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Abstract

Within this study, low order finite elements were applied to problems with

(near) incompressible material behaviour. Solutions were obtained for creep,

using transient and dynamic iterative solvers with volumetric strain enhance-

ment algorithms, as well as a flow solution obtained using the fractional step

method. To enhance creep algorithm performance, a radial return procedure

was implemented.

Preliminary results show that the fraction step method and dynamic itera-

tive solver implementing dynamic relaxation provided adequate results, while

other methods required improvement. Volumetric strain enhancement was in-

sufficient to correct pressure drift when using transient analysis. The fractional

step method was able to provide good results, but is sensitive to time step and

initial stress field.

A thorough evaluation of convergence criteria was conducted through track-

ing of norms and errors. The trend of norms was used to evaluate the number

of iterations required to reach steady-state. The solution acquired from the

method of successive approximations was improved and quality pressure plots

were obtained, in contrast to the experience from the preliminary analysis.

An analysis of the Barnes ice cap was conducted to verify formulation

performance in the context of a real problem. Dynamic relaxation provided

results closest to the measured trend and values.
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6.15 ēp vs iteration for α = 0.1, cubic creep . . . . . . . . . . . . . 83

6.16 |R| vs iteration for α = 0.01, cubic creep . . . . . . . . . . . . 84
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Chapter 1

Introduction

Problems associated with incompressible low order finite elements have been

under scrutiny for many years, but universal solutions remain scarce. For most

studies, procedures have been developed to overcome some difficulties, but im-

provements continue to be sought. Many numerical procedures deviate from

what could be considered acceptable practice. Consequently, further investi-

gation of the methods used to improve incompressible behaviour is required.

Previously, at McMaster, considerable work was completed with regard to

time–dependent deformation, in particular creep of soils, rocks and ice masses.

The quality of these solutions is not clear due to pathological problems that de-

velop when the solution is dominated by incompressible creep strains. Methods

have been developed since this earlier research to overcome problems. Two so-

lution enhancement methods include the introduction of strain enhancements

or smoothening [1, 20, 7] into an existing algorithm and the use of the frac-

tional step method [39, 22, 41]. The primary goal of these techniques is to

subvert problematic issues surrounding incompressible behaviour.
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1.1 Purpose and Scope

The primary objective of this work is to compare previous and current meth-

ods of dealing with incompressible flow when using low order finite elements,

and to develop a method to help ensure a quality solution is achieved. In or-

der to investigate the effects of incompressibility in an extreme case, a fully

incompressible domain (problem area) will be used. The requirement of an

incompressible domain makes creep analysis an ideal choice, as creep flow of

many common materials is incompressible. A working assumption is that if

the pathological problems can be examined and corrected for extreme cases,

problems containing zones of creep or plastic flow can be handled readily.

To find the optimal method for dealing with incompressibility, the frac-

tional step method will be used alongside traditional transient creep formu-

lations with strain enhancement algorithms. The performance, as well as the

results obtained through these methods, are analysed thoroughly.

This work is comprised of 8 chapters. Chapter 2 contains a literature review

with respect to pressure modes, creep analysis, and the fractional step method.

Chapter 3 presents the governing equations for creep flow and incompressible

flow using the fraction step method. Chapter 4 contains preliminary analysis

using the formulations presented in Chapter 3. Chapter 5 presents an alter-

nate creep formulation that borrows from plasticity formulations. Chapter 6

presents a convergence criterion selection guide. Chapter 7 applies all previ-

ous work completed to a real problem, and Chapter 8 presents the concluding

remarks.

2



Chapter 2

Literature Review

2.1 Spurious Pressure Modes and Locking

There are two well documented pathological problems that exist when using

low order finite elements for problems approaching incompressibility. These are

the development of spurious pressure distributions, and locking of elements.

Locking can occur either through bending or volumetric constraints, but this

study focuses only on volumetric strain locking. The root of spurious pres-

sure distributions is the presence of a singularity, or near singularity, of the

constitutive matrix. Figure 2.1 is an image demonstrating what a mesh with

spurious pressures and locking typically looks like; note the extreme values

and polarity of pressures (mean stresses). Large jumps in pressure side by side

are known as checker boarding, due to the similarities to a checker board when

using quadrilateral elements. The velocities associated with creep also become

increasingly small due to locking, which often accompanies spurious pressures.

3
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Figure 2.1: A locked mesh with “checker boarding”

Regardless of the limitations imposed by incompressible or near incom-

pressible conditions, many researchers prefer to utilize low order elements for

their computational efficiency when dealing with large deformations and adap-

tive mesh procedures. The existence of pressure modes leads to meaningless

results. There have been many attempts to mitigate the undesirable predictions

through the application of various penalty methods or reduced integration, as

well as the fractional step method, but many of these solution schemes are

not desirable due to the artificial nature of the mathematical “tricks” that

are employed. To examine the problem in detail, eigenvalue analysis can be

conducted.

Eigenvalue analysis on an element stiffness matrix can be conducted to

show when spurious modes are generated. An example is included that was

presented by Stolle [33]. Using a mixed formulation, with pressure and dis-

placement (or velocity) degrees of freedom, the system of equations describing

the physics is of the form

4
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K Q

QT −C


 a

p

 =

 f

0

 (2.1)

where K represents the stiffness of material due to deviatoric stress, C depends

on the bulk modulus, and Q is a gradient that yields volumetric strain when

operating on displacements a and p is pressure. Consider a 3-noded element

with 6 displacement degrees of freedom. When calculating the eigenvalues for

the matrix of Eqn. (2.1) there are 3 positive eigenvalues, which correspond

to the modes of deformation that result in strain energy, 3 zero eigenvalues,

that correspond to the rigid body modes, which are eliminated by appropriate

kinematic boundary conditions, and 1 negative eigenvalue for each pressure

degree of freedom. Assuming an elastic modulus E = 1000 MPa, and nodal

coordinates (0,0), (2,1), and (1,2) for nodes 1,2 and 3, respectively. Eigenvalue

analysis was conducted considering the effects of Poisson’s ratio (ν) on the

eigenvalues for pressure degrees of freedom. Two finite element possibilities

were considered: a linear element with constant pressure, and one with linear

variation of pressure. The results of the eigenvalue analysis are shown in Fig.

2.2.

5
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Figure 2.2: Eigenvalues (λ) for linear triangular finite elements

The eigenvalues corresponding to displacement modes were constant for

all analyses. As for those corresponding to pressure modes, it is observed that

they remain constant for the constant pressure element, but vary as functions

of ν for the linear pressure element. The significance of this is that when

ν → 0.5, 2 additional zero eigenvalues (pressure modes) associated with the

pressure degrees of freedom appear, which present problems. The mechanism

for the pressure mode lies in the incompressibility condition. The singularity in

the constitutive matrix occurs as the bulk modulus approaches infinity, with

its inverse approaching zero. Given that stresses are related to strains, the

interpolation of pressure should be one order less than that of displacement (or

velocity), unless some compressibility is available. This restriction is captured

by the Babuška-Brezzi (B-B) stability condition for mixed formulations [39].

The generation of a spurious pressure distribution is often accompanied

with locking. Referring to Fig. 2.3, where linear elements are fixed along the

6
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base, displacement of the free node is such that it can only be parallel to the

base to maintain constant volume. Since elements A and B do not share a base

of common orientation, neither element can deform. Any attempt for this node

to displace will be countered by the generation of a pressure of the magnitude

required to prevent this displacement.

Figure 2.3: Two element assemblage that will exhibit locking within incom-
pressible behaviour

There are two main approaches to accommodate incompressibility. One is

to introduce a volumetric strain enhancement, while the other is to provide

“algorithmic compressibility”, via the fractional step method. The strain en-

hancement approach is introduced in a creep formulation in this work, with

the fractional step method being used within the context of a flow formulation.

2.1.1 Smoothening to Prevent Volumetric Locking

The smoothening method used in this study follows that proposed by Detour-

nay and Dzik [7], which they refer to as the nodal mixed discretization method.

Mixed discretization refers to the deviatoric and volumetric tensors being sep-

arated. The relaxation imposed is such that the deviatoric components occur

on the element level, while the volumetric components are computed for an

7
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assembly of elements. The main assumption is that any smoothening should

leave the deviatoric strain rate in an element unchanged. When using this tech-

nique an explicit dynamic time-stepping algorithm was used. Given the nature

of such an algorithm, an element at the “wave front” temporarily has some

“compressibility”. Given the nodal velocities, strain rates can be calculated.

In the smoothening technique a weighted average of volumetric strain rates at

the nodes is calculated based on volumetric strain rates within an element.

ε̇nv =

mn∑
i=1

ε̇veV
e

mn∑
i=1

V e

(2.2)

The superscripts ‘n’ and ‘e’ denote nodal and elemental values, ε̇v is the vol-

umetric strain rate, V is the volume, and mn is the number of elements sur-

rounding the node. The nodal values are then used to determine the average

volumetric strain rates in each element via

¯̇εv =
1

d

d∑
n=1

ε̇nv (2.3)

where ¯̇εv is the averaged volumetric stress of the element, and d is the number of

nodes per element. Once the average volumetric strain rate has been attained,

the total strain rate is given by

ε̇ = ε̇d − ε̇ev
3

I +
¯̇εv
3

I (2.4)

where I is the matrix form of Kronecker’s delta. Figure 2.4 provides a graph-

ical representation of this technique. For example, the area weighted nodal

volumetric strain at node 1 is calculated given volumetric strains in elements

a,b,c, and d. Similar calculations are repeated for all other nodes, and then the

8
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average elemental value for element c is obtained by averaging nodal volumes

1,2, and 3. It is important to realize that this smoothening is applied on the

incremental level.

Figure 2.4: Four element assembly

This smoothening technique can be viewed as representing an explicit ver-

sion of a mixed finite element approach that has volumetric strain degrees of

freedom, in addition to displacement (or velocity) degrees of freedom. Two sets

of equations are solved: momentum, and volume change. First the momentum

equation is solved to get an incremental displacement, followed by the equa-

tions for discretized volumetric strain increment (rate). The equation for the

volumetric strain rate degrees of freedom is given by

∫
δε̇v (ε̇ev − ε̇v) dV = 0 (2.5)

with ε̇v = Na or

9
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∫
NTNdV ε̇nv =

∫
NT ε̇evdV (2.6)

where, as before, ε̇nv and ε̇ev are the nodal and elemental volumetric strain rates,

respectively. Equation (2.6) uses a stepwise uncoupled volumetric strain rate

of an element to calculate the nodal strain rates. These values are then used

to determine the total strain rate within the element as ε̇→ ε̇− I
3
ε̇ev + I

3
N′ε̇nv ,

where N′ is N at the centroid of the element. In essence, the volumetric strain

rate obtained from the velocity field is replaced by an average smoothened

volumetric strain rate while leaving the deviatoric strain rate unaffected. This

scheme is identical to that of Dzik and Detourney [7] when the left hand side

of Eqn. (2.6) is replaced with a “lumped mass” equivalent.

Bonet and Burton [1] used a linear tetrahedron together with an explicit

dynamic solver for incompressible materials. A modified nodal volume was

used to find a smoothened pressure for each element. The use of an explicit

dynamic solver also allows for additional compressibility. Micheli and Mocellin

[20] presented an explicit formulation using a linear tetrahedron for simulation

of high speed forming. This element was shown to be efficient when using adap-

tive non-structured meshes. In the authors’ words (Micheli and Mocellin) the

procedure is a simple method inspired by the average nodal pressure method

[20]. Volumetric strains were smoothened in this study, using a Jacobian ma-

trix to capture volume change. This method was noted to be successful for

volumetric locking, but not for bending locking.

10
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2.2 Transient Creep Analysis

Creep can be described as the time-dependant deformation of a material under

constant stress [19]. In addition to time and stress level, creep also depends

on temperature. The time dependency is sometimes replaced by a creep strain

dependency to form an equation of the state ε̇c = f (σ, εc, T )[19].

Creep is generally separated into 3 phases: I-primary, II-secondary, and

III-tertiary (Fig. 2.5), with tertiary creep often ending in creep rupture. The

analysis within this paper focuses on secondary creep, also referred to as steady

state-creep. With the assumption of steady-state, the creep strain rate is in-

dependent of time, assuming that stress and temperature do not change. It is

important to note that a material does not necessarily go through all three

stages, depending on the stress level. Creep rate generally increases with stress

level, as does the probability of creep failure.

Figure 2.5: Creep stages and behaviour

Within the McMaster context there has been a fair deal of research in creep

mechanics. Emery [9], in his research at the University of British Columbia,

worked with various creep laws and formulations using linear elements. The

scope of the research dealt with both steady-state creep and creep rupture

11
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within the context of undrained soil response. Later, under Dr. Emery’s su-

pervision at McMaster, Hanafy [12] went on to model excavation of tunnels

within squeezing rock. Creep was analysed before and after the installation of

tunnel liners. The joint type (rough or smooth) between the lining and the

rock was investigated to study the influence of interface type. Linear elements

were once again used.

Within the context of glaciology, Nguyen [21] studied the effects of various

creep laws, the use of joint elements to model basal sliding and failure, and

tensile cracking within an ice mass. A sliding layer was introduced above the

base, comprised of a material with a greater flow rate, along with joint ele-

ments, to allow concentrated basal sliding. Linear elements were used for this

analysis. Hanafy [13] also modelled the Barnes Ice Cap, in which the focus was

the steady-state solution. The initial analyses showed that with the creep laws

used, the creep stresses were too high, but it was pointed out that this could

be refined. Van Egmond [8] compared the effects of initial stress distribution

on creep flow, as well as temperature. It was concluded that gravity loading

may not provide an accurate starting point for creep analysis as “glaciers may

have a ‘memory’ of previous stress states imposed on the elastic state of stress

under gravity” [8] . Chan [3] studied the creep and fracture mechanics of ice

flows. Preliminary results for the fracture of ice were obtained showing that

redistribution of stress around a fracture was unchanged after approximated

48 days, and that there are significant changes in the stress distribution before

cracking. Rate of crack propagation was shown to be sensitive to the angle of

the slope. Further study of ice fracture was recommended.

Within the scope of this work, Stolle [30] further studied the Barnes ice cap,

this time to model instability or ’surges’ of the ice mass. Stolle noticed that

12
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with the use of low order elements, the prediction of the pressure field was not

accurate, and that the velocity locked once steady state creep was attained. To

remedy this, higher order mixed elements with velocity and pressure degrees

of freedom were used to check pressure fields and find solutions to steady state

creep. As the creep does not depend on pressure distribution, and glacier flow

tended to be dominated by shear deformation, this was not considered to be

overly important to the problem when addressing the instability condition.

The sensitivity of creep to boundary conditions was also tested. Killeavy [18]

further studied this ice mass, as well as Mount Logan, in order to identify flow

lines (particle paths) and isochrones, that were used to identify the relative

age of the ice. In his research, higher order elements were used.

2.2.1 Creep Solution Methodology

For the works presented that used low order elements, the basic approach was

to use an initial strain formulation based on an initial stiffness procedure [32].

Nonlinear equations often have the stiffness matrix as a function of displace-

ment, i.e.,

K(a)a = F (2.7)

in which K(a) is the displacement dependent stiffness and F is the applied

force. By assuming that the stiffness at the beginning of the problem (K(a∗))

is valid for the duration of the analysis, calculations are simplified, but rate of

convergence is decreased (initial stiffness procedure).

Defining the residual load vector (R = F−K(a∗)), its values at time tn+1

13
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are

Rn+1 = Fn+1 −
∫
V

BTσn+1dV = 0 (2.8)

where σn+1 = σn + ∆σn, in which σn is a known stress and ∆σ is a stress

increment that one wishes to calculate. Through use of the additivity postulate,

∆ε = ∆εe + ∆εc, where εe is the elastic strain and εc is the creep strain, the

stress increment is given by

∆σn = D (∆ε−∆εc) (2.9)

where D is the linear elastic constitutive matrix. Assuming constant loading

and relating strain increment to displacement increment ∆a via the strain-

displacement matrix B

∫
V

BTDBdV∆an = F−
∫
V

BTσndV +

∫
V

BTDεcndV (2.10)

which can be reduced to

K∆an = Rn +

∫
V

BTDεcndV (2.11)

with K being the “elastic” stiffness matrix. It is important to note that as the

residual load approaches zero, the creep loading (
∫
V

BTDεcndV ) will continue

to drive the system. With respect to the previous sequence of equations, the

initial strain method follows
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1. Determine initial stresses and loads.

2. Given σn, evaluate ∆εcn.

3. Find ∆an: K∆an = Rn +
∫
V

BTDεcndV

4. Determine ∆εn = Ban and calculate the stress increment.

5. Update all quantities, including stresses.

6. Check for convergence to steady state field and repeat from step 2 if
convergence is not achieved.

This approach is general, allowing the engineer to choose any creep laws

or formulation that are applicable for the problem at hand. The freedom of

choice of creep law has been particularly well exercised in the work of Nguyen

[21], where a large number of creep laws were evaluated.

2.3 The Fractional Step Method

The fractional step method has its origins in fluid mechanics, involving the

solution of the Stokes’ flow equations. This method, also called the veloc-

ity correction procedure or operator splitting scheme, provides algorithmic

compressibility that ensures C does not vanish for incompressible problems.

Schneider and coworkers [29] introduced the velocity correction procedure in

1978, based on ideas presented in finite differences by Chorin [4]. Kawahara

and Ohmiya [17] also presented this type of formulation. In the early 1990s,

Zienkiwicz and Wu [41] demonstrated that it is possible to introduce algorith-

mic compressibility in various ways. The velocity correction method has also

been adapted for soil mechanics; for example, by Pastor et al. [25], as well as

by Huang and coworkers [15]. The necessary change for soil mechanics is to
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introduce the concept of effective stress and pore pressure, opposed to devia-

toric stress and pressure (mean stress) that is used for fluids or incompressible

solid formulations. Various other papers presenting similar methods are also

available [38, 23, 36, 39, 40, 22, 16]. This family of formulations uses equal

order of interpolation for displacement (or velocity) and pressure.

2.3.1 Example Fractional Step Formulation

Given that there are various versions of the fractional step method, the details

of which change slightly, it would be prudent to examine a formulation that

differs from that presented later in this work. The formulation to follow is taken

from Zienkiewicz and Wu [41]. Adopting indicial notation, the momentum

balance and continuity equation are given by

du

dt
≈ un+1

i − uni
∆t

=
∂τnij
∂xj

+
∂(pn + θ2∆p)

∂xi
(2.12)

1

c2

dp

dt
≈ 1

c2

∆p

∆t
=
∂((1− θ1)unj + θ1u

n+1
j )

∂xj
(2.13)

where the superscript ‘n’ denotes the iteration, τij the deviatoric stresses, p the

pressure, c the wave speed, and u the velocity. Parameters θ1 and θ2 control

whether the algorithm is implicit or explicit. Values of θ1 = 1 and θ2 = 0 are

used here to simplify further equations.

The operator split, which is characteristic of this type of formulation, is

introduced next. The purpose of this split is to subdivide the momentum

equation into independent deviatoric and spherical parts.

u∗i − uni
∆t

=
∂τnij
∂xj

(2.14)
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un+1
i − u∗i

∆t
=
∂pn

∂xi
(2.15)

where u∗ is a predictor velocity that ignores the effects of pressure. In the next

step we differentiate Eqn. (2.15) with respect to xi

1

∆t

(
∂un+1

i

∂xi
− ∂u∗i
∂xi

)
=

∂

∂xi

∂

∂xi
pn (2.16)

which is then substituted into the continuity equation, to eliminate un+1
i .

1

c2

∆p

∆t
=

∂

∂xi

∂

∂xi
pn − 1

∆tint

∂u∗i
∂xi

(2.17)

The rate of change of pressure now depends on the pressure gradient. These

gradients stabilize the solution. Furthermore, Eqns. (2.14), (2.15), (2.17) are

then ready to be discretized using the Galerkin method for the finite element

implementation. As the emphasis is on a steady-state solution, it was observed

by Zienkiewicz and Nithiarasu that ∆tint (Eqn. (2.17) R.H.S) need not be the

same as ∆t (Eqn. (2.17) L.H.S)[23]. Increasing ∆tint by a factor of 2 was found

to improve the pressure field. Nithiarasu improved the algorithm by adopting

an artificial wave speed in the continuity equation (Eqn. (2.17)), that depends

on size of element and shear modulus [22]. It is important to realize that the

success of the scheme is attributed to the iterative nature of the algorithm

and the inclusion of the pressure gradient term when updating pressure. The

procedure adopted in the current study is presented in Sec. (3.2.3).

2.3.2 Justification of Equal Order of Interpretation

An advantage of the fractional step method is that it allows the mapping of

pressure and velocity to be of the same order of interpolation. While this is seen

as advantageous, there is an inconsistency given that the stresses are constant
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for linear displacement (velocity) elements. The rational behind choosing to

work with this equal order of interpolation, despite violating the Babuska

Brezzi criterion, can be found in the text by Zienkiewicz and Taylor [39], and

is briefly presented in the following text.

When using a standard formulation, the system of equations in matrix form

appears as below.

 A Q

QT −C


 v

p

 =

 f1

0

 (2.18)

where A =
∫

BTDdBdΩ; Q =
∫

BTmNpdΩ; C =
∫

NT
p

1
K

NpdΩ. Observe that

C is in terms of the bulk modulus, and therefore as ν → 0.5, C will approach

zero. When C → 0 spurious pressure distributions occur as the matrix becomes

singular, causing the generation of additional zero eigenvalues. In contrast the

fractional step method has the effect of adding a non-zero term to the diagonal

[39], algorithmically, yielding a steady state solution that is consistent with the

matrix equation

 A Q

QT ∆t(QTCQ− θH)


v

p

 =

f1

0

 (2.19)

It should be noted that the term on the diagonal no longer depends on the

bulk modulus alone, due to the presence of H =
∫

BT
p BpdΩ. This means that

the term will not vanish as ν → 0.5 and the rigid body modes remain intact.

Although there are slight differences between the form of presentation chosen

by Zienkiewicz and Taylor [39], and the presentation for this research, what

is important is that there is effectively no zero term on the diagonal of the

matrix, so that additional energy free deformation modes are not present. It
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should be noted that Eqn. (2.19) corresponds to a quasi-static solution.

2.4 Material Properties of Ice

To make this body of work complete within the context of glacier flow, typical

values for material properties are included. The elastic modulus ranges from

8687–9307 kPa for dynamic conditions [21], and was reported as 5998 for static

conditions [11]. Poisson’s ratio was similarly reported as ranging between 0.31–

0.365 and 0.5 for dynamic and static conditions, respectively [21]. The density

of ice was found to range from 0.85–0.91 g/mm3 [21] and the shear strength

for natural ice ranges from 0.97–1.08 MPa [30].
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Chapter 3

Fully Incompressible Flow

3.1 Introduction

When using the finite element method, situations arise where it is necessary

to model a slope or foundation in which the material response is (near) incom-

pressible. Often the finite elements used for such problems are of higher order.

For such elements locking is avoided as there are more degrees of freedom

per element, which increases the flexibility of the element, while maintaining a

constant volume. Nevertheless, low order elements are preferred for large defor-

mation modelling or adaptive finite element schemes. This is particularly true

for extensions of FEM to 3 dimensions [36, 25, 41]. The weaknesses associated

with these elements are the development of spurious pressure distributions and

locking, as indicated previously. Two approaches have been used to mitigate

these problems in this work. Alternative approaches, which were not evaluated

in this study can be found in the following [6, 2, 35, 24, 28]

The goal of this chapter is to present two algorithms for predicting (near)

incompressible flow behaviour. The first approach is the method of successive

approximation starting from the elastic solution, where the material is allowed
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to creep until the ‘steady state’ solution (or flow solution) has been obtained. In

order to eliminate locking and spurious pressure distributions some ‘artificial

compressibility’ is added to the creep law, as well as the smoothening of vol-

umetric strain increments. The other formulation considered is the fractional

step method (FSM) presented by Nithiarasu and Zienkiewicz [40]. Nithiarasu

extended this procedure to the solution of solid mechanics problems, taking

advantage of the fact that the form of Stoke’s equation for creeping flow is

identical to that of an isotropic, elastic solid [22].

The motivation behind testing the various formulations for dealing with an

incompressible low order element lies in the extension of regular FEM to the

Material Point Method (MPM). The mapping for low order elements is much

simpler, and therefore less problematic. Before carrying out the extension, it

is necessary that the pressure and element locking difficulties are properly

addressed.

3.2 Solution Schemes

3.2.1 Governing Equations

Before the details of the solution schemes are disclosed, the governing field

equations for the formulations are presented. For the creep algorithm, a La-

grangian formulation is used, while the fractional step method, being rooted

in fluid mechanics, uses a spatial description of equilibrium.

The Lagrangian Formulation

In the Lagrangian formulation, the calculation of a derivative is based on

using the initial configuration as a reference, in which each particle is tracked
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explicitly, x = u + a; u = u (a, t), with x being the final position, u being the

displacement, and a being the initial position, and the dot notation implies

the time derivative.

LT
aσ + ρg = ρü (3.1)

for a 2-D formulation, the operator LT
a =

 ∂
∂ax

0 ∂
∂ay

0 ∂
∂ay

∂
∂ax

, ρ the material

density and g the gravitational acceleration vector. The total stress at a point

is decomposed according to σ = S+mTp, where S is the deviatoric stress, p is

the spherical stress (also referred to as pressure), and m is the vector form of

Kronecker’s delta (m = (1, 1, 1, 0)T ) . Given that during Lagrangian analysis

the reference configuration is normally updated, and that deformations relative

to the updated configuration are small, it is generally assumed that ∂
∂a
≈ ∂

∂x
.

It follows that LT
a ≈ LT .

The equation of mass balance is given

Ṁ =
d

dt

∫
ρdV = 0 (3.2)

When mass (M) is conserved, i.e., none is gained or lost, Eqn. (3.2) is satisfied

implicitly. The strain is given by ε = Lau, with total strain being defined as the

sum of the elastic and creep strains (ε = εe + εc). As creep strain is presented

in more detail in Sec. (3.2.2), one proceeds by assuming elastic behaviour, with

the constitutive equation of the form

σ̇ = De(ε̇− ε̇c) (3.3)

in which De is the linear elastic constitutive matrix, which for 2-D plane strain
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applications is given by:

De =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0 2(1− 2ν)


(3.4)

Stress and strain rates are expressed in their vector form as σ̇ = (σ̇xx, σ̇yy, σ̇zz, σ̇xy)

and ε̇ = (ε̇xx, ε̇yy, ε̇zz, γ̇xy), respectively. It should be noted that the mathemat-

ical definition of shear strain is not used in Eqn. (3.3), and in its place is

the engineering shear strain (εxy = 2γxy). This definition of strain is implied

unless noted otherwise. As the problems being solved in this study are plane

strain, the out-of-plane strain rates need not be considered explicitly but are

accounted for implicitly.

The Spatial Formulation

In the spatial description of equilibrium, usually used in fluid mechanics, the

mass is moving through space, such that x = u + a and u = u(x, t), where x

changes continuously. In this thesis Stoke’s flow is assumed, in which advection

is assumed to be negligible. The rate of deformation is defined as d = Lxv in

which Lx = L is the differential operator with respect to x and v = u̇. For the

purpose of this study it is also assumed d = ε̇, although strictly speaking, this

is not true. Momentum (Eqn. (3.5)) and mass balance in terms of continuity

(Eqn. (3.6)) are given as

ρv̇ = LTσ + b (3.5)

1

c2
ṗ = ρ∇ · v = ρmTLv (3.6)
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where ρ is the density, v the velocity, L a gradient operator, σ the stress

vector, B the body forces, c the wave speed, and p the pressure. The term on

the right hand side of the continuity equation, can be written as ε̇v = ∇ · v.

The constitutive relation for this formulation is based on the deviatoric

stress being related to the velocity gradient

S = Dfd (3.7)

with

Df =
µ

3


4 −2 0

−2 4 0

0 0 6

 (3.8)

and µ being the viscosity. The vectors for deviatoric stress and rate deformation

are defined as S = (Sxx, Syy, Sxy) and d = ε̇ = (ε̇xx, ε̇yy, γ̇xy), respectively. The

out-of-plane strain rate, ε̇zz = 0 for planar problems.

3.2.2 Creep Flow Analysis

For the analysis of incompressible material three approaches are considered

that treat the material as a creeping elastic solid. The first is the method

of successive approximations (MSA), and uses a standard matrix solver to

calculate the steady-state solution. The second is central difference scheme

(CDS), which adopts an explicit dynamic time stepping algorithm to establish

the steady-state solution. The third is based on dynamic relaxation (DR),

which adjusts the density in the CDS algorithm to accelerate to steady-state

[34].
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Creep Flow Formulation

In this formulation one begins with the constitutive law given by Eqn. (3.3). By

assuming there is an elastic body that creeps, the elastic strain is decomposed

using the additivity postulate such that ε̇e = ε̇ − ε̇c. Within this framework,

the elasticity takes into account the instantaneous response, while the creep

accounts for the time-dependant response.

The creep law used in this work is that of Glen, which states that poly-

crystalline ice obeys a power creep law ε̇c = Aσn [10]. A similar law is used for

multi-axial conditions such that ε̇ce = Aσne where Dorn’s definition of equivalent

stress and strain rate are given by

σe =
1√
2

√
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6τ 2

xy =

√
3

2
STS (3.9)

ε̇e =
2√
3

√
ε̇x

2 + ε̇y
2 + ε̇xε̇y +

(
γ̇xy
2

)2

=

√
2

3
(ε̇d)T (ε̇d) (3.10)

Both of these invariants reduce to the uniaxial form for uniaxial conditions.

When extending the creep law to multiple dimensions, there are three assump-

tions: creep flow is incompressible, creep is independent of the mean normal

stress (independent of the first invariant of stress), and creep strain rate (ε̇C)

is proportional to the deviator stress (S) [19, 9].

ε̇c = λ1S (3.11)

where λ1 is a proportionality constant. Squaring this equation, it follows that

(ε̇c)T (ε̇c) = λ2
1S

TS (3.12)
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Introducing Dorn’s definitions of equivalent strain and stress, in order to ex-

tend from 1D to multi-axial creep, Eqn. (3.12) becomes

9

4
(ε̇ce)

2 = λ2
1σ

2
e (3.13)

Solving for λ1, it can be shown

λ1 =
3

2

ε̇ce
σe

(3.14)

which is substituted back into Eqn. (3.11)

ε̇c =
3

2

ε̇ce
σe

S (3.15)

The creep law can also be developed using an approach attributed to

Perzyna [27], and applied to finite elements following the example of Zienkiewicz

and Cormeau [37]. Beginning by assuming the creep flow is proportional to the

gradient of equivalent stress, which acts as a ‘creep potential’, one has

ε̇c = λ2
∂σe
∂σ

(3.16)

squaring this equation, and introducing Dorn’s definitions for equivalent strain

rate

λ2 = εce (3.17)

thus delivering the same multi-axial creep law and showing that

λ1 =
3

2

λ2

σe
or ε̇c =

3

2

λ2

σe
S (3.18)

In order to establish the creep law for use, the relationship between ε̇ce and σe
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must be defined.

A parallel can be drawn between the creep law and fluid flow

ε̇c =
3

2

ε̇ce
σe

S =
1

2µ
S (3.19)

where the viscosity, µ = 1
3
σe
ε̇ce

. It should be noted that when substituting Eqn.

(3.19) into Eqn. (3.3) it is necessary to take into account γ̇xy = 2ε̇xy. Looking

to the governing equation for isotropic elasticity where

εd =
1

2G
S (3.20)

with εd = ε− mεv
3

being the deviatoric strain, one can observe similarities to

the creep law. Again, for the ‘shear term’: γxy = 2εxy = Sxy/G. The difference

is that for ‘a creeping fluid’ the deviatoric stress is related to the strain rate,

rather than to the deviatoric strain as in elasticity. Furthermore, viscosity is

replaced by shear modulus.

The creep law (Eqn. (3.19)) can be expanded as follows, which again makes

use of engineering shear strain.

ε̇c =



ε̇cxx

ε̇cyy

ε̇czz

γ̇cxy


=

1

2µ



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2





Sxx

Syy

Szz

Sxy


or =

1

2µ



2
3

−1
3

−1
3

0

−1
3

2
3

−1
3

0

−1
3

−1
3

2
3

0

0 0 0 2





σxx

σyy

σzz

σxy


(3.21)

As this creep law is incompressible, locking and spurious pressure distribu-

tions are expected. In order to help mitigate this problem, a little artificial
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compressibility (ν = 0.4995, opposed to ν = 0.5) is induced into the algo-

rithm. Borrowing from elasticity, the creep law is written as



ε̇cxx

ε̇cyy

ε̇czz

γ̇cxy


=

1

2µ(1 + νc)



1 −νc −νc 0

−νc 1 −νc 0

−νc −νc 1 0

0 0 0 2(1 + νc)





σxx

σyy

σzz

σxy


(3.22)

with Poisson’s ratio vc → 0.5, which implies incompressible behaviour. Equa-

tion (3.22) is obtained by recognizing the similarities between the creep law

and fluid flow equations, which was alluded to in Eqn. (crplw). As the formula-

tion is plane strain, total strain out of plane must remain equal to zero,(ε̇zz =

ε̇ezz + ε̇czz = 0), as steady state is approached ε̇ezz → −ε̇czz.

The emphasis of this section has been on the relations of creep strain rate

to stress. Next, the method of successive approximations is presented.

The Method of Successive Approximations

The method of successive approximations (MSA) [30, 18] assumes that given

a reasonable starting point, one can iterate to a unique flow solution. When

using the MSA, Eqn. (3.1) it is assumed that ρü ≈ 0. To obtain the discretized

momentum equation a Galerkin method was used. The gradient term was then

integrated by parts, and the displacement field approximated as u = Na.

These operations are summarized as follows:

∫
V

δuTLTσdV +

∫
V

δubdV = 0∫
V

δεTσdV −
∫
S

δuT · tndS −
∫
V

δuTbdV = 0
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where tn contains the surface tractions. Given the following substitutions

δuT → NT ; δεT → BT

the final form is

K∆a = F−
∫

BTσdV +

∫
BTD∆εcdV (3.23)

with B = LN, K =
∫
V

BTDeBdV , F =
∫
V

NTbdV +
∫
S

NTσn dS, vector

∆a = an+1 − an contains the nodal displacement increments, with “n” being

the time step counter. As the residual load (R = F−
∫

BTσdV ) eventually ap-

proaches zero, this implies that any subsequent displacement increments (∆a)

are caused solely by creep. It should be noted that an explicit approximation

is used where ∆εc = ε̇c∆t, with ∆t being the time increment.

As the equilibrium equation has been discretized, a suitable time incre-

ment is needed for the time marching scheme. Given that explicit time march-

ing schemes are conditionally stable [31], the time step for each iteration, as

presented by Killeavy [18], is given by

∆t = α
σe
ε̇ce

4 (1 + ν)

3nE
(3.24)

where factor α < 1 is introduced into Eqn. (3.24) to increase the quality

of solution, as well as the numerical stability. After the time step and the

creep strain increments are calculated, the constitutive relation is applied as

∆σ = D(∆ε − ∆tε̇c) where ε̇c is the creep stain rate from Eqn. (3.22), and

∆σ = σn+1 − σn. The solution scheme begins with an elastic estimate of

stresses and displacements. With the initial elastic estimate the solution follows

the initial strain algorithm presented in Sec. (2.2.1). If the creep strain were
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fully incompressible, the volumetric component would be zero; however, as

compressibility to the creep strain has been introduced, the total volumetric

strain (εv = εev + εcv 6= 0).

This algorithm is based on full matrix solutions, which are solved by de-

composing the global stiffness matrix using the Cholesky method. To relax

the penalty associated with incompressibility, a smoothening algorithm for

volumetric strain is introduced. The smoothening algorithm used has been

presented in Sec. (2.1.1).

The next formulation presented will be a matrix free formulation mak-

ing use of a dynamic algorithm. It provides the foundation for the third for-

mulation, which is identical, with the exception of the addition of dynamic

relaxation.

The Central Difference Scheme

The central difference scheme is obtained by applying a Galerkin procedure to

the momentum balance equation. The sequence of operations follows

∫
V

δuρüdV =

∫
V

δu
(
LTσ + b

)
dV∫

V

δuρüdV =

∫
S

δuT · tndS +

∫
V

δuTbdV −
∫
V

δεTσdV∫
V

NTρNädV = F−
∫
V

BTσdV

M
∆ȧ

∆t
= Fext − Fint (3.25)

in which M =
∫
V

NTρNdV is the mass matrix, ȧ = da
dt

is the nodal velocity vec-

tor, Fext is the external force vector containing body forces and tractions and

is synonymous with F presented in the previous section, and Fint =
∫
V

BTσdV
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is the internal force vector which is adjusted based on the creep strains. Since

an explicit time marching scheme is adopted, a lumped mass version for M is

used. The updated velocity is given by ȧn+1 = ȧn + ∆ȧ. Stresses and displace-

ments are updated similar to what is done for the MSA.

This formulation does not require decomposing the global stiffness matrix.

The left hand side of Eqn. (3.25) is a lumped mass, which leads to scalar op-

erations. Stresses are updated on the element level, making use of smoothened

volumetric strain rates (ε̇v and ε̇cv). Owing to creep being dissipative, no ad-

ditional damping is required when using this algorithm to suppress reflections

from artificial boundaries. The stopping criterion for this formulation is a max-

imum time, such that ∆ȧ→ 0.

The Dynamic Relaxation Scheme

The dynamic relaxation scheme is the same as the central difference algorithm,

but the mass is scaled in each element to accelerate the convergence to the

steady state solution. The density is adjusted so that the time it takes for the

wave to propogate through each element is equal. Referring to the paper by

Metzger and Sauvé [34], it is shown

vc =

√
Ec
ρ

=
βh

∆tc
(3.26)

ρ =

(
∆tc
h

)2

· Ec (3.27)

where ∆tc is the critical time step, Ec is the constrained modulus, and ‘h’ is

the characteristic length of the element, taken as the smallest altitude of the

element. The time step taken is usually smaller than the critical time step,

such that ∆t = β∆tc, with ∆tc being the critical time step, and β < 1 is
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introduced to improve stability or resolution of the solution.

For the elastic solution, a local damping is used in place of viscous damping,

similar to what is used in the commercial program FLAC [5]. This damping

effectively reduces the magnitude of the residual load vector during the solving

process, and applies loading in the direction opposite to the velocity. The

damping is the product of the residual load vector (R = Fext −Fint), a factor

α < 1 and the normalized (unit) velocity vector. The algorithm therefore

becomes:

M
∆ȧ

∆t
= Fext − Fint − αRȧ/ ‖ ȧ ‖

M
∆ȧ

∆t
= (1− αȧ/ ‖ ȧ)R (3.28)

In addition to volumetric strain smoothening presented in the literature review

(Sec. (2.1.1)), volumetric creep strains are also smoothened. The results from

the creep formulations are presented in the next chapter.

3.2.3 Fractional Step Method

An alternate method for dealing with incompressible flows is presented next.

This method is called the fractional step method, or the velocity correction

procedure. The fractional step method (FSM) has its origins in fluid mechan-

ics, but was later employed for incompressible solids; see e.g. Zienkiewicz and

co-workers [38, 40]. The formulation makes use of the spatial description of

equilibrium (Sec. (3.2.1)). This algorithm is not new by any means, variations

of it have been readily available in mechanics journals since the early 90’s

[41, 25, 15]; however, papers continue to be produced on similar algorithms,
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which raises questions about where the issues lie. What is most common be-

tween algorithms is their use as a transient relaxation tool for attaining a

steady state solution. This family of solution techniques uses equal order of

interpolation for velocity (displacement) and pressure.

Formulation of the Fractional Step Method

The formulation begins with the momentum equation (Eqn. (3.5)). The mo-

ment equation is partitioned to yield a predictor velocity (v∗) which ignores

the effect of pressure, and a velocity correction (vc) that takes into account

the effect of pressure on the velocity field. This split in the velocity term is

introduced as it circumvents oscillations which are present with a standard

Galerkin discretization of the momentum equation. The partitioned equations

are as follows:

ρv̇∗ = LTS + ρg (3.29)

ρv̇c = LTmTp (3.30)

With respect to Eqns. (3.29), and (3.30), the partition is defined according to

∆v̄ = ∆v̄c + ∆v̄∗, where the bar represents the nodal velocity vector. The sum

of the equations returns the momentum equation. Equations (3.29), and (3.30)

are then discretized using a Galerkin procedure, where v = Nv̄ and p = Npp̄.

The equations then become

∫
V

NTρN ˙̄v∗dV =

∫
V

NT
(
LTS + ρg

)
dV (3.31)∫

V

NTρN ˙̄vcdV =

∫
V

NT
(
LTmTp

)
dV (3.32)
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The terms containing deviatoric stress on the right hand side must be inte-

grated by parts, yielding

M ˙̄v∗ =

∫
V

NTρgdV −
∫
S

NT · tsdS −
∫
V

BTSdV (3.33)

M ˙̄vc =

∫
V

NT
(
LTmTp

)
dV (3.34)

in which the mass matrix M =
∫
V

NTρN, and ts contains the deviatoric

tractions. The body forces and tractions are contained in F, leading to the

final form of the equations.

M
∆v̄∗

∆t
dV = F−

∫
V

BTSdV (3.35)

M
∆v̄c

∆t
dV =

∫
V

NT
(
LTmTp

)
dV (3.36)

To solve the continuity equation an estimation of the velocity field (vn+1) at

the end of the time step is required. The continuity equation is discretized

using the same procedure as the momentum equations, but with respect to

pressure where δp→ NT
p .

∫
V

δp
1

β2
ṗ dV =

∫
V

(
δp ρ

∂vn+1

∂x

)
dV (3.37)

Mp
∆p̄

∆t
=

∫
V

Nt
pm

TLv dV (3.38)

where the artificial wave speed is introduced as β = 2G/h, ‘h’ being the

characteristic length of the element [22]. While it is not enough to guarantee

stability, the artificial wave speed aids in the convergence of the continuity

equation. The introduction of this term nullifies the time-dependant solution,
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similar to the introduction of dynamic relaxation. The term on the RHS (Eqn.

(3.38)) is the rate of volumetric strain and is simplified as ε̇v = mTLv.

Next, the velocity at the end of the step as is substituted v̄n+1 = v̄ + ∆v̄,

followed by integrating only the term pertaining to the velocity increment by

parts. This integration by parts generates a boundary term with respect to

the normal projection of velocity at the face of the element.

Mp
∆p̄

∆t
=

∫
V

NT
p ε̇

n
v dV −

∫
V

BT
p (∆v∗ + ∆vc) dV +

∫
S

NT
p n ·∆v dS (3.39)

The addition of the velocity correction (∆vc) to the right hand side is ben-

eficial in stabilizing the algorithm. As ∆vc = ∆tint

ρ
LTmTp, the gradient of

the pressure field is introduced to the continuity equation. The effect of the

pressure gradient acts to stabilize the pressure equation, and the internal time

step (∆tint) further contributes to this. It has been shown by Zienkiewicz

and Nithiarasu that the overall stability of the algorithm may be improved

by choosing a value of the internal time step equal to double the time step

used to calculate the velocity prediction [23]. Referring back to the section

on justification for equal order of interpolation (Sec. (2.3.2)), this term is the

additional term on the diagonal that introduces algorithmic compressibility.

The boundary term generated can be neglected in special cases. According

to Nithiarasu, the term can be neglected when an ‘appropriate’ initial pressure

field is provided [22]. This term will also be equal to zero when steady state

is reached, as the velocity increment approaches zero through iteration. The

final justification for neglecting this term in steady state analysis is shown

in Fig. 3.1. When solving the boundary between elements, the effects of the

projection will cancel out, but the term remains on the outside surface. In

order to supply an ‘appropriate’ pressure field, the elastic pressure field was
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calculated to provide initial values for the pressure degrees of freedom..

Figure 3.1: Figure illustrated when computing the surface integral, projections
will be equal and opposite between adjoining elements.

Once the continuity equation is solved, the resulting change in pressure is

used to update the pressure field as p̄n+1 = p̄n + ∆p̄.

Breakdown of Algorithm

The algorithm used in this analysis is as follows:

Step 1:

M∆v̄∗ = ∆t

[
F−

∫
BTSdV

]
(3.40)

The first step is to calculate v∗ = vn + ∆v∗.

Step 2:

Mp∆p̄ = ∆t

[∫
NT
p ε̇

n
v +

∫
BT
b (∆v∗ + ∆vc)

]
dV (3.41)

p̄n+1 = p̄n + ∆p̄ (3.42)

The influence of the pressure gradient is introduced to the continuity equa-

tion through the velocity correction term. The velocity correction (vc) from

the previous time step is added to this to give the total velocity increment for

calculation in the continuity equation.
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Step 3:

∆v̄ = ∆v̄∗ + M−1

(∫
V

∆tBTmT p̄n+1dV

)
(3.43)

v̄n+1 = v̄n + ∆v̄ (3.44)

The final step uses the updated pressure field to calculate the velocity correc-

tion term. The velocity can be updated, and the process is repeated starting at

Step 1 until convergence is achieved. Change of velocity is used as the stopping

criterion for this algorithm.

The interest in this analysis is the velocity at steady state, not the change

in velocity. While it is not necessary to use the updated pressure to calculate

the velocity correction, it allows the program to converge faster. If this step is

neglected, the velocity correction is effectively one step behind, but the final

converged solution is nearly identical.
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Chapter 4

Test Problems for

Incompressible Simulations

4.1 The Double Slope

The first test problem presented is the double slope shown in Fig. 4.1. It

that has been analysed in detail by Killeavy [18]. Two meshes were used: 48

elements and 35 nodes referred to as the coarse mesh; and 192 elements and

117 nodes referred to as the fine mesh. The measure of coarse and fine in this

case was relative. The slope is assumed to creep with a Newtonian flow rule

(constant viscosity) due to a unit weight of 10 kN·m−3. A benchmark solution

was established using a 6-noded triangular element, with straight edges. The

main comparison used was the calculation of horizontal velocity at the crest

of the slope. This value was found to be approximately 6 m·a−1 (meters per

annum), as shown in Fig. 4.2, measured at B in Fig. 4.1. A creep constant

of A = 0.001 kPa−1yr−1 is used along with n = 1, and the elastic modulus

is 1 × 106 kPa. When performing simulations with the FSM, a viscosity of

µ = 333 kPa·s is assumed, as it corresponds to the viscosity of the creep flow
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in the other algorithms. No external point loads or tractions are applied. The

left boundary corresponds to a divide, so the shear traction is equal to zero,

and the horizontal velocity has a zero value. The convergence of pressure is

monitored near the base of the divide, at Point A. The base of the slope is fully

fixed. Figure 4.1 shows the expected pressure distribution, obtained from a 6

noded analysis using a coarse grid (drawn as 3 noded elements), with Fig. 4.2

providing the horizontal velocity history at B. The scale on the right hand side

of this diagram is the scale used for all results in this section. For the pressure

plots of mean stress a compression positive scheme is adopted. The measure

of mean stress used is the center of the Mohr circle (−(σx + σy)/2). The scale

is from -50 kPa mean stress (tension) to 450 kPa mean stress (compression).

Figure 4.1: Pressure distribution for double slope using 6 noded analysis with
48 elements and 117 nodes
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Figure 4.2: Velocity history for 6 noded element analysis

Referring to Fig. 4.3 and the legend, the first letter corresponds to mesh

(C - coarse, F - fine), the second to smoothing (NS - not smoothened, S -

smoothened), and the final letter implies compressibility (IC - incompressible,

C- slightly compressible). The meaning of slightly compressible is ν = 0.4995.

For example C-NS-C denotes a coarse mesh that did not use smoothening and

is slightly compressible. For the DR there are 2 variables, mesh density (C or

F) and compressibility (IC or C); the FSM has only mesh density as a variable

(C or F). The same convention is used for the pressure history plots. These

parameters encompass the array of analysis conducted and allow the changing

variables to be tracked in a systematic way. The steady-state velocities of the

problem solved using the formulations are presented in Chapter 3.
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(a) (b)

(c) (d)

Figure 4.3: Velocity histories a) MSA, coarse mesh b) MSA, fine mesh c) CDS,
coarse mesh d)CDS, fine mesh

Figures 4.3a and 4.3b show that for the method of successive approxima-

tions (MSA), the predictions for simulations incorporating slight compressibil-

ity begin close to the target value, and decrease before stabilizing. Those that

have no compressibility do not converge. As one might expect, the velocities

for the finer mesh are higher and smoothening helps in reducing locking. It was

noted that the solution approached the 6-noded solution as enchancement was

added. Looking at the same results from the central difference scheme (CDS)

(Figs. 4.3c and 4.3d), the steady-state velocities are approached from below

and do not fully converge. The velocities are approached from below, given

that load is increased incrementally throughout the analysis.

Locking is evident, given the decreasing velocities, particularly for the
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MSA simulations that are fully incompressible. The results obtained from both

methods allowing for compressibility are similar and are acceptable solutions.

The best results are obtained from the smoothened fine mesh that is slightly

compressible (F-S-C). These results demonstrate that in order to get accept-

able results, the following is required: smoothing, slight compressibility, and a

sufficiently fine mesh.

With respect to dynamic relaxation (DR) and fraction step method (FSM),

the velocities converge to a value closer to 6 , as shown in Figs. 4.4a and 4.4b.

Both predictions show some oscillation before convergence, with the DR code

showing heavier oscillations. Both programs converge readily. Mesh density

and incompressibility have less influence using DR and FSM formulations, at

least for the problem analysed. It should be noted that for these two algorithms

the time actually acts as an iteration counter.

(a) (b)

Figure 4.4: Velocity histories a) DR, coarse and fine b) FSM, coarse and fine
mesh

Looking at the pressure histories (Figs. 4.5, and 4.6), the convergence

trends are very similar to the velocity histories. The only exceptions are that

heavy oscillation is prominent in the predictions of the CDS pressure histories
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(Figs. 4.5c and 4.5d), and that the DR-C-C solution (Fig. 4.6a) does not ap-

pear to be stabilizing, contrary to other DR simulations. The MSA and CDS

figures also have negative pressures on the coarse grid and positive on the fine

grid, which suggests spurious pressure distributions. There was no change in

the output at the time of simulations, and it follows that the element in ques-

tion was showing signs of a spurious pressure distribution. The incompressible

solutions for the MSA and CDS (Fig. 4.5) did not converge, but rather devi-

ated from the steady state solution obtained by the 6-noded element. While

the pressures approach the solution incrementally in the MSA, CDS and DR

algorithms, the FSM seems to oscillate around the final value. The pressures

attained using linear elements are higher than the 6-noded element solution,

as a very coarse grid was used during the 6-noded simulation. The fact that

pressure predictions do not necessarily correspond to what might be expected,

yet the velocities are reasonable, is due to creep being largely independent of

pressure.
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(a) (b)

(c) (d)

Figure 4.5: Convergence of pressure histories a) MSA, coarse mesh b) MSA,
fine mesh c) CDS, coarse mesh d)CDS, fine mesh

(a) (b)

Figure 4.6: Convergence of pressure histories a) DR, coarse and fine b) FSM,
coarse and fine mesh

The pressure plots for both the MSA and CDS display a large amount of

checker boarding (Figs. 4.7 and 4.9, showing worst and best for each case).

The incompressible solutions possess checker boarding to a greater extent, as
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is expected. When comparing the not smoothened solutions to the smoothened

solutions, the level of checker boarding is reduced, but the problem is not elimi-

nated. These pressure plots do not make physical sense, with large, inconsistent

jumps in the pressure from element to element. The solutions provided by both

the DR and FSM programs are by contrast very good (Figs. 4.8 and 4.10, in-

compressible DR plots are omitted as they are identical to the compressible

ones). Both algorithms provide a rational pressure field, which increases with

depth. There are discontinuities between elements, but that is due to using

constant stress elements in the formulation. The DR results (Fig. 4.12a) have

slight tensile (suction) pressures on the surface, which could be caused by hor-

izontal movement. The pressure fields obtained from the DR and FSM are of

much higher quality than those of the MSA or CDS. The DR and FSM plots

do not have spurious pressure distributions (“checker boarding”), unlike those

predicted by the other creep formulations.

(a) (b)

(c) (d)

Figure 4.7: Pressure fields for coarse double slope smoothing a) MSA, incom-
pressible, not smoothened b) MSA, slightly compressible, smoothened c) CDS,
incompressible, not smoothened d) CDS, slightly compressible, smoothened
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(a) (b)

Figure 4.8: Pressure fields for coarse double slope a) DR, slightly compressible
b) FSM, slightly compressible
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(a)

(b)

(c)

(d)

Figure 4.9: Pressure fields for fine double slope a) MSA, incompressible, not
smoothened b) MSA, slightly compressible, smoothened c) CDS, incompress-
ible, not smoothened d) CDS, slightly compressible, smoothened
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(a)

(b)

Figure 4.10: Pressure fields a) DR, slightly compressible b) FSM, slightly com-
pressible

To illustrate what is commonly encountered in typical commercial output,

least squares smoothened pressure fields, where the smoothening is done after

simulation is completed, are shown in Figs. 4.11a, and 4.11b, corresponding to

Fig. 4.9a and Fig. 4.9b, respectively. Note the few odd inconsistencies in both

figures, such as the line of high compression propagating to the surface from the

left of break in the slope, the stress nearing tension 1 element under the surface

right of the break, and the drastic increase in tension nearing the tip. Figure

4.11a shows moderate stress throughout the depth with a sudden increase at

the fixed boundary, while Fig. 4.11b, inconsistencies aside, shows a distribution

close to what would be expected. As figures 4.11a, and 4.11b were generated

based on checker boarded results, care must be exercised when interpreting

smoothened results. Locally elements are not necessarily in equilibrium as the
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equations of motion are satisfied globally. Thus, although large jumps can be

observed from element to element (local level), these are eliminated on a global

level when processing the predictions using a least squares smoothening.

(a)

(b)

Figure 4.11: Least squares post analysis smoothened pressure plots using the
MSA a) incompressible, not smoothened b) slightly compressible, smoothened

Given that the pressure distributions corresponding to 4 years were poor

for the MSA and CDS programs, this raises the question: are the pressure field

predictions more reasonable if the 1 year values are selected as representative

of steady-state? Figure 4.12 shows two plots, with the shorter analysis showing

slight reductions in the amount of checker boarding. The maximum pressure

in the 1 year plot was 671 kPa, in the 4 year plot it was 808 kPa, which

suggests that drifting may occur after steady-state is attained due to insensi-

tivity of creep to pressure. The influence of simulation time will be thoroughly

investigated in Chapter 6.
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(a) (b)

Figure 4.12: Pressure fields for fine double slope a) 1 year simulation b) 4 year
simulation

4.1.1 Final comments on the Double Slope problem

To begin a direct comparison of performance, it is prudent to also address

computational effort required to arrive at a steady-state solution. When per-

forming simulations, it was found that the CDS was by far the slowest. Given

the quality of solution, this algorithm can be discounted. The dynamic relax-

ation (DR) and MSA arrived at a steady-state with no noticeable difference in

computation time, but the DR scheme provided a better solution. The FSM

executed the fastest, and provided a solution on par with that of the DR

scheme. It should be noted that there were occasional difficulties in the FSM

algorithm. Obtaining a solution took trial and error with regard to choice of

time step. Without a benchmark problem this would contribute to uncertainty

with regards to the reliability of predictions.

When looking at velocity, the determination of a good solution is fairly

straight forward, due to having the benchmark solution of 6 m·a−1. Although

the MSA converged readily, the velocity was calculated, under best circum-

stances, at 5.16 m·a−1. The CDS provides roughly the same solution as the

MSA at 5.13 m·a−1, but had a greater computation time. The DR and FSM

both readily converge to a value that for all effective purposes is equal to the

bench mark.
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With respect to pressure distributions, the only programs that were free

of checker boarding were the DR and FSM schemes. The FSM provided a

slightly better pressure plot, with a much smaller tensile stress at the surface.

The linear pressure interpolation of the FSM provided less improvement of

pressure distribution when mesh density was increased, with the coarse mesh

providing a pressure distribution nearly equal to that of the fine mesh DR

simulation.

The best results were provided by the FSM for this particular test problem,

followed by the DR program. The CDS lacked in both quality of solution and

computational time and will not be considered any further for this study.

4.2 Couette Flow Problem

Couette flow, flow of a fluid between two plates, is pressure driven, but is en-

tirely shear flow. The material is typically assumed to be fully incompressible.

Although sliding of the plate along the upper boundary for the case studied

was suppressed, a pressure gradient was applied to the fluid through a left side

compressive traction of 4 kPa, and a right side compressive traction of 2 kPa.

An elastic modulus of E = 10000 kPa, Poisson’s ratio of ν = 0.3 and A = 0.6̄6

were used. The effects of gravity are ignored for the purpose of this problem.

As the domain is 1m wide, it can be expected that the horizontal velocity at

half of the width will be equal to 0.25 m·s−1, assuming a unit viscosity. The

mesh consisted of 400 elements and 231 nodes. Smoothening routines were

used to attain the best possible solution.

Initially all programs returned a velocity of 0.259 m·s−1, which is greater

than expected, varying about 5% from the closed-form solution. The cause

of this discrepancy was found to be the slight compressibility used to ensure

52



M.A.Sc. Thesis - Kyle Maitland McMaster - Civil Engineering

stability within each of these algorithms (MSA, DR, and FSM). When the

DR or MSA were made to be fully incompressible, the expected result of 0.25

m·s−1 was obtained; however, they were much less efficient when executed,

showing an increase in computational effort.

The other important feature of the Couette flow is the proper identification

of the pressure gradient, which should be evenly distributed from 4 kPa to 2

kPa within the fluid. Aside from slight boundary issues at the edges, this

was captured by all algorithms. The parabolic deformation/velocity was also

captured. Pressure plots shown in Figs. 4.13, 4.14, and 4.15, have a range from

4 kPa (red) to 2 kPa (blue), with the velocity profiles (which match the closed

form solution).

Figure 4.13: Pressure distribution and velocity profile for the MSA in Couette
flow

53



M.A.Sc. Thesis - Kyle Maitland McMaster - Civil Engineering

Figure 4.14: Pressure distribution and velocity profile for the DR in Couette
flow

Figure 4.15: Pressure distribution and velocity profile for the FSM in Couette
flow
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Chapter 5

An Alternative Creep

Formulation

5.1 Rationale

Although the creep algorithm presented in the earlier chapter is sufficient for

many problems, it can be improved in a few aspects. The previous algorithm

worked poorly when the problem was assumed to be fully incompressible.

Slight compressibility was required to ensure that the method would provide

more reasonable predictions. Such compressibility introduced errors into the

solution of the Couette flow problem. Another issue was the use of an ex-

plicit algorithm. The algorithm was used as it was easy to implement, but

the solution was found to be sensitive to the time step adopted. The time

steps had to be small and any deviation could cause the algorithm to quickly

become unstable. For many problems, creep analysis could benefit from not

being constrained in the choice of time step, to allow acquisition of a reason-

able steady-state solution with much smaller computational cost. With this

goal in mind, a new algorithm was devised by borrowing from a radial return
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plasticity approach.

5.2 Radial Return Creep Formulation

Since creep is independent of the third stress invariant and incompressible, the

stress–strain rate law can be formulated in terms of the invariants p and σe that

represent the spherical and deviatoric stresses, and the strain rate invariants ε̇v

and ε̇e that represent the volumetric and deviatoric strain rates, respectively.

Using these invariants the stress–strain law, in invariant form, becomes

∆p

∆σe

 =

K 0

0 3G


∆εv −���*

0
∆εcv

∆εe −∆εce

 (5.1)

in which K and G are the bulk and shear moduli, respectively. The volumetric

creep strain rate is zero in this formulation, as the creep flow is fully incom-

pressible. Having established the stress increments at a given iteration, the

total stresses during an iteration are defined as

p = p0 +K∆εv (5.2)

σe = σe0 + 3G(∆εe −∆εce) (5.3)

in which the subscript ‘0’ implies initial value. As the method of successive ap-

proximations is being used, the creep analysis begins with the elastic predictor

stresses
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p∗ = p0 +K∆εv (5.4)

σ∗e = σe0 + 3G∆εe (5.5)

in which the superscript ‘∗’ denotes a predictor value. One observes that pres-

sure remains at the predictor value within a time step (Eqn. (5.5)). The stress

at the end of the increment therefore becomes

p = p∗ (5.6)

σe = σ∗e − 3G∆εce (5.7)

In the traditional initial strain algorithm ∆εc is calculated using the stresses

at the beginning of the time step. Given the simplified form of Eqn. (5.7), the

creep strain increment can also be estimated using σe at the end of a time

step, thus after introducing the creep law it may be shown that

F = σe − σ∗e + 3G∆tAσne = 0 (5.8)

which reduces to a ‘root finding’ exercise. Using the Newton-Raphson method

to find the root of Eqn. (5.8), it was shown that

(σe)m+1 = (σe)m −
Fm

( dF
dσe

)m
(5.9)

F ′ =
dF

dσe
= 3G∆tAnσn−1

e + 1 ⇒ 3G∆tAn
ε̇ce
σe

+ 1 (5.10)
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in which ‘m’ is an iteration counter. Looking at Eqn. (5.10) one observes that

if σe is equal to zero, F ′ = 1. Thus, one does not need need to worry about

dividing by zero when employing the Newton-Raphson method. Furthermore,

creep flow only occurs when F ′ > 1.

Once the converged value for σe is obtained, stresses in the Cartesian system

are updated by scaling the deviatoric component to arrive at the total stress

according to

σ = pI +
σe
σ∗e

S∗ (5.11)

where S∗ corresponds to σ∗e , and σe is the converged value for Eqn. (5.9). By

using the stress at the end of a time step to determine the creep rate, the

initial strain algorithm must be modified slightly to take this into account,

having then the appearance of an initial stress algorithm.

5.2.1 Example solution

Re-evaluating the Couette flow problem with the radial return creep routine,

the exact value of maximum velocity is predicted, along with the correct profile.

The pressure plot shows the same trends as previous formulations, with an

even transition from 4 kPa (red) to 2 kPa (blue). Figures 5.1, and 5.2 show

the results from the method of successive approximations (MSA) and dynamic

relaxation (DR), respectively.
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Figure 5.1: Pressure distribution and velocity profile for in Couette flow using
MSA with Radial Return Creep

Figure 5.2: Pressure distribution and velocity profile for in Couette flow using
DR with Radial Return Creep

The double slope problem, as presented in Sec. (4.1), was also simulated.

Results are presented for both the MSA and DR schemes.

MSA Double Slope

Examining the pressure plot (Fig. 5.3), which corresponds to the fine grid,

it shows the same “checker boarding” as seen with earlier predictions. When
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using post process smoothening, shown in Fig. 5.4, the same anomalies present

for the previous MSA formulation were noticed, such as the odd diagonal

compression beginning at the break in the slope. The velocity convergence

(Fig. 5.5) reaches a maximum velocity, then begins to decrease indefinitely,

which is attributed to locking. The final velocity is well below the bench mark

of 6 m/a. This is attributed to using the MSA algorithm, and allowing creep to

proceed long after the deviatoric stresses, which are responsible for creep, have

stabilized to steady-state values. This aspect will be addressed in Chapter 6.

Figure 5.3: Pressure distribution for the double slope (MSA)

Figure 5.4: Post process smoothened pressure distribution for the double slope
(MSA)
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Figure 5.5: Velocity history for the double slope (MSA)

DR Double Slope

The pressure distribution, shown in Fig. 5.6, has very minor checker board-

ing, but is not free of this defect, as the previous DR algorithm was. This

increase in checker boarding may be due to the removal of volumetric creep

strain smoothening, which was removed due to incompatibility with the radial

return formulation. Figure 5.7 shows the post process smoothened pressure

distribution, which is free of the anomalies. The velocity history, shown in Fig.

5.8, converges after several oscillations.

Figure 5.6: Pressure distribution for the double slope (DR)
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Figure 5.7: Post process smoothened pressure distribution for the double slope
(DR)

Figure 5.8: Velocity history for the double slope (DR)

5.3 Radial Return Plasticity Variation

Plasticity can be accommodated by making minor changes to the radial return

creep routine. This will allow a check to identify areas of material failure

yielding within the domain. For plasticity, constitutive law may be written as

∆σ = D(∆ε−∆εp) (5.12)

where ∆εp is the plastic strain increment. When working in invariant space
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∆p

∆σe

 =

K 0

0 3G


∆εv −���*

0
∆εpv

∆εe −∆εpe

 (5.13)

As the plastic flow is incompressible, the terms regarding pressure are un-

changed and p = p∗ and

σe = σ∗e − 3G∆εpe (5.14)

Defining the plastic strain increment as a function of the gradient of the plastic

potential, and specifying the failure criterion, one has

ε̇p = λ3
∂Q

∂σe
(5.15)

F = σe − 2c = 0 (5.16)

Substituting the plastic strain increment into Eqn. (5.14) and assuming an

associated flow rule ( Q = F )

σe = σ∗e − 3Gλ3 (5.17)

The consistency condition is then applied to solve for lambda

λ3 =
σ∗e − 2c

3G
(5.18)

after applying the value of λ3 to Eqn. (5.14), it can be shown

σe = 2c (5.19)
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As the effective stress cannot exceed the yield strength (2c), the stresses can

be scaled in a method identical to that used for the radial return creep formu-

lation.

σ = pm +
2c

σ∗e
S∗ (5.20)

This simple radial return plasticity formulation can be used to evaluate

the failure of isotropic homogeneous materials, or entirely cohesive materials

through a von mises failure criterion. This scheme is applied to ice in Chapter

7.
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Chapter 6

Selection of Stopping Criterion

6.1 Motivation

With drifting pressure distributions diminishing confidence of the results from

creep analysis, the question that needs to be asked is at what point does the

pressure field begin to deteriorate? This prompted a closer look at a problem’s

entire history with regard to changes of the stress values. The goal was to

pinpoint the iteration at which the pressure distribution begins to drift, ideally

identifying a tell tale sign. To do this, long term analysis of problems was

conducted, and the evolution of many variables was tracked. The variables

that were tracked are measured changes in the residual load, the creep load,

the equivalent deviatoric stress, and the value of pressure. It was assumed that

taking a closer look could gain the insight needed to identify stopping criterion,

which in turn could be used to control the quality of solution attained.

The “converged” solution has to correspond to steady-state. With patho-

logical errors such as spurious pressure distributions and locking, determina-

tion of steady-state is difficult, as the problem can continue to degenerate

indefinitely due to locking. Ways to look past this were required.
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To conduct this analysis, the double slope was once again chosen. The

192 element, 117 node mesh was used, which was previously denoted as the

fine mesh. Six noded verifications use a 48 element 117 node mesh. The radial

return creep formulation was used to conduct this analysis using the method of

successive approximation (MSA). The predictions that follow are by no means

exact with respect to the location of steady state. It was assumed that as long

as a reasonable prediction is made after initial stabilization, that only small

changes occur, and therefore any point close to this region will display minor

deviations from a ’steady-state’ solution.

6.2 Stopping Criterion

6.2.1 Residual Load Norm

The residual load norm (|R|) allows quasi-static equilibrium to be tracked

within the body being analysed. The norm itself is defined as follows

|R| =
√

RTR

FTF
(6.1)

in which R = F −
∫
V

BTσdV is the residual load vector and F is the total

load applied. Within the context of this analysis |R| will not go to zero due

to the smoothening algorithm, which redistributes pressure, thereby upsetting

equilibrium slightly. On the other hand, if steady-state is attained, |R| should

approach a constant value.

6.2.2 Creep Load Norm

The creep norm (|C|) is then calculated as
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|C| =
√

CTC

FTF
(6.2)

in which C =
∫
V

BTD∆εcdV . The thinking behind this measure is that it

provides insight to the magnitude of creep load distribution during a given

step, which will ideally become constant under steady-state creep conditions.

6.2.3 Equivalent Stress Norm

The third measure of error used is the change in equivalent stress during a

time step (|σe|).

|σe| =
Σ
(
σm+1
e

σm
e
− 1
)2

nelq
(6.3)

where ‘m’ is the iteration number, and nelq is the number of elements with

σe > 0, which is synonymous to the number of elements which are creeping.

6.2.4 Pressure Field Change

While it is possible to propose a measure of error for the pressure change,

relative to a norm, it was found that the absolute value, not squared, is more

sensitive; i.e,

ēp =
|ΣK∆εv|
nel

(6.4)

where K is the elastic bulk modulus, εv is the volumetric strain change from

this iteration, and nel is the number of elements. The idea is that ∆εv → 0 as

steady-state is approached. Given the smoothening, the volumetric strain rate

levels off, but does not vanishing completely.
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6.3 Time Step

Time step was found to have interesting effects on the solution. Figure 6.1

shows how pressure degrades with the number of iterations. The scale ranges

from -50 kPa (blue) to 450 kPa, or greater (red), with compression being

positive. It is apparent that through iterations, the instance of checker boarding

increases. The factor α is used to manipulate time step magnitude, such that

∆t = α∆tcr. The critical time step is 1.73× 10−3.

In repeating this test with α = 0.001, the pressure distribution degrada-

tion is the same over a similar number of iterations; however, the time of the

solution is not. When using creep flow, it was assumed that the stresses are

constant during the time step, and that the time step is sufficiently small for a

quality solution. With a smaller time step the stresses change more often; this

led, in some cases, to a faster relative convergence. In the case of this exam-

ple with α = 0.01 (original time step), the solution was found to be between

400-600 iterations, while with α = 0.001 (time step was 10 times smaller), the

solution converged at ≈10000 iterations. While the time step is a factor of

10 smaller, the solution occurs in roughly 20 times the number of iterations.

Taking this into consideration, it was seen that proper choice of time step is

required. The converse is also true, with a time step that is too large α = 0.1,

the solution was not readily approached, and the highest values of velocity

were less than would be predicted (5.1 m·a instead of 6). As the effect of time

step has been quantified, this study now moves to the evaluation of stopping

criterion.
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(a)

(b)

(c)

(d)

Figure 6.1: Pressure fields with iterations with α = 0.01 and a linear creep law
a) 1000 iterations b) 3000 iterations c) 6000 iterations d) 15000 iterations
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6.4 Linear Creep Analysis

In order to evaluate stopping criterion assuming linear creep, three time steps

were used. These correspond to one tenth (α = 0.1), one hundredth (α = 0.01),

and one thousandth (α = 0.001) of the critical time step. Values of normalized

norms, such as |R|/α, were monitored throughout analysis to identify trends

which did not depend on time step size. The critical time step is 1.73×10−3 s.

The bench mark velocity, obtained from 6-noded simulation, is 6 m·a−1. The

time step during an iteration is ∆t = α∆tcr, i.e., for α = 0.1, each iteration is

a time step of ∆t = 1.73× 10−4.

When looking at Fig. 6.2, one observes that after the first few iterations the

reduction in |R| becomes relatively linear for α = 0.1. If this were to be used

as an indicator of the converged velocity, the solution is near 40 iterations,

which gives a velocity of 5.1 m·a−1 and a value of |R|/α of 2%. This velocity

is low when compared with the expected value. This solution was obtained by

eye through the use of secants to approximate the slope of the two portions of

the curve. This method was used for all trends of this type.

Figure 6.3 shows that there were two choices that could be made with

respect to a converged value, a slight plateau with respect to larger changes

between 30 and 70 iterations, as well as a much larger overall minimum be-

tween 460-480 iterations. As it was already known that the peak occurs 30-50

iterations (v = 5.1 m·a−1), this shows that the first plateau is likely more

indicative of the solution. In this way the |C| is also in agreement with |R|.

This shows the importance of looking at multiple possible stopping criterion.

The value of |C|/α at this point is 4.7%.
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Figure 6.2: |R| vs iteration for α = 0.1, linear creep

Figure 6.4 shows that when viewing within very small ranges, |σe| has a

similar trend to |C| for the linear creep problem. The difference lies in that

the first plateau occurs around 80 and the second around 190 iterations, which

are closer together than the ones encountered in |C|. These give velocities of

5.1 and 5.05, respectively. In this case it may not matter which is chosen.

The value of |σe| is very small, and does not appear to have a trend between

problems, so a value has not been noted here.
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Figure 6.3: |C| vs iteration for α = 0.1, linear creep

Examining Fig. 6.5, it was observed that if an obvious or near linear trend

is an indicator of convergence, a value of near 1000 iterations would be chosen,

which is too large. Looking at the initial rapid changes in error, by 60 iterations

they have effectively ceased. This corresponds to a solution of 5.1 m·a−1. The

value of ēp/α at this point is 3.7%.

For the value of α = 0.01, the trends were the same as when α = 0.1. Large

changes in |R| stopped occurring between 300-500 iterations. The velocity

values at this point were roughly 6 m·a−1, which corresponds to the expected

solution. The value of |R|/α at this point was 2.09%, which was very close

to the value from the previous time step. For |C|, which had 2 relatively

static areas, they corresponded to 500-600 iterations, as well as 4500 iterations.

Once again the solution fell on the first plateau, at a value of 6 m·a−1. The

value of |C|/α at this point was 5.61%. |σe| placed the possible solutions at

700 (v = 5.99 m·a−1) and 1600 (v = 5.94 m·a−1). Both were relatively good

solutions. Ignoring the overall trend of ēp and watching closely for the rate of
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change, 600 iterations was chosen as opposed to 10000 iterations. This gave a

velocity of 6 m·a−1 and a ēp/α of 4.96%.

Lastly, for the case of α = 0.001, the |R| is shown in Fig. 6.6. This figure

does not have the clear trend that was seen in the larger time steps, and

is much more gradual. This is attributed to a greater number of steps with

smaller change between each step. In a case such as this, it is best to watch

the trend of other measures, such as the equivalent stress. Time steps that are

too small should be avoided as they are computationally time expensive and

it is more difficult to evaluate steady-state conditions.

Figure 6.4: |σe| vs iteration for α = 0.1, linear creep
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Figure 6.5: ēp vs iteration for α = 0.1, linear creep

Figure 6.6: |R| vs iteration for α = 0.001, linear creep

|C| had a trend similar to that shown in Fig. 6.3. There was a plateau at

8000, which gave a velocity of 6.1 and a |C|/α value of 5.69%. The value of |C|
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was similar to that for α = 0.01, providing insight with regards to convergence

of the solution. For |σe|, the first plateau corresponded to 7000 iterations and

a velocity of 6.1 m·a−1; however, the second plateau at 15000 iterations was

closer to the expected solution of 6.05 m·a−1. For this very small time step,

this appeared to provide a better estimate of the solution than the previous

measures. Examining ēp, a value of 5000 iterations would be appropriate. This

corresponds to a velocity of 6.11 m·a−1 and a ēp/α of 5.4%.

6.5 Discussion of Linear Creep Analysis

6.5.1 Linear α = 0.1

Through the stopping criterion analysis, predictions of steady-state ranged

from 40 iterations to 1000 iterations, with the majority being less than 100.

Thus it was possible to identify a reasonable interval for convergence. These

values can be compared with the horizontal velocity convergence to gain greater

insight, and to see if the solution obtained from the norms is agreeable. The

velocity profile is shown in Fig. 6.7.

75



M.A.Sc. Thesis - Kyle Maitland McMaster - Civil Engineering

Figure 6.7: vx vs iteration for α = 0.1, linear creep

It was observed that no significant changes in velocity occur after 40 iter-

ations, after which locking occurs. The pressure distributions were then com-

pared for iteration 40 and 600 (Fig. 6.8), to check the quality of the pressure

distribution. It is apparent that the pressure distribution at 600 iterations is

very poor, as it contains large areas of checker boarding. It also contains more

values at or in excess of the upper bound of 450 kPa (red). A good pressure dis-

tribution was obtained corresponding to 40 iterations, that was free of checker

boarding. |R|, |C| and |σe| together give a good indication of steady-state. |σe|

provides an upper bound with respect to the number of iterations required to

achieve steady-state. When considering the material relaxation, this solution

falls between 50% and 90% relaxation, which correspond to 40 and 135 itera-

tions (.25 and 0.84 days), respectively. It should be noted that for a relaxation

test on a linear material percent relaxation = e−κt, where κ = 3G · A.
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(a)

(b)

Figure 6.8: Pressure fields with iterations with α = 0.1 and a linear creep law
a) 40 iterations b) 600 iterations

Although α = 0.1 was not a sufficiently small time step to produce the

expected velocity, it provided insight to the convergence trends of norms. It

is useful in familiarizing the reader with the norm analysis, as the trends are

representative of other values of α. It also helps demonstrate the selection of

an adequate time step.

6.5.2 Linear α = 0.01

For this particular value of α, the range of predictions was found to be extreme,

placing steady-state anywhere from 400 to 10000 iterations. The same trend

with respect to velocity is present, a quick convergence followed by a slow

decline (Fig. 6.9). When examining the pressure distributions (Fig. 6.10) for
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400, 1600, and 10000 iterations, the first 2 pressure distributions are seen to

be acceptable, while the 10000 iteration distribution is poor. Both the 400 and

1600 iteration pressure distributions would return reasonable results with the

application of post simulation smoothening. Overall, the norms were found to

be useful with regard to establishing at what point a steady-state is achieved.

The equivalent stress norm (|σe|) again provided a slight upper bound with

respect to the number of iterations to achieve steady-state.

Figure 6.9: vx vs iteration for α = 0.01, linear creep

With respect to material relaxation, the 1600 iteration solution exceeds

90% relaxation (1350 iterations), but is less than 99% relaxation (2700 itera-

tions). The 400 iteration solution occurs at 50% relaxation. The 10000 iteration

solution greatly exceeds these values, which may explain the degeneration in

the pressure distribution.
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(a)

(b)

(c)

Figure 6.10: Pressure fields with iterations with α = 0.01 and a linear creep
law a) 400 iterations b) 1600 iterations c) 10000 iterations

6.5.3 Linear α = 0.001

This time step, which is viewed as being too small when considering compu-

tational efficiency, predicts the velocity peaks at a higher value (6.11 m·a−1),

but maintains the same trend as Fig. 6.7. The norms provided a fairly disperse

set of guesses from 7000 to 15000, which were near the peak in the velocity

79



M.A.Sc. Thesis - Kyle Maitland McMaster - Civil Engineering

field. As the norm histories did not provide well defined changes, it is best to

look at the equivalent stress history. Using the equivalent stress as a predic-

tor, steady-state is between 8000 and 10000 iterations, with velocities ranging

from 6.08–6.1 m·a−1. Regardless of the inconclusive predictions provided by

the norms, good pressure distributions are obtained from both 9000 and 15000

iteration analyses as shown in Fig. 6.11. Most solutions from norms fell be-

tween 50% relaxation (4000 iterations) and 90% relaxation (13500 iterations).

(a)

(b)

Figure 6.11: Pressure fields with iterations with α = 0.01 and a linear creep
law a) 9000 iterations b) 15000 iterations

6.6 Cubic Creep Analysis

Two numerical tests were conducted with a cubic creep law, using the same

creep constant as was used for the linear law (A = 0.001 kPa−1yr−1). One
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tenth and one hundredth of the critical time step were used in this analysis. The

thousandth of the critical time step (α = 0.001) simulation was not included as

the examination of norms provided ambiguous predictions. The critical time

step is 6.73 × 10−5, yielding time steps of 6.73 × 10−6 and 6.73 × 10−7 for

α = 0.1 and α = 0.01, respectively . Using a 6-noded MSA, a velocity of 6.26

m·a−1 was obtained, while a linear DR solution provided a velocity of 6 m·a−1.

Acceptable solutions are assumed to be close to 6 m·a−1, as assuming greater

precision is not plausible.

Figure 6.12, that plots |R| versus iteration, a point at the end of the rapid

changes was chosen, near 470 iterations, a velocity of 5.99 m·a−1 and |R| of

.0194% are obtained.

The creep norm, shown in Fig. 6.13, provides a clear trend of change with

respect to iteration. Between 200-350 iterations, there is a sharp decline in the

norm, after which changes appear linear. Looking at the velocities presented,

they range from 6.19 m·a−1 at 200 to 6.01 m·a−1 at 350. The value of |C|/α

is around 4.75%.

Figure 6.14, that presents |σe| versus iteration, shows a trend change around

600 iterations, which corresponds to a velocity of 5.98 m·a−1. Figure 6.15, that

presents ēp versus iteration, shows a fairly sharp reflex in the error curve at

approximation 500 iterations, which corresponds with a velocity of 5.99 m·a−1

and a ēp/α of 1.76%, which is closer to the bench mark. This trend is easily

identified and is in agreement with |R| and |C|. In the cubic case the square

of the pressure error appears to be useful if trend is not apparent in ēp.
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Figure 6.12: |R| vs iteration for α = 0.1, cubic creep

Figure 6.13: |C| vs iteration for α = 0.1, cubic creep
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Figure 6.14: |σe| vs iteration for α = 0.1, cubic creep

Figure 6.15: ēp vs iteration for α = 0.1, cubic creep

If the methodology used in the previous example, with respect to |R|, were

applied for α = 0.01, iteration value of 1600 is obtained, which corresponds
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to a velocity of 6.51 m·a−1 and |R|/α of .24%. While the trend was not as

exaggerated for α = 0.01, |C| had a pronounced elbow. Unfortunately, this did

not provide any new insight, as the elbow ended at roughly 1600 iterations,

with a velocity of 6.51 m·a−1. Having examined |σe| for α = 0.01, large changes

ceased at 3000 iterations, giving a velocity of 6.2 m·a−1. While the trend is

not as exaggerated in Fig. 6.17, it was observed that no significant changes in

ēp occurred after 2400 iterations. Using 2400 iterations as an approximation

of the solution, a velocity of 6.26 m·a−1 and a value of ēp/α of 0.38 % are

obtained.

Figure 6.16: |R| vs iteration for α = 0.01, cubic creep
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Figure 6.17: ēp vs iteration for α = 0.01, cubic creep

6.7 Discussion of Cubic Creep Analysis

6.7.1 Cubic α = 0.1

Steady-state using a cubic creep law, using the MSA, is more difficult to predict

than when using a linear creep law. This is likely due to the fact that for

σe < 1 changes in creep rate occur very slowly. For this particular time step,

predictions ranges from 6–6.19m·a−1. The velocity convergence plot begins at

a large value and approach the minimum asymptotically, as shown in Fig. 6.18.

It is possible that this time step may be too small, given the α = 0.01 velocities

were consistently higher, and closer to the 6-noded bench mark. The pressure

field obtained from the 400 iteration analysis is very good (Fig. 6.19). Only

the predictions from |C| fall between 50% material relaxation (11 iterations,

0.027 days) and 90% relaxation (367 iterations, 0.9 days). Relaxation times
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were calculated as
(
σe0
σe

)2

= 6GAσ2
e0 · t, assuming a representative σe = 45

kPa. It must be recognized that the actual relaxation times vary throughout

the domain due to the stress dependency.

Figure 6.18: vx vs iteration for α = 0.1, cubic creep

(a)

(b)

Figure 6.19: Pressure fields with iterations with α = 0.1 and a cubic creep law
a) 400 iterations b) 2000 iterations
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6.7.2 Cubic α = 0.01

This time step factor provided the results more consistent with the benchmark

than α = 0.1. Predictions ranges from 6.2–6.5 m·a−1. The pressure fields for

both 1600 and 3000 iterations are quite good (Fig. 6.20). Both the 1600 and

3000 iteration solutions fall between 50% and 90% material relaxation, it is

possible this accounts for the quality of pressure field.

(a)

(b)

Figure 6.20: Pressure fields with iterations with α = 0.01 and a cubic creep
law a) 1600 iterations b) 3000 iterations

6.8 Final Comments

If the time step was too small, the identification of steady-state through that

use of norms became difficult. If the time step was too large, an accurate

estimate may be unobtainable. It is recommended that multiple time steps be

used, in order to provide enough information to estimate steady-state.
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Overall, for larger time steps, steady-state is identifiable, and the norms

are in agreement. For the linear law |R|, |C|, and |σe| were all able to estimate

iterations that provided similar solutions. For the cubic law |R|,|C|, and ēp

appeared to work better. In both cases, when faced with a time step that is

too small, the quantity of agreeable information obtained from the norms is

greatly reduced. Stopping criteria that were independent of time step (|R|/α

and similar measures) did not show significant agreement to be used for the

identification of steady-state.

Material relaxation coefficients were calculated to estimate time scales, to

check if the analysis times were reasonable. All solutions fell between 50% and

90% relaxation. This is important, as the drift of pressure that is observed is

attributed to non-uniqueness of pressure to volumetric strain, and the resulting

accumulation of errors is due to numerical round-off or truncation error. The

values for 50% and 90% relaxation may provide lower upper and upper bounds

on times to achieve of steady-state.

The rate of change of a norm dictates where a reasonable steady-state

the solution occurs. Consequently, caution must be taken when reducing the

available data, as this could make rapid changes less apparent. The approach

taken here may be compared to consolidation analysis, where one discards the

immediate settlement (very large changes), and looks towards points of visible

trend change. Two cases were commonly encountered, which are shown in Figs.

6.21, and 6.22. The solution methods that were successful are demonstrated

on the figures for both cases. In case 1 the point of maximum curvature was

sought, in case 2 the reversal of direction.

88



M.A.Sc. Thesis - Kyle Maitland McMaster - Civil Engineering

Figure 6.21: Steady-state prediction for case 1

Figure 6.22: Steady-State prediction for case 2

For cases where there is no agreement between the norms, the value of

equivalent stress vs. iteration was assumed to provide an indicator of steady-

state. In the context of a linear creep law, equivalent stress provided similar

convergence trend to that of the creep norm (|C|). For a cubic creep law,

equivalent stress appears to provide a minima/maxima when steady-state has
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been reached. This may not be true for other values of n.

The unfortunate aspect of this analysis is that it was not possible to identify

a point or trend that identifies clearly when that the pressure field begins to

drift. As norms did not identify when the pressure field diverged, this suggests

that drift occurs incrementally throughout the analysis, due to round-off errors.

Therefore, in order to minimize the negative effect of drift, excess computation

must be avoided. Both the use of norms and the equivalent stress as a function

of iteration provided useful tools for truncating the computation time required.
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Chapter 7

Barnes Ice Cap

In order for the analyses presented within this work to be placed in the context

of a real world problem, ice creep was examined, with respect to the Barnes

ice cap. The Barnes ice cap is located on Baffin Island (69◦ 45′ N; 72◦ 15′

W). A contour map, from Hooke [14], shown in Fig. 7.1, is included. For the

purpose of this analysis, the north east slope of the glacier (red box in Fig. 7.1),

from the outer edge until the divide, is analysed. At the divide, compression

is expected to dominate the behaviour, while further down the slope shear

flow should dominate, causing a higher horizontal velocity. Both the radial

return creep formulation and the traditional formulation are used to examine

the creep of the ice cap.

Predictions from various creep laws were examined to evaluate their suit-

ability, with respect to capturing the physics of this problem. These include

Glen’s power law, with A = 0.017 and n = 4.2, Nye’s creep flow relation

εce = 1√
3
A
(√

3
3
σe

)n
, with A = 0.17 and n = 3.07, and Meier’s flow law de-

scribed as εce = 1
3
Aσe + 1√

2
B
(√

2
3
σe

)n
, with A = 0.018, B = 0.13, and n = 4.5

[13]. Predictions from the analysis were tested against the surface velocities

that were measured during studies of the ice cap’s movement, in the mid 20th
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century. It is important to note that creep laws are temperature dependent;

therefore, the objective is to see which one is most suitable. Glen’s work was

conducted at −0.2◦C, Nye’s at −0.8◦C, and Meier’s at 0◦C. In a prior study

by Hanafy, creep simulations were carried out for ‘3000 minutes’, likely to

attempt to reduce computational cost. This practiced constraint would have

minimized pressure drift; however, if this was the case, it was not mentioned.

A simulation with the FSM was also completed assuming a constant viscosity

to judge the effectiveness of the approach on predicting the flow field for an

irregular geometry. The A parameter is based on Nye’s law assuming that a

representative σe is 0.8 bars.

Figure 7.1: Contour map of Barnes ice cap [14]

The grid, which was used for this analysis is a 68 element, 48 node mesh,

as shown in Fig. 7.2. While this mesh is rather coarse, it was assumed to be

sufficient to accurately demonstrate the flow of the glacier. The base of the
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glacier is fully fixed, which assumes that the ice is frozen to the bedrock and

will not slip. The right hand side, which is taken at the divide, is a vertical

plane, in which a zero shear condition is assumed together with the horizontal

velocity being fixed at zero. The elastic modulus, Poisson’s ratio and unit

weight are E = 907500 kPa, ν = 0.34 and γ = 8.952 kN·m−3, respectively.

Figure 7.2: Mesh used for Barnes ice cap analysis

7.1 Horizontal Velocity Profiles

The methods discussed in the previous chapter were used to provide stopping

criterion when using the method of successive approximation. Nye’s and Glen’s

creep laws were implemented with both the radial return and tradition creep

formulations. Meier’s creep flow was only evaluated with the radial return creep

formulation. The predictions for horizontal surface velocity are shown in Fig.

7.3, where the label ‘B’ following the law used (Glen, Nye, etc.) denotes the

radial return creep formulation, and label ‘A’ the traditional creep formulation.

Dynamic relaxation analysis was performed using Nye’s law only.

When looking at the horizontal surface velocities, shown in Fig. 7.3, the
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results from the Meier flow provide an obvious outlier. Surface velocities were

much higher than predicted by the others, and will be disregarded in the

following discussion. From the laws tested, Nye’s provides results closest to

the measured values when using the MSA, and up to 3000 metres provided a

good trend with respect to the measured movement of the glacier. All MSA

creep laws predicted a maximum velocity that was much closer to the divide

than measured in-situ.

Figure 7.3: Results for horizontal velocities

Dynamic relaxation predicted a horizontal surface velocity profile closer to

the measured results in trend and value, but the peak values were lower than

that of the MSA. The DR algorithm provided the best results of all creep laws

and algorithms tested.

The FSM prediction provided a poor overall prediction for the horizontal

velocity, as it did not show the measured trend at any points. It should be
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noted if a better prediction for viscosity had been selected, predictions might

have been closer to the measured values. The velocity profile of the FSM also

displayed odd trends that may be caused by complications when using the

FSM for non-uniform meshes, as suggested by Huang and coworkers [15].

Given the difference in the trends between the predictions and measure-

ments, it is clear that a single creep law (or constant coefficients) cannot be

used to describe the flow behaviour of the glacier.

The similarity of trends with the various power laws within an algorithm

are interesting. Figure 7.4 shows each horizontal surface velocity, normalized

with respect to its maximum velocity. Glen’s and Nye’s law showed roughly

the same trend, when used with the MSA, Meier’s law predicted a similar

trend. This suggests that a constant creep law (i.e. power law) can explain a

trend, although the trend may not be correct. Solution scheme also seems to

influence trend heavily. The trend presented by the FSM is relatively erratic

compared to that predicted by the creep laws.

Figure 7.4: Results for normalized horizontal velocities

95



M.A.Sc. Thesis - Kyle Maitland McMaster - Civil Engineering

7.2 Vertical Velocity Profiles

MSA results for the vertical velocity profile (Fig. 7.5) are well in excess of the

measured values. The higher horizontal velocity predictions near the divide

explain why the vertical velocities are also much higher near the divide, tak-

ing into account the incompressibility constraint. The FSM and DR schemes

both return much lower velocities, with the DR being closest to the measured

values. The FSM and DR consequently have a lower horizontal velocity when

approaching the divide.

Figure 7.5: Results for vertical velocities

7.3 Pressure Plots

By using the methods presented in the stopping criterion chapter of this the-

sis, reasonable pressure fields were obtained for the creep formulations. The
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solutions presented are all free of checker boarding. There are very few differ-

ences between the smoothened results obtained from Nye’s flow law and the

FSM (Figs. 7.6, 7.7, and 7.8). The plots are shown with 3500 kPa as red and

-500 kPa as blue (compression is positive). The variations in pressure given

are reasonable, i.e., increasing with depth. At the base of the divide there are

slight discrepancies with the Nye’s flow law formulation. The FSM and DR do

not show these discrepancies.

Figure 7.6: Pressure plot using Nye’s law, smoothened

Figure 7.7: Pressure plot using FSM
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Figure 7.8: Pressure plot using DR with the radial return method and
smoothening

7.4 Plasticity Analysis

The radial return plasticity presented in Chapter 5 was used to identify points

of material yielding within the glacier. The strength variable, c, was set equal

to the shear strength of random, polycrystalline ice (979 kPa at −5◦C), taken

from Sec. (2.4). The problem was solved iteratively to allow redistribution of

stresses, while ignoring the possibility of tension cracking. A Poisson’s ratio

of ν = 0.34 was used for the duration of the analysis, which corresponds to a

value for instantaneous loading. Forty-two of the 68 elements were identified

as having yielded. These are located about 100 m below the surface, where

the deviatoric stresses Syy, and Sxx are very large. The red elements (value

exceeding 1) have exceeded the shear strength of the ice (fig. 7.9), which may

indicate the possibility of basal yielding.
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Figure 7.9: Results for areas of failure at 979 kPa shear strength

As the assumed shear strength may not be representative of the problem,

simulations were carried out with two addition values; i.e., 500 kPa and 1500

kPa. The results are shown in Figs. 7.10, and 7.11, respectively. For the 500

kPa simulation, most of the domain has yielded. This scenario does not seem

likely. For the 1500 kPa solution, only the area near the base has yielded. As

elements which have yielded are directly beside elements that are well below

the yield strength, an increase in mesh density is expected to improve results.

Figure 7.10: Results for areas of failure 500 kPa shear strength
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Figure 7.11: Results for areas of failure 1500 kPa shear strength

Figure 7.12 shows a post process smoothened yield ratio plot. The intro-

duction of post process smoothening makes very little difference, causing the

area of yielding to appear at a slightly greater depth.

Figure 7.12: Results for areas of failure 979 kPa shear strength, with post
process smoothening

The stresses presented for the yield of ice within a compressible domain are

very high, peaking at over 15 bars. For quasi-static situations, it is suggested

that the effective Poisson’s ratio is ν = 0.5 (Gold; [11]). This implies that

the definition of failure is rate sensitive. The yield stress was assumed to be

1 bar, as suggested by Paterson [26], and ν = 0.4995, for algorithm stability.

Figure 7.13 shows yielding only in areas at the base near the toe, where large
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deformations are expected, in contrast to the previous examples. Given that

the stresses are more in line with what is observed for creep analysis, it is

suggested that the apparent value for Poisson’s ratio is more appropriate when

considering long term yielding.

Figure 7.13: Results for areas of failure 100 kPa shear strength

7.5 Comments on the Results

The purpose of this analysis was to investigate the applicability of various

creep laws to the Barnes Ice Cap. It was shown that a single creep law, or

constant coefficients, were not adequate to simulate the measured behaviour.

This is not surprising, as the A parameter varies with temperature and the

density of ice. Where compression dominates, such as near the divide, the pre-

dicted vertical velocities exceed the measured velocities, which causes higher

vertical velocity predictions. Nye’s flow law provided the most suitable results

in all formulations. Dynamic relaxation, using Nye’s flow law, presented the

most accurate values for horizontal and vertical velocity, with respect to the

measured results, and showed a greater likeness to the trend of the measured

values. The plasticity analysis included serves to demonstrate the versatility

of the radial return procedure, and was able to identify potential material
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yielding within the ice field.

Refinement with respect to property variation could improve this solu-

tion; however, such optimization of flow parameters was beyond the scope of

this study. Previously, material variation was taken into account by Killeavy

through manipulation of the ‘A’ parameter [18].

Both the traditional and radial return creep formulations obtained similar

results. Pressure fields obtained from both creep formulations were in agree-

ment, illustrating that the stopping criterion analysis (Chapter 6) is applicable

to the traditional creep formulation. The velocity results from the radial re-

turn formulation were slightly lower, for both MSA and DR schemes. In terms

of performance, no noticeable difference was observed. For a given creep law,

time steps were equal. Nye’s law had the largest time steps, ∆t = 0.111×10−4

s, and Meier’s had the smallest time steps ∆t = 0.866× 10−6 s. As there is a

correlation between creep law and step size, larger exponent power laws will

require a smaller time step. The radial return method, given the flexibility of

time step, and use of dynamic relaxation are recommended for creep analysis.
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Chapter 8

Concluding Remarks and

Recommendations

8.1 Concluding Remarks

The majority of this work involved the capability of creep flow formulations

to predict reasonable pressures and velocities when using low order elements.

It is important to remember that creep flow was used in order to study the

capability of the models to accomodate the extreme case of a fully incom-

pressible domain. By examining incompressible domain problems, difficulties

with the incompressible formulation were easily recognized. The study began

with the transient creep analysis using method of successive approximations,

which used a maximum time stopping criterion for preliminary analysis. With

the addition of volumetric strain smoothening [7] pressure distributions were

improved, but the results were still poor. Iterative solvers were also used. Dy-

namic relaxation [34] was found to provide adequate pressure fields.

A radial return method for creep flow was devised, that draws parallels

to the methods used in plasticity. This method was shown to function well
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under fully incompressible conditions, and was not limited by time step, which

allowed the time step to be chosen based on the resolution required for an

accurate solution. In contrast the traditional creep formulation had several

drawbacks; i.e., when analysing a fully incompressible problem, it functioned

poorly, computation time increased,and very small time steps were required.

The radial return method helped solve some of these problems.

The identification of steady-state through norms, and the change of ef-

fective stress was shown to be valuable tools, allowing the identification of

acceptable solutions for both velocity and pressure. Spurious pressure distribu-

tions were prominent in the preliminary analysis. These pressure distributions

alongside volumetric locking obscured when steady-state (secondary creep)

was reached. In order to limit pressure drift, and identify steady-state, criteria

for identifying when steady-state is attained for transient creep analysis were

studied using the radial return creep formulation. Since the instance of large

pressure changes was not found, and given the small values of ēp, it is spec-

ulated that pressure drift occurs incrementally over the course of the entire

analysis. This requires that the number of iterations be minimized, in order to

obtain an acceptable pressure distribution.

The norm analysis used in the stopping criterion chapter was then applied

to a more realistic problem, the Barnes ice cap. The traditional and radial re-

turn creep formulations, together with several creep laws were used to simulate

the flow field of the glacier. The creep laws tested provided varying results, as

expected, but it was found that Nye’s law was most suitable to the problem.

The use of a single law is not adequate for proper analysis of this problem,

as the A value varies with temperature and density; however, the results did

provide insight into being able to handle incompressibility using lower order
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elements. A simple plasticity problem was also solved by modifying the ra-

dial return formulation, to demonstrate the versatility of the algorithm. The

plasticity analysis was successful in identifying yielding within the glacier.

Overall, best results were obtained by using an algorithm which met or

used the following criteria:

• Smoothening - The introduction of smoothening was illustrated to help

reduce problems with locking

• Iteration - Iterative solvers provided better results overall, and were eas-

ier to work with

• Compressibility - when a material is not fully incompressible, but close

(ν = 0.4995), algorithms were more stable, and the problems associated

with incompressibility were reduced.

If these criteria are incorporated into the formulation being used, the quality

of results was noticeably improved; however, this does not mean that results

were free of spurious pressure distributions.

The fractional step method, or velocity correction procedure, was also

evaluated. This method was able to provide adequate pressure fields for sim-

ple problems, but may not perform well for non-uniform meshes. Experience

showed the algorithm to be very sensitive to time step and the initial stress

distribution. Finding the time step that maintains stability and an accurate so-

lution was found to be cumbersome. Between the issues involving initial stress

distribution and time step size, the algorithm is not recommended without

experience.

The fractional step method results for velocity in the Barnes ice cap were

less adequate than those obtained with Nye’s Flow law, mainly due to the
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fact that the analysis was linear. Non-linear analysis using the FSM proved

difficult and often could not converge. Best results were obtained using this

method for single material, linear, incompressible flow, which severely limits

the use of the algorithm.

8.2 Recommendations

The effects of solution schemes, which help to mitigate pathological prob-

lems when dealing with incompressibility are documented within this study;

however, problems with incompressible zones, such as those involving incom-

pressible plastic flow, were not explored in detail. Results obtained from the

extreme case of creep flow were promising, as such domains containing areas

of incompressibility can likely be dealt with more effectively. A detailed study

of analysis on domains which are not fully incompressible is recommended.

The extension of the fractional step method to non-linear cases may also be a

worthwhile endeavour, given the computational efficiency of the algorithm. In

order to do this, the effects in initial stress distribution on the flow solution

would also need to be quantified.
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