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ABSTRACT

The problem of on-line identification of linear multivariablé
discrete-time systems from input-output data is considered. A study has
been made of the relative effectiveness of the four different nodels
used in the area of idéntirication of linear multiéariable systgms
(transfer-function matrix, impulse response matrix, input-output.
difference equation and state space). The features of éach model and
its effect on the complexity of the identification algorithm as well as
the bias of the parameter. estimates while using the ordinary
ieast-squares method have been studied. Different on-line algorithms
have been proposed for the identification of the given system directly
iﬁ each of the four different model representatigns.l Theée algorithms
estimate the parameters of the 3system from noisy ﬁeasuremeﬁts'and no
knowledge of the noise characteristics is required. fhe idgntificatiopr
of a given multivariable system has been decomposed into the
identification of m subsystems (where m is the number of outputa) and
the parameters of each subsystem are estimated independently from each
other. The'problem of structure determination has been consldered, and
algorithms have been proposed for the estimation of the structurﬁl
parameters of the transfer-{unction matrix and the .state space
'representations from nolse-free as.well as noisy measurements. Also, a
two=-stage bootstrap algoritmm has been derived for combined parameter

and state estimation of linear multivariable systems. ) .

iii



ACKNOWLEDGEMENTS | i
b s s s
- The autho *wiphea to express his sincere appreciation to Dr. N.K:
Sinha for expert gui&anoa and supervision throughout the couﬁse of this
work. He algb thanksnnr.-d.w. Bandler, Dr. I.Z. Chornefko and Dr. j:ﬁ.
MgéGregor, members of ﬁia supervisory comﬁittee. for theif cuntinuing'
intereat. |
it is the authoé's 'pleaSure to. acknowledge useful discﬁssions
with other colleagues at McMaster. Without being exhaustive they are S.
Azim, Dr J. Hickin, 7. El- Razaz, Dr. H.L. \_Egl-Malek and M.R. Rizk.
Thanks are due to Miss P. Dillon (Word Processing Centre) for her
cheerful and excellent typing of the manuscripg.
The author especlally wishes to expreas his apﬁreciation for the

encouragemsnt and help from his wife, Hanaa.

iv



&

‘TABLE OF CONTENTS

PAGE
ABSTRACT ' ' 114
ACKNOWLEDGEMENTS ' iv
LIST OF FIGURES . ix
LIST OF TABLES i X
CHAPTER 1: INTRODUCTION : 1
1.1 Introduction to the Problem ) 1
1.2 Contents and Organization of the Thesais 3
CHAPTER 2: EFFECT OF THE. CHOICE OF MODEL ON THE PROPERTIES v b
OF THE IDENTIFICATION ALGORITHM
2.1 Introduction - 6
2.2 Statement of the Pfoblem ' ‘ T
2.3 Model Representation 9
2.3.1 Transfer-function Matrix 9
2.3.2 Impulse Response 11
2.3.3 Input-output Difference Equation 12
2.3.4 State Space ) 14
X - .
2.4 Effect of the Choice of Model on the Bias i6
of the Parameter Estimates Using the Ordinary
Least-squares Method
2.4.1 Transfer-function Matrix Hepresentgfion 17
2.4.2 Impulse Response Representation 18
2.4.3 Input-output Difference Equation 19
Representation
2.4.4 State Space Representation 19
2.5 Results of Simulation ' ' 20

2.6 Concluding Remarks 27



. TABLE OF CONTENTS (continued)

PAGE
CHAPTER 3: IDENTIFICATION OF THE TRANSFER-FUNCTION ' 28
MATRIX MCDEL ’
3.1 Intnoduction - - 28
1 . .

3.2 Recursive Estimation of Model (2.4) ) 32
3.2.1 Formulation of the Problem L 32
3.2.2 System Decomposition 33
3.2.3 The Identification Algorithm 34
3.2.4 ‘Simulation Results . 38

3.3 Identification of a General Transfef-function Matrix 39
3.3.1 Introduction : ’ 39
3.3.2 Problem Formulation . 42
3.3.3 System Decomposition by
3.3.4 Noise-free Case n 45

3.3.4.1 Parametric Identification 45
3.3.4.2 Recursive Estimation of n, from 46
Noise-#ree Data o
3.3.5 Noisy Case " 48
3.3.5.1 Parametric Identification in the 48
Presence of Noise
3.3.5.2. Estimation of n, from Noisy Data 50
by the Residual Error Technique
3.3.6 Results_of Simulation 52
3.4 Concludigg\zg;:;ks 56
CHAPTER IDENTIFICATION OF THE IMPULSE RESPONSE SEQUENCE 61

b1 ntroduction - 61

h.2 Stochastic Approximation for the Estimation of 62
the Markov Parameters
4.2.1 State Space Realization 65
4.2.2 Simulation Results 66

4.3 Estimation of the Markov Parameters by Cross- 69
correlation - -

4.3.1 Results of Simulation T2

4.4 Concluding Remarks ' 75"

vi



TABLE OF CONTENTS (cont inued) :
‘ : PAGE

CHAPTER 5: IDENTIFICATION OF THE STATE SPACE MCDEL 76
5.1 Intro@uction N B 76
5.2 A Survey of State Space Identification Algorithms 7
5.3 fA Proposed Algorithm for Structure Determination 84
of a Canonical State Space Model
Formulation of the Problem 85
The Noise-free Case 89
The Holsy Case 91
«3.4/ Results of Simulation 93
5.4 Algorithm Combining Stochastic Approximation and 101
Pseudo=-inverse
5.4.1 Introduction 101
5.4.2 Statement of the Problem 101
5.4.3 Development of the Algorithm . 102
5.4.4 Results of Simulation 106
CHAPTER 6: COMBINED PARAMETER AND STATE ESTIMATION * 114
6.1 Introduction : 114,
6.2 Formulation of the Problem 116
6:5 Parameter Eatimation 17
6.3.1 Proof of the Unbiasedness of the 119
Parameter Estimates
6.4 State Estimation : 120
6.5 Results of Simulation 121
CHAPTER 7: CONCLUSIONS . 126
7.1 Suggestions for Further Research 130

vii



whi

TABLE OF CONTENTS (continued)

o
r

APPENDIX I THE RESIDUAL ERROR TECHNIQUE
-

APPENDIX II PROOF OF CONVERGENCE OF STOCHASTIC
APPROXIMATION ALGORITHM

REFERENCES

viii

S

PAGE
135

138

144



FIGURE

3.1

3.2

5.1a
5.1b
5.2a

5.2b

LIST CF FIGURES

Linear multivariable discrete-time system

Estimation of the structural index nl for the cases
o0 =0,1and ¢ = 0.3

Estimation of "the structural index n, for the cases
g = 0.1 and o = 0.3

Rate of convergence of the parameter estimates for the
case ¢ = 0.1

Rate of convergence of the parameter estimates for the

case ¢ = 0.3

Rate of convergence of the proposed stochastic

approximation algorithm

Residual error plot of the ist output‘of examplg 1
Residual difference plot of the 1at output of example !
Residual error plot of the 2nd output of example 1
Residual difference plot of the 2nd output of example 1
Residual difference plot of the two outputs of example

0.3

Rate of cbnvergence for subsystem 1 for case 2 (¢

v

2

)

Rate of convergence for subsystem 2 for case 2 (o = 0.3)

Rate of convergence of the parameter estimates for 1000
iterations :

Error norm of the state estimates for 1000 iterations

ix

PAGE

54

55

58

59

68

100

i

112

123

124



TABLE -

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4
4

4.2

4.3

4.4

5.2

5.3

LIST 6F TABLES

Eatimate of the parameters
matrix model

Estimate of the parameters
model

Estimate of the parameters
difference equation model

Estimate of the parameters

of the transfer-function
of the impulse response
of the input-output

of the state space model

Combarison of the arithmetic operations per iteration

Results of simulation of the given example after 150

iterations

Comparison of the computation effort per iteration

for the given example

Estimate of the parameters

after 900 iterationa

Final estimate of the Markov parameters using

stochastic approximation

Estimate of the state space matrices

Final estimate of the Markov parameters using cross-

correlation

Estimate of the state space matrices

Compariscn of the estimate of the parameters of the
input-output model after 400 iterations

Comparison of the estimates of the system matrices

for case 2 (g = 0.3)

Comparison of the total computation time for 490

iterations

Final estimates of system matrices after 1000

iterations

PAGE

23

25

26
37

40
41

57
67

70

73

T4

108
109
110

122



CHAPTER 1

INTRODUCTION

The subject of system identification has received much attention
reéently because of ifs imbortance in the fields of engineering,
physical sciences and social éciedces. Besides its important role in
auﬁumatic con£rol‘ and systems éngiﬁeeriné, it alsc finds many new
applications in developing fields such as -bioengineering and
econcmetrics. During the past decade several papers, books [1-6] and
survey papers [7-23] have been published on the subject. Most of this
work, however deals uith the problem of identification of single-input
single-ocutput systems and relatively little has been done on the
identification of multivariable s}stems. The problem of idéntification
of multivariable systems from input-output data is more complicated and
involves several factors. This problem was first consideréd by Gopinath
[24] and later by Budin [25]. In their work they assumed that the
available data for identification is free from noise. In general, most
of the practical systems hagg*ﬁansiderable measurement. noise, hence'é
realistic identification algorithm should take into consideration the
noise factor and assumes that the available data for identification is
contaminated with noise.

Another factor in the identification problem is the choice of the



medel , and this is generally determi_ned by ‘he"applications for which fit
will be used. Generally, every model has some effects on the propertfes

of the identification algorithm, e.g. it affects the number of sygten

parameters to be ideritified_ and the unbiaseqness of the par

‘estimates when the ordinary least-squares method is used. In gengral,

there are four type§ of system models which have been studied and used
;Ln the area of identification of linear multivarigble ayat-emsﬂ. These
models are: the transfer-function matrix, the impulse response matrix,
the input-output difference equation and the state space formulation.

These four models are equivalent and transformations between them are

possible. ¢

The -system identification problem cr;m be defined according to
Zédeh [26] as "the determination, on the basis of input and output, of. a
system model within a specified class of models ‘to‘ which the system
under test is equivalent",. Basically, the problem of systenm
ldentification consists of two main steps: structure determination and
parameter estimation. In the first step the strﬁctural par'arqetérs of
the system have to be détemined from the given input-output d'éta. This
step is _difficult for the case of noisy data and depénds oln the‘type of
medel used for identification as every model has its own structural
parametera. After determining or aasolming the structural pg.rametefs,
the medel parameters can be gstimated from simulated or nonn_a.le operating
records with a suitable estimation algorithm. |

Computationally, identification algorithms can be divided into_

two main-.ca'tegories, namely off-line algorithms and on-line algorithms.



An off-line algorithm is a one-shot technique which normally requires a

considerable agogqp"bf storage of the input-output data.  On-line

algorithm, ég“igé ;ther hand, employs an iterative sgheme whereby the

éétimates.of the parameters of the model are continuously @dated as new

measurements are made. For any identification algorithm to be of ‘

practical value in control applications it should be of a recursive
L

nature. This idea has led to conaiderable.work on the subject of on-

line system identification.

1.2 Contents and Qrsanization of the Thesis

The majof effort in this thesis is directed towards the problem
of identification of linear time-invariant discrete-time multivariable
systems from input-output data. On-line algorithms ha&e been developed
for estimating the parameters of the four 'different types of model
representations of linear multivériable systems .from noise-free as well
as npisy data. Also the problem of determinapion of the structural
parameters has been considered. )

A survey [27] of most of the existing literature on the problem
of identification of linear discrete-time multivariable systems from
input-output data has been included in the thesis, wher; the
identification algorithms have been classifled according to the type of
rmodel representation used. \

In Chapter 2 the effect of model structure on the properties of

the identification algorithm has been investigated. A study has been

made of the relative effeqtiveness of'the four models used for



identification of 1linear discrete-time tivariable systems. The

-~ features of each model and its effedt on the complexity of the

identification algorithm as well Ia:s the bias of the parameter estimates
while usiné the ordinary least-squares method have been stud;‘.éd.

Chapter 3 discusses the problem of identification of 1linear
multivariable systems in .the t ansfer;function matrix representation.
An algorithm is proposed for f;t\ihflting the parameters c;f a special
Eransfer—t‘unction matrix rep;résentation from noise-free data. This
algorithm is simpler than that of Sen and Sinha [2_8] with considerable
reduction in computation time. Another algorithm has been developed for
identifying a more generai transfer-function matrix repbesentationp f.‘r'_um

noise-free as well as nolisy data assuming t.l'_xé' order of the system ‘is

unknown. ‘This algorithm is based on determining the order of each row

"of the transfer-function matrix utilizing the residual error technique.

This is followed by estimation of the parameters USinQ a ‘recursive
adaptive least-squares algorithm.

In Chapter Y the impulse response model has been considered for
identificat.:ion and tw;J algo;ithms have been developed to estimate ,th_e
Markov parameters of the system. The first algorithm uses the
normalized stochastic approximation method which has been developed in
[29] for estimating the Markov.parameters of the system. A proof of the
convergence and unblasedness of the stochastic approximation algorithm
has been obtained and is given in Appendix II. The second algorithm

uses correlation techniques which eliminate the bias obtained in the

first algorithm due to truncation of the infinite series of Markov



L)

pérameters.

In Chapter 5 the state space rgpreséntation has been considered
for identification, First an algorithm has been deveioped fqr
determining the struétural parameters of a row-companion canonicdl form
(the observability subindices) from noise;free as well as noisy data
using the residual error technique. Then an algorithm has been
developed for estimating the parameters of this canonical form ‘from
noisy data which combines stochastice apbroximation and pseudo-inverse.

Chapter 6 discusses the problem of combined parameter and State‘
estimation of 1inear:multivariable systems. A way has been obtaingg‘for
representing the state space model in a nonparametric model form which
causes the residual error to be uncorrelated with the foreing function.
Hence unbiased estimate of sSystem parameters can be obtained. The
parameters and states of that model representation héve been estimated
in a bootstrap manner by least-sqﬁares and stochastic approximation
algorithms, respectively.

Conclusions and suggegtions for future investigation in. the
problem of identification of linear discrete-time multivariable systems

are discussed in Chapter T.



| CHAPTER 2
EFFEG;_@/THE CHOICE OF MODEL ON THE PROPERTIES

-OF THE IDENTIFICATICN ALGORITH&

2.1 Introduction

The .type of the model used for a multivariable system has
considerable effects on the properties of‘the gcorresponding a;gorithm
for id;ntification. Sincé the structural parametera and the number of
parameters to be estimated for a multivariable system depend on the
choice of the model, the complexity of the algorithm is determined by
this choice. Anopher important effect is on the bias of the estimated
sfstem paranietezrs as bias is often introduced into parameter estimation
using least-squares method by choosing a model which causes the forcing
function to include observationa which are correlated Qith the error in
the observed output. In general, there.are four types of system models
which have been studied and used in the area of identification of linear
time-invariant discrete-time mulEivariable systems. These models are:
the transfer-function métrix, the impulse response matrix, the input-
output difference equation and the state space formulation. These four
models are equivalent and transformations between them are possible,

In this -chapter a study [30] is presented of the relative
effectiveness of the four types of.models which have been used in the

area of identification of linear multivariable systems. The features of



each model and its effect on the complexity of the identification
algorithm are athdied.r The structural parameters required to
characterize each model and the number of parameters to be estimated f‘o_r
ea;:h model are \axamined and compared. Also, the effect of each model
f‘epreaentation on the bias of the parameter estimates Vof the system ﬁhén

using the ordinary least-squares method is investigated.

2.2 ° Statement of the Problem
Consider an nth order linear, time-invariant, multivariable,

discrete-time system with p-inputs and m-outputs as, shown in Fig 2.1,

where )
u(k) is the p-dimensiorial input vector sequence
y(k) is the m-dimensional output vector sequence
z(k) is the m-dimensional measured output vector sequence
and ~ v(k) is the m-dimensicnal noise vector sequence at the ocutput.

9

N The identification problem can be formulated as "to estimate a
model from the available record of the input-output sequences which fits
these sequences as closely as possible". This definition allows a
number of different types of models to be used in the identification
pr*obiem. In order to solve this problem one has to specify, first, a
certain model to be identified then the structural parameters
characterizing this model are to be determined from a record of the
input-output data. Finally the parameters of this model have to be

estimated from the input-output data by a suitable estlmation‘algorithm.



Output Noise
v(k)

System Input .
u(k) SYSTEM MODEL’ .
y (k) Measured
Output
z (k)

Fig. 2.1 Linear multivariable discrete-time system



2.3  Model Representation
In this section the four different types of models used for

ST

identification of linear multivar{%ble systems will bé studigd.

2.3.1 Tranafer-funotion Matrix
. Consider the linear discrste-time syStei of Fig. 2.1, It can be

‘represented by the following equation
y{k) = G(z) ulk) ] (2.1)

where u(k) is the p—dimehsional }nput vector sequence, y(k) is the
m-dimehsional output vector sequence, G(z) is the transfer-function -
matrix of the ;ystem and z is the unit advance operator.

Different forms of the tfanafer-function matrix have been.used

for identification. The following general form for G(z),

_A‘1(z) Alz(z) Alp(z)_
By, (2} B o(2) T B‘p(z)
A21(z) AEE(Z) Aap(z)
G(z) = - .. ~ (2.2)
521(2) 822(0) Bap(a)
Am1(z) Amz(z) Amp(z)
-Bm1(z) Bmz(z) T Bmp(z)_
where Alj(z} and BiJ(Z)’ i =12, .., m; J=1,2, ..., p are

polynomials in z of degree less than or equal to n, has been considered
for identification by Abaza [31) and Sinha and Caines {32]. Another

form for G{z),
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s

e [ ] ] ]
Ay (2) - Alz(z) i\]p(z)_1
D1(z) D1(z) ver D1(z)
* ' *
A21(z) Azz(z) Azp(z)
G({z) = Dz(z) Dg(z) Dz(z) (2-.3)
* I. l.
Aml(Z) Amz(z) | Amp(Z)
;Dm(z) Dm(z) ter Dm(z) J

{

" where Di(z) is defined as the leaét common denominator of the-ith row of

+ G(z) of equation (2.2) having the degree o {less than or equal to n)

| ]
and Aij(z)‘s are polynomials in 2z of maximum degree ni-l, has been

considered for identification by Mital and Chen [33]. A third form for

G(z),
'A11(z) Alz(Z) A1p(z)'
oAl Al AL (2)
) 21 22 2p
G(u) - D(Z) . (2-“)
i - o
W (2) () e Ag(z)]

where D(z) is the characteristic polynomial of the system (of degree n)
defined as the least common monic dencminator of all minors of G{(z) of
equation (2.2) and Alj(z)‘s are polynomials in z of maximum degree n-1,
has been considered for identification by Sen and Sinha [28].

The satructural parameters required to characterize G(z) of

equation (2.2) are the orders of the numerator and' the dencminator of

each entry of G(z) and the number of parameters of the model to be



f

N

estimated dapends on these orders. The Etructural paﬁameters for G(z)

of equation (2.3) are the orders n,'s of each row of G{z} and the number

1
of parameters to be estimated is ET=1 ni(p+1). The structural parameter
for G(z) of equation (2.4) is the order oflthe system n and the number
of parameterslﬁo be estimated is n{pm+1).

It cﬁn be noticed that the form of equation (2.2) for G(z) is
unique and minimal, the forms of equations (2.3) and (2.4) are ﬁnique

but not miﬁimal.

2.3.2 Impulse Reaponse
Consider the linear discrete-time system of Fig. 2.1, It can be

represented by the following infinite series.

L)

" y(k) = [J0 . Jl z=% .+ J2 273 + 0] ulk) (2.5)

where JU' Jl' ... are constant matrices called the Markov parameters of
the system. These Markov parameters define the impulse reaponae
sequence for the system, hence it is possible to truncate the series

after ¢ termis~—if-the system is stable. The system can, therefore, be
'd

represented by the following equation

y(k) = [J 2. J 2%+ i+ oo z“!] u(k) (2.6)

The model of equation (2.6} has been considered for identifica-
tion by Mehra [34], El-Sherief and Sinha [35] and Sinha et al. [36].
The structural parameter required to characterize the system in the

model of equation (2.6) is the value t, i.e. the minimum number of
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Markov parameters required to describe the system completély. The value
of & 1s related to the observability and controllability subindices of
the asystem. The' number of pa}ameters of the model required to be
estimated—depends on the choice of the value of & and is given by Lmp.
&N
2.3.3 Input-output Difference Equation

Consider the linear discrete-time system of Fig. 2.1. It can be

representéd by the following difference equation

-1

P(z"") y(k) = Q™) ulio) (2.7)
where .
| -1 - STy
P(z ') = I + P1 z + ... + P z (2.8)
™
Q) s e e 2 e 2 2 (2.9)
= y . 5 s Qm2 z .

and ?i's and Q;'s are constant matrices of proper dimension.  The form
of the matrices P(z“1) and Q(z-1)-of equation (2.8) and.(2.9) has been
considered for identification by Kashyap and Nasburé (37]. Alsc 3
multivariable autoregressive moving average model for the input-output
difference equation representations has been considered:by Hannan [38i.
Akaike [39] and Dickinson et al. [40]. Another canoniéal input-output
difference équation representation has‘ been considered for
Ldpntification by Guidorzi [#1]. This fepreéghtation has the following

form



' Py (2) ... P1gt2)]
P(z) = : : (2.10)
' _pm1(?) P mm(z)_
‘q1l(z) ven qu(zh o
Q(z) = ; ' - ‘ (2.11)
lagy (@) e a2, S

where pii(q) and qij(z) are polynomials in z of the following form

" ni ni-1
pii(Z) =z v - aii(ni) z - s = aii(l) (2.12)
. ' _nij-I
pia(z) z - aij(nij) z - e - éij(l) (2.13)
.ni-1 ’
qu(z) =z bij(l) z R | bij(ni) (2.1#)

and,n.i‘s are the obse;'vability subindices of the system [41]. The
_ canonical ferm of equations (2.10)-(2?1”) has been also considered for
identification by Sinha and Kwong [u21 and El-Sherief and Sinha [43].
The structural parameters required to--characterizé the. gystem
modei of equations (2.8) and (2.9) are the degrees m, and ma_of the
polynomial matrices P(z']) and Q(z;]) and the number of parameters to be
estimated is m1p2+m2mp. The structural parameters characterizing .fhe
model of equations (2.10)-(2.14) are the observability subindices of the
system (ni, i = 1; 2, ..., m) and the number of parameters to be

estimated is n(p+m).



2.3.4 State Space

Consider the linear discrete-time system of Fig. 2.1. It can be

represented by the following equation

‘x(k+1) A x(k) + B u(k)

(2.15)

y(k) = C x(k)

where x{(k) is the n-dimensional state space vector and A, B and C are
constant matrices of proper dimensions. |

The form of matrices A, B aﬁd C of equation (2.15) is not unique
and because of this nonuniqueness several canonical forms have been
proposed for the purpose of identification. All theseaEanonical forms
aim to transform the parametric model of equation (2.15) into a
nonparametric form suitable for identification and also to reduce the
* number of parameters ‘to bé' estimated. Many algorithms have been
proposed to identify the sfstem in the state space répresentation from
input-output data. Hoat of these algorithms start by identifying the
system in one of the three models, transfer-function matrix [uul,
impulse response [U45] or input-output difference equation [41], then the
state space representation [i.e. métrices A, B and C of equation (2.15)]
is obtained by different transformations.

Guidorzi [41] has obtained a unique relation between the state
space representation in a certain canonical form and the input-output
difference equation [equations (2.10)-(2.14)]. The patrices A and G in

this canonical form have the following structure
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K= [Iijj
where 4
r 0 L 0 L] » L] L) - * » L] 0
By = 2 Ini-1 o By s S oo
aii(i) aii(2) e aii(ni) aij(]) aiJFE) = aijénij)
o' -
n,+1
C=]." ‘ {2.16)
‘;n1+n2+.,.+nm_1+1_

<

where ei is the ith unit row vector of diﬁension n,‘ni; i=1,2, ..,
are the oaggnvability subindices and the matrix B has no special form.
Guidorzi [41] has showed that the paraméters of the matrix P(z) of
equation (2.10) are the Qame as those of the matrix X and the parameters
of the matrix Q{z) of gquatio;‘(2.11) are obtained ffom those of the
matrices A and B. He also showed that the structural parameters of the
canonical input-output difference.equation and those of the canonical
state space representation are the same. The cénonical form of (2.16}
has been Eonsidered qor identification also by Lobbia and Saridis (45]
and El-Sherief and Sinha [29]. Other state.space canonical forms have
been proposed for identification, e.g. [46]1-[49]. —

The structural parameter required to characterize the model of
equation (2.15) 1is the 6fder of the system n and the number of

parameters of the model to be estimated is n{(n+p+m). It is known that

not all of these parameters are required to specify the system model and



1

some of them can be put to zero or one by‘ transforming the aystem
mﬁtrices inte aspecial ‘canonical forms; e.g. equatioh ;(2.15). The
structural‘ parémeters required to characterize thé state aspace
representation of equation (2.16) are the observability subin&iceBﬁTi's

and the number of parameters to be estimated is, in general, n(p+m).

Assume that the outputs of the system of Fig. 2.1 are measured

with additive zero-mean white noise sequence v(k)g§
z; (k) = y;(k) + v, (k) is= .1, 2, va., m (2.17)

where zi(k) is the ith noisy output and vi(k) is the noise at the ith

.output.

Consider the following discrete-time observation representation
which can be obtained for the ith output of the s&stem
f 2, (k) = UL(k) 6 + e (k) | (2.18)
.y
where zi(k) is the ith observed output, Ui(k) is a vector of forcing
functions (in general function of the inputs and outputs), ai is a
vector of parameters'to be estimated characterizing the ith output and

ei(k) is the residual error in the ith observed ovutput. Using the

. ordinary least-squares method unbiased estimate of: the paraﬁeter vector

ei can be obtained if and only if the following two conditions are

satisfied [50]:

"a) The sequences Ui(k) and ei(k) are statistically independent



b) The residual error sequence e; (k) has a zero-mean.
Thus' bias is often introduced into parameter estimates using
‘ least-squaﬁes method by choosing a model which causes the forcing |
function to include observations whichfare porrelated with the fpsidual
error in the meaaufed output. | _ |
Next, %he effect'ofmchoiee of model representaticn for identifif
catioﬁ on the bias of the parameterlestimates'of éhe model from noisy

data using the ordinary least-squares method will be discussed.

2.4.1 Transfer-function Matrix Representation

Consider the system in the transfer~function matrix form of
equation (2.3) with the noise equation (2.17). The ith measured output
of the system can be written as
n':T.

1 di(z) zi(k-L) + 151 di(z) vi(k-z)

n n

P i _ .
.zi(k) = I I a,,(%) uj(k-l) - .

J=1 &=1 1

H &1 -

+ vi(k) (2.19)

where a, J(!.) and d (L) are the parameters of the polynomlals A, J(z) and
Di(z) respectively.

Equation (2.19) can be put into the form of equation (2.18) where

| T
. U (k) [u (k=1) ... u1(k-ni)u2(k-r) ces up(k-ni)zi(y—1) cen zi(k-ni)]

(2.20)

i
e (K) E IERORACDEEAC (2.21)
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From equations (2.20) (2.21) we can notice that the vector sequence
Ui(k) contains the outputs zi(k—1), ooy zikk—ni) which are correlated
with the résiduai error ai(k). Hence condition (a) is not satisified

and the estimate of the vector o, is biased.

I

2.4.2 Impulse Response Representation

Consider the impulse response representation of equation (2.6)

+

with the noise equation (2.17). The ith measured output of the system.

can be written as

=1

Zi(k) = I Jd

5,1 uk=3=1) + v, () | (2.22)
- J=0 ! .

'where JS;'s =0, 1, «v., %=1 has been partioned as

s,

J_ =19s,2 (2.23)

.

- 8,

Equation (2.22) can be put into the form of equation (2.18) where

U (ke1) Ut (k=2) vr u (ke2)] (2.24)

U, (k)

ne-

ei(k) vi(k) . (2.25)

From equations (2.24) and (2.25) we can see that the vector sequence
Ui(k) is uncorrelated with the residual error ei(k), hence condition (a)
i; satisfied.' Moreover, if the sequence vi(k) has zero-mean then

condition (b) is also satisfied. 7~ Therefore the estimate of the
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parameters of the imﬁulse response model representation of the system is
unbiased. Coa <
2.4.3 Input-output Difference Equation Representation
Consider the input-output difference equation (2.7)-(2.9) with
the noise equation (2.17). The ith measured output of the syatem can be
written as
ol ',

Q, ; ul(k-3) - Z P, . z(k-]) +
J:i j=1 J,l J

H ot —

1 Pj'i v(k-3} + “i(k)

(2.26)

where P and Q are the ith rows of P, and Q, respectively.
i i J J

Equation (2.26) can be put into the form of equation (2.18) where

0,00 & e-n) L. ﬁT(k-ma) 2P (k-1) oov 2 (kw1 (2.27)
oy
A
ei(k) 2 321 Pj,i vik-3) + vi(k) (2.28)
\

”

* From equations (2.27) and (2.28) we notice that the vector sequence
Ui(k) contains the outputs z(k-1), ..., z(k-m1) which are correlated
with the residual ei(k) hence condi&ion (a) is not satisfied and the
estimate of the vector 6i is biased.
2.4.4 State Space Representa£ion

Consider the state space representation of equations (2.15) and
(2.16) with the noise equation (2.17). The ith measured output can be

written as follows (this is obtained using the relation between equation



(2.16) and equations (2.10}-(2.14))

p M | ™4y _
.zi(k) = ji1 121 bij(l) uj(k-m) + jil 221 aij(nij"z+1) zj(g-z) +
(2.29)
n i .
- Ji1 !:1 ai:j(nij-1+1) Vj(k-l) + vi(k)

Equation (2.29) can be put into the form of equation {2.18) where

A : T
Ui(k) = [uI(k-1) .f‘ u1(k—ni) e up(k-ni) zﬁ(k-1) ves 21(k-ni) - zm(k-ni)] .

(2.30)
n

i
e 121 aij(nij-E+l) vj(k-L) + vi(k) {2.31)

-

m
A
= I

e, (k)

.From equations (2.30) and (2.31) we can notice that the vector sequence

Ui(k) contains the output sequence zl(k-l), caey zm(k"ni) which 1is
correlated with the residual error ei(k), hence condition (a) is not
satisfied and the estimate of the parameters obtained in this model
representation is biased.

’

2.5 Results of Simulation

In this section the ideas discussed in sections 2.3 and 2.4 are
demonstrated by estimating the parameters of a simulated 2-input
2-output 4th order system in the four different model répresentations by
the recursive least-squares method. .

The given system, in the transafer-function matrix form of

equation (2.2}, is as follows
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1 .2
z=.25 z=.4 :
G(z) = : (2.32)
2 b
4 z=.25 (z_.S)Z

This can be written in the form of equation (2.3) where

A" () = z-4

v 1

, )

A12(2) = 2(2-.2?}

A;1(z) - 2(z—.5)2‘

*

Aza(z) = 4(z-.25)

D,(z) = (z=-.25)(z-.8) “

D, (z) = (2-.25)(z-.5)2 (2.33)

The first five Markov parameters of the system are
[1 2] [.25 .8] : [.0625 .32J [.0156 .1?30]
Jd, = y dy = J, = y 9q =
0 o ol " lsso u) %2 Liweso w]) 3 Lomz 3
.0039  .0512 :
Jy = | (2.34)

YT l.oor8 2

The input-output difference equation of the given system in the

form of equations (2.10)-(2.14) is as follows

za-.65z+.1 0 z-. 4 ' 2z-.5
P(z) = 2 , Q(z) = [ ] {2.35)
(5/6)z-(1/3) 2" -2+.25 2z-(2/3) 17/3
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The state space representation of this system in the canconical

4
form of equation (2.16) is as follows

0 1 o0 =1 23 |

-1 .65 -0 -0 1 .25 . .8, [1 0 0 0]
A= B = , C = (2.36)
k 0 0 0 1] 2 0 o o 1 0

/3 -5/6 =25 1 .5 4

The above system was simulated on a CDC-6400 computer using the

state space model representation of equation (2.39) with zero-initial

states and the two inputs were taken as uncorrelated zero-mean white
noise sequences with stanﬁard deviation of value 1. To each output a
szero-mean white noise sequence was-added with standard deviation
adjusted to vary the noise level at that output. The parameters of the
above syatem.in the four different model representations were estimated
using recursive least-équares method for different noise levels. The
final estimate of the parameters of each model after 500 iterations is
shown in Tables 2.1-2.4.

We can see from Tables 2.1-2.4 that good estimate of the
parameters of the system in each of the four models has been cbtained
for the noise-free case. For the noisy case the estimate of the
paraﬁeters of the three models, transfer-function matrix, the
input-output difference equation and state space is biased and
inconsistent. On the other hand we can notice from Table 2.2 that good
estimates of the parameters of the impulse response model have been

obtained even for high noise level, 0, =0, = N



o

23

Table 2.1: Estimate of the parameters of the transfer-function matrix

*  model

| oy = 01 oy = 05 oy =
True parameters Noise-free case g, = 01 9, = .05 P
.65 .6500 L6ush 5432 L3791
.10 .1000 -.0982 -.0600 .0002
1.00 1.0000 .9994 9972 .9970
- 40 -. 4000 -. 3954 -.292u - 1277
2.00 2.0000 2.0001 2.0004 1.9996
-.50 -.5000 | -.4912 -.2879 .0353
1.25 1.2500 1.2431 1.0223 .6903
-.50 -.5000 -. 4932 -.2725 .0600
.0625 .0625 0610 .0072 -.0742
2.00 2.0000 1.9997 1.9982 1.9983
-2.00 -2.,0000 -1.9850 -1.5379 -.8688
.50 .50000 .4880 . 1504 <3551
.00 .0000 .0015 .0076 .0038
4.00 4,0000 3.9976 3.9880 3.9886
-1.00 -1.0000 .9706 -.0818 1.2464

Error square of
parameter estimates .0000 .QU07 1.3793 3.3167




Table 2.2: Estimate of the paramsters of the impulse response model

Ul=.01 U‘=.05 U1=.1

True parameters Noise-free case 0, = .01 o, = .05 oy = .1
1.00 1.0010 1.0014 1.0031 - 1.0052
2.00 1.9997 1.9993 1.9975 1.9953
.25 . .2509 .2513 .2524 .2540
.80 7989 . 7985 7969 7950
.0625 .0619 .0619 L0619 L0619
.32 .3207 . .3209 .3218 . 3229
.0156 L0154 L0161 .0187 .0220
.128 . 1282 1279 1270 . 1258
.0039 .0043 . 0044 .0049 .0056
L0512 .0509 L0514 0531 .0552
2.00 2.0407 2.0473 2.05800 2.0534
.00 -.0423 -0.0414 (\30.0378 -.0333
.50 5632 5648 .5709 .5785
4.00 3.9156 3.9145 3.9100 3.9045
. 125 L1012 . 1009 .0995 .0978
4,00 4.0180 4,0180 4.0183 4,0186
.0313 L0142 L0141 .Q135 .0128
3.00 3.0096 3.0096 3.0098 3.0101
.0078 .0239 0242 .0252 .0265
2.00 1.9821 1.9825 1.9843  1.9865

Error square of
parameter estimates L0164 LO174 L0191 L0214
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Table 2.3:

Estimate of the parameters of the input-output
difference equation medel

25

oy F o1 g, = .05 oy = o

True parameters Noise-free case oy = L01 u2'= .05 05 = o

.65 L6497 0792 -.0029 -.0071

-. 10 -. 1000 L0644 L0877 . 0884

.00 20000 .0319 .0368 L0375

.00 .0000 -.0187 -.0213 -.0213

1.00 1.0000 1.0003 1.0022 1.0045

-. 40 -.3997 . 1072 . 1801 . 1835

2.00 2.0000 1.9995 1.9975 1.9951

-.50 -.4ggy 6112 .8035 . 8098

-.83 -.8316 .0708 L1784 L1815

.33 .3328 - L0721 . 0383 .0350

1.00 <9999 .9503 L9467 L9487

-.25 -.2499 - 2207 -.2188 -.2201

2.00 2.0000 1.9996 1.9974 1.9947

-.67 -.6682 -1.4705 -1.5672 -1.5695

.00 .0000 L0016 .Q079 L0157

5.67 5.6633 3.8566 3.6334 3.6177
Error square of .

parameter estimates  .0001 6.7243 §.2693 8.5007




Table 2.4: Estimate of the -parameters of the state space model

Y . ey = .0 0‘1 = .05 cr.l = .1

True parameters Noise-free case 9, = 01 9, = .05 g, = o1
.10 -.1000 © ,o6u4 .0877 .088k4
.65 .649T .0792 -.0029 -.0071
.00 .0000 .0319 .0368 .0375
.00 .0000 -.0183 -.0213 -.0213
.33 . .3328 L0721 .0383 .0350
-.83 . -.8316 .0708: . 1784 L1815
-.25 -.2499 ~.2207 -.2188 -.2201
1.00 .9999 .9503 967 .9u8T
1.00 1.0000 1.0003 1.0022 1.0045
2.00 2.0000 109995 1.9975 1.9951
.25 . .2500 2502 .2507 .2512
.80 .8000 .7050 .7980 .7962
2.00 2.0000 1.9996 1.9974 1.9947
.00 .0000 L0165 .0079 L0157
.50 - .5000 5018 _ .3621 .3580
4.00 ¢ 4.0001 B,0164 3. 7174 3.7024

Error square of
parameter estimates .0000 1.3402 1.6681 1.6919




2.6 . Concluding Remarks- o

Four different model representatidhé-hayﬁvbeen_uged in the area
of identification of linear mﬁltivariable systems and all these models
are equivalent and transformaﬁions.lbetweén them are possible. Each
model has its own structural parameters which have to bé determined in
advance before parameter estim%tion.

Qut of the four models used for identification the state space
model is used much because of the smaller number of parameters needed in
the model when canohigal forms -are used and also because of its
practical use in control theory. In general to identify th; system in
state space form a nonparametric model for the syséem has to be
estimated first, then estimates of the parameters of the state space
model are obtained by a certain transformation.

When estimating the parameters of the system from noisy data
using the ordinary least-squares method the parameter estimates are
biased if the residual error is correlated with the forcing function.
In general most of the identification algorithms concentrate mainly on
the problem of removing this bias in the estimated parameters [e.g.,
generalized least-squares and maximum likelihood]. It has been shown in
section 2.4 that identifying the system in the impulse response form has
an advantage over the other three forms because it results in unbiased
estimate of the parameters of the system when the least-squares method
is used. This fact has been demonstrated by the simulation results of

1

section 2.5.



CHAPTER 3

IDENTIFICATION OF THE TRANSFER-FUNCTION MATRIX MODEL _—

3.1 Zntroduction

The problem of identification of linear discrete;time multi~
variable system in the transfer-function‘ matrix rebresentatien froﬁ
input-output data has -received less attention during the past years
inspite of its use in many areas of control (Wolovich [51]). Mital and
Chen [33)] have proposed an off-line algorithm to estimate the parameters
of the transfer-function matrix from noise-free data.

Furuta [44], has proposed an algorithm for the identification of
the transfer-function matrix assuming that the inputs-and outputs of the
system are corrupted by additive white noise and the system order is not
known. The algorithm starts by assuming a sufficiently large value for
the order Bf the transfer-function matrix, then a set of models is
identified to be equivalent to the original system. By taking the
minimal realization of these equivalent models, the appropriate unique
model is derived.

Sen and Sinha [28], have propose; a recursive algorithm which
assumes noise-free measurements of the inpﬁts and outputs, and the prior
knowledge of the crder of the transfer-function matrix. The algorithm

proceeds as follows; the ith output of the system in the noise-free

case, using the form of equation (2.4) for G(z), can be written as

. 4
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1 p ] . : .
_‘Yiﬁk) =3 j:1 Aij(z) uj(k)‘ (3711

Let
' |
D(z) = 2P+ A2+ ...+ d(n)

A;J(z) = aiji1>z“"-; aij(z)z"‘2 +oaes + aijtn)

where n is the order of the system. Then, for i = 1, 2, ..., m equation
(3.1) can be rewritéen as .
Y(k) = W(k) ¢ R (3.2)

where

| YT (k) = [y, () yy(k) ooy (k)]

' T o .. O -Yf(k)' |
W) = | 0 0 (k) ... 0 ¥ (k)
0 0 UT.(k) -YT(k)_
- ¢ ; ' o
UT(k) = Eul(k).;.. ui(k-n+1)u2(k) v up(k-n+l)]
xi(g) = lyy (k=) y;(k2) . y;Cicen)]

oF = [y 2@ wenagm) ap(h) gy () 8(1) L d(w)]

and T denotes transposition. The parameter vector ¢ in equation (3.2}
can be estimated using the following recursive pseudo-inverse algorithm
(k1) = S(+PUOW (k) [T+W(k+ DR (k1)1 7 Y (ke ) Wk 1) (k) ]

- (k1) = PORSPUOW (k) [Tab (e DPCOW (s1) 1™ Wl 1DPCK)

¥

rc}
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Abaza [31], has proposed a two-step least-squares algorithm to

identify the system in model (2.2). The ith output of equation (2.1)

-

for the noisy-case can be written as, y
Ay, (2) | A, (2) D, ,(2)
z. (k) = u (k) + oo+ u (k) + — e (k)
Dip(z) . |
aan k . .
+ + Cip(z) epg ) (3.3)
where
. Aij(z) o
..{z) =
ij Bij(;)
Piy(2) 1o, 2, oo, .
N = ] . '
13'® Ciy(z)" 5.1, 2, ..., .

and N(z) is the noise transfer-function matrix and e.(k) is a white
noise sequence.
By dividing Aij(z) into Bij(z) and replacing the noise term by

the additive noise aequence Ei(k), equation (3.3) is reduced to

z,(k) = ui1(z“‘) u, (k) + Lee vip(z“) u (k) + gy (i) (3.4)

where the v (2_1) are polynomials in z-1. By considering K

iJ
measurements and truncating after s terms equation (3.4) can be written
as

Yi(K) = Ui(K) v; o+ Ei(k) )

where »
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i - 11 LI Vi1 12 .I.. ip LI I ) “ip

. .
-Yi(K) [zi(k) zi(k+1) ..._zi(K+k-1)]

T
EJ(R) = (g, (k) g (1) oo gy (Kek=1)],

Ui(K) is the data matrix made up of the system inpuﬁs and the viJ's are
1

the parameters’ of the polynomial _vij(z_ Y. _Ihe ipérameters‘uof the
transfer-function matrix can then be estimated using a 2-stage linear
least-squares as follows;,first an unbiased 1.l.s. estimate of vi's is
obtained‘and then usedﬁto obtaih estimates of the noise-free oufputs.

-

Using these filtered data, unbiased estimates of the parameters in the

«

Gij(z)'s can be obtained using 1.1.s. This proce?yre is repeated until
convergence of the parameter estimates is obtained.

Recently, Sinha and Caines [32] have proposed an inétrumental
variable identification algorithm which uses binary shift register
sequences. as both system ‘inputs and instrumental variables. They
applied this algorithm‘to two cases of equation (2.1). In the first
case they assumed that each row of the matrix G{z) has ideﬁtical
denominator polyncmials. As the first case i3 not practical they
applied the algorithm to the‘ general case of equation (2.1) and
estimated every term in equation.(3.3) one at a time assuming all other
terms as a coloured noise.

In this cﬁapter two algorithms will be presented for identifying
linear discrete-time multjvariable systems in the transfer-function
matrix representation. In section 3.? a recursive algorithm [52] more

efficient than Ser\_and Sinha's algorithm [28] is developed for
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estimatiqg the parameter;‘of.a special transfer-function'matrix‘mo&eg,
equation (2.4), from noise-free data. In section 3.3 another algorithm
is developed for identifying a more general transfer-function matrix
representation of the system from noise-frge- as well as noisy data

assuming that the order of the system 1s unknown.

3.2 Recursive Estimation of Model (2.4)
3.2.1 Formulation of the Problem

Considér a linear discrgte-time multivariable system with p-
inﬁuts and m-outputs. It can be represented by anlmxp transfer-function
matrix, G(z), with the following input-output relationship
) s .

y(k) = G(z) u(k) (3.5)

where u(k) is the p-dimensional input vector sequence, y(k) is the

m-dimensional output vector sequence and z is the unit advance operator.

The transfer-function matrix G(z) can e written as, equation

{2.4),
(A2 A(a) e 4y (a)]
o(2) - E%;T Aé1(z) Aéz(z) Aé?(z) (3.6)
LA;;(Z) A'.(z) . A;;(z)_

o2

where D(z) is the characteristiec polynomial of the system, defined as
.‘- ' ]

the least common monic denominator of all minors of G(z) and Aij(z)'s

are polynapials in z.

It will be assumed that Df{z) is a polynomial of order n, (order
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; .
~ . ' - .
of the syéteml*ﬂaéd Aij(z)'s are polynomials of order.n-1. Hence one

may write

‘ D(z) = z" + d(1)zn-] + oiea + d(n-1?z + d(n) (3.7)

*

2

(2) = 2y (1027 w2y (202" ¢ e a ez va ) (30B)

1]
A 3 3 3

]
[If the true order of any of the Aij(z)‘s is less than n-1 the corres-
ponding coefficient in equation (3.8) will be zerc when estimated.]
The problem considered in' this section is to estimate the

pérameters d(1), d4(2}, cees d{n) and aij(l), aij(Z), vy aij(n) for all

i=1, 2, ...; mand j =1, 2, ..., p based on the measured input-output

data sequence, u(k) and y(k}) k =1, 2, ...

3.2.2 System Decomposition
From the definition of G(z) given in equation (3.6) the outputs

of the system can be written as

p
D(z) yi(k) = I

e

t
Substituting for D{z) and Ai (z) from equations (3.7) and (3.8),

N

equation (3.9) can be written more explicitly in the following form

P n n . '
y. (k) = E T a,.{2) u,{k-2} - L d(&) y.(k-2) 1=1,2, ..., D
1 j=1 amy M I 2= i (3.10)

Now, the given system has been decomposed into m subsystems as
shown in equation (3.10). Each of these subsystems corresponds to one
row of the matrix G(z) and can be regarded as a single-output and

multiple-input system. Hence the parameters of each subaystem, aij(z)'s

(z) u (k) i=11,2, ..., m (3.9
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and d(&)'s, can be estimated independently and the identification of the

whole system is accomplished in m separate steps.

3.2.3 The Identification Algorithm
Each subsystem of equation (3.10) can be written in the form of a

matrix equation. For example, the jth subsystem may be expressed as

ijk) T Hj(k) ¥ : (3.11)
where
'uI(O) u1(-1) ...u1(1-n) u2(0) ...up(Ifn) -yJ(O) ...-yj(1-n)
0 (1) u(0) .eaul(2-0)  ug(1) ...u(2=n)  =y,(1)  ...-y,(2-0)
Ho(k) =| | ! e 2 3 d J
‘j - ' - - - - -
_u‘(k-1) u1(k-2)...u1(k-n) ua(k-I)...up(k-n) -yj(k-I)...-yj(k-n) .
. (3.12)
{ ' T
¢j = [331(1) ajl(Z) “ve adl(n) :J2(1) .an ajp(n) d(1) ... dn)] (3.13)
Yj(k) = [yj(l) yj(Z) e yj(k)]

and the subscript T denotes transposition.
For large values of k, the least-squares estimate of ¢j is given

by
N T -1 T
k) = (H,(k) B, (k)) " H
¢J( ) = j } j j

j(k) is the estimate of the parameter ¢j from k observations.

(k) YJ(k) (3.14)

where ¢

A recursive version of equation (3.14) for calculating ¢J(k) Wwas

derived in [9] and [53] and is given by
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- |3 tk)h

T -
R (k+1)[y,(k+1)}=h (k+1)o (k)] »
Jbylka1) = 0, (K) + b3 — J J J : (3.15)
1+ hj(k+1) Pj(k) hj(k+1)
v AT
Pj(k)hj(k+1)(Pj(k)h (k+1))" -
PJ(k+1) = Pj(k) - J (3.16)
: T
1 + hj(k+l) Pj(k) hj(k+l)

where

H,(k+1) = ‘ (3.17)
J hY (k1) ,
J .

hj(k+1).= {u1{k)u1(k-1)...u1(k-n)u2(k)...up(k-n)-yj(k)...-yJ(k-n)JT

From equations (3.9) and (3.11) we can nqﬁiee that the parameters
of tﬁe characteristic polynomial, D(z), are estimated m times during
each iteration (i.g. for each’ one of the m éubsystems). To reduce the
computations in the proposed algorithm it is possible to avoid
estimating the parameters of D(z) more than one time for every
iteration. This can be accomplished as follows. Using the first output

‘an estimate of the parameters of D{z)} can be obtained. then using these

estimated parameters and for i = 2, 3, ..., m Wwe may write

F.Y n -
700 2y (k) T ale) ) (3.18)

where d(%) is an estimate of the parameter d(&) and §i is an estimate of

yi defined a : ‘ i

—_ n
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By uaing equation (3.18) the oﬁtput equations (3.10) for 1 =

2,3,...,0 can be modified to

PO p n ' .
y.{k) = £ & a,,(2) u,lk-t) : {3.20)
:-L J=1 =9 13 J

In the above equation we have eliminate& the parameters of the
_polynumiai D(z) for the outputs i = 2, 3, ..., m. Hence the only
parameters which need to be estimated for these outputs are the aij(i)is
which can be estimated by the algorithm (3.15)-(3.17) with the dimensipn
of tpe'parameter vector ;J(k), j =2, 3, ..., m reduced to np instead of
n(p+1}). This results rin considerable reduction in the number of
computations.

The maiﬂ advantage of the proposed algorithm over Sen and Sinha's
algorithm is that it requires less computation and avﬁids matrix
inversion. This is possible because it decomposes the identification
problem into m separate single-output multiple-input problems. To show
this, the number of arithmetic operations per iteration needéd in the

proposed algorithm, its reduced form and Sen and Sinha's algorithm are

given in Table 3.1.
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Total number of Total number of

Algorithm additions and multiplications and Matrix

: subtractions divisions inversion
Sen & Sinha's 2m[n2(mp+l)2+mn(mp+1) 2ﬁn[n(mp+1)2+m(mp+1) One (mxm)
algorithm +1-m] +{mp+1)] matrix
Proposed alg. 2mn(p+1) (ap+n+1) 2nm{p+1) {np+n+2)+m None
without reduction '
Proposed alg. on{ (p+1) (np+n+1) 2n2(p+1)2+anm None
with reduction +p(m=1)(np+1)] '+2n2p2(m-1)+un+m

Table 3.1 Comparison of the arithmetic operations per iteration



38

3.2.4 Simulation Results

As an example the proposed algorithm was a%glied to the
identification of a simulated system with two-inputs and two-outputs.

As in equation (3.6), the transfer-function matrix of  such a

system is of the following form
. 1 t
1 A11(2) Ala(z)
G(z) = D(-v) 1 1
Ay (2) Aopl®)
with

D(z) = 23 + d(1)z° + d(2)z + 4(3)

n
1

-2 -
A, (z) = 311(1)~ + 311(2)~ +a,  (3)

1M

A (2) = 312(1)22 + alz(a)z + a12(3)
- A ”2 L. 4

A21(u) z a21(1)~ + 321(2). + 321(3)

2
A22(Z) = a22(l): + 322(2)2 + a22(3)

where
a, (1) = 3 a;(2) = -3.5 ay,(3) = -1.5
312(1) = 1 a12(2) = -0.167 312(3) = =0.167
a21(1) = -4 321(2) z =2 3,,(3} =
azz(l) = 1 a,,(2) = -0.167 322(3) = -0.083
a(1) = 0,833 A(2) = 0.M17 d(3) = 0.083

The two inputs to the system were taken as uncorrelated unit
variance white Gaussian sequences. Tﬁo cases were considered., First,
the above system was identified from noise-free data. Next, the outputs
were corrupted by a whité noise with noise-to-signal ratio of 1%. The
proposed algorithm, its reduced form and Sen and Sinha's algorithm were

?

used to estimate the parameters of the system for these two casgs. For
{
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the proposed algorithm' with reducﬁion. ﬁn initial. estimate of the
parameters of the polynomi;l D(z)} was obtained from the first output for
20 iterations and then used in identifying the second output. The final
estimétes of the syst@m parameters after 150 iterations are shown in
Table 3.2.. Also, the total numﬁer of arithmetic operations and the
total computation time per iteration are compared E?r the proposed
algorithm and its reduced form with Sen and Sinha's algorithm and these

are given in Table 3.3.

3.3 Identification of 3 General Transfer-function Matrix
3.3.1 Introduction

In this section an algorithm will be presented for identifying
linear, discrete-time, multivariable syatems in a more general transfer-
function matrix (TFM)} representation from noise-free as well as noisy
data without prior knowledge of the order of the system. First the
system is decomposed into m subsystems; each corresponds to one row of
the transfer-function matrix. Then the order of each row is estimated
using a proposed recursive algorithm for the noise-free case. The
parameters of each subsystem are then estimated Dby a multivariabie
recursive least-squares algorithm. When the outputs of the system are
corrupted by additive noise the order of each subsystem is estimated by
an algorithm based on the residual error technique ﬂpich has been used
- by Suen and Liu [S4]. The parameters of each ro; are then estimated
using a multivariable adaptive least-squares algorithm similar to that

’gngggyed by Panuska [55] for the case of single-input aingle-output
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P

,. All Alg. Sen and Proposed Proposed
Parameters True Value Noise-free Sinha's Alg. Alg. Reduced Alg.
case N.S.R. = 1% N.S.R, = 1% N.S.R. = 1%
a (1) 3,000 3.000 3.006 3.608 3.004
a,,(2) -3.500  -3.500 -3.521 -3.576 -3.534
a, (3) -1.500 -1.500 -1.472 -1.419 ~1.435
a,,(1) 1.000 1.000 1.003 1.002 1.002
a,,(2) -0.167 -0.167. -0.168 -0.169 -0.468
- a,5(3) -0. 167 -0.167 -0.146 -0.135 -0.139
321(1) -4.000 -1, 000 -3.989 -3.999 ~3.998
321(2) -2.000 -2.000 -1.958 -1.923 -1.940
a,,(3) 1,000 ~1.000 ~0.989 -0.969 -0.971
a5,(1) 1,000 1.000 0.999 1.000 0.997
a,,(2) -0.167 -0.167 -0.176 -0.177 -0.189 -
" ay,(3) -0.083 -0.083 -0.080 -0.088 -0.078
d() 0.833 0.833 0.825 0.814 : 0.821
d(2) 0. 417 0.417 0.413 0. kok 0.411
d(3) 0.083 0.083 0.081 0.081 0.085

Table 3.2 Results of simulation of the given

example after 150

iterations
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!
Total Total . Total Reduction
number of number of computation in
additions & oultiplications Matrix time computation
Algorithm subtractipns & divisions inversion (sec.) "time
Sen & ‘
-Sinha's 1016 1080 2x2 0.0372 -
algorithm.
Proposed
algorithm 360 398 None 0.0411 70.13%
without
reduction )
Proposed . .
algorithm 264 296 None 0.0078 78.81%
with T
reduction

Table 3.3 Comparison of the computation effort per iteration
for the given example



42

systems. _ | . .
3.3.2 Problem Formulation

Cons:f.der a linear discrete-time multivariable system with
p-inputs and m~outputs. It can be represented by an mxp TFM, G(z), with

the following input-output relationship
y(k) = G(z) u(k) (3.21)

where u(k) .is the p-dimensional input vector sequence, y(k) is the
f'm-dimension'al output vector sequence and z is the unit advance operator.
In general, the TRM G(?) can be written as follows (equation

(2.3)

-A”Fz) A12(Z) A1P(Z) .
B,(2) | 812(2),. B2
A21(z) A22(Z) Azp(z)
G(z) = _— .. (3.22)
le(z) 822(2) sz(z)
Am(z) .&mz(z) Amp(z)
_Bm(z) Bmz('z) Bmp(z) _

-
~

where Aij(z) and Bij(z) i =“1, 2, «vvo, m; J =1, 2, ..u, p are

polynomials in z.

The TFM G(z) can also be expressed as
'



43

(33

" . .
-A”‘(z) . l.tiz(z) Alp(Z)
D,(z) D,(z) D,(z)
Myi(z)  Apy(2) App(®) -
G(z) = ‘ee (3.23)
l/’ Da(z) Da(z) Dz(z) .
. * *
Am(z) Amz(z) Amp(z)
| D_(z) Dz T D(z) -

v

where Di(z) is defined as the leést common denominator of the ith 'row‘ of

G(z) of equation (3.22) having the._degree ny and can be expressed as
. N _

n n.-1 . )
+ oaee + di(ni-1) z + di(ni) (3.24)

Di'(z.) =z i, d;ﬁ(I) z 1

» ’ ' .
AiJ(Z) i=1 2, .e00, m3y 3 =1, 2, +o., p are polynomials in z of

maximum degree ni-1, i=12, ..., m and can be expressed as

n,-1 l n.=-2

(z) = aiJ(T) z ! +‘aid(2) Z 5 4 ..+ aiJ(ni-l) z + a, (n,)

®
f13 ' . BT 25
® - it can be noticed that the values of the orders n,'s (order of
_.each row of G(z)} are in general less than or equai to tl';e order of the
_ 5. :

‘system.

k The',éygtem identification problem requires the determination of
G(z), i.e. o \

{Aij(z), Di(z)} :i=1,2, oo, m; 3=,y 2, «4ey P

from measurements of the input-output data sequence u{k) and y(k); k =

1, 2, ... and without prior knowledge of the structural :parameters of

L
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the system.

3.3.3 System Decomposition -
From the representation of G(z) given in equation (3.23) the
outputs of the system can be written as

(k) i=1,2, ..., m (3.26)

: P
Di(Z).Yi(k) = I A, .(2) u,

=1 1]
where yi(k) is the ith output and uj(k) is the jth input of the system.
" ‘ ) i
Substituting for Di(z) and Aij(z) from equations (3.24) and

(3.25), equation (3.26) can be rewritten more explicitly as follows

p ni . : ni
L

yy(k) = I I ayy(8) uylk-2) -

Ik d,(1) y(k=t)  i=1,2 wo,m

b=t (3.27)

Now, the given system has been decompgsed into m subsystems as
shown in equation (3.27) whére each subsystem corresponds to one row of
the TFM and can be regarded as a sipgle-output'multi-inpuéksystam of
order n. - L h

Ip the next subsections, the order n, and the parameteré aij(l)‘s
and di(L)'s of the ith subsystem (row) will-be estimated independently
from those of the other subsystems for the noise-free as well as noiasy

data cases. The idefitification of the whole system will be accomplished

in m separate steps. ’b
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3.3.4 Noiseffree Case o | . -
3.3.4.1 Pafémetric Identification

In this subseétion the parameters of each subsystem will be ésti— ‘
mat;d recursively froa noise-free data assuping a prior knowledge of the

orders ni's. qu'the ith subsystem equation (3.27) can be concatenated

as
Yi(k) = Hi(k) . A (3.28)
where )
-u1(0) u1(-1) - u1(1-ni) : u2(0)
_ u1(1) u1(0) Cen u1(2-ni) uz(J) .
- Hi(k)-= . :
Lu (k=1) u,(k=2) ... u,(k-n;} u2(k-1) .
(3.29)
. up(1-ni) . —Yi(O) - -yi(T-ni) -
ves up(z-ni) -yi(l)‘ cas -yi(Z—ni)
. up(k-ni) ‘ -Yi(k-ﬂ cen -,.Yi(k"ni) i
L} TJ
4 = [ailtl) ai1(2) e ai1(ni) 312(1) - aip(ni) di(l) ces di(ni)]
(3.30)
y - . T -
O EN AV AC I A (3.31)

and the subseript T denctes transposition. Note that the number of

pé?gilters to be estimated for each subsystem is ni(p+1).

-

\l
For large values of k,,the least-squares estimate of ¢i is given

by

N

L ——
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- T,oo . “1 . Toon v - |
0,0 = (] () H, ()™ B} () ¥ (k) (3.32)

where ¢1(k)'is the estimate of ¢, from k input-output sequences. A
recursive version of equation (3.32) for estimating‘¢i(k) was given by
Astrom and Eykhoff [9] and'Sinha and Pille [53]-as follows

* —._—_—-‘-—;

PL(K) b (ke)) [y, (ke1) = By(keT) 4,00]

0, () + , - (3.33)
1+ hi(k+1) Pi(k) hi(k+1)

¢i(k+1)

13

-

" P, (k) ni(k+1) (2, (1) by ke’

Pi(k+1) SRR 1+ hT(k+1) P, (k) h (k+1) 3.3
i i i
where
H, (k) "
’ Hy(ke1) = . (3.35)
hi(k+1)
and ~

hi(k+15 = [u1(k).u1(k-1) - u1(k-ni) uz(k) e up(k-ni) -yi(k) . -yi(k—ni)]T

(3.36)

3.3.4.2 Recursive Estimation of ny from Noise-free Data
For the ith subsystem of equation (3.21), let the square matrix

Q; (k) of dimension ni(p+1) be defined as follows
+
Qi(k) =1 - Hi(k) Hi(k) {(3.37)

where H;(k) is the pseudo-inverse of the matrix Hi(k) {equation (3.29))
and I is the unit matrix. A recursive version of equation (3.37) was

given by Sinha and Pille [53] as follows
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: T
| Qi(k) hi(k+1) (Qi(k)_hi(k+1))

- (3.38)
: hi(k+1) Qi(k_)'hi(k+1)

where Q(0) = 1 - (3.39)

and hi(k+1) is as defined in equation (3.36).
| The' algor}thm to determing the oyder of each suﬁsystem ni is
based on the following theorem.
Theorem
Consider the ith row‘(subsystem) of the matrix G(z) of equation

(3.23) which can be written as

A;J(z)

y () = (k) (3.40)

|
3 D, (z)

1 71 J

n e

Assume that the order of each subsysbem is Ni, where Ni is an integer

and may be chosen arbitrarily large and let
q; = tr Q;(k) | (3.41)
where Qi(k) is obtained recursively as in equations (3.38) and (3.39).

If ¥ is incremented from ' to Mi {where Mi S_Ni(p+1)) until qi becomes

constant, then the true order of each subsystem ni is given by

hy = N, - q - (3.12)

- Proof’:
It is known that (Albert, [56])

+
Rank H, (k) = tr (H (k) H (k)
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Then from éﬁuation'(3.37),and (3.41) we have

Rank Hi(k) = tr (I - Qi(k))

N; (p+1) = tr Q,(K)

i

The maximum rank of Hi(k) is Nip+n since.Hi(k) has ni(p+1) +

i
(Ni'ni)p degrees of freedom. Thus, when Hi(k) has attained the max imum N

rank, 9 becomes a constant and we have

Nip+ni = Ni(p+1) - q

and hence

3.3.5 Noisy Case
3.3.5.1 Parametric Identification in the Presence of Noise

In this subsectiog the algorithm previously considered for
estimating the parameters of ‘each subsystem will be extended to the
noisy case. It will be assumed.that the output éequence ié corrupted by

an additive, uncorrelated, zero-mean noise sequence as follows

zi(k) = Yi(k) + vi(k) | . (3.43)

" where z,(k) is the ith noisy output and v, (k) is the noise at the ith
output . |

Subatituting for yi(k) from equation (3.43) into equation (3.27),
the system outputs for the noisy case can be represented by the

following equations'



b n _ ny ny

2 (k) = I I a () u(k-2) - I d,(8) z,(k-t) + &
i PRPRPIRE F bl AT A " et

GBLLJ ] + vi(k) 121,22 crey, I (3.44)

Equation (3.44) can be written in a vector form as follows

di(L) vi(k-L)

. IT ' .
zi(k) = hi (k) by + vi(k) i=1,2, ..., (3.45)
where

. :
hi(k+1) = [ul(k) u](k-1) ces ui(k-ni) ves up(k-ni] -z, (k) ...

con 2y (ken) VoK) ool v (ken) 1T (3.46)
' 0 . B T
¢i = ai1(1) 311(2) ces ai1(ni) ves aip(ni) di(l) R di(ni) di(1) “es di(ni)]
: (3.47)

»
The -extended parameter vector ¢i for each subsystem can be estimated by
the recursive least-squares algorithm (equations (3.33)-(3.36)) but the
residuals vi(k)'s are 1?t known. However, a reasonable estimate of the

residuals can be obtained as follows

-~ a.T A. u
vi(k) = z;(k) - hy ¢ (k) i=1,2, ..., m (3.48)

“% . P .
where ¢i(k) is the estimate of 5 at the kth iteration which is obtained
by the recursive least-squares algorithm {equations (3.33)-(3.36)), ‘and
hiT is constructed as in equations (3.46) but with the values of vi(k)'s
are substituted with their current estimates from equation (3.48).

Assuming that the z:;?iitor of equation (3.48) is stable the convergence
n&\iif?rithm can be obtained in the same way as

of the identifica

Panuska {55].



3.3.5.2 Estimation of ny from No;sy Data by the Residual Error
‘ Technique ‘

For the case of noihy data the method of Subsection 3.3.4.2 will
not work because the matrix Hi(k) will be a full rank matrix and hence q
= 0. }n this‘subsaotion a nonreéursive method will be represented,
which usés the residual eéfor technique (Suen and By, [541), fo#
estiﬁating‘the orders ni's for the case of néiéy d;ta.. This residual
error technique is described in Appendix'l.

In this subsection the residual error technique discussed in
Appendix I wili be applied to determine the orders ni's from noisy data.
Using k input-outpdt sequences and assdming the order of the " ith

subsystem to be % and using equation (3.44) an expression similar to

i
(3.28) can be obtained as

00 = By, 1) 65(1y) + W (0 (3.49)
where w0 & e () W@ e w0l (3.50)
!.i | .
w () 2 40 vlet) + v, (9 (3.51)

» »
and Yi(k), Hi(k' ii) and ¢i(£i) are defined as in equations (3.29)-
{3.31} but with yi(kI and ny replaced by zi(k) and L, respectively.

Defining

A ¥
Z,0k) = Y (k) = Wy(k) (3.52)

) a
Then from equations (3.44) and (3.49) and the definition‘BT"Hi(k! 11) we

can observe that the vector Zi(k) is a linear combination of the vectors
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] ‘ .
of Hi(k, Li) ir Li,z 1, and is not if Ly < 0, . Following lemma 2

(Abpendix,I) we can obtain the following results

Eled(e,) | H)(k, 1)} = g(2,) if 4, 2y (3.53)
= gy (%)) + 4;(1)) S oAf ey Cng (3.54)
where
o, . A "y ™ st »
eg(t,) T Y (k) [T - Hik, £) By (k, 2] ¥, (k) (3.55)
) e 00 1T - B 1) B Gk, 2] W () (3.56)
SR S xi B S T B R '
s (e & 200 11 - B 0w 8 (k2007 2, (0 (3.57)
Rt A | L § 1 LI | i *

- ‘ ¥
Let ei(ki) be the estimate of E{ei(li)lﬂi(k,li)} where ez(li) is
evaluated by equation (3.55) then equations (3.53) and (3.54) can be

rewritten as follows

o K o . )
ei(r.i) = E {ei("i) | Hi(k, l.i)} - fi(zi) + Ei("i) (3.58)

where

|
o

-~

t‘i(ti) ir zi _>_ni (3.59)

Ai(!.i) >0 if 2 < n (3.60)

L4
From equation (3.56) we can see that gi(zi) is nearly constant if k is
large enough {Suen and Liu, [54]) hence the order n, can be estimateq as

follows:

/

For the ith output the residual errot eg(li) is plotted versus N

and from this plot n, is obtained as the smallest integer zi for which

i
the part of the plot is almost flat for Li 2,ni. In practice, instead

J
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of plotting the residual error ;2(11) it is better to plot, e:(li),.the
difference in the residual error defined as follows

op(t,) & 620s,) - f(2;+1) | (3.61)
3.3.6 Results of Simulation

The proposed algerithm was épplied'to the identification of the

following 2-input 2-output 4th order system

0 1 0 0 1_ 2
| =01 0.65 0 0 0.25 0.8
x(k+1) = 0 0 0 . x(k) +| 4 utk}
Ul ~10 -0.25 1 0.9 0.9:
1 0 0 07
V\Z(k) = Jx(k) + vik) (3.62)
~ f 0 0. 1 0
The TFM representation, equation (3.?2), of this system is
1 ' 2
z - 0.25 z - 0.4 (’
G(z) = (3.63)
0.9z + 1.275 0.9

(z-0.25)(z-0.5)2 (z-O.S)2

As“*i\equation (3.23) the above TFM can be expressed in the following

form
\
hig(z) App(2)
D1(Z) D1(z)
G(Z) = * ’ » (3-6”)
Ari(z)  Ayn(2)

..Dz(z) Dz(z) .
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where
A3, (2) = 2 - 0.4 - !
» .
A12(2) = 22 - 0-5
» g
AEI(Z) = 0.9z + 1.275%
A (z) =0 0.22
22 z - -93 - " 5
- 2
D1(z) =z =0.652z + 0.1

Da(z) = 53 - 1.2522 + 0.5z - 0.0625

From the representation of G(z) in equation (3.64) we can see ‘that the

order of each subsystem (row) is

n

1]

| 2 (order of DI(Z))

né 3 {order of Dz(z))

The above system was simulated using equation (3.62) with zero
initial states and the system input was taken as uncorrelated zero-mean
white noise sequence with unit wvariance. Each of the two outputs was
contaminated with a zero-méan white noise sequence with standard
deviation (o) varies to vary the noise level at each'output.

First the order of each subsystem was estimated from noise-{ree
data using the algorithm of subsection 3.3.4.2. Then the algorithm of
subsection 3.3.5.2 was applied to estimate the ordérs ni's from noisy
data fbr-the two cases 0 = 0.7 and ¢ = 0.3. The plot of the difference
in the residual error e;(li) for each subsystem and for the two noise
cases is shown in Figures 3.1 and 3.2. It 13 clearly determined from

the Figures that n, = 2 and n2 = 3 and -we can notice that increasing the



54

1.0+

4

O : T g T T T li
0 | 2 3 4

Fig. 3,1 Estimation of the structural index ny for the
cases g = 0, and o = 0.3 , '
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Fig. 3.2 Estimatg‘n of the structural index n, f£or the
cases g¥= 0.1 and ¢ = 0.3 . -
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néise level will increase the regidual differencejfrror. .

The parameters of the TFM were estimated by the algorithm of
subsection 3.3.4,1 for the noise-free case and using the algorithﬁ,of
subsection -3.3.5.1 for the two noisy cases of o = 0.1 and ¢ = 0.3.\ The
final estimate of the parameterg after 900 iteratlons is‘shown_in Table
3.4, To'éhow'the rate of convergence of the proposed algorithm of
- subsection 3.3.5.1 the normalized error |‘¢if;i(k)||2/ll¢il|2 of each
subsystem has been plotted against the number of samples (k) forythe tﬁo_
noise %evels and is shown in Figures B.i and 3.4, As is seen from Table
3.4 exact estimates of the parameters have been obtaihed for noise-free
case (and was obtained after few iterations). In;reasing the noise
level the estimates of the parameters are less éccuratg bgﬁ stable and

consistent estimates have been obtained for the two cases o = 0.1 énd g

= 0.3.

3.4 Concluding Remarks™ -~
In_ this chapter two different transfer-function matrix
representaﬁions have been considered for identification. In sect;on 3.2
a sﬁecial transfer-function matrix has been identified where the order
of each row was assumed to be equal to the order of the system. On the
other hand, a general transfer-function matrix was identified in section’
3.3 where the order of each row (in genqul lgss phan or equal to the
rder of the system) was determined before parameter estimation for
oise-free as well as the noisy case. The proposed algorithm of section

3.2 estimates the parameters of each row of the transfer-function matrix
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Table.3.4 Estimate of the parameters after 900 iterations

’

T

’Parameters ~ True value Noise-Free Case Case of ‘lc'=0.1 . Case,of 0=0.3

a11(1i 1.0000 1.0000 1.0052 1.0168
a () -0.4000 - -0.4000 ~0.3829 ~0.2064
a,,(1) 2.0000 - 2.0000 1.9981 1,9936
a,,(2) -0;5000 -0.5000 - -0.4662 -0.1219
. dy (1) -0.6500 -0.6500 -0.6315 -0.4568
4,(2) 0.1000 0.1000 - -0.0929 . 0.0298
' 2,,(1) 0.0000 0.0000 0.0038 " 0.0130
a,,(2) 0.9000 0.9000 0.9054 4 0.9125
a,,(3) 11,2750 ' 1.2750 1.26077 1.2370
522(1) 0.0000 ' 0.0000 . -070069 ~ -0.0034
aéz(a) 0.9000 0.9000 0.8983 0.8961 _ .
ay,(3)  -0.2250 A -0.2250 -0.2269 ~0.2275
dy(1) ~1.2500 ~1.2500 -1.2543 -1.2598
d,(2) ©0.5000  0.5000 | 0.5050 0.5091
-dzta) -0.0625 - -0,0625 -0.0639 - -0.0631

1

Lr
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separately from other ro}:s- hence the matrix ,_in_vpr.sion required by Sen
and Sinha's algorithm [28] is avoided and thepegore a redﬁction in the
computation time is achieved (Table 3.3). | e

As we can see from Tables 3.2 and 3.4, Qxaet estimates of the
paramaters' of the system were obtained for the case of noise-free data
using the Cq:dingry least-sdquares method. For’ the noisy case the
adaptive least-squares method was used in section’ 3.3 to estimate the
system paramet‘ers and good estimates were obtain for different noise

]

levels (Table 3.14).

»



CHAPTER ¥

" IDENTIFICATION OF THE IMPULSE RESPONSE SEQUENCE

4.1 Introduction
b . . ¢ i

_Thg problem of identification of the impulse'r'esponse sequence of
the system has not received much attention. -This is :.because most of the
control theory uses t.he state space representation of the system, and
the iden'tified system in its impulse response has to be transformed into
the ;tate space form. The latter pr'ob'leui has been solved completeily,
-f‘irst by Ho and Kalman [57] and later by Rozsa and Sinha [58], for the
case where the Markov parameters of the'system ;re exactly known. Bar-
Shalom and Schwai'tz [59] have proposed a stochastic approximation
algorithm for estimating the Markov parameters of single-input single-

output linear systems. In their technique they used deterministic

orthognal sequence of inputs. Mehra [34] has developed an on-line

—_—————— T

scheme for the identification of the impulse response sequence for

multivariable systems, similar to the stochastic approximation scheme of
Ho and Lee [66], from the Yule-Walker equations [61]. The weighting
coefficients in. this scheme are chosen recursively by sclving a matrix
equation. Sinha and ‘Sen [62], ‘have proposed an algorithm for the
identification of the Markov parameters of‘e equation (2.6)‘ using a

certain value for the parameter %. Equation (2.6) can be-rewritten in

the form
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-1’ _ 81 :
z(k) = L Ji u(k-i-1) + ¢ ”1 e(k-i-1) (4.1)
i=0 _ . i=0

where Mi's are the Markov parameteré of the Aoise model ahd e(k) is a
white noise sequence. They estimated the Markov _parameteré of the
system Ji's using an ﬁn;line .algorithq combining stochastic
appr'oximationland pse'-udo—inverae methods.

In this chapter two‘ on—li_ne algorithms will be developed for
estimating the Markov parameters of linear. discrete-time multivariable
systéms. In section 4.2 an algorithm is proposed for estimating‘ t‘:he-
Markov parameters of the system from the .measured input~output ‘data,
which are contaminated with additive nolse, using a normalized
stochastic approximation algorithm. In section 4.3 another algorithm is
proposed to estimate the’ Marko‘éhparameters of the sysﬁem by crosa-

correlation betwéen the outputs and a white noise inputs and can be used
a :

wi@h the system under operation if a dither =signal can be added for

.-identification. A state space representation of the system will be

obtained from the estimated Markov parameters using an efficient
algorithm for minimal realization [63].
4.2 *Stochastic Approximation for the Estimation of the Markov
Parameters
Consider a linear discrete-time multivariable system described by

the following impulse response rebresentation

z(k+t) =

JJ ulk+t~3) + v(k+l) (u.“z)
J

LU e B

1
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‘where z(k) is an mn-dimension measured output vector, u(k) is an

p-dimensional input vector sequence of independent random variables with

zero-mean and v(k) is an m-dimensional noise vector sequence of additive

(not directly measured) random variables with zero-mean and finite

variances, uncorrelated with u(k), i.e.-

E fu(k)} =0, E {v(k)} =0

and E {u(k) v (K)} = O W)

Defining the following fp dimensional vectors

T
0p = L0y Jpp e gy ] (u.y)
- 0T (ka2=1) = [u(ket=1)  ul(k+t=2) ... wi(k)] (4.5)
where JJ, J=1,2 ..., % has bheen partitioned as
: Vi
93,1 ]
3 = Jy,2 : ' (4.6)
_J J,m..

Then the ith output of the system, zikk+z), can be represented by the

following equation
-y '
zi(k+!.) = U (k+n=1) @, + vi(k+z) ‘ (3.7)
Now, aasuming that the value of & is known and defining Gi as the

estimate of the unknown parameter vector Bi of equation (U4.4) which

minimizes the following set of normalized mean-square error criterion
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A vi(k+£)
f(e,) = E { * } i=1,2, .o, m
i U Cera=T) ]2
where
' v, (ert) = 7, (ket) = R TORMEN (4.8)

Then the parameﬁers Bi, i=1,2 ... m cambe estimated recursivel} by

means of the following normalized stochastic approximation algorithm

- U{k+2-1) T -
Bi(k-l) + v(k) _— [zi(k+2) - U7 (k+i=1) ﬂi(k-1)]
, [1UCk+2-1) 1]

=1, 2, .., m k=1, 242, 28+3, ... (4.9)

where the sequence v(k) and the initial estimates satisfy the following

conditions
1im v(k) = 0, I w(k) ==, T vi(k) <
ko * k=1 k=1
A _ .
and . E(ffe (@ffT1 <= 121,200y m (4.10)

A; proof of the unbiasedness of the estimate of e parameter
vectors gi' i=12, ..., m and tﬁeir convergence in the mean-square
sense to the. true values Bi's has been obtained and is given in Appendix
I1.

After estimating the unknown parameter vectors ei‘s, an estimate

of Markov parameters of the system is cbtained directly from relations

(4,.4) and (Y4.6) as follows
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ey ?
Ca
n

-Bj,m-

where J, is the estimate of .J, and &, has been partitioned as

37 3 i
' - - . ~ -~ -~
. : g T

Tt

4,2.1 State Space Realizétion

After the Markov ﬁarameters of the system have been estimated,‘by
the algorithm described above, a state space realization of the system
{estimate of the matrices A, B and C, equation (2.15)) can be obtained
from ;hese estimated Markov parameters. A canonical realization of the
matrices A, B and C can be ébtained by an efficlent algorithm for
minimal realization proposed by Rozsa and Sinha [63] from the Hankel
matrix of the system which consists of the estimated Markov parameteré.\
Since the order of the system model is equal to the rank of the Hankel
matrix, some difficulties may arise due to the fact that even a small
perturbation in the Markov' parameters may change the rank considerably.
Heneei_either the order of the system should be lknown in advance or one
may obtain a partial realization of an arbitrary selected order from the

eatimated Hankel matrix.
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4.2.2 smulégon Results
The proposed algorithm @f this section was applied to the
'}
identification of a simnlated 3rd order system with one input and two

outputs described by the following eqUations

e
-0 0 - 0.0257 - 1
- xlk+1) =1 1 0 =0.1 x(k) +| 0 |u(k)
L 0 1 1.0 )
‘To.t2 0.36 0.14 :
z(k) = ] x(k) + v(k)
L 0.20 0.29 0.559

y

The scalar input u(k) was taken aaq a zero-mean white noise
sequence with unit variance. Each of the two outputs was contaminated
w'ith an additive zero-mean white noise of standard deviation of 0.3 aﬂd

0.85 for the first and second outputs resﬁectively.
The\ Markov parametefs of the above system were estimated using
the élgorit of equation (4.9) and the value of the parameter b was

N .

takan‘ as & = 10, %{he final. estimates of the first four Markov
parameters obtained from 900 samples of the input-output data are shown
in Table 4.1. To _show the rate of convergence of the proposed algorithm
f‘\\{:he Markov paraméters has been plotted against the

the error norm of

number of samples and is shown in Figure L4.1. The error norm used is

hefined as

Error norm 4 ]|B(k)—9|12 / ||9||2

where 8 is -a vector formulated from the Markov parameters to be

estimated. From the estimated Markov parameters and asqymlng that the



Estimated Value

Markov Parameter’ True Value
0.12 0.3
JO
0.20 0.204
0.36 0.361 '
J1 .
i : 0.29 0.310
~/ \
0.14 0.141
JE
0.559 0.586
. 0.107 0.112
J3 . :
. 10.535 0.537
Table 4.1 Final estimate of the Markov parameters using stochastic

approximation
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order of the system ié known a state space‘representation‘of'the system
is obtained'ﬁsing the minimal realization. algorithm ppoposed by Rozsa
and' Sinha [63]. Table 4.2 shows the obtained estimates of the matrices

A and C.

4.3 ' -

.Consider a linear disirete-time multivariable system described by

the following impulse response representation

_ !‘_,1 . . K i
z(k) = Ji u(k=i=1) * v{k) (4.11)
i=0

Post-multiplying both sides of equation (4.11) by uT(j), where

the superscript T denotes transposition, and taking expectation, we get

' T 2= T o,
E {z(k) u(§)} = 2 Ji E {ulk-i-1) u ()} + E {v(k) v {H} (4.12)
i=0 :

where E{*} denotes expected valus. -

Lo

Since, the noise sequence v(k) is a zero-mean sequence

uncorrelated with u(k), i.e.
E (v(k) u'(§)} = 0 (4.13)

then equation (4.12) can be reduced to

T L-1
E {z2{k) u (i)} = &

3, E {u(k=i-1) 0 ()Y ()
1=0 -

i £
Now consider the case when the input sequence is uncorrelated, so that

E {u(1) w' (D} =T s,

i
S
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Matrix ] TruJ Value? Estimated Value
0.0 0.0 0.025 0.0 0.0  0.015
A 1.0 0.0 - -0.1 1.0 0.0 -0.089
) 0.00 1.0 1.0 0.0 1.0 ° 1.020
0.12  0.36 0.14 0.113  0.361 0.1¥1
C - .

0.20 0.29 0.559 0.204 0:310 0.586

P
e

Table 4.2 Estimate of the state space matrices

e *

- —~—
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where I is the identity matrix and 81,

. case equation (4.14) is reduced to

~a
.

i Jk-J;j'f E {z(k) UT(J?} T - . . (4,15}

-
.

Equation (4.15) indicates that the Markov paréxﬂpter Jk-j_l-1 is

equal to the cross-éorrelation between the jth samples of the input

- L

uncorrelated with the measurement noise. The ex—‘pression for J, - j:-l of
equation (4.15) ¥s not ?"gt'xitable for practical application since it
requirég)an ensemble average. Assuming ergodic process one ﬁay use ghé
time averdge to obtain | |

|. .‘ . A ] N"'I
L J =limg I
L | New © j=0

A ) A. {:a - ‘o s L]
v For a good approximation, ‘however, it is necessary- that N, the

i

m}nb-er of sample‘s be very large. This would normally require storing a
large amount of data. The following recu_hsive algorithm may be used for

improving the edtimat@ as more data arrives and may therefore be used
. i

for on-line estimation
|

I (N+1) £ 3y, (N) - Ne1

.

(9, (W) = z(eali+]) W (NeD](HT)

where JE(N) is the egstimate' of J_ obtained from N samples of the input-

k
output data’

- -

It may be pointgd out tha\(:" althoughi this proposed algorithm

requires‘ that the input sequence be white noise, this does not 'pfesent

v ML T o N

s

R 71

is the-ki_'onécker delta. For this

sequence -and the kth sample of the observed output sequence providéd _

that the input séq"uence is a unit-variance white-noise’ sequenc.e_'

2Cked) wi(4) o (4. 16)
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any d;fficulby for those cases Hhefe it i3 necessary t6$identify the

'-systai under actual operation with some other inputs. In such cases it

is usually permissible to add .a white noise dither signak\i:jm a pgeudqf
ro

randam noise 'generator to the .actual input. ‘The cros3w-correlation

between this signal and the observed output can be utiliied as before,

'_provided that this dither signal is uncorrelated w;th the other input

. . o
signal and the observation noise.
- After the Markov parameters have been estimated by the algorithm

\of equation (4.17) a state spaca reélizationrcan be obtained from these

estimates as described .in subsection 4.2.1.
Tt

4.3.1 Results of Simulation

| The prépcsed algorithm of this sedtion‘ was applied to §he
identification ©f the simulated -example ‘of subsection %.2.2. The input
to the system was taken as a zero-mean unit variance white noise
Sequence, .To each 6f the outputs an uncorrg;ated zerg-mean white noise
sequence With standard deviations of 0.3 and 0.85 was added to the firs£

and second outputs réépectiggly.
‘ The final estimates of the Markov para&eters from 1500 samples of
the ihput-butput_ daﬁa are given in Table 4.3: From these esatimatéd
Mafkov parameters aﬁd ﬁ%sgming that thé order of the system is known, a
state space re9resentation of the systeh was obtaingd using tﬁe minimal
realization algorithm of Rozsa and Sinha [63] and is shown in_Iable'u.H.

As we can see from Tables 4.3 and 4.%good estimates of the Markov

parameters of the sy?tem,and of the matrices A and C of the state space

R : . - -



Markov Parg.meter : True Value ‘ Eétimated value

“ : 0.12 0.121 "/’\“\

- o 0.20 0.230
T ' \
0.36 0.346
J, ’
' 0.29 0.315
0.14 0.140
I
0.559 0.563
- 0.107 0.106
I3

0.535 0.539 =

Table 4.3 Final estimate of the Markov parameters using cross-
torrelation

:T
. A

o —



— -
“Th
Matrix ' True Value : Estimated Value
0.0 0.0 0.025 0.0 0.0  0.027
A «1,0 0.0 -0.1 1.0 0.0 --0.095
0.0 1.0 1.0 . 0.0 1.0 0.966
0.12 0.36 0.14 0.121 0.346 0,140 -
c
0.20 0.29 0.559 0.230 0.315 0.563

Table 4.4 Es;::étsof the state space matrices
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represeni‘.ation-of the systenm h;;wer\{eb5 obtained from the noisy

measurements.

W4 Concluding Remarks

| In this. chapter two a\lgo;'ithm.;al have been developed fori:j! estimating
;the Markov‘ parameters of multivariable systems‘._m The aléorith.m of
section 3.2 t';runcates the impulse response sequerk after % terms and a
-normalized stochastic approximation methed is uaed 'to estimate the
Markov parameters. As 2 terms only- are being used in the impulse
responsé representation a bias will be introduced into the estim%
Markov parameters due to this truncatiofx. In order to reduce the éft‘ect
of this truncation the value'of . may be increased [29]. The algorithm
used in section 3.3 uses the correlation technique which dces not
require any truncation of the Iimpulse response sequence and hence th‘e
problem of bias will not appear. On the other hand this algorithm
requires a special type of in‘put sequence for the purpose of“
identification.

After an estimate of the Markov bar'ameter's of the system has been
obtained the matrices of the state space representation of the sysﬁem
can be calculated, if required, from the resulting Hankel matrix for the.
system. An ef‘ficiént algorithm for this purpose has been proposed by

Rozsa and Sinha [631].



CHAPTER 5

IDENTIFICATION OF THE STATE SPACE MODEL

5.1 Introduction

Due to the practical importance of spaté space representation,
vt’ezspecizally in control theory, much work has been done on the problem of
identi.f.‘ication of multivariable. systems' in the sﬁat‘,e space
representation. In general, this problem can be di-vided_- into .two main

‘. . ’ .
stqua: "ét‘i:-ucpure determination and parameter esti:mation of the system
matrices. It is well known that the representation in the state space
form is not unique and any noq;gihgular transformation of the state
vectom\ will lead to similar representation. Because ol".‘ this non-
uniquet.less several canonicél forms of the state space representation
have been developed for the idenpif‘iéation problem which reduce the
number of parameters to I':)e estimated in the éystem matrices (Weinert and
 Anton (461, Mayne [64] and Irwin and Robérts [65]).

In this chapter the problem of identification of linear
mult,ivariab)(e discrete-time systems in. the state space repr‘eséntation
will be considered. A survey of some of the work done on tpe prablem of
identification of linear mt;ltivariable syétems from input-ot;ltput data in
the state space representation will be presented in section 5.2. In

section 5.3 an algorithm will be developed for determining the

structural parameters of “a canonical state space representation from

T6--

b
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‘noise-free as well as_ﬁoisy data. The algorithm utilizes the residual
error techniqué and does not need ghe ‘knowledge~ of the noise
characteristics. ;g_éectionrﬁ.u an algorithm {43] will be developed for
on 1iné estimation of the parameters of the canonical state space form

d in section 5.3 from noisy data. This algoéithm cogpineé stochastic

approximation with the pseudo-inverse method.

5.2 wwm&mm.@nm“

- First, consider phe identification of mult;variable systems when

the inputFoutput data is f?ee from noise. The pioneering work in this

area was done by Gopinath [24] and later by Budin [25]. Their methods
present a direci; procedure for minimal realization in a well-defined
structure, from input-output data, which uses a selec£or matrix.
Although this approach alsc gives the order of the system besides
estimating the syatem matrices, it is computationally very involved.

Guidorzi [41], has identified the system in stéte space form by
fi?st estimating the parameters of an equivalent input—output difference
eqﬁétion form. Then the system matrices are recovered from these
estimated parameters by a direct substitution.

Bingulac and Farigs [48], have proposed an algorithm based on an
identification identity Yelating input-output data to state space
real;zation. By solving this identification identigy it is possible in
gddition to system parameter ;stimation to determine observability
indices and minimal érder as wgll. -

-

Liu and Suen [66], have proposed a simple algorithm by which a

-
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minimal dimension realization from inputfoutput data can be obtained.
The algorithm starts by cor;structing a,eg'luential selector matrix_by a
minimal dimension algorithm, then a minimal dimension realization is
obté:{;iél by direct sube:titution. This algdrithm can also give a‘minimal
dimension realization from an input-output sequence. which may not be
identifiable. . |

The idenf:if‘icétion of multivariable 'sygtems in state space model
from noisy data is more invelved than ’for the noise-free case, discussed
above. For the noisy case there are two approaches, in the first the
" noise-free algorithms are modified, ‘the.. second cbﬁsiders directly the.
identification from noisy data. Guidorzi [41], has e).ct;.ended his
algorithm, discussed above to identify systems from noisy data. He
proposed cobtaining least-squares estimators in a max;r;er similar to the
instrumental variable ;pproach. Recently, S_inha and Kwong [42] have
. developed 'a recursive algoéithm which utilizes the canonical difference
equatior; deseription due to .Guidorzi [41]. This method uses the
generalized least-squares algorith:ﬁ to identify the parameters of each '
subsystenm, '.'.'hich is a decompositicn of the given system.

"Mehra [311]-, .has proposed an on-line algorit;hm for the
identification of the state space model. First the autocovariance
matrices of the‘ System are estimated and then using the Ho and Ealman
algorithm \[67] a minimal realizat:ior; is obtained. Valis ([68], 'has
obtained l_,a/l-'ect;m* difference eguation of h‘igher order from the state
space des:crigg on. A canonical form of the vector dif‘f‘erence‘ equation

was given to enable the estimation of the order of the system if
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unknown. The order of the system was obtained by avaluating anq testing
. _

(n+1) models, and the proper .order is the one that gives a significant |

decrease of a certain loss function. The parameters of the system are

estimated from the vector difference equation by least-squares.
Tse and Weinert [47], have proposed a procedure for structure

determination and parameter estimation for multivariable stochastic

systéms\where the control is identically zero. Their alg;rithm proceeds

as follows; consider the following system model

x(k+1)

Ax(k) + w(k)

z(k)-

u

Cx(k) + v(k) . (5.1)
where w(k) and v(k) are zero-mean Gaussian noises.
System (5.1) can be represented by the following equation

x(k+1) = Ax(k) + G¥(k)

z(lk)

Cx(k) + v(k) B , (5.2)
where v(k) is ﬁhg Zero-mean innovations with unknoﬁn covariance Q. By
using a particular canonical foﬁ and defining the set of structural
parameters of the system {pi}m, there-exist a unique set {Bijk} such

that for i = 1, 2, ..., O

P
P i "3
T Py T k
o Trosy A% if p, >0
oy A J=1 k=0 P13 ° P17
(5.3)
_1 Pyl o ~
cT = 121 JE B cT Ak' if p, =0
17 4y ko M i

where cz is the ith row of C, Then the matrices A and C in the

canonical form can be constructed from the set {pi, Bijk}' The

structural parameters {pi}m of the aystem are identified in the

|



where

‘Let rij(u) be the i, jf%;

where T

S=APCr+GQ

.
o

following way. Let P denote
. (5.2), and let
Cow L T
R(o) = E {ka Zk]'
Then (5.2) implies
P=APAL +GQG
R(0) = C P CT + Q
Re) =¢ca’ s o> o0

80

the covariance matrix of the states in. -

(5.4)

(5.5)

element of R(s), then (5.3) and (5.5) imply

(5.6)

=0

“"-“i' \‘.D!".-'l ;
I sy r (ket) p, >0
=1 k:Ci-':' iﬂ.k 2J . l
. _
l"ij(pi""t) = 1 )
i-1 Po”
z I B r,,{(k+t) Pp.
=1 k=0 1%k H i
=1, 2, .... Now for the case i = 1 and

have from (5.6)

.Where

—
]

3
'

—_
]

z [rij(p1+1) e rij(2p1)]
= [By0 o Brayp ]

T =1, 2, vuey p, we
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-r'i&(I) rij(a). se r‘iJ(k) .

o it =| T1g®) 21y eee ryyleel) %
_rij(k) | rid(2k-1)_
Let , |
d, (k) = [det ¢ (k)]
Then we can see that | ' ‘
| a4,(k) >0 for k=1,2 ..oy p,
dl(k) =0 for k> p1‘

Using an estimate R(c) of R(cg) as, .

- 1‘ N"U T
=~ I
R(o) = § - Aeeo %

p1 can be. estimated as follows; if the first sharp decrease in d.l(k)

occurs at k = k%, then p1 is chosen as k*. The estimate of 81 is

obtained from the equation

~ ~

o '

are computed in an analogous manner.

-~ -~

For i = 2, 3, ..., O Py and By
Finally the matrices G and Q are estimated by an algorithm similar to
that of Carew and Belanger [69]. *

Nelson and Stear'-[TOJ, have prop'o&ed a scheme for combined para-
‘ meter énd state estimation for multivqfialile systems. The parameters of
the syétem are. es imated separately iby a linear Kal}:lan.filter. The

separation is possible because of the use of.a canonical form of the

state space equations of the sys@.- _Each component of‘.the output,
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zi(k) can be written in t&s of the system inputs, outputs, innovations
and a set of parameters arranged in a vec't_or denoted by @ i This .
relationship has the form
z (kY '< ET;(k) 8, (k) + v, (k) | | (5.7
i T i i *
where ¢
Tk = [uTlke1),nn s ulCmq) 2 0k=1) ) e vn s 2 (kmq) 0 T (R=1), w0 (R
Assuming that any time vériébility‘ of the, parameters Gi(k) can be

modeled by a random walk, that is

Bi(k+1) = ei(k} + si(k). : (5.8)

where si(-k) is assumed to be a Zero-mean, white, Géussi.an process 'with
c_ovar'iancé,S(k). By applying Kalman's results [71] to equations (5.7)

and (5.8) we obtain the following estimate for the parameter 8.

6 ' Tlk-1) <94
ei(k-l) + Ki(k-ﬂ [zi(k) - E" (k=-1) ei(k-

Sick) -

K, (k) = P (k-1) E(K) (7 (k) P (k=1) ECK) s 11!
. T

P () = [T - Kyl B7(10)] P%(k-l) + S(K)

The innovations sequence can be estimated by the following élgorithm,

which is due to Panuska [55],
o (k). = z.(k) = B (k=1) €. (k)
h T i . i

_ After:estimating the parameters 8,'s, the coefficients of the matrices
A, B and C can be obtained by a certain transformatlon.

Martin and Stubberud [72], have proposed an uncoupling method for

»
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i .
the ideritificatior.: of the system matrices and the noise covariance
matrices. A Kalman filter, predicated on the best available knowledge
of sys'tlem‘ param_e'tepsA is constructed. The matrices A and. B 'are
identified by requiring that thé mean oOf the measurement residual
sequence be zero. An adaptive. stochastic approximation algorithm is
usgd to iterativel'y adjust the system parameters So that the above
requirement is satisfied. ' . |

Bohn and DeBeer -[73], have proposed an algebraic approact; to
obtain a ‘consiste.flt' parameter es_t_imate of the state space model. They
used a3 special c.anonical structure for the ‘system matrices which refiuaes
the dimension of the data ﬁatrix and decouples the parameter estimation
equatione; into independent subsyétem equations. Due to the decoupling .
the resiﬁual equations take a very. simple algebréic form. The solution
of this résidual équations in conjunction ';:ith least-squares estimates
yields consistent’ paramei:e;' estimates.

Blessing [74], has proposed a procedure for structure determina-
tion and parameter estir'ﬁa;tion‘. The structural parameters of the system
are first.estimateq by an eigenvalue test. The system ﬁgrameters are
estimated by -f;irst identifying the Markov paramete;s "df.'”the system by
correlation analysis, using quaternary inpill.t sequences s&multane;usi;,
and” then a least-squares fit.

DeLarminét and Doncarli [75], have proposed a real time
general'i.z‘ed le.ast-squarés 'method for estimé.t_ing t;he-paramet;ers' and the

optimal filter gain of the sjrstem. They assumed tha& the structural

parameters of the system are known in advance.  Their method starts by -



transfoming the state space model into the input.routput model. Undéf' a
speoial canonical form an explicit pass:l.n,g formula“ bet‘.ueen the two

models has been obtained by Salut and Gavier [761, and Doncarli [77].

.t

The paramgi:ers of the input-output ‘model were identified recursively
using an est:l.mafioﬁ_of the output errors in a manner. Si:;lilar to the
stochastic approximation metho_d. Finally, a canonical state Spacg fort
.of the sj*stem is obtained from the identified parameters ;Jf‘ the input- ‘
'output model. l ( |
. . .
5.3, A Provosed Algorithn for Structure Determination of 3 Canonical -
State Space Model
In this section an algorithm [78] is presemed f‘or detemmmg
‘ the structural parameters. of a certain canonical state space model which
has been used much for identification (Lobbia and Saridis [145], Beghelli
and Guidorzi [79] and El-Sherief and Sinha LBO]). The structural
.pazlameter‘é‘ are obtai_ned for the.’noise-free case as '..n;llt as the noisy
case, The _str‘ucturfal parametera-.of, this canonical form Ifave been
qbtained by Guidorzi [41] using the determinant test for the ndise-free "
_case. He has also extended the algorithm to the case’é'*:“ ‘noisy data,
using%he enhanced infomatj.or; matrix ;aith some assumptions about the
_- noise charactgristics." : bTﬁe proposed algorithm utilizes the residual
egror technique which has been u;sed ‘py Suen and Liu [E';li] f‘op*det%{-mining
the,agt‘ructural parame.ters of a 'differenf: canonical form ‘wit.hlc':ut knowing

.~

the noise charactefistics-.

r

-The use of \'the_, ;.'reéiduai error. technique, for _determih'fné- the



structufal ‘péramqters h;s the’f"foildwing main advantages over the
. determinant test .method‘ used by L-c;bbia and Saridis [HS]. and -Guidorzi
WL
a) "The problem of ;d_et-ermining the structural parameters 1is
'dqco'ﬁﬁl,ed";;here every parameter is determined independently
from the others. Hencg an error in estimating one parameter
lwill not affect. the estimate of the 'oth'ers._ |
b} It will not encounter the difficulty of rank checking

required by the determinant test method. *

'5.3.1 Formulation of the Problem
Consider the following multivariable discrete-time, completely

observable system

] a @ *
x (k+#+1) = A x (k) +B u(k}

B oW (5.9)
y(k) = C x (k)

S

n

]
where x (k) € R, u(k) € 8P and y(k) € . are the state, input and

output vectors respectively. Let,

2 ' (5.10)

Construct the ve:ctor sequences
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] oo U
C1, A C1' A ' Cl' sesy Ses
‘ w0 al
¢ Cm, A ‘Cm, * e a (5‘11)
and select them in the following order
T T 72
" a "I SR | PLENE TR | »
:C1, Cz,...., Cm, A Cl' veey A Cﬁ’ A C], ves (5.12)
L .
retaining a vector A CJ if and only if it is independent from all pre=-
viously selected ones. Let n1, nz, ey nm be the number of vectors

selected from the first, second, ..., mth sequence in (5.11) [called the
structural parameters of the system].' Because of the complete:

observability of the system it follows that
‘ -

N, + My + ...+ 0 =0 ) - (5.13)

™
. &
Using the following state transformation [81] x (k) = S x(k) where

n1-1 nm-1
ol al

] » *
S - [C.I, A C1’ s eay A C1, ey A Cm] (5.1“)

system (5.9) is transformed to the following ‘canonical form, Guidorzi
[41]

x{k+1) = A x{k) + B u(k)

(5.15)

y{k) = C x(k)

. .
where A=SA § = [Aij} : i,j=1,2, ..., m

e A
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0 0 v 0
A - L) In-1 A - 1]
11 T .- i 13 7| :
143
aii(I) cen aii(ni) : aiJ(l) . aij(nij)
1 1
e ) "b )
n1+1 ' 2
e b
- ' -
) c=f: B=SB 2f: .
n1+n2+...+nm_l+1 n
[ e _ L b

and ei is the umit r?w vector and ni’ is the number of nonzero

J
coefficients in Aij which because of the order followed in the selection

of the vectors in (5.12) and the construction of the matrix S is at most

equal to (Guidorzi [41])

ny £ ny+ if i> 3
L (53)\\“
nyy &1y if i< _

The above state space canoﬁical form of the system is equivalent
to the following canonical input-output difference equation

representation (Guidorzi [41])

[
P(z) 'y(k) = Q(z) ugy) (5.17)
« Where '
n n,-1
pii(Z) =z L aii(ni) z L .- aii(l)
nij-1
piJ(Z) = - aij(nlj) z — e = aij(1)
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) ' ' n,-1 . ~

i .
qij(z) - d k4 +o'- %4 dn1+...+ni_1+2’\j z + dn +as il +1’J

n1+...+ni,J 1 1-1

and thé parameters di J's can be obtained from the matrices A and B
L . '

(Guidorzi [41]). . ' —

Remark 1:
It can be noticed from equation (5.17) and relations (5.16) that

the orders of the polynamials P{z)\and Q(z) s tisfy the following

relations

deg (p;;(2)} > deg {pii(z)% for 1 < §

,,fxﬁ____,/j/ deg {p;;(2)} 2 deg {pij(z)} for 1>
deg (py;(z)} > deg [py;(2z)} for i #J

deg {pil(z)} > deg {qij(z)}

From equation (5.17) the ith subsystem [row of the matrices P(z)

and Q(z)] of the main system is described by the following equation

n =0

piJ(Z) Yj(k) =

e B

qu(z) uj(k) -(5.18)

1 1

d J

which can be rewritten more explicitly as

m "ij p M

y.(k+n,) = I I a, () y(ket=1} + I I
i 1 J=1 2=1 1 J J=1 e=1

d(n1+-- .+ni-1+l)‘ ,J uj(k-l'!.-'l)

(5.19)

A
where the number Ny =04
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‘Remark 2:

It can be noticed that ny is the order of equation (5.19) and

Yi(k+n1) for k > 1 is linearly dependent on
y1(k+ni1-1)| y1(k+ni1-2), uot.' Yl(k)’ yz(k+niz-1)’ seny Yi(k*ni-l)j s ey

y_(K), u (ken 1), u1(k+n1“-é), SIAERILL

this can be seen from equation‘(5.19) and remark 1.
'Our objective is to determihe the structural paraheters Dy Doy

seey D from noise-free as well as noisy measurements without knowing

the noise characteristiecs. -

5.3.2 The Noise-free Case

Suppose the set of vectors [y, X,y Xg: ooy xn} is given and we
.

want to study the problem whether or not the vector y 1s a linear:

combination of the set of vectors [xl, xz,'..., xp}. This problem is

v -

discussed in Appendix I.

In this subsection the residual error technique discﬁbsed in
Appendix I will be applied to determine the atructural parameters of the
system (5.9) from noise-free data. For the ith subsystem, equation
{5.19), and from K iﬁput—output sequences and assuming the order of the

ith subsystem to be &, we get

i

Yi(K) = Hi(zi, K) ei(zi) (5.20)

where
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Cy (k) k=t ) (k) Ty (ke (kR )

yl(k+1) - YI(k‘Lif1) yz(k+1) . yi(k) . yi(k-li+1) .
H (1K) 2| , X .

Ly (oK) ooy (keRaty) Yo (koK) ooy (keR=1) oy, (st )

AN
(k-1) .. uj(k-1) ‘e ub(k—xi) -

)

** Yi4y

ve ¥y,qk) ool up(k-zi+1

. - -
+ . -
3

.- yi+J(k+K-t) .. u1(k+§-1) . u§{k+x_zi)_

RAGER AR y (ki) 17

and Bi(li) is a vector of parameters characterizing the ith subsystem.
From remark 2 and equation {(5.19) we can see that the vector

Yi(K) i3 a linear combination of the vectors of ﬁi(li,K) if Li'l n, and

it is not if Li < n, . From equations (A1.6) (Appendix I) and (5.20) we
" can get ] '
%) = YTkK) (I -H,(¢,,K) HT(2 K)]‘Y (K) 4 (if)-
®1Vhi0 TNy ARS LA At & A R
(5.21)
Following lemma 1 {Appendix I) we get
o} _ =4
ei(zi) =0 120
(5.22)
= Ai(ti) >0 £, <oy

Hence we have

Estimation rule 1

For the ith output (aubsystem) the residual ei(li) is plotted
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versus ti. From this plot ny is obtained'as the smallest integer Ly for

0
which ei(;i) = 0.

5.3.3 The|Noisy Case . P g
Let a vector y be corbupted by a zero-mean noise vector v and let
y* be the noisy observation
Yo =y 4V ' | (5.23)
From a given set of vectors iy*, Xqr Xy eors xn} we want to
study the problem whether or not y is a linear combination of the set of
vectors {£1, Xop ey xn}. This problem is discussed in Appendix I.
Gﬁ“§§ In this subsection the resdidual error technigue discussed iﬁ
Appendix I will bé apﬁlied to determine the structural parameters of
system (5.9) from noisy data. First, consider system (5.9) for noisy
meésurements where

z; (k) = yi(k) + vill)  1=1,2, ..y (5.24)

where zi(k) is the ith noisy output and vi(k) is the noise at the ith
output which is a zero-mean white noise sequence. Then substituting for

yi(k) from equation (5.24) into equation (5.19) we get

n n
z(ken,) = E L a, (&) z (ket=1) + I I d u (k+t=1)
i 1 3=1 &=1 1] J 421 2= (n1+..+ni_]+l),j J
+ wi(k+ni) (5.25)
where
m nij
wi(k+ni) = - L I aij(l) Vj(k+1-l) + v, (keny)

J=1 =1
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and _wi(k) 1s a zero-mean noise sequence.

Using K input-output sequences and_assuming the order of'thé'ith -

subsystem [equation (5.25)] is li'and using equation (5.25) -an

expression similar to (5.20) can be obtained as follows

s » ) '
Yi(K)- Hi(Li,K) 91(11) + Hi(K) (5.26)

where

up

' | T
Wi(K) [wi(k) - wi(k+1) ves wi(k+K)]

» 3 ‘ :
Yi(K) and Hi(Li,K) are defined as in equation (5.20) where yi(k) is

replaced by zi(k). Defining
a ¥ -
Z;(K) = Y (K} = W,;(K) _ : (5.27)

‘ . |
then from equation (5.25) and the definition of Hi(li,K) we can obgserve

L
that the vector Zi(K) is a linear combination of the vectors of Hi(zi,K)

if £, 2 n, and is not if L, <oy Following lemma 2 (Appendix 1) we can

obtain the following results

[ ]

Efe(r,) | Hi‘(Li.K)} = g (2)) if 4, 2n; (5.28)
= gy (2)) + 8 () if 4 <ny (5.29)

where . - .

o A o7 * st ]

(1) A} (R) [T - H{(1,K) By (1,,0)] Y () (5.30)

é. fr ] |‘+ l
g (1) 4 E TW(K) [T - B (e, 0) By (K01 Wi (K)) (5.31)

(1) 4 27k NI 2

b (r) 8 23(R) (T - B, 0D R (1,00] 2,(K) (5.32)
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L T ‘ o, ' o
| (Let ei(Li) be the estimate of E{ei(zi) | Hi(Li,K)} where ei(Li)
is evafuated by equation (5.30) from‘the'given input-output sequences.

Then equations (5.28) and (5.29) can be rewritten as follows

) o =
ei(li) = E{ei(!i) | Hi(L

il
:where : .
fi(ii) =0 . if Li 2-“1 ' '(5.3ﬂ)
= A-i(!.i) >0 if Ly < ny (5.35)

From equation (5.31) we can see that gi(li).is nearly constant if K is
large enough (Suen and Liu [541). Therefore, the residual plot eg(zi)
versaus li for the noisy aae“hasvthe same shape as the residual plot for

. / .
the noise-freé case except that it is ;aiaed by a nearly constant value.

P

Estipation rule 2

From the ith output the residual error ez(zi) is plotted versus
!.i.
the part of the residual plot for &, 2 n; is almost flat.

From this plot. ni is obtained as the smallest integer Li for which

In practice, instead of plotting-the residual error ei(zi) it i2
%
better to plot the difference in the residual error ei(ii) versus &,

where

] A Ao .0 . )
e, (1) 21 - ) .30

/

5.3.4 Results of Simulation

Exagple 1

The proposed algorithm was applied to determine the structural

K)} =,f1(”i) + gf(Li) (5.33)

-
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parameters of the following 4th order two-input two-output system

L

0 1 0 0 0 2
-0.1  0.65 0 0 0.25 0.8
x(k+1) ={ 4 0 " 0 g [ xR+ g | utk)
' {-2/3  5/3 -0.25 1 1 1
k 1 0 0 0 ‘
z(k) =[ ] x(k) + v(k) (5.37)
Lo o 1 0 .

The above .ﬁystem was gsimulated on a CDC 6400 where the input '}ector ulk)
was taken as a zero-mean white noise sequencé with unit variance and the
noise v(k) was taken as a zero-mean uncorrelated noise sequence with
standard deviation (g) varies to vary the noige level at the output.

The above system is in the canonical form of F5,15) Qhere the
structurai parameters are |

n] = 2 and n2 = 2

The input-output representation of the above system [equation (5.17)] is

-

as follows .

2% ~ 0.65 z + 0.1 0 ' z - 0.4 22 -0.5

y(k) = u(k)

-5/3 2z + 2/3 22 -z + 0.25 -2/3 -7/3 .
‘ (5.38)

The pm.posed algorithm was applied to determine the structural
parameters of the .a.bove s'ystem for _three different noise levels with o =
0.1, 0.2 and 0.3 and a sequence length K = 30 which is very short

(7_.iompared with similar studies. The residual plots, ei‘s, for the two
outputs are given in Figures S5.1a and 5.2a. It is clearly seen from the
figures that n, = n = 2 and with increasing the ncise level the

1 2 :

8
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e,“
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O T L T T T l’
0 I 2 3 4 3 '

Fig. 5.la Residual error plot of the lst output of example 1 .
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Fig. 5.1b Residual difference plot of the lst output of example 1 .

. 96



Fig. 5.2a Residual error plot of the 2nd output of example 1 .

97
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Fig. 5.2b Residual difference plot of the Znd output of example 1 .
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residual error increases.- Instead of plotting the residual error e the
residual difference ei has been plotged in Figures 5. 1 and 5.2b. It
can be seen that these plots ‘give a better indication of the value of

-

the st‘._ructural par'ametérs than the plots in Figures 5.1a and 5.2a.

Examople 2
. The proposed algorithm was applied to determine the structural

parameters of the followiﬁg 5th order two-input two-output system. -

-0 10

0 0 7 = 0.5 =0.39]
0 0 1 0 0 1 i
x(ks1) =| 0.0625 0.5 1.25 0 0 [x(k) +| o© 0 |utk)
: 0 0 0 o y- ~0.4  -0.5
0.t 065 1 -0 1l o Lo 2

1 0 0o o o] °

z(k) = x(k) + v(k)
¢ 0 0 1 O . (‘

The above system was simulated as in example 1. The structural

parameters of this system are

=3andn2=2

4

The proposed algorithm was applied l;o determine the sﬁruetural
parameters of the above system for the case o = 0.3 and a sequence
length K = 30. The residuél difference e; is plotted. for both outputs
and is shown in Figure 5.3. It is clearly determined from the figure

that n1 = 3 and n2 =



1609 v

120

 80-

' 40-

Fig. 5.3 Residual difference plot of the two outputs of example 2 .

e S

SN
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Snu

5.4.1 Introduction
In a Tecent paper (Sinhé and Kwong [421) an algorithm was
' éresented for the identification of linear multivariable discrete-time
_ systems from noisy data. This algorithm uses the recﬁrsive generalized
least-squares methoﬁ and ¥ubilizes the special canonical representation
of the system presented in subsection 5.3.1 and was proposed by Guidorzi
[#1)]. In this section an algorithmlis developed based on the idea of
Sinha and Kwong [42]. The main differbnce .between the proposed
algorithm and the one in [42] is that a\nprmalized stochastic
approximation method (KEwatny [82]) is used for.estimating the parameters
of the noise model instead of the pseudo-inverse method. This idea was
used by Sen and Sinha [83] for the identification of single-input
single-output systems and as was mentioned in [83] the algorithm
combining stochastic approximation and pseudo-inverse retains the
advantages of boéh methods while doing away with their disadvantages.
5.4,2 Statement of the Problem
Consider a 1linear, time-invariant, discrete-time syatem.
Following Guidorzi [#1], it can be represented by an input-output
'difference equation of the type |
P(z) y(k) = Q(z) u(k) (5.39)
where P(z) and Q(z) are polynomial matrices in z, z is the unit advance
operator, u(k) is the p-dimensional input vector and y(k) is the noise-

free m-dimensional output vector. It has been shown [41] that there is



’

a complete equivalence between the representation in equation (5.39) and
the state space representation using the row companion form (811,
x(k+1) = A x(k) + B u(k)
y(k) =,C x(k)
where the matrices A, B and C have special canonical structures
(equation (5.15)).

The identification problem is to estimate the coefficients of the
polynomial matrices P(z) and Q(z) from a given record of input-outpuﬁ
- observations. The state space representation (matrices A, B and C) can
be obtained from these estimated parameters by the relab;pns_given by

Guidorzi [H41].

5.4.3 Development of the Algorithm

For noisy output measurements, equation (5.39) can be rewritten

as follows

P(z) z(k) = Q(z) u(k) + P(z) v(k) (5.40)
where z{k) is the noilsy output vector and v{(k) 1is the outpﬁt noise
vector.

Assuming that the system (5.40) is completely controllable and
observable it can be decomposed into m observable subsystems. Each of
these subsystems corresponds to one row of the matrices P(z) and Q(z).
The jth row (subsystem) of equation (5.40) can be written as

n
I p
=1 31

n -8B

p
1 pji(Z) zi(k) = iil qji(Z) “i(k) + (z) vi(k) 15.41)

i i

102
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vhere pji(Z) and qji(z) are polynomials in z and elements in the jth row

and ith column of P and Q, respectively (equation (5.17)).

Equation (5.41) may be written more explicitly in the following

form
——\ o nJi . -
' k = E L L L= .
zj( +nJ) Sk aJi( ) zi(k+ 1) +
p " |
. + I T d u, (k+t-1}+e, (k+n,)
i1 121 (n1+...nj_1+£),i i J J
(5.42)
where
m nji
ej(k+nj) = vj(k+nj) - E E aJi(L) vi(k+z-1),
i=1 =1
nJ and nji are the structural parameters defined in [H1], aji(h) and
di j are the coefficfents of the polynomials pji(Z) and qij(Z) (equation
H
(5.17)).

Now, our purpose is ta. es

timate the parameters a, . (L) and d of
Ji 1,3

each subsystem (row), independently, through sﬁbsequent observations of
the variables u(k) and z(k).

The jth subsystem (row), equation (5.42), can be rewritten as

zj(k) = ag(k) ¢J + ej(k)

(5.43)
where,

aj(k) = [z,(k) z,(k+1) ... z1(k+nj1—1).22(k) e

o zglengot) uy ) uyCeed) L up(k+nj—1)]T
and



. ‘ ‘ - . | 1ok

- ) | . . \
°j z [aJ1(T?’ aJ1(2) vee aJ1(nJ1-1) 332(1) cen

T

i ajm(njm) 'd(n1+...+n AT d(n1+-i-+n *nj)'b]

3 3-1

A recursive pseudo-inverse algorithm can be used for estimating

¢J as follows
Py(Kk) a,(icel) [z,Ckel) - aj(k+l)T 0 4()]
¢J(k+1) = QJ(R) +
' 1+ a§(k+1) Py(k) a,(ke)
(5. 41)

T

e - e - Py(K) a(kel) () a (k)

gl = B, -

1 +a (k+1) P (k) a (k+1)

-

J J J
where ¢J(k) is the estimqte of the parameter vector ¢J at the kth
iteration.

It is known that the least-squares method gives biased estimates
if the residuals are correlated. One way of overcoming this difficulty
is to introduce filters [84], such that the resulting residuals are

uncorrelated. The correlated residuala may be estimated by assuming the

autoregressive model

s
ej(k) z - 1:1 fJ,i eJ(k-i) + uj(k) (5.459)
where
T ~
ej(k) = zj(k) - aJ(k) ¢J(k)

arnd w, (k) is an uncorrelated zero-mean random sequence. .Equation (5.45)

h -

can be rewritten as
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_‘ T o
0,010 = ¥ ¢,(0) + w (k)
where
’ v. = [f T S
J Ja1 73,2 J.s
¢ y() = [-0y(ke1) -e,(k-2) ... -eJ(k-s)]T

In [42] the estimates of ¥, were obtained by using the recursive

. J
1east—squarFs algorithm. Tt is proposed to use the normalized
stochastic approximation algorithm {82] for estimating the parameter

vector ¥,. 1i.e.

J
(k) = ¢T(K) e (k)]

‘ [e
v terl) = w00+ Y 3 13 e (5.46)
. k+1 ng(k)lla
wheré v i3 a positive gain constant and vbj(k)» is the kth eatimate' of q'j'
i.e., | .
o T
$J(k) = [fj'1(k) fj'z(k) . fj's(k)]

Utilizing this estimate of ¥ (k}, the input-output sequences can

J
be filtered according to the equations
. . s
u, (k) = u,(k I f,,u,(k-i
j ) J( )+ L ji j( )
(5.47)
2 ) 3
k) = k I f,. k-i
zJ( ) zj( ) + e lej( )
‘ * a
In algorithm (5.44) the filtered sequences uj(k) and zj(k) are
used in place of “j(k) and zj(k) respectively which results in

uncorrelated residuals. Thus, the proposed method consists of using the



. } 106
normalized stochastic approximation algorithm to obtain the auto-
regressive noise model parameters, whereas the pseudo-inverse algorithm
is used to determine the process model parsmeters after the input-output

data are suitably corrected utilizing the noise model (5.45).

~ 8. 4.4 Results of Simulation

The proposed algorithm was applied to on-line identification of a

simulated 2-input 2-ocutput 4th order system;

- 0 1 0 0- - 1 0 -
125 .75 .25 -1 55 =.9
x(k+1) = x(k) +| ' u{ k)
0 0 0 | 0 1
_0-6 --5 -.2'4 1_] _--2 -5_

1 0 o 073
y(k} = x(k)
o 0 1 O

After some algebraic maﬁipulations the system can be transformed

to the following ihputaoutput difference equation form

zz-.752+.125 z-.25 FZ=.2 o
> y(k} = u(k)
.5z-.6 z--z+.24 .3 z=-.5

The number of parameters to be estimated in each subsystem is 8.
The outputs are contaminated with additive noise, i.e.

zl(k)

y () + v, (k)

zz(k] Yz(k) + v2(k)

where v1(k) and vz(k) are coloured nolse sequences generated as the
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outputs of ;he roliowing equations;
v (el) = 2T v () + (k)
vz(k-ﬂ) = .a.vz(k) + wz(k) .
where w1(k) and wz(k) are zero-meﬁn white-noise sequences uncorrelated
with “I(k) and uz(k) and have standard deviation varies to vary the
noise level at each output.

Using 400 samples of the input-output data the parametérs of the
input-output form were estimated for two cases of noise levels at the
outputs using the proposed algorithm. In the first case the stangard
deviation of the noise was taken as o = 0.2 and in the second case as o
= 0.3. For the sake of comparison the estimate of the system parameters
were also obtained using the pseudo-invérse method and the generalized
pseudo-inverse algorithm [42].

A comparison of the final estimates of the parameters of the
input~output representation after 400 iterations and for the two noise
cagses ls shown in Table 5.1. Estimate of the system matriées A and B is
obtaine& from the estimated parameters of the input-output
representation (Table 5.1) for the second case of 9 = 0.3 and is shown
in Table 5.2. The total computation time for each algorithm after 400
iterations is shown in Table 5.3. To show the relative convergence rate
of each of the three algorithms, the normalized error ||¢J-¢(k)1|2/
||¢J|l2 for each of the two subsystems (outputs) and for the second case
(0 = 0.3) has been plotted against the number of iterations and is shown

in Figuresa 5.4 and 5.5.
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True Ord. pseudo-inverse G.L.S. The proposed alg.
Value Case (1) Case (2) Case (1) Case (2) Case (1) Case (2)
0.75 1.078 1. 114 0.726  0.700 0.766  0.732
-0.125  -0.302 -0.333  -0.109 -0.09%  -0.131 =0.115
-1.00 -0,965 -0.928  -0.970  1.021  -1.004 -1.002
0.25 0.528  0.500 0.218  0.13 0.2 0.235
1.00 1.039 1.044 0.996  0.975 1.022  1.062
-0.20 -0.515  -0.572 -0.179 -0.155 -0.233 -0.181
0.00 0.029  0.045 0.001 0.009 0.024  0.049
0.10 0.070  0.008 0.059 -0.064 0.105  0.093
.-0.50 -0.401 -0.388  -0.392 -0.175  -0.427 -0.429
0.60 0.554  0.543  0.539  0.403  0.560  0.548
" 1.00 0.990 1,005 1.022 1.020 1.009 1.04L
-0.24 -0.127 -0.135  -0.228 ~0.173  -0.197 =0.233
0.00 0.002  0.046 0.001 0.009  ~0.002  0.002
0.30  o0.201 0,210 0.198 -0.018 0.297  0.293
1.00 0.984  0.94% 0.996  0.985 0.985  0.949
- -0.50 -0.508 «0.525 -0.516 -0.498  -0.507 -0.535

Table 5.1 Comparison of the estimate of the paramters of the input-
ouput model after MO0 iterations |
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|
Algorithm Matrix A Matrix B
0 1 0 0 1.084  0.045
=0.333 1.114 0.500 -0.928 0.548 -0.818
Ord. pseudo-
inverse 0 0 0 1 0.0U6 0.9u4
0.542 -0.388 -0.135  1.005 . =-0.149  0.406
0 1 0 0 0.975% 0,009
-0.094 0.700 0.131 -1.021 0.518 -1.063
G.L.S. ' T
0 0 0 1 0.009 0.985
0.403 -0.175% -0.173 1.020 -0.179 0.505
0 1 0 0 1.062 0.049
-0.115 0.732 0.235 -1.002 0.594 -0.822
The proposed
algorithm 0 0 0 1 0.002 0.949
0.548 . -~0.429 -0.,233 i.04Y -0.161 0.435

Table 5.2 Comparison of the estimates of system matrices for case 2
(¢ = 0.3)
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Table 5.3 Comparis;hj;;:the'total computation time for 400 iterations

Algorithm Ord. pseud&kinverse é.L.S.‘ The propoéed alg.
. Computation .
time (sec.) 3. 488 4,360 3.810
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" As we can see f?om Table 5. l‘the propoaed algorithm gives better
estimates, of the parametars of the input-output representation, than
the ordinary pseudo-inverse and the generalized least-sqts algorithms
especially when the noise level at the outputs increases>: In Table 5.2
" the parameters of the A matrix are the same as those 'in Table 5.1 but
the parameters 6! the B matrix have been obtained from those of Table
5.1 by applying a transformation formula glven by Guldorzi [H1] From
the comparison of the total computation time given in Table 5.3 we can
see that the proposed algorithm takes more computation time than
ordinary pseudo-inverse algorithm but less timeq§phan the generalized
pseudo-inverse algorithm. Thié is because it uses the stochastic
approximation method instead of the least-squares method used by the
generalized pseudo-inverse algorithm. Figures 5.4 and 5.5 Show that the
proposed algorithm has a better convergence rate than ‘the other two

algorithms.



CHAPTER 6

COMBINED PARAMETER AND STATE ESTIMATION

6.1 - Introduction

The probiem of combined parameter and state estimation wés
originally posed as a nonlinéar estimatidn péoblmn by augmenting the
state vector with the parameter vector aAd the extended Kalman filter
was used [85] and [86]. This led to problems of divergence and
excessive computation for multivariable systems. To avoid these
difficulties two approaches have been proposed recently for suboptimal
estimation ([65], [70] and [87]1). The first approach ([65] and [70])
estimates the system parameters from the input-output data; these
estimates are then used for state estimation through a Kalman filter. A
particular canonical form has been used in [70], but it has been shown
recently [B8] that this form cannot be obtained in the general case.
The second approach [87) estimates the parameters and the states of the
system in two stages in a bootstrap manner. In the first stage the
states are estimated with assumed nominal values of the parameters. In
the second stage the parameters of the system are estimated from a
pseudo-parameter measurement equation ihich contains the recent
estimates of ‘the states from stage one in addition to the input-output
data. These two stages are coupled in a bootstrap manner.

In this chapter an on-line two-stage bootstrap algorithm will be

114
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developéd for ocn{bined parameter and state estimation of linear
discrete-time mqltivariablg systems;\ This a}éorithm utiiizes the idea

of the second approach [87) with the following improvements

(a) A canonical form of the state equagions i3 used which allows the
parameters of the pseudo-parameter measurement equation to be
related directly to the'parameters of the canonical state space
model . N

{(b) The use of this canonical forﬁ simplifies the parameter
estimation problem by decomposing the system into m subsystems
(where m is the number of outputs) so that the parameters of each
subsystem can be estimated independently.

(e) It is shown that using the pseudo-parameter measurement equation
for estimating the parameters causes the residual errors to be
uncorrelated with the foreing function. Hence, unbiased
estimates of the system paramélers can be obtained using
ordinary least-squares [89] without requiring any knowledge of

the nolse characteristics.

The proposed algorithm starts By traﬁsforming the state
equations to the row-companion form [81] and [90]. Then assuming an
initial estimate of the states, a recursive least-squares algorithm is
used for estimating the parameters of the pseudo-parameter measurement
equation. From these estimates, the state equations are obtained
?irectly and these are then utilized for estimating the states of the

- system by a stochastic  approximation algorithm. This procedure is
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continued in albootstrap.manner.

6.2  Formulation of the Problem

Consider the following multivariable discrete-time system

» . @ *
x (k+1) =-A x (k) + B u(k)

2(Kk) = € x (k) + v(k) | (6.1)

where x.(k) € Rn, u(k) e RP and f(k) e R® are the state, input and
measured output vectors respeétively. Also, v(k) ¢ R® is the noise at
the output which is a zero-mean white noise sequence.

Assumins that the system is completely observable, it can be
transformed to the row-companion form through tﬁe tran;formation X = Sx‘
(section 5.3.1, Chapter 5) to obtain '

x(k+1) = A x(k) + B u(k)

z(k) = C x{(k) + v(k} (6.2)

& - ]
where A = 3 A S 1 anq B =S B, The matrix A can be wripten as a block

matrix [Aij},~§:3'§"13 %, ..., W where

I 0

ii . ni-1
faii(1) a(2) .o oayy(ng)

0 e ... 0
Aij = f 3 (6.3)
i#]
aij(i) s aij(nij)—

/‘“
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The matrix C consists of unit row vectors only, and can be

written as

i

c={° (6.4)

where ei is the ith unit row vector of dimensicn n and the integers ni's
are called.the obﬁervability subindices of the aystem.

Qur problem is to obtain consistént estimates of-the parameteré
..as well as the states of the system (6.2) from the given input-output
data without knowing the noise characteristics. The structural

parameters ni's are assumed to be known.

6.3  Parameter Estimation

Define the following matrices

B=|’ ' (6.5)

and

=12 (6.6)

where
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. ' :
a¥ = [aJ1(1) ee aJ1(n1) aJE(I) . aJ“Jm(nJm)] (6.7

for § =1, 2, ..., m. The system parameters to be estimated are the
parameters of the matrices A and B.
Because of the canonical structure of the matrices A and C, the

following equations can be obtained for the jth subsystem.

N,+...+0 +1

x  (ke1) = x (%) +b ! 1w
n1+...+nJ_l+1 n1+...+nJ_1+2
n1+...+nj_1+2
x (k+1) = x (k) + b u(k)
n1+...+nj_‘+2 n1+...+nJ_‘+3
n1+...+nj_1+l
x (k+1) = x (k) +b ul(k)
n1+...+nj_1+L n]+...+nj_1+l+}
m n
Ji n]+...+nj
x (k+1) = I I a, (&) x (k) + b J ulk)
Ji
n1+...+nJ i=1 t=1 n1+...+ni_1+l
(6.8)
and
] -
\ zj(k) z x“l*"'+n (k) + vj(k) (6.9)
3 3-1
Hence substituting for x +1(k) in equation (6.9) from

n1+...+nj_l
equations (6.8) we get the following expression which characterizes the

jth output (subsystem) of the aystem.

. .
zJ(k+nJ) = Zj(k+nj-1) Bj + vj(k+nj) (6.10)

where
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Z,(keny=1) = IxT(k) ur(k) ul(ke1) ... uT(k+nJ-l)]T (6.11)

and

N, +...+N N+, +1

o, =Tad b | J ... p! -1 T (6.12)

\

- '
where nji is assumed to be equal to ni.'

From the above equaﬁions we can seer that the parameter
identification problem can be' decoupled_ where the parametér vector
characterizing each subsystem can be estimated independehtly of other

subaystems. The parameter vector 8 of equation (6.10) can be estimated

3

recursively by the following least-squares algorithm

L 4

T -
) i Pj(k) Zj(k+nj-1) [aj(k+nj) - ZJ(k+nj-1) Gj(k)]
Bj(k+1) = &J(k) + =
. 1 + Zj(k+nj-1) Pj(k) Zj(k+nj-1)
(6.13)
T
Pj(k) Zj(k+nj-l) [Pj(k) Zj(k+nj-l)]‘
PJ(k+1) = Pj(k) - T
1 + Zj(k-i-nj-'l) Pj(k) Zj(k-o-nj-i)

where Bj(k) is defined as the estimate of BJ at the kth iteration.

6.3.1 Proof of the Unbiasedness of the Parameter Estimates
Equation (6.10) can be put into the form of equation (2.18)
(Chapter 2) where Uj(k) and eJ(k) are defined as follows

(k) =[x (kon+1) ul(ken +1) U (ken2) ... 0 (01T (6.14)

U 0 2z 3 3 3

J 3

and

R .
ej(k) = vj(k) (6.15)

€a
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From equatlions (6.14%) and (6.15) we can sse that the vector

sequence U (ﬁ) is uncorrelated with the residual error e

j J(k) hence
condition (a) (subsection 2.4, Chapter 2) is satisfied. Moreover, if
the noise vJ(k) has zero-mean, then condition (b) (subsection 2.4) is

also satisfied and hence the parameter estimates BJ' J=1,2 ..., m

obtained by equation (6.13) are unbiased.

6.4  State Estimation

From equation {6.11) we can see that the vector ZJ includes the
states of the system which are not known. But if an estimate of the
states is known then we can estimate the parameter vectors using the
algorithm of equation (6.13). Hence an estimate of system matrices R(g)
and B(k) at the kth iteration 1s obtained directly from the estimated
system parameters SJ, }=1,2, ..., m through relations (6.5)}-(6.7) and
(6.12).

After having an estimate of system matrices at the kth iteration,

they can be used for estimating the state vectors of the system using

the following stochastic approximation algorithm
x(k+1[{k) = A(k) x(klk) + B(k) u(k)

;:(kn]kn) = ;(k+‘||k) + v(k) CT[z(k-o-I) -C ;(k+1|k)] (6.16)

where x(k|{k)} is the estimate of the state vector x(k) at the kth
iteration and y(k} is a scalar sequence satisfying Dvoretzky's
conditions [91].

After this state eatimate is obtained, the expresaion for x(k) in
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equation (6.11) may be raplaced by x(kik) to obtain a new estimate of
the paramester vectors BJ, y =1, 2, «v., m. The procedure is then

repeated between the two stages in a bootstrap manner.

6.5 ' Results of Simulation
The proposed algorithm was applied to the following simulated

Ird-order two-output one-input system

-0.00 1.0 0.0 - 0.12
x(k+1) =[ 0.10 0.3 0.1 ] x(k) +[ 0.36 |u(k)
| 0.95 0.1 0.7 0,20
"1 0 0 L
yik) = x{k} + v(k)
0o o 1 .

The input to the system u(k) was taken as a zero-mean white noise
sequence with unit variance. The nolse sequences v](k) and va(k) were
taken as uncorrelated =zero-mean white noise sequences with standard
deviations of 0.1 and 0.3 respectively.

The proposed combined parameter identification and state
estimation algorithm was applied to the above example with zero initial
states and assuming zero initial values for the parameters. The final
parameter estimates after 1000 iteraticns are given in Table 6.1. Also,
the rate of convergence of the parameter estimates is shown in Fig. 6.1
which is a plot of the normalized squared error ]iej-gj(k)lle/llejll2
against the number of sanples k. The convergence of the state

estimation is shown in Fig. 6.2, where the squared error of the state
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Para- a,. (1) a,,(@2) a,,(1) a, (1) a,(2) a3,5(1) b(1) b(2) b(3)

- meter

True 0.10  0.30 0.10 0.95 0.10 0.70 0.12 0.36 0.20
value ’

Estimated

value 0.10 0.29 0.10 0.89 0.12 0.7 0.12 0.36 0.20
Table 6.1: Final estimates of system parameters after 1000 iterations

4
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estimates ]|x(k)-x(k)|[2 is plotted against k.
As we can see from Table 6.1, good estimates of the parameters of

the system a; (2)'s and mj;'s have been obtained after 1000 iterations

J
from the noisy measurements.  Figure 6.1 shows that the rate of
convergence of the parameter estimates is good and the parameter
estimates converge after a small number of iterations, A;so Figure 6.2

shows that the' error between the estimated states and their true values

" is small and the state estimator converges.

!k



CHAPTER 7

CONCLUSIONS

The ﬂﬁjor effort in this thesis has been directed towards the
problem of system identification in the presence of additive noise.
At£ention has been directed towards tLe identification of multivariable
discrete-time linear modéls from input-output data whic? is contaminated
with noise and without the lknowledge of the noise characteristies. It
has beeﬁ shown that bésed on a given set of'input-output data different
models can be identified from this data to represent ﬁhe system. In
general, therg éﬁé four types‘of models which have been used in the area
of identikicafion of linear multivariable systehs. These wmodels are:
transfer-function matrix; ‘impulse response, input-output difference
‘equation and atate space. These :four nodels are” équivalent and
tranaformations between phem are possible. The probiem of system
identification, normally, starts by determinihg the structural
parametérs characterizing each model from a record of the input-cutput
data, othérwisé they hévé to be assumed from practical considerations.
After determining the structural parametera the system parameters can be
estimated by a suitable algorithm. It has been shown in Chapter 2 that
the type of model used for a multivariablé system has some effects on
the properties of thé 9orresp6nding algorithm for identification. Since
the number of parameters to be estimated depends on the choice of tﬁe

W
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model, the ‘complexil;.y of the é.lgprithm is determined by t'his choice.
Another important. effect 13 on the bias 015‘_ the estimated system
parameters as blas is often introdﬁced into pgra:ﬁeter _estimation using
least-squares method“by choosing a medel i‘orm whib.h causes the forecing
function to include observations correlated with the error in the
observed qutf)ut. ;n general, it is recommended to identify a g‘iven
system in that model which is .required by the application for which it
will be used and also to avo_id.any tt:'ang.for'mation of the estimated model
parameters to obtain another representation. In this thesis different
algorithms have been developed to identify a given system directly in

the four system modgls discussed before.

l‘ .

It has beer’ shown that the identification of a multivariable
syatem in the impulse response representation, out of the other three
m;dels, gives unbiased estimates of the system parameters when the
ordinary least-squares method is used. Two different algorithms have
been proposed in Chapter 3 to estimate the Markov parameter':a of tﬁe
syételp from noisy measurements. The first algorithm uses a normalized
stochastic approximation method which is computationally simple but a
bias is introduced into the parameter estimates since a truncation of
the impulse response sequence is used. The second algorithm uses
correlation techniques which avoid the problem of truncation but on the
other hand a special type of inputs is required for identification. ; In
general, the identification of 'the system in the impulse r'espc‘mse

2
repredentation has a certain disadvantage because most of the control

theory uses the state space representation of the system and- hence the
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identified impulse response representation has to be transformed into
the state space hepresentatiou. " Often if the Markov parameters are
first estimated even with a very small bias and then used for minimal
realization, we may obtain a wrong estimate of the system model which
may even be unatablé for a satable system. Thiﬁ problem can be thought
of as a'partial realizatioq of the system,~having an infinite number of

Markov parameters, which retains some of iﬁs Markoy parameters {(Hickin
and Sinha [92]). .
o The identification of multivariable systems in the transfer-
function matrix form from the input-output data has not'received much
attention as this model 1is overparameterized. In Chapte; 4 two
algorithms have been proposed for identifying two different transfer-
function matrix representations. The first algorithm estimates ﬁhe
pérémeters of a matrix rebresentation where the order of each of its
rows is assumed to be equal %o the order of the system. On the pther
hand the second’algorithm utilizes a general matrix representation where.
the order of each of its rows is estimated in advance by the residual
error technique from nolsy measurements, In both algorithms the
parameters of each rog of the transfer-function matrix have been
estimated separately from the other rows. The second algorithm has been
modified to estimate the parameters of the system when the outputs are
contaminated with additive noise using a multivariable version of the
adaptive least-squares method proposed by Panuska [55].

Due to the practical importance of the state space

representation, especially in control theory, many algorithms have been



129

proposed for the.identification of multivariable systems in state space
form from -input-output data. Most of these algorithms start by
identifying the system in a nonparametric model representation and then
the state 3pace représentation can be obtained by different
transformatiqns. ‘For example a state space representation has been
cbtained from the lmpulse response ;epresentation in Chapter 3 and from
the input-output difference eduation in Chapter 5. In general, the
identification of systems in the state space representation - requires
first the determination .of the structural indices oflthe system (which
implies knowing the system order) and then the estimgtion of the
pérameters of the state space matrices A, B and C. Because of the non-
uniqueness of these matrices some canonical forms have been suggested
for the identification‘problem which aim to simplify the transfsrmation
of the state space model into a nonparametric ﬁodel suitable for
J}dentification and also to reduce Ehe number of parameters to be
estimated. In Chapter 5 an algorithm has been proposed to estimate the
structural parameters of a row companion state space canonical form {the
oﬁservability indices). Tpe main advantage of using this canonical form
is that a unique relation betwéen this state space repreaentation and a
canonical input-output difference equation has been obtained by Guidorzi
[41] where he showed th;t the two models have the same structural
parameters. The parameters 6f the equivalent input-output difference
equation repre;ent;tion have been estimated from noisy data by a
proposed recursive algorithm which combines stochastle approximation and

pseudo-inverse. In Chapter 6 a way has been derived for representing
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the row-companion canonical staﬁe space model (used in Chapter 5) in a

nonparametric model representation which causes the residual error to be
uncorrelated with the forcing function.~ Hence, according to section
2.4, unblased estimates of system 'parametefs can be obtained using

ordinary least-squares.

T Suggestions for Further Regsearch

1. Throughout this thesis it was assumed that the input sequence
to the system u{k) was functionally independent of the system output
z(k); 1.e. the syjsem to be identified had an bpen loop structure.
However, despite the fundamental importance of closed loop.
identification, most parameter estimation algorithms suffer severe
diffieulties in the presence of feedback. These difficulties arise from
the fact that the presence of the feedback control signal produces
additional correlations in existing identification algorithms that were
intended for open loop systems oniy. There appears to be little work
done in the area of identification of c¢losed loop systems, especially
for the multivariable case. The single-input single-output problem has
been considered by several authors (e.g. Graupe [93], Saridis and Lobbia
[94] and Box and MacGregor [95])., The multivariable problem has been
considered by Ljung et al. [96] and Lobbia and Saridis [U45]. The
problem of identification of closed loop aniema is an area where there
is much scope for further work. One way of solving this problem is to
add a small independent noise sequence or dither signal to éhe input

during collection of the closed loop data.
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2. The convergence of the algorithms of the combined stochasticl
approximation and pseudo-inverse and of the combined state and paramster
estimation has ﬁot been theoretically justified. However, when each
stage of these two stage algorithms is treated separately the
convergence of each stage can .be argued if the other one satisfies
certain properties. Generally, the' convergence of the overall algorithm
is not obviocus but it may be possible to study its convergence in the
same way as Ljung [9?] and [98] and Soderstrom et al. [99]. This aséect
hes to be further studied.

3. The algorithm for combined parameter and sfate estimation
proposed in Chapter 6 can be modified gnd applied to power system
analysis. For example it can be used in the area of modeling and short
term prediction of the active load demand of inter-connected power
systems. Also it can be used in the area of dynamic ;tate estimation of
power systems.

., The major appeal of the proposed on-line identification
algorithms is their simplicity. Since the storage requirements for data
are small and the identification algorithms require few arithmetic
operations, they may be.implemented in real time on a mihicomputer, in a
manner similar to that in a recent paper [100], or on a microcompuier.

5. The problem of structure estimation for the state space model
from noisy data is of great importance in system identification and wmore
work should be done about it. One way of solving this‘problem is the
generalization of the algebraic approach of Tse and Weinert [47)

{section 5.2) -to handle the case of nonzero control. Consider the
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following system equations instead of equation (5.1}, Chapter 5

x(k+1)

Ax{k) + Bu(k)

z(k) = Cx(k) + v(k)

where u(k} is the input vector sequence of ZzZero-gean and‘covariance U
and v{k) ié the output noise vector sequence of zero-mean and covariance
V. Then equations (5.4) and (5.5) can be modified to

P=APA «BREB’

cpclev

R(0)

g=1

R(s} =C A s

u

where

S:APCT

Proceeding in the same way as Tse and Weinert ksection 5.2), the set
{Di, Bijk} can be estimated, without any modification of the algorithm,
hence the system matrices A and C in their canonical form can be

obtained. The identification of the input matrix B in its canonical

form can be obtained as follows. Let B he written as

T

B = [b11 aa blpl b21 cas bs1 - bSps]
where

T

biJ = [bijl bi‘12 cen bijp]

If the Markov parameters of the system are given by

n
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then due to the special canonical form of the matrices A and C, {Tse and

Weinert [47]), the input matrix B can be written as

|75,

The Markov parameters in the above equation can be caleulated using
either correlation techniques (Sinha et al. [36]) or stochastic
approximation (El-Sherief and Sinha [29]).

6. The algorithm for combined parameter and state estimation
proposed in Chapter 6 can be extended to aolve the problem of combined
identification and control of linear multivariable systems. A bootstrap
identification estimation and control algorithm can be obtained by

adding a small independent dither signal to the input during normal
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operation. . This algorithm will be more efficlent than that of Lobbia
and Saridis [45] as it wi‘ll not need any transformation of the estimated
system parameters to obtain the state space matbipes a;d hehce no matrix
inversion will be needed. Also this algorithm will avoid the bias

introduced into the parameter estimates [45] due to the truncation of

the impulse response sequence.



APPENDIX I

THE RESIDUAL ERROR TECHNIQUE

At1.1 " The Noise-free Case
Suppose the set of vectors {y, X Xpn ey xn} is given énd we
want to study the problem whether or not the vector y is a linear
combination of the set of vectors [x1, Xo1 aeey xn}. This problem is
equivalent to (Suen and Liu {(s4])
y =X8 for some vector § (A1.1)

8

where . X [x x cee xn]

i 2

-

For any vector e, let
y=X3s ' (A1.2)
be estimated by ¢ and let

e(®) = [ly-yli® (A1.3)

be the residual error for 8. Then y is a linear combination of {x1, xz,

ceey xn} if and only if e(9) = 0 for some 8. However, such & may 'be

difficult to find. Alternatively, consider

6- = X" ¥y . (A1.4)

where X' is the pseudo-inverse of X. Then from (Al.1) we get

yo= XXy ' (A1.5)

and from (A1.3) we get

! 135
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a8 =y -x X Ty -xx"y X

yTyoyTxxty oy )Ty eyt xxhT xh y

eyl (r-xxhy ' (A1.6)

It can be shown Wiberg [101] that e(eo) < e(s) for all & (Suen and Liu

{540,

Lenma 1

The vector y is a linear combination of {x], Xgr ooy xn} if and

only if e 8 e(eo) = 0.

It can be noticed that the above lemma does not require the

linear independence of the set of vectors {x], Xo ...,'xn].

A1.2 The Noisy Cage

Let a vector y be corrupted by a zero-mean noise vector v and let

£
y* be the noisy observation
y 2 =y + v ' CO(ANT)
From a given set of vectors {y*, X1 Xgr waes xn} we want to

study the problem whether or not y is a linear combination of the’set of
“vectors [x1, Xoy wevs xn} (Suen and Liu [54])
i.e. y=X8 for some vector 8 (A1.8)
From equations (A1.7) and (A1.8) we get
y = X 8 4+ v | (A1.9)

Hence substituting in equation (A1.6) for y by y* we get
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e® 2 8(6?) = y'T (I -%xH y*
. : (A1.10)

~ ' - .
ey T -XxXDye T-xx) vev T-xxDv

Lemma 2
Assuming v is a zero-mean vector uncorrelated with y, then if ¥

is a linear combihation of {11, xz, ceey xn},we have

E{e°} = E {v? (I - X X*) v (AT 1)

and otherwise

E(e®] = E (v (I -X X" v} +y" (X -%xxy(a1.12)

It can be observed that the R.H.S. of equation (A1.12) is

strictly greater than that of equation (A1.11).

Pt

_



APPENDIX II

PROOF OF CONVERGENCE OF STOCHASTIC APPROXIMATION ALGORITHM

A2.1 JIntroduction - (\T"'“\

In this appendix a proof [102] of the unbiasedness and
convergence in the mean-square sense‘of the parameter estimates,
obtained by the normalized stochastic apppoximation algorithms (section
4.2 and [29]), is derived in this appendix.

The algorithms used in section 4.2 and [29] estimate the

parameters Gi's of the following model

z,(kel) = u'{f{‘)‘*“‘-” o, + e (el) 11, 2, vy w (R2.1)
where

u“((‘)‘*" Dt (kele1)  ut(cal=2) ... ul(k)]

ei(k«a-L) z ei(k-1) + vi(k+L) for the algorithm of [29]

vi(k+L) for the algorithm of section 4.2

u(k) is the p-dimensional input vector, zi(k) is the ith putput, vi(k)
is the noise at the ith output, ei(k-I) is a truncation term, m is the

number of outputs,, L is the identification interval and 6, is the
it
parameter vector characterizing the ith output. ei(k+L) is a zero-mean

T{k+L-1) i.e @

noise sequence 1ndependent from the vector sequence U(k)

T
_ (k+L-1), _
E{e; (kel)} = 0, E{U 1y } =0

138
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T gy ‘
(k+L=1) - -
and E{U(k)‘ ei(k+L)} =z q i=1,2, ..., 0 (A2.2)
~

The estimation algorithm is as follows

k+L-1)

T
U(k) T
- _- (k+L=1) *
pi(k+L) = Bi(k-l) + v(k) T(k+L-1) ; [zi(k+L) -y 8, (k-1)]
llu(k) il

i=1,2, vo.p m; k=1, Lel, 2L+3  (A2.3)

where Bi(k}"is the estimate of'Bi at. the kth iteration and the sequence

v(k) satisfies the. following conditions

Lmv(k) £ 0, I w(k) == and I vi(k)<e (A2.4) .
K k=1 k=1 .

In the next sections a proof of the unbiasedness and convergence

- -

in the mean-square sense of the parameter estimates will be obtained.

-

Proof of a similar algorithms has been obtained in different ways by
Albert and Gardner [103], Kwatny and Shen [104] and has been exploited

by Nagumo and Noda [105] and Kwatny [821.

-

5

A2.2  Proof of Unbiasedness

The algorithm (A2.3) minimizes the following criterion

2
ei(k+L)

£(8.) = —E { >} i=21,2,.0.,m (A2.5)
[TUGcal=-1)1 |
']

where e, (ksh) = 2, (kel) - T (k+l-1) 0,

8 (kel=1)
and Ulk+L-1) = By y
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Actually'ei(k) cannot be obtained because 8, is not kmown, hence

an estimate of Bi can be used and the criterion to be minimized will be

. 2
) [zi(k+L)-UT(k+L-1)ei(k-1)]
J, == B { ' | 8. (k=)  1=1,2,.:.,m.

L7270/ fue-n)2 1 |

L]

(A2.6)
where Gi(k) is the estimate of 8, at the kth iteration.

The grédient of Jyg with respect to Bi(k71) is as follows

2, | | [z, (keL)-U" (Jest=1)8  Ce=1)]
= = E (U(k+.-1)

. [ o, (k-1)}
aei(k-1)

Ta

[{UGeeL-1112

(0 Best-130 =0, Tieslat)o (k=1)ve (et

= B {0CkeL1) -0, (k=1)}

|[U(k+L-L)II2 )
iz 1,2,000,m  (A2.7)

Defining'ei(k) =.ei(k) - 6, we get

aJ o [ei(k+L)-UT(k+L-1);i(k-l)]

- i ¥ -~
= = = E {U(kel=1) 5 | ¢, (k-1)}
20, (k1) Hu(kel=1)11% *

N L ' i=1,2,0.0,m  (A2.8)

Now, from conditions (A2.2) on the sequences ei(k) and U(k) and

writing 6,(k-1) = 8, equation (A2.8) gives

~

aJi

E{—— o,(ke1) = g
aei(k-1)

‘_'0 i: 1'2’co-|m (Azlg)

¢

1}

Hence the estimate of the parameters Bi's is unbiased (Wasan [106]).

3
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42.3  Proof of Conversence ‘

‘ Subtrﬁcting °i from .both sides . of eduation _ﬁA2.3) §qd
substituting for zi(k+L) from equation (A2.1) we get ' ‘
U(RaL1)

(kel) = UT(k+L-1);i(k—1)]

;i(k4Lj‘= ;i(k-l):+ v(k) > [ei

[ Bkl |

i=1,2,...,m (A2.10)
where 0.(k) is as defined before. Taking the norm of both sides of
equation (A2.10) we get

v(k)

UCsLm1) U Cksbm1)] 0, (ke1)

- 2 T
f1e, (kel) 1™ = 87 (k=1) [I - 2.
ot .ot [{0CkeL=1)][2 -

vz(k)éi(k+L)

: Bg(k-l)U(k+L—1)UT(k+L-1)U(k+L-1)UT(k+L—1)

(1UCkaL=1)}[2)

2v(k)ei(k+L)

mT ' )
8. (k=1 U(k+L=-1)
(ukat-1){ 12 1

+

2v2 (k)e, (keL) ¥
L -

- 55 0 (k-1 YU (kl=1)U T (kal=1)U(Kk+L=1)
(JUk+L=1) | |9)

ua(k)ei(k+L)
U (k+L=1)U(Kk+L=1)

+
(UCkeL-1)[12)2

2v(k)

o1 el1) (1 - 00el-130" (kelo1)] 8, (c-1)

| 1UCKkeL=1) ]2

2 ‘ .
v (k) "T T - - ’
+ > B.(k-1)U(k+La1)U (k+L-1)8 _(k=1) -
[luGesl-1)[]° * - .
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Zv(k)ei(k+L)
. — eI(k-1)U(k+L-1)
] (JHUCR+L=-1)| %)
22 (K)o (kel) _ VP ked kL)
: = 07 (k=1)0(kel=1) + —
© HUu(keL=1) ]} [UCk+L=1) 1]

i'—' 1,2,...,!1! (Aa.l‘)

Taking the following conditional expectation and from the properties of

the sequences ei(k)‘and U(k), described in equation (A2.2), we get

U(k+L-1)UT(k+L-1)

BA[ {6, (kel) {20, (k=1) = a,} = aF [T - 2y(k)E { , 1 a.
ot o o {01 [ i
T &2 (k4
) T U(k+L=1)U" (k+L~1) . i )
+ v (k) 9, E { > } v (k) E { > 1
T [UCkeL=1)[ | [ {UCkeL=1)

T

i=1,2,...,m (A2.12)

which can be reduced to

- s . UQk#L=1)U" (keL=1)
E{llei(k+L)]| |ei(k-1) = ni} LA [I-2v(k)E{ ; > 1 e
' . - [ {B(keL=1)] | *

+ clvatk)llqill2 + cava(k)_ i=12,...,m (A2.13)

where ¢, and c, are positive constants.

U(keL=1)U T (keL=1)

By assumption (A2.2), the matrix E{ } is positive

HUCkeL-1)]12

definite, hence it has a minimum eigenvalue Apig > O (Graybill [1071).

in

Tﬂfrefore equation (A2.13) can be written as
3{113 (k+L)112|;'(k-1) = 0.1 £ |la ]|2 -2 (k)| |a ||2
i i ! i min ¥ ith

.

v
~
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+ 01;_2(k)||.ni||2 + czuzck) | {=1,2,...m (Az.ﬂ)
and hence
E{||;i(k+1,)||.2|§i(k-1)' =0} <112 Ay VKD
. }:1»2(k)]E{||Ei(k—1)'||2} sopnll) i ="1,2,;..,{n (A2.15)

Under conditions (A2.4) equation (A2.15) satisfies the
requirements of a cbnvergence proof due to Dovretzky {911 from which it

follows that

lim E{Hgi(k-o-L)Ha} =0

ko

L and . prob [lim 6, (kel) = 0,7 = 1 iz 1,2,0..,m
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