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" ABSTRACT -

This dissertation presents an inelastic analysis
: , ;
~of the behaviour of composite beams with ribbed. metal

deck.

- B
LY

A layered finite éledg;t model is used to allow
for any variation in material properties thfough the
thickness. An incremental and iterative technique ig‘

adopted using the tangent modulus stiffness approach.

The dependability of the‘model is checked by means
of comparison with some experimental results, obtained
from testing composite'beamé'witﬁ solid and ribbed siabs.

| A study of the effect of the type of 1oadiﬁg and
the transverse moment in the slab on the Qeformation and
. the ulfimate capacity of composite'beam;‘with ribbed *
metal deck, is présented.

The effective width of composite beams with ribbed
metal deck, subjected to uniformly distributed load, is
investigated. The effective width in the inelastic
stage and at the ultimate load are also studied.

Finally, a study of the longitudinal cracking of
composite beams with~ribbéd metal deck, is preéented.

Some design recommendations are presented to account for
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fHE;iongitudinal cracking jof composite beams With ribbed

metai{déck. subjected to ajuniformly distribﬁtéd 1oad'over

‘-thé ehtiﬁé‘slab. | /
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CHAPTER 1

INTRODUCTION

r N -
[

1.1  Genera1 ' oot

In recent years there has been an inéreased use of
ribbed metal deckihg-in the floor slabs of buildings(lé).
This metal decking has a single or multi-purpose role
dependgnt'to a 1a£ge éxtent upon the cross-seétionai
. cqnfigufation, Fig. (4.7).

The prime role of the ribbed deck may be deemed to beﬁf.
the action as thé structural floor slab.spanning between the
steel beams. The ribbed slab supports the supefimposed load
and transfers it to the steel beams while acting as the
compression flanges for the simply supported composite
beams, The shaldow decking ac€§ as in-situ form wofk
for the concrete floor slab.,and may be deéigned to act
compositely with the concrete slab. An additional atiribute
of the steel deck is that it can provide duct space in the
floor glab for electrical and communications wiring.

The stress conditions within the concrete slab of

(17)

a composite beam are quite complex « First, the

concrete floor slab itself is normally continuocus over



2

the steel beams resulting in the transverse slab moment along
the length of the beams. Secondly, due to the composite
action between the slab and the beam, a longitudinal

shear stress is produced in the concrete slab., These

éffects are addi¢ional to the basic longitudinal flexural
stresses set up by the principal bending moment- applied

to the'cﬁmposite beam.

Moreover, in the inelastic stage of deformation, the

flexural andllongitudinal cracking of the concrete slab
and fhe yieiding of the steel beam affect the behaviour
of the‘composite beam. The transverse and longitudinal
slab reinforcements, and the ribbed metal deck may also

have a significant effect on the composite beam behaviour.

In recent years, a variety of methods have been
developed for the determination of the structural response
of composite floor systems. Howe&ef, most of these methods
did not account for the behaviour of such structureé'in the
inelastic stage of deformatidﬁ..

Most of the work done on compdéite beams has dealt
with composite beams with solid concrete slabs. Allen

(5)

and Severn , discussed the basis for the determinatién
of stresses and deflections in composite beams with solid
5labs in the elastic stage. They divided the structure
into two parts, the sléb and beam, with the former being
analysed by thin-plateltheory and the latter by simple

bending theory. The effect of the slab reinforcement



and the cracking of concrete was not included in this study.
Adekola(3 4) has presented an elastlc solutlon of

an equally spaced system of comp051te beams w1th solid

concrete slabs under symmetplcal point loads,over the beams,

by using the basic plane-stress equations. Thé cracking

-

of the concrete slab and the effect of the steel.réinforcement ~

are not included in this analysis.

Barnard et al(9 10) made a thorough study of 51mple
flexure of composite beams with solid concrete slabs.
This included some tests on simply supported composite
beams with solid slabs. They presented a method for the
calculation of the ultimate strength of composite beams.,
The effect of the transverse bending of‘the slab and the
effect of cracking were not included in this study.

‘Heins et 31(21,2?)

utilized a finite difference

approach to find the load-deformatioh response of composite
beams with solid slabs in the inelastic stage of deformation.
The cracking of the concrete slab and the effect of the

reinforcement were not included in this study. A finife
elemeﬁt analysis was presented(23) to study the elastic
beha&iour of composite girder bridges with solid concrete
slabs. The reinforcement and the cracking of the concrete

“
slab were not considered.

Recent progress in the application of the finite

element technique has led to a reliable approach for

4y
%
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finding the inelastic response of,eéceﬁtrically.sfiffened
plates(éo’él). The cracking of the solid concrete slab
and the yielding of the steel beam were accounted for in
this approach.

Robinson(50'51) investigated exper;men%ally the
behaviour of composite beams with ribbed metal deck. He
observed that in many cases, the concrete slab began to
show failure by-longifudinal cracks extending from the
load points to the ends of the beams prior to the attainment
of the theoretical ultimate moment;

Ma(uz) presented an iﬁelastic analysis of composite
beams with ribbed metal deck using the Finite difference
method. Héwever, he did not include the longitudinal
cracking and the effective width of the slab in his study.
Also, the mefal deck and the concrete ribs were not. taken

into consideration. The model.did not include the effect

of transverse bending of the slab.

1.2 0Object and Scope

The goal of the present investigation is the development
of an analyticlppocedure capable of predicting the complete
inelastic response of composite beams with ribbed metal
Igeck. The investigation involves the inclusion of the
effects of the longitudinal and flexural cracking of the

concrete, and the yielding of the steel beam and the steel

reinforcement. The contributiqnnghfhe metal deck and the

1



concrete ‘ribs are also inéiuded in this study.
=h?ﬁé current investigation isnféstricted to short—tefm
'monotoﬂically increasihg loads., Thernfore,yfhe nonlinear
behaviour of phe cémposite beam can mainly be ‘attributed to ‘ =
four sources: the tensile cracking'and compressive crushing
of\concrefe. aqﬁ_the yieidiné of r?inforcing steel and thé
. girder steel. o
- The characteristic beHﬁ?ioﬁ;*df the g?fferent'materials
used in composite beams yitp ribbed metal deck are presented.
in Chapter 2. -A biaxial failure critegion is adopted to
. deal'with the biaxiai‘state of stress iﬂ#the concrete slab.
A layered finite element(25'26’39) technique is used
in this étudy to permit anﬁ variation in material propefties
through the thicknesses of the concrete slab and the steel.
beam flange and web. It allows the inclﬁsion of the cracking
of the concrete slab and the yielding of the steel beam. It
élao éllows the inclusion of fhe steel reinforcement aﬁd the
metal deck in the study.
' The nonlinear solution scheme is presented in Chapter'B.

(25,26,39,61}

" An incremental and iterative process is adopted

to reduce the nonlinear problem to a piece-wise linear one.
The loads are applied to the struc;ﬁre by increments. At

each stage of loading, the material properties ére checked
and the sfruétural stiffness is updated to accommodate.any

changes in these properties.

v
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e fini%e element model is compared in Chapter 4

1fto; ome. experimeh%al results obtained from tesfing composite

beams w1th ‘solid -and ribbed slabs. The comparison is aimed

i

at demonstratlng the capabmllty of the model in predlctlng the

) 1ne1ast1c behaviour of comp051te beams.,

.One of the objects of this investigation is to study

- the load-deformation behaviour of composite beams with

ribbed™metal deck in the inelastic stage. The effect of the
" type of.loading and ‘the trénsverse negative moment in the

" slab on the. ultimate capacity of comp051te beams with- rlbbed

metal deck is also presented.

A study of the effective w1dth of composite beams with
ribbed metal deck subJected to unlformly distributed load
is presented in Chapter 5. The effective width variation
in' the inéiastic stage as well as the éffective width at
the ﬁltimate,load-are étudied. The different parameters
affecting the effective width of composite beams with ribbed
metal deck are also considered. A comparison with fhe
Canadian and Japanese specificétions, togetﬁer with some
conclusions and recommendations are presented.

Chaﬁter 6 contains a parametrip study of the slab
longitudinal cracking developed along the léngth of the steel
beams in a composite floor system. The different factors
affecting the longitudinal cracking, such as the strength of
concrete, the\fransversé reinforcement,’ the ribbed metal

decking, the beam-span-to-slab-width ratio, the thickness of
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o

the soclid part of the élab and . the size of the‘steel beam, are
presénted in this study. The effecﬁ‘of the-type of- loading
and the transveﬁsé negative moment in the slab are also
considéféd in this investigation. Some design recommendations
are proposed concerﬁing,the longitudinailéracking of composite
beams with ribbed metal deck under a uniformly distributed .
load over the entire slab.

Chapter 7 includes some general conclusions with fespect
to the inelastic behaviour of a composite beam with ribbed |
metal deck: its ‘strength, stiffness, effective width and

longitudinal cracking. e



CHAPTER 2 ©

MATERIAL BEHAVIOUR CHARACTERISTICS.

3

2.1 General.

| In a composite beam with a reinforced concrete slab,
the slab acts compositely_with.the steel beam in resisting
the applied loads. The aéburacj oanny analysis attempting
to ﬁredict the nonlinear behaviour of composite beams wiil
invariably depend on the ability of the mats ial models
.uséd to Eepresent'thercomplex behaviour of the reinforced
concrete slab.

In modelling the reinforced concrete slab, several
difficulties arise. Reinforcgd concrete is not homogeneous,
being composed of two different materials, concrete and
steel. Moreover, concrete, itself, is non-homogenevus,
having aggregates and cement paste as the main components.
The structural properties of concrete, such as strength
and deformation, can only be déte;mined at the macrdscopic-

level using averaged values. ' The variations due to the
f‘\

s x
microscoplc Btructure are generally ignored because of
the complexifies involved and because satisfactory

prediction of structural response can be made using



pfoperties at the'macroscopic level. Cracking in concrete
shows randomness in the sense that although it 1s possible
to predlct the region where cracking will occur, the actual

" . location and direction of cracks will depend on the local
variafions in the microstructure;

On the other hand, the properties of ths steel
reinforcement and the steel beam can be specified more
consistently because. of the superior homogeneity of this

,Ljysterial in the macroscopic sense. -

s

In order to analyse a composite beam in the 1nelastlc
stage. several simplifying assumptions regarding the behaviour )
of the materials have to be made. The purpose of this
Chapter is to state explloltly what material propertles are
assumed for the plain concrete, the steel relnforcement,

the metal deck and the Steel beam.

2.2 Stress-Strain Curves for Steel and Concrete

' The assumed uniaxial stress-strain curves for the
steel beam, the reinforcing steel, tﬁe metal deck and‘the
concrete slab are shown in fig.(2.1). The stress-strain
curve for the steel beam is assumed to be elastoplastic-
strain -hardening curve, fig.(2.1-2). The reinforcing steel
.and the metal deck are considered to be of an elastio‘material
with strain-hardening response._figf(z.l—b). The bilinear

(25,47)

elastfo—perfectly plastic stress-strain curve

modified to a trilinear curve with a very small tangent
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modulus in the third segment for iteration purpose,

figl(éll-c)l

2.3 Failure Criteria for Concrete

Concrete under a biaxial state of stress, as is assumed
to occur in such structural'elements as concrete slabs,
shows a different behaviour than that under a uniaxial state
of stress. Several investigators(7’12'13'36'40’ul'49}52)
presented experimental data on concrete specimens under
biaxial states of stress.

The experimental works of Kupfer et al(36). indicate
that the major difference in the stress-strain relations
between uniaxial and biaxial states is that the biaxial
states have a higher capacity. The works indicate also
that the biaxial states of stress have a minor effect on the
modulus of elasticity of coﬁcrete. The biaxial strength of
concrete is as much as 27 percent higher than %he uniaxial
étrength. In the compression-tension region, the resultsl

(36)

obtained show that the compressive stress at failure
decreases as the simultaneously'actiﬁg tensile stress is
increased. The experimental resulis also show that the
strength of concrete under biaxial tension is almost
independeﬁt of the stress ratig’fl/f2 ahd equal to the
uniaxial tensile strength. Kupfer's(36) biaxial strength

' envelope with the different failure modes for various stress

-~

ratios is shown in fig.(2.1).
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.c, Kupfer and Gerstle(Bs) have used a curve fitting technique
to represent the experimental results for various combinations
of bilaxial stresses. They prbposed expressions in terms of
the principal stresses to cover the tension-tension,

tension-compression and compression-compression regions,

fig.(2.2).

For the compression-compression zone;

H 2 ' i _
(fi/fCu + fz/fcu) + (fl/fcu) +‘3..65(f2/fcu) = 0
For the compression-tension zone;

fz/ftu = 1.0 + 0.80(f1/fcu)

For the tension-tension zone;

- - 3,2
£, = £, = 155N )

Several investigators(25'3u'39'45'48154!55:59)

studying the inelastic behaviour of concrete element,
have used the bilaxial failure criterion envelope, determined -

by Kupfer(jé)

, as a basls for their investigations.
A failure criterion to be used should be simple if

possible. It should provide a reliable prediction of the
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failure for those combinations of stresses which can occur
in the structure. The reliability of the criteria éppuld
be confirmed by test results. Recognizing all’these facts,
the criterion éuggésted by Kupfer(35) and_coﬁfirmed by his
experimental stﬁdies(Bé), is used in this research as a
failure criterion for the concrete in the ribbed slab.

In the adopted failure criteria, fig.(2.3), there
are three basic failure modes for plain concrete layers
as illustrated by fhe'loading paths: '
1. FElastic behaviour, inelastic behaviour and crushing

of conprefe (path 1).
2. Elastic behavibdur, cfacking in one direction

énd crushing of concrete compressive struts

(path 3 and 4j.
‘3. Elastic behaviour, cracking'in one direction

and cracking in two perpendicular‘ﬁirections‘ﬁiﬁ\\\\

. (path 2).
The adopted failure criterion is modified to serve as the
transition criterion for defining thé boundaries of fhe
different material properties, fig.(2.3). This is
accomplished by simply scaling the failure surface of Kupfer.
In order to determine the.boundaries of the elastic and
inelastic regions, fcl and fcé replace fcu respectivelyvin the
biaxial compression region. Through the use of these transition
criteria it is possible to extend the assumed uniaxial stress-

strain curve for concrete to cover biaxial stress states.



2.4 Constitutive Relations of Concrete '

The main purpose of this section is to present the
propertie§ of concrete in its different states. Concrete
can be elastic, inelastic, singly—craéked. doubly-cracked,
or‘crushed; In the following discussidn.‘the matrix of
material properties, [c], relates %he strgés vector.{f};

to the strain vector,{g}. by

3 E’x
fy = [c] €y
f _ €
Xy .

2.4,1 Elastic Concrete

Concrete is assumed here to act as an isotropic and

15

homogeneous material. The incremental stress-strain relation .

is of the form:

1 1) 0

{£} =[Ec/(1-02)] Vo1 o {5}
0 0 (1-D)/2

Where
1) = Poisson's rdtic for concrete

EC= Modulus of elasticity of concrete



207.2 Inelastic Concrete

The constitutive relationship will be quite similar
to that in section 2.4.1, except that the tangent modulus .
Ecl or Ec2 should be used instead-of the modulus of -
élastiéity. E,+ The selection of.the tanéen% modulus “to
be used in the -constitutive relationship should be done |

according to the transition criteria, fig.(2.3). Thus,

the incremental stress-strain relation can be written as

1 v 0
{f} =.[(Ec1 or Ec?_)/(l-vz) o1 0 {e}
| 0 0.(1-D)/2

It is to be mentioned that, according to experimental
evidence, poisson's ratic can be reasonably assumed constant
up to 80 percent of the ultimate load, but after this point
it starts to deviate. However, there.is no dependable body
of experimental data for such a deviation, especially for the
biaxial state of stresses. Therefore, 1t is assumed in this
study that poisson's ratio is constant in the elastic and

the inelastic stage'20+26,34,39,48,60,61)

2.4.3 Singlv-cracked concrete
When a principal tensile stress exceeds its limiting

value, according to the adopted cracking criterion, a crack

.16
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. 1s assumed to occur in a plane normal to the direétion of

the tensile principai stress. This is in accordance with

-, .

the experimental work of Kupfer(36). The crack direction <'
is then fixed for all subsequent loading. In this context,
a crack is not discrete ﬁut implies an infinite number of
parallel fissures across the element .

Once a crack has formed, it is assumed that tensile
stresses~éannot be suppofted perpendicular to the crack
and the stiffness of the material is reduced to a negligible
value in this direction. However, material parallel to
the crack is sfill capable of‘carrying.stress according
to the uniaxial cbnditions prevailing parallel to ‘the crack.

" The assumed material properties matrix for concrete with

a crack oriented at an angle € counter-clockwise from the

x-axis is,
E 0 0
qmt
[e] =[] |0 o o _v[T‘l]T (2.1)
0 0/3E/2(1+D)
Where

E~= Tangent modulus of concrete according to the
level of loading.
f3= A Tactor to account for aggregate interlock and any
. | doweling action that may be présent. It provides

the shear-strength capacity of the cracked concrete
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and it is called the shear-retention factor.

»

[T] = The transformation matrix to g> from the
8-direction coordinate systemito-the X and y
coordinate system.

Its inverse ‘is,

. cos® @ - sin® @ -2 cos © sin @

[T_1}‘= sin? 8 . cos® o 2 cos 8 sin @

cos 6 sin & -cos 6 sin 8 cos® § - sin? @

A few remarks are in order regarding the shear
retention factor, J, used here. To omit this effect
altogether implies that cracked concrete would behave
as a bundle of uniaxial fibres capable of sustaining only
a tensile or compressife loed parallel to the direction of
the crack. Howévef. this is not a very realistic representation
of the load carryinglcapacity of cracked cdncrete. In
reality;the cracks in the concrete are not smooth, but
rather .consist of irrégular rough planeé arbitrary finite
distances apart. The shear retention faCtor,/}. accoﬁnts for.
the aggregate interlock and;any dowling action that may be
present in the crack. By using this factor, a shear force is
induced along thé craéked plaﬁes. It is fecognized that the

. shear strength along the crack is a function of the crack-width,

among other factors, and would have an upper and a lower bound

L} .
of one and zero, respectively, relative to the uncracked
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! shear strength capacity. In the present study. the value of .
: ﬁ?was arbitrary selected as 0. 5 because it was found(25 61)

that the shear retention factor only sllqhtlv affects the behav1o;;\
of reinforced concrete slabs.

. ~'The incremental stress-strain relationship for a

'singlﬁlcracked concrete can be written as

e} = [elfe) _
Where the constifutive matrix, [c], can be determined from

eqn.(z;l).

2.4.4 Doubly Cracked Concrete

Concrefeeis assumed to crackvg second time when .
sinél& cracked.concrete- develops a tensile stress in excess
of the tensiléﬁstfength'capacity. This set of cracks is
assumed to develop perpendicular to the first crack and,
'"althdugh theofetically'adoubly cracked layer could still
transmit some shear stresses, it is. assumed here that-doubly
cracked concrete has no shear stiffness left. The incremental,
as_well as the total stresses vanish for any‘adﬁitional applied

load increment. The material properties matrix is

oF



2.4,5 Crushed Concrete

Crushed concrete is assumed unable to suppert any -
load, which will imply a zero stiffness. Thus, the material

properties matrix can be written as

For any crushed layer, it is again assumed that there
is no stiffness left after crushing, and hence, incremental
. stresses as well as total stresses vanish for any

applied load increment.

2.5 Constitutive Relations of the Steel Reinforcemenf

In the present approach, the reinforcing steel is
replacediby an equivalent smeared steel layer with stiffness
only in théldirection of the reinforcement. The equivalent
thickness of the steel layer is determined such that the
correspondiﬁg3cr035nsectional.area‘of the reinforcement in
the layer remain; unchanged. Generally, the slab in a °
;omposite beam is reinforced by at least two sets of steel
bars:transverse reinforcement and longitudinal reinforcement
running parallel to the steel beam. Perfect bond:israssumgd
to‘exist between jthe reinforcing steel and the surrounding }f

-Concrete.
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The material propérties'mat:ix for the transverse steel

i reinforcement running in the x-direction, in the elastic_

region, can be written as

E, 0 0 o
[e]=]0 o o | (2.2)
o o o

where.Es is the modulus of elasticity of the steel
Similaril&, the material properties matrix for the -
longitudinal reinforcement running in the.y-direction, can

be written as

[e]=]o & o | (2.3)"
0 o .0

For the strain hardening region, the material properties

matrix can’simply be determined, for the reinforcement in the

transverse and the longitudinal direction, by Substituting

the tangent modulus ESl instead of the modulus of elasticity

Eslin edns-(2-2)'and (2.3), respectively.

2.6 Constitutive Relations of the Metal Deck

only in the transverse . direction which is perpendicular

N

o It is assumed that the layers of the deék have stiffness
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to the steel beam; in other words, it hés stiffness only in |
the ribbed directioﬁ. where embossments exist to prévide“

- mechanical interlock between coﬁérefe and the deck. Perfect
bond is assumed between the'deck-and the sufrouhding concrete.,

The material properties matrix for the metal deck, in the

elastic region, can be written: as =
ES 0 0
[c]=]0 o .o .
. L] R
. 0 0 0

In the inelastic region the material properties matrix

for the metal deck can be written as

2.7 Conétitutive Relatidns of the Steel Beam

The stress in the steel beam is computed on the basis
‘ofla linear distribution of strain extending to the bottom -
~fibre of the beam, and the state of stress at the centroid
of the layer is taken as the representative stress for this
‘layer. A layer of the beam is assumed to be in a state of
uniéxial streséjfor the consideration of yielding.

In tﬁ% elastic stagéq the stress-strain relation may

e
] r
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be written as

In the inelastic stage, before the strain hardening

point is reached, the incremental stress-sttain relation

may be written as

where E
sl

purpose,
In the stréin hardening stage, the incremental stress-

strain relation may be written as

is taken as a very small value just for iteration .



CHAPTER 3

NUMERICAL MODEL AND INCREMENTAL ANALYSIS

3.1 General .
An iﬁcfemental‘iteratfve solution(25'34'39’60)
technique ig employed in the preseﬁt approach to obtain thé
nonlinear responée of composite beams with ribbed metal deck
. using the finite element formulation based on the displacement
method . The solution progresses through the use of an
iterative or step-by-step procedure with the nonlinearity of

the probleﬁ entering thrdugh'the material properties.

The following incremental analysis incorporates the
layered concept(25'34'39'56'60). This also includes the use
of the transitions between the zones of the material properties
discussed in Chaptef 2, The iayeréd concept requires that at -
any given level of load, a layer of an element is composed
\of material of only a single property state.

The incremental procedure will analyse. the structure,
genérate the layer stress statés, check these aéaiﬁst'the

adopted transition criterion, make any necessary material

property modifications, obtain any necessary torrection

24
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forces, and then reanalyse theﬁstructufe.
The total load is applied increméntélly.and for each load
increment the overall tangEnf-modulus stiffness matrix is
- .modified to account for any changes in material properties.
This procedure has the advantage of giving, af every stage
~of loadiﬁg. the complete state of stress and deformation of
the structure. Therefore, 1t is possible to predict the-
cracking loads iﬁ'concrete,and the yielding in the steel.
beam and the reinforcing stéel. '

The incremental iterative technique is used to find the
equilibr}um configufation for each applied load increment.
Iteration is required until the structure reaches a state of
equilibrium c;hpatible with'the property state of each slab
and beaﬁ layer. Once equilibrium is reached, the next load
increment is applied and the‘process'is repeated. The
structurél stiffness matrix must be updated at the beginning

of each load increment and after each cycle within the

iteration.

3.2 Numerical Model

The method of analysis used in the present study‘is the
displacement formulation of ﬁhe finite element method. An ﬁp‘_
incremental, iterative solution procedure using the tangent '
stiffness approach is adopfed. A layered finite element

approach is used to represent the variation in material

properties through the depth and to account for the material
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nonlinearity. The formulation of the finite element approach

"used in this investigation is presented in Appendix A.

3.3 Layered Concept

" By introducing the layered system(25’34’39'56’6?),
it is possible to have an out-of-plane variation in material *
propertiés while not suffering the consequences of going to
a complete three dimensional finite element analysis.
Furthermore, it is possible to retain the limited number of
degrees of freedom from tﬁe two-dimensional approach while
at the same time conserving the material variation with depth.
The total number of degrees of freedom.depends s iely on the
number of nodal points and not on the number of layers
introduced.

The beam and slab elements are subdivideg into a
suitably chosén number of layers in order to describe the.
pfocess of cracking and crushing in the slab and the ylelding
of the steel beam.(Appendix A)g The layered system will also
allow for the qonsideration of the longitudinal and transverse
reinforcement in the slab and the ribbed metal deck.

The stress résultants are defined separately for’eéch
layer. Thus, it is conceivable that a particular finite
element employing the layered approach could contain as many
different material properties as it has layers. .This allows

for any material property variatioﬁ through the thickness

of ﬁhe beam or the slab.
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| To demonstrate the desirability of this out—of;plane
variation, consider_a real reinforced concrete member loaded
to failure. Presumably, but most definiteiy at failure, a
vertical Bection cut, through the concrete member would reveal
that the compression region would contain elastic, inelastic
and possibly crushed -concrete. Also, the tensile region
would contain elastié, singly cracked and possibly doubly
cracked concrete. There is also the possibility Sf the‘
reinforcing steel being elastic or even in the strain
hardening region. Morebver, a vertical cut through the steel
beam would reveal that it would contain elastic, yielded and
possibly.strain4hardenéd‘layers. The influences of such
variations can be achieved through the layered structure
approach.

The use of the layered concept to study the inelastic
behaviour of coﬁpdsite beams with ribbed slabs involves the
use of four distinctly differeﬁt sets of layers (Appendix A)
as follows:

1. Plain concrete layers;

These layers could be elastic, inelastic, singly-
cracked, doubly-cracked of'crushed concrete layers.’

2. Smeared reinforcing steel layeré;

These laférs could be elastic or in the strain-
. hardening state.
3. Metal deék léyers; - !
- Metal deck is divided into two types of layers:
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a. Horizontal deck layers
b. Vertical parts of the deck layers ;

_These layers could be elastic or in the strain-

hardening state.
- 4.. Steel beam layers;
These layers coqld be_eléstic, yielded,of in the ..
strain-hardening state. -

Thus, the layered system can trace the progressive‘

. .cracking in the reinforced concrete slab and the progfessive

yielding of the steel beam. .+ The occurrence of other fallures
and their progression is also possible. It should, however,
be emphasizéd'that, for each layer, stresses are based on an
aVeraglng concept, and thus tensile cracks or steel yielding

can only be 1nd1cated relative to an area. Thus, only

averaged values are being considered.

3.4 Solution Steps

The essential steps in the solution process for a
typical load increment are as followé:‘
1.' Apply a load increment and analyse the structure to
obtain the nodal displacements.‘ Then perform the
following for each element 1i:

2. Convert the nodal displacements to reference
surface strains and curvatures. Then perform tq§‘

following for each layer j of element i:

3. Convert the reference surface strains and curvatures
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10.

11.
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to layer strains.
Determine the layer stresses using the previous
material properties for each layer.

Check the layer strevaftate against the applicable

- transition criterion. If none of the trarsition

zones are exceeded, go to step 8. "‘s\\\

- Calculate the excess amount of stress present in

layer j and convert it to the excess amount of
resultants., .

If more unprocessed layers of element i exist,
repeat steps‘j through 6. If not, go to the next

1

step.

If no transition criteria were exceeded for the ith
element, go to-step 10. Otherwise, convert the
excess stress resultants into excess element nodal
forces and put these forces iﬁ.the excess force
vector. h

If the structural stiffness matrix is to be charged,
update the elemeng"stiffness matrix so that it will
yield a new system stiffness matrix with the new
material properties,

If all elements have not been checked repeat steps 2

through 9. Otherwise, reanalyse the structure using

the excess faorce vector.,

Check the displacements from step 10 for convergence.

The 1terations about a load increment are assumed
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to have converged when all the displacementé due
to the cprrection forces are small‘compared‘to
all corresponding inbrementgl\displacements caused
by the last load increment.‘ The éystem is assumed
to have converged when no more .than *+ 5 pexcent
change occurs in any.quéntity. If displacements
from step 10 have‘not converged, repeat steps 2
through 11 until convergence is obtained or until
the maximum.number of allowed iterations gbout a
load increment have been cémpleted. In the examples
processed iﬁ this work, four was the maximum number
"of éilowed iterations abput‘a load increment. If
this specified number of iterations is exhausted
\\\ without convergence, a smalle; load increment would
be necessary. Generally, relatifély small increments
léad to a faster convergence and less computational
time. |

3.5 Boundary Conditions -

All nodal degrees of freedom are considered at the
reference surface used in defining the element stiffness
matrix. Accordiggly, boundary conditions are also specified
at the same reference surface.

In the study of intermediate simply supported composite
beams, for the effective width and longitudinal cracking

investigations, one beam is analysed using a slab width

equal to the centreline to centreline spacing between the

N . -



beams, b.-_The‘edges of the sléb are assumed to have zero
sloﬁe, Gy. and zero in#plgne displagement in the x-direction,
U, as shown in fig(3.1).

Howéver, in the comparisons done with some-pf the
available experimgntal results, free sléb edges are
considered to represert the actual conditions_in.the.

. ~ T
laboratory tests.

3.6 Computer Program
| A computef program has been developed to' implement the

method described in this work. This program'is caﬁable of

_handllng reinforced concrete slabs and beams. and composite

beams-with solid and ribbed re1nforced concrete slabs under
any type.of loading. The program can be used to trace the
-entire load-deformation response of composite beams with
ribbed metal decks through the ‘elastic and inelastic stages
up to the ultimate load. It can provide a complete listing
of stress and strain states in the concrete, the steel
reinforcehent; the metal deck and the steel beam at. any
stage of loading of the structure's response history.

The program i1s coded in Fortran IV langﬁage~and has
been developed and tested on a CDC 6400 computer at McMaster
Un1versr§¥ Hamilton, Ontario. A full description of the
computer program w1th the details of the notations used are

(O
presented in Appendlx B.
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CHAPTER 4

NUMERICAL EXAMPLES = - | A

4,1 General

To demonstfate thé applicability and flexibility of the~
_ pfoposed analysis, a series of numerical exaﬁbles are
presented. The examples are presented in a sequence
of increasing complexity; plates then domposi%e beams with
solid and ribbed slabs. The purpose of these numerical
examples is to check the validity of the material idealizations
and the structural model and to demonsirate the applicability
of the proposed model to 'different types of loading.

The plate exaﬁples considered are of two types :
theoretical and experimental. The .theoretical plate (57)
example }s for comparison of the fhéoretical and computatiénalW
procedures in the elastic stage. The expérimental slab of
Jofreit and McNiece(Bo) is analysed to demonstrate the
applicability of the model in the inelastic stage.

The numgfical‘results obtained from the analyses of

C?omposite beams with solid and ribbed slabs are compared

with the available experimental data(10’22'28'50). Comparison ,

33
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is made w1th one of the comp051te beams ‘with solld concrete

(10),

slabs tested by Barnard For composite beams w1th ribbed

slabs{ 31xa:jber1mental beams(Z?”28;50) have been sélectgd to

ifesn the v 1dif§ of thénanalytical model. ' )
Finally, a numerical example is nresente& to study the

effect of the type of loading on the inelastic-behaviourlof,

composite beams with ribbed metal decks.-

4,2 Centrally Loaded Rectangular Plate -
¢ To demonstrate the applicability of the nungrical
anaiysis in the elastic stage, a rectangular plate-fixed at all
of its edges is analysed under a cemtral p01nt load, fig.(4.1).
Table (4 1) shows a comparlson :tkween the theoretlcal'””
maximum central deflection(5?)‘ and. the maximum central
deflection computed from the layered finite element model

for a rectangular plate fixed at all of its edges. The

percentage difference between the two solutions is less

than two percent which can be considered to be satisfactory.

fable (4.2) shows a simiiar comparison but for a
rectangular plate simply supported at its four edgeé: -It
shows very good;agreement between the theoretical and
the numerical results with a difference of less than 1{5
percent.l

- 2 ' :
4.3 Jofreit and McNieCe's(ao) Reinforced Congrete Slab
L(30)

In the test performed by Jofreit and McNiece
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Maximum De%lgction
at Centre of Plate (in)

, _ Layered Plate | Percentage
Theoretical Model j Difference
0.000294 0.000299 1.70

Tablef4.1) Comparison of the Maximum Deflection
of a Plate Fixed at all its Edges

.(a
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Maximum Deflection #
+ at Centre of Plate (in)
. - Layered Plate Percentage
. .Theoretical Model Difference
0.000608 0.000617 1.48
Table(4.2) Comparison of the Maximum Deflection
of a Rectangular Plate Slmply Supported
at all its Edges
% \
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Fig.(4.2), Element Grid for Jofreit. and McNiece's Slab
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a2 square corner supported tWo-Way slab ﬁas.considered.
fig.(4.2). The concrete slab was reinforced with a ﬁeéh.of
.85 bercent reinforcing sfeel; It was tested under a central
concentrated load.

A layered finife'element analysis was peffdrmed and a
comparison between the experimental and the computed‘results
are presented in fig.(%.3). The finite element grid used
with the different layers of the slab is shown in_fig.(4.2).
\ - The maln conclusion from this comparison is that the

-

chosen analytical technlque is capable of handllng a relnforced

concrete slab in different stages of the loadlng.

i

(10) on. a Comnosite Beam with d Solid Slab

(10).

4.4 Barnard's Test

In the test performed by Barnard » & composite beam
with a éolid cbncrete slab was loaded with a symmetrical two-
point loading system over the beam léngth, fig.(4.4). The
composite beam was simply supported over a 13-f%-sban. If
consisted of a W8 x 20 1b per ft steel section and a 5-in
thick concrete slab w1th 24-in width.

A layered finite élement “analysis, fig.(4. 5), was

performed and a comparlson between the experlmental and the
computed results is presented in fig.(4.6).

It was experimentally observed that the first flexural
cracking in the bottom of the slab appeared after first

yield of the steel beam. Near the ultimate load, a
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longitudinal crack appearec near thé-fop of the slab. In
the anelytical model, the first flexural crack started at
the. bottom fibre cf.the slab near the point loads a little
after the yield of the steel beam. The longitﬁdinal crack
.started at the bottom fibre of the slab under the point loads
at about 92 percent of the ultimate load. Then the crack
extended longltudlnally toward the supports and vertically
through the slab depth. At thé ultimate load, the crack P
propagation reached about 90 percent of the slab depth.
o ‘The main conclusion that can be drawn from this
~comparison is that the numerical technique 'is capable of
handling a compcsite beam with a eclid slab in the diffe
stages of loading up to the ultimate load. The‘ccmputed'

yield load of the steel beam and the ultimate load are i

quite good agreement with the corresponding experimental

-

results.

(50)

4.5 Robinson's and Wallace's Tests on Composite Beams

with Ribbed Metal Decks

In the tests performed by Robinson and Wallace'50), two
composite beams with ribbed slabs were loaded ét two points
5-ft either side of‘the centreline and at one point at mid~.
span of the beam, respectively, fig.(4.7). The composite
beams were simply supported over a 21-ft span. They

consisted of W12 x 19 1b per ft steel sections and 4-in

ribbed slabs with 68-in widfh. The concrete slabs had 1-1/2-in

e rryTA e




ribbed_ﬁeta; deck and were reinforced with 6 x 6/10 x 10
welded wire meéh at the middle surface of the solid concrete
paits.‘ |

The relationships of the momen‘ to mid-span deflection
and to the bottom steel fibre strain, és determined from the
tests, are plotted up to the ultimate capacity of the
composite beams, figs.(4.9,4.10 & 4.,11). Also, the yield ‘
loads, fhe flexural cracking'énd longitudinal cracking loads
as observed in the tests are shown on these diagrams.

A layered finite element analysis, fig.(4.8), was

performed and comparisons between the experimental and the . |

Icompufed_resulfs are presented in figsh(4.9,4.10 & 4.11),

It is shown that an excellent agreement was achieved in the
elastic stage. ‘The predictions of the yield loads, the
longitudinal cracking load, thé flexural cracking loads and
the ultimétg_loads usihg the finite element model are quite
- satisfactory. Howevéf; it is worthwhile mentioning that the
model is not capable to predict the behaviour beyond the
ultimate load (the falling branch of the load-deflection
curve) because the softening of concrete was not iﬁcluﬁed

in the idealized stress-strain curve.

L1

It can be concluded from the comparison that the numerical

method is cgpable of predicting the behaviour of a composite
. beam with a ribbed concrete slab in the different stages of

loading up to the ultimate load.
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4.6 F%sher's_test(zz) on'a Composite Beam with a Ribbed
‘Metal Deck

(22), a composite

In one of the tests performed by Fisher
beam with a ribbed slab simﬁly-supported over a-15-ft epan
was loaded with two-transverse line loads 13-in either side

of the centreline of the bean, fig.(4.12). The beam consisted

”qu a w;z x 27 1b per ft steel section and a 5-1/2-in ribbed

\,

slab‘wi%ﬁ 48-in width. The lightweight concrete slab has 3-in
ribbed me%al deck and is reinforced by an 8 x 8 in-grid of #4
bars placed.one:'inch below the toﬁ of tﬁe slab. .

. The relatienship-of'the load to mid-span deflection, as
determined from the test, is plotted up te,the ultimate
capacity of the composite beam, fig. (4.13). Also. the yield

oad of the bottom steel flange and the ultlmate load, as
ob er;;a in the tests, are shown in this figure..
A layered finite,K element analysis was performed cegsidering
two-uniformly qistributed‘transverse line loads 13-in either
side of the centreline of the beem. A compariéon between the

(22) and the computed results is presented'in

experimental
fig.(t.13). It is aho:n that a very good agreement was achieved
in the elastic stage. The predictions of the yielqbload and
the ultimate load using the finite elemenf model are also quite
acceptable.

The comparison shows quite good agreement which demonstrates
the appllcab11 tv of the proposed model to predlct the behav1our
of composzte beams with ribbed slabs. It also aemOﬂstrates the

¥

validity of the matBrial models and the structural idealizations.
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¥,7 Henderson's rests!?8) on Composite 'Beams with Ribbed

_ Metal Decks " o |
ﬁ\ Three comp031te beams with rlbbed slabs simply - supported
over a 32-ft spar were tested by-Henderson(zg) ; .The beams
were loaded with 4-transverse lire loads usmng h-spreader
eams, fig. (4 14) They con51sted of W16 x 50 1b per ft steel
sections and 6-1/4-in ribbed slab. A 3- 1/ﬁ-1n thick slab was
cast in a 3-in ribbed metal deck. For the first two spec1mens,
wire me h'for‘the slabs was placed 1-1/2-in above the deck.
% he w;i’;e' mesh was placed 2-1/2-in above the deck for ‘the third
SP cimen. , ~ - & - | . _'
)/” A layered finite element analy51s was performed consmderlng '
Y’ L-uniformly distributed transverse line loads along “the beam
length. Comparlsons between the experimental and. the computed
,results are presented in flgs (4 15,4, 16&4 17). The comparisons
~show that a very good‘agreement was achleved in the elastic _.
stage: The predlctlons of the longltudlnal cracklng loads‘l
and the ultimate loads u31ng the finite element model are also
qulte satlsfactory. ,
The prev1ous comparlsons flgs (4. 15 I.168&k ., 17), demonstrates
the appllcablllty of the proposed numerlcal model 1n.follow1ng the

behaviour: of composite beams in the different stages- of loading.

4,8 The Effect of Type of Loading and qupdary‘Cthitions on

“the Behaviour of Composite Beams with.Ribbed-Meta; Deck

A layered finite element analysis of a typical composite

beam with a ribbed concrete-slab is'pres%pted for three different
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loadlng condltlons: | ’
1. Unlformly dlstrlbuted load over the- slab area.
2. One point load at mid-span of the steel beam..
3. Two point load at 1/3 points of the steel beam length.
Two different boundary conditions are considered fér the
‘above mentioned fypes of loading:
a. Zero slop?, Gy, and ééfo displacement, u, at the slab
édges,,fig.(@.lea). ‘
These are con&idered fé represeht the boundary conditions
for an intérmediate beam in a system of composite beams.
b Free slab edges, fig.(4.18-b). . _ '
Thesé.are considered to represent'the boundary conditions

(10 ,22!28'50)01'1 a COIﬂPOSite heam.

in a-laboratbfy test
| Figure(4.19) shows the resulting moment-deflectlon curves
for the different lodding aﬁﬁ boundary éonditions. It shows
fhat for the three types of loading, the composite beams have
achieved almost the same ultimate moment capac1ty. It also shows
that the moment-deflection curves for the unlfqrmly distributed
load over the slab areé and for the two-point loading are:
almost identicall. Thus, a test with two pbint loads performed
in the laboratory can provide a leéitimate appraisal of the
performance of a uniformly loaded composite beam.

Figure{(4.19) alsc shows that the effect of the boandary

conditions at the edg®s of the slab, on the deflecton and

the ultimate moment capacity of a composite beam with a

ribbed metal deck, is almost negligible. The percentage
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{
diffefencg is 1ess-than 3 percent for the point and two point
cases of léadingrwhefeas‘it is less than 6 percent for the
.casé}of a uniformly distributed load.over the entire slab.
Howeépf, in all cases of loa@ing, the beams with free slab son
edgesashow less sf%ffness and ultipate moment capacity than
the béams with consé;ained bo;ndary conditions (Gy=u=0 af_ )
the sldb edges). - '

Table(Q.B) gives the moments at which longitudinal
cracking first Qccurs.'In the case of a uniformly distributed
load over the entire slab, when considering constrained
boundary conditions at the slab edges, the first 1ongitudinal
crack occured along the top fibre of the slab over the beam
and was due to transverse bending. However, in the cases of
one'anq‘two point loads, longitudinal cracking started at
the bottom .fibre of the slab over the steel beam, near the
load points, and was caused by longitudinal shear. _

It may be concluded fhat the current method of testing
composite beams with ribbed metal deck, by loading over the -
steel beams and considering free slab edges, gives satisfactory
results with respect to the ultimate capacities of the beams
and thelr stiffnesses. However, when it comes to the transverse
stresses in the élab, as in a study of the effect of the
transverse reinforcement in resisting longitudinal cracking of

the slab, the type of loading has a drastic effect on the

results such that i% is not possible to-rely on the current

method of testing to predict the transverse behaviour of the

slab.
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. - " CHAPTER 5
EFFECTIVE WIDTH OF CQMPOSITE BEAMS

WITH RIBBED METAL DECK

\~;,;;;,//"

5.1 General

.
|

" In a composite beam, the shear connectors restirain the
concrete slab immediately above the beam so that there is a
nonuniform longitudinal stress distribufion across thé transverse
cross section of the slab. .The portion of the slab directly
above the steel section, which i§'bonded to the steel’ section, \
naturally contributes most fully to the composite action.

Thus,.when the slab of a composite beam is subjected to
transverse bending loéds, the longitudinal stre;ses in the slab
cannot  be obtained accurately from the elemengary theory of
bending for tﬂ% entire'composite beam. Due to the shear stfain
in the plane of the slab, the parts of the slab remote from
the steel beam lag behind the longitudinal flexural deformation
of the parts near the beam. This effect, often termed shear .
lag(ls'%é’ss), causes a nonuniform stress distribution across
the width of the slab, figy(5.1)-

‘ Simple bending theory willrgive good approximation to

the maximum stress at point D, fig.(5.1), if the true flange

59
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, T et
width, b, is replaced by an 1meglnary w1dth b o' referred
. to as the effective w1dth.. The longitudinal stress is
~considered constant over the w1dth b 1 and equal to the
maxlmum stress over the steel beam. Thus. the area GHJK
. should be equal to the area ACDEF, fig.(5.1).

.. (123561114243?43)

Several 1nvest1gators have

studied theoretically and experlmentally the effectlve w1dth

of cbmposnue beams in the elastic stage. " Linear elastlc

analyses, with the prop&tles of sectlons calculated for a

homogeneous material, ignoring cracking, were performed to . ~

investigate-the variationlof tﬁe effegidve'width with.the |
span, the crosé-sectional_properties and the 1oed distribution.

N Most of rhese investigators have presented ralues of effective

. widths for variationé'in some of the parameters noted above.

H However, not one of them have provided sufficient information"
with‘respect to composite beams loaded with a uniformiy'
distribufed ioad over thelslaﬁ area, which is actually the
practical type of loading epecified in the code. _ ~

‘\H_# #/;Attle research(zl’z?) has been done on the effective slab

width at the ultlmate capacity of the comp051te beams. Heins and_
(21 27) evaluated the effective composite siab width at:’
.ultimate'load;for bridges subjected to standard truck wheel
loads. Cracking of concrete was not included in this
analysis. One study of the effective w1dth at ultlmate

load(31) has concluded t it is on the safe side to use

the effective width baséd on elastic theory even at the ultimate

B
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Vstate.

| None of the 1nvest1gat10ns that have been done on the
‘problem of the effectlve w1dth of comp051te beams. have
‘ﬂstudled the effectlve width of a comp051te beam-with a .
rlbbed metal deck. All these studies were performed on
- composite beams with solid.slebs. Howe#ef, eertain
codee(29'38) have established requiremeﬁfs for the evaluation
of the effective width of‘coﬁposite beams, which can be used
‘for solld or ribbed concrete slabs. |

The purpose of the work described in this chapter 15 to

establish design recommendations for estimating the_effect1Ve
width of composite beams with ribbed slabs. The effective
width is studied in the elastic and inelastic stages and at -
the ultimate load. Some conclusions are drawn with respect
“to the estimation of the effective width at, the ultimate
load. Cracking of concrete, effect of metal ﬁeck‘and'sjeei
reinforcement and the yield of the steel beam is included in
‘the dnsiysis. The variation of the effective width with the
span to width rafio. the type of loading and the cross- :
.sectional‘proﬁerties. is. studied. Since the majority of
governing ldads considered ig the design approximate to
uniformly distributed loads..iﬁ was declded 1o study mainly
the effective Width ratios for uniformly distribufed load

over the concrete slab area. ~ -

=



63

5.2 Defln;t on_of - the Eggectlve Width ¢

Toa

In ‘this" work the TollOW1ng deflnltlons hold:

1. ‘The strength effectlve width of- the concrete slab in

" a cqmp081te beam is..that w1dth of the slab whlch would sustaln'

" a force equal to the force in the actual slab at the sectlon of

maximum strength assumlng the. longltudlnal stresses across the
. Ene
effectlve slab width are constant and equal to the stress over

the centrellne of the steel beam, flg (5 1) ThlS definition

is expressed mathematlcs;ly as follows:

vy .

f [
f .dx.dz .
. 2/ 2p/2 ¥ . | oy :
De. . = — ' o - (5.1)
\. I _.

o " (through o 7
the slab Ve
" thickness)

<

'S : .
where fy is the longitudinal stress at any point in the cross-

section of the conggate slab..

. ’ . . . '
2. An effective width ratio is the ratio’of an effective

width 6f the slab¥to the actual width of the slab which is the

average spacing between the beams, at any cross section along

'the beam length (i.e. sections across the ribped parts or the

_Splid parts of the slab).



5;3' Comparison with Available Solutions °

Slmply supported comp051te beams with solld concrete
slabsﬂ havzng span to width ratios of 3 and 4, were analysed
using the_layered'flnlte element model. These beams ‘were
dsubjected‘to point loads at mid-span. The dlstrlbutlon of
the effective width to span ratlo along the beam length was
(3)

compared to Adekola's curves determined from his elastic
analytical model, Tigs.(5.2 & 5.3). The values of the .
effective width ratios obtained at mid—span are‘giden in‘:
.table (5.1). It can be seen that the agreement between the

results givenh is satisfactory. : 5

T

5:4 Effective Width of Composite Beams with Ribbed Slabs

In this study, simply supported composite beams with 1-1/2~

in. ribbed metal deck, are considered under a uniformly.distribtted

. B
load overjthe s5lab area. The conflguratlon of the ribbed metal
deck proflle is sketched in fig.(5. 6) The study is concerned

with an intermediate beam in a composlte floor system.

A composite&beam with a concrete flange, having a width
equal to the steel,beam' spacing, is analysed.using the
‘ layered‘fihite element technique. The boundary conditions

at the edges.of the. 'slab are assumed to be of zero rotation,

. B s and Zero dlsplacement, u, in the direction perpendlcular

to the beam length. These boundary condltlons are assumed

\ . o :
¢ - . ~



Effective Width to S__pan Ratio

« 5k _ -
' /b=l R L N
aoo jj -
. 't | ¥
3 / |
= Ny
02- ' S‘V" )
Al - —TLayered F. E,
: fﬂ-Adekola
N 1 ] r )
" 0.0 025 .5 W75 1.0
‘ YA .

Fig.(5.3) Comparison with Adekola's(5)

Effective Width Distribution

> (1/o=k)
Effective Width to Width Ratio
. (Bj Layered Finite
L/b 3t Adekola I Element Model
3 0.681 0.70
L'y 0.771 ﬁf‘ 0.78

_Tablef5.i) Comparison with Adekola's(S)

o

¥

Effective Width Ratiocs

, 65 ‘



66

4
. -
» \

to simulate the actual‘conditions for an intermediate beam
“in a composite floor system consisting of a large number
of steel beams acting compositely with the floor slab. .
Figure (5.4) anq'tabie (5.2) show the effective width .
to width ratio distribution along the intermediate composite
beam in aﬂg-composite'béams system and the beam analysed
using the above me;tioned boundary conditions. The results _
are in a very good agreement wifh a percentage difference

of about one percent.

fables(S.j&S.#) show the effectbof'the'boundary conditions
at the slab edges on thefgffecfi§é width ratio-distribution
" along a composite beam with a ribbea'concrete slab subjected
" to different loading conditions. Two different boundary
.~ conditions are considered: |
a. Free slab edées; to represent the boundary conditions
in a iaboratory test on a composite beam.

b. Zero slope, ©_, and zero displacement, u, at the slab

y

edges; to represent the boundary conditions for an intgrmediate

N

‘beam in a composite floor system. ” F

Tables(5.3&5»4) show that the boundary conditiong'at the
slab edges have a negliéible efféét on the effective width of
composite beams with ribbed metal deck. The percentage difference
is iess than 2 percent when tﬁe beam is loaded with one point
load ét its mid-span and it is in the ‘order of L percentrwhen

the slab is entirely loaded with a uniformly distributed. load..



Effective Width to Width Ratio

1.00

.. Q=_ .fllr_ T f f E T

l?O' -
One Beam Intermediate beam in
(u;ey=0) a 5-composite beams system
.6 !
0.0 025 l5 '?5 1'

, . Y/
Figi(5.4) Effective Width of an Intermediate
Beam in a System of Composite Beams

&

1 of 5-Composite Beams

¥/L 0.10{0.20{0.30]0.40{0.50
One Composite Beam with Zero ‘
Slope, %y' énd Zero Displacement.840 .918 48| .958].961
u , at the Slab Edges ‘ . :
Intermediate Beam in a System e
.8401.918| .945!.952 |.952

’ Table(5.2)

Effective Width of an Intermediate

Composite Beam

—
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WL 9 ov2 ] 03] .35 | uo | a5 {.50

‘Composite Beam with Zero
S ) i o | , ‘

lopg ey, and Zero Displ 1,98 | 1.01.99 |.97 |.91- [.76
u, at the Slab Edges '

'Composite Beam with i | é?
Free Slab Edges | :98 11.0].99 | .96 .90 [.75

—

. $able(5.3) Effect of Boundary Conditions on the effective
- ‘Width of Composite Beams with Ribbed Metal
Deck Subjected to one Point Load.at the Mid-
$\ .Span of the Beam (L/b=lk)

vL . 0.2 0.3].35 | 40 | .45 | .50

Somposite Beam with 7ero - _'\
Sl'ope. eyl and Zero Displ., .919"-953 1960 .964 .96? .967

u, at the Slab Edges

Com ositelBeaq with .
Frei Slab Edges .894.922| .927( .930{ 933} .934

Table(5.4) Effect of Boundary Cchditions on the Effective
Width of Composite Beams with Ribbed Metal
Deck Subjected to UDL over the Slab Area(L/b=4)
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Hewever, for ﬁhe two loading eonditiohs, tﬁe-effective width
ratio for the free slab edges was alwa&s smaller than'that'for
“the censt;ained slab edges(u=eyf0). It may be conc}uded tﬁat'
the curreﬁt mefhoq of testing composite beams, by considering
free slab edges, can be used to estimate the'effective'slab

_width for a specific type of loading.

Figures(5.5&5.6) show the effective width ratios
.distribution along a composite beam with'a solid and ribbed
concrete slab under a unifermly-distribufed load over ehe
slab area, for different beam span to slab width ratios, L/b.
The solid end ribbed concrete slab are chosen to have en £
equal overall thickness of 4-in. The ribbed ‘slab consists
af 1-1/2-in ribbed metal deck and 2-1/2-in eolid concrete parti\
‘ A study of the dlstrlbutlon of the effectlve width
for dlfferent span to width ratlos. shows that the effectLVe
“width for any ratio is maxlmum at the centrellne of the
beam and it reduces toward the supquts. It also shows
that the effective width ratios could be assumed to be
anetant between the mid-span and the gquarter-span positions
eépecially for span to width ratios greater than 3.
Figures (5.5 & 5.6) show that - the effectivewidth
.increases with tne increase of the span—to—width—retios. In the ..
case of a'eelid concrete slab, the effective width at mid-span
is equal to the total w1dth of the slab for sPan to w1dth _
ratlos equal to or greater than 5. However for a rlbbed slae

the effective width is equal €o the total width Yor ratios
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greater th9ﬁ 7.50.

Figures (5.7 & 5. 8) and tables (5.5 &5, 6.) show a
comparison of the effectlve width ratio distribution for'a
golid and a ribbed concrete slab for two different span to
width ratios. This comparison shows that the percentagé |
difference betwéen the two cases, assuming that the overall
thlckness of the slab is the same, is in the order of 2 percent.
It is also to be noticed that the effectlve width of a solid
slab is always greater than that for a ribbed slab.

Table (5.7) shows that although the effective width in a
composite beam with a ribbed slab is maximum at the centreline
of the bean, when l;aded with a uniformly distributed load over
the slab area, 1t 1s Stlll the most critical effectlve width
when it is con51dered tngw ;t.ls the critical moment section.

5.5 Effective Width Variation with the Span to Width Ratio

Figure (5.9) shows the variation of the effective width
ratio, at mid-span of the composite beam, with the span to width

ratio. It shows that the effective width increases with the

'increase of the span to width ratio and equals the total width

for ratios greater than 7.5.
Table (5.8) shows the distribution of the effective width

ratio along two composite beams with diffefent spans and slab

“widths, but having ‘the same span to. width ratio. It shows,

that the effective width to widfh ratio is almost constant for

any specific span. to width ratio.
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Fig.(5.8) | Effective Width Ratio Distribution of a
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YL 00.20- - 0.25 0.30 (0.35 0.40 0.45_‘10'.50_

. k)
Ribbed Concrete ~ S
919 942 .953 .960 .96k .967 .967

Slab
Solid Slab : .93?u,2960 972 979 .983 .986 .986
x B : . ¥
‘Percentage ‘
‘ 1.96 1.91 1,99 1.98 1,97 1.97 1,97

difference

Table(5.5) Effective Width to Width Ratio Distribution
for a Composite Beam with a Solid and Ribbed -
Slab under UDL over Slab Area (L/b = 4)

K3

v/L 0.20 0.25 0.30 0.35 0.40 .0.45 0.5

Ribbed Concrete. O -
: .953 .966 .971 .974 .977 .979 .980

Slab
Solid Slab 978 .992 .998 1.00 1.00 1.00 1.00
. _ e R .
Percentage ' , S -
L 2.62 2,70 2.78 2,67 2.35 2.15 2.04
Difference , ~ ‘

Table (5.6) Effective Width to WidthRatio Distribution
for a ComposSite Beam with a So1¥d and Ribbed

Slab under UDL qver Slab Area (LI;?}‘»)

/-\ ‘ -~ _" N
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- N . .'
sy/n . | ow2s 430  0.35 0.0 0.45  0:50

‘Composite Beam

ot siany | 0-9%2 0.953 0.960 0.964 0.967 0.967 .

2 .
‘| Composite ‘Beam

(20'{5“81@) 3 0.942 'a9.953 .'0'-961. 0.964 0.966 :0.‘96?

I3
b

‘Table (5¢8) Effective Width to Width Ratio

A ot . )
' R for Two- Composite Beams having ..
the Same L/o Ratio {(L/v=4) ' . @
o ' R . : . . o . - “‘
- ) ‘) f‘*ﬁ; '=,_ ‘
. r\ N - i . ! l - ) ‘,. .
k. A \ v



o 5.6 Effect of the Concrete Compressive Strength on_the

Effectlve Wldth Ratio Distribution

Table (5.9) shows the effectlve width ratio oLstributioﬂ

along a composite beam W1th~a ribbed concrete slab, subaected

-

to a uniformly dlstrlbuted load over the slab area, for

different concrete compressive strengths.“fc. It is to be

noticed that the the effective width variation due to the change -

in concrete strength is less than one-pércent. It may be
concluded that the effect oflthe comﬂ}éssive strength of

concrete on the effective width is of a minor impoftanoe.

-

5.7 Effect of Beam Size on the Effectlve Width Ratio

Dlstrlbutlon

Table ( 5.10)Shows the effectiveswidth ratic distribution
for three-composite beams, having‘the same span to witith ratio,
but of different steel oeam sizes. The variation in tho
effective width ratio ig very small so that we may conclude
that the beam size has‘a negligible effect on the effective

width distribution of composite beams with ribbed slabs.

5.8 Effect of Type of Loading on the Effective Width Ratio

_Distribution

-

Figure (5.10) and table(5.11)show the drastic difference
in the effective width ratio distribotion along a composite
beam with a ribbed slab for different types of loading. The
critigal effective width for the uniform load and the one '
point load is at thelmid-span of the beam. However, the

difference between these two effective width ratios is about

22 percent. It may be concluded that the effective width:



R
YL' ' - 0.20 0.25 0.30 0.35 0.40 0.45 0.50
| £r.= 5800-psi  .919 .9k2 4953 .960 .96k .967 967

c A
\ ( . o | _
'. . . B . N \

-~

£1 = 4000 psi  .92L .92 .95k .960 .96k .966 .967

1= 3000 psi 922 w943 95K .960 .96k .966 .967
o Table(5.9) Effect of Congrete Strength on. the
\t] | ‘Effective Width Ratio Distribution

' . ~ in a Composite Beam under a UDL

over the Ribbed Slab Area (L/b=4)
. ~ - . { -

YL 0.20 0.25 0.30 0.35 0.40 0.45 .0.50

WL6X26  .922 JOW .95 .960 .96L .966 .967

W1kx22 921 943 .954 .960 .06k .966 .967

W12x19 .923 .9k .955 .960 .963 .966 .967

Table(5.10) Effect of Beam Size on the Effective
RS Width Ratic of a Composite Beam with
' a Ribbed Metal Deck (L/b= &)
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ST 21 ' ‘ -— Two point Load at 13
@ - Points of Beam Span
[ A »
~§ .75 __fL#_J: y ~-- UDL over Slabf%rea'
.70 - 4 :
0.0 .25 .5 W75 1.0

Fig.(5.10) Effect of Type of Loading on the Effective
Width Ratio Distribution for a Composite
Beam with a Ribbed Metal Deck

y/L .20.25 .30 325 .33 .35 .40 .45.475 .50

UDL oé%r Slab 92 .94 .95 .96 .96 .96 .96 .97 .97 .97

Two Point Load ‘ - |
at 1/3 points .96 .96 .92 .88 .83 .89 .96 .99 1.0 1.0

of Beam Span .

One ?oint Load '
at Mid-Span of .98 1.0 1.0 1.0 .99 .99 .96 .90 .85 .75
the Beam : ‘

Table(5.11) Effect of fype of Loading on the Effective
: Width Ratio of a Composite .Beam with a
Ribbed Metal Deck (L/b = 4)
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used when designing a composite beam under a uniforﬁly
distributed load, which is the practical loadiﬁg in most
cases, should be different from that used for any other type
of loading. It is conservative but wasteful of material to
use the one-point load effective width in the design of
composite beams‘subjected.to a uniformly distributed load
over the*slab area.

o

5.9 Effective Width of Composite Beams with Ribbed Metal

Deck in the Inelastic Stage

;;gaﬁés (5.11 & 5.12{ show the variation of the effective.

width to “otat width ratio of a composite beam with a ribbed

concrete slab when loaded with a unifomly distributed load
- over the slab area in the different stages of loading until
the ultimate capa;ity of the beam is reached.

It is noticed, as shown in figs.(5.11 & 5.12), that the
effective width ratio is constant in the elastic stage.
Once the bottom fibre of the steel beam yields, the effective |
width ratio starts to decrease. It keeps on decreasing
until the concrete is no longer elastié and then it starts
to increase again. The effective width keeps on increasing
until it reaches or exceeds the elastic effective width.
The length of this decreasing “brarith is a function of the
compressive strength of concrete. The lower the compressive

strength, the shorter this decreasing branch will be.

Tt may be concluded that the effective width at the

L
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ultimate load is always greater than that in the elastic
stage. The difference between the elastic effective width
and the effective Qidth at ult&ﬁate state is of the order of
4 percént. Thus, it is conservative and quite écceptable to
use the effective width estimated in the élastic stage, in -
the calculation of the ultimate capacity of composite Beaﬁs

]

with ribbed concrete slabs. '

. 5,10 Comparison with the CISC(37) and the AIJ(29) Specifications
:-kThe Canadian Institu%e of Steel Constructions (CISC)(B?)
specifications limit the value of the effective width, bo,,
to the least of the following three values:
1o b, ¥ 1/4 beam span
iee by L L/M
2. Dby '<;t3entreline to centreline distance between the
| adjécent beams.
il.e by gg;b
3. begL 16t + be
Where t is the total thickness of the slab znd by
is the flange width of the steel beam.
It is noficed that the CISC specifications with its
different limits does not include the span to width ratio
as a factar in the calculation of the effective width
although it was shown in this study and by several other

(3,21,46)

investigators that it is the most significant

parameter influencing the effective width.
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The Afchitectﬁral Institute 6£ Jépan (AIJ)(29)
specifications use an empirical ormula to calculate the
effective width of the composite béams witH Tibbed slabs.
This formula takes into account the span to width ratio as

an important parameter affecting the gffective width.

b, = b - 0.60(b-bs)2/L

~

Table (5.12) shows a comparison of the effective width
ratioc between the CISC sﬁécifications. the AIJ 'specifications
and the results obtained from the layered finite element
analysis of composi@gjbeams with ribbed slabs under uniformly
distributed loading over the sléb area. It shows that the |
CISC results are very close to the finite element model
results for span to width ratios greater than or equal to 4.
However, for ratios léss than 4, the CISC is very conservative,
fig.(5.13): The AIJ resultseare conservative for all span.
to width ratios with a difference of the order of 10 percént.
fige(5.13). |

Table (5.133 gives the effectivé width ratios for
different span to width ratios, for composite beams with
~1-1/2 inch ribbed metal deck, subjecéed to a uniformly

distributed load over the slab area, as calculated from the

layered finite element analysis. Interpolation can be used
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Effective Width to Beam Span Ratio

.20 |}

ljo o

_—ALJ Specificatio
CISC_Specificatio

Analytical Model'rrILT

4 4 ] ' L
.10 .20 .30 .40 .50
' S1ab Width to Beam Span Ratio

Fig.(5.13) Comparison between the Analytical Model
' and the CISC and the AIJ Specifications

yo

L/o 3 v | s |46 ?

be/b 961 | 967 | .980 | .989 | .995

Table(5.13) Effective Width Ratios of a Composite
Beam with 1-1/2 in Ribbed Metal Deck
under a UDL over the Slab Area
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" to calculate the effective width ratio for any span to width

ratio that does not exist in this table.
Tables (5.14 & 5;15) show a comparison of the effedtive
width-to-width-ratio distribution for a 1-1/2-in ribbed metal

deck and a 3-in deck, for two different span to width ratios.
It is observed that the 3-in deck provides a slightly larger

effective width than ‘the 1-1/2-in deck, provided that both
ha§e equél depth for the solid part of the slab. It is also
to be noticed\that the difference in the effective width
ratio due to the change in the depth of the ribbed metal deck,

increases with the decrease of the span to width ratio.

5.11 Conclusions

1. Effective widths of flabs in simply.éupported
composite beams, especially for spamsto width ratios greater
than three, are practically constant along the beam lengths
exceﬁt near the ends.

2. The effective widths are significantly dependent
on the plan dimensiqns of the composite beams. Within %he
practical range of composite beam members proporticns, the
size of the steel beam, the height of t@e ribbed metal deck
and the strsrgth of concrete play a negligible role.:

3. ng effective width increases with the increase of
the span EJ width ratios. Iﬁ the case of a solid slab, the
effective/width equals the total width when the span to width
ratio 1s equal to or exceeds five. However, in the case of a
ribbed slab, the effective width equals the total width when

the span to width ratio is equal to or exceeds 7.5.



y/L | 0.2033 0.30 0.40 " 0.45 0.50

3-in metal deck

.862 .928 ,951 ,957  .961
+2-1/2-in solid slabd .

1-1/2-in metal deck

" .830 .886 .909 .914 .916
+2-1/2-in solid slab

% Difference 3.71 4.53 4.42 L4.49 h;68

Pable (5.14) Effective Width to Width Ratio Distribution
for a 5-1/2-in and 4-in Ribbed Slabs (L/b=3)

j/L 0.20 0.30 0.40 0.45 0.50

3-in metal deck \__

931 .970 . 979 .982 984
+2-1/2-in solid slab :

1-1/2-in metal deck

921 .95%  .964 966  .967
+2-1/2-in solid slab .

. % Difference 1.29 1.75\ 1.53 1.53 = 1.73

p
Table (5.15) Effective Width to Width Ratio Distribution
‘ 1or a 5-1/2-in and 4-in Ribbed Slabs (L/b=4)
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8
b, Effectlve width ratios for rlég;d and SOlld slabs,
having the same overall thickness, are very close to each
other. Thus, it is possible to use the same effectlve width
for -the two types of. slabs. However, it is conservative to
use the J}fective width for the ribbed slab.
5. The effective width at the ultimate load reaches or

exceeds the effective width in the elastlc stage. For

composite beams, it is on the conservatlve side to use the

effective width based on the elastlc theory at the ultimate

state., )
'6. For composite beams with ribbe%'metal deck, the Canadian

Code (CISC) gives quite good agreement, for span to width ratios

greater than or equal_to 4, with a difference of about 2 percent

- of the predicted-analytical values.. However, for span to width

ratios smaller than &4, the Canadian Code (CISC) is very
consérfative with a difference of about 20 percent. /
" n, The Japanese Code (AIJ) seems to be conservative for
all span to width ratios with a difference of about 10 percent
of the predicted values presented in this inveétigation.

8, The effective width to width ratio is very sensitive
to the type of loading. It is smallest in the case of a oné-
point load at mid-span of the beam and largest in the case of
a uniformly distributed load over the slab area. Thus, the

effective width should be specified according to the type of

loading.



CHAPTER 6
LONGITUDINAL CRACKING OF COMPOSITE
BEAMS WITH RIBBED METAL DECKS -

e

1]

6.1 General

. In composite beams. with ribbed metal decks, the

_reinforced concrete slab,'the|me£al_deck and the steel beam

on which theideck-rests, all act as g unit. Composite

.

action is achieved'by means of shear connectors welded
through the deck to the beam. *

Each side of the shear connectors, the concrete slab is

‘subjected to a longitudinal shearing. force due to the

cdmposite action provided by these connectors. This

: long1tud1nal shearing force 1nduces transverse tensile

stresses in the slab that could create a longltudlnal crack

in the slab along the beam lengthr ' e//////"<
However, slabs in comp051te beams are usually subjected -

to transverse negative moment over the beam length when

'lodded with a uniformly distributed load over the entire

*

slab area, which'is the most common type of loading. The
transverse moment will create a tendency for the concrete

slab to crack lohgitudinally over the beam length.

90
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Generally, longitudinal cracking in composite .beams is
due to the combined action of transverse negative moments
and - the transverse tensile stresses induced by the composite

action.in the slab. However, for some specific cases, when

~ the composite beam is loaded with point loads over the beam

““f\vmiehgth. the longitudinal cracking, in the abserice of the -

1

_transverse mbmént., will be mainly due to the longitudinal
“shea? effect. . | ‘ | ,

The devéiopment of such a crack would result’in the
reduction of the ultimate‘capacity‘of.the composite beam.
Thus, it is desirable to ensure that the ultimate capacity
of the composité beam is achieved bvefore or simultqneously
with the;devélopment of thg ldngitudihal,crack{

Very limited work has.been reported on thefstudy of
the lohgitudinal éracking in composite‘beams'with ribbed
metai decks. However, some work was presented for the case
of a compositelbeaﬁ with a solid concrete slab.

(18)

Davies fested a nugber of simply supported composite
_beams with solid concrete slabé-to study the effect of the
transverserreinforcemeht in resisting the longitudinal
crackin of the slab. The composite beams-wé%e loaded at

(17,18)

one point at mid-span of the beams. Davies explained

the phenomenon of the development of the longitudinal

.crszing, in the absence of transverse moment, to be due to

the’ longitudinal shear which is transmitited to the concrete

near the underside of the slab. Hé concluded that longitudinal |

fac
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cracking would mostflifely'staft at the bottom of the slab and
then prppega$e to the uppefjsurface'to become visible. . ' !

Davies(l?'la)

presented an empirical formula to estimate
the amount of transverse reinforceﬁent to be used to prevent
longltudlnal cracking of SOlld ‘concrete slabs. He concluded o~
that the amount of transverse relnforcement is dependent on -
the slab thickness, the concreﬁb strength and the yield .
stress of the reinforcing steel. Davies' work was only
‘concerned with the longitudinal ‘cracking of comp051te beams
‘Wlth SOlld concrete slabs in the absence of transverse
- moment . ' . . K
) ElGhazz1(19 20) presented an ultimate strength deSLgn

method for the. transverse reinforcement in the solid concrete
slabs of composite beams. He presented a formula to estlm;te
thelamount of transverse reinforcement which permits a crack
to develop longituginally af the same time as the flexural.
oapacity of the composite.beam is attained. Again,‘ElGhazzi's
work was only concerned with composite beams with solid
concrete slabs loaded over the beam length without any
con81deratlon of any transverse moment . '

AdekoLa(u) tested a number of composite beams with solid
eoncrete'slabs under one point load at mid-span of the beams.
He noticed that the failure load was reduced in the specimens

that have no transverse reinforcement. The absence of transverse

reinforcement allowed longitudinal cracking of the slabs at an

!

early stagé of loading.
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! (31.32) .0 a1se ; -
Johnson has _also recommended an ultimate strength
. design method for ,the transverse relnforcement in the solid
sleb of a coemposite beem. The total amount of steel g : )
reinforcement is mainly.dependent on the strength of tée
concrete and the yield stress of the steel reinforcement.
He conciuded thet the need for bottom'transverse reinforcement
. 1s greatest where there is no negatlve transverse moment..

(8)

Azmi 1nvest1gated ‘the contribution of the rlbbed

metal deck to the transverse relnforcement of concrete slabs

in composite beams with ribbéd slabs loaded over the centerline
of the beams. He tested a composite beam with a ribbed metal
deck using 50 percent of the amount of transverse reinforcement

calculated according to ElGhazzi's(lg’?O)

formula for solid
slabs. He found that the composite beam achieved iis ultimate
'capacity. Accordfngly. he concluded that the ribbed metal
deck contributes to the transverse reinforcement of the slab
in resisting the longitudinal cracking.

: Several.investigators(zz'28,50,51)

have tested composite
beams with ribbed.metal deck by loading over the bean léngth.
They observed that the concrete s}abs remained entirely |
intact eccording to visual inspection up to about 90 percent

of the ultimate capacity. At this stage, the concrete slab
began to show failure by longitudinal cracks extending from

the load points to the ends of the beams. In these tests

no provisions were made for the inclusion of the transverse

moment effect.
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The bbject of the parametric study presented in this

chapter is to investigéte the effect of the metal deck, the

transverse reinforcement, the beam-span-to-slab-width ratio

5nd;the compressive strength of concrete'on the resistance
to longitudinal cracking in simply supported composite beams
wi'th 1-1/é;in ribbed metal deck‘subjected toruniformly
distributed»logding over the.slab area. 'The combined

composite action and transverse moment effect on longitudinal

- cracking is included in this study. A study of the effect of

the type of loading, the steel beam size and the thickness
of the solid part of the ribbed concrete slab on the
longitudinal cracking is also presented in this chapter.

In fact, this study is mainly aimed at‘answering some
practical ques?ions concerning the longitudinal "cracking of
composite beams with ribbed metal decks subjected to
unifofmly distributed loading over the slab area. Such }
queétioné afe: where do the cracké start? how much transverse

reinforcement is required? and what are the factors that

‘affect the longitudinal cracking of composite beams with

ribbed metal decks?

At the end of the chapter, some dgsign recommendations ‘
and rules are presented concerning the amount of transverse
reinforcement and the quality of concrete used for composite

beams with ribbed metal decks subjected to uniformly

distributed loading over the entire slab..
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6.2 Effect of the Type of Loading

. Three identical composite beams with ribbed ‘metal decks
were stﬁdied under different types of loading to study'the
effect of the type -of loading on the longitudinal cracking
oFi'the coricrete slabs. The beams were §imply supported over
~a 24-ft span and were loaded with oﬂe point load at mid-span
of the beam, two point load at 1/3-points of beam lengthiénd
a uniformly distributed load over the slab area, respectively.
The beams consisted of w14x22 1b per ft steel sections and
L-in ribbed éoncrete'slabs with 6-ft width. Tables (6.1 &
6.2) summarize the results for these cases of loading using
two different types of concrete.

« Loading over the beam length eliminates the transverse
momerit effect and the creation of the longitﬁdinél cracking
will be mainly owing to the composite action between the "beam
and the slab. In this case, the crack always‘starts near
the bottom'fibre of the concrete ribs, where the longitudinal
shear is transmitted by the connectors. 'The crack is initiated
‘near the load points and then it extends longitudinally
toward the ends of the beam while it is propagating
vertically through the depth of the slab.

in the case of a uniformly distributed load over the
entire slab, the first occurrence of a longitudinal crack
occurs along the top of the slab over the beam and is due to
transverse moment. For that kind of loading, the concrete

slab is subjected to the combined effect of transverse
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moment énd longitudinal shear. The longitudiﬁal shear effect
tends to initiate the cracking at the bottom fiﬂre of the
concrete ribs, while the transverse negative moment effect ,
tends to initlate the cracking ﬁt the top fibre of'the slab.,
However, the transverse moment effect seems to govern such
that for a beam loaded with a uniformly distributed load

over the entire slab area, the longitudinal crack usually
starts at the top fibre in the non-ribbed parts of the slab
near the mid-span section. Then, the crack extends down-
wards through the depfh of the slab and longitudinally

toward the ends of the beam.

It may be concluded that the transverse negative
moment, due o the uniformly distributed load over the slab
area, creates a tendency to suppress the'longitudinal crack
due to the longitudinal shear at the bottom of the slab.
Thus, the need for transverse reinforcement at the lower
face of the slab to resist the longltudinal cracking due to
the longitudinal shear effect is greatest when there is no
transverse negative moment. However, the existence of the
transverse moment can eliminate the need for any bottom.
transverse reinforcement as it suppresses the longitudinal
shear effect. On the other hand, there could be a need for
some top transverse reinforcement to resist the longitudinal
cracking due. to the itransverse moment dependirig on the beam
span to slab width .ratio of the composite beam and fhe

compressive strength of the concrete slab.
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6.3 Effect of the ngp;§§3;§e Strengih of Concrete

A composité beam with ribbed metal deckiis studied
under two-point load at 1/3-points of the beam length, for
two differént values of the compressive strength of coﬁcrete.
f;._ Table (6.3) shows the effect of the compressive strength
"of concrete on the longitudinal cracking moment and the
cracking moment to ultimate moment ratio. It is clear that
the increése of the concrete compressive strength ihproves
the longitudinal cracking phenomenon in the composite beam.

Table (6.4) shows the effect of the compresézve
strength of concrete on the longitudinal crackiﬁg moment of
a composite beam with a 1-1/2-in ribbed metal deck subjected
to a uniformly distributed load over the entire slab. It is
noticed tﬁat the increase of the compressive strength of
concrete, for a specifié beam span to slab width ratio,
increases the longitudinal cracking mbment with respect to
the ultimate capacity. It is also noticed that the greater
the longitudinal cracking moment the larger the ultimate
moment of the composite beam.

Table (6.5) shéws a comparison befween two composite
beams loaded with a uniformly distributed load and having
different concrete strengths and steel beam yield stfesses
but equal steel ;ield stress-to concrete compressive
strength ratio, Fy/f;. It shows that the longitudinal
cracking moment to ulﬁimatg moment ratio is almost constant

for any specific steel yield stress to concrete compressive
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<
Strength '
& MY e Mu MLc/Mu
of : _ .
Concrete (psi) (in-kips)| (in-kips)| (in-kips)
5800 1780 | —-eme- 2870 _————
3000 1750 2760 2775 0.99
Table(6.3) Effect of Concrete Strength on the -
' Longitudinal Cracking of Composite
Beaﬁs Loaded with 2-Point Load at
1/3 Points of Beam Span (L/b=4)
Strength M, My o M, My A
; of
Concrete (psi) (in-kips):(in-kips){in-kips)
5800 1795 _———- 2870 -—--
4000 1780 2720 2825 0.96
3000 1760 2400 2780 0.86
Table{6.4) Effect of Concrete Strength on the

Longitudinal Cracking of Composite
Beams Loaded with a UDL over the
Slab (L/b=k)



101

soriey YyjzBusdlg 918I0U0) O} SSAING PIOTA Tenbyg

FutaeH sureaq a1 tsodwcp jo FuIyd®ID Teutpn3IduocT (G "9)°TABL
006°0 GIte GGo1 G1e2 06 6£ 0000% 9 |81
L2
$16°0 cHGE 0161 0541 000€ | 0008€ 9 | g1
g5 o 000€ 0641 0502 009t | 0004H 9 | 81
7 6*6
Ggs*o 0292 0€6T 04LT 0004 0008t 9 81
(sdry-ut) [(sdry-ut) [(sdt-ur) | (18d) | (18d) |(37F) (13)
ot3ey
"W "w Ty A b Rq q | 71.lurfusass @38a0U0)
03
8881315 PT8TA T@915




strength ratio. .

Thus. it may be concluded that for a comp081te beam,
with 5 spe01f1c span to width. ratio, it is p0581ble '
_ 1ncrease the longltudlnéIrEracklng moment and corresEanlngly
the ultlmategmomeﬁt by the proper selectlon of the concrete
compre551ve strength, f .»,In other words, the proper -

selection of the materlal properties of the-composite beam

such as the steel beam yield-stress to the concrete éoﬁpressive

strengfﬁ ratio, Fy/f;; is very-fhportant in improving the
behaviour of the composite beam with respect to longitudinal
cracking.

‘It is also to be mentioned that the. concrete strength,
f;, required to improve the léngitudinal cracking moment of
the composite beam depends on the beam span to slab width
ratio, i/b. In other words, as it will be showﬁ in the ne;t

section, the larger the span to width ratio, L/b, the

lower the required concrete compressive strength, fc.

6.4 Effect of the Beam Span to 612b Width Rasic
Two composite beams with ribbed metal deck, having

different beam span to slab width ratios, are studied under’

one point load at the mid-span of the beam length. The beams

were selected to have close ultimate moment capacities by
keeping the slab width equal in the two beams and changing
the span. All the other properties are kept the same. The

results of this comparison are shown in table (6.6). It may

2T 102
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Beam Span
'tO; ’
Slab width | P M, MLe oMy | MMy
Ratio (£t} |[(£t)] (in-kips)(in-kips) |(in-kips)
3 18 | 6 1815 | 2540 2860 0,89
4 2k | 6 1825 2690 2865 0.94
LTable(6.6) Effect of L/b Ratic on the Longitudinal
Cracking of Composite Beams Loaded with
One Point Load at Mid-Span of the Beam
(fé =5800 psi) .
Beam Span
to
Slab Width © | P M, Ve My o] Mpe/My
Ratio (£t) [(£t)|(in-kips)|(in-kips) |(in-kips)
3 18 { 6 |1770 1530 2615 0.59
ly 24 | 6 |1780 2720 2825 0.96
Pable(6.7) Effect of L/b Ratio on the Longitudinal

Cracking of Composite Beams Loaded with
a UDL over the Slab Area (fé =4000 psi)
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be noticed that the incrgééé 6f‘the span to width ratio,
iﬂbreaées the longitudinal cracking moment with_respeﬁt to
the ultimafe}ﬁoment capacit& of the composite beaﬁ. =
Table té.?)'shows the effect of “the Span to width rétio.
_L/b. on the longitudinal cracking moments of composite beams
‘Iﬁith 1-1/2-in ribbed metal decks subjected to 2 uniformly
-_distributed load over the entire slab. In‘this comparison,
~ the beams have equal widths but different spans with:all the
other pfoperfies_remaining constant. It may be noticed that‘thé
increase of the span té width ratio ingreases the longitudinal
cracklng moment with respect to the ultlmate moment capacity.
‘It also may be notlced that- the greater the 1ong1tudlnal
_cracklng mement is the larger the ultimate moment of the
composite beém.‘ . ,1 
Table (6.8) shows a comparison between two composite
beams loaded with a uﬁiformly distributed load and having
'different spans and widths but equal span to width ratio,
.I/b = 3. It shows that the longitudinal cracking moment to
ultimate moment ratio is almost constant for any specific
span to width ratio. The same conciusioh can be drawn from
table (6.9) in which a similar comparison is presented but
\Eor a different-span to width ratio, I/b = 4, It is also
possible to say, according to table (6.8) in which two
concrete coﬁpressive strengths_were used, that the previous

conclusion is independent of the concrete strgpgth.‘

’ Thus, it may be concluded that the beam span to slab
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\
£, | L b |L/b M, M .My ML-C/Mu
(psi)|(ft)|(£t) (in-kips) | (in-kips)|(in-kips)
et 3 [ 1810 1330 2565 0.519
3000 | - -
1as] 6 | 3] 1750 | 1310 2545 0.515.
o1 | 7. | 3| 1825 1535 2635 0.583
4000 = .
18 6 4 3 1770 1530 2620 0.597
Table(6.8): Longitudinal Cracking of Composite Beams
" having the Same Span to Width Ratio (B)
£ | L | D L/b M | My . M, M M
(psi)| (£1)) (£%t) (in-kips)| (in-kips) |(in-kips)
L]
201 5 | & | 1685 1945 2545 0.76k4
2000 '
"o |6 | 4| 1735 1945 2590 0.750

Table(6.9) Longitudinal Cracking of Composite Beams

having the Same Span to Width Ratlo (L)
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width ratio is a very important factor affecting the
longitudinal cracking of composite beams with ribbed metal
decks. The longitudinal cracking moment to ultimate moment

ratio is almost constant for any specific span to width ratio.

6.5 Effect of the Metal Deck

‘ Table (6.10) shows a comparison between two composite'
beams with ribbed metal decks in which the metal deck was
removed in one of the two beams. The beams were loaded.
with one point load at mid-span of the beams and the slﬁbs
were not provided with any transverse reinforcement. The
results, table (6,10), shows that the metal deck contributes
to the resistance of the longitudinal cracking by increasing
the cracking load by about 14 percent.

Table (6.11) shows. a similar comparison for two
compésite beams loaded with a uniformly distributed load
over the entire slab. It shows that the metal deck does
not contribute to thé resistance of the longitudinal
cracking when the composite beams are subjected to uniformly
distributed load over the slab area. This is mainly because
the crack tends to!start at the top fibre of the slab whﬁle

thé metal deck is near the bottom surface of the slab.

6,6 Effect of Beam Size

Table (6.12) shows the longitudinal cracking moment for

three composite beams having the same span to width ratio,
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. fc L/b My ‘ MLc Mu MLc/Mu |
(psi) (in-kips)|(in-kips)}|(in-kips)
With : . '

Metal Deck | 3000| % 1795 2370 2765 0.857
Metal Deck ‘
Removed 3000 4 1795 2070 2735 0.756

Table(6.10) Effect of the Metal Deck on the
v Longitudinal Cracking of Composite
Beams undgr One Point Load at Mid-
Span of the Beam
fé L/b My MLc Mu MLc/Mu
(psi) (in-kips) |(in-kips)|(in-kips)
With
Metal Deék 3000 3 1750 1310 2545 0.515
Metal Deck
Removed 3000\ 3 1755 1295 2545 0.506
Table(6.11) Effect of the Metal Deck on the

Longitudinal Cracking of Composite
Beams under a UDL over the 51lab Area
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Steel Beam e -
Sige L/ M. _ MLc Mu MLc/Mu
(in-kips)|(in-kips)|(in-kips)
Wiaxly | b 1400 1050 2050 0.512
Wikx22 | b 1750 1310 2545 0.515
Wi6x26 g 2255 1580 3250 0.486

Table(6.12) Effect of the Steel Beam Size

/ on the Longitudinal Cracking(fé=3000)
Overall '
Slab fo [v/® My MLc Mu MLc/Mu
Thickness(psi) (in-kips)|(in-kips)|(in-kips)
oy 13 | 1750 1310 2545 0.515
3000
5 3 1920 2040 2860 0.713
b 3 1770 1530 2620 0.585
4000
5 3 1950 2550 3000 0.851
4 3 1780 1870 2690 0.696
5000 -
5 3 1970 -—-- 3060 ———-
Table(6.13) Effect of the Thickness of the Solid

Part of the Slab on the Longitudinal

Cracking
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but of different steel beam sizes. The beams were loaded

-,

with a uniformly distributed load over the slab aréa. The. .

. variation in the longitudinal cracking moméht to ultimate

moment ratio is very small so that we may conclude that the

beam size has a negligible effect on the loﬁgitudinal

' crécking of composite beams with ribbed metél decks subjected to

uniformly distributed load.

6.7 Effect of the Thickness of the Solid Part of the Slab

Table (6.13) shows a comparison between two composite
beams with 1-1/2-in ribbed metal deck having an overall slab
thickness of 4-in and S5-in, respectively. The beams were -
loaded with a uniformly distributed load over the slab area.
This study was repéated for 3 different concrete compressive
strengths.

I+ may be concluded from this study, table (6.13)}, that
the increase of the thickness of the solid part of the slab )
can improve the behaviour of the composite Eeams with respect\\&k\\

. . - 5.
to the longitudinal cracking of the slabs. .

6.8 Effect of the Transverse Reinforcement

Tables (6.14,6.15 & 6.16) show the effect of the
transverse steel reinforcement on the longitudinal cracking
of composite beams with i—l/Z—in ribbed metal deck subjected
to uniformly distributed load over the slab area. Tﬁe

reinforcing steel was placed B/Q—in below the top surface of
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Percentage . e
of Fy/fé M, My . M, | MLC/Mu
Reinforcement (in-kips)|(in-kips)| (in-kips)
0.0 9.5 1770 1530 2620 |  0.585
0.5 9.5 1760 -|. 1780 2635 0.676
1.0 9.5l 1760 1925 2640 0.730
Table(6.14) Effect of the Transverse Reinforcement
on the longitﬁdinal Cracking of Composite
Beams under UDL over the Slab Area(L/b=3)
Percentage
_of F‘ £, My My M, MLC/Mu
Reinforcement (in-kips)|{in-kips) |{in-kips)
0.0 12.7 1760 2400 2780 0.863
0.5 12.7 1760 2510 2785 0.901
1.0 12.7 1755 2590 2785 0.930
Paable(6.15) Effect of the Transverse Reinforcement

on the Longitudinal Cracking of Composite
Beams under UDL over the Slab Area(Ll/b=l4)
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Percentage
.Of .Fy/fé My Mre My MLC/Mu
Reinforcement (in-kips){ (in-kips)| (in-kips)
0.0 19 | 1715 | c2abs 2540 0.884
0.5 19 1710 2360 2565 0.920
1.0 19 - | 1710 2160 2575 0.955

Table(6.16)

Effect of the Transverse Reinforcement

on the Longitudinal Cracking of Composite
Beams under UDL over the Slab Area(l/b=5)

Percentage
~of \ Fy/fé My My M, MLC/‘Mu
Reinforcement (in-kips) |{in-kips)i(in-kips)
0.0 12.7 1750 1310 25ks5 0.515
6x6/10%10
Welded 12.7 1755 1330 2545 0.523
Wire Mesh

\

Table(6.17) Effect of the 6x6/10x10 Welded Wire Mesh
on the Longitudinal Cracking of Compgéite
Beams under UDL over the Slab Area(L/b=3)
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‘the concrete slab. The percentage‘of reinforcement was varied
 between zero and one percent. |
The comparison shows that the increase of the amount of
- top transverse reinforcement increases the longitudinal
cracking moment to ultimate moment ratio. It aiso shows that
the néed for transverse reinforcement-decreases with the
increase of the beam span to slab width ratio. For a span to
width ratio equal to 3, a 0.50 percent reinforcement éﬁea .

in the transverse direction improves the lgngitudinalAcracking
moment by about 14 percent. However, for span to Qidth ratios
equal to or greater than 4, an increase in tﬁe longitudinal

cracking moment can be only in the order of about 5 percent.

It is to be noted that the‘rate of increase of the longitudinal

cracking moment to the ultimate moment ratio decreases as the
peréentage of transverse_reinforcement increases. It may be
concluded that for span to width ratios greater or equal to 4,
‘where the effect of transverseé reinforcement on longitudinal
cracking is small, the lower bound for this reinforcement would
be dictated by the practical requirement for shfinkage.

Table (6.17) shows the effect of the 6 x 6/10 x 10
welded wire mesh, on the longitudinal cracking of composite
beams with ribbed slabs. ' It shows that the welded wire mesh
plays a negligible role in the resistance to lohgitudinal
cracking. This is mainly so because this wire mesh constitutes

a very small percentage of the total reinforcement (about .10%).
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6.9 Design Recommeridations and Conclusions

From the above parametric étudy it i1s possible to draw
the following conclusions for a compoéite beam with a ribbed
metal deck subjected to a uniformly,distributed load over the
slab area: : |

1. The beam-span-to—siab—width ratio is one 6f the main
‘factors affecting the longitudinal cracking of composite beams
with ribbed metal decks. The.longitudinal crécking moment to
ultiméte moment ratio, MLC/Mu' increases with the increase of
the span to width ratio, L/b.

2. The concrete strength and the steel beam yield stress
have quite noticeable effect on‘the longitudinal cracking:.moment
of compgéite beams. The decrease of the beam yieid stress to
concrete slab compressive strength ratio, Fy/fé,_increases the
longitudinal cracking moment to the ultimate moment ratio.

3. The percentage of top transverse reinforcement, Pp, .

s the longitudinal cracking moment, MLc' However, the

trﬁnsver reinforcement effect is not very appreclable
'especiall¥{ for span to width ratios greater than 3. For a span
tb width ratio equal to 3, a .50 percent amount in the fransverse
reinforcement increases the longitudinal cracking moment to
ultimate moment ratio by about 14 percent. However, for span
to width ratios equal to or greater than 4, the increase in
the longitudinal. cracking moment to ultimate moment ratio is
only in the order of about 5 percent. ¢ .

L., The thickness of the solid part of the slab plays a

considerable role in increasing the longitudinal cracking moment
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to the ultimate moment ratio. However, increasing the thickﬁess
is not reéommended from an economic ﬁoint of view.

Making use of the conclusions above, a number of
composite beams with ribbed metal decks, loaded with a
ur¥formly distributed load over the entire slaﬁ, were studied
considefing different span to width ratios, beam yield stresé
to concrete strength ratios, percentages of top transverse
reinforcement and slab thicknesses.

In this study, the slab to w1dth ratio was considered
to vary beiween 3 and 6. dhe ratlo between the beam yield
stress and the concrete compressive strength was considered
to -vary between 8 and 22. For the top transverse reinforcement,
three cases were considered; no transverse reinforcement,

.50 percent transverse reinforcem;nt and 1.0 percent

transverse reinforcement as an upper limit. Finally, for

the' slab thickness, the stuﬁy was mainly concerned witﬁ‘the
4-in overall thickness. However, some examples were pfesented.
to study the effect of the increase of the thickness of the
solid - part of the slab so that the overall thickness would

be 5-in.

Figure (6.1) shows the relationship between the.
longitudinal cracking moment to ultimate moment ratio,

MLc/Mu' and the beam yield stresslto concrete compressive
strength ratio, for different span to width'rétioé. L/B.
and different percentages of top transverse reinforcement,

pge The overall thickness of the slab was 4-in.
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One can ﬁse fig.(6.1) to seléctqthe appropriate
propertieé of the'composite.beam to achieve any required
longitﬁdinal cracking moment to ultimate moment ratio, for
a specific beam span fé,slab_width ratio. Thus, for a
composife beam, knowing the beam span and the slab width, it
'is possible to. select the concrete cdmpressive strength, f;,
the yield st;ess of the steel beam, Fy’ and ﬁhe percentage of

the top transverse reinforcement, PT ,.to ensure that the

longitudinal crackiﬁg'wbuld occur as close as possible to
the uitimate moment of the.bea$. Interpolation can be used
to calculate the appropriate properties for a .composite beam
with a span to width ratio that does not exist in this
figure. It shoula be noticed that the values of ultimate
moments used in fig.(6.1) are those determined from the computer
progfam consideringyfhe-biaxial state of stress.

Figure(6.2) shows similar design curves considering the
longitudinal cracking moment determined from the computer
program and the ultimate moment calculated according to the
ultimate stress block method 38). This can_bé used to select
"the concrete compressive strength, the steel beam yield
stress and the percentage of the top transverse reinforcement
requiged to ensure that the longitudinal cracking would occur

close enough to the ultimate moment of the beam as calculated

irom the ultimdte stress block method(3 ) which is the practical

method of design of compdsite beams.

Figure (6.3) shows the relationship between the )
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longitudinal cracking moment to the ultimaﬁe moment ratio,

'MLC/M and.the’beam'yield'stress 1o coﬁcrete compressive
strength ratlo, Fy/f , for a span to width ratlo equal to 3.
. It shows a comparlson between two dlfferent overall thickriesses
of the slab. The two slabs have the same 1-1/2~in ribbed
metal deck but the thlckness of the solld parts is different.
This comparison shows that the increase.of the thickness of
the solid part of'the slab has a considerebie effect on the
increase of the longitudinal cracking moment. However, this
solution coulﬁ.be.considereg as an uneconomic solution. |
ldThe;data presented in fié.(é.z) is useé to plot a set
of design curves, fig.(6.4), that can bve used to select’
directly the proper'materiel properties andjpercentage of
transverse relnforcement for any speglfec cpmp031te beam
| with rlbbed metal deck -such that the longltydlnal cracking
7 would occur simultan usly w1th the ultlmati capacity of the
Beam._ These curves are plotted using the uitlmate moment
calculated according to the ultimate stresé block method *
which is the pracﬁical design method. i

| For any composite beam with a-specifie span—to-width
retio,'use can be made of fig.(6.4) to determine the.
percentage of‘top transverse reinforcementfand-the steel
- yieid stress to concrete strength qatio reéuired to.ensure
the achievement of the ultimate capacity %efore or "
31multaneously with the occurrence of the longltudlnal

cracklng. Now, if the yield stress of the steel beam is

4
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Fig.(6.4) Composite Beam Properties to Achieve the
Ultimate Capacity Simultaneously with the
» Longitudinal Cracking
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known, it is péésible to estimate‘tﬁe compressive étréngth
of concrete required. Generally, it is usualiy possible to
make more than one choice for the same .composite ﬁeam, like
a small yield sfress to concrete strength fatio with smali
perqentége of ?ransverse reinforcement or a larger yield
stress. to éoncfete_strength ratio with greater.amount of
_ féinforcement. The final choicé is to be goverﬁed by the
economic points of view, Howevef¢ it is to be mentioned
' that-thé transverse feinfprceﬁent effect™is small compared  .
to the effect of the compressive strength of concrete.
Interpolation can be used for pércentagés-of transvefse
reinforcement that do not exist .in fig.(6.4).

If we put some practical limits for the steel beam
yield stress to the concrete éompressive'strength ratio, as-

shown in fig;(6.4). it will be possible to draw the following

~
~

conclusions:

1. For L/b > 5.60, there is no longitudinal cracking
problem even without any top transverse reinforcement.. In

such a case, the slab will be reinforced with a 6 x 6/10 x 10
welded wire mesh which is the common practice to\account for
shrinkége in concrete,

2. For 3.25 <L/b<5.60, there is a longitudinal
cracking problem before theiuitimate capacity of the
composite beam is achieved. However, this longitudinal
cracking problem‘can be solved by means of the appropriate

selection of the concrete strength and the percentage of the top
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transverse reinforcement..fig.(G.h), to ensure that the
ultimate capacity would be achieved before of simulténeouély
with the occufrence of the 1ongitﬁdinal cracking.

3. For L/b <3.25, there is a longitudihal cracking
problem that needs an excessive gmount of transverse
reinforcement and/or a very small steel yieid stress to
concrete strength ratio, which is impractical. In such a
case, we are left with one of two alterpgtives:

a, To go to the uneconomic solution of increasing
the thickness of the solid part ﬁf the slab,
fig.(6.4) _

b. To accept the occurence of the longitudinal crack
at an earlier stage but to try to select the
percentage of transferse reinforcement, the stéel
beam yield stress and the concrete compressive
strength, fig.(é.z); such that the crack would

occur as close as possible to the ultimate state.



CHAPTER 7

SUMMARY AND CONCLUSIONS -

<y

7.1 " Summary ' ‘ (\

The inelastic behaviour of composite beams with ribbed
metal deck, subjected to uniformly distributed load over
the slab area, wés investigated.

A biaxial failuxg criteria was adopted for the concrete
slab %o account for thi@kiaxial state of streés in the slab.
Cracking énd crushing of‘the‘concrete slab and yielding of
the éteel beam and the. steel reinforcement were included
in the analysis. . - ' '

A layered finite element model was used to permit analysis
of any variation in material properties through the depth of the
slab. Thus, it was possible to represent separately the
longitudinal and transverse reinforcement and the metal deck
in the analygis; For the nonlinear solution, an incremental
and iterative techniquagyusing the tangent modulus stiffﬁess
approach, was adopted in this investigation.

Some experimental results, obtained from testing
composite beams with solid and ribbed siabs, were used for
comparison to demonstrate the applicability of the model -in

predicting the inelastic behaviour of composite beams.

123
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A study of the effect of the type of loading and fhe
transverse moment in the slab on the load-deformation
behaviour and‘the_ultimate capacity of composite beams
with ribbed metal deck was presénted. _

The effective width of composite beams with ribbed
metal deck subjected to uniformly distributed load, was
investigated. The vériation of the effective width in the
inélastic'étage as well as the effective slab width at the
ultimate loéd were also studied.

- A study of the longitudinal cracking of composite
beams with ribbed metal deck, subjected to uniformly
distributed load over the slab area, was presented.

A parametric study of the different factors affecting the
longitudinal cracking of composite beams, such as the
transverse moment in the slab, the beam span to slab width
ratio, the compressive strength of concrete, the trénsverse
reinforcement and the thickness of the solid part of the
slab, was also presented. Some design recommendations in
the form of design curves were proposed to compensate for early
longitudinal cracking of composite beams with ribbed metal |
deck subjected to uniformly distributed load over the

entire slab.

7.2 Conclusions

Some general conclusions that have been drawn from the

overall study, concérning the behaviour characteristics of
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composite beams with ribbed metal deck, "are presented below: .
1.‘ The eurrent methods of téstihg'coﬁéosite beams with
ribbed metal deck, by leading over the steel beams and
considering free slab edgés,;can give satisfactory results

with respect to the ultimate .capacity and the deflection of
an intermediate composite beam in a.compositeé™fdpor system.

The results obtained for a uniformly distributeq)load over
the entire slab with constrained boundary condiftions at its
edges (u=8y=0) and for‘a third point loading over the beam
with free slab edges are almost identical.

"2, ‘The effective width of composite beams with ribbed
metal deck is affected by the beam-span-to-slab-widfh ratio.
The effective width increases with increase.of the span-to-width

- patio. For a uniformly distributed load over the slab area,
the effeative width to'?ctual width ratio varies between 0.92
and 1.0, for span to width fatios of 3 to about 7.

3, The effective widths of composite beams with solid
and ribbed slabs, subjected to uniformly distributed load
over the slab area, are almost identical with about 2
percent difference, provided the two slabs have the same
overall thickness. For a composite beam with a 4-in solid
slab, the effective width equals the total width of the slab
if the beam span to slab width ratioc is equal to or greater
than 5. However for a composite beam with a 1-1/2-in ribbed
metal deck and a 2-1/2-in solid concrete part, the slab
effective width equals the total width if the span to width

rétio is egual to or greater than 7.5.
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4., The effective width at the ultimate load of a
composite beam with ribbe& metal deck, subjected to uniformly
distributed load over the slab area, always reaches or exceeds
the effective width in fhe elastic stage, with a maximum
difference of about 4 percent. Thus, it‘is consérvativé
and quite satisfactory to use the effective Qidth based on
an elastic analysis, at the ultimate state.

5. The type of loading affects the effective width to
a great extent. The one-point load at mid—span of the beam
may give an effective width about 20 percent smaller than if
the slab were loaded with a uniformly distributed load over

its entire area. Thus, the effective slab width should be

spedified according to the_type of loading. However, a generzal
épecifiéation should be prepared for a uniformly distributed
laad, which is the most common type of loading. Some special
recommendationé should be prepared for any other type of load
in thekforq of effective width reduction factors. with respect
to the case of the uniformly distributed ioad (e.g.y in the
case of one point load and for L/b=4, this reduction factor

is im the order of about 20 percent). _

6. It is important to delay the occurrence of the longitudinal
cracking in the concfete slab such that the theoretical ultimate
capacity of the composite beam can be achieved before or
simultaneously with tﬁz crack occurrence.

7. The type of loading affects the longitudinal cracking

of composite beams with ribbed metal deck to a great extent.
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'If the composite beam is loaded by point loads over the steel
beam, the longitudinal crack starts near the bottom fibre of
the slab due to the longitudinal shear effect, in the absence
of any tran§verse moment. In this case, if any transverse
reinforcement is needed, it should be placed in the ribs

near the bottom fibre of the slab. However, if the slab

is loaded, it seems that the transverse negative moment

effect suppresses the longitudinal shear effect such that the
crack usually starts near the top fibre of the slab. In this
latter case, if any - transverse reinforcement is required,
”%t should be placed near the top fibre of the slab.
. 8., The metal deck plays a negligible role iﬁ\jmproving
the longitudinal cracking load of composite beams loaded with.
uniformly distributed load over the slab area. However, if
the composite beam is loaded by point loads over the steel
beam, the metal deck increases the longitudinal cracking
moment by about 15 percent, depending on the beam span <o
slab width ratio. |

9. The properties of the materials used in a compoéite
beam, especially the concrete compressive strength and the
steel beam yield stress, have a considerable .effect on the
longitudinal cracking of composite beams yith ribbed metal
deck subjected to uniformly distributed load over the slab
areé. The decrease of the beam yleld stress to concrete

compressive strength ratio, increases the longitudinal
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cracking moment to. ultimate moment ratib. |

10. The th;ckhéss of the solid part of the slab plays
a.considerable role in increasing the longitudinal crackiﬁg
moment of.composite beams with.ribﬁed metal deck. Oné inch
increase in the slab thicknifs may increase the longitudinal
cracking‘moment to ultimate moment ratio by about, 20 pércentt
However, increasiné'the slab thickness is not reéommended

from an economic point of view.

11. The increase of the top transverse reinforcement,
increases the longitudinal cracking load. Hoﬁever, the effect
of the transverse reinforcement 1s not very appreciable for
beam span to slab width ratios greater than 3. For span to
width fatio equal to 3, a 0.50 percent increasée in the '
transverse reinforcement increases the longitudinal cracking
moment to ultimate moment ratio 'by about 14 percent. But,

- for span to width ratios equal to or-greate: than 4, the
increase in the longitudinal cracking moment to ultimate
moment ratio is only of the order of about 5 percent.

12, The bveam-span-to-slab-width ratio'is one of the main
factors affecting the longitudinal cracking of comﬁosite
beams with ribbed metal deck, subjected to uniformly
distributed load over the slab area. The longitudinal
cracking moment increases with the increase oftthis ratio.
Generally, composite beams with ribbed metal deck may be

classified according to the span to width ratio as follows:
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If the span to width ratio is equal to or greater

than 5.60, there is no longitudinal cracking problem,
Thé ultimate capacity of fhe composite beam will be)
attained before or simultaneously with the occurrehce
of the 1ongitudinai crack. In this case, no transverse.
reinforcement is required and only a 6x6/10x10Q

we;ded wire mesh will be needed +to account for
shrinkage in the concrete slab,

If the span to width ratio is smaller than 5.6 but
greater than or equal to 3.25, longitudinai

cracking may occur before the ultimate capacity

is reached. However, this problem can be solved

By the proper selection of the concrete and steel
properties and the percentage of the transverse
reinforcement, fig.(6.4), such that the ultimate
capacity of the composite beam can be reached

before or simultaneously with the crack occurrence.
It should also be mentioned that the effect of the
increase of the concrete cdmpressive strength in
increasing the cracking moment is considerably
greater than the effect of the increase of the
percentage of the transverse reinforcement.

If the span to width ratio is smaller than 3.25,
longitudinal cracking would occur before the

ultimate capacity 1is achieved. However, a proper

selection of the steel and concrete properties
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together Qith.glpréctical increase of thélpércentage of .
transverse reinforcement can impfove the longitudinal
cracking moment such that the crack would occur in the
neighbourhood of &bout 90 percent of the ultimate
capacity. Increasing the thickness of the solid part
of the slab may be considered as another alternative
‘4o increasing the longitudinal cracking moment, if it

is accepted from the economic point of view.:

ot M w



" APPENDIX A /

FINITE ELEMENT APPROACH

A.1 Introduction

Recent progress in the application of the finite element
technique to non-linear pfoblems has .been reported iﬁ a
large number of papers, for e.g.(Bu’B?'48'55’56560),

The reliability of the layered finite eiement'tangeﬁf
stiffness approach in the study of elastic and inelastic-
reinforced concrete slabs ﬁas been reported by several |

s(25126,34,39,53)

investigators They have demonstrated the
advantages of the layered approach in following the variation :
in material properties, such as cracking or crushing of
concrete or yieldihg of tﬁe steel beam, throuéh the different
stages of_loading. A |
It.has been demonsfrated(6u) how the.stiffness matrix

of a plate can be combined with that of ofher elements

such as beams. This can be quite useful in the Aetermination
of the structural response of composite beams.

(23)

A finite element analysis whs presented to study
the elastic behaviour of skewed comp&éite girder bridges.

The use of a combined plate element, for the so0lid concrete

131
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'slab}“ehd_beam eiement,lfbr the steel beam, was demonstrated

in thls analy31s. X

Recent progress in the application of the finite element
technique has led to a reliable approach for finding the
inelastic response-qf eccentrically stiffened plates(60 61 62)
This'epproaeh has shown‘fhet‘a”stiffened plate'stfucture _
can adequately be ﬁiscretized‘using plate end eccentrice;ly
attached beam elements. Eurthermoye. the use.ef the layering
concept has aileﬁed the inclusion of the cracking and c:ushing

: P PR

of the solid concrete slab and the yielding of the steel beam. .

In this study, the application of.the layered finite

element epproach‘in the inelastic analysis of composite

beams with ribbed metal.deck is described. The particuiar

finite element epproach taken ‘is fhe dispiacement formulation.'
The first step.is to discretize the strutture. into a -

sultable number of flnlte plate and beam elements. In'

order to arriye at a 31mple formulatlon for this analy51s.

1t is necessary that the beams are. attached along ‘the - mesh

llnes of" the plate elements. As shown in fig.(A.1), rectangular

elements 1nvolv1ng the four nodal points I, J, X and L are

used. to dlscretlze the slab and beam stralght llne elements

'1nvolv1ng the two nodal p01nts I and J are used to dlscretlze

the beam.r
The beam and slab elements are subdivided into a
suitably chosen ngmberlof iayers in order to describe the

process of cracking and crushing in the slab, and the yielding
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/ : .
Beam Element Representing
the Vertical‘Parts of the
Ribs -

- Beam Element

Representing
the Steel ¢
Beam

. Reference Surface

(a) Layered Finite Plate Element

Plane of Reference

(b) Layered Finite Beam Element

L]

d Plate Finite Elements

Fig.(A,2) Layered Beam
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in the beam, fig.(A.é).‘

By introducing the'layering concept, it is possible to
have a'varia%ion in material propertiéé across the thickness
while avoiding a three dimensionallfinite.elemént analysis.
The total number of degrees of freedom dépéhds solely on the
ﬁumbef of no&al points énd not on thernumber of layers -
introduced.

- The reinforcédfconcrete ribbed slab is mode%ed as
an assemblage of plain concrete laye?g. teinforcing steel
layeré and metal deck iayers. fig{!Lj)l Each layer is
assumed t6'‘bé in a state of plane stress, and that the state
'of stress af the geometric centroid.of the layer is taken
" as represéntative fof the entire la&er. ' :

The reinforcing steel is rgplaced by an equivalent
unifofmly distributed steel layer, fig.(A.j),‘with
stiffness only in the direction of the reinforcement. The p
equivalent thickness of the steel layer isn§:¥z?5?ﬁaaquch
that the corresponding area of r:j?forcement in the layer

remains unchanged. There could ‘one or more of these

( ,

- reinforcing steel ldyers at any depth and in any direction
. { ' ‘ 'S

in the slab. Perfect bond is assumed to exist between the

. reinforcing steel and the surrounding concrete.

%

' The horizontal parts of the ribbed metal deck are.
represented by discrete steel layers with stiffnesg only
in*the direction perpendicular o the steel beam, fig.(A.3),.

The verf\icai_l. parts'_of_j:he ribbed metal deck are represented

C
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by beam line elements attacheﬁ élong the mesh lineé of .the
slab rectangular elements in the direction perpendicular

to the steel beam, fig.tA.3-c). Pérfect bond is assumed to °
exisf between the metal deck and the'sufrounding coﬂqrete.

_ All nodal points are'defihed ;n a common ﬁlane. This
"plane will be called the plane of reference and is assumed
to coincide with the middle plane of the selid part of
the ribbed slab. The resporise of the composite beam must
first be found with fespect to this plane.

Five displacement components are introduced as unknowns
at each nodal point (u, v, w. 8, and_ey). These five
defofmation.components enable the description of thé state
of deformation in a plate and beam elemént. Compatibility
of deformation must be enforced along the juncture lines
between the‘beam and the slab since complete interaction
is assumed.

An incremental and iteréfive tedﬁﬁique. using the
tangent stiffness approadh, is adopted in this research

work.

A.2 Derivation of Bending and Inplane Plate Stiffness

- Matrix

For the present analysis, the rectangular element

originally proposed by Melbsh(qu)

(63,64)

and described in detail by
Zienkiewicz is used. Figure (A.4) shows the element

nodal numbering system and the positive directions of the
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Fig.(A.4)} Positive Orientation of the
Nodal Degrees of Freedom

v
/4

jth Layer

Reference Plane

Fig.(A.5) Position of the jth Layer
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nodal degfees of freedom,

An ihcomplete fourth-order polynomial is used for
{epresentation of the lateral-deflection of -the plate.
Three degrees 6f freedom are‘associatéd with the out-of-
plane behaviour at each point, i.e., the laﬁeral deflection,

W, and the two slopes, 6, and o, of the deflected plate

y
surface, Two more degrees of freedom per nodal point are
associated with the in-plane behaviour:namely, u, the
in~plane displacement %n the x-direction, and v, the in-plane
displacement in the y-direction. - |

The displacement functions of the element and the .
nodal displacements are written at a reference plane which
is parallel to, but at an arbitrary distance from the‘beam,

\ .. .
fig.(A.2).This plane of reference is chosen to coincide with

the middle plane of the solid part of the ribbed slab.

Su =a1+ Gz x+(]3 Ng +C1l‘,“xy

v=a5+a6x+a7-y+a8xy (8.1)

_ - | 2 2
WElgr Qyg x + Qg ¥+ Ay, xy Flig Xy Y

+C115 x3 +Q16 xzy +Cll? xy2 +O(18 y3 +C119 x3y

+Qy, xy?

i
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- The strain-displacemeﬁt‘felation used are,

€x° = Du/x -

€y, = O/ -

€., =ouly +ov/x

XY, o - ' _ (A.2)
Y. = Jt@w/txz

These relations include the following assumptions:

1. The normal to the undeformed surface remains straight
and normal to the deformed surface.

2. Normals will undergo no extension when the plate is
deformed. |

3. The strains and deformations of the plate are small
compared to the thickness of the plate.

Assumption one implies that there is no deformatiQﬁ
dpe to transverse shear.The error involved in this assumption
is small provided the plate is thin. This assumption enables
the strains at a positive distance 7z from the reference

surface to be expressed as:

€ = €y; + zJXy . ‘ (A.3)

Xy XV,




J)' ~ 1ho

| Assﬁmption three implies the use of the small deflection .

theory. ‘ 5 -
The nodal degrees of freedom defined at the reference

surface can be written as,

[w] [u

v v
{hﬁ}le =4 w =W >
Gy DwOx|
o] Lonss

The displacement at one node expressed in terms of the

generalized displacement coefficients (X are

{ﬁ }le - [M]szo {a}zon ' (4.4)
Where
1 x VXY o o o o o 0 s 0. o o o » . - .
soe a0 L XY XY oo e e e e ; . ‘. .

hﬂ= e oe .l{?.  lxy xy x> y2 %7 xzy xy2 yj_xjy.xy3

. 2 2
.« 8 e « 8 8 u lloy 2){-33{22](5? .Y.-- BX.Y yj

Using the element nodal numbering system, fig.(A.4),

a vector of element nodal displacements may be expressed as,

2

[+ v+ = LI } . [] . l—l "fj{ . --2y’ [] —X2-2}W—3yz -J{3 —jl{y i




P | S o - 1w
93] [l
T, M4 .
e o Il B
20x1 ") <att20x1
L iy T
(7] - M '
Vw1 20x20

i.e,
) - a}.
{U} 20xt = (A]20x20 { 20x1
Where
My
M.
[a] =
My
M |
The inverse of this relationship,which will be desired
later, is

{a}ZOxl ) [A_qzoxzo {U}ZOxl | ‘ | (4.5)

The strain-displacement relations, eqn.(A.2), may be

written as

| {g}sn = E-}éx;{b}“g {Tf} Syl | (A.‘é)‘
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%E}Bxl = Vector of refereﬁce surface strains

-Vector of Curvatures

=
>

= Matrix of differential operators

—
g,
(94N
S
wn
]

r~ - %Dﬁbx . . .

. Oy w

Dy DX

= . : Y
. . Dhy

£ Dhy Dox

Substitution of egn. (A.%4) into eqn. (A.6), yields
{e_-}éxl = [D]ij [M]szo {a}_ZOxl

{g}éxl = [B]‘6x20 {a}20xl (A.7)



Which relates the reference surface strains and curvatures

to the unknown coefficients.
‘Where |
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o

< .
f S

. =6x -2y .. . -bxy .

-2 . u. —2]( -6y . -6w

. . 4}[ Ll'y' . - 63{2 6y2

Expressing strains at any depth as a function of middle

surface d formation according to Kirchoff hypothesis, ylelds

(4.8)
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The.last expression fequired is to relate stress to - )
strain, namely

0D .

fht [C]ij {e‘}jxl P -~ (4.9)

Where [C]‘is the material properties matrix

From the internal work exﬁ?pssion.

wint - 1/%J{€}T {f}:dv | - | ; o
4

which is integrated over the volume of the eiement,

after substituting from.egns.(A.9,4.8,A.7&%A.5) obtains

int.

W, = 1/2J{U}T [a71]" [IBJT 6 ]® (o] [e] 5] [a™] [d} qv.

From the internal work expression, the internal virtual

work is obtained by performing a vari4tion on ;U} .Thus,
Lo

ﬁwint = J{Su}T [Afl]T (8T [c)F [c] [c] () [a7%] {U} av

v

But, since [Afﬂ and ﬁﬂ are independent of x, y aﬁd Z,

and [B] is independent of 1z,

S Yool 517 L2 [[6]F [e] o ][] 8

A y4
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. Where ' - ‘ B /
Klaoseg = 17217 | 617 [e] [o] ea (3] en (&7
| | A z - - (A.10)

ié\tﬁe desired element stiffﬁess ﬁatrix. |

| \ Performing the matrix multimﬁiication for [GJT [C] [G} :

and calling-the producf [ﬁ] yields,"

.
!

_ C | lz C° .
[ﬁ]éxé = __;2E1_4_2_62§2;- . (A.11)
7z C 'z ) .o
3x3 1 3x3

Substituting of [D} into egn.(A.10), yields \

(& ]p0x20 = [A-1J30x20 J[B]Tzoxé].[ﬁjéxsidz[B]sxzo dﬂ[ﬁ-i]zoxéo

Az (4.12)

In evaluating the element stiffness matrix, thé
mechanics of the layering concept only require thaé;the'.
intermost. integral of eqn.(A.12) be integrated for each
layer individually rather than as one integration OVer «
the total thickness. If the element thickness is

,//,h divided into layers as shown in fig.(A.j), then this requires

that,
t, ty ti4g Ty
JJ[ﬁ]dz = J[Iﬂ dz + [@]dz Fommmmm + [ﬁ.]dz +——-—+‘T[—ﬁN]dz
t t tﬂ tN
(A.13)



-
Y et

W3 el

e e a2

ot
B
A
<t
]

_ jﬂ 41 The distance from the'reference surface .
to the top and bottom surface of the Jth
layer respectlvely.

ﬁij] | s Expression (A.11) with the.materia}
properties for the j?h'
N = Number of layers.

-
-

This is simply a step-Wise evaluation of a total integral
The integrated form of one of the right hand side integrals in

. eqn,.(A 13) is . ) | - g
fin (trqt0) [6,] 1 /3 (42 -+2) [c
.. J[— | dz =L N AT MR L SRR s T [ J] |
*5 S T T N R B P ST
12 (th7t5) [0 l 1/3 (45,4 -89) [C;

This equation together with eqn.(A.13)is the very heart
of the,layering concept. '
To begin the actual evaluation of an element, let the

three submatrices in eqn.(A.14) be denoted as [Dj] '[Hj] and
[F.]+ where ‘
J
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(a,15)

Where the jth subscript implies the jtv layer only and no

. subscript impl;es tﬂe‘subintegrals over all the layers.

When eqn.(A.lh) is evaluated for each layer and sumﬁed, the
r?sult is éqn.(A.15). Equatioﬁ(A.lé) may then’bepsubstftutéd.
in eqn.(A.12) to yield, ) ;

‘[Klzo%m? [A"JiJ'EaJT- E-f] (5] i ay [a™]

1

LY . ) h I
If [Blis partitioned to separaté‘the membrane effects,

[%Q » from the bending egfects,[BXJ,then eqn.(A.12) ﬁay be
expressed as, -

. . 1
. i B
K] 20xz0° [ f};_bl[ =

b Y
Where -al L D H
| B
[K") = {gEJ == =-- --E}dx dy
a =84 by
f

7

L
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A:3. Determination of the Reference Surface Strains
<¥rom the equationsfin'the previods‘section,'it is possible

to express the strains ‘and curvatures of the reference surface ..

1n terms of the nodal displacements.

{>€<'L1 -l

- Bl
= [B][A"ii{U} ' | | (A.17)

This expression defines the distribution of strains and
curvatures over the -element based on the nodal displecements.‘
It is }sed to calculate the.reference surface strains and

& . curvatlxes at the centroid of the element (x=y=0).

‘A.L4 . Determination of the Layer Stresses

In order to determine the 1ayer'streesés it is necessary

to first determine the layer strains. The jth layer strains

_at the mid-depth of the léyer are,

I
e

€x=' € + 1/2(tj+1+tj).)(x

€y=_ ¥ +1/_2( Pty Xy ” ’

exy= Exyo+ 1/2(tj+1+tj)(2>(w)
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. Where 1/2(t +1+t ) is the dlstance from the mlddle surface to :/)

t&iled—depth of the Jth layer. These mid- depth layer stralns

are- assumed to be representatlve of the stralns in the layer.

Based on the representatlve layer strain some representatlvé

‘are obtained ﬁhrough‘i;;\uggzpf the

‘component material properties,as follows

component layer stresse

" A.5 Determination of the Excess ‘Nodal Forces

Excess layer stresses are converted to excess element

nong“fggéés by considering the individual terms in the.basic

equation,

{f}szl a4 }J[ﬁF L[ﬁ] dz[B]dx wla it (aus)

Using egns.(A.5%A.7), one can write

&

{ﬁ?} = [é][A"lr{U} | - . | (A.19)

o "

‘The stress resultants in the jth layer may be expressed as,

ey e



Substitution of eqn.(A.19) in eqn.(A.20), yields

[ . -~ N

{3}: zj[ﬁj].élz [B][P.s--«q{U}. o ‘: (A.21)

i

§

Substitution of eqn.(4.21) in eqn.(A.18), yields
\ _ ‘ | .

LYy

of et =07 J 17 e a1}

'If{N}e_x ( | | h

3 are the excéss stress resultants, where

./ and {f}ex is the excess layer stress, then

e [for e ™

J

are the excess nodal forces thatlresult from layer j due to
P
the excess stresses in that layer.

-

a

A.6 Derivation of Bending and Inplane Beam Stiffness Matrix

In order to be able to study the process of jyielding jin
the beam element, a subdivision into a number of layers as

shown in fig.(A.2-b), is performed. It is assumed that the beam
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is symmetric about its local z-ax;s'and negligible in bending
aboﬁt this'axis. Thus, a beam layer is assumed to be in
é state of uniaxial stress for consideration of #ielding.
Stresses in beam layers are computed on the:basis of
a linear distribution of strains extending to %he bottom
fibre of the beam element. The state of stress at the
centroid o% each layer is agaln taken as representative
for'c;nsideration'of yielding. Any layer is identified.by
its-width; thickness a;E distanée to the plane of reference.
A beam element is bounded by two nodal points, I and
~7, lying in the reference plane of the plate, as shown in
fig.(A.2-b). The beam is assumed to be integrally attached
to‘the plate and thus, compatibility of deformation must be
enforced along the juncture.line between the beam and the
slab. Therefore, fhe same displacement functionqﬁchosen to
represent the.inplané and out-of-plane behaviour‘oiithe
plate élements must be taken fﬁr the beam elements in
order to satisfy this requirement.. Only three of the five
displacement components introduced at each nodal point of
the reference surface are.useq to describe the behaviour of

-

the beam element.

v=U + Ay
toE > 3 (a.23)
w=a3+au‘y+asy +(16y

Introducing the nodal displacement vector for node I of
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the beam_elément associated with its bending'and inplane

behaviour, . JI ]
v v _ .
{Ui}jxi_ = dw l=Jw | (A.24)
0, |Qw
® 1%y

The displacements at one node expressed in terms oSf,

the coefficients {J are

| ﬁ%}jxl N [M]Bxé {a}6x1 . ‘t’ | (4.25)
&

Where

L ‘. ] - "'1 —2y F3y2

Using eqn.(A.24), one can write the element nodal

di'splacements vector as

i i

{U}sﬂ ) Usl6xt ) )] 6xe {a}éxi'
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Where

M.
i}
The inverse of this relationshig is,

) 3 |
'{Qf}= a1 o} 0 (4.26)

The strain-displacement felatfbns‘may be written as

| P |
€, - {;y} = oL {Th o aen
| ¥l |

Where
b]zjzr%y .o J
X . .TQ{DY
Substitution bf{eqn.(A.ZS) into eqn.(A.27), yields'

!
.

&ﬂéxl = FD]2X3 [ﬁ]Bxé {a}éxl
Tt = Blas (s ‘ (8.28)

which relates the reference surface strains and curvatures

to0 the unknown coefficients.



154
Where

L] 1 L] V L » a

LB]2x6 ) ' e e . =2 =6y

Expressing the strain at-any depth to the reference

surface quantities, yields
€ =€ + ) - - ' - .. ‘
y v My - ax)

The last expression required is to relate stress

to strain, namely
f, = E..€ | (A.30)

Following the sqgi\steps performed over the plate
" element and integratihg™over the depth of the beam, yields

‘D .
’ E E .z
[x] = [A{‘T (B1%| | 5 5.5 az [B] ay [a7)
-b E .2z E .2 ’ )
2 s
ioe-i
b1 )
B |[EA ES o
R RS IOED Y I R O A e
-b j=1 Esss E IS
1 (A.31)
Where .
ES = Modulus of elasticity of the beam jth layer.
AS = Area of the beam jth layer _ /

4
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W yayer with respect

L)}
[}

‘First moment of the beam j

. to the plane of reference.

*h 1 ayer with

H .
]

Moment of inertS™ of the beam j

respect to the plane of reference.
. #

A7 Stiffness Matrices of the Beam Elements Representing

the Vertical Parts of the Metal Deck

To determine the contribution of thg vertical parts of
the ribbed metal deck and its responsé with respect to the
plane of reference, it is assumed that these vertical parts
of the deck, as shown in fig.(A.1), are attached to the plate
along the transverse boundaries of tﬂe rectanéular ﬁlare
elements.

A beam element bounded by two nodal points I and K,
fig.(A.1), lying in the reference ﬁlaﬁ; of the plate, is
assumed to bg representing the vertical part of the mezal
‘deck. It is also assumed that these vertical parts are
integrally attached to the plate and thus the same
displacement functions chosen fto represent the plate
elements musf be taken for the bheam elements representing
the vertical parts of the ribbed deck. Three of the five
displacement components introduced at each nodal point of
_the reference surface are used to describe the behaviour of
these beam elements.

u =(11 &(sz

R (A.32)
w = aa + O x +f25x2 + Q32

L 6
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The formulatlon of the beam element stlffness matrix

representlng the vertical parts of the ribs 'is quite: 31mllar

to that used for the elements representlng the steel beam,

"except that these vertlcal parts of the ribs are runnlng

in the transverse dlrectlon ‘with resPect to.the steel beam.

Following the same steps performed over the steel

beam elements, yields

%
[x] = [a7%]T J[B]T "sfs 5% | 5] ax a7l (a3
| ! Esss_EsIs '

E_ = Modulus of eiaeticity of the metal deck. -

A = Area of the vertical part of the deck.

S = First moment of the vertical part of the deck ;
~with respect to the reference plane.

I = Moment of inertia of the verfical part of the

deck with respect to the reference plane.

A,3 Assembly of the elements Stiffness Matrices:

The stiffness matrices of the individual elements can
be assembled to form a single stiffness matrix called the
system stiffness matrix of the entire structure. The
establishment of this stiffness_metrix entai;s the following
steps: i

1. The stiffness matrices of the rectangular plate

elements repreeenting the ribbed concrete- slab
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¢
are formed.

The stiffness matrices of the beam elements E

" representing the steel beam are formed.

The stiffness matrices of the beam elements

e’vertidal parts of the ribbed

representing th
. / .

"metal deck are/formed.

The stiffness hatrices of the beam and plate

elements are combined together according to the

-elements numbéring"topolpgy;

The total system stiffness matrix is then assembled

from the élements stiffness matricesﬁreéulting from

step 4. During the assemblage of the structure

. LY
"

stiffness matrix, each layer is constantly tested

-as to its state of sfresst then its stiffness is

evaluated and updated accordingly.

A.9 Displacement Compatib;;ity

The compaﬁibilify of displacements éCross element
boundaries depends on the assumed displacement functions
and the nodal degrees of freedom. . To see if an element is
conforming, equality musf exist for the displacements of

two adjacent elements along their common edge.

First the in-plane displacement, u, from eqn.(A.l),

is linear in y. Thus, two boundary conditions are required;

two are avallable, the u displacements at each end of the .

-

common edge. Hence, the in-plane displacements are compatible.

\
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A similar situation exists fbr‘the v-displacements.

' \Second, the w displacement,'from egn.(A.l)!.is cubic
in ;;L;Epus, fogr.bouhdary conditibﬁs ar§ reduired; foﬁf;are“,
available, w and?jwﬂay at each end."Hence. the£¥ displacementé
and fhe slﬁig—along the edge Ow/y are ?ompaxiﬁie. _
Third, the slope across the comﬁon edge, OW/Ox is cubic
in y. - Again four boundary Cdnditibné are required; only
fwo éxist,?)wﬁbx ab each endj Thus,'the'transférse slope
is.not compafible.
‘Sin;e the otheg edgeé'cbuld be treated likewise, the
iélement conforms with resbect to the in~plane displacements

u and v, the out-of-plane displacement w and the slope

w/Qy along the edge.



APPENDIX B
'COMPUTER PROGRAM

B.,1 General Description

This program is designed to handle rginforced concrete
slabs and béams,ﬁand composite beams with solid and ribbed
reinforced concrete élabs unaer any type of loading. '

The program can be used to studf‘fhe.load—deforhation  |
response of composite beam; with ribbed metal deck through
the elaétic and inelasﬁic stages up to the ultimate load.
It provides a complete listing of stresses and strains in
the concrete slab, the steel reinforcemeht, the metal deck
and the steel bgam at any stage of lcocading. I% can also

- be used to determine é;e yield load of the gteel beam and
the cracking load of the concrete éiab.

The program is written in Fortran IV language and has

been developed and tested on a CDC 6400 system.

B.2 Program Subroutines

- T

This pfogram uses the subroutines DATA, DISP, WIDTH,
STIFF, LOAD1, CONSTIT, CRITERI, STRESS, BAND, RSTIFF, .

BSTIFF, BSTRESS, BCONST. ~

159
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 B.2.1 SUBROUTINE DATA - . o e .
i It is, used to read the 1nput data of the problem, ) :
“such ‘as the number of ‘beam’ and slab layersq “the. dlmen51ons
of the beam and ‘re slab the propertles of steel and o
concrete and the loads zpplled on the structure. e ‘
B.2,2 SUBROUTINE DISP A |
It is malnly used‘to generate the total stiffness
' matelx of the composite beam. Thus; 1t'assembles the ‘_
| elements st&ess matrices into "'one- stm;tural-stiffnees :.- t

-

 matrik. U A T

B.2.3 SUBRDUTINE WIDTH ' - . -~

If is {ised'igo determine the bdnti-'widrbh,of‘.the . {
~ elements stiffness matrices. A oy

" B, 2.4 SUBROUTINE STIFF | L

It geherates the stiffness matrices of 'th\slab
.'elements and‘ then combines them with the stlffness matrlces , % ‘

of the beam elements representing the steel ‘beam and the R
vertlcal pax‘ts qf the rlbbed metal deck. £ ) e ot
' : 'C‘ - o
B 2. 5 SUBROUTINE ' LOADL © . ‘

' ) Lot ] 9
@ Q‘w It is used to genérate the ;I.oad vector whith is

Y - D )
. recalledﬁrom subroutme DISP. . L N



B:2.6' SUBROUTINE CONSTIT

"B.2.9 SUBROUTINE BAND -

» nodal displacements. -

PR

‘It is usdd to determine the constitutive relation
for any layer of an element in the ccncrete slab. The
'constltutlve relatlon is determlned accordlng to the state

of stress and the ad0pted failure crlterla.

' B.2.7 SUBROUTINE CRITERT - '

It is used to classify any layer of an element in

“the concrete .8lab’ accordlng to its state of stress and the |

.

adopted tran31t10n crlterlon. Concrete could be elastlc, ~

1nelastlc, Slngly cracked ~doubly cracked or crushed. %"

Steel relnforcement and metal deck could be elastlc or.

. ]
yielded. ThlS c13551flcatlon is used in subroutine CONSTIT

" to determine the appropriate censtitutive relation. e
. Ny .

4

-7 o

- SN B
B.2.8 SUBRéUTINE STRESS

It is used to calculate the reference surface strains
and the stralns and stresses of fany’ layer of an element

in the relnforced cqncrete slab. It.is also used to

[}

calculate the excess forces due to the cracking or crushing -

of the*slab.

&Lt -is used for the determination of the unknown

161



- B%2.10 SUBROUTINE RSTIFF

It determlnes the contrlbutlon of the stlffness of

the\gsfflcal parts of the ribbed metal deck, 1n the total

stlffness of the structure.

B.2.11 SUBROUTINE BSTIFF

v It is used to calculate

the beam elements representing

B.2. 12 SUBROUTINE BSTRESS

It‘is used to calculate’

any layer in the beam elements

B.2.13 SUBROUTINE BCONST

It is used to determine

for any layer Jf an element in

constitutive relation is defermined according to the state.

the stiffness matrices of

the stg beam.

the strains and stresses of

representing the steel beam,

the_Constitutive relation

the steel beam.

_The

Fa

pf stress andlthe stress-strain curve used for the steel

beam. .
-

b.3 Notations *

A2 - Half the element diwension in the x-

diqggfion (across the slab width)

B2 | - Half the element dimension in the y-

‘direction (along the beam length)

BAS ,BAS2 - Areas of beam layers

-
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' *BES,BES2
BIS,BIS2

Breadth
BSK

BSS,BSS2

.Bw;ﬁwé
d .

CURXO
CURYOQ

CURBYO.

'ECO
EC1

EC2, -

t
.

ES2 -

-

- Width of the concrete slab

'~ Tangent modulus of the steel beam layers

- Momént of inertia of beam layers about -

the plane gf_reference.

163

- Stiffness matrix of the éteel beam or the

vertical parts of the ribbed metal deck

eléments
- First moment of area of beam layers

about the plane of reference

' - Widths of the beam layers -

- Constitutive relation for the different

layers of the reinfo:ped concrete slab

- Curvature in the x-direction

- Curvature in the y-direction

‘= Curvature of the stgpl beam

- Modulus of elasticity of concrete

- Tangent mbdul%f ofﬁ}oﬁcrete iri the secodnd

:liﬁear region
- Tangent modulus of concrete in the third
Lo N e . .

[N

‘linear region

- Modulus of_e%gsticity of the steel beam

- ,Tangent quulgs_of thé steel beam after .

yielding S - .
- Tangelt modulus of steel in the strain

hardenihg region

- Number of load increments

!



NB

. NBL
NCRI,NCRIO

NL

NLE

. NP1
NSLI,NSLz
NST1 ,NST2
NU

Nw

‘Rt
R2
RIBD
RIBT
RIBZ

SB
SK
SMAX , SMIN
Span |

STRCM

;
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- Half the band width for the rectangular -
elements B

- Number of heam layers

- A numberlng system deflnlng the crlterla
transition zone for-the reinforced concrete

slab.

- Number. of elements

- Number of layers of the concrete slab .

- Number. of Plements along the beam length

- Allowed displacements per element

—.;ongitudinal feinfdrcement layers numbering

- Transverse reinforcement layers numbering

- Total number of unknown displacements

- Number of the elements across the slab
width ' .}b

- Load vector

- Unknown displacement vector

- Depth of the riﬁbed metal deck

- Thickness of the ribbed metal deck

- Inertia of'the'fibbed metal deck about

+ the reference plane

/*‘Dlsplacement vector per element

o Flement stlffness matrlx

- Layer pr1n01pal stresses

*

'1— Composite beam span ' )

/TConcrete compre551ve strength in the
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third llnear reglon.

' .STRCO - Concrete compr3351ve strength in the
| elastlc region ‘

STRCT - Concrete -tensite stréngth

STRCU b - Concrete compressivé strength in rhe

‘second linear region.

SﬂiﬁY,STRBYg - Strain in the steel beam layers/ﬁ
STREBY;STREBYZ‘ - Stress in the steel beam 1a§ers
STREX - Slab layer stress in the x-direction
STREXY oo Slaﬁ iayer shear stress

STREY .~ Slab layer stress in the y-diréﬁtioﬁ
STRS ~ Yield stress of the steel beam

STRX0,STRYO, STRXYO—Reference surface element strains
STRXYO

T - Thickness of the slab layers
TB,TB2 - Thickness gf the beam layers
TSK - Total stiffness matrix

uc J - Poisson's ratio for concrete

B.4 PROGRAM LISTING.

The program is writtenhin Fortrah‘IV languége and hég
been deveIOped on a CDC 6400 system
The program consists of a maln program ‘and 13 subroutlnes.
It can handle compos1te‘beams w1th solid and rlbbed reinforced
concrete élabs‘under any type of 1oadrng.
_ The iiéting-of the fhain progran an@ its different

subroutines is as follows:
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PROCRAM TST ( INFUT=200, OUTPUT=200, 'rAPEs=mPU'r.TAPE6-omu'r.mm-
6200, TAPE2=200, TAPE3=200 , TAPE4=200)

COMMON R3(480)

COMMON NE.NL,NB, NNNI¥, MAX, NLE, NW

COMMON STRS,STRCO, STRCY, STRCM, STRCT, ECO, EC1,EC2,ESO,UC .
COMMON A1(20,20),A2(8%) ,B3(84) ,NP1(20) , RI(480) , SK(20, 20),C(8,3)
COMMON T(15) , STREX( 84, 14) , STREY( 84, 14) , STREXY( 84, 14)

COMMON SMAX,SMIN, ANGC(84, 14) , NCRI(B4, 14 , KCRIG( 84, 14) , TSK( 16000)
COMMON NU,D(3,3),H(3,3),F(3,3),FX,FY, FXY, BIX, BNY, BMXY, R2(480)
COMMON ES!,NBL, TK, TR2, FLED(23) , NLEB2( 25) , BES( 25, 10) , BES2( 25, 10)
COMMON BSK(6,6) , BASC 18) , B§S( 10) ,BIS( 19) , BAS2( 10) , BSS2( 10) , BIS2( 10)
COMMON SB(20),TB(11),BW(10),NSL!,NSL2,NST1,NST2 .

COMMON STRBY(25,10) ,STREBY(25, 103 , STRBY2(23, 109, STREBY2(25, 10)
COMMON BW2(10) , TB2¢ 10) , RIED, RIBT, RIDZ

MARM= I

NNTN= 1

NB=0

MAX=0

READ(S, %) MMM

CALL DATA

CONTINUE

REVIND 1

REWIND 2

REWIND 3

REWIND 4

CALL DISP

CALL STRESS

MMM MMM L

IF (MMM, LT. MMIDID GO TO i

STOP

END

SUBROUTINE DATA

COMMON R3(4E0)

COMMON NE.NL,NB, NNNN, MAX, KLE, KW ‘

COMMON STRS,STRCO,STRCU,STRCH,STRGT, ECO, EC1, EC2, ESO, UC

COMMON A1(20,20) ,A2(84) ,B2(84) ,NP1(20) , R1(480) , SK(20,20) ,C(3,3)
COMMON T 15) , STREX( B4, 14) , STREY(B4, 14) , STREXY( 84, 14)

COMMON SHAX,SMIN, ANGC( 84, 14) , ICRI(B4, 14) , NCRIO(84, 14) , TSK( 18000)
COMMON NU,D(3,3) ,H(3,3) ,F(3,8),FX,FY, FXY, BIX, BNY, BMXY, R2( 480)
COMMON ES1,NBL,TK, TK2, NLEB(25) , NLEB2( 25) , BES( 23, 10) , BES2( 25, 10)
COMMON BSK(6,6) ,BAS( 10) , BSS( 10}, BIS( 10) , BAS2( 10) , BSS2( 10) , BIS2( 10)
COMMON SB(20) ,TB( 1) ,BW( 10}, NSLI,NSL2, NSTI, NST2

COMMON STRBY(25, 10) . STREBY(25, 10) , STRBY2(25, 10) , STREBY2(25, 10)
COMMON BW2(10) , TB2( 10) , RIBD, RIBT, RIBZ

NEAD( G, %) SPAN,BREADTH ‘

WRITE( 6, 11) SPAN, BREADTI - : ]
FORMAT(2F15.7)

READ (5,%) NE,INL,NU,NW,NLE, NBL,NSL1,NSL2, NST1,NST2, TK, TR2, RI‘QD.
SRILT, RIBZ

READ(5,*) (NLEDCI},I=1.NLE)

READ(5,®) (NLED2([J, =1, NLE)

READ(S,%) (BW(I),I=1,NLL)

READ(G,*) (BW2( D), I=1,NBL)

NBL2=NBL+1

READ(S,*) (TBCT), I=1,NBL2)

* READ(5,%) (TB2(1),I=1,NBL2)

DO 100 1=1,NBL
BAS2( [) = ABS( (TB2( I+1)~TB2( F) ) *BW2( 1))
BAS( 1) =ABS( (TBC 1+ 1) ~TBC ) ) XBW( 1))
BSS2( 1) =( BAS2( 1) %, 50x( TB2( I+ 1) +TB2( 1))
BIS2( [)=AES(BAS2( 1) #( . 50%( TB2( I+1) +TB2( 1)) ) %2, 8)
BSS( D)=, (BASC 1)#,50xCTB( [+ )+TB()))
BIS( 1) =ABS(BASC 1) ¥ . 50x(TBC I+ 1) +TBU [)) ) #2.0)
=1
DO 10 I<1,NLE : .
_READ(5,%) B2(II)
1= [1+NW
1I=1
- TLI=KNW
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50
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70
8o
90
100
110
120
130
149
150

. 160

170
180
190
200
210
220
230
240
250
260
270
280
29¢
360
310
320
330
340
350
368
370
380
390
400
410
420
430
44D
L LTy
460
470
480
490
500
510
520
530
540
500
560
370
580
390

. 600

610

620

630
64.0
650
660
670
680
690
700 .
710
720
730
749
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20

as

40

21

23
20

CONTINUE

po 20 I1=II,1II ) '
B2({ )=B2(11) . . .
[I=11+NW

111= 1 1+NW=
IFCITI.CT.NE) GO TO 35 ‘ 2
G0 TO 30 ' :
CONTINUE -

READ(S, %) C(AZ(1),I=1,KW)

NLE1=NLE- |

DO 40 1s1,NLEL

DO 40 J=1,NVW

112J+ N

AZCIDI=A2(D) ' : . i

| DO1N=1,NE

READ(S, %) (J,(NP1(ID,Ma'l,20))

WRITE(4). (NP1(1},1=1,20)

CONTINUE

REWIND . 4

KL1=NL+1

READ(S,®)(T(I), I=1,NL1)

READ(5,*) ECO,EC1,EC2,ES0,ES1,UC

RAEAD(S,*)STRS, STnCO STRCU, STRCM STRCT <
RETURN

END

SUBROUTINE DISP

COMMON R3(480)

COMMON NE, NL, NB, NIINN, MAX, KLE, NW

COMMON STRS,STRCO, STRCU, STRCM, STRCT, EC0,EC1,EC2,ES0,TC

COMMON Al(20,20),A2(84),B2(84 1(29) ,R1(480),8K(20,290) ,C(3,3)
COMPION TC 15) ,STREX( 84, 14) ,STREY(84, 14) ,STREXY(84, 14)

COMMON SMAX, SMIN, ANGC(84, 14) , NCRI(84, 14) ,NKCRIQ(84, 14) , TSK( 18000}
COMMON NU,D(3,3),H(3,8),F(3,3),FX,FY, FXY, BIIX, BMY, BMXY, R2( 480)
COMMON ES!,NBL, TK, TK2, NLEB(23) ,NLEB2(25) , BES(23, 10) , BES2(25, 10)
COMMOR BSK(6.,6) ,BAS(10) ,BSS(10) ,BIS(10),BAS2(10) ,BSS2( 1¢) ,BIS2( 10}
COMMON SB(20),TB(11),BW(10),NSL1,NSL2,NST1,NST2

COMMOR STRBY(2J, 10),STREBY(25, 10} ,STRBY2(25, 19) ,STREBY2(235, 1O
COMMON BW2( 19), TB§(10) RIBD,RIBT, RIBZ

IF(NNNN.GT. 1)G0 TO 8

DO I NN=1,HE

CALL WIDTH

CONTINUE .

REVWIND 4 .

CONTINUE .

Do 7 LL=1, 18000
TSK(LL)=0.9

DO 6 N=1,NE

IF(NNNN.EQ. 1} GO TO 20

DO 9 LL=1,NLE
IF(N.EQ@.NLEB(LLY) CO TO 23
CONTINUE ' -
po 21 1I=1,NL 14

IF(NCHJ(N.II) KE.NCRIO(KN,I1I)) GO TO 23

CONTINUE

READC 1Y C((SK(I1,J),J=1,20),I=1,20) - i
WRITE(2) ((SK(1,J),J=1,20},1=(,20) '
READ(3) ((A1CI, ), J=1,20%, I=1,20)

GO TO 22 .

CONTINUE

READC1) ((SK(I,J),J=1,20),1=1,29) !
CONTINUE

CALL STIFF(N) -
WRITE(2) ((SK(I,J),J=1,20),1=1,20)

CONTINUE

READ(4) ¢(HPI(I),I=1,20) ’

DO 2 J=1,20

IF(NPI(D) .EQ. Q) GO TO 2 .

DO 3 I=J,20 '

IF(NPIC(]) .EQ.0) GO TO 3

"IF(NPICJ)-NP1C(I))4,5,8
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1080
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1170
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1190
1200
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Ke(NP1(I)-1)%kNB+NP1(.J) : : : 1490
TSR( =TSK(RD+8K(J, ) . . 1500
GO TO 3 . . ' 1510
Ks(NP1{J)=1)*NB+NP1( D) - . 1520
TSK(O =TSK{K}+BK(J, 1) : 1830
CONTINUE . ' : 1540
CONTINUE - : . ‘ 1550
CONTINUE : 1360
REWIND 4 1570
CALL LOADI : . 15890
DET=1.E-8 ‘ . 1899
NB23NB+1 , 1600
CALL BAND ¢TSK,R1,MAX,NB2,1,DED _ 1610
RETURN _ 1620
END . . , A 1630
: _ 1640

1630

1660

, 1670

SUBROUTINE WIDTE - 1680
COMMON R3(480) : 1690
COMMON NE, NL,NB.NNNN, MAX,NLE,NW 1700
COMMON STIS, STRCO,STACU,STRECH, STRCT, ECO, EC1,EC2, ESO, UC - 1710
COMMON AI1(20,20),A2(84),B2(84) ,NP1(20),R1(489) ,9K(20,20),C(3,3) 1720
COMMON T( 15) ,STREX(84, 14) ,STREY(84, 14) , STAEXY( 84, 14) 1730
COMMON SMAY,SMIN,ANGC(84, 14) ,NCR1(84, 14) ,KCRIO( 84, 14) , TSK( 18000) 1740
COMMON NU,D(3,3),E(3,3),F(3,3) ,FX,FY,FXY, BIMY, BMY, BMXY, R2( 480) 1750
COMMON ES1,NBL,TK, TK2, NLEB( 25) , NLEB2(23) ,BES(23, 10) , BES2(23, 1) 1760
COMPMON BSK(6,6) ,BAS(10}, BSS( 10) ,BIS(10) , BAS2(10), Bssatle) BIS2(10) 1770
~COMMON SB(20), TB(ll) BW( 1) , HSLI NSLZ, NST] NST2 1780
ColfioN STRBY(25,10), STHEBY(25 10) STRBY2(25 10) ,STREBY2(25, 19) 1790
COMMON BW2(lO),TBZt10).RIBD.R[BT.RIEZ 1800
READ(4) (NP1CI},I=1,200 - 1810
MAX=0 : , : . : 1829
MINN=3000 . 1830

DO 1 I1=1,20 ' - 1840
IF(NPICII).EQ.0) GO TO 1 . 1830

IF( NPICID-MAXD 2,2.3 18690

MAXX=NP1CII) 1870
IF(NPICID)-MINK)4, 1,1 . 1880

MINN=NP1CID) 18990
CONTINUE 1900
NB1=MAXX-MINN : 1910
IF(NB1.GT.NB) NB= NBI 1920

IF¢MAXNH. GT. MAXD MAX=MARX 1930

RETURN: 1940

END . _ 1950

) 1960

1970

) 1960

. 1999

SUBROUTINE STIFF(N) . 2000

COMMON R3{480) 2010

COMMON NE, KL, NB, NNNN, MAX,NLE, W | 2020

COMMON STRS,STRCO.STRCU, STRCM, STHCT, ECO, EC1, EC2, ESO, UC 2630

COMMON Al1(20,20),A2(84) ,B2(84) ,NP1(20), R1(489) ,SK(20,20) ,C(3,3) 2040

COMMoN T(15).STnExca4.14).STREY(84.14).STnExY(84.14) 2050

COMMON SMAX,SMIN, ANCC(84, 14) ,NCRI(84, 14) ,NCRIO(84, 14) , TSK( 18000) 2060

COMMON NU,D(3.3),H(3,3).F(3,3),FX,FY,FXY, BMK, BMY, BMXY, R2(480) . 2070

COMMON ES1,NBL.TK, TK2,KLEB(25) ,NLEB2(23) , BES(25, 10) , BES2(25, 10) 2080

COMMON BSK(6,6),BAS(10),BSS(10),BIS(10),BAS2(10) ,BSS2( 10) ,BIS2( 19) 2090
COMMON SD{(20) ,TB(11),BW( 19} ,NSL1,NSL2,NST!,NST2 2100

COMMON STRBY(25, 10) ,STREBY(25, 10) , STRBY2( 253, 10) , STREBY2( 25, 10) 2110

COMMON BW2(10),TB2( 10 ,RIBD,RIBT,IRZ . 2120

DIMENSION B1(20,20) - ‘ 2130

A=AZ(ID : _ : 2140

D=B2(N) _ 2150

DO ¢ 1=1,3 — , 2160

DO 1 J=1,3 f;‘ \ : , S 2170

NMI,ND=0.0 , 2180

F(I,N=0.0 2190

HI1,J)=0.0 . . 2200

CONTINUE : ' { 2210

D0 2 I=1,NL _ 2220

L
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CALL CONSTIT (N, I} ' 2230

Do 2 J=1,3 : . 2240
DO 2 XK=1,3 2250
F(J, K0 aF(J, K +CCJ, 5O #(TC I+1) %%3, 0-TC 1) ¥*3. 0 /3.0 - 2260
D(J,JO0=D(J, K +C(J, K *(T( [+1)=T( 1)) 2270
HCJ, 0 2H(J, 0+, 5%CJ, K R(T(I+1) %2, 0-T( 1) 22, 0) : 2280
CONTINUE 2290
DO 3 I=1,20 2800
DO 3 J=1,20 . . . 2310
AlCL,0)s0.0 - : , 2320
SK(1,J)=0.0 - . 2330
SK(2,2) =4, 0xAXBxD(1, 1) : 2840
SK(2,7) 54, 0xA%B*D( 1,2) : 2350
SK(2, 13)=-8, 0%AXB¥H( 1, 1) . 2860
SK(2, 14)=-8. 0%A%B*H( 1,2) . | 2370
DO 13 1=3,20 SR 2380
SK(1,2)=SK(2,I) 2390
SK(3,3) =4. 0xA*BxD(3,3) - 2400
SK(3,6) =4, 0xAXB¥xD(3,3) , : 2410
SK(3, 12) 58, 0xAXB*H(3,3) 2420
SK(3, 19) =8. 0%A*A*AXBxH(3,3) ‘ 2430
SK(3,20) 28, 0¥A¥B¥B+B*H(3, 37, 2440
DO 14 [14,20 2450
SK(1,3)=8K(8, ) 2460
SK(4,4) = (4. 0*A*BXB¥BxD( 1, 1) +4. 0XA*A®A*B*D(3,3)) /3.0 2470
SK(4, 16) =(~B. 0% ARBXBXBRE( 1, 1)+16 . OXA*AXAXBH(3,3)) /3.0 2480
SK(4, 18) 2-8. 0%A%BxBXB*H( 1 , 2) 2490
DO 15 I=5,20 2500
SK([,4)3SK(4, I} 2510
SK(6,6) 4. 0xA*BXD(3, 8) 2520
SK(6, 12) 28. 0XA*B*H( 3, 3) 2530
SK(6, 19) =8, 0%A* AXA¥BxH( 3, 3) _ - 2540
SK(6,20) =8. 0xAXB*B¥B*H(3,3) ] . 2850 .
DO 17 127,20 . 2560
SK(I,6)=SK(6, 1) 2570
SK(7,7) =4, 0XAXBRD( 2,2) 2580
SK(7, 13) =-8. 0xA=BxH( 1,2) 2590
SK(7., 14)=-8, 0xAxBxH( 2, 2) _ : 2600
DO 18 i=8,20 - , ) 2610
SK(1,7)3SK(7, ) T 2620
SK(8, B) = (4.0FAXASA*BXD( 2, 2) +4, 0XAXB*BXB*D(3,3)) /3.0 2630
SK(8, 15)=-8, 0xAXAXA*BXH( 1, 2) ' 2640
SK(B, 17} =(-8. 0xAxA%A=B*H(2,2) +16 . 0xAXBXB*BxH(3,3)) /3.0 - . 2650
DO 19 129,20 : 2660
SK(I,B)=SK(8, I) 2670
SK( 12, 12) = 16, 0xA*BXF(3, - 2680
SK( 12, 19) = 16, 9XA*AXAXB*F(3,3) 2690
SK( 12,20) = 16 . OxAXBXB*BxF(3,3) - 2700
DO 20 [=13,2 . 2710
SK(1,12)=sK(*2, D) : 2720
SK( 13, 13) = 16. 0%xA=BxF( 1, 1) ‘ o 2730
SK( 13, 14) = 16. OXA*XBXF( 1,2) ‘ 2740
DO 21 I=14,20 , ) 2750
SK(I,13)=SK(18, D)  ~ ' 2760
SK( 14, 14) =16, 0xA*BxF(2, 2} _ ' 2770
SK( 15, 15) 348, 05AXAXA®BRF( 1, 1) 2780
SK( 13, 17)= 16, 0xA¥AXAZB¥F( 1,2) L 2796
DO 23 I=16,20 2800
SK( I, 15)=SK( 15, I) : . 2810
SK(16, 16)=( 16. 0¥ A¥BBEBYF( 1, 1) $64. ORAXARA*B*F(3, 3))#3'0“ ' 2820
smm1mnemmmmmn1m - 2830
D0"24 [317,20 - 2840
SK(I, 16)=SK( 16, 1) ) . : 28590
SK( 17, 17) =( 16 . OKATARAXBHF( 2, 2) +64. OXA*BXBYB#F(3,3)) /3.0 2860
SK( 18, 18) =48, 0XAXBXDxBXF( 2, 2) 2870
SK( 19 19) = 16 0% AXARARTRBERRPL 1, 1) + 144, OXAXAXAXAXAXBRF(3.3) /5.0 - 2880
smwzmqewuummmwn1muewmmmmmmmam 2890
SK(20, 19) =SK( 19, 20) 2900
SK(20, 20) = 16 . 0% AxAXAXBXB*BF(2, 2) +144. OXAxBXB*B+B+B*F(3,3) /5.0 2910
IFCNNAN.EQ. 1) GO TO 25 _ 2929
READ(3) ((ALCE,J), J=1,20),1=1,20) o _ 2030
GO TO 26 2040
CONTINUE ' 2950

Al(1,1)=.25 ‘ . 2960



AL(1,2)2-1,0/(4, 0%A)
AL(1,0)2~1.0/(4.0%B)
AlCL,4)= 1.0/(4.0%AXB)
A1(2,5)=.25

A1(2,6)=A1(1,2)
A1(2,7)2A1(1,3)
AL(2,B)3A1(1,4)

Al(3,9)=.2
A1(3,10)2-3.0/¢8. 0*A)
AL(3,11)=2~3.0,(8. 0%B)
A1(3,12)32,0/(4.0xA%B)
A1(3,15)31.0/(8. 0%AXARA)
A1(3, 1B)%1,0/(8.0%xB*xB«B)
Al(3,19)8-1,0/(8, OXAKA*AXE)
A1(3,20)5—1.0/(8. 0*AXBXBXB)
A1(4.9)=A/8.0
Al(4, 10) ==, 125

CAL(4,11)»=A/(B.0%B)

Al(4,12)31.0/(8.06%B)
Al(4,13)=-1.0/(8,0%A)
Al(4,15)91,0/(8.0%xA%A)
Al(4,16)=1.9-(8.0%A%B)
Al(4,19)==1.0/(8.0%AxAXB)
Al(5,9)=-.123%B
Al1(S5, 10)=, 123%BrA
Al(5,11)=,12%

AlL(D, 12)=—~, 12%/A
Al(5,14)=,125/B
Al(5,17)a—-. 125/ A*B)
Al(3, 18)=-, 125/(BxB)
Al(5,20)=, 123/ AxBxR)
Al(6, DD=AI1CL, 1)
Al(6,2)=2A1(1,2)
A1(6|3)=-A!( 1.3)
A1(6|4)="‘Al( 1.4)
Al(7,5)=2A1(2,%)
Al(7,6)=2A1(2,6)
A7, 7)=2=A1(2,7)
Al(7,8)=-A1(2,8)
Al(8,9)=A1(3,9)
Al(8, 10)=A1(3, 10)
Al(a, 11)=2-A1(3,11)
Al(8, 12)=-A1(3,12)
Al(8,15)=A1(3, 15)
Al(8,18)=-A1(3,18)
Al(B,19)=-A1(3,19)
Al(8,20)=-A1(3,20)
Al(9,9)=2A1(4,9)
Al(9,10)=A1(4, 10)
ALY, 11)==-A1(4,11)
Al(9,12)=-A1(4,12)
Al(9,13)=A114,13)
Al1(9,15)=A1(4, 15)
Al(9,16)==A1(4,16)
Al(9,19)==-A1(4,19)
Al(10,9)=-A1(3,9)
Al(10, 10)=-A1(3, 10)
AlC10,11)=A1(S,11)
Al1C10,12)=A1(5,12)
AlC10,14)=-A1(3, 14)
ALC10, 17)=-A1(3, 1T}
AIC10,18)=A1(S5, 18)
ALC10,20)= Al1(5,20)
ALCI1, 1)=AL(1,1)
AlC11,2)==A1C1,2)
AlC11,3)=A1(1,3)
Al(11,4)==-A1(1,4)
A1(12,3)=A1(2,5)
ALC12,60=~-A1(2,6)

A1C1Z2, 7 =A1(2,7) T

Al(12,8)=-A1(2,8) °
Al1(13,9)=A1(3,9)

ALC13,10)=-A1(3,10)
SA1CI3, 11D =A1(3,11)
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40

Al1(13, 12)=~-71(3, 12)
A1( 13, 18)==-A1(3, 1)
Al1(13,18)=A1(3, 1B)
A1C13, 19)==A1(3,19)
.A1(13,20)=-A1(3,20)
Al(14,9)=2-A1(4,9)
Al(14,10)3A1(4, 10)
Al(14,11)=<Al(4, 11}
AlC14,12)=A1(4, 12)

AlC14,13)3-A1(4, 1)

Al1(14, 15)=A1(4, 183)
Al( 14, 16)=-A1(4, 16)
AlC14,19)=A1(4,19)
AlC15,9)=A1(%,9)
ALC153, 10)=-A1(F, 10)
ALCIS, IL)=AI(3,11)
ALCL1S,12)=-A1(3, 12)
ALC IS, 14)=AL1(S, 14)
Al(15,17)=-A1(5,17)
Al(15,18)=A1(5, 18)
AL 15,20)=-A1(5,2»
ALC 16, 1)2A1C1, 1)
Al(16,2)7-A1(1,2)
Al(16,3)2-A1C1.D)
Al(16,4)=A1C1,4)
Al(17,3)=A1(2,5)
Al(17,6)3=-A1(2,6)
A1(17,7)2=A1(2,7)
A1(17,8)=A1(2,8)
Al1(18,9)=2A5(3,9)
A1(18,10)2-A1(3, 10)
AIC18,11)2=A1(3,11)
Al( 18, 12)24A1¢(3,12)
AlC18, 13)==A1(3,15)
A1(13,18)=-A1(3, 18)
AlC18,19)24A1(3,19)
Al(18,20)=A1(3,20)
A1(19,9)=2-A1(4,9)
A1(19,10)2A1(4,10)
Al1C19,11)=2A1(4,11)
A1C19,12)=-A1(4,12)
A1(19,13)2-A1(4, 13)
A1C19,15)=2A1(4, 15)
A1(19,16)2A1(4,16)
A1(19,19)2-A1(4, 19)
A1(20,9)3-A1(5,9)
AL(20,10)=A1(5, 10)
A1C20,11)=A1(5,11)
A1(20,12)=-A1(5,12)
AL(20, 14)=-A1(5, 14)
AL(20, ITI2AI(S, 1)
AL(20, 1BY¥=AL1(3, 18B)
A1(20,20)=~A1(5,20)

WRITE(3)»(C(ALNCL,J),J=1,200, I=1, 20)

CONTINUE

DO 4I=1,20
DO 4J=21,20
B1(1[.,J)=0.0
DO 4K=1,20

BIC(I,D=B1(]I, J)+A1(I.K)*SK(K.J)

Do 7 1=1,20
DO 7 J=1,208
SK([.J)=0.0
DO 7 K=1,20

SR(I,J)=8K(1,N+BICI, D *A1(J, D

CALL BSTIFF(N)
CALL BSTIFF (M)

IF(HNNKR.GT. 1) GO TOQ.40
WRITEC(1)((SK(!I,J},J=1,200,

"CONTINUE
RETURN
END

A}
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‘3710

3720
3730
3740
3750
3760
arve
3780
3790
3800
3810
3820
3830
3840
3850
3860
3670
3880°
3890
3900
3910
3920
3930
3940

- 3960

3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070

< 4080
4090

4109
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230

240
4230
4260

42706

4280
4290
4300
4310
4320
4330
4340
4330
43690
4370
4380
4399
4400
4410
4420
4430
4440



o 'A 1?2

. | ~ 4450
“.. SUBROUTINE LOADt L 4460
COMMON R3(480) . . 4470
cormounnmmnmmxmnw . : . 4480 .

i COMMON STRS,STRCO,STRCU.STRCM,STRCT, ECO, EC1, EC2, SO, UC 4490
COMNON A1(20,20) ,A2(84) , B2(84) ,NP1(20) ,R1(480) , SK(20,20) , €G3, 3 4300
COMMDN T( 15) , STIEX(84, i4) ,STREY( 84, 14) , STREXY( B4, 14) 4510
COMNON SMAX,SMIN, ANGC(84, 14) , NCRIC 84, 14) , NCRIO( B4, 14) . TSK( 18000) 4320
COMMON KU,D(3,3),H(3,3),F(3,3) ,FX,FY,FKXY, BMX, BMY, BNXY. R2( 480) 4330
COMMON ES1,NBL,TK, TK2, NLEB(23) , NLEB2( 28) . BES( 25, 10) , BES2(25, 10) 4540
COMMON BSK(6,6) , BAS( 10) , BSS( 105 ,BIS( 10) , BAS2( 10) , BSS2( 10) , BIS2(10) 4330
COMMON SD(20) ,TB(11) ,BWC 10) , NSL1,NSL2, NST1, NST2 4560
COMMON STRBY(23, 10) ,STREBY(25; 105, STRBY2(25, 18) . STREBY2(25, 10) " 4370
COMMON BW2(10) , TB2( 10) , RIED, RIBT, RIBZ 4580
IFC(NNNN.CT. 1) GO O 1 . 4390

DO 3 I=1,NU S 4600 .

~ RI(D=0:@ 4610
S © R2(D=0.0, 4620
THIS CARD“SHOULD BE CHANGED EACH TIME DEPENDING ON THE KO) OF LOAD 4630
READ(S,*) R2( 1) ,R2(3) ,R2(6) ,R2(9) ,R2( 11) ) 4640
1J1=13 . - 4650
1J2517 4660
1J3=22 _ ~ 4670
1J4=27 4680
1J5=31 ' ' 4690

169 CONTINUE 4700
* READ(S,*) 'R2( [J1) ,R2( 1J2) ,R2( 1J3) , R2( [J4) , R2( 1J5) ‘ 4710
1312 1J1+21 , 4720

1J2= [J2+21 o 4730

1J3= [J3+21 : - ggo

1J4= [J4+21 : , 4750

1J5= [J5+21 4760
IF(1J1.GT.391) GO TO 200 - C 4770

' GO TO 100 . C . 4780
200 READ(5,%) R2(415),R2(420) ,R2(425) ,R2(429) . 4790
DO 4 I=1,NU . . 4800

4  RID=RICD+R2(D : . : 4810
DO 5 I={,NU . - 4820

8§ - R3C(D=RICD , ‘ " 4830
GO TO 7 4840

1  CONTINUE em ‘ - 4850
DO 6 I=1,NU : . : . 4860
R1CD) 2R3 1) , - 4870

6  CONTINUE T i _ 4880
7  CONTINUE : 4890
~ WRITE(6, 10) R2(76), 32(223) _ ' 4900
10 FOIMAT(2F15.7) . 4910
RETURN ' 4920

END 4930

‘ : , 4940

4950

4960

‘ : ‘ 4970
SUBROUTINE CONSTIT (N, D) 4980
COMMON R3(480) : 4990
COMMON NE,NL,NB, NNNN, MAX, NLE, NW 5000
COMMON STRS,STRCO, STRCU, STRCM, STRCT, ECO, EC1, EC2,ESO, UC . 5010
COMMON A1(20,20),A2(84) ,B2(84),NP1(20) ,R1(480) ,SK(20,20) ,C(3,3) 5020
COMNON T¢15) ,STREX( B4, 14) , STREY( 84, 14) , STREXY( 84, 14) 5030
COMMON SMAX,SMIN, ANGC(84, 14) , NCRI(84, 14) , NCRIO( 84, 14) , TSK( 18000) 5040
COMMON NU,D¢3,3),H(3,3),F(3,3),FX,FY, FXY, BI{, BMY, BMXY,R2( 480) - - 5050
COMMON ES1,NBL,TK, TR2, KLEB( 23) ,NLEB2(25) , BES( 23, 10) , BES2(23, 10) 5060
COMMON BSK(6,6) ,BAS( 10}, BSS( 10)-, BIS( 10} , BAS2( 10) , BSS2( 10) , BIS2( 10) 5070
COMMON .SB(20) , TB( 11) , BW( 10) , NSL1, RSL2, NST1, NST2 5080
COMMON STRBY(25, 10) ,STREBY(25, 10) , STRBY2( 25, 10) , STREBY2(25, 10) 5090
COMMON BW2( 10) , TB2( 10) ,RIED, RIBT, RIBZ © 5100

DO ? 1i=1,3 ' : © 5110 |

D0 7 JJ=1.3 - 5120

7 CUILJJ=0.0 ) : 5130
IF(NNEN.GT.2) GO 'TO 8 5140
1F¢ 1. EQ.NST1.0R. [.EQ.NST2)} GO TO 9 5150
IFCI.EQ. 11.0R. I.EQ. 12,0R. [.EQ.'13.0R. I .EQ. 14) GO TO 16 ‘ 5168
IF(I.EQ.NSL.OR. [.EQ.NSL2} GO TO 10 5170

NCRI(HN, I)=1 5180



‘CC1,1Y3ECO/(1, O-UC**z 9y
C(1,2)=UC*C(1,1) . : Tt

v . C(2,1)aC(1,2) °

C(2,2)=C(1, 1) .
C(3,3)=C(1,1)x(1. O-UC)lzs . '
GO TD 100

9 t,1)=ESO . - .
(_RCRI(N a3 . _

100

18’ C(2.2)'ESO

16

1

.

1
l

7T

9
8

2

3

3]

8

1

- IF(NCRI(N, I} .EQ.5)

- NCRI(N, D=6
‘G0 TO 100

I1Ji=1

1J2=4 ’ b

DO 17 JJJ=21,10
IF(N.GE.IJ1.AND.N.LE. IJ2) GO TO 18
1Ji=1J1+8

1J2«1J2+8 : '
CONTINUE )

IF(1.EQ.12.0R.1I. EQ.13 OR. I.EQ. 14) GO T0 19
C(1,1)=ES0 '

NGRI(N.I)=5

GO TO 100 '

NCRI(N, I)=4 '

GO TO 100

CORTINVE.

IF(I.EQ.11.0R.I.EQ.12.0R.1.EQ.13) GO TO 2@
C{1, 1)=ESO

NCR!!N.I)=5

GO TO 100

NCRI(N,I)=1

C(1, 1)=ECO/(1.0-UC*xx2,9)

C(1,2)=UCxC{1,1)

C(2,1)=2C(1,2)

C(2,2)=G0(1,1) N
C(3,3)=C(1,1)%(1, 0-UC)/2.
GO TO 100

CONTINUE

IF(RCRI(N, D). EQ.I) GO TO
IF(NCRI(N, ) .EQ.2) GO
IF(NCRI(N,I) .EQ.3)
IF(NCRI(N, ) .EQ.31)
IF(NCRI(N, I) .EQ.41)
IF(NCRI(N, ) .EQ.31)
I[F(NCRI<N, I) .EQ.32)
IF(NCRI(N, I} .EQ.42)
IF(NCRICN, I} .EQ.52)
IF(NCRI(N, IV .EQ.4)

CI A

2323335
3334233323
BRRRe

IFCNCRICN, 1) . EQ. 6)
IFCNCRICN, [) . EQ.7)
IFCNCRICH. ) . EQ. 8)
IFCNCRICN, D) . EQ.9)
C( 1, 1)SECO/( { . 0~UCK*
C(1.2)=UCxCC 1, 1)
C(2, D=C(1,2)
C(2.2)sCC 1. 1)
C(3,3)=C( 71 *( 1.0-UC) /2.0
GO TO 100

$2888888
©333333

2 C(1,1)3EC1/(1.0=-UC**2,.0)

C(1,2)2UCxC(1, 1)
C(2,1)=C(1,2)

c(2,2)=C(1, 1)

C(3,3)=C( 1, 1)*(1.0-UC) /2.0
G0'TO 100

CONTINUE

K=SINC(ANGC(N, I})

Y=COS({ ANGC(N, D}

Cl1, 1) =REEOXY:Y* Y

C(1,2) =ECOxX£XxYxY
C(1,3)=ECOXXEYrYY
C(2,2)=ECOXXrXeXaX
C(2,3) cECOXXEXxNxY '
Cta.axagco:x*x*vkv‘ I

Vo

| 4
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5190
5200

5210
- 8220

5230 -
5240
5250
5260
5270
5280
5290
5300
5310
53290
330
340
5350
5360.
5370
5380
5390
5400
5410
5420
5430
5449
5450
5460
5470
5480
5490
5500
5310
5520
5530
5546

© 5550
- 5360

5570
53580
5590
56900
5610
5620
$630
§6490
5630
5660 -

- 5670

6680

- 5690

5700
5710
5720
5730
‘5740
5750
5760
5?70
5780
5790
5800
5810
5820
5830
5840
9850 -
5860
5870
5880
5890

- 5900-
5910

5920



31
41
51
32

42

12

13
100

14

621

627

Ct2,1)%C(1,2) ' .o .
C(3,1)=C(1,3) . -

C(3,2)1C(2,3) ) ‘ L

GO TO 100

" €(2,2)=ECO

STREX(N, [)=0.0
GO TO 100 - .

C(2,2)=EC! .o _ -
STREX(N,[)=@.@ S

CO TO 100 s

€(2,2)sEC2 L.

STREX(N,[)=0.0 - | - :

co TO 100 ° )

C(1; 1)=ECO . o

STREY(N,1)=0.0 . !

CO TO 1o@ .

c(1,1)=EC1 S . i
STREY(N, [)=0.0 S
CO TO 100

ct1, 1)=EC2

STREY(N, [)=0.@

GO TO 100 .

CONTINUE

cO TO 100

&(1, 1)3EC2/(1.0~UCR2.0) * ‘\

C(1,2)=UCxC( 1, 1)

C(2, D=C1,2) 4

C(2,2)=C(1,1) - "

G(3.3) =G f# 1) 2(1.8-TC) /2.0

O TO 100

C(1,1)=ESO

GO TO 108

C(2,2) =ESO

GO TO 100 \

(1, D =ES1

o TO 100 _ .
c(2,2)=ES1 . .
CONTINUE

RETURN

END .

SUBROUTIRE CRITERI(N,.I)

COMMOIl R3(480)

COMMON NE, WL, NB, NNIVN, MAX, NLE,NW

COMMON STRS,STRCO,STRCU, STRCM,STRCT,ECO,EC1,EC2,ES0,UC

COMMON A1{20,20),A2(84) ,B2(84) ,NP1(20) ,11(488) ,5K(20,29?,C(3,3)
COMMON T¢ 13) ,STREX(84, 14) , STREY( 84, 14) , STREXY(B4, 14)

COMMON SMAX.SMIN,ANGC(84, 14} ,NCRI(84, 14) ,KCR1O( 84, 14) , TSK( 18020)

COMMON NU,D(3,3),H(3,3),F(3,3) ,FX,FY, FXY, BMX, BMY, BMXY, R2( 480)
COMMON ES1,NBL,TK, TE2,NLEB(23) ,NLEB2(23) , BES(25, 10}, BES2(25, 19}

COMMON BSK(6,6),BAS(10),BSS( 10) ,BIS{ 10) ,BAS2( 10) ,BSS2( 10) ,BIS2(1®)

COMMON SD(290) ,TB(11),BW(1@),NSL1,NSL2, NST1,RST2

COMMON STRBY(23,10),STREBY(23, 10) ,STRBY2( 25, 10) , STREBY2( 23, 19)
COMMON BW2( 10}, TB2(18) ,RIBD, RIBT,RIBZ

IF(NNKN.EQ.2) GO TO 14

GO TO 13

CORTIRUE

KCRI(K, 1) =1

IF(I.EQ.NSL1.0OR. I.EQ.NSL2) RCRI(N,I)=6
IF([.EQ.NSTL.O0R. I, EQ.NST2) NCRI(N, [)=5

IF(I.EQ.11.0R.1.EQ.12.0R. [.EQ. 13.0R. I.EQ. 14) GO TO 621
co TO 15

CONTINUE

1Ji=1

1J2=4 *

DO 622 JJJ=1,10

IF(N.GE. IJ1.AND.N.LE. 1J2) GO TO 628
1J1=1J1+8

1J221J2+8

CONTINUE

IF(1.EQ.12,.0R.I,EQ. 13.0R. [.EQ.14) GO TO 629

174
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'.5940

5950
5960
5970
5980
5990
6000
6010
6020
6630
6040
6050
6060
6070

. 6080
. 6090

6100
6110
6129

6130

6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6299
6300
6310
&320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6300
6510
6520
6330
63540
6330
6560
6570
6500
6590
6600
6510
6620
6630
6640
6650
6660



, - . 175

NCRI(K, [3=5 6670
CO TO 15 , : : : 6680
629 NCRI(N,I)=4 ' ‘ : 6690
GO TO 15 : . 6700
628 CONTINUE . 6710
IF(1.EQ.11.0R.1.EQ, 12.0R, I.EQ.13) GO TO 630 - L : 6720
NCRI(N, 1) =3 . : ' 6730
_ €0 TO 15 : o 67490
630 NCRIC(N,I)=1 _ : _ . 6750
15 CONTIRUE : _ 6760
NCRIO(N; I) =NCRICN, I) \ 6770
IFCNCRI(N, 1) .EQ.81.0R. NCRICK, ) .EQ.41.0R.NCRI(N. I .EQ.51) GO TO15@ 6780
IF(NCRI(N, 1).EQ.3) GO TO 150 6790
IF(NCILI(I, 1) .EQ.32.0R.NCRI(N, I) .EQ. 42.OR.NCRI(N, 1) .EQ.52) GO TO151 - 6800
IF(NCRI(N,D) .EQ.4> GO TO 160 6810
IF(1.E@.NSLI.OR. !.EQ.NSL2) GO TO 206 6820
IF(1.EQ.NST1.0R. I.EQ.NST2) GO TO 400 6830
IF(1.EQ. 14.AND.NCRI(K, I) .EQ.5) GO TO 400 6840
IF(1.EQ.11.AND.NCRI(N, ) .EQ.5)} GO TO 400 6850
IF(1.EQ. 14.AND.NCRIC(N. ) .EQ.8) GO TO 419 6860
IFC[.EQ. 11.AND.NCRI(N, ) .EQ.8) GO TO 410 6870
{F(STREX(N, 1) .LT.0.0.AND.STREY(K, I} .LT.0.0) GO TO 19 6880
IF(STREX(X. I) .GT.0.0.AND.STREY(N, [) .GT.9.0) GO TO 50 . 6890
IF(STREX(N, 1) .GT.0.0. AND.STREY(N, 1) .LT.0.0) GO TO 100 6900
IF(STREY(X. 1) .€T.0.0.AND.STREX(N, I} .LT.9.9) €0 TO 101 . 6910

150 IF(STREY¢N. D) .GT.STRCT.OR. ABS(STREY(N, [)) .GT.STRCID GO TO 160 6920
IF( ABS(STREY(K. 1)) .GT.STRCUY) NCRI(N, I)=51 6930

IF( ABS{STREY(N. 1)) .GT.STRCO) NCRI(N, 1)=41 . 6940
IF(STIEY(N, I} .LT.STRCT. AND.STREY(N, 1) .CT. (~STRCO?) NCRI(K, I)=31 6950
NCRI(N, [)=3 6960

G0 “TO 300 6970

151 IF(STREX(N. I).GT.STRCT.OR. ABS(STREX(N, 1)) .GT.STRCID GO TO 160 6980
. IF(ABS(STREX(T, I)).GT.STRCU) NCRICN, I)=52 6990
IFC( ABSCSTREX(K. 1)) .GT.STRCO} NCRI(N, I)=42 7000
IFCSTREX(N, 1) . LT. STRCT. ARD. STREX(K, I) .GT. (~STRCO)) NCRI(N, )=32 - 7010
: G0 TO 300 _ 7020
200 IF(ABS(STREY(N, I)).GT. STRS) GO TO 210 7030
NCRI(N, D=6 7040
GO TO 300 : 7050

210 NCRI(N,1)=9 - 7060
GO TO 300 7070

400 I1F(ABS{STREX(N, 1)) .GT.STRS) GO TO 410 7080
NCRI(N,I) =5 ) 7090,

. GO TO 300 , 7100
410 NCRI(N, D=8 : 7110
GO TO 300 7120
160 NCRI(N,I):4 , 7130
GO TO 300 . 7140
AX=STREX(N. 1) /STREY(X, I) _ _ 7150
AAA=SORT(AX¥®2, 0+ 1. 0-AX0 , 7160
AAA=—AAA+, 12X AX+1.0) 7170

' XX¥=.88+STRCOCAAA . T1ia0
YYY= AKX 7190

1F( ABS( XXX . GE./ABS(STREY(N, I) ) . AND. ABS( YYY) . CE. ABS(STREX(N, D)) CO 7200

STO 20 7210
0OK= . B8*STICU/AAA 7220

YYY= AX®XKX 7230
IF(ABSC 3000 . GE. ABS(STREY(N. I)) . AND. ABS YYY) . GE. ABSUSTREX(N, 1)) GO 7240

STO 30 _ 7250
0X= . SBxSTRCM/AAA . _ 7260

YYY= AXEXHK 727

IFC ABS( 3300 . GE. ABS¢STREY( N, 1)) . AND. ABS(YYY) . GE. ABS(STREX(K, I))) GO 7280

STO 70 7290
NCRI(N, [} =4 ‘ . 7300

GO TO 300 7310

70 NCRI(N,1)=7 ‘ 7320
GO TO 300 7330

30 NCRI(N, 1)=2 . 7330
GO TO 300 : 7350

20  NCRI(N.TD)=1 © 7360
GO' TO 300 7370

50  IF(STREX(N, I) .LE.STRCT.AND.STREY(N, I) .LE.STRCT) GO TO 119 7480
IF(STPEX(N. I) .GT.STRCT. AND.STREY(N, I} .CT.STRCT) €O TO 160 7390

IF(STREN(N, 1D .CT.STRCTY) NCRI(KN, 1) =31 7400



IP(STREY(N, 1) .GT.STRCT ucnl(n.la-sé

co TO 308 , . .
110 NCRI(N, D=1 . e
CO TO 08 _ : |
100 AX+ABS(STREY(N, D/STREX(N. D) -
YYY= ( STRCT*STRCW) /¢ AXSSTRCT+STRCU) -, ‘
1000 AXXYYY S S
IF(?BS(KXXJ.GT.ABS(STHEY(N.[)).AHD.ABS(YYY).GT.ABS(STﬂEK(N.I))) co
$TO 110 : | :
. GO TO 130 -
101 AX=ABS(STREX(N, I) /STREY(N, )}
YYY= ( STRCTESTICT) /( AX*STRCT+STRCD)
"0 AXSYYY :
IFCABS ( X500 . GT. ABS{STREX( X, 1)) . ABD. ABS( YYY) . GT. ABS(STREY(N, I})) GO
8TO 110
GO TO 131t
300 CONTINUE
RETURN
END -
SUBROUTINE STRESS
COMMON R3(480) .
COMMON NE, L, IfB, NNKN, MAX, LE, NW :
COMMON STRS,STRCO.STRCO, STRCM, STRCT. ECO, EC1, EC2, ESQ. UC
COMMON A1(20,20) .A2(84) ,B2(84) . NP1(20) ., R1{480) ,SK(20,20).C(3,3)
COMIMON T( 13) , STREX( 84. 14) , STREY( 84, 14) , STREXY( 84, 14)
COMMON SHAX. SHIN, ANCC(84. 14) , KCRI(B84, 14) , NCR10( 84, 14} , TSK( 18000)
COMMON NU.D(3.3),H(3,3) ,F(3,3) ,FX,FY, FXY. BMX, BMY, BIXY, R2(486)
COMMON ES1.NBL.TK.TK2,NLEB(25) ,NLEB2(23) ,BES(23, 10) , BES2(23, 19)
COMMON BSK(6,6) , BAS( 10) , BSS( 10) ,BIS( 10) . BAS2( 10) , BSS2( 10) , DIS2(10)
COMMON SB(20) , TBC 11) ,BW( 10) , NSL1,RSL2, NST1,NST2
COMMON STRBY(25.10) ,STREBY(25, 10) ,STRBY2( 25, 10) , STREBY2( 25, 10)
COMMON BW2( 10) , TB2( 10) ,RIBD,RIBT,RIBZ - .
WRITE(6, 1002) R1( 1) ,R1(3) ,R1(6) ,R1(9),RIC1D)
VR]TE(6.1002)R1(13).H1(l?).ﬂl(ﬂ2).ﬂl(27),ﬂ1{31)
1002 FORMAT(T(F11.7.4X)
© DO 7 i=1,MU
R2¢ D =R1C 1
7 RI(D=0.0 '
IF(NNEF.GT. 1) GO TP-5 .
D06 I31,ME
DO 6 J=1,NL
STREX(1,J)30.0 L

STREY(1, 1 =0.0

STREXY([.J)=29.0

CONTINUE

1=1

DO 1 KKX=1,NLE

DO | LLL=I,N¥W 7

NCR=1

Fy=0.

FyY=0. .

ny=0-

BMX=0.

BMY=0.

BMXY=0.

AsA2t D)

B=B2C D

READ(4) (NPICID),I11=21,200

Do 2 JJ=1,20

SptJJ1=0.0

LL=NPI1(JJ) .

IF(LL.EQ.0) GO TO 2

SB(JJy=R2(LL)

CONT UL -
STIXNO a(,25/A)x(=SB( 1)-SB{6)+5B( 1) +SB( 16))
STRYD =(.25/3) =(=SB(2)+SB(7)-SB 12)+5B(17))
STRXYO 2(.25/8) ®(-SB( 1) +SB(6) -SB( 11)+SB(16)) +( . 23/A) x(~-SD( 2) +SB(
812) +SDC [TI-SB(T))

CITRXO a(+.25/0 %x(SB(4)+SB(9}-SBC14)-SB( 19))

LUnRYo 2(=.25/B)*(SB(J)-SB(10)+SBC13)-3B(20))

176

7410
7420
7430 -
7440
7450 .

. 7960

7470
7480
7490
7300
7510
7520
7530
7540
7550
7560
7370
7580
7590
7600
7610
7620
7630
7640
7630
7660
7670
7680
7690
700
7710,
7720
7730
7740
7750
7760
7770
7780
7790
7809
7810
7820
7830
7840
7850
7860
7870
7880
7890
7900
7910
7920
7930
7940
7950
7960
7970
7980
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8000
8010
8020
8030
8040
8050
8060
8070
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8090
8100
8110
8120
8130
8140



10

50
60

119

120

300

100

CURXYO = (SB(3)-SB( 8)~SB( 13)+S0( 18) ) 7/ AxB%2.0)
IF(LLL.NE. 1) GO TO 10 : *
STRXY0=CURXY0=0.0

STRYO1=( .5/B)*x(~SB(2)+5B(7))

CURYO1=(~.3/B)*(SB(5)-5B(.10))

CONTINUE

D0 3 J=1,NL

STRX=STRHO  +.3%(T(J+1)+T(J))*CURXD

STRY=STRYO  +.3#(T{(J+1)+T(J))=CUNYD

STRXY=STRXYO +(T(J+ 1) +T(J) ) *CURXYD =, 39

IF(LLL.EQ. 1} STRYI=STRRD}+.5*(T(J+1)+T(J))?CUHXDt

CALL CONSTIT(I1,J) ' :

IF(NCRI(I,J).EQ.4) GO TO 110

IF(NCRI(I,J) .EQ.3) GO TO 120 .
STHEX(I.J)=S1TE5H!.JI?C(1.!)1STRX+C(1.2)¥STRY¥C(1.3)'STﬂXY
STREYTl.J)=STREY(l.J)+C(2.l)*STRX+C(2.2):STEH¥C(2.SJSSTHXY
STREXYtI.J!=STREXY(l.J)+C(3.l)tSTRX*C(3.2)KSTHX‘C(3.3)!STEXY

. CEC=(STREX(I,N+STREY(I.J)} 2.0

BBB=SOBT(((STEEY(I.J)-STREX(l.J))/2.0)*x2.0+(STHEXY{I.J))t:2.0)
SMAX=CCC+BBB

SMIN=CCC-BEB
ANC= . 5=ATAN( 2. 0*STREXY( I.J} /(STREY( 1,J) - (1.
IFCSTREX( I,J) .GT.STREY(I,J)) GO TO 30

ARGC( I, J)=ANG

CO TO 6@

ANGC( I,J)=ANG+3.141593/2.0 |
TFCANGC( 1.J) .LT. .9) ANGCCI,J)=ANGC(1,J)+3.141593

CO TO 100 : -

STREX( [,J)=0.0

STREY(1,J)=0.0

STREXY(1,J)=0.0

SMAX=0.0 :

SMIN=0.0

CO TO 100

CONTINUE,

IF(STREX( [,J) .GT.STREY(1.J)) GO TO 300

STREY( 1,J)=0.0

STREX( 1.J)=STREX( I,J)+C(1, 1) *STRX+C( 1,2) 2STRY+C( 1, 3) *STRXY
CO TO 100 -

STREX(1,J)=0.0

STREY( [, J)=STREY( I.J)+C(2, 1) #STRAX+C( 2, 2) *STRY+C( 2, 3) *STRXY
CONTINUE :
IF(LLL.NE. 1) GO TO 911

WRITE(6.4) J,STREX(1,J),STREY(1,J),STRX,STRY

FORMAT( I110,4(F15.8,5X)

CONT INUE

CALL CRITERICI,J)

IF(NNNK.LE.2) GO TO 3

IF(CNCRICI.J) .EQ. 1.OR.NCRI¢ 1,J) .EQ.2.0OR.NCRIC [,J) .EQ.5.OR. NCRICT,J)
$.EQ.6.0R.NCAI(1,J).EQ.7.OR. NCRI¢ [,J) .EQ.8.OR.NCRI(1.J) .EQ.9)CO TOJ
IFCRERIC1,J) . EQ.3,0R.NCRI(I,J).EQ.4) GO TO 3 :
NCR=2

CALL INLOAD(I,J)

CONTINUE

[F(NCR.EQ.1) GO TO 30’

K1=NP1( 1)

K2=NP1(2)

K3=RP1(3)

Ka=HKP1(4)

KS=NP1(D)

K6=KP1(6)

KZ=NP 1(7)

KB=NP1(8)

K9=NP1(9)

K10=NP 1( 10)

KI1=NP1C11)

KIi2=HP1(12)

K12=NP1( 13)

K14=KP1( 14)

KI5=NP1( I5)

Kl6e=NP1(16)

KIT=NP1({ 17}

K1G=NP1( 18D

K19=KP1( 19)

177

160
8160
8170
alpe
8190
8200
8210
8220

8240
8230
8260
827¢o
a280
8290

8310
8320
8330
8340
8330
8360
8370
8380
8390
8400
8410

‘8420

8430
8440
8450
8460
8470
8480
8490
8300
8310
8320
8330
8340
8530
8360
8370
8380 -
8590
8600
8610
8620
8630
8640
8650
8660
8670
8680
86990
8700
8710
8720
8730
8740
8730
oT6o
B77O
8780
T30
8800
8810
8820
8830
8840
8830
8860
8870
8880



920

!
K20= TP 1( 20) <

“IF(KI.EQ.0) GO TO 11

RI(KI)*R1(K]1)-BaFX-AnFXY ‘
IFMK.EQ.00 GO TO 12
RI{)*RI(K2) -BuFXY-ARYY
IF{KI.EQ.0) GO TO 13
RI(X3)=R1(KD)+2, OxBMXY
IFIX4.EQ.0) GO TO 14
RICK4)"R1(K4)~-B=BNX
I¥(K3.EQ.0) GO -TO 18
A1(K3)=R1(KB8)~AzBMY
IR(K6.EQ.0) GO TO 16 . A
AL(K6)*R1(K6)-BeFX+AxFXY
IF(K7.EQ.9) GO TO 17
RICKT)=RI(KY)=BeFXY+AxFY
IF(KB.EQ.0) CO ‘TO 18 _
R1(KD)=R1(XB)~2, OxBMXY
IF(K9.EQ.0) GO TO 19
RICK9)=R1(K9)~DaBMY
IF(KI10.EQ.8) GO TO 20
RU(K10)=R1(K10)+AxBMY
IF(KI1.EQ.9¢) CO TO 21 .
RICKI 1) =RICK11)+DBxFX-AxFXY
IF(X12.EQ.0) GO TO 22
R1(K12)=RI(K12) +BeFXYY-AnFY
IFtK13.EQ.0) GO TO 23
A1(X13)=R1(K13)-2.0=EMXY
1IF(K14.EQ.9) GO TO 24
R1(K14)sR1(K14)+B=BMX
IF(KIS.EQ.0 GO TO 23
RIC(KIZ)sRI(KI3)-A=BHNY -
IF(K16.EQ.0) GO TO 2¢
RI(K16)=R1{K16)+DBxFX+ AxFXY
IF(KI?.EQ.0) GO TO 27
RICKIT)Y=R1(KIT) +BxFXY+AxFY
IF(K!B8.EQ.0) GO TO 28
R1(K!B8)=R1(K18)+2. OxBMNY
IF(KI19.EQ.0) GO TO 29
RI(K19)=RI(I{19)+BxBMY
IF(K20.EQ.Q) GO TO 30,
RI(K20) s RICE20) +AxBMY
CONTINUE

WRITE(6,9) 1

FORMATI( 13} .
IF(LLL.EQ.1.0R.LLL.EQ.6) GO TO 31
GO TO B

CORTINUE

CALL BSTRESS (I,KKK,LLL)

I=1+1

CONTINUE

NHER=HIHNN+ 1

REWIND 1t

REWIND 2

Do %0 =1 ,NE .

REAIN2) ((SK(!,J),J=1,20 ,1=1,20)
WIITE( 1) ((SK(I[,J),J=21,20),1=1,20)
CONTINUE

RETURWN

END

SUBROUTINE BAKD(A,B,N,M,LT.DETY
NDIMENSION ACL),B(1)

M=t

NM=xM

NM1=H-MM

IF (LT.NE.1) CO TO 33

MpP=11+1

KK=2

FAC=DET

'A(l)=l./SQnT(A{}))

BICGL=AC])

S
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8896
89060
8910
8920

- 8930

8940
a930
8960
8970
8980
8990
9000
9010
9020
9030
9040
9030
9060
9070
9080
2090
9100

9110

2120
9130
9140
91380
2160
9170
9180
9190
9200
9210
9220
9230 .

© 9240

9250 -
9260
927
9280
9290
9300

9310

9320
9330
9340
9330
9360
9370
9380
9390
2400
9410
9420
9430
9440
9450
9460
9470
9450
9490
9300
9510
9520
9530
9340
9530
9560
9370
9580
9590
9600
9610
9620



64
65

66

A~

99
63

62

ot
-9

L1
o180

-

SML=A( 1) . .

AC2)2A(2)%ACT)
ACMPY = 1. /SQRT(A(MPY-A(2) ®A(2))
IF(A(MP) . GT.BIGL) BIGL=A(MF)
IFCACMPY . LT. SML)SHL=A(HP)
MP=MP+M
DO 62 J=MP,NM1,M )
JPaJ-MM _ -,
MZC=0
IF{KK.GE.ID GO TO 1
KK= KK+ 1
Il=1
Jc= 1 . .
GO TO 2 .
KX=KK+M :
1 1=KK-MM
JC= KR-MM
DO 65 I=KX,JP,MM e
IF(ACD) .EQ.0.)C0 TO 64
GO TO 66
JC=JC+M
MZC=1MZC+1
ASUM1=0.
GO TO 61
MIMZC= MITRMZC
11=11+MZC
KM= KX+ MMZC
ACEID = ACKID *ACIO)
IF(KM.GE.JP)GO TO &
KJ= K3+ MM
DO 5 1=KJ,JP,MM
ASUM2=0.
IM=s [-MM &
II=11+1 '
KI=11+MMZC
DO T K=KM, IM,}
ASUM2= ASUM2+ACKIY*ALR)
KI=KI+MM
ACD =CACT) —ASUM2) *A(KD)
CONTINUE
ASUM1=9. : !
DO 4 K=K,JP,MM
ASUM1= ASUMI+ACK)Y ®ACTO
S=A(J) -ASUMI
IF(S.LT.0.)DET=S
IF(S.EQ.0.)DET=0.
IF(S.GT.6.)G0 TO 63
NROW=( J+MMD #M
WRITE(G,99) NROW -
FORMAT( 3GHOERRORL CONDITIOR ENCOUNRTERED IN ROV, 16)
RETUTWN .
A(J)= 1. /SART(S)
IF(A(J) . CT.DIGLYBIGL=AC(T)
IFCACD) .LT.SML)SML=A(D)
CONTINUE
IF(SML.LE.FAG*BIGL) GO TO 54
GO TO §3
DET=0
RETURN ,
DET=SML-BIGL
BOL 2B D %A( D
Ki=1
Ki=1
J=1
DO B L=2,N
BSUM1=0.
LMsL-{
J=J+M T /
IF(KK.GE. u)co TO 12
KE=KIS+1
GO TO 13
KX= KK+M
Ki=Ki1+1
JK=1X

179

9630

9640
9650
9660
9670
29680
9699
9700
9710
9720
9730
9749
9730
9760
9770
9780
9790
9800
9810
9820
9830
2840
98%0
9860
9870
2880
9899
9900
9910
9929
9930
9949
9950
9969
9970
9980
9999
KEXE
rxLR
KRR
FWERK
FNER
EXK
rXEX
XXX
P T
RARE
xXER
xEER
xXEK
K
RREX
XK
WEER
EXEK
REXX
*EXK
KRR
REXK
REKR
REXK
PP
KEER
RREK
EHEX
XXEK
PRy
T
XX
P+ 43 4
XEREXE
KR
EEEK
TEEK



" DO 9 KeKI.LM

BSUM1=RSUMI+AC JIO xB( KO

JXa JK+ MM

CONTINUE

B(L) = ( B( L) -BSUM1) *A(JY - "
BCN) «B( ) ®A(NMI1) : :

NMM=NM1

NN=N-1
ND=}

DO 10 Lal ,NR

BSUM2=0.

NL=N-L

NLi=N-L+1

MMz NMM-M
NJi=KRMM

IF(LL.GE. H)ND’ND-I
DO 11 K=KRL1,RD

NJ1aNJ1+1

BSINE2= BSUMZ+A(NJI 1) xB(ED . )
CONTINUE - . “
B(KRL)={ B(NL) ~-BSUM2) *A( NMID

RETURN
END

SUBROUTINE RSTIFF(M)

COMMON
COMMORN
COMMON
COMMON
COMMON

H3( 4807

NE.NL,NB,NNNN, MAX,NLE,NVW

STRS,STRCO, STRCU, STRCM, STRCT, ECO, ECI,EC2, ESO,UC -
Al(20,20),A2(84),82(84) ,NP1(20) ,R1(4808),S5K{20,20),C(3,3)
T(13) ,STREX( 84, 14) ,STREY( B4, 14) , STREXY( 84, 14)

COMMONL SMAX, SMIN, ANGC(84, 14) ,NCRI(84, 14) ,NCR10( 84, 14) , TSK( 18000}
COMMON NU,D(3,3),H(3,3),F(3,3) ,FX,.FY, FXY, BIMX, BMY. BMXY, R2( 480)
COMMON ES1,NBL,TK, TIZ2,NLEB(2S5),KLEB2(23) ,BES(25, 10) ,BES2( 25, 10)
COMMON BESK(6,6),BAS(10}),BSS(10),BIS(10),BAS2(10),BSS2(10) ,BIS2(10)
COMMON SB(20),TB(11),BW(10) NSL1,NSL2,NST?, NST2

coMMoN STRBY(25 107, STREBY(”S 10}, STﬂBY“(“ﬁ 1Q) , STREBY2( 23, lO)
COMMON BW2(10), TB“(IO) RIBD, RIBT, RIBZ

A=AZ(N)

RAS=RIBDxRIBT*2.0

RSSanSx=RIBZ

RIS=MAS*RIBZ=RIBZ
DO 1 {II=1,6 :
DO 1 JJJ=1,6
BSK(III,JJJ)=0.4Q

BSK( 1§,

1) =ESO=RAS/( 2. 0x%A)

BSK(1,3)==-ESO=NSS/( 2, 0:xA)
DSK(1.4)=BSK(4,1)=-B3K(1, 1}
BSK(1,6)=BSK(6,1)=-0SK(1,3)
BSK(Z,2) =12, 0xESO*RIS/{ A¥AXAxB8.0)
DSK(2,3)=BSK(3,2}=6,0xESOxRIS/{ 4. 0%xA%A)
BSK(2,5)=2BSK(5,2)=-BSK(2,2)
BSK(2,6)=D0SK(6,2)=B3K(2,1
BSK{(3,3) =4, 0xESQ*RISA(2.0xA)
BSK(3,4)=DBSK(4,3)=BSK(1.6) v
BSK(3,3)=BSK(3,3)=-BSK(2,3)
BSK(3,6)=DSI(6,3)=ESOxRIS A
BSK(4,4)=01SK(1, 1}
BSK(4,6)=BSK{6.4)=BSK( 1,3
BSK(5,3)=BSK(2,2)
BSK(3,6)=DBSK(6,3)=~BSK(2, 3}
BSK(6,6)=BSK(3,3)
SK(1‘1)=SK(1.|)+BSK(I.1)
SK(6,6)=5K(6,6)+INSK( 1|,
snasaammsnmm~c
SK(8,0)=5K(8,8)+DSK(2,2)
SK({4,4)=8K(4,4)+RSK(3.3)
SI{9,9)=SK(9,9)+BSK{(3.,3)

SK(11,

11)=8K(11,11)+BSK(4,4)

SKU16,16)=5K( 16, 16)+BSK( 4, 4)
SK(13,13)=8SK( 13, 13)+BSK(3,5)
SK( 18, 18)=SK({ 18, 18) +BSK(5,3)

180
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MK XK
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RE K
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10
20

SK( 14, 14)=2SK( 14, 14)+BSK(6,6)

SK( 19, 19)=8SK( 19, 19)+BSK(6,6)
SK(1,2=8K(3, N2SK(1,3)+BSK(1,2)
SK(6,8)=8SK(8,6)=SK(6,8)+BSK(1,2)
SK(1.4)35K(4, 1)=SK(1,4)+BSK(1,3)
SK(6.9)=SK(9,6)*SK(6,9)+BSK(1.3)
SK(1,11)=8K(11,1)=8K(1,11)+BSK(1,4)
SK(6.16)=5SK( 16,6)7SK(6, 16)+BSK( 1. 4)
SK(1,13)28K(13, 1)=SK(1,13)+ BSK(1,3)
SK(6, 1B)=5K( 18,6)=SK(6, 18)+ BSK(1,3)
SK(1,14)=SK( 14, 1)=SK( 1, 19)+BSK( 1, 6)
SK(6,19)=5K( 19,6)aSK(6, 19)+BIK( 1,6) -
SK(3,4)=SK(4,3)=8K(3,4)+BSK(2,3) _
SK(8,9)=SK(9,8)3SKt8,9)+BSK(2,3)
SK(3,11)=SK(11,3)=8K(3, 11)+BSK(2, 4)
SK(B8.16)=5SK( 16,8)=SK(8, 16)+BSK(2,4)
SK(3,13)2SK(13,3)3SK(3, 13) +BSK( 2,5
SK(8, 18)aSK( 18,8)=5K(8, 18)+BSK(2,5)
SK(3, 14)=5SK( 14,3)3SK(3, 14)+BSK( 2, 6)
SK(8,19)=8SK(19,8)=SK(8, 19)+BSK(2,6)
SK(4.11)=8K(11,4)=SK(4, 11)+BSK(3, 4)
SK(9,16)=SK(16,9)=SK(9, 16)+BSK(3.4)
SK(4.13)=SK(13.4)=SK{ 4. 13)+BSX(3. 3
SK(9, 18)=SK(18,9)=SK(9, 18) +BSK(3,5)

_SK(4,14)=5SK(14,4)=SK(4, 14)+BSK(3,6)

SK(9,19)2SK( 19,9)3SK(9, 19) +BSK(3.6)

SK(11, 13)=SK( 13, 11) =SK( 11, 13) +BSK( 4,5

SK( 16, 18) =SK( 18, 16) =SK( 16, 18) +BSK( 4, 3)

SK( 11, 14)=SK( 14, 11)=SK( 11, 14) +BSK( 4,6

SK( 16, 19)2SK( 19, 16) =SI( 16, 19} +BSK( 4, 6)

SK( 13, 14) =SK( 14, 13) =SK( 13, 14) +BSK( 5, 6) .
SK( 18, 19)=SK( 19, 18) =SK( 18, 19) +BSK( 3, 6)

RETURK .

END

SUBROUTINE BSTIFF (M)

COMMOH R3(4B0)

COMMON NE,NL,NB, NNNI, MAX, KLE,NW

COMON STRS.STRCO, STRCU, STRCM. STRCT. ECO, ECI, EC2, ESO. UC

COMMON A1(20,20),A2(84),B2(84) ,NP1(20) , R1(488) , SK(20,20) ,C(3,3)
COMIION T(15).STR£x(a4.14).STREY(84.14).STnExY<B4.14)

COMMON SMAX,SMIN, ANGC{84, 14) , NCRI(D4, 14) ,KCRIO( 84, 14) , TSK( 18000)
COMMON NU,D(3,3),H(3,3),F(3,3),FX,FY,FXY, BMX, BMY, BMXY, R2( 480)
COMMON ES1,NBL,TK,TK2,NLEB(25) ,NLER2(25) ,BES( 23, 10) , BES2(23, 18)
COMMON BSK(6,6),BAS(10),BSS(10),BIS(10),BAS2( 10) ,BSS2( 10}, BIS2( 10)
COMMON SB(20) ,TB(11},BW(10),NSL1,NSL2,NST1,KST2

COMMON STRBY( 23, 10) ,STREBY(23, 10) ,STRBY2( 23, 10) , STREBY2( 23, 10)
COMMON BW2{ 10) ,TB2( 10) ,RIBD, RIBT,RIBZ

B=B2( N}

Do 10 iI=1,NLE

IF(N.EQ.NLEB(II)). GO TO 20

IF(N.EQ.NLEB2(I1)) co TO 120

CONTILUE .
GO TO 200 :

I=11

IF(NNNN.GT.1) GO TO 25

DO 26 Kat,lNBL

BES(1,X)=ESO

CONTINUE

DO 30 Il=1,6

DO 30 JJ=1,6 -

BSK(11.JJ)=0.0

DO 50 K=1,NBL

BSKC 1, 1) =0SK( 1, 1) +BES( 1, K) *BASC(IO /(2. 0%B)

BSK( 1. 3)=BSK(3. 1) =BSK( 1,3) +BES( [, K) *BSS{ K /(2. 0xB)

BSK( |, 4) =BSK(4, 1) =~BSK( I, 1)

BSK(1,6)=BSK(6,11=~BSK( 1. D)

BSK(2.2) =RSK(2.2)+12. 0*BES( I, K) *BIS( K0 /( BXxB£B#8. 0)
BSK(2,3)=BSK(3,2)=BSK(2,3)-6.0xDES( I, KO =xBIS(K) /{ 4. 0xBxB)
BSK(2,5)=ESK(3,2) =~BSK( 2, ) ’
BSK(2,6)=BSK{6,2)=BSK(2,3)

181
XY
xEER
xEX™
xEER
ERXE
22
ERXK
ERXE
KEXE

XXX
XXX

| mExs

XX
EEXEXX
EXER
XXX

CEXER

EXKE
XXX
EERK
XXX
XXX
XX
XXX
EXXR
XXX
ERRR
*IXL
ERXX
35
EXXR
EXEX
XXX
XEXX
EREX
EXEK
EREE
EEXER
XXX
AERE
EXX¥
EXRE
EEXEK
XXX
EEXK
ERKXK
KEXE
AXXE
EEXE
XK
XXX
EXET

. KRR

XXX
EXXX
XEKXXK
XXXX
EXXEK
REEX
XXRAX
EEEXX
EXEX
EXEKX
EEXX
KEXEX
XEXX
LXK
xrxx
FEKX
EEEX
XLXX
EXXX
EEEX
XXX



5o

120

126

125

130

130

.~

BSK(3,3)aDSK(3,3)+4,0XBES( I, IO *BIS(J0 /(2. 0%xB)
BSK(3,4)=DSK(4,3)*DIK(1,6)
BSK(-3,05)»BSK(3,3)=-DSK(2,3) ‘
DSK(3.6)=DSK(6,3)=D8K(3, 6)+BES(I K)*B[S(IO/B
BSK({4,4)=D3K(1,1)

BSK(4,6)=DSK(6,4)=BSK(1,3)

BSK(3,8)=BSK(2,2)

BSK(S5,6)2B3SK(6, 5)=-BSK(2 3)

BSK(6,6)=DSK(3,D)

CONTINUE

SK(2,2)=8SK(2,2)+#BSK(IL, 1D . -
SK(3,3)=8K(3,3)+BSK(2,2)
SK(5,3)=SK(3,3)+BSK(3,3)
SK(7.,7)aSK(7,7)+BSK(4,4)
SK(8.8)=SK(8,8)+BSK(5,5)

" SK( 10, 10)*SK( 10, 10)+B3SK(6,6)

SK(2,3)s8K(3,2)=9K(2,3)+RSK(1,2)
SK(2,5)1s8K(5,2)28K(2,3)+BSK(1,3)
SK(2,7)28K(7,2)=8K(2,7)+BSK( 1, 4)
S$K(2,0)=SK(B,2)3aSK(2,8)+BSK(1,3)
SK(2,10)sSKX( 10,2)=8K(2,710) +BSK( 1,6)
SK(3.%3)2SK(5,.3)=SK(3,3) +BSK(2,3)
SK(3,7T)s8K(7,3)38K(3,7)+BSK(2,4)
SK(3.8)SK(8,3)=SK(3,8)+BSK(2,5)
SK(3, 10)sSK(10,3)*8K(3, 10)+BSK(2,6)
SK(3,7)sSK(7,5)=SK(5,7)+BSK(3,4)
SK(%,8)38K(8,8)=SK(3,8)+BSK(3,5)
SK(5,10Y=5K(10,3)25K(5, 10) +BSK(3, 6)
SK(7.8)2SK(B,7)28K(7,.8)+BSK(4,3)
SK(7,10)sSK(10,7)3SK(7, 10)+BSK( 4.6)
SK( 8, 10} «SK( 10,D0)=SK(8, 10) +BSK(5,6)
QI 4, 4)sSK( 4, 4) +( ESOXTEK) /(3. 0:xB)
SK(4,9)=5K(9,4)2SK(4,9)~( ESO*TK) /(5. 0%B)
SK(9,9)28K(9,9)+(ESOXTK) /{3, 0%xB)
c0 TO 200

1=11

IF(BW2{ 1) .£Q.0.0) GO TO 200
IF(NNWN.CT. 1) GO TO 125

Do 126 K=1,NBL .
BES2( [, K =E50

CONTINUE

DO .130 [1=1.6 A

DO 130 JJ=1,6 ‘

BSK(11,JJ1=0.0

- DO 130 K=1,NBL

BSK('1, 13=BSK( 1, 1)+BES2( 1, KY*BAS2(R) /(2. 0%B)
BSK( 1,3)=BIK( 3, 1) =BSK( 1, 3)-BES2( 1, K) *RSS2(K) /(2. 0*B)
BSK(1,4)3BSK(4, 1)=-BSK(1, 1)
BSK(t,6)=BSI(6, 1)=2-BSK(1,3)
BSK(2.2)=BSK(2.2)+!2.0*B€SE(I.K)*B[S2(K)/(B*B*B*B.0)
DSK(2,3)=BSK(3,2)3BSK(2,3)+6,04:BES2( 1, K) *xBIS2(KD /(4. 0xB¥B)
BSK(2,3)=BSK(3.2)a-BSK(3, 2)
BSK(2,6)=BSK(6,2)3BSK(2,3)
BSK(3,3)=NSK(3,3}+4.0xBESI( [, K) *BI82(K) /(2. 0%xB)
BSK(3,4)=DSK(4,0y=B5(1,6)
BSK(3,3)3BSK(3,3)=-BSK(2,3)

BSK(3,6)=0SK(6, 3)=DSK(3 6)}+BES2(1, K)*BIS2(K)/H
BSK(4,%)=BSK( 1,
BSK( 4, 6) =BSK(6, 4) BSK( 1.3
BSK(5,3)=HSK(2,2)
BSK(3,6)=8SK(6,3)=-BSK(2,I
BSK(6,6)=BSK(3,)
CONTINUE
SK( 12, 12)=SK( |2, 12)+BSK( 1, 1)
SK(13,13)=SK( 13, 13)+BSK(2,2)
SK(15,19)=28K( 13, 13)+BSK(3,3)
SK(17,1T)=8SK( 17, 17)+1DSK(4,4)
SK(18, 18) =SK( 18, 18) +BSK(§, 3}
SK(20,20)=25K(20,20)+DB5K(6,6)
SK(12,13)=8K( 13, I2)=SK( 12, 1 +BSK( {,2)
SK(20,20) =SK(20,20)+B3K(6,6)
SKOI12, 13)=SK( 13, 12)=SK{ 12, 13)+BSK(1,2)
SKO12.135)=25K(13, 12)=8SK( 12, 15)+BSK(1,3)

< SKOI2.1ya8KO17, 12)=SK( 12, 1?)+BSK( 1, 4)
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RREE
ERRK
RERE
KEXX
KERE
EREE
KX
rKEXR
R
KR
ALK
RERE
EXRE
EEEX
RERE
wERE
RXEEX
XXX
EEEX
REAR
3.3+

| XK

L4 5
KRKK
WEXK
bt 4 3 3
bt 2 2
P2t
RRKK
RHRNK
EREXK
E 2+
RERR
RNk K
wIEK
b+ 4
RREK
XK
L3 2t
xkxx
RERX
RRXKE
XEXX
KXk
2+

REXR

WK
HAEKK
FET TS
FETES
HIEEE
IR
FAXE K
kKR
A
RN
FET
KRR
RERK
kXK
KRR
BT
KKK X
XKk
FREE
ET T Y
FkER
EF 0
KKK
REEK
KKER
rrrk
KEAK
EEEK
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40

1

10
13
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 SK(12, 18)29K( 18, 12) 2 SK( 12, 18) +BSK( 1,8)

SK(12,20)=8K(20, 12)=8K( 12,20)+BIK( 1, 6)

SK( 13, 13)=SK( 13, 13}=8K( 13, 18) +BSK(2,D)
SK(13,17)=8K(17,13)s8K( 13, 17)+BSK(2,4)

SK( 13, 182 sSK( 18, 13)+8K( 13, 18) +BSK( 2, 3)’
SK(13,20)2SX(20, 13)*8K( 13,20} +BSK( 2, 6)

SK(135,1728K( 17, 18 =8K( 13, {7)+DSK(3,4) - '
SK( 13, 18)28K( 18, 10)«SK( 13, 18)+8B8K(3,5) -
SK(18,20)25SK(20, 13)»SK( 18,20)+BSK(3,6) .

SK( 17, 18)=SK( 18, 17)=SK( 17, i8) +B3K( 4,8) - *
SK(17,20)=SK(20, 17)+SK( 17,20) +BSK( 4,6)
SK(18.20)'5K(2ﬁ.18)lSK(18-20)+BSK(5.6)

SK( 14, 14)35K( 14, 14} +(ES0=TK2) /(5. 0xB)

* SK(14,19)385K( 19, 14)=SK( 14, 19) ~(ESOsTK2) /(5. 0=B) ’
- SKU19,19)28K( 19, 19)+(ESO=TK2) /(3. 0=8) S

CONTIIUE
RETURN
END

1

SUBROUTINE BSTRESS (1,KXK,LLL)

COMION R3(480)

COMMON NE.NL,IB, NNNN, MAX, NLE, NW

COMMON STRS,STRCO,STRCU, STRCM. STRCT, ECO, ECt, EC2, £SO, UC .
COMMON A1(20,20),A2(84),B2(84) ,NP1(20) ,R1(480) ,SK(20,20) ,C(3,3)
COMMON T( 13) , STREX( 84, 14) . STREY( 84, 14) , STREXY( 84, 14) .
COMION SMAX. SMIN, ANCC(B4, 14}, NCRI(-84, 14) . NCRIO( 84, 14) , TSK( 18000)
COMMON NU,Dt3,3),H(3,3),F(3,3),FX.FY,FXY,BMX, BMY, BMXY, R2(480)
COMMON ES!,NBL,TK, TK2.KLEB(25) , NLEB2( 23) , BES( 285, 10) , BES2( 23, 10)
COMMON BSK(6,6) ,BAS( 10), BSS( 10) ,BIS( 10) , BAS2( 10) , BSS2( 18) , BIS2( 18)
COMMON SB(20),TB( 117 ,BW( 10) ,NSL1, NSL2, NST1, NST2

COMMON STRBY(23.10) ,STREBY(23, 10) ,STRBY2( 23, 10) , STREBY2( 25, 10)
COIMMON 'BW2( 10) , TB2( 10) , RIBD, RIBT, RIBZ

IF(NNNN.CT. 1) GO TO 2

IF(LLL.EQ.6) CO TO 4@

DO 1 J=1,NBL

STREY(KKX, J)=0.0

STREBY( KKK, J)=90.0

o TO 2

CONTINUE

DO 4 J=1,1BL

STRBY2( KXX, J)20.9

STREBYZHKKK,J) =0.0

co

B=B2( )

IF(LLL.EQ.6) €O TO 10

STRBYO=( . 50/B) x(-SB(2)+SB(T))

CURBYO= ( -.50B) 2(SB(5) =SB( 10))

GO TO 15

STABYQ=( .50-B) =( =SB I12)+SB(17)) M
CURBY(Q=(-.30/8)x(SB( 15)-SB(20})
CONTINUE )

DO 3 J=1,NBL

IF(LLL.EQ.6) GO TO 20

STROBY( KKK, J) =STROYO+. u*(TB(J+l)+TB(J))*CU“BYD*STEBY(KKK J)

STREDY( KK, J) = STIEBY( KKK, J) + ( STRBYO+ . 3x( TB(J+ 1) +TB(J) ) xCUNBYO) xBES
8{ KKI{. ) .

GO TO 33

CONTINUE

STRBYZ2( KKK, J) =STUBY2( FXK, J) +STRBYO+ . 3x{ TB{ J+ 1} + TB( J) ) xCTRBYO

STREBY2( KKK. .J) =STREBYZ( KKK, J) +( STRBYO+CURBYOx( TB(J+ 1) +TB( J} ) x . 501 %
SDESZ(KKX. J)

CALL BCONST(EXK.LLL..)

CONTINUE )

IF(LLL.EQ.&) GO TO 30

WRITE(6,5) (STREBY(KKX,J).J=1,0BL)

FORMAT(QF10.2)

WRITE(6,6) (STRBY(KKK,J) ,J=1,lIBL)

FORMAT(BF10.7)

GO0 TO 100

CONTIRUE . !

WILITE(6,5) (STREBY2(KXX,J},J=!,NBL)

18%

bt
bt b2 ]
KRR
xRk
wRAK
L2 15
3 1 5 ]
KK
L2 2]
HRAKN
ERRR
EARRKR
L2 2t ]
b2 15
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RERR
RERE
XERK
KKK
AKX
RXXK
RTKK
RN
HERE
AWK
xEEK
RIOKK
E2 2
RERK
R
xREK
EERK
EXRK
XRKK
E et 2]
WRER
AKX
REKK
RAKK
E3 ¢35
KRR K
P2t
REKE
ERXK
KKE
REEW
LS
£3
WRER
XK
XN
XA
EXRK
XK
MR
REKR
£ B3
XARE
TEKK

ERER

AR
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LXK
XXX
EXKK
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XXX
xRk
EXEX
XEEEK
FEEXK
XKEXXR

‘Exxw | °
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WRITE(6.6) (STRBY2(KKK,J),J=1,NBL)
CONTINUE )
RETURN .

"END

SUBROUTINE BCONST(KKXX,LLL,J)
COMMON R3(480)
COMMON NE,NL.NB.NIYNN, MAX,RLE, NW
COMMON STIS, STRCO, STRCU, STRCM, STRCT, ECO, EC1,EC2,ES0O,TC
COMMON Al(29,20),A2(84),B2(84) ,NP1(20),R1(480),5K(20,20),C(3,.3)
COMMON T( 13}, STHEX(84 14) STREY(BQ 14}, STHEXY(84 14)
COIMMON SMAX,SMIN, ANGC( 34, 14) NCR1( 84, 14) NCRIO(D4, 14), TSK(IBOGO)
corron nU,D(3,3) ,H(3,3) ,F(3, 3) FX, FY,FXY, BITX, BMY, BMXY, R2( 480)
COMMON ESI.NBL.TK.TK2.NLEB(25).NLEBQ(ZS).BES(25.10);BES2(25.10)
COMMON BSK(6,6),BAS(10),BSS(16) ,BIS(10).BAS2( 10),BSS2(1¢),BIS2( 18)
COMMON SB(20),TB(11),BW(1a) ,NSL1,.NSL2, NST1, NST2
COMMON STRBY(23, 10),STREBY(23J, 10) , STRBY2( 235, 10) , STREBY2( 23, 1)
COMMON BW2( 10),TB2(10),RIBED, RIBT,RIBZ
IF(LLL.EQ.6) GO TO 3
IF(ABS(STRBY{ KKK, J)).GT.{STRS/ES0}) GO TO 1
BES{ KKK, J) =ESO !
GO TO 2 '
CONTINUE
IF( ABS(STRBY( KKK, J) ) . GT. 10. 0x(STRS/ES0)) GO TO 3
BES(KKI,J)=0.90
GO TO 2
BES(KFK, J)} 23000000,
GO TO 2
IF(ABS(STRBY2(KFK,J)).GT.(STIS/ES0)) GO TO 4
BES2(KKK, J)=ES0O
GO TO 2
CONTINUE
F(ABS(STRBY2(KEK,J)) .GT. 10.0%(STRS/ES®)) GO TO 6
ES2(KEK,J})=20.0
GO TO 2
BES2( KKK, J) =3000000. epy
CONTINUE
RETURN
END
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XEXX

ZRER
XXX
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EXE
ERRE
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