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ABSTRACT 

Regardless of their origin or pathology, many, if not all, diseases have 

long been regarded as complex. Yet, despite the progression in the 

understanding of complexity and the development of systems biology, the 

majority of biomedical research has been derived from qualitative principles. In 

comparison to the ethical, temporal and logistical limitations of human 

experimentation, in vivo animal models have served to provide a more 

advantageous means to elucidate the underlying disease mechanisms. However, 

given the additional limitations presented by such models, in silico models have 

emerged as an effective complement, and, in some cases, a replacement for in 

vivo experimentation. The in silico models presented in this thesis were 

developed using mathematical and computational methods to investigate the 

evolution of two complex, diverse diseases from a systems biology perspective: 

allergic asthma and cancer.  

We generated two novel in silico models of allergic asthma aimed at 

clarifying some dynamic aspects of allergic responses. Experimentally, we 

utilized an in vivo murine model of chronic exposure to the most pervasive 

aeroallergen worldwide, house dust mite (HDM), for up to 20 weeks, equivalent 

to at least 20 human years. Using a range of HDM concentrations, experimental 

data were collected to study local and systemic effects. The first model applied 

empirical mathematical techniques to establish equations for airway inflammation 

and HDM-specific immunoglobulins using an iterative approach of 
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experimentation and validation. Using the equations generated, we showed that 

the model was able to accurately predict and simulate data. The model also 

demonstrated the non-linear relationship between HDM exposure and both 

airway inflammation and allergic sensitization and identified system thresholds.  

The second model used mechanistic mathematical techniques to 

investigate the trafficking of eosinophils as they migrated from bone marrow to 

the blood and, ultimately, to the lungs. Making use of a limited data set, the 

model determined the effect of individual processes on the system. We identified 

eosinophil production, survival and death as having the greatest impacts, while 

migration played a relatively minor role. Furthermore, the model was used to 

simulate knockout models and the use of antibodies in silico. 

In the context of cancer growth and metastasis, we developed a 

theoretical model demonstrating the spatio-temporal development of a tumour in 

two-dimensions. The model was encoded to create a computer graphic 

simulation program, which simulated the effects of various parameters on the 

size and shape of a tumour. Through simulations, we demonstrated the 

importance of the diffusion process in cancer growth and metastasis. 

Ultimately, we believe the greatest benefit of each in silico model is the 

ability to provide an understanding of each respective disease recognized as 

dynamic and formally complex, but predominantly studied in reductionist, static or 

un-integrated approaches. 
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CHAPTER 1 

INTRODUCTION 

In all areas of scientific research, the development of novel tools and 

techniques is driven by necessity; the necessity to discover new knowledge, and 

to do so in a manner that is more effortless, time-efficient, and cost-effective. 

These methods, whether original or adapted from existing methods, provide an 

avenue to further our current understanding and acquire information. Information, 

in a biological context, is considered to have an inherent, linear hierarchy, 

ranging from DNA and RNA, to cellular and tissue networks, to individuals and 

populations [1]. Biological processes within each level of this hierarchy, however, 

are not linear, nor are they hierarchical. In biological processes, causes and 

effects are not always proportionate [2]. Rather, biological processes are 

complex. Collectively, they can be considered as complex systems [3-6].  

The field of systems biology seeks to understand observed biological 

phenomena through the net interactions occurring in a system, as opposed to 

those exhibited by its components [7]. By definition, a system consists of a series 

of elements or parts that interact with one another, all of which possess their own 

individual, diverse behaviours [4]. Based upon the manner of these interactions, 

systems can be further characterized based on their level of abstractness, 

linearity and complexity [8]. Through systems biology, this understanding is 

approached by the study of a system’s interactions and behaviours quantitatively 
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over time [9]. In this context, it has been suggested that the greatest challenge in 

this approach is not from a biological perspective, but rather from computational 

and organizational perspectives [7]. 

The concept of complexity can be both peculiar and intriguing. The 

description of a process as complex can take on the meaning of complicated [8]. 

In some instances, it can be used to insinuate difficulty [7]. In mathematical 

terms, it can refer to non-linearity or chaos [10]. Complex systems can 

encompass elements from each of these meanings. A particular subset of 

complex systems, termed complex adaptive systems, is capable of “learning” 

from experience over time, allowing for the system to modify and adjust to its 

environment in an advantageous manner. Examples of such systems include 

health care organizations [11], stock markets [12], education [13], stem cells [14], 

and the brain [15].  

With respect to biological systems, complexity arises from the interactions 

among signals and processes, creating a network of relationships [4,8]. In order 

to understand a complex biological system as a whole, it must be systematically 

simplified through subsystems, which can be represented by in vitro, in vivo, or 

more recently, in silico models [3,5].  
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MODELLING 

Given their complexity, biological systems cannot be modelled in their 

entirety. As such, models are used to create a simplification of what occurs in a 

system [7,16]. Furthermore, models provide a contrivance through which 

hypotheses can be tested and predictions can be made and validated [17]. In a 

simple, non-biological context, consider a model train. The model in this case is a 

scaled down version of the actual representation. Although each individual detail 

is not captured in the modelled version, the essential components to make the 

model recognizable and functional are included, such as the shape of the train, 

the tracks, the cars, the sounds and the motion. The number, importance and 

accuracy of the components included (i.e. variables) are directly related to the 

goals of the model. In this instance, the goal is to create a smaller, aesthetic 

version of a train that is able to travel on a set of tracks.  

When modelling a complex system, it becomes difficult to determine what 

factors are important, and their relative effects on the overall system. If each 

individual aspect of a system were to be included in a model, then, inherently the 

purpose of the model would be defeated. This is counteracted by the objective of 

trying to make the model as realistic as possible. As eloquently stated previously 

by a former colleague, “The information an animal model of asthma can provide 

is therefore very much a reflection of its design, which itself is a reflection of both 

the research motive and the biological/immunological assumptions that inform it” 
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[18]. These same simple principles may be applied to both biomedical and 

mathematical modelling. Although they share the goals of creating smaller, 

functional versions of a larger system while maintaining the general properties 

and important features, they differ in their approach and purposes for research. 

Deciphering the important features and identifying the desired outcomes dictates 

the degree of discrepancy and creative freedom these models contain. The 

information elicited by an in silico model is a reflection of the type of model, the 

purpose of the model, and the underlying biological system in question. 

BIOMEDICAL MODELLING 

Understanding the origin, evolution and nature of many diseases has 

come principally through experimentation via in vitro and, notably, in vivo human 

and animal models. However, it seems important to recognize that conventional 

biomedical modelling differs greatly from modelling in other scientific domains 

such as physics, ecology and economics [4,19,20]. Indeed, biomedical models 

are designed with a pre-established goal in mind: to mimic a known phenotype. 

This literally dictates the logic of biomedical modelling such that a given set of 

variables is manipulated to fabricate a pre-defined outcome. Consequently, little 

or no attention is dedicated to the array of outcomes (biologic-clinical 

heterogeneity) that could have emerged from allowing such a set of variables to 

interact unrestrictedly. Moreover, conventional biomedical experimental 

approaches have been pervasively aimed at understanding the role of a single 
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cell, molecule or gene in a given process. To date, experimentation has 

produced fascinating results, but we have also learned that there are an 

overwhelming number of molecules that are pleiotropic and often redundant. 

 The outcome-driven approach has dictated the manner in which 

experimental models are developed. However, it is evident that an approach 

driven by the outcome itself is inherently limited in its ability to discover the 

underlying conditions to achieve such outcome. In fact, research predicated on 

this approach has taught us little about the nature of the interaction between 

variables in biomedical systems. More conceptually, we believe that it is 

important to assert that a good part of our current understanding of biomedical 

systems is largely teleological, i.e. derived from notions and theories without 

precise definitions. Understandably, this has influenced the modelling strategies 

to date: researchers attempt to model what they think is happening, or could 

happen, rather than what is actually happening. 

MATHEMATICAL MODELLING 

Using mathematics in biological and health related research is certainly 

not a new concept. Various biological phenomena, such as genetics and stem 

cells, have applied mathematics in order to help explain their respective 

biological premises [20,21]. The use of mathematics and computers in 

biomedical problems can help in identifying the relationships among different 

variables within a system. Once the relationships are apparent, models can be 

PhD Thesis - M. Colangelo McMaster University - Medical Sciences

             6



created in order to hypothesize a seemingly infinite number of effects and 

changes in a system simply by changing parameter values that would otherwise 

be very difficult, if not impossible to alter in a clinical or lab setting [22,23]. 

Through simulations generated by these models, we can ultimately strive for a 

better comprehension of the systems in question and therefore target particular 

areas of further research with some understanding of what is likely to occur.  

Mathematical models vary in their structure and possess many 

dichotomous properties, such as empirical vs. mechanistic, stochastic vs. 

deterministic, theoretical vs. experimental. Despite the framework of a 

mathematical model or the system it models, each model is constructed through 

a combination of these properties.  Empirical models have an inherent simplicity 

about them. They tend to be based solely on data, which limits their predictive 

potential [24]. Mechanistic models are initiated using a variety of parameters that 

are distinct to that particular system in the form of confirmed generalizations, 

concepts, definitions, facts, and/or laws, and completed in combination with 

assumptions and hypotheses about the system [17]. As a result, mechanistic 

models have the ability to generate new knowledge and have better predictive 

potential [25]. Without the inclusion of any physical, biological, or psychological 

mechanism that is unique to a system, the process of empirically modelling 

dynamic systems is considered curve fitting [24].  
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Along these lines, models may be theoretical in nature, attempting to use 

general known concepts of a system. On the other hand, models can also be 

purely based on experimental data. Models can also range on a spectrum from 

stochastic to deterministic, with the extremes of being completely random or 

purely deterministic. When analyzing the simulated results from a mathematical 

model using a set of initial conditions, a stochastic model would return different 

results each time, whereas a deterministic model should always be the same 

[26].  The structure and type of model used to characterize a system is not 

specific to a particular field or discipline, but rather is determined by what is 

known about the system and the goals of the model.   

Mathematics and computer code can be considered distinct languages 

that can be used to explain biological properties in a different context. 

Mathematical equations and computer simulations are tools that are used to 

translate these languages. In silico models consider complex biological systems 

from both mathematical and computational perspectives. The behaviours of the 

system are interpreted and often described using ordinary and partial differential 

equations, which are subsequently encoded computationally allowing for 

simulations or in silico experiments to be performed [16,27]. In silico models, 

ideally, should not be used in isolation, nor do they provide the complete story of 

a system. Rather, they are tools to take information and build upon in vivo and in 

vitro biomedical models. In doing so, in silico models can be used to explain 

biological properties in a different context. 
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CONTEXT  

The biological and immunological concepts in this thesis represent two 

diverse biological systems, each modelled using different mathematical and 

computational approaches. The first system investigates allergic asthma, due to 

chronic aeroallergen exposure to HDM, focusing particularly on aspects of 

inflammation. The second system examines avascular cancer growth and 

metastasis in two dimensions, with a single nutrient source. Although each 

represents a complex system, the manner in which they are modelled is affected 

by the previous research of their respective biological and mathematical 

backgrounds, as well as the goals and purposes of the models themselves. 

ALLERGIC ASTHMA 

FROM AN IMMUNOLOGICAL PERSPECTIVE 

During the last 30 years, there has been significant progress in 

understanding the immunological and molecular pathogenesis of allergic asthma. 

Despite the current level of knowledge, the prevalence of asthma has steadily 

increased throughout the same time period leading to over 100 million cases 

worldwide [28]. Recognition of allergic asthma as a complex disease, during this 

time, has also become apparent. Allergic asthma arises from the interaction 

between two complex systems, the immune system and the environment 

containing aeroallergens, both of which are heterogeneous in their own right.   
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Allergic asthma is a multifaceted disease characterized by chronic 

inflammation of the airways that is associated with a defined structural-functional 

phenotype. The chronic airway inflammation is manifested by reversible airway 

obstruction, infiltration of eosinophils and Th2 (T-helper type 2) cells into airway 

submucosa, airway hyperresponsiveness (AHR), airway remodelling, and mucus 

hypersecretion [29]. The immunological response in allergic asthma is a typical 

input-output biological system. Briefly, upon inhalation of an aeroallergen, 

antigen-presenting cells (APC) engulf the antigen, present it to naïve CD4+ T 

cells, which then differentiate into Th2 effector cells. The ensuing immune 

response is a hallmark characteristic of allergic asthma, characterized by the 

production of cytokines that contribute to manifestations of the allergic disease, 

principally IL-4, IL-5 and IL-13 [30]. These cytokines lead to the isotype switch to 

IgE (IL-4), the development of eosinophils (IL-5), and the hypersecretion of 

mucous (IL-13) [31,32]. The ensuing immune response is deemed excessive in 

relation to the insidiousness of the antigen, in that cytokines are produced in 

abundance [33]. The term “endotype” has been recently proposed to encompass 

differences in allergic asthma presentations in the clinical setting, which may not 

be explainable by one single mechanism alone, thus strengthening the notion of 

complexity of the disease [34]. The therapeutic approach for allergic asthma, 

perhaps due to the associated complexity, has largely concentrated on either 

non-specific (corticosteroids) and/or symptomatic (bronchodilators) treatments 

aimed at improving the management of the disease [35]. 
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Despite the simplification of the system with respect to input-output, it 

would be naïve to consider these parameters in a singular sense. With a plethora 

of possible contributing factors and outcomes, biomedical models of allergic 

asthma simplify the system in order to establish the direct relationship of 

particular inputs with corresponding outputs.  

FROM A MATHEMATICAL PERSPECTIVE 

An understanding of allergic asthma as a complex disease brings to light 

the temporal, technical and ethical limitations of in vivo research. Indeed, there 

are many fundamental questions that can be addressed only in experimental 

systems, yet have been sacrificed through the use of static and punctual models. 

That is, many in vivo models tend to focus on particular time-points and allergen 

concentrations, as opposed to using a continuum to investigate temporal 

responses or a range of doses (inputs) [36-39]. As a result, the study of 

immunological systems using mathematical and computational models has been 

widely used in a variety of contexts, the focus ranging from genomics, to 

proteins, to cells, to tissues [40]. With the understanding that insight into the 

immunological mechanisms will drive disease-based therapy, the quantification 

of these mechanisms is fundamental to identifying the behavior of the system 

[41].  

Historically, mathematical models have been used extensively in 

immunology (reviewed in [42]). As computational technology has advanced, the 
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sophistication, applicability and use of such models has increased [43-48]. While 

modelling the immune system [49], as well as specific areas of immunology, such 

as tumour-immune dynamics [50,51], virus-immune dynamics [52-54], immune-

receptor signaling [55], and acute inflammation [49,56] have garnered much 

attention, mathematical analysis of allergic asthma has been explored to a much 

lesser extent. In silico modelling of allergic asthma and, particularly, chronic 

allergic inflammation, is considered to be best suited for studying the elements 

leading to chronic disease, testing the efficiency of drug therapies, the responses 

of cells, and the induction of disease, from a mathematical perspective using 

simulations (reviewed in [57,58]). In comparison to their in vitro and in vivo 

counterparts, in silico models have the ability to investigate a larger scope of 

these experimental aspects in a shorter period of time and with limited 

experimental data. Of particular note, Entelos Inc. developed a computer-based 

mathematical model, named Asthma PhysioLabTM, as a means to emulate virtual 

patients with respect to airway structure, airway function, and inflammation 

[59,60]. Despite the presentation of simulation results using therapeutic 

interventions, there are no methodologies presented, thereby preventing the 

critical appraisal of their work. Similarly, although examples in the literature 

outline asthma as a complex dynamic system, they are not directly supported by 

a mathematical construct [61-63]. Models focused on allergic asthma using 

mathematical and/or computational techniques have been concentrated on a 

particular aspect of the disease, such as airway constriction [64], bronchial 
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hyperresponsiveness [65] or airway function [66]. No studies to date have 

focused on basic immune facets of the disease, such as eosinophil inflammation 

and allergic sensitization.  

CANCER GROWTH AND METASTASIS 

FROM A BIOLOGICAL PERSPECTIVE 

Although different classes of cancer may arise from various instigating 

causes, they all share the distinguishing feature of the inability to regulate cell 

proliferation [67]. The evolution of a tumour can be attributed directly to the 

mutation of proto-oncogenes and tumour suppressor genes. When a proto-

oncogene mutates, becoming an oncogene, the internal signalling of a cell 

deteriorates, primarily causing uncontrolled multiplication [67,68]. Likewise, 

inactivation of a tumour suppressor gene via mutation can lead to over-activated 

proliferation [69].  

In the case of epithelial cancers, which are the most common and 

comprise upwards of 85% of all cancers, once an initial tumour cell emerges, 

additional proliferation and diffusion leads to a small mass, referred to as 

hyperplasia [69]. Further mutations may ensue, eliciting additional growth. The 

cancerous mass may exhibit dysplasia, by appearing irregular in shape, following 

continued proliferation [68,69]. As the tumour continues to grow and spread 

within the tissue, it is referred to as in situ cancer, since it is relatively contained 

within the tissue boundaries. When, and if, the cancer spreads to neighbouring 
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tissue, or into the lymph nodes or the bloodstream, it is considered invasive due 

to the potential metastasis, causing secondary tumours [2,69]. 

When cancerous cells divide, they consume available resources in the 

immediate area, resulting in a necrotic core of dead cells in the centre of the 

tumour [70,71]. The outer layer of cancer cells seeks to migrate to other areas of 

the tissue in search of nutrients such as iron, glucose and oxygen [72,73]. As the 

tumour grows in diameter, the necrotic core also becomes larger, due to 

diminishing regions to which nutrients can potentially diffuse [74]. Since these 

nutrients are unavailable near the core of the tumour, the adhesive interactions 

between cancer cells become disrupted. As cells detach, they diffuse to adjacent 

areas in search of adequate conditions to continue growing [72,73]. It is this 

movement that can ultimately lead to the deterioration of the body’s systems prior 

to clinical detection, ultimately causing fatality. 

Cancerous tumours can be detected clinically with conventional diagnostic 

tools at a minimum volume equal to approximately 1 millilitre [75,76].  This 

corresponds to 1 gram or 109 cells, which would require more than the 30 cell 

divisions to achieve, as cancer cells experience high death rates in vivo [76].  

Assuming a doubling time equal to one-third year, a newly seeded cancerous cell 

and its daughters would remain undetected for just under one decade before 

they could be diagnosed (reviewed in [75,76]).  Consequently, scant data are 

available for this initial phase in cancer growth. It may be appreciated that this 
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initial phase is critical on the basis of publications in which researchers have 

promoted growing cancer cell populations as complex dynamic systems [75,77-

80]. 

FROM A MATHEMATICAL PERSPECTIVE 

In the study of cancer growth and metastasis, there has been a long 

history of using mathematics to explain the growth patterns and metastatic 

effects of tumours in given environments [81-84]. As the use of computational 

and mathematical methods has increased, cancer has been increasingly 

considered as a complex system [74,85-91]. Such systems are characterised by 

sensitive dependence on initial conditions, oscillatory behaviour, and exhibiting 

properties that seem to be unpredictable but are actually deterministic [2,92].  

These properties are hallmarks for chaos, a trait common to some complex 

systems [8,10,93]. 

Cancer growth can be modelled in multiple ways. A model focussing on 

the intracellular level would investigate the various components in the cell that 

lead to cancerous growth, whereas modelling on an intercellular level considers 

only the cells themselves, their growth and their movement [94]. Several key 

characteristics of cancer have been identified and proposed, including: growth 

despite the absence of normal “stop” and “go” signals from neighbouring cells, 

the ability to initiate angiogenesis, and the capacity to infiltrate surrounding 

tissues and organs [95]. From a modelling perspective, these characteristics 
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would be ideal to create an accurate mathematical representation of tumour 

growth, in terms of the patterns of growth. 

For instance, some authors have focused on models to describe nutrient-

dependent cancer growth and the phase transitions involved [79,80,96].  In 

particular, Scalerandi et al. (1999) considered variation in a parameter which 

quantified bound nutrient per cancer cell, and reported that chaotic behaviour 

was elicited from competition among cancer cells during initial growth stages 

[96]; and Delsanto et al. (2000) considered parameters which quantified the ratio 

of nutrient availability to nutrient absorbed by cancer cells and nutrient availability 

in blood vessels, and found attractors in necrotic core volume-cancer tumour 

volume space [79].  Furthermore, Rasnick (2002) used aneuploidy (imbalance in 

chromosome number and composition) theory and logistic difference equations 

to describe cancer growth and showed that the auto-catalysed progression that 

characterises aneuploidy is comparable to the deterministic laws in chaos theory 

[76].   

Within the many processes involved in cancer growth and metastasis, 

most two-dimensional cancer models involve some aspect of cell diffusion 

[74,80,91,97]. Generally, diffusion of individual cancer cells and, thus, the tumour 

mass, limit the size and speed of a growing tumour [67,69]. The ability for cells to 

diffuse impacts their acquisition of nutrients, which are necessary to sustain 

growth in the absence of angiogenesis [98]. As most mathematical models focus 
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on this avascular stage of tumour growth, the effects of this diffusion can be 

crucial [74,80,89-91,97]. If the growth pattern of a tumour is known, then it may 

be possible for researchers to use this information to aid in the development of 

various treatments [78,88,94,98,99].  

OBJECTIVES 

Although the content of this thesis is primarily focused on immunological 

models in a computational context, the overall theme is  the  study  of  complex 

biological systems and describes how mathematics can be used to portray and 

further understand biological systems. The research presented in this thesis 

focuses on the design, development and uses of novel and innovative 

mathematical and computational models of chronic allergic asthma and airway 

eosinophilia. The techniques used in these models are juxtaposed and 

contrasted with earlier research focused on mathematical and computational 

modelling of tumour growth. In each instance, mathematical models are used to 

simplify complex biological systems and learn more about them through the 

testing of various hypotheses, both probable and hypothetical. 

The first manuscript, presented in Chapter 2 of this thesis, describes an 

investigation of the impact of dose and length of aeroallergen exposure of HDM 

on allergic sensitization and allergic disease outcomes, primarily airway 

inflammation, from a computational perspective. Using an established, chronic 

experimental model for allergic asthma we collected in vivo data and developed a 
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mathematical model. Initially, the objective of this study was to develop a 

computational tool via mathematical equations that would enable the simulation 

of doses and time-points both within and outside the established experimental 

protocol. Furthermore, the model allowed for two- and three-dimensional 

visualizations of the system. In addition to the predictive ability of the model, we 

identified thresholds for both allergic sensitization and inflammation, represented 

by doses that elicit changes in system behaviour in HDM-specific IgG1 and 

eosinophils, respectively.  

The second manuscript, presented in Chapter 3, describes a subsequent 

mathematical model that builds upon the model in Chapter 2, now focused on a 

specific cell type (eosinophils) from a mechanistic perspective. In this case, we 

examined chronic airway eosinophilia in response to HDM exposure over the 

course of 14 weeks, and modelled the trafficking of eosinophils from the bone 

marrow to the blood and, ultimately, to the lungs. Using the model, we identified 

which processes, when altered, were most likely to affect the levels of airway 

eosinophilia. In doing so, we were also able to test the sensitivity of those 

processes deemed to have the largest global effect on airway eosinophilia. With 

respect to their relative importance to airway eosinophilia, we identified 

eosinophil production, death and survival as having a greater effect in 

comparison to eosinophil migration. Through in silico simulations, the model was 

able to emulate the effects of both the use of an antibody and a knockout model 

in order to minimize eosinophilia.  
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The third manuscript, presented in Chapter 4, investigates tumour growth 

and metastasis from a mathematical and computational aspect. The model 

considered the evolution of a tumour within a slab of tissue in an avascular, two-

dimensional environment, with a single blood vessel supplying nutrient. Using an 

approach that incorporates cellular interaction and movement, the initial stages of 

tumour growth were defined primarily by growth, death and diffusion processes. 

Each process corresponds to a mathematical equation, which is then encoded 

into computational software program, creating a computer graphic simulation 

program. The code is systematically segregated into sub-routines, each 

corresponding to a specific calculation within the program. The model simulates 

tumour growth over time, and through the variation of individual parameters, 

shows the effects on overall tumour size and shape. In particular, the model is 

distinguished by its ability to vary the number of directions in which cancerous 

cells are able to diffuse, using von Neumann and Moore diffusional 

neighbourhoods. By considering the early stages of cancer growth, the model is 

able to study the interaction among the various cell states and the processes that 

govern them. Furthermore, the model is able to examine the sensitivity of the 

overall growth of the tumour to changes in the initial parameter values. Our 

results showed that while changes in most model parameters affected the overall 

size and shape of the tumour, changes in the initial size of the tumour had no 

effect. Ultimately, the most influential parameter in the model was determined to 

be the manner in which cancerous cell diffusion is calculated.  
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Summary and Central Message: This article aims to capture the 

multidimensionality, quantitative nature and, ultimately, complexity of the 

interaction between aeroallergens and the host. We extensively investigated the 

impact of dose and length of allergen exposure, using house dust mite, on 

allergic sensitization and airway inflammation in mice, and developed 

mathematical algorithms that accurately predict actual biological data as well as 

an extensive array of unknown responses.  Our data demonstrate the non-

linearity of the relationship between aeroallergen exposure and either allergic 

sensitization or airway inflammation, identify distinct system thresholds and 

behaviours for each outcome, and provide a novel computational view of 

allergens-host interactions. 
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Abstract

Background: Allergic asthma is a complex process arising out of the interaction between the immune system and
aeroallergens. Yet, the relationship between aeroallergen exposure, allergic sensitization and disease remains unclear. This
knowledge is essential to gain further insight into the origin and evolution of allergic diseases. The objective of this research
is to develop a computational view of the interaction between aeroallergens and the host by investigating the impact of
dose and length of aeroallergen exposure on allergic sensitization and allergic disease outcomes, mainly airway
inflammation and to a lesser extent lung dysfunction and airway remodeling.

Methods and Principal Findings: BALB/C mice were exposed intranasally to a range of concentrations of the most
pervasive aeroallergen worldwide, house dust mite (HDM), for up to a quarter of their lifespan (20 weeks). Actual biological
data delineating the kinetics, nature and extent of responses for local (airway inflammation) and systemic (HDM-specific
immunoglobulins) events were obtained. Mathematical equations for each outcome were developed, evaluated, refined
through several iterations involving in vivo experimentation, and validated. The models accurately predicted the original
biological data and simulated an extensive array of previously unknown responses, eliciting two- and three-dimensional
models. Our data demonstrate the non-linearity of the relationship between aeroallergen exposure and either allergic
sensitization or airway inflammation, identify thresholds, behaviours and maximal responsiveness for each outcome, and
examine inter-variable relationships.

Conclusions: This research provides a novel way to visualize allergic responses in vivo and establishes a basic experimental
platform upon which additional variables and perturbations can be incorporated into the system.
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Introduction

Allergic asthma emerges from the interaction between two

complex dynamic systems, the immune system and the environ-

ment, where aeroallergens exist. These systems are intricate,

comprise multiple parts which are subject to many interactions

and feedback loops and, consequently, contain a broad array of

outputs. The interaction between these already complex systems

generates an even higher degree of complexity. Thus, deciphering

the conditions under which allergic disease evolves would benefit

from the elaboration of models that can explain and/or predict the

potential outputs of that interaction.

Advances in the understanding of disease processes have come in

great measure through experimentation using in vitro and, notably, in

vivo human and animal models. A detailed appreciation of the

immunopathology of asthma, along with the explosion in molecular

immunology has prescribed the modeling strategies to recapitulate

the asthmatic phenotype, particularly in mice. It should be noted

that conventional biomedical modeling greatly differs from

modeling in other scientific domains, such as ecology or economics

in that biomedical models are conceived with a pre-established goal

in mind: to establish a known phenotype. While such an approach

has produced conspicuous benefits, it has inherently prevented an

unbiased, global understanding of the consequences of the

interaction between allergens and the immune system.

Although it is generally thought that there is a reasonable

correlation between early allergen exposure and sensitization

[1,2,3,4] or sensitization and disease [1,5,6], the connection that

may exist between exposure and disease is less clear [1]. The

intrinsic constraints of these clinical and epidemiological studies
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preclude achieving both a longitudinal and quantitative under-

standing of these relationships. Yet, it seems intuitive that such

knowledge is essential to gain further insight into the origin,

evolution and nature of allergic disease.

The strategy that we followed to investigate the relationship

between aeroallergen exposure, allergic sensitization and allergic

disease embraces a computational conception of immune respon-

siveness [7]. In this conception, the view is synthetic rather than

analytical and, therefore, the focus is on system behaviors rather than

specific components, i.e. the complex molecular networks under-

lying the outcomes that we measured. We surmise that this strategy

is justified ad interim given the current state of knowledge in systems

biology in vivo. We present data delineating the kinetics and dose-

responses for local (total inflammation and eosinophilia) and

systemic (HDM-specific immunoglobulins (Ig) G1 and E) events

elicited in mice by extended exposure to house dust mite (HDM).

We developed and refined algorithms defining the behavior of each

outcome that were subsequently used to conduct in silico simulations

to guide new biological experiments and visualize an extensive array

of unknown responses. We propose that the iterative approach

applied to construct the model exhibits considerable fidelity to the

biological structure of the process.

Methods

Animals
Female BALB/C mice (6 to 8 weeks old) were purchased from

Charles River Laboratories. The mice were housed in a specific

pathogen-free environment under 12 h light-dark cycle. All

experiments described in this report were approved by the Animal

Research Ethics Board of McMaster University.

Protocol of respiratory mucosal sensitization
House dust mite extract (Greer Laboratories) was resuspended

in saline (0.9% NaCl Irrigation Solution, Baxter) and serial

dilutions were done to obtain the desired concentrations. This

suspension was delivered to isoflurane-anaesthetized mice intra-

nasally in a 10 ml volume. Mice were exposed daily to HDM for

either 10 consecutive days (short-term protocol) or 5 consecutive

days a week followed by 2 days of rest for a total of 1, 2, 3, 5, 7, 10,

14 and 20 weeks (long-term protocol).

Sample collection
At various time-points, always 72 hours after the last HDM

exposure, mice were sacrificed. Blood was collected by retro-

orbital bleeding. Blood smears where prepared and serum was

obtained by centrifugation of whole blood. Bronchoalveolar lavage

(BAL) was performed as previously described [8,9]. Briefly, the

lungs were dissected, the trachea was cannulated with a

polyethylene tube (BD Biosciences) and two lavages were done

with PBS (0.25 ml followed by 0.2 ml). Total cell counts were then

determined using a hemocytometer and smears were prepared by

cytocentrifugation. Protocol Hema 3 stain set (Fisher Scientific)

was used to stain blood and BAL smears and differential cell

counts ($500 leukocytes) were determined according to a

previously established protocol [9]. The right lobe of the lung

was inflated and fixed in 10% formalin for histological analysis.

HDM-specific Ig measurements
Levels of HDM-specific IgE and IgG1 in serum were measured

using ELISA techniques as previously described in detail [10].

Optical density (OD) was read at 405 nm. HDM-specific IgE titres

(in OD units) were calculated by subtracting from each sample OD

the average OD value of 20 zero standard replicates plus two

standard deviations. HDM-specific IgG1 titers (in relative units)

were calculated using the formula 1/(x/ODx*0.05), where x equals
the dilution factor closest to but greater than double the average OD

value of 20 zero standard replicates, andODx is theOD reading of x.

Determination of airway responsiveness
Mice were anesthetized with nebulized isoflurane (3% with 1 L/

min of O2), paralyzed with pancuronium bromide (1 mg i.p.),

tracheostomized with a blunted 18-gauge needle, and mechanically

ventilated with a small animal computer-controlled piston ventilator

(flexiVent, SCIREQ Inc.) [11]. Mice received 200 breaths per

minute and a tidal volume of 0.25 ml; the respiratory rate was

slowed during nebulization (10 seconds) to provide 5 large breaths of

aerosol at a tidal volume of 0.8 ml. The response to nebulized saline

and increasing doses (3.125, 12.5 and 50 mg/ml) of methacholine

(MCh, Sigma-Aldrich) was measured. A positive-end-expiratory

pressure of 3 cm of H2O was applied by submerging the expiratory

line in water. Respiratory impedance was determined from 3 second

broadband volume perturbations ranging from 1 to 20.5 Hz every

10 seconds during approximately 2 minutes following each dose of

MCh. The data was fitted with the constant phase model and model

parameters (airway resistance (Rn), tissue dampening (G), tissue

elastance (H) and hysteresivity, a measure of lung heterogeneity

(g=G/H)) were calculated [12]. Model fits that resulted in a

coefficient of determination less than 0.8 were excluded.

Histology and morphometric analysis
Lung tissue was embedded in paraffin and cut at a thickness of

3 mm. Sections were stained with hematoxylin and eosin for

evaluation of the severity and the nature of leukocyte infiltration in

the lungs by light microscopy. Additional sections were stained

with Picro Sirius red to demonstrate the presence of collagen in the

extracellular matrix. Images of main airways were captured with

OpenLab (Improvision) via a Leica camera and microscope

attached to a computer. Analysis was performed on a custom

computerized image analysis system (Northern Eclipse software,

Empix Imaging) as previously described [13]. Briefly, morpho-

metric quantification involved calculation of the percentage of

tissue area that was positively stained within a 40 mm-thick area

from the basement membrane extending into the airway lumen.

Mathematical and computational modeling
All the equations for the mathematical models and analyses

were generated using curve-fitting techniques within FindGraph

software (UNIPHIZ Lab) for each outcome. (All equations and

additional detail on the validation analysis of the model is provided

in an online data supplement)

Data analysis
Data are expressed as means6standard error of the mean

(s.e.m.). Statistical analysis was performed with GraphPad Prism

(GraphPad Software). Results were interpreted by analysis of

variance (one-way ANOVA) followed by the Dunnett post hoc test
to compare HDM exposed groups versus the saline control group.

Differences were considered statistically significant when p values

where less than 0.05.

Results

Dose-response to short-term HDM exposure
We have previously shown that mice exposed intranasally to

HDM at a concentration of 25 mg/day for 10 consecutive days

develop acute airway inflammation [14], and that exposure to

25 mg/day for up to 7 weeks establishes chronic airway
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inflammation associated with remodeling [15]. These static

conditions, fixed times and concentrations, were selected to

achieve desired specific outcomes, thus neglecting the dynamic

nature of a living system. Hence, we initially carried out a dose-

response experiment using a 10,000-fold range, from 0.01 to

100 mg/day, for 10 days. As shown in Figure 1A, the response in

terms of total cell numbers (TCN), eosinophils (EOS) and HDM-

specific serum IgG1 followed a logistic pattern with an incipient

response observed with 1 mg and a plateau after 25 mg. Based
upon these findings, we chose doses of 1 (incipient), 7.5 (moderate)

and 25 mg/day (submaximal) for subsequent experiments utilizing

longer exposure periods.

Modeling the inflammatory response to long-term HDM
exposure
We investigated the impact of exposing mice to those three

concentrations of HDM for up to 14 weeks. As shown in Figure 2A,

repeated allergen exposure initially elicited airway inflammation in

a near-exponential manner that was both dose- and time-

dependent. At 2 weeks, 7.5 and 25 mg led to a distinct peak in

inflammation; from then on, 25 mg maintained a stable level of

maximal inflammation. A similar plateau was also achieved with

7.5 mg only after 7 weeks. Interestingly, exposure to 1 mg of HDM

even for such a protracted period of time did not elicit significant

airway inflammation suggesting that a threshold of responsiveness

for this outcome must be above this concentration.

Once experimental data were collected and analyzed, a bottom-

up model was constructed using mathematical and computational

methods to accurately portray the data and the ensuing dynamics.

Although identical methodology was used for all outcomes (TCN,

EOS and immunoglobulins), detailed steps (Figure 1B) are

presented for only TCN for brevity.

The initial equation was encoded to be used iteratively to

simulate and predict output responses given inputs of dose and

time. Figure 2B shows a retrodiction of the model in which

simulations were compared to actual data and proved to fit fairly

well. Given that lower doses (saline and 1 mg) exhibited a

seemingly different behavior compared to higher doses (7.5 and

25 mg), an intermediate dose of 5 mg was selected to further assess

the model. In this evaluation, a prediction, or interpolation, of a 5 mg
dose was performed and compared to actual data (Figure S1A).

Figure 2C depicts a refined model that incorporates these new

experimental data.

An additional evaluation of the model was also carried out by

extrapolating data up to 20 weeks (Figure S1B). Following

comparison to actual data, the model was further refined to

include all experimental data (Figure 2D), resulting in a final

equation generated from 5 doses and 9 time-points. Equation 1

describes total inflammation (y) as a function of time (t) and dose

(x), while each of the respective co-efficients (xa1, xb1…) represent

dose-dependent quantities (see Methods S1, equations 1.1 to 1.21):

y~f TCNC x,tð Þ~
xa1zxb1sin z1 x,tð Þð Þ2 , 0ƒtƒ3

xa2zxb2e
z2 x,tð Þzxg2tzxh2t

2 , 3ƒtƒ7

xa3zxb3e
z3 x,tð Þzxg3e

z4 x,tð Þ , t§7

8
><

>:
ð1Þ

While the model visually fit the experimental data, accuracy was

verified and quantified mathematically. Using linear regression, the

initial equation, the revised equation (including the 5 mg data), and

the final equation (including both the 5 mg and 20 week data) yielded
R2 values of 0.987, 0.987 (not shown), and 0.990, respectively

(Figure 2E). Furthermore, 95% confidence intervals (CI) and global

validation metrics were calculated (see online data supplement and

Figure 2F). The latter accounts for experimental uncertainty, error

and chance [16,17,18], and confirmed that not only the model

accurately predicts actual responses but also that an additional dose in

the model did not enhance the accuracy of the system, while the

integration of a further time-point had only a minimal effect.

This complex model accurately mimics varying system dynamics.

However, in order to facilitate the visualization of responses, we

developed a simple model (see online data supplement), represented

by Equation 2, which captures the general features of the system:

y~f TCNS x,tð Þ~xazxbtzxct
2

1zxdtzxgt2
ð2Þ

To visualize the dynamics of the system, simulations were

performed with both complex and simple models to emulate the

response between 0 and 25 mg, in sequential 0.5 mg increments

over a 20 week period (Figure 3A–B). Further extrapolations were

performed doubling both the highest dose and latest time-point

used to construct the model. Figure 3C shows simulations in three-

dimensions up to 40 weeks (approximately 50% of the lifespan of a

Figure 1. Airway inflammation and systemic immunity in BALB/C mice exposed to HDM for 10 consecutive days. (A) Dose-response:
total inflammation (black bars), eosinophilia (grey bars) and serum HDM-specific IgG1 (solid circles and solid line). Results for cells (n = 5–19 mice/
group) and IgG1 (n = 2–6 mice/group) are expressed as means6s.e.m. (B) Schematic of the steps followed to develop the mathematical models.
doi:10.1371/journal.pone.0002426.g001
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mouse) and 50 mg to further enhance the visualization of the dose-

time-response relationship. The complex model predicts actual data

with slightly greater accuracy than the simple model, as indicated

by an approximate 0.05 increase in the R2 value and an 8.5%

increase in the 95% CI (data not shown and Figure 3D). Such

simulations epitomize visual and numerical information that can

only be derived mathematically and computationally.

Analysis of global inflammation was followed by an evaluation of

airway eosinophilia, a typical hallmark of allergic inflammation. As

illustrated in Figure 4A, eosinophils initially increase in a dose- and

time-dependent fashion but later dramatically decrease to a level of

6–9% of total cells at 20 weeks of exposure. These findings are

supported by a histopathological assessment (Figure 4E). As shown

in the top panels, inflammation at 2 weeks is minimal in mice

exposed to 1 mg of HDM and severe in those exposed to 25 mg. A
graded level of inflammation was evident after exposure to 5, 7.5

and 25 mg (data not shown). Figure 4E (bottom panels) depicts a

comparison of acute versus chronic exposure revealing stable

inflammation over time but a relative decrease in tissue eosinophilia

at later time-points. To note, we also observed a similar decrease in

eosinophils in peripheral blood (data not shown). At variance with

these findings, neutrophils and, particularly, mononuclear cells

increased throughout the entire duration of allergen exposure,

numerically compensating for the decrease of eosinophils and,

hence, maintaining the overall degree of inflammation (Figure 4F).

Again, exposure to 1 mg of HDM for up to 14 weeks did not elicit

any significant changes in eosinophils (Figure 4A), or mononuclear

cells and neutrophils (data not shown).

Using the aforementioned methods, complex and simple models

were constructed for eosinophils, eliciting the equations:

y~f EOS
C x,tð Þ~ xa1zxb1e

z1 x,tð Þzxg1e
z2 x,tð Þ , 0ƒtƒ7

xa2zxb2tzxc2t
2zxd2t

3 , t§7

(

ð3Þ

Figure 2. Airway inflammation in BALB/C mice exposed to HDM and subsequent mathematical modeling. (A) Inflammatory response in
the BAL. Mice were exposed intranasally to either saline (solid circles) or HDM, 1 mg (open circles), 7.5 mg (open triangles up) or 25 mg (solid squares)
for up to 14 weeks (5 days of exposure and 2 days of rest per week). Cell numbers are expressed as mean6s.e.m (n = 6–12 mice/group). (B)
Mathematical modeling of the inflammatory response. A mathematical equation was developed from the experimental results (blue lines) based on
dose and length of exposure to HDM. Simulations (red lines) for each of the doses studied experimentally were generated. (C) Results of the first
iteration. Predictions using the first mathematical model were generated for 5 mg of HDM (see Figure S1) and were subsequently evaluated
experimentally. Then, the new 5 mg experimental data (solid triangles down) was used to readjust the previous equation and refine the model. Actual
data (blue lines) and virtual simulations (red lines) are shown for saline, 1, 5, 7.5 and 25 mg of HDM up to 14 weeks. (D) Results of the second iteration.
Predictions using the second mathematical model were generated for all doses studied at 20 weeks of exposure (not shown) and were subsequently
evaluated experimentally. Then, the new 20 week data was used to readjust the previous equation and further refine the model. Actual data (blue
lines) and virtual simulations (red lines) are shown for saline, 1, 5, 7.5 and 25 mg of HDM up to 20 weeks. (E) Regression analysis to evaluate the
accuracy of the mathematical models. Deterministic validation metrics were performed to mathematically measure the agreement between
computational predictions and experimental results. For the line y = x, where y is model data and x is actual data, the coefficient of determination R2

in the first model is 0.987 (solid circles) and 0.990 in the last one (open circles). (F) Confidence intervals (CI) to evaluate the accuracy of the
mathematical models. Non-deterministic validation metrics were also used to account for experimental and computational uncertainties and errors.
The 95% CI for each point depicts uncertainty due to experimental variability. Model data for 25 mg (top) and 1 mg (bottom) accurately predict actual
data, and fall within the 95% CI band.
doi:10.1371/journal.pone.0002426.g002
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y~f EOS
S x,tð Þ~ tzxa

xbzxc tzxað Þzxd tzxað Þ2

�����

����� ð4Þ

Although Equations 3 and 4 represent different functions, they

both maintain relatively high and similar predictive value, yielding

R2 values of 0.968 and 0.938, respectively. Using these equations,

we performed computer simulations in two- and three-dimensions

(Figure 4B–D). These images illustrate that the decrease in airway

eosinophilia occurs throughout the entire range of exposures, and

that is not dependent on eosinophilia reaching an absolute level;

moreover, it is also evident that the higher the eosinophil level, the

sooner the downturn begins. This suggests that part of the

program of the immune-inflammatory response elicited by chronic

allergen exposure may contain an inherent controlling mechanism

to prevent persistent eosinophilia in the lung.

Modeling allergic sensitization to long-term HDM
exposure
Allergic sensitization is a crucial event in allergic asthma.

Hence, we investigated the effect of allergen exposure on defining

features of B cell immunity, namely serum levels of HDM-specific

immunoglobulins. As shown in Figure 5A–D, IgG1 and IgE serum

levels follow a logistic-like behavior similar to that identified for

total airway inflammation. However, there are kinetic differences;

indeed, serum immunoglobulins are detected after 2–3 weeks of

allergen exposure at a time where the inflammatory response has

already reached its peak. Given the nature of the immunoglobulin

response, simple models for both IgE and IgG1 were constructed

and proved to be accurate (R2 values of 0.900 and 0.985,

respectively). Equations 5 and 6 depict the values of IgE and IgG1:

y~f
IgE
S x,tð Þ~ xat

xd

xxdc ztxd
ð5Þ

y~f
IgG1

S x,tð Þ~xaz
xb{xa

1z t
xc

� �xd ð6Þ

Relationship between allergic sensitization and airway
inflammation
Airway inflammation and allergic sensitization were compared

using two different approaches. First, we considered the threshold of

Figure 3. 2D and 3D models for total cells generated from mathematical equations. In panels A, B and C, the simulations for the doses of
HDM used experimentally are highlighted in red. (A) Simulations based on dose of HDM (range from 0 to 25 mg at 0.5 mg intervals) and length of
exposure (0 to 20 weeks) using the final mathematical model (Figure 2D). (B) Simplified mathematical model for the total cell number. (C) 3D
simulations generated from the simplified mathematical model including predictions up to 50 mg and 40 weeks of HDM exposure. (D) Confidence
intervals to evaluate the accuracy of the simple mathematical model. Visual inspection shows that the simple model falls within the 95% CI, while
quantification of the simple TCN model accuracy was calculated to be 89.03622.42% with 95% confidence. Thus, the simple TCN model has similar
fidelity to the complex model.
doi:10.1371/journal.pone.0002426.g003

Modeling Allergen Exposure

PLoS ONE | www.plosone.org 5 June 2008 | Volume 3 | Issue 6 | e2426

PhD Thesis - M. Colangelo McMaster University - Medical Sciences

             25



responsiveness, understood here as the lowest dose of allergen that

elicits a measurable response. To address this, we calculated areas

under the curve (AUC) for all modeled responses and determined

that a threshold would be the point at which there was an

apparent change in behavior. The lowest dose of allergen required

to elicit an eosinophilic response is 2 mg, whereas that required to

induce an IgG1 response is 0.5 mg. (Figure 5E). Of interest, these

doses elicit responses that are approximately 20% of the maximal

Figure 4. Nature of the inflammatory response in mice exposed to HDM and mathematical modeling of eosinophils. In panels B
insert, C and D, the simulations for the doses of HDM used experimentally are highlighted in red. (A) Eosinophilic response in the BAL fluid. Mice
were exposed to either saline (solid circles) or HDM, 1 mg (open circles), 5 mg (solid triangles down), 7.5 mg (open triangles up) or 25 mg (solid
squares) for up to 20 weeks. Eosinophil numbers are expressed as mean6s.e.m (n = 6–12 mice/group); percentage of eosinophils at 5 and 20 weeks
are inserted in the graph. (B) Final mathematical model for eosinophils. The equation to obtain these predictions (red lines) was developed from the
experimental results (blue lines) based on dose and length of exposure to HDM. The insert shows simulations based on dose of HDM (range from 0 to
25 mg at 0.5 mg intervals) and length of exposure (0 to 20 weeks) using the final mathematical model. (C) Simplified mathematical model for
eosinophils. (D) 3D simulations generated from the simplified mathematical model including predictions up to 50 mg and 40 weeks of HDM
exposure. (E) Light photomicrograph of lung sections stained with hematoxylin and eosin. Top left: after 2 weeks of exposure to 1 mg of HDM (610
magnification); top right: after 2 weeks of exposure to 25 mg (610); bottom left: after 2 weeks of exposure to 25 mg of HDM (640); bottom right: after
14 weeks of exposure to 25 mg of HDM (640). (F) Cellular profile in the BAL fluid. Absolute numbers and percentage of mononuclear cells (light grey
bars) and neutrophils (dark grey bars) after continued exposure to 5, 7.5 and 25 mg of HDM for either 3 or 14 weeks. Bars represent mean of cells
(n = 6–12 mice/group).
doi:10.1371/journal.pone.0002426.g004
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inducible response. It is clear that the pattern of the areas under

each curve for IgG1 and eosinophils are similar; however, the

latter is shifted to the right indicating that the amount of allergen

required to elicit not only the lowest response but all responses is

different. To better visualize this, and to standardize measure-

ments, we plotted each outcome as a percentage of the maximal

response. As shown in Figure 5F, any level of sensitization is

achieved with about half the amount of allergen required to

Figure 5. Systemic responses in HDM-exposed mice, subsequent mathematical modeling and comparison between inflammation
and sensitization. In panels B, C and D, the simulations for the doses of HDM used experimentally are highlighted in red. (A) Serum levels of HDM-
specific IgG1. BALB/C mice were exposed to either saline (solid circles) or HDM, 1 mg (open circles), 5 mg (solid triangles down), 7.5 mg (open triangles
up) or 25 mg (solid squares) for up to 20 weeks. Data represent mean6s.e.m. (n = 2–9 mice/group). (B) Mathematical model for HDM-specific IgG1. A
simple mathematical model was developed and IgG1 levels over time and at doses ranging from 0 to 25 mg of HDM, in 0.5 mg increments, were
predicted. (C) 3D representation of HDM-specific IgG1 responses, including predictions up to 50 mg and 40 weeks of HDM exposure. (D)
Mathematical model for HDM-specific IgE. A simple mathematical model based on serum measurements was developed and IgE levels were
simulated over time and at doses ranging from 0 to 25 mg of HDM in 0.5 mg increments. (E) Area under the curve (AUC) of the maximal number of
eosinophils (black bars) and level of HDM-specific IgG1 (grey bars). The lower dose showing a change in the behavior of the curve (threshold dose), is
identified for HDM-specific IgG1 (blue bar, 0.5 mg) and eosinophilia (red bar, 2 mg). The results are based on computer simulations. (F) Maximal
responses for HDM-specific IgG1 (blue line) and eosinophilia (red line) at a range of doses of HDM. The 90% of the maximal inflammatory or
immunoglobulin response (long dashed line) is reached when given about 11 or 6 mg of HDM, respectively; approximately 2 and 5 mg of HDM are
required to elicit 50% of the maximal inflammatory and immunoglobulin responses (medium dashed line), and ,1 and 2 mg to induce 10% of these
responses (short dashed line).
doi:10.1371/journal.pone.0002426.g005
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achieve the same level of eosinophilic inflammation. Higher IgG1

responses are not only induced by the same amount of allergen but

also greater changes in IgG1 are observed at lower doses of

allergen. Similar observations were made for TCN and IgE (data

not shown).

Lung function and remodeling
Airway dysfunction, notably airway hyperreactivity (AHR), is a

hallmark of allergic asthma. Preliminarily, we have evaluated lung

function to a range of doses after 3 weeks of HDM exposure, a

time-point where there is prominent inflammation but no airway

remodeling [15]. As shown in Figure 6A, airway resistance (Rn),

tissue dampening (G) and elastance (H) increase dose-dependently,

being severe in mice exposed to 7.5 and 25 mg of HDM. Most of

the peripheral effects observed at these doses of allergen exposure,

as measured by G and H, can be explained as airway closure with

some elements of lung heterogeneity, as assessed by hysteresivity

(g, data not shown) [19]. Rn in mice exposed to 1 mg of HDM was

not significantly different than that in saline-treated animals.

Interestingly, G and H seemed to be increased in these mice

suggesting incipient functional abnormalities occurring prior to

detectable inflammation. To note, mice exposed to 5, 7.5 and

25 mg of HDM had a significantly higher baseline Rn compared to

the 1 mg and saline groups, indicating a degree of permanent

narrowing of the conducting airways. A comprehensive clarifica-

tion of the variables that influence airway function in this system

will require not only the acquisition of an extensive set of

functional data but also of additional data including mucous

production, permeability and airway structural changes, i.e.

remodeling. In specific regard to the later, Figure 6B shows that

subepithelial collagen deposition increases in a dose-dependent

manner after 7 weeks of allergen exposure; changes in mice

exposed to 1 mg of HDM were not significant compared to saline.

Clearly, a quantitative delineation of the relationships between

tissue and functional variables with inflammatory and immune

variables is a major computational challenge beyond the scope of

the research presented here.

Discussion

Understanding immune responsiveness will benefit from

accepting the multidimensionality and quantitative nature of

immunological phenomena [20]. Here, we have engaged this

precept to investigate immune-inflammatory responses following

repeated HDM exposure in mice. The computational analysis we

have performed allows for the identification of rules and

parameters that define the system. Principal rules are that

relationships between time and infiltrating total cells, as well as

mononuclear cells and neutrophils, and serum immunoglobulins

follow a logistic-like curve; in sharp contrast, the eosinophil

response over time follows a bell shaped-like curve. These rules

presuppose a dynamic behavior with at least one significant

implication: the lung cellular effector profile quite drastically

changes depending on dose and length of exposure to allergen.

These multiple possible outcomes may be mathematically viewed

as a demonstration of heterogeneity.

The distinct behavior of eosinophils is intriguing. The

underlying immunological explanation is unknown at this time;

however, it seems intuitive that if allergen exposure is considered

as an input, persistent deliverance of such an input will stress the

Figure 6. Physiological and structural lung changes in mice
exposed to different doses of HDM. (A) Analysis of airway
responsiveness to methacholine (MCh) in mice exposed to HDM for 3
weeks. Airway resistance (Rn), tissue dampening (G) and tissue
elastance (H) were determined in BALB/C mice exposed to either saline
(solid circles, black line) or HDM, 1 mg (open circles, yellow line), 5 mg
(solid triangles down, grey line), 7.5 mg (open triangles up, blue line) or
25 mg (solid squares, red line). A time-course of 2 baseline measure-
ments prior to nebulization of increasing doses of MCh (0, 3.125, 12.5
and 50 mg/ml) followed by 12 consecutive measurements is shown.
Data represent mean6s.e.m. (n = 5–12 mice/group). *, ** and ***
indicate p,0.05, ,0.01 and ,0.001, respectively, in mice exposed to 5,
7.5 and 25 mg compared to saline; # indicates p,0.05 in mice exposed
to 1 mg compared to saline. (B) Airway remodeling after 7 weeks of
HDM exposure. Picro Sirius red-stained lung sections visualized under
polarized light (620) and morphometric analysis show increased
subepithelial accumulation of collagen in HDM exposed mice. Data
represent the mean of the percentages of stained area of interest

(6s.e.m.). ** indicates p,0.01 and ***, p,0.001 versus saline exposed
mice (n = 7–12 mice/group).
doi:10.1371/journal.pone.0002426.g006
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system and instigate reactive responses. From this perspective, the

decrease of eosinophils and the increase in mononuclear cells are

likely to be mechanistically related. Flow cytometric analysis

delineating the changes in the dynamics of subsets of mononuclear

cells (T cells and monocyte/macrophages) over the entire protocol

will be informative and suggest future venues of research.

Several parameters define the behavior of the system. First, we

have identified a threshold dose at approximately 0.5 mg of HDM

for sensitization and 2 mg for inflammation. In fact, exposure to

2.5 mg of HDM elicits a detectable eosinophilic inflammatory

response (data not shown). Second, responsiveness for all

constituents is dependent on the strength of the initial dose of

allergen; moreover, the greater the input, the steeper the initial

slope of the response. Third, the system has an inherently limited

capacity to respond, at least to the same allergen. This maximal

responsiveness is achieved at a dose between 10 and 15 mg, and
further increases in dose or length of exposure do not result in

greater responses. Fourth, there is an entire range of responses

between the threshold and the maximum; mathematically,

however, the model reveals that the distribution of responses is

non-linear. Lastly, a comparative analysis of inflammation and

sensitization outputs reveals that the development of the latter is

more sensitive to allergen than the induction of airway

inflammation. That the relationships between exposure and either

sensitization or inflammation are non-linear intimates that the

relationship between sensitization and inflammation is non-linear

as well. It is tempting to speculate that these findings may

contribute to explain the difference between the prevalence of

atopy (,40%) and asthma (5–10%) in humans [21,22,23,24].

The question of how the concentrations of allergen used here

compare to human exposure is elusive because the terms of

reference are precarious (reviewed in [25]). Many studies have

examined the amount of mite allergen present in homes. However,

the numbers vary extraordinarily. Not only is there a plethora of

environmental variables influencing the concentration of mite

allergens in the household but there are also several collection and

measurement techniques [3,26,27,28]. In addition, the relation-

ship between the micrograms of allergen measured in a dust

sample and the amount of allergen that is airborne, inspired, and

reaches the lower airway is enigmatic. Indeed, the inability to

precisely determine mucosal HDM exposure in humans frustrates

the justifiable desire to formulate a rigorous interspecies

comparison of exposures. Perhaps such a straightforward com-

parison is an ill-conceived goal; arguably, numbers may not be

translated between species but behaviors likely can.

Many issues have not been addressed here. For example,

experiments were conducted in BALB/C mice. While we know

that C57BL/6 mice respond to HDM even more vigorously in

terms of inflammation, it definitely cannot be assumed that the

behavior of these two strains, or others, is identical. Similarly,

these experiments were performed in female mice and, thus, a

direct application to male mice is unadvisable. In addition, we

cannot presume that the behaviors described for HDM apply to

other aeroallergens. With these limitations, our research furnishes

a conceptual foundation and operating tools for the evaluation of

other variables or system perturbations of a pharmacological,

environmental or genetic nature. Based on the present research,

future analysis of immune responses exploring these variables may

not require the generation of entire data sets but of selected

experiments to generate comparative algorithms to re-define the

overall behavior of the system.

There has been a considerable interest by engineers, mathe-

maticians and computer scientists in the application of their skills

to modeling biological processes. Over the last few years, biologists

have shown an increasing attraction to join in this enterprise.

Arguably, the catalyst underlying this initiative has been the

recognition that biological processes are, formally, complex

processes. As such, efforts to incorporate new conceptual and

experimental stratagems must be made to better comprehend

them. The development of mathematical modeling based upon

research, primarily in vitro, examining hemopoiesis and stem cell

renewal [29], models of virus-immune dynamics [30] and cancer

cell propagation [31] typify these efforts. Particularly in the area of

inflammation, agent-based and equation-based models have been

established to provide insight into the complex dynamics of this

process [32,33,34,35,36,37]. However, the research presented in

this manuscript is, to our knowledge, the first to investigate the

interaction between aeroallergens and the immune system in vivo

from a computational perspective.

Supporting Information

Figure S1 Iterations to validate the mathematical model for the

inflammatory response. (A) A mathematical equation was

developed based on the responses to saline, 1, 7.5 and 25 mg of

HDM up to 14 weeks (blue lines). Simulations (red lines) for these

doses studied were generated. Then, the equation was used to

predict the response to 5 ug, which was subsequently evaluated

experimentally (blue line, triangles down). (B) A refined mathe-

matical equation was developed based on the responses to saline,

1, 5, 7.5 and 25 ug of HDM up to 14 weeks (blue lines).

Simulations (red lines) for these doses were generated. Then,

responses for all doses at 20 weeks were predicted, and these were

subsequently evaluated experimentally.

Found at: doi:10.1371/journal.pone.0002426.s001 (1.50 MB TIF)

Methods S1 Supplementary methods, including elaboration of

mathematical Equations 1 to 6.4 used in the models, validation

analysis and area under curves.

Found at: doi:10.1371/journal.pone.0002426.s002 (0.11 MB

PDF)
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Methods S1 (Supporting Information)  
 
 
Mathematical and computational modeling 
 

Outcomes were analyzed by individual doses over specific time periods, 

deriving a general equation for all doses and all times. Within each equation, 

numerical coefficients were analyzed based on dose, establishing dose-

dependent equations. In some cases, equations were subsequently re-adjusted 

manually. In order to capture all of the characteristics for a given outcome, 

complex models were derived based on the dynamics of the experimental data. 

In the case of TCN and EOS, equations were sectioned in parts according to 

time intervals where it was visually apparent that the curvature of the responses 

changed; the time-points of 3, 5, and 7 weeks were selected for TCN, and EOS 

was split at 7 weeks. Through the incorporation of data from additional doses and 

time-points, the model proved to be modular, i.e. the inclusion of new data did 

not require the derivation of a new equation, but rather only re-adjustment of the 

existing model. After performing simulations with the complex models, it was 

determined that simple models would yield the general characteristics of each 

outcome with more clarity and conciseness. Such simple models were generated 

for TCN, EOS, IgG1 and IgE using a single equation for all time-points, as 

opposed to defining dose-responses piecewise. 2D comparison of actual data 

and simulated data was visualized in SigmaPlot software (Systat Software Inc.), 

while 3D simulation images were generated using Microsoft Excel 2007. 
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The following sets of equations describe the dynamics of each measured 

outcome (y) in the context of dose (x, in !g of HDM) and time (t, in weeks).  
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xa3 + xb3e

z3 x,t( ) + xg3e
z4 x,t( ) , t # 7

$ 

% 

& 
& 

' 

& 
& 

 (1) 

where,  
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" t # xc1( )

xd1

 (1.1) 

  

    

 

z2 = "0.5
t " xc2

xd 2

# 

$ 
% 

& 

' 
( 

2

 (1.2) 

  

    

 

z3 = "0.5
t " xc3

xd 3

# 
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% 

& 
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 (1.3) 
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xk2

# 
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% 

& 

' 
(  (1.4) 

  

    

 

xa1 = 1.172 "0.516e"0.5 x"12.955
12.284( )2

 (1.5) 

  

    

 

xb1 = "0.245 +
4.171

1+10"0.103 x +0.252( )( )
3.802  (1.6) 

  

    

 

xc1 = 0.029 + 0.377sin "
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$ 
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& 

' 

( 
) 

$ 

% 
& 

' 

( 
) 

2

 (1.7) 

  

    

 

xd1 =
3.361+ 0.289x + 0.004x2 "0.178x3

1+ 0.280x + 0.0002x2 "0.037x3  (1.8) 
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xa2 =

0.996 "0.056x + 0.049 0.377x( ) , 0 # x # 5

5.338 1"e
" 0.065 x"4.382( )0.606$ 
% 
& 

' 
( 
) $ 

% 
& 

' 
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) , x > 5

* 
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, 

- 
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 (1.9) 
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$ 

% 
& 

' 
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 (1.10) 
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5.208 " 9.888
x

+
47.078

x2 , x > 5

$ 
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& 

' 
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& 
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 (1.12) 
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TCN (Simple) 

    

 

y = fS
TCN x,t( ) =

xa + xbt + xct
2

1+ xdt + xgt
2  (2) 

where, 
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EOS (Complex) 
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EOS (Simple) 
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where, 
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IgE (Simple) 
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xd =
17.942 + 9.965x1.562

9.111+ x1.562  (5.3) 

 
 
IgG1 (Simple) 

    

 

y = fS
IgG1 x,t( ) = xa +

xb " xa

1+ t
xc( )

xd
 (6) 

where, 

    

 

xa =
x

1.06E"05 + 4.583E"06x "4.237E"06 x
 (6.1) 

  

    

 

xb =
"244.738x
1.527 + x

 (6.2) 

  

    

 

xc = 5.752 +
4.489

1+100.855 x"1.261( )0.182  (6.3) 

  

    

 

xd = 2.133 +
7.243x

1.915 + x
+

"8.133x
16.102 + x

 (6.4) 

 
*Note: All numerical coefficients above are given to 3 decimal places for brevity, however all 
equations were computed using the full coefficients as derived by the model.  
 
Validation analysis  

Linear regression analysis and 95% CI were used to validate the 

mathematical models since they are deterministic and non-deterministic 

approaches, respectively [1]. Deterministic validation metric: Actual data was 

plotted against model data and linear regression performed with the condition 

that the regression line must pass through (0,0). The possible goodness of fit 

statistic, R2 (coefficient of determination), was calculated. An R2 of 1 would mean 

that all values of actual data and model data are equal and thus lie upon the line 

y=x. Non-deterministic validation metric: 95% CIs were created using the 
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appropriate t probability distribution (t0.05, df), depending on the number of degrees 

of freedom (number of mice sacrificed minus 1) at each time (t) and dose (x) with 

an α of 0.05. In addition, as proposed by Oberkampf, et al. [2], global validation 

metrics to quantify overall model accuracy were calculated as follows:  

Average Relative Accuracy of Model 
    

€ 

= 1−
1

xmax

1
tfinal

ya − ym

ya

dtdx
0

t final∫0

25
∫

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

where ya is the actual mean (obtained from experiment), ym is the predicted 

mean (virtual data). Definite integrals, estimated by trapezoidal Riemann sum, 

are used instead of straight summation in order to be able to assess predictive 

(interpolation) capabilities of each model. A similar method is applied to calculate 

the confidence indicator (half-width 95% CIs are averaged over both time and 

dose): 

Confidence Indicator = 
    

€ 

1
xmax

1
tfinal

SD
nt,x

t0.05,df

ya

dtdx
0

t final∫0

xmax∫
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
 

 

The average relative accuracy of the model, in line with assessment using linear 

regression, respectively calculated our initial, second and final complex TCN 

models to be 94.23±21.55%, 95.49±22.67% and 97.50±22.42% accurate (to a 

maximum of a 100%) with 95% confidence. Comparing between complex and 

simple TCN models, the complex TCN model again provides slightly more 

accurate predictions than the simple model, 97.50±22.42% versus 89.03±22.42% 

accuracy with 95% confidence. Further, our models (both simple and complex) 

fall within the 95% CI band meaning that there is a high probability for our model 
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to be able to predict real responses. Comprehensive non-deterministic analysis 

supports our findings from linear regression and allows for inferences to be made 

about our models’ predictive capabilities. 

 

Area under curves  

For each outcome (IgG1 and EOS), equations that represented each 

increment of 0.5µg HDM, dose-response curves were exported into Wolfram 

Mathematica software (Wolfram Research Inc.) to calculate the definite integral 

from 0 to 20 weeks of each equation. 
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Summary and Central Message: This article extends the work presented in the 

previous chapter. Here, we sought to further investigate the behaviour and 

pattern exhibited by airway eosinophils, in response to HDM exposure. We 

developed a mechanistic mathematical model, representing the trafficking of 

eosinophils between the bone marrow, the blood and the lung (airways). The 

regulation and movement of eosinophils between compartments was 

represented by various processes, including eosinophil production, migration, 

death and survival. The model demonstrated that eosinophil production, death 

and survival had the greatest relative impact on airway eosinophilia, while 

migration elicited a minor role in comparison. Moreover, the model was able to 

simulate the effects changes in these processes, corresponding to the use of 

using knock-out models and antibodies. These findings further demonstrated that 

production and  death  would  be the most suitable  factors to be targeted in 

reducing levels of airway eosinophils.  
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Abstract 

Background 

Allergic asthma is a complex disease of the airways that develops as a 

consequence of an aberrant immune-inflammatory response to allergen 

exposure, with the distinct feature of eosinophilic inflammation in the lung. 

Importantly, knowledge on this disease has progressed largely from qualitative 

principles. We surmise that enhanced understanding may be achieved through 

the incorporation of mathematical approaches. Previously, we empirically 

modelled the evolution of immune-inflammatory responses, namely eosinophils, 

in the lung of mice exposed to a range of house dust mite (HDM) concentrations 

and showed that the relationship between allergen exposure and airway 

inflammation is nonlinear. While early (increasing) responses appeared to be 

dependent on the dose and length of exposure, later (decreasing) responses 

converged to similar levels. This observation presupposes a dynamic behaviour 

with the implication that the dynamics of the eosinophilic response may be 

influenced by additional factors other than dose and length of exposure. 

Results 

Here, we developed a mechanistic mathematical model to investigate the 

evolution of the eosinophilic response to continuous allergen exposure, using 

biological observations combined with mathematical assumptions. The model 

considers a simplified system in which eosinophils are present in three 

compartments: bone marrow, blood and lungs. In addition, we assume that the 
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number of eosinophils within each compartment varies according to rates that 

depend on production, migration and regulation (death, loss and survival). 

Conclusions 

The model identified eosinophil production, survival and death as having a 

prime importance in the dynamics of the response, while migration elicited a 

small influence. Interestingly, although production and survival exhibit dose-

dependent patterns, death remains constant suggesting that fluctuations in the 

overall response are largely governed by changes in production and survival 

factors. This synergistic approach using immunological data and mathematical 

analysis provides a mechanistic description of airway eosinophilia dynamics and 

insight into areas that may be targeted for future experimentation. 
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Background  

Allergic asthma, like other immune-inflammatory diseases, is a complex 

disease whereby exposure to antigens triggers an immune response that results 

in different degrees of inflammation severity. The complexity of the disease has 

been largely referred to as a means to illustrate the complicated nature of the 

extensive number of events of the immunological response [1, 2]. However, 

when analyzing this immunological response from a mathematical perspective, 

this complexity can adopt additional meanings including the sensitivity to initial 

system conditions or the tendency of the response to attract to particular values 

[3, 4]. This approach may provide quantitative principles to explain and 

understand the dynamics of the inflammatory response in the lung.  

One of the distinctive hallmarks of allergic asthma is the presence of 

eosinophilic inflammation in the lung (airway) [5]. Understanding the dynamics of 

the eosinophil response over time will help to delineate factors initiating and 

regulating the response and thus, inform about the relative potential of distinct 

therapeutic targets. The identification of specific areas for experimentation and 

subsequent treatment through mathematical modelling advise experiments and, 

ultimately, expedite the research. From a qualitative perspective, the biological 

sequence of events in eosinophil trafficking, from their production in the bone 

marrow to their release into the circulation and recruitment and accumulation into 

the airways has been well documented [6-10]. Cellular trafficking and signaling 

has been mathematically modelled for a variety of other cell types, including 
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neutrophils [11, 12], basophils [13] and dendritic cells [14, 15], in several 

diseases but not in the context of asthma. Indeed, the dynamics of the eosinophil 

response in allergic asthma have yet to be studied using mathematical 

approaches. 

Previously, our laboratory established an in vivo model of chronic allergic 

asthma in mice using house dust mite (HDM), the most pervasive aeroallergen 

worldwide [16]; subsequently, we employed an empirical mathematical approach 

to quantitatively analyze lung inflammation including eosinophilia [17]. This 

analysis showed that chronic allergen exposure and airway inflammation exhibit 

a nonlinear relationship; particularly interesting was the pattern of airway 

eosinophilia in that it followed a bell shaped-like curve. The data showed that 

early responses increased exponentially to a maximal value, which was 

dependent on both the dose and length of aeroallergen exposure. Later 

responses, following the peak response, converged downward to a residual 

plateau. This observation presupposes a dynamic behaviour intimating that the 

dynamics of the lung eosinophilic response is influenced by a number of 

intermediate factors.  

While a number of different processes and key mediators affecting the 

dynamics of eosinophilia have been identified, their relative importance has yet to 

be quantitatively investigated in a system that takes into account dynamic 

interactions. Here, a model of extended eosinophilia involving up to 14 weeks of 

exposure to HDM in mice was used to evaluate the changes in eosinophils in 
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several compartments over time. Then, we developed a mechanistic 

mathematical model to examine changes in key compartments and processes 

based on a limited set of experimental data points. In this case, we use the term 

“limited” in reference to the various doses and time-points that would typically be 

used in our in vivo chronic exposure experiments. Data are collected at multiple 

time-points, in some cases at 1, 2, 3, 5, 7, 10, 14 and 20 weeks of exposure and 

multiple doses [17]. In this respect, our model used a relatively limited data set in 

comparison. This approach captured the complex nature of the system and 

permitted the simulation of various hypothetical scenarios. Furthermore, 

mathematical modelling identified the relative importance of the parameters 

governing the dynamics of the system in a way that would be exceedingly difficult 

using conventional immunological approaches. 

 

PhD Thesis - M. Colangelo McMaster University - Medical Sciences

             49



 

Results & Discussion 

Compartmentalized eosinophil responses  

To develop a mathematical representation that accurately depicted the 

dynamics of eosinophils between compartments, a platform of experimental data 

was first established (Figure 2). Given our prior experience with in vivo models of 

allergic asthma using HDM exposure [5, 16, 18, 19], an important objective was 

to make use of a data set that was limited but sufficient to capture the complex 

nature of the system [17]. The expectation was that by using a combination of in 

vivo and in silico methods, relevant features of the system could be identified.  

The dose-response dynamics in both short-term and long-term exposure 

to HDM has been previously characterized [5,16,19-21]. The system achieved a 

sub-maximal response at 25 µg/day of HDM, while 7.5 µg/day and 1 µg/day 

elicited intermediate and minimal responses, respectively [17]. Thus, these doses 

were chosen, with the exception of the intermediate dose, in which 5 µg/day was 

used instead of 7.5 µg/day to maintain five-fold increases. In addition, 

experimental time-points were also selected based upon our previous 

experience. At a dose of 25 µg/day, airway eosinophils initially increase in a 

dose- and time-dependent manner to a maximal value after approximately 3 

weeks of exposure. Following this peak, the response subsequently decreases 

considerably up to 14 weeks of exposure, with a further slow decline up to 20 

weeks of exposure; the response does not resolve completely, but rather 

remains elevated at a smaller magnitude [17]. Consequently, time-points were 
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selected corresponding to the initial conditions (0 weeks), the zenith (2-3 weeks) 

and the nadir (14 weeks) of the system. 

As shown in Figure 2A, bone marrow eosinophils increased throughout 

the entire duration of allergen exposure, ultimately approaching a plateau and, 

hence, maintaining the global amount of eosinophils produced and input into the 

system, particularly evident at 25 µg of HDM. In Figure 2B, blood eosinophils 

across all doses exhibited an initial increase and a subsequent decreasing trend 

up to 14 weeks of exposure following their peak response, with the exception of 5 

µg. At 5 µg of HDM, the peak response occurred at a later time-point and 

remained elevated at a similar value of the 25 µg response at 14 weeks. This 

observation may explain the converging values of eosinophils in the lung for 

these doses at 14 weeks of exposure. Figure 2C shows that airway eosinophils 

at 25 µg peaked at 4 to 5 weeks, and then decreased up to 14 weeks. 

Interestingly, as shown by the 5 µg data peaking at 7 weeks, the magnitude of 

the peak response was dose-dependent, while the time at which the peak was 

achieved exhibited an inverse relationship to the dose. 

Analysis of rates 

Using the experimental data from each compartment, the hypothesized 

processes were determined mathematically through the model equations, to 

provide information on how each process would behave over time, at varying 

doses. Given that these processes were unknown with no corresponding 

experimental data, they were calculated as rates (at static time points) and 
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normalized (between 0 and 1), which represented the degree at which a process 

occurred. For example, a production rate of 1 would represent maximum 

production of eosinophils, whereas a production rate of 0 would signify minimal 

or no production.  

As shown in Figure 3A, eosinophil production for all doses exhibited 

similar trends with an initial increase, followed by a plateau. This general pattern 

mimicked the dynamics of eosinophils in the bone marrow, which was expected 

given that eosinophils are produced in this compartment. As shown in Figures 3B 

and 3C, both the rates of migration from the bone marrow to the blood and from 

the blood to the lungs, respectively, did not appear to have any dose or time 

related patterns. Similarly, loss from the bone marrow and blood did not have any 

consistent trends among the dose of HDM (Figures 3D & 3E, respectively). 

These findings suggested that these processes may not have a direct 

contribution to global changes in airway eosinophilia in relation to the amount of 

HDM delivered to the system. Throughout the construction of the model, 

eosinophil survival and death were modelled as separate processes, given that 

various biological signals distinctively impact one of these processes, but not 

necessarily the other. Consequently, we assumed that these processes are 

mutually exclusive and both survival and death may be both independently and 

simultaneously regulated at any time. Figure 3F shows that the rate of eosinophil 

survival increased slightly with respect to dose. Contrastingly, as shown in Figure 

3G, death remained largely consistent across all doses of HDM, suggesting that 
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the rate of eosinophil death, presumably apoptosis, is an inherent feature that 

does not depend on the amount of allergen introduced into the system.  

The model identified eosinophil production, survival and death as having a 

greater influence, in comparison to migration and loss between compartments in 

the extent of lung eosinophilia. The significance of these findings would be that 

future in vivo experiments should preferentially target these processes for 

therapeutic effects. Indeed, eosinophil migration overall between the 

compartments appeared to have a less substantial effect in contrast to other 

processes. The various mechanisms contributing to eosinophil migration have 

been investigated, but not fully identified to the extent of eosinophil production, 

survival and death. Tissue eosinophilia was observed in experimental models 

with mice despite a deficiency in the prominent eosinophil chemokine eotaxin 

[20]. This model, however, in connection to our model, used a significantly 

different protocol (single challenge) involving a different antigen (OVA), strain 

(129SvEv). Further studies have shown lung eosinophils are present in the 

absence of CCR3, a receptor on eosinophils that recognizes chemokines, 

including eotaxin [21]. These findings collectively suggest that factors 

contributing to eosinophil migration play a less substantial role in the 

development of eosinophilia as compared to production, survival and death 

factors. 
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Simulating eosinophil responses 

Simulations were performed for each compartment at all of the 

experimentally used doses to test the accuracy of both the equations and rate 

values generated by the model. In this case, simulations were confined to the 

time-points corresponding to the data set used to build the model, although the 

model would be able to simulate additional points upon the interpolation of the 

rates. Figures 4A and 4B, exposure to saline and 1 µg, respectively, show that 

the model was able to accurately capture the dynamics of the eosinophil 

response to low doses of HDM in the bone marrow, blood and lungs. In Figure 

4C, exposure to 5 µg, eosinophils in the lung first exhibited an elevated 

response, with an initial increase to a peak value, followed by a decline. The 3-

week time point, which was initially used in the model to represent the peak 

response, did not correspond to the peak response in the lungs for doses 

between 1 and 5 µg (data not shown). Thus, the model was expanded to include 

a fourth data point (5 weeks of exposure) to perform simulations at 5 µg. This 

inclusion allowed for a clear improvement in the fit of the model at this dose. As 

shown in Figure 4D, the modelled data 25 µg of HDM was able to capture the 

trends of the initial increases in the response, to the peak of the response, and 

either a maintenance (in the case of the bone marrow) or decrease to a plateau 

(in the case of the blood and lungs). The simulated data from the model fit the 

experimental data well, and captured the dynamics of within each compartment 

over 14 weeks of exposure. 
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Simulating changes in rates 

Having previously performed simulations on the dose-response dynamics 

over time and determined the dose that leads to a maximal response in the 

system [17], subsequent in silico experiments in this model were limited to the 

dose of 25 µg/day of HDM. To assess the precise global impact that each 

process has on the level of airway eosinophilia, simulations were performed. 

Although each process was not associated with a single biological signal (i.e. 

cytokine or chemokine), each was assumed to effectively represent a major 

component involved in the system at large. As each rate was changed, all other 

rates were held constant, thereby obtaining a response that could be attributed to 

that specific change. 

A baseline simulation was identified as the simulation of lung eosinophilia 

at 25 µg of HDM (Figure 3D), and the values of the corresponding rates. Based 

upon their dose-response over time, changes in the eosinophil production, 

survival and death rates were initially changed by ± 100% of the baseline values. 

Although some simulations may not have direct biological significance, given that 

25 µg of HDM has shown to elicit a maximal response in the system, each 

scenario was considered in order to investigate the mathematical properties of 

the equations (i.e. would an increase and decrease in a rate by the same amount 

elicit equal changes in magnitude from baseline?). The area under the curve 

(AUC) for each simulation was calculated and compared to baseline, thus 

resulting in an overall percentage change. This value represented the global 
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change in airway eosinophils over 14 weeks of exposure. As shown in Figure 5A, 

increases in the production, migration (from B to L) and survival rates resulted in 

the most significant increases in the lung eosinophils (+81.8%, +181.4% and 

+126.4% change, respectively), whereas a decrease in the production rate and 

increase in the death rate resulted in the greatest reductions (-81.8% and -94.7% 

change, respectively).  

Given the dose-response trends of each rate (Figure 3), and that a 

decrease in the migration (from B to L) rate elicited a non-determinable 

response, temporal simulations were only performed with the production, survival 

and death rates, as they showed the greatest overall changes. Of these three 

rates, Figure 5B shows that only changes (both positive and negative) in the 

production rate elicited the same absolute change from baseline. In other words, 

the difference from baseline simulating a +100% change was equal to the 

difference when simulating a -100% change. With respect to the survival rate, as 

shown in Figure 5C, a greater change from the baseline simulation occurred 

when simulating a +100% change, as opposed to a negative change. 

Interestingly, as illustrated in Figure 5D, positive and negative changes in the 

death rate showed great impacts in the simulations, both eliciting low levels of 

airway eosinophilia. The contrasting differences that occurred when altering 

these rates, both positively and negatively, informs about the distinct sensitivity of 

the system to various biological processes. In this case, sensitivity was defined 

as the system’s responsiveness to changes in a given rate, specifically the 
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overall change in airway eosinophilia when simulated over 14 weeks with an 

altered rate.  

This sensitivity was analyzed in greater detail through simulations ranging 

from baseline values to a 100% reduction, decreasing at 10% intervals. In the 

case of eosinophil production in Figure 6A, as the reduction in the rate increased, 

the level of eosinophils in the lung reduced at equal intervals at week 3. As 

shown in Figure 6D, this observation was further confirmed numerically, as 

indicated by the consistent distance between simulated curves. At week 14, 

simulations reduced equally also, although at a smaller magnitude. On the other 

hand, both eosinophil survival and death exhibited different trends. For both 

rates, at lower percentages of reduction, the distance between simulations at 

week 3 were larger, and decreased as the reductions continued to increase 

(Figures 6B & 6C, respectively). Survival and death did differ in behaviour at 14 

weeks. Figure 6B shows that as the survival rate decreased, the simulated 

responses maintained equidistant differences. On the other hand, as shown in 

Figure 6D, decreases in the death rate resulted in simulations that maintained 

the same pattern as they did at 3 weeks. In addition, the values of each response 

in each simulation approached similar values at 14 weeks (Figure 6E). This 

suggests that despite any variations in the parameters, the system is attracted to 

particular values after 14 weeks of exposure, at approximately 0.1 x 106 cells.    

Simulations involving a change in these processes were used to 

hypothesize and perform in silico experiments that would be representative of 
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potential in vivo experiments. Although each rate was not directly associated with 

a single molecular signal, there was an inherent association between each rate 

(process) and a mechanistic component of the system. For example, eosinophil 

production in the bone marrow is driven by several factors, principally interleukin 

(IL)-5 [2, 7, 22, 23]. As such, simulating a complete reduction in the production 

rate would likely be synonymous to using an IL-5 knockout experimental model, 

whereas varying degrees of reduction would equate to IL-5 antibody treatments 

using anti-IL-5. As shown in Figures 5B and 6A, reductions in the production rate 

resulted in significant decreases, although not a complete resolution, in the 

overall airway eosinophil response over 14 weeks, of eosinophilia.  

Despite varying protocols, particularly the use of an alternative allergen 

ovalbumin (OVA), the model simulations generated exhibited trends that are 

consistent with in vivo experiments in the literature. In one study using IL-5 

knockout (KO) mice, results showed that lung eosinophils were virtually 

eradicated up to approximately four weeks following the initial exposure to 

allergen [24]. This mimics the decrease shown in the simulations involving a 

complete reduction in the eosinophil production parameter. Furthermore, the 

decrease shown in IL-5 KO mice occurred at a similar time-point at which 

eosinophilia in our experimental model achieves a peak response (Figure 2). 

Interestingly, another model, despite using combined gene transfer of both IL-5 

and eotaxin in IL-5 KO mice, found that the addition of eotaxin failed to induce a 

significant increase in eosinophilia as compared to control IL-5 KO mice [25]. The 
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results of this study suggest that indeed the effects of eosinophil production may 

be of greater relevance to eosinophilia, in comparison to migration. Studies in 

which IL-5 antibody was administered also showed decreases in eosinophils for 

both human [26] and animal [27, 28] models. Using an anti-IL-5 antibody, one 

study was able to show a 79% mean decrease in BAL eosinophils in humans 

[28]. When varying amounts of antibody were used in mice, the magnitude of the 

decrease exhibited by anti-IL-5 antibody was amplified as the quantity of 

antibody was increased [27]. Likewise, our simulations showed that as eosinophil 

production was gradually reduced, eosinophils decreased as well. A further study 

made use of IL-3, IL-5 and granulocyte-macrophage colony-stimulating factor 

(GM-CSF) antibodies, both individually and in combination [29]. While IL-3 and 

GM-CSF antibodies partially reduced the number of lung eosinophils, IL-5 

antibody was more effective. With the understanding that GM-CSF may promote 

eosinophil survival [18], these findings are aligned with our simulations showing 

that decreases in eosinophil production exhibit lower levels of eosinophilia 

compared to decreases in eosinophil survival (Figures 6A and 6B). 
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Conclusions 

The eosinophil is thought to be a central mediator in the pathogenesis of 

allergic asthma [10]. However, which process in the sequence leading to lung 

eosinophilia is best suited as a therapeutic target remains to be fully elucidated 

[20, 29-31]. Here, we have presented a mechanistic model for the development 

of airway eosinophilia in response to the most pervasive aeroallergen worldwide, 

house dust mite. We have investigated the dynamics of the eosinophilic 

response in the bone marrow, blood and lungs mathematically in order to reveal 

information on the system dynamics. Using 3 to 4 data points per dose, we found 

that the model was able to encapsulate the experimental data and provide a 

representation of the patterns among each compartment, particularly in the bone 

marrow and the blood (Figure 4). In the lungs, however, the dose-response 

trends did benefit from an additional data point, as shown by the 5 µg data. 

Importantly, the model revealed which processes involved in the development of 

airway eosinophilia have the greatest relative impact on the system as a whole 

(Figure 5). Through these simulations, eosinophil death was the most sensitive to 

changes, while eosinophil production and survival showed substantial but slightly 

less sensitivity when changed (Figure 6). In comparison, eosinophil migration 

between compartments showed no consistent patterns between each of the 

doses used, as well as insignificant effects on the system as a whole. Although 

HDM is certainly not the only allergen that elicits eosinophilia, it is likely that other 

models of eosinophilia would share similar dynamics and compartmentalization, 
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as well as regulation by the same processes investigated herein. Through 

mathematical analysis of the development of airway eosinophilia, future 

experimentation may not require extensive data sets, but rather development of 

the system model. Such analysis could identify which rates showing the greatest 

effects in minimizing eosinophilia, as well as determining optimal therapeutic 

strategies.  
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Methods 

Mathematical Model 

With the understanding that the eosinophilic response in the airway is 

influenced by the production, migration and regulation of eosinophils between 

and within compartments, the model accounts for these events in a simplified 

system, as illustrated in Figure 1. Eosinophils are considered to be present in 

three compartments: bone marrow (BM), blood (B) and lungs (L). The number of 

cells within each compartment varies according to the dose of HDM (E) and rates 

representing the range of cellular processes involved in each compartment. As 

outlined in Table 1, seven processes are represented in the model. The number 

of eosinophils in each compartment varies according to the general equation: 

    

€ 

dCells
dt

= Input −Output ± Regulation 

where input represents production of new eosinophils or immigration of 

eosinophils to a compartment and output considers eosinophil death or 

emigration of eosinophils from a compartment. The final term, regulation, 

represents the death, loss or survival, of eosinophils between compartments 

given that the system is not contained (i.e. the number of eosinophils produced 

will not be maintained throughout the flow of the system). The number of 

eosinophils within each compartment is described by a set of ordinary differential 

equations: 
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Bone Marrow Eosinophils 

Bone marrow eosinophils represent the initial input of cells in the system, 

given that eosinophils are produced solely in this compartment. The change in 

the number of eosinophils in the bone marrow over time (t) is described by the 

equation: 

    

€ 

dBM(E,t)
dt

= kP − kE ⋅ BM(E,t) − kA⋅ BM(E,t) 

where kP represents the rate of eosinophil production, kE is the rate of bone 

marrow eosinophil migration to the blood, and kA is the rate of loss as bone 

marrow eosinophils migrate and/or die. 

Blood Eosinophils 

Following production in the bone marrow, eosinophils then migrate into the 

blood circulation, from where they may eventually migrate into the lungs. The 

rate of change in the number of eosinophils in the blood is given by the equation: 

    

€ 

dB(E,t)
dt

= kE ⋅ BM(E,t) − kI ⋅ B(E,t) − kB ⋅ B(E,t)  

where kE represents the rate of bone marrow eosinophils immigrating into the 

blood, kI represents the number of blood eosinophils emigrating to the lungs, and 

kB is the rate of loss as blood eosinophils migrate to other tissues and/or die. 

Lung Eosinophils 

Lastly, the change in the number of eosinophils in the lungs with respect 

to time is represented as: 
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€ 

dL(E,t)
dt

= kI ⋅ B(E,t) − kD ⋅ L(E,t) + kS ⋅ L(E,t)  

where kI represents the rate of blood eosinophils immigrating into the lungs, kD 

represents the rate of lung eosinophil death, and kS is the rate of lung eosinophil 

survival. 

Parameter Estimation 

In order to determine the parameter values, experimental data were used 

to solve the set of equations at a given dose and time-point. Initially, holding the 

dose of HDM constant, the general solution of BM(t) was solved for all possible 

combinations of kP, kE and kA, at a given dose, that fell within ±20% of the mean 

experimental data, thus yielding a set of solutions. The ±20% range was chosen 

arbitrarily to limit the solutions within an acceptable variance of the experimental 

data. This set was tested to solve for combinations of kI and kB that satisfied the 

same requirements for B(t). This refined set was, then, further tested to 

determine the combinations of kD and kS that satisfied L(t). Therefore, the 

resulting set consisted of parameter values that satisfied BM(t), B(t) and L(t). 

Lastly, this set was further refined to include only the parameter values that 

elicited solutions within a ±5% range of the mean experimental data. In some 

instances, there were unique solutions for a given dose and time. In the event of 

multiple solutions, the average of the solutions was taken. This process was 

repeated for each dose used in the experimental protocol (saline, 1, 5, or 25 µg 

HDM). 
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Equation Solving  

All equations were encoded in Mathematica 6.0.2.1 (Wolfram, Chicago, 

IL), in order to solve for BM(t), B(t) and L(t). Unknown parameters were initially 

solved for using the set of differential equations and three experimental data 

points for each compartment (0, 3 and 14 weeks). Although eosinophils in each 

compartment and at each dose had varying number of experimental data-points, 

only 3 to 4 time-points were used to determine the rates computationally and 

perform simulations. The resulting equations were then used to simulate cell 

quantities over time. Areas under the curve were calculated using Mathematica 

through the integration of each equation over the specified time intervals. For the 

general and equilibrium solutions for all model equations, see additional file 1: 

Equation solutions. 

Experimental Methods 

Animals  

Female BALB/c mice (6 to 8 weeks old) were purchased from Charles 

River Laboratories (Ottawa, ON). The mice were housed in a pathogen-free 

environment under a 12 hour light-dark cycle. The Animal Research Ethics Board 

of McMaster University approved all experiments described. 

Protocol of Respiratory Mucosal Sensitization  

House dust mite was prepared and delivered to mice as previously 

described [17]. Mice were exposed intranasally to 10 µl of saline or HDM (1, 5, or 
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25 µg) daily for 5 consecutive days per week followed by 2 days of rest, for 1, 2, 

3, 5, 7, 10 or 14 weeks. 

Collection of Samples  

For all experimental time-points, mice were sacrificed 72 hours following 

the final HDM exposure. Eosinophils from the bone marrow, blood and lungs 

were collected. For bone marrow eosinophils, the femurs from each mouse were 

excised and opened at both ends. A 25-gauge needle was inserted to collect the 

bone marrow by flushing each femur with 2 ml of phosphate-buffered saline 

(PBS). Blood and lung eosinophils were collected, and total cell and eosinophil 

counts were determined for each compartment as previously reported [17, 32, 

33]. 
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Tables 

Table 1 - List of model rate parameters 

The mathematical model considers the dynamics of eosinophils between three 

main compartments: bone marrow (BM), blood (B) and lungs (L). The quantity of 

cells within each compartment varies according to seven major processes 

outlined above. Both death and survival are considered to be independent active 

processes and, as such, are modelled separately. In other words, these 

processes are not mutually exclusive and both death and survival may be 

promoted simultaneously at any given time. 

 

NAME DESCRIPTION 
kP Rate of eosinophil production (in BM) 
kE Rate of eosinophil migration (from BM to B) 
kA Rate of eosinophil loss (in BM) 
kI Rate of eosinophil migration (from B to L) 
kB Rate of eosinophil loss (in B) 
kS Rate of eosinophil survival (in L) 
kD Rate of eosinophil death (in L) 
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Figures 

Figure 1 - Simplified visual model of eosinophil trafficking among 

compartments  

Eosinophils are considered within three main compartments (BM, B and L), and 

increase and decrease based on seven major rates. The rate parameters used in 

the model are described in Table 1. 

 

Figure 2 - Eosinophil experimental data in BALB/c mice exposed to HDM 

for up to 14 weeks  

Mice were exposed intranasally to either saline (solid circles) or HDM, 1 µg (open 

circles), 5 µg (solid triangles) or 25 µg (open triangles) for up to 14 weeks. 

Eosinophils were collected in (A) bone marrow, (B) blood and (C) lungs. Cell 

numbers are expressed as means (n = 6-12 mice/group) 

 

Figure 3 - Dose- and time-response dynamics of rate processes involved in 

eosinophil trafficking 

Based on the experimental data, simulated rates were determined for saline 

(solid circles) or HDM, 1 µg (open circles), 5 µg (solid triangles) or 25 µg (open 

triangles) for up to 14 weeks, and normalized. (A) Eosinophil production for all 

doses exhibits similar trends with an initial increase, followed by a plateau. (B) 

and (C) Migration rates (from both the BM and B compartments showed no 

apparent dose or time related patterns. (D) and (E) Similarly, the rates of loss in 
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both the BM and B compartments showed no dose- or time-dependent dynamics. 

(F) The level of eosinophil survival increases slightly with respect to dose, with 

the exception of saline. (G) Contrastingly, death remains consistent across all 

doses of HDM, suggesting that eosinophil apoptosis occurs at a fixed rate and 

does not depend on the amount of allergen present in the system. 

 

Figure 4 - Mathematical model simulations over 14 weeks of exposure to 

saline, 1, 5, and 25 µg of HDM  

Simulations (red lines) were performed and compared to experimental data 

(black lines) over 14 weeks of exposure to (A) saline, (B) 1, (C) 5, and (D) 25 µg 

of HDM. In this case, simulations were confined to using time-points 

corresponding to the experimental data set used to build the model (0, 2/3, and 

14 weeks). The simulated data was able to capture the trends of the initial 

increases in the responses, with the peak of the response, and either a 

maintenance or decrease to a plateau. 

 

Figure 5 - Relative effects of individual model parameters on eosinophils in 

the lung at 25 µg of HDM 

(A) Numerical analysis of simulated changes in model parameters at 25 µg of 

HDM. Changes in eosinophil production (kP), survival (kS), and death (kD) rates 

were simulated at ± 100% of the baseline simulation and the area under the 

curve (AUC) was calculated and compared to baseline values (*N.D. – Non-
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Determinable). In silico experiments were performed to simulate increasing 

(small dashed lines) and decreasing (large dashed lines) the production, survival 

and death rates by ±100% of their original values, and compared to the baseline 

(red lines) lung eosinophil response. (B) Positive and negative changes in the 

production rate elicit the same absolute change from baseline. (C) A greater 

change from baseline occurred when simulating a +100% change in the survival 

rate, as opposed to a negative change. (D) Both positive and negative changes 

in the death rate elicit decreases in airway eosinophilia. 

 

Figure 6 - Relative effects of individual model parameters on eosinophils in 

the lung at 25 µg of HDM 

The system’s sensitivity to production, survival and death rates is evident through 

simulations (black lines) ranging from baseline values (red lines) to a 100% 

change, decreasing, for (A) and (B), or increasing, for (C), at 10% intervals. A) 

When altering production, eosinophils in the lung reduce at equal intervals at 

both week 3 and 14. (D) For both survival and death rates, the distance between 

simulations at week 3 decreases as the intervals increase, while the production 

rate maintains equal distances. (E) At 14 weeks, survival rate simulations remain 

equidistant, while survival and death rate simulations converge. 
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General solutions: 
 

    

€ 

BM(E,t) = C1
kI + kB − kE − kA

kE

e−(k E +k A )t +
kP

kE + kA  
 
 
 

    

€ 

B(E,t) = C1e
−(k E +k A )t +C2e

−(k I +k B )t +
kE  kP

(kE + kA)(kI + kB )  
 
 
 

    

€ 

L(E,t) = C1
−kI

kE + kA − kD − kS

e−(k E +k A )t +C2
−kI

kI + kB − kD − kS

e−(k I +k B )t

         +C3e
−(k D +kS )t +

kE  kI  kP

(kE + kA)(kI + kB )(kD + kS )  

 
At equilibrium: 

    

€ 

dBM(E,t)
dt

=
kP

kE + kA  
 
 
 

    

€ 

dB(E,t)
dt

=
kE  kP

(kE + kA)(kI + kB )  
 
 
 

    

€ 

dL(E,t)
dt

=
kE  kI  kP

(kE + kA)(kI + kB )(kD + kS )
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Summary and Central Message: We developed a mathematical model and 

computer simulation program to provide an extensive examination of avascular 

tumour growth and metastasis and simulate different outcomes. We established 

rules that mimic disease progression, using a local interaction simulation 

approach (LISA). These “rules” correspond to mathematical equations, 

embedded within which are parameters with values that can be altered, which 

were then encoded using Mathematica (a technical computing environment 

software application). Among the distinguishing features of the model was the 

ability to test the effects of different diffusional neighbourhoods, and the 

capability to apply both deterministic calculations and pseudo-random algorithms. 

We determined that the manner in which cancer cells diffuse has the greatest 

impact on the overall size and shape of a tumour, and is likely a combination of 

deterministic and stochastic processes. 
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ABSTRACT 

Mathematical and computational models have emerged as effective 

complements and, in some cases, alternatives to in vitro and in vivo research. 

Particularly in the area of cancer research, such models allow for testing of a 

diverse combination of parameters and variables via simulation, some of which 

would not be possible to examine experimentally. One of the most-common 

criticisms of mathematical and computational models is the extent to which they 

can accurately mimic, and subsequently predict, actual biological events. Given 

that many complex biological processes involve multiple independent but 

simultaneous events, portraying these processes computationally is difficult, 

because they must be emulated sequentially in silico. Herein, we elaborate a 

non-linear, dynamic, mathematical model for cancer growth, which involves iron 

requirements of cells. The model simulates malignant tumour growth, including 

cancerous cell diffusion and death (apoptosis), allowing for movement in all 

directions in two-dimensional space according to rule-based mathematical 

algorithms. To visualize the model, we developed a computer graphic simulation 

program and used it to demonstrate the effects of varying parameters and 

various diffusion patterns. We applied the Local Interaction Simulation Approach 

(LISA) and obtained graphical and numerical results using different diffusional 

neighbourhoods. Our results show that the growth of a simulated tumour over 

time is dependent on the availability of its hypothetical nutrient source. 

Furthermore, we illustrate the effects of changing a variety of model parameters, 
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and show the influence that is imparted by the diffusion process on the overall 

shape and growth of the tumour. 

 

Keywords: Cancer Growth, Computer Simulation, Decision-Making Algorithm, 

Cell Migration, Cell Diffusion, Mathematical Model 
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INTRODUCTION 

Cancer is a condition encompassing over 200 diseases that share 

uncontrolled cellular proliferation as a diagnostic feature and constitutes the 

second leading cause-of-death in the western hemisphere [1]. The pathogenesis 

of cancer has been associated with a variety of origins, including DNA-damaging 

radiation, stress-inducing mutations, inherited genes, and viral infections [2]. 

Regardless of its origin, the most recognizable hallmark of cancer growth is the 

inability to regulate cell replication. As cells divide in an unregulated manner, 

cellular masses accumulate within tissues or around organs, preventing normal 

physiological function and causing pathologies that lead eventually to death [1]. 

Although cancer cells may not respond to normal cellular regulatory signals, they 

require a constant supply of energy and essential nutrients for continual growth.  

 

When cancerous cells divide, they utilize the available resources in the 

immediate area, eventually creating a necrotic core of dead cells in the centre of 

a growing tumour [2]. The outer layer of cancerous cells will seek to migrate to 

other areas of the tissue or elsewhere in search of nutrients such as iron, glucose 

and oxygen. As the tumour grows in diameter, the necrotic core also becomes 

larger, correspondingly in diminishing areas to which nutrients can potentially 

diffuse [3]. Since these nutrients are unavailable near the core of the tumour, the 

adhesive interactions between cancerous cells become disrupted. As cells 

detach, they diffuse to adjacent areas in search of adequate conditions to 
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continue growing [1, 3]. Diffusion often leads cancerous cells to blood vessels, 

where they enter the blood stream and metastasize to other areas of the body in 

search of nutrient sources. Metastasis usually results in cancer cells adhering 

preferentially to bone marrow, liver, lungs, and other organs. This pattern 

corresponds with the high prevalence of cancerous tumours in these organs [4]. 

It is this movement which eventually can lead to the deterioration and death [2]. 

 

Pescarmona et al. [5] developed a mathematical model for studying 

cancer growth and tumour metastasis. Their model emphasized the requirement 

of iron (Fe) during cancerous cell proliferation. In particular, their model utilized 

the behaviour that cancerous cells exhibit when local Fe-levels become depleted: 

they migrate to neighbouring areas in search of new Fe-sources [5]. As with 

many complex biological phenomena, linear mathematical models provide 

inadequate descriptions for the dynamics that are involved in cancerous cell 

migration. Thus, the temporal sequences of events involved in cancer growth 

were considered discretely and analyzed in a manner that concerned only local 

environmental conditions, the local interaction simulation approach (LISA) [5-8]. 

 

Their model attempted to account for the biological pathway of Fe-uptake 

and consumption, and included four major assumptions [5]: 
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a. Fe uptake will be dependent on local Fe concentrations and relatively 

minimal and constant in the neighbouring, quiescent and non-cancerous 

cells.   

b. Fe availability and concentrations are dependant on proximity to local 

blood flow. 

c. Cancerous cell diffusion is represented but limited to 4 directions, 

corresponding to nearest neighbour nodes in a two-dimensional 

coordinate grid.  

d. If no adequate Fe-sources are located, then these cells undergo 

apoptosis. The proportion of cancerous cells that die in any time interval is 

random (i.e., determined using a pseudorandom number generator). 

 

To create an accurate mathematical depiction of biological events 

described by a model, it becomes necessary to take into account the diverse 

relationships among the processes that are emulated therein [9]. Biological 

processes can be relatively complex in nature, given the many entwined 

variables that may be interrelated, with multiple simultaneous events occurring 

constantly [10]. Understanding the diffusion and movement patterns of tumours 

may allow future therapies to target only cancerous cells, themselves, and also 

attempt to predict where cancer may spread to and prevent secondary tumours.  
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Herein, we elaborate on the pioneering work in modelling cancer growth 

and metastasis by Pescarmona et al. [5]. Most notably, we reformulate the 

equations and refine the decision-making algorithms. We incorporated these 

equations and algorithms into a computer graphic simulation program to create a 

computational model with which we consider diffusion of cells in both von 

Neumann and Moore neighbourhoods (Figure 1) and emulate cancer growth, 

death and diffusion, using both deterministic calculations and pseudo-random 

algorithms.  
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THE MODEL 
 

In our computer graphic simulation program, a two-dimensional coordinate 

grid (with i and j denoting rows and columns) is initialized with user-defined 

parameters, and one node within the grid is ‘seeded’ to represent the initiation of 

cancer growth. Each node contains proportions of healthy, cancerous, and dead 

cells (Hij, Cij, and Dij), which for simplicity, are normalized so that their proportions 

sum to one. The representation that is generated by the computer graphic 

simulation program represents fluctuations in the values of these three cell 

states, as well as concentrations of nutrient (e.g. Figures 3-7). These fluctuations 

are determined by a variety of parameters that affect operations representing 

cellular processes, which metaphorically affect the manner in which the cancer 

‘seed’ grows and potentially metastasizes.  

 

Nutrient Diffusion 

The nutrient concentrations at grid nodes initially are determined by the 

location of blood vessels in relation to the grid. All simulation results that are 

reported herein involve a single blood vessel along the top of the grid, which 

creates a gradient in nutrient concentration by diffusion, with highest 

concentrations closest to the blood vessel and diminishing with distance. The 

change in density of free-nutrient (pij) at node (i,j) with respect to time t is 

determined by the equation: 
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€ 

dpij

dt
= α pij

ij
∑ −ηpij

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ − βpij

 (1) 

 
where α represents the free-nutrient diffusion rate across tissues; the subscript ij 

indexes the nearest neighbours, the coefficient η accounts for the nodes that 

neighbour (i.e., surround) node (i,j); and β represents the rate at which nutrient is 

absorbed by healthy cells at each node. Depending on the location of the node, η 

may become 3, in the case of corner nodes, 5, in the case of edge nodes, or 8 

for all other nodes in the grid. To ensure that a proper nutrient-gradient is 

established, Equation 1 is calculated over a user-determined number of iterations 

prior to formally initiating a simulation to establish equilibrium nutrient 

concentrations.  

 

Feeding 

Feeding acts to transform free-nutrient (pij) to bound-nutrient (qij) at 

cancerous node (i,j). The amount of nutrient that is transformed is given by the 

equation:  

  

€ 

dqij

dt = −
dpij

dt = γpij
 (2) 

 

where γ represents the rate of free-nutrient uptake by cancerous cells. 

This equation ensures that the amount of free-nutrient that becomes bound to 

cancerous cells at a given node is proportional to the amount of nutrient available 

at that node.  
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Consumption 

Consumption determines the amount of bound-nutrient that is used by 

cancerous cells. It is proportional to the intrinsic rate of nutrient consumption by 

cancerous cells (λ) and occurs in a non-linear manner: 

    

€ 

dqij

dt
= λ 1−e−qij( ) (3) 

 

Mitosis/Apoptosis 

Cell mitosis and apoptosis are determined by thresholds. If, at any time 

during a simulation, the ratio bound-nutrient:cancerous cells falls below a 

specified threshold, QD, then cancerous cells undergo apoptosis. Conversely, if 

the ratio bound-nutrient:cancerous cells rises above a specified threshold, QM, 

then cancerous cells proliferate. The proportion of cancerous cells that will 

undergo proliferation or apoptosis is determined by: 

    

€ 

dCij

dt = 1− ρm( )⋅
qij

QM
−Cij

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + ρmCij( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
− 1− ρd( )⋅ Cij −

qij

QD

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + ρdCij( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 (4) 

 

The proportions of cells perishing or dividing are determined 

mathematically so that the elevated or diminished bound-nutrient:cancerous cell 

ratio is related to QM or QD.  The parameters ρd and ρm determine how apoptosis 

and mitosis are emulated (0 for completely deterministic or 1 for pseudo-random) 

in the respective nodes. 
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Diffusion 

If, at any time, the ratio free-nutrient:cancerous cells falls below a 

specified threshold, PD, then cancerous cells will migrate to surrounding nodes in 

a free-nutrient concentration-dependent manner in search for richer nutrient-

sources. The amount of cancerous cells that will migrate is given by the 

equations: 

    

€ 

dCij
O

dT
= − 1− ρD( )

pij

PD

−Cij

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ − ρDCij

 (5) 

 

    

€ 

dC
i±0,1, j±0,1

I

dT
= 1− ρD( )Cij

O ⋅
pi ±0,1, j ±0,1

pij
ij
∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

+ ρDCij
O  (6) 

 

Equations 5 and 6 represent the concentrations of cancerous cells migrating out 

of a central node and into neighbouring nodes, respectively. These equations are 

analogous to those for the cell mitosis and death processes in that sufficient cells 

will diffuse to bring the free-nutrient:cancerous cell ratio back to the threshold PD. 

Migrating cells are distributed in a ‘weighted’ manner, depending on the richness 

of the neighbouring nutrient-sources (Equation 6). The parameter ρD represents 

a parameter that allows the model to vary from deterministic (ρD = 0) to 

stochastic (ρD = 1), or any situation in between. 

 

Neighbourhoods 

We incorporate the effects of two common neighbourhoods used to 

describe diffusion in two dimensions. In this context, a ‘neighbourhood’ is defined 
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as the set of nodes surrounding a given node in a square grid (Figure 1). The 

mathematical definitions of von Neumann and Moore neighbourhoods, 

respectively, are described as [11]: 

    

€ 

N x0 ,y 0( )
v = x,y( ) : x − x0 + y − y0 ≤1{ } (7) 

 

    

€ 

N x0 ,y 0( )
M = x,y( ) : x − x0 ≤1, y − y0 ≤1{ } (8) 

 

Given that our model calculates the process of cellular diffusion based on the 

attainment of a threshold value, we disregard the originating node as a potential 

neighbour for diffusion. In other words, we consider neighbours to be potential 

nodes to which cancerous cells may migrate to, although when this threshold is 

not met, cells will remain in the originating node. 

 

Simulations 

 All equations were encoded in Mathematica 6.0.2.1 (Wolfram, Chicago, IL) 

in order to perform simulations over time, with specified parameter values. All 

simulations, unless otherwise noted, were performed using the values specified 

in Table 1. During each iteration in a simulation, cellular processes were 

calculated for each node in the grid. In previous versions of the model, simulated 

tumours shifted to the right within the grid despite an equal and symmetrical 

distribution of nutrient [12, 13]. The main loop function in the computer graphic 

simulation program had been encoded to perform calculations starting in the 

upper left corner of the grid and continuing from left to right, top to bottom, 
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ultimately finishing in the bottom right corner (Figure 2A). To circumvent this shift, 

the model was adjusted to reverse the direction of the calculations in alternating 

iterations (Figure 2B). For odd-numbered iterations, calculations are performed 

left to right, top to bottom, whereas, for even-numbered iterations, calculations 

are performed bottom to top, right to left. Also in previous versions of the model, 

as cancerous cells diffused to the outer edges of the grid, migrating cells had 

been provided only with the option to diffuse to neighbouring nodes, creating a 

border effect caused by the boundaries of the grid. To alleviate this effect, the 

diffusion process was altered to allow for cancerous cells to migrate beyond the 

limits of the grid. At each iteration, when the calculations for cancerous cell 

diffusion are performed, an outer “ring” of nodes is added to the grid, allowing for 

cancerous cells to migrate to these nodes (Figure 2C). Following this step, the 

outer “ring” is removed, leaving the original grid with updated values and ready 

for the next iteration.  

  

The selection for the type of neighbourhood to use during a simulation 

occurs in the initialization of a simulation, followed by the iterative process for 

diffusion. Using the selected number of neighbours for either a von Neumann (4) 

or Moore (8) neighbourhood, the surrounding co-ordinates for each node are 

calculated and stored. These co-ordinates are used to allow the computer 

graphic simulation program to move cancerous cells according to the 

concentrations of free nutrient available at each target node. 
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RESULTS 
 
Baseline Simulations 
 

Simulations involving default parameter values (Table 1) were run to show 

that under these conditions, cancer continued to grow and metastasize to 

neighbouring nodes over time (Figure 3A). As cell populations at each node 

increased, the consumption of nutrient by cancerous cells overtook the 

deposition of new free-nutrient by nearby vessels, and thus, the total free-

nutrient-source diminished correspondingly (Figure 3B). As nutrient-levels at a 

given node became depleted, cells not supplied with nutrient underwent 

apoptosis, which produced the characteristic necrotic core (Figure 3C). 

Quantitatively, growing and spreading cancerous cells reached the nutrient-

source (blood vessel) after approximately 125 iterations; the cancerous and dead 

cell populations exhibited sigmoidal patterns of growth and death (data not 

shown). The upper-bound for these two patterns seems to result from space and 

nutrient limitations; the time needed for these cell populations to plateau is most 

likely correlated with grid dimensions.      

 

Varying Parameter Values 

To illustrate how each parameter affected tumour size and shape, 

simulations were performed varying each individual parameter. Because the 

feeding rate (γ) of cancer cells positively regulates the concentration of bound-

nutrient and, in turn, cell growth at a given time, increasing γ led to an increase in 
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rates of cellular proliferation rates (Figure 4A); decreasing γ  significantly 

prevented nutrient-binding and cellular nutrient usage and thus, inhibited growth. 

Altering the consumption rate (λ) of nutrient by cancer cells yielded similar but 

inversely proportional patterns (Figure 4B). Decreasing the rate of nutrient-

turnover allowed high nutrient-levels to persist for longer time periods and thus, 

remain available for tumour growth.  

 

As expected, the cancer growth rate and tumour size were dependent on 

the mitotic  threshold, QM, in an inversely proportional manner (Figure 4C). The 

death threshold, QD, also affected system dynamics in an inversely proportional 

manner but showed very unique and interesting patterns (Figure 4D). By 

decreasing cell sensitivity to death (decreasing QD), the formation of a ring so 

commonly manifested in necrotic cores was delayed and the amount of 

cancerous cells (and corresponding tumour size) increased slightly, as cells were 

able to survive with very low levels of bound-nutrient. The metastatic threshold, 

PD, elicited proportional changes in both the rate of cancer growth and tumour 

size. (Figure 4E). Interestingly, as PD increased, tumours typically developed an 

octagonal shape. 

 

Varying Seed Sizes 

 To account for the potential sensitivity of initial cancer ‘seed’ size in 

relation to overall tumour size, simulations were performed by varying seed sizes 
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from 0.2 to 1.0 units, in 0.2 increments. Visually, at both T=50 and T=100, no 

differences in tumour size were apparent when increasing the seed size (Figure 

5A). Numerically, over the first 100 iterations, each simulation growth curve 

yielded similar trends (Figure 5B). Magnification of the first 10 iterations revealed 

that, in fact, slight variations during the initial growth phase had occurred, 

particularly during the first 2 iterations (Figure 5C).  

 

Comparing ‘Random’ vs. Fixed Simulations  

Simulations involving changes to values for the parameters ρm, ρd and ρD 

were run to assess how results that were obtained using mathematically precise 

decision-making algorithms (Figure 6A) compared with results that were obtained 

using combinations of precise and pseudorandom algorithms (Figure 6B), and a 

strictly pseudorandom number generator (Figure 6C). Differences in tumour size 

and shape were apparent qualitatively (Figure 6). The mathematically precise 

decision-making algorithm generated a more-circular pattern with a higher 

concentration of cancer cells near richer nutrient-sources (i.e. the blood vessel 

running along the top of the grid). Although differences in proportions of surviving 

cells were initially quite small, they accumulated rapidly and dramatically. For 

example, cumulative survival at 100 iterations was almost two-fold higher in the 

deterministic compared to the pseudorandom simulations.  
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Comparing Diffusional Neighbourhoods 

To asses differences in diffusion neighbourhoods on the evolution of a 

simulated tumour over time, simulations were carried out using diffusion 

processes in 4 and 8 directions. With the objective of analyzing the overall shape 

and growth pattern of the simulated tumour, run analyses were restricted to the 

presence and number of cancerous nodes overall. Thus, each node in the grid 

was recognized as either cancerous or non-cancerous, with no associated 

amount of cancerous cells. Using a von Neumann neighbourhood (i.e. 4 

neighbours) and deterministic algorithms, cancer cells occupied a diamond-

shaped pattern over time (Figure 7A).  Over the course of such simulations, 

tumours eventually spread to all areas of invaded tissue. When simulations were 

carried out using a Moore neighbourhood (i.e. 8 neighbours) and deterministic 

algorithms, the tumour grew in a square pattern over time (Figure 7B).  

Ultimately, when using a Moore neighbourhood, the tumour spread to all areas of 

the tissue in approximately half the time required when using a von Neumann 

neighbourhood (Figure 7).  
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DISCUSSION 
 

Using equations and decision-making algorithms to describe the various 

biological processes, we encoded a computer graphic simulation program to 

create a computational model to emulate cancerous cell growth, diffusion, and 

apoptosis using different diffusional neighbourhoods. Cell movements were 

simulated within various areas of a virtual tissue, the overall diffusion patterns 

being characterized by a wide variety of parameter values.   

 

As expected, tumours typically evolved throughout tissues, and showed 

biased growth and diffusion in the direction of the nutrient source. During growth, 

the available free nutrients became expended, causing a necrotic core to develop 

in the centre of the tumour. Varying parameter values greatly affected the 

manner with which tumours typically grew and spread. For example, decreasing 

the feeding rate γ prevented mitosis, increased cell death, and prevented cancer 

cell migration. This observation shows how such models can be used to 

accelerate testing various experimental hypotheses.  

 

The factors that can be influenced in reality are limited. Although some 

parameters can be increased or decreased experimentally or clinically, others 

represent fixed physiological thresholds that are constrained from changing 

substantially. For instance, the amount of nutrient that is needed to realise cell 

division is a fixed quantity and so, increasing QM would represent an impractical 
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therapeutic approach. Similarly, altering PD and QD may be considered untenable 

practically. Despite increases in initial cancer seed size, simulations remained 

essentially unchanged over time. This observation indicates that the biological 

processes considered in the model limit the initial growth of the tumour, 

regardless of the initial conditions. Conversely, the level of ‘pseudo-randomness’ 

greatly affected the size, shape and location of the tumour. Fixed algorithm 

simulations produced a more-circular shape, while partially and completely 

random algorithm simulations resulted in larger, more abstract, square-like 

shapes. These simulations reveal that more information about tumour growth is 

required through comparative analysis among actual tumours to determine to 

what degree tumour growth and diffusion is deterministic.  

 

Ultimately, it appears as though the most-influential factor on tumour 

growth is the manner in which cancerous cells diffuse. As most mathematical 

models focus on the avascular stages of tumour growth, the effects of diffusion 

can be crucial [3, 5, 14-16]. If used to predict the ontogeny of a tumour in a given 

time frame, theses differences could prove to be fundamental in determination of 

tumour size and growth rate. While the two simulations focusing on the number 

of diffusional neighbours elicit similar growth curves, the pattern and the speed at 

which the tumour evolved differed (Figure 7). A doubling in the number of 

neighbours caused the time at which the tumour consumes the entire tissue area 

to halve (T ≈ 300 using a von Neumann neighbourhood, data not shown, versus 
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T ≈ 150 using a Moore neighbourhood). Additionally, if the model were to be 

expanded to three dimensions, the number of surrounding nodes in von 

Neumann and Moore neighbourhoods would increase to 6 and 26, respectively. 

The effects of this added dimension, and corresponding neighbours, most likely 

would exert a more-noticeable difference in pattern and speed. In addition, if the 

quantity and direction of cancer cells migrating were undetermined, then this 

added complexity also may exert an effect on growth curve characteristics. 

 

Despite limiting simulations to alterations to values for individual 

parameters, the potential impact that simultaneous changes to values for multiple 

parameters could exert on the ability for a computational model to emulate 

accurately a biological process such as cancer growth is evident. Additional 

simulations using a variety of combinations of parameter values and grid size 

would be beneficial in ultimately helping to identify the most-accurate scenario for 

emulating cancer growth. Given that most biological processes are non-linear, 

such changes in parameters and testing their corresponding effects using a 

parallel programming platform is vital for the substantiation of any computational 

model. 

 

We anticipate ultimately incorporating virtual chemotherapeutic agents into 

the model. For example, Fe-chelators have been studied as anti-proliferative 

agents [17]. Using our computational model, the effects of Fe-chelators could be 
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modelled. Furthermore, the use of oncolytic viruses as potential cancer therapies 

is becoming increasingly promising [18]. Modelling viral therapies also may be 

incorporated into our model to simulate the interaction between a virus and 

cancer cells. Such modelling would enable researchers to predict optimal timing 

and dosages for therapies needed to prevent cancer metastasis while preventing 

patient toxicity. 
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TABLES & FIGURES 

i j CI CJ C0 α β γ λ PD QD QM ρd ρm ρD 
101 101 51 51 0.2 0.2 0.05 0.1 0.1 0.7 0.12 0.3 0 0 0 
Table 1: Default parameter values used for baseline simulations. 
 

 

 
Figure 1: Potential directions for cancer cell diffusion in two-dimensional space in a Moore 
neighbourhood (8 possible directions) and a von Neumann neighbourhood (with 4 possible 
directions). 

 
 

 
Figure 2: Various methods used in the cancer cell diffusion process. 
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Figure 3: Simulated tumour growth over time showing A) Cancer cell distribution, B) nutrient 
distribution and C) dead cell distribution, using baseline parameters (Table 1).  
 

 
Figure 4: Effects of variation in model parameters on tumour growth at T = 50, with all other 
baseline parameters used (Table 1). 
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Figure 5: A) Simulated tumour growth over time with varying seed sizes. Growth curves for 
varying seed sizes over the first B) 100 iterations and C) 10 iterations. 
 
 

 
Figure 6: Simulated tumour growth over time for A) deterministic algorithms (ρm = ρd = ρD = 0), B) 
mixed algorithms (ρm = ρd = ρD = 0.5, and C) pseudorandom algorithms (ρm = ρd = ρD = 1). 
Simulations were run using baseline parameters in Table 1. 
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Figure 7: Simulated cancer cell distribution using A) a von Neumann neighbourhood and B) a 
Moore neighbourhood.  
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CHAPTER 5 

DISCUSSION 
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CHAPTER 5 

DISCUSSION 

The intent in this chapter is to identify and recapitulate what was revealed 

in each project, and to then explain limitations and prospective next steps. The 

key results and discoveries have been discussed in each individual manuscript 

included in this thesis. Consequently, it seems appropriate to elaborate on the 

overall implications of the research contained herein, as well as potential areas 

for improvement. 

WHAT DID MODELLING REVEAL? 

The process of creating a model characteristically involves a constant 

cycle of development, refinement, prediction, and validation. During this process, 

knowledge is gained about the methodology and the system being modelled. 

Through the development and application of in silico models, we were not only 

able to learn more about each system that was studied in this work, but we also 

learned how to refine our modelling process and conduct our research more 

efficiently. Overall, the goals of each model were to reveal and describe specific 

characteristics of the respective systems. Using mathematical techniques, further 

goals were elaborated that were specific to each system.  

For the HDM exposure model, presented in Chapter 2, the initial goal was 

to establish a tool to predict the response of various measures of airway 
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inflammation and sensitization over a broad range of doses of allergen over time. 

As a result, we were able to visualize how the system responded to different 

changes to initial conditions in a manner that would otherwise have been both 

costly and time-consuming using in vivo experimentation. Importantly, we 

established that the system is non-linear. More specifically, although the initial 

dose of allergen determines the responsiveness of both the inflammatory and 

sensitization variables, these responses do not increase proportionally to 

increases in the dose of allergen. Throughout the entire spectrum of simulated 

responses, the distribution is also non-linear with respect to both dose of allergen 

and time. Furthermore, we observed maximal responses in the range of 10 to 15 

µg of HDM. The implication of these findings was that the behaviour of the 

system changes at some point during the experimental protocol. 

Correspondingly, we were able to identify properties of the system where the 

behaviour changed, namely threshold doses of allergen for both the eosinophil 

and immunoglobulin responses (2.0 µg and 0.5 µg of HDM, respectively). 

Collectively, as we identified the non-linearity among allergen exposure and both 

inflammation and sensitization, we were able to surmise that the inflammation-

sensitization relationship is also non-linear. This premise could be extrapolated in 

order to distinguish the differences among atopic and asthmatic patients.  

Additionally, an important lesson learned through the completion of this 

project was the recognition of the limitations of our methodology. Given the 

empirical methods used, the model equations were representative of the trends 
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exhibited by the experimental data, however they were not unique to the system. 

In other words, the mathematical properties (model equations) of the system did 

not encapsulate or correlate to specific immunological properties of allergic 

asthma. Despite this shortcoming, the model was a fundamental step in our 

pursuit of studying allergic asthma from a mathematical standpoint as it ultimately 

shaped the manner in which future projects were designed both experimentally, 

in terms of dose of allergen and time-points used, and mathematically, in terms 

of the methodology used. 

The model of eosinophil trafficking, presented in Chapter 3, was 

specifically designed to incorporate mechanistic modelling techniques. In 

addition, the goals of this model were to identify the relative contribution of 

various eosinophil trafficking processes to airway eosinophilia. Upon 

identification of eosinophil production, survival and death as the key processes 

that had the greatest relative impact on airway eosinophilia, the model was also 

able to simulate how airway eosinophilia is affected when minimizing and 

reducing these processes, meant to represent in vivo experimentation using 

knockout models or antibodies. We observed that although changes in eosinophil 

production, survival and death exhibited non-linear reductions to varying extents, 

values in airway eosinophilia were similar at 14 weeks, suggesting an attraction 

point for the complex system. The significance of these observations was the 

identification of  these  processes  for  further in vivo  investigation,  in sharp 

contrast to experimentation focusing on impairing eosinophil migration. 
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Furthermore, eosinophil production appeared to be the most sensitive to 

changes, implying that production via IL-5 is best suited for therapeutic 

intervention. Although experimental data were used with respect to the various 

eosinophilic compartments, the processes of production, migration, death, and 

survival were theorized and used the limited experimental data available to solve 

for their values. A limitation of this model was the absence of a comparison of 

simulations to experimental data outside of the protocol (i.e. data not previously 

used in the modelling process).  

Chapter 4 describes the development of the cancer model. The goal was 

to create a simulation program that would emulate tumour growth and metastasis 

in two dimensions. As anticipated, our simulation program was able to mimic a 

tumour evolving in tissue, growing in the direction of the nutrient source and 

developing a necrotic core. Through various simulations, we were able to test the 

effects of changing a number of model parameters, including growth and death 

rates, the level of randomness for calculations, and particularly the manner in 

which cancer cells diffuse. We observed that the processes of cancer growth and 

death, when altered, would correspond to increases and decreases, respectively, 

in the tumour size. Interestingly, when using deterministic methods in the model, 

the tumour exhibited a dense, circular shape, whereas stochastic methods 

yielded a scattered, square shape. These simulations imply that tumour growth in 

the body is a combination of both random and deliberate calculations. The 

process of diffusion, and the manner in which it is calculated, proved to be the 
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most influential parameter in the model. Using different neighbourhoods 

corresponding to the number of directions in which cancer cells can move (4 or 8 

directions), both the speed and size at which the tumour grows is affected. These 

findings not only have implications on previously established and future models 

of tumour growth in two-dimensional space, but also models in three-dimensional 

space, as the predicted size and shape may be grossly over or under-estimated.  

One of major assumptions previously included in the cancer growth model was 

the premise that cancer growth, death and diffusion were determined by the 

availability and quantity of an individual nutrient. Previously, this nutrient was 

considered to be iron [80,86,97]. The model presented in Chapter 4 took a more 

general approach, without the identification of a specific nutrient, given the lack of 

data to support the mathematical characteristics of iron diffusion. Regardless of 

the type of nutrient, the initial diffusion across the grid has the ability to affect all 

of the processes in the model, both directly and indirectly, and ultimately the 

shape and size of the simulated tumour. 

FUTURE DIRECTIONS OF THE MODELS 

Models, whether experimental or mathematical, are inherently limited. 

That is, there are always more variables that could potentially be included in a 

model. The conundrum with models, however, is that the quantity of information 

that is incorporated into the development of a model does not necessarily equate 

to the quality of the knowledge that can be extracted in return. For example, in 
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the TCN model presented in Chapter 2, the accuracy of the model was evaluated 

via linear regression at various stages throughout the modelling process when 

additional data was added. When adding an additional dose to the model, 

corresponding to 8 additional time-points, the R2 value remained unchanged (at 

0.987). Furthermore, the inclusion of 20-week data (5 additional time-points) 

increased the R2 value only slightly (0.990) [100]. Collectively, from the initial to 

the final model, a 140% increase in the number of total data-points only 

corresponded to a 0.003 increase in the R2 value, and consequently, no 

additional information about the system was gained.  

The essence of a model is the ability to describe and predict behaviours 

through the simplification of a system. As part of this simplification, important 

variables and parameters are initially identified that are considered to be crucial 

to the system. In deciding how detailed a model should be, there cannot be any 

specific standards. However, it has been recently recommended that a model 

should encompass a set of criteria to render it useful to biologists, that it 

embraces the inclusion of actual data, the ability to account for the dynamics of 

the system, the option to perform simulated experiments, and a need to be as 

realistic as possible [25]. The researcher has autonomy to determine what is 

appropriate and necessary to include. Nevertheless, much like to the questions 

of suitability and methodology that arise when assessing the applicability of in 

vivo models to humans, there are many questions that are raised with in silico 

models that pertain to future directions and improvements that could be made.  
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FUTURE DIRECTIONS OF THE HOUSE DUST MITE MODELS  

HDM EXPOSURE MODEL 

We acknowledge the experimental limitations of using only one allergen, 

but we elected to use HDM because it is the most pervasive aeroallergen 

worldwide [101]. Furthermore, HDM allows for the investigation of a process that 

is initiated in the respiratory mucosa and does not require the use of exogenous 

adjuvants, in contrast to the typically used antigen OVA (ovalbumin), which is 

introduced along with a chemical adjuvant (aluminium hydroxide) 

intraperitoneally [102,103]. However, we are also aware that HDM is not the only 

allergen that elicits airway eosinophilia when mucosally delivered. In addition, we 

only used one strain (BALB/C) and age (6-8 week old) of mice. While we 

recognize that other models using different aeroallergens or different strains of 

mice may have different kinetics, it is likely that not only do they share similar 

dynamics and compartmentalization, but are also subject to regulation by the 

same processes that we have investigated in Chapters 2 and 3. To add all of 

strain, age, and allergen variables would further increase the intricacy of the 

research, but it would make it less manageable without any concomitant 

advantages to learning more about the system. 

In Chapter 2, separate models were focused specifically on the total cell 

number, eosinophils alone, as well as HDM-specific IgE and IgG1. As this was 

the first attempt to mathematically model allergic asthma, we chose to develop 
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an empirical model. In doing so, we based our mathematical construct purely on 

the patterns exhibited by the data themselves. Given the vast amount of 

experimental data that was collected, there are different approaches that could 

have been taken in the modelling process.  

If the model were to be developed again using empirical methods, the total 

cell number could be modelled as the summation of each encompassing cell 

type, eosinophils, mononuclear cells, and neutrophils: 

  

€ 

TCN = EOS + MNC + NT  

In mathematical terms, the total cell number could be expressed as a function of 

all three different cell types: 

    

€ 

TCN = f (EOS,MNC,NT )  

Or, similarly, as a sum of the functions of each individual cell type: 

    

€ 

TCN = f (EOS) + f (MNC) + f (NT ) 

Furthermore, the quantity of each cell type could be modelled as a function 

based on both dose of allergen and time. The advantage of this approach is that 

experimental data would have only been used to model eosinophils, 

mononuclear cells and neutrophils, allowing for the model predictions to be 

tested against the total cell numbers calculated during the collection of data. This 

disadvantage of using empirical methods, as with the methodology used in 

Chapter 2, is that the function f would not be attributed to any distinguishing 
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immunological properties of HDM, but rather it would an arbitrary mathematical 

function only describing the pattern exhibited by the dose-response curves. 

If the model were created using mechanistic methods, then equations 

could be used to model the change in each cell type with respect to time. In 

doing so, however, each function for each cell type would have to be based upon 

some additional factors, not purely dose and time as it currently stands, that 

would make the equations unique to allergic asthma. The system could be 

modelled as a series of differential equations: 

    

€ 

dTCN
dt

= f
dEOS

dt
,
dMNC

dt
,
dNT
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

    

€ 

dEOS
dt

= f1(EOS(t),E,t) 

    

€ 

dMNC
dt

= f2(MNC(t),E,t) 

    

€ 

dNT
dt

= f3(NT (t),E,t) 

where the change in the total cell number over time is expressed as a function, f, 

of the sum changes of various cell categories. Furthermore, changes in each 

individual cell type over time would be modelled as separate functions based on 

dose (or exposure, E) and time (t). These functions (f1, f2, and f3) would be 

expanded to include additional factors that are unique to the system and 
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attributed directly to immunological principles, either based on discrete data or 

theory. 

EOSINOPHIL TRAFFICKING MODEL 

In the model presented in Chapter 3, seven different rates were 

considered, each representing various processes that ultimately would determine 

the level of eosinophils in each compartment. Given that one of the main goals of 

the model was to make use of a limited data set, the model was restricted to 

using only data pertaining to eosinophils in the bone marrow, blood and lungs. 

Taking the model one step further, each rate of change included in the model 

could be modelled as a stand-alone function. The construct of the model could 

be presented as a larger set of equations. For instance, each eosinophil 

compartment would be expressed as: 

    

€ 

dBM(E,t)
dt

=
dkP

dt
−

dkE

dt
BM(E,t) −

dkA

dt
BM(E,t)  

    

€ 

dB(E,t)
dt

=
dkE

dt
BM(E,t) −

dkI

dt
B(E,t) −

dkB

dt
B(E,t)  

    

€ 

dL(E,t)
dt

=
dkI

dt
B(E,t) −

dkD

dt
L(E,t) +

dkS

dt
L(E,t) 

where each process in the model would then be represented as separate 

equations: 

    

€ 

dkP

dt
= fP (kP (t),E,t)  
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€ 

dkE

dt
= fE (kE (t),E,t)  

    

€ 

dkA

dt
= fA(kA(t),E,t)  

    

€ 

dkI

dt
= fI (kI (t),E,t)  

    

€ 

dkB

dt
= fB (kB (t),E,t)  

    

€ 

dkD

dt
= fD (kD (t),E,t)  

    

€ 

dkS

dt
= fS (kS (t),E,t)  

The caveats to this approach would be two-fold. First, the key components 

contributing to a particular process would have to be identified, or hypothesized. 

Currently, each rate is calculated as a static value at a particular dose and time-

point. In a revised model, for example, the function for eosinophil production (kP) 

would have to encompass the effects of IL-5, IL-3, and GM-CSF, or be assumed 

to be limited to one individual cytokine, IL-5 [104-107]. Second, experimental 

data, as it pertains to each individual process, would be needed.  

APPLICABILITY AND IMPLICATIONS 

In summary, the models in both Chapters 2 and 3 take into account 

different aspects of airway inflammation, a fundamental hallmark in allergic 
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asthma. With the understanding that mathematical models can (or rather, should) 

be modular in nature (i.e. have the ability to be sub-divided into smaller discrete 

parts), the models we have presented are complete and may stand alone. 

However, they may also be used as parts to larger and, correspondingly, more 

complex models. Similarly, other modules could be constructed to function in 

parallel to the existing models. 

The overall applicability and goal would be to create a global, algorithm-

based, construct that connects allergen exposure, allergic sensitization and 

allergic disease to obtain qualitative and quantitative knowledge of the 

relationships between these processes. In this case, we consider allergic disease 

to encompass all of the phenotypic conditions associated with exposure to an 

allergen, not solely airway inflammation. This research would have the ability to 

furnish a novel computational visualization of allergen-host interactions and 

clarify conditions under which allergic asthma emerges and evolves. 

 Both the emergence and evolution of allergic disease, we hypothesize, is 

primarily attributed to the interaction between the exposure to allergen (in this 

case, the amount and duration of HDM exposure) and the status of the lung at 

the time of exposure or, host susceptibility which in this case, the ability of the 

lung to respond to said exposure. Given that allergic disease is not easy to define 

experimentally, as mice do not exhibit the typical clinical features of human 

asthma, a mathematical approach may be beneficial. 
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 Allergic asthma can be considered a complex disease (D). For this 

reason, we would model the disease as a mathematical system using differential 

equations. We postulate that the evolution over time (t) of the disease depends 

mainly on dose of allergen exposure (E) and host susceptibility (h). Thus: 

    

€ 

ʹ′ D (t) =
dD
dt

= f (D(t),E(t),h) 

We would assume that host susceptibility is constant over time. However, 

allergen would be administered daily and this would likely result in cumulative 

effects. Even though defined doses of HDM would be used, exposure would also 

be based on time.  

 In order to mathematically define “disease”, we would utilize lung function, 

or rather dysfunction, (F), as the closest surrogate of asthma. We propose that 

“disease”, or lung dysfunction, depends on the present state of dysfunction (F), 

as well as the extent of sensitization (S), inflammation (I), and airway remodelling 

(R). Thus:  

    

€ 

ʹ′ D (t) = ʹ′ F E,h (t) = f (FE,h (t),SE,h (t),IE,h (t),RE,h (t))  

where IE,h(t), SE,h(t) and RE,h(t) are functions dependent on allergen exposure and 

host susceptibility. Here, allergen exposure would be fixed, while susceptibility 

would be held constant. Our goal would be to determine the function f to 

establish mathematical rules that could elucidate biological principles in the 

system. 
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For brevity, the first step would be to empirically model the various 

individual processes, each of which is comprised of several variables, to 

generate equations based on dose of allergen and time for each variable.  

The second step would be to collectively model S, I, R, and F by gathering 

information acquired in the previous phase. As each variable is expressed in 

different units, it would be necessary to normalize the values. To do so, the 

maximal response for each variable would be determined and individual 

measurements will be expressed as a percentage of that maximal response. The 

third step would employ an additional method of analysis to define the patterns in 

S, I and R as they change between doses and over time. The change for each 

process, at a given dose would be determined by calculating the ratio of the 

change in one given process to the sum of the absolute change in all processes, 

over a specified time interval (i.e. from t to t+1). The resulting values of S, I, R, 

and F for each time interval and dose would be simplified as a set. Using these 

sets, a matrix would be constructed with the relative change in each variable at 

all doses and time intervals:  

    

€ 

E1 E2 E3 En

t1 S11,I11,R11,F11{ } S12,I12,R12,F12{ } S13,I13,R13,F13{ } .

t2 S21,I21,R21,F21{ } S22,I22,R22,F22{ } S23,I23,R23,F23{ } .

t3 S31,I31,R31,F31{ } S32,I32,R32,F32{ } S33,I33,R33,F33{ } .

tm . . . Smn ,Imn ,Rmn ,Fmn{ }
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Analysis of the pattern of change for each variable, as well as the overall 

response, would provide insight into the relative contribution of each individual 

process (S, I, and R) to the functional outcome (F). The system is dynamic and 

dose-dependent, implying that the contribution of each process on dysfunction 

would likely vary with exposure and time. Using these observations, we would be 

able to identify properties of the system, and the doses and times at which these 

changes happen. As a result of this analysis, a complete mathematical of allergic 

asthma from a system’s perspective could be achieved. 

FUTURE DIRECTIONS OF THE CANCER MODEL 

The model of cancer growth and metastasis presented in Chapter 4 was 

initially designed to build upon a previously established model [80]. One of the 

distinguishing features of the model we created was the inclusion of elements 

previously unaccounted for, namely the methods used to calculate the diffusion 

of cancer cells and the combination of deterministic and pseudorandom 

processes. Through the creation of a computer simulation tool, various 

simulations were performed in order to highlight both the methodology used 

within the model, as well as the effects of individual variables on overall tumour 

shape and size.  

Although the range of simulations demonstrates these effects, there are 

areas for improvement that could expand the range. For instance, all simulations 

were performed using the same initial seed location, as well as the same location 
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of the nutrient supply. It would be interesting to examine the overall effects that 

changes in these parameters would elicit, both individually and in combination 

with other parameter modifications. Furthermore, each of the simulations was 

performed using a 100 by 100 grid. This size was chosen for two main reasons. 

First, we believed this size was able to demonstrate the global effects when 

changing parameters. Second, results were generated in a timely manner, due to 

the amount of time needed to run these simulations. A grid that has dimensions 

of 100 by 100 nodes and runs for a single iteration results in 10,000 calculations. 

This number is increased exponentially given the various calculations of 

processes occurring within each node and the number of iterations. Future 

simulations using larger grid sizes would be beneficial in order to see the long-

term behaviour of the system, and to investigate limitations of the different 

processes previously identified in the model, such as space and nutrient 

limitations. 

In addition, one of the apparent limitations of the model is the premise of 

tumour growth in a two-dimensional space. In order to make the model and 

ensuing simulation results more realistic, it would be valuable to add an 

additional dimension to allow for simulations in three-dimensional space, albeit 

adding further complexities in the process. In order to add a spatial dimension to 

the model, the information within each node, along with each process, would be 

expanded to include a third coordinate. The process of diffusion would have the 

greatest impact, as cancer cells would now have the option to diffuse in more 
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directions. In two-dimensions, using a Moore neighbourhood, a cancer cell has 8 

potential directions in which to diffuse. In three-dimensions, however, this value 

is increased to twenty-six. With respect to calculations, the default grid size 

would be 100 by 100 by 100 nodes. For a single iteration, the number of 

calculations would rise to 1,000,000. Over multiple iterations, a third dimension 

would significantly affect the simulation time. 

APPLICABILITY AND IMPLICATIONS 

The overall applicability and goal of mathematically modelling cancer 

would ultimately be to mimic what is actually happening to a tumour in the body, 

and apply this tool to test various therapeutic interventions. As such, the model 

presented in Chapter 4 could be considered as a module to a larger, more 

encompassing model that would capture additional elements involved in cancer 

growth and metastasis. Other areas to consider would include a more refined 

method of nutrient diffusion, the incorporation of angiogenesis, and the addition 

of a therapeutic application. 

For simplicity, the cancer model used a simple method for the initial 

nutrient diffusion, whereby the grid was divided approximately into quarters. The 

first quarter of the grid (closest to the location of the blood vessel) was initialized 

with a nutrient value of 1, and each successive quarter decreased by a value of 

0.25. Most published models on cancer growth do not mention or explain how, if 

at all, a nutrient is distributed [74,90,91,108,109]. The use of a linear distribution 
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starting from the origin can be found in some models [110]. While this linear 

method can provide a reasonable representation of the distribution of a nutrient, 

it remains to be seen if this is biologically plausible.  

The diffusion of the nutrient across the grid could have been considered 

synonymous to an ice cube tray (Figure 1). Assuming nutrient is diffused from 

one end of the grid where the blood supply is located, each successive “opening” 

in the tray continues to fill. The openings closest to the source would then contain 

the highest concentration of nutrient, with concentrations decreasing as the 

distance from the blood source increases.  

                      

                      
                      
                      
                      

Figure 1: A graphical representation of iron diffusion. Similar to an ice cube tray. As the iron 
diffuses from the left (or top of the grid) the nodes closest to the nutrient source contain higher 
concentration of iron, with each successive node containing a lower concentration as the distance 
from the nutrient source increases. 

	  
In order to describe a new method of nutrient diffusion, we would consider 

the equation: 

    

€ 

N = A(1−e−kt ) 

where N is the amount of nutrient at a given node, A is the theoretical maximum 

amount of nutrient that a node could contain and the rate k>0 is taken to be 

constant. The equation above describes how the nutrient level in one individual 
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node in the grid would continue to increase in the absence of any other process. 

Since the amount of nutrient is dependent on the distance from the blood vessel, 

either of the row or column coordinates can be disregarded, depending on the 

location of the blood supply. If, for example, the blood vessel is located at the top 

of the grid, we could ignore the column in which a node is in, concentrating solely 

on the row. In order to model the amount of nutrient in each of the nodes in a 

particular row, we reformulate the equation: 

  

€ 

N = Ae−kt  

The highest level of nutrient would begin at the row closest to the blood 

supply, decreasing as the distance from the blood supply increases. Note that 

the variable x replaces the time variable, to denote the row (or column) number, 

and A has been normalized to 1. The amount of nutrient in subsequent iterations 

would be determined by: 

    

€ 

Nt +1 = Nt +
1−Nt

d
 

where 1/d is the speed at which a node can fill with free nutrient. This method 

creates a thorough distribution both initially over the grid and for all ensuing 

iterations. 

By modelling the growth of a tumour in an avascular environment, we 

have assumed that nutrients are provided to the grid by a single blood source. In 

reality, angiogenesis may ensue, resulting in the creation of new blood vessels 
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that would provide the tumour with continuous resources to continue growing and 

sustain itself [111]. While there are numerous established models of 

angiogenesis, each modelling individual or multiple components contained within 

the cancer model presented herein, none of the models take all of these aspects 

into consideration [112-116]. 

In one instance, Chaplain (2000) presents a model based solely upon the 

development of new capillaries as opposed to incorporating cancer cell growth as 

well [112]. The equations used to model the angiogenic process in this model 

contain only the endothelial cell density, angiogenic factor and cell adhesion 

molecule, all of which alter in time and position in space. Plank and Sleeman 

(2003) use a circular random walk to describe the movement of endothelial cells 

as they move towards a growing tumour [113]. In this model, Heaviside’s function 

(essentially a function returning only two outcomes) is used to determine whether 

a cell will turn clockwise or counter-clockwise at a given angle, or whether it will 

remain in the same direction. The incorporation of random and deterministic 

processes allows for the possibility of a capillary to undergo anastomosis, 

creating a loop within the new blood vessel. Based primarily on the 

concentrations of fibronectin and chemotactic growth factor (CGF) to describe 

the conditions leading to capillary formation, Sun et al. (2005) constructed an 

additional model, combining elements from the aforementioned models [116]. 
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Most models of angiogenesis do not take into account the concentration of 

cancer cells, which would ultimately lead to higher concentrations of tumour 

angiogenic factors (TAF) [112-116]. The location of these cancer cells in relation 

to the blood source would alter the speed and location in which new blood 

vessels are formed. To model angiogenesis within our model, the model would 

be expanded to include TAFs at cancerous nodes. As the tumour begins to grow 

and spread within the tissue, cancer cells would release TAFs that would diffuse 

outward towards the blood supply, similar to the diffusion exhibited by cancer 

cells. As these factors reach the blood supply, the development of new blood 

vessels would be initiated and continue to spread throughout the tissue (Figure 

2). Essentially, during this process, a node would be replaced by a blood vessel, 

with the existing contents displaced to neighbouring nodes.  

 
Figure 2: A simple model of angiogenesis. Using a random-walk function originating from the 
top of the grid where the blood supply is located, this simulated angiogenesis would initiate new 
blood vessels in order to vascularize the tissue. 

 

Upon completing the model in Chapter 4, we considered inclusion of an 

oncolytic virus as a possible therapeutic intervention for the growing tumour. A 

virus was thought to be appropriate given that viruses have been previously 

studied from a mathematical perspective, as well as the potential benefits of the 
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virus from a clinical perspective. Oncolytic viruses have been shown to 

selectively infect cancer cells [117,118]. Furthermore, they have been shown to 

have no toxic effects in clinical testing, thus maintaining healthy tissue [119]. 

Although oncolytic viruses are replication-competent in only cancer cells, as the 

virus binds to healthy cells an immune response ensues, which can affect not 

only the concentration of virus, but also a potential indirect effect on the cancer 

cell themselves [120]. 

To incorporate an oncolytic virus into the model, a comparable approach 

would be taken in constructing the framework to that of the aforementioned 

cancer model. Using a similar two-dimensional grid (with dimensions i and j) as 

before, each node would additionally include the virus in five potential states: free 

(Vij), bound to cancer cells (Bij
C), bound to healthy cells (Bij

H), replicating (Rij) and 

cleared (Eij). Similarly, each process would be modelled anywhere in the 

spectrum of stochastic to deterministic. In this addition to the model, the 

parameter ε would also introduced to represent the relative efficiency of each of 

the viral processes, ranging from 0 to 1, representing completely inefficient to 

completely efficient processes respectively. In addition to the processes 

established in the cancer model, all nodes in the grid would be subject to seven 

major viral processes that may be potentially carried out during each iteration: 

infection, binding, entry, replication, clearance, diffusion and apoptosis. 
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The initial infection of the virus (V0) would be user-defined in placement, 

quantity and timing, and can be comparable to the cancer ‘seed’ outlined in the 

cancer model. In accordance to the properties of oncolytic viruses and the 

assumptions of the model, it could be assumed that the free virus can potentially 

bind to both healthy and cancerous cells that are available at a given node. 

Whether the virus is binding to a healthy or cancerous cell, the amount of free 

virus that becomes bound would be proportional to both the amount of the cells 

present in a node, and the amount of free virus. Although oncolytic viruses may 

bind to both healthy and cancerous cells, they are assumed to only enter cancer 

cells [121]. As a result, the amount of virus that enters the available cancer cells 

at a node and becomes replication-competent would be proportional to the 

amount of virus that was previously bound as well as the amount of cancer cells 

currently in the node.  

Once the virus has entered the cancer cells and becomes replication-

competent, it would replicate accordingly.  It is assumed that viral replication 

would be strictly based on the efficiency of the replication process for simplicity. 

Further refinement of the replication process could be calculated based upon the 

multiplicity of infection (MOI), the ratio of virus to target cells. Given that virus 

infections follow a Poisson distribution [122], the MOI could be used together with 

this distribution to render the total number of cells that would become infected. 

This would allow for the calculation of the start and end points of infection.  
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Following replication, a relative amount of the virus may be cleared from 

the system. Similar to replication, it is assumed that this process would be 

determined by its efficiency. Viral diffusion would be considered to act in a similar 

manner as cancer cell diffusion. The model would allow for free virus to diffuse 

according to a Moore neighbourhood (in 8 directions), proportional to the amount 

of free virus that is present in the neighbouring nodes.  

With the incorporation of additional processes, the overall model becomes 

a network of intricate relationships among all of the parameters involved:	  

Figure 3: The major variables and processes in an expanded cancer model. A conceptual 
outline of the complete model would include cancer growth and metastasis, nutrient diffusion, 
angiogenesis and the use of an oncolytic virus as a therapeutic intervention. 
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CONCLUDING REMARKS 

Collectively, through the models presented in this thesis, we have affirmed 

that both allergic asthma and cancer growth are complex processes. We have 

learned that there are alternative ways of studying these systems with models 

and that these models may reveal the advantages of incorporating mathematical 

and computational techniques into biological and immunological research, by 

means of the identification of system properties and the ability to simulate a wide 

range of scenarios. 

In the context of allergic asthma, the models described in this thesis have 

provided two separate tools to investigate the inflammatory effects in response to 

HDM exposure. With respect to cancer growth and metastasis, a two-

dimensional model was constructed to simulate patterns of growth, as well as 

various methods of diffusion. In addition to experimental data and/or theory, our 

models were formulated on assumptions, either explicit or generally understood. 

Each model contained conceptual platforms that were deemed appropriate, in 

our opinion, given the nature of the model and the information available at the 

time. 

Aside from the apparent similarity of using mathematical and 

computational methods to develop models for both biological systems studied in 

this thesis, perhaps they may also be connected through the conceptual 

properties that are revealed in the modelling process. From a two-dimensional 
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modelling perspective, allergic asthma and tumour growth could be considered 

as having inverse structural properties. The narrowing and constricting of the 

airways, as a result of airway inflammation, can be considered as a circular area 

growing inward as inflammation accrues. Conversely, an avascular tumour could 

be considered to be relatively circular in nature as well, however the growth is 

outward. In both instances, the system is evolving over time with respect to initial 

parameters and changing variables. 

  

Figure 4: Conceptual similarities between allergic asthma and tumour growth. In two 
dimensions, the two systems studied in this thesis, allergic asthma and tumour growth, have 
converse patterns. Allergic asthma (top row), from an inflammation perspective, narrows in 
space, while tumour growth (bottom row) expands. 

 
While any potential similarities between the two systems may not contribute in 

any way to each respective individual model, it does highlight the perspective 

and conceptualization that is possible via mathematical and computational 

modelling.  
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Simply stated, modelling in any environment allows for understanding, 

predicting and learning. In particular, in silico modelling does so from 

mathematical and computational points of view. The benefits of such modelling 

lie in its prospective applications to the overall scope of the research process. 

Our models are not meant to extrapolate experimental data directly to human 

data. Rather, the intent is to incorporate them seamlessly into biological research 

as an effective complement to in vivo experimentation. With these premises in 

mind, there is no limit to how prolific and valuable mathematical and 

computational models may be when applied to complex biological processes. 
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