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ABSTRACT

The industrial application of production planning and process scheduling optimization is

addressed in this thesis. The first part of the thesis addresses the research into process

scheduling application. Several scheduling models are developed based on both discrete

and continuous time modelling frameworks. Extensions to both frameworks are presented

to address unique production policies and maintenance activities. The potential benefits

of schedule optimization is determined through several comparative industrial case studies.

The weekly production schedules of the actual plant are compared against the schedules

generated by optimization. The historical plant performance is ascertained and areas where

efficiency gains are possible are highlighted. In addition, the scheduling model is used to

investigate potential changes to production policies.

The second part of the thesis addresses the research conducted in production planning ap-

plication. The main goal of production planning is the efficient generation of a plan that

specifies production targets for products over a medium term horizon. Direct application

of previously proposed planning models fails to model several unique and key processing

features of the production facility. A production planning model is presented that relaxes

the detailed scheduling model structure and exploits the use of traveling salesman type

constraints to accurately model sequence dependent changeovers. Two case studies are pre-

sented to investigate the benefits of optimization in production planning. The first case

study investigates the lowest cost planning solution over a three month planning horizon.

The second case study investigates the effects of a key production parameter on the opti-

mality of solution. The results highlight the potential benefit of optimization application

in increasing plant processing efficiency and reducing unnecessary production downtime.

Finally, a modelling framework is presented that allows for the combined scheduling of

production and maintenance. The framework allows for maintenance with various timing

requirements and extends the capabilities of current frameworks.
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Chapter 1

Introduction

The Consumer Packaged Goods (CPG) industry is made of products with high turnover

rates and low to moderate prices. These products are typically sold in grocery stores, mem-

bership stores and occasionally to food service providers. The CPG market sector is also

categorized by high profit margins, low barriers to entry, and a highly competitive market

place. This competition provides incentive for efficient process operation and production

planning, as it provides means to lower the company bottom line and improve profitability.

This incentive is reflected through increased collaboration between industry and academia

to explore new techniques and methods to improve process efficiency.

1.1 Motivation and Goals

This research is a collaborative effort with PepsiCo Canada to highlight and improve opera-

tional performance in a CPG production facility. The first goal is to investigate the benefits

of scheduling optimization on an industrial level. Production scheduling is conducted on a

short-term horizon spanning one week. Optimization models based on both discrete and

continuous time formulations are presented. Historical information is used to develop four

case studies and benchmark plant performance, where the objective is to minimize the pro-

duction makespan. The potential improvements in operational efficiencies are quantified

through comparison to historical schedules.

1
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In addition to providing solutions to short-term process scheduling, the developed optimiza-

tion models can be used to evaluate potential future plant operations. The investigation of

two operational policies after plant retrofit is conducted through modification of schedul-

ing optimization models. The improvement in plant throughput is investigated for each

operational strategy and plant efficiency gains highlighted.

The second goal of this research is to move from short-term scheduling to medium-term

production planning optimization. Due to the increase in the time horizon, production

planning models are typically modelled using less detail than scheduling models. This can

pose a significant problem of capacity overestimation if critical plant characteristics are

modelled inaccurately. A production planning model is developed which exploits traveling

salesman based constraints to model sequence dependent changeovers within the planning

intervals. The planning model developed accurately reflects the scheduling level detail

while providing a method to investigate longer term horizons. Investigation of the broader

supply chain is conducted through industrial case studies developed from historical demand

and inventory data. Efficiency gains are highlighted and possible improvements to the

production planning process are discussed.

1.2 Industrial Setting

This research focuses on a production facility manufacturing a consumer food product. The

supply chain in which the plant is a part of is shown in Figure 1.1, while the production

facility layout is illustrated in Figure 1.2. The product supply chain consists of the pro-

duction facility with customer demand and material supplier nodes. The corporate office

receives weekly orders from customers and forecasts future product demands. Production

targets and demand forecasts are then sent to plant management who utilize the data and

generate applicable weekly production schedules and place material orders. Inventory of

both raw materials and product is kept on site to satisfy customer demands.

The facility produces on the order of 50 different stock keeping units (SKUs) which are based

on roughly 30 product material formulations. Each material formulation is associated with

a group of product SKUs which are varied in packaging size; this group is considered a

2
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Figure 1.1: Product supply chain layout
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product family. Similarities between product families exist in the product formulations, as

key ingredients lead to similar allergen concerns and cross-product contamination issues.

Due to these similarities, product families are segregated into 6 groups, herein referenced as

production groups. If production is to change between these groups, a plant wide cleaning

operation must be conducted for quality control reasons.

The production facility consists of four main areas: raw material storage, a mixing area, a

packaging area and product storage facilities. The overall production process is depicted in

Figure 1.2: Production facility layout
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Figure 1.2. The mixing train receives from storage raw materials to be portioned and mixed.

The mixed intermediate material is then transferred to the packaging area for finishing.

The packaging area consists of four packaging lines; three packaging lines (U1, U2, U3) are

reserved for the packaged products (small, medium, large). The fourth packaging line U4 is

used to finish specialized products. Physical limitations allow only one packaging line to be

connected to the mixing train at a time, with the restriction of no intermediate storage; thus

the packaging lines and mixing train effectively act as a single unit. The finished products

are sent to storage for holding before shipment to meet customer demands. Changeovers

in processing operations are sequence dependent and can be classified, by clean duration,

into three types: a 15 minute, 1 hour, and 3 hour clean. The 3 hour clean is a plant wide

cleaning operation where all processing equipment are taken offline for sanitation. It is

required that this cleaning operation be conducted at least every 36 hours regardless of

production sequence.

Several unique production policies also restrict the manner in which production is scheduled.

Such policies include: i) all products within a product family are grouped together in

the scheduling horizon, ii) product families with similar material compositions are run

together in production groups, which are separated by plant wide cleaning operations, and

iii) production tasks should not be duplicated within a production schedule.

1.3 Main Contributions

1. Scheduling Optimization Modelling Extensions to both discrete and continuous

time scheduling optimization models are presented. General extensions to include

production and product family grouping are presented for both the discrete and con-

tinuous time models. Extension of the continuous time model to incorporate process

cleaning is presented and is applicable for use as a general combined maintenance and

scheduling model.

2. Historical Plant Benchmarking Through comparisons of actual plant schedules to

optimized results, this thesis effectively benchmarks the historical performance of the

processing facility. Through this methodology the benefits of scheduling optimization

to process scheduling become even more apparent.

4
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3. Production Planning Modelling A general production planning model used to

account for sequence dependent changeovers is modified in a manner similar to the

aggregate scheduling model proposed. Extensions allow for accurate production plan-

ning to be conducted for a 12 week planning horizon. Case studies examining the

effectiveness of the production planning methodology of the processing facility are

presented and conclusions drawn.

1.4 Thesis Overview

Chapter 2 – Literature Review

This chapter provides an in-depth discussion on the aspects of process scheduling, combined

maintenance and scheduling optimization, and production planning optimization.

Chapter 3 – Process Scheduling Model Development

The main focus of this chapter is on the development of scheduling optimization mod-

els. Both discrete and continuous time models are developed and extensions to published

scheduling optimization models are presented. One of the models developed exploits model

reformulations through aggregation of scheduling tasks into explicit product families. This

aggregation allows for a reduction in model size and is intended to reduce the number of

inherent symmetrical solutions in the general continuous time optimization model.

Chapter 4 – Scheduling Case Studies

This chapter presents the application of the developed scheduling models to the industrial

facility through evaluation of four case studies. The case studies are developed using his-

torical processing and demand information. The results of the optimization are compared

against the actual historical schedules generated by plant personnel. The efficiency gains

possible are highlighted and historical performance is benchmarked against the optimal

process schedules.

During the term of this research the target production facility was to undergo retrofitting

to improve production capacity. Two future production strategies designed to exploit this

5
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new capacity were proposed by plant management. This chapter investigates the applica-

tion of the aggregate continuous time scheduling model for evaluation of both production

strategies. The aggregate model is augmented with additional constraints reflecting the

policies of each strategy, and results are compared to determine the benefits and drawbacks

of each strategy. Through this use of optimization models the best case production scenar-

ios of each operational strategy can be evaluated and provide valuable information for plant

management.

Chapter 5 – Production Planning

The efficiency gains possible at the short-term scheduling level provide incentive to investi-

gate the longer-term planning level. This chapter presents the development of a production

planning model that accurately approximates the detailed scheduling formulation. The

planning model is used to investigate two industrial based case studies. The first case study

investigates the application of the planning model to a three month horizon and contrasts

the profitability of the facility with and without specified production targets for key mate-

rials. The resultant production plans are summarized through the weekly metrics used by

the production facility and possible process improvements are discussed. The second case

study investigates the effects of varying a key operational parameter that limits the length

of time before a process wide clean must be conducted.

Chapter 6 – Chapter Conclusions and Recommendations

Concluding remarks on the applicability of optimization for use in production planning and

scheduling are given. Results are reiterated and main remarks drawn, with specific benefits

to the processing facility addressed. Possible avenues of future research are highlighted.

6



Chapter 2

Literature Review

The intent of this chapter is to provide a review of the important concepts involved in

this research. Three areas are explored: process scheduling, combined maintenance and

process scheduling, and production planning. In each case the reader will be provided with

a background of each topic and an overview of previously completed research.

2.1 Process Scheduling

Scheduling of batch and semi-continuous processes is tied intimately with the efficiency of

processing operations in industrial manufacturing plants. Critical performance measures,

such as equipment utilization and customer demand satisfaction, are influenced directly

by the process schedule. The complexity of many multi-purpose or multi-product man-

ufacturing plants makes scheduling a non-intuitive task, complicated by such things as:

equipment networks, complex product recipes, storage limitations, product due dates (ma-

terial delivery) and utility restrictions. Given the above considerations, the development of

mathematical models to optimally schedule processes has received considerable attention

both from industry and the process systems engineering community.

The application of scheduling optimization models to improve the efficiency of an industrial

processing plant is a central focus point in this thesis work. The rest of the chapter is

7
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organized as follows. First, the nature of scheduling problems is reviewed, followed by a

discussion of the main modelling challenges associated with schedule model feasibility and

optimality. Then, the two main scheduling frameworks adopted later in the thesis are re-

viewed. Concluding remarks on the benefits and drawbacks of such modelling methodologies

with respect to the application to industrial problems, are addressed last.

Classification of Scheduling Problems

Many issues need to be addressed when developing optimization models for the scheduling

of batch and semi-continuous processes. The dynamics and policies of any manufacturing

plant must be accurately represented mathematically if the results generated are to represent

optimal (feasible) process schedules. Méndez et al. [2006] highlighted 13 major categories in

which the dynamics of common manufacturing plants fall under. These categories include

process topology, equipment assignment, equipment connectivity, material storage policies,

batch sizing, processing time, changeovers, resource constraints, and the degree of certainty.

Select categories are discussed below in further detail.

The equipment topology and connectivity of a processing plant can significantly affect the

complexity of scheduling optimization models. Manufacturing plants are typically catego-

rized as single-stage, multi-stage or sequential processes and consist of one or many parallel

units at each stage. Single-stage and sequential processes follow a defined step-by-step pro-

duction pathway common for all products. This processing structure can be exploited for

model reduction as the step-by-step nature admits for simplified model development. In

multi-stage processes, product pathways are not necessarily common and may utilize dif-

ferent process equipment. Processing complexities such as batch splitting, product mixing

and recycle loops may exist. Such complexities often require a greater level of detail to

be included within scheduling optimization models. Multi-stage/multi-purpose modelling

methodologies can be used to represent single-stage and sequential processes.

It is also necessary to ensure that the policies that dictate the storage of materials between

equipment units are also upheld. In many industries these material transfer policies can

be classified into several of the self-explanatory categories, as listed below. Failure to

account for proper policies will lead to infeasible schedules and the possible production of

off-specification products.

8
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• unlimited intermediate storage (UIS)

• no intermediate storage (NIS)

• finite intermediate storage (FIS)

• zero wait (ZW)

In addition to the above plant dynamics the objective of the optimization problem must

be considered. Common objectives include, makespan minimization (completion time of

the last production task), profit maximization, job tardiness minimization and production

maximization.

Classification of Scheduling Models

The many characteristics of process scheduling problems has led to the development of mul-

tiple modelling frameworks, some capable of representing generic problems, other designed

on a situational basis. Multiple equivalent ways of modelling the same problem exist, and

particular models will be computationally more efficient than others on a problem to prob-

lem basis. The key differences in modelling methodologies lie in the representation of time,

processing events, and the handling of material balances. Understanding the key differences

in modelling methodologies, what problems they can be applied to and the expected ben-

efits (drawbacks) will help form a solid foundation of modelling knowledge in scheduling

optimization.

Representation of Time and Processing Events

The main differentiation between modelling methodologies for short-term scheduling lies in

the representation of time. Scheduling optimization can be modelled in discrete, continuous

or mixed time representations. Each methodology has advantages and drawbacks when

compared to one another; the rest of the section will briefly introduce each methodology.

The reader is referred to the review of Floudas and Lin [2004] to cover the topics of time

representation in further detail.

Discrete time models subdivide the scheduling horizon into evenly spaced intervals and allow

events to occur only at interval boundaries. A key contribution to discrete time scheduling

9
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Figure 2.1: Different scheduling model methodologies for the representation of time and

processing events

models was made by Kondili et al. [1993] with the introduction of the discrete time state-task

network (STN) paradigm. An example of a discrete time schedule is depicted in Figure 2.1

A). The production tasks (shaded rectangles) can only begin and end at the boundaries

of the time intervals. The discretization of the time horizon allows for constraints to be

monitored at predefined intervals, a simplification that reduces problem complexity and

allows for simple model structures. Discrete time models are considered data dependent as

interval length is commonly chosen as the duration of the shortest processing task.

Continuous time models were developed to remove such data dependancy and reduce the

number of binary and continuous variables required to model a process schedule. The exact

timing of events is introduced as an optimization variable and is allowed to vary throughout

the horizon. Multiple modelling methodologies utilizing a continuous time representation

have been developed over the years. An advantage of continuous time modelling allows

for the timing and duration of tasks to be variable, this allows for improved modelling

of semi-continuous type plants. Relevant to this work are the global event point and unit

event point modelling representations, presented by Maravelias and Grossmann [2003b] and

Ierapetritou and Floudas [1998], respectively.

Global event points is a version of global time intervals where the location of event points,
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common and shared by all unit resources, is allowed to vary throughout the horizon. Fig-

ure 2.1 B) depicts a global event point schedule, where tasks can begin and end at any point

within the scheduling horizon. The task durations differ in comparison to the discrete time

schedule example and the schedule can finish earlier. It is noted that one event point is

needed to model the start and finish of tasks; in this example 5 event points are needed to

model the schedule.

Unit event points specifies a set of heterogenous points for each unit, where the timing of

an event point is allowed to vary from one unit to another. This behaviour can be seen

in Figure 2.1 C), event point 1 occurs at time 0 on unit U1 and at 4 hours on unit U2.

This methodology allows for a reduction in the number of event points needed to model a

schedule. In this example only two event points are needed, as compared to the 5 needed

with the global event point methodology.

Maravelias [2005] developed a mixed time modelling methodology to address the common

limitations of both discrete and continuous time models. In mixed time models the horizon

is sub-divided into equal intervals but production tasks have variable processing times and

span an unknown number of time periods. In this manner semi-continuous plants can be

represented more accurately than with pure discrete time models. The proposed model

handles back-order and inventory holding costs linearly, which is not possible in continuous

time models. In addition due dates and material delivery are modelled with no additional

computational cost. Figure 2.1 D) depicts a mixed time schedule; the time intervals are

fixed but tasks can span multiple intervals. The processing tasks are allowed to finish at

or before the end of the last processing interval. By not assuming that tasks occupy the

entire interval allows for better batch-size representation. The model still exhibits data

dependency as optimality can be effected by the choice of interval length.

Material Balances

Many modelling frameworks in the process systems engineering literature are developed to

allow simultaneous optimization of both the number of and size of batches used within the

scheduling horizon. These monolithic approaches are capable of handling generic processing

structures and such tasks as batch mixing, splitting and recycle loops. The state-task

network (STN) is a comprehensive scheduling framework introduced by Kondili et al. [1993].
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Figure 2.2: Process-flow-diagram converted into two state-task networks, adapted from

Davies [2008].

The state-task network is a representation of a process flow diagram, where material states

(circles) and processing tasks (squares) are shown as a connected graph. The state-task

network removes the ambiguities of a process flow diagram and allows for the reader to

easily follow the flow and transition of materials through the processing steps.

An example of the ambiguity in a process flow diagram is depicted in Figure 2.2. The

process flow diagram shows the location and topology of the process equipment, but does

not show the materials or intermediates being processed. Two possible state-task networks

are derived from the process flow diagram. On the left, one material is produced after T1

which is split and operated on by T2 and T3 to produce two different product states. On the

right, two materials are produced after task 1 (T1) and sent to separate processing tasks

(T2 and T3) for finishing. As is seen the state-task network removes this unintentional

ambiguity and allows readers to easily follow material transitions.

Comparative Analysis of Models

There is a vast amount of literature on the topic of optimal short-term scheduling of batch

and semi-continuous processes. The applicability of various modelling methodologies lies

in the dynamics the model is capable of representing and on the events that occur during

the scheduling horizon. However, multiple modelling methodologies may still be applicable
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to any particular problem or processing facility. The choice of modelling methodology then

becomes a choice on computational efficiency, for which certain models will outperform

others.

Discrete Time Models The efficiency of discrete time models depends largely on the

data of the problem at hand. The number of time intervals required is a function of the

scheduling horizon length and time interval length. Small interval durations allows for

additional flexibility in the timing of events, but increases the model size (binary variables

and constraints). However, it has been shown by Maravelias and Papalamprou [2009] that

in certain cases the choice of finer discretization, albeit increasing model size, leads to

improved computational performance.

Another drawback to the discrete time modelling methodology is the drop in performance

when sequence dependent cleaning tasks are required. The number of constraints necessary

to enforce sequence dependent cleaning tasks is related to the number of tasks and the num-

ber of time intervals. Therefore, if a scheduling model exhibits a large number of processing

tasks or has a fine time discretization the model sizes may quickly become computationally

intractable. In addition, tasks with batch size dependent processing times cannot easily be

accounted for in discrete time models. This limitation makes modelling semi-continuous

processes difficult.

Continuous Time Models Global event based and unit event based continuous time

models are considered the two main time representations for general network based short-

term scheduling problems. The computational efficiency of the global event based and unit

event based models is dependent on the dynamics that need to be considered within the

model. Global event based models are considered to have the most general and most rig-

orous representation of time [Janak et al., 2004]. However, the heterogeneous nature of the

unit event based models will require fewer event points to model a schedule. This reduction

in event points reduces model sizes and results in better computational performance. Unit

event based models also provide a simple and effective manner to address sequence depen-

dent cleaning requirements within the core model. Global event based models require the

modification of the core timing constraints to represent sequence dependent cleaning, and
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additional event points will be required to model a schedule. This can lead to degraded

computational performance as the number of event points is considered as a limiting factor

in continuous time models [Méndez et al., 2006].

The heterogeneous nature of the unit event based models may also require the specifica-

tion of additional storage tasks to accurately represent some plant layouts [Maravelias and

Grossmann, 2003b]. The non-common time grid of the unit event based models also com-

plicates the ability to consider resources constraints, such as heating or cooling utilities, or

product due dates within the interior of the time horizon. An extended formulation of the

unit event based models was present by Janak et al. [2004] to address the above drawbacks

of the unit event based models. Maravelias and Grossmann [2003a] proposed an extension

to the novel global event based model such that material receipt and product delivery dates

can be effectively modelled. Material receipt has yet to be addressed within the unit event

based models.

Shaik et al. [2006] present a comparative analysis of multiple continuous time models, in-

cluding both global event point and unit event point models. In general, unit event based

models outperform global event based models when resource limitations are not considered;

and if sequence dependent cleaning is required. Unit event based models have also been

shown to outperform global event based models when resource limitations are considered.

However, the required additional variables and constraints reduces the computational per-

formance gap between the models. Unit event based models with due date considerations

require an additional event point for each order due, whereas global event based models

can allow multiple due dates to occur at the same event point. Unit event based models

have not been extended to address the receipt of materials within the scheduling horizon,

an aspect that global event based models can effectively model.

Mixed Time Models The mixed time model of Maravelias [2005] is capable of handling

resource limitations, sequence dependent cleaning, product due dates and material receipts.

In addition, mixed time models can handle backorder and inventory costs linearly, whereas

continuous time models can not. However, the discretization of the time horizon has the

potential to lead to sub-optimality; large discretization may lead to poor unit utilization

and unnecessary down time. Conversely, fine discretization leads to model sizes that quickly
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become intractable.

2.2 Combined Maintenance and Process Scheduling

In industry, reliable plant operation can make the difference between fulfilling customer

orders and incurring contractual penalties. A key aspect of reliable operation is equipment

performance. To keep equipment units running at satisfactory performance levels, preven-

tative maintenance is often carried out to avoid untimely breakdowns. Often manufacturing

plants operate continuously, and maintenance must be preformed in conjunction with pro-

duction tasks. These maintenance activities impose restrictions on equipment units, reduc-

ing available processing time. In multipurpose batch manufacturing facilities, equipment

downtime can affect the production of multiple product pathways and have a significant

effect on plant profitability. Thus the integration of maintenance and production schedul-

ing is expected to yield improved production schedules with maintenance that has reduced

impact on plant performance.

Several developments on the integrated maintenance and scheduling problem are presented

by the operations research community. Lee [1996] studied the problem of production

scheduling on single and parallel machines with maintenance events of fixed timing. The

formulation is capable of both resumable and non-resumable production jobs, but can han-

dle only one maintenance event. Liao and Chen [2003] addressed the problem of scheduling

production with multiple maintenance events of fixed timing. The formulation is based on

a single machine framework with non-resumable jobs. Qi et al. [1999] address the issue of

flexible maintenance scheduling on a single equipment unit. The authors specify that the

equipment unit has a maximum allowable continuous processing time and that maintenance

must be scheduled before this limit occurs. The number of maintenance events is an opti-

mization variable and processing jobs are non-resumable. Chen [2008] addresses the issue of

flexible maintenance events where the number of maintenance events is known. The events

are allowed to occur within a specified time window and processing jobs are non-resumable.

The above formulations all deal with single or parallel machine facilities, focusing on the

scheduling of specific dedicated production tasks. An industrial problem of greater relevance
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to the process industry is the scheduling of batch manufacturing facilities with multipurpose

equipment in complex networks. Such configurations are common in the specialty chemical,

pharmaceutical and consumer goods industries. A key contribution to the optimization of

such plant configurations was made by Kondili et al. [1993] with the introduction of the

state-task network (STN) paradigm. The formulation relies on a discrete representation

of time, dividing the scheduling horizon into a known number of equal length intervals.

Production tasks are allowed to begin and end only at the boundaries of the specified

intervals. Multiple constraint sets are proposed to handle task-unit allocation, storage

limitations, processing utility restrictions, batch size restrictions, product due dates and

material receipts. The formulation also addresses temporary unavailability of equipment

units to account for maintenance events of fixed timing.

Dedopoulos and Shah [1995] present a discrete-time STN based scheduling framework that

addresses the combined optimization of production and maintenance tasks. The framework

also considers available maintenance crews and their associated costs. As an example, the

authors optimize the maintenance and production scheduling of a lubricant manufacturing

facility. Davies [2008] also addresses the issue of scheduling flexible maintenance in a mul-

tipurpose batch plant. The author’s formulation is based on a discrete-time STN paradigm

and specifies that a known number of maintenance events must occur within the scheduling

horizon. Maintenance events are allowed to occur within a window of time intervals and

are scheduled in conjunction with production processing. The formulation considers various

objective functions, including makespan minimization and throughput maximization, and

investigates the benefits of flexible versus fixed maintenance events.

Representing time as discrete intervals is an approximation by definition and can lead to

sub-optimal solutions [Floudas and Lin, 2004]. In addition, discrete-time models are known

to have difficulty solving problems with sequence-dependent changeovers and variable batch

processing times, two features common in industry. Continuous-time modeling frameworks

were developed to address the limitations of discrete-time models and introduce the tim-

ing of processing events as optimization variables. Continuous-time formulations are also

divided into sub-categories based on the representation of processing events and can be

classified as slot, global event and unit event based models. Two key contributions to

continuous-time scheduling of multipurpose batch plants are the unit event based model of
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Ierapetritou and Floudas [1998] and the global event based model of Maravelias and Gross-

mann [2003b]. Although the above formulations provide different methods to address the

general multipurpose batch scheduling problem, neither formulation addresses the inclu-

sion of maintenance events. Mockus and Reklaitis [1999] proposed a continuous-time STN

modeling formulation for scheduling of multipurpose batch and continuous plants. Mainte-

nance events with fixed timing are included as planned down-time on equipment units. The

formulation results in a MINLP which poses computational challenges for large problems.

2.3 Production Planning

Production planning is concerned with the optimization of high-level decisions, such as

facility production targets, raw material orders and product inventory levels, such that

manufacturing capital is utilized efficiently. Production planning is also called tactical level

optimization in most supply chain literature and is concerned with time horizons of several

months to a year. Many manufacturing facilities operate in a batch or semi-continuous

fashion on multi-purpose equipment, which allows for multiple products to be produced

within a single facility. This additional manufacturing flexibility allows for production to

be changed to meet fluctuating customer demands. As a significant number of decisions

need to be made over the medium-term horizons, multi-purpose production systems lend

themselves to the application of optimization techniques. It has been of interest to the

process systems engineering community to develop mathematical models capable optimally

planning production of multi-purpose/product plants over extended time horizons.

Early work on the planning of multi-product plants was presented by McDonald and Karimi

[1997], where a MILP model is presented to optimally plan multi-site production supply

chains based on the classic economic lot-sizing planning problem. Extensions are pre-

sented to account for minimum production run-lengths, customer-plant product sourcing

decisions, time lag between supply chain nodes and grouping of products into production

families. Several examples based on industrial data are presented for illustrative purposes.

Further developments to the general capacitated lot-sizing model is presented by Sung and

Maravelias [2008]. The formulation includes a novel time-bucket representation to account

for uniform or non-uniform interval lengths, production of multiple products in one interval
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and product set-ups that can span time intervals. The model assumes sequence independent

changeovers and should be applied to single-stage like processing operations.

An issue with using the solutions from planning level models directly in practice the is

possibility of overestimating production capacity. A method to avoid this problem is the

integration of planning and scheduling level models. Verderame and Floudas [2008] present

a production planing model that determines the daily and period production targets for

multi-purpose, multi-product batch plants. The model is described as a planning with pro-

duction disaggregation Model (PPDM). The authors integrate the model with a unit-specific

continuous time scheduling model in a rolling horizon manner to facilitate the medium-term

planning and scheduling for a production facility. The authors further extend the formu-

lation to consider multi-site production networks, as presented in Verderame and Floudas

[2009]. Another method to integrate the planning and scheduling levels is the development

of surrogate scheduling models that are included in the planning level. Sung and Maravelias

[2007] proposed a projection based method to find the convex hull of feasible production

targets and an over-estimation of production costs. The feasibility region of production

targets, the production attainable region (PAR), is incorporated into the planning levels

as additional constraints and provides all the necessary information to accurately describe

the capacity of the production plant. Although the above method provides tight bounds on

the feasible region of production targets the method fails to account of the non-convexitiy

of many scheduling problems. Sung and Maravelias [2009] extended the projection based

method to incorporate non-convexities into the feasibility space. Two MILP formulations

capable of representing the non-convex feasibility region of the scheduling model are pre-

sented. Through example comparisons it is shown that the use of non-convex feasibility

regions improves the accuracy of the surrogate models and allows for additional efficiency

gains when solving planning levels problems.

The true capacity of such plants can be hard to determine in practice as it can depend on

many factors, one example of which is plants that exhibit sequence dependent changeovers.

In such situations the true capacity of the plant is a function of not only the operating

horizon but also the sequence and number of products planned to be produced. Erdirik-

Dogan and Grossmann [2007] proposed a novel production planning model that accounts

for sequence dependent changeovers explicitly, through the use of traveling salesman (TSP)
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based constraints. Changeovers are accounted for by generating cyclical production se-

quences and breaking the cycle at the link with the highest changeover. Although the

method accounts for sequence dependent changeovers explicitly a possible drawback is the

occurrence of sub-cycles. Although the authors present an iterative method to introduce

sub-cycle elimination constraints it has been shown in instances to produce sub-optimal

results [Castro et al., 2008]. Further use of traveling salesman based planning models have

been presented by Liu et al. [2008].
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Chapter 3

Scheduling Model Development

This chapter presents the development of three scheduling optimization models capable

scheduling operations at the target production facility. The first model developed is based

on the discrete time state-task network framework proposed by Kondili et al. [1993] and

Shah et al. [1993]. The second model developed is based on the global event continuous time

state-task network framework proposed by Maravelias and Grossmann [2003b]. Finally an

aggregation technique is used to simplify the global event continuous time model such that

problem knowledge can be exploited to improve computational performance.

3.1 General Discrete Time Model

The global time interval framework divides the scheduling time horizon into equal length

intervals, of length ∆t, and is indexed as the set t = {1, . . . ,H + 1}. H is a parameter

defining the total horizon length, and each time interval is common for all plant resources.

States are represented as index s, accounting for all material, intermediate and product

states. Production tasks are indexed as i and processing units are indexed as j. Each

processing task i is associated with a specified processing time (pti) and must begin and

finish at an interval boundary. The sets j ∈ Ki and i ∈ Ij are introduced as the set of units

capable of processing tasks i and the set of tasks which can run on unit j, respectively.

Allocation of production tasks to process equipment throughout time is tracked through
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binary variable Wijt, which is defined as 1 if task i is assigned to start in unit j at the

beginning of time interval t.

It is noted that the target facility exhibits several unique production policies that have not

been incorporated into the original scheduling methodology of Kondili et al. [1993]. These

policies include 1) a recurring process wide cleaning operation conducted at most every 36

hours, 2) grouping production tasks within the same family together, and 3) processing

similar product families in groups between the recurring process wide cleans. This section

will present the discrete time state-task network framework used to model the target facility

and present extensions to the model to account for the production policies stated above.

Allocation Constraints

In scheduling formulations it is necessary to ensure the proper unit-task allocation, such that

plant resources are properly utilized. The full backward allocation constraint of Shah et al.

[1993] was shown to improve computational performance in comparison to the original

constraint proposed in Kondili et al. [1993], and as such will be used in the formulation.

The allocation constraint is given below:

∑
i∈Ij

t−pti+1∑
t′=t

Wijt′ ≤ 1 ∀j, t (3.1)

Constraint (3.1) ensures that only 1 task is active on unit j during time interval t by

referencing the all tasks i ∈ Ij within the backward interval of t− pti + 1 and requiring only

one to be active. In this manner if task i′ started processing at a previous time interval

t′ and is not finished at interval t constraint (3.1) would restrict all other binary variables

Wijt within i ∈ Ij for this interval to be zero.

It is important to note the production facility operates in a semi-continuous nature, where

the processing time is dependent on the batch size of a task. Although the discrete time

formulation can not directly include variable task processing times it is possible to determine

process time prior to optimization. The discrete formulation will consider the objective of

makespan minimization, and as such will produce as much product as demanded and no

more. As such the processing time pti is determined as the required batch size of task i
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divided by the processing rate.

Unit Capacity Limitations

The batch size of task i will be restricted based on the limitations of equipment unit j.

In addition storage capacity is often finite and state inventory must not be allowed to

accumulate over this limit. The batch size of task i on unit j at time interval t is defined

through variable Bijt. The following set of constraints is proposed:

Bmin
ij Wijt ≤ Bijt ≤ Bmax

ij Wijt ∀i, j ∈ Ki, t (3.2)

Constraint (3.2) enforces the batch size of task i on unit j at time interval t to remain

within the minimum and maximum unit limits, as defined by parameters Bmin
i,j and Bmax

i,j .

Cmins ≤ Sst ≤ Cmaxs ∀s, t (3.3)

Constraint (3.3) limits the inventory of state s at time interval t to be within the minimum

and maximum inventory specifications, as defined by parameters Cmins and Cmaxs .

Material Balance

As batch tasks are executed a relative proportion of material state s will either be consumed

as input (ρis) or produced as a output (ρ̄is). This state utilization means the inventory levels

of states s will change throughout the scheduling horizon, and as such it is necessary to

balance the utilization of states s. The following constraint is imposed:

Sst = Ss,t−1 −Dst +
∑
i∈TPs

∑
j∈Ki

ρ̄is Bij,t−pti −
∑
i∈TCs

∑
j∈Ki

ρis Bijt ∀s, t (3.4)

Constraint (3.4) enforces that the current quantity of state s at time interval t (Sst) is equal

to the previous quantity of state s (Ss,t−1) minus product demands satisfied (Dst) plus the
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proportion of output material generated from previously processed batches (ρ̄is Bij,t−pti)

minus any input material used for current batches (ρis Bijt).

Sequence Dependent Cleaning

Sequence dependent cleaning between production tasks on processing equipment is a com-

mon requirement in many industries. If cleaning tasks do not require the use of shared

utilities then cleaning tasks can be modelled by ensuring sufficient time is left for a unit to

be cleaned between processing tasks. The duration of a changeover from task i to task i′

on unit j is represented through parameter sljii′ . The follow constraint is imposed:

∑
i′∈Ij

t+pti+sljii′−1∑
t′=t+pti

Wi′jt′ ≤M(1−Wijt) ∀j, i ∈ Ij , t (3.5)

If unit j starts processing task i ∈ Ij at time t, no other task i′ ∈ Ij can begin for sljii′ time

intervals after the end of the first task, and is modelled as constraint (3.5). If parameter

sljii′ = 0 then the above constraint is a redundant assignment constraint.

3.1.1 Extension to Recurring Plant Wide Cleaning Operations

As stated in Section 1.2 the production operations at the target facility require the process to

be taken offline at least every 36 hours for a process wide clean. The cleaning operations can

be considered a type of recurring maintenance and is included in the scheduling formulation

through the creation of a new task i ∈ I which has a processing time equivalent to the

duration of the process wide cleaning operation. Let Ic represent the set of all such cleaning

tasks, as the task is “process wide” the task i ∈ Ic is included into set Ij for all units j. The

process wide cleaning task i must recur at least within ct = 36
∆t time intervals following the

completion of the previous process wide cleaning task. The following constraint is imposed:

t′=t∑
t−ct−pti+1

Wijt′ ≥ 1 ∀j, i ∈ Ij ∩ Ic, t ≥ ct (3.6)
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Figure 3.1: Discrete time recurring cleaning event, A) example of first constraint, B) recur-

rence of cleaning event before ct time intervals, and C) recurrence of cleaning events at ct

time intervals.
A)

Wijt∗ = 1

ct

t

B)

Wijt∗ = 1 t

ct

C)

Wijt∗ = 1 t

ct

Constraint (3.6) enforces cleaning task i to occur within ct time intervals from the start of

the horizon and within ct time intervals of the completion of previous cleaning task (ct+pti

from the start of the previous cleaning task). The first occurrence of constraint (3.6) is

defined at time interval ct, and the summation term is enforced from t to t − ct − pti + 1.

This enforces at least one cleaning task to be active between time intervals 1 to ct, as

portrayed in Figure 3.1 A). After the first constraint it is required that a cleaning task

recur within ct time intervals from the completion of the first task.

It is possible for cleaning task i to recur within the ct time interval limit of the previous

occurrence. In Figure 3.1 B) time interval t remains within ct time intervals from completion

of the previous cleaning task. Therefore it is not necessary for cleaning task i to recur, but

if determined optimal the task may be assigned to begin within this time period. If ct time

intervals have passed from the completion of the previous cleaning task (ct + pti from the

start of the previous task), constraint (3.6) will ensure the cleaning task i recurs, as depicted

in Figure 3.1 C).

3.1.2 Extensions to Production Policies

The target facility follows three sets of production policies related to the relative ordering

of processing tasks within the production schedule. These are: 1) all tasks within a prod-

uct family must be run sequentially within the schedule, 2) processing tasks with similar

material formulations are run together between plant wide cleans, and 3) no duplication of
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production tasks is allowed.

Product Family Grouping

It is necessary that production tasks i within the same product family f be processed as a

group within the production schedule. To accomplish this, new variables are introduced to

track the activity of product family f at time interval t. Fafjt is defined as 1 if production

family f on unit j is active at time interval t, and Fffjt is defined as 1 if production family

f finishes on unit j at time interval t. Fj is introduced as the set of product families f

capable of production on unit j. The following constraints are imposed:

Fafjt ≥
∑

i∈If∩Ij

t−pti+1∑
t′=t

Wijt′ ∀j, f ∈ Fj , t (3.7)

Constraint (3.7) enforces product family f on unit j to become active if any task i ∈ If is

beginning or actively processing at time interval t.

Fafjt ≥ Fafj,t−1 − Fffjt ∀j, f ∈ Fj , t (3.8)

Fffjt ≤ Fafj,t−1 ∀j, f ∈ Fj , t (3.9)

Constraint (3.8) ensures that if production family f becomes active on unit j at time interval

t− 1 it stays active unless determined to finish at time interval t. Constraint (3.9) ensures

a product family f can only finish if it was active at the previous time interval.

∑
f

Fafjt ≤ 1 ∀j, t (3.10)

∑
t

Fffjt ≤ 1 ∀j, f ∈ Fj (3.11)

Constraint (3.10) states that only one production family f may be active at time interval

t on unit j, this restrict tasks i /∈ f from occurring when product family f is active.
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Constraint (3.11) is key to the construction of the production policy. Restricting the number

of times a processing family is allowed to finish to 1, restricts all active tasks i ∈ If to occur

as a single group within the production schedule. This group is allowed to span multiple

time intervals.

It is noted that Fafjt can be specified as continuous on [0, 1]. If it is optimal for a prod-

uct family to be active at time interval t, Fafjt will be assigned a value of 1 through

constraint (3.7). Conversely, Fffjt will assume values of 1 to counter Fafjt through con-

straint (3.8). It is possible for Fafjt and Fffjt to assume values between 0 and 1, but this

will not pose additional restrictions on the optimal solutions.

Production Grouping

As discussed in Section 1.2 product families with similar material compositions are grouped

together for product cross contamination concerns. Production tasks i are grouped into

6 production groups which are indexed by g and Ig is given as the set of tasks i within

production group g. Similar to the above constraints the activity of production group g

will be tracked at each time interval to restrict the tasks which can be active in production

group g. Gagt is introduced and defined as the activity level of production grouping g at

time interval t. Equipment index j is purposely excluded from Gagt as our definition of

production groups is defined across all units, although it may be defined over sub-groups

of equipment units if desired. If any task i ∈ If is active at time interval t the appropriate

production group must also be active.

Gagt ≥
∑

i∈Ig∩Ij

t−pti+1∑
t′=t

Wijt′ ∀g, j, t (3.12)

Constraint (3.12) forces the activity variable Gagt to equate to 1 if a processing task i in

production group g is beginning or actively processing at time t.

Gagt ≥ Gag,t−1 −Wijt ∀g, j, i ∈ Ij ∩ Ic, t (3.13)∑
g

Gagt ≤ 1 ∀t (3.14)
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Constraint (3.13) represents the requirement that if a production group becomes active at

time t it should stay active until a process wide cleaning task i ∈ Ic occurs. Constraint (3.14)

restricts only one production grouping to be active at any time t.

Gagt is specified as continuous on [0, 1]. Through constraint (3.12) Gagt will assume values

of 1 if any task i ∈ Ig is active at event point n. It is possible for Gagt to assume values

between 0 and 1, but this will not pose additional restrictions on the optimal solution. The

above formulation can also be used to enforce the grouping of tasks that use particular

utility resources, or for other heuristic reasons. It is noted that the above constraint can

be used to enforce production groups on different units through the inclusion of index j, or

sub-groups of units j, in variable Gagt.

Task Occurrence Restrictions

The processing policies of the target facility state that production tasks should not be

duplicated within the production schedule. As the processing times of tasks i are calculated

prior to optimization, for makespan minimization, this policy requirement can be expressed

as constraints:

∑
t

∑
j∈Ki

Wijt ≤ κi ∀i /∈ Ic (3.15)

Constraint (3.15) limits the number of times processing task i is allowed to start within

the scheduling horizon to κi times. The above constraints are not enforced for plant wide

cleaning tasks i ∈ Ic, as these tasks are required to recur multiple times in a production

schedule. Ki is the set of units j that can perform task i.

3.1.3 Objective Functions and Model Definition

Only the objective of makespan minimization will be considered in the discrete time model.

Variable Tms is introduced to represent the makespan of the optimized production schedule.

To relate Tms to the completion time of the final processing task the following constraints

are imposed:
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Tms ≥Wijt (t+ pti − 1) ∀i, j, t (3.16)

The makespan minimization objective is then defined as:

min Tms (3.17)

The discrete time model formulation is given as constraints (3.1) to (3.16) and objective

function (3.17) and is referenced as model MD

3.2 General Continuous Time Model

As in the discrete state-task network, states are represented through index s and account

for all raw, intermediate and product materials. Processing tasks are indexed as i and

processing units are indexed as j. Set Ij is introduced as the set of tasks i which can be

performed on unit j. A key feature of the continuous-time formulation is the postulation of

a set of event points, denoted through index n ∈ N , whose timing is not specified a priori

but determined as a result of the optimization. N represents the set of event points and H

defines the length of the scheduling horizon. The exact timing of each event point is tracked

through the use of variable Tn.

Time Ordering Constraints

The ordering and relative timing of event points n is tracked through variables Tn and the

given constraints.

Tn=1 = 0 (3.18)

Tn=|N | = H (3.19)

Tn−1 ≤ Tn ∀n (3.20)

The first event point must correspond to the start of the horizon, while the last event

point must correspond to the horizon length, as given in constraint (3.18) and (3.19),
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respectively. H is a parameter defining the total horizon length. The timing of the current

event point must be equal to or greater than the timing of the previous event point, as given

in constraint (3.20).

Assignment Constraints

A key aspect of the proposed model is the decoupling of tasks i from equipment units j. If

a task is capable of operation in multiple units it is modelled as one task per unit. Three

binary variables are introduced for the assignment of task i to event point n.

Wsin = 1 if task i begins at event point n

Wpin = 1 if task i is being processed at event point n

Wfin = 1 if task i finishes at or before event point n

Three additional auxiliary binary variables are introduced to aid the construction of the

assignment constraints.

Zsjn = 1 if a task in Ij begins in unit j at event point n

Zpjn = 1 if a task in Ij is being processed in unit j at event point n

Zfjn = 1 if a task in Ij processing to unit j, finishes at or before event point n

Disjunctive programming notation is used to discuss and derive the proper assignment

constraints. ∨ represents logical operator Or, and notation such as ∨
i∈Ij

states or any element

in set i ∈ Ij . ⇔ represents the If and Only If operator, which states the statement is true if

and only if all referenced logic is equivalently true. ⇒ represents the If Then operator, when

the original operator is true it implies truth in the target operator. ¬ is logical operator Not,

stating the statement is true when the target logic is false. As an example the statement

¬Wsin is true when variable Wsin is false.

Zsjn is equivalently equal to 1 if and only if one of the tasks that can be assigned to unit

j, is assigned to begin in unit j at event point n. The above condition can be represented

as expression (A), a logical condition in which the binary variables are treated as Boolean

variables. Similarly, Zfjn is equal to 1 if and only if one task that can be assigned to unit

j, is assigned to finish at or before event point n, which is given as logical condition (B).

29



M.A.Sc. Thesis - M. Hazaras, McMaster University - Chemical Engineering Section 3.2

Zsjn ⇔ ∨
i∈Ij

Wsin ∀j, n (A)

Zfjn ⇔ ∨
i∈Ij

Wfin ∀j, n (B)

Also, a task can be assigned to start in unit j at event point n, only if there is no other

task being processed in unit j at event point n, and is expressed as logical condition (C).

Zsjn ⇒ ¬Zpjn (C)

The binary variable Zpjn can be represented as integer expression (D).

Zpjn =
∑
n′<n

Zsjn′ −
∑
n′≤n

Zfjn′ ∀j, n (D)

The core assignment constraint is derived from logical conditions (A), (B) and (C).

∑
n′≤n

∑
i∈Ij

(Wsin′ −Wfin′) ≤ 1 ∀j, n (3.21)

Logical condition (C) can be transformed into the equivalent mixed integer assignment

constraint (3.21). It ensures that a task cannot start unless all tasks that have previously

commenced on that unit have finished. The complete derivation of constraint (3.21) is given

in Appendix A. The following additional constraints are imposed:

∑
i∈Ij

Wsin ≤ 1 ∀j, n (3.22)

∑
i∈Ij

Wfin ≤ 1 ∀j, n (3.23)

∑
n

Wsin =
∑
n

Wfin ∀i (3.24)
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Constraint (3.22) ensures that only one task can start in unit j at event point n, while

constraint (3.23) enforces that only one task can finish in unit j at event point n. Con-

straint (3.24) states that all tasks that start must finish. In addition, no task is allowed to

finish at the first event point (Wfi,1 = 0) and no task is allowed to begin at the end of the

scheduling horizon (Wsi,n=|N | = 0).

Start, Processing and Finish Time Constraints

Variable Tsin is defined as the time that task i begins processing at event point n, while

Tfin is given as the finishing time of task i at event point n. The total processing time of

task i at event point n is represented by variable Tpin. These variables are related through

the following constraints:

Tpin = αiWsin + βiBsin ∀i, n (3.25)

Tfin ≤ Tsin + Tpin +H (1−Wsin) ∀i, n (3.26)

Tfin ≥ Tsin + Tpin −H (1−Wsin) ∀i, n (3.27)

Constraint (3.25) defines the total processing time of task i as a combination of the fixed (αi)

and variable processing rates (βi), where Bsin represents the batch size of task i started

at event point n. The finishing time of a task must be equal to the start time plus the

processing time of task i, and is expressed through constraints (3.26) and (3.27).

Time Matching Constraints

The finish time of task i will remain unchanged until the next occurrence of task i, as en-

forced through constraint (3.28). Constraint (3.29) ensures that the jump in the processing

time when task i recurs is greater than the processing time of task i. Although not explic-

itly needed for matching the finishing time, its inclusion leads to smaller branch-and-bound

trees and shorter computational times [Maravelias and Grossmann, 2003b].

Tfin − Tfi,n−1 ≤ H Wsin ∀i, n (3.28)

Tfin − Tfi,n−1 ≥ Tpin ∀i, n (3.29)

The start time of any task i must correspond to the timing of an event point n, and must
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be greater than or equal to the finishing time of any task i currently finishing at event point

n. When a task i produces a material with a zero-wait storage policy, the finishing time of

this task must coincide with the beginning of the next event point n. These requirements

are enforced through the constraints below, where ZW in constraint (3.32) represents the

set of tasks i that have a zero-wait storage policy.

Tsin = Tn ∀i, n (3.30)

Tfin−1 ≤ Tn +H (1−Wfin) ∀i, n (3.31)

Tfin−1 ≥ Tn −H (1−Wfin) ∀i ∈ ZW, n (3.32)

Batch Size and Material Balance Constraints

Batch size variables are introduced to track the size of a batch throughout the processing

steps within the scheduling horizon. Bsin, Bpin and Bfin represent respectively the batch

size of task i that starts at event point n, that is in process at event point n, and that

finishes at or before event point n. The following constraints are imposed:

Bmin
i Wsin ≤ Bsin ≤ Bmax

i Wsin ∀i, n (3.33)

Bmin
i Wfin ≤ Bfin ≤ Bmax

i Wfin ∀i, n (3.34)

Bmin
i (

∑
n′<n

Wsin′ −
∑
n′≤n

Wfin′) ≤ Bpin ∀i, n (3.35)

Bmax
i (

∑
n′<n

Wsin′ −
∑
n′≤n

Wfin′) ≥ Bpin ∀i, n (3.36)

Bsi,n−1 +Bpi,n−1 = Bpin +Bfin ∀i, n (3.37)

Every batch of task i that begins at event point n must lie within the minimum and

maximum batch sizes, as described by constraint (3.33). Constraint (3.34) upholds the

restriction that any batch of task i that finishes processing at event point n must also lie

within the minimum and maximum batch sizes. Parameters Bmin
i and Bmax

i represent the

minimum and maximum batch size of task i, respectively. The batch in progress must also

lie within the maximum and minimum range and is given as constraints (3.35) and (3.36).

Constraint (3.37) is used to ensure that the batch size of any task i remains constant from

beginning to end.
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The amount of material state s consumed by production task i at event point n is tracked

through variable BI
isn. Similarly, variable BO

isn is introduced as the amount of state s

produced by task i at event point n. The constraints below ensure that these variables are

equal to the equivalent proportion of any batch that is beginning and finishing at event

point n.

BI
isn = ρisBsin ∀i, n, s ∈ SIi (3.38)

BO
isn = ρ̄isBfin ∀i, n, s ∈ SOi (3.39)

SOi and SIi represent the set of states s that are produced and consumed by task i,

respectively. Parameters ρ̄is and ρis are the specified proportions of state s generated and

consumed by production task i respectively.

Variables BI
isn and BO

isn are also bounded relative to the maximum batch size of task i,

enforced through

BI
isn ≤ ρis Bmax

i Wsin ∀i, n, s ∈ SIi (3.40)

BO
isn ≤ ρ̄is Bmax

i Wfin ∀i, n, s ∈ SOi (3.41)

Material Balance Constraints

The material balance of the production system is given as

Ssn + SSsn = Ss,n−1 +
∑
i∈Os

BO
isn −

∑
i∈Is

BI
isn ∀s, n (3.42)

The constraint states that the current quantity of state s (Ssn) plus product sales (SSsn)

is equal to the previous quantity of state s plus the amount of state s produced minus the

amount consumed. Is and Os represent the sets of tasks i that consume and produce state s

respectively. Sales of product state s are required to be greater than any specified demands

for the scheduling horizon. The following constraints are enforced:∑
n

SSsn ≥ Ds ∀s (3.43)

Sequence Dependent Changeovers
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In the model formulation of Maravelias and Grossmann [2003b], sequence dependent changeovers

require the addition of extra event points to accurately model material release from process-

ing tasks. Under certain circumstances, a modelling simplification can be used to remove

the requirement for additional event points. For example, the target facility is modelled

as single-stage and product states require no further processing. Therefore it is possible to

postpone the occurrence of the next event point while maintaining material transfer policies.

The modified sequence dependent changeover constraints are given as:

Tsi′n ≥ Tfi,n−1 + clii′ −H(1−Wsi′n) ∀j, n, i ∈ Ij , i′ ∈ Ij |clii′ > 0, n > 1 (3.44)

Constraint (3.44) ensures that the start time of task i′ occurs at least clii′ hours from the

completion of task i, the constraints are enforced only if task i′ occurs at event point n.

Parameter clii′ is defined as the changeover time from task i to i′. The above constraints

effectively postpone the timing of the completion of task i, and no additional event points

are required to model sequence dependent changeovers.

Tightening Constraints

Several tightening inequalities proposed in Maravelias and Grossmann [2003b] are used to

improve the computational performance of the continuous-time model. To track the occur-

rence of process changeovers variable COii′n is introduced and defined as 1 if a changeover

from task i to i′ occurs at event point n. The following constraints are imposed:

COii′n ≥Wfin +Wsi′n − 1 ∀j, i ∈ Ij , i′ ∈ Ij , 1 < n < |N |, clii′ > 0 (3.45)∑
i∈Ij

∑
i′∈Ij

COii′n ≤ 1 ∀j, n (3.46)

Constraint (3.45) equates COii′n to 1 if task i finishes and task i′ begins at event point

n. The constraint is a modification from that originally proposed; Wfi,n is changed from

Wfi,n−1. This modification is done to remain consistent with the treatment of sequence

dependent changeovers in the current formulation. Constraint (3.46) ensures the sum of

changeover indicator variables is less than or equal to 1 at event point n for every unit

j. Although not part of the original formulation, the constraint leads to improved com-

putational performance. Having defined the changeover indicator variable, the tightening

inequalities are given as:
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∑
i∈Ij

∑
n

Tpin +
∑
n

∑
i∈Ij

∑
i′∈Ij

clii′COii′n ≤ H ∀j (3.47)

∑
i∈Ij

∑
n≤n′

Tpin′ +
∑
n′>n

∑
i∈Ij

∑
i′∈Ij

clii′COii′n′ ≤ H − Tn ∀j, n (3.48)

∑
i∈Ij

∑
n′≤n

(αi Wfin′ + βi Bfin′) +
∑
n′≤n

∑
i∈Ij

∑
i′∈Ij

clii′COii′n′ ≤ Tn ∀j, n (3.49)

Constraint (3.47) states that the total processing time of tasks on unit j plus the sum of

the required changeover time should not exceed the total horizon time. Constraint (3.48)

implies that the total processing time plus the required changeover time on unit j after

event point n must be less than the remaining horizon time. The total processing time

of tasks finished at or before event point n plus the required changeover time on unit j

must also be less than the timing of event point n, as enforced through constraint (3.49).

It is noted that COii′n is treated as continuous on [0,1]. COii′n will assume values of 1

if a changeover from task i to i′ occurs at event point n. It is important to note variable

COii′n is not restricted to strictly assume values 0 and 1, but can assume values in between.

However, COii′n is bounded by participation in constraints (3.46) to (3.49), and can only

assume values in between [0,1] if it does not pose additional restrictions on the optimal

solution.

3.2.1 Extension To Plant Wide Cleaning Tasks

A plant wide cleaning operation must occur within 36 hours of the start of process operations

and thereafter within 36 hours from the previous plant wide cleaning operation. In this work

one can consider the plant wide cleaning operations as a type of maintenance that is carried

out periodically, with a recurring interval no greater than Γ hours. Each occurrence of a

plant wide cleaning operation is represented with a unique task which belongs to the set of

all tasks i ∈ I. The duration of the plant wide cleaning task is prescribed by variable Tpin

through parameter αi as in constraint (3.25). Let Ic represent the set of plant wide cleaning

tasks. The planned maximum start time of plant wide cleaning task i ∈ Ic is specified

through parameter TCi and occurs at intervals according to plant policy. Gantt chart A in
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Figure 3.2 illustrates these maintenance start time limits. It is noted that tasks i ∈ Ic are

process wide and as such each task appears in sets Ij .

As the timing of event points is unknown prior to optimization, the formulation must be

free to assign plant wide cleaning tasks to any event point n in the scheduling horizon.

This is accomplished with the introduction of binary variable Yin, which is defined as 1

if plant wide cleaning task i begins at event point n. It may be optimal to schedule such

maintenance before the maximum time limit occurs; this can be accommodated through use

a backward slack variable T̂in. T̂in represents the backward timing slack from the specified

planned maximum start time of task i. If plant wide cleaning task i occurs at event point

n, then the timing of the current event point must equate to the timing of the plant wide

cleaning operation:

Tn = TCi Yin + T̄in −
∑
n′≤n

∑
i′≤i

T̂i′n′ ∀i ∈ Ic, n (3.50)

0 ≤ T̄in ≤ Hc (1− Yin) ∀i ∈ Ic, n (3.51)

0 ≤ T̂in ≤ θc Yin ∀I ∈ Ic, n (3.52)

Constraint (3.50) represents the timing assignment constraint and includes the allowance

of back slack on the timing of plant wide cleaning tasks through T̂in. We draw the reader’s

attention to several key points. TCi enforces the maximum start time of plant wide cleaning

task i if no backward timing slack is allocated; this is shown in Gantt chart A of Figure 3.2.

If it is determined the optimal start time of the cleaning task is prior to TCi, the double

summation term enforces a maximum of Γ processing hours between subsequent cleaning

tasks. The first summation is over all event points, and the second is over the set of ordered

plant wide cleaning tasks. Only if event point n′ corresponds to a plant wide cleaning

task, does T̂i′n′ contribute to the sum; it is zero otherwise through constraint (3.52). Scalar

Hc is the upper bound of the slack necessary to relax constraint (3.50) and is given as

H +
∑

i∈Ic θi. T̄in relaxes constraint (3.50) if plant wide cleaning task c does not occur at

event point n.

The plant wide cleaning task formulation is illustrated in Figure 3.2. Chart A is constructed

from the specified maximum processing time between plant wide cleaning tasks. Assume

that the first plant wide cleaning task occurs at event point 2 and T̂12 hours prior to TC1,
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shown in Figure 3.2B. TC2 is now no longer within Γ hours of the completion of the first

plant wide cleaning task. To maintain the integrity of the maintenance timing requirement,

the timing of the second plant wide cleaning task is shifted backward to begin no later than

TC2 − T̂12 hours, illustrated in Figure 3.2C. A further slack may be applied to the second

plant wide cleaning task, and the construction continued.

The following additional constraints are imposed:∑
n

Yin = 1 ∀i ∈ Ic (3.53)

Yin ≤Wsin ∀i ∈ Ic, n (3.54)

Yin ≥Wsin ∀i ∈ Ic, n (3.55)

Every process wide cleaning task i ∈ Ic is required to occur at an event point in the

scheduling horizon, as enforced through constraint (3.53). Constraints (3.54) and (3.55)

ensure that process wide cleaning tasks i ∈ Ic only occur in accordance with binary Yin.

It is also necessary to ensure that the final plant wide cleaning task finishes within Γ hours

of the final horizon time. The variable Tfc is introduced to represent the finishing time of

the final plant wide cleaning task. The following constraints are enforced:

Tfc ≤ Tfin +H (1− Yin) ∀i ∈ |Ic|, n (3.56)

Tfc ≥ Tfin −H (1− Yin) ∀i ∈ |Ic|, n (3.57)

H − Tfc ≤ Γ (3.58)

Constraints (3.56) and (3.57) enforce variable Tfc to equate to the finishing time of the final

plant wide cleaning task. Constraint (3.58) enforces the final cleaning task to occur within

Γ hours of the final horizon time.

It is noted that a similar methodology can be used to extend the global event continuous

time framework with respect to general maintenance events with various timing require-

ments. Additional extensions to address maintenance events with fixed and flexible timing

requirements is given in Appendix D. The extension can be used to concurrently optimize

the timing of maintenance and processing tasks in multi-purpose batch plants.
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Figure 3.2: Timeline of recurring cleaning events, A) Maximum start time limits of recur-

ring maintenance events, B) Optimized timing of first maintenance event (T12 > 0), C)

Optimized timing of second maintenance event.
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3.2.2 Extension To Production Policies

The target facility follows three sets of production policies related to the relative ordering

and occurrence of processing tasks within the production schedule. These are: i) all active

tasks within a product family must be run as a group in the production schedule, ii) product

families in a production group must be run together in the schedule, and must be separated

by a plant wide cleaning task, and iii) no duplication of production tasks is allowed.

Product Family Grouping

As processing tasks in a product family all use the same material formulation it is required

by plant policy to group such tasks together within the scheduling horizon. The product

families are introduced as index f and If is given as the set of tasks i that belong to product

family f . f ∈ Fj is introduced as the set of product families f capable of production on unit

j. All active tasks i ∈ If are required to be run as a group within the production schedule,

which is accomplished through restriction of the tasks which can be active on unit j at event

point n. This is accomplished through variables Fafjn and Fffjn, which are introduced

to track the activity of product families and are defined as follows: Fafn is equal to 1 if

product family f is active or processing on unit j at event point n and Fffjn is equal to 1

if product family f is finishing on unit j at or before event point n. Product family f must

be active at event point n for any tasks i ∈ If to be processing. The following constraints

are imposed:

Fafjn ≥Wsin ∀j, f ∈ Fj , i ∈ If , n (3.59)

Fafjn ≥
∑
n′<n

Wsin′ −
∑
n′≤n

Wfin′ ∀j, f ∈ Fj , i ∈ If , n (3.60)

Constraints (3.59) and (3.60) enforce product family f to become active if task i ∈ If is

starting or processing on unit j at event point n, respectively.

Fafjn ≥ Fafj,n−1 − Fffjn ∀j, f ∈ Fj , n (3.61)

Fffjn ≤ Fajf,n−1 ∀j, f ∈ Fj , n (3.62)∑
f∈Fj

Fafjn ≤ 1 ∀j, n (3.63)
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Constraint (3.61) ensures that if product family f becomes active on unit j at event point

n − 1, it remains active until determined to finish. A product family can only finish if

it was previously active, as enforced through 3.62. Constraint (3.63) states that only one

production family f may be active on unit j at event point n.∑
n

Fffjn ≤ 1 ∀j, f ∈ Fj (3.64)

Constraint (3.64) is key to the construction of the above production policy. By limiting

Fffjn to be less than or equal to one we are restricting the number of times a product

family may become active to one. Through the above formulation it is possible to ensure

all active tasks i ∈ If to occur as a single group which can span multiple event points. This

also requires that no product family be active at the final event point (Faf,n=|N | = 0).

It is noted that Fafjn and Fffj,n may be treated as continuous on [0,1]. Fafjn must assume

values of 1 in integer solutions when a respective task i is active, and conversely Fffjn must

assume a value of 1 to counter Fafjn. It is allowable for Fafjt and Fffjt to assume values

in between 0 and 1, but this can only occur if it does not pose additional restrictions

on the optimal solution. The aforementioned constraints can also be used to enforce the

recurrences of a single type of batch task to occur as a group, or through enforcement of

tasks i ∈ If to occur as a group on one unit to indirectly restrict which tasks can occur on

supporting units.

Production Grouping

A production group is defined as a group of tasks i that produce product materials with

similar properties and use similar raw materials. As such, production groups share sim-

ilar product quality and processing concerns. In this formulation production groups are

represented through index g, and Ig is given as the set tasks i producing products within

production group g. Such a grouping requirement can be accomplished in a similar man-

ner to the product family grouping; variable Gagn is introduced to track the activity of

production group g at event points n. It is noted that in this framework a production

group is independent of processing equipment units due to the plant layout, although it is

possible to have production groups on single units or groups of equipment units. Any task

i ∈ Ig can not be processing unless the respective production group is active. The following

40



M.A.Sc. Thesis - M. Hazaras, McMaster University - Chemical Engineering Section 3.2

constraints are imposed:

Gagn ≥Wsin ∀g, i ∈ Ig, n (3.65)

Gagn ≥
∑
n′<n

Wsin′ −
∑
n′≤n

Wfin′ ∀g, i ∈ Ig, n (3.66)

Constraints (3.65) and (3.66) equate Gag,n to 1 if a task i in production group g is currently

starting or processing at event point n, respectively. It is noted that the above constraints

are only enforced for tasks i which belong to a production group g. If any task i is not

included in set Ig∀g then that task is not restricted to occur in any specific production group.

In that regard these tasks i /∈ Ig∀g can occur at any event point within the scheduling

horizon. This might be advantageous for product formulations that contain generic raw

materials and pose no restricts on other product families.

∑
g

Gag,n ≤ 1 ∀n (3.67)

Only one production group g may be active at event point n, as given through con-

straint (3.67).

Gagn ≥ Gag,n−1 − En ∀g, n (3.68)

If production group g becomes active at event point n − 1 it must remain active until a

plant wide cleaning task occurs, as enforced by 3.68. En is used to account for the activity

of plant wide cleaning tasks and is defined as 1 if a plant wide cleaning task begins at event

point n.

En ≥ Yin ∀i ∈ Ic, n (3.69)

En ≤
∑
i∈Ic

Yin ∀n (3.70)
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Constraints (3.69) and (3.70) force variable En to equate to 1 when any plant wide cleaning

task i occurs at event point n and zero otherwise. As En is bounded both above and below

by binary variables it may only assume values of 0 or 1 in a integer solution and as such may

be treated as continuous on [0,1]. Gagn is also treated as continuous on [0,1] for reasoning

similar to that proposed for variables Fafjn and Fffjn.

The production grouping constraints can also be used in multipurpose batch plants to: i)

group tasks based on the types of resources utilized, or to indirectly restrict what utilities

are used at a given moment, ii) separate the production of intermediate and product states,

a process similar to campaign type modes of operation, and to iii) group tasks which may

require additional supervision or testing to occur as a group such that personnel are utilized

effectively.

Task Occurrence Restrictions

The processing policies of the target facility state that production tasks should not be

duplicated within the production schedule. This requirement can be formulated as the

addition constraints given below:∑
n

Wsin ≤ κi ∀i (3.71)

∑
n

Wfin ≤ κi ∀i (3.72)

Constraints (3.71) and (3.72) limit the number of times processing task i is allowed to start

and finish within the scheduling horizon respectively. κi is a parameter defining the number

of times task i is allowed to start or finish.

Auxiliary Constraints

As the facility is modeled as single-unit and single-stage, the binary indicator variables can

be related as follows:

Wsin ≤Wfi,n+1 ∀j ∈ J∗, i ∈ Ij , n (3.73)

Constraint (3.73) enforces that a task i must finish at the subsequent event point from

which it started. This remains valid for a single-unit facility as no other processing tasks
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can be run concurrently and therefor no additional events points are needed to model the

optimal schedule. Here J∗ represents the set of units for which such a auxiliary constraint

applies.

3.2.3 Objective Functions

Two objective functions are considered in the industrial case studies - makespan minimiza-

tion and throughput maximization. Throughput maximization takes the following form:

max Z =
∑
s

∑
n

SSsn (3.74)

Variable Z represents the total weight equivalent of all states s sold to market in the schedul-

ing horizon. Constraint (3.74) defines the throughput maximization objective function as

the maximization of all material sold to market. In addition, it is also common for a

profit maximization objective to be considered in scheduling optimization. [Maravelias and

Grossmann, 2003b]

Makespan minimization takes the following form:

min Tms (3.75)

Tms represents the makespan of the scheduling period, given as the completion time of the

final processing task. Tms must replace parameter H in constraints (3.19), (3.47), (3.48)

and (3.58) in order to enforce it as the makespan of the schedule.

Model MC is defined as constraints (3.18) to (3.73), using objective (3.74) or (3.75). The

minimum number of event points needed for the model can be calculated prior to opti-

mization as follows: First, as the plant is modelled as a single-stage single-unit process

the number positive demand parameters will correspond to the number of tasks that must

be conducted. Second, the minimum number of process wide cleaning tasks needed can

be calculated from the horizon length, time limit between tasks and the duration of the
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cleaning tasks. The combination of the minimum number of processing tasks and plant

wide cleaning tasks combine, plus one, to determine the minimum number of event points.

In addition, model sizes are reduced by restricting the binary variables that participate in

the optimization in the following way: Let D+ represent the set of all product states s with

a positive demand parameter; then the following binary restriction is imposed for problems:

Wsin = Wfin = 0 ∀s /∈ D+, i ∈ Os

Such restrictions aid in reducing model sizes and improving the computational performance

of the model.

3.3 Aggregate Continuous Time Model

The solution of large and complex continuous time scheduling models can be computation-

ally very challenging. It was stated by Méndez et al. [2006] that the complex structure of

continuous time models makes them useful for problems with a modest number of event

points, referencing 15 event points as the possible upper bound. Lin et al. [2002] and

Janak et al. [2006] present work on medium-term scheduling of batch-plants. The horizon

is decomposed into smaller more manageable sub-horizons which are solved in an itera-

tive solution procedure. Examination of the reduced horizon model complexity implicitly

bounds the number of unit-event points between 10 to 20. The above observations are also

present in the computational results presented by Shaik et al. [2006] where the authors

compare the computational efficiency of continuous time modeling methodologies. Histori-

cally, the processing facility of this research produces in excess of 15 different products on a

weekly basis. As the plant is modeled as single stage this implies that in excess of 15 event

points will be required to model a production schedule, and may thus lead to computational

difficulties.

Another important issue with MILP optimization is the existence of multiple equivalent

solutions for a given problem. These equivalent solutions represent symmetry within the

optimization problem caused by binary variables associated with indistinguishable objects.

This causes mirroring in the solution procedure, as the algorithm is forced to explore sym-
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Figure 3.3: Task–Family Aggregation, A) General continuous time mode, sequencing opti-

mized between all tasks i, B) Aggregation of tasks i ∈ If such that sequencing is optimized

between product families

A)

U1 I1-F1 I2-F1 I3-F1 I4-F2

1

TpI1,1 TpI2,2 TpI3,3 TpI4,4

2 3 4 5

B)

U1 I1-F1 I2-F1 I3-F1

TpF1,1

I4-F2

TpF2,1

1 2 3

metrical reflections of multiple solutions during the branch-and-bound search leading to

performance degradation. [Sherali and Smith, 2001] To circumvent this problem, model

augmentation or reformulation is often necessary to remove or reduce the inherent sym-

metries. Within scheduling problems, the assignment binaries can be associated with in-

distinguishable objects; in various instances task sequence may be permuted without effect

on the objective function. As problem size grows, the symmetry issues are compounded as

multiple product pathways exist and equipment can be utilized in multiple ways at different

times to produce the same output.

In the current study, the sequence of active production tasks i in product families f pose

a symmetry issue. First, the processing tasks i ∈ If are required to be sequenced as a

group in the production schedule. Second, changeover durations between tasks i ∈ If are

identical for any product family. Therefore, the sequence of tasks i in a product family f

is irrelevant and will not impact the objective function of the scheduling problem. Each

possible sequence of active tasks i ∈ If will be a symmetrical solution for the scheduling

problem. It would be advantageous to remove these symmetrical solutions from the MILP

problem to improve the computational performance of the scheduling optimization.

3.3.1 Model Reformulation - Task–Family Aggregation

One intuitive method to remove these inherent symmetrical solutions is to remove the need

to sequence individual tasks i ∈ If . Tasks i can be aggregated into the respective product
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families f and sequencing can be conducted on the product families. To accomplish this two

additional binary variables are introduced: Vsfn is defined as 1 if product family f is begins

processing at event point n, and zero otherwise. Vffn is defined as 1 if product family f

finishes at or before event point n. Figure 3.3 presents a comparison between the general

(A) and aggregate (B) continuous time modelling techniques. The general continuous time

model requires tasks i ∈ If to occur as a group, but each occurrence of a task requires an

event point. The processing time of task i is given through variable Tpin. The aggregate

continuous time model sequences the product families at event points n and all active tasks

i ∈ If occur at this event point. The total processing time of the aggregate processing

family is given through variable Tpfn, which is a combination of the total processing time

and changeover time of tasks i ∈ If .

It is noted that such an aggregation presents two assumptions: First, the sequence of the

tasks i ∈ If is no longer determined as part of the optimization and is left as a decision to

the operators. Second, the aggregation of different tasks that occur at the same event point

can interfere with material transfer policies and product due dates. However in the present

study these assumptions do not pose a problem. Castro et al. [2008] present a aggregation

technique that is similar in spirit to that used in the present study. Multiple occurrences

of a batch processing task are aggregated into an explicit task with the number of batches

accounted for through integer variables. The processing time of the explicit aggregation is

determined as the combination of total batch processing and changeover times.

Event Point Ordering

The timing and ordering of event points remains unchanged and is repeated below.

Tn=1 = 0 (3.76)

Tn=|N | = H (3.77)

Tn−1 ≤ Tn ∀n (3.78)

Family Sequence Assignment

The sequencing is now conducted on product families as opposed to the individual tasks
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i ∈ If . The assignment constraints are restated as:∑
f∈Fj

∑
n′≤n

(
Vsfn′ − Vffn′

)
≤ 1 ∀j, n (3.79)

The main assignment constraint is now given as constraint (3.79), and is identical to the

original assignment constraint except with a change of variables.∑
f∈Fj

Vsf,n ≤ 1 ∀j, n (3.80)

∑
f∈Fj

Vff,n ≤ 1 ∀j, n (3.81)

∑
f∈Fj

Vsf,n =
∑
f∈Fj

Vff,n ∀f (3.82)

Constraint (3.80) enforces that only one product family f can start on unit j at event point

n. Similarly, constraint (3.81) enforces that only one product family f can end on unit j

at or before event point n. All product families that begin must finish, as given through

constraint (3.82).

The following additional constraints are imposed:

Wsi,n ≤ Vsf,n ∀f, i ∈ If , n (3.83)

Wfi,n ≤ Vff,n ∀f, i ∈ If , n (3.84)∑
n

Wsin =
∑
n

Wfin ∀i (3.85)

Processing tasks i ∈ If are allowed to occur only if family f is scheduled to begin at event

point n, as enforced through constraint (3.83). Constraint (3.84) enforces that task i finishes

at event point n if product family f is scheduled to end also. Constraint (3.85) ensures that

all tasks i that start must also finish. As before, no product family is allowed to finish at

the beginning of the horizon, Vff,1 = 0, and no family is allowed to begin at the end of the

horizon, Vsf,n=|N | = 0. Similar restrictions are enforced on processing tasks, i.e. Wsi,1 = 0

and Wfi,n=|N | = 0

Family Processing Time Constraints
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The processing time of a product family is track through variable Tpfn and represents

the total processing time of product family f at event point n. The processing time of

family group f is calculated as the sum of the processing times of tasks i ∈ If plus the

required changeover time between tasks. The changeover time within a production family

is expressed as γf (
∑

i∈If Wsin−Vsfn), where γf is defined as the changeover time between

tasks i ∈ If .

Tpfn =
∑
i∈If

(γfWsin + βiBsin)− γfVsfn ∀f, n (3.86)

Constraint (3.86) defines the processing time of product family f at event point n to be

equal to the variable processing time of tasks i ∈ If , plus the changeover time required

within the product family. Through this definition it is possible to have multiple tasks

i ∈ If occur at the same event point, as the overall processing time is enforced explicitly.

It is noted that fixed set-up times for tasks i (αi) is not included in the above formulation.

This is excluded for this problem, but can more generally be included in the formulation.

Start and Finishing Time Constraints

Variables Tsfn and Tffn now represent the start, finishing time of product family f at event

point n, and participate in the following constraints:

Tffn ≤ Tsfn + Tpfn +H (1− Vsfn) ∀f, n (3.87)

Tffn ≥ Tsfn + Tpfn −H (1− Vsfn) ∀f, n (3.88)

Constraints (3.87) and (3.88) enforce the finishing time of product family f to be equal to

the start time of family f plus the total processing time of product family f .

Tffn − Tff,n−1 ≤ H Vsfn ∀f, n (3.89)

Tffn − Tff,n−1 ≥ Tpfn ∀f, n (3.90)

The finish time of product family f will remain unchanged until the next occurrence of

family f , this is enforced through constraint (3.89). Constraint (3.90) ensures the jump

in the finishing time when product family f recurs is greater than the processing time of
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family f .

Tsfn = Tn ∀f, n (3.91)

Tff,n−1 ≤ Tn +H (1− Vffn) ∀f, n (3.92)

As event points are common for all production resources, the start time of family f must

be equal to the timing of the current event point. This enforces the global event point

representation and is given as constraint (3.91). The start times of product family f must

be greater than or equal to the previous finish time of that family, as enforced through

constraint (3.92). It is noted that zero-wait material transfer policies can not be expressly

defined due to the aggregation of processing tasks i ∈ If to occur at a single event point.

Batch Sizing

All batch sizing and material state production and consumption constraints remain un-

changed and are restated below.

Bmin
i Wsin ≤ Bsin ≤ Bmax

i Wsin ∀i, n (3.93)

Bmin
i Wfin ≤ Bfin ≤ Bmax

i Wfin ∀i, n (3.94)

Bmin
i (

∑
n′<n

Wsin′ −
∑
n′≤n

Wfin′) ≤ Bpin ∀i, n (3.95)

Bmax
i (

∑
n′<n

Wsin′ −
∑
n′≤n

Wfin′) ≥ Bpin ∀i, n (3.96)

Bsi,n−1 +Bpi,n−1 = Bpin +Bfin ∀i, n (3.97)

BI
isn = ρisBsin ∀i, n, s ∈ SIi (3.98)

BO
isn = ρ̄isBfin ∀i, n, s ∈ SOi (3.99)

BI
isn ≤ ρis Bmax

i Wsin ∀i, n, s ∈ SIi (3.100)

BO
isn ≤ ρ̄is Bmax

i Wfin ∀i, n, s ∈ SOi (3.101)

Material Balance
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The material balance constraints, as before, are

Ssn + SSsn = Ss,n−1 +
∑
i∈Os

BO
isn −

∑
i∈Is

Bl
isn ∀s, n (3.102)

∑
n

SSsn ≥ Ds ∀s (3.103)

Sequence Dependent Changeovers

Sequence dependent changeover constraints are now based on the sequencing of production

families. This will aid in model size reduction as the target facility has roughly 30 product

families as opposed to roughly 50 product types.

Tsf ′n ≥ Tff,n−1 + slff ′ −H(1− Vsf ′n) ∀n, j, f ∈ Fj , f ′ ∈ Fj |slff ′ > 0, n > 1 (3.104)

Constraint (3.104) states that family f ′ must start at least slff ′ hours after family f on unit

j. Parameter slff ′ is given as the time necessary to clean a given unit if family f precedes

family f ′.

Tightening Constraints

The tightening constraints can now be restated to account for the model aggregation.

COff ′n is defined as 1 if a changeover from family f to f ′ at event point n has occurred,

and is zero otherwise.

COff ′n ≥ Vffn + Vsf ′n − 1 ∀j, f ∈ Fj , f ′ ∈ Fj , n (3.105)∑
f∈Fj

∑
f ′∈Fj

COff ′n ≤ 1 ∀j, n (3.106)

Constraint (3.105) equates indicator variable COff ′n to 1 if family f finishes and family

f ′ begins at event point n. Constraint (3.106) is introduced to ensure only one changeover

indicator variable is forced to 1 at event point n on unit j.
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The tightening inequalities are now given as:∑
f∈Fj

∑
n

Tpf,n +
∑
n

∑
f∈Fj

∑
f ′∈Fj

slff ′COff ′n ≤ H ∀j (3.107)

∑
f∈Fj

∑
n≤n′

Tpf,n′ +
∑
n′>n

∑
f∈Fj

∑
f ′∈Fj

slff ′COff ′n′ ≤ H − Tn ∀j, n (3.108)

∑
f∈Fj

∑
n′≤n

∑
i∈If

(γfWfin′ + βiBfin′)− γfVffn′


+
∑
n′≤n

∑
f∈Fj

∑
f ′∈Fj

slff ′COff ′n′ ≤ Tn ∀j, n (3.109)

Constraint (3.107) states that the total processing time of all product families plus the re-

quired changeover time on unit j should not exceed the total horizon time. Constraint (3.108)

implies that all future processing time plus the required changeover time on unit j after the

current event point must be less than or equal the time remaining in the scheduling horizon.

Constraint (3.109) states that the total processing time of product families finishing at or

before event point n plus the required changeover time on unit j must be less than the

timing of event point n.

3.3.2 Extension To Recurring Maintenance Events

The recurring process wide cleaning constraints remain unmodified and are repeated below.

It is noted that maintenance tasks i which represent the recurring process wide cleaning

operations will now need to be defined with a product family. This will allow for maintenance

tasks i to be sequenced within the scheduling horizon in relation to the sequencing of the

51



M.A.Sc. Thesis - M. Hazaras, McMaster University - Chemical Engineering Section 3.3

product families.

Tn = TCi Yin + T̄in −
∑
n′≤n

∑
i′≤i

T̂i′n′ ∀i ∈ Ic, n (3.110)

0 ≤ T̄in ≤ Hc (1− Yin) ∀i ∈ Ic, n (3.111)

0 ≤ T̂in ≤ θc Yin ∀i ∈ Ic, n (3.112)∑
n

Yin = 1 ∀i ∈ Ic (3.113)

Yin ≤Wsin ∀i ∈ Ic, n (3.114)

Yin ≥Wsin ∀i ∈ Ic, n (3.115)

Tfc ≤ Tfin +H (1− Yin) ∀i ∈ |Ic|, n (3.116)

Tfc ≥ Tfin −H (1− Yin) ∀i ∈ |Ic|, n (3.117)

H − Tfc ≤ Γ (3.118)

3.3.3 Extension To Production Policies

Product Family Grouping

The product family grouping constraints presented in the general continuous time scheduling

are not needed in the aggregate reformulation model. This is due to the implicit occurrence

of tasks i ∈ If to occur when family f occurs, noting that multiple tasks i ∈ If can occur

at a single event point.

Production Grouping

The production grouping constraints previous stated remain unmodified and are presented

below. It is noted that production groups g are defined as sets of tasks which can occur as

a group within the scheduling horizon. These groups are separated by plant wide cleaning

tasks in the production schedule. Ig is defined as the set of tasks i which must occur in

52



M.A.Sc. Thesis - M. Hazaras, McMaster University - Chemical Engineering Section 3.3

production group g.

Gag,n ≥Wsin ∀g, i ∈ Ig, n (3.119)

Gag,n ≥
∑
n′<n

Wsin′ −
∑
n′≤n

Wfin′ ∀g, i ∈ Ig, n (3.120)

Gagn ≥ Gag,n−1 − En ∀g, n (3.121)∑
g

Gag,n ≤ 1 ∀n (3.122)

En ≥ Yin ∀i ∈ Ic, n (3.123)

En ≤
∑
i∈Ic

Yin ∀n (3.124)

Task Occurrence Restrictions

As previously stated, production tasks i may only occur once in a production schedule. The

following constraints are enforced:∑
n

Wsin ≤ κi ∀i (3.125)

∑
n

Wfin ≤ κi ∀i (3.126)

Constraints (3.125) and (3.126) restrict the number of times task i can begin processing at

event point n, and end at or before event point n to κi.

Auxiliary Constraints

As the facility is modelled as single-unit and single-stage, the binary indicator variables can

be related as follows:

Wsin ≤Wfi,n+1 ∀j ∈ J∗, i ∈ Ij , n (3.127)

Constraint (3.127) enforces that a task i must finish at the subsequent event point from

which it started. This remains valid for a single-unit facility as no other processing tasks

can be run concurrently and therefor no additional events points are needed to model the

optimal schedule. Here J∗ represents the set of units for which such an auxiliary constraint

applies.
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3.3.4 Objective Functions and Model Definition

Throughput maximization is achieved via objective function:

maxZ =
∑
s

∑
n

SSsn (3.128)

Makespan minimization is unchanged and repeated as constraint (3.129).

min Tms (3.129)

When makespan minimization is the chosen objective function constraints (3.77), (3.107)

and (3.108) must be modified by replacing H with Tms. The symmetry aggregation model

is defined by constraints (3.76) to (3.127) and one of the objectives (3.128) or (3.129). The

model is referenced as MS .
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Chapter 4

Scheduling Case Studies

4.1 Model Comparison Case Study

It is necessary to ensure that the results generated from models MD, MC and MS are

equivalent, so that the model comparisons can be judged accurately. A solution quality

comparative case study is given in this section to compare the schedules produced from the

three models. The data for the comparative example is presented in Appendix C; the horizon

length is set to 40 hours. The optimized schedules of the three models are represented as

the Gantt charts in Figure 4.1. Although the plant is modelled as a single-stage single-unit

facility, it is reiterated that this is due to physical connection restrictions within the facility

and that the plant consists of 4 main packaging units. Therefore Gantt charts are drawn

with these 4 packaging units, and tasks occur on the given units respectively. It is noted

that processing tasks are represented as horizontal bars and changeovers are shown as black

bars at the end of processing tasks. Each processing task i belongs to a product family f ,

and the association to family f is represented by the color and pattern displayed within the

horizontal bars of task i. Plant wide cleaning tasks are represented as black bars that occur

over all equipment units, and are three hours in duration.

The solution to model MC is displayed as the top Gantt chart in Figure 4.1. The sequenc-

ing, with respect to product families f , is observed as F9-F16-F23, followed by a plant

wide cleaning (PWC) task and concluded with family F8. The plant wide cleaning task is
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started at 28.5 hours into the production schedule. It is observed a total of 2.25 hours of

changeover time is accumulated in the production schedule and is comprised of five 0.25

hour changeovers, and a 1 hour changeover. The 1 hour changeover is needed for transition

between product family F9-F16 and occurs between tasks on units U1-U3. Four of the 0.25

hour changeovers are between tasks within the same product family; in family F9 this is

the transition between tasks on units U3-U2 and U2-U1 while in family F16 this is the

transition between tasks on units U3-U1 and U1-U2. The fifth 0.25 changeover is in tran-

sition from family F16-F23 (U2-U4). Similarly, solutions to models MS and MD are given

as the middle and bottom Gantt chart respectively. The total amount of changeover time

remains the same in all solutions, but the sequence of tasks and product families is different.

All Gantt charts represent equivalent optimal solutions to the problem. It is noted that

no production groups are active in the above solutions, this is due to the fact that all the

above processing tasks do not belong to the set i ∈ Ig.

The computational results of models MC , MS and MD for the case study are given in

Table 4.1. The optimized makespan of 36.75 hours was proven optimal by both continuous

time models. However, the discrete time model was left with an optimality gap of 0.68% after

3,600 CPUs. Model MS exhibited the best computational performance, proving optimality

in 1.662 CPUs after exploring 75 nodes. Model MC proved optimality in 34.98 CPUs

after exploring 4,188 nodes, while model MD found the optimal solution but failed to

prove optimality. The poor computational performance of the discrete time model may be

attributed to the large model size, a consequence of the short time intervals required to

represent the shortest changeover.

4.2 Scheduling Case Study 1

The first industrial case study is derived from historical production week “X” and requires

21 production targets to be met within a scheduling horizon of 108 hours (H = 108). The

21 processing tasks can be grouped into 11 product families. Product families F2, F26 and

F15 are required to be processed in product group 3, while product families F14 and F28

belong to production group 2. Two plant wide cleaning tasks (PWC) are specified to occur

within the scheduling horizon. The maximum planned start time for the first cleaning task
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Figure 4.1: Solution quality case study Gantt charts: general continuous model (top),

aggregate continuous model (middle), and discrete model (bottom)
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Table 4.1: Solution quality comparisons of models MD, MC and MS .

MD
(∆t=0.25hr) MC MS

Event Points (Time Periods) 160 10 6

Constraints 51,780 31,786 17,238

Binary Variables 1,449 190 186

Continuous Variables 43,149 46,533 14,673

LP-rexalation (hr) 1.01 34.5 35.5

Best Solution (hr) 36.75 36.75 36.75

CPU Time (s) 7,200 34.98 1.662

Optimality Gap (%) 0.68 0 0

Nodes 10,628 4,188 75

is given as TC1 = 36 hours. This is calculated by using the parameter Γ. The maximum

planned start time of the second plant wide cleaning task is calculated as TC1 + Γ + α1

which is given as TC2 = 75. Two plant wide cleaning tasks corresponds to the minimum

number of plant wide cleans required for the horizon length. All data specific to industrial

case study 1 are given in Appendix C.

In Figure 4.2 the results of the optimized production schedule (bottom) are compared

against the historical production schedule (top). The historical schedule sequence, w.r.t

product families, is observed as F8-F9 (PWC) F16 (PWC) F23-F14-F28 (PWC) F1-F2-

F15-F26 (PWC) F20. The historical schedule has a total of 18.25 hours of changeover time,

attributed to thirteen 0.25 hour changeovers, three 1 hour changeovers and four plant wide

cleaning tasks. It is observed that the production sequence is completely rearranged in

the optimized schedule and is given as F2-F16-F23 (PWC) F1-F26-F15 (PWC) F20-F8-F9-

F14-F28. The optimized schedule has a total of 13.5 hours of changeover time, attributed

to fourteen 0.25 hour changeovers, four 1 hour changeovers and 2 plant wide cleans. The

historical schedule has a makespan of 107.25 hours while the optimized production schedule

has a makespan of 102.5 hours. The reduction in the scheduled makespan is attributed to

the removal of two plant wide cleaning tasks, being replaced with one 0.25 hour changeover

and a 1 hour changeover. This reduction of 4.75 hours of changeover time corresponds to a
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Figure 4.2: Industrial Case Study 1 - The historical schedule is given as the top Gantt chart

and the optimized schedule is given as the bottom.
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35% reduction in the downtime of the target facility for this production week. Also it can

be seen the historical makespan is within 5% of the proven optimum.

The computational performance of modelsMD, MC andMS is given in Table 4.2. Symmetry

aggregate model MS is observed to have the best computational performance. Model MS

proves the makespan of 102.5 hours is the global optimum in 5,834 CPUs, while model MC

fails to find the optimal solution after 43,200 CPUs and is left with an optimality gap of

8.65%. In addition, model MS is observed to find the optimum solution in 309 CPUs, as

opposed to model MC which finds its best solution in 15,000 CPUs. Model MD found 1

feasible solution of 106.75 hr makespan at 41,500 CPUs. After 43,200 CPUs model MD

was left with an optimality gap of 30.14%. It is noted the discrete time model schedules 4

process wide cleaning tasks in comparison to the the 2 deemed optimal by the continuous

time models.
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Table 4.2: Industrial case study 1 - computation performance

MD
(∆t=0.25hr) MC MS

Event Points 432 24 14

Constraints 144,323 94,326 43,517

Binary Variables 9,482 1,106 1,010

Continuous Variables 102,906 111,097 33,699

LP-relaxation (hr) 0.2359 95 97.5

Best Solution (hr) 107 104 102.5

Time to Best Solution (s) 41,500 15,000 309

CPU Time (s) 43,200 43,200 5,834

Optimality Gap (%) 30.14 8.65 0

Nodes 5,091 22,106 236,577

4.3 Scheduling Case Study 2

The second industrial case study is derived from historical production week “Z” and requires

16 production targets to be met within 98 hours (H = 98). The 16 tasks belong to 9 product

families. Product families F15 and F26 belong to production group 3 and families F14 and

F28 belong to production group 2. Two plant wide cleaning tasks (PWC) are scheduled to

occur within the production schedule, with TC1 = 36 and TC2 = 75. All data unique to

case study 2 are reported in Appendix C.

A comparative Gantt chart of the historical production schedule (top) and the optimized

production schedule (bottom) is given in Figure 4.3. The optimized and historic schedule

are observed to have a makespan of 95 hours. The product sequence of the historical

schedule is observed as F6-F14-F28 (PWC) F1-F26-F15 (PWC) F23-F16-F11, while the

sequence of the optimized schedule is observed as F6-F14-F28 (PWC) F23-F16-F11 (PWC)

F1-F26-F15 Although the optimized and historical schedule are different they are observed

as equivalent. This is because the sequencing of product families in between the PWC tasks

are identical. It is important to note that in any schedule the groups of product families
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Figure 4.3: Industrial case study 2 – The historical schedule is given as the top Gantt chart and

the optimized schedule is given as the bottom.
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between plant wide cleaning tasks can be permuted in the overall sequence without effecting

the makespan. Both schedules have a total of 11.25 hours of changeover time, attributed to

eleven 0.25 hour changeovers, two 1 hour changeovers and 2 plant wide cleanings.

The computational performance of modelsMD, MC andMS is listed in Table 4.3. Symmetry

aggregate model MS is observed to have the best computational performance, proving the

makespan of 95 hours is the global optimum in 190 CPUs. Model MC fails to find the

optimal solution after 43,200 CPUs and is left with an optimality gap of 5.48%. Model MD

fails to find a feasible solution after exploring 213 nodes in 43,200 CPUs. The progression

of the upper bound (ub) and lower bound (lb) of models MC and MS is plotted against

nodes searched in Figure 4.4. It can be observed that the upper and lower bounds of model

MS begin and remain within the upper and lower bound of model MC . From this we can

infer that model MS provides a tighter relaxation to the problem in comparison to model

MC .
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Table 4.3: Industrial case study 2 - computation performance

MD
(∆t=0.25hr) MC MS

Event Points 392 19 12

Constraints 129,628 67,681 36,233

Binary Variables 6,681 686 698

Continuous Variables 102,181 88,142 29053

LP-rexalation (hr) 2.27 90.25 92

Best Solution (hr) – 95.75 95

Time to Best Solution (s) – 27,000 80

CPU Time (s) 43200 43,200 190

Optimality Gap (%) – 5.483 0

Nodes 213 43,212 11,320

Figure 4.4: Optimization upper bound (ub) and lower bound (lb) progression of models

MC and MS for case study 2
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4.4 Scheduling Case Study 3

The third case case is derived from a process reschedule of production week“Z”. A reschedule

was required as a shipment of 5.91 weight equivalents of raw material Rm35 was received

a week early and was required to be used. In addition, raw material Rm46 would not be

available for processing until 56 hours into the processing scheduling. The plant’s response

was to modify the production targets such that the shipment of Rm35 would be used within

the production week; modified production targets are listed in Appendix C. Product family

F4 belongs to production group 1. To mimic the rescheduling information available to

the plant management team, the first day of the historical production schedule was fixed

in the rescheduled optimization. The unavailability of raw material Rm46 is included in

the optimization via the material receipt methodology originally proposed by Maravelias

and Grossmann [2003a] (Appendix B). The timing of the material receipt is specified as

TK1 = 56 hours, the amount of the delivery is given as AD1 = 8.44 and this delivery

belongs to set LRm46.

Figure 4.5 depicts the Gantt chart of the rescheduled historical production schedule (top)

and the optimized rescheduled production schedule (bottom). It is observed that the third

process wide cleaning task, included by plant employees, was not necessary to complete the

production schedule.

The historical production reschedule has a makespan of 95.25 hours while the optimized

reschedule has a makespan of 92.5 hours. The saving of 2.75 hours is gained by rear-

rangement of the production sequence such that the third process wide clean is removed

and replaced with a 15 minute changeover. This results in a 21% reduction in the total

changeover time and proves the historical reschedule lies within 3% of the plant optimum.

The computational performance of models MC and MS are listed in Table 4.4. It is noted

model MD was excluded from the optimization as it had previously been incapable of

solving the planned production schedule. Symmetry aggregate model MS is observed to

have the best computational performance; the model proves the makespan of 92.5 hours

is the global optimum in 2.54 CPUs. Model MC also finds the optimum solution and

proves optimality in 228 CPUs and 14,016 nodes. These results are interesting as both
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Figure 4.5: Industrial case study 3 – The historical reschedule is given as the top Gantt

chart and the optimized reschedule is given as the bottom.
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models exhibit significant performance improvements in this case study. Although fixing

the first portion of the production schedule reduces problem size, it alone can not explain

the large improvement in computational performance. It is hypothesized that the additional

processing restrictions aid in reducing the number of symmetrical solutions.

4.5 Scheduling Case Study 4

The final scheduling case study is derived from historical production week“Y” and requires

18 production targets to be met within a scheduling horizon of 135 hours (H = 135). The

18 processing tasks can be grouped into 12 product families, with families F4 and F24

belonging to production group 1 and families F25 and F3 belonging to production group 4.

Three plant wide cleaning tasks are specified to occur within the scheduling horizon, with

TC1 = 36, TC2 = 75, and TC3 = 114. Three plant wide cleans is the minimum number

required given the horizon length. All data specific to industrial case study 4 is given in
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Table 4.4: Industrial case study 3 - computation performance

MC MS

Event Points 18 11

Constraints 66,637 32,795

Binary Variables 662 592

Continuous Variables 88,261 26,680

LP-rexalation (hr) 89.75 91

Best Solution (hr) 92.5 92.5

Time to Best Solution (s) 30 0.5

CPU Time (s) 228 2.54

Optimality Gap (%) 0 0

Nodes 14,016 81

Appendix C.

In Figure 4.6 the results of the optimized production schedule (top) are compared against

the historical production schedule (bottom). The historical schedule has a makespan of

131 hours while the optimized production schedule has a makespan of 128.25 hours. The

historical schedule has a total of 19 hours of changeover transitions, comprised of eight 0.25

hour changeovers, five 1 hour changeovers and 4 plant wide cleans. The optimized schedule

has a total of 16.25 hours of changeover transitions, this reduction in changeover time is

accomplished by replacing 1 plant wide clean with a 0.25 hour changeover. This removal

2.75 hours in process cleaning corresponds to a 14.5% reduction in the cleaning time of the

target facility. It can also be seen the historical schedules makespan is within 2% of the

best solution.

The computational performance of models MC and MS is given in Table 4.5. Symmetry

aggregate model MS is observed to have the best computational performance. Model MS

finds a solution of 128.25 hour makespan in 400 CPUs and is left with a optimality gap

of 4.13% after exploring 189,894 nodes in 7,200 CPUs. Model MC finds a solution of 129

hour makespan in 3,700 CPUs and is left with a optimality gap of 6.21% after exploring

65



M.A.Sc. Thesis - M. Hazaras, McMaster University - Chemical Engineering Section 4.6

Figure 4.6: Industrial Case Study 4 - The historical schedule is given as the top Gantt chart

and the optimized schedule is given as the bottom.
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44,604 nodes in 43,200 CPUs. Model MD was not used in the case study evaluation due

to poor performance on smaller sized problems previously showcased. In this case study

neither model is able to prove optimality of the provided solutions. The case study requires

21 and 16 event points for models MC and MS respectively and represent the largest case

study with respect to model size. The performance degradation exhibited is consistent with

the observations of Méndez et al. [2006] who stated that 15 event points appears to be the

upper limit of model complexity for global event point continuous time models.

4.6 Computer Aided Policy Evaluation

The case studies presented above help aid in highlighting the potential efficiency gains

possible using optimization to schedule production within a consumer foods production

facility. This is however not the only application such optimization models can be used for;

it is also possible to use such models to evaluate what-if type scenarios. For example, one

may modify the production rates in anticipation of purchasing new packaging equipment.

The optimized schedules could then be used as a quantitative analysis to ascertain the best

possible improvements or even highlight why production gains may not meet expectations.

Such an opportunity presented itself during the term of this research, as the production

facility planned to undergo a retrofit to increase production capacity. New equipment in
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Table 4.5: Industrial case study 4 - computation performance

MC MS

Event Points 21 16

Constraints 82,704 51,798

Binary Variables 948 1,170

Continuous Variables 104,589 39,681

LP-rexalation (hr) 121 122.5

Best Solution (hr) 129 128.25

Time to Best Solution (s) 3,700 400

CPU Time (s) 43200 7,200

Optimality Gap (%) 6.21 4.13

Nodes 44,604 189,894

the mixing train and packaging lines would allow for packaged (U1,U2,U3) and specialized

(U4) packaging lines to run in parallel.

Mixer one acts as a dedicated feed to packaged production line (units 1-3) and mixer 3 is

dedicated to specialized production line (unit 4), as seen in Figure 4.7. Mixer 2 now acts

as a swing mixer to feed either packaging line. Two different production strategies were

designed by plant management to take advantage of this new production flexibility. It is was

desired to evaluate each strategy to determine which would provide the best improvements

in plant throughput. The aggregate model MS was chosen to perform such evaluations due

to its superior computational performance.

Strategy 1 In strategy 1 (S1) mixer 2 is used to swing mixing capacity between the pro-

duction lines. When the specialized production line is being utilized mixer 2 will feed unit

3, and only mixer 1 will feed the packaged production line. In this mode only packaged

products similar to the current specialized product are made. When specialized production

is not required mixer 2 will be used to feed the packaged production line, in tandem with

mixer 1. The set of similar product families is represented by Ff ′ and is defined as the prod-
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Figure 4.7: Description of plant post expected retrofit
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uct family f that is deemed similar to product family f ′. In this representation the notation

f will denote packaged products while f ′ denotes specialized products. This requirement

can be stated that if a specialized product family f ′ is starting or actively processing so

must the respective packaged product f ∈ Ff ′ .

Wsfn +
∑
n′<n

Wsfn′ −
∑
n′≤n

Wffn′ = Wsf ′n +
∑
n′<n

Wsf ′n′ −
∑
n′≤n

Wff ′n′ ∀f ′, f ∈ Ff ′ , n

(4.1)

Constraint (4.1) ensures that product families f ′ and f ∈ Ff ′ operate simultaneously in the

production schedule. The above constraint allows for product families f ′ and f ∈ Ff ′ to

finish at or before the same event point. This allows for some idle time on either unit if it is

determined optimal. Constraint (4.1) is added to model MS and is defined as model MS1.

Strategy 2 Strategy 2 (S2) involves continuous parallel operation of the packaged and

specialized production lines with mixer 2 dedicated to specialized production at all times. In

this strategy any packaged product may be manufactured while the specialized production

line is in operation; in accordance to previously specified operational policies. The plant

operators highlighted that it would be preferable to run similar product families at similar

68



M.A.Sc. Thesis - M. Hazaras, McMaster University - Chemical Engineering Section 4.6

times to provide simplified operations. As such the constraint given above can be restated

as:

Wsfn +
∑
n′<n

Wsfn′ −
∑
n′≤n

Wffn′ ≤Wsf ′n +
∑
n′<n

Wsf ′n′ −
∑
n′≤n

Wff ′n′ ∀f ′, f ∈ Ff ′ , n

(4.2)

Constraint (4.2) enforces that specialized product families f ′ must be operating if the respec-

tive product family f ∈ Ff ′ is also operating. However the constraint allows for specialized

product families to start or continue processing even if product family f ∈ Ff ′ is not operat-

ing. This allows for additional scheduling flexibility when compared to operational strategy

1. Model MS is augmented with constraint (4.2) and referenced as model MS2.

4.6.1 Case Study 1 Revisited

The goal of this case study is to evaluate the proposed operational strategies and determine

the expected gains in plant throughput. Historical data from case study 1 will be used as a

basis; the expected production rates for each strategy are listed in Appendix C. The results

of each production strategy will be compared against the optimal solution of case study 1

and the time horizon of interest is set to H = 102.5 hours, the minimum makespan of case

study 1.

The results for throughput optimization for models MS1 and MS2 are given as the second

and third Gantt chart in Figure 4.8, respectively. The optimized schedule in case study

1 (first Gantt chart) corresponds to a throughput of 196.83 weight equivalents of prod-

uct. Operational strategy 1 and strategy 2 yield a throughput of 293.88 and 324.17 weight

equivalents (we) of product, respectively. This corresponds to a increase of 49.3% through-

put for strategy 1 and 64.7% increase in plant throughput for strategy 2. The increase in

throughput of S2 over S1 is attributed to an increase in the amount of specialized product

produced. The ability to run the packaged production line in parallel, albeit at slower than

historic processing rates, allows for packaged production requirements to be met as well. It

can therefore be concluded that operational strategy 2 allows for the greatest improvements

in plant throughput.
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Figure 4.8: Industrial case study 1 revisited with results of operational strategies 1 (middle)

and 2 (bottom).
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Table 4.6: Policy evaluation case study - computational performance, objective given in

weight equivalents (we)

MS1 MS2

Event Points 11 11

Constraints 33,221 33,221

Binary Variables 788 788

Continuous Variables 23,623 23,623

LP-rexalation (we) 397.17 331.73

Best Solution (we) 293.88 324.17

Time to Best Solution (CPUs) 70 115

CPU Time (s) 1461 881

Optimality Gap (%) 0 0

Nodes 117,342 17,394

The computational performance of models MS1 and MS2 are given in Table 4.6. An im-

portant note is the difference in computational time required to prove optimality when one

compares the two objective functions. Throughput maximization requires far less computa-

tion time to prove optimality of solution, acheiveing reductions of 4,953 CPUs and 219,183

nodes searched for operational strategy 2, and 4,373 CPUs and 59,235 nodes searched for

operational strategy 1.
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Chapter 5

Production Planning

The focus of the chapter is to expand from the short-term scheduling optimization to

medium-term production planning optimization. Production planning optimization is con-

ducted over a medium-term horizon to determine the most efficient production targets and

inventory levels of the industrial supply chain. To accomplish this task, a planning opti-

mization model must be developed to account for the unique characteristics and policies

of the target facility. As the production facility exhibits sequence dependent production

changeovers the true operating capacity is variable in nature. Failure to account of this in

a planning model can lead to capacity overestimation and the generation of weekly pro-

duction targets which can not be met at the detailed scheduling level. This chapter will

present the development of a planning optimization model which uses traveling salesman

sequencing constraints to provide an accurate bound on the true capacity of the production

plant. Such use of traveling salesman sequencing constraints has been presented previously

by Erdirik-Dogan and Grossmann [2007], in which the authors develop a planning model

that provides accurate planning solutions over medium-term horizon lengths.

The planning model will then be used to investigate the potential benefits of planning

optimization at the production plant through examination of several case studies. The

first case study will apply the planning model to a three month planning horizon with one

week planning intervals. The case study will also examine the effect of external minimum

production targets specified for 6 key product SKUs. The second case study will investigate
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the potential benefit of changing the time limit between the process wide cleaning events

(Γ). This will be investigated with and without key product minimum production targets.

5.1 Planning Model Formulation

To provide accurate bounds on plant capacity the planning model must account for the

production grouping rules, the cleaning policies of the target facility and the sequence

dependent changeovers between production tasks. The planning model presented is based

on the scheduling rules presented in Chapter 3, such that key policies are enforced but

detailed task timing is avoided.

In the production planning formulation the index t represents the planning intervals, which

are defined as one week in length. Let index i represent processing tasks, index j represent

production equipment and index g represent production groups. The sets Ij and Ig represent

the set of tasks that can be run on unit j and the set of tasks that can be run in production

group g, respectively. Index f is used to represent product families and the sets Fj and

Fg represent the product families that can be run on equipment units j and in productions

groups g, respectively. Similar to the aggregate scheduling formulation, processing tasks

i ∈ If are grouped together into product families and sequencing is carried out between

product families.

In the planning model, the active production groups in each planning interval t are selected

via binary indicator PGgt. This is done for several reasons: First, the production groups

represent sequences of product families that share similar product formulations and must be

run in-between plant wide cleans. Therefore, by grouping production into production groups

g product family sequences can be developed via traveling salesman based constraints.

Second, if the number of active production groups is known it is possible to determine the

time required for conducting plant wide cleaning tasks.

Figure 5.1 depicts this planning formulation in relation to a typical process schedule, dis-

playing the grouping based on product family and production groups. The product families

are seen as tasks with identical fill patterns and colors, whereas production groups are the

sequences of tasks between plant wide cleans. The planning formulation deconstructs this
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Figure 5.1: Construction of cyclical production schedules using traveling salesman based

sequencing constraints
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process schedule into three production groups, which consist of product families: PG1 - F6,

F14, F28; PG2 - F23, F16, F11; and PG3 - F1, F26, F15. The changeover time required

for each production group sequence is determined through the use of travelling salesman

problem (TSP) type constraints. In each production group g the active product families

f are placed in cyclical sequences, with links representing the changeover time required

to switch production between product families. The planning formulation then breaks the

cyclical sequence at the link with the largest changeover duration to produce a linear pro-

duction sequence. Plant wide cleaning tasks are accounted for through the restriction of

the available processing time in each planning interval t.

Batch Size and Processing Time Constraints

The batch sizing of task i is accomplished through variable FPijgt, which represents the

batch size of processing task i in production group g on unit j in planning period t. In

addition, binary variable Y Y Pijgt is introduced to indicate if task i in production group g

on unit j is active in planning period t. The following constraints are imposed:
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Bmin
i Y Y Pijgt ≤ FPijgt ≤ Bmax

i Y Y Pijgt ∀j, g, i ∈ Ij ∩ Ig, t (5.1)

Constraint (5.1) enforces the batch size of task i on unit j in production group g at planning

interval t to lie within the batch size limits, as given by parameters Bmin
i and Bmax

i . The

total processing time of a batch of task i is tracked through PTijgt and is related to the

batch size of task i through the following constraints:

PTijgt = αiY Y Pijgt + βiFPijgt ∀i ∈ Ij ∩ Ig, j, g, t (5.2)

Constraint (5.2) defines the total processing time of task i to be a combination of the fixed

(αi) and variable (βi) processing rates. αi and βi remain consistent with the parameters

defined for the scheduling formulation.

Material Balance

To track the transformation of material states throughout the planning horizon, variable

Sst is introduced as the ending inventory of state s in planning interval t. Production is

carried out according to a production recipe, which stipulates the relative proportion of

material state input (ρsi) and the proportion of material state output (ρ̄si). Let Ki and Pi

represent the set of units j capable of running task i and the set of production groups g

that include task i, respectively. The following constraint is enforced:

Sst = Ss,t−1 +
∑
i∈Os

∑
j∈Ki

∑
g∈Pi

ρ̄siFPijg,t

−
∑
i∈Is

∑
j∈Ki

∑
g∈Pi

ρsiFPijgt − SSst +MOst ∀s, t (5.3)

Constraint (5.3) simply states that the ending inventory of state s in planning period t

is given as the balance on the previous inventory and the amount of state s produced,

consumed, sold or purchased in planning interval t. SSst is defined as the amount of state
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s sold to market in planning interval t, while MOst defines the amount of material state

s purchased. ρ̄si and ρsi remain consistent with the parameters defined in the scheduling

formulation.

Inventory Limit Constraints

The inventory level of product and material states is often bounded by stocking policy and

warehouse limitations.

Cmins ≤ Sst ≤ Cmaxs ∀s, t (5.4)

Constraint (5.4) enforces the current inventory level of state s to be bounded between

minimum (Cmins ) and maximum (Cmaxs ) limits.

Binary Variable Restrictions

In addition to the above constraints the following binary variable restrictions are imposed.

As tasks are grouped into product families no task should be selected unless the appropriate

product family is also selected. Y Pfjgt is a binary variable that is equal to 1 if product

family f is selected to be run on unit j in production group g at planning period t.

Y Y Pijgt ≤ Y Pfjgt ∀i ∈ If , f ∈ Fg ∩ Fj , j, g, t (5.5)

The activity of processing tasks i is restricted to coincide with with the occurrence of the

appropriate product family f , as given by constraint (5.5). A similar restriction is imposed

for the selection of product families, as these families must be run within a applicable

production group. To accomplish this binary variable PGgt is introduced and equated to 1

if production group g is active in planning period t, and zero other wise.

Y Pfjgt ≤ PGgt ∀f ∈ Fg ∩ Fj , j, g, t (5.6)
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Constraint (5.6) restricts binary indicator variable Y Pfjgt to occur only if the appropriate

production group g is active at planning period t.

Demand Satisfaction

Two alternative ways to address demand satisfaction are addressed within the proposed

planning model.

SSst = Dst −BLst ∀s, t (5.7a)

SSst ≥ Dst ∀s, t (5.7b)

Constraint (5.7a) enforces that the sale of any product state must be equal to the demand

minus any incurred backlog. The allowable backlog for any product state s at planning

interval t is limited to at most 5% of the demand at that planning interval (BLst < 0.05Dst).

Constraint (5.7b) allows for sales to greater than the specified demands and does not allow

for any backlog. It is important to track the accumulated backlog of states throughout the

planning horizon. To accomplish this variable TBLst is introduced and defined as the total

backlog of state s at planning interval t.

TBLst = TBLs,t−1 +BLst ∀s, t (5.8)

Constraint (5.8) tracks the accumulation of backlog of state s throughout the planning

horizon. To ensure all demands are met the total backlog for any state s is required to be

zero at the end of the planning horizon (TBLs,t=|T | = 0∀s).

Production Targets

In some plants, production targets for key products are often assigned to be met within plan-

ning periods. This is usually done to ensure uninterrupted product supply or is developed

in conjunction with key strategic partners over a longer term horizon.
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∑
i∈Os

∑
j∈Ki

∑
g∈Pi

ρ̄siFPijgt ≥ Prodst ∀s, t (5.9)

Constraint (5.9) defines the minimum amount of state s that must be produced in planning

interval t to meet specified production targets.

Sequencing Constraints

Sequencing of active product families is accomplished through binary variable ZPf,f ′,j,g,t,

which is 1 if product family f ′ is sequenced after product family f on unit j in product

group g in planning period t. Breaking one of the links in each active production group leads

to the generation of an applicable product family sequence for that group. ZZPf,f ′,j,g,t is

introduced and defined as 1 if the link between product family f and f ′ on unit j in

production group g in planning period t is broken. The optimal sequence is determined by

breaking the cyclical schedules at link ZPf,f ′,j,g,t. The following sequencing constraints are

imposed:

Y Pf,j,g,t =
∑
f ′∈Fg

ZPf,f ′,j,g,t ∀j, g, f ∈ Fg ∩ Fj , t (5.10)

Y Pf ′,j,g,t =
∑
f∈Fg

ZPf,f ′,j,g,t ∀j, g, f ′ ∈ Fg ∩ Fj , t (5.11)

Constraints (5.10) and (5.11) state that product family f can only be included in planning

period t if product family f participates in both a forward and backward link to other

product families. The above constraints will generate a cyclical schedule for each production

group g active in planning period t. To determine the optimal sequence the cycle is broken

at the link with the highest changeover time.

∑
f∈Fj∩Fg

∑
f ′∈Fj∩Fg

ZZPf,f ′,j,g,t = PGg,t ∀j, g, t (5.12)

Constraint (5.12) enforces that one link is broken in each active production group. If

a production group is not active, sequencing variables ZPf,f ′,j,g,t will be forced to zero
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through constraints (5.6), (5.10) and (5.11) and ZZPf,f ′,j,g,t will equate to zero through the

following restrictions.

ZZPf,f ′,j,g,t ≤ ZPf,f ′,j,g,t ∀f, f ′ ∈ Fj ∩ Fg, j, g, t (5.13)

To ensure that only valid links are broken, constraint (5.13) enforces that only links between

family f and f ′ that exist can be broken. If no sub-cycles exist then the above sequences will

correspond to schedules with sequence dependent changeovers taken explicitly into account.

If sub-cycles exist then the sequences generated will correspond to a valid lower bound on

the changeover times, and the model will generate a valid upper bound on the achievable

profit.

Self-loop Restrictions

A prominent issue when using traveling salesman based sequencing constraints is the ap-

pearance of self-loops within the optimization solutions. Self-loops are the occurrence of a

product family with sequencing connections to itself, which will cause a underestimation

in the amount of changeover time. It is therefore necessary to restrict the occurrence of

self-loops such that they only occur if intended.

Y Pfjgt ≥ ZPffjgt ∀j, g, f ∈ Fj ∩ Fg, t (5.14)

ZPffjgt + Y Pf ′jgt ≤ 1 ∀j, g, f, f ′ ∈ Fg ∩ Fj , t | f 6= f ′ (5.15)

ZPffjgt ≥ Y Pfjgt −
∑

f ′∈Fg∩Fj

f ′ 6=f

Y Pf ′jgt ∀j, g, f ∈ Fg ∩ Fj , t (5.16)

If product family f is the only active product family in production group g on unit j in

planning period t then constraint (5.16) ensures that binary indicator variable ZPffjgt is

equal to 1. If any other product family f ′ 6= f is also active in production group g on

unit j in planning period t then constraint (5.15) restricts binary indicator variable ZPffjgt

to equal 0. The above constraints are effective in preventing unnecessary self-loops from

existing in the optimized production plans.
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Changeover Times

In the above aggregate formulation, two types of changeovers exist: transitions between

tasks i ∈ If and transitions between sequenced product families. To account for the transi-

tion times variables ICTVfjgt and TRNPjgt are introduced and defined as follows: ICTVfjgt

is the total changeover time between production tasks i ∈ If , while TRNPjgt is the total

changeover time between product families active on unit j in production group g in planning

period t. The following constraints are imposed:

ICTVfjgt = γf

∑
i∈If

Y Y Pijgt − Y Pfjgt

 ∀f ∈ Fg ∩ Fj , j, g, t (5.17)

Constraint (5.17) determines the changeover time required within product family f . The

number of required changeovers is equal to the number of active tasks minus 1. γf is given

as the changeover time required between tasks i ∈ If .

TRNPjgt =
∑

f,f ′∈Fg∩Fj

(
slff ′ZPff ′jgt − slff ′ZZPff ′jgt

)
∀j, g, t (5.18)

Constraint (5.18) enforces that for every active link between product families the corre-

sponding amount of changeover time is added to TRNPjgt. slff ′ is given as the changeover

time required to transition from family f to f ′.

Production Group Time Limits

It is necessary to restrict the amount of time spent processing tasks in production groups

to be less then 36 hours (Γ). To accomplish this, variable PGTjgt is introduced and defined

as the total processing time of production group g on unit j in planning period t. This

includes the changeover time required between tasks in production group g. The following

constraints are imposed:
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∑
i∈Ig∩Ij

PTijgt +
∑

f∈Fj∩Fg

ICTVfjgt + TRNPj,g,t = PGTjgt ∀j, g, t (5.19)

Constraint (5.19) enforces PGTjgt to be the combination of task processing time, task

changeovers and sequencing changeovers in production group g on unit j in planning interval

t.

PGTjgt ≤ Γ PGgt ∀j, g, t (5.20)

Constraint (5.20) limits the total processing time of production group g on unit j to be less

than Γ hours in planning interval t.

Horizon Time Balance and Limits

The production facility typically runs on a 5 day production schedule with the ability to

schedule overtime if necessary. To include this into the above formulation, binary variables

Sunt and Satt are introduced and defined as: Sunt is equal to 1 if Sunday overtime is

scheduled for production period t, while Satt is defined as 1 if Saturday overtime is scheduled

for production week t. The total available time for processing production groups then

becomes variable in nature. A new variable HHt is introduced to track the total available

processing time in planning interval t. Figure 5.2 depicts the planning horizon time line

and the available processing time in each interval. The following time balance is enforced:

HHt = H − τ
(∑

g

PGgt − 1

)
+ 24Sunt + 24Satt ∀t (5.21)

Constraint (5.21) is a balance on the total available production time of planning period t.

The total time spent preforming process wide cleans can be determined as the number of

active production groups minus one, and is represented in the second term on the R.H.S.

τ is defined as the duration of a process wide cleaning operation. Saturday and Sunday
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Figure 5.2: Representation of planning interval timeline and the processing time available

in each interval
Weekly intervals of planning horizon

demands demands demands

week 1 week t week T

0 H Satt Sunt

Available production time in week t

F4F4 F14F14

F28F28

F23F23 F16F16

F11F11

F1F1 F26F26

F15F15

overtime both contribute 24 hours to the available production time in planning period t. H

is defined as the base horizon time of the 5 day production week.

∑
g

PGTjgt ≤ HHt ∀j, t (5.22)

Constraint (5.22) then restricts the total processing time of all production groups g to be

less than or equal to the total available production time of planning period t.

Objective

The objective of the optimization is the maximization of profit over the entire planning

horizon, which is represented through variable Z. The profit of the planning horizon is

defined as the revenue from demand satisfaction minus the associated production costs.

A∗ =
∑
t

∑
s∈Pro

ζsSSst
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A∗ represents the revenues of the planning period as given by the sale of product state s

multiplied by the sales price of product state s (ζs). Pro is given as the set of product

states. The major costs of the production facility are the material purchasing, inventory

costs, the cost of production transitions and backlog penalties.

B∗ =
∑
t

∑
s∈Mat

λsMOst

Material purchasing costs, B∗, is defined as the amount of material state s purchased at

planning period t multiplied by the material costs (λs). Mat is defined as the set of raw

material states. Inventory costs are divided into handling and storage cost for material

states s.

C∗ =
∑
t

∑
s∈Pro

HCs
∑
i∈Os

∑
j∈Ki

∑
g∈Pi

ρ̄siFPijgt

D∗ =
∑
t

∑
s∈Pro

SCsSst

Handling costs, C∗, are associated with the amount of product state s produced in each

planning period t. HCs is defined as the handling cost of one weight equivalent of product

state s. Storage costs, D∗, are cost of storing product state s for each planning period t.

SCs is defined as the inventory storage cost of a weight equivalent of product state s over

one planning period.

The transition costs are characterized by the total amount of time in changeover multiplied

by the relative hourly transition cost.

E∗1 =
∑
j

∑
g

∑
t

TC TRNPjgt

E∗2 =
∑
j

∑
g

∑
t

TC
∑

f∈Fg∩Fj

γfICTVfjgt

E∗3 =
∑
g

TC τ (
∑
t

PGgt − 1)
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Table 5.1: Planning model constraint definitions

Constraints Objective

MP Constraints (5.1) to (5.6), (5.7b) and (5.10) to (5.22) Constraint (5.23)

M∗P Constraints (5.1) to (5.6), (5.7a), (5.8) and (5.10) to (5.22) Constraint (5.23)

MT
P Constraints (5.1) to (5.6), (5.7a) and (5.8) to (5.22) Constraint (5.23)

The above defines the cost of transition for sequencing transitions, task transitions and

process wide cleaning. TC is defined as the associated cost of one hour of transition time.

The objective function is then defined as:

Z = A∗ −B∗ − C∗ −D∗ − E∗1 − E∗2 − E∗3 (5.23)

Equation (5.23) defines the overall profit of the planning horizon to be the balance between

revenues and costs.

Planning Model Definitions

Three models are proposed from the above constraints: MP - Planning model with de-

mand satisfaction constraint (5.7b), M∗P - Planning model with demand satisfaction con-

straint (5.7a), andMT
P - Planning model with production target constraint (5.9) and demand

satisfaction constraint (5.7a). The models are summarized in Table 5.1.

5.2 Planning Case Studies

This section will present two case studies that apply the models described above. The

first case study investigates the application of model M∗P to a 3 month planning horizon,

using intervals of 1 week planning intervals. The additional sale of product material is not

allowed and the solution should provide the lowest cost solution. The case study will also

investigate the effect of additional production targets on the optimal solution of the model;
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this will be done using model MT
P . The second case study will investigate the effect of

altering parameter Γ in a capacity constrained planning period. To accomplish this, model

MP is used to allow for sales over the specified demand. A optimality gap of 0% is set

for all case studies and a time limit of 1 hour is specified. All models are implemented in

GAMS 23.6.3 and solved with CPLEX 12.2.0.2 on a Intel R© Core 2 Quad Q8200 at 2.33

GHz machine. Software was run in 64-bit Windows Vista Ultimate with 6 GBs of available

RAM.

5.2.1 Planning Case Study 1

Models M∗P and MT
P are applied to a 12 week planning horizon for the target facility. The

base horizon length is given as H = 107 hours and the production group time limit is given

as Γ = 36 hours. The computational statistics for the 12 week planning period of models

MP and M∗P is given in Table 5.2. Model M∗P is considered the base solution and results

for model MT
P are scaled according the this base. LP-relaxations are scaled by division by

the best solution provided by the model multiplied by 100. No sub-cycles are present in the

final solutions and zero product backlogs are reported in either case. Both models fail to

prove optimality but find very accurate solutions; within 0.5% of global optimum.

It is observed that model MT
P provides a solution that is 88.62% that of the best solution

provided by base model M∗P . The addition of production targets thus negatively impacts

the profitability of the optimal solution. It is observed that the reduction in profitability is

due to a 17% increase in the overall costs. A summary of the operational operational costs

of the solutions is given in Table 5.3. The overall costs are are scaled by dividing by the

base solution and multiplying by 100. The individual contributions to the overall costs are

also given.

The inventory profiles of the above solutions are provided in Figure 5.3. Grey columns

represent inventory levels of model M∗P while patterned columns represent the inventory

levels of model MT
P . It is clearly seen that the addition of the production targets markedly

increases the inventory stock of the key product states, leading to increases in the associated

costs of inventory, handling and material purchasing. It is also noted that model MT
P

required the scheduling of overtime to meet customer demands and the specified production
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Table 5.2: Computational results of planning case study 1

M∗P MT
P

Constraints 69,793 69,865

Binary Variables 22,116 22,116

Continuous Variables 41,125 41,125

LP-relaxation (% Base) 100.75 101.4

Best Solution (Profit - % Base) 100 88.62

CPU Time (s) 3,600 3,600

Optimality Gap (%) 0.14 0.55

Nodes 4,758 7,454

targets. Four additional Sunday shifts and 3 additional Saturday shifts were scheduled

within the horizon.

An interesting note is to compare the scheduled time in transition between the optimized

production schedules against that of the historical plant operation. The average weekly time

spent in transition is calculated as 10.88 hours for models M∗P and 12.27 hours for model

MT
P . Review of historical production data over the same time horizon reveals the average

weekly time spent in transition as 20.2 hours. As both models do not present sub-cycles

it can be deduced that on average the weekly production transition time may be reduced

by as much as 9 hours. This can be achieved through use of such a planning optimization

system that exploits problem knowledge and leverages plant capabilities.

5.2.2 Planning Case Study 2

This case study will be used to investigate the effect of increasing the available time for

processing production groups (Γ). According to operational policies, a production group

is limited in total processing time to Γ = 36 hours. To better understand the effect this

parameter has on plant operation, it was desired to investigate the efficiency gains possible

as a result of increasing Γ. As such, several instances of Γ were run in 12 week planning
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Figure 5.3: Optimized Inventory levels; products A) Ps34, B) Ps35, C) Ps36, D) Ps37, E)

Ps38 and F) Ps39 (Model M∗P solid bars; Model MT
P patterned bars)
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Table 5.3: Summary of operational costs of optimized production plan for planning case

study 1. The percentage of costs is broken down as percentage of total costs.

M∗P MT
P

Costs 100 117.54

Materials 90.6 89.2

Handling 5.0 4.6

Inventory 3.1 3.6

Transitions 1.3 1.2

Over Time 0 1.4

horizons, which includes Γ = 36, 40, 44, 48 hours. Model MP is used to allow for sales over

the specified minimum demand. The upper bound on weekly state sales is bounded to be

less than or equal to 200% that weeks demand.

Table 5.4 summarizes the optimal sales, profit and operational costs, as a percentage of the

base case values, as Gamma is increased. Values are reported as percentage increase from

the base, which is the solution value at Γ = 36. It is observed that the profitability of the

plant increases marginally with increasing Γ. On average roughly 1% additional profit is

achievable by increasing the length of time between process wide cleaning operations (Γ).

Further investigation revealed that the gains in profitability are the result of decreases in

the overall production changeover time. Table 5.5 displays a summary of the overall and

individual types of process changeovers as Γ is increased. It is observed that the time spent

performing process changeovers decreases (7.1, 9.7, 10.3 %) as Γ is increased. This decrease

in overall changeover time is achieved by a reduction in the amount of plant wide cleaning

operations (3 hr). As Γ is increased to 40, 44, and 48 hours the total time spent performing

3 hr changeovers is reduced to 114, 111 and 111 hours. This reduction in 3 hr changeover

times is countered by an increase in the time spent performing 15 min and 1 hr changeovers

compared to the Γ = 36 hr case. This makes sense as more products can be made in longer

production groups and it is expected to see an increase in the shorter changeovers between

similar product families.
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Table 5.4: Comparison of sales, profits and costs when Γ is altered in planning case study

2, given as percentage increase over base value.

Γ 40 44 48

Sales 0.93 1.13 1.26

Profits 0.99 1.20 1.31

Costs 1.08 1.31 1.40

Table 5.5: Summary of total and type of process changeovers as Γ is increased for planning

case study 2, given in hours.

Γ 36 40 44 48

Overall 199 185 179.75 178.5

15 min 19.75 23.75 23.5 23.5

1 hr 44.25 47.25 45.25 44

3 hr 135 114 111 111

It can therefore be deduced that Γ does not have a significant effect on the optimality of the

production horizon over the range investigated. The increases yield less than 1.5% change

in the profitability of the production plant. This is due to the fact that reductions in the

number of require plant wide cleans is marked by an increase in shorter changeovers. It

is determined that such initiatives to increase this limit, for the time range investigated,

would yield only marginal increases in plant profitability.
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Chapter 6

Conclusions and Recommendations

6.1 Chapter Conclusions

1. Scheduling Model Formulation. Three process scheduling optimization models

are presented that are based on and extend the current discrete and continuous time

modelling paradigms. Novel extensions to incorporate processing task grouping rules,

based on product family and production group assignments, are incorporated into

all three models, and reflect production policies currently practiced at the target

facility. In addition, formulations to incorporate maintenance tasks with variable

and dependent timing for continuous time models are presented. The formulation

advances the field of continuous time modelling by allowing activities specified within

the scheduling horizon to be dynamically assigned within the optimization procedure.

The formulation opens a window to enhanced modelling of semi-continuous batch

processes with complex production policies and maintenance activities. To overcome

problem size and computational performance issues, an aggregate reformulation of

the continuous time model is proposed. The model removes redundant solutions

by ignoring task sequence, and instead is formulated to sequence product families.

This removal of redundant solutions allows for model size reduction and improved

computational performance.

2. Scheduling Benefit Analysis. Investigation into the potential benefit of scheduling
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optimization to the processing facility in question was carried out through analysis of

historical schedules to optimized schedules. It is shown that use of optimization at the

scheduling level can result in a 5% improvement in scheduled makespan, and as such

can improve plant capacity. Gains are made by rearrangement of processing tasks

into more efficient production groups and reduce the number of scheduled process

wide cleaning operations. A process reschedule is analyzed in a case study and similar

improvements in production makespan are exhibited. In addition it is shown that due

to model size and the requirement of fine discretization, discrete time models prove

ineffective in providing a solution to this problem.

3. Policy Evaluation. During the course of the research the production facility un-

derwent a plant retrofit to extend plant capacity and dissaggregate the production

lines. It was desired to analyze the potential of two different modes of operation, as

specified by plant management. The aggregate continuous time model is extended to

reflect these two modes of operation and a case study is conducted to estimate the

best operational performance capable. The scheduling model is successfully used to

compare these modes of operation and highlight the best possible plant throughput.

4. Production Planning. Analysis of production scheduling case studies highlights

the need to accurately account for sequence dependent changeovers, as changeovers

represent approximately 15-20% of production time, according to historical operating

data. A traveling salesman based approach is adopted and extended from literature to

exploit the nature of the scheduling problem. The model accounts for sequence depen-

dent changeovers, the required processing task grouping rules and plant wide cleaning

policies. It is shown that a significant reduction in the time spent in changeover can

be accomplished through improved inventory and production planning. In addition it

is shown that specification of production targets for key product states can in some

cases restrict the production of other products and reduce the effective capacity of

the processing plant. It is shown that significant savings are achievable by lowering

product inventory and reducing operational costs.
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6.2 Recommendations for Further Work

1. Production Planning Under Uncertainty Production planning is typically car-

ried out with forecasts of future demand patterns. Forecasts are routinely treated

as deterministic and planning is conducted around uncertain future demands. In a

fast moving consumer packaged goods industry, demands can vary within a statisti-

cal range and such information should be accounted for to plan production. Much

opportunity exists to develop robust optimization approaches to incorporate the de-

mand uncertainty information within production planning models. Exploitation and

evaluation of such optimization models should be characterized to better understand

the gains to industry for adopting such methodologies.

2. Integration of Planning and Scheduling Mismatch often appears between pro-

duction planning and production scheduling models. The time spans and differences

in detailed information lead to accuracy differences and possibly production targets

that can not be implemented at the scheduling level. A method to efficiently and

easily integrate the two levels is needed in industry to aid in planning execution and

improve scheduling decisions.
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Nomenclature

Indicies

n Event points

s States

j Equipment units

i Tasks

c Maintenance events

g Production groupings

f Product families
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Sets

Ij The set of tasks i capable of being processed on unit j

Ic Maintenance tasks i associated with maintenance event c

If The set of tasks i associated with product family f

Ig The set of tasks i in production group g

Fj The set of product families f capable of production on unit j

Fg The set of product families f in production group g

Ki The set of units j that can perform task i

Pi The set of production groups g that are associated with task i

SIi The set of all states s that are inputs to processing task i

SOi The set of all states s that are outputs of processing task i

Is The set of all processing tasks i that consume state s

Os The set of all processing tasks i that produce state s

ZW The set of all tasks that produce at least one zero-wait state

Pro The set of all product states

Mat The set of all raw material states
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Parameters

H Time horizon length

H∗ Time horizon upper bound with slack allowance

αi The fixed duration of task i

αf Set-up time of family f

βi The variable duration of task i

ρis Mass balance coefficient for consumption of state s in task i

ρ̄is Mass balance coefficient for production of state s from task i

SOs Initial amount of state s

TCc Maximum timing of maintenance event c

Bmin
i Lower bounds on batch size of task i

Bmax
i Upper bounds on batch size of task i

θc Maximum backward timing of maintenance event c

clii′ The changeover time required between task i and i′

slff ′ The changeover time required between production family f and f ′

Γ Maximum amount of time allowed between cleaning events c

γf Changeover time required between tasks within product family f

Cmins The minimum inventory level of state s

Cmaxs The maximum inventory level of state s

SCs Inventory storage costs of state s for one planning interval

HCs Material handling costs for state s

TC The relative cost of 1 hour of changeover time

BCs Backlog penalty cost for product state s

λs Cost of purchasing material state s

ηs Revenue from the sale of one weight equivalent of product state s

Prodst The specified minimum product target for product state s

Dst Demand for product state s in planning interval t
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Binary Variables

Wsin =1 if task i starts processing at event point n

Wfin =1 if task i finishes processing at/or before event point n

Ycn =1 if maintenance event c occurs at event point n

V sfn =1 if product family f starts processing at event point n

V ffn =1 if product family f finished processing at/or before event point n

Y Y Pijgt =1 if task i is active on unit j in grouping g in planning interval t

Y Pfjgt =1 if product family f is active in planning interval t

PGgt =1 if production group g is active in planning interval t

ZPff ′jgt =1 if family f ′ is sequenced after family f in planning interval t

ZZPff ′jgt =1 if the link between product family f and f ′ in planning interval t

Continuous Variables

Z Production throughput of production schedule

Tn Time that corresponds to event point n

Tsin Start time of task i at event point n

Tfin Finish time of task i at event point n

Tpin Duration of task i that starts at event point n

Tsfn Start time of product family f at event point n

Tffn Finish time of product family f at event point n

Tpfn Duration of product family f that starts at event point n

Bsin Batch size of task i that starts at event point n

Bpin Batch size of task i that is processing at event point n

Bfin Batch size of task i that ends at or before event point n

Bl
isn Amount of state s used as an input for task i at event point n

BO
isn Amount of state s produced as an output from task i at event point n

Ssn Amount of state s available at event point n

SSsn Amount of state s sold to market at event point n

Tcn Timing assignment variable for cleaning event c at event point n

T̄cn Equation slack variable for cleaning event c at event point n

T̂cn Optimized backward timing of maintenance event c at event point n

Tfc Completion time of the final cleaning event c

En =1 if any cleaning event c occurs at event point n
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Gagn =1 if production group g is active at event point n

Fafn =1 of product family f is active at event point n

Fffn =1 if product family f finishes at event point n

COff ′n =1 if product f precedes family f ′ on at event point n

COii′n =1 if task i precedes task i′ on at event point n

FPijgt The batch size of task i on unit j in group g at interval t

PTijgt The processing of task i on unit j in group g at interval t

Salest Amount of product state s sold to market in planning interval t

MOst Purchasing amount of state s in planning interval t

Salest Amount of product state s sold to market in planning interval t

PGTjgt The processing time of production group g on unit j in interval t

ICTVfjgt The amount of transition time between tasks i ∈ If in planning interval t

TRNPjgt The amount of changeover time between sequenced product families

HHt The balance of available processing time in planning interval t

BLst Amount of backlog of state s in planning interval t
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Appendix A

Assignment Constraint Derivation

This derivation follows that given in [Maravelias and Grossmann, 2003b]. The logical ex-

pressions (A - C) and integer expression (D) can be used to derive the core assignment

constraint of the continuous time state-task-network. Logical expressions (A) and (B) can

be converted into integer equations (A*) and (B*), respectively:

Zsj,n =
∑
i∈Ij

Wsin ∀j, n (A*)

Zfj,n =
∑
i∈Ij

Wfin ∀j, n (B*)

Through the following series of equivalent representations and variable replacements, core

assignment condition (C) is converted to constraint (3.21):

(Zsj,n ⇒ ¬Zpj,n)⇔

(¬Zsj,n ∨ ¬Zpj,n)⇔

((1− Zsj,n) + (1− Zpj,n) ≥ 1)⇔(1− Zsj,n) +

1−

∑
n′<n

Zsj,n′ −
∑
n′≤n

Zfj,n′

 ≥ 1

⇔
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2−
∑
n′≤n

Zsj,n′ −
∑
n′≤n

Zfj,n′ ≥ 1

⇔
∑
n′≤n

(
Zsj,n′ − Zfj,n′

)
≤ 1

⇔
∑
n′≤n

∑
i∈Ij

Wsin′ −
∑
i∈Ij

Wfin′

 ≤ 1⇔

∑
n′≤n

∑
i∈Ij

(Wsin′ −Wfin′) ≤ 1 ∀j, n
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Appendix B

Material Delivery Methodology

The incorporation of product order due dates and material receipts was originally proposed

by Maravelias and Grossmann [2003a], where orders or deliveries represent stationary events.

Stationary events are described as those with fixed timing that may not be altered. There

exists a set K composed of events k of product orders that must be met, or deliveries to

be received. Let the fixed timing of event k ∈ K be given as parameter TKk and associate

with each event the amount due (delivered) as parameter ADk. Let set Ks and Ls represent

the set of orders and deliveries that correspond to state s. Binary variable Ykn is defined as

1 if event k is assigned to event point n and zero otherwise.

Tkn = TKkYkn ∀k, n (B.0.1)

The assignment of event k to any given event point n is given by constraint (B.0.1); which

states if event k occurs at event point n, Ykn = 1, then variable Tkn will assume the value

of parameter TKk. Tkn is defined as the timing of event k at event point n.

Tn = Tkn + T̄kn ∀k, n (B.0.2)

T̄kn ≤ H (1− Ykn) ∀k, n (B.0.3)
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When event k is assigned to event point n constraint (B.0.2) forces the timing of event point

n to equal the timing of event k. T̄kn is a slack variable introduced to relax constraint (B.0.2)

when event k is not assigned to event point n. When event k occurs at event point n the

slack variable must equate to zero to enforce the exact timing of constraint (B.0.2). This

requirement is enforced through constraint (B.0.3).

∑
n

Ykn = 1 ∀k (B.0.4)

Every event k must occur and coincide with an event point n, as given by constraint (B.0.4).

It is noted multiple events can occur at the same event point.

Ss,n + SSs.n = Ss,n−1 +
∑
k∈Ls

ADkn −
∑
k∈Ks

ADkn +
∑
i∈Os

BO
i,s,n −

∑
i∈Is

BI
i,s,n ∀s, n (B.0.5)

The original material balance constraint given as constraint (3.42) is modified to allow for

delivery and receipt of materials and is now represented as constraint (B.0.5).

ADk.n = ADkYkn ∀k, n (B.0.6)

Variable ADkn is the amount of order (delivery) event k at event point n and is enforced

through constraint (B.0.6).
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Appendix C

Case Study Data

C.1 Model comparison data

Product state demands and associated processing data for model comparison case study in

Section 4.1. β given in hours per weight equivalents of task batch size, demand given in

weight equivalents.

Table C.1: Production data for model comparison case study.

State Task Family Unit β Demand

Ps17 P17 F8 U2 0.3936 13.34

Ps18 P18 F4 U1 0.4261 3.52

Ps20 P20 F4 U2 0.4437 2.82

Ps19 P19 F4 U3 0.4502 2.78

Ps31 P31 F16 U1 0.3770 7.29

Ps33 P33 F16 U2 0.4006 4.37

Ps32 P32 F16 U3 0.3749 7.33

Ps39 P39 F23 U4 0.5249 28.58
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C.2 Industrial Scheduling Case Study 1

Inventory and product state demands for industrial scheduling case study 1 in Section 4.2. β

given in hours per weight equivalents of task batch size, demand given in weight equivalents.

Table C.2: Planned production data for industrial scheduling case study 1

State Task Family Unit β Demand

Ps17 P17 F8 U2 0.3936 13.34

Ps18 P18 F9 U1 0.4261 3.52

Ps20 P20 F9 U2 0.4437 2.82

Ps19 P19 F9 U3 0.4502 2.78

Ps31 P31 F16 U1 0.3770 7.29

Ps33 P33 F16 U2 0.4006 4.37

Ps32 P32 F16 U3 0.3749 7.33

Ps39 P39 F23 U4 0.5249 28.58

Ps26 P26 F14 U1 0.3945 6.34

Ps28 P28 F14 U2 0.3370 2.22

Ps37 P37 F28 U4 0.5249 19.05

Ps2 P2 F1 U3 0.3976 5.66

Ps3 P3 F1 U2 0.3974 5.66

Ps1 P1 F1 U1 0.3846 7.15

Ps4 P4 F2 U1 0.4118 6.68

Ps29 P29 F15 U1 0.4079 8.58

Ps30 P30 F15 U2 0.4022 4.97

Ps38 P38 F26 U4 0.5249 38.10

Ps47 P47 F20 U1 0.3904 10.89

Ps48 P48 F20 U2 0.3851 6.49

Ps49 P49 F20 U3 0.3976 5.03
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Table C.3: Initial inventory of material states for industrial scheduling case study 1, data

given as equivalent weight units.

State Inventory State Inventory

Rm1 0.127 Rm29 1.65

Rm2 0.064 Rm30 0.32

Rm3 0.007 Rm31 0.43

Rm4 0.095 Rm32 0.04

Rm5 22.14 Rm33 0.12

Rm6 0.62 Rm34 2.42

Rm7 2.85 Rm35 0.00

Rm8 7.12 Rm36 5.55

Rm9 50.00 Rm37 4.866

Rm10 14.36 Rm38 2.14

Rm11 3.97 Rm39 1.41

Rm12 14.51 Rm40 34.17

Rm13 25.03 Rm41 7.73

Rm14 1.35 Rm42 0.66

Rm15 0 Rm43 4.34

Rm16 0.525 Rm44 1.65

Rm17 13.12 Rm45 10.41

Rm18 0.04 Rm46 18.03

Rm19 0.20 Rm47 0.58

Rm20 0.025 Rm48 1.59

Rm21 0.75 Rm49 7.33

Rm22 3.30 Rm50 2.65

Rm23 1.83 Rm51 0.43

Rm24 0.99 Rm52 8.38

Rm25 2.69 Rm53 2.48

Rm26 0.01 Rm54 0.41

Rm27 21.01 Rm55 13.09

Rm28 41.5 Rm56 1.36
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C.3 Industrial Scheduling Case Study 2

Inventory and product state demands for industrial scheduling case study 2 in Section 4.3. β

given in hours per weight equivalents of task batch size, demand given in weight equivalents.

Table C.4: Planned production data for case study 2

State Task Family Unit β Demand

Ps8 P8 F6 U1 3.6235 4.53

Ps9 P9 F6 U2 2.8775 15.11

Ps26 P26 F14 U1 2.8164 6.34

Ps28 P28 F14 U2 2.9670 3.71

Ps37 P37 F28 U4 1.9848 23.82

Ps34 P34 F23 U4 1.8054 28.58

Ps1 P1 F1 U1 2.8599 7.15

Ps3 P3 F1 U2 2.5163 5.66

Ps2 P2 F1 U3 2.4638 8.62

Ps29 P29 F15 U1 2.4513 8.58

Ps30 P30 F15 U2 2.7365 2.74

Ps38 P38 F26 U4 1.9487 42.87

Ps31 P31 F16 U1 2.9615 7.40

Ps33 P33 F16 U2 2.6885 8.74

Ps32 P32 F16 U3 2.5675 10.27

Ps23 P23 F11 U2 2.6471 7.28
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Table C.5: Initial inventory of material states for industrial scheduling case study 2, data

in in equivalent weight units.

State Inventory State Inventory

Rm1 0.13 Rm29 0.72

Rm2 0.01 Rm30 0.27

Rm3 0.02 Rm31 0.58

Rm4 0.06 Rm32 0.06

Rm5 21.68 Rm33 0.11

Rm6 3.29 Rm34 3.42

Rm7 2.82 Rm35 0.00

Rm8 7.74 Rm36 4.1

Rm9 46.99 Rm37 2.84

Rm10 13.73 Rm38 0.839

Rm11 4.3 Rm39 2.87

Rm12 17.23 Rm40 19.78

Rm13 10.48 Rm41 7.69

Rm14 1.33 Rm42 0.89

Rm15 0 Rm43 3.66

Rm16 0.87 Rm44 2.54

Rm17 7.53 Rm45 24.56

Rm18 0.05 Rm46 8.44

Rm19 0.08 Rm47 0.18

Rm20 0.08 Rm48 0.56

Rm21 1.76 Rm49 6.98

Rm22 1.98 Rm50 2.57

Rm23 2.18 Rm51 0.43

Rm24 0.47 Rm52 1.87

Rm25 2.15 Rm53 3.37

Rm26 0.05 Rm54 0.29

Rm27 12.14 Rm55 6.93

Rm28 59.18 Rm56 1.7
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C.4 Industrial Scheduling Case Study 3

Inventory and product state demands for industrial scheduling case study 3 in Section 4.4. β

given in hours per weight equivalents of task batch size, demand given in weight equivalents.

Table C.6: Production targets for industrial scheduling case study 3

State Task Family Unit β Demand

Ps8 P8 F6 U1 3.6235 4.53

Ps9 P9 F6 U2 2.8775 15.11

Ps26 P26 F14 U1 2.8164 6.34

Ps28 P28 F14 U2 2.9670 3.71

Ps37 P37 F28 U4 1.9848 23.82

Ps34 P34 F23 U4 1.8054 28.58

Ps10 P10 F4 U1 2.5034 5.63

Ps11 P11 F4 U3 2.4474 14.07

Ps12 P12 F4 U2 1.4426 3.25

Ps1 P1 F1 U1 2.8599 7.15

Ps3 P3 F1 U2 2.5163 5.66

Ps2 P2 F1 U3 2.4638 8.62

Ps29 P29 F15 U1 2.4513 8.58

Ps30 P30 F15 U2 2.7365 2.74

Ps38 P38 F26 U4 1.9487 42.87
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Table C.7: Initial inventory of material states for industrial scheduling case study 3, data

in in equivalent weight units.
State Inventory State Inventory

Rm1 0.13 Rm29 0.72

Rm2 0.01 Rm30 0.27

Rm3 0.02 Rm31 0.58

Rm4 0.06 Rm32 0.06

Rm5 21.68 Rm33 0.11

Rm6 3.29 Rm34 3.42

Rm7 2.82 Rm35 5.91

Rm8 7.74 Rm36 4.1

Rm9 46.99 Rm37 2.84

Rm10 13.73 Rm38 0.839

Rm11 4.3 Rm39 2.87

Rm12 17.23 Rm40 19.78

Rm13 10.48 Rm41 7.69

Rm14 1.33 Rm42 0.89

Rm15 0 Rm43 3.66

Rm16 0.87 Rm44 2.54

Rm17 7.53 Rm45 24.56

Rm18 0.05 Rm46 0.00

Rm19 0.08 Rm47 0.18

Rm20 0.08 Rm48 0.56

Rm21 1.76 Rm49 6.98

Rm22 1.98 Rm50 2.57

Rm23 2.18 Rm51 0.43

Rm24 0.47 Rm52 1.87

Rm25 2.15 Rm53 3.37

Rm26 0.05 Rm54 0.29

Rm27 12.14 Rm55 6.93

Rm28 59.18 Rm56 1.7
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C.5 Industrial Scheduling Case Study 4

Inventory and product state demands for industrial scheduling case study 4 given in sec-

tion 4.5. β given in hours per weight equivalents of task batch size, demand given in weight

equivalents.

Table C.8: Planned production data for industrial scheduling case study 4

State Task Family Unit β Demand

Ps43 P43 F18 U2 0.417 11.982

Ps44 P44 F18 U3 0.361 7.62

Ps21 P21 F10 U1 0.484 7.228

Ps5 P5 F3 U1 0.405 7.403

Ps6 P6 F3 U3 0.351 12.125

Ps10 P10 F4 U1 0.382 9.152

Ps11 P11 F4 U3 0.396 11.256

Ps19 P19 F9 U3 0.396 6.94

Ps7 P7 F3 U2 0.363 4.817

Ps23 P23 F11 U2 0.378 7.28

Ps42 P42 F18 U1 0.367 7.484

Ps17 P17 F8 U2 0.375 13.336

Ps45 P45 F19 U1 0.523 5.254

Ps46 P46 F19 U2 0.348 7.185

Ps35 P35 F24 U4 0.525 38.102

Ps34 P34 F25 U4 0.519 42.864

Ps36 P36 F27 U4 0.551 38.102

Ps49 P49 F20 U3 0.398 5.029
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Table C.9: Initial inventory of material states for industrial scheduling case study 4, data

in in equivalent weight units.

State Inventory State Inventory

Rm1 0 Rm29 0.90

Rm2 0.02 Rm30 0.27

Rm3 0.03 Rm31 0.63

Rm4 0.07 Rm32 0.06

Rm5 26.83 Rm33 0.12

Rm6 2.87 Rm34 3.88

Rm7 3.50 Rm35 13.90

Rm8 12.69 Rm36 4.71

Rm9 712.00 Rm37 4.00

Rm10 17.23 Rm38 1.10

Rm11 3.428 Rm39 3.44

Rm12 14.51 Rm40 21.66

Rm13 13.80 Rm41 12.22

Rm14 1.98 Rm42 1.12

Rm15 0.28 Rm43 1.85

Rm16 0.95 Rm44 2.66

Rm17 13.20 Rm45 3.18

Rm18 0.05 Rm46 30.83

Rm19 0.13 Rm47 0.19

Rm20 0.13 Rm48 71.03

Rm21 2.37 Rm49 8.41

Rm22 1.99 Rm50 1.57

Rm23 2.18 Rm51 0.57

Rm24 0.48 Rm52 1.73

Rm25 2.82 Rm53 3.58

Rm26 0.06 Rm54 0.30

Rm27 18.48 Rm55 6.93

Rm28 54.59 Rm56 2.15
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C.6 Policy Evaluation Case Study

Inventory and product state demands for computer aided policy evaluation scheduling case

study in Section 4.6. β given in hours per weight equivalents of task batch size, demand

given in weight equivalents. Data is given for both operational policy S1 and operational

policy S2.

Table C.10: Planned production data for policy evaluation case study - operational strategy

S1. β given in hours per weight equivalents of task batch size, demand given in weight

equivalents

State Task Family Unit β Demand

Ps17 P17 F8 U2 0.3936 13.34

Ps18 P18 F9 U1 0.4261 3.52

Ps20 P20 F9 U2 0.4437 2.82

Ps19 P19 F9 U3 0.4502 2.78

Ps31 P31 F16 U1 0.6283 7.29

Ps33 P33 F16 U2 0.6676 4.37

Ps32 P32 F16 U3 0.6248 7.33

Ps39 P39 F23 U4 0.5249 28.58

Ps26 P26 F14 U1 0.6575 6.34

Ps28 P28 F14 U2 0.5616 2.22

Ps37 P37 F28 U4 0.5249 19.05

Ps2 P2 F1 U3 0.3976 5.66

Ps3 P3 F1 U2 0.3974 5.66

Ps1 P1 F1 U1 0.3846 7.15

Ps4 P4 F2 U1 0.4118 6.68

Ps29 P29 F15 U1 0.6798 8.58

Ps30 P30 F15 U2 0.6703 4.97

Ps38 P38 F26 U4 0.5249 38.10

Ps47 P47 F20 U1 0.3904 10.89

Ps48 P48 F20 U2 0.3851 6.49

Ps49 P49 F20 U3 0.3976 5.03
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Table C.11: Planned production data for policy evaluation case study - operational strategy

S2. β given in hours per weight equivalents of task batch size, demand given in weight

equivalents

State Task Family Unit β Demand

Ps17 P17 F8 U2 0.6561 13.34

Ps18 P18 F9 U1 0.7102 3.52

Ps20 P20 F9 U2 0.7396 2.82

Ps19 P19 F9 U3 0.7505 2.78

Ps31 P31 F16 U1 0.6284 7.29

Ps33 P33 F16 U2 0.6677 4.37

Ps32 P32 F16 U3 0.6249 7.33

Ps39 P39 F23 U4 0.5249 28.58

Ps26 P26 F14 U1 0.6576 6.34

Ps28 P28 F14 U2 0.5618 2.22

Ps37 P37 F28 U4 0.5249 19.05

Ps2 P2 F1 U3 0.6627 5.66

Ps3 P3 F1 U2 0.6624 5.66

Ps1 P1 F1 U1 0.6411 7.15

Ps4 P4 F2 U1 0.6864 6.68

Ps29 P29 F15 U1 0.6800 8.58

Ps30 P30 F15 U2 0.6704 4.97

Ps38 P38 F26 U4 0.5249 38.10

Ps47 P47 F20 U1 0.6506 10.89

Ps48 P48 F20 U2 0.6419 6.49

Ps49 P49 F20 U3 0.6627 5.03
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C.7 Production Planning Data

General data for production planning case studies and state-task network information, in-

cluding: production group assignment (table C.12), sequence dependent changeover chart

(table C.13), product state demands for the 12 week horizon (table C.14), product family-

material formulation (table C.15) and general STN formulation data (tables C.16 and C.17).

Table C.12: Production grouping assignment for product families

P1 P2 P3 P4 P5 P6

F1 no no yes no no no

F2 no no yes no no no

F15 no no yes no no no

F3 no yes no no no no

F22 no yes no no no no

F4 yes no no no no no

F5 yes no no no no no

F17 yes no no no no no

F7 no no no yes no no

F12 no no no yes no no

F13 no no no yes no no

F14 no no no yes no no

F16 yes yes yes yes yes yes

F6 yes yes yes yes yes yes

F8 yes yes yes no yes yes

F9 no no yes no yes no

F10 no no yes no yes no

F11 yes yes yes no yes yes

F18 yes yes yes yes yes yes

F19 yes yes yes no yes yes

F20 yes yes yes yes yes yes

F21 yes yes yes yes yes yes

F24 yes no no no no no

F25 no yes no no no no

F26 no no yes no no no

F27 no no no no yes no

F23 no no no no no yes

F28 no no no yes no no
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Table C.14: Product demands over planning horizon intervals (weight equivelants)

Interval 1 2 3 4 5 6 7 8 9 10 11 12

Ps43 1.374 0.878 1.585 1.966 1.837 2.150 2.000 2.198 1.089 1.415 1.749 2.034

Ps44 0.479 0.180 0.659 1.033 1.272 0.988 1.302 0.299 0.718 1.123 0.988 1.078

Ps29 1.223 2.192 2.083 1.800 4.576 1.680 3.186 2.547 2.250 3.803 1.967 2.845

Ps30 1.702 0.612 1.121 2.253 2.290 2.792 2.370 2.676 0.968 2.272 1.696 2.541

Ps21 1.143 0.686 2.482 1.691 2.783 1.655 2.101 1.756 1.854 2.526 1.702 1.967

Ps4 0.987 0.152 0.864 1.230 2.308 1.531 1.644 2.101 1.912 1.727 1.408 2.203

Ps31 1.557 1.782 3.821 2.910 3.600 2.634 3.567 4.246 3.560 4.021 3.135 3.781

Ps5 1.735 2.685 4.801 3.190 4.311 3.629 4.888 5.011 3.792 5.777 4.485 4.888

Ps32 0.793 1.033 3.054 3.113 3.458 2.694 3.907 3.143 2.260 2.754 3.847 3.742

Ps6 2.799 0.464 1.527 4.999 6.032 4.356 5.688 5.134 3.024 4.521 4.116 4.116

Ps1 1.865 2.319 3.705 3.865 3.817 3.103 4.090 4.634 3.382 5.559 1.963 3.335

Ps14 1.063 1.633 1.981 2.264 2.722 1.829 2.878 3.567 1.992 3.447 2.322 2.010

Ps10 1.829 2.986 4.797 4.521 5.236 3.905 3.934 5.599 3.716 7.613 2.794 4.786

Ps26 0.991 2.061 2.010 3.175 2.776 1.579 2.787 3.807 2.297 4.213 2.391 2.780

Ps18 1.401 1.655 2.337 2.370 3.251 2.159 2.409 2.663 1.822 2.112 3.113 2.667

Ps2 2.904 1.497 4.206 4.461 6.856 3.413 6.257 4.371 4.895 3.158 4.610 4.730

Ps15 1.227 1.347 2.185 4.101 5.449 2.814 4.236 4.775 2.200 2.515 4.535 4.431

Ps11 1.527 2.440 3.293 3.413 6.002 4.371 5.778 4.191 4.251 4.101 5.838 3.787

Ps27 0.389 0.000 0.913 2.694 3.727 2.769 3.637 3.952 1.302 4.431 1.617 2.949

Ps19 1.129 0.095 1.524 1.470 0.912 2.300 3.973 1.592 0.871 1.470 1.211 2.490

Ps33 3.007 1.075 2.538 4.191 2.062 2.000 2.796 4.559 2.259 2.504 2.007 2.844

Ps7 1.374 1.347 3.892 4.048 3.416 2.388 4.028 3.402 2.477 2.483 4.232 2.694

Ps3 3.484 1.538 3.205 5.674 4.402 3.456 3.667 3.177 3.626 4.055 3.422 3.783

Ps16 1.422 1.524 1.497 3.116 2.347 1.449 1.354 2.089 2.177 1.456 2.157 1.830

Ps12 2.538 1.531 5.321 3.150 3.436 3.007 4.511 4.354 2.701 3.660 3.354 4.144

Ps28 0.456 0.748 1.286 3.293 1.510 1.483 1.470 2.000 1.089 1.558 1.857 1.613

Ps23 2.082 0.061 1.796 0.218 0.891 0.558 1.966 1.306 1.089 0.776 1.225 0.925

Ps20 1.690 0.667 1.041 2.596 1.182 0.667 1.874 1.855 1.874 0.857 1.947 1.819

Ps52 0.443 0.374 1.742 0.980 1.383 0.726 1.836 1.314 1.034 1.205 1.212 1.227

Ps13 0.871 0.889 1.843 1.430 2.007 0.686 1.575 1.742 1.063 1.172 1.528 2.409

Ps53 0.000 0.000 0.272 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ps8 1.549 2.010 3.436 5.683 6.107 5.403 5.548 4.899 5.951 5.625 3.618 5.537

Ps9 1.823 1.871 2.422 4.599 5.579 3.252 4.742 5.729 3.171 3.552 3.742 4.736

Ps50 0.367 1.081 0.319 1.241 1.608 1.089 1.575 1.967 1.343 2.830 0.922 2.486

Ps51 0.095 0.694 0.585 1.252 1.150 1.184 1.830 0.980 0.885 0.953 1.647 1.463

Ps40 0.392 1.582 1.052 1.143 2.453 0.954 1.854 2.159 1.379 2.243 1.310 1.858

Ps41 1.442 0.361 0.578 2.068 2.619 1.878 1.932 2.960 1.068 0.728 1.817 1.531

Ps42 1.212 1.107 2.907 1.909 2.253 2.105 1.814 3.429 1.978 3.360 0.885 2.108

Ps17 2.708 1.674 2.830 2.742 3.905 2.667 4.463 3.422 2.014 1.708 2.715 2.790

Ps45 0.559 0.541 1.187 1.466 1.259 1.125 0.991 1.237 1.586 1.930 0.682 1.317

Ps46 0.095 0.265 0.299 1.041 0.435 0.864 0.633 0.959 0.626 0.612 0.476 0.966

Ps39 12.024 12.908 13.248 13.734 13.938 16.019 14.502 17.117 19.090 15.571 13.530 12.296

Ps35 15.222 18.662 19.197 19.518 19.129 22.055 20.451 24.261 25.661 22.541 19.148 17.933

Ps34 19.877 22.920 24.242 24.271 24.456 28.995 25.359 30.346 32.669 26.827 24.776 23.493

Ps38 16.145 19.284 19.975 19.839 20.402 23.435 21.092 25.010 26.876 22.871 19.372 18.332

Ps36 19.382 23.668 24.990 25.087 25.369 28.946 27.342 31.532 34.156 28.917 26.302 23.824

Ps37 10.682 12.063 12.480 12.383 12.898 15.309 13.666 16.893 18.653 15.533 12.519 12.500

Ps47 1.491 1.070 3.846 2.112 3.981 2.667 3.092 5.062 2.910 4.333 3.084 3.433

Ps48 1.150 1.789 0.660 1.136 1.279 2.470 2.660 2.313 0.946 2.300 2.164 1.864

Ps49 0.354 0.381 2.341 1.987 2.204 1.170 2.286 3.075 0.898 3.157 3.416 0.490
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Table C.16: General state-task network planning data, β given in hours per weight equiva-

lents of task batch size, inventory limits given in weight equivalents

Task State Family βi Cmin
s Cmax

s

P43 Ps43 F18 0.399 3.514 17.571

P44 Ps44 F18 0.419 1.878 9.39

P29 Ps29 F15 0.396 5.82 29.101

P30 Ps30 F15 0.399 4.075 20.377

P21 Ps21 F10 0.396 4.096 20.48

P4 Ps4 F2 0.396 3.289 16.445

P31 Ps31 F16 0.396 7.352 36.758

P5 Ps5 F3 0.396 9.107 45.537

P32 Ps32 F16 0.419 5.873 29.366

P6 Ps6 F3 0.419 8.126 40.631

P1 Ps1 F1 0.396 8.071 40.355

P14 Ps14 F7 0.396 5.064 25.321

P10 Ps10 F3 0.396 9.615 48.075

P26 Ps26 F14 0.396 5.44 27.201

P18 Ps18 F9 0.396 5.376 26.879

P2 Ps2 F1 0.419 8.721 43.606

P15 Ps15 F7 0.419 6.102 30.51

P11 Ps11 F3 0.419 8.811 44.054

P27 Ps27 F14 0.419 4.163 20.816

P19 Ps19 F9 0.419 3.204 16.018

P33 Ps33 F16 0.399 5.727 28.634

P7 Ps7 F3 0.399 6.412 32.06

P3 Ps3 F1 0.399 7.597 37.983

P16 Ps16 F7 0.399 3.909 19.544

P12 Ps12 F3 0.399 7.351 36.756

P28 Ps28 F14 0.399 2.947 14.736

P23 Ps23 F11 0.399 2.428 12.139

P20 Ps20 F9 0.399 3.261 16.307
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Table C.17: General state-task network planning data, β given in hours per weight equiva-

lents of task batch size, inventory limits given in weight equivalents

Task State Family βi Cmin
s Cmax

s

P52 Ps52 F22 0.396 2.216 11.081

P13 Ps13 F4 0.396 2.973 14.865

P53 Ps53 F22 0.399 0.02 0.101

P8 Ps8 F5 0.396 10.307 51.537

P9 Ps9 F5 0.399 7.81 39.051

P50 Ps50 F21 0.396 3.594 17.968

P51 Ps51 F21 0.399 2.556 12.782

P40 Ps40 F17 0.396 3.437 17.183

P41 Ps41 F17 0.399 3.671 18.353

P42 Ps42 F18 0.396 4.34 21.7

P17 Ps17 F8 0.399 6.288 31.439

P45 Ps45 F19 0.396 2.664 13.318

P46 Ps46 F19 0.399 1.821 9.107

P39 Ps39 F23 0.508 33.145 99.434

P35 Ps35 F24 0.508 45.438 227.189

P34 Ps34 F25 0.508 58.41 175.231

P38 Ps38 F26 0.508 47.904 143.713

P36 Ps36 F27 0.508 60.688 182.064

P37 Ps37 F28 0.508 30.748 92.244

P47 Ps47 F20 0.396 7.184 35.918

P48 Ps48 F20 0.399 3.882 19.409

P49 Ps49 F20 0.419 3.167 15.837
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Appendix D

Combined Maintenance and

Production Scheduling

Processing units may be required to be taken offline for inspection, modification or equip-

ment maintenance. Equipment maintenance is typically a predefined operation planned in

advance of the production schedule and is carried out by employees, maintenance crews or

outside contractors. There may exist various requirements to the exact timing of mainte-

nance events; outside contractors may require a dedicated time period to carry out mainte-

nance tasks, while facility employees may be more flexible. Several extensions are proposed

to address maintenance activities with fixed, flexible and recurring timing requirements.

Fixed timing is defined as maintenance events that must occur at a specified time, whereas

flexible timing defines a scenario in which the maintenance task can occur within a specified

window of time. Maintenance activities with recurring timing are dependent on the timing

of previously completed maintenance tasks; this scenario is common in the food processing

industry where units are taken offline for cleaning periodically. The following section will

describe a framework that incorporates all three maintenance types into the continuous-time

scheduling model, which is based on the scheduling formulation with due dates presented

by Maravelias and Grossmann [2003a].

Maintenance Events with Fixed Timing
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Let C represent the set of all maintenance events that are planned to occur within the

scheduling horizon. A maintenance event corresponds to a point in time at which main-

tenance commences in one or more process units. The planned start time of maintenance

events c ∈ C is defined through parameter TCc. Every maintenance event is associated

with one or more tasks that represent the type of maintenance to be conducted and belongs

to the set of all tasks i ∈ I. As such, maintenance tasks participate with the previously

described assignment and timing constraints to ensure the correct occurrence of the task.

The duration of the maintenance task is prescribed by variable Tpin through parameter αi

as in constraint (3.25). Let Ic represent the set of tasks i that are carried out for mainte-

nance event c. We note that maintenance event c can be associated with more than one

maintenance task.

Maintenance Event Timing Assignment

As the timing of event points is unknown prior to optimization, the formulation must be

free to assign maintenance event c to any given event point n. This is accomplished with

the introduction of binary variable Ycn, which is defined as 1 if maintenance event c begins

at event point n. If maintenance event c occurs at event point n, then the timing of the

current event point must equate to the timing of the maintenance event:

Tn = TCc Ycn + T̄cn ∀c, n (D.0.1)

0 ≤ T̄cn ≤ H (1− Ycn) ∀c, n (D.0.2)

Constraints (D.0.1) and (D.0.2) enforce the timing of maintenance event c by equating the

event point timing (Tn) to the start time of maintenance event c if maintenance event c

occurs at event point n. T̄cn relaxes constraint (D.0.1) if maintenance event c does not

occur at event point n. The following additional constraints are imposed:∑
n

Ycn = 1 ∀c (D.0.3)

Ycn ≤Wsin ∀c, i ∈ Ic, n (D.0.4)

Ycn ≥Wsin ∀c, i ∈ Ic, n (D.0.5)

Constraint (D.0.3) enforces all maintenance events c to occur within the scheduling hori-

zon, while constraint (D.0.4) requires the associated maintenance tasks i ∈ Ic to occur at
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maintenance event point n and constraint (D.0.5) ensures that maintenance tasks occur

only at maintenance event points. The above set of constraints will enforce the occurrence

of all planned maintenance events and the associated tasks to be carried out at the defined

timing.

The combined process and maintenance scheduling model is composed of the continuous

time state-task network scheduling model augmented with constraints (D.0.1) to (D.0.5).

We note that for maintenance tasks, batch size and material balance constraints are re-

dundant. However, utility constraints may be relevant for maintenance tasks that require

utilities. We remark also that the task assignment and start, process and finish time con-

straints described in the previous section ensure that a maintenance task cannot occur

concurrently with a processing task on the same unit.

Process Wide Maintenance Tasks

A process wide maintenance task is defined as taking all processing units offline for main-

tenance. This may be required in industry for product quality or health concerns. This

can be accomplished in one of two ways. The first method specifies a task for each unit,

such is consistent with the treatment of tasks in the global event framework. This can

pose issues if the process wide maintenance event requires the use of utility resources. The

second method specifies a single task i and the inclusion of task i into set Ij for all units j

will ensure that if maintenance task i is scheduled to occur no other processing tasks can

occur. This method aids in both reducing the number of binary variables present in the

above formulation and simplifies the treatment of utility resources for such process wide

tasks.

Maintenance Events with Flexible Timing

The inherent flexibility in multipurpose batch plants can be exploited by optimizing the

timing of maintenance events. Flexibility in the timing of maintenance events c can be

incorporated into the above framework through introduction of forward and backward slack

variables into constraint (D.0.1). The timing of maintenance event c is allowed to vary either

backward or forward from the planned timing, but this allowance is limited. Parameters ηc

and θc represent the maximum bound on the forward and backward timing slack.
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Modified Maintenance Event Timing Constraints

T̂cn and T̃cn are introduced as the backward and forward timing slack variables for mainte-

nance c at event point n, giving the modified maintenance timing constraint

Tn = TCc Ycn + T̄cn − T̂cn + T̃cn ∀c, n (D.0.6)

with associated slack variable bounds

0 ≤ T̃cn ≤ ηc Ycn ∀c, n (D.0.7)

0 ≤ T̂cn ≤ θc Ycn ∀c, n. (D.0.8)

T̂cn and T̃cn are zero if maintenance event c does not occur at event point n.

Recurring Maintenance Events

The methodology for recurring maintenance events presented in Chapter 3 is concerned with

the scheduling of a process wide cleaning activity. As such the methodology presented is in

respect to a one-to-one mapping of the cleaning tasks i with the binary indicator variable

Yin. A more general scenario is the one-to-many mapping of a maintenance event c with

one or more maintenance tasks i through binary indicator Ycn. The summarized general

recurring maintenance scheduling methodology is given as:

Tn = TCc Ycn + T̄cn −
∑
c′≤c

∑
n′≤n

T̂c′n′ ∀c, n (D.0.9)

0 ≤ T̄cn ≤ H (1− Ycn) ∀c, n (D.0.10)

0 ≤ T̂cn ≤ θc Ycn ∀c, n. (D.0.11)∑
n

Ycn = 1 ∀c (D.0.12)

Ycn ≤Wsin ∀c, i ∈ Ic, n (D.0.13)

Ycn ≥Wsin ∀c, i ∈ Ic, n (D.0.14)

Tfc ≤ Tfin +H (1− Ycn) ∀i ∈ |Ic|, n (D.0.15)

Tfc ≥ Tfin −H (1− Ycn) ∀i ∈ |Ic|, n (D.0.16)

H − Tfc ≤ Γ (D.0.17)
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Composite Model Summary Four models have been defined in the above formulations

and include: M - The general continuous-time global event scheduling model as presented

by Maravelias and Grossmann [2003a]. Mfix - Maintenance scheduling with fixed timing,

given as core model M with constraints (D.0.1) to (D.0.5). Mflex - Maintenance scheduling

with flexible timing, given as core model M with constraints (D.0.2) to (D.0.8). M recur -

Recurring maintenance event scheduling, given as core model M with constraints (D.0.9)

to (D.0.17).

D.1 Case Studies

In this section we use the proposed extensions to solve a modification to a problem taken

from Maravelias and Grossmann [2003b]. The example is a multipurpose batch plant that

produces multiple product states; the state-task network of the process is given in Fig-

ure D.1. The plant has 6 units (U1-U6) capable of performing 10 processing tasks (T1-T10);

the unit-task assignment data is given in Table D.1. 14 material states are described; raw

material states (F1-F2), intermediate states (S1-S6,INT1-INT2), product states (P1-P3)

and a waste stream (WS). Multiple material handling policies are enforced; the data are

given in Table D.2. Three utility streams are available for use; high pressure steam (HPS),

low pressure steam (LPS) and cooling water (CW) with maximum availabilities given as

20, 40 and 25 kg/min, respectively.

Figure D.1: State-task network of example problem [Maravelias and Grossmann, 2003b]
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Four case studies are presented to showcase the usage of the proposed framework. The first
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Table D.1: Data for Case Studies (Bmax in kg, α in hr, γ in kg/min and δ in kg/min per

kg of batch)

Task T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 CU2 CU3

Unit U1 U2 U3 U1 U4 U4 U5 U6 U5 U6 U2 U3

Bmax 5 8 6 5 8 8 3 4 3 4 1 1

α 2 1 1 2 2 2 4 2 2 3 2 2

Utility LPS CW LPS HPS LPS HPS CW LPS CW CW - -

γ 3 4 4 3 8 4 5 5 5 3 - -

δ 2 2 3 2 4 3 4 3 3 3 - -

Table D.2: Storage limitations, initial state inventory, sales price and storage policy data

for case study example problem

F1 F2 S1 S2 S3 S4 S5 S6 INT1 INT2 P1 P2 P3

Cs(kg) ∞ ∞ 0 0 15 40 0 0 ∞ ∞ ∞ ∞ ∞
SOs(kg) 100 100 0 0 0 10 0 0 0 0 0 0 0

gs(103 $/kg) - - - - - - - - - - 1 1 1

Storage Policy US US ZW NIS FS FS ZW NIS US US US US US

case study will examine the solution to the original problem as presented by Maravelias and

Grossmann [2003b]. The second case study will include two maintenance events of fixed

timing into the original problem. The third case study will allow flexibility to the timing

of the maintenance presented in the second case study. The final case study considers

the inclusion of a recurring process-wide maintenance event within the original problem

with an extended time horizon. Finally, conclusions are drawn on the various results and

computational efficiency observed with the above extensions. The model was coded in

GAMS 23.6.2 and all case studies solved using CPLEX 12.2 with the optimality gap criteria

set to 0%. The software was run on a 2.33 GHz Intel R© CoreTM2 Quad Dell XPS desktop

computer with 6 gigabytes of RAM running Windows Vista Ultimate 64-bit.

D.1.1 Case Study 1 - Original Problem

The original problem was solved with core model M with a scheduling horizon of 12 hours.

The optimal solution needed 9 event points; the resulting model comprised 180 discrete
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variables, 1,574 continuous variables and 2,874 constraints. The relaxed LP solution of

model M is given as $19,470. The profitability of the production schedule was determined

as $13,000 and was obtained in 6.160 CPUs after exploring 1,543 nodes. 10 kg of product

state P1 and 3kg of product state P3 are sold to market. A Gantt chart showing the optimal

process schedule is given in Figure D.2, with processing tasks represented by rectangles

(task identity and batch size listed within the rectangle). All material transfer policies are

strictly adhered to, as is the maximum utility availability and limited intermediate storage

restrictions. The solution presented is equivalent to that of Maravelias and Grossmann

[2003b] and Janak et al. [2004].

Figure D.2: Optimal solution to case study 1.
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D.1.2 Case Study 2 - Fixed Maintenance Timing

Two maintenance events are planned to occur within the scheduling horizon. The first task

(CU2) is a 2 hour maintenance performed on U2 (αCU2 = 2) that is scheduled to begin at

hour 5 (TC1 = 5). The second task (CU3) is 2 hour clean (αCU3 = 2) to begin on U3 at

hour 6 (TC2 = 6). Model Mfix was used to solve the combined scheduling and maintenance

event optimization. The optimal solution is determined as $11,350 and is obtained with 8

event points in 1.40 CPUs after exploring 105 nodes. At 8 event points, model Mfix has

208 binary variables, 1,636 continuous variables and 2,983 constraints; the optimal solution

is depicted in Figure D.3. 8.65 kg of P1 and 2.7 kg of P3 are sold to market. Maintenance

tasks CU2 and CU3 limit the available processing time of units U2 and U3. As units U2 an

U3 process tasks related to the production of INT1, a reduction in the amount of product

manufactured is exhibited.

To compare the computational performance of model Mfix, the base model M was re-
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Figure D.3: Gantt chart of optimal solution for case study 2
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solved using only 8 event points. The resulting solution is suboptimal; we generate it to

compare the models on an equitable basis in terms of number of event points. The model

has 160 binaries, 1,398 continuous variables and 2,559 constraints. Optimality is achieved

in 1.518 CPUs after exploring 293 nodes. In comparison to model M , model Mfix solves

to optimality in 133 less nodes and a slight reduction in the computation time. This result

is non-intuitive as model Mfix has additional binary variables and constraints.

D.1.3 Case Study 3 - Flexible Maintenance Timing

A reduction of plant profitability due to planned maintenance events is observed in the

above case study. It would be advantageous if the maintenance events could be carried out

at a time when the units are not needed for critical processing tasks. To examine these

potential benefits case study 2 is re-optimized with 2 hours of forward timing slack (ηc = 2)

on both maintenance tasks. The problem was solved using model Mflex, which had a LP-

relaxation of $18,423. The optimal solution is determined as $13,000 and is obtained with

9 event points in 2.29 CPUs after exploring 403 nodes. The optimal solution is depicted in

Figure D.4. At 9 event points model Mflex produces 234 binary variables, 1,876 continuous

variables and 3,386 constraints. It is interesting to note that at the same number of event

points model Mflex outperforms model M . Model M requires searching an additional 1,140

nodes at the expense of 3.87 CPUs; this result is non-intuitive as model Mflex has more

binary variables and is larger in size.

Maintenance events CU2 and CU3 occur at T6 = 7 and T7 = 8, corresponding to an opti-

mized forward timing slack of 2 hours for each maintenance event. Moving the maintenance
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event forward allows for additional tasks on units U2 and U3 to be completed before main-

tenance events are scheduled to occur. As in the first case study, 10 kg of P1 and 3 kg

of P3 are sold to market. These gains in productivity even for this small example show-

case the need of combined consideration of maintenance and scheduling in a comprehensive

optimization framework.

Figure D.4: Gantt chart of optimal solution for case study 3
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D.1.4 Case Study 4 - Recurring Maintenance Events

In particular industrial settings, maintenance may need to be carried out periodically. In

this case study, the horizon of the problem is extended to 22 hours and a recurring process

wide maintenance task, with Γ = 7 hours, is required to occur. Two maintenance events are

planned to occur within the scheduling horizon. Maintenance event 1 is associated with task

clean1 (αclean1 = 2) and maintenance event 2 is associated with task clean2 (αclean2 = 2).

The maximum allowed timing of the maintenance events is given as TC1 = 7 and TC2 = 16.

The optimal solution is determined as $21,500 and is obtained with 15 event points in 1,502

CPUs after exploring 92,047 nodes. At 15 event points, model M recur has 390 discrete

variable, 3,051 continuous variables, 5,553 constraints and an LP-relaxation of $30,971.5.

The optimal solution is shown as a Gantt chart in Figure D.5, where 18.5 kg of state P1

and 3 kg of state P3 are sold to market at the end of the horizon. The first and second

maintenance events occur at T6 = 6 and T11 = 14 hours, corresponding to an optimized

1 hour backward event timing on both maintenance events. The final maintenance event

is completed at the 16th hour of production, satisfying the final maintenance event timing

constraints.
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To examine the computational efficiency, core model M was re-solved with a time horizon

of 22 hours and 15 event points. Model M has 300 discrete variables, 2,630 continuous

variables and 4,764 constraints. After 7,200 CPUs a solution of $28,666 was found after

exploring 369,473 nodes. An upper bound of $32,731 remained leaving an optimality gap of

14.18%. This observation is consistent with an earlier statement that 15 event points may

be the upper limit on model complexity for the general global event continuous-time models

[Méndez et al., 2006]. In comparison, model M recur resulted in significant computational

savings as 277,426 fewer nodes were searched and optimality was achieved. This is an

interesting result as the number of event points is at the supposed complexity limit but

model M recur solves to optimality in finite time. It is hypothesized the inclusion of the

additional restrictions on processing units limits the number of available solutions, reducing

the need to explore a large portion of the branch-and-bound tree.

Figure D.5: Gantt chart of optimal solution for case study 4
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D.2 Conclusions

In this appendix a framework is proposed to incorporate maintenance events with fixed,

flexible and recurring timing into the global event continuous-time scheduling model of

Maravelias and Grossmann [2003b]. A well cited literature problem is modified and solved

to exhibit the solution capabilities of the proposed formulation. It is seen that maintenance

events of planned fixed timing can interrupt product pathways and significantly reduce

plant profitability. It is shown that plant profitability can be improved by allowing the

timing of the maintenance events to be optimized with production scheduling. In both case

studies, a reduction in the nodes searched to optimality was observed in comparison to the

base model with equivalent event points. The final case study considered the inclusion of a

recurring maintenance event within an extended scheduling horizon. The optimal solution

requires 15 event points and optimality is attained after 1,502 CPUs, in contrast to the base

model which is left with a optimality gap of 14.18% after 7,200 CPUs. It is hypothesized

that the inclusion of further restrictions on processing units reduces the number of available

solutions and as such the brand-and-bound tree size.
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