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Abstract 

 
Our ability to control unstable objects highlights the sophistication of voluntary motor 

behaviour. In this thesis, we used an inverted pendulum (i.e., stick) balancing paradigm to 

investigate the task, learning and context-dependent attributes of unstable object control. 

We hypothesized that learning would mediate the functional integration of posture and 

upper limb dynamics and expected changes in the task demand and context to be 

reflected in the control of posture and the upper limb. We found that training increased 

the average length of balancing trials and applied this result to further investigate the 

circumstantial properties of unstable object control. 

We investigated the temporal structure of posture and upper limb dynamics using 

statistical and nonlinear time series analysis. We demonstrated that subjects used an 

intermittent strategy to control the inverted pendulum (Chapters 3 and 5) and found that 

motor learning modulated the statistical and spatiotemporal attributes of posture (Chapter 

5) and upper limb displacements (Chapters 2, 3 and 5). We confirmed the balance control 

strategy was intermittent by showing that posture and upper limb time series are 

composed of two independent timescale components: a fast component linked to small 

stochastic displacements and a slow component related to feedback control (Chapters 3, 4 

and 5). The interplay between timescale components was affected by the balancing 

context (Chapter 3) and task demand (Chapter 4). 

Chapter 5 investigated the acquisition of individual and coupled posture-upper limb 

control mechanisms. We found that motor learning involved two independent adaptation 

processes. The first process modified the timescale composition of posture and upper 

limb displacements and was followed by incremental changes in the occurrence and 



v 
 

duration of correlated posture-upper limb trajectories. In Chapter 6, we investigated 

learning-mediated changes in multijoint coordination and control. Motor learning led to 

the flexible, error-compensating recruitment of individual joints and we showed that the 

preferential constraint of destabilizing joint angle variance was the putative mechanism 

underlying performance. 

This thesis performed a detailed examination of unstable object control mechanisms. 

The undertaken studies have provided knowledge about the acquisition and adaptation of 

control mechanisms at multiple levels of the motor system. Our data provide convergent 

evidence that the control mechanisms governing complex human balancing tasks are 

intermittent and modulated by the task and context. 

 

 

Keywords: Inverted pendulum, motor learning, unstable dynamical objects, intermittent 

control, multijoint error compensation, focus of attention, motor variability, statistical 

mechanics, coordination dynamics, uncontrolled manifold. 
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1.1 – MOTIVATION 

 
Dynamic object interactions are central to the tasks that we perform in daily life, and 

often, the objects that we control have unstable dynamics. Unstable objects impose a 

complex control problem because, by definition, the object must be stabilized through the 

interaction between applied forces (i.e., motor commands) and the intrinsic object 

dynamics. Common examples include riding a bicycle or balancing a tray of drinks, 

which require precise control because error can elicit abrupt and irrevocable changes in 

performance. We know very little about the neural strategies used to balance unstable 

objects because the predominant research focus has been to characterize the task and 

context-dependent attributes of firmly grasped, rigid object control (Imamizu et al. 2003; 

Milner et al. 2006). As a result, there are a number of important questions to be answered: 

What strategies are used to control unstable objects and how are these control 

mechanisms learned? Are common control processes shared between interacting motor 

systems? This thesis uses an inverted pendulum (i.e., stick) balancing task to investigate 

skill acquisition in relation to the task and context-dependent attributes of unstable object 

control. 

1.2 – CONTROL OF UNSTABLE OBJECTS 

 
The stick balancing task imposes a complex control problem. Because the stick pivots 

freely, the effect of forces applied at the fingertip depends on the angular state of the stick 

(i.e., position and velocity) and small errors may translate to the abrupt loss of 

performance stability. The stick balancing paradigm has generated a number of important 

insights on the neural control of balance (Treffner and Kelso 1999; Foo et al. 2000; Mah 
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and Mussa-Ivaldi 2003a, b; Cabrera et al. 2004), which fall under the general 

classification of two theories: Internal model and intermittent feedback control. 

An influential development in voluntary motor control and learning has been that the 

brain develops neural structures that encode the physical properties of our limbs (Wolpert 

et al. 1995; Singh and Scott 2003; Kurtzer et al. 2008), environment (Gribble and Scott 

2002; Körding and Wolpert 2004) and manipulated objects (Ingram et al. 2010). 

Compelling evidence suggests that humans develop internal models to produce the 

systematic forces required to counter learned force perturbations (Lackner and DiZio 

1994; Shadmehr and Mussa-Ivaldi 1994; Conditt et al. 1997) and that object 

manipulation tasks require an internal model of the relationship between forces applied to 

the object and the corresponding object motion (Ahmed et al. 2008; Ingram et al. 2010). 

It has been shown that the force-motion model for stick balancing can be learned in the 

absence of upper limb motion (Mah and Mussa-Ivaldi 2003a) and generalizes to novel 

limb configurations (albeit, imperfectly; Mah and Mussa-Ivaldi 2003b), but does not 

transfer to objects with different dynamics (Mah and Mussa-Ivaldi 2003b). The latter 

finding suggests that effective control requires knowledge of the specific object 

properties, which Mah and Mussa-Ivaldi (2003b) have argued is generated by 

approximating the transformation between upper limb joint torques and the angular stick 

motion. 

Are internal models required to balance an inverted pendulum? Presumably, the task 

could be performed by relying on sensory feedback that provides information about the 

inverted pendulum‘s angular position and velocity. The sensory signals that convey this 

information, however, are subject to random corruption (i.e., noise) and time delay 
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(Faisal et al. 2008). In the presence of feedback uncertainty and delay, researchers have 

argued that internal models are used to estimate body, environment, and controlled object 

states by the weighted combination of descending motor commands (i.e., the applied 

force), obtained via efference copy, and time-delayed afferent feedback (Wolpert et al. 

1998; Hwang and Shadmehr 2005). The principal idea is that an output error signal is 

computed by comparing the estimated object states with time-delayed feedback. 

According to the internal model perspective, this output error is scaled to the reliability of 

sensory and motor uncertainty, and used as feedback into the sensorimotor system to 

generate minimum variance state estimates (Kalman 1960).  

Model-based control theories treat uncertainty (i.e., noise) and delay as the 

inconvenient consequences of limitations in sensory processing (Izawa and Shadmehr 

2008) and muscular force production (Christou et al. 2002; Jones et al. 2002; Christakos 

et al. 2006). A common argument is that internal models circumvent the cumbersome 

effects of feedback delay and uncertainty to enable the adaptive responses that are 

characteristic of skilled behaviour (Shadmehr and Krakauer 2008). The finding that 

subjects can successfully balance a virtual inverted pendulum during 600-ms intervals of 

random visual feedback occlusion (in the absence of force feedback about the state of the 

stick) suggests that state estimation is fundamental to the control of unstable objects 

(Mehta and Schaal 2002). 

There is ample evidence, however, that continuous balance control does not 

adequately describe the behavioural strategies used to control unstable objects. It has 

been argued that the difficulty of controlling an inverted pendulum arises due to 

limitations in simultaneously processing noisy time-delayed feedback while specifying 
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controlled motor responses (Milton et al. 2009a). In the wake of feedback uncertainty and 

delay, experimental evidence has shown that intermittent rather than continuous control 

strategies are used to balance unstable objects and a number of authors have contested the 

viability of continuous model-based control (Loram et al. 2006; Milton et al. 2009b; 

Gawthrop 2010; Gawthrop et al. 2011). 

Experimental evidence in favour of intermittent balance control has been found in the 

statistical attributes of angular stick displacements, which show alternating intervals of 

small and large amplitude fluctuations with frequency (the power spectrum of stick 

fluctuations follows a -1/2 power law) and timescale (the distribution of laminar phases 

follows a -3/2 power law) composition that are characteristic of intermittent dynamical 

systems (Cabrera and Milton 2002; Cabrera and Milton 2004a). To this end, angular stick 

corrections are performed on all timescales, but are most prevalent over time intervals 

that are shorter than estimated human voluntary control delays (~100-ms; Cabrera and 

Milton 2002) and there is evidence that stochastic or open loop motor output is an 

important factor in the control of unstable objects (Cabrera and Milton 2004b; Cabrera et 

al. 2006). Recently, an intermittent balancing strategy was reported for the manual 

control of an unstable virtual load (Loram et al. 2009). The intermittent balancing 

strategy has since been modelled as a sensory event-driven process with ballistic 

corrective forces applied in response to threshold-crossing angular stick deviations 

(Gawthrop et al. 2011). 

An emerging argument is that discontinuous balance control reflects the short latency, 

stochastic forcing of unstable objects across set-point stability boundaries (Cabrera and 

Milton 2002; 2004a), with corrective upper limb displacements interjected on much 
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slower timescales (~1–3 Hz, Loram et al. 2011). The observations that balancing time is 

reduced for short, light sticks and that periodic vibration may stabilize the inverted 

pendulum and otherwise facilitate the detection of small angular stick displacements 

show that intermittent control arises due to sensory resolution/uncertainty, delay, or their 

combined effect (Cabrera and Milton 2004; Milton et al. 2008; Milton et al. 2009c). 

However, current theorizing has not considered the possibility that intermittent control is 

predicated on an adaptive strategy and we know very little about the task, learning and 

context-dependent properties of unstable object control. Intermittent balance control may 

depend on the circumstantial adaptation of threshold stick deviations or changes in the 

interplay between open loop (i.e., passive; stochastic) and feedback control processes (cf. 

Wolpert et al. 1992; Treffner and Kelso 1999; Loram et al. 2009). Further investigation is 

required to understand how we control unstable dynamical objects. 

This thesis examines the acquisition of unstable object control strategies. We examine 

task (Chapter 2 and 4) and context-dependent changes in the statistical and 

spatiotemporal attributes of upper limb control (Chapter 3), and determine how these 

processes are related to the systematic, error-compensating recruitment of individual 

joints (Chapter 6). We additionally investigate postural mechanisms that contribute to the 

control of unstable objects with the goal of specifying common task (Chapter 4) and 

learning-dependent posture and upper limb control mechanisms (Chapter 5). The 

processes by which control mechanisms are learned and integrated across interacting 

motor systems is an unresolved, but important question in movement neuroscience 

(Bingham 1988; Bernstein 1996; Newell et al. 2001). 
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1.3 – TASK AND CONTEXT-DEPENDENT PROPERTIES OF 

POSTURAL CONTROL 

 
The upright posture is stabilized by muscle activity that is scaled to the magnitude and 

direction of self-generated and environmental forces (Ting and Macpherson 2005). 

Despite the complexity of the neural mechanisms involved in postural control (Fitzpatrick 

et al. 1994; Creath et al. 2005), the mechanical basis of standing balance is to maintain 

(the vertical projection of) the center of mass within the area defined by the outer edges 

of the feet. To the extent this equilibrium requirement is satisfied, the postural system 

appears to be recruited to facilitate goal-directed behaviour. A cogent and emerging 

argument is that the diversity of voluntary control is inseparable from the postural 

mechanisms that support behaviour (Riccio and Stoffregen 1988; Marin et al. 1999; 

Stoffregen et al. 1999; Stoffregen et al. 2000).  

The task-specificity of postural control was investigated in an experiment by Riley et 

al. (1999) using an upright, eyes-closed posture task. The experiment required subjects to 

stand with their eyes closed and lightly touch a hanging curtain. The subjects were 

instructed either to minimize curtain motion or that curtain deviations were 

inconsequential to task performance (i.e., free standing). The results demonstrated that 

sway variability was reduced relative to eyes-closed standing when the instructed task 

goal was to minimize curtain motion, but was unaffected in the free standing condition. 

In a similar experiment (Balasubramaniam et al. 2000), subjects performed a precision 

aiming task that required directing a handheld pointer at peripheral targets of various 

sizes. Relative to eyes-open standing, manual aiming caused the dissociation and 

direction-specific minimization of sway variability in the fore-aft (i.e., anteroposterior) 

and side-to-side (i.e., mediolateral) directions. Although sway variability is to some 
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extent immutable, these experiments demonstrated that subjects can effectively scale the 

variability of postural sway to meet the precision demand imposed by goal-directed 

behaviour. 

The spatiotemporal properties of postural control show similar task and context-

dependency. Postural sway in quiet stance has been shown to exhibit stochastic properties 

that arise due to the interplay between open (i.e., stochastic) and closed-loop feedback-

driven corrections (Collins and De Luca 1994; 1995; Zatsiorsky and Duarte 1999; 2000; 

Loram and Lakie 2002). However, the temporal and spatial features of standing balance 

are flexible and can exhibit stimulus-correlated (i.e., frequency-locked) periodic motion 

when subjects track an oscillating visual stimulus (Marin et al. 1999) or stand upright in 

an illusory motion display (Peterka and Benolken 1995; Jeka et al. 2000; Kiemel et al. 

2002). The task and context-specific control of standing balance has been extensively 

documented (van der Kooij et al. 1999; van der Kooij 2001; Peterka and Loughlin 2004). 

It should be emphasized that the task and context-dependent attributes of postural 

control are not confined to voluntary behaviour. A comprehensive literature has 

investigated postural responses to external perturbation (Nashner and McCollum 1985) 

and demonstrated that compensatory muscle activity (70-100 ms post-perturbation) is 

governed by: the direction of perturbation (Nashner 1976; Nashner 1977), somatosensory 

function (Horak et al. 1990; Horak et al. 1994), postural alignment (Macpherson et al. 

1989), platform length (Cordo and Nashner 1982), expectation (Maki and Whitelaw 

1993), attention (Horak et al. 1989), environmental factors (Horak et al. 1989) and 

subject intent (Horak and Nashner 1986). The most intuitive of these findings is that 

when the translating platform is longer than the feet, subjects counter environmental 
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perturbation by the stereotyped recruitment of the ankle musculature (i.e., the ―ankle 

strategy‖), but selectively activate the hip musculature (i.e., the ―hip strategy‖) when the 

platform is short. Modulating the postural response according to the perturbation context 

(i.e., platform length) is critical to task success—the ankle strategy would cause the 

subjects‘ feet to rotate off the small platform support surface. The ability to scale 

corrective muscle responses to the characteristics of environmental perturbation is 

acquired systematically across training trials and decays slowly following an abrupt 

change in the perturbation context (Horak and Nashner 1986). 

The control of standing balance is influenced by goal-directed behaviour, contextual 

factors, motor learning and adaptation. A limitation of the abovementioned studies, 

however, is that discrete perturbations and the simplicity of the investigated goal-directed 

tasks prevented investigation of the learning processes that govern the control of posture 

and voluntary movement. This limitation is addressed in Chapter 4, where an integrated 

analysis of posture and upper limb control is performed to evaluate the influence of task 

instruction. In Chapter 5, we investigate simultaneous changes in posture and upper limb 

control during the acquisition of the novel stick-balancing task. 

1.4 – DYNAMIC POSTURE-UPPER LIMB INTERACTIONS 
 

The task and context-dependency of posture and upper limb control are robust features 

of voluntary behaviour (Kurtzer et al. 2003; Diedrichsen 2007; Boulet et al. 2010; Ahmed 

and Wolpert 2009). This finding in part reflects the instability of the upright stance and 

the inherent need to address self-generated perturbations that arise during upper limb 

motor responses (Zajac and Gordon 1989; Zajac 1993). Recent findings, however, imply 
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an intimate functional link between posture and upper limb control that extends beyond 

the instability of standing balance. 

Skilled motor behaviour often requires that we control and compensate for forces that 

compromise postural stability. For example, we produce force on environmental objects 

when we perform common motor tasks like throwing a baseball, swinging a golf club, or 

lifting a cup of coffee. In the process, voluntary movements accelerate our center of mass 

and cause postural disequilibrium. These gravitational forces, if uncorrected, produce 

destabilizing torques that compromise standing balance. Fortunately, when a 

straightforward mapping exists between postural disturbances and self-generated motion, 

voluntary movement is preceded by an anticipatory postural adjustment (APA). APAs 

have been reported for diverse upper limb movements and object manipulation tasks 

(Bouisset and Zattara 1987; Commissaris and Toussaint 1997), and have been shown to 

be tuned to the uncertainty and spatial characteristics of the impending motion (Pedotti et 

al. 1989; Bouisset et al. 2000). The onset of the APA precedes voluntary movement 

(Wing et al. 1997; Forssberg et al. 1999), which suggests that a shared representation of 

voluntary movement dynamics (e.g., direction and amplitude) is used for the anticipatory 

control of posture. 

APAs typically precede well-practiced movements and are thought to reflect the 

outcome of motor learning and adaptation. Indeed, experimental evidence has shown that 

APAs are learned responses and adaptation of the spatial and temporal properties of the 

APA have been reported during the acquisition of novel object manipulation tasks (Wing 

et al. 1997; Toussaint et al. 1998; Forssberg et al. 1999). Similarly, the APA is adjusted 
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in response to novel limb (Lee et al. 1989; Li et al. 2007) and environmental loads 

(Kingma et al. 1999; Patron et al. 2005; Ahmed and Wolpert 2009). 

Anticipatory postural adjustments speak to the integrated and adaptive organization of 

posture and voluntary movement, but the investigations have been confined to discrete 

movements with little variation in the onset or magnitude of perturbation. The simplicity 

of the load context has precluded investigation of the adaptation processes shared by 

postural control and voluntary movement. We address this limitation in Chapter 5 by 

investigating the relationship between posture and upper limb control while subjects learn 

the inverted pendulum balancing task. How posture and voluntary movement evolve into 

commonly encoded, task-specific organizations is an important scientific and pragmatic 

question. 

1.5 – THEORIES OF MOTOR LEARNING 

 

While it is generally true that practice and performance are closely related, the 

diversity of skilled voluntary behaviour has generated interest in motor learning. The 

impetus has been to discover neurophysiological and behavioural processes involved in 

the acquisition (Karni et al. 1995; Shadmehr and Holcomb 1997; Doyon and Benali 2005; 

Huang and Shadmehr 2009), retention (Brashers-Krug et al.1996; Shadmehr and 

Brashers-Krug 1997; Reis et al. 2009) and transfer of newly acquired motor skills 

(Imamizu et al. 1995; Gandolfo et al. 1996; Conditt et al. 1997; Goodbody and Wolpert 

1998; Shadmehr and Moussavi 2000; Seidler et al. 2001). The motor learning literature 

may be divided into (at least) two distinct approaches: sensorimotor adaptation and 

coordination dynamics. 
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Sensorimotor adaptation paradigms investigate the modification of motor commands 

to accommodate novel sensory and force environments (Sanes 1986; Shadmehr et al. 

1993; Braun et al. 2009). Mathematical models, machine learning algorithms and 

neuroimaging techniques have been used to argue that motor learning reflects an 

(optimal) parameter estimation process that learns the task by reducing error on a trial-by-

trial basis (Krakauer et al. 1999; Scheidt et al. 2000; Criscimagna-Hemminger et al. 

2010). The cerebellum (Imamizu et al. 2000) and basal ganglia (Seidler et al. 2006) 

appear to be central to the acquisition, retention and generalization of sensorimotor 

transformations.  

Most often, sensorimotor adaptation experiments characterize changes in the 

kinematics of reaching movements by examining the curvature of hand trajectories. A 

classic finding is that hand path trajectories are straight when subjects perform goal-

directed reaching movements (Hollerbach and Flash 1982), but when a novel mechanical 

load is introduced, the subject‘s hand deviates in the direction of the force perturbation. 

When the load is suddenly turned off after learning, an after-effect is observed whereby 

the hand path deviates in the direction opposite of the learned force field. This after-effect 

shows that motor commands are modified in anticipation of the learned force 

perturbation. While the force-field adaptation paradigm has made a substantial 

contribution to our understanding of motor learning, there has been little investigation of 

the multi-element structure of the upper limb (i.e., individual joints) or the interacting 

subsystems that comprise the human motor system. Both are fundamental considerations 

and form the basis of the coordination dynamics perspective, which offers a powerful 
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framework to investigate the organization, stability and control of voluntary movement 

(Kelso et al. 1984; Haken et al. 1985).   

Dynamical analyses characterize the task-dependent coordinative relationships 

between joints, effectors, and motor systems with the objective to specify how control is 

influenced by biomechanical constraint (Buchanan and Kelso 1993; Virji-Babul and 

Cooke 1995; Serrien and Swinnen 1998; Dounskaia et al. 1998), sensory feedback 

(Kovacs et al. 2009) and task difficulty (Fink et al. 1999; Sternad et al. 1999). A central 

approach has been to examine the change in coordination between effectors (Swinnen et 

al. 1997; Kelso and Zanone 2002), body segments (Bobbert and van Ingen Schenau 2001) 

and joint angles (Vereijken et al. 1997) that accompanies motor learning. Learning has 

been described by the evolution of the topological properties that characterize body 

segment relationships (Schöner and Kelso 1988; Schöner et al. 1992) and systematic 

changes in the recruitment and patterning of active muscular responses (Southard and 

Higgins 1987; McDonald et al. 1989; Vereijken et al. 1992; Broderick and Newell 1999). 

Task-specific coordinative relationships have led researchers to question whether 

similar organizations exist between specialized sensorimotor subsystems. Indeed, goal 

achievement in complex motor tasks often requires collaboration between upper limb 

motor responses and the neural mechanisms that stabilize the upright posture (Bouissett 

and Zattara 1987; Bouisset et al 2000). Thus, in the same way that performance depends 

on the coordinated engagement of individual body segments, motor learning requires the 

task-specific assembly of specialized motor subsystems.  

In view of these considerations, motor subsystem interactions have been a topic of 

interest in theoretical treatments of motor control and learning (Bingham 1988; Bernstein 



PhD Thesis – T. Cluff  McMaster University – Neuroscience 

14 
 

1996). Recently, Newell et al. (2001) have proposed that motor learning is instantiated by 

the evolving coordination of interacting motor subsystems. Their model distinguishes 

between three hierarchical levels of the motor system ranging from (1) individual 

effectors that operate and evolve within effector systems (e.g., individual muscles, 

segments or joints) to (2) coordinative relationships between motor subsystems (e.g., 

posture and upper limb movement patterns) that interact to collaboratively produce (3) 

outcome performance. Newell et al. (2001) have proposed that specialized motor 

subsystems are organized hierarchically and integrated into functional interactions that 

support outcome performance.  

Newell et al.‘s (2001) hierarchical learning model was recently investigated in a 

series of experiments by Huys et al. (2003; 2004a, b) that examined learning-mediated 

changes in the coordination of posture, vision, and hand movements in three-ball cascade 

juggling. The authors found clear evidence for the emergence and progressive 

coordination (i.e., frequency-locking) of vertical ball displacements and center of 

pressure trajectories (Huys et al. 2003). The incidence and expression of posture-hand 

coordination varied across individuals, but was found to increase systematically across 

training sessions for each subject. The authors reported similar coupling functions 

between ball and point of gaze adjustments (Huys et al. 2004a). This work confirmed 

Newell et al.‘s (2001) learning model by showing that learning-induced changes in motor 

subsystem dynamics precede the development of correlated subsystem interactions. 

The strength of Newell et al.‘s (2001) learning model is that it provides a 

straightforward framework for interpreting the complex interactions that arise between 

specialized motor systems. This thesis builds on the Newell et al. (2001) learning model 
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by examining the correlative properties of posture and upper limb dynamics. In Chapter 

5, we examine the convergence of posture and upper limb control caused by the 

development of expertise in the inverted pendulum balancing task. The objectives of this 

study were to determine how we learn to control unstable objects, to characterize these 

control processes at multiple levels of the voluntary motor system, and to specify how 

learning influences the integration of independent motor subsystems. 

1.6 – SUMMARY 

 
In the previous sections, task and context-specificity were discussed as common 

features of posture and voluntary behaviour. While an extensive literature has focused on 

adaptation to novel mechanical loads, few studies have considered how we control 

unstable objects (Mehta and Schaal 2002; Mah and Mussa-Ivaldi 2003a, b; Milton et al. 

2009a, b). The intuitive hypothesis is that our repertoire of object manipulation skills is 

established through common learning and control mechanisms for posture and the upper 

limb motor system. Accordingly, the outstanding questions are  

i) How do we control unstable objects? 

ii) Are unstable object control mechanisms modulated by the context and task 

demand? 

iii) Are distinct motor systems, such as the control of individual joints, posture, and 

the upper limb linked through common learning and control processes? 

The aim of this thesis is to address these outstanding concerns. The first question is 

entertained by investigating the statistical and spatiotemporal properties of upper limb 

control during the acquisition of the inverted pendulum balancing task. The objective was 

to particularize the learning-dependent properties of unstable object control. The second 
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question examines the task and context-dependent properties of unstable object control. 

Our objective was to elaborate how unstable object control is affected by the balancing 

context and task instruction. The third question examines whether distinct effector 

systems are linked through common learning and control processes. These questions are 

addressed using a behavioural approach to better understand the learning and control 

processes governing unstable object interactions. 

1.7 – THESIS OVERVIEW 

In this thesis, motor learning and control are scrutinized using a behavioural approach 

and dynamically-oriented (i.e., statistical mechanics, phase space 

reconstruction/embedding, time series analysis, and manifold methods) mathematical 

analyses. In Chapter 2, the statistical properties of upper limb control are evaluated across 

a training period and in two alternate balancing postures—seated and standing balance. 

Chapter 3 investigates the spatiotemporal properties of upper limb control to further 

elaborate the context and learning-dependent properties of stick balancing. Chapter 4 

extends the approach used in Chapters 2 and 3 to investigate whether the upper limb and 

postural control are modulated by explicit task instruction or simultaneous cognitive load. 

In Chapter 5, we use an innovative analysis to examine concomitant changes in posture 

and upper limb control that are mediated by motor learning. Finally, Chapter 6 

investigates learning-mediated changes in the control of multijoint kinematics. These five 

basic studies were designed to elaborate control processes at multiple levels of the motor 

system and the processes by which they are established through motor learning. 
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1.8 – OUTLINE OF EXPERIMENTS AND HYPOTHESES 

 
The studies presented in this thesis are motivated by the hypothesis that multijoint 

kinematics, posture, and upper limb displacements are functionally integrated to control 

unstable objects. This conjecture was motivated by evidence that the control of posture 

and voluntary movement are ostensibly linked through common learning and control 

processes (Huys et al. 2004a, b). The principal analyses performed in Chapters 2, 3, 5 and 

6 examine motor learning and contrast the dynamical attributes of upper limb (Chapters 

2, 3, 5), posture (Chapter 5), and angular joint excursions (Chapter 6) across a training 

period. Chapter 4 examines modifications in the control of posture and the upper limb in 

response to variations in the task demand. 

In Chapter 2, we devised an experimental paradigm to evaluate the learning and 

context-dependent control of unstable dynamical objects. Our stick-balancing paradigm 

was motivated by research on the control of balance in time-delayed systems (Cabrera 

and Milton 2002; Cabrera and Milton 2004a, b; Milton et al. 2009a, b). The work of 

Milton and colleagues has demonstrated that stochastic motor processes are implicated in 

fast timescale balance control. Provided parametric noise fluctuations are tuned to 

displace the stick trajectory across the vertical on fast timescales (as shown in Cabrera 

and Milton 2004b), we hypothesized that the statistical attributes of upper limb 

displacements would change with motor learning to show that subjects tune balance 

control to optimize performance. To address this question, we used regression techniques 

and fit individual subjects‘ transverse plane fingertip speed profiles to theoretical Lévy 

distributions. We analyzed changes in the scaling and truncation of the statistical 
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distribution of upper limb kinematics. The objective of this experiment was to investigate 

the context and learning-dependent adaptation of upper limb control. 

Chapter 3 examined the spatiotemporal properties of upper limb control. Our 

experiment was inspired by research which demonstrated that angular stick fluctuations 

are governed by an intermittent control mechanism (Cabrera and Milton 2002). 

Importantly,  > 98% of corrective stick fluctuations have been shown to occur on 

timescales shorter than estimated human voluntary control delays (~100-ms; computed 

by Cabrera and Milton 2002 using the cross-correlation function between angular stick 

and fingertip displacement time series). The work by Cabrera and Milton, in conjunction 

with our observation that hand displacements are Lévy distributed in stick balancing 

(Chapter 2; Cluff and Balasubramaniam 2009), suggested that stochastic processes 

contribute to the stabilization of the upright stick position on short timescales. We 

hypothesized that if stochastic motor processes indeed stabilize the upright stick position 

on short timescales, then hand displacements should show intermittent dynamics—we 

expected upper limb displacements to switch between two (phenomenological) states 

differentiated by their correlative properties and timescale composition. 

In Chapter 4, we tested whether stick balancing performance is influenced by the 

allocation of attention to upper limb control (internal focus), outcome performance 

(external focus) and cognitive demand. Our experiment was prompted by the observation 

that execution-oriented (i.e., internal focus) attention destabilizes performance and 

interferes with the automaticity of corrective motor responses during the control of 

posture and unstable handheld loads (Shea and Wulf 1999; Wulf et al. 2001; McNevin et 

al. 2002; McNevin et al. 2003). We approached this problem from a novel perspective. 
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We hypothesized that if attention modulates corrective motor processes, then task 

instruction should be reflected on timescales specific to voluntary control—the slower 

varying corrections characteristic of feedback control. We additionally hypothesized that 

if cognitive load (external, task-irrelevant focus) facilitates the automaticity of motor 

performance (as shown in Weeks et al. 2003), then we expected cognitive dual-task 

performance to evoke differences in short timescale posture and upper limb 

displacements. We implemented the cognitive load using a silent arithmetic task derived 

from work by Weeks et al. (2003). To address our hypotheses, we manipulated the focus 

of attention by explicit task instruction and used a dynamical analysis capable of 

classifying two independent timescale components that contribute to outcome 

performance. We decomposed the correlative attributes of hand and postural 

displacements into two independent timescale processes: a fast, stochastic component 

(i.e., drift process) and a slow feedback control component (i.e., correct process). To our 

knowledge, this is the first study to perform a mechanistic analysis of the influence of 

attention on motor performance. 

In Chapter 5, we investigated the functional organization of posture and upper limb 

control. Our study was motivated by research which suggested that the acquisition of 

novel motor skills involves a series of stereotyped modifications to the hierarchical 

organization of motor subsystems (Bingham 1988; Bernstein 1996; Newell et al 2001). 

Unlike the few previous studies on the topic (Huys et al. 2003; 2004a, b), we focused 

exclusively on the convergence of posture and upper limb control. We hypothesized that 

change in the dynamical attributes of upper limb displacements would be paralleled by 

corresponding changes in posture. We used an innovative analysis to quantify 
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simultaneous changes in posture and upper limb control and their coupled interactions. 

This study provides a much needed focus on motor interactions and their role in learning. 

Chapter 6 was motivated by the equivocal relationship between angular joint 

trajectories and motion at the end effector (Polit and Bizzi 1978; Lacquaniti and 

Soechting 1982). Due to the redundancy of the upper limb motor system, identical end-

effector kinematics may be generated by infinite combinations of individual joint 

configurations. Rather than use rigid or stereotyped joint recruitment patterns, we 

hypothesized that skilled performers would co-vary and flexibly engage individual joints 

to stabilize the upright stick position (Scholz and Schöner 1999; Latash et al. 2002). To 

address our hypothesis, we examined error compensation (i.e., covariation) between 

joints using a geometric model that mapped six independent joint angles onto the time-

varying fingertip position. We partitioned motor variance into two orthogonal 

components that corresponded to joint configuration variance that stabilized (UCM) 

versus destabilized (ORT) outcome performance. 

The studies presented in this thesis demonstrate that unstable object interactions are 

supported by learning-dependent changes in the control of individual joints, posture, and 

upper limb displacements. A detailed elaboration of the experiments is presented in 

Chapters 2 through 6. The discussion of how these studies contribute to the literature is 

presented in the General Discussion section (Chapter 7). Concluding comments and 

future research directions are also outlined in Chapter 7.
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2.1 – ABSTRACT 

 
In this experiment, we show that transverse plane changes in fingertip speed are Lévy 

distributed in human pole balancing. To investigate, six subjects learned to balance a pole 

on their index finger over two weeks while sitting and standing. The Lévy or decay 

exponent decreased as a function of learning, showing reduced decay in the probability 

for large fingertip speed steps. The decay exponent was smaller in the sitting condition, 

but the distribution was truncated so that the probability for large fingertip speed steps 

was reduced. These results show a learning-induced tolerance for large fingertip speed 

step sizes and demonstrate that motor learning in continuous tasks can be characterized 

by changing distributions that reflect sensorimotor skill acquisition. 
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2.2 – INTRODUCTION 

 
Traditionally, motor learning for continuous, goal-directed movements has been 

difficult to characterize.  Although dynamical approaches have argued that motor 

learning results from the evolution of potential landscapes (Newell et al. 2001), what has 

been elusive is to quantify and interpret these changes behaviourally. On the other hand, 

motor learning for discrete movements can be classified on the basis of performance 

error, for example, from the end-effector position relative to some salient target (Körding 

and Wolpert 2004). These studies have a longstanding history in the literature and 

consequently, have revealed much more about motor learning for discrete tasks (Snoddy 

1926; Crossman 1959). 

More recently, studies that examined learning for continuous tasks have incorporated a 

technique from control systems theory—the Kalman filter. The Kalman filter is a linear 

estimator that in neural applications recursively determines the sensory consequences of 

movement based on the intended motor command (Wolpert 1997; Wolpert and 

Ghahramani 2000; Wolpert and Flanagan 2001). Computational theories of human motor 

control posit that the Central Nervous System (CNS) employs internal forward models in 

tasks such as visuomotor pole balancing. Predictive control can be favorable for the 

neural control of pole balancing because it can help circumvent sensorimotor processing 

delays to produce the short latency movements required for maintaining pole stability 

(Mehta and Schaal 2002). Predictive mechanisms enable perturbations/threats to stability 

to be anticipated and accordingly, corrections can be performed in anticipation of these 

disturbances. More generally, estimation mechanisms are thought to be implicated in 

minimizing body-state uncertainty during the continuous evolution of limb states in 
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response to motor commands (Mehta and Schaal 2002; Wolpert and Kawato 1998; 

Witney et al. 2000; Witney et al. 2001). 

Contrary to the abovementioned mechanisms, pole dynamics may be stabilized by 

stochastic properties characteristic of motor control (Cabrera and Milton 2002; Cabrera 

and Milton 2004a, b). The findings of Cabrera and Milton have demonstrated that 

fingertip speed profiles in human pole balancing show power law scaling. Power law 

scaling was also evident in the laminar phases (time intervals) for successive corrective 

movements, which demonstrated that corrective movements were intermittent in human 

pole balancing. In confirmation of intermittent control, behavioral data have 

demonstrated that > 98% of corrective movements are shorter than our sensory 

processing delays. Numerical analyses have since shown that balance can be facilitated in 

time-delayed stochastic systems, provided the system is tuned near a stability boundary. 

In this case, control could result from stochastic processes that force the angular stick 

trajectory back and forth across the vertical on short timescales (Cabrera and Milton 

2004a, b). On the basis of efficiency, intermittent or ‗bang-bang‘ control might be 

favored to continuous estimation in stochastic, time-delayed systems since the 

computational burden incurred by the CNS would be minimized (Milton et al. 2008). 

Systems characterized by on-off intermittency exhibit two distinct phenomenological 

states. In the ―off‖ state, dynamic variables remain approximately constant over various 

time intervals. Conversely, the ―on‖ state is characterized by intermittent bursting of the 

dynamical variable. Intermittency requires the underlying system to possess an invariant 

subspace, whereby provided the dynamical variable remains within the bounds of the 

invariant space, it remains relatively constant. This bound is manifest as a threshold, that 
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when crossed, results in subsequent bursting of the dynamical variable, i.e., the system 

transitions from the ―off‖ to ―on‖ state (Marthaler et al. 2001). 

In this context, the stochastic process that characterizes fingertip speed profiles is 

given by a symmetric Lévy process Lα(Δs,Δt) (Cabrera and Milton 2004a):  

 

 

 

where Δs is the speed step size, Δt is the interval between successive observations, γ is 

the scaling factor (γ > 0) and α is the Lévy index (0 < α < 2). The Lévy process is an 

unbounded, unconstrained random walk and the asymptotic character gives rise to an 

infinitely variant process that lacks first and second statistical moments. Additionally, the 

Lévy process is characterized by ‗slow‘ and ‗fast‘ components, which are similar to the 

‗rambling‘ and ‗trembling‘ processes studied in postural control (Zatsiorsky and Duarte 

1999; 2000). The slow and fast regimes of the Lévy process are demarcated by a critical 

threshold and the dynamic variable is free to vary within the confines of this threshold.  

Previous research demonstrated that the probability for large fingertip speed steps 

increased with learning in a human pole balancing task (Cabrera and Milton 2004a), 

which the authors argued was indicative of tolerance to stochastic processes. This 

consideration has important ramifications for our understanding of motor learning. In the 

event that the distribution broadens with learning, this corresponds to a smaller decay in 

the probability for large step sizes. Behaviourally, this is manifest as tolerance to 

stochastic processes: the participant becomes tolerant to large changes in fingertip speed 

as proficiency in the pole balancing task increases. The purposes of this study were two-
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fold: first, to determine whether the decay exponent for the probability of a given step 

size, α, changed with learning, and second, to determine whether α varied in a sitting 

versus standing condition. We include the seated versus standing balance contrast to 

highlight differences in control between two conditions that differ markedly in the 

availability of biomechanical degrees of freedom. We expected greater probability for 

large changes in fingertip speed in the standing condition. 

2.3 – METHODS 

 
Six healthy subjects (2 male, aged 26–28 years; 4 female, aged 23–27 years) 

participated in this experiment. The subjects were undergraduate or graduate members of 

the Sensorimotor Neuroscience Laboratory (i.e., convenience sample). The procedures 

were performed in accordance with the Declaration of Helsinki and subjects provided 

written informed consent prior to the experiment. The protocol was approved by the 

University of Ottawa ethics review board.  

Subjects balanced a wooden dowel with length 62 cm, diameter 0.635 cm and mass   

50 g in two experimental conditions: sitting and standing. Sitting trials were performed 

with subjects seated comfortably in a chair at the subjects‘ preferred seat height. The 

subjects were required to balance the pole with their back remaining in contact with the 

seat. In the standing condition, subjects performed pole balancing with their feet 

approximately shoulder-width apart, but were able to move their upper body while 

maintaining a stationary stance. In the event that foot movement occurred, the trial data 

were discarded and excluded from further analysis. 

Motion capture was performed with 8 VICON MX-40
+
 infrared cameras sampled at 

500 Hz (Denver, CO, USA). We tracked pole motion in three-dimensions using two 
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spherical reflective markers (14 mm diameter) affixed to the top and bottom of the pole 

with double-sided adhesive. We processed the marker trajectories offline with the 

VICON Workstation software and exported the trial data to MATLAB
TM

 (Mathworks, 

Natick, MA) for further analysis.  

This study employed a learning paradigm and subjects learned to balance a small 

cylindrical pole on their fingertip over a two week period. Data collection was performed 

on the first day, followed by subsequent data collection every fourth day. The subjects 

performed 30 min of daily practice between data collection sessions (15 min per 

condition), which was distributed between conditions according to their preference. We 

avoided confounding learning effects by counterbalancing the order of conditions across 

subjects.  

The Lévy process (α < 1.2) requires 10
5
-10

6
 samples to be reliably distinguished 

from the Gaussian process (0 < α ≤ 2). With our sampling rate of 500 Hz, this 

corresponded to a minimum balancing time of  200 s. Individual trials for each condition 

and session were parsed into a single aggregate trial for each subject. All data presented 

here were derived from detrended, aggregate fingertip speed profiles > than 5 × 10
5
 

samples (1000 s). We aggregated the two-point differenced fingertip speed data (∆s). We 

believe this is the more effective means of aggregating individual trial data because it 

minimizes artifact that might result from introducing particular speed steps—the effect of 

parsing would be accentuated by making the aggregate trial with fingertip positions and 

two-point differencing to determine the fingertip speed. Moreover, the effect of parsing 

individual trials would be minimized by the number of data points in relation to the 

number of trials used in the aggregate time series (max 50 trials vs. > 500000 samples per 
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aggregate time-series). Similar to Cabrera and Milton (2004a), we examined the 

corrective movements that occurred on timescales shorter or on the same order as the 

neural delay.   

We computed the 2-D fingertip speed, )(ts : 

t

trttr
ts






)()(
)(


, 

where )(tr


corresponded to the transverse plane 2-D fingertip position at time t, 

)( ttr 


was the fingertip position at time t + Δt, Δt represented the time step between 

successive observations and  . represented the Euclidean norm. Therefore, )(ts was the 

Euclidean fingertip speed. The detrended speed )(ts was computed as: 

)()()( tsttsts  , 

where )(ts was the 2-D norm at time t and )( tts  was the fingertip speed at time t + Δt. 

This expression removes time-dependent linear trends and is equivalent to the high-pass 

filtered fingertip speed (Segev et al. 2002).  

We computed the  probability of a given step size, P(Δs, Δt)  by constructing 

histograms with the bin size set to 1 mm/s. To determine whether the probability of a 

given step size was influenced by the time between observations (Δt), we decimated Δs(t) 

on a logarithmic scale by factors 1 to 1000. We plotted the probability of return (i.e., the 

probability of zero change in fingertip speed between observations), P(0,Δt), as a 

function of  Δt and computed the power law exponent α from the relationship 

 ttP ),0( . 
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In other words, α was computed by regressing P(0, Δt) onto Δt on a double-logarithmic 

scale. We contrasted the power law exponent (α) across sessions (3) and conditions (2) 

using a 3 × 2 ANOVA with repeated-measures. Post-hoc analysis was performed by 

paired t-tests with Bonferonni corrections for multiple comparisons. The significance 

level for statistical contrasts was 0.05. As a measure of performance, we quantified the 

mean balancing time and contrasted this dependent measure across training sessions (3) 

and conditions (2) using a 3 × 2 ANOVA with repeated-measures. The balancing time tbal 

(in seconds) for individual trials was determined from the number of samples as 

 

where Fs was the sampling frequency for data collection. The mean balancing time  was 

defined as the average time spent pole balancing across trials in each session and 

condition, 

, 

where n was the number of trials and tbal was the balancing time (in seconds) for 

individual trials, respectively. Post-hoc analyses were performed using paired t-tests with 

Bonferonni corrections. 
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Figure 2.1. Changes in fingertip speed are Lévy distributed in the visuomotor stick-

balancing task. Decimated time series show the probability of change in fingertip speed, 

P(Δs, Δt), is dependent on the time between successive observations, Δt (0.002 to 2 s). 

Overlaid colors represent the decimated time series, with time steps ranging from 0.002 

to 2 s. a) Sitting; b) Standing condition. Left to right:  Sessions 1 to 3. 
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2.4 – RESULTS 

 
Figure 2.1 shows the normalized histograms for the probability of a given step size P(Δs, 

Δt) in the sitting (top row) and standing conditions (bottom row) across experimental 

sessions (Session 1: left; Session 2: middle; Session 3: right). Figure 2.2 shows 

representative session data for Subject 1 in the sitting and standing conditions (Session 1: 

Red; Session 2: Blue; Session 3: Green). Both figures demonstrate that the distribution 

broadened with learning, rendering the probability of large speed step sizes P(Δs, Δt) 

significantly greater with experience. Figure 2.2 also plots theoretical Lévy distributions 

with parameters fit to the data from Session 1 (solid black line). For the sitting condition, 

the decay exponent was α = 0.95 and the scale parameter γ = 0.025, whereas for the 

standing condition α = 0.98 and γ = 0.025. As shown, the central regions of the 

distributions are reasonably well fit by the parameters, but the quality of fit decreases in 

the tail region. This suggests that both the decay exponent and truncation were influenced 

by learning. 

We decimated the change in speed time series Δs(t) to determine the probability of 

return or zero-speed change P(0,Δt) when the time between observations was varied from 

0.002 to 2 s. The decay exponent α was estimated by regressing P(0,Δt) onto Δt on 

bilogarithmic plot (Figure 2.3). Statistical analyses demonstrated that α was dependent on 

both session, F (2, 10) = 7.90, p = 0.009, and condition, F (1, 5) = 7.70, p = 0.039 where 

F corresponds to the Fisher statistic for the repeated-measures contrast (mean-square 

error within-subjects/ mean-squared error between-subjects) and (2, 10) represents the 

statistical degrees of freedom for the mean-squared error within and between-subjects, 

respectively. In this context, p represents the probability of observing the same or more 
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extreme results. With respect to the session effect, α was reduced in session 3 (M = 0.935, 

SE = 0.009) relative to session 1 (M = 0.981, SE = 0.011), p = 0.046. The decay 

exponent, α was similar between session 2 (M = 0.964, SE = 0.014) and sessions 1 and 3 

 

  

Figure 2. 2. P(Δs, Δt = 0.002 s) over three sessions in the seated (left) and standing 

(right) balance conditions. Red: Session 1; Blue: Session 2; Green: Session 3. 

 

 
 (p > 0.05). Lastly, the decay exponent α was significantly larger in the standing (M = 

0.973, SD = 0.011) relative to sitting (M = 0.947, SD = 0.009) condition, p = 0.039. The 

decay exponent α was not influenced by the session × condition interaction (F (2, 10) = 

0.942, p > 0.05). 

The mean balancing time measure was defined as the average time spent pole 

balancing across trials within each session and condition. We contrasted the mean 

balancing time performance measure using a 3 (session) × 2 (condition) ANOVA with 

repeated-measures. The mean balancing time was influenced by both session, F (2, 10) = 

14.331, p < 0.001, and condition, F (1, 5) = 6.92, p = 0.05, but was not influenced by the 

interaction effect, F (2, 10) = 2.92, p > 0.05. Regarding the session effect, the average 
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length of balancing trials was greater in session 3 (M = 73.69, SE =12.72) relative to 

session 1 (M = 29.80, SE = 11.78) (p = 0.034) and session 2 (M = 44.50, SE = 11.82) p = 

0.034, whereas mean balancing times for sessions 1 and 2 were not significantly different 

from one another, p > 0.05. Lastly, mean balancing time was significantly greater in the 

standing (M = 59.61, SE =14.10) relative to sitting condition (M = 39.04, SE = 11.04), p = 

0.047.   

 

 
Figure 2.3. P(0, Δt)  is power-law distributed for Δt  = 0.002 to 2 s in the seated balance 

condition.  
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2.5 – DISCUSSION 

 
The objective of our study was to determine whether power law scaling in a human pole 

balancing task is dependent on learning. Previously, Cabrera and Milton (2004a) 

demonstrated that learning resulted in less severely truncated distributions for the 

probability of large changes in fingertip speed, P(Δs, Δt). The authors proposed that this 

change was caused by differences in truncation. With truncation, the symmetric Lévy 

distribution becomes 
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where P(Δs, Δt)  is the probability of a given velocity step, c1 and c2 are normalization 

constants, Lα(Δs, Δt)  is the symmetric Lévy distribution,  f(Δs) is the truncation function, 

Δs is the step-size and lc is the threshold for truncation.  The truncation function f(Δs), 

can be approximated as (Gupta and Campanha 2002), 
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where Δs is the change in velocity, Δt is the time-step, lc is the truncation threshold and β 

is (α-2). Cabrera and Milton proposed the increased probability for large changes in 

fingertip speed (∆s) resulted from changes in truncation and not scaling. We were 

concerned with whether the observed changes in the probability distribution for step size 

resulted not only from truncation, but also from a reduction in the decay exponent α for 

P(Δs, Δt). Our hypothesis was confirmed in that power law scaling was influenced by 
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learning: participants became tolerant of large changes in fingertip speed, and this 

tolerance was reflected in the decay exponent, α.  

Moreover, we contrasted decay exponents (α) for P(Δs, Δt) in sitting and standing 

conditions. Our results suggest that while the decay exponent for the probability of a 

given speed step size (Δs) was significantly larger in the standing versus sitting condition, 

the distribution was truncated such that the P(Δs, Δt) distribution was broader for the 

standing condition. Therefore, individuals were relatively tolerant of large fingertip 

excursions when standing. We argue, in confirmation of the results presented by Cabrera 

and Milton (2004a), that truncation was more severe in the sitting condition—the 

physical capacities of the system were exhausted—and individuals were not capable of 

tolerating large speed step sizes to the same extent. The hypothesis is further supported 

by Figure 2.2, which demonstrated the experimental distributions for all three sessions 

were reasonably well fit in the central region by a theoretical distribution plotted using 

parameters (α, γ) determined from Session 1 data, but the quality of fit was poor in the 

tail region. These results follow a more generalized form of truncation. With respect to 

the discontinuous truncation function f(Δs) mentioned above, there are three broad 

truncation classifications: (i) the distribution is truncated gradually from return (Koponen 

1995), lc = 0; (ii) the distribution deviates from the symmetric Lévy and is truncated 

gradually from some critical change in fingertip speed, lc ≠ 0; and (iii) the truncation gain 

is zero, k = 0, and the system‘s capacities are exhausted rapidly at the critical step size lc 

(Mantegna and Stanley 1994). Physically, the truncation may have resulted from a 

reduction in degrees of freedom, ultimately reducing the range of motion and 
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consequently, the truncation gain k. It would be beneficial to take up the specific 

truncation mechanism in future research. 

Conceivably, changes in the distribution of fingertip speed changes P(Δs, Δt) could 

have occurred in the absence of learning; however, we quantified a performance measure 

for pole balancing based on balancing time. Balancing time was the mean time spent pole 

balancing for each session and condition. We found that learning did occur, since the 

time spent balancing was dependent on a session effect. Regarding the classification of 

participant skill levels, it is likely that our participants were still of low-moderate level 

since mean balancing times for the sitting condition were less than one minute (Milton et 

al. 2008). Future research should consider the differences in the examined distributions 

between low-moderate and expert pole balancers (mean balancing time >> 1 minute). As 

demonstrated, changes in the Lévy exponent certainly occur for the progression from low 

to moderate skill, but it is unlikely that these changes persist with further developments of 

expertise. 

Our sit versus stand comparison was conducted to delineate the mechanisms by which 

individuals learn to accommodate noise in pole balancing. Power law scaling is known to 

arise in unstable physical systems influenced by parametric noise (Cabrera and Milton 

2002, Cabrera and Milton 2004a; Hosaka et al. 2006; Cabrera et al. 2006). Balance 

control in unstable, time-delayed dynamical systems can benefit from the presence of 

parametric noise, provided the system is placed near a stability boundary. In such a way, 

the inverted pendulum with time-delayed (sensory) feedback is stabilized by parametric 

noise—stochastic forcing of a gain term back and forth across a stability boundary 

(Hosaka et al. 2006). The rationale for the sit vs. stand comparison can be summarized as 
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follows. Sensorimotor noise is state-dependent (Harris and Wolpert 1998). The standing 

condition employed here capitalizes on more biomechanical degrees of freedom relative 

to the sitting condition, with state-dependent noise inherent to each additional degree of 

freedom. In alignment with the premise that balance control can benefit from noise, we 

hypothesized that pole balancing would be facilitated in the standing condition. The 

hypothesis was confirmed, since greater contribution from the distribution tails were 

observed in the standing condition and participants were capable of balancing for a 

prolonged period relative to when sitting. Though at present we know little about the 

underlying mechanism, one explanation might be that abundant dimensions along which 

the system can vary (muscle activations, joint kinematics) facilitate the pole balancing 

task. 

Previous research into the mechanisms underlying postural control demonstrated that 

performance in a dual task (counting backwards by 3‘s) with eyes closed reduced postural 

fluctuations relative to an eyes-closed condition. Similarly, pole balancing performance 

improved for a moderately skilled subject in a dual-task situation (improvements were 

observed for both rhythmical and imaged leg movement) (cf. Ermentrout and Milton 

2008 for exemplary video, Milton et al. 2008b for more detail). In short, these studies 

suggest that maintaining balance might be an exception, since dual task conditions 

typically have a deleterious effect on motor performance. Balance might be the exception 

since it appears to be facilitated by passive dynamics of the neuromuscular system 

(ligaments, joint capsules). However, there are also active contributions to the control of 

balance that are both reflexive (muscle spindles, golgi tendon organs) and voluntary 

(muscle contraction and tension at the tendon insertion) (Riley and Turvey 2002).  
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In summary, we demonstrated that motor learning resulted in increased tolerance for 

large pole displacements in a human pole balancing task. The decay exponent α was 

influenced by learning, becoming significantly smaller with experience and resulting in 

less severe decay in the probability for a given fingertip speed step size, P(Δs, Δt). 

Moreover, the decay exponent α for P(Δs, Δt) was greater in a sitting versus standing 

condition. Our results show conspicuously that both decay exponents and truncation 

change with learning, resulting in an increased tolerance to large fingertip excursions in 

pole balancing.  

Previously, Cabrera and Milton (2002) demonstrated that time intervals between 

corrective movements followed a -3/2 power law. These results were argued to be 

indicative of intermittent control. Cabrera and Milton (2004b) have argued that 

intermittent control is favorable to continuous estimation on the basis of efficiency since 

the intermittent control strategy would moderate the computational burden incurred by 

the CNS. In their view, pole balancing dynamics and the corresponding intermittent 

control regime does not require continuous estimation by the CNS since passive or noisy 

pole dynamics act to impart a dynamical stability. The CNS need only enact control when 

the pole dynamics cross a threshold stability boundary (Cabrera and Milton 2002; 2004a, 

b). Such dynamics have previously been reported in the control of upright posture 

(Collins and De Luca 1994).  

In this model, the ability to sense threshold crossings for pole dynamics is bounded by 

the limitations of sensory processing. Sensory feedback involves processing delay, which 

incorporates limitations in transduction, conduction velocity, multimodal sensory 

integration, and neural processing to enable a control decision. When a movement 
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decision is made, motor commands descend from the primary motor cortex to the distal 

effectors. Continuous estimation (predictive) can help circumvent sensory processing 

delay. In a recent experiment, manipulating an object with complex dynamics (subjects 

balanced a flexible weighted ruler by applying a force to the tip) was shown to cause 

greater activation of the ipsilateral anterior cerebellum relative to an object with simple 

dynamics (Milner et al. 2007). Activation of the ipsilateral anterior cerebellum was 

similar to that observed in a previous study (Milner et al. 2006) and was attributed to the 

acquisition of an internal representation of the task. The question is why cerebellar 

activity is modulated by task difficulty and shows increased activation when controlling 

objects with complex relative to simple dynamics. In the pole balancing task, the 

observed corrections are intermittent (Cabrera and Milton 2002), and it appears that the 

motion of the pole is corrected only when a fall is impending. It may be that the 

underlying sensory processing mechanism is continuous and predictive. With learning a 

representation of pole dynamics might be acquired and consequently used to estimate 

finger and pole states so as to circumvent neural processing delays. 

Predictive control mechanisms can help circumvent neural processing delays by 

anticipating perturbations and performing corrective movements prior to or as these 

perturbations arise. However, whether an estimation model can replicate the 

intermittency observed in our experimental data is not yet known. Though an estimation 

strategy might represent a plausible control mechanism for the CNS, other scenarios 

might include a mixture of non-predictive and predictive mechanisms. In this context, 

participants might rely on passive dynamics until a stability threshold is surpassed, at 

which point a predictive strategy might be enacted for correction. 
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The present finding that the joint probability distribution for changes in fingertip speed 

over time intervals is Lévy distributed challenges any mechanism based solely on 

prediction. Typically, Lévy distributed processes are thought to be reflective of 

nonpredictive searches or foraging patterns (Viswanathan et al. 1996; Viswanathan et al. 

1999), which is problematic for a theory of predictive control for pole balancing. As a 

further consideration, the current understanding of predictive mechanisms in motor 

control is grounded in Kalman filter-based models. The limitation of the conventional 

Kalman filter as applied to the context of the current results is that it implicitly assumes 

additive Gaussian process and measurement noise (Kalman 1960) and not the 

multiplicative noise that typically gives rise to power law distributed variables. These 

considerations are not easily explained by current predictive theories of motor control. 

Future endeavours should take these findings into consideration since important insights 

into the mechanisms governing the control of unstable systems may be proffered, 

including the possibility that the interplay between passive and predictive mechanisms 

(intermittency) might change as a function of expertise. 
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Chapter 3 – Dynamical Structure of Hand Trajectories During 

Pole Balancing
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3.1 – ABSTRACT 

 
In this experiment, we examine the dynamics of fingertip displacements in a human 

pole balancing task. The purpose of this research was to determine how the dynamical 

structure of fingertip fluctuations evolved with learning. We analyzed fingertip time 

series using recurrence quantification analysis (RQA).  Learning was accompanied by an 

increase in the stability of fingertip trajectories despite a reduction in the tendency for 

these movement trajectories to recur. Task manipulations, on the other hand, increased 

the intermittency of fingertip dynamics, which suggests that individuals were more 

tolerant of random fingertip displacements when the task was performed while standing 

relative to sitting. An intermittent balancing strategy might minimize the computational 

burden associated with stabilizing the pole. 
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3.2 – INTRODUCTION 

 
Complex perceptual-motor tasks such as pole balancing have received experimental 

and theoretical attention because they are representative of how the central nervous 

system (CNS) interacts with and controls unstable objects (Foo et al. 2000; Cabrera and 

Milton 2002; Mehta and Schaal 2002; Cabrera and Milton 2004a, b). Two competing 

perspectives have emerged for the neural control of pole balancing. 

Computational approaches have argued that the CNS employs internal forward models 

for the neural control of pole balancing. The premise is that predictive control can help 

circumvent sensorimotor processing delays to produce the short latency movements 

required to stabilize the upright pole position (Mehta and Schaal 2002; Wolpert et al. 

2002). An alternative argument, however, is that the stability of the inverted pendulum 

dynamics may emerge as a consequence of the stochastic properties of motor control 

(Cabrera and Milton 2002). In support of this argument, behavioural data have shown that 

> 98% of fingertip movements occur on timescales that are shorter than estimated human 

voluntary control delays (Cabrera and Milton 2002). Numerical analyses have since 

shown that balance can be facilitated in time-delayed systems if the dynamics are tuned 

such that small, stochastic displacements force the angular stick trajectory back and forth 

across the vertical on short timescales (Cabrera and Milton 2004a, b). Intermittent control 

might be favourable for the stabilization of time-delayed systems, since in comparison to 

continuous control, the computational burden would be minimized (Milton et al. 2008).  

In support of the latter argument, we previously quantified decay exponents (α) and 

truncation for the distribution of fingertip speed changes in pole balancing (Cluff and 

Balasubramaniam 2009; Cabrera and Milton 2004a). We found that successive 
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differences in fingertip speed were Lévy distributed and that learning caused an increase 

in the probability of large fingertip speed steps (Cluff and Balasubramaniam 2009). The 

observed decrease in the α-parameter of the Lévy distribution reflects tolerance to 

fluctuations in the position of the pole over the course of learning. In other words, 

following extensive practice, large excursions of the fingertip are probabilistically rare, 

but enacted more frequently than in early-learning. These large amplitude corrections are 

initiated only when stability is threatened, as opposed to early in the course of learning, 

when fingertip excursions are performed continuously. Learning, in the context of the 

pole balancing task, can be characterized by changes in the statistical properties of 

movement kinematics. 

The first goal of this study was to perform a detailed investigation of the Lévy-

distributed dynamics of pole-balancing fingertip trajectories. To investigate, we applied 

recurrence quantification analysis (RQA) to the fingertip displacement time series 

recorded during pole balancing (Webber and Zbilut 1992; Webber and Zbilut 2005). The 

objective was to substantiate the link between the gross statistical properties of 

movements and the time series dynamics of individual performances. This study was 

motivated by our previous work (Cluff and Balasubramaniam 2009), which demonstrated 

that individuals became tolerant of large amplitude fingertip displacements with pole 

balancing experience. This tolerance reflects an increased robustness to perturbations, a 

form of dynamical stability that is captured by the RQA variable Lmax (this and the other 

RQA variables mentioned here are described in detail below). Therefore, we predicted 

that Lmax would increase over the course of learning to reflect sensorimotor skill 

acquisition. The increase in the relative frequency of large fingertip excursions might also 
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be reflected in the magnitude of the variable TREND, which measures nonstationarity. In 

addition, RQA provides a method for quantifying change in the degree of relative 

determinism versus stochasticity (%DET) embedded in pole-balancing fingertip 

dynamics—a characteristic of the dynamics that might be expected to change over the 

course of learning (cf. Mitra et al. 1998; Riley et al. 1999; Balasubramaniam et al. 2000; 

Balasubramaniam and Turvey 2000). Finally, RQA provides a set of measures capable of 

indexing intermittency in the control enacted in pole balancing, including %LAM, vmax, 

and TTIME. 

The second goal of this study was to determine the effects of available biomechanical 

degrees of freedom (DOF) for balancing, since previous research has shown that learning 

is accompanied by the progressive recruitment of biomechanical degrees of freedom 

(Vereijken et al. 1992a, b; Vereijken et al. 1997). These findings follow from Bernstein‘s 

stages of motor learning, whereby early learning is most aptly characterized by 

constraining degrees of freedom and eliminating motor redundancy. Effectively, this 

strategy translates to readily manageable, rigid patterns of movement. Practice tends to 

release restrictions, as degrees of freedom become organized in a coordinative unit that 

exploits the reactive forces of the task dynamics (Bernstein 1967). 

Quantifying Time Series Dynamics. RQA is a nonlinear time series analysis that 

quantifies several dimensions of the time evolution of a signal. Importantly, RQA makes 

no assumptions about the statistical distribution or stationarity of time series and is well-

suited for the analysis of short time series. For detailed reviews of RQA including 

practical tutorials see (Pellechia and Shockley 2005; Webber and Zbilut 2005; Marwan et 

al. 2007). 
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The first step in RQA is to determine how frequently the movement trajectory revisits 

locations in reconstructed phase space (i.e., how frequently states recur). This is captured 

by the RQA variable %REC. Reductions in %REC reflect a decrease in the regularity of 

the system‘s behaviour—the system less frequently revisits states that it previously 

visited. The patterns of recurrence can then be used to quantify the dynamical structure of 

the time series as characterized by the following RQA variables. 

%DET is the percentage of recurrent points that form diagonal lines in the recurrence 

plot of minimal length lmin. The rationale for %DET is that un- or weakly correlated 

stochastic processes (probabilistically) elicit many isolated recurrent points. Deterministic 

dynamics, however, manifest as longer diagonals and fewer isolated recurrent points 

(Marwan et al. 2007). As such, %DET reflects the deterministic (predictable) structure of 

the dynamics.  

The maximum length of diagonal lines in the recurrence plot, excluding the main 

diagonal (where i = j and the distance between points is by definition zero) defines the 

Lmax parameter. Lmax is inversely proportional to divergence and thereby quantifies the 

dynamical robustness to perturbation (or to a change in initial conditions), since it 

approximates the lowest limit of the sum of positive Lyapunov exponents (Trulla et al. 

1996; Gao and Cai 2000). 

Entropy (ENT) is the Shannon entropy for the distribution of diagonal line segment 

lengths from the recurrence map. The ENT parameter quantifies complexity in the 

deterministic structure embedded in the signal (Webber and Zbilut 1992). Greater values 

of ENT indicate increased complexity (i.e., for uncorrelated noise, ENT is small, 

indicating low complexity).  
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Laminarity (%LAM) is analogous to %DET but measures the percentage of recurrent 

points forming vertical (with minimum length vmin) rather than diagonal lines. %LAM 

quantifies the local time relationship between close trajectory segments (Marwan et al. 

2002; Marwan and Kurths 2005) by demarcating time intervals where the state is 

relatively constant compared to intervals of sudden bursts of activity—a hallmark of 

intermittent systems (Marwan et al. 2005; Marwan et al. 2007). Recently, Kuznetsov and 

Riley (2010) used %LAM to distinguish between force production tasks where feedback 

modulated the intermittency of the enacted control.  

Directly related to the %LAM parameter is the trapping time (TTIME), which 

quantifies the average length of vertical structures in the recurrence matrix. TTIME 

estimates the mean time (in samples) the system abides at a specific state—the average 

time for which the state is trapped. The final measure which considers vertical line 

structures from the recurrence map is the maximal length of vertical lines, vmax, which is 

analogous to the Lmax measure for diagonal line structures. 

In this study we present a reanalysis of data collected for a pole-balancing learning 

study (Cluff and Balasubramaniam 2009) that investigated how the statistical properties 

of pole-balancing kinematics were influenced by learning (Cluff and Balasubramaniam 

2009). Participants learned to pole balance over three experimental sessions that spanned 

two weeks. Balancing performance improved progressively over the course of learning, 

as evidenced by an increase in the average time spent balancing in each trial. 

Experimental constraint of the available biomechanical degrees of freedom for balancing 

also influenced performance. Pole balancing was facilitated by the availability of 

biomechanical degrees of freedom, i.e., in the standing relative to sitting condition. In our 
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previous study, we demonstrated that sensorimotor skill acquisition led to changes in the 

decay parameter for the probability of fingertip speed step sizes, which translated to 

tolerance for large, noisy pole displacements. In this experiment we use RQA to 

determine whether the evolution of fingertip displacement dynamics was modulated by 

motor learning and task-level balancing constraints. 

3.3 – METHODS 

 
Six healthy subjects (2 males, aged 26–28 years; 4 females, aged 23–27 years) 

participated in this study. Subjects were members of the Sensorimotor Neuroscience 

Laboratory. Participants had normal or corrected to normal vision and were free of 

neuromuscular and musculoskeletal disorders at the time of data collection. All 

procedures were performed in accordance with the Declaration of Helsinki. The protocol 

was approved by the University of Ottawa ethics review board and subjects provided 

written informed consent prior to the experiment.  

Motion capture was performed with 8 VICON MX-40+ infrared cameras sampled at 

500 Hz (Denver, CO, USA). Three dimensional pole kinematics were recorded using two 

spherical reflective markers (14 mm diameter) attached to the top and bottom of the pole 

with double-sided adhesive. Data acquisition was performed with the VICON 

Workstation software (v 4.6) and the marker trajectories were reconstructed and 

processed offline. 

Subjects balanced a cylindrical wooden dowel (length 62 cm, diameter 0.635 cm, mass 

50 g) in two experimental conditions: sitting and standing. Sitting trials were performed 

with subjects seated comfortably in a chair at their preferred seat height. Subjects were 

instructed to maintain contact with the backrest. In the standing condition, the subjects 



PhD Thesis – T. Cluff  McMaster University – Neuroscience 

67 
 

balanced the pole with their feet approximately shoulder width apart and were free to 

move the upper body while keeping their feet stationary. When foot movement occurred, 

the trial was excluded from subsequent analysis. 

This study employed a learning protocol. Subjects learned to pole balance over a two-

week period. Data collection occurred on the first day, followed by collection every 

fourth day. The presentation of trials was blocked by condition and counterbalanced 

across subjects. Subjects practiced pole balancing for 30 min per day (15 min per 

condition) between experimental sessions, distributed according to their preference. We 

did not enforce a predetermined learning regimen (i.e., massed vs. distributed practice). 

RQA was implemented with the RQA software suite (v13.1; Webber 2009). We 

determined the embedding delay (τe) and dimension (De) from a representative sample of 

trials using average mutual information (AMI) and false nearest neighbours (FNN) 

analysis. The embedding delay (τe) was the first minimum of AMI for the finger 

displacement series. The embedding dimension De was the dimension at which FNN 

were minimum (1% considered acceptable), which signifies the attractor has been 

sufficiently unfolded in the reconstructed phase space. The embedding delay parameters 

ranged from 34 to 108 samples, whereas the embedding dimensions ranged from 3 to 7. 

We used the median embedding delay τe = 62 samples and dimension De = 4 for RQA. 

The line parameter, which specifies the number of successive points defining a line 

segment, was set to 5. We chose the more conservative line parameter to avoid saturation 

of %DET and a subsequent ceiling effect. The distance matrix was computed from the 

Euclidean distance between points, with the recurrence radius (χ) set to 10% of the mean 

distance between points. RQA was performed for fingertip time series in the transverse 
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plane x and y-axes. Results for the y-axis fingertip trajectories are reported here since the 

x-axis displacements provided nearly identical results. 

Dependent variables were contrasted with session (3) and condition (2) as independent 

factors using separate 3 × 2 ANOVAs with repeated-measures. Post hoc analyses were 

performed using paired t-tests with Bonferonni corrections. The significance level for 

statistical contrasts was α = 0.05. 

3.4 – RESULTS 

 
%REC (Fig. 3.1) was dependent on learning, F (2, 10) = 12.751, p < 0.01, and was 

significantly greater in Session 1 (M = 1.33, SE = 0.28) relative to Session 3 (M = 0.58, 

SE = 0.19), p < 0.05. %REC was also larger in the second (M = 0.90, SE = 0.19) relative 

to third session, p = 0.008. %REC was not different between Session 1 and 2 (M = 1.24, 

SE = 0.24).  

Lmax (Fig. 3.2) was influenced by learning, F (2, 10) = 9.10, p < 0.01. Lmax was 

significantly larger at the third (M = 2356.60, SE = 434.76) relative to both first (M = 

1619.36, SE = 376.05) and second sessions (M = 1354.86, SE = 267.73), p < 0.05. Lmax 

was also dependent on condition, F (1, 5) = 4.98, p < 0.05, with greater maximum 

diagonal line length in the standing (M = 2270.85, SE = 420.19) relative to sitting (M = 

1403.02, SE = 277.72) condition.  
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Figure 3.1. %REC was dependent on learning and the balancing condition. a) %REC 

decreased progressively across the training period (Session 1-3). b) %REC was greater in 

the seated relative to standing condition, which reveals greater tendency for the dynamic 

to revisit local neighbourhoods in phase space. 
 

There was also a significant session × condition interaction F (2, 10) = 5.386, p < 0.05. 

The interaction showed that Lmax was similar between conditions at the outset of learning, 

but increased disproportionately in the standing relative to sitting condition. Following 

learning, the dynamical stability of fingertip movements was greater when the task was 

performed while standing. 

ENT was dependent on the condition for balancing, F (1, 5) = 27.97, p < 0.01. ENT 

was significantly greater in the standing (M = 4.71, SE = 0.12) relative to sitting condition 

(M = 4.18, SE = 0.21). Fingertip displacement series were nonstationary in the pole 

balancing task and the TREND variable was dependent on condition, F (1, 5) = 7.59, p < 

0.05. Nonstationarity was greater in the sitting (M = -18.75, SE = 8.08) relative to 

standing condition (M = -8.13, SE = 4.43). 

%LAM was influenced by condition, F (1, 5) = 20.32, p < 0.001, with significantly 

greater %LAM in the standing (M = 55.51, SE = 4.16) relative to sitting (M = 35.70, SE = 

4.16) condition. vmax was also dependent on condition, F (1, 5) = 106.57, p < 0.001, with 
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significantly greater vertical line length in the standing (M = 21.94, SE = 1.88) relative to 

sitting condition (M = 14.65, SE = 2.26), p < 0.01. Finally, TTIME was dependent on 

condition, F (1, 5) = 32.60, p < 0.01. TTIME was significantly greater in the standing (M 

= 7.35, SE = 0.37) relative to sitting condition (M = 6.05, SE = 0.41). Taken together, the 

latter three results indicate more intermittent control when the task is performed while 

standing. 
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Figure 3.2. At the outset of the learning protocol, Lmax was similar between standing and 

sitting conditions, which suggests the dynamic was equally stable between conditions. 

With the development of expertise, Lmax increased disproportionately in the standing 

relative to sitting condition. * p < 0.05; ** p < 0.01. 
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3.5 – DISCUSSION 

 
The purpose of this study was to determine whether fingertip dynamics were 

influenced by learning in the pole-balancing task. This study follows from previous work 

carried out in our laboratory (Cluff and Balasubramaniam 2009). RQA revealed a number 

of changes in the dynamics of fingertip displacements that occurred over the course of 

learning. RQA also revealed a number of effects related to the availability of 

biomechanical degrees of freedom for task performance.  

%REC is a measure of temporal correlation. It reflects the tendency for points that 

over time return to the same local neighbourhood of the reconstructed phase space. 

%REC decreased progressively with learning, suggesting that temporal correlation in 

fingertip displacement series decreased with experience. Therefore, as participants 

became more experienced in balancing, the trajectories in the reconstructed phase space 

were less likely to repeat.  

Lmax is the maximum diagonal line length in the recurrence matrix (aside from the 

main diagonal, where i = j) and is proportional to the positive Lyapunov exponent (Trulla 

et al. 1996). Lmax thereby quantifies the stability of the underlying dynamics. In this 

experiment, Lmax increased with learning, reflecting sensorimotor skill acquisition, but the 

interaction was such that the learning effect for Lmax varied idiosyncratically across 

conditions. The relative stability of pole-balancing fingertip dynamics was equal prior to 

experience, but increased disproportionately for the standing balance condition. This 

result supplements our previous findings whereby performance in the pole balancing task 

saw an overall improvement with learning but was greater in the standing condition 

(Cluff and Balasubramaniam 2009).  
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Over the course of learning, fingertip displacement trajectories were less likely to 

repeat overall, but repeating values in the trajectories presented as longer strings of 

recurrent points. Several previous studies have employed dynamical measures to 

characterize motor skill acquisition. Those studies have revealed findings such as reduced 

movement system variability over the course of learning (Mitra et al. 1998; Newell and 

Vaillancourt 2001; Ko et al. 2003; Chen et al. 2005). Mitra et al. (1998) have also 

demonstrated that continued skill refinement led to further decreases in dynamical noise, 

which endured after the system dimensionality had stabilized. Broadly speaking, motor 

learning appears to involve the establishment and refinement of a stable dynamical 

structure for movement trajectory formation. Moreover, our finding that the stability of 

fingertip dynamics followed different learning trajectories suggests the availability of 

biomechanical degrees of freedom influenced the dynamical stability of fingertip 

displacements during pole balancing. These results suggest that control proffers from the 

motor abundancy that accompanies redundant biomechanical degrees of freedom 

(Bernstein 1967; Reisman et al. 2002a, b; Latash and Anson 2006). That is, the flexibility 

of abundant motor solutions leads to an increase in the stability of fingertip dynamics. 

How is balancing affected by biomechanical degrees of freedom? 

ENT, a measure of the complexity of the deterministic structure in the time series, was 

also greater in the standing relative to sitting condition, while TREND magnitude was 

greater in the sitting relative to standing condition. Additional biomechanical degrees of 

freedom for control led to stationary yet complex fingertip displacement dynamics. These 

results complement previous work (Cluff and Balasubramaniam 2009), which considered 

how the macroscopic variability of fingertip fluctuations in pole balancing was influenced 
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by the availability of biomechanical degrees of freedom. Taking the results of these 

studies together, the increased variability in fingertip fluctuation magnitudes and Lmax in 

the standing condition translate to increased probability for varied segment lengths, 

which is reflected as increased complexity by the ENT variable. 

Our results demonstrate that %LAM, vmax, and TTIME, which index intermittency in 

the dynamics, were all larger in the standing relative to sitting condition. Collectively, 

these results suggest that the underlying control strategy is more intermittent for standing 

pole balancing, obviated by the relative amount of laminar phases in the observed 

dynamics. In other words, the system‘s propensity for intermittency was observed in 

relatively longer phases whereby the fingertip position was approximately constant. 

These results are consistent with a control mechanism that capitalizes on passive motor 

control dynamics and corrects for pole excursions only when these displacements 

threaten stability. 

In summary, condition contrasts revealed drastic differences with regards to how 

biomechanical degrees of freedom affected performance. The %LAM, vmax and TTIME 

variables from RQA revealed that fingertip fluctuations were more intermittent in the 

standing condition. Intermittency in the dynamics reflects greater relative contribution 

from small amplitude, random fluctuations on fast timescales (passive vs. active 

dynamics). These results both corroborate and extend our previous work, which 

demonstrated that skill acquisition in the pole balancing task is reflected by the statistical 

properties of fingertip movement kinematics (Cluff and Balasubramaniam 2009).  

The motivation for this research was to determine how the dynamical structure of 

fingertip fluctuations evolved with learning, and moreover, to determine how this might 
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have contributed to improved balancing performance. To address this purpose, we 

analyzed our data using recurrence quantification analysis (RQA) and provided 

significant insight on the dynamical changes that accompanied learning. We also 

determined how fingertip fluctuations varied in response to the manipulation of 

biomechanical degrees of freedom for balancing. Learning was accompanied by the 

increased stability of movement trajectories despite a reduction in the tendency for 

movement trajectories to recur. Task manipulations, on the other hand, resulted in 

intermittent fingertip dynamics, which suggests that individuals were tolerant of random 

fingertip displacements when the task was performed while standing relative to sitting. 

The intermittent strategy would minimize the computational burden associated with 

maintaining pole stability.
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Chapter 4 – Attentional Influences on the Performance of 

Secondary Physical Tasks During Postural Control
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4.1 – ABSTRACT 

 
We examined the influence of attention and cognitive load on the performance of a 

stick balancing task during the maintenance of upright posture. Dynamical analysis of 

posture and fingertip time series revealed the existence of a drift and correct balancing 

mechanism with correlational properties that reflected the demands of the stick balancing 

task. The manipulated attentional foci (internal, external) did not affect the variability of 

posture or fingertip trajectories. In contrast, the variability of posture and fingertip time 

series was reduced for dual-task cognitive-stick-balancing performance. We interpret our 

results from the perspective of dual-timescale motor control models and the adaptive 

resource model of attention allocation.
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4.2 – INTRODUCTION 

 
Control of the upright posture is a complex physical task that requires the appropriate 

assembly of physical degrees of freedom in joint-muscle space (Ting 2007). While 

maintaining balance, however, we frequently perform concurrent physical and cognitive 

tasks. Superordinate to the control of posture, these tasks have been referred to as 

suprapostural tasks (Stoffregen et al. 1999; Mitra 2003). The influence of suprapostural 

task performance on balance control has received considerable attention (see 

Balasubramaniam and Wing 2002 for review). Of particular interest has been to 

determine the influence of attentional focus on the performance of physical and cognitive 

tasks during upright standing. 

Several studies have contributed to a generalized theory of the influence of attention 

on motor performance (see Wulf and Prinz 2001 for review). Emanating from this 

research, the ―constrained action‖ theory proposes that attention devoted to movement 

execution (i.e., internal focus) interrupts the automaticity of performance. A reproducible 

finding has been that the variability of motor performance is dependent on whether 

attention is devoted to motor execution or outcome (Wulf et al. 2001; McNevin and 

Wulf 2002). Within this body of research, a consistent finding has been that an external 

focus, defined as attention devoted to motor outcome, stabilizes performance. In contrast, 

an internal focus, where attention is directed to motor execution, inhibits learning and 

performance (Shea and Wulf 1999; McNevin et al. 2003). The stabilizing external focus 

is thought to minimize interference between conscious intervention and the automaticity 

of motor performance, which allows the motor system to self-organize more effectively 

(Wulf et al. 2001). Motor automaticity (Milton et al. 2004) has been supported by 
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reduced probe reaction times, which suggests that resource competition is reduced when 

the focus of attention is external (Wulf et al. 2001).  

The attention–performance relationship can be investigated by experimental 

paradigms that impose cognitive (Lajoie et al. 1993; Dault et al. 2001; Doumas et 

al. 2009) or physical task load (Riley et al. 1999a, b). These studies have demonstrated 

that postural and suprapostural task performance, quantified in terms of posture and 

movement variability, are dependent on whether the focus of attention is internalized or 

externalized (Wulf et al. 2003). Furthermore, the prioritization of postural or 

suprapostural task performance is dependent on the congruency of task goals 

(Balasubramaniam and Turvey 2000; Balasubramaniam et al. 2000). A very good 

paradigm for studying the postural effects of attention and physical task performance is 

the stick balancing task. 

Human stick balancing kinematics show complex, multi-scale dynamical properties 

(Milton et al. 2009a; Cluff and Balasubramaniam 2009). It has been shown that stick 

fluctuations with respect to the vertical conform to a generalized scaling law that is 

characteristic of on–off dynamical intermittency (Cabrera and Milton 2004). Dynamical 

intermittency reflects a discontinuous control mechanism that is characterized by periodic 

switching between approximately constant dynamical states and large-scale corrective 

movements. With experience, fingertip trajectories become less correlated but are 

convergent (within the recurrence radius χ), which demonstrates that stochastic 

fluctuations reflect and contribute to the performance stability (indexed by mean 

balancing time) that is acquired with stick balancing expertise (Cluff et al. 2009). 
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Here we examined the influence of attention on the statistical stability (movement 

variability) of fingertip (FINGER) and center of pressure (COP) trajectories in 

experienced stick balancers. Subjects balanced a wooden dowel on the index finger. We 

implemented the internal focus of attention by instructing participants to minimize 

fingertip displacements when stick balancing. In contrast, we implemented the external, 

task-relevant focus by instructing subjects to minimize stick deviations from the upright 

position. Finally, we implemented an external, task-irrelevant focus by imposing 

concurrent cognitive load in the form of a serial arithmetic task. 

The attention–performance relationship was delineated through a series of 

experimental conditions that differed in terms of instructed foci. These tasks constituted 

dual-task suprapostural and postural performance (P-SBEXT: posture-stick balancing, 

externalized focus; P-SBINT: posture-stick balancing, internalized focus). We also 

implemented a triplicate condition through conjoint posture, stick balancing and cognitive 

task components (P-SB-CDT). The imposed cognitive task was motivated by evidence 

that cognitive load increases stick balancing survival times (Milton et al. 2008a). We also 

took into consideration that the acquisition of stick balancing expertise is characterized 

by stochastic fingertip deviations—the control is discontinuous and characterized by 

ballistic corrections (Milton et al. 2008a; Cluff et al. 2009). Fingertip deviations therefore 

show dynamical properties on distinct timescales. For short timescales, fingertip 

deviations fluctuate about a drifting equilibrium, but are corrective over longer 

timescales. We know little about whether cognitive load influences the stochastic 

(fluctuations) or deterministic component of serial fingertip and center of pressure 

increments. The purpose of this study was to determine the influence of focus of attention 
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and cognitive load on postural and suprapostural task performance. We also questioned 

whether suprapostural activity would mediate the interplay between the deterministic and 

stochastic posture and fingertip components of stick balancing (Collins and De 

Luca 1994, 1995). 

The congruency of the statistical (i.e., reduced variability) and dynamical stability of 

trajectories has been a subject of debate in motor control (cf. Riley and Turvey 2002). 

While some authors access stability through a nonlinear embedding technique that 

indexes the spatiotemporal variability and dynamical structure of time series data (Riley 

et al. 1999a, b), others argue for the spectral decomposition of position increments. 

Scaling laws from the double-logarithmic power spectrum–frequency relationship are 

used to infer dynamical stability (Delignières et al. 2006). Other authors support the 

information theory perspective and consider variable increments favourable due to the 

inherent generation of proprioceptive information (Riley et al. 1997a, b). Finally, 

variability is often considered favourable because it facilitates flexible sensorimotor 

performance (Freitas et al. 2005). 

In this experiment, we sought to identify attentionally-mediated changes in the global 

spatial variability of stick balancing FINGER and COP trajectories. We modeled COP 

and FINGER dynamics as two-dimensional random walks to probe the mechanisms 

underlying performance variability. We chose statistical mechanics methods for this 

analysis (Mandelbrot and van Ness 1968; Collins and De Luca 1995). In such a way, we 

combine a line of work focused on the statistical stability of performance and a timescale-

dependent dynamical analysis. This analysis determines distinct variability components 

by quantifying the magnitude of correlation in series—persistent (i.e., positively 
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correlated) versus anti-persistent (i.e., negatively correlated) displacements—and the 

characteristic timescales on which they operate. Finally, these analyses were 

supplemented by the spectral decomposition of COP and FINGER time series. 

Based on previous work (Weeks et al. 2003; Milton et al. 2008b), we predicted that the 

variability of fingertip and COP trajectories would be reduced in the triple-task posture, 

cognitive and stick balancing condition—trajectories would be less persistent on short 

timescales. Finally, we hypothesized that the temporal coupling between the COP and 

fingertip position would change as a function of the attentional focus for balancing. 

Specifically, we predicted that the external focus would evoke a temporal COP-finger 

relationship whereby fingertip deviations were prioritized. To our knowledge, this is the 

first study to perform a mechanistic, dynamical analysis of the influence of attention on 

motor performance. Second, we investigated distinct timescales over which attentional 

influences might facilitate (external focus) or detract (internal focus) from performance. 

4.3 – METHODS 

Ten healthy subjects (7 men; 3 women; aged 19–27) from the McMaster University 

student community participated in this experiment. The participants were sport science 

graduate and undergraduate students recruited from a learning study that examined the 

acquisition of stick balancing expertise (Cluff et al. in preparation). Participants had 

normal or corrected vision, with no history of neurological or musculoskeletal disorder. 

The protocol was approved by the Institutional Review Board and the participants 

provided written informed consent prior to the experiment.  

We recorded the position of the COP (ML; AP) with a dual force platform 

arrangement sampled at 750 Hz (AMTI OR6 2000, Newton, MA). The preferred standing 



PhD Thesis – T. Cluff  McMaster University – Neuroscience 

86 
 

position for individual subjects, corresponding to their foot width and angle, was 

recorded on the force platforms to ensure the physical support was consistent between 

trials and conditions. Motion capture was performed with 10 VICON™ T-40 cameras 

sampled at 750 Hz (VICON
®

 Motion Systems, Lake Forest, CA). The experimental data 

were collected in a single session (~30 min) in which subjects balanced a 62 cm long, 

0.65 cm wide, and 50 g mass cylindrical wooden dowel on their index finger. We 

attached reflective spherical markers (14 mm) to the top and bottom of the wooden dowel 

for kinematic motion capture. 

There were six experimental conditions: (1) Posture condition (P): postural 

fluctuations were determined from five quiet standing trials (30 s). Participants did not 

receive explicit attentional instructions for the P condition (e.g., minimize sway, be as 

still as possible). (2) The Posture-Cognitive Dual-Task (P-CDT) condition required that 

subjects perform six serial arithmetic operations (addition, subtraction), one computation 

per five-second interval, while maintaining upright stance. The subjects were given a 

number between 0 and 100 before each trial. When the trial began, a sequence of integer 

operations was performed over five-second intervals according to the method of Weeks et 

al. (2003). The arithmetic operations were performed silently, with the final response 

verbalized after trial completion. (3) Subjects balanced the stick in upright stance without 

having received explicit attentional instructions (P-SB). This condition served as our 

attentional control for stick balancing. (4) In the Posture-Stick Balancing External focus 

condition (P-SBEXT), we instructed the subjects to ‗minimize deviations of the stick 

from the vertical‘. (5) In contrast, we instructed the subjects to ‗minimize hand and finger 

movement‘ in the Posture-Stick Balancing Internal focus condition (P-SBINT). The 
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attentional instructions used for P-SBEXT and P-SBINT conditions resembled those 

implemented by Wulf et al. (2004). (6) The influence of the Posture-Cognitive Dual-Task 

on stick balancing dynamics was determined through the outlined arithmetic task (P-SB-

CDT). 

We preserved the task difficulty between P-CDT and P-SB-CDT conditions by using 

the same integer operations. However, for the CDT condition, subjects began with the 

initial number from a P-SB-CDT trial, with the order of operations randomized. 

Randomizing the sequence of integer operations minimized learning of the cognitive task 

between conditions. An example series for the P-SB-CDT condition follows: 40 (before 

trial) + 5 (trial onset) − 7 (5 s) + 4 (10 s) + 8 (15 s) − 3 (20 s) − 9 (25 s) = 38 (30 + s). A 

randomized sequence for the P-CDT condition was 40 (before trial) + 8 (trial onset) + 4 

(5 s) − 7 (10 s) − 9 (15 s) + 5 (20 s) − 3 (25 s) = 38 (30 + s). 

We used the silent arithmetic paradigm to minimize articulatory confounds on postural 

dynamics (Yardley et al. 1999). Subjects were allotted a break (~30 s) between trials. If 

the subject dropped the stick and the trial was not completed, the data were excluded 

from the analysis and the trial was repeated. The P-SB condition was performed first to 

prevent confounds resulting from attentional instructions for balancing. The remaining 

conditions were block-randomized with MATLAB™ (Mathworks, Natick, MA). 

We determined the statistical stability of performance using the root-mean-squared 

(RMS) variability of transverse plane COP and FINGER trajectories. RMS COP was 

contrasted between postural (marginal mean; P & P-CDT) and stick balancing conditions 

(marginal mean; P-SB, P-SBEXT, P-SBINT, P-SB-CDT) (paired samples t-test, two-

tailed) to quantify the magnitude of postural variability attributable to stick balancing 
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performance. The attentional and cognitive influences on COP and FINGER trajectories 

were determined using a one-way (4 levels: P-SB, P-SBINT, P-SBEXT, P-SB-CDT) 

analysis of variance (ANOVA) with repeated measures. Huynh–Feldt corrections were 

used to correct sphericity violations (Mauchly‘s Test, p < 0.05). The RMS FINGER 

variability was contrasted across conditions using a one-way ANOVA with repeated 

measures (4 levels: P-SB, P-SBINT, P-SBEXT, P-SB-CDT). Prior to the numerical 

analysis, the COP and FINGER trajectories were resampled using a non-overlapping, 10 

sample moving average, for an effective sampling rate of 75 Hz. 

The power spectral density (PSD) of planar fingertip and COP trajectories was 

computed for individual trials using a Welch periodogram with a (75 sample) non-

overlapping Hamming window. The mean power frequency (MPF) of COP and FINGER 

trajectories was determined by weighted average from the PSD, ensemble averaged for 

each condition and analyzed using the outlined statistical analyses. 

Stabilogram-diffusion analysis was performed on planar COP and FINGER 

increments according to the method of Collins and De Luca (1994). The COP and 

FINGER trajectories were considered two-dimensional random walks, defined by their 

mediolateral and anteroposterior components. The two-point correlation function for the 

planar stabilograms, K(τ), was computed for the lag τ on [0.1, 10] s by 
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where tit 
 

and tj .  

The critical time (τc) was defined as the first instance the Hurst exponent 

crossed H = 0.5. The critical times were determined for individual subjects from the 
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ensemble-averaged stabilogram-diffusion plots in each condition. The critical time, τc, 

defines the boundary between persistent (positively correlated, Hs > 0.5) and anti-

persistent (negatively correlated, Hl  < 0.5) dynamical regimes. A linear regression was 

applied to the double-logarithmic plots of K (τ) COP and K(τ) FINGER versus τ on 

[0.1, τc) and (τc, 10] s. The best-fit short and long-range scaling exponents were divided 

by 2 for fractional Brownian motion to render Hs and Hl. 

The linear cross-correlation function was computed between COP and FINGER 

positions for a representative subject. COP and FINGER time series were normalized on 

the interval [−1, 1]. The cross-correlation function z(τ) was computed for transverse plane 

COP and fingertip trajectories over the lags [0, 3] s. 
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Figure 4.1. Representative COP and fingertip position time series for a single subject in 

the stick balancing external focus condition (P-SBEXT). Transverse plane a) COP and b) 

Finger stabilograms showing mediolateral (ML; abscissa) and anteroposterior (AP; 

ordinate) time series. c) AP COP, d) ML COP, e) AP fingertip and f) ML fingertip time 

series. Transverse plane Finger and COP position series are irregular and nonstationary 

for the displayed 30 s interval. 
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4.4 – RESULTS 

 
Figure 4.1 shows representative COP and FINGER time series for a single subject in 

the stick balancing external focus condition (P-SBEXT). Transverse plane COP 

(Fig. 4.1a) and FINGER (Fig. 4.1b) stabilograms depict mediolateral (ML; abscissa) 

relative to anteroposterior (AP; ordinate) positions. The corresponding AP and ML COP 

(Fig. 4.1c, d) and FINGER time series (Fig. 4.1e, f) are depicted in the right column 

subplots. Transverse plane FINGER and COP position series are irregular and non-

stationary for the displayed 30 s interval. The following results were determined from the 

transverse plane stabilogram (Fig. 4.1a, b). 

Variability analysis 

Sway variability was influenced by balancing condition (F (1.82, 

16.39) = 5.85, p < 0.05, η
2
 = 0.39), as shown in Fig. 4.2a. Explicit attentional focus did 

not influence the sway magnitude (RMS COP), since spontaneous sway was similar 

between P-SBEXT and P-SBINT conditions (p > 0.05). However, sway variability was 

reduced by conjoint cognitive and postural-stick balancing performance. In that regard, 

RMS COP was reduced in P-SB-CDT relative to the P-SB (p < 0.05), P-SBEXT 

(p < 0.05) and P-SBINT (p < 0.01) conditions. The variability of fingertip trajectories 

(RMS FINGER) was also affected by attentional instruction (F (3, 27) = 27.95, p < 0.001, 

η
2
 = 0.76; Fig. 4.2b). Fingertip displacements were least variable when performing the 

concurrent cognitive, postural and stick balancing task (P-SB-CDT; p < 0.05) and most 

variable in the P-SBINT condition (p < 0.05).  
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Figure 4.2. Task performance is dependent on the focus of attention for balancing.         

a) RMS COP and b) RMS FINGER were reduced in the stick balancing cognitive dual-

task condition (P-SB-CDT). Of particular interest was the stabilizing effect of cognitive 

load for stick balancing performance. Finger trajectories were approximately half as 

variable in P-SB-CDT relative to other conditions. Error bars represent ± 1 standard error 

of the mean (SEM).    * p < 0.05, ** p < 0.01, *** p < 0.001. + P-SBINT > all other 

conditions (p < 0.05). † P-SB-CDT < all other conditions (p < 0.05). 

 

Stabilogram-diffusion analysis 

A representative subject, ensemble-averaged stabilogram-diffusion plot is depicted in 

Fig. 4.3 for both the posture (a) and fingertip (b) components of the stick balancing task. 

Figure 4.3 shows qualitative differences for the short-range scaling region and critical 

time (inflection) between incremental changes in the COP (a) and FINGER (b) position 

across balancing conditions. In contrast, the long-range scaling region was qualitatively 

similar for τ > 1 s. 

The short-range scaling exponent for COP displacements, Hs COP, was influenced by 

condition (F (5, 45) = 2.99, p < 0.05, η
2
 = 0.25; Fig. 4.4a). Hs COP was reduced in the P-

SB (marginal mean; Hs = 0.61) relative to P and P-CDT conditions (marginal 
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mean; Hs = 0.69) (p < 0.05). COP displacements were less persistent when stick 

balancing, which amounts to more stationary postural deviations. Hs FINGER was also 

dependent on condition (F (3, 27) = 7.48, P < 0.001, η
2
 = 0.45), as shown in 

Fig. 4.4d. Hs FINGER was similar between P-SB, P-SBEXT and P-SBINT conditions 

(p > 0.05). Cognitive load (P-SB-CDT) reduced the magnitude of serial correlation in 

fingertip trajectories (p < 0.05).  

 
Figure 4.3. Double-logarithmic stabilogram-diffusion plots depicting a single subject, 

ensemble-averaged two-point correlation function (K(τ)) versus the time between 

observations (τ). a) COP and b) FINGER time series.  Incremental changes in COP and 

FINGER position showed two distinct scaling regions in stick balancing. Stabilogram-

diffusion analysis showed short (Hs) and long-range (Hl) scaling regimes, which 

characterize temporally-distinct persistent (drift) and anti-persistent (corrective) 

dynamical regimes separated by the critical time (τc). 

 

 

 

 

a) b) 
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The long-range scaling (Fig. 4.4b) exponent for incremental changes in COP 

position, Hl COP, was greater for the posture and posture-cognitive dual-task (P, P-

CDT; Hl = 0.24) relative to stick balancing conditions (P-SB, P-SBEXT, P-SBINT, P-

SB-CDT; Hl = 0.11) (p < 0.01). Therefore, the stringency of COP corrective 

displacements increased when stick balancing. Hl  FINGER (Fig. 4.4e) was not affected 

by the balancing condition (F (3, 27) = 0.66, P > 0.05, η
2
 = 0.07).  
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Figure 4.4. Short (Hs) and long-range (Hl) scaling exponents revealed postural and stick 

balancing time series are composed of two distinct timescale components. a) Short (Hs) 

and b) Long-range (Hl) postural scaling exponents. d) Short and e) Long-range stick 

balancing scaling exponents. For short time intervals, incremental changes in COP and 

FINGER position were positively correlated (persistent), but negatively correlated for 

long intervals (anti-persistent). Hs was reduced for FINGER trajectories in the stick 

balancing dual-task condition (P-SB-CDT), resulting in more stationary time series.  

Surrogate analysis for both COP and FINGER trajectories revealed a single scaling 

region that was equivalent to classical Brownian motion (H ≈ 0.5). Error bars represent ± 

1 SEM. + p < 0.05. 



PhD Thesis – T. Cluff  McMaster University – Neuroscience 

95 
 

 
Figure 4.5. The critical time (τc) for switching between a) posture (COP) and b) stick 

balancing (FINGER) regimes. Critical times for switching postural regimes were 

increased for stick balancing relative to the upright stance (P) and dual-task postural 

condition (P-CDT). Critical times were similar between P and P-CDT conditions. In 

contrast, the critical time for switching between FINGER regimes was reduced in the 

stick balancing cognitive task condition (P-SB-CDT). Error bars represent ± 1 SEM. 

 

 

The critical time for switching postural regimes (τc COP) was not dependent on the 

attentional focus for balancing, (F (3, 27) = 0.25, p > 0.05, η
2
 = 0.03). Critical times for 

switching between the drift and correct postural regimes were similar for P-SB, P-

SBEXT, P-SBINT and P-SB-CDT conditions. However, τc COP was reduced in the P and 

P-CDT (marginal mean; τc COP = 0.44 s) relative to stick balancing conditions (marginal 

mean; τc COP = 0.74 s) (t-test, one-tailed, p < 0.05). The critical time for switching 

fingertip regimes, τc FINGER (Fig. 4.5), was dependent on condition (F (3, 27) = 3.22, p 

< 0.05, η
2
 = 0.27). τc FINGER was reduced in the P-SB and P-SB-CDT relative to P-

SBINT (p < 0.05) and P-SBEXT (p < 0.05) conditions. Consequently, the critical times 

were reduced when the attentional focus was non-specific (P-SB) and external, but task-

irrelevant (P-SB-CDT).  
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We computed surrogate time series by phase-randomizing the COP and FINGER 

increments (Theiler et al. 1992). The two-point correlation function, K(τ), was computed 

for the surrogate series to determine whether the computed correlations were the artifact 

of the time series length or the distribution and amplitude of incremental changes in the 

COP and FINGER position. Linear regression on the double-logarithmic stabilogram-

diffusion plot on τ ∈ [0, 10] s revealed a single scaling region for the phase-randomized 

COP (Fig. 4.4c) and FINGER (Fig. 4.4f) displacement series, Hsurrogate ≈ 0.5, rendering 

increments equivalent to classical Brownian motion. Therefore, the computed short and 

long-range scaling regimes and critical times reflected distinct dynamical regimes and not 

artifact. 

Spectral analysis 

The mean power frequency (MPF) of transverse plane COP displacements was 

dependent on the balancing condition (F (1.91, 17.22) = 28.184, p < 0.001). Summary 

statistics are depicted in Fig. 4.6. MPF COP was reduced in P (p < 0.01) and P-CDT 

relative to stick balancing conditions (p < 0.01), suggesting the spectral composition of 

COP time series was increased for the balancing task. MPF COP was greater in the P-SB 

and P-SBINT conditions relative to P-SB-CDT (p < 0.001), reflecting higher frequency 

composition. MPF COP was similar for the P-SBEXT and P-SB-CDT (p > 0.05). MPF 

FINGER was also dependent on stick balancing condition (F (1.82, 

16.40) = 4.51, p < 0.05, η
2
 = 0.33). MPF was reduced in the P-SB-CDT relative to P-SB 

(p < 0.01), P-SBINT (p < 0.05) and P-SBEXT (p < 0.05) conditions. 
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Figure 4.6. Spectral decomposition of COP and fingertip time series. a) The mean power 

frequency (MPF) of COP trajectories was reduced in quiet stance relative to stick 

balancing conditions and in the stick balancing dual-task relative to control (P-SB) and 

attentional focus conditions (P-SBEXT, P-SBINT). The MPF of COP trajectories was 

reduced in P, P-CDT relative to suprapostural conditions. b) The MPF of FINGER 

trajectories was reduced in the stick balancing dual-task condition (P-SB-CDT) relative to 

control (P-SB) and focus of attention conditions (P-SBEXT, P-SBINT). Error bars 

represent ± 1 SEM. 

 

Linear cross-correlation analysis 

Figure 4.7 demonstrates that the manipulation of attentional focus evoked differences 

in the dynamical relationship between COP and FINGER positions. For the P-SBEXT 

condition, the COP and finger position were negatively-correlated for lags ]5.1 ,0[ s, 

suggesting that COP lagged FINGER position. The externalized focus, whereby 

individuals focused on the stick position with respect to the vertical produced 

compensatory COP displacements over longer intervals ]3 ,5.1[ s.  In contrast, the COP 

and FINGER position were positively correlated for lags ]3,0[ s in the P-SB, P-SBINT 

and P-SB-CDT conditions. Positively correlated trajectories demonstrate that the 

FINGER and COP followed the same spatiotemporal pattern. The externalized focus, 

therefore, saw the emergence of a distinct postural-suprapostural dynamic. 
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Figure 4.7. Ensemble-averaged cross-correlation function z(τ) between COP and 

FINGER positions for a representative subject. The cross-correlation function z(τ) was 

computed using the transverse plane, normalized COP and FINGER trajectories and is 

plotted for the lags τ on the interval [0,3] s. Experimental manipulation of the attentional 

focus evoked differences in the dynamical relationship between COP and FINGER 

position. COP and FINGER position were negatively-correlated in the P-SBEXT 

condition for lags ]5.1 ,0[ s, suggesting that the COP lagged the FINGER position. For 

the externalized focus condition, individuals focused on the stick position with respect to 

the vertical. Compensatory COP displacements were produced over longer 

intervals ]3 ,5.1[ s.  In contrast, the COP and FINGER positions were positively 

correlated for lags ]3,0[ s in the P-SB, P-SBINT and P-SB-CDT conditions. Positively 

correlated trajectories demonstrate that relative FINGER and COP displacements were in 

the same direction. Externalized motor attention caused the emergence of a distinct 

postural-suprapostural temporal dynamic. 
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4.5 – DISCUSSION 

 
Stick balancing dynamics 

The purpose of this study was to determine the dynamical influence of attentional foci 

on the postural (COP) and suprapostural (fingertip) components of human stick balancing 

performance. We sought to determine whether two variants of an external focus of 

attention (task-relevant, P-SBEXT; task-irrelevant, P-SB-CDT), increased the stability of 

center of pressure and fingertip time series. In the task-relevant external focus, we 

instructed participants to minimize the vertical displacement of the stick. In contrast, in 

the task-irrelevant external focus (P-SB-CDT), the participants performed a serial 

arithmetic task while stick balancing. In addition to summary statistics (RMS variability), 

we analyzed the COP and fingertip trajectories by method of spectral analysis and 

statistical mechanics methods (Rougier 2008). 

We hypothesized that both the postural and suprapostural components of stick 

balancing would be stabilized by a task-irrelevant, external focus of attention (P-SB-

CDT). We predicted that an internal focus of attention would compromise dynamical 

stability in the stick balancing task, resulting in variable COP and FINGER trajectories. 

In confirmation of the hypothesis, FINGER and COP trajectories were least variable 

when participants partitioned attentional resources between stick balancing and cognitive 

task components (P-SB-CDT). In contrast, COP and FINGER displacements were least 

stable when the focus of attention was internal (P-SBINT). Performance stability for the 

external, task-relevant condition was similar to control performance (P-SB). 

The stochastic nature of human stick balancing has been discussed at length. Studies 

have shown that the fingertip control mechanism for stick balancing is performed 
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according to a drift and correct (Milton et al. 2009b) mechanism that reflects the scale-

invariant properties of the central nervous system (Werner 2009). The proposed 

mechanism consists of small amplitude, correlated changes in fingertip position, 

interspersed with corrective, negatively-correlated displacements. 

In accordance with the drift and correct balance control mechanism, our stabilogram-

diffusion analysis demonstrated that incremental changes in fingertip (FINGER) position 

occur on distinct timescales. For short intervals (τ < τc), incremental changes in fingertip 

position are positively correlated. Positively correlated increments imply that for short 

timescales sensorimotor control is open loop and the finger tends away from relative 

equilibrium. In contrast, for long timescales (τ > τc), incremental changes in fingertip 

position reflect feedback-driven control where the finger tends to equilibrium. 

A novel contribution of this study was the observed influence of attentional 

manipulation on fingertip dynamics. The correlation for short time intervals 

(Hs FINGER) was similar regardless of whether attention was internal or external, task-

relevant. However, cognitive load (P-SB-CDT) reduced the magnitude of short-range 

serial correlation, which defines the stochasticity of fingertip displacements in terms of 

jump amplitude and frequency (Mandelbrot and van Ness 1968). Reduced persistence in 

series was accompanied by a reduction in the critical time for switching between open 

and closed loop balancing regimes (τc FINGER) for the external, task-irrelevant 

condition. In effect, reduced persistence in series and shorter time for switching regimes 

amounted to a more stationary process when the attentional focus was external and 

irrelevant to task performance (P-SB-CDT). This result corroborates our result for time 
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series variability, where RMS variability was reduced when the focus for balancing was 

external and task-irrelevant (P-SB-CDT). 

The lack of difference in the long-scale Hurst exponent establishes that a similar 

corrective process was employed for stick balancing regardless of the focus of attention. 

This result likely reflects the permissible range of upper limb deviations or ‗dead zone‘ 

for threshold upper limb deviations (cf. Collins and De Luca 1994; Milton et al. 2009c). 

Nonlinear control models have been implemented for postural control (Milton et 

al. 2009a, b, c) and a manual, stance-controlled inverted pendulum task (Lakie and 

Loram 2006). Our data suggest the dynamical threshold for fingertip displacements 

changes as a function of attentional foci, but participants correct with similar stringency 

when the permissible range of motion is exceeded. At present, we do not understand the 

extent to which the threshold deviation represents upper limb biomechanics (range of 

motion), sensory or central components (Mergner et al. 2001). 

The mean power frequency of displacements was reduced in P-SB-CDT relative to all 

other conditions and reflects a slower dynamic. Fingertip dynamics for stick balancing 

were characterized by reduced frequency, reduced amplitude displacements with 

incremental changes in position that were only weakly correlated over short timescales 

for the external focus task-irrelevant condition. Regardless of the attentional condition, 

the long-range correlations in time series were very anti-persistent. 

These results do not directly support the constrained action theory for motor 

performance (Wulf et al. 2004). Specifically, this theory predicts decreased variability, 

increased frequency components when the focus of attention is external and task-relevant, 

and increased variability, reduced frequency dynamics when attentional focus is internal. 
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Though cross-correlation analysis demonstrated that a different dynamical relationship 

was evoked by the external, task-relevant focus, our data were inconsistent with the 

above predictions. This might represent the task familiarity of our participants and 

subsequent melding of the perceptual boundary to accommodate the balanced stick. This 

phenomenon is known as exproprioception (Maravita et al. 2002; 2003). It is important to 

consider the role of exproprioception with respect to constrained action theory. In studies 

that reported enhanced learning with external focus, the external/internal focus duality 

was established early in the learning process (McNevin et al. 2003). Additionally, most of 

the work related to the constrained action theory has dealt with tasks where the line 

between the actor and the controlled object is well defined. Hence, the manipulation of 

the attentional focus did not have to deal with issues of exproprioception. Future work 

should examine this issue in the context of the interplay between task familiarity, 

attentional focus and performance. 

Our observation that performance was facilitated by the cognitive task corroborates 

the stabilizing effect of an external, task-irrelevant focus (Weeks et al. 2003). The benefit 

of the task-irrelevant focus is further supported by literature regarding sensorimotor 

expertise (Milton et al. 2008b; Beilock et al. 2002). Less experienced balancers are 

unlikely to benefit from an external, task-irrelevant focus (Milton et al. 2008b). 

Postural Dynamics 

COP displacements were more variable and composed of higher frequency 

components when stick balancing. In addition, the relative scaling of postural regimes 

was influenced by the stick balancing task. COP displacements were less correlated over 

short intervals, but more correlated for long intervals when stick balancing. Critical times 
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for switching between short and long-range postural regimes increased when stick 

balancing but were similar regardless of the attentional condition. Postural corrections 

were therefore performed at longer timescales when stick balancing. For a given serial 

correlation, if the system drifts for prolonged time, the tendency is to migrate toward the 

support boundary. Corrective movements, when performed, prevent destabilization 

resulting from the COP traversing the base of support. When stick balancing, critical 

times increased and translated to a concomitant increase in the degree of anti-persistence. 

The degree of anti-persistence observed for COP increments in stick balancing (0 < Hl  

<< 0.5) approaches the scaling exponent expected if the support boundary had been 

attained (Hl  ≈ 0; Collins and De Luca 1994). These results are consistent with the 

facilitatory viewpoint of postural control, which considers sway subservient to 

suprapostural task performance (Stoffregen et al. 1999). Our results, therefore, 

recapitulate the importance of context in the optimal assembly of postural synergy 

(Balasubramaniam and Turvey 2000; Todorov and Jordan 2002). 

We did not observe differences in postural dynamics when performing a cognitive 

dual task (P-CDT). This effect is not surprising, since postural control in healthy 

individuals is robust to secondary cognitive demand (Dault et al. 2001), and the 

efficiency of resource allocation to postural and cognitive task components reflects 

several factors. Consequently, perturbed (Pellecchia 2003), stabilized (Andersson et 

al. 2002) and unaffected (Dault et al. 2001) stability have been reported in dual-task 

paradigms. In our experiment, the participants performed a silent arithmetic task in a 

stable, well-learned postural context. Consequently, the neural pathways subservient to 
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balance were likely relegated to low-level reflexive and compensatory mechanisms 

(Torres-Oveido et al. 2006). 

In our experience (Cluff and Balasubramaniam 2009; Cluff et al. 2009), skilled stick 

balancers use one of three balancing strategies. Proficient stick balancers position the 

hand so that it is either possible to see both the tip of the stick and hand simultaneously 

or, conversely, the hand is positioned sufficiently close to the body that it is possible to 

see only the tip of the stick. An intermediary strategy reflects a combination of the two. 

An elaborate methodology would be required to assess eye–hand coordination in stick 

balancing (Hayhoe and Ballard 2005) and is interesting topic for future research. We are 

confident, however, that our results reflect attentionally-mediated task dynamics and not 

a generalized inability to maintain the instructed attentional foci. Figure 4.7 shows a 

representative, ensemble-averaged cross-correlation function between radial COP and 

finger position for P-SB, P-SBEXT, P-SBINT and P-SB-CDT conditions. That COP and 

finger position were negatively correlated for lags τ ∈ [0, 1.5] s suggests the COP lagged 

fingertip displacement—individuals focused on stick movement with respect to the 

vertical and produced compensatory COP movement over longer intervals τ ∈ [1.5, 3] s. 

Conversely, for P-SB, P-SBINT and P-SB-CDT conditions, COP and fingertip position 

were positively correlated for lags τ ∈ [0, 3] s, which suggests that finger and COP 

displacement paralleled one another. Consequently, the external focus, task-relevant 

condition saw the emergence of a balancing strategy that prioritized stick movement. 

It is important to consider focus of attention in the context of Bernstein‘s ideas on 

expertise and its development (see Latash and Turvey 1996 for a review). While actors 

focus on moving body parts in the early stages of skill acquisition, attention shifts to 
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wielded objects in advanced stages of skill (Bernstein 1967). Advanced tennis players 

tend to focus on the ball or end point of the trajectory for a successful return, rather than 

the racquet or limb. In the stick balancing case, there is no clear boundary between where 

one ends and the other begins. A possible reason the instructed attentional foci did not 

reveal differences between the internal and external, task-relevant condition might reflect 

that the stick becomes an extension of the body as one acquires expertise (Maravita et 

al. 2003). Therefore, it is likely that motor attention more readily modulates the 

performance of novice stick balancers. We are currently exploring skill acquisition in 

stick balancing and its relationship to postural dynamics. 
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Chapter 5 – Learning a Stick Balancing Task Involves Task-

Specific Coupling Between Posture and Hand Displacements 
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5.1 – ABSTRACT 

 
Theories of motor learning argue that the acquisition of novel motor skills requires the 

task-specific organization of motor subsystems. Here we examined the development of 

motor subsystem interactions as subjects learned a novel stick balancing task. We focused 

on learning-induced changes in fingertip movements and body sway and investigated the 

effect of practice on their coupling. We hypothesized that learning would elicit common 

changes in posture and fingertip control and evoke systematic increases in the 

sophistication of the posture-fingertip interaction. We quantified motor learning using the 

average length of balancing trials, which increased with practice and confirmed that 

subjects learned the task. We demonstrated that stick balancing skill acquisition involved 

two independent learning processes. First, we found that posture and fingertip 

displacements are governed by intermittent control strategies and that the time interval 

between corrections increased systematically across training. The second learning effect 

involved the incremental occurrence and lengthened coupling of posture-fingertip 

trajectories. We have argued that the abrupt (de)coupling of posture-fingertip control 

suggests that the control mechanism for stick balancing is hierarchical and switches from 

coupled to independent subsystem control. An important research direction will be to 

specify the precise mechanism(s) that give rise to the abrupt (de)coupling of the posture-

fingertip interaction.
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5.2 – INTRODUCTION 

 
The ability to perfect complex motor skills raises a number of questions about voluntary 

motor control and learning. In response to these considerations, experiments have 

investigated the control mechanisms that govern skilled motor behaviour with the 

objective to specify how these representations are learned. A standard approach has been 

to examine the coordination between end-effectors (Swinnen et al. 1997; Kelso and 

Zanone 2002), body segments (Bobbert and van Ingen Schenau 1988; Rodacki et al. 

2001; Hong and Newell 2006), joint angles (Vereijken et al. 1997; Adamovich et al. 

2001; Chow et al. 2007; Hatzitaki and Konstadakos 2007) and muscle activations (Ting 

and Macpherson 2005; Torres-Oviedo et al. 2006). These studies have established the 

importance of motor synergy (Bernstein 1967) and shown that motor variables are 

combined into coordinative relationships that facilitate task performance. Though the 

coordination dynamics approach has generated a great deal of knowledge about motor 

learning, in comparison we know very little about the dynamical interactions that evolve 

between distinct sensory (e.g., vision) and motor (e.g., posture, voluntary motor) 

subsystems. 

Perhaps the importance of sensory-motor interactions is best illustrated by example. 

Consider a baseball player up to bat. Batting requires precise upper limb coordination to 

direct the bat to the location of the ball with proper timing. In addition, lower limb 

segments and postural control should be coordinated so that peak energy generation 

coincides with ball contact. Finally, visual information about the evolving ball trajectory 

and proprioceptive feedback about the orientation of the upper limb segments must be 

integrated and processed to enable rapid feedback-based swing corrections. In short, 
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batting performance is dependent on the distinct contribution of posture, sensory, and 

voluntary motor subsystems. 

Task-specific subsystem interactions have been a topic of interest in motor control and 

learning (Bingham 1988; Bernstein 1996), and recently, Newell et al. (2001) have argued 

that outcome motor performance reflects an evolving set of hierarchically-organized 

motor subsystems. Their model distinguished between: (1) physiological 

microphenomena (e.g., electromyography, cortical activity), (2) subsystem coordination 

(e.g., posture and limb movement patterns) and (3) outcome performance. Newell et al. 

(2001) have proposed that reciprocal coupling functions exist between levels of the motor 

hierarchy so that individual effectors are organized into functional subsystem interactions 

that support outcome performance. 

The hierarchical structure and time scale specificity of motor learning were recently 

investigated by Huys et al. (2003, 2004a, b) in a series of experiments that examined 

learning-induced changes in coupling between posture, vision, and hand movements in 

three-ball cascade juggling. During practice, the coupling between center of pressure and 

vertical ball displacements increased progressively in strength (Huys et al. 2003) and 

similar relationships were present between ball and point of gaze adjustments (Huys et al. 

2004a). Collectively, these studies demonstrated that skill acquisition is influenced by 

interacting subsystems and show that object manipulation tasks can provide key insight 

about motor subsystem coupling when the physics and temporal properties of limb 

movements are dependent on an evolving and circumstantial task demand (Dingwell et al. 

2002; Nagengast et al. 2009). 
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In this experiment, we investigated skill acquisition in a novel stick-balancing task. 

Stick balancing requires that the central nervous system plan and generate appropriate 

time-varying positions of the hand in response to changes in the vertical angle of the 

stick. Initial studies have focused on finger and angular stick fluctuations to characterize 

the control principles underlying human interactions with unstable dynamical objects 

(Cabrera and Milton 2002, 2004; Cluff and Balasubramaniam 2009). Because the physics 

of the system are passively unstable and the time available to plan and execute 

corrections is limited, finger displacements are composed of a series of ballistic 

corrections (Milton et al. 2009; Cluff et al. 2009). Notwithstanding the scientific merit of 

these studies, the approach has been limited to processes that stabilize the vertical stick 

angle and we know little about the interaction between stick balancing corrections and the 

simultaneous control of posture. To account for this control duality, this study addresses 

the following questions: (1) ―Is the acquisition of stick-balancing skill accompanied by 

the task-specific reorganization of postural control?‖ and (2) ―What control mechanisms 

are used by the central nervous system to stabilize the upright posture and vertical stick 

angle, and are the control mechanisms influenced by learning?‖ These questions provide 

a much-needed focus on the role of (motor) subsystem interactions in motor control and 

learning. 

To address these questions, we examined how learning affected correlative movement 

properties within (autocorrelation) and between (cross-correlation) posture and finger 

displacements. We defined learning as a relatively permanent change in the capability to 

perform the stick-balancing task (Schmidt and Lee 2005) and measured performance 

using average balancing trial lengths. We address two problems in this experiment. First, 
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we investigate whether learning influences the relationship between COP and finger 

trajectories. Second, we examine the temporal structure of finger-center of pressure (F-

COP) trajectories to determine the effect of learning on dynamic posture-finger 

interactions. On the basis of our previous work (Cluff et al. 2009), we hypothesized that 

controlling finger displacements would become discontinuous, and additionally, that the 

average time interval between ballistic finger corrections would increase as a function of 

learning. We expected that learning-induced changes in finger displacements would 

require the modification of postural control, though we made no specific prediction about 

the time structure of these changes. Secondly, we hypothesized that learning would 

increase the confluence between center of pressure and finger displacements, which we 

measured using the occurrence and duration of coupled F-COP trajectories. 

5.3 – METHODS 

 
Subjects 

Eight (5 females, 3 males) healthy, university-aged subjects (24.5 ± 2.35 years) of similar 

height (173 ± 5.82 cm) and weight (67 ± 9.4 kg) participated in the study. Prior to the 

experiment, the subjects reported to the Sensorimotor Neuroscience Laboratory for a 

briefing session that outlined the details of the study and time commitment. Subjects were 

right-handed, had normal or corrected-to-normal vision, and were free of musculoskeletal 

and neurological disorder. The protocol received ethical clearance from the McMaster 

University Research Ethics Board and subjects provided written informed consent. The 

subjects were remunerated for their time and were free to withdraw from the study 

without penalty. Every subject completed the experiment. 
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Protocol 

The subjects learned to balance a cylindrical wooden dowel on their fingertip while 

standing in an upright posture. The subjects performed 30 min of daily practice and we 

maintained a log to ensure that each subject satisfied the practice schedule. We monitored 

motor learning using four experimental sessions that we conducted in place of every fifth 

practice session (90 min).  

Each subject performed twenty stick balancing trials during the recruitment session to 

ensure they were familiar with the task. The trials were separated into two blocks of ten 

trials in which subjects balanced a stick with different physical characteristics (length = 

100 cm; diameter = 1.71 cm; mass = 150 g) than the stick used during the experiment and 

practice sessions (length = 62 cm; diameter = 1 cm; mass = 50 g). The familiarization 

task was less difficult owing to the inertia and mass of the stick, which increased tactile 

feedback and the time available for the subject to make corrections. Subjects stood with 

their feet approximately shoulder width apart and we recorded their preferred stance to 

control the balancing stance across trials and learning sessions. 

The experimental sessions consisted of twenty trials (2 blocks × 10 trials) that ended 

when the subject dropped the stick. At the outset of each trial block, we instructed the 

subjects to balance the stick for as long as possible and to remain stationary in their 

preferred stance. If this criterion was not met, the trial was excluded from further analysis 

and data collection was repeated for that trial. The trial blocks were separated by 5 min 

and individual trials by a 30-s rest period. The rest breaks could be supplemented to 

alleviate temporary discomfort due to visual strain, and physical or attentional fatigue. 
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Equipment and Apparatus 

Spherical reflective markers (14 mm) were attached to the top and bottom of the stick and 

the three-dimensional marker positions were collected at a sampling rate of 750 Hz using 

10 VICON T-40 cameras (Lake Forest, CA). The reflective markers were autolabeled and 

reconstructed offline with the VICON Nexus software. COP time series and vertical 

ground reaction forces were collected using two adjacent strain gauge force platforms 

sampled at 750 Hz (AMTIOR6-2000; Newton, MA, USA). The ground reaction force 

and center of pressure data were processed offline in MATLAB
TM

 R2009a (The 

Mathworks, Natick, MA, USA) using the method outlined by Winter (2009). 

Dependent Measures 

Mean Balancing Time 

Mean balancing time was computed as the within-subjects average of trial lengths 

performed in each learning session. Mean balancing time was used to infer changes in 

performance that occurred as a function of learning. 

(Cross-)Recurrence Quantification Analysis 

(Cross-) recurrence quantification analysis was used to quantify change in the regularity 

and temporal structure of COP, finger and F-COP trajectories. We computed the 

recurrence rate (RR), laminarity (LAM), and trapping time (TT) of COP, finger and F-

COP time series using (cross-) recurrence maps derived from individual trial time series.  

We used RR to quantify regularity because it is an index that measures the tendency 

for trajectories to return to local neighbourhoods in phase space (cf. Marwan et al. 2007). 

Greater recurrence rate corresponds to greater correlation in time series. Though RR 

provides a global measure of correlation it is not sensitive to the temporal properties of 
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the time series dynamics. To acquire information about the temporal structure of the 

dynamics, we used the LAM measure. LAM quantifies the density of recurrent points that 

form vertical line structures in the recurrence map—dynamical states that remain within 

neighbourhoods of phase space for finite time intervals. LAM measures the tendency for 

dynamical states to remain within the recurrence radius and thereby quantifies the 

tendency for the ―smooth‖ time evolution of the dynamics (Zbilut et al. 2002; Marwan et 

al. 2007 for a detailed review). We used TT to quantify the average duration of laminar 

trajectory phases. Transitions between constant and fluctuating dynamics are a defining 

characteristic of intermittent dynamical systems (Marwan et al. 2007) that exhibit two 

states: (a) ‗‗Stasis‘‘ or ‗‗Off‘‘ regime: dynamical states are correlated and approximately 

constant for variable lengths of time, and (b) ‗‗Bursting‘‘ or ‗‗On‘‘ regime: dynamical 

states fluctuate and are only spuriously correlated over finite time intervals. Therefore, 

recurrence quantification analysis was used to provide information about learning-

mediated changes in posture and finger dynamics, and cross-recurrence quantification 

analysis was used to investigate the evolving interaction between posture and upper limb 

corrections. 

We downsampled the COP and finger time series using a five-sample, windowed-

moving-average with no overlap (effective sampling rate = 150 Hz) to minimize the 

numerical sensitivity of the phase space reconstruction method to measurement noise. 

The first step in the phase space reconstruction was to compute the embedding delay (τe). 

The embedding delay was determined using the first minimum of the time-delayed 

average mutual information function (Fraser and Swinney 1986) computed for individual 

trials. The time delay (τe) corresponding to the minimum mutual information was selected 
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because it is the best approximation to the critical system delay. Median embedding 

delays were contrasted using a one-way analysis of variance (ANOVA) with repeated-

measures over the session factor (4 levels). Statistical analysis demonstrated that the 

median embedding delays were similar between sessions (p > 0.1) and we used the 

pooled median embedding delay for phase space reconstruction. 

The second step was to determine the appropriate embedding dimension for phase 

space reconstruction. The embedding dimension was determined by the false nearest 

neighbours method (Kennel et al. 1992; Abarbanel 1996). False nearest neighbours 

analysis can be summarized as follows. Suppose the minimal sufficient embedding 

dimension for a given time series is De. Then, in a De-dimensional delay space, the 

topological properties of the phase space are preserved and the neighbours of a given 

point in phase space are mapped onto equivalent neighbours in delay space. In contrast, 

suppose the time series is embedded in a D-dimensional delay space with D < De. When 

the embedding dimension is not sufficient, the topological properties are not preserved 

and the dynamics are projected onto regions of phase space where they do not belong. 

We used a 1% tolerance and computed the embedding dimension for individual trials. 

The embedding dimension was contrasted using a one-way ANOVA with repeated-

measures over the session factor (4 levels). De was not significantly different across 

sessions (p > 0.05). Therefore, we used the pooled median embedding dimension (Table 

5.1). Cross-recurrence quantification analysis between fingertip and postural trajectories 

was performed using the same method. 

 The line parameter, which specifies the number of successive points required to 

define a line segment in reconstructed phase space, was set to 33.3 ms (5 points). (Cross-) 
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Recurrence quantification analysis was implemented with the Commandline Recurrence 

software (version 1.13z; Marwan 2006). The median embedding delay (τe), embedding 

dimension (De), and (cross-) recurrence radii (χ) for individual subsystem (COP and 

finger) and collective dynamics (F-COP) are reported in Table 5.1.  

Dynamical Intermittency Analysis 

Identical numerical procedures were used to analyze finger, COP and F-COP trajectories, 

but for the sake of brevity only procedures for the analysis of COP trajectories are 

outlined in this section. It should be noted; however, that prior to the analysis of F-COP 

trajectories, we were required to compute the scalar product F-COP time series. F-COP 

time series were computed for individual trials as, jjFjr COP)(COPF  , where Fj 

corresponds to the radial finger position, COPj represents the radial COP at point j = 1, 2, 

3, ... , n, and n was the length of the data series. We used the scalar product to quantify 

changes in the interaction between center of pressure and finger trajectories. Our rationale 

can be explained as follows: simultaneous changes in finger and COP time series would 

correspond to the smooth temporal evolution of the scalar product F-COP trajectory. 

Changes in independent subsystem dynamics would correspond to rapid and spurious 

fluctuations in the F-COP trajectory. 
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Table 5.1. Parameters for the phase space reconstruction and (cross-) recurrence 

quantification analysis. The embedding delay, τe, was the first minimum of the average 

mutual information (AMI) function. The embedding dimension, De, was chosen as the 

dimension at which false nearest neighbors (FNN) were minimal. The threshold for 

neighborliness or radius, χ, was chosen so that RR was between 1-3%. 

 

We used the downsampled (by factor 5) COP time series for the dynamical 

intermittency analysis. The first step in the analysis was to compute the COP speed. We 

defined the COP speed as the resultant Euclidean speed,     ttrttrts  )()( COPCOPCOP


, 

where )(COP tr


corresponded to the radial COP at time t, )(COP ttr 


was the COP at time 

,tt   t  was the time step between successive observations (67 ms), and   

represented the Euclidean norm. The detrended COP speed, ),(COP ts  was computed as 

the two-point difference in COP speed, ),()()( COPCOPCOP tsttsts   where 

)(COP tts   was the radial COP speed at time ,tt  and )(COP ts was the COP speed at 

time .t  This expression removed time-dependent linear trends of duration   67 ms. To 

ensure the bins were adequately defined, the normalized histograms for laminar phases 

were reconstructed each subject‘s trials collected in a given experimental session. 

Threshold crossing changes in COP speed were determined according to the 

expression     jsj COPCOP   , where   was the Heaviside function and ε was 

the threshold change in COP speed, which we defined using the 95
th

 centile root-mean-

 Embedding 

delay τe (ms) 

Embedding 

dimension De 

Radius, χ (% 

MAXDIST) 
Minimum line 

length LMIN 

RQA COP 36 4 10 5 

RQA 

Fingertip 

45 4 10 5 

CRQA 50 3 10 5 
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squared COP speed increment. Specification of the threshold COP speed is not a critical 

factor in the analysis but must permit detection of an adequate number of threshold 

crossings (Cabrera et al. 2004). We chose the 95
th

 centile root-mean-squared COP speed 

increment to place our threshold in the tail region of the distribution of incremental 

changes in COP speed. According to our formula, subthreshold changes in COP speed 

were assigned a value of 0, while suprathreshold changes in COP speed were assigned a 

value of 1. Suprathreshold changes in COP speed correspond to ballistic COP 

corrections, while subthreshold changes in COP speed represent time intervals when the 

changes in COP speed are small (―off‖ dynamical regime, see the description of LAM 

and TT variables). 

 We determined laminar trajectory phases by computing the time intervals between 

successive threshold crossings. The probability of a given laminar phase,  tδP , was 

determined by computing the normalized histogram of laminar phase lengths with bin 

size set to 10 ms. The power law exponent α was computed by regressing  tδP  onto 

tδ on two logarithmic axes according to the relationship,  tt δ)δ(P . α determines the 

decay in the probability for laminar phase lengths: Reduced α-values correspond to the 

greater tendency for long laminar COP trajectory phases and indicate that successive 

corrections are separated, on average, by longer time intervals. The bilogarithmic 

regression and numerical technique are shown in Fig. 5.1. 
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Figure 5.1. Numerical method used to compute the occurrence, time duration and scaling 

of laminar center of pressure phases. (a) Radial center of pressure time series (black) with 

95
th 

centile change in speed threshold (red). (b) Power law scaling for the probability 

distribution of center of pressure laminar phase lengths (δt). Similar numerical procedures 

were used for finger and finger-center of pressure trajectories (see text for further 

details). 

 

Our dynamical intermittency analysis is qualitatively similar to the procedure used 

by (cross-) recurrence analysis to compute laminar trajectory phases. However, in 

recurrence analysis, correlated trajectory segments are defined using the De-dimensional 

Euclidean distance between states. In contrast, the intermittency analysis is a time series 

technique where dynamical states are considered constant if they are below the specified 

threshold. Both measures are expected to produce qualitatively similar results; however, 

recurrence analysis is performed in the reconstructed phase space with dimension 

b) 

a) 
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appropriate for the dynamics. It may therefore be expected that (cross-) recurrence 

analysis is more sensitive to changes in individual and coupled subsystem dynamics. 

Statistical Analysis 

Statistical contrasts were performed with SPSS version 16.0 (SPSS Inc., Chicago, IL). A 

one-way repeated-measures ANOVA was used to compare the mean balancing time 

performance measure across learning sessions (4 levels: Sessions 1-4). Dependent 

measures for the (cross-) recurrence quantification analysis  TT  LAM,RR,  were analyzed 

using separate one-way repeated-measures ANOVAs performed for each dependent 

measure (finger, COP, F-COP). For the dynamical intermittency analysis, we compared 

the power law exponent    from the line of best fit that described the relationship 

between the probability of a given laminar phase length   )δ(Plog10 t  and the laminar 

phase length   tδlog10 . The statistical contrast was implemented using a one-way 

ANOVA with repeated-measures over experimental sessions. The scaling exponent    

was used to determine whether the duration of smooth trajectory segments was 

influenced by learning. We averaged individual subject data across trial repeats for each 

analysis technique. Post-hoc comparisons were implemented with paired t-tests using 

Bonferroni-Holm corrections for multiple comparisons. The significance level for 

statistical contrasts was 0.05. Significant statistical contrasts are presented in text with 

corrected p-values. 

5.4 – RESULTS 

 
Mean Balancing Time 

Mean balancing time was defined as the average length of balancing trials performed in 

each experimental session. There was a progressive improvement in balancing times 
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across sessions (Fig. 5.2). The effect was confirmed by statistical analysis and 

demonstrated that subjects more effectively performed the task as a function of learning 

(F (3, 21) = 22.86, p < 0.001). The average balancing time was greater in the fourth than 

the first (p < 0.001) and second (p < 0.05) learning sessions, and for the third relative to 

first session (p < 0.001). These results corroborate our hypothesis that average balancing 

trial lengths would improve as a function of learning. In the ensuing sections, we interpret 

our results in relation to these learning-dependent changes in performance. 

Recurrence Quantification Analysis: Center of Pressure Trajectories 

Recurrence rate (RR) is a nonlinear measure that quantifies the global regularity of time-

varying states without accounting for the temporal properties of that regularity. We used 

RR to monitor the spatial regularity of COP trajectories (RRCOP) across experimental 

sessions. Figure 5.3a summarizes the learning effect observed for RRCOP. There was a 

significant main effect whereby the regularity of COP trajectories decreased 

progressively across learning sessions (F (3, 21) = 9.03, p < 0.001). RRCOP was greater in 

session 1 and 2 relative to session 3 and 4 (p < 0.05). 

Laminarity is defined as the density of states that are correlated for finite time intervals 

relative to the total density of recurrent states. Dynamical states adjacent in time are 

considered constant (equal) if they are within the vicinity of the same recurrence 

neighbourhood. Practice increased the occurrence of laminar COP (LAMCOP) trajectory 

segments (F (3, 21) = 3.68, p < 0.01). Figure 5.3b summarizes the learning effect. 

LAMCOP was reduced at session 1 relative to every other session (p < 0.05). Trapping 

time (TTCOP) demonstrated that the average length of laminar COP phases increased with 
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learning (F (3, 21) = 9.15, p < 0.001). TTCOP was reduced in the first relative to third (p < 

0.01) and 

 
Figure 5.2. Change in stick balancing performance across learning sessions. Results are 

reported as mean balancing times (in units of seconds) ensemble-averaged over 

individual subjects. Error bars represent the within-subjects SEM. *p < 0.05, **p < 0.01, 

***p < 0.001. 

 

 

 

 
Figure 5.3. Center of pressure dynamics were modified by learning. a) Recurrence rate of 

center of pressure trajectories by session. Decreased RRCOP reflects a reduction in the 

regularity of center of pressure time series. b) Discontinuity of center of pressure 

trajectories by session. Greater LAMCOP corresponds to an increase in the incidence of 

correlated center of pressure trajectories segments. c) Average trapping time (units of ms) 

of center of pressure trajectories across sessions. Greater TTCOP indicates a lengthening of 

the average time interval between successive center of pressure corrections. Error bars 

correspond to the within-subjects SEM. *p < 0.05, **p < 0.01, ***p < 0.001. 
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fourth (p < 0.01) learning sessions. In addition, TTCOP was greater in session 4 relative to 

session 2 (p < 0.05). Our data demonstrate that experience modified the temporal 

structure of corrective COP displacements. With learning, corrective COP excursions 

became discontinuous and increasingly separated in time. The results support our 

hypothesis that COP trajectories would be modified by learning to facilitate stick 

balancing performance. 

Recurrence Quantification Analysis: Fingertip Trajectories 

Figure 5.4a shows a decrease in the regularity of finger trajectories with learning. 

Statistical analysis confirmed the learning-effect for RRFinger (F (3, 21) = 11.37, p < 

0.001). The density of recurrent finger trajectories was greater during the first relative to 

third (p < 0.01) and fourth sessions (p < 0.01). Moreover, RRFinger was greater at session 2 

in comparison to session 4 (p < 0.05). In summary, finger trajectories showed a learning 

effect similar to that of COP trajectories and were characterized by a decrease in their 

spatial regularity. 

Figure 5.4b shows a learning-dependent increase in the discontinuity of finger 

trajectories. The learning effect for LAMFinger  was confirmed by statistical analysis (F(3, 

21) = 8.033, p < 0.01). RRFinger decreased as a function of learning, but recurrent finger 

states evolved in correlated time segments. To supplement this finding, we examined the 

average duration of laminar finger trajectory phases (TTFinger). Figure 5.4c shows that 

learning caused an increase in TTFinger across sessions. TTFinger  was reduced in the first 

compared to third (p < 0.01) and fourth (p < 0.001) sessions. In summary, learning 

resulted in a monotonic increase in the length of laminar fingertip phases. The data 

support our hypothesis and previous learning data (Cluff et al. 2009) by demonstrating 
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that stick balancing finger inputs become less correlated (RR) as a function of learning, 

discontinuous and increasingly separated in time (LAM and TT). 

 
Figure 5.4. Finger dynamics across the learning period. The interpretation of dynamical 

variables is as in figure 5.3. a) Regularity of finger trajectories (RRFinger) across learning 

sessions. b) LAMFinger by session. c) Average length of laminar finger trajectory segments 

(TTFinger; units of ms) across sessions. Error bars represent the within-subjects SEM. *p < 

0.05, **p < 0.01, ***p < 0.001. 

 

Cross-Recurrence Quantification Analysis 

In addition to individual subsystem dynamics, we examined coupling between COP and 

finger displacements (RRF-COP). The regularity of F-COP trajectories (RRF-COP) showed a 

learning-dependent increase (F (3, 21) = 6.20, p < 0.01). Figure 5.5a shows that F-COP 

trajectories were least coupled when inexperienced subjects performed the stick-

balancing task (session 1). Pairwise comparisons demonstrated that the spatial correlation 

between finger and COP dynamics was smallest during the first session relative to every 

other session (p < 0.05). This finding corroborates our hypothesis that the coupling 

between finger and COP displacements would increase as a function of learning. 

Figure 5.5b demonstrates that LAMF-COP increased as a function of learning (F (3, 21) 

= 10.59, p < 0.001). LAMF-COP was reduced in the first relative to third (p < 0.01) and 

fourth sessions (p < 0.05), and in the second relative to third (p < 0.05) and fourth 
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sessions (p < 0.05). Similar to the effect reported for LAMF-COP, and consistent with our 

hypothesis, learning resulted in prolonged (TTF-COP) intervals of coupled finger and COP 

dynamics (F (3, 21) = 3.33, p < 0.05). TTF-COP was reduced in session 1 relative to session 

3 and 4 (p < 0.05). The data are summarized in Fig. 5.5c.  

 
Figure 5.5. Coupling strength and dynamical properties of the finger-center of pressure 

interaction. a) Recurrence rate of coupled F-COP trajectories by session. An increase in 

RRF-COP reflects the tendency for collective control over finger and COP displacements. 

b) LAMF-COP measures transitions between coupled and uncoupled F-COP trajectories. 

Greater LAMF-COP reflects an increase in the density of coupled F-COP trajectory 

segments. c) Average length of coupled F-COP trajectories by session (TTF-COP; units of 

ms). Error bars are the within-subjects SEM. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Dynamical Intermittency Analysis 

We computed the scaling relationship between laminar COP, Finger, and F-COP phases 

and the probability of laminar trajectory phases. We were interested in the sensitivity of 

time series measures to learning-induced changes in individual and collective dynamics. 

Figure 5.6b shows that learning caused a decrease in the scaling exponent αFinger (F (3, 

21) = 7.56, p < 0.01).  

 

 



PhD Thesis – T. Cluff  McMaster University – Neuroscience 

131 
 

 
Figure 5.6. Laminar COP, Finger and F-COP trajectory phases showed decay properties 

characteristic of on-off dynamical intermittency. Power law scaling in the decay of a) 

COP, b) Finger, and c) F-COP trajectories. A reduction in the scaling law (α) corresponds 

to an increase in the average time interval between successive corrections. Error bars 

correspond to within-subjects SEM. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

The increase in αFinger corresponds to a small decrease in the average duration of laminar 

finger phases. The learning effect occurred primarily at the first session; αFinger was 

reduced at the first compared with the third (p < 0.05) and fourth (p < 0.01) experimental 

sessions. 

In summary, the dynamical intermittency analysis was not sensitive to changes in COP 

and F-COP dynamics that occurred with learning (Fig. 5.6a, c; repeated-measures 

ANOVA, p > 0.05). However, the distributions were nevertheless well-fit by a power law 

decay function, which demonstrated that there were intermittent corrections present in 

COP and F-COP time series. Thus, recurrence-based measures were more sensitive to 

changes in the discontinuity of subsystem and interactive dynamics. This finding most 

likely reflects the specificity of the (cross-) recurrence methods to the dynamical 

properties of time series (e.g., embedding dimension, embedding delay). 
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5.5 – DISCUSSION 

 
We conducted this experiment to examine interactions between posture and finger 

dynamics while subjects learned a novel stick-balancing task. We operationalized 

performance using the average length of balancing trials, which we expected to increase 

as a function of practice. Our hypothesis was confirmed. Balancing trial lengths increased 

progressively and were nearly four times longer after the 20 day training period. This 

performance improvement demonstrated that subjects learned the task and supported 

previous studies that examined stick-balancing skill acquisition (Cluff and 

Balasubramaniam 2009; Cluff et al. 2009). We additionally examined changes in posture 

and finger trajectories, as well as learning-dependent coupling between these subsystems. 

Though qualitative differences existed between the learned dynamics of posture and 

finger control mechanisms, the effect of practice was to progressively stabilize their 

coupling. 

At the outset of the study, we hypothesized that learning would involve a 

reorganization of postural control to support stick-balancing performance. Across 

learning sessions, finger trajectories became more variable and discontinuous, and in 

agreement with our hypothesis, similar changes were reflected in center of pressure time 

series. This finding corroborates a substantial body of work, which has shown that 

postural control mechanisms are modified to accommodate secondary task performance 

(Stoffregen et al. 1999, 2000; Balasubramaniam et al. 2000; Stoffregen et al. 2007). In 

agreement with these studies, we have shown that postural control mechanisms are 

specific to the behavioural context in which they are generated; however, the novelty of 

our study was to outline the specific form of the posture-finger interaction and determine 
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how the central nervous system satisfies these simultaneous (and often conflicting) task 

goals. In the ensuing sections, we discuss our results in relation to theoretical models of 

motor learning. 

Central to Newell et al.‘s (2001) motor learning model is that motor subsystems 

become assembled into coordinative relationships that support performance. Our data 

were consistent with this proposition and demonstrated that improved performance was 

the product of two distinct learning processes. The first learning process encompassed a 

series of modifications in individual subsystem organizations and arose between the first 

and second experimental sessions. Large decreases in the regularity and discontinuity of 

corrective finger and COP displacements were observed. In addition, intermittent 

fluctuations in finger and COP states became separated by longer intervals of time. The 

second process corresponded to the lengthened coupling of posture and finger 

displacements that emerged at the third experimental session. According to the 

hierarchical learning model (Newell et al. 2001), these distinct processes demonstrated 

that early-learning was facilitated by changes in the organization of individual 

subsystems and later-learning by their progressive coupling. In other words, individual 

subsystems at lower-levels of the motor hierarchy were progressively organized into a 

coordinative relationship that improved performance. The progressive strengthening of 

posture-finger coupling raises an important question: Did posture-finger coupling arise 

due to the anticipatory or reactive control of posture, or were coupled center of pressure 

and finger displacements the product of a hierarchical control mechanism? Although each 

of these mechanisms could account for our results, the latter mechanism corresponds to a 

superposition of motor subsystems to simultaneously satisfy the dual posture and stick-
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balancing task goals. We argue that center of pressure and finger displacements were 

controlled by a hierarchical mechanism that intermittently switched between coordinative 

and individual subsystem control. 

The anticipatory postural adjustment has been described as a mechanism that 

minimizes the destabilizing effects of self-generated forces that arise during voluntary 

behaviour (Bouisset and Zattara 1987; Ahmed and Wolpert 2009; Cordo and Nashner 

1982; Bouisset et al. 2000). Although cogent arguments have been provided for 

anticipatory postural control mechanisms and their role in motor learning (Flanagan and 

Wing 1997), only discrete movements such as reaching have been considered. In 

comparison, stick balancing is a continuous motor task in which corrective displacements 

are issued to stabilize an external object with intrinsic, unstable dynamics. APAs are 

likely infeasible in this context because they would require the prediction of destabilizing 

stick movements prior to their occurrence. It is more probable that postural corrections 

stabilize the upright stance in reaction to upper limb displacements. 

The present data, in conjunction with a recent study conducted in our laboratory (Cluff 

et al. 2010) provide evidence against coupling mechanisms that are based solely on 

anticipatory or reactive postural control strategies. Our argument is substantiated by the 

fact that center of pressure displacements in stick balancing, on average, are positively 

correlated with finger displacements but switch to weaker negative correlation over 

longer time intervals. In other words, finger movements are time-locked to postural 

displacements over short intervals, but postural control switches to a compensatory 

mechanism presumably when upper limb motion destabilizes the upright stance (Cluff et 

al. 2010, P-SB condition, figure 7). Therefore, we argue that stick-balancing skill is 
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related to the development of a control hierarchy whereby subjects learn to drive finger 

displacements with postural excursions but intermittently dissociate this control to 

individual subsystems when necessary. 

Why does control switch from coupled to individual subsystem dynamics? One 

possibility is that the abrupt and intermittent (de)coupling of posture and finger 

displacements is performed in response to instabilities that arise in the subsystem 

dynamics. Intermittent dynamics are characteristic of systems with threshold stability 

criteria that lead to rapid fluctuations or discontinuities in variables of interest (Platt et al. 

1993; Landa et al. 1998). In human motor control, the recruitment and suppression of 

individual segments has been described as an intermittent control mechanism that 

stabilizes motor performance (Buchanan et al. 1997; Buchanan and Kelso 1999) in 

response to perturbation (Newell and Vaillancourt 2001). The observation that 

intermittency existed at all levels of our analyses suggests that the central nervous system 

may (de)couple individual subsystems to satisfy concurrent task goals. Our rationale is 

consistent with evidence that human feedback parameters are often tuned to correct 

threshold-crossing perturbations that arise during voluntary behaviour (Kelso 1995; 

Buchanan and Kelso 1999; Cabrera and Milton 2004). We supplement these studies by 

demonstrating that coupling functions can be selectively dissociated to control individual 

subsystems in a similar state-dependent manner. 

In conclusion, we have shown that the dynamics of posture and finger displacements 

are altered by learning a novel stick-balancing task. In addition, we demonstrated that 

practice caused a systematic increase in the occurrence and duration of coupled posture-

finger displacements and recurrence-based measures were more sensitive to these 
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changes than dynamical time series measures (Rhea et al. 2011). We suggest that this 

coupling resulted from the development of a hierarchical control mechanism that 

switches between controlling coupled to individual posture and finger displacements. 

Future work will examine how individual segments contribute to postural control and 

hand displacements, and whether these contributions evolve as a function of learning. 

This research would enable detailed comparison between dynamical methods that focus 

on outcome level analyses and statistical methods that decompose the contributions of 

individual segments to performance variability.
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Chapter 6 – Unstable Object Control Is Mediated by 

Multijoint Error Compensation
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6.1 – ABSTRACT 

 
 The purpose of our study was to determine whether skill acquisition was mediated by the 

stereotyped recruitment of individual joints (i.e., task sharing) or multijoint error 

compensation. We monitored stick balancing performance in four experimental sessions 

(1 session/5 days) and confirmed that subjects learned the task by showing that the length 

of balancing trials increased with training. A key finding was that motor learning 

mediated multijoint error compensation. We found that with training, subjects 

preferentially minimized joint variance that destabilized the fingertip position time 

profile. Importantly, we found that the selective constraint of destabilizing joint variance 

correlated to task performance. We additionally examined the variance and coupling of 

paired joint angle excursions to verify that improved performance could not be attributed 

to changes in the recruitment of individual joints. We found no evidence for an explicit 

task sharing strategy and reported a complex set of joint angle correlations that were 

unaffected by skill acquisition. We interpret our results from the viewpoint of optimal 

feedback control and propose a learning mechanism that is based on the accurate 

estimation of sensory states. Our data encourage future work to examine the relationship 

between the integrity of sensory information and the structure of joint configuration 

variance.
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6.2 – INTRODUCTION 

Object manipulation is central to many of the activities that we perform in daily life, and 

often, the objects that we control are unstable. Common examples include the waitress 

that balances a tray of drinks while maneuvering through a crowded restaurant, or cyclists 

who navigate rush-hour traffic, avoiding pedestrians and vehicles while staying upright 

on their bicycles. In each of these tasks, the object is balanced at an unstable equilibrium 

and controlled indirectly through the interaction between applied forces (i.e., motor 

commands) and the intrinsic object dynamics. 

A number of studies have investigated unstable object control using an inverted 

pendulum (stick) balancing task (Cabrera and Milton 2002) and demonstrated that 

performance is mediated by state estimation processes (Mehta and Schaal 2002; Mah and 

Mussa-Ivaldi 2003) and time-delayed feedback control (Milton et al. 2009). We know 

little in comparison about how individual joints are recruited and coordinated to control 

unstable objects. Here we examined motor learning in a (physical) inverted pendulum 

balancing task with the objective to investigate two aspects of coordination and their role 

in skill acquisition: Task sharing and multijoint error compensation. 

The task-sharing perspective was pioneered by Bernstein‘s (1967) treatise on the 

coordination and control of voluntary movement. Bernstein proposed that skilled motor 

behaviour is acquired through three incremental stages that involve learning to control 

and progressively incorporate joint-space degrees of freedom into task performance. Joint 

angle variances and inter-joint correlations have subsequently been used to evaluate skill-

dependent differences in task sharing between individual joints (Temprado et al. 1997). 

The recruitment of individual joints and the emergence of inter-joint correlations have 
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been reported for the acquisition of diverse motor skills including ball bouncing 

(Broderick and Newell 1999), dart throwing (McDonald et al. 1989), simulated skiing 

(Vereijken et al. 1992) and the racquetball forehand shot (Southard and Higgins 1987). 

The relationship between joint angle variance and outcome performance is 

confounded, however, by the equivocal mapping between angular joint trajectories and 

motion at the end effector (Polit and Bizzi 1978; Lacquaniti and Soechting 1982). Thus, it 

is conceivable that skilled performers engage a flexible and error-compensating joint 

control strategy to stabilize task performance (Latash 2000; Latash et al. 2002; Yang and 

Scholz 2005; Latash et al. 2007). A very useful technique to investigate multijoint error 

compensation is the uncontrolled manifold (UCM) method (Scholz and Schoner 1999), 

which partitions motor variance into two structural components: (a) variance that 

stabilizes performance (VUCM) and (b) variance that destabilizes performance (VORT). In 

the context of our study, the subscript UCM refers to joint angle configurations within the 

UCM-subspace (i.e., task-irrelevant variance), while the subscript ORT refers to the 

orthogonal variance component that destabilizes outcome performance (i.e., task-relevant 

variance). If the time-varying fingertip position is controlled by multijoint error 

compensation, we expected that the neural controller would preferentially permit variance 

in the UCM-subspace (VUCM) while constraining joint angle variance that destabilizes 

performance (VORT). 

We investigated the structure of joint configuration variance using a link-segment 

model that mapped six independent joint angle configurations onto the time profile of the 

fingertip position control variable (i.e., the sagittal plane position of the inverted 

pendulum pivot). We hypothesized that unstable object control would be mediated by 
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multijoint error compensation and that the selective constraint of destabilizing joint angle 

variance would emerge across training. We show that stick balancing performance indeed 

correlates with the ratio of VUCM to VORT, such that performers who minimize VORT 

perform best at the task. We additionally show that learning caused the selective 

minimization of destabilizing joint angle variance (VORT) but did not influence variance 

aligned on the UCM-subspace (VUCM). 

6.3 – METHODS 

 
Subjects 

Eight healthy subjects (5 males, 3 females; age = 24.5 ± 2.4 years) participated in the 

study. The subjects were right-handed, had normal or corrected vision and reported no 

musculoskeletal or neurological disorders. Prior to the experiment, each subject attended 

a recruitment session that outlined the purpose of the study and time commitment. 

Participants gave written informed consent for the protocol, as approved by the McMaster 

University Research Ethics Board. The subjects were remunerated for their time in the 

laboratory and could withdraw from the study without penalty (none did so). 

Protocol 

The subjects performed twenty balancing trials (2 blocks × 10 trials) during the 

initial recruitment/briefing session to become familiarized with the task. During the 

familiarization trials, the subjects balanced a cylindrical wooden dowel (stick) with 

different physical properties (length = 100 cm; diameter = 1.71 cm; mass = 150 g) than 

the stick used for the experiment and practice (length = 62 cm; diameter = 1 cm; mass = 

50 g). The inertia of the stick moderated the task difficulty by providing additional time 
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for corrections. We recorded each subject's preferred stance to control the balancing 

posture between trials and learning sessions. 

Each subject attended daily practice sessions conducted at the laboratory. We did not 

impose a fixed number of practice trials in each session, but required that subjects 

practice for 30 min/session. We maintained a log to ensure that each subject satisfied 

these practice requirements. We monitored motor learning in four experimental sessions 

(~90 min, including subject preparation time) that were substituted for every fifth practice 

session. 

The experimental sessions consisted of twenty trials (2 blocks × 10 trials) that ended 

when the subject dropped the stick. We instructed subjects to balance the stick for as long 

as possible and attempted to achieve a consistent postural alignment for each trial by 

asking that subjects align their feet with their preferred stance. If the preferred balancing 

stance was not maintained during trial performance, we excluded the trial from further 

analysis and repeated data collection. Individual trials were separated by a minimum of 

thirty seconds and blocks of trials by a five minute rest period. The allotted rest breaks 

could be supplemented at the subjects' request to alleviate temporary discomfort due to 

visual strain, and physical or attentional fatigue. 

Equipment and Apparatus 

Segment kinematics were recorded with 14 mm spherical reflective markers that we 

positioned over surface anatomical landmarks to provide an approximation to the joint 

centers of rotation (ankle joint: lateral malleolus; knee joint: lateral femoral condyle; hip 

joint: greater trochanter; shoulder joint: inferior to the lateral aspect of the acromion 

process; elbow joint: lateral humeral condyle; wrist joint: styloid process of the radius). 
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We also attached 14 mm reflective markers to the top and bottom of the stick. The marker 

coordinates were recorded at a sampling rate of 750 Hz using a ten camera VICON T-40 

motion capture system (Lake Forest, CA, USA). 

Data Reduction 

The three-dimensional marker coordinate data were reconstructed and autolabeled 

offline using subject-specific link-segment models that we constructed with the VICON 

Nexus software. The three-dimensional marker coordinate data were imported to 

MATLAB™ R2009a (The Mathworks, Natick, MA, USA) and low-pass filtered (5 Hz 

cutoff, 2
nd

-order, dual-pass Butterworth). We used a bidirectional digital filter to 

minimize artificial phase shifts in the data induced by the filtering algorithm. 

Angle Calculations 

We restricted our analysis to the right-side (balancing side) sagittal plane joint 

kinematics and calculated the ankle, knee, hip, shoulder, elbow, and wrist joint angles at 

each data sample using the filtered marker coordinates. The link-segment model and 

marker placements are outlined in figure 6.1. We calculated the sagittal plane joint angles 

using the general formula, 

,2arctan 




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

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where i corresponded to the joint angle about the i
th 

joint, u


corresponded to the unit 

vector directed along the right-horizontal, and iv


was the unit vector corresponding to the 

limb segment proximal to the i
th

 joint of the link-segment model. The joint angles were  
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Figure 6.1. Schematic of the experimental setup showing the reflective markers (filled 

red circles) used to construct the link-segment model (black line). Sagittal plane joint 

angles (θs) were calculated for the ankle, knee, hip, shoulder, elbow and wrist joints. 

Joint angles were defined relative to the right-horizontal (broken horizontal lines) and the 

angle of the stick was defined relative to the vertical (broken vertical line). 
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defined relative to the right horizontal with positive angles in the counterclockwise 

direction. We used the same formula to calculate the vertical stick angle; however, for the 

stick angle calculations u


corresponded to the unit vector directed along the upward-

vertical and the unit vector v


 represented the sagittal plane stick coordinates. Positive 

vertical stick angles were defined in the counterclockwise direction. We removed the first 

and last 3 s of trial data to confine the analysis to steady-state balancing processes and 

avoid transient adjustments at the start of the trial. 

Dependent Measures 

Mean Balancing Time 

We computed the mean balancing time as the average trial length performed by each 

subject in a given experimental session. We used the average length of balancing trials to 

infer learning-mediated changes in stick balancing performance. 

Variance of Individual Joint Angle Excursions 

We used the variance of angular joint excursions to examine change in the 

recruitment of individual joints while subjects learned the task. We first determined the 

occurrence of successive corrections based on local maxima in the angular stick profile. 

For each trial, we partitioned the joint angle kinematics into time profiles with beginning 

and endpoints defined by the local angular stick maxima. We normalized each corrective 

displacement to 101 points by linear interpolation and calculated the variance of 

individual joint angles. We averaged the joint angle variances across corrections 

performed within each trial and then across trials within each session. 
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Correlations between Individual Joint Excursions 

To investigate change in the coupling of individual joint motions, we calculated the 

zero-lag cross-correlation coefficient between all combinations of paired joint angle time 

series. The cross-correlation coefficients were calculated for each individual trial and 

then averaged across trials in each session. The sign of the cross-correlation indicates the 

direction of coupling, while the magnitude indicates the degree of coupling between 

segments—the more independent the joint motions, the closer the coefficient would be to 

zero. Negative correlations reflect instantaneous error compensation between joint pairs.  

Joint Variance and its Relationship to Performance Stability 

The mathematical methods for the UCM analysis have been described elsewhere in 

detail (Scholz and Schoner 1999). In our study, the initial step was to specify a link-

segment model that related individual sagittal plane joint angles to the hypothesized 

finger coordinate control variables (Milton et al. 2009). By restricting our analysis to the 

sagittal plane, we assume that a similar mechanism, if present, would control the frontal 

plane stick angle. 

We used a link-segment model that consisted of six sagittal plane joint angles. The 

link-segment model relating the joint configuration to the sagittal plane finger coordinates 

at each sample was, 

,
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where wristkneeankle ,,   were the sagittal plane joint angles; and handthighshank ,,, lll   were 

the segment lengths that we calculated from marker coordinate data averaged over the 

first 3-s of each trial. Changes in the individual joint angles were mapped onto the finger 
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coordinates by constructing the Jacobian matrix, which is the system of first-order partial 

derivatives   iJ θFθ  : 

  

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The second step was to compute the linear approximation of the individual joint angles 

onto the invariant joint configuration subspace (UCM). This step required specification of 

a referent joint configuration at each data sample. For each trial, we used the local 

angular stick maxima to partition individual joint angle profiles into successive 

corrections (see the Variance of Joint Angle Excursions section). We ensemble-averaged 

the joint angle time series at each normalized time sample to determine the referent joint 

configuration. Our method is a within-trial UCM analysis that examines online error 

compensation between individual joint angles (Scholz et al. 2003; Ranganathan and 

Newell 2008). 

The referent joint configuration was then used to compute the UCM. The linear 

approximation of the UCM was calculated by determining the nullspace of the Jacobian 

matrix with respect to the referent joint configuration at each normalized time sample. 

We calculated the nullspace of the Jacobian matrix by singular value decomposition in 

MATLAB. We then calculated the angular deviation matrix by subtracting each joint 

angle from their respective referent angle and projected it onto the nullspace of the 

Jacobian. We used this projection to provide a scalar estimate of how consistent the joint 

configuration was with the referent finger coordinate at that time sample, we used the 

complement to estimate the extent to which the joint configuration matrix destabilized the 

instantaneous finger coordinates. We normalized the variances within the UCM (VUCM) 

and orthogonal subspace (VORT) to the dimension of the subspace 
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 1 DOF;4DOF ORTUCM  , the number of samples (n = 101 samples), and the number of 

corrections, which varied from trial-to-trial. We used the UCM ratio, which is defined as 

the variability on the UCM (VUCM) relative to the orthogonal joint configuration subspace 

(VORT), to determine whether learning led to the development of a multijoint error 

compensation strategy  ORTUCMratio VVUCM  . An UCMratio > 1 would demonstrate that 

selective error compensation is used to stabilize the time-varying finger coordinates.  

Relationship between the Variability Ratio and Performance 

We used Pearson‘s product moment correlation coefficient to examine the relationship 

between balancing time and the UCMratio. Positive correlation would demonstrate that 

performance is dependent on the degree of error compensation between individual joint 

configurations. We sought to determine if error compensation (i.e., feedback control) was 

a significant predictor of stick balancing performance. 

Statistical Analysis 

For every dependent measure, we averaged subject data across trials performed in each 

session. We used a one-way repeated-measures analysis of variance (ANOVA) to 

determine the influence of learning on balancing time. Separate one-way repeated-

measures ANOVAs were performed to determine whether the individual joint angle 

variances (6) differed across experimental sessions (4 levels: Sessions 1 to 4). We chose 

separate one-way ANOVAs in favour of the two-way ANOVA with joint (6) and session 

(4) factors because we were interested in learning-induced changes in joint variance and 

not the difference in variance across joints. Additionally, we performed a two-way 

repeated-measures ANOVA to determine how the organization of joint variance (2 levels: 

VUCM and VORT) differed across experimental sessions (4 levels: Sessions 1 to 4). Finally, 
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we natural log-transformed the UCMratio to correct for deviations from normality and 

contrasted it across sessions using a one-way repeated-measures ANOVA. The post-hoc 

means comparisons were performed using paired t-tests with Bonferroni-Holm 

corrections. We performed the statistical analyses in PASW version 18.0 (SPSS Inc., 

Chicago, IL) with the significance level set to α = 0.05. The pairwise mean differences 

and corrected p-values are reported in the text and figures 6.2 through 6.6. 

6.4 – RESULTS 

 
Mean Balancing Time 

Mean balancing time showed a marked learning effect (F (3, 21) = 22.86, p < 0.001, 

Fig 6.2) and post-hoc comparisons demonstrated that the average balancing time was 

greater following training (Session 4) relative to early-learning (Sessions 1 & 2; ps < 

0.05). In addition, mean balancing time was reduced in the first relative to third session (p 

< 0.001). We interpret the magnitude and structure of joint angle variance and the 

development of error-compensation mechanisms in relation to the changes in 

performance that accompanied learning.  

 
Figure 6.2. Balancing time (in s) by experimental session. Error bars represent the 

within-subjects SEM. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Individual Joint Excursion Variance and Relationship Between Individual Joints 

The top three panels of Fig. 6.3 show the variability of the ankle (a), knee (b), and hip (c) 

joints ensemble-averaged across trials and sessions. In contrast to the variance of lower 

limb joints, the bottom panel shows that shoulder (d), elbow (e) and wrist (f) excursions 

were substantially more variable. Statistical analysis demonstrated that while the variance 

of ankle, knee, hip, shoulder and elbow excursions were approximately constant (F (3, 

21) < 2.50, p = ns), learning led to diminutive changes in wrist joint variance (F (3, 21) = 

5.58, p < 0.001). Wrist joint excursions were less variable at the end of training (Session 

4) compared to the first training session (p < 0.05).  

We performed cross-correlation analyses to determine whether changes in 

performance were related to a straightforward, consistent covariation between joint pairs. 

We analyzed the zero-lag cross-correlation coefficient for every pair of the six 

investigated joints and averaged this measure across trials. We corrected deviations from 

normality by z-transforming the correlation coefficients prior to the statistical analysis. 

The results demonstrated that performance was subserved by a complex set of inter-joint 

correlations and Table 6.1 shows that the paired joint correlations were unaffected by 

learning. To further understand the complex interdependence of individual joint 

kinematics, we performed an uncontrolled manifold analysis. The UCM analysis allowed 

us to interpret structural changes in joint variance induced by motor learning. 
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Figure 6.3. Variance of joint excursions at the ankle (a), knee (b), hip (c), shoulder (d), 

elbow (e) and wrist (f) joints by experimental session. Joint angle variance was small in 

the lower relative to upper extremity joints. Each vertical bar denotes the within-subjects 

standard deviation averaged across trials performed in that session. Error bars represent 

the within-subjects SEM. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 6.1. Average zero-lag cross-correlation function between pairs of joints. 

Joint pair Session 1 Session 2 Session 3 Session 4 

Ankle-knee 0.41 ± 0.10 0.29 ± 0.06 0.50 ± 0.11 0.44 ± 0.11 

Ankle-hip 0.16 ± 0.07 0.20 ± 0.06 0.20 ± 0.10 0.19 ± 0.09 

Ankle-shoulder 0.20 ± 0.09 0.29 ± 0.05 0.33 ± 0.04 0.20 ± 0.09 

Ankle-elbow 0.15 ± 0.07 0.19 ± 0.06 0.27 ± 0.05 0.19 ± 0.06 

Ankle-wrist 0.22 ± 0.06 0.16 ± 0.08 0.16 ± 0.07 0.16 ± 0.05 

Knee-hip 0.27 ± 0.18 0.26 ± 0.14 0.28 ± 0.18 0.28 ± 0.07 

Knee-shoulder 0.38 ± 0.10 0.43 ± 0.09 0.46 ± 0.10 0.41 ± 0.07 

Knee-elbow 0.50 ± 0.09 0.53 ± 0.11 0.52 ± 0.11 0.51 ± 0.07 

Knee-wrist 0.16 ± 0.14 0.16 ± 0.12 0.18 ± 0.10 0.17 ± 0.04 

Hip-shoulder 0.19 ± 0.10 0.20 ± 0.08 0.15 ± 0.09 0.24 ± 0.07 

Hip-elbow 0.40 ± 0.08 0.30 ± 0.09 0.29 ± 0.09 0.45 ± 0.05 

Hip-wrist 0.24 ± 0.09 0.21 ± 0.05 0.24 ± 0.07 0.28 ± 0.05 

Shoulder-elbow 0.52 ± 0.06 0.62 ± 0.07 0.67 ± 0.02 0.62 ± 0.05 

Shoulder-wrist 0.11 ± 0.06 0.15 ± 0.09 0.09 ± 0.11 0.14 ± 0.08 

Elbow-wrist 0.46 ± 0.07 0.44 ± 0.09 0.26 ± 0.12 0.46 ± 0.05 

*p < 0.05, **p < 0.01, ***p < 0.001 

 

Ratio of Variability: Structure of joint configuration variability related to the stability of 

finger coordinate control variables 

Figure 6.4 plots VUCM (a) and VORT (b) derived from the link-segment model (6-DOF; 

Fig. 6.1) that related individual joint angles to the hypothesized finger control variables. 

The two-way ANOVA revealed that joint variance distributed along the UCM subspace 

(VUCM) was significantly larger than variance in the orthogonal (VORT) direction (F (1, 7) 

= 7.42, p < 0.03, Fig 6.4). There was a significant session-by-variance component 

interaction (F (3, 21) = 8.46, p = 0.001) that we decomposed by planned univariate 

comparisons (i.e., simple main effects). The planned comparisons demonstrated that 

while there was no change in variance on the UCM-subspace (F (3, 21) = 0.64, p > 0.05, 

Fig 6.4a), learning caused a substantial reduction of VORT (F (3, 21) = 8.00, p < 0.001, 

Fig 6.4b). VORT was greatest at the outset of training but decreased monotonically with 

learning (p < 0.05) to demonstrate that multijoint error compensation minimized the 
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deleterious effects of kinematic joint variance. This effect is further summarized in Figure 

6.5. 

We used the UCMratio to quantify the relative variance per DOF in each subspace. The 

UCMratio increased with learning to show that subjects learned to selectively constrain 

joint configurations that jeopardized outcome performance (F (3, 21) = 12.68, p < 0.001, 

Fig 6.4c). The UCMratio was reduced in the first and second relative to third (p < 0.05) 

and fourth (p < 0.05) sessions, and in the second relative to fourth session (p < 0.05). In 

summary, the results confirmed our experimental hypothesis and demonstrated that 

learning caused the selective minimization of destabilizing angular joint variance. The 

underlying control mechanism was composed of flexible yet complex inter-joint 

coupling. 

 

 
Figure 6.4. Mean joint configuration variability per degree of freedom aligned on the 

uncontrolled manifold (VUCM) (a), the orthogonal subspace (VORT) (b), and the ratio of 

VUCM to VORT (c) for the finger coordinate control hypothesis. Error bars represent the 

within-subjects SEM. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 6.5. The structure of joint configuration variance was influenced by training. The 

variability ellipses show the distribution of joint configuration variance across repetitive 

corrections performed within individual trials. Comparison by session demonstrates that 

joint configuration variance changed from an approximately equal distribution on (VUCM) 

and orthogonal (VORT) to the UCM (a); Session1) to progressive stabilization by the 

constraint of motor solutions that detracted from the stability of the fingertip position 

(VORT). The ellipse in (a) (Session 1) shows weak covariation amongst individual joint 

configurations, while (b)-(d) show progressive strengthening of error compensation 

between joints (reduction in VORT from Session 2 through Session 4). 
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Figure 6.6. Relationship between mean balancing time and the variability ratio 

(VUCM/VORT). VUCM/VORT predicted the mean balancing time and subjects who selectively 

minimized VORT performed better at the stick balancing task. Red circles represent 

ensemble-averaged individual subject data. 

 

Relationship Between Error Compensation Mechanisms and Performance 

There was a significant linear relationship between the UCMratio and stick balancing 

performance (Fig 6.6). Independent of learning, subjects who controlled kinematic joint 

error minimized variance in the fingertip position and performed best at the task (Session 

1: F (1, 6) = 8.07, p < 0.05, R
2
 = 0.573; Session 2: F (1, 6) = 15.31, p < 0.01, R

2
 = 0.718; 

Session 3: F (1, 6) = 8.33, p < 0.05, R
2
 = 0.580; Session 4: F (1, 6) = 26.63, p < 0.01, R

2
 

= 0.804). 
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6.5 – DISCUSSION 

 
We undertook this experiment to examine changes in the coordination and control of 

individual joints during the acquisition of an inverted pendulum balancing task. We 

examined the variance and coupling of paired joint angle excursions to investigate task 

sharing between individual joints. We additionally performed a within-trial uncontrolled 

manifold analysis to examine learning-mediated changes in the structure of joint 

configuration variance. We focused on the differential management of joint variance that 

stabilized (VUCM) and destabilized (VORT) the time-varying fingertip position. Our 

objective was to determine how individual joints are coordinated to control unstable 

objects. 

We examined the variance and coupling of paired joint angle excursions to determine 

whether improved performance was mediated by changes in the stereotyped recruitment 

of individual joints. An important finding was that the variance of joint angle excursions 

did not increase with learning, and in contrast, we reported a systematic reduction in wrist 

joint variance across training sessions. This result opposes Bernstein‘s (1967) argument 

that motor learning involves three incremental stages differentiated by the initial freezing 

(rigid control) and progressive recruitment (flexible control) of individual joints. We 

additionally reported that the zero-lag cross-correlations between joint angle pairs were 

constant and could not have accounted for learning-mediated changes in performance. 

Taken together, our data oppose a strict freezing-to-freeing progression in motor learning 

but corroborate a growing body of evidence which has shown that joint recruitment 

patterns are task-dependent (Buchanan and Horak 1999; Konczak et al. 2009). Our results 

show that learning-mediated changes in motor coordination are more diverse than a strict 
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freezing-to-freeing progression and more complex than correlated paired joint angle 

outputs. 

There are two possible mechanisms that may account for the decrease in wrist joint 

variance reported in this study. The wrist joint may have compensated for balancing 

errors in early-learning and was recruited progressively less as participants learned the 

task. Similar mechanisms have been proposed for reductions in lower limb joint variance 

when participants learn to control posture in the presence of sinusoidal platform 

oscillations (Ko et al. 2001). The second mechanism is that destabilizing wrist 

displacements may have arisen due to the inappropriate control of interaction torques 

generated during the ballistic upper limb corrective movements (Atkeson 1989). 

However, since the mass of the stick is negligible, the effect of these perturbations would 

likely be offset by neural mechanisms that compensate for the complexity of upper limb 

joint motion (Gribble and Scott 2002; Kurtzer et al. 2008).  

What changed with learning and led to the systematic reduction of wrist joint 

variance? Certainly our data are consistent with a number of studies that reported 

learning-induced changes in joint variance (Anderson and Sidaway 1994; Young and 

Marteniuk 1998) to reduce end-effector variability in both single (Gabriel 2002) and 

multijoint tasks (Timmann et al. 2001). These results are difficult to interpret, however, 

because there is no straightforward mapping between individual joint angles and fingertip 

kinematics (Latash 2000). In view of this limitation, we performed an uncontrolled 

manifold analysis to further understand the complex interdependence of the angular joint 

kinematics. 
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A noteworthy finding was the differential management of joint variance that 

developed across experimental sessions. We reported a progressive decrease in overall 

joint variance and demonstrated that this effect was caused by the selective reduction of 

variance in the subspace of destabilizing joint angle configurations. In comparison, there 

were no changes in the amount of variance distributed on the invariant UCM subspace 

(VUCM). A number of studies have shown that learning can change the partitioning of 

motor variance between task-relevant and task-irrelevant dimensions, but these studies 

have generated conflicting results and there has been a lack of consensus regarding the 

specific function of motor learning (Latash et al. 2007). To that end, larger (Domkin et al. 

2002), equal (Domkin et al. 2005), and smaller decreases (Yang and Scholz 2005) in 

VUCM have been reported relative to VORT. These findings have prompted a number of 

explanations ranging from optimization criteria imposed to constrain motor responses on 

the basis of efficiency (Domkin et al. 2002; 2005) to a lack of novelty or insufficient 

practice in the to-be-learned motor task (Domkin et al. 2002). In contrast, we have shown 

that motor learning caused the preferential reduction of VORT.  Thus, our results are most 

consistent with the Frisbee task investigated by Yang and Scholz (2005), where the 

decrease in motor variance was largely confined to solutions that jeopardized the 

outcome of the toss (Yang and Scholz 2005). This is an important finding because the 

magnitude of VUCM corresponds to the use of flexible, outcome stabilizing joint 

configurations. In consideration of these findings, two questions are left outstanding: 

What is the significance of VORT and why does it decrease with learning? 

The reduction of VORT may be attributed to a number of factors. Variance in the time-

varying finger positions might have arisen from imprecise sensory judgments about the 
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angular position and velocity of the stick (Jacobs 2009) or during the neural computation 

and execution of motor commands (Faisal et al. 2008). Both of these considerations 

would cause variance in the time-varying finger position, and presumably, could be 

circumvented by learning. However, could either of these factors account for the > 50% 

reduction in VORT across the training period? We propose that VORT was affected by state 

estimation processes used during the ballistic upper limb corrections.  

The goal-specific processing of sensory feedback is a decisive factor in skilled motor 

behaviour (Scott 2004). The confluence between sensory and voluntary control processes 

has been formalized by the optimal feedback control framework (OFC) (Todorov and 

Jordan 2002), which suggests that the CNS constructs modifiable feedback control 

structures that use multimodal sensory inputs to formulate optimal motor responses 

(Diedrichsen, Shadmehr and Ivry 2010). According to OFC, the parsimony of motor 

behaviour is influenced by the integrity of two interrelated neural processes: state 

estimation and feedback control. It has been demonstrated that state estimation processes 

rely on neural representations that encode the physical properties of our limbs (Flanagan 

and Lolley 2001), environment (Gribble and Scott 2002), and manipulated objects (Mah 

and Mussa-Ivaldi 2003). These internal force-motion models are typically acquired prior 

to the development of task-specific control policies (Flanagan et al. 2003). 

In our study, it is possible that the diminutive changes in VORT reflect the acquisition 

of accurate state estimation processes. This would situate our data in the context of the 

work by Mehta and Schaal (2002) that used brief intervals of visual feedback occlusion 

(600-ms) and force perturbation to show that state estimation processes are intimately 

linked to human balance control. Because the hand is the terminal segment of the upper 
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limb and possesses the least segmental inertia, a high-gain (servo-) mechanism could 

enable rapid feedback corrections to be enacted at the wrist independently of other joint 

motions. As subjects learned the dynamical representation between applied upper limb 

forces and the motion of the stick, the corresponding motor commands would become 

tailored to the state of the stick, reduce error, and decrease emphasis on these 

compensatory wrist displacements. Our proposition that VORT is influenced by state 

estimation processes leads to a number of verifiable predictions. If VUCM and VORT arise 

from distinct processes, then we anticipate that an increase in the uncertainty of sensory 

information (variability and not bias) will cause a selective increase in VORT while 

preserving the integrity of multijoint error compensation. The influence of sensory 

feedback on the task-specific distribution of motor variance will likely be an important 

direction for future research.  

In conclusion, we have shown that the UCMratio predicted stick-balancing 

performance. We additionally demonstrated that joint configurations that jeopardized the 

outcome of the task were selectively eliminated with practice to engender incremental 

changes in performance. Our data have implications in understanding the relationship 

between sensory feedback and motor variance. We anticipate this approach will be a 

fundamental step in linking the higher-order structural properties of motor variance to the 

underlying estimation and control processes.
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7.1 – THESIS SUMMARY 

 
Goal-directed motor tasks commonly require the use of objects, tools and implements 

to interact with our environment. Dynamic object interactions can vary in terms of the 

rigidity, geometry and stability of manipulated objects, yet we formulate adaptive motor 

responses that accommodate differences in the task, context and object mechanics. 

Knowledge of the underlying control mechanisms and learning processes is imperative to 

understanding the basis of skilled object manipulation. The five studies presented in this 

thesis used an inverted pendulum (i.e., stick) balancing paradigm to investigate skill 

acquisition and elaborate the task and context-dependent attributes of unstable object 

control. 

 We hypothesized that learning would mediate the functional integration of posture 

and upper limb dynamics and expected changes in the task demand and context to be 

reflected in the control of posture and the upper limb. In addition, we examined joint 

angle variance with the expectation that skilled performers co-vary individual joint 

configurations to stabilize the position of their fingertip (i.e., inverted pendulum pivot). 

To address our hypotheses, we performed a comprehensive evaluation of posture 

(Chapters 4 and 5), upper limb (Chapters 2, 3, 4, 5 and 6) and individual joint kinematics 

(Chapter 6). Our behavioural approach has provided knowledge about the circumstantial 

properties of unstable object control at multiple levels of the motor system. The following 

sections provide a summary of each study and outline future research directions. 

 

 

 

 



PhD Thesis – T. Cluff  McMaster University – Neuroscience 

173 
 

7.2 – LEARNING AND CONTEXT-MEDIATED ATTRIBUTES 

OF UNSTABLE OBJECT CONTROL 

 
In Chapters 2 and 3, we devised a stick balancing task that required a cylindrical 

wooden dowel to be balanced at the fingertip. We examined the context-dependent 

attributes of unstable object control by imposing two alternate balancing postures—

seated and standing. Compared to the standing posture, seated balance imposed a 

limitation on the biomechanical degrees of freedom to be recruited for task performance 

(Chapters 2 and 3). At issue in these studies was the investigation of how we learn to 

control unstable objects and to specify if learning and control are dependent on the 

balancing context. 

Chapter 2 evaluated the learning and context-dependent attributes of upper limb 

control. We found that the length of balancing trials (i.e., outcome performance) 

increased systematically across training sessions and further explored this result in terms 

of the statistical properties of upper limb kinematics. We used a regression analysis to fit 

our data to theoretical Lévy distributions and evaluate the truncation and scaling of upper 

limb kinematics (Cabrera and Milton 2004b). We found that motor learning caused 

systematic changes in task performance and a corresponding increase in the prevalence of 

rapid upper limb displacements. Another important finding was the stringent constraint 

imposed on upper limb control by differences in the balancing context. We found that the 

distribution of upper limb kinematics was truncated in seated balance and large changes 

in fingertip speed were uncommon. 

Chapter 3 was motivated by Cabrera and Milton‘s (2002) observation that angular 

stick fluctuations occur on timescales shorter than estimated voluntary control delays 

(~100-ms) and show amplitude variations that are characteristic of on-off intermittency—
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periods of low amplitude fluctuations that alternate with epochs of feedback-driven 

corrections. Provided that angular stick fluctuations are intermittent, we hypothesized that 

upper limb displacements would be composed of two independent timescale components 

differentiated by their correlative properties. We additionally hypothesized that the 

temporal structure of upper limb corrections would be modulated by the balancing 

context. We used a numerical phase space reconstruction method (cf. Webber and Zbilut 

1992; Marwan et al. 2007) to determine whether the switching time to feedback control 

was dependent on motor learning and the balancing context. 

We demonstrated that upper limb displacements are indeed composed of two 

independent timescale components: a fast stochastic component and slow feedback 

control. On that note, we found that the discontinuity, stability and regularity of upper 

limb displacements changed systematically across training sessions. Another important 

finding was the differential control evoked by changes in the balancing context. We 

found that the average time interval between upper limb corrections was substantially 

shorter for seated balance. In accordance with previous research (Cabrera et al. 2006), we 

have argued that fast fluctuations transiently stabilize the inverted pendulum and over 

brief time intervals accomplish some of the nuanced properties of voluntary control 

(Cabrera and Milton 2002; Cabrera and Milton 2004a, b). In summary, we have shown 

that the distributional properties of upper limb kinematics (Chapter 2) and the interplay 

between stochastic and corrective motor processes are dependent on the balancing 

context and expertise (Chapter 3).  

Collectively, Chapters 2 and 3 provided convergent evidence on three important 

features of unstable object control. First, learning-mediated changes in the scaling, 
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truncation and spatiotemporal properties of upper limb kinematics reflected the tuning of 

balance control to optimize performance (Chapters 2 and 3). Second, stick-balancing 

performance was dependent on differential upper limb control evoked by changes in the 

balancing context. Subjects switched more rapidly from fluctuating to corrective upper 

limb displacements in seated balance (Chapter 3) and the speed of corrections was 

substantially more variable for standing balance (Chapter 2). Third, while it has been 

argued that unstable objects are balanced using continuous model-based control 

mechanisms (Mehta and Schaal 2002), several studies have indicated that complex 

human balancing tasks are performed using intermittent corrections (Cabrera and Milton 

2002; Milton et al. 2009; Loram and Lakie 2002; Loram et al. 2006; 2009; 2011; 

Gawthrop et al. 2011). Our observation that upper limb kinematics were composed of two 

independent timescale components (Chapter 3) corroborated that the stick balancing 

control mechanism is intermittent. In conjunction with Milton et al., we have argued that 

intermittent control likely arises from the expertise-dependent interplay between feedback 

control and motor variability (Cabrera and Milton 2002; Cabrera and Milton 2004a; 

Milton et al. 2009), but, importantly, we have shown that the interplay between stochastic 

motor processes and feedback control is modulated by differences in the balancing 

context. 

In addition to elaborating the learning and context-dependent features of unstable 

object control, the results of Chapter 2 raised concern for computational studies that 

employ the Kalman filter algorithm (Kalman 1960). The problem is that motor noise is 

assumed to be Gaussian distributed and additive (Wolpert et al. 1995; Wolpert et al. 

1998), while in comparison we have shown that upper limb kinematics are Lévy 
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distributed (i.e., heavy-tailed) for stick balancing. This is an important finding since the 

default state observer in sensorimotor control models is the Kalman filter (cf. Mehta and 

Schaal 2002; Denève et al. 2007). Our data indicate that the accuracy of the Kalman filter 

is likely dependent on contextual factors and subject expertise and indicate that these 

factors likely require explicit experimental control or the use of suitable estimation 

algorithms (Gordon et al. 2006; Sinha et al. 2007). Further investigation may help resolve 

the paradox where, on the one hand, it is well understood that the variability of muscular 

force production increases with the mean amplitude of force produced, yet it is 

commonly assumed that the state-dependent component of motor noise is negligible (cf. 

Todorov 2005 for a similar argument).  

7.3 – TASK-DEPENDENT PROPERTIES OF UNSTABLE 

OBJECT CONTROL 

 
Chapter 4 examined the task-dependent properties of posture and upper limb control. 

Our focus was to determine whether task instruction influenced the stochastic (i.e., drift 

or open loop) or feedback component (i.e., corrective or closed loop) of unstable object 

control (Milton et al. 2009). We expected that explicit task instruction would elicit 

differential feedback control and evaluated our hypothesis by decomposing posture and 

upper limb displacements into open loop and corrective feedback components based on 

the correlative properties of time series (Collins and DeLuca 1994; 1995). 

An important result was that conjoint cognitive load caused a reduction in the average 

switching time from open loop displacements to feedback control. This change reduced 

the variability of posture and upper limb kinematics and elicited a shift toward lower 

mean power frequency composition. A notable finding was that cognitive load caused a 

reduction in the persistence (i.e., autocorrelation) of short timescale posture and upper 
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limb displacements. This was an intriguing result because in comparison to voluntary 

control, we know very little about the task-modulation of short timescale motor 

processes. Though numerical simulations have shown that fast control (i.e., short latency) 

may be linked to the tuning of parametric motor noise (Cabrera et al. 2006; Milton et al. 

2009), further research is required to clarify the underlying neurophysiological processes. 

One possibility is that short timescale activity reflects joint impedance control achieved 

by the co-contraction of upper limb agonist and antagonist muscle pairs. Upper limb co-

contraction is known to be modulated by the instability of mechanical loads and the 

accuracy demands of goal-directed behaviour (Gribble et al. 2003; Milner and Cloutier 

1993; 1995; 1998; Osu et al. 2004; Visser et al. 2004), and a relevant finding is that 

elbow joint impedance is used to reduce the variability of hand motion caused by state-

dependent motor noise (Selen et al. 2005). If subjects use joint impedance (i.e., muscle 

co-contraction) to modulate the variability of short timescale upper limb displacements, 

then it is conceivable that joint impedance would scale to the task difficulty evoked by 

balancing short, light sticks. Further investigation may provide important insight about 

the control of short timescale motor variability in human balancing tasks. 

An influential theory in motor control is that outcome performance is dependent on 

the focus of attention. A reproducible finding has been that task instruction or feedback 

that induces an external focus facilitates the self-regulatory processes or automaticity of 

motor performance (Kluger and DeNisi 1996; Lohse et al. 2010; Wulf et al. 2010). In 

contrast, self-focused attention has been shown to induce excessive, superfluous 

corrections. In Chapter 4, we used explicit attentional instructions to investigate the task-

dependent properties of unstable object control. We found that performance variability 
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and the time interval for switching to corrections increased regardless of whether the 

focus of attention was outcome or execution-oriented. We speculated that this finding 

was caused by the shift to a slower (presumably conscious; cf. Loram et al. 2009) 

corrective mechanism. Thus, explicit instruction caused variable task performance and 

demonstrated that focused attention is counterproductive for skilled stick balancers 

(Beilock et al. 2002a, b; Beilock et al. 2004; Gray 2004; Beilock et al. 2008). Our data 

cannot rule out, however, that outcome-oriented motor attention may facilitate learning, 

and further research will be required to characterize the learning-dependent relationship 

between motor attention and performance (McNevin et al. 2003; Wulf et al. 2010; 

Freudenheim et al. 2010). One explanation for why we did not replicate the enhancing 

effect of outcome-oriented motor attention is that the relationship between attention and 

performance is confounded by expertise. In that case, two tenable hypotheses are that (1) 

naïve or novice subjects lack the task knowledge and resources to accommodate 

secondary task performance (Beilock et al. 2002b; Milton et al. 2004; 2008) and (2) 

outcome-oriented feedback facilitates motor learning and retention (Todorov et al. 1997; 

Shea and Wulf 1999; Malone and Bastian 2010). 

In short, an important component of this thesis was to evaluate posture and upper 

limb mechanisms that are involved in the control of unstable dynamical objects. A key 

result in Chapter 4 was that task instruction and cognitive load evoked similar 

modifications in posture and upper limb control. The task-mediated similarity of posture 

and upper limb control supports the emerging argument that voluntary control is 

supported by the task-dependent recruitment and control of posture. 
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7.4 – POSTURE-UPPER LIMB COUPLING IS MEDIATED BY 

MOTOR LEARNING 

 
Complex motor tasks often require the coordination of postural control and voluntary 

movement. In view of these considerations, a comprehensive theory of motor learning is 

required to explain how specialized motor systems are integrated into goal-specific 

interactions (Bingham 1988; Bernstein 1996; Newell et al. 2001). In Chapter 5, we asked 

whether stick balancing expertise would mediate the reorganization of postural control, 

and also, if motor learning influenced the sophistication of posture-upper limb 

interactions.  Building on work by Huys et al. (2003; 2004a, b), we hypothesized that 

learning would elicit common changes in posture and upper limb control and evoke 

systematic increases in the sophistication of posture-upper limb interactions. To address 

our hypothesis, we performed an innovative analysis that investigated the learning-

dependent coupling of posture and upper limb dynamics (cf. Marwan et al. 2007). We 

interpreted our results from the perspective of a hierarchical learning model (Newell et al. 

2001) and this study was among the first to quantify learning and control at multiple 

levels of the motor system. 

Our results corroborated Newell et al.‘s (2001) model and demonstrated that skill 

acquisition involved two independent learning processes. First, we found that posture and 

upper limb control were governed by intermittent balancing strategies (as shown in 

Chapter 4) and that the time interval between corrections increased systematically across 

the investigated training period. The second learning effect involved the incremental 

occurrence and lengthened coupling of correlated posture-upper limb trajectories. In 

agreement with Newell et al.‘s (2001) model, our data have shown that independent 
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subsystems at lower levels of the motor hierarchy are organized into task-specific 

interactions that stabilize outcome performance (Newell et al. 2001).  

We argued that posture-upper limb coordination is likely contingent on a state-

dependent (de)coupling mechanism and we have additionally proposed that the abrupt 

decoupling of posture-upper limb trajectories is caused by the instability of subsystem 

dynamics. Our rationale is supported by the observation that human feedback parameters 

are often tuned near instability (Kelso 1995). Thus, we anticipate that perturbing forces 

applied to the tip of the stick would induce the abrupt dissociation of posture-upper limb 

coupling to enable independent subsystem corrections. State-dependent posture-upper 

limb coupling is a plausible control mechanism and is similar to the spontaneous 

recruitment of body segments that has been shown to intermittently stabilize inter-

effector coordination (Buchanan et al. 1997; Buchanan and Kelso 1999).  

In summary, we have provided novel insight about the sophistication of posture-upper 

limb interactions, but an important direction will be to specify the precise mechanism(s) 

that give rise to the abrupt (de)coupling of posture and upper limb control. This question 

can be addressed by extending the method developed in Chapter 6 to investigate the 

learning-dependent interplay between posture and upper limb corrections. Our finding 

that fingertip and postural displacements are on average positively correlated over short 

time intervals suggests that subjects may destabilize posture to facilitate rapid changes in 

the upper limb position (Chapter 4; Fig. 4.7). In comparison, it appears that compensatory 

postural adjustments are performed much later in the correction. In short, stick balancing 

is a complex task that involves ballistic upper limb corrections that cause postural 
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disequilibrium. Further investigation is required to specify how the central nervous 

system stabilizes these simultaneous but conflicting task goals.  

Another interesting possibility is that object manipulation requires the task and 

context-dependent modification of posture-upper limb coupling. It is conceivable that 

posture-upper limb coupling shows much, if not all, of the circumstantial properties of 

posture and upper limb control. A key step for addressing this hypothesis will require the 

investigation of posture-upper limb coupling in alternate balancing postures—e.g., while 

standing upright in a heel-to-toe stance or on altered or reduced base of support. A 

tenable hypothesis is that modification of the support surface will cause the differential 

and direction-specific control of posture and the upper limb. An important development 

will be to determine whether the dynamical properties of the posture-upper limb 

interaction show similar context modulation. 

7.5 – MOTOR LEARNING ALTERS THE STATISTICAL 

PROPERTIES OF MULTIJOINT CONTROL 
 

A common theory in motor learning is that skill acquisition is dependent on inter-

effector coordination. In Chapter 6, we asked whether unstable object control is mediated 

by changes in the variance of individual joint excursions (i.e., task sharing) or multijoint 

error compensation (i.e., flexible joint control). To address this question, we computed 

the variance and coupling of paired joint angle excursions and examined the expertise-

dependence of individual joint recruitment patterns. We additionally investigated 

differences in the structural properties of joint angle variance across training sessions. We 

developed a simple technique to quantify the within-trial structure of motor variance and 

used this measure to implement an uncontrolled manifold analysis. Based on previous 

work, we hypothesized that the time-varying fingertip position would be controlled by 
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multijoint error compensation. Accordingly, we expected that the neural controller would 

selectively minimize joint angle variance that destabilized outcome performance (Latash 

2000; Latash et al. 2002; Yang and Scholz 2005; Latash et al. 2007). This was the first 

study to investigate the joint coordination mechanisms that govern unstable object 

control. 

We found that changes in individual joint angle excursions were inconsistent with 

those predicted by the task-sharing perspective. Specifically, we showed that joint angle 

excursions were relatively constant, but reported a systematic reduction in wrist joint 

variance across training sessions. This result opposed Bernstein‘s (1967) classic theory 

that motor learning involves three incremental stages based on the initial freezing and 

progressive recruitment of individual joints. In conjunction with other authors, we have 

argued that joint recruitment patterns are task-dependent and do not necessarily follow a 

freezing-to-freeing progression with motor learning (Buchanan and Horak 1999; Ko et al. 

2001; Konczak et al. 2009).  

An important finding was the differential management of joint variance that emerged 

across training sessions (Scholz and Schöner 1999; Todorov and Jordan 2002). In 

confirmation of our hypothesis, we found that the selective constraint of destabilizing 

(i.e., task-relevant) joint angle variance was the mechanism underlying incremental 

changes in performance. Our results are consistent with a number of studies that reported 

the selective control of task-relevant motor variables in load stabilization (Sun et al. 

2011), object transport (Gera et al. 2010) and postural control tasks (Hsu et al. 2007). The 

common finding that motor variability ellipses are elongated on the uncontrolled 

manifold indicates that neural control mechanisms preferentially minimize variance in 
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task-relevant movement parameters while satisfying the task demand via the flexible 

recruitment of individual effectors (Liu and Todorov 2009). A logical extension of this 

work would be to determine whether the differential management of joint variance scales 

to the specific task and contextual demands of behaviour. Future work could use our 

paradigm to determine whether the selective constraint of destabilizing joint variance 

scales to the task difficulty associated with balancing shorter sticks.  

We argued that the reduction of wrist joint variance likely reflected the acquisition of 

sensorimotor transformations that relate the forces applied at the fingertip to the 

corresponding angular stick motion. Our rationale is supported by the observation that 

state estimation processes are implicated in the control of unstable objects (Mehta and 

Schaal 2002; Mah and Mussa-Ivaldi 2003) and we anticipate that the reduction in wrist 

joint recruitment paralleled the acquisition of the stick-balancing force-motion model. It 

would be beneficial for future research to delineate the relationship between state 

estimation and the enigmatic structural features of motor variance. This would be a 

fundamental step in linking the higher-order structural properties of motor variance to the 

underlying neurophysiological processes. 

7.6 – CONCLUDING COMMENTS 
 

In summary, we examined posture, upper limb and multijoint control processes involved 

in the control of unstable dynamical objects. This thesis has provided an innovative 

approach for the investigation of motor subsystem interactions and we are among the first 

to quantify learning at multiple levels of the voluntary motor system. Our technique has 

provided important insight about the mechanisms that bind posture and upper limb 

control into functional, task-specific interactions. Another important facet of this thesis 
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was to underscore the task and context-dependent properties of unstable object control. 

We have provided knowledge about the functional attributes of unstable object control 

and specified how they were modulated by the balancing task and context.  A promising 

focus for future work would be to further investigate the influence of physiological, task 

and contextual factors to the event-driven control of unstable objects. The final focuses of 

this thesis were to delineate multijoint control processes, to specify how they were 

refined through motor learning, and to relate these processes to the integrity of unstable 

object control. We demonstrated that flexible, error-compensating joint coordination 

mechanisms stabilize the inverted pendulum and take precedence over the rigid 

recruitment of individual joints. We showed that the differential management of 

destabilizing joint variance was an important determinant of stick balancing performance. 

This finding encourages future work to investigate structural variability changes and their 

functional significance in motor skill acquisition.  
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