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Abstract

Crystal growth has been recognized as a paradigm for non-equilibrium pattern forma-

tion for decades. Scientific interest in this field has focused on the growth rates and

curvature of branches in snow flake-like structures patterned after a solid’s crystallo-

graphic orientations. Similar patterns have been extensively identified in solidification

of metals and organic metal analogues and are known as dendrites, which is originated

from a Greek word dendron meaning tree.

Dendritic spacing and morphology established during casting often sets the final

microstructure and second phase formation that develops during manufacturing of

alloys. This is particularly true in emerging technologies such as twin belt casting of

aluminum alloys, where a reduced amount of thermomechanical processing reduced

the possibility of modifying microstructure from that determined at the time of so-

lidification. Predicting and controlling these microstructure of cast alloys has thus

been a driving force behind various studies on solidification of materials.

Mg-based alloys are another class of materials gaining importance due to the

high demand for weight reduction in the transportation industry which accordingly

reduces the gas consumption. While the solidified microstructure and its effect on the

material properties have been the subject of intensive studies, little is known about

the fundamental mechanisms that determine dendritic microstructure in Mg alloys
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and its evolution under directional growth conditions.

This thesis investigates the relationship between the microstructure and cooling

conditions in unsteady state upward directional solidification of Al-Cu and Mg-Al

alloys. The four-fold symmetry of Al-Cu alloys are used to study the dynamical spac-

ing selection between dendrites, as the growth conditions vary dynamically, whereas,

the Mg-Al system with a six-fold symmetry is used to study a competition between

neighbouring, misoriented grains and the effect of this as the resulting microstructure.

Mg-Al also presents a situation wherein the cooling conditions dynamically vary from

the preferred crystallographic growth direction. Analysis of phase field simulations is

used to shed some light on the morphological development of dendrite arms during

solidification under transient conditions. Our numerical results are compared to new

casting experiments.

Chapter three studies spacing selection in directional solidification of Al-Cu alloys

under transient growth conditions. New experimental results are presented which re-

veal that the mean dendritic spacing versus solidification front speed exhibits plateau-

like regions separated by regions of rapid change, consistent with previous experiments

of Losert and co-workers. In fact, The primary spacing of a dendritic array grown

under transient growth conditions displays a distribution of wavelengths. As the rate

of change in solidification front velocity is decreased, the evolution of the spacing fol-

lows the prediction of the geometrical models within a band of spacing fluctuations.

The width of the band is shown to highly depend on the rate of the solidification

front velocity acceleration, such that the higher the rate, the wider the band of avail-

able spacings. Quantitative phase field simulations of directional solidification with

dynamical growth conditions approximating those in the experiments confirm this
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behavior. The mechanism of this type of change in mean dendrite arm spacing is

consistent with the notion that a driven periodically modulated interface must over-

come an energy barrier before becoming unstable, in accord with a previous analytical

stability analysis of Langer and co-workers.

In chapter four, it is demonstrated both computationally and experimentally that

a material’s surface tension anisotropy can compete with anisotropies present in pro-

cessing conditions during solidification to produce a continuous transition from den-

dritic microstructure morphology to so-called seaweed and fractal-like solidification

microstructures. The phase space of such morphologies is characterized and the se-

lection principles of the various morphologies explored are explained. These results

have direct relevance to the microstructure and second phase formation in commercial

lightweight metal casting.
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Chapter 1

Introduction and Problem

Statement

Continuous casting and subsequent rolling has been applied for many years to produce

metal strips which are relatively surface finished. Conventional slab casting, thin slab

casting, twin-roll casting, single-belt casting and twin-belt casting are the five different

technologies being used for hot strip production as illustrated in figure 1.1 and 1.2.

In conventional and thin slab casting, casting is done in a stationary mold and

the slab thickness is large. Therefore, more hot rolling is needed to obtain the final

thickness and the casting rate is lower. In the other three processes, stationary

molds have been replaced by traveling molds and the casting rate is much higher

(Schwerdtfeger, 1998). However, the casting rate in two-roll process is still low and

prohibits in-line rolling.

Twin-belt casting is an alternative for two-roll casting which provides a higher

production rate compared to two-roll process. It was first employed commercially for

aluminum in 1959. The twin-belt system consists of two carriages, each one having

1
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a steel or copper belt around. The molten metal is fed between the top and bottom

belts and the mold heat extraction is done by water-jet cooling on the back side of

each belt. The thickness of the strip can be controlled by the carriage spacers from

3/8” to 3” (Petry C.J., 1986; Gal, 1989). Figure 1.2 indicates a twin-belt system

being used by Hazelett Company.

The major advantages of twin-belt casting are low maintenance, choice of con-

tinuous operation, possibility of in-line hot rolling and improved cross-section homo-

geneity and dimensional tolerance. However, since in twin-belt casting the slab is

very thin, the possibility of utilizing two or more hot rolling stages for improving

the microstructure decreases and thus the need of a very good as-cast microstructure

production appreciably increases.

Dendritic solidification has been a well accepted paradigm for many non-equilibrium

interface pattern formation phenomena (Burden M.H., 1974; Hunt, 1979; Langer,

1980; Ben-Jacob E., 1990; Losert W., 1996; Trivedi R., 2002; Granasy L., 2003, 2004;

Haxhimali T., 2006; Amoorezaei M., 2010; Gurevich S., 2010b). Dendritic microstruc-

tures are formed in most alloys during processes such as casting and welding. The

complex patterns created by the dendritic network leave their signature on the dis-

tribution of secondary phases that form in the inter-dendritic spaces that contain

supersaturated liquid pools due to solute rejection in the late stages of solidification.

As a result, understanding the mechanisms for morphological selection of dendritic

structures will be key in the development of next-generation lightweight alloys of alu-

minum and Magnesium used in automotive and aerospace applications. The word

dendrite is originated from the Greek word dendron meaning tree, which is owing to

the tree-shape of dendrites. It is very important to know how these structures develop

2
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In this lecture several aspects of the newcasting processes and of the linkage of casting with hot rolling
into a combinedin-line process is treated. Avery important point is productivity. In a process with stationary
mold the casting rate is limited by two phenomena,namely rate of shell growth and friction betweenstrand
and mold. Model computations showthat the maximumcasting rate for secure casting is in the range of 5
to 10mmin~1. In the newstrip casting processes with traveling molds in which the friction problem does
not arise the productivity maybe constrained by the general geometry of the casting machine, With the
twin-roll process there is the problem that the roll diameters becomeunpractica!ly large for high speed
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are given on the control of thickness uniformity of the strand. If hot rolling is linked directly to the casting
the rolling speed must be slower than in the conventional process. Another challenge is hot rolling down
to strip of I mmthickness or below. Theoretical data are presented for temperature loss and for scaie growth
in non-conventional hot rolling. The models were used to computethe developments of temperature and
of scale thickness in the integrated single-belt casting/hot ro[ling lines.

KEYWORDS:near net shapecasting; productivity of newcontinuous casting processes; twin-rol[ process;
single-belt process; in-line hot rolling; ultra thin hot roliing.

l. Introduction

The expected benefits of a new process or process
route are well knownand clear]y stated at the beglnning
of the developmentbecausethey present the driving force
for the design of the newprocess. But, usually difficulties

becomeevident to realize these benefits during experi-
mentation. Sometimesunsurmountable obstac]es arise
which have not been reallzed initially. Often, Iimits are
set by principles of physics and of physical chemistry. It
is very interesting and important to analyse problem
points and process limits theoretically.
This lecture focuses on hot strip productlon. Some

aspects of the first stage of hot strip production which
is the casting of the slab, and of the linkage of casting
with hot rolling into a combinedin-1ine process will be
treated. I have chosen this subject because continuous
casting has been one of mymajor research areas and
becausemygroup in Clausthal has beenengaged, in the
last twelve years, in developing a near net shape casting
process for makingsteel strip. At present weare operating
a slngle-be]t caster of pilot scaie wlth an in-1ine rolling
facility.

The technologies for hot strip production are explain-
ed in Fig. l. In the conventional route, Fig. Ia), the slab
thickness is about 250mm.Casting occurs in a stationary

mold. The slabs are cooled and stored in the yard, or
transported directly to the hot rolling mill where they
are reheated to hot rolling temperature. Thehot rolling
is usually performed with eight stands, the first onebeing

conventional slab casting and hot rolling

~~C50mm 3mm
~~J

60mm
thin slab casting

3mmI

a)

~o
strip casting (single-belt process)

10mm*

t
3mmI

b)

strip casting (twin-roll process)

t
Process routes for hot strip production.

c)

Fig. l.

d)

C 1998 ISIJ 852
Figure 1.1: Different technologies applied to manufacture hot strip products (Schw-
erdtfeger, 1998).

	  

Figure 1.2: A typical twin belt caster (www.hazelett.com).
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and how different length scales of a cell or dendrite affect the properties of a solidified

alloy. These length scales are dendrite tip radius (ρ), primary arm spacing (λ1) and

secondary arm spacing (λ2). Many attempts have been made to correlate these length

scales with characteristic lengths of different physical processes. These physical pro-

cesses are thermal and solute diffusion, liquid convection, interfacial energy and also

interface attachment kinetics.

Solidification microstructures are controlled by the aforementioned physical pro-

cesses. These physical processes have characteristic lengths associated with them

being the solute diffusion length (lD = 2D
V

), the thermal length (lT = 2α
V

for an un-

dercooled melt and lT = ∆T0

G
for directional solidification) and the capillary length

(d0 = Γcp

Lf
for a pure material and d0 = Γ

∆T0
for an alloy) where Γ is the Gibbs-

Thomson coefficient, ∆T0 is the equilibrium solidification range (TL − TS), cp is the

specific heat, Lf is the latent heat of fusion, α is the thermal diffusivity, V is the

growth velocity and G is the thermal gradient. Typical values of different scales in

directional solidification are given in figure 1.3.

In isolated dendritic growth, the controlling parameters are undercooling and sur-

face energy anisotropy (see below). In directional solidification, V and G are the

controlling parameters; the former affects only the solute diffusion length and the

latter influences the thermal length only. Figure 1.4 shows the dependence of the

different characteristic lengths on growth rate (Trivedi R., 1994b).

It has been conjectured (largely empirically) that all microstructural length scales

such as primary and secondary dendrite arm spacing, dendrite tip radius and also

dendritic transition conditions can be written as: L = A[lD]a[lT ]b[d0]
c where a, b and

c are constants whose sum equals unity (to satisfy the dimensions) (Trivedi R., 1994a).

4
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Figure 1.3: Typical values of different scales in directional solidification(Gurevich,
2006). Note that Λ corresponds to the primary spacing (λ1) in this thesis.

!

Figure 1.4: Dependence of the different characteristic lengths on growth
rate.(Trivedi R., 1994b)
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For instance, in case of dendrite tip radius and primary spacing at high velocities it

has been found that a = c = 0.5 and b = 0. Moreover, near the limit of planar growth

at low growth rates the solute diffusion length is twice the thermal length. This limit

at high velocities satisfies lD = 2kd0, where k is equilibrium distribution coefficient.

Many of the experiments and theories in solidification microstructure research focus

on the developments of models related to the equation above. To date a unified

and self-consistent understanding of dendritic growth, dendritic spacing selection and

growth rates still eludes us.

1.1 Single dendrites: modelling and experiment

Theoretically, the time evolution of dendrites can be determined by solving the so-

lute and thermal diffusion equations for both solid and liquid phases considering the

appropriate initial and boundary conditions. Different assumptions are usually in-

cluded to simplify the equations and take a specific aspect of the growth rate into

account. One of these assumptions is that the dendrite grows at a constant velocity

and the shape of the dendrite is preserved during growth. This model is known as

quasisteady-state model which only considers a branchless dendrite, i.e. this model

neglects the interaction between the side branches and the dendrite tip. If this in-

teraction is sufficiently small, a quasisteady-state model can provide a reasonable

approximation of the dendrite tip shape (ρ) and growth rate (V ).

The Ivantsov equation (Ivantsov, 1947) was the first attempt to model a single

dendrite of a pure material. It arises from the solution of the diffusion equation solved

for an isothermal parabolic needle growing under steady state condition (It should be

noted that for a pure material a steady-state solution of the diffusion equation for a

6
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planar or spherical front growing into an undercooled melt is lacking). This equation

can be written as:

∆T =
(Lf

Cp

)
Iv(pt) +

k∆T0Iv(p)

1− (1− k)Iv(p)
(1.1)

where the function Iv(p) = p exp(p)E1(p) and E1(p) =
∫∞

p
e−y

y
dy, p = V ρ

2D
is the solutal

Peclet number and pt = V ρ
2α

is the thermal peclet number. Adding the capillarity to

equation 1.1, a modified Ivantsov equation can be obtained:

∆T =
(Lf

Cp

)
Iv(pt) +

k∆T0Iv(p)

1− (1− k)Iv(p)
+

2Γ

ρ
(1.2)

The first two terms in equation 1.2 are undercooling due to thermal and solute

diffusion processes respectively and the third term is the undercooling due to capil-

larity.

Since the Ivantsov equation is a steady state solution for an isothermal interface

and the capillary term causes the interface not to be isothermal, the capillary modifi-

cation in equation 1.2 is not a rigorous solution. Furthermore, this equation correlates

tip undercooling with solute and thermal peclet numbers, i.e. tip undercooling vs.

ρV product, rather than individual ρ and V . Similar to any other isothermal models,

this model is not able to predict both dendrite tip radius and velocity as a function

of undercooling.

More accurate but still approximate solutions that account for a non-isothermal

dendritic interface have been offered by Trivedi (Trivedi, 1970, 1969), Temkin (Temkin,
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1960) and Nash and Glicksman (Nash G.E., 1974). The main difficulty involved in

the non-isothermal interface models is that unlike the isothermal interface problem,

the interface shape is only determined by a highly non-linear integral equation that

has no analytical closed form solution. Moreover, the solution of the non-isothermal

steady state problem also does not give a unique value for V and ρ, as evidenced by

experimental findings, and instead it only introduces a family of solutions, V = f(ρ).

As a result, researchers have sought another criterion to uniquely identify V and

ρ as a function of process parameters (undercooling) and materials parameter (sur-

face energy anisotropy or interface attachment kinetics). One such criterion is called

the ”maximum growth rate criterion”, which in conjunction with the above model

provides unique values for the dendrite tip radius and growth rate.

Oldfield (Oldfield, 1973) proposed that the conventionally used maximum growth

rate criterion be replaced more generally by a stability criterion ”V ρ2 = constant”

based on the balance between the stabilizing effect of capillarity and destabilizing

effect of solute diffusion (or heat conduction). Oldfield’s result was verified both

experimentally (Somboonsuk K., 1984) and analytically (Langer J.S., 1977, 1978b;

Langer, 1980).

Langer and Muller-Krumbhaar offered a similar stability criterion which was

first motivated by a linear stability analysis on a planar interface perturbed by si-

nusoidal ripples of infinitesimal amplitude, known as Mullins and Sekerka analysis

(Mullins W.W., 1964). This analysis gives rise to the following equation:

wl2D
2D

= −2k +

(
− 1 + 2k +

√
1 + q2l2D +

wl2D
D

)(
1− d0(1− ε)

2lD
q2l2D −

lD
2lT

)
(1.3)
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where k is the partition coefficient, ε is the surface energy anisotropy strength, q = 2π
λ

is the wavelength of the perturbations and w(q) is the growth rate of the perturba-

tions. All the wavelengths which result in a negative w(q) will shrink to a planar

interface, whereas the ones giving rise to a positive w(q) are unstable and ultimately

form cells or dendritic branches. The shortest wavelength for planar instability can

then be obtained as λs = 2π
√

lDd0 in which lD is the diffusion length and d0 is the

capillary length. It was then suggested that the tip radius can be scaled with λs such

that ρ ' λs. Under this ”marginal stability criterion”, the dimensionless stability

parameter σ was defined as σ = lDd0

ρ2 , which provides a second equation relating the

tip velocity to the tip curvature. The parameter σ equals ( 1
2π

)2, which is in good

agreement with the direct calculated value of σ∗ = 0.025 ± 0.005 based on linear

stability analysis of the steady state solutions (Langer J.S., 1977). However, there

are still some uncertainties in determining the exact value of σ∗. It was found that

very fast and sharp dendrites (σ > σ∗) tend to broaden and slow down to reach the

value of σ = σ∗ due to side branching effects whereas the broad and slow dendrites

(σ < σ∗) undergo tip splitting instabilities to form the sharper dendrites (Langer J.S.,

1978b). That means the dendrite tip is merely marginally stable against dendrite tip

radius and velocity changes. Also, the stability criterion, ρ ' λs, is only valid for

small peclet numbers, i.e. ρ � 1.

Later on, the theory of microscopic solvability offered a self-consistent method

to obtain the parameter σ. This theory introduces capillarity into the sharp in-

terface model for pure materials and shows that nontrivial steady state solutions

exist only when a finite anisotropy of surface energy or interface kinetics is consid-

ered (Brower R.C., 1983; Ben-Jacob E., 1983, 1984). It also shows that the only
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linearly stable dendrite solution is the one with the fastest velocity (Kessler D.A.,

1989; Brener E., 1991). Considering the aforementioned findings, for a pure dendrite

growing into an undercooled melt the following approximation for V and ρ is ob-

tained, which indicates that the parameter σ is only dependent on the surface energy

anisotropy.

ρ =
d0

σ0

ε
−7/4
4

p(∆)
∼ d0

π

σ0

∆−2ε
−7/4
4 (1.4)

V =
2ασ0

d0

p2(∆)ε
7/4
4 ∼ 2ασ0

π2d0

∆4ε
7/4
4 (1.5)

where σ0 is a constant. The parameter σ at high values of undercooling depends also

on the anisotropy strength of interface attachment kinetics. Figure 1.5 represents the

effect of anisotropy on σ∗.

	  

Figure 1.5: Effect of anisotropy on σ∗ for ∆ = 0.45. (Karma A., 1998)
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Different methods have been applied to measure the solid-liquid interface energy

such as measurement of the maximum undercooling required for the onset of nucle-

ation, the grain boundary groove method and also characterization of the equilibrium

shape of liquid droplets in a solid or solid particles in a liquid. The first two meth-

ods are not applicable to measure the anisotropy of the interface energy. Liu et al.

(Liu S., 2001) applied the last method by measuring the diameter of Al − 4wt%Cu

liquid droplets solidified on a single crystal single phase solid normal to < 001 >

direction and determined the anisotropy to be 0.98%.

Figure 1.6 shows the growth rate as a function of dendrite tip radius for the three

different steady state dendritic growth theories: Ivantsov equation (Ivantsov, 1947;

Horvay G., 1961), modified Ivantsov equation, and the Temkin theory. The solid

circle indicates the maximum growth rate criterion and the shaded rectangle is the

approximate data obtained by different workers. The dashed line is the stability

criterion offered by Langer and Muller-Krumbhaar and the open circle which is the

intersection between the steady state curve and the constant σ curve for σ = 0.025 is

their theoretical prediction for V and ρ. As can be seen, the L-MK stability criterion

is in a better agreement with experiments than the maximum velocity criterion which

overestimates observed dendrite tip velocity by nearly an order of magnitude. The

possible sources of errors can be the maximum velocity criterion itself, neglecting the

effect of side branches and also neglecting the effect of anisotropy in growth kinetics

(Langer J.S., 1977).

11
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Figure 1.6: Dimensionless growth rate as a function of dimensionless tip radius for
different steady state theories (Langer J.S., 1977). Note that solvability theory gives
a line close to that obtained by the marginal stability theory.

1.2 Directional solidification: modeling and exper-

iment

A significant number of experimental (McCartney D.G., 1981; Bell J.A.E, 1963;

Bolling G.F., 1974; Seetharaman V., 1988; Eshelman M.A., 1988; Kirkaldy J.S., 1989;

Bouchard D., 1996) and theoretical (Hunt, 1979; Kurz W., 1981; Trivedi, 1984; Makko-

nen, 1991, 2000; Spencer B.J., 1997, 1998, 1999) studies of directional solidification

of alloys have been devoted to predict the relationship between primary arm spacing,

λ1, and growth rate. Many of them have claimed that the spacing as a function of

velocity is reproducible or at least the change is very small. From the theoretical

point of view, most studies have been based on the consideration of a steady state

geometry for a dendrite array and have tried to relate the interdendritic spacing to

12
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the geometry and the fundamental length scales of the extended dendrite array. Kurz

and Fisher (Kurz W., 1981) and Hunt (Hunt, 1979) offered similar equations that

correlated λ1 with velocity, temperature gradient and solute concentration. These

are reviewed next.

Kurz and Fisher (Kurz W., 1981) considered the cells and dendrites as an array

of ellipsoids in which:

ρ =
b2

a
=

λ2
1G

3∆T ′ (1.6)

where a and b are the radii of the ellipsoid, a being larger than b. They approximate

a and b as, a = ∆T ′

G
and b = λ1√

3
. Finally, by substituting for ρ from the marginal

stability criterion (for alloys) they obtained the final result for two different velocity

regimes. For low velocities
(
Vtr < VCS

k
, VCS=constitutional supercooling velocity

)
they obtained:

λ1 =
[ 6∆T ′

G(1− k)

] 1
2
[D

V
− k∆T0

G

] 1
2

(1.7)

and for high velocities
(
Vtr > VCS

k

)
they obtained:

λ1 = 4.3∆T ′ 1
2

[ γD

∆Sk∆T0

] 1
4
V

−1
4 G

−1
2 (1.8)

where ∆T0 = TL − TS and ∆T ′ is the difference between tip temperature and the

13
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temperature of the base of the dendrite.

Another theoretical model was developed by Hunt (Hunt, 1979) to characterize

the primary spacing. Hunt made the assumption that the temperature and liquid

concentration in the direction perpendicular to the growth direction of the primary

stalk are constant which is valid only for the regions far behind the tip. The follow-

ing relationship between the dendrite tip radius and the primary arm spacing was

developed by Hunt based on this assumption:

Gλ2
1

ρ
= −4

√
2
[
mCt(1− k) +

DG

V

]
(1.9)

where Ct corresponds to the solute concentration at the tip and G is the temperature

gradient in the liquid.

Another assumption made by Hunt was that dendrites grow at the minimum

undercooling for a given velocity. Based on this assumption, Hunt obtained a second

expression for the primary dendritic spacing given by:

V G2λ4
1 = −

(64γD

∆S

)[
mC0(1− k) +

kDG

V

]
(1.10)

where γ is the interfacial energy, ∆S is the entropy of fusion per unit volume. For

velocities much higher than the critical velocity of planar instability, V � VCS ,

equation 1.10 can be simplified to:

14
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V G2λ4
1 = −

(64γD

∆S

)[
mC0(1− k)

]
(1.11)

The equation of Kurz and Fisher equation is very similar at high velocities to

that by Hunt in that they both predict a same slope for λ1 − V curve. However, the

results are very different at low velocities, where based on the Kurz and Fisher model

a sharp increase in λ1 with decreasing velocity occurs at Vtr, which was attributed to

the dendrite-to-cell transition (Figure 1.7).

	  

Figure 1.7: Primary spacing as a function of velocity for two theoretical mod-
els.(Burden M.H., 1974)

Figure 1.8 illustrates the comparison between the theoretical models by Hunt

and Kurz and Fisher (only the high velocity regime) with experimental data in a

succinonitrile-acetone system. As can be seen, the slope of the experimental line
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is slightly higher than those of the theoretical lines. Furthermore, the Hunt model

predicts a velocity for dendrite-to-cell transition that is around an order of magnitude

lower than that observed experimentally.

	  

Figure 1.8: A comparison between experimental data (points) and Hunt and K-F
models (lines) for dendrite arm spacing.(Trivedi, 1984)

Another theoretical model was developed by Trivedi (Trivedi, 1984; Somboon-

suk K., 1984) to correlate dendrite tip radius and primary arm spacing to the growth

rate. This work first obtained an equation correlating the dendrite tip radius to the

solute Peclet number (p = V ρ
2D

) by applying Burden and Hunt’s approach (for a sin-

gle dendrite). Then, to find a unique tip radius, he utilized the marginal stability

criterion developed by Trivedi (Trivedi, 1980) and Kurz and Fisher (Kurz W., 1981),

which can be expressed as:

−G + mGcξc =
( 2γ

∆Sρ2

)
L (1.12)
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where L is determined for different crystallographic systems. Gc is the concentration

gradient at the tip and ξc is a function of the Peclet number which for very small

Peclet numbers equals unity. For regions where the effect of temperature gradient

and capillarity is negligible, Trivedi’s result can be simplified as:

V ρ2 =
(2γDL)

∆Sk∆T0

, (1.13)

valid for p � 1. However, Trivedi’s general equation indicates that at low velocities

the effect of temperature gradient is important, whereas at high velocities capillar-

ity plays a significant role. Trivedi’s results showed a qualitative agreement with

experimental data (Somboonsuk K., 1984) (Figure 1.9 and 1.10).

	  

Figure 1.9: Variation of Peclet number with velocity.(Somboonsuk K., 1984)

It should be noted that the minimum in the Peclet number-Velocity curve was
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Figure 1.10: Variation of tip radius with velocity.(Somboonsuk K., 1984)

attributed to the dendrite-cell transition by the author.

To find a unique relation between primary arm spacing as a function of velocity,

Trivedi defined two dimensionless parameters Λ and A as Λ = (λ1

ρ
)(λ1

lT
) and A = lC

lS

where lT = k∆T0

G
, lS = 2D

V
, lC = γ

∆Sk∆T0
. Applying equation 1.9 and substituting

the marginal stability criterion, Trivedi obtained the following equation which relates

primary arm spacing to the tip radius for a given C0, V and G:

Λ =
4
√

2 AL

p2
(1.14)

Another relationship relating the tip radius to C0, V and G was developed earlier

by Trivedi (Trivedi, 1980) which can be expressed as follows:
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1

2
ϕ
[
1− F1(p)

]
+

(AL

p2

)[
1− F2(p)

]
=

[
1− φ(1− k)

]−1

(1.15)

where ϕ = lS
lT

= 2GD
V k∆T0

, F1(p) =
{

φ(1−k)
1−φ(1−k)

}{[
(1−φ)

φ−p+pφ

]
−

(
1
φ

)}
, F2(p) =

[
2
L

]{
φ(1−k)

1−φ(1−k)

}[
1+

p− ( p
φ
)
]

and φ = pexp(P )E1(p).

Solving the equations 1.14 and 1.15 simultaneously enables us to find the variation

of λ1 with velocity. The calculated curve and the experimental results are given in

Figure 1.11. The theoretical curve predicts the maximum in λ1 whose position is very

close to that observed experimentally in SCN − Aceton system. However, the slope

of the experimental line in both low velocity and high velocity regimes is higher than

that related to the theoretical calculations. Moreover, this curve has only been tested

for one organic system.

	  

Figure 1.11: calculated curve and the experimental results for primary arm spacing
(Trivedi, 1984).
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Such a maximum has also been observed in organic (Bechhoefer J., 1987; Kirkaldy J.S.,

1995; Somboonsuk K., 1984; Eshelman M.A., 1988) and metallic systems (Klaren C.M.,

1980; Mason J.T., 1984; Min Q., 2009) (in Pb-Sn, Pb-Au systems by Klaren et al., in

Pb-Pd system by Mason et al., and in Al-Cu system by Min et al.). However, because

the density difference in Pb-Sn and Pb-Au systems is large, which could cause convec-

tion within the liquid, the validity of Klarens results is under doubt. This maximum

in λ1 corresponds to the minimum in solute Peclet number which indicates that the

dendrite-cell transition velocity, Vtr, depends on the temperature gradient such that

it increases with increasing gradient.

Makkonen (Makkonen, 1991, 2000) also performed a simple thermal balance on

a moving interface considering an isotropic material with dendrite tip following a

paraboloid of revolution (figure 1.12), and concluded that the primary spacing in

steady state constrained solidification (Bridgman solidification, where the velocity

and temperature gradient are imposed) is mainly determined by the heat balance and

solute diffusion only indirectly influences the spacing through the tip radius selection.

He recast the thermal balance in a moving reference frame:

Fig. 2. A dendrite tip growing upwards in a unit volume of
a cubic array. The ratio of the tip volume to the volume of the
unit box is the solid fraction f.

The change in the solid fraction f within the de-
ndrite tip region can be derived from the geometry
of the tip. We make no assumption of the tip shape,
except that it is axisymmetric, and denote the tip
shape (see Fig. 2) by y"g(x). Consider now a unit
cell in a cubic array of dendrites in Fig. 2. The total
volume of such a unit is !x!!. The volume of a tip
is an integral of the surface area of its cross-section
in the direction of !x. It follows that

f"

"!
"
#

!g!(x) dx

!x!!
. (4)

Inserting Eq. (4) into Eq. (3) and solving for ! gives
the primary dendrite spacing as

!"!!#¹
G
R
Rx"

"!
"
#

g!(x) dx

!x #$
$%!

, (5)

where #¹"¸/C is the unit thermal undercooling
and G"R¹/Rx is the temperature gradient.

In order for a solution for ! to exist in a steady
state dendritic array the spacing must be indepen-
dent of x, i.e., R!/Rx"0. Therefore, Eq. (5) is valid
for any in"nitesimally small x. It also follows that

R!(!!)/Rx!"0. (6)

Inserting Eq. (5) into Eq. (6) yields

x!g(x)
Rg(x)
Rx !xg!(x)#

"!

%
#

g!(x) dx"0. (7)

Derivating Eq. (7) results in

g(x)
R!g(x)
Rx!

#"Rg(x)
Rx #

!"0. (8)

The general solution for this di!erential equation is

g(x)"$(cx#d)$%!, (9)

where c and d are constants. The curve described by
Eq. (9) is a paraboloid with the radius of curvature
R"!c/2 and the tip position (!d/c, 0). There
are no solutions of Eq. (8) other than Eq. (9). Hence,
a solution for ! in Eq. (5) exists only for a parabolic
dendrite shape. This analysis shows that, neglecting
surface tension e!ects, not only is the paraboloid of
revolution the only axisymmetric solution for
a single free dendrite [28], but also the only pos-
sible shape in a steady state array of dendrites with
a unique spacing.

Applying now the solved shape of the dendrite
tip g(x)"$(!2Rx#d), that produces a unique
!, in Eq. (5) the analytical solution for ! is obtained
as

!""!#¹R
G #

$%!
. (10)

3. Discussion

3.1. Control of spacing

Eq. (10) shows that, in addition to the dendrite
radius of curvature and the exposed temperature
gradient, ! depends on the speci"c heats of the
system, i.e. on the unit thermal undercooling
#¹"¸/C only. The spacing ! has no direct rela-
tionship with parameters describing the chemical
composition or solutal di!usion. However, ! is in-
directly a!ected by them, because R is determined
by the chemical di!usion ahead of the interface
[1,2,16].

It is important to make a distinction between the
direct and indirect e!ects on dendritic spacing. For
example, it is known empirically (see Refs. [1,2])
that vR! is approximately a constant for a given
alloy composition, so that R is determined by the
externally imposed velocity v and is not a separate
variable. The precise relationship between R and
v is the classical dendrite growth rate and tip size
selection problem, still under dispute, but it is note-
worthy that having a solution of R the primary
dendrite problem is de facto solved by Eq. (10).

774 L. Makkonen / Journal of Crystal Growth 208 (2000) 772}778

Figure 1.12: Unit volume of a cubic dendrite array at the tip region (Makkonen,
2000).
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L
∂f

∂x
= Cp

∂T

∂x
(1.16)

where the solid fraction is obtained as

f =

∫ −x

0
πg2(x)dx

−xλ2
(1.17)

where g(x) =
√

2Rx for a paraboloid and R is the radius of the curvature. It was

also shown that neglecting surface energy effects, the only possible steady state shape

for an array of axisymmetric dendrites having a unique spacing is a paraboloid of

revolution. Very close to the tip, this shape was shown to be quite accurate, even

in the presence of the surface tension anisotropy, which causes some deviation from

the parabolic shape away from the tip (Glicksman, 1984). Inserting eq. 1.17 into eq.

1.16 gives rise to the analytical solution of the spacing as:

λ =
(π∆TR

G

)1/2

(1.18)

where ∆T = L/Cp and G = ∂T/∂x. A similar equation was suggested by Hunt (Hunt,

1979) and Kurz and Fisher (Kurz W., 1981) which offer the dependency of the spacing

on the tip radius. The one suggested by Kurz et al. is very similar to eq. 1.18, the only

difference is that π∆T has been replaced by 3∆T0 in which ∆T0 is the solidification

range. This indicates that Kurz’s model for constrained growth attributes the spacing
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selection to the transfer of solute atoms while Makkonen’s model considers the thermal

diffusion determining the steady state spacing establishment. Note that considering

the empirically obtained criterion for a single dendrite V ρ2 = constant, eq. 1.18 will

yield the usual form of the well-known geometrical models, i.e. λ = aG−1/2V −1/4,

where a is a constant which depends on the concentration. For directional casting

where the heat is extracted from a chilling surface and the velocity and thermal

gradient are not directly imposed, Makkonen obtained the following relationship for

the spacing:

λ =
( π∆TR

G + q̇/(CpV )

)1/2

(1.19)

where q̇ is the heat extraction rate per velume.

The aforementioned theoretical models neglect the effect of the surface energy

anisotropy and the solutal interaction of neighbouring stalks in establishing the inter-

dendritic spacing. Steinbach (Steinbach, 2008) showed that the spacing is affected by

the strength of the anisotropy owing to the tip curvature dependence on the anisotropy

and the spacing dependence on the tip radius, as suggested in the literature(Hunt,

1979; Kurz W., 1981; Makkonen, 1991, 2000). He plotted the tip radius and the

critical spacing (the spacing at which the effects of the surface energy anisotropy

and the neighbouring solute interactions balance, leading to the tip destabilization

and a spacing readjustment mechanism such as cell elimination) as a function of the

anisotropy strength and found that as the anisotropy is raised, both the tip radius

and the critical spacing decrease, as depicted in figure 1.13. Extending the model in

3D, he also showed that the dependency of the spacing on the tip curvature is larger
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in 3D by a factor of ∼ 1.87.

the range where destabilization of stable array growth is
observed (see Fig. 5). We may repeat the same analysis
for different anisotropies ! = 0.2...0.5 and compile the
results in a nondimensionalized form. Fig. 8 gives the
radius difference Dr = rtrunk ! rtip normalized by the radius
at the critical spacing rc vs. the spacing normalized by the
critical spacing kc. The error bars for the difference were
taken to be the maximum of the error bars of the radii.
These errors are small compared to the systematic error
due to the numerical discretization. Again, all points fit
to one hyperbolic tangent curve in the regime of stable
tip growth. From the analysis it can be concluded that
the analysis of the tip radii provides a sharp criterion for
the lower limit of stability of a dendritic array. The upper
limit is not fixed by a similar criterion and there can be sta-
ble growth of the array above twice the lower limit (in 2D)
if the splitting mechanism due to side-branching is sup-

pressed. In the general case of effective side-branching,
however, the criterion that the upper limit in 2D is twice
the lower limit is confirmed. The critical spacing thereby
can be used to classify the band spacing. The dependence
of the critical spacing on the anisotropy of the solid–liquid
interface energy is plotted in Fig. 9, and shows a pro-
nounced dependence. However, it can be easily confirmed
that this dependence is due to the well-known dependence
of the tip radius on surface anisotropy. According to the
classical relation (1), the prefactor f2 can be evaluated
quantitatively. With a solidification length of ls = 3.9 mm
for the given material data and temperature gradient
f2 = 0.56 is calculated. In Fig. 10, f2, normalized by its
value at ! = 0.3, is plotted against the anisotropy. Within
3% accuracy it can be assumed to be constant. The increase
towards higher anisotropies must at present be ascribed to
numerical error, since for higher anisotropies the tip radius
decreases and thus the fixed resolution of 1 lm may not be
sufficient to give an accurate prediction. This must be sub-
ject to further analysis.

5. The selection criterion in 3D

The analysis as given in the previous section was
repeated for 3D. A set of calculations with one dendrite
in a rectangular box with a width of 100, 150, 200 and
250 lm was performed. In this case two principal radii
have to be determined. r111tip=trunk is the radius in the plane
of the preferred growth direction where the fins of the den-
drite are found, and r011tip=trunk is the radius in the plane tilted
by 45!. The result of the evaluation is shown in Fig. 11.
Again, we find a crossover of the radii rtip/ and rtrunk, but
for different spacings. To determine the region of stable
growth, a set of calculations with four individual seeds at
the corner of the box with symmetrical boundary condi-
tions were performed for 100, 120, 140 and 160 lm and
one calculation with five seeds in a 250 lm box, corre-
sponding to a spacing of 177 lm and a tilt of 45! relative
to the standard calculations (see Fig. 1). The stable config-

Fig. 7. Plot of rtip and rtrunk for different spacings. The error bars come
from the least-square fit.

Fig. 8. Plot of the difference rtrunk ! rtip for different spacings, normalized
to the critical spacing and different surface energy anisotropies ranging
from ! = 0.2 to ! = 0.5.

Fig. 9. Calculated critical spacing and the corresponding radius for
different surface stiffness anisotropies.

I. Steinbach / Acta Materialia 56 (2008) 4965–4971 4969

Figure 1.13: Effect of anisotropy strength on the critical spacing and tip radius of an
array of dendrites modelled by the phase field method (Steinbach, 2008).

Experimental studies have also been done by different workers (McCartney D.G.,

1981; Bell J.A.E, 1963; Bolling G.F., 1974; Kirkaldy J.S., 1989; Bouchard D., 1996)

to find an appropriate correlation between primary spacing and velocity, temperature

gradient and composition. McCartney and Hunt (McCartney D.G., 1981) offered the

following empirical equation relating steady state primary spacing to pulling velocity:

λ1 = 272 G−0.55
L V −0.28C0.31

∞ (1.20)

To make sure that the coarsening effect does not jeopardize the validity of their

results, McCartney and Hunt quenched their samples before coarsening and then

measured the primary spacing. To obtain the above equation, they plotted λ1 as a

function of G, GV
1
2 and C∞ for different metallic systems and calculated the slopes
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of the lines and finally fitted the data into their equation by fitting the constant

coefficient.

Another experimental work was done by Kirkaldy (Kirkaldy J.S., 1989; Bouchard D.,

1996) on binary organic alloys and under steady state condition. For high velocities,

he offered the following equation which is a semi-empirical relationship obtained for

succinonitrile-salol system:

λ1 = a1

( 24 Tm(εσ)D

(1−K)HρV GC
1
2
0

) 1
3

(1.21)

where σ is the surface tension, H is the latent heat of fusion, ε ≈ 6 and a1 ≥ 1 is a

fitting parameter. Figure 1.14 plots the primary spacing as a function of velocity for

two different compositions. The maximum in the curve was found to be ten times

that of the Mullins-Sekerka instability.

Kirkaldy et al. also measured the secondary arm spacing and tip radius (Kirkaldy J.S.,

1995) (Figure 1.15) as a function of velocity for the same organic system. Their results

can be expressed as:

λ2 = 2a2π
( 4d0

C0(1− k)2
(
D

V
)2

) 1
3

(1.22)

where d0 = σ
ρH

and a2 ≥ 1.

Huang and Glicksman (Huang S.C., 1981a,b) have also pointed out that there is

another scaling relationship between the initial secondary spacing and the dendrite

tip radius of the form λ2

ρ
= 3.0, while Somboonsuk et al. (Somboonsuk K., 1984)
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Figure 1.14: Primary spacing as a function of velocity for an organic system for two
different compositions .(Bouchard D., 1996)

	  

Figure 1.15: Secondary spacing and tip radius as a function of velocity .(Bouchard D.,
1996)
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reported the value 2.2 for this ratio which is very close to the value 2.1 obtained

theoretically by LM-K (Langer J.S., 1978c). Since the secondary dendrites tend to

coarsen with time (or distance away from the tip), only the initial spacing, λ2, forming

close to the tip can be related to the tip radius.

In a study done by M. Greenwood, M. Haataja and N. Provatas (Greenwood M.,

2004) was attempted to generate the scaling relationship for primary arm spacing of

the form λ1 = A lαT lβDdγ
0 into a so-called crossover scaling function, which can achieve

different power-law limits in different dendritic regimes (dendritic and cellular). Their

spacing also abandoned, for the first time, the notion of a steady state and unique

spacing in favour of a statistical description of length scales. They obtained the

following scaling function:

λ1

λC

=
lT
lD

f
( lT

lD
− lT

lD∗

)
(1.23)

where lD∗ ≡ 2D
VC

and λC and VC are the steady state wavelength and velocity at

planar-to-cellular transition respectively. Figure 1.16 illustrates the computed data

and the inset indicates the experimental data obtained by Kirkaldy et al. (Liu L.X.,

1995). The scaled λ1 versus the scaled function lT
lD
− lT

lD∗
is given in Figure 1.17.

For the selected λC , surprisingly, both experimental and computed data collapse

onto the scaling function. This plot can predict a relationship between primary arm

spacing and growth rate over an extensive range of pulling velocities, temperature

gradients and alloy compositions, under steady growth conditions. This function

covers both cellular and dendritic regimes. It was the first time that phase field was

validated for directional solidification. Later on, Provatas et al. (Provatas N., 2005)
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G!18:5K=mm. For Vp>V"
p, the data in Fig. 2 displays

the characteristic monotonically decreasing wavelength
as a function of velocity.

There has been a great deal of work on scaling relation-
ships for primary branch spacing in different morpho-
logical regimes ([8], and references therein). These
typically take the form !1 ! Al"T l

#
Dd

$
0 . The prefactor

and exponents ", #, and $ can vary depending on the
semiempirical and/or geometrical arguments of a given
theory [3,8,17]. Moreover, the scaling form must neces-
sarily assume distinct exponents when different growth
regimes are present [3].

We describe the primary branch selection through a
crossover scaling function of the form

!1

!c
! lT

lD
f
!

lT
lD

# lT
l"D

"

; (3)

where !c is the onset steady-state wavelength at the
transition from the planar-to-cellular instability and
l"D $ 2D=Vc, where Vc is the velocity at the onset.
Figure 3 shows our computed data collapsed onto a scal-
ing function of the form above. Also shown on the scaled
plot is the experimental data from Refs. [3,4]. In each case
!c was selected so as to obtain the best data collapse by
plotting ! $ %!1lD&=%!clT& against %lT=lD # lT=l"D&. The
plot is remarkable in that it predicts a scaling function
describing the primary spacing (!1) versus velocity over a
wide range of pulling speeds, thermal gradients, alloy
concentrations, and materials. The crossover function in
Fig. 3 covers the regime from cellular fingers and crosses
over into the dendritic regime.

Figure 4 compares our values of !c to !theory !
####################################

!mslTR%Vp ! Vc&
q

, where !ms denotes the MS wave-
length at the planar-to-cellular onset boundary (Vp !
Vc), and lTR%Vp& is a velocity-dependent generalization
of lT , implicitly determined from lTR ! lT'1#
exp%#lTRVp=D&(. Physically, lTR%Vp& is proportional to
the amplitude of cellular fingers such that lTR ) lT'1#
l"D=%2lT&( at the onset of cellular growth, while in the
opposite limit (Vp * Vc), lTR ! lT . This form of !theory is
similar to a previous analytical prediction of !c derived
geometrically by approximating the tip shape and calcu-
lating the tip undercooling [17]. In the same figure we
compare our extracted !c to another theoretical predic-
tion, !theory ! %d0lDlT&1=3, the geometric mean of the
three length scales, empirically suggested to be propor-
tional to the wavelength at the planar-to-cellular onset
[8]. Figure 4 suggests that for both cases !c ! "!c%1+
#d0=!theory&, where " and # are material independent
constants. These results imply that !c / !theory at large
wavelengths. At small wavelengths, analytic predictions
differ from our findings. This is likely due to the fact that
fitting an arm to an ellipsoid of revolution is only true at
large wavelengths.

We also examined the tip undercooling "tip as a func-
tion of pulling velocity as in Ref. [29]. We found that "tip

decreases monotonically toward a plateau value for the
largest Vp simulated. The reason is that at low Vp the
diffusion length increases as the thermal length lTR%Vp&
decreases, not allowing the tip to escape its impurities.
The front thus falls back from the pulling gradient, in-
creasing "tip. As Vp increases, lTR%Vp& increases toward
lT , while lD decreases. In this regime the interface is free
to catch up to the pulling gradient, decreasing "tip. As Vp
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FIG. 2. Computed primary spacings corresponding to pa-
rameters listed in the text, error bars included for a single
data set. The inset shows experimental primary spacing data
obtained by digitizing data from Ref. [4].
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FIG. 3. Computed data and experiments [3,4] for SCN and
PVA scaled to material properties, producing a single scaling
function for the primary branch spacing !1
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Figure 1.16: Computed primary spacing as a function of pulling speed. The inset
represents the experimental data by Kirkaldy et al. (Liu L.X., 1995).(Greenwood M.,
2004)
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where !c is the onset steady-state wavelength at the
transition from the planar-to-cellular instability and
l"D $ 2D=Vc, where Vc is the velocity at the onset.
Figure 3 shows our computed data collapsed onto a scal-
ing function of the form above. Also shown on the scaled
plot is the experimental data from Refs. [3,4]. In each case
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over into the dendritic regime.

Figure 4 compares our values of !c to !theory !
####################################

!mslTR%Vp ! Vc&
q

, where !ms denotes the MS wave-
length at the planar-to-cellular onset boundary (Vp !
Vc), and lTR%Vp& is a velocity-dependent generalization
of lT , implicitly determined from lTR ! lT'1#
exp%#lTRVp=D&(. Physically, lTR%Vp& is proportional to
the amplitude of cellular fingers such that lTR ) lT'1#
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three length scales, empirically suggested to be propor-
tional to the wavelength at the planar-to-cellular onset
[8]. Figure 4 suggests that for both cases !c ! "!c%1+
#d0=!theory&, where " and # are material independent
constants. These results imply that !c / !theory at large
wavelengths. At small wavelengths, analytic predictions
differ from our findings. This is likely due to the fact that
fitting an arm to an ellipsoid of revolution is only true at
large wavelengths.

We also examined the tip undercooling "tip as a func-
tion of pulling velocity as in Ref. [29]. We found that "tip

decreases monotonically toward a plateau value for the
largest Vp simulated. The reason is that at low Vp the
diffusion length increases as the thermal length lTR%Vp&
decreases, not allowing the tip to escape its impurities.
The front thus falls back from the pulling gradient, in-
creasing "tip. As Vp increases, lTR%Vp& increases toward
lT , while lD decreases. In this regime the interface is free
to catch up to the pulling gradient, decreasing "tip. As Vp
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Figure 1.17: Computed and experimental data on SCN and PV A lying on the single
scaling function.(Greenwood M., 2004)
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also showed this scaling analysis to hold true in three dimensions, over a small range

of pulling speeds near the maximum.

It is noteworthy that a similar approach to find a universal law of relationship

between dendritic growth rate and dendrite tip undercooling has also been developed

by Langer, Sekerka and Fujioka (Langer J.S., 1978a). They suggested that the velocity

of a single dendrite growing in a pure melt be given by:

v = (
2α

d0

) V (∆) (1.24)

Which for small peclet numbers becomes

V (∆) = σ∗p2 (1.25)

where V is a dimensionless function of the dimensionless undercooling ∆ = Tm−T∞
∆T

and p is the thermal peclet number. Molecular attachment kinetics has not been

included in this equation. Experimental data of ice and succinonitrile dendrites in

Figure 1.18 indicates a good evidence for existence of such a universality of V . Since

the data for different systems and different growth conditions lie on the same curve,

it can be concluded that such a universal function exists. However, this universality

can be obtained only when the molecular attachment effects, liquid convection and

heat flow in the solid are negligible.
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Figure 1.18: Dimensionless velocity as a function of dimensionless undercooling in
SCN and ice (theory and experiment).(Langer J.S., 1978a)
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1.3 History dependence of dendrite spacing

Warren and Langer (Warren J.A., 1990, 1993) believed that it is not possible to find

a unique primary spacing as a function of growth conditions, because the branch

spacing is sensitive to the history of evolution. They argued that no unique primary

dendrite spacing exists at fixed growth conditions and instead, a continuous range of

allowable states may exist. They pointed out that the selected state is determined by

the sequence of events that provides the unique conditions for a particular system. In

other words, pattern selection is history dependent and the final λ1 selected by the

system is determined by the initial preparation of the systems and the sequence of

pulling speeds imposed on the system after and before reaching steady state condi-

tions.

Subsequently, Huang et al. (Huang W., 1993) experimentally showed that if direc-

tional solidification is carried out under the pulling speed of V ′
p until the steady state

array of dendrites develops and then the pulling speed is changed to a different value

Vp , different values of primary spacing are obtained, depending on the selection of V ′
p .

Han and Trivedi (Trivedi R., 1994b) also observed that once the steady state array

of dendrites is established, the pulling speed can be increased appreciably without

significantly changing λ1.

Other experiments done by Losert et al. (Losert W., 1996, 1998) were consistent

with the two previous studies, demonstrating that there is no unique dynamical se-

lection mechanism for λ1. They showed that as Vp decreases from the steady state

velocity, i.e. Vp → V ′
p , λ1 remains constant until the velocity reaches a critical value,

VpCr
, at which point the array becomes unstable such that every other stalk falls
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back, thus doubling the primary spacing. Figure 1.19 portrays a dendritic array be-

fore, during and after the period-doubling instability and Figure 1.20 indicates the

step-wise decreasing of the pulling velocity and rms spread of the primary spacing vs.

time.
VOLUME 77, NUMBER 5 P HY S I CA L REV I EW LE T T ER S 29 JULY 1996

same final VP , depending on the choice of V 0
P . They

showed that, for a given VP , there is a range of l1 val-
ues observed whose lower limit lies close to the Warren-
Langer prediction. In a closely related experiment Han
and Trivedi [11] showed that once a dendritic array has
been established, VP can be increased considerably with-
out significantly changing l1. These experiments clearly
demonstrate that l1 is not uniquely determined by the cur-
rent growth conditions, and thus that no dynamical selec-
tion mechanism for l1 exists.
In this Letter we report a new experimental direc-

tional solidification study designed to quantitatively test
the Warren-Langer prediction of a spatial period-doubling
bifurcation. Experiments were performed on multiply-
distilled succinonitrile (SCN, Fluka Chemical Co.) doped
with 0.43 wt% of the laser dye coumarin 152 (C152,
Sigma Chemical Co.). The material was loaded un-
der inert gas pressure into 0.1 3 2.0 3 150 mm glass
capillaries (Vitro Dynamics) and flame sealed under
vacuum. The capillary was mounted in a computer-
controlled directional solidification stage which is de-
scribed in Ref. [12]. The measured temperature gradient
was G � 11.7 K�cm in the region of the sapphire ob-
servation windows. Absorption of 4880 Å laser light by
C152 was exploited both to obtain a single properly ori-
ented crystal via localized melting, and to produce fluores-
cence which was used to calibrate the solute concentration
and to study the solute concentration field.
The solidification stage is mounted on a Nikon inverted

microscope equipped with a charge coupled device cam-
era (MTI CCD72) with 480 3 640 pixel resolution. Digi-
tal image analysis was performed in a Macintosh IIci
computer. The interface position was determined with a
parabolic fit procedure that yields an effective resolution
of �0.3 pixel (,1 mm) [13]. Specialized software au-
tomatically determined the tip positions and radii from
stored video images at rates up to 30 frames per minute.
When a dendrite tip fell back by two tip radii from the
front of the array, it was no longer included.
The experiments followed a protocol suggested in

[8]. The pulling speed VP was set at 49.82 mm�s and
maintained until a steady-state dendritic array consisting
of �12 dendrites was established. VP was kept constant
for 120 s and was then decreased by 1.25 mm�s every
30 s (the smallest step possible with our computerized
motor drive). As VP was decreased, l1 remained nearly
constant at �170 mm until, at VP � 17.4 mm�s the array
became unstable; in the central region every other dendrite
fell back, and a doubling of the interdendritic spacing
occurred. Figure 2(a) shows the array at t � 420 s, the
central part of the array is shown in Fig. 2(b) at 1020 s
during the doubling instability, and in Fig. 2(c) at 1200 s,
after the spatially period-doubled array has restabilized.
During this evolution, the product r2VP (where r is the
dendrite tip radius) remains constant, in agreement with
microscopic solvability theory.

FIG. 2. Images of the central region of the dendritic array (a)
before (t � 420 s), (b) during (t � 1020 s), and (c) following
(t � 1200 s) the spatial period-doubling instability.

The time evolution of l1 is presented in Fig. 3 [14].
Figure 3(a) shows VP as a function of time with the
instability indicated by a vertical arrow. Figure 3(b)
shows the mean spacing �l1� with the rms spread in l1
indicated by the error bars [15]. Because of boundary
effects, the doubling occurs only in the central part of

FIG. 3. Dynamics of the dendritic array. (a) Time depen-
dence of the pulling speed VP and (b) mean value ��� and rms
spread (error bars) of l1 vs time.
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Figure 1.19: dendritic array before, during and after the period-doubling instabil-
ity.(Losert W., 1996)

Makkonen (Makkonen, 2000) claimed that because of the anisotropy in the surface

energy, dendrite tips are slightly non-axisymmetric and deviate from a parabolic

shape. Considering the fact that the paraboloid of revolution is the only possible

steady state shape leading to a unique spacing selection (i.e. constant spacing between

any two dendrites), this indicates that in directional solidification, no stable steady

state dendritic array with a unique spacing is possible. However, he mentioned that

since these deviations from a parabola are not large, the available spacing range is

narrow. Moreover, he attributed the existence of a range of available spacing and

history dependence of the spacing in the presence of the incremental changes of V

and G to the thermal hysteresis occurred in the system.
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same final VP , depending on the choice of V 0
P . They

showed that, for a given VP , there is a range of l1 val-
ues observed whose lower limit lies close to the Warren-
Langer prediction. In a closely related experiment Han
and Trivedi [11] showed that once a dendritic array has
been established, VP can be increased considerably with-
out significantly changing l1. These experiments clearly
demonstrate that l1 is not uniquely determined by the cur-
rent growth conditions, and thus that no dynamical selec-
tion mechanism for l1 exists.
In this Letter we report a new experimental direc-

tional solidification study designed to quantitatively test
the Warren-Langer prediction of a spatial period-doubling
bifurcation. Experiments were performed on multiply-
distilled succinonitrile (SCN, Fluka Chemical Co.) doped
with 0.43 wt% of the laser dye coumarin 152 (C152,
Sigma Chemical Co.). The material was loaded un-
der inert gas pressure into 0.1 3 2.0 3 150 mm glass
capillaries (Vitro Dynamics) and flame sealed under
vacuum. The capillary was mounted in a computer-
controlled directional solidification stage which is de-
scribed in Ref. [12]. The measured temperature gradient
was G � 11.7 K�cm in the region of the sapphire ob-
servation windows. Absorption of 4880 Å laser light by
C152 was exploited both to obtain a single properly ori-
ented crystal via localized melting, and to produce fluores-
cence which was used to calibrate the solute concentration
and to study the solute concentration field.
The solidification stage is mounted on a Nikon inverted

microscope equipped with a charge coupled device cam-
era (MTI CCD72) with 480 3 640 pixel resolution. Digi-
tal image analysis was performed in a Macintosh IIci
computer. The interface position was determined with a
parabolic fit procedure that yields an effective resolution
of �0.3 pixel (,1 mm) [13]. Specialized software au-
tomatically determined the tip positions and radii from
stored video images at rates up to 30 frames per minute.
When a dendrite tip fell back by two tip radii from the
front of the array, it was no longer included.
The experiments followed a protocol suggested in

[8]. The pulling speed VP was set at 49.82 mm�s and
maintained until a steady-state dendritic array consisting
of �12 dendrites was established. VP was kept constant
for 120 s and was then decreased by 1.25 mm�s every
30 s (the smallest step possible with our computerized
motor drive). As VP was decreased, l1 remained nearly
constant at �170 mm until, at VP � 17.4 mm�s the array
became unstable; in the central region every other dendrite
fell back, and a doubling of the interdendritic spacing
occurred. Figure 2(a) shows the array at t � 420 s, the
central part of the array is shown in Fig. 2(b) at 1020 s
during the doubling instability, and in Fig. 2(c) at 1200 s,
after the spatially period-doubled array has restabilized.
During this evolution, the product r2VP (where r is the
dendrite tip radius) remains constant, in agreement with
microscopic solvability theory.

FIG. 2. Images of the central region of the dendritic array (a)
before (t � 420 s), (b) during (t � 1020 s), and (c) following
(t � 1200 s) the spatial period-doubling instability.

The time evolution of l1 is presented in Fig. 3 [14].
Figure 3(a) shows VP as a function of time with the
instability indicated by a vertical arrow. Figure 3(b)
shows the mean spacing �l1� with the rms spread in l1
indicated by the error bars [15]. Because of boundary
effects, the doubling occurs only in the central part of

FIG. 3. Dynamics of the dendritic array. (a) Time depen-
dence of the pulling speed VP and (b) mean value ��� and rms
spread (error bars) of l1 vs time.

890

Figure 1.20: pulling velocity decrease steps (a) and rms spread of primary spacing
vs. time (b).(Losert W., 1996)
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For an array of dendrites, the parabolic shape is no longer retained at some dis-

tance down the tip and the diffusion fields of the neighbouring dendrites squeezes

them inward. There are a few studies taking into account the influence of the neigh-

bouring dendrites (Lu S-Z, 1992; Spencer B.J., 1997, 1998, 1999). Spencer et al.

(Spencer B.J., 1997, 1998, 1999) performed an integral analysis on slender needle

crystals at the limit where ρ � lD and found that for an array of interacting den-

drites or for a dendrite confined in a small system, even in the absence of surface

energy, the neighbouring interaction or small system size effect is enough to uniquely

determine the dendrite tip curvature at a given solidification condition. In other

words, the interaction between neighbouring dendrites is as relevant as the surface

energy in establishing dendrite characteristics. In the absence of surface energy, for

an isolated dendrite they recovered the Ivantsov equation (tip solution), and for an

array of directionally grown dendrites (tail solution combined with the only solution

of the family of tip solutions which is consistent with the tail solution) they obtained

a unique solution given below:

ρ =
lDλxλy

2
√

2klD[2lT − lD] + 2(1− k)(λxλy)
(1.26)

where λx and λy are the spacings of the rectangular arrays as illustrated in figure 1.21

and lD and lT are the solute diffusion length and thermal length respectively. This

equation is in a good agreement with the experimental results in the limit, lD � lT .

While being similar in general form, this equation results in a smaller tip radius

than that obtained by previously offered models (Kurz W., 1981; Makkonen, 2000)

at the same growth conditions. Spencer et al. then offered a scenario explaining
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Fig. 1. Schematic diagram of the directional solidification of an
array of needle crystal dendrites.

! In this model the diffusion of solute in the solid is negligible,
the diffusion of solute in the liquid is rate-controlling, the diffu-
sion of heat is the same in both phases, and the diffusion of heat
is much faster than the diffusion of solute in the liquid. For
a further description see Ref. [20].

indeterminacy; with neighbors we obtain a unique
solution. Of course the more difficult question is
how the dendrite spacings themselves are deter-
mined. While our theory does not give a complete
answer to this question, it provides an important
component in that it describes how the tip radius
and dendrite spacing are linked. From this relation-
ship we can suggest some possible scenarios for the
determination of the dendrite spacings.

Here we present a summary of the theory, with
the complete details given in Refs. [9,10]. First, we
consider the directional solidification of a binary
alloy. While this system is slightly more complic-
ated than the isothermal, one component system
for which the Ivantsov solution applies, in the limit
of zero temperature gradient and infinite dendrite
spacings we recover the solutal Ivantsov problem
(isothermal solidification into a supersaturated
liquid) as a limiting case. Further, by considering
the directional solidification of a binary alloy, we
can compare our predictions directly to experi-
ments on dendrite arrays. For simplicity we take
the phase diagram to be composed of straight lines
with constants k and m

"
denoting the segregation

coefficient and liquidus slope, respectively. We de-
note the alloy composition as C

#
with a liquidus

temperature ¹
$
. The alloy then has equilibrium

freezing range !¹
$
"m

"
(k!1)C

#
/k, where we use

the convention m
"
(k!1)'0. The steady-state

solidification morphology is assumed to be a rec-
tangular array of identical needle crystals which
grows in the !z direction at constant speed » (see

Fig. 1). We use a coordinate frame moving with the
solidification front and model the heat and solute
transport using the one-sided, “frozen-temper-
ature” model.! Thus, the temperature field is fixed
in the moving frame and denoted by ¹"¹

$
!Gz,

where G is the constant positive temperature gradi-
ent. Two process length scales are determined by
the solidification conditions: a diffusion length,
l
%
"D/», where D is the diffusivity of solute in the

liquid; and a thermal length, l
&
"k!¹

$
/G, which is

related to the vertical extent of equilibrium solidifi-
cation in the imposed temperature gradient. In
addition to the two process length scales there are
four length scales which quantify the morphology
of the dendrite array: the dendrite tip radius ", the
spacings of the rectangular array #

!
and #

"
, and the

position of the dendrite tip in the imposed temper-
ature gradient relative to the liquidus isotherm,
z
!"#

"(¹
$
!¹

!"#
)/G.

The free boundary problem for the shape of the
dendrite consists of equations for the concentration
of solute in the liquid, C. These equations describe
diffusion of solute in the liquid; conservation of
solute and local equilibrium at the dendrite surface;
and a condition on the liquid concentration far
ahead of the solidification front. In addition, since
we are looking for periodic arrays of identical de-
ndrites, we can focus on describing a single dendrite
at the center of a repeating “unit cell” with periodic
boundary conditions. We nondimensionalize all
lengths with l

%
and describe the dendrite shape in

nondimensional cylindrical coordinates relative to
the center axis of the dendrite. Denoting the cylin-
drical coordinates as (r,$,%), where $"(z!z

!"#
)/l

%
is the nondimensional distance behind the dendrite
tip, the surface of the dendrite is described by
r"R($, %). We scale the concentration using
C"C

#
[1#CH(1!k)] to obtain equations for

the nondimensional concentration CH. Dropp-
ing the * superscripts, we obtain the following

290 B.J. Spencer, H.E. Huppert / Journal of Crystal Growth 200 (1999) 287—296

Figure 1.21: Schematic of a rectangular dendritic array in directional solidifica-
tion.(Spencer B.J., 1999)

the existence of a range stable spacings based on the findings of eq. 1.26. That is,

the stable spacing (radius) obtained from the array solutions (a family of solutions)

are confined between the two limits of marginal stability theory (upper limit) and

overgrowth mechanism (lower limit), as depicted in figure 1.22. Dendrites are stable

if the curvature is not lower than a critical value (marginal stability theory leading

to tip splitting) and also if they are not too closely spaced (overgrowth mechanism

leading to cell elimination). These upper and lower limits determine the stable range

of sates of the array. It is noteworthy to mention that that upper limit might be set

by the outgrowth of tertiary arms, in which case the upper stability limit lies below

the tip splitting limit.
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Fig. 6. Array solutions from our model (see Fig. 4 or any of the
ad hoc relationships derived from geometric constraints such as
the Scheil—Ivantsov model described in the text that have
a monotonic relationship between the tip radius and the spac-
ing). The dashed line represents the surface energy selection
criteria (either microsolvability or marginal stability) with a rela-
tively weak dependence on the spacing. There is a unique oper-
ating state for the array which satisfies both selection criteria
and gives a unique dendrite spacing and tip radius.

Fig. 7. Array solutions from our model as in Fig. 6. The dashed
line represents the marginal stability criteria for the dendrite tip.
Dendrites with tip radii above this dashed line are unstable to
tip splitting (upper shaded portion of solid line). In addition,
spacings below a critical value are unstable to the overgrowth
mechanism described in the text (lower shaded portion of solid
line). The combined stability boundaries give a range of stable
spacings for the array.

give comparable predictions but with a self-consis-
tent dendrite shape.

Another scenario, depicted in Fig. 7, would be
that surface energy does not select a unique operat-
ing state but rather determines the range of stable
spacings. As above, the array solutions give a fam-
ily of solutions parameterized by the spacing (or tip
radius). Marginal stability theory [5] says that the
dendrite tip is stable only if its radius does not
exceed a critical value determined by surface en-
ergy. Thus, of the family of solutions, those with
large spacings (corresponding to large tip radii)
would be unstable. In essence, this gives an upper
bound on the range of stable spacings for the array.

A lower bound on the spacings is set by the
overgrowth mechanism. If the dendrites are too
closely spaced, the array is unstable to having some
members being overgrown by the rest of the array,
as shown in the experiments [11] and in theory
[13,14]. Thus, of the family of array solutions, the
tip instability and overgrowth mechanisms would
give a range of stable spacings for the array in
agreement with experiments [11,12].

With regard to the upper bound on the spacings,
it is acknowledged that in the experiments [11] the
instability mechanism is not due to tip splitting but

rather due to the outgrowth of tertiary arms. While
the tip splitting mechanism described by marginal
stability is not the mode of instability, it does pro-
vide an upper bound on the range of stable spacings:
there cannot be an array with a tip radius (and
hence spacing) in excess of that prescribed by the
marginal stability bound. The actual upper stability
bound, corresponding to the outgrowth of tertiary
arms, will lie below the tip splitting boundary.
Nonetheless, the tip splitting boundary serves as
a useful bound on the range of stable spacings in
the absence of any theories for tertiary outgrowth.

In either scenario described above, the relation-
ship between the tip characteristics and the array
spacings provided by the array solutions would be
an important factor in the determination of the
dendrite spacing(s).

In summary, we have developed a theory for the
directional solidification of an array of dendrites,
with the shape of the dendrite influenced by inter-
actions with neighboring dendrites. By determining
the explicit details of the solution to the free bound-
ary problem for the dendrite shape, we find that the
array interactions determine unique tip character-
istics for a given dendrite spacing and remove the
indeterminacy in the Ivantsov similarity solution.
This family of “array solutions,” in which the tip

B.J. Spencer, H.E. Huppert / Journal of Crystal Growth 200 (1999) 287—296 295

Figure 1.22: Stable array solutions bounded between the upper (marginal stability
theory) and lower (overgrowth mechanism) limits (Spencer B.J., 1999)

1.4 Wavelength selection under unsteady heat flow

Although study of the steady state growth (typically regarded in the previously re-

viewed literature) is very helpful in elucidating different aspects of solidification, ma-

jority of real industrial applications are governed by unsteady state conditions. Thus,

the analysis of dendritic microstructure under unsteady-state conditions is of great

importance.

From theoretical point of view, Hunt and Lu (Hunt J.D., 1996) and Bouchard and

Kirkaldy (Bouchard D., 1997) offered different equations for primary and secondary

spacing under unsteady-state conditions. The one offered by H-L can be written as

follows:
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λ′1 = 0.07798 V ′(α−0.75)(V ′ −G′)0.75G′−0.6028 (1.27)

where

α = −1.131− 0.1555 log10(G
′)− 0.007589[log10(G

′)]2

λ′1 = λ1∆T
Γk0

, G′ = GLΓk0

∆T 2 and V ′ = VLΓk0

D∆T

and B-K’s equations for unsteady-state spacing given by:

λ1 = a1

( 16C
1
2
0 G0εΓD

(1− k0)mLGLVL

) 1
2

(1.28)

λ2 = 2πa2

( 4Γ

C0(1− k0)2TF

(
D

VL

)2
) 1

3
(1.29)

where D is the solute diffusivity in liquid, G0ε is a phenomenological parameter

≈ 600 ∗ 6 Kcm−1 , a1 and a2 are the calibrating factors and TF is the melting

temperature of the solvent. B-K suggested a2 = 5 for Al and Sn − Pb alloys and

a1 = 50 for Sn alloys. These parameters were phenomenological and based mainly

on the article by Okamoto and Kishitake (Okamoto T., 1975).

Experimental studies have also been carried out to investigate the unsteady state

directional solidification (Rocha O.L., 2003b,a; Peres M.D., 2004; Su R.J., 1998;

Ares A.E., 2009; Kovacs J., 2003; Cante M.V., 2008; Quaresma J.M.V., 2000; Cruz K.S.,

2008) applying a chilling surface at the bottom of the mold. The majority of them

have plotted primary spacing as a function of cooling rate rather than individual

growth rate and temperature gradient due to the fact that in unsteady state region

G and V depend on each other. The cooling rate immediately after the solidification
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front passes the thermocouple positions is computed by plotting the cooling curves

and determining the slopes of the curves (ṪL = GLVL). It has been conjectured that in

unsteady state conditions, there is a power law relationship in the form λ1 = c1(ṪL)c2

where c1 and c2 are constants. Bouchard and Kirkaldy (Bouchard D., 1997) showed

that the equation λ1 = c1(ṪL)−0.50 best replicates their experimental results. They

also applied previously discussed analytical solidification expressions and solved the

1 − D heat flow equations for the solid, liquid and mushy zone, concluding that for

unsteady heat flow the thermal gradient in the liquid changes almost linearly with

the tip growth rate ( Figure 1.23) (GL = c VL) and consequently ṪL = c V 2
L .

	  

Figure 1.23: Solidification rate vs. temperature gradient in liquid and mushy
zone.(Bouchard D., 1997)

Regarding the effect of solute concentration on primary spacing in unsteady state

directional solidification, there is no unanimous agreement in the literature. Spittle
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and Lloyd (Spittle J.A., 1979) reported that for unsteady state directional solidifica-

tion, primary spacing decreases with increasing C0. Rocha et al. (Rocha O.L., 2003b)

also pointed out that under unsteady heat flow for Sn−Pb alloys, both λ1 and λ2 de-

crease as C0 increases and for Al-Cu alloys, λ1 is independent of solute concentration

while λ2 decreases with increasing concentration. Okamoto and Kishitakes results

(Okamoto T., 1975) contradicts these results in that they predicted an increase in

primary spacing as solute concentration increases. However, the majority of the re-

searchers reported that the effect of solute concentration in primary spacing selection

is less important for unsteady state heat flow than for steady state conditions.

In steady state directional solidification, G and V can vary independently and any

range of cooling rates can be obtained. However, in case of unsteady state heat flow

G and V are interdependent. A constitutional supercooling parameter, defined as

β =
(

C0(k−1)m
kG

)
/
(

D
V

)
> 1, can be applied as a criterion to understand the transition

regions between different structures. Because in steady state condition G and V

can vary over a wide range of values, this parameter can range from very small to

very large values. However, in unsteady state condition, β can only obtain large

values due to small liquid temperature gradient values generated in unsteady heat

flow. According to Kirkaldy et al. (Kirkaldy J.S., 1995) and McCartney and Hunt

(McCartney D.G., 1981), at the cellular to dendritic transition β has the value of 20

and thus the possibility of covering the cellular regime in unsteady state conditions

decreases. Figure 1.24 indicates the variation of β with time in Al−4.5wt%Cu system

under unsteady heat flow calculated by B-K using numerical analysis.

It has been reported by Spittle and Lloyd (Spittle J.A., 1979) that for a given

set of growth conditions (same G and V ), under unsteady state condition smaller
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Figure 1.24: variation of β with time in Al− 4.5wt%Cu system under unsteady heat
flow.(Bouchard D., 1997)

values of primary spacing can be obtained compared to those under steady state

conditions. Because, under unsteady state conditions, solidification starts from a

chilling surface which introduces undercooling into the liquid close to the chill and

thus more nucleation sites are produced at the beginning. Therefore, the initial

spacing of the dendrites, which is affected by the number of initial nuclei adjacent

to the chill, is smaller than the final steady state spacing. They also mentioned that

under sufficiently high undercoolings the primary spacing may readjust itself to the

value obtained for similar G and V under steady state conditions. It seems to be

possible that as time elapses and steady state conditions are achieved, dendrites will

adjust themselves by a choke off mechanism (to increase spacing) or tip splitting

mechanism (to decrease spacing) to reach the steady state selected spacing. Figure

1.25 shows the unsteady state primary spacing as a function of cooling rate for an

Al − 5wt%Cu alloy by Rocha et al. (Rocha O.L., 2003b). The comparison between

experimental and theoretical primary spacing equations by H-L and B-K is also shown
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in the same figure. It should be mentioned that the analytical expression for cooling

rate is applied by Rocha et al. into H-L and B-K equations to establish a relationship

between λ1 and cooling rate.

!

Figure 1.25: Unsteady state primary spacing as a function of cooling rate in an
Al − 5wt%Cu alloy. Eq. (19) is in Ref. (Rocha O.L., 2003b)

It should be noted that these results on unsteady-state dendritic growth are dif-

ficult to reconcile with the hypothesis of Langer and Warren and others that claim

that dendrite spacing (particularly under highly transient conditions) falls in a range

of values.

1.5 Effect of convection

Convection is a natural phenomenon that happens during solidification process be-

cause of density difference between solute and solvent (effect of gravity) and also the

temperature difference between different parts of the melt. Natural convention flow

caused by the mentioned reasons would affect the dendrite arm spacing dramatically.
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On the other hand, the melt flow caused by shrinkage of the solidified part may also

have a significant effect on the final spacing. However, in case of upward solidifica-

tion of the alloy systems wherein the solute density is larger than that of the solvent,

natural convection does not play an important role in the final spacing and can be

neglected.

Although in upward directional solidification natural convection is negligible,

shrinkage flow through interdendritic spacing due to the density difference between

the solid and liquid phases may cause experimental measurement to be inaccurate.

This kind of flow in upward directional solidification of some alloys (including Al-Cu

alloys) leads to the formation of inverse segregation so that the solute concentration

at the bottom of the mold is higher than the equilibrium concentration. This shrink-

age flow is more significant in systems wherein the density difference between solute

and solvent atoms is large, especially when the solute boundary layer ahead of the

interface is thick. However, Sharp and Hellawell (Sharp R.M., 1970) pointed out that

for nonplanar interfaces the solute boundary layer is proportional to G
V

. Thus, for

unsteady state heat flow the thickness of this layer is small. Therefore, it is easier to

avoid the shrinkage flow in unsteady heat flow compared to steady state conditions.

By increasing the temperature gradient in the melt, the effect of shrinkage flow would

be stronger because the large temperature gradient causes the pasty zone (mushy

zone) to become narrow leading to the easier flow of the liquid through the interden-

dritic spacing (Liu C.Y., 1989). In a theoretical study carried out by H. wang et al.

(Wang H., 2011) was determined that the effect of shrinkage flow on primary spacing

in upward solidification is negligible. Moreover, it was pointed out that shrinkage

flow influence on the solidification parameters, i.e. temperature gradient at the S/L
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interface and interface velocity, particularly in the first ten seconds of the solidifica-

tion, can be neglected mainly because of the positive density gradient in direction

of gravity. Figures 1.26 and 1.27 show the effect of shrinkage on G and V , and λ1

respectively (Wang H., 2011).

The simulations, which consider the effect of shrinkage
on fluid flow during solidification, show lower values of
R at all locations, because shrinkage causes more liquid
to enter the CV; hence, it delays the solidification
process and reduces R. The value of R decreases more in
the simulation with the effect of shrinkage in the case of
downward solidification (Figure 9(b)) when compared
to that for upward solidification (Figure 9(a)) because of
the stronger fluid flow that would occur in the former
mode.

E. Effect of Shrinkage on G

Figure 10 shows the effect of shrinkage on the
temperature gradient prior to the liquid at the mushy
zone/liquid interface, G, for the upward solidification

of Al-3 wt pct Si alloy and downward solidification
of Al-5 wt pct Si alloy, respectively. The results in
Figure 10(a) indicate that shrinkage in the case of
upward solidification has no discernible effect on the
value of G, because there is no significant fluid flow
caused by shrinkage and there is no natural convection.
In Figure 10(b), there are three distinct regions

marked by points A, B, C, and D. The times at which
the mushy zone/liquid interface exists at these locations
(solidification times) are also indicated in Figure 10(b)
for simulation S4. Segment AB has no difference in the
value of G, because fluid flow is only due to shrinkage in
simulation S4 and no discernible fluid flow in S5 for this
time period. Hence, there is no discernible difference in
G in segment AB between times tA = 3.2 seconds and
tB = 14.4 seconds. In the region marked by segment

Fig. 9—Effect of shrinkage on solidification velocity, R (mm s!1), of the mushy zone/liquid interface during solidification simulations: (a) S2
(with shrinkage) and S3 (without shrinkage); and (b) S4 (with shrinkage) and S5 (without shrinkage).

Fig. 10—Effect of shrinkage on the temperature gradient in front of the solidification even, G (K s!1), during solidification simulations: (a) S2
(with shrinkage) and S3 (without shrinkage); and (b) S4 (with shrinkage) and S5 (without shrinkage).

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 42A, AUGUST 2011—2341

!
Figure 1.26: Effect of shrinkage on temperature gradient (G) and interface velocity
(V) in upward solidification.(Wang H., 2011)

1.6 Orientation selection in dendritic patterning

In previous sections, dendrites growing along crystallographically favoured low-surface

energy directions were explored. However, this is not the case in most practical

solidification patterns. If the direction of heat extraction or temperature gradient

differs from that of the main crystalline axes, the competition between the two effects

establishes the final growth direction and morphology of dendrite branches. This is

different from the interplay of the inherent crystal anisotropies studied by Haxhimali
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BC, fluid flow due to natural convection develops in
both S4 and S5. However, fluid flow due to natural
convection in S4 is significantly stronger (higher veloc-
ities) than that in S5, as shown in Figure 5 and Table
III. Furthermore, in S4, the strong natural convection
carries hot liquid to the solidification front (Figure 5(a))
and, hence, increases the temperature gradient at that
region. For simulation S5, the opposite flow direction
brings hot liquid out of the mushy zone/liquid interface
(Figure 5(b)), which results in a smaller temperature
gradient at this region. Therefore, the temperature
gradient in S4 increases in the region marked by
segment BC in Figure 10(b). In the region marked by
segment CD, the stronger fluid flow due to natural
convection in S4 equalizes the temperatures between
liquid at the mushy zone/liquid interface and the bulk
liquid faster than that in S5, where the fluid flow due to
natural convection is weaker. Hence, in segment CD, of
Figure 10(b), the decrease in the value of G is greater for
S4 (with shrinkage) than that for S5 (no shrinkage).

F. Effect of Shrinkage on k1
Figure 11 shows the effect of shrinkage during the

upward solidification of Al-3 wt pct Si alloy on the
primary arm spacing, k1, as a function of the instanta-
neous cooling rate, (GÆR) (K/s), and location y (mm).
Figure 11(a) shows the present numerical results
imposed on Figure 10 in Peres et al.[21] Figure 11(a)
shows that there is no discernible difference with the
effect of shrinkage during upward solidification because
of the absence of any significant fluid flow due to
shrinkage and the absence of any fluid flow due to
natural convection. In Figure 11(b), the transient values
k1 predicted by the simulations are in good agreement
with those evaluated by the experiments[21] at each
respective location in the solidifying domain. However,
in Figure 11(a), the experimental data overpredict the
value of the transient cooling rate at each respective

location when compared to those predicted by the
numerical models for any particular value of k1. The
instantaneous cooling rate in the experiments was
evaluated from the thermal data obtained from the
thermocouples placed at the respective locations in the
solidifying domain. The thermocouples would overpre-
dict the cooling rate, because the measure is typically
made an instant after the liquidus temperature is reached
wherein the thermocouple is surrounded by a solid
phase. Since, in Figure 11(b), the values of k1 from
simulations S2 and S3 are in good agreement with those
observed in the experiments at each respective location in
the domain, we may safely conclude that the numerical
model is valid for the upward solidification mode.
Figure 12 shows values of k1 predicted in simulations

S4 and S5 for the downward solidification of the
Al-5 wt pct Si alloy along with the experimental data
reported in Spinelli et al.[22] Figure 12 shows three
distinct regions marked by points A, B, C, and D. As
discussed in Section E regarding the effect of shrinkage
on G, segment AB marks the region where fluid flow in
the liquid is mostly dominated by shrinkage. Segment
BC marks the region wherein natural convection devel-
ops a stronger fluid flow, and segment CD marks the
region where fluid flow developed by natural convection
becomes stabilized and weaker. In Figure 12(a), the
values of k1, evaluated by simulation S4, will increase as
a function of dendrite tip cooling rate (GÆR) in segment
AB, because the values of G and R both decrease
without any significant fluid flow in the domain causing
an increase in k1, as suggested by Eqs. [11] and [12].
Similarly, Figure 12(b) shows that the values of k1 in
segment AB increase with y because the value of (GÆR)
decreases with y. Segment BC marks the region where
the value of G increases significantly (simulation S4)
with the effect of shrinkage (Figure 10(b)). In simulation
S5, without the effect of shrinkage, the value of G
continues to decrease at a slower rate than in segment
AB. Hence, in segment BC, the value of k1 evaluated

Fig. 11—Effect of shrinkage on primary dendrite arm spacing during Al-3 wt pct Si upward solidification for cases S2 (with shrinkage) and S3
(without shrinkage). (a) k1 as a function of the cooling rate (K/s); present numerical results imposed on Fig. 10 in Peres et al.[21] (b) k1 as a func-
tion of y (mm).
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Figure 1.27: Effect of shrinkage on dendrite arm spacing (λ1) in upward solidification.
(a) function of interface cooling rate (G.V )(◦C/Sec) and (b) function of position y
(mm)(Wang H., 2011). Note that ref. (21) refers to (Peres M.D., 2004) in this thesis.

et al. (Haxhimali T., 2006). Experimental and numerical investigations of non-

axially growing dendrites in cubic materials, where the imposed thermal gradient was

misaligned with respect to the main axes of the crystalline structure, offered insight

into the effect that competing preferred growth directions have on the orientation

that dendrites eventually select (Grugel R.N., 1989; Trivedi R., 1991; Borisov A.G.,

1991; Oswald P., 1993; Okada T., 1996; Akamatsu S., 1995, 1997, 1998; He G., 1998;

Utter B., 2001, 2002, 2005; Provatas N., 2003; Deschamps J., 2008). The studies

revealed that in the absence of anisotropy or along the directions with a very small

anisotropy or when two types of anisotropy at different directions compete with each

other at comparable levels, another type of microstructure known as ”seaweed” forms

where no distinct growth direction can be defined.
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The interplay between the directions of thermal gradient and the minimum stiff-

ness influences the growth direction and morphology of the primary branches in direc-

tional solidification of alloys (Utter B., 2001; Provatas N., 2003; Akamatsu S., 1997)

such that for a given surface energy anisotropy operating at a specific angle with

respect to the heat flow, increasing the thermal gradient favours the growth in the

heat flow direction, once the pulling speed is kept constant. However, as the interface

velocity decreases, the direction of growth becomes more sensitive to the strength of

the thermal gradient (Provatas N., 2003; Akamatsu S., 1997). A 2D phase field study

by Provatas et al. (Provatas N., 2003) on an organic alloy shows how the strength

of thermal gradient affects the morphology. They imposed a continuously increasing

unidirectional thermal gradients at 45◦ misoriented with respect to the surface energy

and observed a transition from dendrite to seaweed microstructure as shown in figure

1.28. They also offered the following equation to find the temperature gradient at

which the transition occurs. However, since only one growth velocity was explored,

the accuracy of the equation with growth velocity was not validated.

G∗ ≈ Pf

√
(Vpcosθ)/(Dd0[1 + 15ε4cos4θ]) (1.30)

At a constant temperature gradient, as the interface velocity is increased from the

cellular threshold (Mullins and Sekerka velocity (Mullins W.W., 1964)) to the cell-to-

dendrite limit, dendrite arrays favour growth in the direction of a crystal axis, rather

than that of the thermal gradient (Trivedi R., 1991; Borisov A.G., 1991; Oswald P.,

1993; Okada T., 1996; Akamatsu S., 1995, 1997, 1998; He G., 1998; Deschamps J.,

2008). Deschamps et al. (Deschamps J., 2008) conducted a series of directional
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G 

Figure 1.28: Directional solidification of an organic alloy with surface stiffness mini-
mized at 45◦ with respect to the thermal gradient leading to a dendritic microstruc-
ture at lower thermal gradient strengths (left) and a seaweed microstructure as the
temperature gradient is continuously increased (right).(Provatas N., 2003)

solidification experiments and varied the tilt direction and growth velocity within

the same order as the cell-to-dendrite transition limit. Their results presented in

figure 1.29 show that at a fixed temperature gradient and disorientation angle, as

the growth velocity is increased, dendrites tend to grow in the crystal anisotropy

direction. Also, close to cellular threshold limit, increasing the tilt angle results

in the formation of a seaweed microstructure, while at higher velocities (dendritic

regime), the microstructure remains dendritic, and the secondary arms become more

important.

The many types of possible microstructures together with the influence of the

competing operating anisotropies on mechanical properties of the alloy make mor-

phological transition an important topic in materials science. There is evidence that

even in the dendrite regime the primary dendrite arm/cellular spacing is strongly
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Figure 1.29: Directional solidification experiments of an organic alloy where the direc-
tion of surface energy (a) differs from that of the thermal gradient (G). As the velocity
is increased towards the right, a dendritic microstructure in the direction of minimum
surface stiffness is favoured. The effect of the tilt angle on the microstructure is more
significant at lower growth rates.(Deschamps J., 2008)

46



P.hD. Thesis - Morteza Amoorezaei McMaster - Materials Science and Engineering

affected by the relative direction of the imposed thermal gradient and preferred crys-

talline orientation, even for the same growth velocity, temperature gradient strength

and composition (Grugel R.N., 1989; He G., 1998; Borisov A.G., 1991; Trivedi R.,

1991). There is also evidence that the distribution of interdendritic phases could be

greatly influenced by the misorientation angle as secondary dendrite arms start to

overtake the primary ones (Grugel R.N., 1989). Both these effects are very crucial in

establishment of the final mechanical properties of an as-cast alloy and thus need to

be studied in depth.
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Chapter 2

Methods

2.1 Experimental procedure

My experimental work has mainly been done on an Al-0.34wt%Cu alloy provided by

Novelis in Kingston and an Mg-0.5Al alloy provided by Dr. Pekguleryuz’s magnesium

laboratory in McGill University. The binary phase diagrams of Al-Cu and Al-Mg

alloys are given in Figure 2.1.

The set-up originally applied for my solidification experiments was basically a

tapered ceramic crucible with a thin copper plate attached to the bottom being

water-cooled from below. Compared to metallic crucibles, ceramic crucibles loose

heat much more slowly. Thus, a ceramic crucible maintains its initial temperature

for a longer time. However, since the melt gets colder during solidification and the

wall remains hot, it may lead to a temperature gradient in the direction normal

to the growth direction from the wall to the center. That is the reason why the

crucible was made tapered. The tapered shape of the crucible increases the distance

between the wall and the center as the solidification front moves upward. But, in the
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Figure 2.1: Al-Cu and Al-Mg binary phase diagrams (ASM-Handbook, 1992).
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case that the chilling surface diameter is large enough to compensate for this radial

temperature gradient (e.g. a metallic crucible) this taper is not required. A thin

copper plate had also been selected to ensure that the heat flow inside the copper

plate only occurs in the vertical direction and only 1 −D heat transfer occurs. The

reason for upward solidification is to minimize convection through the melt. In case

of downward solidification, hot melt is below the cold melt. Due to the fact that the

hot melt tends to move up and replace the cold melt, a significant convection flow

may occur, which influences the spacing.

The main drawback of this design is that since there is a difference in the thermal

expansion of the ceramic paste and copper plate, while preheating the crucible some

cracks form at the ceramic paste. These cracks, formed during the Waterjet cooling,

make an easy path for water to go through the melt and destroy the microstructure,

i.e. dendrite arms. Another problem with this set up regards the fact that the dendrite

arm spacing, particularly in unsteady state solidification, is history dependent and

by changing the copper plate for each experiment, different initial conditions are

obtained, which increases the number of variables and may conflict with the other

parameters affecting the dendrite arm spacing.

In light of the above problems, and after consulting with the author of some

recent cited papers (Rocha O.L., 2003b,a; Peres M.D., 2004; Cante M.V., 2008;

Quaresma J.M.V., 2000; Cruz K.S., 2008), I decided to exploit a metallic crucible.

Specifically, it consists of a cylindrical stainless steel crucible that is water jet or gas

(air and helium) cooled from below to promote upward solidification. The crucible

is shielded by a cylindrical alumina insulation with a thickness of about 10 mm to

prevent radial heat extraction. The top of the crucible is also covered by insulation
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and only a slot is embedded in the insulation cap through which thermocouples pass.

The inner, outer and bottom parts of the crucible were covered with a thin layer of

sprayed boron nitride in order to reduce the heat extraction through the walls as

well as providing a more uniform chilling surface at the bottom. The pressure of the

spray was chosen high to prevent the formation of bubbles at the water-chilling wall

interface due to the local vaporization. For directional casting of Mg-Al alloys, the

entire procedure was carried out in a protective environment of CO2SF6 − 0.5% gas

to prevent explosion. An illustration of the experimental set-up is given in figure 2.2.

The real set-up is shown in Figure 2.3. Depending on the coolant type, pressure of

the cooling medium, and the front position relative to the chill wall, a wide range of

growth velocities and temperature gradients are obtained.

To reveal the microstructure, the specimens are cut in longitudinal and transverse

sections and polished down to 0.05 µm. The Al-Cu samples are etched in a solution

of 10%NaOH −Water for about 2 minutes and the Mg-Al samples are etched in a

solution of 20-ml Water, 20-ml acetic acid, 60-ml ethylene glycol and 1-ml HNO3

(Pettersen K., 1990) for about 5 minutes. The microstructure was then imaged under

a light microscope.

The temperature is measured at different heights from the bottom with K-type

nickel-chromium based sheathed thermocouples that are tightened along a plate and

are inserted into the melt through the top of the crucible as shown in figure 2.2.

The diameter of the chilling surface is set to 50 mm (i.e. the bottom plate) and

the thickness of the chilling surface to 3.5 mm. The large chilling diameter helps to

reduce the influence of the thermocouples’ diameter, about 1 mm, on the solidification

process (Garcia, 2009). A set of thermocouples were aligned in the axial (vertical)
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Figure 2.2: Schematic drawing of the crucible being utilized in the experiments.
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Figure 2.3: The set-up being utilized to collect the temperature data of unidirectional
solidification of alloys.

direction starting at 1 mm away from the chilling surface and separated from each

other by 1 mm. In order to ascertain the one dimensionality of the heat flow in the

vertical direction, an additional thermocouple was positioned 12 mm radially from

the aligned thermocouples.

The output from the thermocouples is acquired through a NI SCXI-1600 data

logger and the calibration of which was set at the melting point of pure aluminum

and pure zinc. Before pouring the melt into the crucible, the crucible along with the

surrounding insulation and the alloy were heated in the same furnace to a temperature

of 1.1 times the liquidus temperature of the alloy, to compensate for the heat loss

during the experiment (Rocha O.L., 2003a).

The height of the melt is around 60 mm of which only the first 20 mm is utilized

to study the dendritic microstructure (corresponding to strip casting dimensions) and
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the rest acts as the heat reservoir.

The cooling curves obtained from the thermocouples define a region of radially

uniform temperature that varies essentially in the growth direction (vertical). This

region is referred to as our region of interest. Outside this region, there is a small

temperature gradient towards the wall such that the unidirectional heat flow breaks

down. Far from the bottom chilling plate, outside the region of interest, the solidi-

fication microstructure mostly consists of equiaxed dendrites. Within our region of

interest the solidification microstructure is columnar in nature (i.e. oriented cells or

dendrites). We disregard any data outside our region of interest. As will be shown

below, the grains examined within the region of interest are large enough in the direc-

tion transverse to the heat flow to disregard boundary effects. Only data from grains

with transverse size larger than 1 mm are reported here. In each sample solidified,

three different directionally solidified grains emanating from the chill surface were

analyzed for reproducibility and to provide the statistical error bars we report in our

results.

The K-type nickel-chromium based sheathed thermocouples exploited in the ex-

periments are of higher performance compared to other types. The thermocouple

junction can be either exposed or unexposed. The applied thermocouples are unex-

posed to allow multiple usage. There are two different types of unexposed junctions,

grounded and ungrounded as shown in Figure 2.4. Grounded probes offer faster re-

sponse times than ungrounded probe, but the susceptibility of grounded probes to

ground loops and electrical loops is higher. The response times of grounded and

ungrounded probes are very close to each other (around 0.25 sec) for thermocouple

sizes below 0.062” which is the range that is used in my experiments. Therefore,
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an ungrounded junction was selected to measure the temperatures of different posi-

tions. The tolerance value of 2.2 ◦C or 0.75% (whatever is greater) for all K-type

thermocouples has been quoted by the supplier (OMEGA).

PhD Proposal- M. Amoorezaei   McMaster- Materials Science and Engineering 
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Fig. 3-6- Three different thermocouple junctions [64]. 

 

    Considering fig. 3-7 [64], one can figure out that the response times of grounded and 

ungrounded probes are very close to each other (around 0.25 sec) for thermocouple sizes 

below 0.062” which is the range that is used in my experiment. Therefore, an ungrounded 

junction was selected to measure the temperatures of different positions. 

 

Grounded probe 

Ungrounded probe 

Exposed probe 

Figure 2.4: Three different thermocouple junctions (www.omega.ca).

It has been suggested that to collect temperature data, the frequency of data

acquisition be at least ten times faster than the response time of the thermocouples

to assure that all the critical points have been collected. For instance, if the response

time of the thermocouple is around four data per second, the frequency of data

collection need to be at least 40 Hz, i.e. forty data per second would be collected.

To calibrate the thermocouples, at least three reference points need to be consid-

ered. The reference point can be the melting point of a pure material or the eutectic

point of a eutectic alloy which melts at a unique temperature rather than a range

of temperatures. In my experiments, I used pure aluminum, pure zinc and also the

eutectic alloy Al − 33wt%Cu which melt at 660.43 ◦C, 419.58 ◦C and 548 ◦C re-

spectively. I also tried to calibrate my thermocouples using boiling water, but the

temperature data obtained exhibited fluctuations around the boiling point of water
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(100 ◦C) of about 5 degrees, which was most likely because of air pressure and bobbles

effects.

Figure 2.5: The thermocouple calibration procedure applying an induction furnace.

To obtain the first point, around 250 gr of pure aluminum was melted into a

graphite crucible by applying an induction furnace. Upon melting the entire alu-

minum sample, the induction furnace was switched off and the thermocouple was

inserted into the melt. At the melting point, the slope of the cooling curve changes

and this point can be determined by drawing the dT/dt vs. t (derivative of tem-

perature with respect to time vs. time). To make sure that equilibrium cooling is

obtained, the surrounding of the graphite crucible was covered by insulation. The

same procedure was done for pure zinc and Al-33wt%Cu. Figure 2.5 illustrates the

thermocouple calibration procedure utilizing an induction furnace.

As the result of the above experiment, three values were obtained for the melting
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point of pure aluminum, pure zinc and the eutectic point of Al−33wt%Cu. Utilizing

these points, one can construct a polynomial from between the points of the form,

y = ax2 + bx + c (different functions may also be used), where y represents the

theoretical temperature and x the experimentally measured temperature. Thus, data

obtained for that thermocouple can be inserted to the equation (the x-value) yielding

a y-value that can be treated as the real value of the measured temperature. Figure

2.6 indicates the method of thermocouple calibration by constructing a polynomial

equation from between the three data points.

!Figure 2.6: Method of thermocouples calibration by constructing a polynomial equa-
tion from between the three data points.

The typical temperature profiles collected from the first six thermocouples are

shown in Figure 2.7.

To determine the cooling rate during solidification, we use the cooling curves
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Figure 2.7: Typical temperature profiles collected from the centrally aligned thermo-
couples before calibration obtained in an air cooling experiment. Thermocouples are
located 1 mm apart from each other starting at 1 mm above the chilling wall.

obtained by thermocouples at different y-positions (see figure 2.2) along the center

of the crucible (i.e. on a straight line at the center). First, the solid/liquid interface

velocity and the temperature gradient at solid/liquid interface are determined. For

this purpose, the time and temperature at which the change in the slope of the cooling

curves happens is measured. To obtain this time and temperature, the derivative of

temperature with respect to time (dT/dt) is calculated. The position at which a sharp

change in dT/dt vs. time occurs indicates the time at which the solidification front

passes the corresponding thermocouple (figure 2.8).

From the cooling curve in figure 2.8, the liquidus temperature can also be read by

considering the abrupt change of the derivative curve. Repeating the same procedure

for the other thermocouples on the central straight line, the time that the interface

has passed the other thermocouples can be determined. Since the thermocouples are
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Figure 2.8: A typical cooling curve (red curve) and its derivative (black curve) being
applied to determine the cooling rate.

located at equally pre-set locations, the mean velocity of interface between thermo-

couples is calculated by dividing the thermocouples distance by the time intervals.

The one-sided temperature gradient at the solid/liquid interface may also be calcu-

lated by the ratio of temperature difference to the distance between thermocouples at

the time at which the interface passes a thermocouple. The product GV represents

the cooling rate. A typical calculated interface velocity and temperature gradient

from direct thermocouple measurements of Al-Cu is given in figure 2.9.

A typical longitudinal and transverse dendritic structures obtained from direc-

tional solidification of Al-0.34wt%Cu alloy are shown in figure 2.10. The top image

portrays nearly parallel dendrites growing opposite to the heat flow direction. To

measure the interdendritic spacing, only the grains larger than 1 mm in diameter are

selected (this is justified below).
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Figure 2.9: Effective front velocity and temperature gradient obtained from direct
thermocouple measurements of Al-Cu, and the corresponding fitting curves.

Figure 2.10: Longitudinal (top) and transverse (bottom) cross sections of dendritic
microstructure obtained in directional solidification of Al − 0.34wt%Cu alloy.
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2.2 Power spectral analysis

To measure dendrite arm spacing in extended dendrite arrays, we apply power spectral

analysis . The original idea of power spectral analysis is extracting the frequencies

of a given signal and highlighting the significance of each frequency. For example,

considering the sine wave in figure 2.11-a if the power spectrum versus wavelength is

plotted, (b), the obtained peak denotes that a main average wavelength exists, which

dominates the signal. In case of the other signal, (c), two peaks appear indicating

the existence of two important wavelengths in the given signal.
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Figure 2.11: Power spectrum vs. wavelength for two typical signals extracting their
component frequencies.

The power spectrum utilizes the principles of Fourier transformation to extract

the component frequencies. The Fourier transformation of a function f(x) can be

expressed as:
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Since the solute concentration along the dendrites is not a continuous function

and exists as digitized pixels that are at a certain distance from each other, we have

to apply discrete Fourier transformation instead, given by

F̂k =
∑
xi

C(xi)e
−ikxi (2.4)

where Fk is the discrete Fourier transform, C(x) is the discrete function and k is

the wave frequency. Power spectrum is defined as the magnitude square of Fk.

Figure 2.12 shows the longitudinal morphology of the dendrite microstructure cut

out from a grain in one of our samples. The microstructure appears cellular in nature,

while there is some evidence of side branching on the right of the figure, indicating

the emergence of dendritic fingers. The microstructural length scale in the direction

transverse to that of the heat flow (right to left in the figure) was analyzed statistically

at different distances from the chilling surface using power spectral analysis. A typical

power spectrum is shown in the bottom frame of figure 2.12. The x-axis of the power

spectrum denotes the frequency of the corresponding wave vector. The main peak is

associated to the primary dendrite spacing and is consistent with what is obtained
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by the ASTM line intersection method. The smaller frequency peaks correspond to

fluctuations of primary variations away from the average, as well as smaller features

such as tip splitting and pixelation. The long wavelength variations correspond to

feature variations larger than the mean, including finite size effects. We disregard

wavelengths corresponding to such finite size effects in our analysis.

Figure 2.12: (Top) cutaway of the longitudinal solidification microstructure, growing
from left to right. (Bottom) Unidimensional power spectrum of a transverse cut
extracted from the longitudinal microstructure at a position 13mm from the chilling
surface.

Also, shown in figure 2.13 is the 1 − D power spectral analysis applied on a

typical dendritic array obtained from phase field simulation. The position of the

peak corresponds to the dominant wavelength. A very sharp peak indicates that there

is only one dominant wavelength in the system whereas a broad peak represents a

distribution of available wavelengths.

Another method applicable to two-dimensional images developed in 2D by Kuch-

nio et. al (Kuchnio P., 2008) is demonstrated in figure 2.14. The method generalizes

that used by Greenwood et. al (Greenwood, 2004) by using a two-dimensional Fourier
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Figure 2.13: Top two frames show the interface shape of a portion of a typical dendritic
array. Grid lines map out the structure of the adaptive mesh. The bottom frame
shows the corresponding power spectrum of the interface.
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transform. The picture at the left illustrates a typical image of the corresponding

transverse microstructure, cut away from a grain at distance 16 mm from the chilling

surface, whereas the right side graph shows the length scale as a function of angle

for the same picture. The origin has been selected to locate the center. The main

drawback of this method is that it precludes the very important information about

the distribution of available wavelengths present in the image and only maps out the

average value in each direction.

Figure 2.14: (Left) Transverse dendritic microstructure at roughly 16 mm from the
chilling wall. (Right) polar plot indicating average length scale versus orientation
which treats the centre of the image as the origin of the measurement.

In order to obtain the wavelength distribution at different angles, a new 2D power

spectrum analysis was developed (Amoorezaei M., 2010) which provides more infor-

mation about the microstructure than the method developed by Kuchnio et al. Figure

2.15 shows the 2D power spectrum averaged over three grains at the same position

as the one in the top frame (16 mm above the chill wall). The power spectrum
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was then circularly averaged about the origin, leading to an effective 1D power spec-

trum, represented in the bottom right frame. Since the transverse microstructure

is essentially isotropic, the position of the radial peaks does not shift after averag-

ing. We applied this method to analyze our experimental data as closely as possible

to the way we analyze our 2D simulations. Here, the measure of dendrite spac-

ing is defined as λ ≡
∑

k kf(k) where f(k) is a probability density of finding fea-

tures between the wavevector k → k + dk, and is related to the power spectrum

by f(k) = P (k)/
∑

k P (k). In the analysis, the first nine wavevectors of the power

spectrum were discarded as these were noted to correspond to features on the scale

of the system size.

2.3 Phase field model

Phase field theory has emerged in recent years as promising candidate of a funda-

mental and self-consistent theory for modeling solidification microstructures. The

first simulations to test spacing versus pulling speed in alloys date back to the work

of Warren and Boettinger (Boettinger W.J., 1999), who found a monotonic band

of spacings versus pulling speed. The small system size used, however, precluded a

quantitative comparison with experiments. Nowadays the phase field methodology

has become more quantitative by “marrying” simulations of phase field models in the

so-called thin interface limit (Karma, 2001; Echebarria B., 2004) with novel simula-

tion techniques like adaptive mesh refinement (Provatas N., 1998; Athreya B.P., 2007;

Ofori-Opoku N., 2010). A first step using phase field models to quantitatively model

spacing in directional solidification was taken by Greenwood et. al (Greenwood M.,

2004) in 2D and Dantzig and co-workers in 3D (Provatas N., 2005). These works
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Figure 2.15: (Top) Typical cross section of transverse dendrite microstructure. (Bot-
tom left) Averaged 2D power spectrum averaged over three grains cut at the same
transverse position as the grain in the top frame. The red curve corresponds to the
mean wavelength obtained from the bottom right plot. (Bottom right) Circularly
averaged power spectrum corresponding to the 2D power spectrum in the bottom
left frame.
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modeled steady state directional solidification in SCN alloys and found very good

agreement (in the 2D limit) with the 2D steady state spacing experiments. These

studies suggested that, at least under steady state (i.e. Bridgman growth) conditions

and one type of initial condition (morphologically noisy initial interface), there could

be a single crossover scaling function interpolating between the two power-law spacing

regimes seen experimentally and modeled semi-empirically by geometrical models.

Despite the success of phase field modeling in predicting steady state spacing, as

well as other steady state properties such as cell tip structure (Gurevich S., 2010b),

the methodology has not been used systematically to explore spacing under tran-

sient solidification conditions. Indeed the ability to model cell, dendrite and seaweed

structure, kinetic and surface tension anisotropy, different mobility, different thermal

conditions and different initial condition makes phase field modeling an ideal theo-

retical test ground to explore transient spacing development and how it may relate

to the steady structures.

This work used phase field simulations to model solidification of the Al-Cu and Mg-

Al alloy systems in the dilute limit of the phase diagram, which comprises straight

solidus and liquidus lines of slopes of m/k and m, respectively. The equilibrium

interface concentration jump at any temperature is thus given by partition relation

cs = kcl, where cs (cl) is the molar concentration of impurities at the solid (liquid)

side of the interface, and k is the partition coefficient.

Simulations formally neglected the latent heat by imposing the temperature field

by the form T (z, t) = T0 +G(t)(z− z0−
∫ t

0
Vp(t

′)dt′), where T (z0, 0) = T0, a reference

temperature, while G(t) and Vp(t) are the local thermal gradient and pulling speed,

respectively. Since convection in the liquid does not significantly affect the final
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spacing in upward directional solidification (Wang H., 2011), it is neglected. Under

these assumptions, mass conservation across the interface takes the form:

cl(1− k)vn = −D(∂nc|l − ∂nc|s) (2.5)

where D is the solute diffusion coefficient in the liquid and ∂n|l (∂nc|s) is the partial

derivative in the direction normal to the interface, taken on the liquid(solid) side. The

temperature at the interface, which is assumed to be in local equilibrium, is given by

the Gibbs-Thomson relation:

T = Tm − |m|cl − Γκ− vn/µk (2.6)

where Tm is the melting temperature of the pure material, Γ = γTm/L is the Gibbs-

Thomson coefficient, γ is the interfacial free energy, L the latent heat of fusion per

volume, κ is the interface curvature, vn is the normal interface velocity and µk is the

atomic mobility at the interface.

For cubic systems such as Al-Cu, the underlying crystalline structure that defines

the anisotropy of surface tension (or interface mobility) is modelled by through a

commonly used fourfold symmetry anisotropy function a(n̂) = 1−3ε+4ε(n̂4
x+n̂4

y+n̂4
z),

where ε is the anisotropy strength and n̂ is the unit normal at the the interface. In

two dimensions this function can be re-written as a(θ) = 1 + εcos(4θ), where θ is the

angle between the normal direction to the interface and an underlying crystalline axis

(e.g < 100 > in a cubic crystal).
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For hexagonal systems such as Mg-Al, the anisotropy function a(n̂) ≡ a(θ) =

1 + ε0 + ε6cos[6(θ − θ0] is defined to represent the sixfold crystal symmetry of the

hcp structure in the basal plane, where θ is the angle between the normal to the

interface and an underlying crystalline axis in the < 112̄0 > direction (in the basal

plane) and θ0 is the angle between the direction of heat extraction and the crys-

talline axis. This anisotropy function is the projection in the basal plane of the

spherical harmonics expression representing the space group of the hcp crystal lat-

tice: γ(θ, φ) = γ0(1+ε20y20(θ, φ)+ε40y40(θ, φ)+ε60y60(θ, φ)+ε66y66(θ, φ)+ · · · ) where

ε20, ε40, ε60 and ε66 are constant coefficients weighting the contribution of each of the

spherical harmonic functions:

y20(θ, φ) =
√

5/16π[3cos2(θ)− 1]

y40(θ, φ) = 3/(16
√

π)[35cos4(θ)− 30cos2(θ) + 3]

y60(θ, φ) =
√

13/(32
√

π)[231cos6(θ)− 315cos4(θ)

+ 105cos2(θ)− 5]

y66(θ, φ) =

√
6006/64

√
π[sin6(θ)cos(φ)] (2.7)

while θ and φ are the inclination (or elevation) and azimuth spherical coordinate

angles, respectively. The 2D surface energy anisotropy function projected in the basal

plane is obtained by substituting θ = π
2
, ε20 = −0.026 and ε66 = 0.003 (Sun D.Y.,

2006). The contributions of ε40 and ε60 can be neglected (Sun D.Y., 2006). We then

obtain γ(φ) = 1.008+0.002 cos(6φ). The stiffness anisotropy function a(φ) is defined

by
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a(φ) =
(
γ(φ) +

∂2γ(φ)

∂φ2

)
/γ0 = 1 + ε0 − ε6 cos(6φ);

ε0 = 0.008, ε6 = 0.07 (2.8)

Taking as reference the concentration on the liquid side of the solid/liquid inter-

face, c0
l = c0/k (where c0 is the average alloy concentration), the following standard

one-sided sharp interface directional solidification kinetics are modelled:

∂tc = D∇2c− ~∇ ·~jc (2.9)

cl(1− k)vn = −D(∂nc|l − ζ∂nc|s) + n̂ ·~jc (2.10)

cl/c
0
l = 1− (1− k)κd0a(θ)

−(1− k)

(
z −

∫ t

0

Vp(t
′)dt′

)
/lT − (1− k)β′vn (2.11)

where d0 = Γ/∆T0 is the solutal capillary length, Γ is the Gibbs Thomson coefficient,

∆T0 = |m|(1 − k)c0
l the freezing range, lT = ∆T0/G the thermal length, ζ the dif-

fusivity of solute in the solid over that in the liquid, κ the interface curvature, and

β′ = β/∆T0 = 1/(µk∆T0) the kinetic coefficient. The anisotropy function a(θ) makes

the interface stiffness dependent on the orientation through the anisotropy strength

and misorientation angle from the crystal axis, imposing minimum stiffness at the

main crystal axes directions.

In order to promote sidebranching realistically, thermal noise-induced concentra-

tion fluctuations are included in the liquid by following Ehebarria et al. (Echebar-

ria B., 2010) and introducing the current ~jc, whose components are random variables
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obeying a Gaussian distribution with variance

< jm
c (~r, t)jn

c (~r′, t′) >= 2DFcδmnδ(~r − ~r′)δ(t− t′). (2.12)

where the magnitude Fc is determined through the fluctuation-dissipation relation

< (δc)2 >=
c

(NA/v0)∆V
=

Fc

∆V
, (2.13)

and < (δc)2 > is the equilibrium average of the square of the departure of the con-

centration from its equilibrium value in a microscopically large but macroscopically

small volume ∆V . The first equality in Eq. (2.13) follows from the standard relation

< (δn)2 >= n, where n is the number of solute atoms in the small volume ∆V ,

while using the definition c = n/N and that the number of solvent atoms in the same

volume is N = ∆V NA/v0, where NA is Avogadro’s number and v0 is molar volume

of solvent atoms. The second equality (right-hand-side) of Eq. (2.13) is obtained by

computing < (δc)2 > directly from the sharp-interface equations (2.9-2.11). By the

procedure outlined in ref. (Karma, 1993) this incorporation of noise can be shown to

yield the appropriate equilibrium interface fluctuation spectrum in the sharp-interface

limit.

The phase-field model employed to emulate eqs. 2.9 - 2.11 is designed for quan-

titative simulations through the use of a thin interface analysis developed by Karma

and co-workers (Karma, 2001; Echebarria B., 2004). This analysis makes it possible

to emulate a specified capillary length and kinetic coefficient to second order accuracy

in the ratio of the interface width to capillary length. The details of this model have

been presented and discussed at length in refs. (Karma, 2001; Echebarria B., 2004)
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and thus only a brief description is included below. A general review of the phase-field

method can be found in (Boettinger W.J., 2002; Provatas N., 2005, 2010).

A scalar phase field parameter φ is employed, which takes on a constant value

in each phase and varies sharply but smoothly across a diffuse interface. The phase

field is used to interpolate the free energy density and mobility between the bulk

phases. Its equation of motion guarantees the system evolves towards a minimum

of the free energy of the system. We define a phase-field variable which takes the

value φ = 1(φ = −1) in the solid (liquid). The concentration c(~x, t) is characterized

through a generalization of the field Ũ = (c − c0
l )/(c

0
l (1 − k)), which represents the

local supersaturation with respect to the point (c0
l , T0), measured in units of the

equilibrium concentration gap at temperature T0. This generalized supersaturation

field is given by

U =
1

1− k

( c/c0
l

(1− φ)/2 + k(1 + φ)/2
− 1

)
(2.14)

In term of the fields c, φ and U , the phase-field model referred to above is given by

τ(n̂)
(
1− (1− k)

(z − zint)

lT

)∂φ

∂t
= w2

0
~∇

[
a(n̂)2~∇φ

]
+φ− φ3 − λ(1− φ2)2

(
U +

z − zint

lT

)
(2.15)(1 + k

2
− 1− k

2
φ
)∂U

∂t
= ~∇

[
q(φ)D~∇U

−αw0

(
1 + (1− k)U

)
n̂

∂φ

∂t

]
+

(1 + (1− k)U

2

)∂φ

∂t
− ~∇ · ~Ju (2.16)
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where zint ≡
∫ t

0
Vp dt′ is the interface position, n̂ ≡ −(~∇φ)/(|~∇φ|) defines the unit

vector normal to the interface, τ(n̂) = τ0·a2(n̂) is the phase-field orientation dependent

relaxation time. a(n̂) = 1 − 3ε + 4ε[(∂xφ)4 + (∂zφ)4] and a(n̂) ≡ a(θ) = 1 + ε0 −

ε6cos[6(θ−θ0] impose fourfold and sixfold anisotropies in two dimensions, respectively.

θ is the angle between the normal to the interface and an underlying crystalline axis,

taken to coincide with the direction of the thermal gradient in Al-Cu simulations. For

Mg-Al simulations, the misorientation angle between the thermal gradient direction

and crystalline axis was set at θ0 = π/6, the maximum misorietation for hexagonal

dendrites growing on the basal plane in the (< 112̄0 >) direction. The function

q(φ) = (1−φ)/2 dictates how the diffusivity varies across the interface. The interface

thickness is given by w0 while λ is treated as numerical convergence parameter of the

model.

The fluctuating current ~Ju obeys the correlation

< Jm
u (~r, t)Jn

u (~r′, t′) >= 2Dq(φ)Fuδmnδ(~r − ~r′)δ(t− t′), (2.17)

and depends explicitly on the phase-field φ via the solute diffusivity Dq(φ). The

magnitude Fu = F 0
u [1 + (1− k)U ] is defined by the relation

< (δU)2 >=
< (δc)2 >

(∆c0)2
≡ Fu

∆V
. (2.18)

and the constant noise magnitude

F 0
u =

kv0

(1− k)2NAc0

(2.19)

is the value of Fu for a reference planar interface at temperature T0 (U = 0), while
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∆c0 = c0
l (1 − k) = c0(1/k − 1) is the concentration jump across the reference solid-

liquid interface at temperature T0.

|m| (K/wt%) c0 (wt%) k D (µm2/s) Γ (K · µm) ε
3.00 0.34 0.15 3400 0.10 0.02

Table 2.1: Material parameters defining the AlCu system. m is the liquidus slope,
c0 the alloy composition, k the partition coefficient, D the diffusivity of impurities in
the liquid, Γ the Gibbs-Thomson constant and ε the anisotropy strength.

|m| (K/wt%) c0 (wt%) k D (µm2/s) ζ Γ (K · µm) ε0 ε6

5.5 0.5 0.4 1800 10−4 0.62 0.008 0.07

Table 2.2: Material parameters defining the MgAl system. ζ is the diffusivity of solute
in the solid over that in the liquid, ε0 the constant in the projected 2D anisotropy
function and ε6 the anisotropy strength.

The parameters λ, wo and τo can be shown to be inter-related through the thin

interface relations developed in refs. (Karma, 2001; Echebarria B., 2004) to map the

above phase field model onto eqs. 2.9-2.11 . Specifically, once a particular lambda is

chosen, the thin interface relations establish a unique choice of w0 and τ0 such as to

yield the same do and β in simulations. The aim is to choose a rather diffuse value

of w0 in order to expedite numerical efficiency. In this work, we assume the interface

kinetics coefficient β ≈ 0, to lowest order. This ability to quantitatively model the

same materials parameters β and d0 is largely due to the term containing the constant

α in eq. 2.16. The term is called the so-called “antitrapping current”, whose function

is to self-consistently counter the spurious effects of an interface thickness that is

artificially enlarged for practical purposes.
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The phase-field equations were simulated utilizing the adaptive mesh refinement

(AMR) scheme developed by Provatas et al. (Provatas N., 1998; Athreya B.P., 2007;

Ofori-Opoku N., 2010).

The material parameters employed in the phase field simulations corresponding

to the Al-Cu and Mg-Al alloys studied here are presented in tables 2.1 and 2.2.
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Chapter 3

Spacing characterization in

directional solidification of Al-Cu

alloys

This chapter examines spacing selection in Al-Cu alloys. Three different solidification

growth conditions are examined in this work. In the first case, direct thermocouple

data from a unidirectional solidification experiment (Amoorezaei M., 2010) was used

to extract the local thermal gradient across the solid-liquid interface and the effective

front velocity. These were then fitted to provide the functions representing G(t) (local

thermal gradient) and Vp(t) (local solidification speed). The corresponding plots are

shown in figure 2.9. Since the interface is initially positioned at TL (the liquids

temperature), the initial interface velocity is systematically lower than the actual

front velocity, the discrepancy decreasing as the system evolves. In the second case,

the thermal gradient is kept constant while the pulling speed is discretely incremented

over a pre-determined range at varying rates. In the third case, both pulling velocity
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and temperature gradient are kept constant during the simulation. The first two cases

lead to the transient growth conditions while the steady state growth conditions result

from the third type of growth conditions.

In order to systematically study the evolution of interface structure, and, in par-

ticular, the selection of the columnar microstructure spacing, power spectral analysis

is applied on simulated interface profiles using a Fast Fourier transform, as described

in detail before. Figure 3.1 shows an example of a typical sequence of direction-

ally solidified dendrite arms growth under steady state conditions, i.e. a constant

thermal gradient (G = 5 K/mm) and puling speed (Vp = 10 µm/sec). The mean

wavelength associated with the dendrite spacing for the simulations was calculated

from the power spectrum using the same formula as the experiments. It is noted

that the emergence of a split in the main peak of the spectrum at the earlier stage

reveals a long wavelength modulation of the dendrite tips that eventually leads to cell

elimination and the emergence of a new mean spacing.

Figure 3.1: (Left) An example of simulated evolution of a directionally solidified
dendrite array grown under constant velocity and thermal gradient. The interface is
initially morphologically noisy. Distances are in µm. (Right) Power spectrum of the
last recorded interface structure (black line) as well as that of a close earlier time (red
line).
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Figure 3.2 shows a typical spatiotemporal evolution of dendritic microstructures

from the transient dynamic simulations. The morphological evolution has features in

common with the experimental morphology in figure 2.12. Specifically, at early times,

when the velocity is fastest, the morphology is cellular and then starts to exhibit some

kinetically-induced tip-splitting instabilities, giving rise to seaweed structures along

the body of some primary stalks. Note that the kinetically induced tip splitting of

primary tips is short-lived and occurs on length scales smaller than those controlling

primary branch formation. They are thus expected to have only a minor effect on the

evolution of the primary branch spacing, which is the main focus of this study. At

slightly later times, dendritic primary arms with side branches emerge. Even though

the width of the simulation domain was 2.5 mm, it features only small subsections of

the interface to be able to appreciate the details of the interface morphology.

3.1 Finite Size Effects of Grains

In order to avoid boundary effects on the dendrite arm spacing, I study the arm

spacing in as large a single grain as possible. The simulations, on the other hand,

are more time consuming for larger systems. To estimate a convenient grain (or

system) size to use experimentally and theoretically in the spacing selection analysis,

the dependence of dendrite spacing on the system size is studied using phase field

simulations with constant control parameters. Figure 3.3 shows the final steady state

spacing as a function of transverse system size (i.e. grain size) for four different puling

speeds. In all cases, it is started with a morphologically noisy interface.

These results indicate boundary effects become negligible at systems (grain sizes)

larger than about 103 µm, even for the smallest rate of solidification, which leads to the
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Figure 3.2: Dendritic microstructure evolved during the PF simulation utilizing adap-
tive mesh refinement at the positions(a) 600 (b) 1200 (c) 3600 and (d) 11400 microns
from the initial position of the interface, corresponding to TL. Each image is a zoom-in
of the interface and is 65 microns in dimension. The colour represents concentration.
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Figure 3.3: Steady-state spacing versus transverse sample width for different pulling
speeds. The effect of the boundary becomes less prominent as the sample width
increases. G=5 K/mm.

largest spacing. The solidification rates studied experimentally and theoretically in

the transient solidification analysis below are higher than those studied here, making

finite size effects even more negligible in systems of 103 µm or larger.

3.2 Transient growth

3.2.1 Dendrite spacing evolution: experiments

Figure 3.4 shows experimental (black curve) and simulated (red curve) plots of the

transverse dendrite spacing as a function of the front velocity, which varies during

solidification. In the experiments, temperature gradient is coupled with the velocity

and are not independent. The solidification rate is extracted from the cooling curves
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by considering that a thermocouple registers a sharp change in the temperature slope

(with respect to time) when the solidification front passes through it. The exper-

imental spacing shown is that obtained from transverse sections. Analysis of the

longitudinal sections shows the same qualitative behaviour, although the values are

different, as expected. It is recalled that the experimental spacing data is obtained

from different grains of the same experiment.

Figure 3.4: Spacing as a function of velocity obtained experimentally (black curve)
and numerically (red curve). The blue curve corresponds to the relationship obtained
by Hunt et al. (Hunt J.D., 1996) for unsteady state solidification applying the same
growth conditions. Note that G(t) is dynamically changing at each point.

The experimental results in figure 3.4 are consistent with those reported by Losert

et al (Losert W., 1996), as well as with older experiments of Huang et. al (Huang W.,

1993) on succinonitrile. Namely, the spacing exhibits ranges of interface velocity
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where the spacing changes very slowly, between which it changes rapidly. It is note-

worthy that the experimental data does not compare well quantitatively and, espe-

cially, qualitatively with the unsteady state model of Hunt et al. (Hunt J.D., 1996)

as indicated in figure 3.4. Plausible reasons for this will be addressed in section 3.4.

Losert et al associate a rapid change or jump in spacing at a particular velocity

with a period doubling instability, as predicted by Warren and Langer (Warren J.A.,

1990, 1993), citing boundary effects to account for the discrepancy of the jump being

less than a factor of two. For a small number of dendrite branches in a system

such as the one studied by Losert et al, the change in the spacing is sharp, i.e. the

entire system can shift to a new wavelength almost simultaneously. The existence of

such a jump can be associated with overcoming an energy barrier for a wavelength

of a given spacing to become unstable and change (these barriers will be discussed

further in section 3.4. Conversely, for a large system comprising a distribution of

wavelengths, the change in the mean spacing should exhibit a smoother evolution as

not all wavelengths will satisfy the Warren and Langer instability criterion at the

same time (i.e. at the same interface speed). In this work, large systems comprising

tens to hundreds of dendrites are studied and a distribution of wavelengths present

in the system are captured.

To support the above argument, figure 3.5 shows the 2D power spectrum aver-

aged over three grains, and the corresponding circularly averaged power spectrum for

three different velocities in figure 3.4 , namely, one in the lower plateau, one in the

transition region, and one in the higher plateau. The left plots in figure 3.5 indicate

that the system does not contain a single wavelength, but rather a distribution of
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wavelengths centered about the mean. In the transition region, as the velocity de-

creases, some wavelengths will become unstable to period doubling (i.e. overcome the

aforementioned energy barrier associated with that range of wavelengths), while the

rest remain stable. Consequently, the mean spacing, defined as the average of the

wavelengths, by virtue of sampling a distribution of wavelengths, will change gradu-

ally rather than abruptly. This mechanism is also at work during the plateau region.

In that case, the entire distribution of wavelengths is likely to be stable to period

doubling or spacing change, leading to a constant mean spacing.

3.2.2 Dendrite spacing evolution: simulations

In order to approximate the growth conditions similar to those in the experiments, the

directional solidification simulations included a variable thermal gradient and pulling

speed, the values of which were set by fitting the corresponding curves obtained

from experiments. Of-course, the pulling speed is not the same as the front velocity,

especially under transient effects, since the interface moves within the coexistence

region as growth conditions vary. This discrepancy is largest at the early stages of

the simulation due to the initial conditions.

The two dimensional transient simulation data shown in figure 3.4 (red curve)

show remarkably similar behaviour to the experiments with regards to the step-like

fashion that mean spacing changes with interface velocity. Also, the behaviour of the

entire distribution of wavelengths in the simulated data is analyzed and it is found

that it changes with interface speed analogously to the experimental data in figure

3.5. It is noted that quantitative discrepancies between experiments and numerical

results are to be expected due to the different growth conditions of the simulations
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Figure 3.5: (Top) Transverse cross section of dendritic microstructure at 2500 microns
(top left), 5800 microns (top middle) and 10000 microns (top right) above the chilling
wall. The images below (Left frames) represent the 2D power spectrum averaged over
three grains and (right) corresponding effective 1D power spectrum of the transverse
images at (a) 2500 microns (lower plateau) (b) 5800 microns (transition region) and
(c) 10000 microns (higher plateau) above the chilling wall. The red line in the left
frames represent the mean spacing.
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compared to the experiments and that the simulations are two dimensional. It is also

noted that the initial interface conditions in simulations were different from those in

experiments.

It is also noteworthy that the mean peak of the power spectra of the simulation

data captures the main branch spacing and not the seaweed-like sub-structure evi-

denced in some of the branches of figure 3.2 (as previously discussed). The latter

structures are present at early times and likely arise due to interface kinetics induced

by the high solidification rate. Evidence of these structures also appear in the exper-

imental data. Such tip splitting instabilities may, in fact, play a role in establishing

the initial interface conditions close to the chill wall in the experiments. To illustrate

their emergence experimentally, a sample at very low rate is cooled for a short period

of time an then increased the cooling rate abruptly. The resulting microstructure

is shown in figure 3.6. At low cooling rates, where the microstructure is larger, the

microstructure comprises cellular branches. As cooling rate is increased, it is clear

that some of the new initial, finer spaced branches that emerge, come about through

tip splitting.

Ramping the rate of pulling speed

Experimental studies of the history dependence of primary spacing have focused on

ramping the pulling speed slowly enough that the system is assumed to reach a steady-

state in between each ramping step of the velocity (Lin X., 1999; Losert W., 1996).

As an intermediate between this behaviour and that studied experimentally (section

3.2.1), a scenario whereby the pulling speed is ramped in discrete steps between
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Figure 3.6: Cast Al-Cu alloy showcasing the sharp change in morphology and spacing
that occurs during a transition from low cooling rate (large-scale structure) to rapid
cooling rate (finer structure).
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Figure 3.7: Spacing evolution versus pulling speed vp, as vp is ramped from 10 µm to
20 µm in N time intervals, as well as continuously at each numerical time step. G =
5 K/mm. The starred data are the mean steady state spacing for the corresponding
pulling speed. Depending on the particular growth conditions, the full width of the
simulation domain, 4 mm, accommodates (in the case of larger spacing) more than
40 dendrite arms.
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10µm/s-20µm/s at different rates is numerically studied. This is achieved by varying

the number (N = 2, 5, 10) and duration of time intervals over which the pulling speed

is kept constant before changing its value. The mean primary spacing is registered at

the end of each interval. The results from these simulations are shown in figure 3.7.

The starred data are obtained by starting from a morphologically noisy interface

pulled at a constant speed of 10 µm/sec until a statistically stable-state is reached,

and then using the last configuration as an initial condition for a simulation with a

constant pulling speed of 20 µm/sec, until a new stable-state is reached. The curves

in figure 3.7 represent simulations starting with the same initial condition, take an

equal total amount of time ttot to obtain, while the pulling speed is increased from

10 µm/sec to 20 µm/sec in N discrete steps such that the nth interval has a constant

pulling speed of vp = 10(1 + n/N) µm/sec and lasts ttot/N seconds. In an additional

case the pulling speed is varied ”continuously”, namely it is ramped at each iteration

in the same way described above, taking N as the total amount of intervals required

for the simulation to last ttot.

It is noteworthy that figures 3.4 and 3.7 exhibit the same qualitative behaviour

for the time evolution of the mean spacing, even though the control parameters in

these two figures cover very different ranges of pulling speed and thermal gradient,

and begin with very different initial conditions. As mentioned above, the general

behaviour is consistent with the theory of Langer and Warren and the experiments

of Losert et. al, and point to that fact that dendritic arrays are stable over extended

ranges of solidification rate, at least under transient conditions.

The transient data of figure 3.7 show that competitive growth between neigh-

bouring cells is negligible during periods where the mean spacing remains roughly
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constant, while it dominates the evolution of the array during the transition between

those states. To explain this, note that the creation of new dendrites, or elimination

of existing ones, due to competitive growth, is not instantaneous but requires some

characteristic time. Even in an ideal periodic array, transitions between stable states

will occur over some time. A distribution of spacings will thus shift its mean value

gradually, which will result in an extended transition period. As the pulling speed

increases, the distribution of primary spacings remains roughly unchanged, until a

critical velocity is exceeded. At this point wavelengths in the distribution larger than

some maximum value become most unstable to competitive growth and tip splitting

and cell re-adjustment occurs. The weight of the spacing distribution thus shifts to-

ward a smaller mean spacing (i.e. higher frequency). This is illustrated in figure 3.8.

During discrete increments in the pulling speed, it is expected that entire ranges of

spacings will be affected at each step.
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Figure 3.8: Shift of the main peak of the power spectra of a dendritic array as vp is
increased from a lower (black) to higher (red) value of vp. It is evident that larger
wavelengths in the early time shift to shorter wavelengths at later time, when vp is
increased. These power spectra correspond to the transition period during the seventh
interval in the simulation with N = 10 ramping steps illustrated in figur 3.7.

As the pulling speed is increased further, shorter wavelengths are affected until

89



P.hD. Thesis - Morteza Amoorezaei McMaster - Materials Science and Engineering

another critical pulling speed is reached when all wavelengths have been affected,

after which the system stabilizes into a new stable state characterized by a smaller

mean spacing. Figure 3.9 shows the power spectra corresponding to two steps of the

last interval in the simulation with N = 10 ramping steps in figure 3.7, exemplifying

the statistical stability of the spacing distribution during the incubation periods.
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Figure 3.9: Power spectra of the dendritic array during two stages of the incubation
period corresponding to the last interval in the simulation with N = 10 ramping steps
illustrated in figure 3.7.

The mechanism discussed above depends on the applicability of the theory of

Warren and Langer to an array with a distribution of primary spacings. In that case,

the critical values of pulling speed are expected to depend in some as yet unknown

way on the rate of change of pulling speed. This proposed mechanism is consistent

with the analytical expressions for the critical values of pulling speed that have been

proposed by Ma (Ma, 2002). Unfortunately, in the spirit of most geometrical theories,

these critical values of ref. (Ma, 2002) depend on heuristic fitting parameters, while

assuming the creation of new dendrites is only due to tertiary branching. As a result,

these value of critical velocities agree only qualitatively with the simulations.

With regards to thermal gradient, given its stabilizing effect, it is expected that a
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larger thermal gradient would reduce not only the average spacing but also the spread

(in absolute values) of the spacings present in the array. Thus, it would be expected

that a reduction in the duration of the transition periods, and accordingly different

critical values of the pulling speed limiting the transition, not because of a change

in how the pulling speed affects different wavelengths but because less wavelengths

are present in the array. In the same way, it is expected that the initial state of

the system (growth conditions, initial concentration distribution, morphology of the

interface) will affect the values of the critical pulling speeds that limit the transition

periods by influencing the initial spectrum of wavelengths composing the array.

Figure 3.7 suggests that the higher the rate of change of vp (larger N), the shorter-

lived is the unstable growth regime. This may be due to the fact that the shorter the

time between step changes in vp (ttot/N), the longer a particular wavelengths remains

stable against splitting or merging. As a result, a particular vp is eventually attained

where a large number of wavelengths simultaneously become unstable, leading to an

abrupt change in mean spacing. Conversely, the longer the interval between steps

(lower N), the more time each wavelength in the system has to become unstable in

accordance to the current vp. When that is the case, the evolution becomes more

monotonic, and closer to the predictions for steady-state growth (starred data in

figure 3.7).
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3.3 Steady state growth

3.3.1 Initial conditions and history dependence

The accumulated evidence on the history dependence of the morphology of an ex-

tended array under stable growth conditions presents an opportunity to extend our

numerical study of transient growth conditions. Figure 3.10 plots the mean primary

spacing λ1 once a stable state is reached for a constant vp, for different initial inter-

face morphologies. One set of λ1 Vs. vp consist of starting from a morphologically

noisy flat interface, which is the same as the case previously examined by Greenwood

et al. (Greenwood M., 2004). In the other data sets, the initial conditions consist

of an initially sinusoidal interface of wavelength half, equal, and double the value of

the spacing λ1(vp), i.e. the mean spacing of the stable-state reached under random

initial conditions. The results show certain dispersion in the final spacing, but are

nonetheless confined within a narrow band.

The dispersion in figure 3.7 is larger than the band size in figure 3.10 at the same

velocity (see, for example 20 µm/sec). This is because the spacings in figure 3.7

did not have enough time to converge toward the stable band predicted in figure

3.10 . The convergence of the mean spacing, for a fixed vp is illustrated in figure

3.11. If this is a general feature of convergence, it would imply that a large enough

spread in the initial conditions will lead to a mean spacing that asymptotically falls

within a progressively narrowing band of values. When the evolution of the system is

interrupted before reaching convergence, as when ramping the pulling speed or under

transient conditions, the width of the band within which the spacing falls will depend

on the proximity of the (evolving) band to its converged values. The broader the
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Figure 3.10: Primary spacing for different morphologically distinct initial interfaces,
where λ1 approximates the mean spacing registered when starting form a morpho-
logically noisy interface. The other data sets correspond to the spacing reached from
initial interfaces with a sinusoidal perturbation corresponding to the harmonic of λ1

indicated.

distribution of initial states, the longer the system is expected to require to approach

stability.

Further insight into the history dependence and transient evolution of primary

spacing can be found in the sets of simulations summarized in figure 3.12. Each set

corresponds to a series of simulations with (different) constant pulling speed, where

the state reached at the end of a simulation serves as the initial condition for the

next one. The first simulation in each set starts with a flat interface roughened by

adding morphological random noise. In the set connected by black arrows, the first

simulation has a constant pulling speed of vp = 10 µm/sec. Once the system reached

stability, the resulting state served as the initial condition for three simulations with

different constant pulling speeds of vp = 20, 30 and 50 µm/sec. When stability is

reached in each of these cases, each of the resulting stable configurations (vp = 20, 30
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Figure 3.11: Evolution of the spacing when vp = 10 µm/sec, starting from three
different initial cell spacings λinit corresponding to each curve. G = 5 K/mm.

and 50 µm/sec) serves as an initial condition for simulations where the pulling speed

is set (back) to a constant value of vp = 10 µm/sec. The Second and third sets

in figure 3.12, connected by red and green arrows, follow an analogous procedure.

The second set starts with vp = 20 µm/sec, the result of which serves as the initial

condition for simulations with constant pulling speeds of vp = 30 µm/sec and vp =

50 µm/sec, respectively. Each of these results then serves as the initial condition

for two simulations where the pulling speed is set (back) to a constant value of vp =

20 µm/sec. The third set starts at vp = 30 µm/sec, the result of which serves as the

initial condition for simulations with a pulling speed of vp = 50 µm/sec, the result of

which, in turn, serves as the initial condition for simulations where the pulling speed

is set back to vp = 30 µm/sec.

Figure 3.12 exhibits the same qualitative behaviour as figure 3.10, both presenting

an apparent tight band of accessible mean spacings. It is noteworthy that the limits

of the apparent bands in figures 3.10 and 3.12 are very similar since the stable states
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have been reached in both cases. It is also noted that the power-law decay of the mean

dendrite spacing in figure 3.10 corresponds to the power-law branch of the spacing

function developed by Greenwood et al. (Greenwood M., 2004).
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Figure 3.12: Mean spacing registered once the system stabilizes under different con-
stant pulling speeds, for sets of simulations where the stable state reached at the end
of a simulation serves as initial condition for the next one. The first simulation in
each set starts with a flat interface roughened by adding morphological random noise.
G = 5 K/mm.

3.4 Mechanisms for Spacing Plateaus

The existence of plateaus connected by rapid changes in spacing points to a dynamics

in which an energy barrier has to be overcome for the spacing to adapt. Specifically,

for the dendrite branch tip to split, it effectively needs to pass through a flattening

stage in which the tip radius becomes effectively infinite. This lowers the efficiency of
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solute rejection into the liquid since the dendrite tip curvature becomes zero. There-

fore, tip splitting is prevented until a larger local interface velocity is reached. In-

creasing the velocity reduces the diffusion length and shortens the distance over which

solute is rejected. This effect acts to reduce arm spacing. Hence, there will be a com-

petition between the two effects, the first effect keeping the spacing stable until the

driving force provided by second phenomenon is large enough to force dendrites or

cells to split and reduce their spacing. Figure 3.13 schematically represents the stages

of tip splitting.

Figure 3.13: Schematic representation of different stages during the tip splitting mech-
anism. In the flattening stage (b), the undercooling due to the Gibbs Thomson effect
is essentially zero.

This effect of an energy barrier leads to a so-called ”incubation time” used by

Ma to describe the existence of plateaus in transient directional solidification spacing

data of Huang (Huang W., 1993) using a geometrical model of transient solidification

in succinonitrile (Ma, 2002).

An increase in branch spacing via cell elimination occurs when a dendrite is

blocked by either the secondary arms (in low speed solidification) of an adjacent

dendrite or by the main stalk (in high speed solidification) of an adjacent dendrite.
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As shown in figure 3.14, in both cases, the seizing arm grows at an angle with a ve-

locity component perpendicular to the growth direction of the primary arms (which

is the direction of lowest energy, obtained as the product of anisotropy direction and

heat flow direction). Unlike equiaxed growth, in directional solidification the growth

rate of secondary branches is negligible compared to that of the main trunks. Thus,

the seizing mechanism described above is not able to act until diffusion-mediated in-

teractions through the melt become significant. As growth velocity decreases, solute

diffuses a longer distance and if the diffusion length of a dendrite is large enough,

it interacts with adjacent diffusion fields. It is at this point that a jump in system

energy can occur.

Figure 3.14: Cell elimination caused by the neighbouring (a) primary arms or (b)
secondary arms (Losert, 2009) at high and low velocity solidification respectively.

In the case of cell elimination, there is an energy increase due to the growth in

any of the undesired directions and an energy decrease for changes that increase the

distance between dendrites (i.e. characterized by non-interacting diffusion fields).
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These two phenomena dynamically compete, with the spacing change eventually de-

termined by the dominant effect, where the former effect acts as a barrier against the

change in the spacing and the latter provides the driving force for cell elimination.

It is also plausible that over a small range of cooling conditions (i.e. solidification

rate, temperature gradient) these effects may balance each other, causing the spac-

ing not to change very much, at least over some long-lived transient time (i.e. the

plateau regions in the data). Furthermore, the farther from steady state spacing the

initial condition of the system, the higher the energy and the larger the driving force

required for the system to perform branch elimination. Thus, it is possible that dif-

ferent spacings can also exist at the same cooling conditions depending on the history

of the system. Conversely, as the rate of change of the solidification front decreases,

it is expected that the spacing versus velocity should start to fall within a tight band

of spacings for a given velocity.
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Chapter 4

Orientation selection in directional

solidification

4.1 Morphological Transitions

Previous studies on dendritic morphology during directional solidification of binary

alloys have focused mainly on cubic materials, which has a distinctive fourfold crystal

symmetry. These studies elucidated important aspects of the evolution of the indi-

vidual and collective morphology of extended dendrite arrays forming microstructure,

under both constant and transient growth conditions (Warren J.A., 1993; Losert W.,

1996; Greenwood M., 2004; Amoorezaei M., 2010; Gurevich S., 2010b).

Experimental studies in fundamental solidification phenomena are often conducted

in organic analogous of metals such as SCN or pivalic acid systems to allow in-situ

recording through optical means. They are also commonly conducted at pulling

speeds not much higher than that of the cell-to dendrite transition, due to inherent

experimental difficulties. Numerical studies of orientation selection at higher growing
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speeds are at present scarce, and findings at velocities close to the cell-to-dendrite

transition have been generalized to higher growth speeds. Far less is known about the

selection and evolution of dendritic morphologies in hexagonal systems, particularly

under directional growth where the preferred directions of growth determined by the

main crystalline axes and that of the applied thermal gradient compete to select the

growth direction of the dendrites. Molecular Dynamics simulations conducted by Sun

et al. (Sun D.Y., 2006) reveal that Magnesium is weakly anisotropic and therefore the

dendrites are susceptible to alter their orientation if heat extraction through a sample

is imposed in a direction that differs from that of one of the main crystal axes. This

makes Magnesium alloys an ideal system to explore the morphologies arising from

these competing growth directions. Sun et al. (Sun D.Y., 2006) also show that for

Magnesium-base alloys dendrites grow preferentially in the < 112̄0 > direction on the

basal plane.

Extensive phase field simulation of directional solidification in Mg-Al alloys were

conducted using the phase field model defined and described previously. Dendritic

morphologies in Mg-Al alloys obtained through extensive phase-field simulations are

organized via the morphological phase diagram shown in figure 4.1 (Amoorezaei M.,

2012). Several regimes can be identified in the figure. The transitions between these

regimes are gradual hence no sharp limit can be defined between them. Nevertheless,

in order to guide our discussion we have included empirically determined dashed lines

separating the main regimes of observed morphologies. At velocities just above the

planar-cellular instability (Mullins-Sekerka)(Mullins W.W., 1964), cells grow in the

direction of the thermal gradient. As the growth speed increases towards the cell-

to-dendrite transition, cells begin to deviate towards the preferred crystallographic
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direction until the primary stalks grow along a main crystalline axis, in agreement

with the findings of Trivedi el al. (Trivedi R., 1991). At velocities below the vertical

dashed line, the growth orientation is more sensitive to the strength of the thermal

gradient. In the dendritic region, lower temperature gradients favour growth along

the direction of the main crystalline axes, whereas higher thermal gradient strengths

above the horizontal dashed line favour a so-called seaweed microstructure where

dendrites tips continuously split and change orientation, consistent with previous

experiments (Utter B., 2001) and simulations (Provatas N., 2003). Note that at

pulling speeds lower than the vertical dashed line, the thermal gradient required to

favour seaweed structures increases with pulling speed, making the horizontal dashed

line curved. The dotted line represents the cell-to-dendrite transition velocity wherein

lD = 2klT (Trivedi R., 1994a).

At higher growth speeds the morphology becomes less sensitive to the thermal

gradient and the resulting morphology, termed seaweed, is a result of comparable

influences from the competition of the heat extraction direction and the preferred

crystalline axes. To date, it has not been shown that a directionally solidified tilted

dendrite branches in an alloy system growing at one of the crystallographic axes

can transition to a seaweed as the pulling speed is increased, rather than remaining

stable until the absolute stability limit. Evidence of the transition from dendrite to

seaweed has been reported when the thermal gradient or the tilt angle is sufficiently

increased (Provatas N., 2003; Utter B., 2001; Deschamps J., 2008; Borisov A.G., 1991;

Akamatsu S., 1997; Okada T., 1996). Only dendrite-to-dendrite transitions from one

to another available dendrite states, and the formation of doublon dendrites has been

previously observed as the front speed is increased from the initial dendritic region
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Figure 4.1: Phase diagram of simulated crystal morphologies in directional solidifica-
tion of Mg-0.5 wt% Al alloy. The colour bar represents the solute concentration and
the dashed lines estimate the boundary between the different regimes. The dotted
line represents the cell-to-dendrite transition velocity. Note the change in scale in the
temperature gradient axis (Y-axis) at G = 20K/mm. The width of each subsection
corresponds to 250µm.
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(Akamatsu S., 1995; Utter B., 2005).

The dendrite-to-seaweed transition occurs as the curvature contribution of the tip

undercooling (misoriented with respect to the cooling direction), which increases with

velocity becomes comparable to the solutal undercooling, leading to alternating tip

splitting and change of the tip growth direction, a characteristic inherent in degenerate

or fractal seaweeds (Akamatsu S., 1995; Utter B., 2002). The transition from dendrite

to seaweed is highly dependent on the anisotropy strength and material parameters,

and shifts to much higher speeds for largely anisotropic systems. For example, as

shown in figure 4.2, for a hexagonal system with the same Mg-Al parameters as

above except ε = 35ε6 and Γ = 0.14 K.µm we find the dendrite-to-seaweed transition

occurs at V = 3000 µm/sec, almost 15 times higher than that for the nominal Mg-

Al system studied in figure 4.1. Note that the thermal gradient induced transition

(the equivalent of horizontal dashed line in figure 4.1) also shifts to much higher

temperature gradients, further implying the strong dependence of the transition on

the anisotropy strength.

At the highest growth velocities probed in the data above, the direction of the

temperature gradient dominates and columnar (forward-directed) seaweeds form inde-

pendently of the strength of the temperature gradient. beyond the limit of degenerate

seaweeds, the spacing between the two advancing seaweed tips is a decreasing func-

tion of velocity as depicted in figure 4.3. The maximum distance between the tips

before either undergoes an instability, λt (see figure 4.3), follows a power law rela-

tionship with respect to the pulling speed with the slope of the line in logarithmic

scale corresponding to -0.46. This value is in conformity with the measured instability

wavelength of a single seaweed tip by Utter et al (Utter B., 2001) and also with the
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Figure 4.2: Phase field-generated phase diagram of morphological transitions at a
range of growth conditions in directional solidification for a strongly anisotropic
hexagonal system.

instability wavelength of a flat interface (Mullins W.W., 1964), λ α V −0.5. The two

advancing seaweed tips reduce the spacing between them as the pulling velocity is

increased until the wavelength becomes comparable to the width of the stem. This

gives rise to the formation of a ”compact seaweed” microstructure, where the tips

have less curvature and branching is less frequent. An example of such structure can

be found at the rightmost part of figure 4.1. The transition from Fractal to compact

structure has been previously reported by Brener et al (Brener E., 2000) for pure ma-

terials. It is noteworthy that at V = 750 µm/sec and G = 2 K/mm a combination

of doublon dendrites with developed sidebranches and seaweed structures (dendritic-

like structure with unstable tips) can be observed. The formation of sidebranches

is attributed to the larger spacing available between the dendrites due to the lower

operating temperature gradient.
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Figure 4.3: Different seaweed morphologies at G = 20 K/mm and pulling speeds
of a)100, b)250, c)500 and d)750 µm/sec. The white line represents the interface
between primary phase branches. The graph plots the tip spacing against the pulling
speed and follows a power law relationship with an exponent of -0.46.

We assume that the surface energy anisotropy is the only factor that interplays

with the heat flow direction to establish the growth orientation of the stalks. This is

in contrast with the linear stability analysis by Sekerka (Coriell S.R., 1976) and the

weakly-nonlinear stability analysis by Young (Young G.W., 1987), which imply that

the interface attachment kinetics governs the growth orientation selection in the vicin-

ity of the cellular threshold limit. However, the effect of surface tension anisotropy

is largely underestimated in these theories due to the linear nature of their analyses.

In the fully nonlinear regime, the surface energy anisotropy becomes more important

and needs to be considered. More importantly, in metallic systems the kinetic coef-

ficient is three orders of magnitude smaller than in organic analogous to metals, e.g.

SCN and pivalic acid alloys (Xia Z.G., 2007; Akamatsu S., 1997; Bragard J., 2002)

which are commonly exploited in dendritic growth experiments. Interface kinetics are
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thus not very relevant for such transition in metal alloys. Even for the highest growth

velocity studied herein, the curvature contribution to the undercooling is almost two

orders of magnitude larger than that of kinetic attachments. Moreover, Okada et al

(Okada T., 1996) reported observing stem rotation towards the crystalline axis as

the velocity is increased in Steel containing Ni and Cr impurities, while neglecting

kinetic effects.

Remarkably, the morphologies shown in figure 4.1 can be obtained in the same

crystal if different sections of the materials have locally different thermal conditions –a

situation that is quite common in experiments. This will lead to each of these sections

having a different growth speed and thermal gradient. Based on our findings, this

will result in different sections of the material solidifying into different morphologies

of depicted in figure 4.1. To demonstrate how achieve a spectrum of the morphologies

shown in figure 4.1 in a single crystal material, we simulated a tilted dendrite at the

right corner of a channel as shown in figure 4.4. As the tip moves up, a secondary

arm grows freely towards the left boundary of the channel, perpendicularly to the

direction of the thermal gradient. The tertiary arms emerging from it grow in the

same direction as the initial dendrite branch (upward), but at a higher undercooling

(than the parent stalk) as they are retarded since they emerge from the secondary

branch. In order to catch up and reach the steady state tip undercooling these

tertiaries grow at a very rapid rate. The resulting morphology shown in figure 4.4

exhibits spatial transitions from dendrite to seaweed, and to partially columnar going

from right to left in the figure, which corresponds to increasing front speed.

The interplay of different sources of anisotropies and their influence on the emerged

microstructure has been investigated in the work by Haxhimali et al (Haxhimali T.,
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Figure 4.4: Phase field simulation of a single crystal with branches growing at different
velocities, promoting a spectrum of morphologies. The growth velocity increases
towards the left, leading to the formation of seaweed and columnar structures. The
image is a subsection of the entire domain. The width corresponds to 300µm and the
temperature gradient is G = 10 K/mm. The colours represent solid (red) and liquid
(blue) phases.

Figure 4.5: Dendritic microstructure of a directional solidification of Mg-0.5 wt%Al
alloy. Two initial grains misoriented with respect to the upward thermal gradient are
shown. The initially misoriented dendrites tilt towards the heat flow direction after
a short transient time.
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2006), where they varied the strength of two composition dependent anisotropy pa-

rameters and showed that the orientation of equiaxed dendrites varies continuously.

Their results, however, do not provide the ability to control the emerging microstruc-

ture for a given alloy composition, since the anisotropy parameters are implicitly

controlled by concentration. Our results are similar to Haxhimali’s in that the in-

terplay of two sources of anisotropies is shown to lead to a continuous orientation

variation. However, since the cooling rate and direction in our directional solidifi-

cation experiments and simulations are adjustable control parameters, the emerging

microstructure can be controlled for a given alloy composition, as needed.

Our results on orientation selection are supported by our directional solidification

experiments in Mg-Al alloys. Figure 4.5 shows a typical dendritic microstructure of

a directionally solidified Mg-0.5 wt% Al alloy. The initial morphology encompasses

two different grains, highlighted in the figure. The right grain starts misoriented with

respect to the thermal gradient but after a short transient undergoes a transition

towards the direction of the thermal gradient. The transient in the left grain is not as

clear, but it also ends up orienting with the thermal gradient after a short transient

of similar duration. In terms of the phase diagram in figure 4.1, the temperature

gradient strength of this experiment falls on the lower range of values. The velocity

of the experimental front, however, is beyond the highest value shown in the phase

diagram, which is predicted to lead to a columnar-type growth in the upward (gradi-

ent) direction consistent with figure 4.5. In casting situations, as in our experiments,

the interface velocity at the chill surface is significantly higher than the values probed

in our simulations. In this regime, we also expect kinetic effects to become important.

The 2D simulations presented here predict the same qualitative morphological
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orientation variations with growth speed as the 3D experiments. The quantitative

difference being due to the discrepancy in dimensionality. This is analogous to recent

results of Gurevich et al (Gurevich S., 2010a), where primary spacing results do

not change qualitatively between 2D and 3D directional solidification simulations

and experiments. It is thus concluded that 3D morphological structures will present

qualitatively the same transitions as predicted by 2D simulated morphologies, with

the critical transition values appropriately shifted. Specifically, given that the tip

undercooling for a 3D steady state cell falls below that of the equivalent 2D shape

(Gurevich S., 2010a), the transition velocity and the transition temperature gradient

are expected to shift to lower values for a 3D shape.

Following Hunt’s approach to dendrite tip undercooling as a function of growth

velocity and temperature gradient, a criterion for the dendrite-to-seaweed transition

(vertical dashed line) was sought. A common assumption, introduced by Hunt (Hunt,

1979), is that dendrites grow at minimum undercooling. In terms of the tip position,

dendrites that advance faster than their neighbours will expel solute laterally and hin-

der the development of the slower growing dendrites, eventually becoming dominant

in the structure. With these assumptions, we can gain insight into the distribution

of morphologies in figure 4.1 by comparing the tip undercooling of dendrites which

may develop in the direction of the thermal gradient with those which may develop

in the direction of maximum surface tension anisotropy.

The tip undercooling, ∆T = TL − Ttip, where TL is the liquidus temperature and

Ttip is the temperature at the tip, can be determined from the the Gibbs-Thomson

relation according to

∆T = ∆Tc + ∆TR + ∆Tv (4.1)
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where the different contributions are

∆Tc = |m|(ctip − c0)

∆TR = Γa(θ)κ

∆Tv = βv

Disregarding kinetic effects (∆Tv ≈ 0) there are two contributions to the tip un-

dercooling. The contribution of the tip concentration ctip, ∆Tc, and the contribu-

tion due to the tip curvature, ∆TR. Figure 4.6 illustrates two dendrites, one grow-

ing in the direction of the thermal gradient (dendrite 1) and the other growing in

the direction of crystalline anisotropy axis (dendrite 2). According to the assump-

tion of growth at minimum undercooling, if the undercooling difference ∆1 − ∆2 =

(∆Tc1 + δ1) − (∆Tc2 + δ2) (where δi, i = 1, 2, represents the transient contribution

to the tip undercooling) is much larger than the undercooling difference due to the

tip curvature effect, ∆TR1 −∆TR2 , the morphology of the resulting structure will be

dominated by dendrites growing at the direction of the thermal gradient. If the op-

posite is true, the structure will be dominated by dendrites growing at the direction

of maximum anisotropy. Here, ∆TRi = γ0(1 + ε0− 35ε6 cos(6φi))κi; i = 1, 2. Defining

φ as the angle between the direction of growth and the axis of crystalline anisotropy

gives, for the case illustrated in figure 4.6, φ1 = Φ, and φ2=0.

We found empirically from our simulations that for a given misorientation angle

the ratio ∆1/∆2 is almost constant. As a result, increasing ∆1 will increase the differ-

ence and favour growth towards the heat flow direction. Increasing the misorientation

angle will also favour growth towards the heat flow direction.
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19 
Theory 

! Dendrites grow at minimum tip undercooling 
for a given velocity.  
! For a given misorientation angle, the ratio of 
undercoolings ahead of the misaligned and G-
oriented  dendrites is almost constant. 

! As the tip undercooling rises, !2-!1 increases. 
! Increasing the misorientation angle favors the 
G-direction 
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Figure 4.6: Illustration of the relative position and growth velocity of the dendrites
oriented in thermal gradient and crystalline axis directions.

Evaluating the total undercooling, ∆T , requires an expression for the concentra-

tion or temperature at the tip. The simplest estimation comes from the model devel-

oped by Bower, Brody, and Flemings (BBF) (Brody H.D., 1966; Bower T.F., 1966)

where the impurity flux at the tip position v(ctip− c0) is assumed to balance the flux

−GD/m induced by the variation of concentration ahead of the interface, assumed lin-

ear to lowest order. This flux balance, which only considers one-dimensional solute dif-

fusion along the growth direction, yields ∆Tc = TL−Ttip = |m|(ctip− c0) = GD/v. In

order to account for lateral variations in the concentration field, Hunt (Burden M.H.,

1974) added an extra term to the flux induced by the variation of concentration along

the interface, leading to ∆Tc = GD/v−mvR(1−k)c0/D where R is the radius of the

tip, assumed spherical. This consideration further leads to ∆TR = 2Γ/R. Minimizing

the total undercooling for the tip curvature R = R∗, Hunt obtained the following

expression for the minimum undercooling ∆T (R∗) = ∆Tc(R
∗) + ∆TR(R∗),

∆T =
GD

V
+ 2

(2|m|C0(1− k)ΓV

D

)1/2

(4.2)
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where the first term is dominant at high gradients and low speeds.

Figure 4.7 plots eq. 4.2 as a function of the interface velocity, for different temper-

ature gradients. These curves can be used to understand the qualitative behaviour

of the morphological transitions in figures (4.1) and (4.2). Figure 4.7 shows that at

the high velocities regimes when the second term in eq. 4.2 dominates, ∆T becomes

insensitive to the strength of the temperature gradient. In contrast, at the lower

velocities regime where the first term dominates, ∆T increases with the strength of

the temperature gradient. The crossover between dendritic and columnar morpholo-

gies occurs when ∆Tc ∼ ∆TR, the solution of which is largely independent of the

thermal gradient at high velocities. We thus expect that the orientational selection

will be independent of the temperature gradient strength at high velocities. On the

other hand, at low interface velocities the selected orientation is controlled by the

thermal gradient, favouring growth at the direction of maximum anisotropy at low G

and a crossover to seaweed, and ultimately cellular growth, as the thermal gradient

increases.

The dendrite-to-cell transition is represented in figure 4.1 by the lD = 2klT line,

where lD is the diffusion length and lT the thermal length. In its proximity ∆Tc

decreases with the growth velocity, while the significant increase of the dendrite tip

curvature gives rise to ∆TR favouring the growth in crystalline axes directions.

The phase field results summarized in figure 4.1 are consistent with the above

predictions. However, the consistency has not been investigated for other crystal

structures and anisotropy values.
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20 
Theory 

! At high velocities, tip undercooling is 
insensitive to temperature gradient " second 
term dominates. 
! At lower velocities, tip undercooling rises 
with G " first term dominates. 

! Dendrite-to-Cell transition occurs at higher 
velocities as G increases. 
! At Dendrite-to-Cell transition, tip radius 
largely increases. 
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Figure 4.7: Tip undercooling as a function of growth velocity at various temperature
gradients for Mg − 0.5 wt%Al alloy. Note that the contribution of the temperature
gradient to the value of tip undercooling is significant only at velocities close to that
of cell-to-dendrite transition.

4.2 Orientation Selection in multiple grains

Orientation selection plays an important role in the competition between grains. In

effect, grains formed from dendrites whose orientation is better aligned with the ther-

mal gradient grow faster and gradually dominate the structure as can be seen in figure

4.8, where the evolution of different seeds oriented at −π/6, 0 and π/6 from the di-

rection of the thermal gradient is shown. The influence of the interaction between the

grains is notable. Specifically, the coexistence of columnar and hexagonal structures

within the same grain, as a neighbouring grain falls behind in its development. In

order to simulate the growth of multiple grains we employed a modified phase-filed

model, expanded to include as many order parameters as grains with distinct orienta-

tions are present. Grain boundary interactions, based on the Read-Shockley equation,

are also present in the model. Details on this multi-phase-field model, developed by
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Ofori-Opoku et al. can be found in (Ofori-Opoku N., 2010).

Figure 4.8: Three misoriented grains of Mg − 0.5wt%Al grown with a pulling speed
Vp = 0.35mm/s under a thermal gradient of strength G = 16K/mm. The system
width is 4mm. The orientations of the grains are, from left to right, and in units
of 2π: −0.5, 0 and 0.5. These specify the angle between the < 112̄0 > direction in
the basal plane of the underlying crystalline hcp structure and the thermal gradient
(the vertical direction in the figure). The color scheme represents the concentration
of impurities.
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Chapter 5

Conclusions

The notion of a unique spacing selection mechanism is challenged by series of ex-

periments in Al-Cu alloys and corresponding phase field simulations under transient

and steady state conditions. Experiments under transient growth conditions suggest

that mean spacing vs. front speed evolves in a series of plateaus connected by rapid

changes. In the plateau regions, the spacing changes very slowly so that within the

existing error bars, it is reasonable to consider it statistically constant. These results

are in agreement with the findings of Losert et al (Losert W., 1996). However, they

do not compare well quantitatively and, especially, qualitatively with the unsteady

state model of Hunt et al. (Hunt J.D., 1996). The jump between the two plateause

was shown to be gradual, in contrast with the period doubling instability analysis by

Warren and Langer (Warren J.A., 1990, 1993), which suggests a sharp jump between

the plateaus. This discrepancy is explained showing that the system does not con-

tain a single wavelength, but rather a distribution of wavelengths. In the transition

region, as the velocity decreases, some wavelengths will become unstable to period

doubling (i.e. overcome the energy barrier associated with period doubling for that
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range of wavelengths), while the rest remain stable. Therefore, if the Warren and

Langer period doubling instability theory is examined in the context of the stability

of a distribution of wavelengths, it is expected that a gradual transition will result.

A remarkably similar behaviour to our experiments, with regards to the step-like

changes in mean dendrite spacing changes with interface velocity, is also found in

new two dimensional transient phase field simulations of Al-Cu solidification. How-

ever, the agreement between simulations and experiments is not quantitative since

the simulations are two-dimensional and, the simulated pulling speed is determined

through a fit of the experimentally registered front velocity. Also, the initial interface

conditions in simulations were different from those in experiments.

Our results show that under transient conditions, the power-law behaviour pre-

dicted by most previous heuristic models is incorrect. In fact, under transient condi-

tions the mean spacing appears relatively stable over a broad range of pulling speeds,

changing relatively rapidly at specific values, which depend on the rate of change of

the pulling speed.

The phase field simulations of directional solidification conducted under steady

growth conditions show that there is a dependence of the dendrite spacing on initial

conditions and history of the system. Long-time spacing, however, fall in a narrow

band that appears to follow a power-law behaviour. This power-law scaling is similar

to that predicted by previous geometrical models, steady state experiments on organic

alloys and 2D phase field simulations (Greenwood M., 2004).

New results from simulations and experiments on directional solidification of Mg-

Al alloys were presented that demonstrate the emergence of a spectrum of dendritic

and fractal-like solidification patterns in alloys when anisotropies in the processing
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environment compete with the inherently anisotropic interface properties of the mate-

rial. It suggests that the variety of controllable morphologies arising from varying the

solidification rate are much more complex than previously thought. It is shown that

at a constant growth rate, increasing the temperature gradient favours the formation

of seaweed microstructure in accord with the findings of Provatas et al. (Provatas N.,

2003) and Utter et al. (Utter B., 2001). The effect of velocity, however, reveals

a more complex behaviour. increasing the velocity at a constant thermal gradient

favours the growth in the crystalline axes direction. Further increase of the velocity

has an opposite effect on the growth direction, favouring the seaweed and doubloons

in the direction of thermal gradient. The simulation results are supported by new

experimental observations on the cast microstructure of Mg-0.5wt%Al alloys.
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Appendix A

2D power spectrum MATLAB code

For spacing analysis on the digitized images of transverse cross section of the cast

samples, I developed the following 2D power spectrum code in MATLAB. The input

comprises three images of different scales and resolutions at the same height from the

chill wall. Before running the code, one needs to manually calculate the size of each

pixel in microns for each image. The image with the largest pixel size is chosen as

the reference and the resolution of the other two images is changed such that each

pixel represents the same size in micron as that in the reference image. The rest of

the image matrix up to the size of the reference image matrix is filled by zeros in

order for all image matrices to have the same dimensions. At this point, three matri-

ces with the same dimensions are available for further analysis and average spacing

calculations. It is best to make the resolution (matrix dimension) a power of two, e.g.

1024*1024 in the case we analyzed here.

%image1– each pixel 0.8998 microns

%image2– each pixel 1.326 microns
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%image3—each pixel 0.741 microns

%pick image 2

%fix((1024*0.8998)/1.326)=694—–size of the new image one. fill the rest of the in-

dices by zeros to make it 1024x1024

%fix((1024*0.741)/1.326)=572—–size of the new image three. fill the rest of the in-

dices by zero to make it 1024x1024

%image 2 remains 1024x1024

%code starts here

deltax=1.326;

im1=imread(’im1.jpg’);

im2=imread(’im2.jpg’);

im3=imread(’im3.jpg’);

I1=rgb2gray(im1);

I2=rgb2gray(im2);

I3=rgb2gray(im3);

figure

imi1=I1;

imi2=I2;

imi3=I3;

Gcomp1=imcomplement(imi1);

Gcomp2=imcomplement(imi2);

Gcomp3=imcomplement(imi3);
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s1=max(size(Gcomp1));

s11=s1+1;

s2=max(size(Gcomp2));

s3=max(size(Gcomp3));

s33=s3+1;

L1=double(Gcomp1);

L2=double(Gcomp2);

L3=double(Gcomp3);

sum1=0;

for i=1:s1,

for j=1:s1,

sum1=sum1+L1(i,j);

end

end

average1=sum1./(s1.ˆ2);

image1=L1-average1;

sum2=0;

for i=1:s2,

for j=1:s2,

sum2=sum2+L2(i,j);

end

end

average2=sum2./(s2.ˆ2);

image2=L2-average2;
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sum3=0;

for i=1:s3,

for j=1:s3,

sum3=sum3+L3(i,j);

end

end

average3=sum3./(s3.ˆ2);

image3=L3-average3;

%deduct the average value from each component so that the values fluctuate around

zero.

%in the next step, the resulting matrices are zero padded to get the final dimension

of 1024x1024

for i=s11:s2,

for j=s11:s2,

image1(i,j)=0;

end

end

for i=s33:s2

for j=s33:s2

image3(i,j)=0;

end

end

F1=fft2(double(image1));

F2=fft2(double(image2));
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F3=fft2(double(image3));

power1 = (abs(F1)).ˆ2;

power1(1,1)=0;

power2 = (abs(F2)).ˆ2;

power2(1,1)=0;

power3 = (abs(F3)).ˆ2;

power3(1,1)=0;

v=max(size(power1))

N1=0

for i=1:v,

for j=1:v,

N1=N1+power1(i,j);

end

end

N2=0

for i=1:v,

for j=1:v,

N2=N2+power2(i,j);

end

end

N3=0

for i=1:v,

for j=1:v,

N3=N3+power3(i,j);
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end

end

power1=power1./N1;

power2=power2./N2;

power3=power3./N3;

%this is to get a more clear image. other exponents may also be used power=(((power1+power2+power3)./3)).ˆ(0.5);

N=1024;

x=linspace(1,N,N);

nyquist = N/2/max(x);

freq = (1:N/2)/(N/2)*nyquist*2*pi/deltax;

period = 2*pi./freq;

[Px, Py]=meshgrid(freq,freq);

cut=200;

surf(Px(1:cut,1:cut),Py(1:cut,1:cut),power(1:cut,1:cut))

colormap jet

axis equal axis([0 0.3 0 0.3 0 max(max(power))])

view([0,90])

figure(2)

count=zeros(1,(v/4));

bin=zeros(1,(v/4));

for i=1:v/4,

for j=1:v/4,

amp=(i-1).ˆ2+(j-1).ˆ2;

for k=1:v/4,
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if (amp¿=(k-1).ˆ2) & (amp¡k.ˆ2)

bin(k)=bin(k)+(power(i,j).ˆ2);

count(k)=count(k)+1;

end

end

end

end

bin=bin./count;

plot(freq(10:v/4),bin(10:v/4),’r’,’LineWidth’,2)

xlim([0 0.7])

xlabel(’frequency (2 \pi/\lambda)’)

ylabel(’average power spectrum’)

title(’angular average power spectrum’)

sigmabin=0;

sigma=0;

for i=10:v/4,

sigmabin=sigmabin+bin(i)

end

for i=10:v/4,

sigmak=freq(i).*bin(i);

sigma=sigma+sigmak;

meanvalue=sigma./sigmabin;

end

meanvalue=2.*pi./meanvalue
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