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ABSTRACT 1

" The' problem of estimating the sﬁates of a dynamical

system on the basis of ou%put measurémé&té is considered in
detail. Some~ of the existing -nonlineér estimation tech-
nigques are'é{zlically surveyed, these igclégglthe extehded
Kaiman filter,~ the second-order filter, .the innovations
'épproach, and the invariant'iﬁbeddiBg-noﬁlinear filter. A
new algorithm for nonlinea; estimation.ﬁs p?oposed which

. 7 ! ) .
combines the invariant imbedding approach and the stochastic

approximation’ algorithm for adaptively estimating the filter

gain. The new algorithm is an iterative scheme which does

not require knowledge of a priori input} and measurement

noise statistics. The proposed algorithm and the other .

techniéues are used for the retursive state estimation of a

satellite orbital trajectory. The resuits of simulation

indicate the efficiency and reliability of the new
!

algorithm. Convergence to the true state is achieved with

‘much less computation when compared to the other methods.

-
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CHAPTER 1
INTRODUCTION

The sequential estimation of the states of noisy non-

linear dynamical systems is of interest not only in
automatic control but also in other areas of engiheeping
e

where the System jdentification problem requires the

processing of large quantities of data. :

The problem of optimal state estim%tion in nonlinear

dynamical systems has received considerable attention during

the past few years. Since Wiener's pioneering work—-{1l] on

the theory of optimal filtering and predicﬁion, many
extensions and new developments have been made'in the area
of nonlinear filtering. Algorithms for filtering, smoothing
and prediction of the states of a linear dynamical system
have been derived by Kalmaﬂ and Bucy [2,3]. T?ese algo-
rithms were exteﬁded to the estimation of states of non-
linear dynamical'sfstéms and the so-called first-order
filter, or extended Kalman filter, was derived by severfl
investigators including Cox [4]1. Mo;ecy [5], and Ho and Lee
{B]. The techniques utilized for generating these
algopithmsl are based on orthogonai projection theory and

maximum likelihood estimate. Most of these technigues
™ .



employ a Taylor series expan31on, neglect Second and hlgher-
order terms, and use llnearxzed equatlons to compute the
coﬁdi&ionel_error'covariance matrix and filter gains.

Ftom.tge point pf‘view\of the determination of the
exact-'eéuations eatisfied by the'~eonditidna1 probability
deneityﬂfunctions.end conditional exéectatioqs; Kushner '[7]
indicated “that the optimal f£ilter can be. realized by ae
infinite dimensional system. using the stochastic 1Itd
calculus. Bucy [8], Bass et al. [9], Denham and Pines [10]
and many others have derived the filtering algorithms, by
refaining second-order terms; using the érobabilistic
approach. Athans et al. [11] and Wiehner et al. [12} have
_compared "the performance of first-order and second-order
" filters, ana: showed thet considerable ;mprovement.-in the
performance was achieved using the second-prder filter.
 Detchmendy and S;idher [lé] and Kaqiwada et al. [14] have
derived filtering algorithms_ similar to the ﬁirst—order
fllter for nonlinear esitmation problems using the least
squares errors criterion and the/jﬁvarlant 1mbeddlnq
technique. 4

One of the meet recent ‘techniques for solving
nonlineae filtering problems, based oﬁ the innovations
approach, was presented by Kailath [15]_ and Kailath and
Frost [16]. The use of the innovations allows us to o?tain

~a

formulas and simple derivations that are remarkably similar .



to those used for the linear case. This technique, -
therefore, .distinguishes clearl& the eéqehtia1. pointe in
which the nonllnear problem differs from the 11near one.

The main objective of thls research is to develop an
efficient algorlthm for optlmal nonllnear estlmatron. .The
principal obstacle to a complete derlvatlon of the filter
algorithm for nonllnear:systems ‘lies ‘in the computatron of
the gain matrix. . An aéaptive scheme could be used -which
combines:botﬁ the innovations property of an ogtimel Eilter
and stochastic apprpximation; it is proposed to develop an
algorithm combining the invariant imbedding approach with
the stoehastic approximation adaptive scheme for gain
computation and state estimation.

One of the important applications of the estimation
theory is the determination of sateliite orbitel Erajec-
tories. The proposed algorithﬁ is used to estimate the
orbital states of a communications eatellite using'actual
tracking data supplied by the Spacecraft Mechanics Division
of the Communications Research Ceetre in Ottawa.

The thesis is divided into two main parts. Chapters
2 and 3 are mainly tutorial in nature,ﬁéhereas the main
contributions and results of the\work appear in Chapters 4,
% and 6. \\\

In Chaprer 2, a brief critical survey of different

linear estimation techniques is outlined. The work of



fal

‘ Kolmogorov {171, Wlener (11, Kalman 12] and KaIEaH and Bucy
[3] ar'e summarlzed. Adaptlve state aatlmatlon and the use
of the innovations approach in linear fllterxng arg also
briefly reVLQwed. | .

Chapter 3lgivés a critical survey of three of the’
existing nanlinear estimation techniques. The meﬁhqu
reviewed are the ex;énded Kalman filter, the second-order
nonlinear filter and the innovations approach to nQﬁ%fnqar
estimation.. .

Chapter 4 -includes the principal theorepical
cont;ibution of this work. - The invariant imbedding concept
is described, a_ nonl thear ‘estimation algorithm based on
invariant imbedding is prasenfed. | A stochastic approxi-
mation algorithm for adaptive gain computation 1is comBined
with the previoﬁs algorithm to provide\ a new AOnlinear‘
estimation algorithm. ' .

| Chapter 5 is devoted to the study of the orbital

trajectory state madelj proposed By Altman ‘[181: An
observation model is derived to be used with the above state
model for state'estimation.

Chapter 6 presents the results of the model
simulatioa'onpa CDC 6400 computer. The problem of satellite
orbit determiaation is solved for two different cases of

initial orbits. Three of the existing nonlinear estimation

algorithms are used and compared .with the new algorithm



>

‘ p;opogéd by ‘the author.

. Chaptef 7 includes some concluding remarks_regarding
. the-#gliéity and efficiency of the proposed algorithm, based
on phe reéuits presented in the previous chapter. Limita-
tions of the method and suggestions for further researcp‘are

" also given in this chapter.

s | ; BN (
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. CHAPTER 2

OPTIMAL ESTIMATION FOR’LINEAR SYSTEMS
| | «
2.F Intrpdﬁction

.~

*

hysical systems are designed and built to perform
certain| défined functions. In order to determine whether a
system is pérfd?ming properly; and ultimately to control the
system performance, an engineer must know the state of the
system at every instant of time. Physical syétems are often
subject to random distgrbances, so that the system state'may
itself be.rgndom. ‘

‘ In order'fo determine the' state of the system, the
enéineer tékes measurements or obsé}vations on this system.
These ﬁeasg{ements are generally contaminated with noise
cadsea by the electronic and mechanical c0mpbnents of the
measuring éevices.

We shall‘be concerned with the problem of estimating
the state of a system from noisy.measﬁrements of the output
of the system. fhis chapter presents a critical survey of
existing estimation techniques for linear systems.
Information theorists and communication engineers

have been more familiar with problems in which covariance

v



information is given about signalﬁahd noise, usually called
Wiener filteringAproblems [11.  On the other hand, cqntrol

engineers deal more often with probléms where tﬁe signal and

the noise are described byIStaté—space quels [2,19].g} o
ach to

~In 1961 Kalman and Bucy presented a new appr
the linear filtering proﬁlem [3). The novelty of their
formulation was the representation of all random processes

by correlation functions. By restricting their attention to

 Gauss-Markov processes in particular, they derived a set of

Y

differential equations for the estimzﬁﬁs. The main

advantage of their approach;is,that it is much easier to

\\\solve a set of differential equations by analog or digital

techniques than to solve an integral equation and perform a
convolution.
A well-known limitation OF the appliéation of the

Kalman-Bucy filter to real world problems is the assumption

of known a priori statistics for the stochastic errors -in

Ve -+
L

both the state and observition brocesses. This approach
leads to a nonadaptive “filter and although the performance
may be satisfactory err.soﬁe global operating region, it
will be inferior to that obtained when a priori statistics
are known locally as a function of time. Therefore, in the
presence of unknown-system disturbances it may be desirable
to adaptively estimate the a priori statistics

simultaneously with the system state. There exist different



schemes for adaptive Kalman filteriné, an adéptiﬁe

sequential - estimator derived by Sage . and ‘Husa [20] is

presented in. this chapter.

o~

The innovations approach has provided ~an elegant

"state estimation techbnique by replacing the observations by
- /%3 R ' ¢

the innovations precess and thus sidestepping the
difficulties with the sdlution of the Wiener-Hopf eguation.
This apbroach also- provgdes a convenient frahework for
adaptive imprqvement of Kalman gains. Initial guesses of
the noise parameters are iﬁproved iteratively until the
innovations process is suffigiently whiEe. Péoblems of this

nature have been treated by Mehra [21].

2.2 Kolmogorov-Wiener Filter

-

The obtimum linear filtering and prediction problem
first solvéd by Kolmogorov [IZkJand Wiener [1] marked the
beginning of engineering awareness of the problem of stéte
estimation. Unfortunately, beééuge'the results of this work
Qére éﬁpressed in the fregquency domain, they could noé be
-directiy extended to nénstationéry problems. Although the
éeneral formulation of the nonstat}onary problem can also be
develbped, through the Wiener-Hopf equations, very few
practical results were achieved. It was not until the

development of the Kalman filter algorithm that the

computational difficulties- were overcome for the general
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nonstationary case.

-

The problem may be

(

stated'-as follows: given " the

random process
~
L

y(&) = x(t) + n(e) - (2.1)

- PR
- -

where x(t).is the useful signal imbedded in the noise ni{t)
and both are assumed to be fandom processes, determine a
filter such that its output ;(t) will be the best
lapproximation to x(t) in the mean square sense. That is,

minimize E[ez(t)], where .

e(t) & x(t) - x(t) (2.2)
- 9
and E[*] is the expectation operator.
Using variational arguments,/éiener showed that the

impulse response h(t) of the optimgﬁ linear filter satisfies

the following Wiener-Hopf integral equation

ny(T) - J Ry(T—G) h(o; do =0 {2.3)

-

where Rx is the cross-correlation function between x{t) and

y

y(t), and R, the autocorrelation of y(t), defined as

y

(=

(t) £ E [x(t) y(t-1)]

R
Xy
Ry(r)

(2.4)

e

E {y(t) y(t-t))



The "determination of the optimum filter transfer

.

function requires knowleﬂée of the correlation functions or

the oorresponding spectrsk densities as well as performing
. - . ] \‘ﬂ Pt

-

spectral factorization [22]. The formulation is cumbersome

B.

the state-space formulation.

2.3 Kalman Fllterlnq

In his work Kalman formulated and solved

E

problem using the state-space formulation. The

he Wiener
assical

filtering and prediction problem was reexamlned using

Bode-Shannon representation of random processes (23] and the.

"state-transition” method of analysis of dynamic systems.

The-new results of this approach were:

(1) The.formulation and‘methods of solution of the
probleﬁ apply without modification to stationary and
nonstationary-ststistics and to infinite memory
filters.

(2) A nonlinear difference equation is derived for the
covariance matrix of the optimal estimation error.
From the solution of this eguation the coefficients
of the difference equation of the optimal 1linear
filter sre obtained without further calculations.
This equation is the discrete-time counterpart of the

Ricatti dlfferentlal equatlon encountered in optlmal

to implement and requires more computation as compared to.



edntrol -[24]. -~

(3Y The‘filtering-problem caﬁhbe.shown_to be Ehé.dual of

N

the noise-free regulator problem [2].

2.3.1 'Discrete;fime Kalman Filter |

.The disérete-time Kalman filter results were éctually
the first to be obtained [2], pgrtly because the major
system-theory gcti&ity in the mid-fifties was iﬁ-the field
of sampled-data sy teﬁs, which arose when modern digital-
computers were put into control and communication links. In
his work Kalman combined state-space description and the
concept <;f orthogonal projections to give a complete and
elegant solution.

Consider the message model described by the linear

vector differenge equation
x(k) = e(K,k=1) x(k-=1) + r(k} w(k) (2.5}

where the 'input noise w is a zero-mean white-noise process,

with covariance

cov {w(k), w(i)} = Q(k) &g (k=3). (2.6)

and §x is the Kronecker delta function.

The observation (measuremenﬁ) model 1is given by the

-



»

(ki = Bk x(k) + v(k) @2

linear algebraic.relation

: . - [} . .
where the measurement noise V is a zero-mean white-nclse

process, with covariance.

cov {v(k), v(i)} = R(k) &g(k=3) (2.8)

4
The input and observation noise are assumed to be

‘uncorrelated, so that
cov {w(k), v(j)} =0 for all j,k ‘ (2.9)

The initial value of x is a random. variable with mean Xq and
variance Po‘

Based on a set of seqguential observations defined by

Y(k) = {y(l}, y{(2), .. y(k)},_ we wish to determine an
estimate x(k|k) qg x(k) . The estimation error will be
denoted by '

e(klk) & x(k) - ;(klk)‘ S (2.10)

Of the many possible unbiased linear estimatofs, we
wish to_select the one which gives the minimum "error
variance. Kalman's original derivation of the optimum
linear minimum—errgr-variance estimator used the orthogonal

projection approach [25].
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As shown.by Kalman, the optimal estimate x(k|k) of’
. the state vector x(k) may be interpreted.géQmétribally as
the projection of x(k) onto Y({k-1). Algebraically, the

-

estimates are given by"

- x(klk) & proj {x(k) | Y(k)} | S (2.11)
/ | o
After several mathematical manipulations’[Z] equation (2.11)
becomes — |
x(kl k) = @ (k,k=1) x(k-1]k-1) + R(k) y(k) (2.12)

~

where K(k) is a weighting of observation for optimal
estimation, called the Kalman gain matrix. The vector y(k)

is defined as

D30 = y(k) - H(k) x(k|k-1) ' (2.13)
where $(k[k-1) = o (k, k=1) x(k-1]k=-1)

The optimal linear Kalman estimator is generated by the
following recursive algorithms.

Filter algorithm

;(k]k) = ¢ (k,k-1) ;(klk—l) + K(k) ;(k) (2.14)

Gain algorithm

K(k} = P(klk-1} HT(k) (B(k) P(k|k-1) HT(k) + R(k)]

3

1 (2.15)



3

14

. Prediction'érior.variancé algorithm -

P(klk l) = 0(k k-1) . P(k l) oT (k,k=1) + r(k 1) Q(k=-1) 1 (k 1) -

{2.16)
Error variance aléorithm
P(k) = {I - K(k) H(k)] P(klk-1) ' : (2.17)
Iﬁitial conditions
;(0) = # ' P(Old) = P | : | - ‘{2.18)

o) e}

A block diagram of the discretg'Kalman filter is given in
Fig. 2.1. |

The greét merit in the Kalman algorithms Eof the
filtering problem lieés in the fact that the solﬁtion‘
directly specifies a practical implementation of the
results. In many practical problems, real-time computation
is realizable. An additional feature of the approach is
that the error variance P({k) is computed as a direct part of
the estimator, and may be used to judge the accuracy of the
estimation procedure. The Kalmaé filter ,is an unBiased
estimator, assuming that the correct prior statistics of the
plant and measufement noises and the initial state are used
to implement the algorithm. In his original work Kalﬁan
proves the stablllty of the filter under certaln conditions

[26].
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Different approaches are used to derive the discrete
Kalman filter given above, e.g., least squares method [27],
maximum likelihood *approach [28]) and the probabilistic

approach [29].

- "\ .
2.3.2 Continuous-Time Kalman-Bucy Filter

Kalman considered the contihuous-time problem a§ the
iimiting'casé of the discrete-time problem 55 thé sampling
interval is reduced to zero [19]. Bucy's important
contribution to thé joiﬁt paper [3] was a derivation using

the finite-time Wiener-Hopf equation (2.3);

The message model for the‘continuaus problem takes ’

the form of a first-order differential equation,

;(t).= F(t) x(t) + G(£) w(t) (2.19)

where w{t) is a zero-mean white-noise process, with
cov {w(t), wit)} & 0(t) s (t-1) (2.20)

where 5D is the Dirac delta function.

The initial mean and variance of the state x(t) are

known as .

E[x{(0)}] = x wvar [x(0)] = P (2.21)

o’ o




17 .

The observation model is given as
. . 3
Ly(t) = H(t) x(t) + v(t) ™ (2.22)

The measurement noise is white and of zero mean, with
.c :

cov {v(t), v(7)} & R(t) sp(t-1) (2.23)

It'is assumed that‘the input and measurement hoises'aré
uncorrelated. | -

We are interested ipfdetermihihg the linear minimum-
error-variance sequential estimator of the state x(t),‘given
the measurements y(t) for 0 < t £ t, that is, ¥Y(t).

Using the limiting appro;ch or the Wiener-Hopf
-equatioh, the following continuous-Kalman filter is derived.

Filter algorithm

.
- ‘o - -~
x(t) = F{t) x(t) + K(t) [y(t) - H(t) x(t)] (2.24)
Gain algorithm X ;
©R(t) = P(t) HY(t) R7Y(t) (2.25)

Error-variance algorithm

B(t) = F(£) P(t) + P(t) FT(t) - P(t) HT(t) R (&) H(E) B(t)

+ G(B)TQ(E) G (t) (2.26)

A special case of the continuous Kalman filter, the

L]
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-

statibnary Ralman filter,-should satisfy the following

assumptions.

(1) The message and observation models are time-invariant

) x(t) = F x(t) + G w(t)
_ (2.27)
y(t) = H x(t) + v(t}
where F, G and H are donstant matrices. /%45;

(2) The input and measurement noises are. at least wide-

sense stationary.

f

When the stationary problem is formulated in the
frequency domain, the Wiéner filter is obtained. So the
stationary Kalman filter and ‘the Wiener filter are two
differeﬂt means of solving the stationary estimation
problem. The Kalman filter is expressed in the time-domain
and state-variable notation, whereas the Wiener filterpis
expressed in frequency-domain transfer-function notation.
Obviouély there are significant computationél advantages of
the Kalman formulation for most control problems.

Kalman has often stressed that the major contribution
of this work is the proof that under certain technical
conditions called "controllability" and "observability"

[30]:

(1) The optimum filter is "stable", in the sense that the

effects of initial errors and round-off and other



computational errors will die out asymptotically.

(2) Every solution of the variadce' equation (2.17) or

(2.26) starting at a symmetric, non-negative matrix .

1

Pogconverges to a unigue steady-state solution,

iqdependent of the initial condition and of errors

introduced during the computation.

However, in some practical "applications, one finds

that the actual estimation errors greatly exceed the values
which would be theoretically 'predicted by the error

variance. . This . phenomenon, referred to as divergence,

causes instability of the filter algorithm ‘even though,

theoretically, it is computationally stable.
One way to eliminate divergence is to use adaptive
filtering algorithms [31,32,331. g

2.4 Adaptive Estimation : -

Two problems which occur when methods of optimal
estimation are applied to an actual problem are the choice
of the prior statistics and the choice of a mathematical
model that represents the system.

The model must be sufficiently complete for an
adequate description of the system and also sufficiently
simple such that the resulting algorithms are

computapionally feasible.

e
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N\ .
Typi¢ally, the a'pri ri statistics are selected

through analysis of empiric data or‘computer.simulation
and are assumed constant: _ This leads to a nonadaptive
filter, and although estimation performance may be
‘éatisfactory,ovér some global operating régime, it will be
inferior to that obtained when the a priori statistics are
gnown‘_locaily as a function of time. Therefore, in the
presence of unknown system diéturbances, it is desirable to
adaptively estimate the a pridri statistics simultaneously
with the sYstem state.

Mehfa (21] has proposed an algorithm for adaptive
KAlman filﬁering based on first obtaining estimates of the
noise covariancé matrices which are asymptotically unbiased
and consistent. Another algorithm has bee; proposed by
Carew and Belanger [33] which estimates the optimum gain
matrix by utilizing the autocorrelation function of the sub-
optimum innovations sequence generated by using a suboptimum
gain matrix. However, both of these algérithms éuffer from
the drawback that considerable data must be accumulated
before they can be used. Furthermoré, tbeir approach may be
called "open-loop", and will not be effective if the noise
covariance is varying slowlﬁ. (?

A "closed-loop" adaptive approach to. estimating the
optimal_gain matrix, based on stochastic approximation has

been proposed by Scharf and Alspach [34], Sinha [35], Sinha
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and Mukh;rjee (36] rand othérs. This approach will. be
discussed. in detail in Chapter 4, aﬁd used for -nonlinear
estlmatlon.n- | <

Sage;and_ﬂusa derived an adaptive filtering algorithm
which provides sequentialﬁestimation‘of the First two
moments of the ?lant and the measurement noise ([20]. This
algorithm is suitable for on-line application and also
nonlinear estimatidn problem when combineq‘with the extendéd

Kalman filter. ¢

. Sage and Husa consider

the discrete message and
‘observations models given by quations’ (2.5) and (2.7). Let B
r(k), R(k) be the mean and variance of the measurement
noise, q(k)-and Q(k) be the mean and variance of the plant
noise. In their work Sage and Husa developed a .suboptimal
adaptive Bayes estlmatlon algorlthms that estlmate the
states as well as the noise statistics.

The following is a summary of the filter for discrete
systems, the continuous case could be obtained by a limiting
argument.

Message model

x(k) = o(k,k=1) x(k-1) + T w(k} (2.28)

«fibservation model

y{K) H(k) x(k) + v(k) . . (2.29)



Filter algorithm

Z(klk) # x(kik-1) + K(k) [y(k) = r(k) = B(K) x(k|k-1)]

-
Prediction algorithm

3

-~ -
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(2.30)

A(kl1k=1) = ¢ (k,k-1) x(k-1|k=1) + T a(k-1) : (2.31)°

®

-

Filter gain algorithm

K(k) = P(klk-1) BT(k) [H(k) P(k|k-1) HT (k) + R(K)1™Y  (2.32)

-

Prediction error variance algorithm

P(k|k-1) = ¢ (k,k-1) P(k-1]k=1} o7 (k,k=1) + T Q(k-1) rT
. - (2.33)
Error variance algorithm |
P(k| k) = [I = K(k) H(k)] P{k|k-1) (2.34)
Measurement noise mean algorithm
Fk) = p [(k=2) r(k-1) + y(k-1)V- B (k=1) R (KIk=1)).
- (2.35)

Measurement noise variance algorithm

R(K) = oy [(k-2) R(k-1) + y(k-1) y®(k=1) = H(k-1)

x P(k-1jk-1) BT (k-1)] (2.36)



Plant noise mean algorithm

r a(k) = & [(k-1) T g(k-1) ¢ x(klK) - ®(k,k=1) x(k-1|k=1}]
: | (2.37)

Plant noise variance algorithm

r oo 1T = L kel T oaek-1) 1T % KRGk y(R) ¥ (k) KT (K)

+ P(KIK) - o (k,k-1) P(k=1]k-1) o7 (k,k-1)]

(2.38)
Measurement error élgorithm
;(k) = y(k) - H(kj ;(klk-l) - ;(klk-l) ‘ ' (2.39)
Initial conditions
x(0) = x_,  P(0[0) = P,
;(0) =T ﬁ(O) = Ro'
a0y = q, Q) = Qg (2. 40)

The continuous version of the algorithm is given in
reference [20] in detail.
This algorithm has been used by the author for orbit

determination of communications satellite.
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2.5 Innovations Approach to Linear Estimation

| Railath [15u%§i has providéd 'considerable insight
into the problem of optimum filtering. and estimation by
proposing and proving the "Innovations Tpeo;emf.. Using this_
theorem Kailath has been able ‘not only to derive the
filtering equétiods of Kalman and Bucy in a simpler and more
élegant manner, but also to extend the concepts to cerfain
nonlinear problems. |

The observations process is given in the form:
y(t) = z(&) + v(t), 0<txgT (2.41)

where z(*) and v(*) are statistically independent vector

processes; the process v{*) is a white Gaussian noise with
E {v(t) vi(r)] = R(t) 8 (t-1) (2.42)

and the signal process z(t), which 1is not necessarily
Gaussian, has the properties

T

E{z(t)} = O, ;OB {z(t) zo(8)} dt < = (2.43)

0
Let x{*) be a random process related to the signal process
z(*) and obeying

T

E{x(t)} = 0, fOE {x(t) xT(8)} dt < = (2.44)

0

)
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= \-1'Tﬁe‘u59al assumption is that z(f} is a function of past and

. . present x(*), say
z(t) = H(t) x(t) - . (2.45)

Under the above assumptions we wish to £find the
least-squares estimate’ ' of x(t), =xf{t]t), giVen the
observations {y(t), 0 ¢ T < t < T}. It is well known that

x{(tjt) is given by the conditional mean, [37]

x(£]t) = E {x(£) | y(x), 0 < 1 < t} (2.46)

In his work Kailath shows that the observation
process\\y(-) can be transformed intoc a white Gaussian
process £ (*), which is called the innovations process and

”~

formulas for the' estimate x(t|t) are then readily obtained.
Under certain assumptions [15], it is shown that the
innovations process and the observation process are
equivalent in the sense that there exists a causal and

causally invertible transformation from y{(*) to- £(*) such

that

E {x(t) | y(r) 0 <1 <t}

e

;c(tl t)

E {x(t) | g(tr) 0 <1 < t} (2.47}.

Using the innovations thearem {Appendix A}, which states

that £(t) 'is a white Gaussian noise with the same covariance

-

as the observation error v(*), and the projection thedrem
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for . least-squares estimates [37], which states that the

estimation error is uncorrelated with the observation,

yields

~ t .

x(t|t) = s hit,) g1} dr (2.48)

- 0

where

E(t) = y(t) - Z(tle) ' (2.49)
and ‘

z2(t) = H(t) x(t) o . (2.50)

The innovations process can be considered as.the new
information in the observations. From the previously
mentioned orthogonal-projection theorem the estimation error
;(t) and the observation sequence y(t) are orthogonal.
Because £ {t) and y(t) are equivalent, it is clear that ;(t)

and ¢ (t) must also be orthogonal, then

cov {x(t), £(a)} = 0, 0 <o <t (2.51)

we have, from equation (2.51)

cov {x(t) = ;(tlt); £ (o)}

cov {;(t),~5(0)}
t
= cov {x{(t), E(e)} - L h(t,T)
. 0

cov {g(t), £€(c}} dr = 0 (2.52)
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so that
.t' S I ) .
gov {x(t), £(0)} = 7 h(tfx) cov {E(t), £(c)} d&r .
- 0 | - (2.53)

—

This is the Wiener-Hopf equation (2.3), except tﬂat, in this

case, because the innovations process is white, with known

variance R (same as the observation error v), we £ind that

. t
cov {x(t), (o)} = OI h(t,r) R(zx) § (t-0) dg .  (2.54)

. which, because of the Dirac delta function, becomes
- cov. {x(t), £(o)} = h(t,r) R(o) (2.55)

Hence the Wiener-Hopf integral equation for E{*} has been

changed to a simple algebraic expression, which gives

h(t,1) = cov {x(t), £(r)} R T(r) (2.56)
The estimate ;(tlt) is therefore
- t ) A .
x{tjt) = J cov {x(t), §(t)} R “(t) £(r) dr {2.57)

-y 0

If we take the derivative with respect to t on both

sides of equation (2.57), and after several manipulations,
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 we'-obtain

} ~

x(tlt) = F(t) x(t) + cov {x(t),-E(t)} R-i(

t) E(t) (2.58)

which is the Kalman-Bucy continuous filter if

1
{

t) _ (2.59)

CR(t) = cov {x(t), E(t)} R

The above equations ého; the advantageﬂ_gﬁﬁ tﬁe
innova;iops process by giving a simple solution éo the
Wiener-Hopf equation. Another advantage of the ihnovations
approach [is that it permits a more general statement of the
qstimation problem, gﬁd can be extended to nonlinéar
problems as will be shown in the next chapter. |

The innovations approach has also been used to derive

discrete sequential linear estimator [38].

e ;P'_,-'.‘

Sy

T



CHAPTER 3
_NONLINEAR ESTIMATION

3.1 Introductlon

" The problem of deriving su1table algorlthms for the
rechrsive stgte eFtimatipn of nonlinear dynamical ;;stems,
either continﬁaus-time or discrete-time, hés drawn wide
attentlon iq recent ‘yearsn The first dgfiniti&e
contrlbutlons were those of Kalman and Bucy [2,3] which
dealt with the’ optimal estlmatlon of the state variables of
a linear dynamical system. These ideas ‘were used soon for'
the estimation of the states of nonlinear dynamical systems$
using the sé-called first-order, or quasilinear filter, or

.

extended‘Kalmad filter (see.Cox [4], Mowery (5], Ho and Lee

[6], and many others). ‘,ﬁ ¢

Different technlques have been used to derive the
filter equations (e. g., 1east*squares, maxlmum—llkellhood,
etc.). Most of these technlques, at one stage or another,
employ a Taylor series expanSLOn, neglect second and higher
order terms, and use J;nearlzed equations to compute the

conditional error variance matrix and the filter gains.

Another approach is based on the determination of the

_exact equations satisfied by the conditional probability
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den51ty functions and condltlonal expectatlons. This meﬁhbd
uses thé stochastic Ito calculus and the results 1nd1cate
that the optimal filter cannot be realizeé by a flnlte-
dimensional system. However, the exact equations can be
~approximated to derive subbpfimal "finite-dimensional
fiiiers. This approgéh has been used by Kushner ({7],. Bucy
[8]1, Bass et‘al._[Bj, Jazwinski [29], and many others. In
many of the schemes used for the approximafion second-order
terms are retained, and second-order suboptimal monlinear
filte}s are derived. .
The innovations approach to estimation theory can be
extended to nonlinear least-squares estimation. The first
qS«Lresults ‘on the innovations approach to nonlinear estimation
are due to Frost ([39], and Frost and Kailath [40] The use
of the innovations allows us to obtain formulas and simple
derivations that are remarkably similar to those used for
the linear case. Despite the advantages of this method, it
does not immediately yield any practically usable nonlinear
estimators. It only suggests some éuboptimal estimators.
The invariant ‘imbedding approach is used to derive
some.useful fesults in nonlinmear filtering and estimation
problems. Detchmendy and Sridhar [13] and Kagiwada et al.
[14] have derlveﬂ\\fllterlng algorlthms similar to first-
“order fllters for nonlinear problems u51ng the least- squares

criterion and the invariant imbedding concept. This

¢
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approach will be studied in detail in Chapter 4.

3.2 The Extended Kalman Filter

The theory of state estimation had its beginnings in
problems of space, and its most recent. advances are

associated with modern aerospace problems. As we are
'interested in orbit determination, we will focus our
attention on continuous-discrete -filtering problems. In
this case the system dynamics are continuous in time.and the
observations are discrete. ~ The orbital dynamics can bhe
effectively discretized at least to first order, but in
highly nonlinear pfoblems, the continuous model 1is more
reliable. .

Rather than being a nonlinear filter, the extended
Kalman:filter is considered to be an extension of the linear
filtering theory to nonlinear problems;

As will be shown in the derivation below the extended
Kalman filter is a first-order appfoximate nonlinear filter.
This filter has been commonly and successfully used in orbit
determination probleﬁs.

Suppose the nonlinear system 'is described by the

stochastic differential equation

x(t) = f{x,t) + G(t) w(t), t >t | (3.1)
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It is assumed that. the initial state. vector x(0). is a
- Gaussian random variable with known mean and known
covariance

E{x(0)] = x_, .var [x(0)] =P - (3.2)

o o)

and {w(t)} is a zero~mean, white Gaussian ncise process with
cov {w(t), w(t)} 2 Q). sp(t=1) (3.3)

Now suppose that we generate a reference...(or 'nominal)

deterministic trajectory x(t), with given io' satisfying

X(8) = £(X,t), t >ty - (3.4)

-

Define

le>

sx(t) 2 x(t) - X(t) o (3.5)

the deviation from the reference trajectory, then we see
that {sx(t)} is a stochastic process satisfying the

differential eguation - |

sx(t) = £(x,t) - E£(X,t) + G(t) w(t) | (3.6)
with

E{ax(O)} = ; - X

o o var {éx(0)} = P

o (3.7)

If the deviations from the reference trajectory are small
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o . . | . l - *
(say in the mean sqguare sense), then a Taylor series

expansion gives

f(x,t) - £(X,t) = F(Eo,t) sx(t) : (3.8)
whqye
af. (X,t)
- A 1
F(xo,t) 2 ——;;;—-f ‘ , : ({-9)

iﬁ\\iij matrix of partial derivatives evaluated along the
reférence trajectory. Thus we obtain the approximate linear

equation
6x(t) = F(Xg,t) 8x(t) + G(t) w(t) ~ o {3.10)
Now we discretize (3.10) as

§x(k+1l) = ¢(k+1,k) 8x(Kk) + w(k+l) {3.11)

where ¢ is the state transitiqs matrix, and can be computed

using the matrix F [41)

o= et =1+Ft+

(Ft) 2 + (Ft) >
2! 3! "o n!

(3.12)
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.The last term in the expansion shoulg satisfy

n
LY 1L 5

n!

where a is an arbitrary small number..

wa, the measurement modei isfaSSﬁmed of the form
y(k) = hix(k),k] + v(k) | L (3.13)

where v(k) is white Gaussian.noise with zero-mean and known

covariance matrix |

ar

co¥ {v(k) v(i)} = R(k) g (k=]) (3.14)
Dafine Ehe nominal measurement as

Y(k) 2 h(x(k) k) | (3.15)

“and

A -
§y(k) = y(k) - y(k) (3.16)
Performing a similar linearization, we get the linearized

measurement equation

sy(k) = M [X(k),k] 8x(k) + v(K) C@3an

where

ahi{x(k),k}

axX.
x5

A
=

M. [X(k),k) {3.18)
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Now, the\theory of the linear filter is dTrectly applicable'

to the linearized system (3.11): and {3.17). - .Instead of
state and measurement, we speak of Ehe state deviations &nd
measﬁrement deviations. ,

Given g'referencebtrajectory ané measurements yik),
wefcan bompute Sy (k) vié (3.16) and process'the meaSu;gment

deviations through the linear filter [Chapter 2] to esti}@te

the state deviétioﬁs. Furthermore, with the recursive

st;&cture of the 1>near filter, we can relinearize about
each new estimate as new estimates become available, At t,,

~

. [ » b ’ 3 -
linearize about Xor OnNce y(l) 1is processed, relinearize

]

about ;(lll), and so on. ~The point of this is to use a
better reference trajectoéy as soon as one is available. As
a consequence of relinearization, large initial estimation
errors are not allowed to propagate through time, and,
therefore, the linearity assumptiéns are less likely to be
violated.

The filter resulting from this relinearization
procedure is the extended Kalman filter and is summarized as
follows [26,29].

Filter algorithm

;(k+l) = ;(k+1|k) + K(k+1) {y(k+l) - h [;(k+1|k),k+l]} L
(3.19)
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One~stage prediction algorithm

X(k11K) = o [x(K) K] (3.20)

"Filter gain algorithm

T

K({k+l) = P(k+llk) M [;(k+llk),k+l] (™ [;fk+1lk),k+l]

P(k+l|k)'MT [;(k+l|k),k+1] + R(k+l)}-1 (3.21)

Prior error-variance algorithm

_ e lx(k,k 3¢~ [x(k), K]
P (k+llk) = “?i%ET‘l P (k) kLD 4 Q(re1) (3.22)

Error-variance algorithm

P(k+l) = (I - K(k+1) M [;(k+l\k),k+l}] P(k+1ljk) {3.23)

Initial conditions

-~

Xq and Po

From the above‘analysis'we can see that the extended
Kalman filter theoretically producés an increasingly
accurate estimate as additional observation data are
processed. The magnitude of estimation errors as measured
by the determinant of the estimation error covariance matrix
is a monotonically decreasing function of the number of

observations. However, in some applications, one finds that
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the actual estimation errors greatly exceed the values which

would be thédretiéally predicted by the error covariance -
matrix. In fact, the actual error may'become'unbounded,
even thbﬁgh the error variance is very small. This
phenomenén, referred to'as divergence, can seriousiy affect

. F
the filter performance. The possibility of such’ unstable

‘behaviour was first suggested by Ralman [2], and later noted

by others in the application of Kalman-filter algorithms to
space navigation and orbit determination.

Some of ’phe major c&ﬁses of divergence are
inaccuracies in the modelling process, due to failure of

linearization, lack of complete knowledge_éf the physical

~problem or the simplifying assumptions necessary for

computation. Errors in the statistical modelling of noise
variances and. mean .may also lead to divergence. Another
source of divergence 1is round-off error in digital
implementation which may cause the error—-covariance matrix
to lose its positive definiteness or symmetry.

Different approaches have been suggested to eliminate
divergence. Schee et al. [42] discuss several methods of
eliminating divergence, especially with respect to orbit
determination problems.  Another approach which has been
proposed for the control of divergence involves computing
the square root of thé' error covariance matrix. This

procedure, first suggested by Potter [43], and later
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extended by Andrews [44], is useful when round-off errors
are a .cause of divergence. Jazwinski [29] presents a
suboptimal procedure to’rédﬁce the divergence‘probiem.
Adaptive filtering algorithms are also used to elimiﬁate
divergence (Smith [31], Jazwinski [32], Sage and Husé [20]f.
Anééher approach to imérove the filter_performance is the '
use of second-order filters.

7/

3.3 Second-0Order Nonlinear Filter

The primary motivation for the development of second-
order filters is the divergence problem encountered when
using the extended Kalman - -filter.

Athans et al. [11l] and many others solved the problem
of divergence by taking into account the state and output
nonlinearities by simply retaining second-o;der-terms in>the

usual Taylor series expansion, hence, deriving second-order
filters.

Due to a lack of puﬁlished papers that give clear
comparisons between the performance of first-order and
~second-order -filters, no one can claim that the second-order
filter performance is always' much better lthan the first-
order filter. In some cases simulation results prové the
improvement in the perfo;pance of second-order filters

[44,45,12].



e e st
|

To de:i@e the second-order filter algorithm, Athans
et al. consider the system and measurement models given in
equations (3.1) and (3.13). }Noiselstatisties'are the same
as described in the previeus section. In the derivation of
the nonlinear filter, tayloreseries expansions of the two
nonlinear functlons £{*) and h(*} are employed.l The Taylor
series expan51ons are carried out to second-order  terms.
Certain quantities which will appear in the'expansions will
be defined below.

First define Fku) to be the Jacobian matrix of £(u)
with elements |

: , Of
(F(wl,g = 30 (3.24)

[+]

™

and Ai(u) to be the Hessian'matrix whose elements involve

the various second partial derivatives of £, (u)

(a5 (0] g 2 gﬁ:‘gﬁ‘ (3.25)

The Taylor series expansion of f(u) about a vector

u

o+ "near"™ u, is given by

n
f{u) = f(uo) + F(uo) (u-uo) + % i:i fri(u—uojT Ai(uo) (u-uo)
(3.26)

where ., denotes the natural basis vector, i =1, 2, ..., N,
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and n is the dimengion of the state vector x(t).
Similarly the Taylor series expansion of hiu) about
: { _ i

u_ is givén‘ﬁy‘

o
h(u) = h{ ¢ M(u) (u-u) + % T . (u—u )T T:(u) (u-u )
(u) | ug) ugy) (u-ug 2'j=l j o 3% Po’.
(3.27)
where
i 3h
: CICIR I T (3.28)
and
azh :
A i . '
[Cj(u)]aﬁ = auu aua [ :] - l; 2, " s sy m (3-29)

m is the dimension of the observation vector y. The details
of the derivations and the assumptions made are: given 1in
reference_[ll]..'fhe filter algorithm is summarized below.
Plant

x(t) = £(x,t), x(to) = X4

Observations

Y

y(k} = hix(k) k] + v{(k) <
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State estimate at observation time

ty: x(k)
;(k) = x(k) - ;(k)
. P(k) = E [e(K) ef(k)]

State estimate at t

tk < t < tk+1::‘n(t)
e(t) = x(t) - n(t)
S(t) = E [e(t) el (t)]

Basic asumptions

e(k) and e(t) Gaussian, zero-mean

Starting conditions

X, = nlty) E [x] = X

o

o
|

z = T
= S(t,) = E [(x =X ) (x,-%X,}7]

Continuous-time filter

tk <t X tk+l

il 3

. tr [Ai(n,t) S5(t)]

A(t) = £(n,t) + 3 AR

i
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(3.30)

(3.31)

' (3.32)

(3.33)

(3.34)

(3.35)

(3.36)



End

S(t) = F(n,t) S(8) + S(t) Flin,t) C(3.37)
n(t,) = x(k)

. s(Ey) =Pk

Update at t = tk+1 R

-

-4

x(k+1) = n(k+l) + R(geD) [y(kl) = h{n(k+l) ke1)] = N(k+1)
2 ' (3.38)
1 M . 3
N(k#1) = 2 R(k#1) I =, tr [Cy L(k+D)} S(k+D)] (3.39)
K(k+l) = S{k+1) ﬁikn(k+l)} (M {n{k+1)} S{(k+l)}
MT {n(k+1)} + R(k+l) + L(k+1)]™ (3.40)
\\/ ! . '
P(k+1) = S(k+l) = K(k+1) M{n(k+1)} S(k+1) .. . (3.41)
[L(k+l)i =1 (n{k+1 k+1 'haT k+1 *ﬂ k+1
i3 =3 tr [Ci n( Y} s( +‘) Cj n{ Y¥-s( )}
- (3.42) °

L]

where [L(k+l)]ij is the ijth element of the mxm matrix
L(k+1l). ‘ |

We conclude from the above equations that the one-
stage prediction algorithms for the state énd fhe erfor
covariance ﬁatfix are the solutions of first order
differential eghations (3.36) and (3.37).- The filter and

filter gain "algorithms are discrete-time recursive
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“.argorithms giveﬁ75y equations (3.38). and (3. 40). .Real—time'

: estlmatlon is p0551ble using the above algorlthm as long as
| the time requlred te complete :the computatlon cycle 1s less

than ;he time interval between successive observatlpns.
In order to compare the differences between the

firstforder and second-order filter, simulation results for

[N

an orbit qetermination case will be given in Chapter 6.

3.4 Innoqations‘AQQrbach'to Nonlinear Estimation

Frost and _Kailath [40] show how the innovations
approach to estimatibn.theorY'can be extended to the
nonlinear %ﬁast—squafes estimation of non-Gaussian signals
in additive white Gaussian noise." ‘*" |

There are several ways of u51n§ the _innovatiqns
concept, the one used. by Kailath has the advantage that it
leadé to derivationé?similar to the linear case. However,
‘£his'approach does not immediately'yielé any dramatically
simple and-practicaily usable nonlinear estimators;

The basic results “are obtained for the following

model, given observation of the fJﬁh -

:'y(.t) = z(t) +v(t), =~ 0 < EXLT (3.43)

The. statistical assumptions made are the ‘same as those given

in Chapter 2 by equations (2.42), (2.43) and (2.44).

——
a
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In the case of nonlinear estimation z(t) is given by
- e ' !

z(t). = hix(t), * < t] A (3.44)

Under the above assumptions we wish to £ind é%e least-
squares estimate x(t|t) of x(t) given {y(%), 0 ¢ v < t'< T}.

As in Chapter 2 the estimate is given by

X(t]t) = E {x(t) | (), 0 < 1<t}  (3.45)

-

The search for a more explicit representation for equation
(3.45) is an imposing task challenging researchers in the
field of nonlinear estimation.-

Define' the innovations process

g(t) = y(t) - z(t|t) : (3.46)

where
z(tlt) = E {z(t) ]y(x), 0 <« < t} (3.47)

By using the innovétions approacﬁ the data process

y(*) is transformed into a white ndise.process k(') and the

. N : .

optimal estimator is determined as a functional of the
innovations process.’

. The basic idea is to construct a causal and causally

invertible transformation of the observation process into a

white noisé‘process to simplify the problem. However, it is

necessary to establish that the observations process can be
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generated frdm the innovations process before this method
can be‘applied\fruitfully. k

The equivalence problem or "causal équivalence“'has

not been solved for ronlinear problems with Gaussian noise.

For nonlinear problems with white noise, therefore, the

resulting estimate based on pre-supposed innoﬁétigns process
i ) > f “ s
could best be called "suboptimal”. -

Based on the projection theorem for nonlinear systems

and the causal equivalence theorem [40], the estimator is

given by

X(E[E)y= E (x(t) | E(), 0 & v < t] (3.48)

The right-hand expression of equation (3.48) is a

functional of a white Gaussian noise process.. Hence, it

-

could be expressed as an Ito integral hsing the following

lemma:

Lemma (Doob [37])

Given a.zero-mean finite variance functional G(°*) of.
I

the white Gaussian noise {f(s), O < o < t}, there exists a
functional g [t, T, (§(o), 0 < o < 1)] with the property
t

G [E(t), 0 <t < tl = £ g (t, r, w E(r) dr (3.49)
(o) .



where

2 t - & _
E{G“} = s E {g (t, T, W) g(t, v, w)} dr < = (3.50)

0
The proof is given in reference [46].
Based on equations (3.48) and (3.49). a basic least-
squares representation formula is developed

-~ t . . )
x(Elt) = £ E [x(t) &°(t) | (o), 0 < o < 7} £(x) dr (3.51)
0 ' .

The formula given above isiveryusimilar to'thaﬁ for
the optimal linear estimate given in Chapter 2 By equation
(2.48). However, this similarity does not imply that the
nonlinear estimate ;(tlt) is easy to implement as the linear
"estimate considered preéiously. In the linear estimaﬁion
.estimates aré‘ épxressed in terms of covariance functions
thaﬁ can be calculated analytically. As for the nonlinear
estimation problem egquation (3.51)”for the optimal estimate
simply states relationships between conditional
expectations. |

The nohlinear systems we are studying are given in
the form of stochastic differenfial équations, which are a

special case of Itd processes.

In the case of 1Itd processes Kailath derived a

46
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differential structure of x(t]t) g;ven by

x(t]t) = £(t]t) + K(x,t) g(t) | © 0 (3.582)
where
- x(t) = £(x,t) + G(t) w(t)
£(tjt) = E [£(x,t) | &0}, 0 < o < £] (3.53)"
and *
K(x,t) = E [x(t) - §°(t) | £(a), O £ o, t] " (3.54)
‘?quation (3.52) is ,simply a representation for the
recursive filtering ra than an explicit formula since

-~

the functionS-f(') and K(*) are in general indetermindte.
For computational purposes, it would be desiraBle to
obtain an iterative fgrm for‘the gain matrix K. This is the
motivation for the adaptive scheme proposed in Chapter 4. A
stochastic approximation algorithm for numerical
comput;tions of the inﬁoyations process and the system étate

is combined with the invariant imbedding algorithm to derive

a new nonlinear filtering algorithm.

2,7



_CHAPTER 4
NEW NONLINEAR ESTIMATION ALGORITHM BASED ON

INVARIANT_IMBEDﬁING AND STOCHASTIC APPROXIMATION

-

4,1 Introduction

The .main objective of tﬁis research is to develop an
efficient algorithm for optimal nonlinear esﬁihatiqn. -The'
extended Kalman filter and thelsecondforder nonlinear filter
algorithms presented in Chapter 3 require prior knowledge of
the message-generating and observation noise covariance
matrices, as.well as the covariance matrix of the initial
estimétioﬁ error. In practice, however, such extensive a
priori information is seldom gyailable, with the result that
the optimal filter 'gain matrix cannot be calculated.

on the other hand the inpovatipns approach provides
an abstract mathematical model which 1is not practically
usable for nonlinear estiﬁation.

To- overcome these difficulties, the invariant
imbedding concept is used to obtain a recursive estimator
which does not depend on a priori noise statistical
assumptions. . Stochastic approximation is shown to be
similar to the invariant imbedding method; both the

estimators do not redquire p%ior knowledge of the system
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statistics, and.. they are of a sequential nature.

R 4 is proposed to develop an algorithm combining the
method of 1nvar1ant imbedding with stochastic approximation
in order to obtain an adaptive approach for estlmating -the
optimal gain %matrix and also to improve the rate of

convergence.

4.2 Invariant Imbedding and Nonlinear Estimation

The .invariance principle, now known as invariant
imbedding, has been int;oduoed in the study of traneport
phenomena, radiative transfer and wave propagation. In
general this approach has proved useful in treating boundary
values problems, Ieigenvalue problems and nonlinear
estimation theory [47,13,14].

Since the invariant imbedding approach is different
from the usual classical approach, several advantages have
been gained. First, %he present approach is applioable to a
wide variety of nonlinear problems. ’ Second, a segquential
estimator is obtained, which can be implemented in real
time. Another advantage of the invariant imbedding
filtering algorithm is that no statistical assumptions will
‘be made concerning the noise or disturbances, because for
most practical problems the determination of wvalid

statistical data is itself a difficult problem.
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7 The generally used least squares criterion will be
employed to obtain the optimal estimates. " The numeg}cal
aspects of this approach are given in detail in reference
(473 . |

Consider the nonlinear vector equation

/

X(t) = £(x,t), 0<t<T | (4.1) -

where x and £ are n-dimensional vectors. }

The measurement model is given by the m-dimensional

vector equation
. . -

y(t) = h(x,t) + (measurement errors) . (4.2)
The above eﬁ&imation p;ob;em is essentially,thé same as that
considered in the previous chapter. Although the signal,
y(t), has been expressed .as a continuously measured Signal
in time, it can be extended dire;tly to the discrete—time
case.

on the basis of the measurements or observations

y(t), d\ﬁ.t £ T, estimate the n conditions

x(t) = ¢ | (4.3)

for equation (4.1) such that the integral

{y;(6) - hj(x.t)}2 dt (4.4)

O
1]
—

e 3

0 j=1

is minimized. The functions hj are evaluated by using the
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values of x obtained from (4.1).

. The estimator equation for this problem can be

obtained as follows. ‘Define a new variable 2z(t): p
t m " b 2 - [}
z{t) = s . ¢ {ys:(t) - h.{x,£)1° dt {(4.5)
- . 0 j§=1 7 3 :

Differentiating z(t), we get

z(t) =

YR
[

2 |
3 {Yj(t) - hj(xrt)}" . (4-6)

From (4.4) and (4.5)
z(z) = J | - : (4.7)

Theldifferential equations tq be considered are (4.1) and
(4.6). Although the original problem is to minimize z(rt),
we shall ignore the minimization first and obtain z(t) for
the above system by invariant imbedding. Instead of a two-
point boundary value problem, the invariant imbedding
approach treats the problem as a famaiy of problems with
different final points, r. So, consider the family of

problems with final points a

x{a) = c, 0 <tga ' (4.8)
If we define
r{c,a) 4 the missing final condition for the system

represented by (4.1) and (4.8) where the process
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endsiat t = a with x(a) = ¢
then

N ;(a) = r(c,a) | " | (4-9)
We shalllconsider r as the dependent'yariéble, ¢ and a as
the indepéndént‘variables; _gn éxpréssion for r in terms of
c gnd a Ayill be oﬁtéined. 'Considerihg the neighbouring
pf&cess with starting value a+4, the missing initial
condition of this neighbouring process can be related to

z(a) by the use of Taylor's series expansion

z(a+a) = z(a) + z{a) & + 0(a) (4.10)

At the starting'value a, equations.(4.1} and (4.6) become

x(a) = f(c,a) (4.11)
. m 2 ’

z(a) = ¢ {y:.(a)l - hs(c,a)} (4.12)
- v ]:l ] J o

e

Substituting (4.12) and (4.9) into (4.10), we obtain

z{ats) = r{c,a) + I
J=

{y.(a) - h'-(c.a),}_2 a + 0(a) ' (4.13)
1 3 J .

On the other hand from (4.9)

z{a+ta) = r{x(a+a) ,a+a} (4.14)
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(

Again, the expresSibn x(a+4) can be related to its-

neighbouring process x(ai = ¢ by'Taylor's series éxpansion

x(a+4) = x(a) + ;(a) A + 0(8)-

= ¢ + £(c,a) & + 0(8) | ' : (4.15)
Eﬁuating equations (4.13) and (4.14), we obtain,

PR

r{c,a) +

{yj(a) - hj(c,a)}2 4 = r{c+f{c,a)s,at+s} (4.16)
3 ,

Il 23

1

. Omitting the terms involving powers of & higher than
the firiij expanding the right-hand side of (4.16) by

Taylor's series expansion, we obtain

n 3r(c,a)

r{ct+f(c,a)s, ata} = r{c,a) + ¢ £ (c,a) & o
i=1 i
+ 4 280C03) L gqay (4.17)

a4

In the limit as 4.tends to zero, the following first-order
quasilinear partial differential equation is obtained from
(4.16) and (4.17)

3r(c,a)

ar(c,a) n
2a + i:l fi (c,a)\ ac;

=3

2
{Yj(a) - hj(cra)}

i=1 (4.18)

w

' This is the invariant imbedding equation for the missing

final condition.
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If e(a) is the o'ptimal_estim-alté of ¢, then o
, S
3 .
r_gg.a) = rc (e,‘a) =20, 1 =21, 2, eouy ¥ (4.19) .
i i - :
or
R ' 3
I —— [r_ (e,a)] de, + ¢ [r (e,a)] da = 0- (4.20)
k=1 % - ©i . k d3a "Tcy !
In matrix notat.i_on, the above equation becomes
de o . orr (e,a)1Tt rg,(e0a) _ (4.21)

where the symbol. [rcc]—l' denotes the inverse of the matrix

Loc géwen by

-~

-
LS R S N
171 172 1™n
foe = | : P a22)
r L ] L] - - - - r
c ¢, . c.Cn
and .
(— —
r
» cl - .
- _ 3 )
. rca.- 33 r.'c (4.23)
2 //;?7;9
r .
c .
L B

To find an expression for the right-hand side of (4‘.21),

equation (4.18) can be differentiated with respect to ¢y,
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2,‘..., c,r We obtain

Coalcra) + rcé(c,a) £(c,a) +_f§(c,a) rc(c;a)

= -2 nl(e,a) {y(a) - h(c,a)} S .20

At the optimal estimate of c, equation (4.19) cah be -

substituted into (4.24)

| r.alera) + r.c(e.a) f(efsa) = -2 hz(e,a) {y(a) - h(era)I

(4.25)

~

Combining (4.25) and (4.21) we obtain

L

= fle,a) + 2 (r_ (e,)171 hle,a) {y(a) - h(e,a)} (4.26)

If we let
u -1 _
a(a) = 2 (r  (e,a)] : (4.27)
then
de _ gre,a) + q(a) hi(e,a) {y(a) - h } 4.28
da - S 4 q c 4 Y(a (e,a) (4. )

where q is an nxn matrix.

A set of differential equations for g can be

obtained. Rewrite (4.27) in the form

1 . |
Lagta) rgglea) =1 . | @29
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Differentiating (4.29), we obtain

84 r__(e,a) + qta) §g {rgelesar} =0 © o (4.30)
or |

gg = -3 gl gz f{reclesa)} gta)-  ° (4.31)
where *

d . | ; in |
Y {rcc(e,a)} = r_.o(€s2) + (terms involving Fece) (4.32)

Assume that the terms involving r are negligible, then

cccC

dq - - 1

32 ¢2%43133 recal€r2) ala) ‘(4.33)

where rcca-is theza/aa of the maﬁrix (4.22).

To find- an expression for r consider the partial -

cca’
derivative of (4.24) with respect to Cy, Cpr ...y cn,'we

obtain
. k|

rocalCra) + ro (c,a) £ (c,a) + fZ(c,a) roclcral

’

S 1

| g = -2 fhéc(C.a) {y(a) - t(c,a)}] + ZhE(C.a) h (c,a)

(4.34)

[

" - The elements of the matrix represented by the first term on

the right-hand side are scalar or inner products of the

N
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vector h_ _° and Ay—h?. Thus o e
~ : : T
T C T ' < T .
h [y-h]P h . [Y"h] ‘eesm h p [Y‘h]
?1“1‘ , €S, T ‘ c;¢,
hz c (y-h] . . . |
e I T : -
T T
hcncl [y-h] «a ®» & & ® 8 ® = &= hcncn [y_h] .
_ —
(4.35)
where “
)
1l hl ' ¢
: 2. | n )
2 2
h 2 —_— | : (4.36)
cicj ac, acj . . .
" b | L
. i L m-d )

-

The term £ in (4.34) represents terﬁg that consist of

terms of the form of r_ and r_. .. When ¢ takes on its

optimal gs;1mate e, r, = 0, and e 2F€ ‘negligible.

Consequently & is negligible.
Combining (4#29), (4.33) and (4.34), the desired
differential.gquation for g is obtained:. |
99 . £ _(e,a) a(a) + qla) £ (e,a) + q(a)
2 0 &
{h__(e,a) [y(a) - h(e,a)]} q(a)

L}

= qla) hE(e.a) q(a) (4.37)




-

e - o - -

,Finall?rlthe desired éstimatof~ equations are

summarized as follows

.%% = f(e;a) + q(a) h:(e,a) {y({a) .- h{e,a)} | ‘(4'37)'

= £ (e, a) a(a) + q(a) fy(e,a) + q(a)

. = q(a) hT )
{hoele,2) (yla) - h(g,a)]} q(a) = q(a) h (e,a)

hetg.‘a), q(a) | . - - (4.38)

To exprégs e. and q in a practical form, similar to
] the previous filters, pon51der x(t ) to be a Gaussian random 
variable, then it is appropriate that the values of e, and
q, are chosen as the— mean xo and covarilance Po of the
I distribution respectively. : .
So the estimator equétions (4.37) and .(4.38) provide
the solution for the optimal state estimate ;(ér and the
correspondiﬁg state error covariance matrix P(t).

J

4,3 Stochastic Approximation

~4.3.1 Stochast1c Approxlmatlon Algorlthms

Stochastic approximation methods may be considered as

recursivs estimation methods,- updated by an appropriately
weighted, arbit}arily chosen error corrective term, with the
,oniy requirement that, in the l1imit, the estimate converges
to the true parameter sought. Applicaﬁions of stochastici

. -
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-approximation aigo:ithms Bave beentproposed in adaptive and
1eatnind systems‘[481, adaptive commonication [49] anc
systems identification {50]. " ‘. ‘ - |
Historically, stochastic appro#imation was first
treated by Robbins and Menro [51) and Keifer and wolfowitz
{521, who were concerned with solution to two specific
‘problems; finding the root of a regressioe function; and
finding the value that minimizes a regre551on function given.
onl§ pertinent random observations. - It was Dvoretzky [53]
who generalized stochastic approximation to any sort of
*iterative. solution .algorithm,f which |is convergent;- when
direct observations of a regression function can be adopted
successfully. 'Excellent surveys of‘stochastic approximation
can be found in.papers oy Sakrison [49] and Saridis [54].
For most practical. applications stochastic
approximation search aldbrithms are point estimators of the

<

form
a(k) = a(k=1) + v, (F(k) + v(Kk})] (4.39)

where

Ty gain sequence of suitable'chosen smoothing

values

[F(k) + v(k)]

‘error correction sequence generated at every
time instant k by measuring the deviation

from an appropriate goal.
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The iterati#e scheme (4.39) apdgeaehes the optimal
parameter va;ue, uop,
square sense provided the following assumptions are

]

where E[F(k)+V(t}y = 0, in the mean
satisfied [54]

Yk‘_ <«  (4.40)
1 k=1

Iles 8
\
9
-
e -
)
-

lim vy 0 : -
k-o-w k ' k

and the error correction sequence satisfies

112 < <oma

< <amagye EIF (KNI + viK)> < bjlae

alla-a

Op Qpl l

0¢a<d<b<e a (4.41)

where <+,*> denotes the matrix inner product operator.

?he conditions (4.40) on the gains may be interpreted
heuristically as foliows, The. first one _provides the
smoothing effect on the random.cdrrection term, the second
prov1des unlimited correction effort, and the third
guarantees mutual cancellatlon of individual errors for a
large number of iterations. The harmonic sequence [l/K] as
well as anyjsequence of the form [a/k+b]lsatisfy the above
conditions. |

Conditions (4t4l) imply that the regression function
‘[F(k)+v(k)] is bounded on all sides of a true solution by a
rectangular set in the solution space such that it is not
p0551b1e to overshoot the solutlon, a__, which cannot. be

op
corrected by'a-yk satlsfylng (4.40).

X
-
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Stochastic approximation techniques are used in

adaptive filtering problems to adaptively estimate the‘
filter gain.

4.3.2 Adaptive Filtering and Stochastic Approximation

In general, stochastic approximation algorithms of

the Robbins and Monro type used in adaptive filtering .are of

the form - ‘ 3 : ' {( '

R(k+l) = K(k) + ¥ (k) ey, K(k))=-mg1 - (4‘%2)
" The iterative scheme - (4.42) approaches the optimal gain,

K where E[E(y(k), op)pﬁ, m in the mean square sense

op’
provided the assumptions (4.40) and (4.41) are satisfied
(replacing a with K). ’

The successfuf _ application of stochastic
approximation‘to search for the optimum gain matrix, Kop'
requires some suitable method for testing if the value
presently being used is optimum. 'Hampton and Schultz ([55]
have proposed a Robbins and Monro type algorlthm which uses

the orthogonal condition

E [{x(k) - x(klk=1)} y (§)] = O (4.43)

¥
for this test. Since the actual x(k) is not known, equation
(4.42)'can only be approximated in a rather involved manner.
More recently, Sinha and Mukherjee [3%]'have also proposed a

-

Robbirls and Monro type algorithm which .makes use of the
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property that the innévations process is-whfte-tzs]. They -

used for the test of optimality

E [e(k) g (] =0 - B (4.44)

Although their idea is conceptually more direct and works
'quite well for the scalar case, it is unsuitable for the -
multivariable case since' the error correction term is
restricted to a subspace of the solution set in most
instances. :

Following the above concept equation (4.42) is

written in the form

K(k+1) = K(K) + v(k) £ (E(0)] L (4.45)
The function f£f[&(k)] should be a null hatfix when K(k) is
1dentica1 with K op” _ : ,

An algorithm proposed by Scharf and Alspach [3i4) uses

the orthogonality betweenthe innovations process and the

estimated state, that is,

E [x(klk-1) & (k)] = 0 . (4.48)

Note that the product x(klk-1) ET(kI’ is contained im_the
same space as that of the'Ka;man gain, making it applicaﬁle
for multivariable problems. The stochastic .approximation

. '
algorithm thus can be written as

‘."-’
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' -~ T ' ' '
R(k+1) = R(k) + y(k) —X(klk=1) g ) (4.47)
' | | | 1x(k]k=1} g" (k) || B

'where‘y(k) is chosen so as to satisfy .assumption (4.40).

Scharf-and Alspach have shown, in the scalar case of (4.47),

| that the regression function, Xx(k|k-1) gT(k), satisfies

assumption (4,41), thereby showing that (4.47) converges in

the mean-square sense to Ko The proof of mean-square

p-

‘convergence of (4.47) in the multivariableAcgse is given in

reference [56].
The above algorithm was used by the author for

adaptive state estimation of a synchronous-orbit satellite

[57].

1

I !
4.4 Combined Invariant Imbedding and Stochastic

Approximation Algorithm

"4.4.1 The Invariant Imbedding Algorithm

The problem of orbit determination, considered in the
thesis, is a combination of continuous and discrete-time
problems, since the observat?ons are éqailable only at
discrete instants of time, but the state model is of the

continuous time-type.
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“Thereéfore, emphasis will be placed onra discrete- “
estimation ‘case using invariant imbedding. The algorithm

developed will then be extended to the special "continuous-

“discrete™ trajectory estimation problem.

Sage’ and Melsa [58] developed d&n algorithm for
hai&mum a posteriori discrete;filtering by using the method
of invariant imbedding to determine approximate filtering
solutions.

The discrete message and observation models are. given

by

X (k+1F = o [x(k),Kk] + r(K) w(k) (4.48)

y (k)

n

h [x(k),k] + v(k) (4.49)
w(k) .and v(k) are assumed to be independent zero-mean
Gaussian white sequences with covariances Q(k) and R(k)

respectively.

,,,//j The best estimate of x throughout an interval will in

&

general depend on the criteria used to determine the best
estimate. In their analysis, Sage and Melsa derived the
best estimate from maximizing the conditional probabilit&“
function p[X|Y], where X is the sequence x(k,}, X{Ky), ...,
Xx(kg) and ¥ is the sequence y(ky), ¥Y(ky), ...y y(kf).‘

Applying Baye's rule to p[X]Y] results in

- PI¥[X] p[X]
plX|Y] = S TY] | (4.50)

3 “(’
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With a considerable amount of algebraic manipulation it is

shown that‘maximizing (4.50) }s equivalent to minimizing

¢ . t * w
| Ke=l ,
- - - £ \ 4
J = %-llx(ko) - x(ko)llz_1 : +‘% t | ly(k+l)
| ‘ BT (ky) k=k
. o O
(4.51)
- . kg=1
R T R Y L P SR S UT{ R R
L R (k+l) % k=kg Q (k)

vy ")
ey ~

-

subject to the édﬁ%}i%y constraint of equation (4.48{.
Applying ﬁhé:discrete Euler-Lagrange equations [58],

‘the Hamilténian is defined as

B O[x(k), w(k), x{k+1}, k]

- % [{y(k+l) - h [XYk+l)r k+1]i‘2_1
2 R ~(k+1)

o % Hwtk) 1] _y + 2T (k+1) x(k+1) | (4.52)
©Q T (k)

Based on equation (4.52) and its associated boundary
=]

conditions, a norflinear two-point boundary-value problem is

derived in the form

X(k+1) = £ [x(k), A(K), kI (453)

Ca(k+1) .

n

g [x(K), A(K), kI . (4.54)
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' T [N
th boundary conditions given b

Mkg) =a  Alkg) = %

To derive a sequential approximate filtering‘equatiohs,_the
“invariant imbedding concept is used. The sta the

‘final conditions A are imbedded so that
Ca o x(kg) = r(c,kg) | : " (4.55)
- | T se

A (kg)

;
Based on the analysis given in 8ection 4.2, a discrete
invariant-imbedding equation is obtained in the .form

' 2
ar ar . a3 r r - = -
" + 3C + o3k {g(r,c,kf) c} f(r,c,kf) r (4.57)

A solution of (4.57) is assumed to have the form
r(c,k) = x(k) - P{k) ¢ ) (4.58)/

o |
Aﬂ&%; several manipulations the following approximate- -

ngu ntial-estimation equations are obtained

R(k+l) - P(k+1) g [x(K), Q, K] = £ [x(k), O, kI (4.59)
P(k+l) ag. [r(gék) rclk] = "'af [r(gék) rc'k] (4-60)
c=0 . c=0



with given initial conditions

-

xo and.P°

-

To proceed to the development of" the final filter

.algorithms, ' the problem of minimizing J is considered and

the following filter equations are obtained. *

Filter algorithm

x(k+1). = x(k+1lk) + K(k+1) {y(k+l) - hix(k+1lk) ,k+11} (4.61)

One stage prediction algorithm

R(KELTK) =0 [x(K) k] (4.62)

Filter gain algorithm

T
K(k+1) = p(k+1) 2B aé?ét{%&f)'k+1] R™T (k+1) (4.63)
Prior error-variance algorithm
. ~ T." '
p(k+11K) = aegggtg,k] B (k) 3e g;gi;,k] + T(k) Q(k) rT(k)_
. (4.64)
Error-variance algorithm
T~
| 2 . ah [x(k+1[k) k+l]
P(k+l) = [P " (k+1lK) - sy & a%(k+11K)
Ligel) {y(k+1) = b [x(k+l]k), k#1111 (4.65)

o
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In the special case of continuous message model and diécrete
l

observations for orbital trajectory estimation the discrete

“invariant imbedding algorithm given above can be used with

the following modifications.

.~ One~-stage prediction algorithm

-

. fﬁh\. Q(k;1|k) & xieg,) | ' |

which is the solution of

%(t) = f [x(t}, t] . LEe < ELC ty '(4.ssy

a -

* prior-error-variance algorithm

P(k+1lk) = o (k+1]k) P(k) 81 (k+1jk) | (4.67)

where ¢ is the state transition matrix and is obtained by

solving
i) = 2 (x,8) o (t)
o (k+11k) = (k) . (4.68)

The sequential filter algorithm used in the thesis consists
of the computations outlined in equations (4.59) to (4.63)
with (4.60) replaced by (4.64) and (4.62) by (4.65) and

(4.66).



4.4.2

s

Proposed Algorithm;

The approximate nonlinear Efilter based on the

invariant imbedding concept faﬂd"outlingd above has the

'following advantages.

@) -

(2)

(3

are

(1) .

No statistical assumptions are regquired concerning

"the nature of the input disturbances or the

measurement errors.' The system and measurement error

: . . ' ", , . c =1
covariance matrices appear as weighting functions R

+

and Q_l inlequation (4.51) allowing us to p;ace'more.

emphasis on the most - reliable measurehents.
Otherwise,‘we assume Q(ki = 0 and-R(k) = [I].
A sequential estimation scheme is' obtained, which

makes it possible to implemént in raql-time.

Convergence of the algorithm is theoretically -

guaranteed since the estimator equations include

terms of the form [y-h(x)], which‘ié the innovations

ey -

process discussed in Chapters 2 and 3. S

‘on the other hand, the disadvantages of this method

More\computationslare needea Compared to guasilinear
or first-order filtérs. The invariant imbedding
algorithm is a second-order filter as second
derivatives of the nonlinear function h(*) are used

-

in the computations.

-
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- (2)" In reaié&ime-sihulatione;'it is ﬁ%éeggari”that'the_

',time required to complete the computation cycle bef

. less than the time interval between- successive'

obeervations. . This is why, in some applications,
second-order'filee:s as the invariant imbedding
f}lter afe not suitable.

(3) The initial values X, and Pol_affect' ;he- rate’ of

_convergence. . .

Stochastic _approximation is a’ scheme for successive
fabproximation of a éought quantity (i.e. the filﬁer‘gain),

when the observations involve random errors due to the

stochastic nature of the problem. It has the following

-
-

- advantages:

N ;
h

(1) only a small amount ‘of data needs processing.

(2) Only simpie computations are required. In the

algorithm proposed by Scharf and Alspach (Section

4.3) the computations needed are those of the

innovations process and the state estimates.

(3} A priori knowledge of the process statistics is not

necessary.MThe only requirements are that the

regre551on function satisfy certain regularity
conditions and that the regre551on problem have a

unique solution.



2
r;;dg7-'-ﬁf:f - Theifdieadventages.‘of stochastic approximation“
' algorithmslere,," .

Yy -Slow convergence

(2) Convergence properties depend on t e s arting values.

' . ) ] - - . . - . " ! . N . ‘ ————
- : From the above analysis, it would app logioal to

comblne Ege two methods in such-e mannér as to retain their

-

‘e

,relaclve.advantages, whlle dlSpOS}n with their basic
4 - 'drawbacks.. It is proposed, cherefore.'to uée the igvariantC?*\
| 1mbedd1ng algorlthm to obtaln the 1n1t1al value of the galnkwb

s matrlx and then apply stochastlc approxlmatﬁﬁn to track any
changes' in the galn matrix Wthh may brlng further
| | improvement.: .. | o~
L e~ When  treated separateiy, the convergence of each of.
the two estimators_is theoretically justifiedr However, the
convergence of the oomﬂined'ﬁilter dlgorithm is not obvious.

. 'Thie is because the behaviournof one effects the operation
| of the other. A theoretical ﬁroof of convergence cpuld‘not
be. obtained, Sso cheualgorithm is tested using real data and

. " simulation results of orbit determination study prove the

o = s © - T -
convetrgencerand efficiency of the proposed estimator.
‘The proposed algorithm is summar;jized as follows. -

s .{1) _set k H 0. Solve the subobtimalnnonlinear estimation

T

: problem using inVariant'imbedding for k f_b, 1, cesr
/‘. ‘. -'_ . . .| . . .

By ) .. T - 4 " L

. - Q . - RN ‘
57 . T ox : P i ’ ™~ .
- N ! - ] b
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‘- p, whére p is a ceptain number pffdata'pointé.

(2) Compute the subopyimal gain matrix.

. (3) sStarting at k = 1 use stochéstic-apprdxima;ion for

{ . adaptive ‘gain e timation for ‘the remainder of the . .

fo

observations;as. iven by equation (4.47).

% . Therefore, usjfg 'the invariant imbedding aigorithm a

“gd?a“ stéftingjv ‘ue for -the gain matrix is provided for
;hé stocg ic approximation. algorithm.- Since ‘the
-étqchastié hpproximayion algdfithmrrequirés very little
combutitidh per. iteration the éroposed algorithm i's
computaéiéﬁall&t more effiqientllrélative‘ to thé invariant

imbedding algorithm if used élone.l

Simulation results in Chapter 6 demonstrate the

—
-

convergénce and  the efficiency of ‘the proposed -alqprithm:

with comparison to other approaches ¥n the case of satellite

" orbit détermination considered.



.. . CHAPTER 5" -
MODELLING OF DYNAMICS AND OBSERVATIONS

|
FOR COMMUNICATIONS SATELLITES

5.1 Introduction
With7- he increasing ‘application of man-made

‘satgllltes for comﬁunlcatlon purpoégé, there has developed a
con51derab1e amount of technology for the1r contrql. Such
‘control must be in the form of correctlve action in order to
.malntaln the satelllte 1; a de51red orblt.-ffhis'réquires
‘obtalnlng proper estimates of the state of the satelllte
from measurements contaminated w;th noise. .The states of
the satellite ”are the _ftndamental “elements or parameters
that define thé orbit, in this case the estimation problem
is an orbit determinatitn problem. |

. A realistic dynamical quel‘that describes“both the
attltude and trajectory dynamlcs fpr the satelllte is
developed based on the model equatlons glven by Altman [18].

In order to employ the state model in estimation Of_control.

a measurement model should be provided.

-

- 73
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5.2 A Unified State Model for Orbital Tréjeétbrf and

Attitude Dynamics _—

3 Altman [18] has proposed a unified state model of the .
orSital‘ trajectory andg- attitﬁde 'dyﬂamics of an orbital
spacecraft. The synthesis and anai?sis of the orbital
'trQSectories-of spacecraft are-usuall& condupted sepafatgly
from the attitude dynamics. This is due to the'difficulty‘
in finding dynamical models valid "in the -analytical sense
and efficient fEr machine computation.,'ﬂoaever, the inter-
'debénQence betwéen _khe trajectofy dynamics of point-mass
motion and the ‘attitude dfnamics of spacecraft . body
orientation.about.that point-mass makes the use of a unified-'
dynamical model essential. This interdependence is due-to
natural forces such as gravity gradienti and atmosphefic
"~ drag. It is .also due to artificial forées and energy
interchange between the two classes .of mogion. |

‘7?0 develop the model a set of anamical variables i;
necéssary. Many sets ére available for use in aerospace
ISYStems and trajectory analysis. The fundamental set is the
six elemerits vector (x, ¥, 2z, X, ¥, 2),. that givés' the

! components of the position and velocity -vectors of the

spacecraft. These are called the "cartesian variables”

1

coppared to the unified state model elements used in this

- ) 6
work. ;



In the case of the-unlfied state model the’ elements

‘of the state vector should define the trajectory and

——

attltude dynamics in a common form, therefore, this modelr
employs seven varlables for trajectory dynamlcs 1nstead of
the minimum deflnltlve number of 51x. " The first three state

variables are parametrlc fonms of the orbital momenta. The .
other four are .the Eule} parameters, a four-dlmen51onal
representation of the rotation' transformation for: a
coordinate frame—triad.. | @

The main advantage of this model is ‘that strong
interpendence or.'coupltng between the first three state
variables and the other four. dges not exist. So, filtering
and estimation can be acc mplisned more rapidiy and
accurately by. exploitation of ‘this ‘unctional indeoendence

between i momenta and coordinate (variables. In his work

Alt ‘states that the unified state model is extremely

"accurate for reentry dynamics computation and unified

‘applications as in-orbit and reentry operations.

Moreover, the orbital velocity state and the position

state can be obtained. by algebraic transformations from the

“unified state model variables.



. 5.2.1" The anamicalAVariables_

A definitive set of dynamical variables will comprise
the state variables.aad'poordiaate variables. The:etate
variables may be. position, veleeity,' or othef,‘variables'
wﬁich }elate to the system energy. The coordinate variables
ma{ be three—ﬁaraﬁeter seﬁs (Euler angles), four-parameter
sets (Euler parameters), or nine-parameter sets (direigion
cosines of a rotating triad). In the unified state model
the state variables are pafametric-forms of the momenta, and
the coordiaate variables are the Euler parameters.

An unperturbed orbital tfajectqry, occurring in the
presence of the siméle spherical harmqpic function of
- gravity field'GUe to one celestial body, is represeneed by
cyclic figures (lying ie' an orbital plane} “in position,
velocity and acceleration vector spaces as shown in Fig.
5.1. .The erbital figure is a eonic in position space, a
.circle in velocity .space, and a limacon-like figure in
acceleration space. However, as the orbital energy level
ghanges, only the velocity space map remains invariant in
geometric figure. Consequently, a differential-formulation
of the orbital trajectory dynamics - expressing‘the orbital
state resulting from impres;pé or perturbing forces - will
not encounter singularities'in the state va}iables; that is,

these velocity parameter variables are regularized, with

consequent advantages in computation.

$ | >
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The orbital trajectory s;até variables a:e'thé
velocity state parameters (C,R). They are defined as
.'functionQ of the radial momentum (P, = mvl) andfangular

momentum (Pz = mréz) as. follows

NI c = Wm/P, | | - _‘ (5..1:)
R = [(p,../.m}2 f- ipl/mr-.z: C.)zll/.:2
- (2s4c? 112 (5.2)
where _ T .
u = planetary gravitational constant ’\L

m = mass of orbital body'

S = orbital-energy pér unit mass. . ]
That is, the state parameters (C,R) are implicit forﬁs of
the orbital momenta. The velocity components vy and v, are
shown in_fig. 5.2. -

Ihé complete three-dimensional vector equations of
position, velocify and acceleration are defined as functions

'oﬁ (C,R) as follows

- i
r= [C(C+§cos¢)1 et ‘ (5.3)
A v =R+ Cr/jr}| . (5.4).
a=R+Cr/|r| + ay

jap] = -C i o (5.5)
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v

where C,'R, r and A arefdefihed aslsﬁbwn in Fig. 5.3. In
thlS flgure a sphere is taken as the model of the Earth.

The fundamental plane is the Ear h's equator, the x axis

points at the vernal equinox. ~Thr e coordinate sets are
selected for this model. The fietocentric inertial -set

{gyr 95r 9y) defines. the coordinete'axee (X, ¥, 2) fixed in

inertial space about the origin. The intermediate set (f;.
£qr £3) defines the coordlnate axis in the 1nstantaneous
orbital plane, with f1 directed along the 1ntermedlate axis
x', f3 along the orbital angular momentum ‘vector and f2
completlng the rlght -handed set. The axis x 1s defined by
rotation of the planetocentrlc inertial axis X into the
1nstantaq$ous orbital plane about the 11nes—of -nodes LN.
The rotatlng polar set (el, €o¢ e3) deflnes the coordinate
axis rotating with the orbital body, y;th ‘elyfalong, the

position vector' r, e, normal to e, in the L:'tantaneous

plane and e, completing the right-handed set. Consequently

defines -the direction of ¥ and €4 (or f3) deflnes the
dlrectlon of C.

The orb1ta1 state variables of the unified state

. model are the three jparameters (C, Ry, Ry) which define the

‘'velocity state. The component pair (R;: Rj) defines both R

and the direction angle of perigee apsis from.tpe'rotated

\ .
axis X . ...These three variables represent the state

Lo T = - B
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trace of the
orbital plane

Figure 5.3

State mo@gi/geometry of an orbital trajeétory
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"variables*in-the*dynamical model, the other four are the

coordinate variables or the Euler parameters.

The Euler parameters and the consequent constraint.

equations offer many%advantages in computation. [59]. The

four Euler oafaneters (210 tpr %y 2,) define a unitary
quaternion which can be eméloyed to describe the rotation'of
a coordinate triad [Appenoix Bl. Consequently, the
coordinate rotation of orbital motion and of body motion

3

about its point-mass can be expressed by one matrix form of

rotation transformation. That is, a unified form for both’

—

attitude and trajectory dynamics.

© 5.2.2 The Dynamical Model

Our main concern in this work is the problem of orbit
determination, so only-trajectory dynamics are considered in
- the following ana1y51s. .

The &Vnstraint equations for the orbital trajectory
dynamics are glven as first-order differential equations,
functions of the perturbing_accelerations aj {18]. Only the

primary gravity harmonic forces in the trajectory dynamics

are modeled in this thesis.

.
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The orbital

~

orbital state:-

.»

d | Ry [ |cos a -(1+p) sin )
-1 B e | -
j}Q LR2 sin 3 ~ (1+p) cos

“:ffaﬁd-the orbital coordinates

N 2y 0 23
'%_ 2. 1| ™3
t 2
Ly 0 W
: Ly A |
where’ - = L
v1 ) 0 ; _gos A
;sin 1 . |23
: ) (5. + 12)
Lcos A L3 4"
wl = a3/V2 "
- 2
. _ kpt3Traly
2, 2
a3ty

sin

cos

4 ~ %3

\

0
"R('vaz)
R(T/Vz)'

0 Wy

Wy 0
0 W3

Ry
Ry

.
o
.l

A
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trajectory dynamics are defined'py the

*
(5.6)

(5.7)3'

* Equation (5.6) is the corrected version of Altman's
. equations, as pointed out recently by Paul Chodas of the
University of Toronto Institute for Astronautic Studies.

late to. be
intorporated in, this work, but it is also believed- that

Unfortunately,

their effect on this work is rather insignificant.

thgse

corrections came

too



84

Y s B e e

[a] = Aé = sum of perturbing accelerations

’

,§-+ 12+l af= - (5.8

The perturblng acceleratlons may be due to drag ands,
wind forces, zonal harmonlcs, tesseral harmonlcs and other
effects. One of the major sources of perturbatlons 1s the
: nonsymmetry of the Earth, which has - the tendency to produce
a noncentral force field. The departures, due. to asymmetry
from a concentrically homodeneous sphere, are of “two kinds,
zonal departures and cesseral‘departures. ﬁ%onal harmonics*"
are due to meridian ellipticityf‘whale tesserai'harmonicsz
are due to longltudlnal variations in the shape of the
Earth. 1In the development of the model equatlons -only zonal
harmonics.will be considered, which'is usually the case in
generai perturbation techniques [60].

" From eguation (5.6) we mote that the acceleration
state is a direct' function of in-plane perturbations (a;.
ays a3). We also note that*the\reference from rotation
defined by equation (5.7) is a direct function of.out;of—
plane perturbation (a3) ‘alone. _ éonsequently, strong
interdependence or coupliné between these~ two matrix
equations 1is nocl present. As menticned previously tais

functional independence is advantageous for efficient data
. . P ' .

-
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processing. .

The zonai harmoniés are described by

. 'W o ’ a2
ay = - 7w Re I ) | 2013 k23 (5.9
] B o 2 €13 £33
R ‘ -
where /7 '
| R, = mean equatorial radius of the Earth.
Jé = mean zonal harmonic of Earth's gravity field

£13 = 2 (2 23 = 23 1)
523 = 2 (!.2 1.3 + !.1 1-4)
_ 2 2. : L
g33 51 7 2 (g *+ ap) . (5.10)

From equations (5.7} and (5.8) we have

ac _ _

at - P

dR; . .

Jo T @) ©0s - (1+p) a, sin
dR, . .

T 51n.; + (1+p{ a, COS ) °
ge - 2 M3 1 TV ony)

dg

2 -1

gt = 2 (W3 %t v ty)




K]

I T e
by 1 ; |
T =3 (v ¥ W3 ey - | -

Y-
w

o

t4

-1 2 (=wy "2y ~ W3 13) ' . - (5.11) -

‘From equations (5.9) and (5.10) we have

_ 4 4 _ _ 2
ay K C v, [1 12 (!,1 3 ro 1,4) ] -
a, = K v (8 (4 1. - ) (s 1y * 1
2 2 '8 bry o3 T orp ty) Mg A3 T 1) 2y
4 _ ‘ 2 2 .

ay =Kt vd 4 (o ey - aprg) 1 -2 I+ (5120
where

K= - % Re2 Jz/u3 = constant

By substituting equations (5.8) .and (5.9) into
equation (5.11) we can derive the nonlinear 'system mo in

the genéral form
. Y

\ k() = £(x,t)

~where the ‘seven-dimensional vector x is defined as \

[x]

[Cr.er Rzr Llr !.2: !.3: !.4]

= [xl; x2r s x-]] ) (5.13)

After a considerable amount of . algebraic

manipulations the following. nonlinear differential equations

e



" are obﬁéined

where

~

xll =

e
it

)
i

"y

F1

B

3

coSs

sin

Xg

£

A+ F2 sin X

- X
. Fz cos

+ E‘-4.x7
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and
Vo ® Xy T Xy sin 5 + X3 COS )

sin A= 2 xg xq/ (xg + x%)

., cos y = x2 - x2/ (xk+xd) - ' (5.15)

and the constant K is‘definedlpreviously.

In "reference [18] Alﬁman gives the eqﬁaﬁions for
.perturbations due to higher order.zonal harmonics (74 and
J4) as well as tesseral harmonics and‘atmospheric drag and
- wind pérturbafions. In the model derivation outlined above

only J o zonal harmonics are considered.

5.3 Measurement (Observation} Model

In order to use 'the state model, previously

deyelopgd, in aerospace applications, a measurement model
will be developed in this section. )

The introduction of radar into the implements of
modern science has produced a great variation from

'

established techniques in orbit determination schemes. Now,
the orbit determiﬁér could measu}e the distance or extension
between the point of observation and the satellite, that is,
the siant range. Furthermore, angular data are provided,.

such as azimuth and Elevation.:

-



3

r.%
-

Usually, observations, are made from 5 coordinate

system that is rotating or 4g different from the preferred -

or 1nertia1 system in which analysis is to be performed.
mhus a transformation of coordinate is required. ,//“$h
‘satellite position and velocity, or in general the state
va;iables, must be referred to the geocenter angd “its
1nert1a1 coordinate set as reference. 3 |
F{gure- 5.4 shows the A21muth —Elevation coordinate
system. In this system, the observer is at the origin of
the coordinate system and the fundamental plane ie the local
horizon, that is a topocentric system. In.thie figure, the

two angles needed to define the'location of an object along

some ray from the origin are defined as follows

v {Elevation): Angular elevation of an object: above a .
tangent plane to the observer's‘poe}tion
A (azimuth): The angle from the North to the object's
| meridian, measured in the tangent plane~to‘

the opserver's meridian, at the observer's

position.

The distance from the observer to the object is

h (slant range): Distance between the origin of the
coordinatg_ system aed the location of a
point {(object) within the coordinate

system -



north /
uth
observe ) so
west horizon
2>
Figure 5.4

Azimuth-Elevation coordinate system
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The following convention is usually adoptea.L59]

variable Sense ' Range
= o, ")
y Positive dbove horizon -90°~ <y £ 90
A i_ Positiéb-to East from-North : Ozgi A< 360°>
. .‘-‘-‘-‘_- -
h Positive length | h >

\#O

To convert polar coordinates (v, A, h) into recti-

linear coordinates we use the conventional transformations,

given in reference (601, as follows:

x = -h cos A cos Y

y h sin A cos y

h sin ¥ . ' (5.16)

z
wherel(k, y, 2z) define the observer's . coordinate system and
is shown in Fig. 5.5. The inertial coordinate system is
defined by (X, ¥, 2). |

Introduce the unit vectors, N pointing to North, E
pointing to East, and U pointing‘vertically outward along

the normal from the observer's meridian, and by projective

o0
T D
o \/




Figure 5.5

Coordinate set for a ground-based site
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principles, we obtain
X

- : n
Nx sin La sin Lo
N = NY = |=s5in La cos LO(
N ) cos L
(=) L " S
¢ :
N ‘
Ex coSs Lo )
E = |E = |sin L ' o
y o
LEZ | o
47 L -
~ ~ W
U;W -sin L, cos L, . -
U= Uy = cos Lo coS La (5.17)
LUZ L sin La )

The above equations give the direction cosines of a

in the Azimuth-Elevation coordinate system with

vector
is a unit

respect to the inertial system. Hence, 1f L

vector along the slant range we have

- — W
Ly N, B0 Uy Ly
L =lu,| =[N E U L 5,18
Y y y y Uy (5.18)
U. N E U L
z_‘ LZ Z Z'IZ‘
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From equaéions (5.17) and (5.18) we have .

" o ; ’ T - W
X f{ g'.inALa sin Lo -sin [.a cos Lo cos La X
y| = cos L, o sin L, 0 Y [(5.19)
L?; L—sin L, cos L, | cos L, cos La. sin La‘ Lz‘

r

‘where L, = Geodetic Latitude
Lo = Longitude

To proceed with the model derivation a transformation\ﬁ;om

position vector components (X, ¥, Z) into the unified state

model vgriables (C,‘Rlp,Rz, IR PYRR Y L, is nedessary..

The fol}owing transformation is used [18]

= ~

X r

v|=(e1" |0 - (5.20)
z - 0

L-d . )

where [E] is the transformation matrix used when a
coordinate triad is rotated from an inertial reference triad

[Appendix B] N

( )
‘11 %12 %13

[E} = E21 522 523 (5%21)

where E{j is given as a function of the Euler parameters

(see Appendix B).
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Substituting for [E] we get

X 1-2 (2. + 42
Y {=r [D] 2 (Ll !.2. + £3 !.4) ‘ o (5.22)»
2| 2 (87 t3 = 23 t4)
where
f = u/c V2'

\

[D] = constant matrix for known values of angles L,
.

and Lo} that is, independent of the states and

‘—“\ observations.

I

Finally from the transformations (5.16) we have

-

tan A = x/y
sin y = z/h
h2 = x2 + y2 + 2° (5.24)

pefine the observation wvector v 'as the three-dimensional

vector
[U] = [Yr hl A] (5.25)

For given latitude and longitude and using equations
(5.23) and (5.24) we can express the observations as

nonlinear functions of the unified state model variables as
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follows c B \

- -

YT A Hl (xl; 82, oo-'. x7)' o
h|= [Hy (X, X5, ...,-x7) | : : {5.26)

’ A- LH3 "(xlr xzr | x7)

b

-

which corresponds to the. discrete-time nonlinear measurement
'modél used for state estimation with the message model and
given by

-

v(k) = B [x(k),k] + measurement errors
"The observations may be perturbed by several different
sourcés of noise such as calibrdtion errors, readout errors,
tracking errors, etc.

When the Kalman filter solution is applied to a
practical o;bit determination problem, a knowledge of the a
priori statistics of measurement noise is necessafy. S0, it
is‘ possible to guess a- priori statistics for use in the

-~

Kalman filter, then examine the residuals {v(k)-H[x(k) ,k]},
from the resulting solution, which in a sense tonstitute
estimates of the obseréation errérs, to produce a better
guess as to the unknown statistics, and then iterate the
entire prqcess. But, this reprocessing of all the

observation data is quite often impractical, especially in
. J

real-time simulations.
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| Therefore, a more practical solution to this problem
is the use of adaptive filtering techniques. - The adaptive
filoer algorithm suggested by Sage and Husa [{Chapter 2] was
applied by the author with the unified state model, usind
octual_ records of observations, supplied by the
Communications Research Centre in Ottawa. | Simulation
results prove the fast convergence. of the Eilter.
Another adaptive scheme suggested by Sinha and Tom
{61] was applied to the orbit determination problexwhen_ the
measurement are contaminated with unknown coloured
measurement noise [57]. |
The unified state model and the derived observation
model are used in the simulation study given in;Chapter 6

for nonlinear state estimation.

v



CHAPTER 6
COHPARISON OF FOUR NONLINEAR ESTIMATION SCHEMES
WITH APPLICATIONS TO A COMMUNICATIONS SATELLITE

A

6.1 Introductlon

The problem of estimating the orbital states of -a
.éypchrdnous-orbit‘communications satellite from groundébased
-measuremeﬁts, which are 'COntaminated with- noise, 1is
complicated by.the nonlinearity of the dynamic eqguations as
well as lack §f prior knowledge of the noise statistics.

The purpose .of this chqpter' is to. compare four
distinct schemes kfor recursive estimation of the state
variables of a continuous—time-noﬁlinear system on the basis
of measuring the discrete-time outputs of the system in the
presence. of noise. The numerical characteristics of the
four nonlinear filtering algorithms are illustrated with a
realistic orbit determination study.

The schemes cdnsidered for nonlinear state estimation
are:

{1} The extended Kalﬁan filter'

(2) The second-order suboptimal nonlinear filter

(3) The nonlinear filter based on invariant imbedding

(4) The combined invariant imbedding and stochastic
éﬁproximatiqn algorithm. | l

. d 98
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These algorithms are given in detail in Chapters 3

and 4 and the related references.

To represent the orbital, trajectory dynamlcs the

;
_unlfled g"state model, proposed by Altman [Chapter 53, 1§

. utlllzed The model consists of seven state varlables,
three of them are the components of the orbital velocity and
- the other four are coordinate varlables. For simulation
-study a conversion routine is used to perform conversion of
state 'vector formats from unified state model (USM) to

—_—

clgssical inertial coordinates, that is position and
ve10c1ty components.

The measurement model has -been derived in Chapter 5.
The observations, which are slant range, Azimuth and
Elevation, are nonlinearily related - to the states of che
unified state mod€l. - - ’

The 51mulat10n study is carried out using the data
supplled by the Spacecraft Mechanlcs Division of the
communications Research Centre in Ottawa, which contain
actual records of observations. Radar measurements" for
azimuth elevation and rande are contained™in data.recorQS
coverang 24 hours.

~ The results using the proposed in#ariant imbedding-

stochastic approximation algorithm are compared'with those

obtained using the extended Kalman filter, the second-order

filter and the invariant imbedding approach. In the case
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studied the r.x'ew.‘ aigorithm ié‘provfen to be more efficient
than the other techniqﬁes; it requires iess compu:aﬁion time
to achieve cqnvgrgence,'whigh'makes it précticai for real-
time operations. - |

6.2 Problem Formulation

The problem of trajectory determination may be

’,.Y

summarized as. follows$ Given the orbital trajectory

dynamics of the satellite in the form,

x{t) = £(x,t) : . (6.1)

the trajectory of the spacecraft can bé specified uniquely
from a knowledge at any time of the thfee components of its
position vector and threé components of its vélocity vector
in an orthogonal reference frame. In thé case of the USM
these six components are replacgd by the- seven ﬁSM
variables: These variables define the state vector which is
a continuous-time function generated by integration‘of
equation (6.1) with appropriAte initial conditions., Because
the initial conditions are not known preciselyﬂ the present
state~ is also not known, and it is ‘the function of the
trajectqr¥.determination‘system to estimate the §tate'on the
basig of observations. The system is then regarded as a
multidimensional filter, its input being a time sequence.of
observations of variablés related to the state, corrupted by

additive errors. 1Its output is the estimate of the state at
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'pre§ent timé, and the filter is td be designe& to make this.

. an optimal estimate in thifgense of minimizing some function
- : " o0
~

of tﬁe estimation error. .
The initial conditions are not known, but it is
assumed that they can be described probabilisticaily at

least up .to second-order statistics. | Thus, the initial
conditions are regarded as a vector véfled random variable
with mean xj and _ : .

cov {xd, xo} = P - (6.2)
The observation model is given by:

y(k) = h [x(k), kI + v(k) -' (6.3)
The measurement noise v{k} is assumed to be zerc mean white
noise with

cov [v(k), v(K)] = R(K) Sg(k=3) (6.4)

In some problems a plant noise is assumed to be

associated with -the system model in the form

x(k) = x(k-1) + u(k) . (6.5)
where x(k-1) =‘x(tk), which is the solutlon at time tk to
the nonlinear dlfferentlal equat10n {6.1). The noise

sequence u{k) is assumed to be a zero-mean white Gaussian
noise with covariance Q(Kk).

In any nonlinear filter algorithm the computation of
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the gain matrix 'K and the error covariance matrix P utilizes
derivatlves of ‘f(+*) and h{°*) with respect to the state ;.
The estlmatlon algorlthms. considered in this study are
either first?order or second-order filters depending on the
order of linearization.

The 11nearlzat10n w1ll always be around the estlmated
rather than the reference trajectory. This is clearly the
correct procedure 51nce P has to do with the difference
between the estimate and the .true state, and the estimate is
on. the average closer to the true state tnan the reference.
Errors‘erising from the linearization assumptions are
thereby minimized. |

-Covergence of the filter algorithm depends on
nonlinearity effects; assumed noise statistics and initial
'aseumptions. So, one has to resort to experimental studies
to obtain the best per formance. In this simulation study we

compare the performance of different filters on the basis of

the error covariance matrix P or the estimation errors.

6.3 Description of the Computer'Program

The four nonlinear estimation algorithms mentioned
previously were programmed for computer simulation using
Fortran IV and have been run on the CDC 6400 computer
system. Results of state estimation of the satellite are

obtained for different initial conditions and are given in
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the next section.

A flowchart of the general program is shown in Fig.
6.1. - The program is started by setting the initial .
parameters which_include'thg initial state vector x, and the

initial error covariance matrix Pg. When an observation h‘%

-

been made and j,is to be processed, the input data are read,
then integration of the model equatiohs is initiated.

' in the case .of the extended Kalman filter and the
invariant imbeading nonlinear filter it is the state

transition matrix whlch is 1ntegrated forward and then used

to compute the extrapolated covariance matrix as follows

p(k|k-1) = ¢(k|k=1) P(k-1]k-1) & (k|k-1) + Q(K) (6.7)
where ¢(k]k-l) satisfies the matrix differential equation

_ B3E(x,t)

AT U LI

o(t, t ) (6.8)

2_10:

x(t)

with initial condition ¢(tk-l’ tk—l) = [I].
In the case of the second order filter, the state
equation and cbvariance equation are coupled and are both

integrated forward as follows ~

P(k|k-1) = P(t}) + Q(k)
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START

¥

SET INITIAL VALUES

‘ Ll

kK = 1

"y

]

READ OBS. DATA

{
YES J ESTIMATE x(k) |
_______ USING |
oo | PROPOSED ALGORITHM

NO

INTEGRATE x(t) AND P(t)
FOR ONE STAGE PREDICTION

A

ESTIMATE %(k) AND P(k)
USING DISCRETE FILTER

. = PRINT RESULTS
STOP
b
Figure 6.1

Program flowchart
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where P(t;) is the solﬁtion ofﬁihe differential equation

af(x,t) BET(x.t)

P(t) = S50 Lee P(E) + P(Y) —x(er ey (6.9)
and ;(klk-l) i{s the solution at time tk of
[ l n .
x(t) = £(x,t) + 5 L L tr [A(t) P(t}] {h.10)
i=1

These equations are given 1in detail with the filter
algorithms in Chapter 4.

The routine’ used for ndmerical integration is DVOGER °
which uses a predictor corrector method.

The'estimation routine.provides the discrete updating
of the state estimate and the error covariance matrix. A
priori noise statistics, i.e., noise covariance maprices Q
and R are necéésary for state estimation using the extended
Kalman filter and the second-order filter., A block diagram
of the extended Kalman filter is shown in Fig. 6.2.

T§ achieve increased accuracy in the computations,
the nonlinear functions £(°*) and h(*) are approximated to
second-order in the Taylor's serieé expansion and the
second-order filter is derived. The block~-diagram of the
second-order filter is similar to that of the first-order
filter thh two more routines to compute the second-order

derivatives of the two nonlinear functions £(*) and h(*").
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conditions

| K (k)
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Estimate state (k)

P

L

1

|_[obs. model % (k/k=1) State modell ¢
equations equations
\
Compute Compute
af/a% 3ah/ak

State transition
matrix equations

| Compute Compute| ||
"3o (k,k-1}| R(k)TJ] K(k)
Y 9
Compute Compute
P(k/k-1) P (k)
Figure 6.2

Block diagram of the

extended Kalman filter algorithm
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The invariant imbedding algo;ithm'computations do not
require a specific knowledge'of Q and R. Although the noise

covariance matrices appear in the filter equatlons [Chapter

—

4] aé weighting functions, it is proved experimentally that
the filter performance is not sensitive tb the values of Q
ané.R. A block diagram similar to Fig. 6.2 can represent
the filter with an additional routine to compute the second
derivative of the observation function h(*).

At the end of eaEh iteration results of the state
estimates and the error covariance matrix are ﬁrinted. A

conversion routine is used to give the estimates of the

satellite position and velocity at each iteration using

r = u/C Vo

F
2 2 '
v = /vl + 2 {(6.11)

defined in Chapter 5.

The above process is repeated with each new
observation until k = N, where N is the total number of
observations. - .

The pr;gosed algorlthm follows a different sequence
of computations compared to the other three algorithms, as
shown in Fig. 6.1,2 The invariant imbedding algorithm is

utilized for the first kl observations, where kl <¢ N and is

determined experimentally. Then, the stochastic
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apéroximatioq}éain'algoriﬁhm given by

a_ _ x(k|k-1) ¢ (k)

(6.12)
K*B 1k (kik=1) €T (k) |° '

K(kfl)-iK(k) +

is applied. The constants a and b are determined

eiperimentally to give the best performance.

6.4 Simulation Results

The simulatighf utilizing the four nonlinear
estimation schemes described previously were performed in
conjunction with the méthematical system'and observations
models given in Chapter 5.

Observations of range, azimuth and elevation are
obtained from real tracking data supplied by tﬁe
Communications Research Centre. The sampling rate of the
observations is 10 sec. Successive observations covering
470 sec are chosen %or the simulation.

The folléwing physical constants are used for all the

computations

2

| =
[}

.éravitational constant = 398600 km3/sec

oo
H

mean eguatorial radius = 6378.14 km
2

(]
n

2 zonal harmonic of earth's = 0,108265 x 10~

gravity field
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0.1566511 x 107>

N L

= Teségral harmonic of earth's =

Ca2

6

S gravity field - . ~-0.8869932 x 10

22

To initiate the estimation procedure, the initial

guess for x, and P, is required. The initial error

covariance is assumed to be a diagonal matrix with equal
& variances and zero covariances. Results will be given for

two values of error variances
-] . .

(1) g

(2) g

The initial state vector X, is defined by the initial values

of the USM variables (C, Rl, Rz, Ll' 12, L3, 14). Two cases

of initial orbit trajectory are considered.

a. Initial circular orbit

The initial orbit is determined by the following

values:
C = 3.074656 km/sec

Rl = 0 km/sec

R. = 0 km/sec

o

which means that the initial orbit |is circular as the

velocity components are (see Fig. 5.2)

3

vy = 0 km/éec

v, = C = 3,074656 km/sec
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Tﬁe initial. Euler param;tgrs are [Aﬁpéndii B]
: -
by = sin 1/2 cos (r-v)/2
L, = sin i/2 sin (r-v)/2
L, = coS 1/ﬁ sin (r+v)/2 .
L, = cos {/2 cos (r+J)/2 .
wheﬁg
1 =0.9°
r = 240°
. v = =0
To determine the true Srbit the system model given by
equation (6.1) |is integrated numerically using a fourth-
order Runge-Kutta integration algorithm.

We choose the magnitude of the position and velocity
estimation errors as a measure of estimation accuracy. The
trace of the error covariance matrix-giﬁes an indication of
‘the rate of convergence for each filter.

For initial error variances, ug = 10_4, the magnitude
of the actual -estimation errors in the satellite position
|;|, for the various algorithms, is plotted in Fig. '6.3.
The corresponding magnitude of the velocity estimation
errors [;l is plotted in Fig. 6.4.

The extended qumah-filter gives a biased estimate,
the error decreases rapidly in the first 36 sec and then

remains constant, for both [r} and |vi. This problem arises

when the noise inputs to the system are small or when the
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meaSqremght' hoi;e is small.. The extended Kalman filter
| algorithm wés:'tested rexﬁerimentally for different noise
‘statistiés to determine the best performancé. However, the
bias always existed and the best results, shown in ﬁhe'
. figures aboqe,' are obtained when the measurement noise
standafd deviations are
¢ (noise in rangé) = 1 km
¢ (noise in Azimuth and Elevation) =1°

and the‘input noise is zero. .

'For the same values of Q, R and P, the sécond—orde;
filter converges and the error is minimum after 230 sec than
the filter .Starts to diQerge. In this case it was
experimentally pfoven that the filter performance is very
sensitive to the value of R. The best results are obtained
. . ..

¢ (noilse in range) = 100 km
u'(noise in Azimuth and Elevation} = 1°
and zero input noise and are shown above.

The‘ invariant imbeddiﬁg algorithm was- tested
experimenﬁally for different Q and R, and wag found
insensitive to noise statistics values. The.plots given
éorresponds to zero input noise and R = [I]. The filter
converges less rapidly than the second-order filter in the

first 250 sec but with no bias or divergence afterwards.

The proposed algorithm utilizes the invariant
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imbedding'approach for the first 70 sec then the stochastic
appréximation gain algorithm“is appliedlfor the rest of the
time. We note the slow convergence cEmpéred to the other
schemes, this is mainly due to the choice 6f the gain factor

in the ‘stochastic approximation algorithm. . Different gain

factors -were tested and the best convergence was obtained
for_y‘= 2/k+10, where k is the number ofliterations. The

- efficiency of_this algorithm is mainly due to the speed of
computation as will be shown.later. | ]

The trace of the error covariance ﬁatrix‘is given in
Table 6.1. The sum of the error variances decreases with
time in all four cases. The best results are obtained when
utilizing the invariant imbedding approEcWrwhich ié clear
ffom the plots of Lhe errors. The proposed algorithm gives
a slower convergence rate, but the magnitude of sthe error
variances are glmost one tenth of that obtained using the
first and secoﬁd—order filters.

The computation time for each algorithm for the same
number of observations is given in Table 6.2.

The results given above prove that the combined
invariant imbedding and stochastic approximation algorithm
is” more efficient and practical compared to the other
approaches. Convergence is achieved with much 1less

computations.
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re (p] x 1074

Time ‘ ,

(sec) , _

Ex tended Second Order Invariant Proposed
Kalman Filter imbedding Algorithm

-10 5.99 6.08 0.310 0.310

30 4.01 6.02 0.263 0.263

50 3.57 6.00 0.232 0.247

70 3.43 6.00 . 0.204 0.247

90 3.33 5.99 0.178 0.247
110 2.99 5.99 0.154 0.247
130 2.79 5.99 - 0.134 0.247
150 ° 2.68 5.99 0.116 0.247
170 2.60 5.98 0.100 0.247
190 2.54 5.98 0.087 0.247
210 2.50 5.98 0.076 0.247
230 2.48 5.97 0.067 0.247
250 2.46 5.91 0.059 10.247
270 2.45 5.61° 0.052 0.247
290 2.44 5.21 0.046 10.247
310 2.44 5.09 0.041 0.247
330 2.43 5.05 0.037 0.247
350 2.43 5.01 0.033 0.247
370 2.42 4.97 0.030 0.247
390 2.42 4.87 0.027 0.247
410 2.42 4,70 0.026 0.247
430 2.41 | 4.50 0.022 0.247
450 2.41 4.36 0.020 0.246
470 2.41 4.27 0.018° 0.242

Table 6.1

Trace [P]

{var = 10_4)(Circu1ar orbit)
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Method _ CPU Timé
: : ' (sec) |
Extended Kalman 14.214

- ) Second-order filter 176.025

Invariant imbeddiﬁg u‘ 90.084
Proposed algorithm 11.244
Table 6.2

Comparison between execution times .

of various algorithms

J

For the same initial circular orbit ﬁ variance og =
10"2 is assuméd.--The position-estimatioh errors are plotted
in FPig. 6.5 and the corresponding velocity estimation errors
are shown in Fig. 6.6 and Fig. 6.7. |

Table 6.3 gives the trace [P] and the computations
time is similar to that in Table 6.2.

In this case the extended Kalman filter gives biased
estimates with divergence in the first 70 sec. The trace
[P] is fapidly decreasing while the estimation errors remain

constant. Again, this is due to the choice of Q and R. The
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. Tr [P]
Time .
{sec) ‘ _ .
Extended Second Order Invariant Propased
Kalman Filter imbedding Algorithm

10 5.92 x 1072 | 6.09 «x 1072 | 4.45 x 107°| 4.45 x 107>

30 384 x 1072 | 6.02 x 1072 | 3.54 x 107 3.54 x 107

50 Los x 102 | 6.00 x 1072 | 2.99 x 1073| 3.54 x 107°

70 0.41 x 102 | 6.00 x 1072 | 2.53 x 107°| 3.54 x 107

90 737 x 1075 | 5.99 x 1072 | 2.14 x 1073 3.54 x 107
110 4.031 x 10771 5.99 x 1072 ] 1.81 x 107°| 3.54 x 107°
130 2447 x 10-7 | 5.99 x 1072 | 1.53 x.1073| 3.54 x 107
150 2429 x 10~ | 5.99 x 1072 | 1.30 x 1073 3.54 x 107
170 0 424 x 10~ | 5.99 x 1072 | 1.10 x 107%| 3.54 x 1077
190 5 421 x 10~ ] 5.98 x 1072 | 0.95 x1073| 3.54 x 107
210 5420 % 10~ | 5.98 x 1072 | 0.82 x 107°] 3.54 x 1077
230 5. 418 x 1077 5.98 x 102 | 0.71 x 107°| 3.54 X 107>
250 5 417 x 10~ | 5.98 x 1072 | 0.62 x 1073| 3.54 x 107
270 5 416 x 10771 5.97 x 1072 | 0.54 x 1073| 3.54 x 107
290 5 415 x 1077 | 5.87 x 1072 | 0.48 x 1073] 3.54 x 107
310 2.415 x 1077 | 5.42 x 1072 | 0.42 x 107>| 3.54 x 107>
330 5 414 x 10°7| 5.13 x 10°2 | 0.38 x 1073| 3.54 x 107°
350 5 414 x 1071 5.05 x 1072 | 0.34 x 107°| 3.54 x.107°
370 5413 x 10-7 | s.01 x 1072 | 0.30 x 1073] 3.54 x 107
390 2.413 x 107 | 4.99 x 10721 0.27 x 107°| 3.54 x 107>
410 2.412 x 1077 | 4.97 «x 1072 0.25 x 107> 3.54 x 107°
430 5 212 x 10°7| 4.96 x 1072 | 0.22 x 1073| 3.54 x 107
450 5 412 x 107 4.95 x 102 | 0.20 x 1073 3.54 x 1077
470 5 212 x 107 | 4.94 x 107%] 0.19 x 1073 3.54 x 107>

Table 6.3
2

Trace [P] (var = 10 ) (Circular orbit)
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given élots are‘bbtained for zero inpuﬁ noise and R = (I].
The ‘second-o}der filter< performance is better than
the extended Kalman filter. The algorithm convergés moré
rapidly ?n the firgt 300 sec, however, the errors increase
again toward the end of the period under investigation. |
The invariant imbedding algorithm has a similar
performance to ﬂhe first <case, whiéh proves its
insensitivity to P,. ‘ .
In this case the invariant imbeddiﬁ§751gorithm gives
the best convergence rate. Both the extended Kalman filter
and the second-order filter diverge. The proposed_aléorithm
is again the best in terms of computation time but with
slower convergence compared to the invariant imbedding

algorithm.

b. Initial Elliptic Orbit

An initial ellipéic orbit is considered and the same
algorithms are applied. The initial states are.given as
follows

C = 3.074609 km/sec

1.332 x 107¢ km/sec

R, =

Ry, = 2.39 x 1074 km/sec
b o= 1.747 x 1074

L, = 1.297 x 1073

by = 0.1807

L, = 0.9835
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These values are obtg*ned'ffom results of an actual orbit
determination performed at the Communications Research

Centre, Ottawa.

"_Results of simulation are shown in Fig. 6.8 and Fig.

6.9, corresponding to in}tial error variance og = 10'2.

] 'In‘this case the extended Kalman filter diverges and
the magnitudé of t@e-estimation errofs is higher than that
predicted by the error covariance matrix, as the trace [P]
is decreasing (Table 6.4}).

| The performance of the other three filters are
similar to the circular orbit case, which proves that they
are not sensitive to initial values of the states x,. -

The computation time is almost the same as that given
in Table 6.2. . ' .

The inva}iant fﬁbedding algorithm . is rapidly
converging and gives the best performance compared to the
first and second-order filters.

The combined algorithm is coverging less rapidly than
the invariant imbedding but takes almost 1/10 of the
computer time required for the first algorithm.

Based on these results the best convergence rate is
obtained using invariant imbedding, but for real time
applications the proposed algorithm should Be used as it
requires the least computer time although the convergence

rate is slower than the invariant imbedding scheme.
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- - [P)
Time -

(sgc) _ .

Extended Second Order| Invariant |Proposed
Kalman Filter imbedding Algorithm

10 | "s5.92 x 1072| 6.12 x 1072| 1.03 x 1077| 1.03 x 1077

30 3.90 x 10°2| 5.96 x 1072 1.05 x 107 | 1.05 x 1077

50 5 01 x 102 .91 x 1072 1.03 x 1077| 1.073 x "

70 0.166 x " 5.88 x " 0.92 x " 1.072 x "

90 0.039 x " 5.87 x " 0.80 x " 1.072 x "
110 0.039 x " 5.86 x. " 0.69 x " 1.071. % "
130 0.039 x " 5.86 x " 0.59 x " 1.071 x "
150 0.039 x " 5.85 x " 0.51 x " 1.070 x "
170 0.039 x " 5.82 x " 0.44.x " 1.069 x "
190 0.039 x " 5.70 x " 0.38 x_ " | 1.068 x "_
210 0.039 x " 5.38 x " 0.33 x " 1.067 x "
230 0.039 x " 5.12 x " 0.29 x " 1.066 x "
250 0.039 x " 5.0l x " 0.25 x " | 1.065 x "
270 0.039 x " 4,96 x " 0.22 x " 1.064 x "
290 0.039 x " 4.94 x " 0.20 x " 1.063 x "
310 0.039 x " 4,92 x " 0.18 x " .062 x "
330 0.039 x " 4.91 x " 0.16 x " 1.060 x "
350 . 0.039 x " 4.90 x " 0.16 x " 1.058 x "
370 0.039 x " 4.89 x " 0.13 x " 1.054 x "
390 0.039 x " 4.88 x " 0.12 x " 1.047 x "
410 0,039 x " 4.87 x " 0.11 x " l.035~x*"//
430 0.039 x " 4.86 x " 0.10 x " 1.004 x ",
450 0.039 x " 4.84 x " 0.09 x " 0.902 x."
470 0.039 x " 4.79 x " 0.08 x " 0.804 x "

S s
Table 6.4 i
Trace {[P] (var

oy . .
7/10 ) (Elliptic orbit)

AN



.are very accurate, many data are avallable, and the fllter_

6.5 Concluding Remarks.
" Divergence prcblems have-been particularly acute\in'

orbit determination.. This is because measurement devices

is requirmﬂ to operate over many revolutions of theh
satellite. orbit. N

The main objective of this research is to implement
am. algorithm for state. estimation that converges
inde?Endently of the a priori assumptions.

On the other hané it is, of course, necessary that
the time required to comcle;e thehcbmputation cycle be less,
on the average, than the time interval between successive
obeervapions. i |

The above simulation study shows that the extended

Kalman filter is very sensitive to the noise statistics and

“the initial error covariance matrix P

The second-order fllter‘lmproves the performance uy
includlngA second—orderf derlvatlves in the flleer
computations. The second-order terms appear as phxx in the
case of measurement nonlinearity, and‘as Pfxx in the case of
system nonlinearity (where the suffix xx denotes second
dérivarives with respect to.x). ' If these nonlinear terms

are large the nonlinearity effects are significant. Now,

the second-order filter is useful and effective when non-

-

" linearities are large because hxx and Exx are large.

126
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~ .
However, the .performance of the filter is.not as excepted
when P is large.  Significant errors can be ‘made in
‘prediction over long time intervals which. 'have a biasing

effect on the estimate. It was demonsﬁrated experimentally

that measurement nonlinearities are significant when the

noise variance R is, small while the error variance P is
relatively large. Becausé, thé choice of R and P, is based
on ad hoc assuﬁptions the ‘second-order estimatioh scheme has
its limitations.

The invariant imbedding algoriﬁhm performance 1s as
expecﬁed theoretically, convergence is obtained independent
‘of noise statiétics and a priori assumptions.

The pf&éosed algorithm has the above advantages of
the invariant imbedding approach and regquires much less
comﬁhter time. The 'comquatién time for each sampling
period of 10 sec was found t6 be = 1/4 sec which makes it
“applicable for real-time operations.

Some of the results outlined ip this chapter are

published in referencé [62]).
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" CHAPTER 7
" CONCLUSION

-

The motivation for this eork centres on}the necessity
to determine, or estimeie, present and fuﬁure‘values of
system state variables from noisy_observeﬁiens of the
output. This problem is of central importahce in aerospace
applications. Although -filtering theory has been applled 1n
several fields, it is probably fair to say that most of the
appllcatlons ‘have been made by the aerospace community,
which contributed 51gn1f1cant1y to applylng the theory to
practlce.

The problem of estlmatlng the orbital states of a
communlcatlons, satelllte from ground-based measurements,
which are contaminated with noise, 1is complicated by the
nonlinearity of the dynamic eqeations as well as lack, of
prior knowledge of the noise statistics.

The extended Kalman filter has been successfully
applied in several aerospace applieations, especially orbit
@etermination problems. The £ilter algorithm does not.
involve second partial derivatives, and is therefore

recommended on the basis of simplicity and smallest
L

computational requirements. Since the system is usually an
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approximationA te the  physical situatien, the model
" parameters and noise statistics are seldom exact. It is
clear that an inexact. filter model will degrade the filter
performance and cause divergence.

If nonlinearities are significant, however, filter
performance can be ‘improved by incldsion of second-order
effects. The price of this improvement is that the second-
order filter is more _compiicated. On the basis of the
simulation results given inrthis thesis, one can queetion
the Practical usefulneeﬁ of nigher-order approximations,:
especially in problems of high dimension (for example 7).
IFurthermore, it 1is questionable- whether higher-order
approximations would improve performance in cases where the
extended Kalman filter diverges.

The problems that might occur when using the extended
Kalman filter or the second-order filter are mainly due to
the lack of knowledge of noise statlstlcs. The superiority
of the invariant imbedding approach lies in the fact that it
provides a sequential nonlinear estimator which does noti
depend on a priori noise statistics. Again, in -this case,
performance 1is dmproved at the price ot more computatione
when compared to the extended Kalman filter.

In the final analysis, the performance of the
previously mentioned filters must be tested by simulation.

-2

The so called "best performance"” means fast convergence with
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simple computations. - So, 'according to the simulations
results obtained no filter can befrecommended on the basis
of superior éerformance. |

In view of the above observationé, confirmed by the
results of simulation, a new algorithm is presented which
combines invariant imbédding-with stochastic appfoximatidn.
It 1s proposed to use invariant imbeddihg to determine the
initial gain matrix and then apply stochastic approximation
to track changes in thg gain matrix thch ﬁill bring further
improvement. This algorithm is ‘found to be computationally
more effleient relative to the three other schemes. It
requires less computing Eime than the extended Kalman filter
and is independent of initial assumptions and noise
statisticé. The only limitation to the use of this
algorithm 1s the slow convergence.

One of the main advantages of the proposed algorithm
is its feasibility for real-time operatiops. So far, the
program has been tested with actuai tracking data of the
communicaﬁions satellite to evaluate ﬁhe time it takes per
iteration-relativé to the time interval between successive
observations. According to - the results obtained the

algorithm can be used for real-time tracking.
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Suggestions for Future Research - ‘ .

l. -

The covergence of the algorithm combining invariant
imbeddingiand stochastic approximation has not been
theoretically justified. Whén‘these two estimators
are treatéd separately, the ¢onvergence of each is
theoretically oved. However,, the convergence of
the overall ess?;gfgr'is not obvious because of their
interdependence. Thié aspect has to be further
inveétigated.

At present there is no rational for the choice of the

gain factor y(k) in the" stochastic approximation.

Instead of ad hoc assumptions a computational scheme

should be devised for on-line prediction of this

gain.

An in-depth study of the second-order approximation
algorithms and their advantages over first-order
filters is a good area for investigation.

Adaptive schemes for noise statistics computations
can be combined with any general filtering algorithm
to avoid the sensitiﬁity to assumed a priori
statistics. Bowever, a time consuming adapt;ve
scheme 'is not desirable for real-time operations.
This computational aspect ¢ould be further

investigated.
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APPENDIX A
- . . THE INNOVATIONS THEOREM
“ﬁ‘- )

The ptocess E(*) defined by

Et = yt -z, = z, + Ve 0 t<T, | (A.1)

where z, = Htxt, is the innovations process of Y-
The innovations process £(*) is a white noise process

with the <ame covariance as the observation error v(*),

ite"
1 ' ]
E{etgs} = E{vtvs}, 0 < t<s<T. (A.2)

Also y{*), &E{*) can each be obtéined from each other through
a causal and causally invertible linear operation.
Proof
The proof is divided into two parts. First we show .
. that g(+) is white‘and has the same covariance as v(*) and
seconaly the existence of a causal and causally invertible

linear operator between g(*) and v(*) is proved.

~
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I. Let t> 5. Then ¢
: " . - t l. ’ .
BIE T} = El(zybvy) (Zghvg) 1 .

~
T

' oo t LI . 1
E{z z } + E{z v } + E{v .z} + E{v v ]

M

- - 0y ~ g . '
.E{zt(zs-zs) } + E{ztvs} + E{vtvs}

-~ ' N | -~ ' v .
@ = E{z,25} - E{z} 25} + E{zyvgl + E{vyvgl ‘Ehb

o~ ' o
ngt(zs+vs) } + E{vtvg}

A%
e

=0

Therefore,

L
E{Etss} = E{vtvé} = R §(t~s)

*

It can similarly be proved for t < s. For t ='s, however,
' ) . T . ' . N - co I - -
since E{vtvt} is infinite, E{vtvt} must also be infinite.

N

Hence, §{*) is a white noise process. .
II. Let (t,s) denote the optimum causal filter that
operates on'{ys, s < t} to give z(*), i.e., let
- t
0 .
where H denotes the integral operator with kernel hee, )

(volterra kernel). -
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SYtts‘[I-H]y
where I is the identity operator with kernel 6(t—s)

.

The problem is to show that [I-H] is an invertible

'operator.l Since (I—H) is causal, therefore its inverse (lf
its exieté) 1§_alsa causal. i

Now, (i-H)? = I + H -* H2 + aee (Newman Series)
'exists whenevér H has -a square 1ntegrab1e kernel functlon.

~

The proof is thus complete.

AR
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"APPENDIX B

QEFINITION OF THE EULER PARAMETERS

The rotation of ‘a triad set can be generated: by a
scalar rotation about a ‘directed line from the origin of the
inertial space. This rotation is defined by the unitary
quatérnion |

q =ty + gk ¥ 9pty ¥ 93ty , © (B.d)

-

where the set of four Euler parameters

- - Y

!.lW cos a sin u/2

12 cos B sin u/2 :

£3 = lcos vy sin u/2 ) ‘ (B.2)
tz4‘ .L: cos u/2-

consists of real scalars such that
1+ A T 1 (B.3)

The spherical angles (a,8,y}) in equation (B.2) are
shown in_Fig. B.l. As an alternative, the Euler pafameters

" may be defined in terms of the Euler angles (a,i, ul) shown
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‘ih:Fig. B.2, in accordance with -

rl.l-" (sin
zzl- sin
tq| cos
oy  cos

The variation of the Euler parame

'{/2 sin(a-ul)/2

i/2 sin(a+ul) /2

1/2 cos(a+ul) /2

[

i/2 cos(a-ul)/2| -

(B.4)

ﬁers'with‘angﬁiar velocity

of rotation (W) of the triad set-is defined as follows:~

L)

Q.nlO-
er|
]

14\1

r
0 W
z
-W z 0
WY -Wx
—Wx' —Wy
L .

(B.5)

In matrix notation, a coordiante triad [xlBody is

rotated from an 1nertia1.reference triad [x]Inértial by a

transformation ([E]

such that

[x]Body = [E] [X]InertiaI"

where
| '
¢
- .

//

£12 §13
822 23
32 £33

(B.6)

" (B.7)
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Figure B.1l "'

Geometry for the Euler parameters

Figure B.2

Euler angles
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and
&

D R |
11 —.l - 2(ay + %3) . | 3 L)

2(1152 + 1324)

]

TEy3 = 2(2pk3 ~ fpty)
€21 = 2k‘1‘2 - t324)
fgp = 1 - 201 +13)

CBp3 T 2apty toagty)
£y = 2(1113 +ohoky)
E3p = 201503 ~ 11ty

2
5)

2
l - 2(1l + %

Note that the tranéformgtion matrix in equation (B.5)

is skew-symmetric.



