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ABSTRACT 

In this study, the effect of HEVs on traffic related pollution was assessed in the 

Hamilton CMA. This thesis aimed to combine findings from these two fields in a traffic 

simulation procedure. By introducing the HEVs in incremental levels to the vehicle travel 

pattern of more than 700,000 people in the study area, changes occurring in traffic related 

pollution at different levels were modeled. 

The hypothetical HEV spatial distribution patterns models were derived through 

negative binomial regression modeling based on 2006 census data and 2008 vehicle 

registration data. The distribution of predetermined number of HEVs throughout the 

Hamilton CMA was completed through these models and results were used to modify 

input OD matrices for the TRAFFIC program. The link-based emissions were calculated 

in combination with traffic emission factors for HEV.  

The results indicated that converting 10% of the total fleet into HEVs was needed to 

make significant reductions to the HC and CO aggregate emissions in all five models. An 

important finding with the incremental HEV penetration levels was the approximately 

linear trend between the percent reduction in the traffic emissions and the percent of 

HEVs in the total fleet. This trend allows calculations of approximate traffic emission 

reduction expected with any HEV level. The results illustrating links with more than 10% 

reduction in traffic emissions indicated that HEV technology as an effective method in 

dealing with environmental concerns. 
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1 Introduction 

Motorized transportation (cars, SUVs, vans, trucks, and airplanes) use 

approximately 19% of the world’s total energy supplies, of which over 95% is from 

petroleum (Romm, 2005; Carpenter et al., 2008). In 2005, there were over 865 million 

motorized land transportation vehicles registered in the world. Most of these vehicles 

were in developed countries and some parts of Asia, the Middle East, Central and South 

America; areas with a collective population of approximately two billion people (Romm, 

2005; Carpenter et al., 2008). In the United States, 570 billion litres of petroleum were 

used for transportation in 2005 and is projected to reach 1 trillion litres by 2050.  With 

5% of the world’s population, the massive consumption of petroleum in the United States 

accounts for 25% of the world’s total greenhouse gas emissions. (Kromer and Heywood, 

2007)  

There are many different ways of reducing greenhouse gas (GHG) emissions and/or 

consumption of fuel. The three general approaches in transportation are: to adopt 

advanced vehicle technologies, to reduce vehicle kilometres traveled, and to switch to low 

GHG fuels (Chiumiento et al., 2008). Some of these require changes in manufacturing 

such as reducing the weight of cars, improving the thermal efficiency of the engines with 

new materials, reduction of tire rolling resistance, and hybridization; while others require 

changes in travel behaviour such as carpooling, using public transit, and biking or 

walking (Carpenter et al. 2008).  

With the increase of oil prices in the mid-2000’s, the production of more fuel 

efficient vehicles to reduce CO2 emissions, thereby improving air quality, has become one 
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of the top priorities for auto manufacturers and policy makers (Fontaras et al., 2008). It is 

no longer news to hear about the environmental concerns in the policies of major 

automobile companies. Development of Alternative Fuel Vehicles (AFVs) has been one 

of the most debated topics in this sector. While there are a few available options in terms 

of fuel types, gasoline and diesel powered vehicles have dominated the market and 

alternative fuels consumed in AFVs substitute a small fraction of total gasoline 

consumption (Romm, 2006). An announcement made by the Ontario Premier in July of 

2009, included $4,000 to $10,000 subsidy incentives for plug-in hybrid and battery 

electric vehicles purchased after July 1, 2010 aimed to show support towards the 

transition to cleaner vehicle technologies (OPO, 2009).  

While research and development for AFVs and to improve the performance of 

conventional vehicles is ongoing, there have been some concerns noted relating to its 

effects. One of these concerns is the “rebound” or “take-back” effect. The rebound effect 

has its root in neoclassical economic theory and refers to the phenomenon where the cost 

of the processing decreases as the energy service supply improves, thereby the incentive 

for use increases (Greening et al., 2000; Small and Van Dender, 2007). In terms of 

transportation, increased fuel efficiency and decreased cost per unit distance of travel, 

may lead to an increase in total distance travelled possibly resulting in higher congestion 

and traffic emissions. To add to the rebound effect, there are studies suggesting that 

humans have an intrinsic drive for mobility, where one will choose to travel even when 

the opportunity to engage in the same activity is available at shorter distances (Salomon 

and Mokhtarian, 1998). If travel is desired by drivers, then the effort to produce more fuel 
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efficient vehicles can be offset by both the rebound effect and the “drive to drive”. It has 

been hypothesized that with newer vehicles becoming more and more fuel efficient with 

gasoline, diesel, or HEV technologies, those who purchase these new vehicles are also 

likely to travel more frequently and for longer distances (Roorda et al., 2000). While the 

short distance travel capacity in some AFVs may help cut-back on these rebound effects, 

the appeals for these new technologies are the fusion of the environmental friendliness 

and the availability of the current travel behaviour.  

While there are a few different types of AFVs available, both from the major 

manufacturers and the smaller privately owned companies, the focus in this study will be 

on the Hybrid-Electric Vehicles (HEVs). Since their introduction, HEVs have reached 

technological maturity in the last 10 years and have successfully penetrated the market. 

There were over 30 models from different manufacturers available in the market at the 

end of 2008; more than 350,000 and 300,000 HEVs have been sold in 2007 and 2008, 

respectively, in the United States alone (Alessandrini et al., 2009; Walsh, 2009). HEVs 

can be divided into three types depending on the level of hybridization, each producing 

different level of fuel efficiency and power output: full hybrids (e.g. Toyota Prius), power 

assist or mild hybrids (e.g. Honda Civic Hybrid), and plug-in hybrids (e.g. Prius+) 

(Chiumiento et al., 2008). HEVs combine a conventional gasoline combustion engine 

with an electric motor powered by battery, each being utilized to create the most efficient 

operational modes: engine for high-speed and motor for low-speed. This has increased the 

fuel efficiency of vehicles considerably compared to gasoline vehicles of equivalent size, 

despite a weight increase incurred by the addition of an electric motor and battery 
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(Diamond, 2009). Since a HEV utilizes its gasoline engine at high-speed driving, it was 

suggested that clean diesel vehicles are more suitable in less-urbanized environments with 

higher travel speeds since diesel vehicles are more fuel efficient than gasoline vehicles 

(ACEA, 2007).  

The objective of this study was to investigate the contribution on reduction of traffic 

related pollution with increased used of HEVs in the Hamilton Census Metropolitan Area 

(CMA). While there are many studies published in the topic of HEVs and other AFVs, 

many of these have focused on either the market penetration or the performance 

improvement. This thesis attempted to fill the gap left from separating the two areas by 

combining the estimated market penetration and performance data of HEVs with 

components of Integrated Urban Models (IUMs) in the Hamilton CMA. This study has its 

root in one of the projects completed for Environment Canada by the Centre for Spatial 

Analysis (CSpA) at McMaster University, Hamilton, Ontario. The original projects were 

designed to apply IUM to a number of major cities throughout Canada, designated by 

Environment Canada, to assess the effect of projected population and employment growth 

in each city has on its traffic emissions. By introducing the HEVs in incremental levels to 

the vehicle travel pattern of more than 700,000 people in the study area, the effectiveness 

of HEVs in reduction of overall traffic related pollution was modeled as well as the 

spatial variations of the emissions. This study also includes a possible scenario with 

Electric Vehicles (EVs) in place of HEVs. In the following chapters, the report is 

presented in order of literature review, data and methodology, results, discussion, and 

conclusion.   



M.A. Thesis – N. Kaneda; McMaster University – School of Geography and Earth Sciences 

 

8 

 

2 Literature Review 

Research in traffic involving alternative fuel vehicles can be divided into market 

penetration and vehicle performance. Market penetration includes survey studies and 

mathematical modeling of consumer choices, whereas vehicle performance includes the 

analysis on the level of emission produced by each type of vehicle in different driving 

cycles involving varying degree of modes (acceleration, deceleration, cruise, and idle). It 

extends from the series of research conducted to verify the driving cycles used to estimate 

the emission levels of vehicles. In the following two sections, an evaluation of the 

research found in these two categories are reviewed, followed by a discussion of the 

traffic modeling which thus far have not included alternative vehicles.  

2.1 Analysis of the Market Penetration of AFVs 

So far, AFVs have struggled in the market for several reasons including higher 

price, higher fueling cost, safety and liability concerns, limited availability of fueling 

stations, limited range, and improvements in gasoline and diesel vehicles (Romm, 2006). 

To help aid the infiltration of AFVs into the market, many government bodies in North 

America are now promoting the purchase of AFVs through tax-rebate or monetary 

incentives, and this is having a positive effect in the purchase rates of HEVs (Diamond, 

2009; OPO, 2009). While there are some drawbacks, it is a positive movement that 

governments at all levels are leading the shift towards new and more environmentally 

friendly vehicle choices. The city of Hamilton has produced the Green Fleet 

Implementation Plan and has been pursuing a path to be the leader in “Green Fleet” 

implementation. By the end of 2008, the city of Hamilton owned 174 vehicles considered 
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to be “green” and by April 2009, this number has grown to 364, or 23%, out of the 1569 

vehicles used by the central fleet, the transit, the police, the fire and the emergency 

services. These “green” vehicles included HEVs, natural gas vans/pickups, natural gas 

buses, diesel-electric hybrid buses, biodiesel vehicles, vehicles with added modifications, 

and non-road vehicles. (Hamilton Central Fleet, 2009)  

While the initiatives by the policy makers to introduce the monetary incentives for 

AFV purchases are good, there are some drawbacks. First, the incentives to purchase new 

AFVs can cause buyers to sell their current vehicles and reintroduce them back into the 

used-car market at a lower price. This causes an increase in the total vehicle count while 

increasing AFV sales and keeps the share of AFVs low (Struben and Sterman, 2008). 

Second, the incentive program has to be installed long enough for AFV diffusion to 

become self-sustaining since the failure could lead to repulsion of new technologies by 

the consumers (Struben and Sterman, 2008; Flynn, 2002; Moore et al, 1998).  

To understand what factors influence the sales share changes of AFVs from the 

buyers’ point of view involves an analysis of market penetration. The analysis of a market 

penetration involves determining who buys what and why people choose to buy. Most 

study on market penetration involves survey method to find the characteristics of people 

and/or an item of interest, which in the case related to this study, is the AFVs or more 

specifically the HEVs. The choice to purchase any of AFVs available comes as a part of 

the vehicle purchase process. A consumer must decide to purchase a vehicle before 

considering the option of an AFV. Studies dealing with car ownership in terms of number 
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of vehicles as well as studies involving AFV’s potentials market penetration were 

reviewed.  

There are many automobile ownership models developed in the past to investigate 

the number of vehicles owned by household members. These automobile ownership 

models were often developed as part of the trip production models, mode-choice models, 

and travel demand models (Chu 2002). Of the two methods of auto ownership forecasts, 

aggregate and disaggregate models, the disaggregate models have become the preferred 

approach due to its more behavioural nature compared to aggregate models (Bhat and 

Pulugurta, 1998; Chu, 2002). This is partly due to the aggregate models using zonal, 

regional, or national level data while the disaggregate models use the household as the 

Decision Making Unit (DMU), which can capture the casual relationship between auto 

ownership determinants and automobile ownership levels (Bhat and Pulugurta, 1998).  

In order to collect data at disaggregate level, many studies use household surveys. 

Households are used as the DMU over individuals because allocation of daily activities 

and its supporting resources are allocated at the household level (Chu, 2002). The 

previous studies show the household income or variables that were related to income 

levels such as housing type or tenure as significant factors in estimating the number of 

vehicles owned by a household (Bhat and Pulugurta, 1998; Chu 2002; Hess and Ong 

2002; Potoglou and Kanaroglou 2008). Increased income was also found to be an 

indicator of increased probability of replacement or purchase of vehicles while an 

increase in the number of vehicles owned suggested greater probability of disposing or 

replacement (Roorda et al., 2000). Exposure to alternative technologies has been shown 
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to increase the probability of considering AFV as an option for the next vehicle to 

purchase (Struben and Sterman, 2008). On the other hand, a factor that was found to 

reduce the number of vehicles owned was the mixed land use type around the locations of 

surveyed households. This was likely due to greater attractiveness of alternative travel 

methods compared to the cost of owning vehicles (Chu 2002; Hess and Ong 2002; 

Potoglou and Kanaroglou 2008).  

The modern economics and settlement pattern have evolved around the automobile, 

internal combustion, and petroleum. This makes the successful introduction of AFVs 

being more difficult and complex than other products. With the current large installation 

of vehicles with the internal combustion engine (ICE) and the long life of vehicles, the 

share of AFVs in the installed base will increase slowly even if AFVs have a large share 

of new vehicle sales (Struben and Sterman, 2008). It has been showed that the 

improvement in performance and suitable infrastructure for refueling and maintenance 

equivalent to that of ICE is required for AFVs to be competitive in the market (Ewing and 

Sarigollu, 1998; Ewing and Sarigollu, 2000; Dagsvik et al., 2002; Potoglou and 

Kanaroglou, 2007; Diamond, 2009). The research and development by the manufacturers 

have also refined conventional ICE vehicles to create a powerful, highly reliable, low 

emission, and high fuel economy vehicle such as Toyota Corolla (Lave and MacLean, 

2002). It has been predicted that for Toyota Prius (HEV) to be more attractive to 

consumers than Toyota Corolla (ICE), the gasoline price must be above $2.50/gal in 2002 

dollar value (Lave and MacLean, 2002). Other than HEV, most AFV do not have the 

performance seen in ICE such as range, acceleration, and recharging or refueling time.  
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The importance of reducing traffic related pollution and positive attitudes do exist, 

however, the required change in behaviour required in using AFVs is another story. A 

consumer analysis on those who have purchased and currently own HEV revealed that the 

gasoline price fluctuations have significant impacts on HEV sales. It is evident that the 

higher percent of owners having household income higher than $100,000, as well as 

consumers have strong tendency to buy a HEV in the same vehicle class as previously 

owned (Gallon, 2009). This consumer survey result can provide insights for studies 

mentioned previously. First, despite policies such as increasing gasoline price, shortening 

travel time, free parking was shown to have very little effect on attractiveness of AFVs, 

the market reaction told a completely different story where increased gasoline price led to 

increased HEV sales (Ewing and Sarigollu, 1998; Ewing and Sarigollu, 2000; Dagsvik et 

al., 2002; Potoglou and Kanaroglou, 2007; Diamond, 2009; Gallon, 2009). Secondly, 

disposable income of the household must be able to afford the higher price tag placed on 

most AFVs. Lastly, the preference for the same vehicle size as previously owned supports 

the theory that AFVs must match or out-perform ICE to provide least amount of 

behavioural alterations.  

2.2 Analysis of the Performances of AFVs 

The major selling point for all AFVs is the environmental friendliness. This can be 

seen as it is often used as one of the vehicle attributes in survey studies. Being an 

environmentally friendly vehicle can be accomplished with reductions in input and output 

of a vehicle compared to conventional ICE vehicles. These reductions of input and output 

are accomplished by: improving fuel efficiency to decrease petroleum consumption and 
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lowers the tailpipe emissions. Although the fuel efficiency is the most readily available 

measure of clean vehicles to consumers, the measurements of tailpipe emissions are the 

focus in many studies related to AFV performance to compare the effectiveness of 

different AFVs. 

The measurements of tailpipe emissions take place with the test vehicles either on a 

chassis dynamometer or on actual roads. Studies with the chassis dynamometer intends to 

measure emissions with predetermined driving cycles and therefore standardizing vehicle 

operation. With vehicles on the road, studies aim to determine the emission levels during 

the daily driving conditions. Measurements taken by portable emission measurement 

system (PEMS) are becoming more popular in collection of second-to-second tailpipe 

emissions (Yu et al., 2008; Frey et al., 2008). These microscopic measurements of 

emission were taken to create new driving cycle models, investigate different road 

conditions that effects emission, and variation in emission patterns from multiple drivers 

(Yu et al., 2008; Frey et al., 2008; Alessandrini et al., 2009).  

Some studies revealed results that may not favour AFVs. Durbin et al, (1998) tested 

Compressed Natural Gas (CNG) vehicles and 85% methanol/15% gasoline (M85) fueled 

vehicles against conventional gasoline. CNG vehicles produced lower non-methane 

hydrocarbon (NMHC) and carbon monoxide (CO) with oxides of nitrogen (NOx) 

emission comparable to gasoline. M85 produced lower NOx and higher CO in one driving 

cycle but lower NOx, CO, NMHC and total hydrocarbons (THC) in another driving cycle 

compared to gasoline (Durbin et al., 1998). Graham et al. (2008) tested the different 

levels of gasoline-ethanol blends available today, to find that use of E10 (10% ethanol 
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content) fuel was effective in reducing CO emissions while showing no change in NOx, 

CO2, CH4, N2O, or formaldehyde emissions compared to 100% gasoline fuel. The use of 

E85 showed reduction in NOx, NMHC, 1,3-butadiene, and benzene while showing no 

change for CO, CO2, and NMOG emissions. For both fuel types, significant increases in 

some pollutants were observed. These results show that alternative fuels have some 

benefits over gasoline and where it falls short. This duality could be traced back to the 

fundamental design of ICE. The amount of fuel used to propel the vehicle may not differ 

significantly between gasoline, M85, E10, and E85 fuels. In other words, reducing the 

time ICE is used to propel the vehicle can reduce the amount of tailpipe emissions.  

HEV drive train combines benefits of two propulsion sources: quick acceleration 

from electric motors and supreme performance of ICE at constant speeds (Emadi et al., 

2005). In conventional ICE, only 10-15% of energy contained in gasoline is converted to 

traction to propel the vehicle, while rest is lost as heat. In an HEV, the drive train 

efficiency could be improved to 30-40%, which reduces the emissions and increases fuel 

economy (Emadi et al., 2005). Frontaras et al. (2008) concluded that fuel consumption by 

HEVs is 40-60% lower than the average conventional gasoline vehicle in urban situations. 

Although HEVs may be more fuel efficient, that does not mean their engines are cleaner 

than conventional engines. There are reports indicating that emission levels from HEVs 

are comparable to those in the same class at higher vehicle speeds (Alessandrini et al., 

2009; Frontaras et al., 2008; An and Sauer, 2004).  

In the test to compare gasoline ICE vehicle to HEV driven by multiple drivers, 

Alessandrini et al. (2009) found that HEV always performs better, up to 90% reduction in 
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CO and up to 30% reduction in CO2, with wide variations in measurements from driving 

behaviours. They concluded that women are less aggressive and steadier on the 

accelerator pedal than men, leading to reduced consumption and emission. The 

relationship between acceleration, vehicle speed, and emission has been found in previous 

studies where high emissions events coinciding with periods of high acceleration and 

speed (Frey et al., 2006; Yu et al., 2008). During acceleration, the emissions of HC and 

CO2 are five times greater than during idle and 10 times greater for NOx and CO (Frey et 

al., 2003). These are indication that reducing the incidents of sudden acceleration and idle 

length is an effective way to use ICE. Manzie et al. (2007) achieved fuel efficiency that 

was equivalent to HEVs through used of the intelligent vehicles with ICE and capacity to 

process traffic flow information ahead to aid or to replace the driver.  

In a study comparing different type of urban growth, change in vehicle miles 

travelled (VMT), and vehicle fleet hybridization in 11 different metropolitan regions, 

Stone et al. (2009) found that full dissemination of HEVs in business-as-usual (BAU) 

development can offset the projected CO2 growth. The implementation of smart growth 

scenarios, the total population is the same as BAU but growth occurs more in urban and 

suburban areas than rural areas, can reduce the CO2 emission by reducing VMT. The 

smart growth scenarios coupled with HEV fleet can counteract the CO2 emission growth 

due to BAU development from 2000 to 2050 and reduce it to below the level of 2000 

(Stone et al., 2009). Frey et al. (2009) also estimated the regional emission change 

through use of AFVs. In this case, they have developed correction factors with data 

collected through PEMS to adjust the emissions of conventional vehicles to different 
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types of AFVs. The simulated market penetration of AFVs and VMT growth from 2005 

to 2030 contrasted how the magnitude of AFV use can influence the regional emission. 

The NOx and CO2 emissions were not significantly different between conventional ICE 

only to 27% AFV scenario in the baseline year of 2005. Comparing the two years of 2005 

and 2030, the reductions in all estimated emissions were significantly (58% or more) 

lower for 2030 with or without AFV. Frey et al. (2009) explains this to be due to the 

turnover of fleet to more fuel efficient vehicles. The concept of estimating regional 

change in tailpipe emission through vehicle fleet hybridization seen in both of these 

studies was the hints for this study.  
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3 Data and Methodology 

In this section, three major parts of the research are explained: study area, data used, 

and the methodology in estimating the current and future traffic emissions. The major 

backbone of this thesis project was created for a series of previous projects aimed to 

estimate traffic emissions in several major Canadian cities at the Centre for Spatial 

Analysis (CSpA), McMaster University, carried out between spring of 2009 and fall of 

2010. The detailed explanations of data used and the software components created are 

available in the Environment Canada project report (CSpA, 2009) and will not be 

discussed here. This section gives an overview of the study area followed by new data 

used and methods specifically designed for this thesis project.  

3.1 Study Area 

The study area for this thesis was the Hamilton CMA, Ontario. The Hamilton CMA 

includes the cities of Hamilton and Burlington and the town of Grimsby (Figure 3.1). 

However, the traffic simulation model produced prior to this study and used here only 

included the cities of Hamilton and Burlington. The “Hamilton CMA” points to the area 

including only the two cities of Hamilton and Burlington from here on in this thesis report 

unless noted otherwise.   

The Hamilton CMA, located at the southwestern tip of Lake Ontario, has a 

population of approximately 700,000 including the town of Grimsby (505,000 in 

Hamilton and 165,000 in Burlington) as of 2006 (Statistics Canada, 2010). Each city of 

Hamilton and Burlington belongs to different Regional Municipalities and therefore has 

separate growth projections. The population of the city of Hamilton is projected to grow 
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to 540,000 by 2011 and 590,000 by 2021 while the city of Burlington is estimated to 

grow to 184,500 by 2021 (MPIR, 2006; Halton Region, 2006). Hamilton is an industrial 

city with two major steel companies located on the harbor along with other heavy and 

light industries located throughout the city. The street network in the Hamilton CMA 

includes the provincial highways (Queen Elizabeth Way (QEW), Hwy 401, Hwy 403, and 

Hwy 407), the municipal highways (Lincoln M. Alexander Parkway, and Red Hill Valley 

Parkway), and the local arterial network. These major highways link together Toronto, 

Hamilton, London, the United States, and other local communities.  

 
Figure 3.1: The Hamilton CMA including Hamilton, Burlington, and Grimsby 
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Despite the availability of public transportation, residents of the Hamilton CMA are 

heavily dependent on personal transportation, as with many Canadians. The 2001 

Transportation Tomorrow Survey indicated that 68% of Hamilton residents use personal 

transportation (TTS, 2001). The census of 2006 also showed 76% of the employed 

population in Hamilton commutes using personal transportation on a daily basis 

(Statistics Canada, 2008). These figures show the intensity with which the road network 

in the Hamilton CMA is being used and the potential for improvement in terms of traffic 

emissions through the introduction of environmentally friendly vehicles.  

3.2 Data 

This section provides the description of two sets of data introduced for this study: 

the vehicle registration data and the census data. These two data sets were used for the 

development of the future market penetration estimates. This section outlines and 

provides a descriptive analysis of these data.   

3.2.1 Vehicle Registration Data 

The vehicle registration data for the study area for the year 2008 was obtained from 

DesRosiers Automotive Consultants Inc. The data contained information on the vehicle 

types, fuel types, model years, and Gross Vehicle Weight Rating (GVWR) classifications 

for every light duty vehicle registered and operating within the Hamilton CMA. Each 

vehicle was geocoded and aggregated using the census tracts (CTs) of 2006, totalling 

393,079 vehicles with 240,085 passenger cars and 152,994 light trucks. The distribution 

of all vehicles registered in the Hamilton CMA at the CT level is displayed in Figure 3.2. 
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The areas with most registered number of vehicles were at the outskirts of the city such as 

Mount Hope, Binbrook, Flamborough, Flamboro, Appleby, and parts of Ancaster. These 

areas are new suburban developments currently going through rapid expansion as 

Hamilton continues to grow larger in population and size.  

 
Figure 3.2: Distribution of all vehicles in the Hamilton CMA in 2008 

The vehicles fuel types were divided into six categories of gasoline, diesel, 

gasoline-electric hybrid or hybrid electric vehicle (HEV), propane, flex fuel (gasoline-

methanol/ethanol), and unknown. The flex fuel vehicles can run on either gasoline or E85 

fuel and are considered to be a type of alternative-fuel vehicles (AFVs). Currently there 

are no propane or E85 fueling stations available for use by the public in the Hamilton 
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CMA. The flex fuel vehicles were considered as running on gasoline in scenarios of 

present emission estimates. In view of the future potential market penetration, these 

vehicles were regarded as AFVs. The distribution of the fuel types were 88.37% Gasoline, 

1.86% Diesel, 0.54% Flex Fuel, 0.21% HEV, 0.005% Propane, and 9.02% unknown.  

There were two CTs with high counts of HEVs. One was located in CT 5370061 in 

Hamilton and another in CT 5370206 in Burlington. Figure 3.3 shows the locations of 

these CTs within the study area. The vehicles owned by each of the municipal 

government had been registered in each of these CTs. As a part of the Green Fleet 

Implementation Plan the city of Hamilton has produced, the city owned 174 vehicles 

considered to be “green” including 92 HEVs by the end of 2008 (Hamilton Central Fleet, 

2009). Of the vehicles owned by the city, many of them are registered in central fleet at 

the Wentworth Garage located in CT 5370061. A similar case was also true for CT 

5370206 in Burlington. For the purpose of this study, with its focus on potential market 

penetration of HEVs to the general public, these extreme values were adjusted to reflect 

the counts owned by the public. In Hamilton, the HEV count in CT 5370061 was reduced 

from 65 to 1. This was done by taking the average of the counts in CTs surrounding 

5370061 since the accurate count owned by the city in 2008 was not available. The HEV 

count in CT 5370206 in Burlington was reduced from 42 to 28 with an accurate count on 

city owned HEVs was in Greening the Corporate Fleet Transition Strategy (City of 

Burlington, 2008). In the following descriptive analysis of HEV data, these two census 

tracts were ignored when the model year and vehicle types were involved in groupings 

since these were unknown for the adjusted HEV counts.  
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At the end of 2008, there were 818 HEVs in the Hamilton CMA, 633 in passenger 

cars and 185 in light trucks, comprising only 0.21% of the total vehicle counts (0.26% in 

passenger cars and 0.12% in light trucks). Of the 173 CTs in the study area, 142 had 

registered HEVs ranging from one to 32 (Figure 3.3). The HEV distribution in the 

Hamilton CMA had the mean at 4.90 with the median of 3, the variance of 36.59, and the 

standard deviation of 6.05. With the kurtosis of 4.38 and the skewness of 2.03, the 

distribution had a narrow peak and a skew to the right (Figure 3.4). This skewness posed 

problems during the process of regression analysis, which is discussed in section 3.3.2.1.  

The spatial distribution of HEVs in the Hamilton CMA by raw count and percent 

proportion to total vehicle count, both without the government owned HEVs, are shown 

in Figure 3.5 and Figure 3.6. These two maps of HEV spatial distribution show slightly 

different patterns. The HEV count, shown in Figure 3.5, follows the similar trend as that 

of Figure 3.2 with CTs in west Hamilton, Mount Hope, and east Burlington having higher 

counts. The relationship between HEVs counts and total vehicle counts is shown in 

Figure 3.6. In contrast to Figure 3.5, those CTs with high HEVs counts and high total 

vehicle counts have moved down the scale. On the other hand, CTs with high HEV 

counts and lower total vehicle counts have moved up. Such CTs include Ancaster, 

Flamborough, and North Burlington. The CTs with low HEV counts, such as those in 

lower Hamilton remained in the lower end of the scale for both distribution maps.  
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Figure 3.3: Spatial distribution of HEV raw counts in the Hamilton CMA in 2008 

 
Figure 3.4: Distribution of HEVs per census tract 
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Figure 3.5: Spatial distribution without the government owned HEVs  

 
Figure 3.6: Spatial distribution of HEVs in percentage in the Hamilton CMA, 2008 
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The distribution of total vehicles and HEVs by vehicle model year is shown in 

Figure 3.7 and Figure 3.8. For total vehicle counts, it is easily noticed that the vehicles 

from the last 10 years dominates the vehicle fleet with the most abundant vehicles from 

2002 and 2003 model years followed by vehicles from year 2000 and years 2005-2007. 

For HEVs, the model years 2007 and 2008 had the highest counts adding up to over 60% 

of all HEVs. Since these data were cross-sectional data capturing a snapshot of time trend, 

it cannot be concluded that these peaks or larger proportions to be the same as the market 

trend in those years. It is likely that they are closely related, especially for the most recent 

four to five years. The larger proportions of HEVs of recent model years may suggest the 

increased awareness of HEV as an option in new vehicle purchase and the shift towards 

more fuel efficient vehicles with increased gasoline prices.  

 

 
Figure 3.7: Total vehicle count and HEV count by vehicle model year 
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Figure 3.8: Cumulative proportions for total vehicle and HEV counts 

3.2.2 2006 Canadian Census Data 
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Armed Forces. The demographic, social and economic characteristics information 

collected through census on people and housing units in Canada are used by all levels of 

governments as well as many researchers. (Statistics Canada, 2011)  
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of aggregation in the vehicle registration data and it was also used to derive the Traffic 

Analysis Zones (TAZs) used in traffic flow simulation, explained in a later section. The 

census data can be divided into descriptive and sample count types. The descriptive type 

data have one value per CT and is not divided into subclasses. This includes among 

others: population, area, population density (derived from population and area of CTs), 

median household income, and average number of household members. The sample count 

type data provide number of residents or households that fall within a subclass of a 

category. Examples for this are: male population between ages of ten and fourteen, 

number of households with one child, and number of households living in a single-

detached dwelling for each CT. The descriptive type data were used as is or converted 

into binary categorical data; 1 if the CT is in a given range, 0 otherwise. On the other 

hand, the count data were converted to proportional data; number of residents or 

households in a subclass divided by total response for that category. 

From the vast range of information available through census, those found to have 

use in regression modeling had to be selected. In order to do this, previous research in 

potential market penetration of HEVs and AFVs were reviewed. Those studies used as 

references were focused on the socio-economics and demography of the subjects making 

the vehicle purchase choice. The list of variables thought to be relevant is shown in Table 

3.1 with their sources if applicable. This list of variables was used as a guide in the 

selection of attributes from census data. For some variables used in the referenced studies, 

the equivalent information was not available in census due to those studies being 

disaggregate survey based. These variables included: number of licensed drivers, number 
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of cars owned, and race. There were 94 variables derived from the census data to replicate the 

variables listed in Table 3.1. These 94 variables and their bivariate regression results from the 

negative binomial method against HEV count per CT are listed in Table 8.2. The variables are 

grouped in order of descriptive type data first, followed by count type data.  

Table 3.1: List of Potential Variables for Regression Model 

Variables Sources 

Age Hess and Ong 2002 

Income Bhat and Pulugurta 1998; Roorda et al 2000; Chu 2002;  

Hess and Ong 2002; Potoglou and Kanaroglou 2008 

Household Size Roorda et al 2000; Hess and Ong 2002 

Household Density Hess and Ong 2002 

Education Roorda et al 2000; Potoglou and Kanaroglou 2008 

Male vs. Female Roorda et al 2000; Dagsvik et al 2002; Hess and Ong 2002 

Number of Working Adults Bhat and Pulugurta 1998; Hess and Ong 2002;  

Potoglou and Kanaroglou 2008 

Single-Family Residential Housing Bhat and Pulugurta 1998; Chu 2002; Hess and Ong 2002 

Residential Location  

(Urban vs. Suburban) 

Bhat and Pulugurta 1998 

Number of Licensed Drivers Roorda et al 2000; Chu 2002; Potoglou and Kanaroglou 2008 

Number of Cars Owned Roorda et al 2000; Potoglou and Kanaroglou 2008 

Number of Children  

in a Household 

Chu 2002; Hess and Ong 2002; Potoglou and Kanaroglou 2008 

Race Hess and Ong 2002 

Exposure to Vehicle Types Struben and Sterman 2008 

Distance to Work  

Population Density  

 

3.3 Methodologies 

This thesis was carried out in four major steps. First, the vehicle registration data 

for the Hamilton CMA were used to predict the future development patterns and market 
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penetration of HEVs. Second, by combining the predicted HEV market penetration with 

the urban traffic simulation, the traffic volumes were assigned to the road links of the 

network. Third, the traffic emissions were calculated from traffic volume outputs of the 

traffic modeling and the emission factors from current literatures and emission models. 

Finally, whether the distribution of HEVs in the city of Hamilton and typical daily use 

would result in measurable changes in the pollution emissions was assessed. This section 

provides a brief overview of the software components used followed by detailed 

explanation on the creation of future market penetration models.  

3.3.1 Traffic Flow and Emission Analysis Software 

The general framework of the modeling used for simulating on-road link traffic 

flows and associated emissions is shown in Figure 3.9. There are three integrated 

programs developed to carry out this task: M6, TRAFFIC and LINK EMISSIONS. As 

described at the beginning of this chapter, these three software components were created 

for a series of previous projects at CSpA, aimed to estimate traffic emissions in several 

major Canadian cities. In the series, the Hamilton CMA was the first study area and since 

then, these programs have gone through updates and further modifications to fit the needs 

of this project and others. The following sections contain brief descriptions of each 

program and the changes made specifically for this project.  
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Figure 3.9: Modeling framework for estimating on-road link emissions (CSpA, 2009) 

3.3.1.1 M6 

M6 is a Graphical User Interface (GUI) based program developed to provide 

interactive input and to generate tabular outputs from MOBILE6.2C. MOBILE6.2C is a 

version of MOBILE6 originally developed by U.S. Environmental Protection Agency 

(EPA) and modified by Environment Canada to reflect the Canadian fleet of vehicles and 

Canadian conditions. MOBILE6.2C predicts emission factors for each hour of a day in 

grams or grams per kilometer for pollutants under various conditions for calendar years 

between 1952 and 2050 for a suite of gasoline, diesel, and natural-gas-fueled cars, trucks, 

buses, and motorcycles (USEPA, 1994; CSpA, 2009). It can generate emission factors for 

19 different pollutants including: Hydrocarbons (HC), Carbon monoxide (CO), Oxides of 

nitrogen (NOx), Carbon dioxide (CO2), nine types of particulate matters (PM), and six air 
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toxics. M6 processes the emission estimates from MOBILE6.2C and produces the 

emission factors needed to estimate the on-road link emissions in combination with the 

link flows in tables summarizing for each vehicle type (CSpA, 2009).  

The meteorological conditions and the vehicle fleet and its activities influence the 

emission factors produced by MOBILE6.2C. The meteorological variables used as inputs 

for MOBILE6.2C includes temperature, humidity, and barometric pressure (USEPA, 

2003). These data were extracted from Environment Canada (2009) website for every 

hour of every day in 2006, as this was the original base year (CSpA, 2009). Since neither 

years of 2006 or 2008 included any extreme weather conditions, the data for 2006 were 

also used in this project. Input variables for the characteristics and activities of motorized 

vehicles include: vehicle activity, vehicle fleet characteristics (e.g. age distribution per 

vehicle type) and fuel characteristics (USEPA, 2003).  

While MOBILE6.2C calculates the emission factors for 28 types of motorized 

vehicles under different travel speeds, for the purpose of the previous projects, only 26 of 

the 28 vehicle types are considered (Table 3.3). These 26 vehicle types were derived by 

separating gasoline and diesel engine vehicles in 16 vehicle classifications based on Gross 

Vehicle Weight Rating (GWVR) and Loaded Vehicle Weight (LVW), as seen in Table 

3.2. The 26 vehicle types were then collapsed into five major vehicle classes, as shown in 

Table 3.3, to match the number of vehicle classes of the utilized travel data, the 

Transportation Tomorrow Survey (TTS) (CSpA, 2009). The five main classes and their 

acronyms were: Light duty passenger vehicles (LDPV), Light duty commercial vehicles 

(LDCV), Medium duty commercial vehicles (MDCV), Heavy duty commercial vehicles 
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(HDCV) and bus transit vehicles (CTRV) (CSpA, 2009). Since the detailed data on the 

vehicle fleet characteristics were available for LDPV and LDCV in the vehicle 

registration data, the default values were modified to simulate the vehicle makeup in the 

Hamilton CMA in 2008. 

Table 3.2: 16 vehicle classifications based on GVWR and LVW 

1 LDV Light-Duty Vehicles (Passenger Cars) 

2 LDT1 Light-Duty Trucks 1 (0-6,000 lbs. GVWR, 0-3750 lbs. LVW) 

3 LDT2 Light Duty Trucks 2 (0-6,001 lbs. GVWR, 3751-5750 lbs. LVW) 

4 LDT3 Light Duty Trucks 3 (6,001-8500 lbs. GVWR, 0-3750 lbs. LVW) 

5 LDT4 Light Duty Trucks 4 (6,001-8500 lbs. GVWR, 3751-5750 lbs. LVW) 

6 HDV2b Class 2b Heavy Duty Vehicles (8501-10,000 lbs. GVWR) 

7 HDV3 Class 3 Heavy Duty Vehicles (10,001-14,000 lbs. GVWR) 

8 HDV4 Class 4 Heavy Duty Vehicles (14,001-16,000 lbs. GVWR) 

9 HDV5 Class 5 Heavy Duty Vehicles (16,001-19,500 lbs. GVWR) 

10 HDV6 Class 6 Heavy Duty Vehicles (19,501-26,000 lbs. GVWR) 

11 HDV7 Class 7 Heavy Duty Vehicles (26,001-33,000 lbs. GVWR) 

12 HDV8a Class 8a Heavy Duty Vehicles (33,001-60,000 lbs. GVWR) 

13 HDV8b Class 8b Heavy Duty Vehicles (>60,000 lbs. GVWR) 

14 HDBS School Busses 

15 HDBT Transit and Urban Busses 

16 MC Motorcycles (All) 

(USEPA, 2003) 

For this thesis project, these five classes (Table 3.3) were modified in this project 

to accommodate for the introduction of another vehicle class, Hybrid-Electric Vehicles 

(HEV). LDPV and LDCV were combined together into one class, Light Duty Vehicles 

(LDV), by adding the emission factors after they were calculated. The fractions of LDPV 

and LDCV in the Hamilton CMA from the 2008 vehicle registration data were used in 

merging of the series of emission factor tables from each vehicle class, 0.6251 and 0.3749. 

To keep the current traffic assignment iteration procedure, explained in the following 
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section, LDV replaced LDCV and the new vehicles class HEV was introduced in place of 

LDPV.  

Table 3.3: Five Vehicle Classifications Used for TTS  

Vehicle Type 
Mobile6.2c 

Fleet Number 
Mobile 6.2c Description 

Light duty 

passenger vehicles 

(LDPVs) 

1 LDGV Light-Duty Gasoline Vehicles (Passenger Cars) 

14 LDDV Light-Duty Diesel Vehicles (Passenger Cars) 

Light duty 

commercial vehicle 

(LDCVs) 

2 LDGT1 Light-Duty Gasoline Trucks 1 

3 LDGT2 Light-Duty Gasoline Trucks 2 

4 LDGT3 Light-Duty Gasoline Trucks 3 

5 LDGT4 Light-Duty Gasoline Trucks 4 

15 LDDT12 Light-Duty Diesel Trucks 1and 2 

28 LDDT34 Light-Duty Diesel Trucks 3 and 4 

Medium duty 

commercial 

vehicles (MDCVs) 

6 HDGV2b Class 2b Heavy-Duty Gasoline Vehicles 

7 HDGV3 Class 3 Heavy-Duty Gasoline Vehicles 

8 HDGV4 Class 4 Heavy-Duty Gasoline Vehicles 

9 HDGV5 Class 5 Heavy-Duty Gasoline Vehicles 

10 HDGV6 Class 6 Heavy-Duty Gasoline Vehicles 

11 HDGV7 Class 7 Heavy-Duty Gasoline Vehicles 

12 Class 8a Heavy-Duty Gasoline Vehicles 

16 HDDV2b Class 2b Heavy-Duty Diesel Vehicles 

17 HDDV3 Class 3 Heavy-Duty Diesel Vehicles 

18 HDDV4 Class 4 Heavy-Duty Diesel Vehicles 

19 HDDV5 Class 5 Heavy-Duty Diesel Vehicles 

20 HDDV6 Class 6 Heavy-Duty Diesel Vehicles 

21 HDDV7 Class 7 Heavy-Duty Diesel Vehicles 

22 HDDV8a Class 8a Heavy-Duty Diesel Vehicles 

Heavy duty 

commercial vehicle 

(HDCVs) 

13 HDGV8b Class 8b Heavy-Duty Gasoline Vehicles 

23 HDDV8b Class 8b Heavy-Duty Diesel Vehicles 

Transit buses 

(CTRVs) 

25 Gasoline Buses (School, Transit and Urban) 

26 HDDBT Diesel Transit and Urban Buses 

This table excludes motorcycles and diesel school busses. (CSpA, 2009) 
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To calculate the emission factors for the newly added HEV class, “gasoline vehicles 

only” scenario for LDPV and LDCV were ran in MOBILE6.2C and combined. In this 

case, the fractions of gasoline engine vehicles in each of LDPV and LDCV, 0.6182 and 

0.3818, were used to create the emission factor tables of LDVgasoline. Based on Frey et al. 

(2009), an emission factor reduction table (Table 3.4) was produced to simulate a 

reduction in tailpipe emissions seen by using HEVs in place of gasoline vehicles. Since 

the reduction factor data were only available for HC, CO, NOx, and CO2 from Frey et al. 

(2009), all other emissions and particulate matter were considered to be unchanged. The 

values in Table 3.4 represent the proportion of the emission factors for HEV compared to 

that of LDVgasoline.  

Table 3.4: The reduction factors used to reduce gasoline vehicle emission factors  

Speed 
HC CO NOx CO2 

km/h mph 

0.0-20.0 0.0-12.4 0.128 0.195 0.289 0.252 

20.1-30.0 12.5-18.6 0.209 0.345 0.524 0.441 

30.1-40.0 18.7-24.8 0.290 0.500 0.760 0.630 

40.1-50.0 24.9-31.1 0.302 0.590 0.806 0.643 

> 50.1 > 31.2 0.287 0.475 0.760 0.586 

(Frey et al. 2009) 

3.3.1.2 TRAFFIC 

To determine emissions levels at the road link level in the Hamilton CMA, the 

traffic flow estimates for each vehicle class for a typical weekday and weekend for a 

given year must be calculated and combined with the emission factors calculated in M6. 

This was accomplished in TRAFFIC, a GIS-based Stochastic User Equilibrium (SUE) 
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traffic assignment program with some basic GIS capabilities to map and export tables of 

simulated traffic flows (CSpA, 2009). TRAFFIC uses Origin-Destination (OD) matrices 

as inputs and simulates traffic flows in a study area. The OD matrices correspond to a 

particular zoning system, 223 Traffic Analysis Zones (TAZ) for he Hamilton CMA, 

linked together by the road network (CSpA, 2009). The emissions on a particular link is 

calculated by combining the estimated link flows, link congested speeds, link length, and 

the emission factor generated in M6 program as per Anderson et al. (1996).  

The 223 zones in the Hamilton CMA are connected through total of 831 network 

links. The 831 links include 223 pseudo links which connects the centroid of each TAZ to 

the main network of the Hamilton CMA. Each of these network links contain a set of 

attributes including: posted speed, length, the design capacity, link direction (one-way or 

two-ways), class type (freeway or arterial), and truck usage. Some of these attributes were 

modified from the original version to create more detailed and up-to-date network system 

for the Hamilton CMA. In the original network, some links (e.g. Cannon Street) in the 

study area were not included because classifications for these links were non-major links. 

Since the local residents consider these links as major streets, they were included to the 

network for this thesis project. There were some changes to the direction (one-way or 

two-way) and the truck routing since the street network was originally created. These 

changes were also reflected in the updated network. For example, two major streets 

running parallel to each other the through downtown core of Hamilton (James Street and 

John Street) became two-way streets while Stone Church Road that was formerly 

available for truck use are no longer in use by trucks.  
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The OD matricces for passenger and commercial vehicles were derived from 

household travel surveys for the passenger trips or estimated from spatial interaction 

models for the commercial trips. The 2006 TTS data, collected and maintained by 

University of Toronto, were used for passenger vehicles. The OD matrices for light, 

medium, and heavy duty commercial vehicles from the city of Calgary for 2006 were 

used to estimate OD matrices for the commercial vehicles in the Hamilton CMA. A 

regression analysis with population, dwelling, and employment patterns was used to 

calculate the growth in travel demand and OD matrices in the future. (CSpA, 2009)  

TRAFFIC was designed to simultaneously assign the trips generated by different 

vehicle classes on the road network. Since the traffic assignment uses link design capacity 

measures in passenger car units, OD matrices for LDCV, MDCV and HDCV are 

expressed in passenger car equivalency (PCE) units. Typical PCE values for light, 

medium, and heavy duty commercial vehicles are 1.0, 2.0 and 2.5, respectively 

(Kanaroglou and Buliung 2008). The multiclass traffic assignment algorithm proceeds to 

estimate link flows by defining free flow travel times for all links, then starting iteration 

for all vehicle classes in order of HDCV, MDCV, LDCV, and LDPV until convergence is 

reached. Once the convergence has been achieved, assigned flows for heavy, medium and 

light commercial vehicles are converted back via PCE values and congested speeds can 

be calculated for each link (CSpA, 2009).  

Introducing another vehicle class, on top of the existing four classes, to the traffic 

assignment algorithm process was a complicated procedure. To avoid lengthy software 

modifications and validation of the traffic assignment results, LDPV and LDCV were 
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combined to create a new class of Light Duty Vehicles (LDV). These two classes have 

the same PCE values and have no restrictions on use of road network links unlike MDCV 

and HDCV. By treating LDPV and LDCV as one vehicle class, the iteration order was 

modified to HDCV, MDCV, LDV, and HEV. The LDV OD matrices were created 

through simple cell by cell addition for all 24 hours of weekday and weekend. The OD 

matrices required for the new HEV class was created based on an assumption that a 

fraction of trips made by LDV from a given zone i to another zone j is made by HEVs. 

This fraction was called “Reduction Proportion (RP)” for it is multiplied against LDV OD 

matrices and outputs another set of OD matrices with its number of trips reduced. For 

example, if there were 100 trips made by LDV from zone i to zone j originally and RP 

indicate 5% of these were made by HEVs, the new trip count for LDV and HEV are 95 

and 5, respectively. For 20 out of 24 hours in a day, the RP was applied to number of trips 

originating from zone i. For the afternoon rush hour (3:00pm-6:59pm), when those 

vehicles left its registered location to the usual work location are returning, the RP was 

applied to trips ending in zone j. Section 3.3.2 explains how the RP was created to 

simulate different levels of HEV market penetration influences the traffic related 

emissions.  

3.3.1.3 LINK EMISSIONS 

LINK EMISSIONS is a program used as a database manager program that can 

visualize and map the estimated link emissions on the road network. This program was 

used to extract results of calculations from M6 and TRAFFIC. LINK EMISSIONS 

generates either tabular information or a spatial output in the form of GIS shapefiles on 
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the link. It can produce outputs of emission levels in either grams or grams per km, the 

latter being the standardized form with respect to length of the road link. The only 

modification made to this program was the same road network changes seen in TRAFFIC.  

3.3.2 Scenarios 

The goal of this study was to evaluate the changes in overall traffic emission in 

the Hamilton CMA with increased use of HEVs. To accomplish this goal, the travel 

pattern for all vehicle types including HEVs must be determined. Unlike the passenger 

vehicles or the commercial vehicles, HEV did not have any previous data on travel 

patterns. In order to create OD matrices for HEV class, existing OD matrices for other 

vehicle classes had to be modified as described in the previous section. In this section, the 

steps taken from determination of HEV distribution pattern to the creation of OD 

matricies are explained. Figure 3.10 outlines the steps taken.  

 
Figure 3.10: Flow chart representing steps taken for scenario creations 



M.A. Thesis – N. Kaneda; McMaster University – School of Geography and Earth Sciences 

 

39 

 

3.3.2.1 Models 

The first task was to calculate the potential distribution pattern of HEVs at CT level. 

The simplest methods were to assume that each census tract will obtain equal number of 

HEVs or equal HEV-to-ICE ratio. Another way was to estimate the distribution by 

mathematical modeling based on current HEV distributions found in 2008 Vehicle 

Registration data as well as socioeconomic and demographic characteristics found in 

Canadian census 2006. The distribution of HEV by equal counts and by equal HEV-to-

ICE ratio were called Uniform Count (UC) Model and Uniform Percentage (UP) Model, 

respectively. These two models were created by dividing the number of HEVs to be 

distributed by the number of CTs or assigning the same HEV-to-ICE ratios to all CTs.  

Three regression models were created based on current HEV distributions and 

socioeconomic and demographic characteristics: Model 1, Model 2, and Model 3. In these 

distribution models, the HEV count was used as the dependent variable and the variables 

listed in Table 8.2 were used as independent variables, with each model using different 

combinations of independent variables. The type of regression model chosen for this was 

the negative binomial regression. In the following sections, creation and use of each 

model is outlined. 

Originally, the logistic regression model with HEV proportion in each CT were 

considered as the primary method. This was soon rejected as the variation between HEV 

proportions were very small, ranging from 0 to 0.0125. The use of HEV count per CT 

was chosen instead, where the Poisson regression model (PRM) or negative binomial 

reression model (NBRM) are often used as the basic models for count data analysis (Park, 
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2005). A unique feature and the strict rule of the PRM is that the mean and the variance 

of the data should be equal, a relationship termed equidispersion (Hilbe, 2007). In the 

case of the Hamilton CMA, the HEV count data have a mean of 4.90 and the variance of 

36.59. This condition, where the variance is greater than the mean, is called 

overdispersion (Park, 2005). As can be seen in Figure 3.4, there was an abundance of CTs 

with zero HEV count, which contributed to overdispersion. To adjust for this 

overdispersion, one of NBRM or zero-inflated negative binomial model (ZINB) can be 

used instead of PRM (Park, 2005; Hilbe 2007). In the LIMDEP statistical software used 

in this thesis, the Voung’s statistics test was available to compare the preference for 

NBRM or ZINB. ZINB is preferred if the Voung’s statistic value V is greater than 1.96 

while NBRM is preferred if V is less than -1.96 (Park, 2005). During the model synthesis, 

the value of V fell between -1.96 and 1.96, which suggested either of NBRM or ZINB is 

suitable for this data (Park, 2005; Hilbe, 2007). For the modeling for this thesis, NBRM 

was chosen over ZINB.  

In the census 2006, the cities of Hamilton and Burlington had 135 and 38 census 

tracts, respectively, to make up the total of 173. Of these 173 CTs, three were omitted 

from regression analysis for lack of census information. These CTs were 5370018, 

5370036, and 5370072.01. For CT 5370018, none of census information or vehicle 

registration data were available while CT 5370036 only had basic census information and 

none of detail socio-economic information. CT 5370072.01 had very small population 

count which likely lead to information, such as income, being supressed.  
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MODEL1: VEHPHHLD, FM1CHLD, POSTSECU 

For the development of Model 1, those independent variables considered to be 

significant in bivariate regression were divided into 11 subgroups of similar traits. Within 

each subgroup, combinations of independent variables that produced the best log-

likelihood value were thought out. When the variables were highly correlated to each 

other, the variable with best log-likelihood from bivariate regression was taken to avoid 

multicollinearity. This process reduced the number of independent variables to 17 from 

94. The list of 17 independent variables and the result of its first multivariate regression 

can be seen in Table 3.5.  

Table 3.5: List of starting 17 independent variables for Model 1 

Variables Definitions Coeff. t-stats 

Constant  1.210 0.521 

POPDEN Population Density 0.000 -1.539 

AVEPHHLD Average number of household members in a dwelling 0.421 0.307 

VEHPHHLD Average number of vehicles per private dwelling 0.619 2.978 

X2PHHLD Number of dwellings with 2 people in a household 3.916 0.863 

X45PHHLD Number of dwellings with 4 or 5 people in a household 2.706 0.439 

SFAMHHLD Number of single family household -6.223 -1.536 

MLTIHHLD Number of multi-family household 0.825 0.092 

FM1CHLD Number of female lone parent with 1 child -7.082 -2.331 

FM3UCHLD Number of female lone parent with 3 or more children -0.091 -0.012 

MA1CHLD Number of male lone parent with 1 child -8.765 -1.390 

MA2CHLD Number of male lone parent with 2 children -11.767 -1.103 

MAWRKCSD 
Proportion of make workers travelling outside of CSD to 
usual place of work 

0.333 0.585 

FMWRKDRV 
Number of female workers travelling to work as a driver in a 
private vehicle 

-0.367 -0.244 

MAWRKPAS 
Number of male workers travelling to work as a passenger in 
a private vehicle 

2.756 0.986 

POSTSECC 
Population with post-secondary education other than 
University 

0.933 0.455 

POSTSECU Population with post-secondary education from University 4.906 3.337 

EFIN80U Number of economic family with after-tax income $80,000+ 0.818 0.578 
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From the independent variables in Table 3.5, variables were eliminated one at a 

time for either its insignificance or the sign of the coefficient being opposite of a priori 

expectation. First four variables (POSTSECC, FM3UCHLD, MLTIHHLD, and 

FMWRKDRV) were eliminated for their insignificance in the model. After the removal 

of some variables, MAWRKPAS has become a significant variable in the model. It was 

removed, however, for its sign being opposite of bivariate regression result and also a 

priori understanding that those travelling to work as a passenger are less likely to invest in 

AFVs, especially in men (Dagsvik et al., 2002). Even though all studies relating to 

automobile ownership indicated income as an important indicator, in this combination of 

variables EFIN80U was not significant. This could have been that it conflicts with other 

variables related to high income such as POSTSECU. One of the household variables, 

AVEHHLD, was eliminated for its insignificance also likely to have been influenced by 

X2PHHLD and X45PHHLD. Then, SFAMHHLD was removed for its sign being 

opposite of literature interpretation, the single family household increases the chance of 

HEV ownership by investing for more vehicles (Chu, 2002; Hess and Ong, 2002).  

Table 3.6: Mid-process independent variables for Model 1 

Variables Coeff. t-stats P-value 

Constant 1.343 2.141 0.032 

POPDEN 0.000 -1.494 0.135 

VEHPHHLD 0.583 2.803 0.005 

X2PHHLD -2.355 -1.290 0.197 

X45PHHLD -3.825 -3.604 0.000 

FM1CHLD -7.220 -2.682 0.007 

MAWCHLD -6.387 -1.306 0.192 

MAWRKCSD 0.557 1.059 0.290 

POSTSECU 5.542 7.707 0.000 
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After the number of independent variables was reduced to half of what was at start, 

a minor adjustment was made to the lone parent variable combination. The combination 

of FM1CHLD, MA1CHLD, and MA2CHLD was replaced with FMWCHLD and/or 

MAWCHLD to look for the combination that increased the log-likelihood. This was 

possible because FMWCHLD and FM1CHLD had high correlation as well as 

MAWCHLD to MA1CHLD and MA2CHLD. After a few trial-and-errors, FM1CHLD 

and MAWCHLD combination was used (Table 3.6). From this point on, MAWRKCSD, 

MAWCHLD, and X2HHLD were eliminated in order for their insignificant contribution 

to the model. Then, X45PHHLD was excluded because studies indicate that larger 

households have more vehicles (Hess and Ong, 2002). This was followed by removal of 

POPDEN for insignificance to the model. The final model included three independent 

variables: VEHPHHLD, FM1CHLD, and POSTSECU (Table 3.9).  

MODEL2: AFVPROP, VEHPHHLD, X1PHHLD, X2PHHLD, HHIN8099, HHIN100U, 

DOWNTOWN 

For Model 2, all independent variables that resembled the variables in Table 3.1 

were selected. These 23 variables selected included variables that were indicated as not 

having significant relationship in bivariate regression. Predictably, these variables were 

eliminated in the first few steps. Compared to Model 1, elimination of independent 

variables in this model was much simpler. Of the 23 variables selected, 13 were taken out 

of the model based on its insignificant contribution to the model, though not done in one 

process (Table 3.7). These 13 variables were: MALE014, MALE1529, MALE3444, 

MALE4564, MALE65U, FEM014, FEM1529, FEM3044, FEM65U, X1CHLD, 
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X2CHLD, X3UCHLD, HHIN6079, HHLDDEN, SFAMHHLD, and WORKOCSD. This 

process left seven independent variables (Table 3.8).  

Table 3.7: List of starting 23 independent variables for Model 2 

Variables Definitions Coeff. t-stats 

Constant 
 

50.343 3.003 

HHIN6079 Household After Tax Income $60,000-79,999 1.002 0.341 

HHIN8099 Household After Tax Income $80,000-99,999 7.664 2.805 

HHIN100U Household After Tax Income $100,000+ 5.328 4.136 

AVEPHHLD Average number of household members in a dwelling -0.901 -0.871 

HHLDDEN Household density (number of dwellings per km
2
) 0.000 -0.328 

SFAMHHLD Number of single family household -3.170 -1.025 

DOWNTOWN Downtown area = 1, Elsewhere = 0 -0.266 -1.050 

X1CHLD Number of families with 1 child -3.345 -1.584 

X2CHLD Number of families with 2 children -3.218 -1.093 

X3UCHLD Number of families with 3 or more children -4.752 -1.084 

VEHPHHLD Average Number of Vehicles per Private Dwellings 0.450 2.719 

AFVPROP AFV proportion to total vehicle count in a CT 64.895 3.891 

WORKOCSD 
Proportion of all workers travelling outside of CSD to their 
usual place of work 

-0.449 -0.657 

MALE014 Male population between ages 0 and 14 -13.583 -1.284 

MALE1529 Male population between ages 15 and 29 -17.034 -1.413 

MALE3044 Male population between ages 30 and 44 -30.916 -2.839 

MALE4564 Male population between ages 45 and 64 -25.320 -2.107 

MALE65U Male population age 65 and up -22.695 -2.060 

FEM014 Female population between ages 0 and 14 -24.981 -1.968 

FEM1529 Female population between ages 15 and 29 -23.460 -1.616 

FEM3044 Female population between ages 30 and 44 -19.519 -1.240 

FEM4564 Female population between ages 45 and 64 -25.005 -1.926 

FEM65U Female population age 65 and up -22.084 -1.641 

 

Once the number of variables was reduced, interchanging variables with one or 

more variables not originally in the list was conducted to search the best combination. 

This process showed that inclusion of X1PHHLD and X2PHHLD together produces 

better results than AVEPHHLD. Following this process, FEM4564 was removed for 
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having opposite sign for its coefficient than its bivariate regression result. The final model 

was produced with seven independent variables (Table 3.9).  

Table 3.8: Mid-process independent variables for Model 2 

Variables Coeff. t-stats P-value 

Constant 2.659 3.476 0.001 
HHIN8099 5.864 2.699 0.007 
HHIN100U 4.681 6.002 0.000 
AVEPHHLD -1.375 -5.239 0.000 
DOWNTOWN -0.398 -1.956 0.050 
VEHPHHLD 0.388 2.272 0.023 
AFVPROP 77.619 6.633 0.000 
FEM4564 -3.030 -1.713 0.087 

 

MODEL3: SECONDRY, MLTIHHLD, X1CHLD, WORKOCSD, AVFAMIN1, 

AVFAMIN4, PDEN1, PDEN2, PDEN3, PDEN4, PDEN5  

In the case of Model 3, the selection of the independent variables was carried out by 

process of inclusion rather than elimination. First, the descriptive variables for the density 

and the income were selected by trial-and-errors. Different combinations of the 

population density or household density and one of average household income, median 

household income, average economic family income, and median economic family 

income were tried to search for the best log-likelihood value. Once population density 

(PDEN) and average economic family income (AVFAMIN) were chosen to be the base 

for this model, selection for other variables was carried out.  

Since PDEN and AVFAMIN were already selected, other variables related to 

density and income were excluded to avoid multicollinearity. The variables already used 

in the first two models were also excluded to capture factors yet to be seen in previous 

models. With 30 variables still to be considered, the variables were grouped into six 
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subgroups, and were considered one group at a time in the model. The six subgroups were 

household members, place of work, household structure, number of children, age and sex, 

and education. From the bivariate analysis, the education variables were found to be one 

of the most significant explanatory variables of all. This group was then left until the end 

to be introduced into the model to reduce its influence.   

First group was number of household members. All variables in this group changed 

its coefficient sign once introduced into the model, suggesting possible multicollinearity 

with variables already in use. Therefore none of these variables were used in the model. 

Second group was related to trips to usual place of work. Within this group, three 

variables without distinction of sex were considered first. Of the WRKOCSD, 

TRWRKDRV, and TRWRKPAS, the best log-likelihood value was obtained by using 

WRKOCSD. The three variables that describes place of work outside of his/her place of 

residence all had high correlation to each other. The variable WRKOCSD was included in 

the model since there was no need to specify the sex. In the third group on type of 

household structure, MLTIHHLD was the only one that was both significant and had the 

coefficient sign consistent with that of bivariate regression.  

In the group for number of children in the households, X1CHLD, MAWCHLD, and 

MA2CHLD were significant when introduced one variable at a time. Of these three 

variables, X1CHLD was chosen to be included based on log-likelihood value. From the 

age and sex of population group, none were found to be significant in this model and was 

not included. Finally, the education variable was introduced into the model. Between 

PRIMARY and SECONDRY, the latter was chosen for two reasons. First, like many 
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other variables chosen, SECONDRY produced higher log-likelihood of the model than 

PRIMARY. Secondly, PRIMARY includes those who are currently enrolled into 

secondary education. Therefore, to capture those who have decided not to obtain post-

secondary education, for various reasons, SECONDRY was chosen. This left four 

variables along with seven binary descriptive variables, total of 11 independent variables, 

in the final model (Table 3.9).  

Table 3.9: Summary of NBRM-based HEV Distribution Models 

Model 1  Model 2  Model 3 

Variables Coeff. t-stats 
 

Variables Coeff. t-stats 
 

Variables Coeff. t-stats 

Constant -0.332 -0.689  Constant -3.705 -5.752  Constant 4.596 5.028 

VEHPHHLD 0.520 3.003  AFVPROP 74.513 6.117  SECONDRY -8.705 -3.095 

FM1CHLD -5.117 -2.029  VEHPHHLD 0.368 2.129  MLTIHHLD -17.312 -2.463 

POSTSECU 6.095 9.142  X1PHHLD 4.902 4.543  X1CHLD -2.857 -1.318 

   
 X2PHHLD 2.408 1.936  WORKOCSD 1.328 2.266 

   
 HHIN8099 7.109 3.341  AVFAMIN1 -0.824 -3.365 

   
 HHIN100U 4.360 5.673  AVFAMIN4 0.396 1.623 

   
 DOWNTOWN -0.416 -1.964  PDEN1 0.228 1.018 

   
 

   
 PDEN2 -0.337 -1.519 

   
 

   
 PDEN3 0.010 0.042 

   
 

   
 PDEN4 0.035 0.119 

   
 

   
 PDEN5 -0.887 -1.936 

           

           

 Model 1 Model 2 Model 3  

Restricted Log-Likelihood (RLL) -455.639 -455.639 -455.639  

Unrestricted Log-Likelihood (ULL) -392.196 -383.162 -394.822  

Rho  (1-(ULL/RLL)) 0.1392 0.1591 0.1335  

LR (2*(ULL-RLL)) 126.886 144.954 121.634  

Chi-squared  
(significance level) 

167.092 
(0.000) 

128.205 
(0.000) 

188.053 
(0.000) 

 

Number of observations = 170     

 

The goodness-of-fit measures for NBRM through the results were not definitive in 

providing fit of the models to HEV counts, unlike R
2
 value in Liner Regression. The 
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predicted HEV counts from each model were contrasted against the observed count to 

calculate the pseudo-R
2
 values (Figure 3.11). These values provided an estimate on how 

the models fit the observed counts. These pseudo-R
2
 values indicates the best model out 

of the three created can only explain 47% of HEV ownership.  

 
Figure 3.11: Correlation between observed and predicted HEV counts 

 In each of the models, most of the variables used were either direct or indirect indication 

of income levels. The fit of the models by pseudo-R
2
 suggests that these models with mostly 

income related variables have 35% to 47% explanatory rate. The education level of a consumer 

can be a variable for their awareness of environmental issues or the jobs they are qualified. The 

lower number of people in a household can indicate a higher expendable income than those in 

multi-family household. From the non-income related variables used in other studies, the age and 

sex variables were not significant in any of the models and number of licenced drivers was not 
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available through census data. Despite the weak to moderate fit, the predicted HEV count values 

from these models were used as the distribution patterns of HEV in 2021 with estimated sprawl 

type population growth in the Hamilton CMA. 

3.3.2.2 Establishing OD matrices for HEV  

There are two approaches to estimate future distribution of HEVs by using the 

regression models. First approach is to estimate the values for all independant variables 

used in regression models in 2021 and calculate the HEV count. For example, estimate 

the average vehicles per household, number of female lone parents with one child, and 

number of residents with post-secondary education from a university in each of the 

census in 2021 and apply these to Model 1. This method is very complicated since many 

of the variables used in the regression models are not driven by policies made and 

published by governments. The second approach is to use predicted or esimated HEV 

counts from the regression models as weights in distribution of predetermined number of 

HEVs in the future. This method assumes that the tendency of residents of the Hamilton 

CMA to purchase HEV stays the same as seen in 2008. Since the estimation is limited to 

the number of HEVs introduced, it is simpler than the first approach. Therefore the 

second approach was used in this study. The number of vehicles to be distributed were set 

to be 1%, 2%, 5%, and 10% of all registered passenger and light truck vehicles in 

Hamilton in 2008. The different level of proportions were set to simulate the changing 

levels of market penetrations.  

When running the negative binomial regression model, the LIMDEP software was 

able to produce three sets, one for each of the three models, of predicted counts of HEVs 
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based on 2006 values for the independent variables used (Figure 3.12 through Figure 

3.14). The sum of the predicted values were 869.58, 851.64, and 852.75 for models 1 

through 3, respectively. The predicted HEV count in each CT divided by the total number 

of HEVs was used as its probability weights in running the Monte Carlo simulation.  

Of the three CTs omitted from the process of model construction, 5370036 and 

5370072.01 were assigned the probability weights based on its neighbouring CTs sharing 

common boaders. Both of 5370036 and 5370072.01 shared boarder with seven other CTs. 

An average for each set of seven CTs were calculated for both CTs. The third CT omitted, 

5370018 was given a probability weight of zero. The Monte Carlo simulations were 

executed using the predetermined number of HEVs that are being distributed. Once the 

distribution of HEVs was completed, the HEV counts were converted into proportions by 

dividing the counts by the total registered vehicles in each CT. After the first set of 

vehicles were distributed, the number of HEVs assigned to CT 5370016 was found to 

exceed the number of total vehicles in that CT. The probability weight for this CT was 

adjusted to zero with a consideration that there was no HEV in 2008 in this CT based on 

the Vehicle Registration data. The predicted counts and probability weight for each CT 

for all three models can be seen in Table 8.1 in Appendix. 

Once the proportions of HEVs in CTs were established, these values had to be 

converted into TAZ used in the TRAFFIC software to which the OD matrices were fed 

into. This conversion was completed by overlapping CTs and TAZ through spatial join in 

ArcGIS. There were 32 TAZ that included more than one CT in its boundary. For these 

CTs, the averages of the proportions from all CTs in its boundary were used. There were 
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multiple TAZ that belonged to the same CT. In these cases, the same proportion value 

was given to all TAZ belonging to the same CT. The proportions in TAZ level was used 

to scale down the OD matrices. Since the HEV penetration in the future was the focus of 

this study, the OD matrices of 2021 were modified. The OD matrices for the future years 

were created based on population and employment growth. These were done as a part of 

previous project already mentioned for years of 2011, 2016, and 2021.  

 
Figure 3.12: Predicted HEV distribution by regression for Model 1 
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Figure 3.13: Predicted HEV distribution by regression for Model 2 

 
Figure 3.14: Predicted HEV distribution by regression for Model 3 
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3.3.2.3 Possible Electric Vehicle (EV) Scenario 

Based on the simulation structure for this study, a quick review was conducted of the 

effect of EV implementation into the market. As discussed previously, this simulation 

model can only process four vehicle types. For this analysis, EV replaced HEV class. 

Since EV produces no tailpipe emissions (USEPA, 2003), all emission outputs from the 

simulation with HEVs were converted to a value of zero. This method was used for 

simulating traffic emissions in the morning peak hour (8:00am) in January. 
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4 Results 

For this thesis, the year 2006 was selected for the present scenario and 2021 for the 

future scenario. The present scenario was estimated using: 2006 meteorological data from 

Environment Canada, 2006 TTS travel data, and 2008 vehicle registration data as outlined 

in section 3.3.1. The future scenario included business-as-usual (BAU) scenario and five 

models with differing market penetration levels. Traffic emission estimates are available 

for 24 hours in 365 days in 2006 and 2021, although, morning and afternoon rush hour 

(8am and 4pm) data from a weekday in winter and summer (January 15
th

/Day 15 and July 

15
th

/Day 196) were selected for the purposes of comparison.  

4.1 HEV OD Matrices Validation 

First, the method used to calculate OD matrices and traffic flows for HEV and LDV 

was validated. It was assumed that LDPV and LDCV were equivalent in traffic flow 

assignment due to their road restriction and PCE being equal. These two classes were 

combined into one class then partitioned to create LDV and HEV. For this assumption to 

be true, the sum of all trips and the total vehicle kilometer travelled (VKT) must be equal 

across all models. The comparison of VKTs from each scenario to the BAU scenario is 

displayed in Table 4.1. The divergence from BAU was insignificant in all cases with the 

largest difference being 1.008% between BAU and Uniform Percentage at 1% (UP 1%) 

for 4:00pm. This confirmed that VKTs were equal for all scenarios and the effectiveness 

of the method used to create a new vehicle class and its OD matrices. Remaining parts of 

this chapter outline the traffic flows and emission estimates for each model, with a 

discussion of the comparison between models in Chapter 5. 
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Table 4.1: VKT comparisons against BAU for all models (in 1000km) in 2021 

Models 
8am 4pm 

HEV LDV Total Change % HEV LDV Total Change % 

BAU 0.00 940.64 940.64 0.000 0.00 945.91 945.91 0.000 

M1   1% 9.79 930.85 940.64 0.001 9.78 936.21 946.00 0.009 

M1   2% 19.98 920.80 940.77 0.014 20.14 925.87 946.01 0.010 

M1   5% 49.52 891.64 941.16 0.055 49.58 896.45 946.03 0.012 

M1 10% 99.29 841.86 941.15 0.054 99.42 846.60 946.02 0.011 

M2   1% 10.67 929.97 940.64 0.000 11.00 935.00 946.00 0.009 

M2   2% 21.32 919.51 940.84 0.021 21.78 924.23 946.01 0.010 

M2   5% 53.22 887.91 941.13 0.052 54.56 891.49 946.05 0.014 

M2 10% 106.42 834.81 941.23 0.063 108.94 837.10 946.04 0.013 

M3   1% 10.23 930.38 940.61 -0.003 10.33 935.66 945.99 0.008 

M3   2% 20.14 920.71 940.86 0.023 20.60 925.40 946.00 0.010 

M3   5% 50.56 890.57 941.12 0.052 51.62 894.41 946.03 0.012 

M3 10% 101.36 839.84 941.20 0.060 102.99 843.04 946.03 0.013 

UC   1% 9.70 930.91 940.61 -0.003 10.30 935.69 946.00 0.009 

UC   2% 19.45 921.27 940.72 0.008 20.66 925.36 946.02 0.011 

UC   5% 48.65 892.37 941.02 0.041 51.64 894.40 946.03 0.013 

UC 10% 97.32 843.70 941.02 0.041 103.27 842.62 945.89 -0.003 

UC 25% 243.52 697.88 941.40 0.081 258.29 687.60 945.89 -0.003 

UP   1% 9.40 940.68 950.08 1.004 9.45 946.00 955.45 1.008 

UP   2% 18.81 921.91 940.72 0.008 18.91 927.10 946.01 0.011 

UP   5% 47.04 893.99 941.03 0.042 47.27 898.77 946.05 0.014 

UP 10% 94.04 847.13 941.17 0.056 94.55 851.52 946.06 0.016 

UP 25% 235.33 706.03 941.37 0.078 236.53 709.49 946.02 0.012 

M1: Model 1, M2: Model 2, M3: Model 3, UC: Uniform Count, UP: Uniform Percentage 

4.2 Business-as-usual (BAU) Scenario 

Results of the BAU scenario for years 2006 and 2021 are presented. The scenario in 

year 2006 was the base for all scenarios, while the 2021 BAU scenario was the basis for 

comparison between different HEV market penetration models. BAU scenarios 

established that changes in VKTs and traffic emissions associated with the estimated 

population and employment development in the Hamilton CMA in the 15-year period. 

The difference in traffic emissions between the base year and 2021 was used as a 
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reference when comparing other scenarios to determine the reduction as a result of using 

HEVs. The following tables (Table 4.2 and Table 4.3) summarize the changes between 

2006 and 2021 using BAU scenario.  

Table 4.2: VKT change for BAU 2006 vs. 2021 

Hour Vehicle Type 
    Aggregate VKT 

Change 
      2006         2021 

8am 

LDV 735562.02 940638.97 27.88% 

MDCV 57949.73 60810.01 4.94% 

HDCV 21789.48 18380.90 -15.64% 

Total 815301.22 1019829.88 25.09% 

4pm 

LDV 768988.20 945913.05 23.01% 

MDCV 43749.98 47196.07 7.88% 

HDCV 6812.92 5794.47 -14.95% 

Total 819551.10 998903.59 21.88% 

 

For both morning and afternoon rush hours, the VKT for LDV and MDCV 

increased, while HDCV declined significantly (Table 4.2). The most likely cause of the 

significant increase of VKT observed in LDV was the projected future development 

pattern of the Hamilton CMA. While the cities of Hamilton and Burlington have different 

developing patterns, a strong case of suburbanization and urban sprawl of population and 

new dwellings from 2006 to 2021 was predicted in the city of Hamilton, which comprises 

a major portion of the study area (CSpA, 2009). The employment growth model based on 

known employment, landuse, and socioeconomic data indicated growths in service, retail 

trade, and primary industries while manufacturing industries, wholesale trade and 

transport declined (CSpA, 2009).  The large decline estimated in the manufacturing 

industry (-28%) was likely the most influential factor in the VKT decline for HDCV.  
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The percent change in VKTs between 2006 and 2021 closely resemble the changes 

in aggregate traffic emissions for each of the four traffic emissions: HC, CO, NOx, and 

CO2 (Table 4.3). Since previous studies indicate that traffic emissions are not directly 

proportional to VKT (Frey et al., 2006), these similarities were investigated for validity. 

To investigate the relationship between the VKT change and the emissions changes, other 

outputs were also examined. The aggregate emissions were calculated by simple 

summation of the traffic emissions estimated for each of the 831 links. The traffic 

emissions for each of the network links were calculated based on the amount of vehicle 

flow and the flow speed (CSpA, 2009). Over the 15-year period, the total number of trips 

made by each vehicle class changed, resulting in changes in VKTs. Since the number of 

vehicles travelling in each class and flow speeds were inconsistent across link network, 

the similarities between VKT and aggregate emissions changes were not directly related. 

The percent change in total NOx aggregate emission was significantly different from that 

of VKT for morning and afternoon rush hours in January and July, in addition to CO2 for 

morning rush hours in January and July. These results support a non-direct but positive 

relationship.  

In Table 4.3, the percent differences for each pollutant between two years with 

respect to 2021 are also shown for LDV. This was done to show the amount of reduction 

necessary to offset the traffic emission growth projected in next 15 years. There were no 

significant differences in the estimation results for MDCV and HDCV classes in VKT, 

the aggregate emissions, and the link based emissions for all scenarios in 2021. This 

consistency was due to unaltered OD matrices and the traffic assignment order, allowing 
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for these two classes to be assigned to the network unaffected by changes in LDV and/or 

HEV. The remaining sections focus on LDV and HEV classes.  

Table 4.3: Aggregate Emissions for BAU Scenario in 2006 and 2021 

Month 
Vehicle 

Type 

HC CO NOx  CO2 (t) HC CO NOx CO2 (t) 

2006 2021 

  Morning Rush Hour (8am) 

Jan 

LDV 290.64 9,004.36 886.89 162.32 369.98 11,500.10 1,133.78 207.57 

MDCV 21.55 629.52 334.12 39.93 22.61 658.63 349.75 41.90 

HDCV 4.59 184.01 107.60 9.22 3.91 154.73 90.13 7.78 

Total 316.79 9,817.89 1,328.61 211.47 396.50 12,313.46 1,573.66 257.25 

Jul 

LDV 261.44 5,237.55 528.92 162.52 332.62 6,684.38 676.01 207.83 

MDCV 19.12 506.16 314.80 39.89 20.07 529.57 329.50 41.85 

HDCV 4.06 151.02 102.57 9.20 3.46 127.00 85.91 7.76 

Total 284.62 5,894.74 946.29 211.61 356.15 7,340.95 1,091.41 257.45 

  
Afternoon Rush Hour (4pm) 

Jan 

LDV 296.49 8,784.16 899.51 169.69 363.48 10,768.94 1,103.62 208.74 

MDCV 15.89 463.36 250.80 30.14 17.06 499.23 270.91 32.52 

HDCV 1.41 56.22 33.43 2.88 1.21 47.71 28.26 2.45 

Total 313.79 9,303.74 1,183.74 202.72 381.74 11,315.88 1,402.78 243.71 

Jul 

LDV 312.41 7,584.21 550.21 169.90 382.95 9,287.61 674.49 209.00 

MDCV 16.67 492.74 229.28 30.11 17.89 530.90 247.66 32.48 

HDCV 1.46 60.09 31.13 2.88 1.25 50.99 26.31 2.45 

Total 330.53 8,137.04 810.62 202.89 402.10 9,869.49 948.47 243.93 

  
Change 2006 to 2021 (2021 to 2006) 

  
8am 4pm 

Jan 

LDV 
27.3% 

(-21.4%) 

27.7% 
(-21.7%) 

27.8% 
(-21.8%) 

27.9% 
(-21.8%) 

22.6% 
(-18.4%) 

22.6% 
(-18.4%) 

22.7% 
(-18.5%) 

23.0% 
(-18.7%) 

MDCV 4.9% 4.6% 4.7% 4.9% 7.4% 7.7% 8.0% 7.9% 

HDCV -14.9% -15.9% -16.2% -15.6% -14.2% -15.1% -15.5% -14.9% 

Total 25.2% 25.4% 18.4% 21.7% 21.7% 21.6% 18.5% 20.2% 

Jul 

LDV 
27.2% 

(-21.4%) 
27.6% 

(-21.6%) 
27.8% 

(-21.8%) 
27.9% 

(-21.8%) 
22.6% 

(-18.4%) 
22.5% 

(-18.3%) 
22.6% 

(-18.4%) 
23.0% 

(-18.7%) 

MDCV 4.9% 4.6% 4.7% 4.9% 7.3% 7.7% 8.0% 7.9% 

HDCV -14.9% -15.9% -16.2% -15.6% -14.1% -15.1% -15.5% -14.9% 

Total 25.1% 24.5% 15.3% 21.7% 21.7% 21.3% 17.0% 20.2% 

The units for HC, CO, and NOx are in kilograms (kg) while CO2 is in tonnes (t).  
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4.3 HEV Flows 

For all models, there were between 36 and 41 links out of 831 not travelled by 

HEVs. Most of these links were located at the edges of the study area. Since the traffic 

assignment model only calculates the intra-zonal trips and does not account for trips to or 

from outsize of the study area, these links cannot carry any traffic flow. All pseudo links 

carried some flow of HEVs except for 1810544 in the afternoon rush hour and 2090279 

for both morning and afternoon rush hours. This was a result of HEV OD matrices 

calculations, which predicted that no trip would be made into or out of these two TAZs at 

these times. The variations in the number of links not travelled by HEVs were based on 

the market penetration levels across different models.  

The most travelled links by HEVs in all models were the major highways and the 

large arterial roads given their higher capacity to carry more vehicles on the road. The 

following figures (Figure 4.1 through Figure 4.5) display a spatial pattern of link usage by 

HEVs at 10% market penetration. The links calculated in the top 10% for the highest 

HEV flows (approximately 250+ HEV flows per hour) are displayed in the thick blue 

lines. All other links with some HEV flow are displayed in black, while the links without 

HEV flow are in red. As each model distributed HEVs differently, minor differences in 

the resulting traffic flow were seen. 

In Model 1 (Figure 4.1), links with high volumes of HEV flow in both morning and 

afternoon peak periods include parts of Hwy 403, Lincoln M. Alexander Parkway (Linc), 

and QEW over Burlington Skyway Bridge. These links contain high volumes of traffic 

flow due to their importance as major highways in the study area. The major differences 
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between the two peak periods include use of Hwy 407, QEW between Centennial 

Parkway and Fruitland Road, and Red Hill Valley Parkway (RHVP). There were high 

volumes of HEV traffic in the morning on Hwy 407 and QEW, while RHVP was used 

heavily in the afternoon.   

As seen in Model 1, most travelled links by HEVs in Model 2 (Figure 4.2) were 

also the major highways and arterial roads with higher capacity to carry more vehicles on 

the road. In contrast to Model 1, differences between the highest flows in the morning and 

afternoon rush hours were less apparent in Model 2. Other than the northern half of 

RHVP, which is heavily used for both peak hours, much of the other major links with 

heavy HEV traffic were the same as Model 1. These include: Hwy 403, the Linc, and 

QEW from Burlington Skyway Bridge to Fruitland Road. The differences in the use of 

Hwy 407 and southern half of RHVP between the morning and afternoon peaks also 

resembled HEV flow in Model 1.  

 Traffic on Hwy 407 decreased for both morning and afternoon rush hours 

compared to the previous two models discussed in Model 3 (Figure 4.3). The changes in 

the traffic flows on the Linc, RHVP, and QEW closely resembled those of Model 1 and 2. 

The heavy use of QEW in Burlington, Hwy 403 through Hamilton, and the west half of 

the Linc consistent across all models, including Uniform Count (UC) and Uniform 

Percentage (UP) models. For UC (Figure 4.4) and UP (Figure 4.5) models, fewer 

differences between two time periods were observed. The entire loop (the network of 

major highways circling Hamilton) carried high HEV volume for both morning and 
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afternoon rush hours in UC and UP models. The difference between these two models 

and the first three models was higher volume in the arterial road in central Hamilton.  
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Figure 4.1: Link use by HEV for Model 1 at 8:00 am (top) and 4:00pm (bottom) 
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Figure 4.2: Link use by HEV for Model 2 at 8:00 am (top) and 4:00pm (bottom) 
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Figure 4.3: Link use by HEV for Model 3 at 8:00 am (top) and 4:00pm (bottom) 
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Figure 4.4: Link use by HEV for Uniform Count Model at 8:00 am (top) and 4:00pm 

(bottom) 
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Figure 4.5: Link use by HEV for Uniform Percentage Model at 8:00 am (top) and 

4:00pm (bottom) 
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4.4 Aggregate Emissions 

Table 8.3 and Table 8.4 in the Appendix list the results of aggregated traffic 

emissions from each level of market penetrations (1%, 2%, 5%, and 10%) for all models, 

including BAU. From Table 8.3 and Table 8.4, the decreasing traffic emissions at all 

market penetration levels across all models, compared to the BAU scenario at an 

aggregate level are evident. The difference in each model in contrast to the BAU scenario 

cannot be observed directly with raw values. The percent changes from the BAU scenario 

to all models are shown in Table 4.4 and Table 4.5, which are separated for the months of 

January and July.  

These tables show that at the aggregate level, a reduction in traffic emission was 

significant (more than 5% change) only for HC and CO when the 10% of the total light 

duty vehicles in the Hamilton CMA was HEVs. Despite the difference in distributions of 

HEV across the models, percent change did not differ greatly between the models, 

although the most significant reductions with HC exist at approximately 8%, followed by 

CO in the range of 6.5%. The reductions for NOx and CO2 at 10% HEVs were around 

3.4% and 4%, respectively. While the values for NOx and CO2 fell short at the 5% 

significance level, it shows that increased use of HEVs does make a difference. Although 

the 25% HEV level was not used for non-uniform models due to difficulty in the 

distribution method, the two uniform models show the potential for reduction by 

increasing the number of HEVs. At 25% HEV, all four traffic emissions illustrated 

significant reductions with HC exceeding 20%.  
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Between BAU 2021 and Base 2006 emissions, the baseline emissions were lower 

by 21% in the morning and 18% in the afternoon rush hours (Table 4.3). Contrasting the 

percent reductions in each model approximately 35%, 30%, 16%, and 21% of emission 

growth in HC, CO, NOx, and CO2 can be offset by use of 10% HEVs. 

Table 4.4: Percent aggregate emission reduction contrasted to BAU in January 

Models 
8am  4pm 

HC CO NOx CO2  HC CO NOx CO2 

M1   1% -0.80% -0.65% -0.35% -0.43%  -0.79% -0.63% -0.33% -0.42% 

M1   2% -1.62% -1.29% -0.68% -0.86%  -1.63% -1.31% -0.69% -0.87% 

M1   5% -3.96% -3.22% -1.71% -2.11%  -4.05% -3.25% -1.73% -2.15% 

M1 10% -8.02% -6.58% -3.56% -4.29%  -8.07% -6.54% -3.51% -4.32% 

M2   1% -0.86% -0.71% -0.38% -0.47%  -0.89% -0.71% -0.37% -0.47% 

M2   2% -1.69% -1.39% -0.74% -0.91%  -1.75% -1.42% -0.75% -0.94% 

M2   5% -4.24% -3.49% -1.87% -2.28%  -4.42% -3.58% -1.91% -2.36% 

M2 10% -8.54% -7.08% -3.85% -4.60%  -8.79% -7.19% -3.87% -4.73% 

M3   1% -0.84% -0.68% -0.37% -0.45%  -0.83% -0.66% -0.35% -0.44% 

M3   2% -1.61% -1.30% -0.69% -0.86%  -1.66% -1.33% -0.70% -0.89% 

M3   5% -4.05% -3.30% -1.76% -2.16%  -4.19% -3.38% -1.80% -2.24% 

M3 10% -8.18% -6.72% -3.64% -4.38%  -8.34% -6.77% -3.64% -4.47% 

UC   1% -0.80% -0.64% -0.34% -0.43%  -0.84% -0.66% -0.34% -0.44% 

UC   2% -1.59% -1.27% -0.67% -0.84%  -1.69% -1.33% -0.69% -0.89% 

UC   5% -3.95% -3.17% -1.70% -2.08%  -4.25% -3.36% -1.78% -2.23% 

UC 10% -7.99% -6.44% -3.49% -4.21%  -8.48% -6.77% -3.62% -4.49% 

UC 25% -19.99% -15.87% -8.76% -3.95%  -21.15% -17.19% -9.34% -11.21% 

UP   1% 0.24% 0.35% 0.64% 0.59%  0.24% 0.36% 0.65% 0.60% 

UP   2% -1.52% -1.22% -0.65% -0.81%  -1.54% -1.22% -0.64% -0.81% 

UP   5% -3.79% -3.07% -1.64% -2.01%  -3.86% -3.07% -1.62% -2.04% 

UP 10% -7.64% -6.22% -3.36% -4.05%  -7.69% -6.18% -3.30% -4.09% 

UP 25% -19.19% -15.87% -8.76% -3.56%  -19.26% -15.73% -8.53% -10.27% 
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Table 4.5: Percent aggregate emission reduction contrasted to BAU in July 

Models 
8am  4pm 

HC CO NOx CO2  HC CO NOx CO2 

M1   1% -0.78% -0.62% -0.31% -0.43%  -0.79% -0.63% -0.27% -0.42% 

M1   2% -1.59% -1.24% -0.59% -0.86%  -1.63% -1.30% -0.56% -0.87% 

M1   5% -3.89% -3.09% -1.51% -2.11%  -4.04% -3.24% -1.42% -2.15% 

M1 10% -7.88% -6.36% -3.18% -4.29%  -8.04% -6.53% -2.90% -4.32% 

M2   1% -0.85% -0.68% -0.34% -0.47%  -0.88% -0.71% -0.30% -0.47% 

M2   2% -1.66% -1.34% -0.66% -0.91%  -1.74% -1.41% -0.61% -0.94% 

M2   5% -4.16% -3.36% -1.66% -2.28%  -4.40% -3.58% -1.58% -2.37% 

M2 10% -8.39% -6.85% -3.46% -4.60%  -8.75% -7.18% -3.21% -4.74% 

M3   1% -0.82% -0.66% -0.33% -0.45%  -0.83% -0.66% -0.28% -0.44% 

M3   2% -1.57% -1.25% -0.61% -0.86%  -1.66% -1.33% -0.57% -0.89% 

M3   5% -3.97% -3.17% -1.56% -2.16%  -4.18% -3.37% -1.48% -2.24% 

M3 10% -8.03% -6.50% -3.27% -4.38%  -8.31% -6.77% -3.01% -4.48% 

UC   1% -0.79% -0.61% -0.30% -0.43%  -0.84% -0.66% -0.27% -0.44% 

UC   2% -1.56% -1.21% -0.59% -0.84%  -1.69% -1.32% -0.56% -0.89% 

UC   5% -3.88% -3.05% -1.50% -2.08%  -4.25% -3.35% -1.45% -2.23% 

UC 10% -7.86% -6.22% -3.12% -4.21%  -8.46% -6.75% -2.98% -4.49% 

UC 25% -19.68% -15.86% -8.11% -10.56%  -21.08% -17.23% -7.82% -11.22% 

UP   1% 0.25% 0.36% 0.66% 0.59%  0.24% 0.35% 0.70% 0.60% 

UP   2% -1.49% -1.17% -0.57% -0.81%  -1.53% -1.21% -0.52% -0.81% 

UP   5% -3.72% -2.96% -1.46% -2.02%  -3.86% -3.07% -1.33% -2.04% 

UP 10% -7.51% -6.00% -3.00% -4.06%  -7.67% -6.16% -2.71% -4.10% 

UP 25% -18.88% -15.36% -7.84% -10.22%  -19.18% -15.75% -7.14% -10.28% 
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4.5 Link Based Emissions 

While for the objective of this research was to illustrate reductions in emissions, 

seven to eight links highlighted significant (more than 5% change) increases, as compared 

to the BAU scenario in one or more of the situations (a combination of a market 

penetration level, a month, and a time). With regards to these links, all four pollutants had 

significant increases, with one or two pollutants falling just short of 5% cut-off in some 

cases. Table 4.6 displays the links with significant increases in traffic emissions and their 

situations.  

Of those with significant increases in traffic emissions, four links (3410313, 

4940495, 5000484, and 5000501) were common across all models. The rest were made 

up of two links (3320335 and 4800583) appearing in four models, another two links 

displayed in two models (3340335 and 3210301), and two more links (4480597 and 

5970413) appearing only in one of the models. Out of these links, three showed percent 

traffic emission increase into the double digits. The links 3320335 and 3340335 displayed 

over 20% and 10% increases, respectively, in Model 1 and Model 2 and the link 3210301 

displayed over 10% increase in Model 3 and UC model. There was, however, a link 

(480583) which showed duality: a significant increase for morning rush hours at 2% 

HEVs in four models and over 20% reduction in afternoon rush hours at 5% and 10% 

HEVs in all five models.  
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Table 4.6: Links with significant traffic emission increase situations (% = HEV level) 

Models LINKID Street Names 
Jan Jul 

8am 4pm 8am 4pm 

M1 

3320335 Mountain Brow Road 10% 
 

10% 
 

3340335 Mohawk Road 10% 
 

10% 
 

3410313 Maple Avenue 2%  5% 
 

2%  5% 
 

4570445 Hwy 403 exit to Main St 2% 
 

2% 
 

4940495 Southcote Road 
 

1%  2% 
 

1%  2% 

5000484 Carluke Road 2% 
 

2% 
 

5000501 Fiddlers Green Road 2%   2%   

M2 

3320335 Mountain Brow Road 10% 
 

10% 
 

3340335 Mohawk Road 10% 
 

10% 
 

3410313 Maple Avenue 2%  5% 
 

2%  5% 
 

4800583 Stone Church Road 2% 
 

2% 
 

4940495 Southcote Road 
 

1%  2% 
 

1%  2% 

5000484 Carluke Road 2% 
 

2% 
 

5000501 Fiddlers Green Road 2%   2%   

M3 

3200578 King Street East 1% 
 

1% 
 

3210301 Lawrence Road 1% 
 

1% 
 

3410313 Maple Avenue 2%  5% 
 

2%  5% 
 

4800583 Stone Church Road 2% 
 

2% 
 

4940495 Southcote Road 
 

1%  2% 
 

1%  2% 

5000484 Carluke Road 2% 5% 
 

2% 5% 
 

5000501 Fiddlers Green Road 2% 5%   2% 5%   

UC 

3200578 King Street East 1% 
 

1% 
 

3210301 Lawrence Road 1% 
 

1% 
 

3320335 Mountain Brow Road 25% 
 

25% 
 

3410313 Maple Avenue 2%  5% 
 

2%  5% 
 

4800583 Stone Church Road 2% 
 

2% 
 

4940495 Southcote Road 
 

1%  2% 
 

1%  2% 

5000484 Carluke Road 2% 5% 
 

2% 5% 
 

5000501 Fiddlers Green Road 2% 5%   2% 5%   

UP 

3320335 Mountain Brow Road 25% 1% 25% 1% 

3410313 Maple Avenue 2%  5% 10% 
 

2%  5% 10% 
 

4480597 York Boulevard 1% 
 

1% 
 

4800583 Stone Church Road 2% 
 

2% 
 

4940495 Southcote Road 
 

2% 
 

2% 

5000484 Carluke Road 2% 
 

2% 
 

5000501 Fiddlers Green Road 2% 
 

2% 
 

5970413  York Boulevard 1%   1%   
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On the opposite end of the scale the number of links with significant reduction in 

traffic emissions for each model and situation are highlighted in Table 4.7 and Table 4.8. 

The difference between the values for each pollutant resembles that of a percent decrease 

in aggregate emissions (Table 4.4 and Table 4.5) where HC and CO have larger values 

than NOx or CO2. The difference between morning and afternoon peak periods were also 

similar to that of aggregate emissions. Largely, there were more links with significant 

traffic emission reductions in the afternoon than in the morning. Unlike the aggregate 

emissions, the number of links with significant emission reductions does not coincide 

with HEV proportions linearly, but shows rapid increase, particularly for HC and CO. 

The tables display that more than 600 links with significant reductions can only account 

for approximately 8% reduction in the aggregate emissions in HC at 10% HEV for 

Models 1, 2, and 3.  

Across the models, there were differences in the way the number of links with a 

significant increase changed from one HEV market penetration level to the next. The rate 

of change from 1% to 2% to 5% HEV levels was greater in Model 2 and UC model than 

in Model 1 and Model 3. Each of these model pairs displayed similar values in the 

number of links at corresponding market penetration levels. The pattern of emission 

increase seen in the number of links for UP was not observed in any other models. In the 

UP model, the values at 5% market penetration levels were comparable to that of 2% 

market penetration in other models, while the values at 10% market penetration matched 

those of other models at the same market penetration level.  
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 At 25% HEV market penetration in UC and UP models, the number of links with 

a significant reduction exceeds 700. With nearly 40 of those links not carrying HEV flow, 

these values show that significant traffic emission reduction can be observed on almost all 

of the links, especially those emissions with more than 790 links. This result coincides 

with significant reductions seen at the aggregate level for these two models at 25% HEV.   

Table 4.7: Number of links with significant (>0.05) emission reductions in January 

Models 
8am  4pm 

HC CO NOx CO2  HC CO NOx CO2 

M1   1% 0 0 0 0  1 1 1 1 

M1   2% 7 5 1 1  8 6 1 1 

M1   5% 164 92 16 19  181 106 24 25 

M1 10% 617 483 144 160  642 527 164 183 

M2   1% 0 0 0 0  2 2 1 1 

M2   2% 20 11 2 2  21 11 2 2 

M2   5% 229 135 34 37  258 155 51 54 

M2 10% 626 545 211 221  659 585 227 246 

M3   1% 6 6 6 6  1 1 1 1 

M3   2% 10 4 2 2  10 6 1 1 

M3   5% 174 109 22 27  201 141 33 43 

M3 10% 632 490 176 187  656 527 191 204 

UC   1% 6 6 6 6  1 1 1 1 

UC   2% 9 7 2 2  5 4 1 1 

UC   5% 251 105 11 10  268 103 21 26 

UC 10% 699 615 240 252  721 655 234 254 

UC 25% 789 776 723 728  794 784 747 753 

UP   1% 0 0 0 0  1 1 0 0 

UP   2% 4 4 2 2  4 3 1 1 

UP   5% 33 23 6 6  48 29 15 14 

UP 10% 769 748 58 54  789 773 63 60 

UP 25% 794 794 788 790  794 794 789 791 
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Table 4.8: Number of links with significant (>0.05) emission reductions in July 

Models 
8am  4pm 

HC CO NOx CO2  HC CO NOx CO2 

M1   1% 0 0 0 0  2 3 1 2 

M1   2% 7 5 1 1  9 9 1 2 

M1   5% 160 87 13 19  178 112 15 25 

M1 10% 607 468 120 160  637 538 110 185 

M2   1% 0 0 0 0  3 4 1 2 

M2   2% 19 11 2 2  21 11 2 2 

M2   5% 220 133 27 37  254 158 35 54 

M2 10% 621 534 163 221  655 588 158 246 

M3   1% 6 6 6 6  1 1 1 1 

M3   2% 10 4 2 2  11 8 1 2 

M3   5% 169 106 16 27  199 147 16 43 

M3 10% 628 472 142 191  650 536 143 204 

UC   1% 6 6 6 6  1 1 1 1 

UC   2% 8 6 2 2  6 6 1 2 

UC   5% 239 99 9 10  258 115 17 26 

UC 10% 693 604 184 254  717 661 123 254 

UC 25% 789 776 718 729  793 784 713 753 

UP   1% 0 0 0 0  1 1 0 0 

UP   2% 4 3 2 2  5 5 1 2 

UP   5% 33 23 6 6  48 31 11 14 

UP 10% 767 747 48 54  788 773 42 60 

UP 25% 794 794 782 790  794 794 776 791 
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5 Discussions 

This chapter is divided into four parts. The first two sections review the results 

found in each of aggregate and disaggregate level. The aggregate emissions section 

compare and contrast the results from this study to previous literatures. The disaggregate 

emission section discusses this study’s main benefit; to consider the spatial variation in 

emission changes with varying HEV market penetration models. The latter two sections 

consider a hypothetical EV scenario and make suggestions for improvements and future 

studies. An overview of possible 5% EV scenario, in accordance with a plan by the 

government of Ontario, is assessed in EV scenario section. In the last section on the 

future improvements, the effectiveness of and improvements that could be made to each 

of the traffic assignment program and HEV distribution models are discussed.  

5.1 Aggregate Emissions 

Along with an indication that 10% HEV can achieve significant reductions in HC 

and CO emissions, a linear trend was evident between the percent reductions of 

aggregated traffic emissions and the increasing HEV proportions for all models (Table 

4.4 and Table 4.5). This trend suggests that if HEVs were distributed according to the 

models, the overall traffic emission reductions obtained from 100% vehicle replacement 

with HEVs would be approximately 80% for HC, 60%-70% for CO, 30%-35% for NOx, 

and 40% for CO2. It was also observed that NOx and CO2 will reach a significant level of 

reduction at 15% and 12% HEV proportions, respectively. Although this finding seems 

simplistic, previous studies have not performed small incremental changes in the HEV 

proportions as seen in this study. In recent studies examining traffic patterns and HEV 
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replacement, only one alternative vehicle scenario was used with a predetermined HEV 

proportion. Frey et al. (2009) included 9.9% HEV, 9.9% E85, 5.9% diesel, 1.2% CNG, 

and 0.1% EV/Fuel Cell with 73% Gasoline vehicles as their alternative vehicle scenario, 

while Stone et al. (2009) replaced all vehicles with 100% hybridization.  

Across the two inputs with direct influence on the traffic emission results (fleet 

vehicle makeup and OD matrices), only the OD matrices for LDV and HEV were altered 

from one scenario to another. The method used to create LDV and HEV OD matrices was 

validated to produce no significant changes in total VKT between scenarios, as seen in 

Table 4.1. This suggests that the overall traffic volume on each link remained constant 

and the LDV volume was replaced by increasing HEV volumes. Therefore the reductions 

in traffic emissions are directly related to the differences of the tailpipe emissions 

between LDV and HEV. Replacing LDVs on roads with more HEVs can lead to a higher 

reduction in traffic emissions. Altering of the HEV distribution patterns between the 

models changes the number of trips made by HEVs originating and/or ending in each 

TAZ. This would change the links used by HEVs and volume of HEVs on each link, as 

discussed in Section 4.3. The emission factors were calculated based on vehicle travel 

speed. Therefore, changing the links used and applying an average travel speed to each 

links helps to account for the variations in the percent reductions between the models.   

Contributions 

There were some differences between these results and those of previous studies 

involving traffic pattern and HEV replacement. In Frey et al. (2009), the future scenario 

with 33% VMT growth and 27% AFV market penetration was illustrated to result in large 
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reductions in HC, CO, and NOx emissions compared to baseline scenario in 2005, while 

CO2 emission increased significantly. In a study by Stone et al (2009), the 

implementation of HEVs to completely replace LDVs was estimated to offset the 

emission growth by 97%. These differences are discussed below.  

First, the total emission reduction in alternative scenario was calculated with AFVs 

in all vehicle types (cars, trucks, and busses) (Frey et al., 2009) whereas no AFVs were 

included in trucks or busses in this study. Frey et al. (2009) have also incorporated a more 

complex combination for the AFV make up for cars which included E85, CNG, EV, and 

Fuel Cell vehicles. Secondly, Frey et al. (2009) accounted for the technological 

advancements from 2005 to 2030, such as the average fuel economy increase of 16% in 

LDV and vehicle turnover as a result of stricter emission codes. Thirdly, the impact of 

VMT growth estimated on the overall flow speed in the network differs between the 

studies. The 33% VMT growth was estimated to reduce the overall average trip speed of 

the network by 28%, which caused a significant increase in the CO2 emission (Frey et al., 

2009). In contrast, the calculations for the Hamilton CMA resulted in zero links with a 

significant decrease in average speed from 2006 to 2021 even though the total VKT 

increased by 25% (Table 4.2).  

 In Stone et al. (2009), three different landuse development patterns were 

contrasted, each with and without HEV fleet implementation for 11 metropolitan areas in 

the United States. The BAU scenario showed median VMT increases of 63.5% from 2000 

to 2050, accompanied by 22.8% CO2 emission increase with use of conventional ICE 

vehicles. It was estimated that implementation of complete hybridization of the LDVs 
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would limit the CO2 emission growth to 0.7% (Stone et al., 2009). Between the BAU 

scenarios with and without HEVs in 2050, CO2 emission was reduced by 18% with HEVs. 

For the Hamilton CMA, 25% growth in VKT was accompanied by 28% and 23% 

increases in CO2 emissions for morning and afternoon peaks, respectively, without HEVs. 

With the implementation of 10% HEVs, the CO2 emission growth was limited to 23% 

(morning) and 18% (afternoon). A complete hybridization of LDV fleet in the Hamilton 

CMA was estimated to result in a 40% reduction in CO2 emissions, as discussed 

previously. Consistent with Frey et al. (2009), the technological advancements in vehicles 

were also accounted for in Stone et al. (2009). It was projected that the fuel economy 

would increase from 19.5 MPG in 2000 to 25.6 MPG in 2050. They have also included 

5.8% VMT increase as the “rebound effect”, an approximately 2 % increase in VMT for 

every 10% increase in MPG (Stone et al., 2009).  

These differences point to the need for more complex strategic scenario building in 

terms of fuel type, vehicle class, and vehicle technology change in the Hamilton CMA. In 

this study, only three fuel types (gasoline, diesel, and hybrid-electric) were considered 

even though six fuel types were currently in use in the Hamilton CMA in 2008. This 

limitation stems partly from to the limited ability of the traffic assignment software. The 

traffic assignment software used in this study is currently only able to handle four vehicle 

classes, (HDCV, MDCV, LDV, and HEV) and bus transit; therefore, it cannot compute 

more than one AFV type. A software update to assign six or more vehicle classes is 

necessary to simulate a gradual transition from ICE to EV and/or Fuel Cell vehicles 

through HEV. Finally, the advancement of vehicle technologies as more fuel efficient 
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vehicles are being developed by manufacturers every year is an important piece of 

information to consider. Use of Mobile6.2C emission factors with the same inputs are 

convenient and allow for an observation of emission changes by vehicle class alone. 

However, to see true technological advancement, improvement of fuel economy must be 

considered.  

5.2 Disaggregate Emissions 

At the aggregate level, the estimated traffic emissions showed a linear trend with 

the HEV market penetration level. Variations between models and between types of 

pollutants in the number of links with a significant emission reduction were also 

discussed (Table 4.7). In this section, investigations of traffic emission at the link level, 

the emission reduction trends between links, and spatial patterns of links with significant 

changes are discussed. The discussions and figures use HC during morning rush hour in 

January with 10% HEV as an example since the patterns for CO, NOx, and CO2 were 

generally consistent with HC.  

The focus of this study was to investigate the reduction in traffic emissions by use 

of HEVs in the fleet. To compare the emissions on each link, the volume of emissions had 

to be normalized with its length (grams per kilometer or g/km). In the BAU scenario, the 

links with highest traffic emission per kilometer included sections of QEW in Burlington, 

Burlington Skyway, Hwy 403, James Street South, and sections of King Street West and 

Main Street West between downtown and Cootes Drive. The example of BAU HC 

emission and its distribution can be seen in Figure 5.1.  
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Figure 5.1: Business-as-Usual scenario HC emissions in 2021 

Including those already listed, many of the links with high emissions were major 

highways in the study area. High vehicle speed and high vehicle flow help to explain high 

emissions on these links. Depending on the type of emission, the speed at which the 

vehicle produces a minimum amount of tailpipe or the optimum running speed changes. 

Mobile6.2C calculated the optimum speed is between 52.5 and 55mph (84.5 to 88.5km/h) 

for HC emission, 35mph or 56.3km/h for CO emission, and between 25 to 35mph for 

NOx depending on the type of road. This suggests that reducing the vehicle travel speed 

does not necessarily result in reduction of all traffic emissions.  

Artificially reducing the speed limits on the major highways down to 70km/h prior 

to running the traffic assignment yielded roughly the same emissions outputs. This result 
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was due to the nature of the trip stochastic user equilibrium used in the TRAFFIC 

program where travel time is minimized for all alternative routes. With an artificially 

reduced speed limit to simulate rush hour congestion, where alternative routes to major 

highways are also congested, the program rather simply replaced vehicles from the major 

highways to alternative arterial roads. To maximize the effectiveness of HEV on the 

traffic emission, the average speed must be reduced to between 40 and 50km/h 

throughout the network by limiting speed or increase the traffic volume to create 

congestion. Although approximately 80% of the links follow the similar linear trend in 

the traffic emission reductions at the aggregate level, there were links with different 

patterns. A number of examples of these links were mentioned in Table 4.6 in the 

previous chapter. Figure 5.2 shows the HC emission reduction trends for some sample 

links along with the aggregate emission trend. The variations from one HEV market 

penetration level to another are displayed clearly with the trend lines in Figure 5.2. The 

label “linear” trend can also be misinterpreted for the change from -1.48% to -14.37% on 

one link (2920285: Walkers Line) is as linear as -0.50% to -4.48 on another link 

(2940288: Upper Centennial Parkway). The linear trend seen at the aggregate level is an 

average of all these variations.  
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Figure 5.2: Sampled percent changes in HC emission in January at 8:00am  

The percent reduction also varied over space and from model to model. The 

following series of maps have the links classified into: a “significant increase” (>+5%), 

“no change” (±0.01-4.99%), a “significant reduction” (-9.99%- -5%), and a “large 

reduction” (<-10%). Differences in spatial patterns for the links in each class and 

variation between the models are evident. The number of links that fall in each class for 

all five models can be seen in Table 5.1. For the scenarios with 10% HEV level, there 

were 36 links out of 831 that carried no traffic flow. These 36 links produced no HC or 

any other emission outputs.  

Between the three models created through negative binomial regression, there were 

similarities and differences. In the three models, the proportions of links that had at least 
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5% reduction in HC emission ranged from 77.6% to 79.5% (Table 5.1). The number of 

links that fell in the “significant reduction” class was similar for Model 1 and Model 3, 

while Model 2 had fewer links in this class, but more in a “large reduction” class.  

Table 5.1: HC emission change classes and number of links 

Models 
≥ 5% 

increase 
No change 

(±<5%) 
5 - 9.99% 
decrease 

≥10% 
decrease 

M1 2 174 460 157 

M2 2 167 396 230 

M3 0 163 450 182 

UC 0 96 447 252 

UP 0 26 743 26 

 

The spatial patterns of links in each category corresponded to how the HEVs were 

distributed for each model in 10% HEV scenario. The links with “large reductions” were 

seen in the zones that received HEVs that were more than 10% of its total vehicle count 

for each model. For all three models, some links were evident in these areas with high 

HEV proportions but did not have “large reductions”. The variations in the number of 

links in “large reduction” class are the likely the result of the continuity of high HEV 

zones in each of the three models.  In Model 1 (Figure 5.3) and Model 3 (Figure 5.5), 

there were gaps between clusters of high HEV zones. On the other hand, in Model 2 

(Figure 5.4), there were two large clusters of high HEV zones. One of these two clusters 

spans from the western half of the study area between Ancaster and North Burlington.   
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Figure 5.3: Model 1 HC reductions and HEV proportions 

 
Figure 5.4: Model 2 HC reductions and HEV proportions 
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Figure 5.5: Model 3 HC reductions and HEV proportions 

The spatial patterns for UC and UP models differed from each other and from the 

three models created through negative binomial regressions. The proportions of trips 

made by HEVs to and from each zone in both UC and UP models were influenced more 

by the total number of vehicles in each TAZ than the other three models. In the UC model, 

zones with a lower total vehicle count had higher proportions of HEV trips and vice versa 

since each zone had the same number of HEVs. The results of are evident in Figure 5.6, 

where a majority of the links in lower Hamilton, Flamborough, and downtown Burlington, 

and north Burlington showed “large reductions”. Thirty-two percent of all links were 

associated with the zones of lower total vehicle counts (Figure 3.2), and therefore had 

higher HEV proportions than zones with high total vehicle counts. Of the 795 links that 

carried traffic flow, 56% showed a “significant reduction” of HC emission in UC model. 
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These links were distributed across the study area except for the areas near very high total 

vehicle count zones such as Mount Hope, Binbrook, and Flamboro. The links associated 

with these zones showed neither significant increases nor reductions.  

In the case of the UP model, HEVs were distributed according to the total vehicle. 

Therefore, each zone carried an equal proportion of HEVs. An equal HEV distribution 

resulted in a similar proportion of trips made to and from each TAZ. This resulted in to 

most links (93%) belonging to the same class, and “significant reductions” and fewer 

links with “large reductions” (3%) than other four models (Figure 5.7).  

 
Figure 5.6: Uniform Count model HC reductions 
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Figure 5.7: Uniform Percentage model HC reductions 

All of the major highways in the study area have “significant reductions” in all five 

models, with some sections of King Street West and Main Street West having “large 

reductions”. Since these links had very high traffic emissions, even a “significant 

reduction” of 5% to 9.99% is large compared to changes seen in other minor roads in the 

area in actual grams per kilometer.  

The perfect scenario is that these links with a high volume of traffic, high vehicle 

speed, and high traffic emissions see much larger reduction through the use of HEVs. 

However, previous literature questions HEV’s performance as a cleaner vehicle while 

travelling at high speeds (Alessandrini et al., 2009; Frontaras et al., 2008; An and Sauer, 

2004). HEV best showcase its potential as a clean vehicle is when driven in heavy 
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congestions leading at a decreased average speed such as in stop-and-go traffic jam 

(Emadi et al., 2005; Frontaras et al., 2008). The traffic assignments calculated that even 

during the morning and afternoon rush hours, the Hamilton CMA does not have enough 

trips to cause this situation. Of the five models, the three models created through NBRM 

illustrated the realistic potential of future HEV distributions and its effect on the traffic 

emissions. The UC model displayed the most optimal distribution of HEVs to reduce the 

traffic emissions.  

5.3 Possible EV scenario  

By 2020, the Government of Ontario aims to have one in every 20 passenger 

vehicle on the roads be an electric vehicle (OPO, 2009). After more than a decade since 

the release of first mass produced HEV, it has yet to reach 1% of the total fleet in the 

Hamilton CMA. To achieve a market penetration of 5% in a decade with a vehicle type 

that is yet to be available in mass production from major companies in Canada, is 

unrealistic.  

Nissan has produced one of the first mass-produced EVs called LEAF. It is now 

available for purchase starting December 3rd, 2010 in Japan with its price starting at 

¥3,760,000JPN ($44,250CAN @ $1CAN = ¥85JPN). Although this may seem costly, the 

Japanese government has an eco-car tax reduction to lower to the cost for consumers to 

¥2,990,000 (or approximately $35,200CAN
i
) (Nissan Japan, 2010). It is available in the 

US starting at $35,200US and may be as low as $27,700US with federal tax savings 

(Nissan USA, 2011). In Canada, around 600 of the 2012 models are expected to be 

                                                      
i
 Rate as of December, 2010. In November 2011, $1CAN = ¥75JPN; ¥3,760,000JPN = $50,130CAN 
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released starting at $38,395CAN. Once it is available, the consumers in Ontario are 

eligible for a tax rebate up to $8,500CAN (Nissan Canada, 2011). Other companies, such 

as Chevrolet, are following this example and also planning to release EVs in the near 

future.  

Electric cars are thought to replace combustion engine vehicles given that they lack 

any tailpipe emissions. While this is true, EVs are not completely pollution free. They 

still use the same rubber tires and breaking systems as other vehicles which can produce 

particulate matter (USEPA, 2003). Unlike HEVs or hydrogen vehicles, EVs are incapable 

of generating electricity internally. They have to be plugged into a socket, which is 

connected to an electric power plant elsewhere. These electric power plants can produce 

higher levels of GHG. Therefore, in order for EVs to be emission free, they have to be 

plugged into solar or wind powered electric generators (Chiumiento et al., 2008). 

The percent change in aggregated emissions follows a linear trend, as seen in Table 

5.2. The difference between EV and HEV is that the percent change is approximately 

equal across all four emission types and the percent reduction is directly related to the 

proportion of EVs in the fleet. From this analysis the introduction of 5% EV into the fleet, 

as the government of Ontario aims to do, will produce approximately 5% reduction in 

traffic emissions. While it is unrealistic to assume that there will be no HEVs as 

transitional technologies from ICE to EVs within the next 10 years, this result can be used 

as the best case scenario of rapid transition.  
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Table 5.2: Aggregate Emission Estimates with Electric Vehicles in 2021 

Models 
Aggregated Emission  Change from BAU 2021 

HC (kg) CO (t) NOx (kg) CO2 (t)  HC (kg) CO (t) NOx (kg) CO2 (t) 

BAU 2021 369.98 11.50 1133.78 207.57  - - - - 

M1   1% 366.15 11.38 1122.30 205.41  -1.03% -1.01% -1.01% -1.04% 

M1   2% 362.20 11.27 1110.75 203.19  -2.10% -2.03% -2.03% -2.11% 

M1   5% 350.85 10.92 1076.40 196.76  -5.17% -5.06% -5.06% -5.21% 

M1 10% 331.38 10.32 1017.26 185.78  -10.43% -10.27% -10.28% -10.50% 

M2   1% 365.83 11.37 1121.24 205.22  -1.12% -1.10% -1.11% -1.13% 

M2   2% 361.80 11.25 1109.01 202.91  -2.21% -2.18% -2.18% -2.25% 

M2   5% 349.52 10.87 1071.76 195.94  -5.53% -5.46% -5.47% -5.61% 

M2 10% 328.85 10.23 1008.42 184.22  -11.12% -11.03% -11.06% -11.25% 

M3   1% 365.97 11.38 1121.77 205.31  -1.09% -1.06% -1.06% -1.09% 

M3   2% 362.23 11.26 1110.53 203.18  -2.09% -2.05% -2.05% -2.12% 

M3   5% 350.47 10.91 1075.15 196.52  -5.27% -5.17% -5.17% -5.32% 

M3 10% 330.62 10.30 1014.90 185.33  -10.64% -10.47% -10.49% -10.72% 

UC   1% 366.12 11.39 1122.48 205.43  -1.04% -1.00% -1.00% -1.03% 

UC   2% 362.34 11.27 1111.29 203.30  -2.07% -1.99% -1.98% -2.06% 

UC   5% 350.93 10.93 1077.44 196.92  -5.15% -4.97% -4.97% -5.13% 

UC 10% 331.53 10.35 1020.06 186.18  -10.39% -10.04% -10.03% -10.31% 

UC 25% 273.79 8.58 846.58 154.00  -26.00% -25.36% -25.33% -25.81% 

UP   1% 370.01 11.50 1133.81 207.58  0.01% 0.00% 0.00% 0.00% 

UP   2% 362.66 11.28 1111.98 203.44  -1.98% -1.92% -1.92% -1.99% 

UP   5% 351.71 10.95 1079.13 197.28  -4.94% -4.82% -4.82% -4.96% 

UP 10% 333.21 10.38 1023.78 186.94  -9.94% -9.70% -9.70% -9.94% 

UP 25% 277.66 8.68 855.34 155.80  -24.95% -24.55% -24.56% -24.94% 

 

5.4 Possibilities for the Future 

Four suggestions for improvement to the traffic assignment program and HEV 

distribution models are discussed in this section. First, an update of the emission factor 

calculation software from current MOBILE6.2C to Motor Vehicle Emission Simulator 

(MOVES). A second and third improvement pertains to the TRAFFIC software: inclusion 

of more vehicle classes and inter-regional traffic. Lastly, the HEV distribution models 
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were created under the assumption that the relationship between the HEVs distribution in 

2008 and the socio-demographic characteristics in 2006 census will stay consistent. There 

are two paths to improving these models: collection of disaggregate data and use of 

longitudinal or multiple cross sectional data.  

As vehicle technology changes with time, so does the software to account for these 

changes and its influences on emission. MOVES is an upgrade from MOBILE6.2C 

incorporating substantial emissions test data, and can account for changing vehicle 

technology and regulations. It allows the user to answer “what if” questions where a wide 

range of user-defined conditions can be tested (USEPA, 2010). MOVES has options that 

allow users to modify the vehicle fuels and technologies fractions in each model year 

and/or to enter information on retrofitted diesel trucks and buses to meet emission control 

regulations. Although it does not separately model HEVs, it does include them as part of 

average vehicles (USEPA, 2010). An update to software such as MOVES could produce 

more accurate emission estimates based on more detailed information of the region. 

The methods used to include HEV as its own class was described in Chapter 3, 

followed by its limitations in Chapter 5. The conversion of LDPV and LDCV into LDV 

and HEV was possible only because these vehicle classes shared common characteristics 

within the traffic assignment program. However, current TRAFFIC software is unable to 

process splitting of HDCV or MDCV into two classes to simulate new vehicle 

technologies or using three LDV equivalent classes (ICE, HEV, and EV) for a transitional 

stage simulation. Although it may be time consuming, an update to include more vehicle 
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classes are recommended as newer technologies become available for medium and heavy 

commercial vehicles in the future and for more complex scenarios to be executed.  

An important improvement to TRAFFIC would be the inclusion of inter-regional 

traffic. In the original project, the vehicle flow validation showed approximately 70% 

accuracy in the Hamilton CMA network (CSpA, 2009). This leaves 30% of the traffic 

volume unaccounted for by trips made between TAZ in the study area, or intra-regional 

traffic. The major highways in the Hamilton CMA carry a large volume of traffic, moving 

people and commercial goods through the area on a daily basis. These additional vehicles 

on the road cause daily congestion on these major highways.  

When investigating the average link speed calculated for the Hamilton CMA, the 

links did not produce significant changes from the set speed limits even during the busiest 

times of the day. This suggests that the number of trips made in the Hamilton CMA is not 

enough to saturate the network and cause bumper-to-bumper congestion. Since HEVs 

performance in emission reduction is seen in situations where battery powered motor is 

used, such as that in a congested traffic, simulating accurate traffic volume and its effect 

is very important.  

An alternative to including inter-regional traffic in the Hamilton CMA case would 

be to choose a study area carrying high intra-regional volume, such as the Greater 

Toronto Area (GTA). In a major city such as Toronto, the inclusion of surrounding cities, 

would lead to congestion in many parts of the GTA. By considering the GTA as a group 

of smaller regions, a simulation of inter-regional traffic is possible. It is also possible to 

merge the Hamilton CMA and the GTA into one study area (the Greater Toronto 
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Hamilton Area or GTHA) or include both metropolitan areas in the Golden Horseshoe. A 

drawback to the expansion of the study area is the large increase in time and complexity 

of the computations. 

The data collection in a study such as this is limited by time and monetary resources. 

The best way to learn why consumers choose to buy HEV or AFV is to ask the question 

directly to those who have already purchased one. This is a revealed preference survey 

method that can collect detailed disaggregate data on the reasons for vehicle purchase, as 

well as socio-demographic data of the buyer. It is also possible to inquire about 

conventional ICE vehicles purchase and the reasons recent buyers did not to choose a 

type of AFV. This data collection method could be conducted by the dealership during 

the purchasing process, and could possibly be funded by the government.  

These data are cross-sectional, even in the revealed preference survey 

questionnaires. The state of buyers’ preference and socio-demographic characteristics 

could change before and after the purchase. While it is almost impossible to obtain real 

longitudinal data, a useful alternative is a series of cross-sectional data such as using the 

vehicle registration data from multiple years. This would allow for analyses on the 

number of HEV growth in the area and would reveal possible relationships between 

fluctuations of vehicle purchase and local or world events, including the period prior to 

and following the financial crisis of 2008.  

In Japan, the number of Toyota Prius sold annually was 58,315 in 2007 and 73,110 

in 2008, averaging 5,343 vehicles per month until April, 2009. In May, 2009, monthly 

sales of Prius surpassed 10,000 vehicles and have remained at the top of the domestic 
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vehicle sales, to date, selling 208,876 in 2009, 315,669 in 2010, and 195,366 vehicles 

between January and October of 2011 (JADA, 2011). On a much smaller scale, this trend 

can be observed in the Hamilton CMA in the last three years. The knowledge of such 

trend in the study area can improve the regression model by using the number of HEVs or 

AFVs in the previous years as an independent variable.   

An investigation into purchasing behaviour across different regions of the world for 

HEV or AFV would be useful. HEVs have successfully penetrated the market in Japan, 

consistently at the top of the sales ranking. It has been argued that monetary incentive 

programs are helpful; however, this strategy needs to be sustained for a long period of 

time to be effective (Diamond, 2009; Struben and Sterman, 2008; Flynn, 2002; Moore et 

al, 1998). Although consumers can benefit from “eco-car” tax reduction incentives, there 

may be other reasons why HEV has been successful in Japan. With the gasoline price 

higher in the UK (216.3¢/L
ii
) than in Japan (190.3¢/L

ii
), it is easy to question the lack of 

increase in HEV sales in the UK.  A survey in different locations of the world would 

provide useful purchasing information.   

                                                      
ii
 Prices of gasoline in Canadian dollar as of mid-November, 2011 (BBC, 2011; NHK, 2011) 
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6 Conclusions 

In this study, the effect of HEVs on traffic related pollution was assessed in the 

Hamilton CMA. Research in traffic involving alternative fuel vehicles has been carried 

out in separate fields, including the areas of market penetration and vehicle performance. 

This thesis aimed to combine findings from these two fields in a traffic simulation 

procedure. By introducing the HEVs in incremental levels to the vehicle travel pattern of 

more than 700,000 people in the study area, changes occurring in traffic related pollution 

at different levels were modeled.  

Five models were created for the hypothetical HEV spatial distribution patterns. 

Three of these five models were derived through NBRM based on 2006 census data and 

2008 vehicle registration data. The areas with the highest probabilities of HEV 

distributions were located in the suburban areas of the Hamilton CMA, where ongoing 

residential and commercial developments are evident. The distribution of a predetermined 

number of HEVs throughout the Hamilton CMA was completed via these five models 

and results were used to modify input OD matrices for the TRAFFIC program. The link-

based emissions were calculated in combination with traffic emission factors for HEV.  

The results indicated that converting 10% of the total fleet into HEVs was needed 

to make significant reductions to the HC and CO aggregate emissions in all five models. 

At this level of HEV implementation, emission growths from 2006 to 2021 in business-

as-usual scenario can be offset by approximately 35%, 30%, 16%, and 21% for HC, CO, 

NOx, and CO2, respectively. The distribution pattern created by Model 2 produced the 

highest reduction in traffic related pollution, while the spatial distributions from all 
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models produced slightly different spatial patterns in the links with significant reductions. 

An important finding with the incremental HEV penetration levels was the approximately 

linear trend between the percent reduction in the traffic emissions and the percent of 

HEVs in the total fleet. This trend allows calculations of approximate traffic emission 

reduction expected with any HEV level.   

The results illustrating links with more than 10% reduction in traffic emissions 

indicated that HEV technology as an effective method in dealing with environmental 

concerns. On the other hand, the lack of congestion on the major highways during rush 

hour illustrated that traffic simulation does not include a portion of trips within the 

Hamilton CMA. An improvement to the traffic simulation model to correctly simulate 

daily congestions seen in the Hamilton CMA can illustrate greater reductions in the traffic 

emission by use of HEVs.  

Relocating the study area to a more densely populated area where current programs 

can replicate daily congestion, would be beneficial. In addition, including the vehicle 

registration and socio-economic data from various years in NBRM would help improve 

the HEV distribution model.  Interesting research exists is in consumer opinion difference 

between countries where HEV or AFV has been successfully introduced, and where they 

have not. Findings would help illustrate policies that increase consumers’ willingness-to-

pay for cleaner vehicles in real world. 
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8 Appendix 

Table 8.1: Predicted HEV counts and Probability Weights 

CTUID 
2008 Predicted Probability Weight 

Count Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

5370001.01 1 4.56 3.54 6.77 0.242% 0.188% 0.359% 

5370001.02 2 2.77 1.16 2.94 0.101% 0.042% 0.107% 

5370001.04 5 3.87 2.20 3.95 0.125% 0.071% 0.128% 

5370001.05 2 2.67 1.34 3.47 0.136% 0.068% 0.176% 

5370001.06 6 4.07 2.19 4.28 0.138% 0.074% 0.145% 

5370001.07 1 2.07 0.76 1.06 0.125% 0.046% 0.064% 

5370001.08 4 2.96 2.86 3.19 0.091% 0.088% 0.099% 

5370001.09 0 3.54 2.20 3.08 0.224% 0.140% 0.195% 

5370002.01 2 3.98 1.43 4.25 0.179% 0.064% 0.191% 

5370002.02 4 5.37 4.92 5.77 0.104% 0.095% 0.112% 

5370002.03 2 1.98 1.77 1.87 0.126% 0.112% 0.119% 

5370002.04 1 4.40 2.56 1.72 0.157% 0.091% 0.061% 

5370003.01 9 7.86 3.52 6.76 0.251% 0.112% 0.216% 

5370003.02 2 3.13 2.26 3.71 0.166% 0.120% 0.197% 

5370003.03 2 2.68 1.12 1.24 0.178% 0.075% 0.082% 

5370003.04 3 1.67 1.35 1.91 0.057% 0.046% 0.065% 

5370004.01 0 1.66 1.82 1.90 0.094% 0.103% 0.107% 

5370004.02 1 1.53 1.10 1.25 0.078% 0.056% 0.064% 

5370005.01 2 2.02 1.53 4.45 0.068% 0.051% 0.150% 

5370005.02 0 1.45 0.85 1.39 0.078% 0.046% 0.075% 

5370005.03 0 2.64 1.52 2.51 0.114% 0.066% 0.108% 

5370006 4 1.44 3.01 1.93 0.055% 0.114% 0.074% 

5370007 1 1.44 1.34 1.94 0.085% 0.079% 0.114% 

5370008 2 1.17 2.42 1.66 0.088% 0.182% 0.125% 

5370009 0 1.61 1.24 0.90 0.089% 0.068% 0.050% 

5370010 1 1.50 1.81 3.14 0.084% 0.102% 0.176% 

5370011 3 2.09 1.82 3.55 0.155% 0.135% 0.263% 

5370012 1 1.80 1.49 1.48 0.248% 0.206% 0.204% 

5370013 7 4.02 4.38 6.73 0.243% 0.265% 0.407% 

5370014 2 4.22 3.61 4.49 0.261% 0.223% 0.277% 

5370015 3 4.04 3.51 4.21 0.668% 0.581% 0.696% 

5370016** 0 0.00 0.00 0.00 7.566% 2.050% 13.337% 

5370017 16 30.47 16.94 15.12 1.564% 0.870% 0.776% 

5370019 3 3.41 4.29 4.75 0.173% 0.218% 0.242% 

5370020 0 2.56 2.12 3.55 0.118% 0.098% 0.164% 

5370021 3 1.42 2.06 1.11 0.059% 0.086% 0.046% 

5370022 0 0.99 1.92 0.67 0.040% 0.077% 0.027% 

5370023 1 2.32 3.05 4.61 0.170% 0.223% 0.338% 

5370024 4 2.83 3.03 6.15 0.201% 0.216% 0.437% 

5370025 0 2.02 2.07 5.54 0.120% 0.124% 0.331% 

5370026.01 2 1.62 1.87 2.26 0.082% 0.095% 0.115% 

5370026.02 2 1.17 2.60 2.34 0.130% 0.289% 0.259% 

5370026.03 1 5.02 2.66 3.34 0.365% 0.193% 0.243% 

5370026.04 1 3.40 3.42 3.27 0.341% 0.344% 0.329% 

5370026.05 2 1.60 1.34 1.56 0.075% 0.063% 0.074% 

5370026.06 1 1.46 0.78 0.98 0.060% 0.032% 0.040% 

5370027 0 0.98 1.39 0.71 0.142% 0.203% 0.104% 
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CTUID 
2008 Predicted Probability Weight 

Count Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

5370028 1 1.54 1.91 2.72 0.098% 0.122% 0.173% 

5370029 0 1.15 0.99 1.50 0.054% 0.046% 0.070% 

5370030 1 2.68 1.67 3.79 0.118% 0.073% 0.167% 

5370031 1 2.04 1.58 2.66 0.199% 0.155% 0.261% 

5370032 0 0.93 0.73 1.62 0.073% 0.058% 0.128% 

5370033 3 2.06 1.73 2.74 0.158% 0.132% 0.211% 

5370034 1 2.43 1.51 0.80 0.123% 0.076% 0.041% 

5370035 1 0.97 1.39 1.32 0.083% 0.118% 0.113% 

5370036* 14 2.13 2.91 1.60 0.133% 0.181% 0.100% 

5370037 1 3.73 2.97 2.16 0.442% 0.352% 0.256% 

5370038 4 4.44 3.45 3.99 0.315% 0.245% 0.283% 

5370039 2 5.68 2.57 1.10 0.264% 0.119% 0.051% 

5370040 3 4.67 3.73 2.85 0.554% 0.442% 0.338% 

5370041 1 3.50 2.00 1.07 0.490% 0.280% 0.150% 

5370042 8 4.67 3.76 13.76 0.329% 0.266% 0.971% 

5370043 3 6.36 1.67 5.69 0.420% 0.110% 0.376% 

5370044 3 3.77 2.18 2.70 0.156% 0.090% 0.112% 

5370045 12 17.30 13.49 5.52 1.250% 0.975% 0.399% 

5370046 7 9.02 5.50 3.96 0.625% 0.381% 0.274% 

5370047 5 1.82 3.97 1.65 0.094% 0.206% 0.086% 

5370048 1 1.03 1.46 1.17 0.176% 0.251% 0.201% 

5370049 1 1.70 8.35 1.03 0.195% 0.958% 0.118% 

5370050 0 0.64 1.21 0.74 0.052% 0.098% 0.060% 

5370051 1 1.12 0.82 0.95 0.085% 0.062% 0.072% 

5370052 1 1.37 1.73 0.78 0.098% 0.124% 0.056% 

5370053 0 0.96 0.84 0.41 0.071% 0.062% 0.030% 

5370054 0 0.61 0.74 0.63 0.050% 0.061% 0.053% 

5370055 0 0.82 0.80 0.58 0.050% 0.049% 0.036% 

5370056 0 1.41 0.89 1.06 0.073% 0.046% 0.054% 

5370057 0 0.62 0.55 0.64 0.042% 0.037% 0.044% 

5370058 0 0.62 0.50 1.41 0.061% 0.049% 0.139% 

5370059 2 1.10 0.51 0.92 0.079% 0.037% 0.066% 

5370060 0 0.84 0.45 1.67 0.089% 0.047% 0.178% 

5370061 1 0.77 1.09 0.26 0.044% 0.063% 0.015% 

5370062 0 0.72 0.66 0.42 0.055% 0.051% 0.032% 

5370063 3 0.88 0.83 0.80 0.070% 0.066% 0.063% 

5370064 10 1.94 5.81 1.60 0.243% 0.726% 0.200% 

5370065 2 3.06 1.49 2.61 0.220% 0.107% 0.188% 

5370066 2 1.18 1.05 0.77 0.054% 0.048% 0.036% 

5370067 0 1.03 0.93 0.65 0.114% 0.103% 0.072% 

5370068 1 1.51 1.19 1.49 0.215% 0.170% 0.212% 

5370069 0 1.20 0.76 0.75 0.187% 0.119% 0.117% 

5370070 0 1.77 0.94 1.63 0.094% 0.050% 0.086% 

5370071 2 1.05 0.40 1.50 0.039% 0.015% 0.055% 

5370072.01* 1 2.25 2.61 2.17 0.244% 0.283% 0.235% 

5370072.02 0 1.17 1.84 1.06 0.065% 0.102% 0.058% 

5370072.03 2 1.72 0.70 0.49 0.067% 0.027% 0.019% 

5370072.04 1 2.28 2.83 2.41 0.116% 0.144% 0.123% 

5370073 4 1.21 8.09 4.88 0.160% 1.071% 0.647% 

5370080.01 1 4.42 10.07 2.90 0.280% 0.639% 0.184% 

5370080.03 4 3.99 2.82 3.00 0.133% 0.094% 0.100% 
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CTUID 
2008 Predicted Probability Weight 

Count Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

5370080.04 5 3.36 2.80 1.96 0.081% 0.067% 0.047% 

5370080.05 7 4.75 3.01 4.55 0.128% 0.081% 0.123% 

5370081 3 2.55 4.95 3.83 0.204% 0.397% 0.307% 

5370082 3 1.47 2.96 3.71 0.076% 0.152% 0.191% 

5370083 1 1.54 3.22 0.77 0.127% 0.264% 0.063% 

5370084.01 1 2.89 2.54 2.42 0.155% 0.136% 0.130% 

5370084.02 2 2.48 2.79 4.48 0.133% 0.150% 0.242% 

5370084.03 0 4.09 3.75 2.93 0.284% 0.260% 0.203% 

5370084.04 2 4.89 9.04 5.71 0.221% 0.408% 0.257% 

5370084.05 3 4.58 3.85 3.93 0.236% 0.198% 0.202% 

5370085.01 9 5.71 4.17 4.88 0.187% 0.136% 0.160% 

5370085.02 3 4.27 3.90 2.30 0.105% 0.096% 0.057% 

5370085.03 5 6.55 15.35 7.26 0.239% 0.559% 0.264% 

5370086 9 6.75 11.91 6.49 0.141% 0.249% 0.136% 

5370100 8 9.28 17.12 4.00 0.128% 0.236% 0.055% 

5370101 23 5.73 6.44 7.20 0.070% 0.079% 0.088% 

5370120.01 23 16.17 10.98 11.17 0.314% 0.213% 0.217% 

5370120.02 4 3.50 14.61 3.82 0.231% 0.964% 0.252% 

5370121 11 11.86 17.35 17.73 0.670% 0.980% 1.002% 

5370122.01 6 11.44 6.67 8.64 0.364% 0.212% 0.275% 

5370122.02 17 18.47 12.61 11.39 0.510% 0.348% 0.315% 

5370123 23 14.70 16.49 9.06 0.315% 0.353% 0.194% 

5370124 7 20.02 12.17 15.02 0.918% 0.558% 0.689% 

5370130.02 15 18.88 7.65 10.57 0.757% 0.307% 0.424% 

5370130.03 10 8.78 5.23 9.82 0.467% 0.278% 0.522% 

5370131 17 7.09 7.97 6.72 0.210% 0.236% 0.199% 

5370132 9 3.01 4.80 3.32 0.178% 0.284% 0.197% 

5370133 27 10.23 8.68 10.64 0.175% 0.148% 0.182% 

5370140.02 11 7.74 10.27 10.03 0.146% 0.193% 0.189% 

5370140.03 4 9.06 10.56 10.32 0.276% 0.322% 0.314% 

5370140.04 3 6.87 7.20 17.25 0.558% 0.585% 1.402% 

5370141 12 6.39 10.61 5.77 0.240% 0.398% 0.216% 

5370142.01 4 11.16 15.15 6.14 0.274% 0.372% 0.151% 

5370142.02 3 4.12 4.94 5.35 0.135% 0.162% 0.175% 

5370143 5 2.77 3.21 5.95 0.282% 0.327% 0.606% 

5370144 15 9.99 17.95 13.05 0.195% 0.351% 0.255% 

5370200 5 9.68 9.80 12.07 0.631% 0.639% 0.787% 

5370201 10 5.37 12.96 6.88 0.195% 0.470% 0.249% 

5370202 15 9.90 14.02 10.29 0.295% 0.418% 0.307% 

5370203 6 18.21 11.87 20.47 1.093% 0.712% 1.229% 

5370204 4 2.75 2.31 3.72 0.101% 0.085% 0.137% 

5370205.01 11 8.85 4.21 5.56 0.322% 0.153% 0.202% 

5370205.02 6 2.59 2.01 2.93 0.114% 0.089% 0.129% 

5370206 28 4.92 16.30 6.86 0.172% 0.571% 0.240% 

5370207.01 12 8.07 6.55 10.73 0.185% 0.150% 0.246% 

5370207.02 5 6.19 5.18 4.24 0.146% 0.122% 0.100% 

5370207.03 6 7.17 5.84 4.17 0.259% 0.211% 0.151% 

5370207.04 4 4.23 5.63 7.58 0.287% 0.382% 0.514% 

5370208 0 2.15 1.81 2.46 0.114% 0.096% 0.131% 

5370209 0 3.27 4.47 3.23 0.289% 0.395% 0.286% 

5370210 1 3.24 1.91 1.81 0.237% 0.140% 0.132% 
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CTUID 
2008 Predicted Probability Weight 

Count Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

5370211 2 4.50 4.16 6.50 0.190% 0.176% 0.274% 

5370212 3 6.14 6.74 4.90 0.667% 0.732% 0.532% 

5370213 18 5.60 6.32 6.09 0.255% 0.287% 0.277% 

5370214 1 3.26 3.00 4.90 0.199% 0.183% 0.299% 

5370215 5 4.75 4.32 10.61 0.326% 0.297% 0.730% 

5370216 20 17.31 21.88 25.49 0.651% 0.824% 0.959% 

5370217.01 4 2.26 5.13 3.42 0.074% 0.168% 0.112% 

5370217.02 3 10.70 6.60 10.85 0.385% 0.238% 0.390% 

5370218 17 6.32 7.07 6.12 0.117% 0.131% 0.113% 

5370219 16 21.27 25.62 21.43 0.673% 0.811% 0.678% 

5370220 9 4.43 4.82 6.71 0.115% 0.125% 0.175% 

5370221 5 4.76 4.04 3.80 0.244% 0.207% 0.195% 

5370222 13 6.41 6.85 11.27 0.099% 0.106% 0.174% 

5370223.01 5 4.55 4.97 5.47 0.193% 0.211% 0.232% 

5370223.02 3 5.30 7.11 7.34 0.184% 0.247% 0.255% 

5370223.05 4 11.26 9.86 9.76 0.521% 0.456% 0.451% 

5370223.06 7 13.52 9.85 9.62 0.469% 0.342% 0.334% 

5370223.07 6 7.90 8.01 5.09 0.242% 0.245% 0.156% 

5370223.09 10 34.29 10.18 13.41 0.672% 0.200% 0.263% 

5370223.1 2 7.88 6.58 10.61 0.682% 0.569% 0.917% 

5370223.11 32 15.74 13.08 12.13 0.173% 0.144% 0.133% 

5370223.12 14 11.70 18.25 12.33 0.204% 0.318% 0.215% 

5370224 5 5.98 13.13 9.96 0.460% 1.010% 0.766% 

Total 847 862.92 854.17 837.06 
   

* Predicted weight calculated based on surrounding CTs.  

** Predicted weight reduced to zero.  
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Table 8.2: List of Variables created from Census 2006 data 

Variables Definitions Coefficient t-stats P-value Log- Likelihood 

POPDEN Population density (population per km2) 0.000 -6.81 0.000 -441.34 

PDEN0 Popden less than 999 per km2 (reference variable)     

PDEN1 Popden 1,000 - 1,999 per km2 0.772 2.92 0.004 -448.50 

PDEN2 Popden 2,000 - 2,999 per km2 -0.183 -0.89 0.376 -455.35 

PDEN3 Popden 3,000 - 3,999 per km2 -0.283 -1.28 0.200 -454.87 

PDEN4 Popden 4,000 - 4,999 per km2 -0.673 -2.88 0.004 -453.21 

PDEN5 Popden 5000+ per km2 -1.610 -3.85 0.000 -443.84 

HHLDDEN Household density (number of dwellings per km2) 0.000 -6.16 0.000 -446.56 

HDEN0 
Household density less than 249 per km2 (reference 
variable) 

    

HDEN1 HHLDDEN 250 - 499 per km2 0.630 1.68 0.093 -453.32 

HDEN2 HHLDDEN 500 - 749 per km2 0.607 2.12 0.034 -452.10 

HDEN3 HHLDDEN750 - 999 per km2 0.108 0.43 0.669 -455.57 

HDEN4 HHLDDEN 1,000 - 1,249 per km2 -0.323 -0.61 0.540 -454.99 

HDEN5 HHLDDEN 1,250 - 1,499 per km2 -0.669 -1.84 0.066 -453.12 

HDEN6 HHLDEN 1,500 - 1,999 per km2 -0.630 -3.38 0.001 -453.10 

HDEN7 HHLDDEN 2000+ per km2 -0.961 -4.65 0.000 -450.42 

MDFAMINC Median Economic Family Income After Tax 0.000 7.11 0.000 -424.59 

AVFAMINC Average Economic Family Income After Tax 0.000 8.13 0.000 -421.44 

MDHHINC Median Household Income After Tax 0.000 6.65 0.000 -432.10 

AVHHINC Average Household Income After Tax 0.000 7.10 0.000 -427.84 

MDFAMIN0 MDFAMINC less than $39,999 (reference variable)     

MDFAMIN1 MDFAMINC $40,000-59,999 = 1 -0.893 -5.69 0.000 -444.29 

MDFAMIN2 MDFAMINC $60,000-79,999 = 1 0.300 1.55 0.121 -454.26 

MDFAMIN3 MDFAMINC $80,000+ = 1 1.021 3.17 0.002 -445.07 

AVFAMIN1 AVFAMINC Less Than $59,999 = 1 -1.616 -9.28 0.000 -424.87 

AVFAMIN2 AVFAMINC $60,000-79,999 = 1 -0.064 -0.35 0.726 -455.58 

AVFAMIN3 AVFAMINC $80,000-99,999 = 1 0.690 2.40 0.017 -450.19 

AVFAMIN4 AVFAMINC $100,000+ = 1 1.132 2.34 0.019 -447.13 

MDHHIN0 MDHHINC less than $39,999 (reference variable)     

MDHHIN1 MDHHINC $40,000-59,999 = 1 -0.495 -2.91 0.004 -452.12 

MDHHIN2 MDHHINC $60,000-79,999 = 1 0.623 2.59 0.010 -450.11 

MDHHIN3 MDHHINC $80,000+ = 1 1.056 2.38 0.018 -448.46 

AVHHIN0 AVHHINC less than $39,999 (reference variable)     

AVHHIN1 AVHHINC $40,000-59,999 = 1 -29.594 0.00 1.000 -453.99 

AVHHIN2 AVHHINC $60,000-79,999 = 1 0.274 1.33 0.182 -454.58 

AVHHIN3 AVHHINC $80,000-99,999 = 1 0.905 1.96 0.050 -448.23 

AVHHIN4 AVHHINC $100,000+ = 1 1.040 1.91 0.056 -451.17 

AVEPHHLD Average number of household members per dwelling 0.450 2.28 0.022 -453.45 

VEHPHHLD Average Number of Vehicles per Private Dwellings 1.001 5.57 0.000 -438.95 
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Variables Definitions Coefficient t-stats P-value Log- Likelihood 

DOWNTOWN Downtown area = 1, Elsewhere = 0 -0.757 -4.76 0.000 -449.70 

MALE014 Male population between ages 0 and 14 2.099 1.06 0.291 -455.12 

MALE1529 Male population between ages 15 and 29 -6.140 -2.90 0.004 -452.54 

MALE3044 Male population between ages 30 and 44 -2.569 -1.49 0.137 -454.72 

MALE4564 Male population between ages 45 and 64 3.292 1.53 0.126 -454.51 

MALE65U Male population age 65 and up 1.033 0.56 0.578 -455.44 

FEM014 Female population between ages 0 and 14 0.897 0.48 0.634 -455.54 

FEM1529 Female population between ages 15 and 29 -5.888 -3.34 0.001 -452.35 

FEM3044 Female population between ages 30 and 44 -0.342 -0.16 0.870 -455.63 

FEM4564 Female population between ages 45 and 64 3.414 1.67 0.096 -454.27 

FEM65U Female population age 65 and up 0.061 0.05 0.961 -455.64 

X1PHHLD Number of dwellings with 1 person per household -1.891 -3.07 0.002 -452.09 

X2PHHLD Number of dwellings with 2 people per household 4.612 2.27 0.023 -452.47 

X3PHHLD Number of dwellings with 3 people per household -2.551 -0.89 0.373 -455.16 

X45PHHLD Number of dwellings with 4 or 5 people per 
household 

2.416 2.83 0.005 -452.36 

X3UHHLD Number of dwellings with 3+ people per household 1.020 1.66 0.098 -454.45 

X6UHHLD Number of dwellings with 6+ people per household 0.374 0.07 0.945 -455.64 

SFAMHHLD Number of single family household 2.031 3.54 0.000 -450.93 

MLTIHHLD Number of multi-family household -18.823 -1.88 0.060 -453.02 

NFAMHHLD Number of non-family household -1.801 -3.14 0.002 -451.74 

DWELLOWN Number of dwellings owned 1.532 4.26 0.000 -448.67 

SNGLDWEL Number of single detached dwelling 0.452 1.27 0.203 -454.85 

X1CHLD Number of families with 1 child -11.390 -6.57 0.000 -434.57 

X2CHLD Number of families with 2 children 2.374 1.74 0.082 -454.25 

X3UCHLD Number of families with 3 or more children 1.045 0.49 0.627 -455.53 

CPL1CHLD Number of couples with 1 child -1.419 -0.40 0.690 -455.55 

CPL2CHLD Number of couples with 2 children 5.075 4.00 0.000 -449.55 

CPL3UCHLD Number of couples with 3+ children 5.063 2.27 0.024 -453.41 

FMWCHLD Total number of female lone parent with a child -10.680 -8.95 0.000 -429.48 

FM1CHLD Number of female lone parent with 1 child -15.900 -6.79 0.000 -431.32 

FM2CHLD Number of female lone parent with 2 children -13.239 -5.64 0.000 -449.17 

FM3UCHLD Number of female lone parent with 3+ children -30.352 -3.42 0.001 -445.30 

MAWCHLD Total number of male lone parent with a child -26.538 -3.60 0.000 -444.31 

MA1CHLD Number of male lone parent with 1 child -27.625 -3.51 0.001 -448.08 

MA2CHLD Number of male lone parent with 2 children -43.509 -3.07 0.002 -449.66 

MA3UCHLD Number of male lone parent with 3 or more children -34.264 -1.42 0.155 -454.60 

WORKOCSD Proportion of all workers travelling outside of CSD to 
their usual place of work 

2.939 3.81 0.000 -444.84 

MAWRKCSD Proportion of male workers travelling outside of CSD 
to usual place of work 

2.920 4.19 0.000 -444.18 

FMWRKCSD Proportion of females workers travelling outside of 
CSD to usual place of work 

2.639 3.55 0.000 -446.51 
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Variables Definitions Coefficient t-stats P-value Log- Likelihood 

TRWRKDRV Number of workers travelling to work as a driver in a 
private vehicle 

3.867 5.12 0.000 -444.80 

TRWRKPAS Number of workers travelling to work as a passenger 
in a private vehicle 

-15.540 -4.09 0.000 -446.31 

MAWRKDRV Number of male workers travelling to work as a 
driver in a private vehicle 

3.486 3.77 0.000 -449.14 

MAWRKPAS Number of male workers travelling to work as a 
passenger in a private vehicle 

-12.268 -3.91 0.000 -448.20 

FMWRKDRV Number of female workers travelling to work as a 
driver in a private vehicle 

3.637 6.00 0.000 -441.27 

FMWRKPAS Number of female workers travelling to work as a 
passenger in a private vehicle 

-9.283 -2.92 0.004 -450.43 

EFIN019 Economic Family After Tax Income $0-19999 -10.880 -4.25 0.000 -439.68 

EFIN2039 Economic Family After Tax Income $20,000-39,999 -7.354 -7.44 0.000 -427.62 

EFIN4059 Economic Family After Tax Income $40,000-59,999 -8.667 -6.27 0.000 -434.73 

EFIN6079 Economic Family After Tax Income $60,000-79,999 0.294 0.14 0.890 -455.63 

EFIN80U Economic Family After Tax Income $80,000+ 4.506 8.16 0.000 -419.18 

HHIN019 Household After Tax Income $0-19,999 -5.956 -5.91 0.000 -438.19 

HHIN2039 Household After Tax Income $20,000-39,999 -5.911 -6.55 0.000 -438.27 

HHIN4059 Household After Tax Income $40,000-59,999 -9.030 -4.76 0.000 -444.11 

HHIN6079 Household After Tax Income $60,000-79,999 5.384 2.41 0.016 -452.47 

HHIN8099 Household After Tax Income $80,000-99,999 10.889 5.38 0.000 -438.44 

HHIN100U Household After Tax Income $100,000+ 5.317 6.73 0.000 -429.52 

PRIMARY Population that without secondary education -9.448 -15.31 0.000 -411.60 

SECONDRY Population with secondary education as the highest 
education level 

-14.041 -4.60 0.000 -441.47 

POSTSECC Population with post-secondary education from 
other than University 

-2.811 -1.35 0.176 -454.47 

POSTSECU Population with post-secondary education from 
University 

7.419 9.91 0.000 -410.07 
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Table 8.3: Aggregated emissions for all models in January, 2021 

Models 
 8am  4pm 

 HC (kg) CO (t) NOx (kg) CO2 (t)  HC (kg) CO (t) NOx (kg) CO2 (t) 

BAU  369.98 11.50 1133.78 207.57  363.48 10.77 1103.62 208.74 

M1   1%  367.04 11.43 1129.81 206.68  360.59 10.70 1099.99 207.87 

M1   2%  364.00 11.35 1126.06 205.79  357.55 10.63 1096.03 206.93 

M1   5%  355.31 11.13 1114.39 203.19  348.77 10.42 1084.58 204.26 

M1 10%  340.32 10.74 1093.44 198.67  334.16 10.06 1064.91 199.72 

M2   1%  366.79 11.42 1129.43 206.60  360.26 10.69 1099.51 207.75 

M2   2%  363.71 11.34 1125.37 205.68  357.12 10.62 1095.34 206.78 

M2   5%  354.28 11.10 1112.61 202.84  347.43 10.38 1,082.50 203.81 

M2 10%  338.38 10.69 1090.12 198.03  331.53 9.99 1060.92 198.86 

M3   1%  366.89 11.42 1129.59 206.64  360.44 10.70 1099.80 207.82 

M3   2%  364.04 11.35 1125.95 205.79  357.43 10.63 1095.85 206.88 

M3   5%  355.01 11.12 1113.84 203.09  348.23 10.41 1083.77 204.07 

M3 10%  339.73 10.73 1092.46 198.49  333.16 10.04 1063.48 199.40 

UC   1%  367.01 11.43 1129.87 206.69  360.41 10.70 1099.86 207.82 

UC   2%  364.11 11.35 1126.13 205.83  357.35 10.63 1095.97 206.89 

UC   5%  355.38 11.14 1114.53 203.25  348.02 10.41 1084.01 204.08 

UC 10%  340.42 10.76 1094.24 198.84  332.67 10.04 1063.65 199.37 

UC 25%  296.02 9.67 1034.41 199.37  286.59 8.92 1000.53 185.34 

UP   1%  370.86 11.54 1141.01 208.80  364.34 10.81 1110.76 209.98 

UP   2%  364.36 11.36 1126.38 205.88  357.90 10.64 1096.58 207.04 

UP   5%  355.98 11.15 1115.13 203.39  349.43 10.44 1085.68 204.48 

UP 10%  341.73 10.78 1095.71 199.16  335.51 10.10 1067.23 200.19 

UP 25%  298.98 9.67 1034.41 200.19  293.48 9.08 1009.48 187.31 
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Table 8.4: Aggregated emissions for all models in July, 2021 

Models 
 8am  4pm 

 HC (kg) CO (t) NOx (kg) CO2 (t)  HC (kg) CO (t) NOx (kg) CO2 (t) 

BAU  332.62 6.68 676.01 207.83  382.95 9.29 674.49 209.00 

M1   1%  330.02 6.64 673.91 206.94  379.92 9.23 672.69 208.12 

M1   2%  327.34 6.60 671.99 206.04  376.73 9.17 670.71 207.18 

M1   5%  319.67 6.48 665.80 203.44  367.49 8.99 664.93 204.50 

M1 10%  306.42 6.26 654.49 198.90  352.17 8.68 654.94 199.96 

M2   1%  329.80 6.64 673.70 206.86  379.57 9.22 672.45 208.01 

M2   2%  327.09 6.59 671.58 205.93  376.27 9.16 670.36 207.03 

M2   5%  318.77 6.46 664.79 203.09  366.10 8.95 663.84 204.05 

M2 10%  304.71 6.23 652.60 198.27  349.45 8.62 652.85 199.09 

M3   1%  329.89 6.64 673.79 206.89  379.76 9.23 672.61 208.07 

M3   2%  327.38 6.60 671.90 206.04  376.60 9.16 670.63 207.14 

M3   5%  319.41 6.47 665.48 203.33  366.94 8.97 664.52 204.32 

M3 10%  305.90 6.25 653.92 198.72  351.13 8.66 654.20 199.63 

UC   1%  330.00 6.64 673.95 206.94  379.72 9.23 672.65 208.08 

UC   2%  327.44 6.60 672.00 206.08  376.50 9.17 670.72 207.14 

UC   5%  319.72 6.48 665.84 203.50  366.68 8.98 664.70 204.33 

UC 10%  306.47 6.27 654.92 199.08  350.56 8.66 654.38 199.61 

UC 25%  267.17 5.62 621.22 185.89  302.24 7.69 621.72 185.54 

UP   1%  333.45 6.71 680.51 209.06  383.89 9.32 679.20 210.24 

UP   2%  327.66 6.61 672.13 206.14  377.08 9.17 671.01 207.30 

UP   5%  320.26 6.49 666.15 203.64  368.18 9.00 665.54 204.73 

UP 10%  307.66 6.28 655.71 199.39  353.57 8.72 656.21 200.43 

UP 25%  269.82 5.66 622.98 186.59  309.51 7.82 626.36 187.51 

 

 


