992).  

Nevertheless, there is no agreed upon “gold-standard” for the classification of RA.
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Table 1.1: The American College of Rheumatology (ACR) 1987 

revised criteria for the classification of RA (Arnett et al. 1988) 

Criteria 

1. Morning stiffness lasting at least 1 hour 

2. Soft tissue swelling of 3 or more joint areas 

3. Swelling of the hand or wrist joints 

4. Bi-lateral swelling for at least 6 weeks 

5. Rheumatoid nodules 

6. Positive rheumatoid factor 

7. Radiographic changes in hand or wrist joints 

Table 1.2: The range of overall prevalence and incidence as reported 

by 4 review articles, excluding data from Native Americans. 

 Continents 

Prevalence 

(per 1000) 

Incidence 

(per 1000) 

Gabriel (2001) Europe and North America 2.1 - 17.8 0.038 - 0.75 

Kvien (2004) Europe and North America 4.0 - 30.0 0.09 - 0.75 

Alamanos and Drosos 

(2005) 

Africa, Asia, Europe and 

North America 

0.0 - 11.0 0.10 - 3.0 

Alamanos et al. (2006) Asia, Europe and North 

America 

1.8 - 10.7 0.10 - 0.5 
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Figure 1.1: The ACR 1987 criteria as a classification tree. Variables in parentheses can be used when data 

on the first listed variable is unavailable (From MacGregor (1995)). 
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Though it has been shown that the ACR 1987 criteria is effective for long 

standing RA, it has been criticized as inadequate for the early diagnosis of the 

disease since the last 3 items of the criteria, rheumatoid nodules, positive 

rheumatoid factor and radiographic changes, are often not present in the early 

stages of the disease (Aletaha et al. 2005, Moens et al. 1992, Saraux et al. 2001). 

1.1.4  Epidemiology 

Two common metrics in epidemiology are prevalence, the number of people 

affected by a condition at any particular time, and incidence, the number of annual 

new occurrences of a condition.  Determining the prevalence and incidence of RA 

poses several challenges due to poor understanding of the etiology of the disease. 

The ACR 1987 revised criteria for the classification of RA is most widely 

accepted as a standard for use in characterizing the distribution of RA in 

populations. However, as described in the section above there is no ideal method 

for the classification of the disease. Furthermore, due to the low occurrence of RA 

very few studies have had enough statistical power to adequately perform 

epidemiological measurements. The ranges of prevalence and incidence of RA, as 

reported in a number of review articles, are listed in table 1.2. 

It has been observed that the incidence of RA is higher in women than men, and 

increases with age (Alamanos and Drosos 2005, Gabriel 2001, Kvien 2004, 
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Symmons et al. 2002). In general, most autoimmune diseases are predominant in 

women, with possible explanations being differences in exposure, chronobiology 

of X and Y chromosomes, though the latter has not been thoroughly examined 

(Lockshin 2006). The incidence rate of RA in the Norwich Health Authority, 

England, as defined by the decision tree format of the ACR 1987 criteria, grouped 

by age, shows a positive correlation between incidence and age for both sexes, 

with a stronger trend in women than men (figure 1.2). A follow-up by Symmons 

et al. in 2002 concluded that the prevalence of RA in women had decreased over 

the past 50 years. 

An important epidemiological finding is the higher occurrence of RA in Native 

Americans compared to most other populations. Ferucci et al. (2005) have 

compiled 15 studies examining prevalence in 13 distinct Native American 

populations. Of the 13 groups, the prevalence of the Tlingit, Yakima, Pima and 

Chippewa populations were many times greater than non-native populations, 

ranging from 2.4% to 7.1%. This finding is important since it may help to explain 

what roles genetic and environmental factors may play in the etiology of RA. 

It has been hypothesized that the global incidence of RA has been declining over 

the past 50 years (figure 1.3). The cause of the observed decline is not known, 

though change in classification of RA in addition to an increase of patients with
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Figure 1.2: Incidence of RA in the Norwich Health Authority defined by the decision tree format of the 

1987 ACR criteria, grouped by age. The error bars represent the 95% confidence intervals (adapted from 

Symmons et al. (1994)). 
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Figure 1.3: RA incidence trends in the United States, Finland and Japan. Vertical lines represent upper and 

lower ranges taken from female and male incidences, respectively (from Kvien (2004), in which full 

references are given).
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uncategorized arthritis has been put forth as an alternative to actual decline in the 

incidence of RA (Uhlig and Kvien 2005). 

1.1.5 Etiology and Pathology 

Though many observations have been made about the causes of RA, the specific 

etiology remains unknown. Bacterial antigens have been identified as playing a 

role in the inflammatory response through the interaction with T lymphocytes 

(Miller-Blair et al. 1996). Genetic factors contributing to RA have also been 

investigated. In particular, linkage and association studies have been used to 

explore genetic associations (Orozco et al. 2006). The initiation of RA is assumed 

to be a complex combination of genetic, environmental and infectious agents 

(Weyand 2000, Alamanos and Drosos 2005) that is still poorly understood.  More 

recently, there has been evidence that smoking in the genetically predisposed 

individual may cause RA, particularly in those who are anti-cyclic citrullinated 

positive (Mahdi et al 2009, Vittecoq et al 2008), an antibody which targets the 

body’s proteins and is commonly found in people with RA.  The anti-cyclic 

citrullinated biomarker has been added to the 2010 RA classification criteria 

(Aletaha et al. 2010). 

RA is a systemic disease that can affect the nervous system, lungs, heart, skin, 

reticuloendothelium and joints. Bone and joint involvement include inflammation, 

synovitis, pannus, bone edema and erosion, cartilage loss and gross deformity, 
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usually found in the hands, wrists, elbows, shoulders, knees, ankles and feet. A 

comparison of a normal joint and one affected by RA is illustrated in figure 1.4. 

Synovitis, labeled in figure 1.4(b) as (I), is inflammation of the synovial 

membrane which encapsulates synovial fluid. The inflammation causes the joint 

capsule to visibly swell, a symptom included in the ACR 1987 classification 

criteria. Synovitis has been closely investigated as a means to investigate the 

pathophysiologic mechanisms of RA (Tak and Bresnihan 2000). Pannus, labeled 

in figure 1.4(b) as (III), occurs when inflammation overgrows the articular 

surface, causing synovial tissue to breakdown. One of the hallmark effects of RA 

is the destruction of bone within the joint capsule. Bone edema, labeled in figure 

1.4(b) as (IV), is visualized as an area of free water with poorly defined margins 

in magnetic resonance (MR) images replacing bone marrow fat. As edema 

progresses, the cortical shell within the joint capsule is broken and bone is eroded 

by the inflamed synovium. The erosion of bone, labeled in figure 1.4(b) as (V), is 

also included in the ACR criteria as radiographic change. Since bone edema is not 

visible in conventional radiography (CR) it has only been studied since the advent 

of MR imaging. In a review article, McQueen and Ostendorf (2006) suggest that 

bone edema may play the dominant role in the immunopathogenesis of RA 

instead of synovitis. This suggests that the causal link between bone edema and 

inflammation may begin with edema instead of inflammation. Another hypothesis 

is that inflammation results from edema. 
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(a) Healthy joint 

 

(b) RA joint 

 

Figure 1.4: A comparison of a normal joint and a joint affected by rheumatoid arthritis.
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Erosions are caused by osteoclasts that have been activated by the inflammatory 

process.  Erosions do not repair because the pannus and inflammatory tissues 

release factors that inhibit osteoblastic bone repair (Goldring 2009). Finally, 

cartilage loss, labeled in figure 1.4(b) as (II), and, if the disease is left untreated, 

gross deformity of the joint can occur. 

1.1.6 Treatment 

There are a number of different treatments used to manage RA which fall into one 

of three categories: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), 

corticosteroids, and Disease Modifying Antirheumatic Drugs (DMARDs). NSAID 

treatments reduce inflammation which in turn reduces pain and increases function 

in affected joints. Corticosteroids reduce inflammation and help to control the 

auto-immune responses caused by RA. Finally, DMARD treatments modify 

disease activity by improving symptoms and retarding outcomes. Since 

DMARDS have a longer onset time than other treatments they are often paired 

with inflammation reducing therapies. 

More recently, powerful new DMARDs, in particular the TNF inhibitors (agents 

which block TNF cytokines), Adalimumab, Etanercept and Infliximab, have been 

shown to work faster than conventional DMARDs and are recommended for the 

treatment of moderate to severe RA in order to inhibit structural damage. 

However, these so-called biologics incur a much higher cost than conventional 
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DMARDs. Pucino et al. (2006) determined the annual cost of TNF antagonists to 

be up to $38,992 for Adalimumab, $19,496 for Etanercept and up to US$62,816 

for Infliximab. Due to these biologics costing several times more than 

conventional DMARDs, their use is controversial (Bansback et al. 2005). 

The efficacy of TNF inhibitors was demonstrated in a review article by Alonso-

Ruiz et al. (2008) using the ACR efficacy response criteria, wherein ACR20, 

ACR50 and ACR70 responses correspond to 20, 50 and 70% improvement, 

respectively. The adverse effects of treatment were calculated in terms of Relative 

Risk (RR), which is defined as: 

 
 
 controlp

treatedp
RR




  (1.1) 

where p'(treated) and p'(control) are the probabilities of adverse effects in the 

treated and control groups, respectively. The beneficial effects of treatment were 

calculated in terms of Number Needed to Treat (NNT), which is defined as: 

 
   controlptreatedp

NNT



1

 (1.2) 

where p(treated) and p(control) are the probabilities of attaining response in the 

treated and control groups, respectively. The NNT and RR values for 
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Adalimumab, Etanercept and Infliximab for ACR20, ACR50 and ACR70 are 

presented in table 1.3. 

Adverse effects of TNF inhibitors include serious infections and risk of cancer. In 

a review article by Cunnane et al. (2003), the links between biological agents and 

infection are discussed. In short, these inhibitors interfere with TNF cytokines 

which are important for fighting infection. The exact nature of this interaction is 

still under investigation. The relationship between biological agents and risk of 

cancer is less clear. In a review article by Williams (2008), TNF inhibiting 

therapies are reported to potentially facilitate or inhibit the development of cancer. 

1.2 Imaging Rheumatoid Arthritis 

1.2.1 Overview 

Modern medical imaging has provided many different techniques for the 

visualization of anatomy. Such techniques include conventional radiography 

(CR), computed tomography (CT), ultrasonography (US) and magnetic resonance 

(MR) imaging. Each of these methods has distinct benefits and limitations due to 

their reliance on different physical principals. For example, CR and CT rely on 

the differences in linear attenuation characteristics between human tissues in order 

to differentiate between them. At diagnostic energies, the X-ray attenuation of 
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Table 1.3: NNT and RR values of three anti-Tumour Necrosis Factor 

(TNF) drugs (From Alonso-Ruiz et al. (2008)). Values are provided 

for the American College of Rheumatology (ACR) ACR20, ACR50 

and ACR70 response criteria which represent 20%, 50% and 70% 

improvement, respectively. NS denotes non-significant results. 

 ACR NNT RR (CI 95%) 

Adalimumab ACR20 5 (4-6) 2.0 (1.3-2.9) 

 ACR50 5 (5-6) 2.8 (1.6-4.7) 

 ACR70 7 (6-8) 3.5 (1.9-6.7) 

Etanercept ACR20 6 (5-8) 1.7 (1.1-2.7) 

 ACR50 6 (4-7) 2.2 (1.1-4.3) 

 ACR70 NS 2.1 (0.9-4.5) 

Infliximab ACR20 5 (4-6) 1.7 (1.1-2.6) 

 ACR50 6 (5-7) 2.2 (1.2-4.1) 

 ACR70 9 (7-13) 2.4 (1.2-5.0) 

Combined ACR20 5 (5-6) 1.8 (1.4-2.3) 

 ACR50 5 (5-6) 2.4 (1.7-3.4) 

 ACR70 7 (7-9) 2.7 (1.8-4.1) 
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bone is much greater than that of soft tissue, enabling excellent visualization of 

bone without obfuscation of the other surrounding tissues. However, since there is 

little to no difference in the attenuation between different soft-tissues, such as 

water, fat and muscle, radiation-attenuation based techniques are not ideal for 

visualizing non-osseous features in anatomy. Whenever possible, this limitation in 

attenuation differences is overcome by using contract agents. MR imaging relies 

on a different physical principle for image acquisition than CR and CT, nuclear 

magnetic resonance, making it an ideal technique for visualization of non-osseous 

tissues. 

1.2.2 Conventional Radiography 

The etiopathogenesis of RA has been explored using a variety of imaging 

techniques. CR is widely used in the diagnosis and monitoring of RA due to it 

being inexpensive and highly available. However, as outlined in section 0, early 

development of RA involves changes to non-osseous tissue which CR is unable to 

detect. Furthermore, CR is limited to 2D projections of 3D anatomy and, despite 

superior resolution, it is not as sensitive and does not detect erosions as early as 

3D imaging techniques (McQueen et al. 1998, Sugimoto et al. 1996, Jorgensen et 

al. 1993, Foley-Nolan et al. 1991). Since there is no known way to reverse severe 

damage to bone caused by RA, early detection is of high priority. For this reason 
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CR, though useful in the monitoring of more advanced RA, is not ideal for 

imaging the condition in its early stages. 

1.2.3 Computed Tomography 

CT has the advantage over CR of tomographic visualization which overcomes the 

limitations of projection-based 2D images.  However, this comes at the cost of 

much greater radiation exposure.  Furthermore, like CR, the types of soft tissues 

that CT is able to image is limited by the relatively small differences in linear 

attenuation characteristics of non-osseous tissue. This limitation makes it inferior 

to imaging techniques able to clearly differentiate soft-tissue from fluids, such as 

MR imaging, because important early features of RA such as bone edema, 

synovitis and tenosynovitis all involve fluid in and around soft tissue. Because of 

its deficiencies in differentiating fluid from soft tissue without the use of contrast 

agents, CT is unable to provide valuable information concerning early RA, and as 

such it is considered to be inferior to MR and US for evaluation of early RA 

(McQueen et al. 1998, Jorgensen et al. 1993, Foley-Nolan et al. 1991). 

As previously described in section 0, bone erosions do not manifest as early as 

inflammation but they have been identified on MR and CT images in early RA. 

CT images are excellent for the delineation of erosions since their signal is clearly 

diminished compared to the cortex and surrounding trabecular bone (Perry et al. 

2005). Due to CT yielding better images of bone than MR and US it has been 
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used as a reference, in the absence of a better standard, to validate the imaging of 

erosions (Dohn et al. 2006, Oostveen et al. 1998, Perry et al. 2005). However, 

although CT may be superior for imaging bone to MR, the two share similar 

limitations in terms of in and out of plane resolution compared to erosion size. 

Therefore, microscopic CT images, such as those acquired by micro-CT scanners, 

would better serve the purpose of validating MR images. To the author’s 

knowledge no such comparisons have ever been made. 

1.2.4 Magnetic Resonance Imaging 

MR measures the response of elements to changing magnetic fields. In particular, 

medical MR imaging primarily relies on the magnetic resonance of hydrogen, 

which is found throughout most tissues in the body. The major advantage this 

technique has over X-ray based imaging is that MR images to not require ionizing 

radiation, so there is no radiation dose associated with image acquisition. Another 

advantage of MR is that images are taken as slices along any plane, overcoming 

the inherent limitations of CR caused by projection. As well, there are a multitude 

of pulse sequences and timings that can be used to improve the contrast resolution 

between different features of interest. For example, the Rheumatoid Arthritis 

Magnetic Resonance Image Scoring (RAMRIS) system recommends the use of 

T1-weighted and T2-weighted images (explained in chapter 2) for the scoring of 

bone erosions and edema, respectively (Ostergaard et al. 2003a). The challenge 
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involves a thorough understanding between MR configuration and RA pathology 

to best visualize features of interest. 

As with any imaging technique, MR imaging has its disadvantages. Depending on 

the pulse sequence used, desired resolution, Field of View (FOV) and Signal to 

Noise Ratio (SNR), scan times can become excessively long. The better the 

resolution, greater the FOV and SNR the more time is necessary for image 

acquisition. Long scan times are undesirable because of the discomfort it causes 

patients and the increased chance of movement artifact. As well, out of plane 

resolution must be limited in order to produce an adequate signal. Setting a large 

slice thickness or low resolution may cause Partial Volume Effects (PVEs) which 

misrepresent contours and can obfuscate smaller features altogether. Other 

artifacts inherent in MR imaging that can cause the misrepresentation of the 

features of RA include susceptibility, chemical shift, truncation and 

inhomogeneity of fat suppression (McQueen et al. 2005).  The causes and 

appearance of various MR imaging artifacts are described in section 2.3.2. 

Some of the limitations of MR imaging can be overcome by specialized scanners 

designed for particular functions. In particular, peripheral Magnetic Resonance 

Imaging (pMRI) uses small-bore systems that have been developed specifically 

for extremity exams. Typical low-field pMRI scanners usually have a main field 

of 0.2T (Tesla), 0.23T or 0.6T and are limited to low resolution imaging. In 
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contrast, the main field strength of high-field pMRI scanners are at least 1.0T and 

have been reported to provide equivalent signal and resolution to large-bore 1.5T 

scanners (Beattie et al. 2005, Inglis et al. 2007). 

Though small-bore scanners are limited to scanning the extremities only, they 

have advantages over large-bore high-field scanners. Some MR artifacts are less 

of a concern in pMRI.  For example, chemical shift grows linearly with main field 

strength so artifacts using 1.0T fields will be three times smaller than in 3.0T 

fields. Movement artifact can be caused by discomfort and claustrophobic 

reactions in some patients. Due to small-bore pMRI requiring a single limb to be 

surrounded by a substantially smaller magnet, such anxieties are not an issue. 

Finally, pMRI is much less expensive than imaging with large-bore MR scanners 

which, in combination with the high quality images provided by high field pMRI, 

makes it ideal for imaging RA in the hand and wrist. 

1.3 Scoring Rheumatoid Arthritis 

1.3.1 Traditional Radiography 

Several methods have been developed to track erosion changes in CR, CT and 

MR images, as compared in Table 1. Historically, X-ray based evaluations were 

originally scored by a single qualitative measure categorizing damage on a scale 

of 0 to 4 (Steinbrocker et al 1949), 0 to 5 (Kellgren 1956) and 0 to 8 (Sievers 
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1965). Later, methods assessing joints individually were introduced by Sharp et al 

(1971) and Larsen (1973), which in turn have been modified by several groups 

(Gofton and O’Brien 1982, Genant 1983, Bluhm et al 1983, van der Heijde et al 

1989). The Sharp and modified Sharp methods categorize erosive damage and 

joint space narrowing in individual joints and aggregate the result into a single 

score (Aletaha and Smolen 2006). Erosion size and joint spacing have also been 

measured quantitatively in CR using digital image processing techniques (Higgs 

et al 1996, Angwin et al 2004). 

1.3.2 Computed Tomography 

No qualitative scoring method has been developed specifically for CT images. 

Measurement of erosion volume in CT images is described by Duryea et al (2008) 

which involves a semi-automated method for contouring carpal bones, then 

determining erosion volume by comparing baseline and follow-up images. An 

assessment of RA in CT images was performed in a clinical trial by Dohn et al 

(2008) using the Rheumatoid Arthritis Magnetic Resonance Image Scoring 

(RAMRIS) system which is intended for MR images. 

1.3.3 Magnetic Resonance Imaging 

3D MR imaging is currently the accepted standard for assessing bone and joint 

changes associated with RA (Peterfy 2004). MR based evaluations of RA can be 
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divided into semi and fully quantitative measurements. The Outcome Measures In 

Rheumatology Clinical Trials (OMERACT) RAMRIS system, the established 

gold standard in radiological assessment of RA and described by Ostergaard et al 

(2003), assesses synovitis, bone edema and bone erosion individually. Synovitis is 

assessed on a scale from 0 to 3 (none, mild, moderate and severe), edema on a 

scale from 0 to 3 (none, one third, two thirds and full) and erosions on a scale 

from 0 to 10 (none, 10%, 20%, etc).  Bone erosions are identified as regions 

within trabecular bone having low signal in T1-weighted images (absence of 

marrow signal) (Ostergaard et al 2003, Sommer et al 2005). Erosion volumes 

have been measured in T1-weighted images by Bird et al (2003) using manual 

tracing and Carano et al (2004) by comparing baseline and follow-up scans to 

quantify change in erosion volume. Manually traced contours in 3D images are, 

arguably, the most direct quantitative image-based measurement of bone erosions. 

Manual tracing, although time consuming, can be accurate when performed by a 

trained radiologist and can serve as a gold standard for the purpose of validating 

automated segmentation algorithms (Duryea et al 2000a, 2000b, Gordon et al 

2001). 

1.4 Purpose of thesis 

Though a number of methods have been developed for the quantitative assessment 

of RA, none of them are adequate to be used in tracking the radiological changes 
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in early RA. The purpose of this thesis was to determine how automated 

segmentation algorithms could be used to quantitatively track the changes in early 

RA using MR images. Baseline and follow-up scans of a small cohort of patients 

were used to determine the accuracy and reproducibility of volume-based 

measurements of bone erosions using a newly developed hybrid segmentation 

algorithm.  
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  Chapter 2

Magnetic Resonance Imaging 
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2.1 Magnetic Resonance Physics 

2.1.1 Nuclear Spin 

The basis of MR imaging is the energetic interactions between an external 

magnetic field, radio frequency (RF) pulses and the nuclear magnetic moment 

associated with the nuclear spin of a molecule. Nuclear spin, I, is defined as the 

total angular moment of a nucleus which is determined by the total number of 

protons and neutrons within the nucleus. All nuclides with an even number of 

protons and neutrons have nuclear spin 0I , whereas all other nuclides 

exhibiting an odd number of protons, neutrons or both have spin 0I . Nuclides 

with non-zero spin are often referred to simply as spins. Applying an external 

magnetic field, 0B


, to a spin will cause energetic interactions between the field 

and the magnetic moment of the spin. This interaction is the basis behind MR 

imaging. 

A magnetic moment, in terms of classical physics, can be described as a vector 

M


, precessing around the z-axis.  As depicted in figure 2.1, this vector can then 

be broken down into its longitudinal component, Mz, which lies along the z-axis, 

and its transverse component, Mr which lies along the radial axis. When an 

external magnetic field, 0B


, is applied along the z-axis, the magnetic moments of
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Figure 2.1: A classical representation of a magnetic moment, M


, that, 

in the presence of an applied external magnetic field 0B


, precesses 

around the z-axis.  M


 is composed of a longitudinal component, 

zM z
ˆ , and transverse component, rM r

ˆ . 
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spins align themselves with the magnetic field in either a low or high energy state. 

The low energy state, often called parallel spin, is defined as having a net 

magnetization pointing in the same direction as 0B


. Conversely, the high energy 

state, often called anti-parallel spin, has a net longitudinal component pointing in 

the opposite direction to 0B


. If there is an uneven number of parallel and anti-

parallel spins the overall effect causes a net longitudinal magnetization. This is 

illustrated in figure 2.2(a).  A similar, but importantly distinct concept is 

transverse magnetization which occurs when the transverse component of spins 

rotate in phase. As spins naturally exhibit random phase, they produce an overall 

null transverse magnetization.  This is illustrated in figure 2.2(b).  Unlike in the 

longitudinal direction, 0B


 does not produce a net transverse magnetization since it 

does not affect spin phase.  Common nuclides associated with MR images include 

1
H, 

13
C, 

19
F, 

23
Na and 

31
P. Due to its abundance in the body and high sensitivity to 

magnetic resonance, the hydrogen nucleus (
1
H) is most often used in medical 

imaging. Therefore, throughout this section, if not otherwise stated, the term spin 

will refer specifically to a 
1
H nucleus. 
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(a) Net Longitudinal Magnetization 

 
(b) Spin Phase 

 

 Figure 2.2: (a) A classical representation of net longitudinal magnetization.  Each 

blue arrow is an individual spin precessing around the z-axis.  Spins with a z-

component in the same direction as the external field 0B


 are considered to have 

parallel spins while the anti-parallel spin states have z-components opposite of 

.0B


  
The large, upward pointing red arrow represents the net longitudinal 

component of parallel spins and the smaller, downward pointing red arrow 

represents the net longitudinal component of anti-parallel spins.  (b) The 

transverse components of multiple spins which are out of phase.
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2.1.2 Excitation and Relaxation 

The resonant frequency with which a magnetic moment precesses about the 

applied field axis is called the Larmor frequency, o.  The Larmor equation given 

in equation 2.1 shows that o is directly proportional to the applied field: 

 0Bo    (2.1) 

where  is the gyromagnetic ratio, a constant unique to each nuclide.  For 

example, the gyromagnetic ratio for 
1
H is 42.58 MHz/Tesla.  

By using an RF coil to apply an RF pulse, B1, to spins in a magnetic field, but 

perpendicular to that field (in the radial direction), all molecules whose Larmor 

frequency match that of the applied RF pulse will experience magnetic resonance. 

Therefore, by applying an RF pulse at 42.58 MHz in a 1 Tesla magnetic field, the 

energetic interaction between the 
1
H molecules and the pulse will resonate. When 

this occurs the resonant molecules absorb electromagnetic energy, a process 

known as excitation. Once B1 is removed, spins will gradually return to their 

previous ground state by emission of electromagnetic energy, a process known as 

relaxation. 

Depending on the duration of the applied RF pulse, both longitudinal and 

transverse magnetization is affected. In terms of quantum physics, B1 excites the 
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proton of the hydrogen nucleus into a higher state, converting it from the lower 

energy parallel spin to the higher energy anti-parallel spin. The longer the pulse is 

applied, the more 
1
H molecules are excited. In the classical model this appears as 

the net longitudinal magnetization decreasing as the number of parallel and anti-

parallel spins reach equilibrium, then increasing in the opposite direction to the 

magnetic field as the number of anti-parallel spins grow more numerous than 

parallel spins. Figure 2.3 demonstrates how, in the classical model, the absorption 

of energy from the RF pulse “pushes” the spins into the transverse plane, 

effectively decreasing the longitudinal component and increasing the transverse 

component of the spin. The angle which defines how far spins are pushed into the 

transverse plane is defined as the flip angle, .  The RF pulse also affects spin 

phase. As the net longitudinal magnetization decreases there is a phase coherence 

in spins which cause a net transverse magnetization. Figure 2.4 demonstrates how 

increasing energy from the RF pulse causes spin phase to align, thus creating a net 

transverse magnetization. A pulse that eliminates net longitudinal magnetization 

and maximizes net transverse magnetization has a 90° flip angle. 

After the applied B1 RF pulse is turned off, spins emit the electromagnetic energy 

they absorbed during excitation by returning to equilibrium (net longitudinal 

magnetization and no transverse magnetization due to spins dephase). This time-

signal is known as Free Induction Decay (FID) and is the basis of MR imaging. 
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(a) Lower energy state 

 

 
(b) Higher energy state 

 

Figure 2.3: Increased energy states shorten the longitudinal 

magnetization (red arrow) and lengthen the transverse magnetization 

(green arrow).  If 1B


 is applied long enough the net magnetization will 

only have a transverse component, or a 90° flip angle. 
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(a) Out of phase 

 
(b) Nearly in phase 

 
(c) In phase 

 

Figure 2.4: As the individual spins become increasingly in phase the 

transverse magnetization, Mr, increases.

Small Mr 

Largest Mr 
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Faraday’s Law of Induction states that an Electro-Magnetic Force (EMF) will 

occur in any coil when in a changing magnetic field: 

 
dt

d
NVEMF


  (2.2) 

where N is the number of turns in a wire coil and  is magnetic flux. As spins 

relax by FID their net magnetization act as a changing magnetic field and in turn 

induce an EMF in the same coil that created the RF pulse, or any other coil within 

the main field. FID is characterized by two components, one from the longitudinal 

component and the other from the transverse component of the magnetic moment 

of spins. In the absence of B1 spins gradually move from the higher energy, anti-

parallel state to the lower energy, parallel state. As this change in energy states 

occurs, the overall net longitudinal magnetization is re-established at a rate 

described by the curve in figure 2.5(a). The rate at which Mz is re-established is 

dependent on the strength of Bo, tissue type and proton density. 

By definition, the time required for Mz to return to 63% of maximum for a 

particular tissue is called the T1 time. During relaxation the net transverse 

magnetization that was created by B1 will decay as shown in figure 2.5(b). The 

rate at which this decay occurs also depends on the strength of Bo, tissue type and 

proton density.  By definition, the time required for Mr to return to 37% of 

maximum for a particular tissue in a homogeneous magnetic field is called the T2 
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(a) Longitudinal Relaxation 

 

 
(b) Transverse Relaxation 

 

Figure 2.5: Spin relaxation after an RF pulse broken down into (a) 

longitudinal and (b) transverse components for a hypothetical block of 

tissue with a T1 of 325 ms and a T2 of 80 ms. 

In phase, as in 

figure 2.4(c) 

Out of phase, as in 
figure 2.4(a) 
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time.  In general, the decay of the transverse magnetization tends to be faster than 

the rate of return of the net longitudinal magnetization making T2 shorter than T1.  

In addition, the rate at which transverse magnetization is lost in inhomogeneous 

fields is greater than in homogeneous fields.  This introduces another timing, T2
*
, 

which is similar to the T2 time but includes the decay caused by field 

inhomogeneities.  T2
*
 is therefore always less than T2.   

2.1.3 Spatial Encoding 

The processes of excitation and relaxation provide the basis for MR signal 

acquisition within a volume of interest containing non-zero spin nuclides. 

However, excitation at a given frequency matching the Larmor frequency of the 

nuclide of interest will generate signals at the same frequency. The result is a net 

FID (single) signal from the combined volume which bears no spatial information 

about the tissue type and distribution within the volume. In order to divide the MR 

signal into discrete locations it is necessary to introduce linear gradient magnetic 

fields that combine with the uniform main field in a controlled manner. The 

process of differentiating signal position is called spatial encoding. 

There are three steps involved in spatial encoding, one for each dimension in the 

Cartesian coordinate system. The first step is slice selection, which excites spins 

within a specific slice or volume.  The next two steps are phase encoding, which 

divides the spins in the selected slice into strips of different phases, and frequency 
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encoding, which divides the spins in the selected slice into perpendicular strips of 

different frequencies. The result of applying these three steps is to divide a 

volume into several slices where the combined FID signal of each slice is a 

combination of many phases and frequencies which can be converted into signals 

at particular positions using an inverse Fourier Transform. 

With the first step in spatial encoding being slice selection, the goal is to measure 

the FID signal of all spins situated within a single slice of the volume of interest, 

as depicted in figure 2.6.  By applying a linear gradient magnetic field, )(zG


, 

parallel to the main field the overall magnetic field becomes: 

 zzGBzGBB ˆ)]([)( 00 


 (2.3) 

where zzGzG z
ˆ)( 


 varies along the slice selection axis, which for this example is 

ẑ . Replacing B0 with B


 in the Larmor equation (2.1) results in an expression 

defining the frequency of spins as a function of slice position: 

 ][)( 0 zGBz z   (2.4) 

Furthermore the frequency bandwidth for slice selection can be defined as: 

 zGz   (2.5) 
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Figure 2.6: A slice with thickness z selected from a volume at 

position zo. The linear gradient magnetic field has an intensity that 

ranges from B0 ± Gz with a value of B0 at the center of the field. The 

selected slice corresponds to the resonant magnetic field intensity, , 

that matches the Larmor frequency of the spins in the volume.
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In practical terms, equations 2.4 and 2.5 mean that by applying an RF pulse at a 

defined frequency, )( oz , only the spins with frequency 2/)(  oz  will be 

excited, thereby selecting a slice centered around zo with a thickness of z. 

After slice selection, the next step in spatial encoding is phase encoding and is 

illustrated in figure 2.7(a).  The purpose of phase encoding is to divide the 

selected slice into strips perpendicular to the slice selection axis. This division, 

based on phase, is illustrated in figure 2.7(a) and is achieved by applying another 

linear gradient field, )(yG


, perpendicular to the main field such that the overall 

magnetic field becomes: 

 zByyGyGBB ˆˆ)()( 00 


 (2.6) 

In this equation )(yG


, which is equal to yyGy
ˆ , varies along the phase encoding 

axis, which for this example is ŷ .  By applying G(y) for a short period of time the 

frequency of spins along the phase encoding axis will change in proportion to the 

field: 

 )()( 0 yGBy y   (2.7) 

If, after time ty, the gradient field is turned off, all spins within the selected slice 

will once again rotate at the same frequency, but their phases will be a function of 

position along the phase encoding direction: 
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 yGty yy )(  (2.8) 

This procedure of applying )(yG


 is repeated once for each individual strip in the 

slice, where the applied gradient varies in steps from -Gy to +Gy to provide phase 

encoding. 

Frequency encoding represents the last step for spatial encoding.  As depicted in 

figure 2.7(b), encoding based on frequency divides the selected slice into strips 

perpendicular to the slice selection axis and phase encoding axis. Much like phase 

encoding, frequency encoding requires that another linear gradient field, )(xG


, is 

applied perpendicular to the main field: 

 xBxxGxGBB ˆˆ)()( 00 


 (2.9) 

In this equation )(xG


, which is equal to xxGx
ˆ , varies along the frequency 

encoding axis, which for this example is x̂ . Unlike with phase encoding where 

the field is applied for a short time then turned off, the FID signal is measured 

while Gx remains on. For this reason the frequency encoding gradient field is 

often refered to as the readout field. The result of applying Gx during FID readout 

is to set the frequency of spins within the selected slice to be a function of the 

frequency encoding direction: 

 )()( 0 xGBx x   (2.10) 
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(a) Phase encoding 

 
(b) Frequency encoding 

 

Figure 2.7: For spatial encoding strips along the y-axis are encoded by phase and strips along the x-axis are 

encoded by frequency. 
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2.1.4 Image Reconstruction 

Once all FID signals within the volume of interest have been encoded spatially, 

the recorded phase and frequency of the signals must be decoded in order to 

reconstruct an MR image. Mathematically, the signal comprising an MR image is 

recorded as discrete spatial frequencies in k-space. To produce a two dimensional 

(2D) or three dimensional (3D) image this discrete signal set must be converted 

from k-space to Euclidean r-space using an inverse Fourier Transform (FT).  

Since spatial encoding records FID signals in terms of spatial frequency it is 

useful to compare k-space and r-space during image acquisition. Let )(rf


 be an 

integrable function defined in a finite 3D r-space. By applying a FT to this 

function we can define its analogue function in k-space: 

 


r

rki

D rderfrfFkF
 

)(2

3 )()]([)( 
 (2.11) 

where k


 is a 3D complex vector analogous to the r


 vector. To convert from k-

space back to r-space a reverse FT is applied on k


: 

 


k

rki kderF
 

)(2)( 
 (2.12) 
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For the purposes of MR imaging, equations the integrals in equations 2.11 and 

2.12 can be measured over the volume of interest and still hold true. 

2.2 Imaging Sequences 

2.2.1 Overview 

During spatial encoding three magnetic gradients are activated in sequence to map 

the entire volume of interest in k-space. In addition, there are several different RF 

pulse sequences used to produce an image, each of which have their own 

advantages and disadvantages for producing images of varying contrasts between 

tissues.  The most common pulse sequences are briefly described in the next few 

sections. 

2.2.2 Spin Echo 

One of the simplest and most common imaging sequence is spin-echo, the timing 

for which is illustrated in figure 2.8.  As shown, each RF pulse is applied with 

specific timing and amplitude such that the signal from a single strip (row) of a 

single slice is recorded. The timing and application of the RF pulses for a spin 

echo sequence can be described in five steps.  The corresponding position in k-

space for each of the five steps of the sequence is displayed in figure 2.9. 
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Figure 2.8: The gradient timing diagram of the spin-echo sequence. The signal line shows a single strip of a 

single slice being recorded in step 5. This sequence is repeated for every strip in a slice, where each of the 

paths in the phase gradient line corresponds to a different strip.  90° and 180° pulses are applied with 

specific timing to produce a signal for one row of k-space.  The pulses are applied in relation to the slice 

selection, phase and frequency encoded gradients. 

(negative lobe) 
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Figure 2.9: The position in k-space broken down into the 5 steps of a 

spin-echo sequence. This sequence is repeated once for every row 

until each row in the entire slice has been recorded. 
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The spin echo sequence is initiated with the application of a slice selection 

gradient and a 90° RF pulse. When slice selection occurs the slice gradient causes 

a linear phase-shift over the slice width. To counter this effect, a short reverse 

gradient (labeled in figure 2.8 as a negative lobe) is applied in the slice gradient 

canceling out the undesired phase-shift. Once the slice has been selected, step two 

is the application of a pulse from the phase gradient. The amplitude and length of 

this pulse will translate the system in k-space along the y-axis. Translation in the 

yk̂  direction is proportional to the amplitude and duration of the pulse. The bold 

green line on the phase gradient pulse of figure 2.8 demonstrates one repetition of 

the sequence, corresponding to the yk̂  translation shown in figure 2.9. 

Step three is defined by a pulse from the frequency gradient. Much like a phase 

gradient, a frequency gradient pulse translates the system through k-space 

proportional to the amplitude and duration of the pulse, but in the xk̂  direction. 

The purpose of this third step is to translate the system to the end of the current 

row. It is important to note that although steps 2 and 3 were described separately, 

in practice they occur simultaneously. The fourth step is defined by another 

application of the slice selection gradient but this time with a 180° RF pulse. This 

180° flip is the key feature in the spin-echo sequence which causes an echo signal 

from which the sequence gets its name. In terms of k-space, this pulse flips the 

position of the system to the conjugate location with respect to the center of the k-
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space grid. This is denoted in figure 2.9 as a dotted line. Finally, the last step in 

the sequence includes a frequency gradient pulse twice as long as in the third step. 

This pulse translates the system across the selected row, during which the signal is 

recorded. The whole process is then repeated for the same selected slice, but with 

the next phase gradient amplitude such that the next row is recorded. 

The execution of the spin echo sequence can be controlled using two times that 

define the sequence.  These times are the echo time (TE) and repetition time (TR).  

TE is defined as the time between the beginning of a pulse and the signal reading 

(step one to step five). TR is defined as the time between successive signal 

readings (step five to step five of the next repetition).  Therefore, the total time 

necessary to record an entire slice is the product of TR and total number of rows 

(phase encoding steps) per slice. 

Once each position in k-space has been filled, the image can be reconstructed into 

Euclidean r-space. This reconstruction involves the application of the inverse FT, 

described by equation 2.12, which is used to convert the recorded signal from k-

space to r-space. For the described spin-echo sequence the volume of interest is 

divided into 2D slices. Therefore, a 2D inverse FT of the signal over the imaging 

frequency space provides image intensity as a function of x and y: 
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 (2.13) 

where S(kx, ky) is the recorded signal in k-space and I(x,y) is the gray scale image. 

2.2.3 Gradient Echo 

The gradient echo (GE) pulse sequence, sometime refered to as gradient recalled 

echo, field echo or fast field echo, depending on the MRI manufacturer, is also a 

common MR sequence.  It differs from the SE pulse sequence in two major ways.  

Unlike the SE sequence, a GE sequence begins with a shorter RF pulse that varies 

the flip angle from 10° to less than 90° and there is no 180° RF pulse to realign 

spins. The timing diagram and a corresponding k-space diagram for the GE 

sequence is shown in figures 2.10 and 2.11, respectively. 

By allowing the initial flip angle to vary the GE sequence provides an additional 

parameter which may result in different signal intensities than the SE sequence. A 

smaller flip angle decreases the transverse magnetization which decreases the FID 

signal intensity.  However, since this also decreases the amount of time necessary 

for the longitudinal magnetization to return to equilibrium, the net result is a 

decrease in the overall scanning time.  In general, varying the flip angle can 

increase different tissue contrasts as compared to those found in SE sequences but 

will also increase image noise. 
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Figure 2.10: The gradient timing diagram showing the steps of a gradient-echo sequence. Note the 

differences between this gradient timing and the spin-echo sequence (figure 2.8): the initial pulse ranging 

from 10° to less than 90°,  the frequency gradient pulse being negative instead of positive and the absence 

of a 180° RF re-aligning pulse. 
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Figure 2.11: The order by which the 4 steps comprising a GE 

sequence fills k-space.  Each execution of the sequence fills one row 

and so the sequence is repeated until all rows are filled. Note that 

unlike in figure 2.9 there is no 180° RF re-aligning pulse. 
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2.2.4 Other Sequences  

There are a number of other common pulse sequences used for RA imaging. 

These sequences include Fast Spin Echo (FSE), Spoiled Gradient Echo (SGE), 

Inversion Recovery (IR) and Short TI Inversion Recovery (STIR).  In essence, all 

of these sequences is a variation of the standard SE and GE sequences designed to 

accentuate tissue contrast while shortening imaging time.  For example, FSE is a 

variation of the SE sequence.  Its purpose is to reduce the overall scanning time 

by applying consecutive phase gradient, 180° RF and frequency gradient pulses 

(steps 2, 4 and 5, respectively, of figures 2.8 and 2.9) after each slice selection 

gradient and a 90° RF pulse.  These consecutive pulses are sometimes refered to 

as as the echo train.  The effect of the echo train is to multiply the number of 

strips of k-space which are read out in the same TR time as the SE sequence, 

dividing the overall scan time by the number of echos in the echo train.  The SGE 

sequence is a variation of the GE sequence but with an additional pulse in the 

slice selection axis after the signal readout.  This additional pulse is used to 

eliminate residual transverse magnetization from the previous signal readout.  The 

IR sequence is derived from the SE sequence.  It begins by inverting longitudinal 

magnetization by adding a 180° RF pulse before the standard 90° pulse.  This 

makes the resulting signal strongly dependent on T1 times.  The time between the 

180° inversion pulse and the 90° pulse is called the inversion time (TI).  The STIR 
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sequence is a variant of the IR sequence which uses a short TI time to suppress 

the signal of fat. 

2.3 Determinants of Image Characteristics 

The appearance of an MR image can vary greatly depending on the configuration 

of the scanners and pulse sequences used to form an image. The strength of the 

main field, bore size and whether the scanner has an open or closed magnet are all 

dependent on the scanner configuration and cannot be changed during imaging. 

However, sequence type, repetition time, echo time, inversion time, flip angle, 

slice thickness, slice gap, field of view, acquisition matrix and resolution are all 

modifiable factors that can be selected to obtain images that optimally show 

features of interest. 

The signal to noise ratio (SNR) is an indication of image quality.  For MR images, 

in general, changes in SNR are determined by the size of a voxel, the number of 

measurements and the bandwidth. Mathematically this is described by the 

following proportionality: 

BW

NEX
zyxSNR 

     

(2.14) 

where x, y and z are the dimensions of a voxel, NEX is the number of 

excitations and BW is the receiver bandwidth. 
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Changes to MR image quality and characterstics can be achieved with the use of 

contrast agents.  In addition, image quality can also be negatively impacted by the 

appearance of various image artifacts.  The use of contrast and the most common 

artifacts are briefly described in the next two sections. 

2.3.1 Contrast Agents 

A common method to modify the characteristics of an MR image to improve 

visualization of features of interest is the use of MR contrast agents.  Contrast 

agents are artificial substances which are administered to a patient during an MR 

scan in order to alter some or all of the T1, T2 and T2* times of nearby hydrogen 

nuclei, thereby increasing the signal difference between two or more tissues.  

There are four classes of contrast agents based on their magnetic behaviour: 

diamagnetic, paramagnetic, super-paramagnetic and ferromagnetic.  One of the 

most commonly used contrast agents is gadolinium, a paramagnetic. 

2.3.2 Image Artifacts 

There are several image artifacts that can adversely affect image quality.  

However, depending on the cause, image artifacts may be eliminated or 

minimized by various techniques.  Those artifacts which may affect the 

appearance of bone erosions in the metacarpophalangeal joints are described in 

the next few paragraphs. 
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Aliasing artifacts are caused by scanning objects which are larger than the field of 

view (FOV).  Features outside of the FOV are still encoded in k-space, so when a 

reverse Fourier transform is used to transform k-space into r-space these features 

appear to overlap features inside the FOV.  This causes features which fall outside 

the FOV to appear on the opposite side of the image.  This artifact is not usually a 

problem when imaging a hand so long as the hand is not near any other anatomy 

(i.e.: up against the body). 

Motion artifacts are caused by subject movement during scanning.  This artifact 

appears in an image as either blurred features or ghosting (duplicated features 

overlapping one another).  Blurring is caused by random motion such as a patient 

voluntarily or involuntarily moving.  Ghosting is caused by periodic motion such 

as respiratory or pulmonary movement.  When imaging a hand, artifacts caused by 

random patient motion can be minimized by restricting the hand with foam 

padding or applying a brace.  Ghosting is not a concern since lung and heart 

movement should not affect the extremities if properly positioned before 

scanning. 

Chemical shift artifacts are inherent to the tissues being imaged and are caused by 

the difference in resonance frequency of various MR signal-exhibiting tissues, 

most commonly water and fat.  The result of this chemical shift is a displacement 

of those tissues which have a lower resonant frequency (such as fat) in the 
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frequency encoding direction.  This displacement usually appears as a black (low 

signal) band near the boundary between bone, fat and muscle.  It is important to 

note that the chemical shift effect is directly proportional to the magnetic field 

strength of the scanner and is not usually of great concern for lower field scanners 

(≤1 Tesla). 

Finally, partial volume averaging is considered an artifact which is caused when 

the signal from two or more materials contribute to the same voxel.  The resulting 

voxel will appear to have a signal which is the mean of all signals included in its 

spatial volume.  Effects of partial volume averaging are most visible at the 

boundary between tissues.  Quite simply, the boundaries between distinct tissues 

appear blurred and difficult to differentiate and segment.  The effects of partial 

volume averaging can be minimized by reducing slice thickness and increasing 

the image matrix size to improve spatial resolution. 

2.4 Literature review of sequences used for RA imaging 

A literature search was done using Ovid Medline
®
, including references published 

between 1998 and the present. Search criteria included “Rheumatoid Arthritis”, 

“MRI” and “hand or wrist”, with review articles and duplicate references using 

the same images omitted. A total of 40 relevant articles were found, listing 17 

different scanners and a total of 184 imaging configurations. 32 of 40 of the 

studies used a contrast agent in at least one scan, 12 studies used low-field 0.2 or 
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0.23T scanners, 1 used a 0.6T scanner, 5 used a 1.0T scanner, 24 used a 1.5T 

scanner and 3 did not report the main field strength or scanner type that was used. 

The imaging parameters for all studies examined are listed in table 2.1 and 2.2 for 

all scanners with a main field strength of less than 1.5T and equal to 1.5T, 

respectively. 

Out of 40 articles, 14 used Outcome Measures In Rheumatology Clinical Trials 

(OMERACT) guidelines for MR image acquisition. Of the remaining 26 articles, 

10 used images coinciding with the OMERACT guidelines but did not specify 

them as such, 6 did not specify reasoning behind MR image acquisition 

parameters, 6 did not study bone erosions and 4 used sequences other than SE, GE 

or Short TI Inversion Recovery (TRIM). Ostergaard et al. (2003b) outline a core 

set of basic MR sequences recommended by the OMERACT group to be used for 

RAMRIS. These include T1-weighted images before and after gadolinium 

contrast, and a T2-weighted fat saturated image or TRIM image in its place. 

Additionally, gadolinium contrast agent is considered to be unnecessary if the 

purpose of the MR scan is to examine destructive changes to bone only. 

Nevertheless, for the accurate volumetric measurement of bone erosions, it is 

important to consider identification of bone edema. Bone edema often surrounds 

erosions and can cause erosion size to easily be misjudged. In a study comparing
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Table 2.1: A survey of MR scanners and configurations used in RA studies of the hand and/or wrist where the main 

magnetic field strength is less than 1.5 Tesla.  Bo is the main magnetic field strength in Tesla, FS is whether fat 

saturation was used, CA is whether a contrast agent was used, Seq. is the sequence type, TR is repetition time in ms, TE 

is echo time in ms, slice and gap are slice thickness and gap between slices in mm and Res. is image resolution in mm x 

mm.  Configurations which were not reported are marked as NR. 

Paper Unit Bo (T) FS CA Seq. Weight TR/TE Slice/Gap Res. 

Backhaus (1999) Siemens Magnetom 0.2 - -,+ SGE T1 34/12 1.0/0.0 NR 

Cimmino (2003) Esaote Artoscan 0.2 - -,+ SE  100/16 5.0/0.0 0.9 × 1.2 

Dohn (2006) Philips Panorama 0.6 - - GE T1 20/8 0.4/0.0 0.4 × 0.4 

Ejbjerg (2005) Siemens Impact 

 

 

Esaote Artoscan 

1.0 

 

 

0.2 

- 

- 

+ 

- 

- 

- 

-,+ 

- 

- 

-,+ 

- 

- 

SE 

STIR 

SE 

SE 

GE 

STIR 

T1 

 

T2 

T1 

T1 

600/15 

4500/30 

4500/96 

550/18 

30/12 

1100/24 

3.0/0.0 

3.0/0.0 

3.0/0.0 

3.0/0.0 

1.0/0.0 

3.0/0.3 

0.6 × 0.6 

0.6 × 0.6 

0.6 × 0.6 

0.8 × 0.8 

0.7 × 0.9 

1.0 × 1.3 

Eshed (2006) Esaote C-scan 0.2 - 

- 

- 

- 

- 

-,+ 

STIR 

SE 

GE 

 

T1 

T1 

700/16 

520/26 

35/16 

3.0/0.3 

3.5/0.3 

0.9/0.0 

0.7 × 0.9 

0.6 × 0.4 

0.8 × 0.6 

Goupille (2001) Siemens Magnetom 1.0 - 

- 

-,+ 

- 

SE 

GE 

T1 

T2* 

500/20 

420/18 

4.0/0.0 

6.0/0.0 

0.9 × 1.0 

0.7 × 0.8 
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Paper Unit Bo (T) FS CA Seq. Weight TR/TE Slice/Gap Res. 

Hermann (2006) NR NR - 

+ 

+ 

- 

- 

- 

- 

- 

- 

- 

SE 

SE 

SE 

STIR 

GE 

T1 

T1 

T1 

 

T1 

401/21 

622/21 

726/21 

5000/68 

902/372 

NR 

NR 

NR 

NR 

NR 

0.3 × 0.3 

0.3 × 0.3 

0.3 × 0.3 

0.7 × 0.6 

0.4 × 0.4 

Klarlund (1999) Siemens Impact 1.0 - -,+ SE T1 600/15 3.0/0.0 0.5 × 0.5 

Hoving (2004) NR NR + 

+ 

- 

- 

- 

+ 

GE 

FSE 

SGE 

T1 60/10 

4000/35 

NR 

1.0/0.0 

2.0/0.0 

0.7/0.0 

0.4 × 0.4 

0.2 × 0.7 

NR 

Lindegaard (2001) Esaote Artoscan 0.2 - 

- 

- 

-,+ 

STIR 

SE 

T1 

T1 

500/18 

500/18 

3.0/0.3 

3.0/0.3 

0.8 × 1.3 

0.8 × 1.0 

Ostergaard (2005) Philips Panorama 0.2 - 

- 

- 

- 

- 

+ 

GE 

STIR 

FSE 

T1 

T2 

T1 

NR 

NR 

NR 

1.5/0.0 

3.5/0.0 

1.5/0.0 

0.4 × 0.3 

0.8 × 0.7 

0.4 × 0.3 

Ostergaard (2003) NR NR - 

- 

-,+ 

-,+ 

SE 

SE 

T1 

T1 

480/15 

600/17 

3.0/0.0 

3.0/0.0 

NR 

NR 

Ostergaard (2001) Siemens Impact 1.0 - -,+ SE T1 600/15 3.0/0.0 0.7 × 0.5 

Palosaari (2004) Philips 0.2 - 

- 

- 

-,+ 

- 

- 

GE 

STIR 

FSE 

 

 

T2 

30/10 

1800/25 

4000/100 

2.0/0.0 

3.0/0.0 

3.0/0.5 

1.3 × 0.6 

0.8 × 0.7 

0.8 × 0.6 
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Paper Unit Bo (T) FS CA Seq. Weight TR/TE Slice/Gap Res. 

Savnik (2001) Esaote Artoscan 0.2 - 

- 

- 

- 

- 

-,+ 

- 

-,+ 

STIR 

GE 

STIR 

GE 

 

T1 

 

T1 

1450/28 

30/12 

2000/90 

25/4.6 

2.5/0.3 

1.0/0.0 

2.5/0.2 

1.0/0.0 

0.6 × 0.8 

0.6 × 0.8 

0.9 × 0.9 

0.9 × 0.9 

Scheel (2006) Esaote Artoscan 0.2 - 

- 

- 

- 

- 

+ 

STIR 

SE 

GE 

 

T1 

T1 

700/16 

520/26 

35/16 

3.0/0.3 

3.5/0.3 

0.8/0.0 

1.1 × 0.5 

0.6 × 0.6 

0.8 × 0.8 

Taouli (2004) Esaote Artoscan 0.2 - 

- 

- 

- 

GE 

STIR 

T1 30/12 

1000/16 

3.0/0.0 

3.5/0.0 

0.8 × 0.8 

0.9 × 0.9 

Valeri (2001) Siemens Magnetom 1.0 - 

- 

- 

- 

SE 

GE 

T1 

T2* 

500/17 

400/18 

3.0/0.1 

3.0/0.1 

NR 

NR 

Yoshioka (2006) Custom 0.2 - 

- 

- 

- 

SE 

STIR 

T1 160/16 

1400/50 

4.0/0.0 

NR 

0.8 × 1.6 

0.8 × 1.6 
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Table 2.2: A survey of MR scanners and configurations used in RA studies of the hand and/or wrist where 

the main magnetic field strength is equal to 1.5 Tesla.  FS is whether fat saturation was used, CA is whether 

a contrast agent was used, Seq. is the sequence type, TR is repetition time in ms, TE is echo time in ms, 

slice and gap are slice thickness and gap between slices in mm and Res. is image resolution in mm x mm.  

Configurations which were not reported are marked as NR. 

Paper Unit FS CA Seq. Weight TR/TE Slice/Gap Res. 

Bird (2005) GE Signa 

Siemens Magnetom 

- 

- 

- 

- 

NR 

NR 

T1 

T1 

480/18 

500/20 

3.0/0.3 

3.0/0.0 

0.5 × 0.5 

0.5 × 0.5 

Boutry (2005) Siemens Vision - 

- 

- 

- 

-,+ 

+ 

STIR 

SE 

SGE 

T2 

T1 

5216/60 

570/20 

36/9 

4.0/0.0 

4.0/0.0 

1.5/0.0 

0.8 × 0.4 

0.4 × 0.4 

0.7 × 0.4 

Carano (2004) GE Signa - 

+ 

- 

- 

SE 

GE 

T1 

T2 

600/9 

29.4/6.3 

3.0/0.0 

1.5/0.0 

0.2 × 0.6 

0.2 × 0.6 

Conaghan (2003) ACS Gyroscan -,+ 

+ 

-,+ 

- 

SE 

FSE 

T1 

T2 

485/20 

2000/100 

1.5/0.2 

2.0/0.2 

0.4 × 0.2 

0.4 × 0.4 

Huang (2000) GE Signa + -,+ SGE  150/9.1 3.0/2.0 0.5 × 0.5 

Kirkhus (2006) Siemens Magnetom - 

- 

- 

+ 

GE 

SGE 

 

T1 

25.4/9 

8.5/4 

1.5/0.0 

5.0/0.0 

0.8 × 0.6 

1.3 × 1.3 

McGonagle (1999) Philips Gyroscan - 

+ 

-,+ 

- 

SE 

FSE 

T1 

T2 

500/20 

2000/100 

2.0/0.2 

3.0/0.3 

0.6 × 0.6 

0.4 × 0.4 
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Paper Unit FS CA Seq. Weight TR/TE Slice/Gap Res. 

Ostergaard (2001) Philips Gyroscan 

 

 

GE Signa 

- 

+ 

+ 

- 

+ 

-,+ 

- 

+ 

- 

- 

SE 

FSE 

SPIR 

SE 

GE 

T1 

T2 

T1 

T1 

T2* 

485/20 

2000/100 

450/20 

600/9 

29.4/6.3 

1.5/0.1 

2.0/0.2 

1.5/0.1 

3.0/0.0 

1.5/0.0 

0.4 × 0.4 

0.5 × 0.4 

0.5 × 0.4 

0.6 × 0.2 

0.6 × 0.2 

Ostergaard (1999) Siemens Magnetom - -,+ SE T1 480/15 3.0/0.0 0.4 × 0.6 

Ostendorf (2001) Siemens Magnetom - 

- 

- 

+ 

-,+ 

-,+ 

+ 

- 

FSE 

SE 

SE 

STIR 

T2 

T1 

T1 

3500/100 

500/15 

600/15 

3975/20 

3.0/0.0 

3.0/0.0 

3.0/0.0 

3.0/0.0 

0.3 × 0.8 

0.3 × 0.9 

0.3 × 1.1 

0.3 × 1.0 

Schirmer (2007) Siemens Sonota - 

- 

- 

- 

-,+ 

-,+ 

STIR 

SE 

GE 

 

T1 

T1 

5000/65 

500/21 

8.8/3.5 

3.0/0.3 

3.0/0.3 

1.0/0.0 

0.7 × 0.7 

0.4 × 0.4 

0.5 × 0.5 

Schoellnast (2006) Siemens Magnetom - 

- 

+ 

- 

- 

- 

+ 

- 

SE 

SGE 

SE 

IR 

T1 

T1 

T1 

T2 

440/20 

473/11 

540/23 

3000/127 

3.0/0.0 

3.0/0.0 

3.0/0.0 

4.0/0.0 

0.8 × 0.4 

0.5 × 0.4 

0.7 × 0.4 

0.6 × 0.4 

Solau-Gervais 

(2006) 

Siemens Vision + 

- 

+ 

+ 

SE 

SGE 

T1 36/9 

36/9 

1.5/0.0 

1.5/0.0 

0.7 × 0.4 

0.7 × 0.4 

Sugimoto (1998) Toshiba MRT 200 -,+ + NR T1 380/20 4.0/1.0 0.8 × 0.9 

Taouli (2004) GE Signa - 

+ 

- 

- 

SE 

GE 

T1 

T2* 

600/9 

29.4/6.3 

3.0/0.0 

1.5/0.0 

0.2 × 0.6 

0.2 × 0.6 
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Paper Unit FS CA Seq. Weight TR/TE Slice/Gap Res. 

Tehranzadeh (2004) Picker Eclipse -,+ 

-,+ 

- 

-,+ 

SE 

SE 

T1 

T2 

400/10 

2500/80 

3.0/0.5 

3.0/0.5 

0.5 × 0.4 

0.5 × 0.4 

Terslev (2003) Philips Gyroscan - -,+ GE T1 25/4.6 1.0/0.0 0.9 × 0.9 

Yao (2006) GE Signa - 

+ 

-,+ 

- 

SE 

FSE 

T1 

T2 

600/11 

2500/68 

1.0/0.0 

3.0/1.0 

0.4 × 0.4 

0.4 × 0.4 

Zikou (2006) Philips Gyroscan - 

+ 

- 

-,+ 

FSE 

SE 

T2 

T1 

4000/120 

590/15 

3.0/0.3 

3.0/0.3 

0.9 × 0.9 

0.9 × 0.9 

 

Table 2.3: Mean, minimum and maximum TR and TE timings for all SE, FSE and GE sequences included 

in the literature review.  N is the number of papers the sequence was used in. 

Sequence N TR/TE Mean TR/TE Min TR/TE Max 

T1 SE/FSE 35 536/17 160/9 855/26 

T2 SE/FSE 9 3000/96 2000/68 4500/120 

T1 GE 11 110/44 9/4 902/372 

T2 GE 1 29/6 N/A N/A 
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the effectiveness of T2-weighted fat saturated and T1-weighted contrast enhanced 

images, Yao et al. (2006) concluded the T2-weighted sequence to be 

indispensable in the absence of contrast enhancement. Therefore, in order to make 

accurate volumetric measurements of bone erosions non-invasively a combination 

of T1-weighted and T2-weighted, fat saturated images should be employed. 

In general, bone features are best imaged with short TE and long TR times.  This 

is reflected by the various TR and TE times reported in the RA literature.  A list 

of mean, minimum and maximum reported timings is given in table 2.3 for all SE, 

FSE and GE sequences.  

2.5 Choice of imaging parameters 

Bone erosions in the metacarpophalangeal joins were imaged using a coronal 3D 

SGE sequence on a 1 Tesla peripheral scanner using a 100 mm diameter 

cylindrical transmit and receive coil (OrthOne, ONI Medical Systems, Inc., 

Wilmington, Massachusetts).  Imaging parameters were chosen in order to acquire 

3D scans with minimal slice thickness which maximized the contrast between 

bone erosion and surrounding tissues and with the smallest slice thickness.  The 

imaging parameters are listed in table 2.4. 
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Table 2.4: Imaging parameters of the 3D SGE sequence chosen to 

image bone erosions in metacarpophalangeal joints.  These parameters 

were chosen in order to maximize the contrast between bone erosion 

and surrounding tissues and with the smallest slice thickness. 

Repetition Time (TR) 60.0 ms 

Echo Time (TE) 7.6 ms (minimum) 

Slice Thickness 1.0 mm 

Imaging Matrix 256 × 512 

re-sampled to 512 × 512 

Field of View 140 × 140 mm 

Voxel Dimensions 0.273 × 0.273 × 1.0 mm 

Number of Averages 1 

Imaging Coil 100 mm cylindrical 

Flip Angle 60.0° 

Bandwidth 50 kHz 
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2.6 Sample MR Images 

Figure 2.12 displays MR images of two subjects with RA. Fat, including bone 

marrow, displays as the brightest signal (white or bright gray), muscle displays as 

the mid-level signals (dark gray) and bone, tendons and background (no tissue) 

appear black since they do not produce any signal.  Sub-figure (a) shows the 

earlier stages of the disease which includes several small erosions denoted by 

small arrows.  As the disease progresses without treatment the erosions may 

continue to grow until most or the entire joint has been damaged.  Sub-figure (b) 

shows an example of the potential later stages of the disorder.  The large arrows 

point to inflammed MCP joints which have been overwhelmed by erosions. At 

this late stage of RA the gross deformity caused by joint damage is irreversible. 

Both images were acquired using the protocol and imaging parameters listed in 

the previous section.  

Changes in erosion size and volume are one of the most sensitive indicators of RA 

progression.  This progression is best imaged with MRI.  Determination of 

erosion size and volume requires the delineation of the boundary between the 

erosion and bone or soft tissue on each slice of the MR image containing an 

erosion.  Automated delineation of this bondary is the purpose of this thesis.  The 

challenges and approach adopted for the automation is the focus of the remaining 

chapters. 
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(a) Early RA 

 
(b) Late RA 

 

Figure 2.12: Sample coronal MR images of two subjects with RA.  (a) 

Small arrows point to small erosions in the 3
rd

 and 4
th

 MCP joins, 

consistent with early RA.  (b) Large arrows point to erosions which 

have completely collapsed several of the MCP joints where gross 

deformity has occurred as consistent with the late stages of RA. 
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  Chapter 3

Image Segmentation 
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3.1 Overview 

In order to make quantitative measurements from any medical image it is first 

necessary to distinguish Features of Interest (FOIs) from a variety of tissues. Te 

process of distinguishing FOIs is known as image segmentation and can be 

performed manually by tracing feature outlines or by computer automation or by 

some combination of the two. This section describes several well known 

segmentation algorithms along with their advantages and disadvantages when 

applied specifically to defining erosions in MR images.  All segmentation 

techniques described in this chapter are listed in table 3.1 along with their mode of 

automation, number of dimensions and algorithm paradigm. 

3.2 Manual Segmentation 

Manual segmentation involves marking each pixel or voxel in the image as either 

belonging to or not belonging to a FOI. Often this is done by using mouse clicks 

to trace the outline of a FOI one slice at a time. Depending on the signal to noise 

ratio (SNR) and resolution of the image, a strictly manual approach typically has 

high accuracy, but is tedious and time consuming.  When used to segment 

erosions, accurate delineation of true FOI boundaries requires a trained and highly 

skilled reader, such as a musculoskeletal radiologist. 
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Table 3.1: A list of segmentation techniques which are applicable to segmenting 

bone erosions. A number of features of each technique are listed including the 

degree of automation, the number of dimensions the algorithm is limited to and 

the paradigm describing whether the algorithm is region-based or boundary-based 

segmentation.  Semi-automated segmentation uses a combination of manual and 

automated segmentation. 

 

Automation Dimensions 

Algorithm 

Paradigm 

Manual Tracing manual 2D N/A 

Naïve Thresholding full 3D region-based 

Least-Cost Graphs semi 2D boundary-based 

Watershed full 3D boundary-based 

Region Growing full 3D region-based 

Level-Set full 3D boundary-based 
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3.3 Automated Segmentation 

Automatic segmentation is performed by a computer using an algorithm which is 

designed to automatically identify features in an image. In general, computerized 

algorithms can be grouped into region-based algorithms that use similarity 

properties to identify distinct regions and boundary-based algorithms that use 

discontinuity properties to identify feature boundaries. 

3.3.1 Naïve Threshold Segmentation 

The most basic automated image segmentation is naïve thresholding. It works on 

the principal that all voxels in an image or a defined region of interest are 

determined to be part of a FOI their values fall between predefined lower and 

upper thresholds. Upper and lower thresholds are often selected based on 

background signal intensities of the input image. Native thresholding is a simple 

function of position which marks every voxel as part of the segmentation if its 

scalar intensity is within the threshold range.  The function, )(rS


, determines 

whether the voxel pointed to by the vector r


 belongs to the segmentation: 

 









],[)( if0

],[)( if1
)(

ul

ul

TTrI

TTrI
rS 



 (3.1) 

where )(rI


 is the intensity of the voxel pointed to by the vector r


 and Tl and Tu 

are the lower and upper intensity thresholds.  Though naïve thresholding can be 
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fast and easy to implement, it often fails to solve complex segmentation problems. 

For example, figure 3.1 shows the result of applying naïve thresholding to an MR 

image of a metacarpal head containing a typical erosion surrounded by several 

other tissues. Clearly this thresholding approach cannot correctly distinguish 

between different tissues in an image if they have similar signal characteristics, 

even if they are spatially separated.  For example, there is no way to distinguish 

between bone marrow and soft tissue (since their signals are both within the 

threshold boundaries) or bone erosion and the synovium, cartilage or the 

background (since their signals are outside of the threshold boundaries). 

Naïve thresholding approaches will also fail if the image has non-uniform or 

gradient background intensities.  This non-uniform background is quite common 

in MR images due to tissue depth relative to the position of the RF coil.  This non-

uniformity may cause the threshold which differentiates a FOI from surrounding 

tissue to vary, making it impossible to select appropriate values for Tl and Tu. 

3.3.2 Least Cost Graph Algorithms 

There are a number of least-cost or shortest path graph search algorithms which 

can be used for image segmentation. These algorithms consider every pixel in a 

2D image to be a vertex in a mathematical graph. Shortest path graph search 

algorithms find the shortest path between an initial vertex and all other vertices in 

the graph, weighted by edge costs. When applied to medical images, these least
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(a) Initial image 

 
(b) Naïve thresholding 

 

Figure 3.1: An example of naïve thresholding applied to an MR image of an erosion in the 2
nd

 metacarpal 

head.  Note that there is no way to distinguish between bone marrow and soft tissue (since their signals are 

both within the threshold boundaries) or bone erosion and the synovium, cartilage or the background (since 

their signals are outside of the threshold boundaries).
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cost graph algorithms are useful for guiding manual tracing and are therefore 

considered to be semi-automated.  One of the most widely applied least cost 

algorithms is Dijkstra’s algorithm (Dijkstra 1959).  This algorithm has since been 

expanded upon by applying heuristics to decrease processing time (Hart et al 

1968, Berliner 1979). 

Implementation of Dijkstra’s algorithm is shown in figure 3.2.  Subfigure (a) 

shows a graph where vertices and edges represent pixels in an image and the 

traversal cost between vertices, respectfully. Vertex A is highlighted in green, 

denoting this as the initial vertex. Subfigure (b) shows the graph after the first 

pass through the while loop of the algorithm. In this diagram, vertex A is 

highlighted in blue to represent this vertex now belonging to a visited set, and its 

distance is set to 0 (since it is the initial vertex), as denoted by a subscript. 

Furthermore, A’s neighbours, B, D and E are highlighted in green since they are 

now members of the working set, which will be processed in the next iteration of 

the algorithm. Subfigure (c) shows the second pass through the algorithm where 

vertex B is highlighted in blue as it had the lowest cost out of all vertices in the 

working set. Furthermore, B’s neighbours which do not already belong to the 

visited set, C and F, have been highlighted in green as they are now members of 

the working set. Finally, (d) depicts the graph after the algorithm has completed 

and all vertices have been visited. The paths with the lowest costs are denoted by 
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(a) Initial Graph 

 

(b) Pass 1 

 
(c) Pass 2 

 
(d) Final pass 

Figure 3.2: An example of Dijkstra’s algorithm.  It begins with an initial graph 

where vertices represent pixels and edges represent the traversal cost from one 

pixel to another.  After one pass through the algorithm the cost of vertex A has 

been determined and added to the visited set and its neighbours, B, D and E are 

now members of the working set.  After a second pass through the algorithm the 

cost of vertex B, 1, has been determined and added to the visited set and its 

neighbours, C and F are now members of the relaxed set.  The algorithm finishes 

with a final pass by determining the shortest path from A to all other vertices, as 

denoted by the blue arrows. 
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blue arrows and the cost to each vertex is denoted by subscripts.  See section A.1 

in the appendix for sample pseudocode of Dijkstra’s algorithm. 

Dijkstra’s algorithm can be used to semi-automate the manual tracing of features 

in medical images. For this purpose, pixel traversal cost (edges) is determined by 

features in the image: 

 
     rCwrGwrcost CG


 1  (3.2) 

where wG  and wC  are weighting constants applied to the gradient and curvature 

costs, respectively, and  rG
1  and  rC


 are the inverse gradient magnitude cost 

and curvature cost at position r


, respectively. The inverse gradient magnitude of 

the image is found in order to create a low cost near boundaries that have high 

gradients, and high cost elsewhere: 

    rIrG


 11  (3.3) 

where the gradient magnitude, I , is normalized to the range [0, 1]. The 

curvature cost is used to smooth jagged paths and is calculated by the angle 

between two consecutive edges: 
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where 0r


, 1r


 and 2r


 are the positions of three consecutive vertices (pixels) in the 

path.  Figure 3.3 shows an example of Dijkstra’s algorithm used to guide the 

manual tracing of a typical bone erosion in an MR image.  Each light blue circle 

represents a pixel on the boundary between bone marrow and bone erosion, 

manually chosen by an operator. The red lines represent the shortest path between 

these pixels as determined by the algorithm. 

An advantage to using shortest path graph search algorithms is that the operator 

can carefully specify the boundary surrounding a FOI without having to specify 

every pixel along that boundary. Nevertheless, this process is still much more 

time consuming than fully automated techniques because several points along the 

boundary must still be identified by the user to ensure a successful segmentation. 

Furthermore, the algorithm is restricted to 2D images.  Therefore, each image 

comprising a volume of interest must be processed one slice at a time. 

3.3.3 Watershed Segmentation 

Watershed segmentation makes use of the image as a topographical map, where 

image values are used to represent altitudes, the highest of which form water-

sheds which represent the border between segmentations. Unlike most other 

segmentation algorithms, watershed segmentation works on the entire image at 

one time instead of a single area or feature. 
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Figure 3.3: An example of Dijkstra’s algorithm used to guide the 

manual tracing of a typical bone erosion in an MR image. The red line 

was determined by the algorithm and represents the shortest path 

between manually chosen pixels, which are denoted by light blue 

circles.
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The algorithm requires a height map which is defined by the scalar intensities of 

an image. The result is a height value as a function of position: 

 hrH )(


 (3.5) 

where r


 is the position of any voxel in the image and h is the height defined by 

the image at that position.  Figure 3.4 shows an example of H along one 

dimension. The algorithm also requires a controlling parameter known as level, or 

L. This parameter controls how sensitive the algorithm is to the boundaries which 

separate features in the image. A segmentation,  , is defined by a local minima 

at some voxel, or


, which includes all connected voxels in   such that: 

  ioi rLrHrH


:)()(  (3.6) 

The smaller the value of L, the more segmentations of a smaller size will be 

defined. If larger values of L are instead chosen, smaller segmentations combine 

into larger ones. The appropriate value for L depends on the image and the FOI.  

Figure 3.5 shows the watershed algorithm applied to a typical bone erosion, 

indicated by a black arrow, in an MR image. When applied to MR images, height 

maps are created by the gradient magnitude of the image. The initial and 

smoothed
1
 gradient magnitude images are shown in figure 3.5(a) and (b),

                                                                    
1 a low-pass filter is used to eliminate noise which can cause the algorithm to create too many segmentations 
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Figure 3.4: And example of watershed segmentation in one dimension. The height function, H(x), define 

pools of water which fill up from local minima (a, b, c and d) and are bounded by local maxima (m, n, o, p 

and q) based on a filling level, L. Note that the watershed o, which separate minima b and c, is smaller than 

L, so these two pools merge into a single, larger pool. 
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(a) Initial image 

 
(b) Gradient magnitude (height map) 

 
(c) Watershed segmentations 

 

Figure 3.5: An example of watershed segmentation applied to a bone erosion, indicated by a black arrow, in 

the second metacarpal head. A magnification of an MR image is shown along with the combination of a 

low-pass and gradient magnitude filter (used as the height map by the watershed algorithm) and the 

segmentations resulting from applying the watershed algorithm, each outlined by a different colour. Note 

the missing boundary in the segmentation at the erosion’s cortical bone interface, indicated by the small 

white arrow in the initial image. 
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respectively. Using the gradient magnitude image as the height map causes 

boundaries between features of different intensities in the initial image to act as 

high watersheds. The resulting segmentations are shown in figure 3.5(c) by 

different coloured outlines. 

An advantage to watershed segmentation is that it can segment several features in 

an image simultaneously without requiring the placement of a seed point.  

However, a seed point must be used if the contour of a single, specific feature is 

desired and the extra processing time spent segmenting other features in an image 

is wasted. Furthermore, the algorithm is unable to correctly segment features that 

are not completely surrounded by watersheds (high gradients in MR images) or 

that have a range of signals, as is the case in some erosions. 

3.3.4 Region Growing Segmentation 

Region growing algorithms adopt a different approach to automated image 

segmentation. These algorithms require that one or more seed points be manually 

provided by an operator. The algorithm recursively expands from each seed point 

using controlling parameters to determine whether or not to expand the 

segmentation into neighbouring voxels. Depending on the type of controlling 

parameters used, region growing algorithms are useful for segmenting FOIs which 

are sharply bounded by distinguishing features. 
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The most basic type of region growing algorithm is known as connected 

thresholding. Given a set of seed points, each of their neighbouring 26-connected
2
 

voxels are examined. Each member of this set is included or excluded from the 

region, recursively, based on whether its intensity falls within lower and upper 

thresholds, Tl and Tu, respectively. A visual representation of the connected 

thresholding algorithm is shown in figure 3.6 and sample pseudocode is in the 

appendix section A.2. 

Neighbourhood connection, confidence connection and isolated connection are 

variations of region growing. Neighbourhood connection extends the connected 

thresholding algorithm described above by only including voxels whose 26-

connected neighbours all have intensities which fall between the thresholds, Tl 

and Tu. Confidence connection uses the connected threshold algorithm 

recursively, each time it determines the mean intensity of the segmentation and re-

computes the algorithm using new thresholding boundaries defined by the 

expressions: 

 




wIT

wIT

u

l




 (3.7) 

                                                                    
2 26-connected voxels are defined as any two voxels which are directly or diagonally adjacent to each other in any 

Cartesian plane: x̂ , ŷ , ẑ , yx ˆˆ  , zx ˆˆ  , zy ˆˆ  , zyx ˆˆˆ   
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Figure 3.6: A 2D example of the connected threshold algorithm. 

Consider the pixel (square) marked “S” as a pixel identified as seed 

point. The algorithm checks each neighbor from this seed pixel, as 

denoted by black arrows, adding any pixels that are within the 

threshold (pixels marked “a”). The next iteration repeats the same 

process using each added pixel “a” as new seed points, thus adding the 

pixels marked “b”. 
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where I  and  are the mean intensity and standard deviation of voxels included 

in the segmentation determined from the last iteration of the algorithm, 

respectfully, and w is a user-defined weighting parameter. 

Finally, isolated connection replaces one of the threshold values with an exclusion 

seed point. The algorithm determines the lower or upper threshold such that the 

exclusion seed point does not connect to any region grown from the regular seed 

point(s).  Figure 3.7 shows the connected threshold algorithm applied to a typical 

bone erosion, indicated by a large white arrow, in an MR image. Since erosions in 

T1-weighted images have a very low signal, the lower threshold is set to zero. 

Determining the upper threshold is less obvious. Sub-figures (b), (c) and (d) show 

the segmentation resulting from using upper thresholds of 16%, 31% and 47% of 

maximum intensity (100% or bright white), respectively. 

An advantage of region growing algorithms is that they very clearly outline 

boundaries which have sharp gradients. Furthermore, these region based 

segmentations are not affected by the presence of other features with similar 

intensities if they are spacially well separated. A disadvantage to region growing 

algorithms is that they are unable to accurately distinguish features with small 

gradient intensities.  In the case of MR images of erosions these small gradient 

intensities can arise at the boundary between bone erosions and soft tissue where 

cortical bone is absent. 
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(a) Initial image 

 
(b) 16% upper threshold 

 
(c) 31% upper threshold 

 
(d) 47% upper threshold 

Figure 3.7: An example of connected thresholding segmentation applied to a bone 

erosion, indicated by a large black arrow, in the second metacarpal head in a 

Magnetic Resonance (MR) image. (a) shows a magnification of the 2
nd

 metacarpal 

head, (b), (c) and (d) show the seed point and outline of the segmentation from 

connected thresholding using a lower threshold of 0 and upper threshold of 16%, 

31% and 47% of the maximum image intensity, respectfully. Note the missing 

boundary in the segmentation at the erosion’s cortical bone interface, indicated by 

the small white arrow 
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3.3.5 Level-Set Segmentation 

Level-set (LS) segmentation delineates FOIs by tracking the evolution of a time-

based level-set function, or propagating front, according to a differential equation.  

A segmentation is defined by the front at any discrete propagation time. This 

technique is useful for segmenting features which do not necessarily have distinct 

boundaries, particularly where the FOI is vaguely circular in 2D images or 

spherical in 3D images. 

For any N-dimensional image, consider a level-set function which has the same 

dimension as the image plus time, or  tr,


 . The partial differential level-set 

equation controlling the propagation of  is then: 

   )()()( rZwrPwrAw
dt

d 
 (3.8) 

where  rA


,  rP


 and  rZ


 are the advection, propagation and curvature terms, 

respectively, w, w, w are their respective weights and  is the mean curvature. 

A common implementation of LS segmentation is the fast marching level-set 

algorithm, described by Sethian (1999).  Pseudocode for the fast marching level-

set algorithm is given in appendix section A.3.  This implementation simplifies 

equation 3.8 by removing the advection and curvature terms.  The propagation 

term,  rP


, is provided by the sigmoid of the gradient magnitude of the image: 
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 (3.9) 

where  and  are free parameters which define the width and intensity of the 

sigmoid function, respectively.  Figure 3.8 demonstrates a propagation front at 

several successive time points as it travels through such a speed function. The 

numbers in the figure represent the cost of traversing the pixel (square) such that 

the total cost of traversing from the origin of the front (the pixel marked 0) to any 

pixel is the sum of all numbers along that path. 

Figure 3.9 shows an example of the propagation term, known as a time map, 

determined from an MR image. The resulting time map in sub-figure (c) 

represents how quickly the propagation front can expand, where the brighter the 

pixel the faster the propagation. The choice to use the sigmoid of the gradient 

magnitude of the image allows the propagation front to expand very quickly near 

areas with low gradients and to slow down severely near areas of high gradients.  

Figure 3.10 shows several segmentations of a bone erosion in a metacarpal head 

resulting from the time map in sub-figure (c) and by varying the free parameters, 

 and , in the sigmoid function from equation 3.9. 
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(a) 2D view 

 

 
(b) 1D view 

 

Figure 3.8: An example of the fast marching algorithm. (a) The 

numbers in each pixel (square) represents the speed function for 

traversing that pixel. The propagation front is displayed for six time 

points: t = 1, 3, 5, 7, 9 and 11. (b) The 1 dimensional propagation 

front for the dotted black line in (a). 
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Initial image,  rI


 

 
(b) Gradient magnitude, )(rI


  

 
(c) Sigmoid,  )(rIS


  

 

Figure 3.9: An example of how the propagation term in equation 3.8, referred to as the time map in the fast 

marching level-set algorithm, created from an initial Magnetic Resonance (MR) image. (a) shows a 

magnification of the 2
nd

 metacarpal head, (b) is the gradient magnitude of the image in (a) and (c) is the 

sigmoid of the gradient image in (b) with  set to -16% and  set to 35% of maximum image intensity.
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(a) Initial image 

 

 
(b)  = -16%,  = 24% 

 
(c = -16%,  = 35% 

 
(d)  = -16%,  = 47% 

 

Figure 3.10: An example of fast marching segmentation applied to a bone erosion 

in the second metacarpal head in a Magnetic Resonance (MR) image. (a) shows a 

magnification of the 2
nd

 metacarpal head and (b), (c) and (d) show the seed point 

and outline of the fast marching segmentation using different parameters in the 

sigmoid function in equation 3.9. All three segmentations have   set to -16% and 

(b), (c) and (d) have  set to 24%, 35% and 47% of maximum image intensity, 

respectfully. Note the poor delineation between erosion and bone denoted by the 

black arrow in image (b) and the white arrow in image (c). 
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Other level-set algorithms include those that make use of the advection,  rA


, and 

curvature,  rZ


, terms in equation 3.8.  For example, Malladi et al. (1995) 

describe a so-called “shape modeling” level-set algorithm that includes the 

propagation and curvature terms. As well, Caselles et al. (1997) describe a 

“geodesic active contour” algorithm which is a level-set algorithm with all three 

terms. 

An advantage to level-set algorithms is that FOIs do not need to be strictly 

surrounded by tissues or features with significantly different intensities. Unlike 

region growing algorithms, level-set algorithms do not require threshold values, 

allowing them to segment features with inhomogeneous intensities. A 

disadvantage to level-set algorithms is that they tend to poorly delineate the 

boundary between features as compared to region growing algorithms. 

Furthermore, small changes in the position of the seed point(s) change the 

segmentation, reducing their reproducibility. 

3.4 Summary of Erosion Segmentation in MR Images 

There are four distinct challenges when delineating multi-slice bone erosions in 

MR images: localization, multi-slice contouring, delineation of the boundary 

between bone erosion and bone marrow and the delineation of the boundary 

between bone erosion and non-marrow tissue including edema, cortical bone, 
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synovial fluid and cartilage.  The first challenge in segmenting bone erosions in 

MR images is the ability to determine the boundaries of a single region of interest 

distinctly from other image features, or “localization”.  For example, as discussed 

in the previous sections, manual tracing, region growing, level-set and least-cost 

graphing algorithms are capable of contouring a single region of interest whereas 

naïve thresholding and watershed algorithms generate contours over an entire 

image without a means of differentiating between a region of interest and other 

image features.  The second challenge in segmenting bone erosions in MR images 

is the ability to determine the boundaries of erosions which appear in multiple 

image slices.  Naïve thresholding, watershed, region growing and level-set 

algorithms are able to define boundaries of features which span multiple image 

slices whereas manual tracing and least-cost graph algorithms require the 

boundaries of an erosion in each slice of an MR image to be considered 

individually without consideration of the erosion’s boundaries on other slices.  

The third challenge in segmenting bone erosions in MR images is the ability to 

delineate the boundaries between the characteristic low signal of eroded bone and 

bright signal of non-eroded bone marrow.  All of the segmenting techniques 

discussed in this section are capable of identifying bone erosion/marrow 

boundaries except for level-set algorithms.  Finally, the fourth challenge in 

segmenting bone erosions in MR images is the ability to delineate the boundaries 

between the characteristic low signal of eroded bone and the low to mid-level 
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signals of other, non-marrow tissues surrounding the erosion such as edema, 

cortical bone, synovial fluid and cartilage.  The level-set algorithm is able to 

identy all bone erosion/non-marrow boundaries whereas all other algorithms fail 

to identify some or all erosion/non-marrow boundaries. 

Table 3.2 summarizes the segmentation techniques discussed in this chapter along 

with their effectiveness in overcoming the challenges associated with segmenting 

bone erosions in a contiguous stack of MR images.  Since none of the techniques 

meet all four challenges associated with automatic erosion segmentation, a hybrid 

approach which combines the strengths of two or more of these techniques may 

be the most optimum approach to this segmentation problem.  In chapter 4 the 

development and testing of a hybrid algorithm which forms the cornerstone of this 

thesis is described. 
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Table 3.2: A list of segmentation techniques discussed in this section that were candidates for erosion 

segmentation.  The effectiveness of each for overcoming the challenges of segmenting bone erosions as 

they appear in MR images is given.  These challenges include the segmentation of a single erosion of 

interest (localization), multi-slice contouring and the correct delineation of the erosion boundary with bone 

marrow and the synovium.  Note that none of these techniques effectively overcome all four challenges. 

 Localization 

Mutli-slice 

contouring 

Delineation of 

erosion/marrow 

boundaries 

Delineation of 

erosion/synovium 

boundaries 

Manual Tracing yes no yes no 

Naïve Thresholding no yes yes no 

Least-Cost Graphs yes no yes no 

Watershed no yes yes no 

Region Growing yes yes yes no 

Level-Set yes yes no yes 
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  Chapter 4

Bone Erosion Segmentation Algorithm 
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4.1 Introduction to Hybrid Algorithms 

Automated image segmentation algorithms which combine two or more 

segmentation techniques are known as hybrid segmentation algorithms. These 

hybrid algorithms are usually designed by combining the strengths of multiple 

segmentation algorithms in order to solve a specific segmentation problem. 

Although the use of hybrid segmentation approaches in medical imaging is 

relatively new, there are successful applications which have been reported for 

different imaging modalities and purposes. For example, Franaszek et al. (2006) 

describe using a combination of region growing, fuzzy connectedness (Udupa and 

Samarasekera 1996) and level-set algorithms to automatically detect polyps on 

CT colonography images. Gu et al. (2006) combined level-set and morphological 

reconstruction for general use in MR images of the brain, heart and kidneys. 

Hybrid algorithms are also used in 2D imaging modalities. Lee et al. (2007) 

describes using a combination of level-set and morphological scale-space analysis 

of fundus auto-fluorescence images to quantify macular degeneration and Ray et 

al. (2008) describe a hybrid algorithm used to examine oral sub-mucous fibrosis 

in light microscopic histopathological images. 

Given the success with which hybrid algorithms performed in segmenting these 

varied features in CT, MR and light microscope images, their application to 

segmenting MR based erosions seemed worthwhile. 
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4.2 Development of a Hybrid Algorithm for Erosion Segmentation 

A new hybrid algorithm was developed to automatically segment RA bone 

erosions from MR images. This algorithm combines Region Growing (RG) and 

LS algorithms using mathematical logic operators. The purpose of this new hybrid 

algorithm is to create a segmentation scheme which is sensitive to regions and 

boundaries by combining the region-based segmentation paradigm of RG 

algorithms with the boundary-based segmentation paradigm of LS algorithms. 

An overview of the RG and LS algorithms is given in figure 4.1.  It shows a 

flowchart describing the image filters used by the fast marching variant of the LS 

algorithm and the connected thresholding variant of the RG algorithm. Both 

segmentation algorithms are outlined by dotted lines.  Internal filters used by the 

algorithms are depicted as boxes listing the filter’s name and controlling 

parameters.  The flow of the input image through the internal filters (also referred 

to as the pipeline) is represented by small black arrows. 

The fast marching filter, shown as a pipeline on the left side of figure 4.1, has one 

input and one output image represented by a large white arrow at the top and 
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Figure 4.1: A flowchart describing the internal filters used by the level 

set and region growing algorithms on the left and right, respectively. 

Filters used internally by the segmentation algorithms are shown as a 

box listing their name and controlling parameters.  Figure 4.2 depicts 

how these algorithms are combined into a single, hybrid algorithm.
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bottom of the figure, respectively. The internal pipeline includes, in order, a 

smoothing, gradient, sigmoid, level-set and threshold filter. First, a curvature 

anisotropic diffusion filter is used as the smoothing filter. The filter is an edge-

preserving smoothing filter which uses a modified curvature diffusion equation to 

perform anisotropic diffusion. Three controlling parameters are used by the filter, 

the number of iterations, kernel width and conductance. The number of iterations 

define how many times to recursively perform the smoothing filter, the kernel 

width (also known as the time step) defines the width of the smoothing 

neighbourhood and the conductance limits the smoothing around the edges of 

features in the image.  Next, a gradient magnitude filter using a Gaussian-based 

smoothing kernel is used as the gradient filter on the output from the smoothing 

filter. This filter uses a single controlling parameter, sigma, which defines the 

standard deviation of the Gaussian smoothing kernel or neighbourhood.  Figure 

3.9(b) shows an example of this filter on an MR image.  Then, the sigmoid filter 

uses two controlling parameters,  and  to perform a non-linear mapping on the 

output from the gradient filter.  The  and  parameters (as defined in equation 

3.9) control the width and intensity of the sigmoid function, respectively.  Figure 

3.9(c) shows an example of this filter on an MR image.  Next, the fast marching 

level-set filter, as described in section 3.7.7, is performed on the output from the 

sigmoid filter.  Finally, a binary threshold filter is used to convert the output from 

the level-set filter into an image mask that defines the output segmentation. 
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The connected thresholding filter, shown as a pipeline in the right column of 

figure 4.1, has one input and one output image represented by a large white arrow 

at the top and bottom of the figure, respectively. The internal pipeline includes, in 

order, a smoothing and region growing filter. First, a curvature flow filter is used 

as the smoothing filter. Two controlling parameters are used by the filter, the 

number of iterations and kernel width. As with the curvature anisotropic diffusion 

filter, the number of iterations define how many times to recursively perform the 

smoothing filter and the kernel width defines the width of the smoothing 

neighbourhood. Finally, a connected thresholding region growing filter, as 

described in section 3.3.4, is performed on the output from the smoothing filter. 

This filter creates an image mask that defines the output segmentation. 

The hybrid segmentation algorithm is a 2D image filter which combines the 

output from the RG and LS filters described in figure 4.1, one slice at a time. 

Mathematically this algorithm is defined by the following equation: 

    LSRGLSnRGnLSRG SSSSSSH  )()(),(  (4.1) 

where SRG and SLS are the RG and LS segmentations, respectively, and (S) is a 

dilated border function.  Figure 4.2 shows a flowchart of equation 4.1.  Both 

filters are passed through a border and dilating filter before being combined 

together using logical AND ( ) and OR ( ) filters.  The dilated border function



 

102 

 

Figure 4.2: A flowchart describing the internal filters used in the hybrid 

segmentation filter. The image and seed(s) are input into the Region Growing 

(RG) and Level Set (LS) filters which are described in more detail in figure 4.1. 

The output of these filters are passed to border, dilation and logical AND ( ) and 

OR ( )  filters, as shown by black arrows. The resulting segmentation is the 

output of the final AND filter at the bottom of the flowchart. 
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is a linear combination of border and dilation filters defined by the following 

equation: 

  )()( SDS nn   (4.2) 

where (S) is a border filter which transforms the image S by removing all pixels 

that are not directly adjacent to the border of the segmentation and Dn(S) is a 

dilation filter which performs a binary dilation on the image S by n pixels. 

Figure 4.3 shows an example of each step of equation 4.1 as image filters applied 

to a typical MR image. In is important to note that these steps are applied to each 

image slice, one at a time. The magnification of a typical slice of an MR image 

containing an erosion before segmentation is shown in subfigure (a). Sub-figure 

(b) show the outline, SRG, and dilated border, r(SRG) of the RG segmentations as 

a thin white line and thick grey band, respectively. Subfigure (c) shows the same 

as (b), but for the LS segmentation. Next, the logical AND of the dilated borders 

of the RG and LS segmentations is shown in sub-figure (d), followed by the 

logical OR of the RG segmentation in (e) and the logical AND of the LS 

segmentation in (f). 



 

 

1
0

4 

 
(a) Input image. 

 

 

 

 

 

 
(b) The white border represents the 

border of the RG segmentation, SRG, 

and the thick gray border represents 

the dilation of that border, 5(SRG).  

These two steps are represented on 

figure 4.2 as A and B 

 
(c) The white border represents the 

border of the RG segmentation, SLS, 

and the thick gray border represents 

the dilation of that border, 5(SLS).  

These two steps are represented in 

figure 4.2 as C and D 

 

Figure 4.3: Magnification of a single slice of the erosion used to demonstrate the hybrid algorithm. These 

steps are described by equation 4.1 and the flowchart in figure 4.2. 
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(d) The logical AND operation 

between the dilated region growing 

segmentation border, 5(SRG), and the 

dilated level-set segmentation border, 

5(SLS).  This is represented in figure 

4.2 as E 

 
(e) The logical OR operation between 

the level-set segmentation, SLS, and 

the previous image.  This is 

represented in figure 4.2 as F. 

 

 

 
(f) The logical AND operation 

between the region growing 

algorithm, SRG, and the previous 

image.  This is represented in figure 

4.2 as G. 

 

 

Figure 4.3 (cont): Magnification of a single slice of the erosion used to demonstrate the hybrid algorithm. 

These steps are described by equation 4.1 and the flowchart in figure 4.2. 
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4.3 Controlling Parameters 

There are a total of 15 controlling parameters used to optimize the hybrid 

segmentation algorithm: 9 for the LS algorithm, 4 for the RG algorithm and 2 for 

the hybrid algorithm which combines the LS and RG segmentations.  Requiring a 

human operator to define a large number of parameters makes the algorithm more 

likely to succeed but increases the time needed to segment an image and may 

reduce the reproducibility of the segmentations.  Furthermore, many of these 

parameters are not intuitive and require knowledge of the underlying algorithms 

in order to understand the effects they have on the final segmentation.  This makes 

the algorithm difficult to use in a clinical setting. 

In order to address these shortcomings each of the 15 controlling parameters were 

investigated independently using a test set of 8 erosions.  The goal was to 

determine which parameters could be set to a constant value across a successful 

segmentation of all test erosions, thus reducing the need for a human operator to 

determine them manually.  For those parameters which could not remain constant 

for all test erosions, a small finite set of values was determined which, when 

chosen from, would successfully segment all test erosions.  Finally, the set of 

parameter values determined using the aforementioned procedure were compared 

with each other (comparing the values used for all 15 parameters as a group 

between each test erosion) to determine whether any two erosions used similar or 
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the same set of values.  This resulted in reducing the tuning required by a human 

operator from choosing 15 scalar values down to choosing a single categorical 

value. 

4.3.1 Constraining Parameter Values 

To minimize the variability of erosion measurement and to reduce the number of 

user defined inputs required to initiate the segmentation, the parameters required 

by the RG, LS, and hybridization steps of the segmentation are subjected to 

minimal control by the user. As such, five sets of parameters were identified from 

a training data set of eight images.  For each erosion in the test set, the four 

parameters required by the RG algorithm, the nine parameters required by the LS 

algorithm, and the two parameters required to combine the RG and LS 

segmentations were tuned individually until the segmentations most closely 

matched with those of the gold-standard (manually traced and radiologist-

corrected) segmentations.  Of the eight sets of parameters derived by this 

procedure, any sets which were identical or having near identical values for all 15 

parameters were grouped together.  Table 4.1 lists the resulting parameter values 

for all test images as determined by this procedure. 
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4.3.2 Parameter Sets 

Of the 15 parameters required by the hybrid algorithm only 3 needed to be varied 

in order to segment all test erosions.  Furthermore, 4 of 8 of the test erosions were 

segmented using the same values for all parameters.  This resulted in a total of 5 

sets of parameters in order to successfully segment all test erosions.  These sets 

are listed in table 4.2.  Therefore, human operators were presented with choosing 

one of the five parameter sets (labeled by letter: A, B, C, D, and E) instead of 

providing scalar values for 15 individual parameters.  This greatly simplifies the 

choices necessary to segment erosions.  However, since it is not guaranteed that 

this limited group of parameter-sets will be able to segment all possible erosions, 

the algorithm will be unable to segment some fraction of erosions it is presented 

with.  Figures 4.4, 4.5 and 4.6 demonstrate various parameter-sets applied to a 

large (119.3 mm
3
), medium (63.7 mm

3
) and small (23.4 mm

3
) erosion, 

respectfully.  Each figure also includes 3D renderings of the successful, multi-

slice segmentation. 

4.4 Seed Re-Positioning 

The location of the seed point placed by the rater can affect the borders of the 

erosion outlined by the RG and LS algorithms and the final hybrid boundary. 

Therefore, to increase the precision of the final segmentation, the algorithm was 

automatically re-run with a seed point corresponding to the center of mass of the 
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initial segmented area of the slice where the user- selected seed was positioned.  

The segmentation steps were repeated and the seed point was automatically re-

positioned at the new center of mass. This procedure continued until two
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Table 4.1: A list of all controlling parameters used in the hybrid algorithm and their values for the 8 test 

erosions determined by the procedure described in section 4.3.1.  Note that 12 of the 15 parameters (values 

in grey) have the same value for all test erosions. 

 #1 #2 #3 #4 #5 #6 #7 #8 

Level Set Parameters         

Smoothing iterations 4 4 4 4 4 4 4 4 

Smoothing time step 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Smoothing conductance (mm) 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 

Gradient s 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Sigmoid  (% intensity) -3.9 -2.0 -3.9 -1.2 -3.9 -11.8 -19.6 -3.9 

Sigmoid  (% intensity) 15.7 23.5 15.7 31.4 15.7 11.8 0.8 15.7 

Fast-marching stopping (% intensity) 11 11 11 11 11 11 11 11 

Lower threshold (% intensity) 0 0 0 0 0 0 0 0 

Upper threshold (% intensity) 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 

Region Growing Parameters         

Smoothing iterations 4 4 4 4 4 4 4 4 

Smoothing time step 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Lower threshold (% intensity) 0 0 0 0 0 0 0 0 

Upper threshold (% intensity) 27.5 39.2 27.5 27.5 27.5 47.1 31.4 27.5 

Hybrid Parameters         

Dilating (mm) 1.367 1.367 1.367 1.367 1.367 1.367 1.367 1.367 

Island threshold (mm
2
) 0.748 0.748 0.748 0.748 0.748 0.748 0.748 0.748 
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Table 4.2: A list of all parameter-sets determined by grouping parameters found in table 4.1.  Note that 

parameters which are not listed in this table are constant and listed in table 4.1. 

Set 

Level Set Sigmoid 

(% intensity) 

Level Set Sigmoid 

(% intensity) 

Region Growing Upper 

Threshold 

(% intensity) 

A -3.9 15.7 27.5 

B -1.2 31.4 27.5 

C -2.0 23.5 39.2 

D -19.6 8.0 31.4 

E -11.8 11.8 47.1 
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Figure 4.4: A large erosion (119.3 mm

3
) successfully segmented by 

parameter set A. 
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Figure 4.5: A medium erosion (63.7 mm
3
) successfully segmented by 

parameter set B. 
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Figure 4.6: A small erosion (23.4 mm

3
) successfully segmented by 

parameter set D.
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consecutive seed positions were the same, thereby denoting a stable segmentation 

of the erosion volume. However, if after several iterations the seed point did not 

stabilize, the rater instead placed the seed point as close to the center of the 

erosion as possible without automatic re-positioning. Placement instability 

occurred when most of the cortical bone surrounding the erosion was destroyed, 

causing the center of mass of the segmentation to always be further from the bone 

than the seed point. 

4.5 Measuring Volume 

4.5.1 Reconstruction of 2D Segmentations into a 3D Volume 

Once the erosion has been segmented its volume must be determined. Since 

erosions are contained in a series of 2D images their volume can only be 

determined from segmentations made up of 2D contours by reconstructing the 

contours into a 3D shape that represents the whole erosion.  The volume of the 

erosion can be determined using blocked and connected construction methods.  A 

visual representation of a cross section through the volume rendered by both 

methods is compared in figure 4.7. 

Blocked construction is equivalent to counting the total number of voxels which 

contain the erosion and multiplying by the volume of a voxel. This method of
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Figure 4.7: A cross-section of a reconstruction of an arbitrary shape based on 2D contours in a series of 

slices.  Thick black lines represent the shape contours and the dotted red and blue lines represent the 

blocked and connected constructions, respectively.  Note how the two methods result in similar volumes 

because of the cancellation of over- and under-estimation caused by the blocked construction.



 

117 

reconstruction is determined by multiplying the cross-sectional area contained 

within each contour by the slice thickness: 
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where t is the slice thickness, Ai  is the area enclosed by the contour in the i
th

  slice 

of the segmentation and n is the total number of slices in the segmentation. The 

first and last slices in the segmentation are multiplied by half the slice thickness to 

account for partial volume averaging.  The result is represented by red dotted lines 

in figure 4.7. 

Connected construction produces a smoother, less block-like reconstruction of 

erosions by drawing direct lines from the edges of adjacent contours.  An 

approximation of this method is represented by the blue dotted lines in figure 4.7.  

Though this method might better approximate the actual volume of erosions, it 

has its disadvantages.  Specifically, an algorithm must be used to connect 

consecutive contours using polygons.  Such algorithms are only accurate for 

simple shapes without many complex curves or splits (erosions with two contours 

on a single slice).  Since erosions may not always have simple shapes this is an 

undesirable technique.  However, the two methods result in similar volume 

measurements because the block-like reconstruction tends to cancel out the effect 

of “extra” volume and “missed” volume as shown in figure 4.7 by gray triangles. 
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4.5.2 Estimating Error 

Assuming that erosions are relatively spherical in shape we can determine the 

theoretical uncertainty associated with determining erosion volume by blocked 

reconstruction. Since spheres are the closest simple geometric shape 

approximating erosions, the uncertainty of voxelization of spheres can be 

determined as an estimate of the uncertainty associated with voxelization of 

erosions. The uncertainty associated with the voxelization of any object depends 

on the tessellation of the Euclidean plane containing that object. In many medical 

images, Euclidean space is tessellated into a regular grid. Specifically, all space is 

filled by rectilinear parallelepipeds, called voxels, where the width, breadth and 

height of each voxel is identical to all other voxels as depicted in figure 4.8.  If 

x, y and z are defined as the width, breadth and height of all voxels, 

respectively, then the volume of a voxel is: 

 zyxv   (4.4) 

then voxelization of any object is a process wherein all voxels are determined to 

either be inside or outside the object defined by an inclusion function  m


 , 

where m
v

 is a vector pointing from the image origin to the center of the voxel 

being tested for inclusion.  In the case of a sphere, the inclusion function can be 

defined by finding the distance from the center of the voxel to the center of the 
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sphere. If that distance is less than or equal to the radius of the sphere, r, then the 

voxel is inside the sphere, otherwise it is outside. This can be expressed 

mathematically by the equation: 

  









rcm

rcm
m 




 if

 if

0

1
  (4.5) 

where c


 is a vector pointing from the image origin to the center of the sphere. A 

2D representation of this concept is shown in figure 4.9 using the simplified case 

of a pixelized circle, which is the two dimensional equivalent to a voxelized 

sphere. If the pixels in figure 4.9 have a height and width of 1 mm, then the 

pixelized area would be 12 mm
2
. The circle in figure 4.9 has a radius of 1.75 mm, 

making its true area 9.62 mm
2
, a difference of 2.38 mm

2
. 

In 3D, the volume of a voxelized sphere is the sum of voxels included “inside” the 

sphere, as defined by the inclusion function, multiplied by the volume of a voxel: 

 

i

ivoxelized rvV )(


  (4.6) 

The error caused by the voxelization of the sphere is given by: 
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Figure 4.8: A regular grid: a tessellation of the Euclidean plane by 

rectilinear parallelepipeds which fill all space. In imaging each 

parallelepiped is called a voxel. 

 

 

 
 

Figure 4.9: A pixelized circle showing the center of each pixel in 

relation to the circle’s diameter. All pixels within the circle are 

marked gray. 
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If the voxels correspond to an image where the in-plane resolution is isometric 

and the out-of-plane resolution is t times larger than the in-plane resolution
3
, then 

x and y can be represented by the width w, and z can be represented by tw, 

simplifying the equation to: 
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Since voxel width and the size of the sphere are arbitrary, we can simplify further 

to the following equation: 

 1)(
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3
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  iv
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where  is the ratio of sphere radius, r, to voxel width, w: 

 
w

r
  (4.11) 

The numerical solution to equation 4.10 with respect to  is plotted in figure 4.10 

for t = 3.5.  The relationship between  and  is not straight forward.  The 

                                                                    
3
 Most clinical MR images have slice thicknesses 4 to 20 times the width of an in-plane voxel. 
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maximum error is periodic, so to approximate the uncertainty as a function of  

an exponential trend line has been determined using least squares fitting on the 

maximum error points.  The resulting exponential trend line is: 

 74.110.2    (4.12) 

where the four maximum data points used to determine the trend line are indicated 

by small circles. 

An important feature to draw from the uncertainties approximated in figure 4.10 is 

that for near-spherical erosions, the uncertainty caused by voxelization quickly 

grows beyond 10% if the erosion is smaller than 12 voxels wide. This theoretical 

limit is independent of the SNR and depends only on voxel size which is 

determined by the field of view, imaging matrix and slice thickness. 

4.5.3 Voxel Dimensions 

For MR imaging of RA, out-of-plane resolution slice thickness is usually 

substantially lower than in-plane resolution.  For example, nearly all of the 

protocols in the survey of MR scanners and configurations used in RA studies 

listed in tables 2.1 and 2.2 have a slice thickness several times larger than in-plane 

pixel dimensions.  Typically slice thicknesses range from 1.0 to 5.0 mm whereas 

pixel dimensions are usually less than 1.0 mm.  The resulting non-isotropic voxels 

are elongated, sometimes 5 to 10 times longer in the out-of-plane than in-plane
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Figure 4.10: A plot of how the ratio of sphere diameter to voxel width affects the voxelized volume 

measurement error for t = 3.5.  A trend line has been fit to the points with greatest uncertainty.  The trend 

was fit using four points indicated by circles.
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direction. The cost of thinner MR slices is decreased SNR.  There is a direct 

proportionality between voxel size and SNR, therefore reducing slice thickness 

without increasing in-plane resolution comes at the cost of lower SNR, which can 

be offset by increasing imaging time. 

In an attempt to overcome this restriction a method was developed to decrease 

slice thickness (and voxel size) without decreasing SNR at the cost of increased 

scan time.  By scanning a volume twice but offsetting the two scans by half of the 

slice thickness it is possible to reconstruct the two scans into a single image with 

half the slice thickness by interlacing the two images.  This concept is illustrated 

in figure 4.11. 

The two images are combined by interlacing slices and redefining their slice 

thicknesses to half their original value.  For example, take two image sets, A and 

B, each with slice thicknesses t where image set B is offset by t/2 from image set 

A in the out-of-plane direction (the in-plane positioning of A and B are identical).  

If slices in image set A are represented by A1, A2, etc, and slices in image set B are 

similarly represented by B2, B2, etc, then a third image set, C, can be reconstructed 

with twice as many slices each with a thickness of t/2 by interlacing image sets A 

and B such that the slices in image set C are A1, B1, A2, B2, A3, B3, etc. 

An example of this technique is shown in figure 4.12.  The interlaced image 

displayed in (b) is clearly smoother than the non-interlaced image in (a), but the
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Figure 4.11: A schematic illustrating how interleaving the slices of two images offset by half the slice 

thickness can be used to create a third image with half the slice thickness.
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SNR in both images is equivalent.  A major limitation of this technique is 

participant motion.  Because the two regular images used to create the interlaced 

image are taken consecutively and the scan time is double that of a single scan the 

technique is highly sensitive to movement.  Figure 4.13(a) shows an example of 

an interlaced image constructed by two images which were taken consecutively 

where the participant moved slightly between acquisitions.  The two un-interlaced 

images do not appear to have any movement artifact but when combined there is 

an obvious misalignment.  Furthermore, scanning was performed with the use of 

an orthopedic brace in order to reduce patricipant motion.  The brace, depicted in 

figure 4.14, was made of soft nylon and straps which holds in place rigid plastic 

along the anterior and posterior hand and wrist in order to restrict movement in 

the radiocarpal and metacarpophalangeal joints.  Figure 4.13(b) shows the 

interlaced image resulting from scans acquired with the brace.  Linear image 

registration was performed on both sets of images. 
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(a) Regular, non-interlaced image 

 

 
(b) Interlaced image 

 

Figure 4.12: Two axial slices of a stack of coronal images of a cadavaric hand.  The top image is a non-

interlaced, regular scan with a slice thickness of 1.0 mm.  The bottom image is an interlaced scan produced 

using two images with a slice thickness of 1.0 mm each, artificially producing a slice thickness of 0.5 mm. 
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(a) Interlaced image without a brace 

 

 
(b) Interlaced image with a brace  

 

Figure 4.13: Two axial slices of a stack of interlaced coronal images of a participant’s hand.  The top image, 

which was scanned without the use of a hand/wrist brace, shows a striping effect caused by misalignment 

between the two images.  The bottom image, which was scanned with the participant’s hand in an 

orthopedic brace, shows substantially less misalignment than the top image, but striping is still evident (see 

the bands pointed to by the white arrow).
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Figure 4.14: A depiction of the brace used to reduce the movement-like artifact when interlacing two consecutive 

images.  The brace is made of soft nylon and straps which holds in place rigid plastic along the anterior and posterior 

hand and wrist in order to restrict movement in the radiocarpal and metacarpophalangeal joints.   
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  Chapter 5

Clinical Validation 
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5.1 Participants 

All use of human participants was approved by the McMaster University Ethics 

Board and informed consent was obtained from all participants prior to 

recruitment.  Contraindication to MR imaging was assessed by a standard 

questionnaire.  Over the course of 14 months a total of 234 participants from 5 

rheumatology clinics were imaged.  All participants were identified as having RA 

according to the American Rheumatism Association 1987 revised criteria for the 

classification of rheumatoid arthritis (Arnett et al., 1988).  A subset of images 

containing at least one erosion appropriate for volume measurement was 

identified by visually inspecting the initial 234 participant scans.  Erosions were 

considered to be candidates for bone erosion measurement if they were located in 

the 2nd to 5th metacarpal heads, visible on at least three consecutive 1 mm thick 

slices and occupied less than half the size of the metacarpal head.  Erosions larger 

than this are not usually associated with early active disease and are of less 

clinical interest since substantial irreversible damage has already occurred.  This 

resulted in a total of 34 erosions which were identified in 32 participants (two 

participants had two distinct erosions in the same MR image).  The age of these 

participants ranged from 35 to 81 years old, with 23 female and 9 male 

participants. 
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5.2 Statistics 

Statistical analysis was performed using Statistical Package for the Social 

Sciences for Windows, version 14.0 (SPSS, Chicago, IL, USA). Intra-rater and 

inter-rater reproducibility was calculated as the Intraclass Correlation Coefficient 

(ICC) using a two-way mixed effects model with absolute agreement followed by 

the 95% confidence intervals in brackets.  A Bland-Altman difference plot (Bland 

and Altman 1986) was performed to compare the manual and automated volume 

measurements. 

5.3 Reproducibility 

Using the same test-cohort of 8 participants used to constrain parameter values 

described in section 4.3.1 (distinct from the analysis cohort described in the 

previous section), three raters were trained to segment erosions manually and by 

using the automated algorithm. Rater 1 was trained by a musculoskeletal (MSK) 

radiologist to segment erosions in MR images, while raters 2 and 3 were not. 

Manual segmentation of erosions required each rater to trace the boundaries 

between the erosion and surrounding tissue using a computer mouse in every slice 

that the erosion occupied. Three tests of the hybrid segmentation algorithm were 

performed. 
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The first test determined whether the inter- and intra-rater reproducibility of 

volume measurement using the automated algorithm was at least as good as that 

obtained by manual measurement. To assess inter-rater reproducibility, all erosion 

volumes were measured by all three raters using the automated and manual 

techniques. To assess intra-rater reproducibility, all measurements were repeated 

twice by a single rater, at least 72 hours apart. 

The second test determined the accuracy of the automated segmentation 

measurements. To determine the accuracy, the manual tracings performed by rater 

1 were checked and, if necessary, corrected by a MSK radiologist and used as a 

gold-standard.  The use of manual tracing by a radiologist as a gold-standard for 

the purpose of validating segmentation algorithms is used routinely. For example, 

algorithms for the measurement of joint space in the hand (Duryea et al 2000a), 

knee (Duryea et al 200b) and hip (Gordon et al 2001) were developed and 

validated using hand-drawn joint margins. 

Finally, the third test determined whether there was any significant difference 

between the time needed to measure the volume of an erosion using the automated 

and manual techniques. For this purpose, each of the three raters recorded the time 

required to segment each erosion using both the manual and automated 

measurement techniques.  Figure 5.1 summarizes the reproducibility of the 
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Figure 5.1: The reproducibility of manual and automated methods for measurement of bone erosion volume 

expressed as Intraclass Correlation Coefficients (ICCs).  The error bars represent 95% confidence intervals. 
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manual and automated volume measurements.  The ICCs for manual and 

automated measurements showed very high precision (> 0.9) with no significant 

difference between the two techniques for both intra- or inter-rater reproducibility.  

However, it is notable that though there is a significant difference between the 

intra- and inter-rater reproducibility of the manual technique, there is no such 

difference in the automated technique. 

5.4 Accuracy 

The binary volume overlap between manual and automated segmentation was 

measured by dividing the total number of voxels in the intersection of both 

segmentations by the total number of voxels in the manual segmentation: 






voxels

m

voxels

ma

S

SS 

   (5.1) 

where Sa is the automated segmentation and Sm is the manual segmentation.  The 

mean value for  was 0.79 ± 0.12.  A plot of automated versus manual volume 

measurement is provided in figure 5.2 along with the least squares fit through the 

data. The accuracies of all manually defined contours were confirmed by a MSK 

radiologist. The plot shows high agreement between the automated and manual 

measurement with an R
2
 value of 0.923.  The slope of the fitted line is 1.030 with 

an x-intercept of 1.385 mm
3
, indicating that the automated volume measurement 
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Figure 5.2: A plot of the automated versus gold-standard manual 

erosion volume measurements along with the least squares fit. 
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agreed with manual tracing over a large range of erosion sizes.  The mean and 

standard deviation of the absolute difference between the automated and manual 

volume measurements were 12.25 mm
3
 and 13.90 mm

3
, which is depicted 

graphically in the Bland-Altman difference plot of figure 5.3.  There are an equal 

number of points above and below the x-axis, suggesting that the automated 

measurements did not over- or underestimate the gold-standard segmentations. 

5.5 Parameter Sets 

Table 5.1 outlines the frequency with which each of the five controlling 

parameters resulted in a successful segmentation of the erosions.  As listed, in 

roughly 45% of the cases, the default controlling parameter successfully defined 

the boundaries of the erosions.  For those segmentations that failed using the 

default parameters (A), an additional 25 to 40% of the cases could be correctly 

segmented if the rater proceeded to re-segment with parameters controlled by 

choices B or C. 

5.6 Segmentation Time 

Table 5.2 compares the average time taken to measure an erosion between the 

automated and manual procedures.  The averages are also listed for erosions 

above and below a volume of 100 mm
3
 since manual tracings are influenced by 

erosion size.  In each erosion size category the automated measurements took
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Figure 5.3: A Bland-Altman difference plot comparing the automated 

and gold-standard manual erosion volume measurements. Note that 

there is an even number of points above and below the x-axis.
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Table 5.1: The frequency with which the parameters were used by the 

three raters.  Note that the first parameter, A, successfully segmented 

the erosion without rater intervention in 45.5% of erosions measured. 

 A B C D E 

Rater 1 13 (43.8%) 8 (26.7%) 4 (13.3%) 1 (3.3%) 4 (13.3%) 

Rater 2 14 (46.7%) 5 (16.7%) 4 (13.3%) 1 (3.3%) 6 (20.0%) 

Rater 3 14 (46.7%) 5 (16.7%) 3 (10.0%) 1 (3.3%) 7 (23.3%) 

 

Table 5.2: The average (standard deviation) time taken to score a 

single erosion in minutes. 

Volumes (mm
3
) Manual Tracing Hybrid Algorithm P-value 

All 7.8 (4.5) 2.6 (1.7) < 0.0005 

< 100 5.1 (2.6) 2.2 (1.4) < 0.0005 

> 100 12.6 (2.9) 3.3 (1.8) < 0.0005 
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significantly less time (p < 0.0005) than the corresponding manual tracing which 

took an average of 2 to 4 times longer. 

5.7 Algorihtm failure rate 

The hybrid algorithm failed to segment the same 4 of 34 erosions for each of the 

three raters.  Two examples of erosions which the algorithm failed to segment are 

shown in figure 5.4.  Small changes to the position of the seed point caused 

substantial variability in the final volume measurement. To minimize the 

variability of the erosion volumes determined with the algorithm, users were 

restricted to placing a single seed point in the central image slice of each erosion. 

Restriction to one seed point can result in algorithm failures for very large 

erosions. This was the case for two of the four failed measurements. These 

erosions occupied a large portion of the metacarpal head as they appeared to be 

made up of two or more smaller erosions that had grown large enough to combine 

into one erosion (as is the case with the erosion in figure 5.4(a) pointed to by the 

white arrow). 

The remaining two failed measurements highlighted an additional limitation of 

the hybrid segmentation algorithm.  The algorithm failed to segment erosions 

which had large openings in the cortical bone (as is the case with the erosion in 

figure 5.4(b) pointed to by the gray arrow). One of the advantages of using a 

boundary-based algorithm, such as LS, as part of the hybrid algorithm is that it is 
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(a) A larger erosion formed by two smaller erosions joining together 

 

 
(b) An erosion with a large portion of eroded cortical bone 

 

Figure 5.4: Two examples of erosions that the hybrid segmentation 

algorithm failed to segment.  In this context a failed segmentation is 

defined as a failure of all five parameter sets to satisfactorily contour 

the erosion in each of the slices in which it appears. 
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able to detect boundaries even if they are fuzzy or not fully visible. For example, 

the LS algorithm was able to accurately contour erosions even when they had 

small openings in the cortical bone.  Large openings pose a much more 

challenging segmentation problem as there is little to no boundary between the 

erosion within the bone and the synovium outside the bone.  This type of change 

to the bone due to RA is more indicative of advanced disease, and thereby less 

clinically relevant for treatment interventions.  
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  Chapter 6

Follow-up Data 
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6.1 Participants 

Of the 32 participants of the main cohort described in section 4.5, 14 participants 

were scanned a second time approximately 9 months after their baseline scan.  

Two of the 14 participants had two erosions and the remaining had one for a total 

of 16 erosions included in the study.  Participant ages ranged from 35 to 81 years 

old, with 13 female and 3 male participants.  All but two participants were 

prescribed the disease modifying antirheumatic drug methotrexate, five of which 

were also treated with a biologic. 

6.2 Methods 

All follow-up subject images were visually inspected for scan quality and 

compared with baseline images to verify that the scan coverage matched that from 

baseline.  All follow-up images passed this quality assurance check.  The manual 

and automated segmentations were then performed by an untrained reader.  This 

reader was one of the two that analyzed the baseline images (section 5.3).  The 

manual tracings were performed with the baseline manual tracings displayed side-

by-side for reference.  One week after the follow-up images were manually traced 

the erosions were segmented using the automated algorithm.  The automated 

segmentations were also performed with results of the baseline automated 

segmentations also displayed side-by-side for reference.  It is important to note 

that the baseline automated segmentations were not displayed while performing 
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the manual segmentations, nor were the baseline manual segmentations displayed 

while performing the automated segmentations. 

6.3 Minimal Detectable Change 

To estimate the minimal detectable change of erosion volume from serial images, 

the theoretical error caused by partial volume measurement, as described in 

chapter 4, is considered.  Given that the voxel size in this study was 

0.27×0.27×1.0 mm
3
 (out-of-plane voxel size is 3.7 times larger than in-plane 

voxel width) and assuming that erosions are approximately spherical in shape, the 

uncertainty of an erosion due to partial volume effect as a function of erosion size 

can be estimated using equation 4.13.  Table 6.1 lists the volume, diameter and 

error determined from partial volume measurement of large, medium and small 

erosions ranging from 150 to 15 mm
3
.  Figures 4.4, 4.5 and 4.6 depict 3D 

renderings of these erosion sizes, respectively.  The minimum detectable change 

may be estimated to be at least the size of the largest error (in volume) for the full 

range of measurable erosion sizes.  This results in a minimum detectable change 

to be approximately 4.1 mm
3
. 

6.4 Results 

The hybrid algorithm successfully segmented all 16 follow-up erosions resulting 

in a 0% failure rate.  A summary of the age, treatment and volumes of erosions at
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Table 6.1: The volume, diameter and estimated uncertainty due to 

partial volume effect of a small, medium and large erosion (relative to 

the range of erosion sizes measured in chapter 5).  The estimated error 

was determined using equation 4.13. 

 

Volume 

(mm
3
) 

Diameter 

(mm) 

Partial 

Volume 

Error (%) 

Partial 

Volume 

Error (mm
3
) 

Small 15 3.06 10.3 1.5 

Medium 80 5.35 3.9 3.1 

Large 150 6.59 2.7 4.1 
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baseline and follow-up as measured by manual and automated segmentation is 

provided in table 6.2.  A plot of the difference between baseline and follow-up 

volumes as determined by automated and manual measurement is provided in 

figure 6.1 along with the least squares fit through the data.  The plot shows high 

agreement between the automated and manual measurement differences with an 

R
2
 value of 0.931.  The slope of the fitted line is 0.931 with an x-intercept of -

1.820 mm
3
, indicating that the automated volume measurement agreed with 

manual tracing over all ranges of erosion volume change between baseline and 

follow-up scans. 

A Bland-Altman plot of the manual vs. automated erosion volume differences is 

shown in figure 6.2.  There are 6 points below and 10 above the x-axis, suggesting 

that automatic segmentation may underestimate the change in erosion size when 

compared to manual tracing.  However, the differences between manual and 

automatic segmentation determined volume change were all very small; falling 

between -12 mm
3
 and 15 mm

3
.  The baseline and follow-up MR images of 

participants #12 and #4 are shown in figures 6.3 and 6.4, respectively.  Each 

figure shows the automated segmentation as a thick white line on a single MR 

slice for both baseline and follow-up. 
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Table 6.2: A summary of the age, treatment and volumes of erosions 

at baseline and follow-up as measured by manual and automated 

segmentation.  All participants except for numbers 3 and 4 were being 

treated with methotrexate along with the additional treatment listed in 

the third column (if any). 

Participant 

(gender) Age 

Additional 

Treatment 

Basline 

Volume (mm
3
) 

manual/auto 

Follow-Up 

Volume (mm
3
) 

manual/auto 

Change in 

Volume (mm
3
) 

manual/auto 

1 (F) 64 Folic acid 18.8 / 25.6  25.5 / 20.8 6.7 / -4.8 

2 (M) 46 Leflunomide 120.4 / 119.3 142.3 / 145.9 21.9 / 26.6 

   25.1 / 25.4 35.3 / 36.4 10.2 / 11.0 

3 (M) 79 None 52.4 / 59.0 27.7 / 20.2 -24.8 / -38.8 

4 (M) 72 None 29.0 / 23.4 30.7 / 25.8 1.7 / 2.4 

   13.5 / 16.5 74.6 / 74.5 61.1 / 58.0 

5 (F) 65 None 16.3 / 24.6 58.0 / 57.1 41.7 / 32.5 

6 (F) 54 Etanercept 26.3 / 24.1 19.1 / 16.3 -7.2 / -7.8 

7 (F) 48 Etanercept 43.7 / 42.2 61.9 / 58.9 18.2 / 16.8 

8 (F) 41 Leflunomide 149.9 / 145.1 90.1 / 97.4 -59.8 / -47.7 

9 (F) 34 Abatacept 21.1 / 28.9 27.7 / 29.2 6.6 / 0.3 

10 (F) 61 Folic acid 30.6 / 36.5 37.1 / 38.2 6.5 / 1.8 

11 (F) 64 Folic acid 25.12 / 18.5 27.6 / 28.9 2.5 / 10.3 

12 (F) 55 Adalimumab 33.9 / 31.9 35.4 / 31.0 1.6 / -0.8 

13 (F) 63 Etanercept 35.8 / 36.9 50.7 / 53.2 14.9 / 16.3 

14 (F) 51 Leflunomide 37.9 / 38.5 35.5 / 26.1 -2.4 / -12.4 
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Figure 6.1: A plot of the difference between follow-up and baseline 

volumes as measured by the automated versus gold-standard manual 

measurements along with a least squares fit through the data. 
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Figure 6.2: A Bland-Altman difference plot comparing the difference 

between baseline and follow-up volumes determined using the 

automated and gold-standard manual erosion volume measurements. 

Note that there are more points above the x-axis than below, 

suggesting a trend for the automated method to underestimate changes 

in erosion volume. 
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(a) Baseline (31.9 mm

3
) 

 

 
(b) Follow-up (31.0 mm

3
) 

 

Figure 6.3: Single MR slices (left) and 3D renderings of erosions 

(right) of baseline and follow-up images for participant #12.  The 

automated segmentation of the erosion found in the second metacarpal 

is shown as a thick white line.  The erosion volume did not 

significantly change (decrease of 2.7%). 
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(a) Baseline (16.5 mm

3
) 

 

 
(b) Follow-up (74.5 mm

3
) 

 

Figure 6.4: Single MR slices (left) and 3D renderings of erosions 

(right) of baseline and follow-up images for participant #4.  The 

automated segmentation of the erosion found in the second metacarpal 

is shown as a thick white line (second erosion).  The erosion volume 

significantly changed (increase of 127.5%).
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6.5 Discussion 

Of the 16 erosions measured at follow-up, the volumes (as measured by the 

automated technique) of 10 were smaller than 50 mm
3
, 5 between 50 and 100 

mm
3
 and 1 greater than 100 mm

3
 (see table 6.2).  This does not evenly represent 

the range of erosion sizes of baseline erosions.  However, the smallest range (50 

mm
3
 or less) is the most clinically important since they represent subjects whose 

symptoms indicate an earlier stage of disease. 
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  Chapter 7

Discussion 
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7.1 Choice of algorithms to hybridize 

Manual segmentation of erosions in MR images requires a rater to trace the 

boundaries between erosion and surrounding tissue using a computer mouse in 

every slice that the erosion occupies. Some of these boundaries are difficult to 

interpret causing the border between the erosion and surrounding tissues (bone 

marrow, cortical bone, cartilage and synovium) to be subjective. Boundary 

subjectivity can be minimized and a high degree of accuracy in erosion volume 

measurement achieved if manual tracing is performed by a MSK radiologist. 

Regardless of the qualification of the rater however, manual tracing is time 

consuming as every slice containing the erosion must be individually delineated. 

The goal of automated segmentation is to decrease scoring time while preserving 

the precision and accuracy of manual tracing as performed by a radiologist. 

The hybrid algorithm developed in this thesis eliminates the need for a rater to 

manually trace boundaries between erosions and surrounding tissues. Instead, 

boundaries are automatically defined after a single seed point and a set of 

predefined controlling parameters are chosen by a rater.  The strategy adopted in 

developing the algorithm was to combine the strengths of a region-based 

segmentation algorithm; region growing-based connected thresholding, with the 

complimentary strengths of a boundary-based algorithm; level-set based fast 

marching.  In general RG segmentation can delineate the boundary between 
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erosions and bone marrow with some success, but bleeds outside of the bone at 

the boundary between the erosion and the synovium (see figure 3.7).  The LS 

algorithm does not delineate the boundary between the erosion and bone marrow 

as well as the RG algorithm, but it does not bleed outside of the bone.  The ability 

of the LS algorithm to provide a segmentation constrained to lie within the bone 

boundary was illustrated in figure 3.10.  Therefore, combining the strengths of a 

region-based and boundary-based segmentation algorithm provides a 

segmentation which clearly delineates the erosion boundaries without bleeding 

outside of the joint containing the erosion. 

The choice of which segmentation algorithms to combine was made based on the 

effectiveness of each algorithm with respect to the challenges of segmenting bone 

erosions in MR images.  These challenges include the delineation of the 

boundaries between the characteristic low signal of eroded bone and the low to 

mid-level signals of other, non-marrow tissues surrounding the erosion such as 

edema, cortical bone, synovial fluid and cartilage.  No algorithm applied alone 

was found to be effective in identifying the boundary between bone erosion and 

soft tissue found outside of the bone.  Often, these two regions were both 

characterized by very low signal, resulting in little to no boundary delineaton 

between where the erosion ends and the surrounding soft-tissue begins.  Unlike all 

of the other algorithms explored, the LS algorithm was able to identify this type of 
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boundary because LS algorithms do not require threshold values, allowing them 

to segment features with inhomogeneous intensities.  However, the LS algorithm 

tends to poorly delineate the boundary between bone erosions and marrow.  

Region growing was chosen to be combined with the LS algorithm since it 

addressed the major deficiency of the LS algorithm.  Unlike the LS algorithm, RG 

can successfully delineate the boundary between bone erosion and marrow.  

Unlike least-cost graphing, naïve thresholding and watershed algorithms, 

however, the RG algorithm is localized (i.e.: able to segment a single feature of 

interest) and capable of segmenting features which span several image slices.  

This ability to provide localized segmentation made the RG algorithm a natural fit 

for hybridization with the LS algorithm for segmenting erosions. 

Despite the watershed algorithm’s limitation of being non-localized it may also be 

successful at segmenting bone erosions in MR images if combined with the LS 

algorithm.  Overall the watershed algorithm failed to segment the boundary 

between erosion and bone marrow as well as the RG algorithm.  The watershed 

algorithm uses the gradient magnitude of the initial MR image as a height map in 

order to detect boundaries.  The same gradient magnitude is used by the LS 

algorithm to derive the propagation term which plays a similar role in determining 

boundaries.  Unlike the watershed algorithm, RG does not use the gradient 
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magnitude to detect boundaries, making it a better match to the LS algorithm for 

hybridization. 

7.2 Other hybrid segmentation algorithms 

To the author’s knowledge, the hybrid algorithm developed in this thesis is the 

first to automatically contour bone erosions in 3D image sets for determination of 

erosion volume (Emond et al 2011).  Although the hybrid approach to contouring 

bone erosions is unique, hybrid segmentation has been adopted for other medical 

imaging applications such as those described in chapter 4 which combined RG, 

fuzzy connectedness and LS (Franaszek et al 2001), LS and morphological 

reconstruction (Gu et al 2006) and LS and morphological scal-space analysis (Lee 

et al 2007).  Unlike the hybrid algorithm developed in this thesis, none of these 

methods used logical operators to combine existing segmentation techniques. 

7.3 Improving automation 

A major goal in developing an algorithm able to segment bone erosions in MR 

images was automation.  The hybrid algorithm developed in this thesis cannot be 

considered to be fully automated because of two user-required inputs: seed 

placement and selection of parameters which control the segmentation.  Seed 

placement, has two purposes: to identify individual erosions and to provide an 

estimate of the centre of the erosion.  In order to automate seed-placement, the 
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algorithm would also need to provide an estimate of the centre of the bone 

erosion.  It is likely that any algorithm which tries to automatically identify the 

centre of an erosion from a 3D MR image set would have an unacceptable failure 

rate given the complexity of tissues present.  In addition, automated seed 

placement is likely to reduce the accuracy and precision of measuring bone 

erosion volumes because the boundaries of the LS algorithm (which is used by the 

hybrid algorithm) are greatly dependent on the location of the seed point.  

However, it may be possible to automate seed placement in follow-up images.  By 

using image registration to align the anatomy of baseline and follow-up images, 

the position of a seed point in baseline images could be used to automatically 

place the seed point in follow-up scans.  This may be the focus of any future 

improvements to the algorithm. 

The second factor which prevents full automation of bone erosion volume 

measurement is the selection of controlling parameters.  Since it was not possible 

to select a single set of controlling parameters required by the hybrid algorithm 

which could successfully segment all erosions it was tested on, an operator is 

required to select one of five parameter sets.  Different parameters are required 

because erosions do not have standardized features.  Parameter sets were 

introduced to replace the necessity of selecting the large number of controlling 

parameters required by the hybrid algorithm to successfully identify the various 



 

160 

features of an erosion.  The effect was to reduce the total number of parameters 

required by the user from 15 to 1 (a single selection of one of the 5 parameter 

sets).  However, removing the ability to fine-tune individual parameters increases 

the failure rate and reduces the accuracy of bone erosion volume measurements.  

There were only 8 images included in the test-set used to determine the values of 

controlling parameters of each parameter set.  The algorithms failure rate and 

accuracy may be improved by re-defining the parameter sets using a much larger 

test-set of images. 

7.4 Advantages of this work 

7.4.1 May be used by trained and untrained readers 

Over the course of the project it became evident that there are two possible ways 

to use the automated segmentation algorithm to measure bone erosion volumes.  

The first is to have an untrained (non radiologist) reader follow a protocol which 

specifies exact procedures to take during each step of volume measurement.  The 

second use is to provide the algorithm to a trained reader (a musculoskeletal 

radiologist) who can use it to quickly contour erosions before manually correcting 

where necessary. 

The first method involves using software which drives the algorithm to measure 

erosion volumes without the use of a trained radiologist.  When used in this way 
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the reader is provided with a specific protocol describing how to perform each 

step of the algorithm described in chapter 4: placing the initial seed point as close 

to the centre of the erosion as possible, selecting the parameter set which best 

contours the erosion (section 4.3) and iteratively re-positioning the seed point 

(section 4.4).  The purpose of a protocol that specifically describes how to 

proceed at each step is to rely on the algorithm to contour accurately the erosion 

rather than the reader contouring the lesion.  Though this may result in some 

erosions being inaccurately segmented (since the algorithm cannot outline 

perfectly every possible erosion shape), it allows for erosion volumes to be 

measured by untrained readers at a reasonable accuracy (figure 5.2) with high 

reproducibility (figure 5.1). 

The second method involves using the software to segment erosions and, 

afterward, have a trained radiologist correct the contours.  When used in this way 

a specific protocol does not need to be followed and the contours need not be 

accurate since the radiologist’s manual corrections are relied upon to accurately 

measure erosion volumes.  This provides the accuracy of erosion volumes as 

measured by a trained radiologist without the need for the tedious and time-

consuming process of manually tracing erosions one slice at a time. 
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7.4.2 Time factor 

The automation of contour placement around an erosion substantially decreases 

the overall time required for volume measurement, as indicated in table 5.2.  A 

substantial decrease in processing time is most pronounced for larger erosion 

volumes (> 100 mm
3
) since these erosions occupy more slices, thereby increasing 

the total number of contours which must be manually traced. For these larger 

volumes the algorithm is four times faster than manual tracing. Although volumes 

less than 100 mm
3
 require substantially less time to trace manually than larger 

volumes, the algorithm reduced the processing time by at least a factor of two, 

without any loss of accuracy. 

7.4.3 Field strength independence 

Though the hybrid algorithm was developed using MR images acquired using a 1 

Tesla peripheral scanner, it is not limited to images acquired by that scanner.  The 

algorithm’s controlling parameters, listed in table 4.2, are percentages of intensity 

with respect to the highest and lowest intensity in the MR scan.  Therefore, bone 

erosions acquired by 1.5 and 3 Tesla full-body scanners could also be segmented 

by the hybrid algorithm. 
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7.5 Limitations of this work 

7.5.1 Erosion size limitations 

Due to partial volume averaging there is a lower limit to the volume size which 

can be accurately measured by the manual or automated methods. This limit is 

based on the voxel size of the MR image and is caused by the intrinsic uncertainty 

arising from partial volume averaging. Given that the voxel size in the study was 

0.27×0.27×1.0 mm
3
 (out-of-plane voxel size is 3.7 times larger than in-plane 

voxel width) and assuming that erosions are approximately spherical in shape, the 

uncertainty of an erosion 3.2 mm wide, or having a volume of 17.8 mm
3
, is 

approximately 10% (see figure 4.10).  This approximation indicated that it was 

necessary to exclude erosions which did not occupy at least three consecutive 1.0 

mm slices. This approximation is consistent with the RAMRIS recommendation 

that erosions only be scored if visible in two planes (Ostergaard et al 2003) when 

scanned with a typical slice thickness of 3 to 4 mm. The algorithm performs 

extremely well for volumes up to 175 mm
3
. 

7.5.2 True reproducibility 

The aggregate reproducibility was not determined.  Aggregate reproducibility 

would require scanning participants twice in a single visit.  However, it was not 

possible to perform a second scan due to time constraints and participant 
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compliance.  Many participants experience joint pain caused by rheumatoid 

arthritis during scanning due to prolonged periods of time positioned in the 

scanner. 

7.5.3 Lack of a phantom 

An imaging phantom was not used to calibrate the accuracy of volume 

measurement for manual or automated segmentations.  Though there are many 

imaging phantoms available, none accurately represent the imaging characteristics 

of bone erosion caused by rheumatoid arthritis.  A possible alternative to an 

imaging phantom is a cadaver with existing bone erosions.  However, since it is 

not clear how a prosector would measure the volume of the absence of bone it 

may be impossible to use a cadavric specimen for this purpose.  

7.6 Other applications 

Although our hybrid RG/LS algorithm was applied to segment erosions in MR 

images of the hand, future work may include application of the algorithm to other 

pathologies, anatomical sites, and image modalities.  The algorithm is sufficiently 

generic for application to other segmentation tasks wherein a region-based 

algorithm (such as RG) bleeds outside of an intended tissue boundary. 

Specifically, the algorithm could be applied to segmenting bone erosions in CT 

images, lung nodules in CT images, or brain tumours in MR and CT images. 
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7.7 Statistical Power 

There were a total of 34 erosions included in the baseline study used to determine 

the accuracy and precision of automated erosion measurement.  It took 14 months 

to identify these 34 erosions from a total of 234 participant MRIs screened.  Of 

these erosions the volume measurements derived from the gold-standard tracings 

resulted in 13 erosions ≤ 50 mm
3
, 11 erosions > 50 mm

3
 and ≤ 100 mm

3
 and 10 

erosions > 100 mm
3
.  Using these erosion scans, the algorithm was tested across a 

wide range of clinically representative erosion sizes.  Furthermore, there were a 

total of 16 erosions included in the follow-up study.  Of these erosions, the 

difference in volume from baseline to follow-up determined using the gold-

standard tracings resulted in 1 erosion < -30 mm
3
, 3 erosions ≥ -30 mm

3
 and < 0 

mm
3
, 10 erosions ≥ 0 mm

3
 and < 30 mm

3
 and 2 erosions > 30 mm

3
.  Consequently 

there was weak statistical power in measuring the accuracy of follow-up 

measurements in erosions who’s differential volume is outside of the 0 to ±30 

mm
3
 range.  However, given that the choice of participants used for follow-up 

measurements was random, it is likely that this range is most common in erosions 

being treated by a rheumatologist. 
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  Chapter 8

Conclusion 
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The hybrid segmentation algorithm described in this thesis is the first tool to 

automatically segment bone erosions from 3D MR images.  It was important to 

develop this algorithm because the measurement of bone erosion volume is 

perhaps the best indicator of the progression of rheumatoid arthritis.  The 

algorithm could be used to track bone erosion size in large populations, a task 

which previously required substantial time by a highly trained MSK radiologist 

who is required to manually trace the erosion boundaries. 

At the time of this writing there is considerable debate as to whether the treatment 

of rheumatoid arthritis can reverse bone erosion damage.  Since the algorithm is 

able to provide a quantitative measurement of erosion size, its use will help to 

clarify this debate.  In addition, evolving treatment options, such as the use of 

biologics to treat RA, could be studied. 

In conclusion, this thesis has described for the first time a hybrid segmentation 

algorithm which can segment bone erosions in 3D MR images with high accuracy 

and reproducibility.  The application of the algorithm to various clinical studies 

will help to better define treatment options. 
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Appendix 
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 Dijkstra’s Algorithm A.1

function Dijkstra( graph[], start ) 

    visited[]  Ø 

     

    // Make cost of all but starting vertex infinite 

    for all v in graph[] do 

        cost[v]   

    end for 

    cost[start]  0 

    focus  start 

     

    // Loop until all vertices have been visited 

    while visited[]   graph[] do 

        // Add all neighbours of focus that have not been visited 

        // to the working set and set their parent to focus 

        for all vertices v in neighbours( focus ) do 

            if v  visited[] then 

                parent[v]  focus 

                working[]  working[] + v 

            end if 

        end for 

         

        // Mark the focus as visited and remove it from the 

        // working set 

        working[]  working[] - focus 

        visited[]  visited[] + focus 

 

        // For all vertices in the working set, calculate the cost 

        // and set focus to the vertex with the minimum cost 

        focus  null 

        for all v in working[] do            

            cost[v]  cost[parent[v]] + edgecost( parent[v], v ) 

            if cost[v] < cost[focus] then focus  v 

        end for     

    end while 

    return cost[] 

end function 

The set of all vertices in the graph is provided by graph[], the initial starting 

vertex is start and the calculated lowest cost of traversal from the starting 

vertex to every other vertex in graph[] is returned as cost[].  The functions 

neighbours(v), cost(v) and edgecost(v1, v2) return a set of all 
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vertices directly connected to vertex v by a single edge, the cost to traverse from 

the starting vertex to vertex v and the cost to traverse from vertices v1 to v2, 

respectively.    The algorithm is displayed visually in figure 3.3. 
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 Connected Thresholding (Region Growing) A.2

function ConnectedThresholding( intensity[], seeds[] ) 

    segmentation[]  Ø 

    working[]  seeds[] 

     

    while working   Ø do 

        focus := first vertex in working[] 

        for all voxels v in neighbours( focus ) do 

            if v  segmentation[] and intensity[v]  [Tl, Tu] 

                then working[] := working[] + v 

            end if 

            working[] := working[] – focus 

            segmentation[] := segmentation + focus 

        end for 

    end while 

    return segmentation[] 

end function    

In this algorithm the intensity of all voxels is provided by the set intensity[], 

the seed points are provided by the set seeds[] and the function 

neighbours(v) returns a set of the 26 neighbouring voxels to v.  When the 

algorithm is complete all voxels which belong to the segmentation will be 

included in the segmentation[] set.  The algorithm is shown visually in 

figure 3.7. 
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 Fast Marching (Level Set) A.3

function FastMarching( intensity[], seed, stop ) 

    segmentation[]  Ø 

    time[] = InverseGradientMagnitude( intensity[] ) 

     

    cost[]  Ø 

    for all voxels v in intensity[] do 

        // find the cost of traversal to v 

        cost[v] := 0 

        line[]  all voxels in line joining seed and v 

        for all voxels l in line[] do 

            cost[v] := cost[v] + time[v] 

        end for 

 

        // include v if the cost is less than the stopping time 

        if( cost[v] <= stop ) then 

            segmentation[] := segmentation + v 

        end if 

    end for 

    return segmentation[] 

end function 

In this algorithm the intensity of all voxels is provided by the set intensity[], 

the seed point is provided by the voxel seed, the stopping time is provided by the 

scalar stop and the function InverseGradientMagnitude(I) returns a 

set of the inverse gradient magnitude the set I.  When the algorithm is complete 

all voxels which belong to the segmentation will be included in the 

segmentation[] set.  An example of the inverse gradient magnitude is shown 

in figure 3.9 and the algorithm is shown visually in figure 3.10. 

 


