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Abstract

Comprehensive sensitivity and uncertainty analysis has been performed for light-water
reactor and heavy-water reactor lattices using three techniques; adjoint-based sensi-
tivity analysis, Monte Carlo sampling, and direct numerical perturbation. The adjoint
analysis was performed using a widely accepted, commercially available code, whereas
the Monte Carlo sampling and direct numerical perturbation were performed using
new codes that were developed as part of this work.

Uncertainties associated with fundamental nuclear data accompany eval-
uated nuclear data libraries in the form of covariance matrices. As nuclear data
are important parameters in reactor physics calculations, any associated uncertainty
causes a loss of confidence in the calculation results. The quantification of output
uncertainties is necessary to adequately establish safety margins of nuclear facilities.

In this work, the propagation of uncertainties associated with both physics
parameters (e.g. microscopic cross-sections) and lattice model parameters (e.g. ma-
terial temperature) have been investigated, and the uncertainty of all relevant lattice
calculation outputs, including the neutron multiplication constant and few-group, ho-
mogenized cross-sections have been quantified. Sensitivity and uncertainty effects
arising from the resonance self-shielding of microscopic cross-sections were addressed
using a novel set of resonance integral corrections that are derived from perturbations
in their infinite-dilution counterparts.

It was found that the covariance of the U238 radiative capture cross-section
was the dominant contributor to the uncertainties of lattice properties. Also, the
uncertainty associated with the prediction of isotope concentrations during burnup is
significant, even when uncertainties of fission yields and decay rates were neglected.
Such burnup related uncertainties result solely due to the uncertainty of fission and
radiative capture rates that arises from physics parameter covariance.

The quantified uncertainties of lattice calculation outputs that are described
in this work are suitable for use as input uncertainties to subsequent reactor physics
calculations, including reactor core analysis employing neutron diffusion theory.
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Chapter 1

Introduction

The determination of neutron energy and trajectory within a nuclear reactor core is
of primary concern in many operational and safety assessments. Such calculations
involve the combination of theory, approximations, numerical methods and empirical
approaches based on experimental evidence. The assessment of uncertainties related
to nuclear reactor analysis predictions is an arduous task, and involves many physics
and engineering disciplines ranging from reactor physics and thermal-hydraulics to
thermodynamics and fuel performance. Errors in predicted quantities can be intro-
duced through experimental uncertainties, imprecise empirical correlations, the use of
physics models as substitutes for measured data or more rigorous theoretical formu-
lations, and calculation approximations intended to reduce the computational effort
of an analysis. A fundamental objective of this thesis is to develop, implement and
analyze methods capable of performing uncertainty analysis.

Reactor analysis has traditionally been organized as a series of calculations,
arranged in a mostly feed-forward sequence in which the outputs at each step are
used as inputs at the subsequent step[1]. Depending on the analysis, the calculation
sequence may span multiple dimensionalities (1D to 3D), multiple scales (from fuel
pins to bundles to the whole reactor core), and multiple physics (e.g. reactor physics
and thermal-hydraulics). The propagation of uncertainties traces that of the under-
lying calculation sequence, with uncertainties moving from stage to stage, clinging to
the inputs and outputs through the sequence and modified by each calculation.

In the case of steady-state reactor physics calculations, the sequence begins
with the preparation of nuclear data using a generic estimation of a neutron flux
spectrum. This cross-section processing step takes fundamental nuclear data as in-
put that is continuously-varying in the energy domain, and performs flux-weighted
averaging to produce a set of discrete multi-group nuclear data that are discretized
in energy and computationally manageable for use in deterministic solutions of prob-
lem geometries. The multi-group constants, or “group constants” for short, are fairly
problem-independent, with general applicability to broad classes of systems, such as
thermal, light water moderated reactors. Neutron flux is selected as the appropriate
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weighting function for group averaging in order to preserve the prediction of nuclear
reaction rates.

The source of continuous-energy data is one of several evaluated nuclear
data libraries (ENDL) such as ENDF/B[2], JEFF[3], JENDLE[4], and others. The
term ”continuous-energy” may be more accurately referred to as ”pointwise”, since the
data is stored on a very fine energy grid, albeit often with accompanying interpolation
rules to find data values between grid points[2]. Data found in an ENDL is drawn
from experimental measurements, such as those stored in the EXFOR[5] database
and in the Atlas of Neutron Resonances [6], and from a collection of nuclear physics
models that supplement experimental findings[1]. Experimental uncertainties as well
as those associated with the selection of physics model parameters and interpolation
schemes cause related uncertainty on the pointwise cross-section in the ENDL, which
is discussed in section 1.4. Since these uncertainties are present in the initial data,
they permeate all subsequent predictions.

1.1 Cross-section processing

Cross-section processing is a preliminary calculation performed without regard to any
specific nuclear geometry or composition, thus the generic neutron flux weighting-
function is estimated based on reasonable approximations of the flux spectrum that
occur in the broad class of nuclear systems to which the multi-group data will be
applied. Generally, the estimate of the flux is derived from first principles of reactor
theory, or alternatively, a continuous energy flux solver, such as MCNP[7], can be
used to calculate the spectrum for a simple system representative of the multi-group
target class of problems. For systems that are fully moderated by H1 (i.e. light
water), a common strategy is to assemble the generic weighting function in three
parts, each reflecting the predominant behaviour of neutron flux in a particular range
of energy. Several pre-defined weighting functions included in the NJOY[8] cross-
section processing code are constructed in this manner.

In the fast energy region – above one MeV or so – neutrons are born from
fission events with a characteristic energy distribution that depends strongly on the
fissioning nuclides (typically U235 for uranium-fueled reactors), and weakly on the en-
ergy of the fission-inducing incident neutron[9]; sufficiently weak that the dependency
on incident neutron energy is generally neglected. Therefore, generic weighting func-
tions in the MeV range can be reasonably approximated by the fission energy spectrum
of the primary fission material evaluated at a typical incident neutron energy.

Once neutrons are born from fission events, if they do not wander out of the
reactor core, they will either be absorbed at high energy, which has low probability,
or will progressively lose their energy after suffering collisions with nuclei. A neutron
with energy E being scattered by a nucleus with scattering cross-section σ(E) will

2



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

be left with some lesser1 energy E ′. The differential scattering cross-section, from
incident energy E to resultant energy E ′ is characterized by equation (1.1.1) in the
case of entirely elastic, isotropic scattering.

σs(E
′ → E) =


σs(E

′)

(1− α)E ′
for E < E ′ <

E

α

0 otherwise
(1.1.1)

where,

α =

(
A− 1

A+ 1

)2

(1.1.2)

and A is the mass of the scattering nucleus in neutron mass units. A neutron slowing-
down equation for an infinite, homogeneous medium can be defined[10] as,

[Σa(E) + Σs(E)]φ(E) =

∫ ∞
E

dE ′Σs(E
′ → E)φ(E ′) + S(E) (1.1.3)

Maintaining the assumed prohibition against inelastic or anisotropic scattering, the
microscopic differential scattering cross-section in equation (1.1.1) can be substituted
and incorporated into its macroscopic counterpart in equation (1.1.3). Moreover, for
systems without neutron absorption occurring at intermediate energies, which are
moderated solely by H1 – whose mass is approximately equal to that of a neutron –
the slowing-down equation can be reformulated as,

Σs(E)φ(E) =

∫ ∞
E

dE ′
Σs(E

′)φ(E ′)

E ′
+ S(E) (1.1.4)

The solution to equation (1.1.4) at energies below that of the neutron source takes
the form φ(E) ∝ 1/E if the scattering cross-section Σs can be approximated as being
constant with respect to energy, which is not unrealistic. Thus, the generic weighting
function for slowing-down energies in the approximate range of 1 eV to 1 MeV for
light water moderated systems takes the form of 1/E.

For thermal reactors, neutrons will slow down until reaching thermal equi-
librium with the moderating atoms, and thus take on a Maxwell-Boltzmann energy
distribution that corresponds to the moderator temperature. It is this neutron energy
distribution which is often used as a generic weighting function for the thermal energy
range.

The piecewise, generic weighting function described above is applied to
continuous-energy cross-sections that have been subjected to Doppler-broadening[1]
to effectively account for the component of relative speed between neutrons and nuclei
due to the nuclei’s thermal motion. Recall that cross-section processing is performed
with intended applicability to many systems, and thus several temperatures are often

1Up-scattering can be neglected at energies higher than a couple electron-Volts.
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used to generate a table of multi-group constants, indexed by energy and temperature,
which can subsequently be interpolated to specific problem temperatures.

Cross-section processing produces a reasonable working set of multi-group
nuclear constants for use in reactor analysis, without depending on intimate geometric
or material details of the reactor to be analyzed. This is especially true because
the weighting function need not accurately describe the neutron flux profile between
energy group intervals. Only the intra-group weighting function is important when
collapsing the continuously-varying cross-section into discrete groups. Once collapsed
to multiple energy groups – usually numbering from a few dozen to a few hundred
– the data is written to multi-group nuclear data libraries, and often packaged with
lattice physics codes, whose task is to determine relative flux between energy groups
using problem-specific materials and geometries. The cross-section averaging in each
group g, using an estimated weighting function, W (E), is shown in equation (1.1.5).

σg =

∫
g

σ(E)W (E)dE∫
g

W (E)dE
(1.1.5)

1.2 Lattice physics

Naturally, as the name suggests, the purpose of reactor analysis is to predict the
properties and behaviours of reactors, which are large, finite, heterogeneous, three-
dimensional objects. Lattice physics calculations estimate the problem-specific flux by
solving the neutron transport equation (see section 1.3) applied to a small, infinitely
repeating unit of geometry that will alone constitute a suitable analogue, from a
neutron kinetics perspective, to produce a flux distribution representative of that
which is encountered in the finite reactor. The repeating unit, called the lattice
cell, is generally taken to be a fuel pin or assembly, which are arranged in a large
rectangular or hexagonal grid, or lattice, when viewed in an axial cross-section of
a three-dimensional reactor core. Fuel pins and assemblies are sufficiently long in
most reactor applications that the boundary effects encountered at each end do not
significantly impact the axially-averaged reaction rates over their full length, allowing
them to be modelled in just two dimensions. In other words, the three-dimensional
finite reactor core, with all its complexity, is modelled as a two-dimensional infinite
grid of simple units. The resulting flux, which varies in both energy and space, is used
as a weighting function to collapse the multi-group constants into a fewer number of
groups – typically two – averaged over the entire lattice volume.

Lattice physics is the first component of reactor physics analysis that involves
problem-specific materials and geometries. Just as cross-section processing estimates
a generic flux for the collapsing of cross-sections from continuous-energy to multi-
group form, a goal of lattice physics is to estimate a problem-specific flux to conduct
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a further collapse from a multi-group structure to only a few groups – typically a single
thermal group and single fast group. This is done to facilitate large scale, steady-state
and transient reactor core calcultaions in subsequent steps. In contrast to cross-section
processing, lattice calculations not only collapse cross-sections in the energy domain,
but also homogenize cross-sections in space, producing a set of macroscopic cross-
sections that correspond to the materials of the lattice cell being somewhat smeared
together. As with energy, the spatial homogenization is done in such a way as to
preserve the total reaction rates of the entire homogenized volume.

Few-group, spatially homogenized cross-sections produced by lattice physics
calculations are ultimately used in the analysis of three-dimensional, finite reactors
using neutron diffusion theory. Each lattice cell in the finite reactor, such as each
fuel assembly, is replaced by something of a smeared material, lacking any detailed
structure, and characterized by that cell’s homogenized, few-group macroscopic cross-
sections. The diffusion calculation is performed with the spatially homogenized, few-
group cross-sections so that the three-dimensional steady-state and transient calcula-
tions are computationally tractable.

1.2.1 Resonance self-shielding

Despite the effort involved with cross-section processing to create applicable multi-
group constants for lattice analysis, in some cases they cannot be directly used in
lattice calculations without first being modified to some degree using problem-specific
material information. The thermal distribution weighting function used to generate
low-energy multi-group constants is a quite reasonable approximation, as is the fis-
sion spectrum for neutron flux at high energies. However, the 1/E approximation
for slowing-down energies is not necessarily reasonable for all nuclides, at all ener-
gies. Recall that the derivation of the 1/E form of the slowing-down flux assumed
there is no substantial absorption taking place at those energies. In practice, neu-
trons at intermediate energies are likely be absorbed by some materials in narrow
intervals of energy that correspond to sharp peaks in absorption cross-section called
resonances. The complex cross-section structure of many closely packed resonances
can be observed between the energies of 1 eV and 10 keV of the radiative capture
cross-section of U238, shown in figure 1.1. The presence of absorption peaks perturbs
the smooth 1/E form of the flux in the neighbourhood of the resonance, producing a
flux depression. The magnitude of the depression is a function of the dilution of the
nuclide within a material mixture, that is to say, the fractional contribution to the
total macroscopic cross-section of the mixture caused by the nuclide. The less dilute
the nuclide, the larger its contribution to total cross-section and the larger the flux
depression that results. A nuclide admixed at infinite dilution causes no perturbation
and the flux remains smoothly varying as 1/E. Therefore, multi-group constants at
resonance energies that were weighted by a 1/E function are equivalently those of an
infinitely dilute mixture.
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Figure 1.1: U238 (n, γ) cross-section resonances

Depressions in flux cause the group constants that contain resonances to take
on smaller values, since the flux, acting as an averaging weighting function, exhibits
a local minimum that corresponds to the cross-section peak energy. This effect is
called resonance self-shielding2, on account of the flux being effectively prevented by
the resonance from attaining a smoothly varying form when at low dilution. The flux
will be reduced (or shielded) as compared to that observed at high dilution. Figure
1.2 shows a flux depression that has formed in the presence of a strong cross-section
resonance.

The process of correcting the multi-group cross-sections to new values that
reflect the flux depressions at the problem dilution is an initial step of any lattice
calculation. Multi-group libraries, such as the WIMS-D4 or AMPX master libraries,
are designed to allow for self-shielding calculations, and include resonance paramaters
specifically to accommodate that task. The quantity and style of resonance param-
eters are tailored to particular resonance self-shielding methods. A common and
straightforward strategy is Bondarenko’s method[11].

If one invokes a narrow resonance (NR) approximation, then it is assumed
that resonances are sufficiently sharp and widely spaced that neutrons entering reso-
nance energies were scattered from higher energies at which the flux assumes a 1/E
shape. In other words, the neutron source term within each resonance is unrelated
to the shape of the resonance itself. The Bondarenko method observes that given
the NR approximation, the flux in the neighborhood of the resonance behaves as the
product of two components: an underlying smooth 1/E component, and a component

2A distinct effect, known as spatial self-shielding, also exists. In this text, however, the term
“self-shielding” refers solely to the resonance rather than spatial variety of self-shielding.
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Figure 1.2: Example of a resonance flux depression

that varies as 1/ΣT ,

φ(E) =
1/E

ΣT (E)
(1.2.1)

which, for a mixture of n nuclides, can be re-written as,

φ(E) =
1/E

n∑
j

N jσjt (E)

(1.2.2)

For the purposes of resonance self-shielding an absorber nuclide i, its contribution to
ΣT can be explicitly isolated from all other contributions.

φ(E) =
1/E

N i
(
σit(E) +

n∑
j 6=i

N j

N i
σjt (E)

)
φ(E) =

1/E

N i
(
σit(E) + σo(E)

) (1.2.3)

whereN i is the atom density of nuclide i, and σo is referred to as nuclide i’s background
cross-section, which is the total microscopic cross-section, in per-absorber atom units,
caused by all other nuclides in the same mixture. Substituting the formulation of
φ(E) in equation (1.2.3) into the cross-section averaging in equation (1.1.5), gives the
Bondarenko formula of a self-shielded cross-section σ̄g,

σ̄g =

∫
g

σ(E)1/E

σt(E) + σo
dE∫

g

1/E

σt(E) + σo
dE

(1.2.4)
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where σo is assumed to be constant over the group energy interval. Note that
the shielded cross-section at infinite dilution reduces to the unshielded group value
weighted by 1/E,

lim
σo→∞

σ̄g ≡ σ∞ = lim
σo→∞

1

σo

∫
g

σ(E)

E
dE

1

σo

∫
g

1

E
dE

=

∫
g

σ(E)

E
dE∫

g

1

E
dE

Figure 1.3 shows a magnified portion of the U238 capture cross-section including three
large resonance peaks, and the corresponding flux depressions at multiple dilutions
as determined using the Bondarenko method. Self-shielded group cross-sections, cor-
rected for the resonance flux depressions are shown in figure 1.4.
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Figure 1.3: U238 (n, γ) resonances and flux depressions

If a cross-section processing code evaluates resonant energy group constants
at several dilutions, and writes each value to a multi-group library indexed by σo, the
lattice code needs merely interpolate between the tabled constants to calculate the
appropriate shielded cross-section for the problem dilution.
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Figure 1.4: Resonance self-shielded U238 (n, γ) group constants

1.3 Neutron transport

Lattice flux can be predicted by solving the neutron transport equation – a rigor-
ous accounting of all possible neutron gain and removal mechanisms. The transport
equation, also referred to as the Boltzmann transport equation due to its similar-
ity to an equation of the same name developed in the 19th century for rarefied gas
dynamics[12], has the following continuously-varying, steady-state form,

~Ω · ∇~φ(r, E, ~Ω) + ΣT (r, E)φ(r, E, ~Ω)

=

∫
4π

d~Ω′
∫ ∞

0

ΣS(r, E ′ → E, ~Ω′ → ~Ω)~φ(r, E ′, ~Ω′)dE ′

+
χ(E)

4πk

∫
4π

d~Ω′
∫ ∞

0

ν̄(r, E ′)ΣF (r, E ′)φ(r, E ′, ~Ω′)dE ′ (1.3.1)
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where,

~φ(r, E, ~Ω) is angular neutron flux density

ΣT (r, E) is the macroscopic total neutron interaction cross-
section at energy E and location r

ΣS(r, E ′ → E, ~Ω′ → ~Ω) is the macroscopic scattering cross-section from
energy E ′ to E and angle ~Ω′ to ~Ω at location r

ΣF (r, E ′) is the macroscopic fission cross-section at energy
E ′ and location r

χ(E) is the energy probability distribution of fission
neutron energies

and,

ν̄(r, E ′) is the average number of fission neutrons emitted
from fission induced by a neutron of energy E ′ at
location r

Each term in equation (1.3.1) represents a rate of change of neutron density in E,
~Ω and <3 space. The solution, ~φ(r, E, ~Ω), is an angular flux density, having units[

flux

eV · sr

]
, or equivalently,

[
neutrons

sec · eV · sr · cm2

]
, and describes the flux of neutrons at

point r, along direction ~Ω with energy E, which are the criteria of interest for flux
in the neutron balance equation. Hence, neutrons of interest are located in a small
volume dV about r, with trajectory in solid angle d~Ω about ~Ω, whose energies lie in a
small interval dE about E. The first term on the left side of the equation tallies the
rate of net leakage of neutrons at the region of interest due to their drifting motion.
The second term on the same side accounts for the reaction rate of the neutrons of
interest – scattering reactions will alter the direction or energy of the neutrons so they
are no longer of interest, and absorption reactions will delete the neutron entirely from
consideration. Conversely, the first term on the right side of the equation represents
the neutrons already present at r, who are scattered into the energy and trajectory
of interest. The final term of the equation accounts for neutrons that are born from
fission reactions within the criteria of interest, assuming an isotropic distribution of
fission neutron trajectories at birth.

Naturally, the loss and gain mechanisms are equal when at steady-state,
however, this is unlikely to be the case in a real reactor application given only its
static material geometries and compositions, or, in other words, in the absence of a
reactivity control system or other controlling effects including feedback mechanisms.
The steady-state equation can still be applied, however, through the introduction of a
system eigenvalue, 1/k. Called the multiplication constant, k modifies the magnitude
of the fission source term by whatever multiplicative factor is necessary to achieve
steady-state flux. Therefore, the presence of k in equation (1.3.1) is a mathematical
convenience that causes time-dependent terms to vanish for all systems, even those
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not in steady-state. Consequently, value of k larger than one corresponds to positive
reactivity, in which the system has more neutron production than loss. Likewise, a
value of k less than one indicates a subcritical system characterized by more neutron
loss than production. In the case of an infinite lattice calculation with no neutron
leakage out of the system, it is referred to as an infinite multiplication constant, k∞.

The continuous transport equation is not solved analytically by lattice phys-
ics codes. Indeed, an analytical solution is not possible, except for very simplified
problems. Rather, the terms in equation (1.3.1) are discretized in energy, space and
solid angle, allowing for a numerical solution by any of several techniques. The dis-
cretization in energy is the focus of previously described cross-section processing and
resonance self-shielding efforts – the methods of discretizing the remaining parameters
is outside the scope of this dissertation.

The flux solution of the transport equation permits the calculation of lattice
properties that are collapsed in energy structure to fewer groups, and homogenized in
space, using a combination of flux and volume weighted averaging. Spatially homog-
enized, few-group macroscopic cross-sections are the ultimate end-products of lattice
physics calculations.

1.4 Nuclear data uncertainties

Nuclear data contained within an ENDL, including continuous-energy cross-sections
and resonance parameters, are not precisely known. Measurement uncertainties as
well as the use of physics models diminish our confidence that the values in an ENDL
are exactly correct. The library format of ENDF/B-VI, which has been internationally
adopted and updated to ENDF/B-VII, contains fields in which uncertainties associ-
ated with the nuclear data is recorded[2]. The characterization of those uncertainties
is by the statistical measure of covariance, in the form of a covariance matrix. Covari-
ance describes the mutual variation of one or more random variables. The covariance
of random variables x and y is defined as,

cov(x, y) ≡ E
[(
x− E(x)

)(
y − E(y)

)]
(1.4.1)

where E(x) is the expected value of x. The covariance of a random variable with itself
reduces to its variance. In this context, the random variables are, for example, neutron
interaction cross-sections at each energy point. The description of the uncertainties of
n random variables, x1 . . . xn, is by an n× n covariance matrix, in which covariance,
cov(xi, xj), is entered in the ith row and jth column of the matrix. Covariance is
closely related to Pearson’s correlation coefficient, defined as,

ρ(x, y) =
cov(x, y)

σxσy
(1.4.2)

where σx is the standard deviation of x. The correlation coefficient is bounded in the
closed interval [−1, 1]. A correlation of one indicates the two variables vary together
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in an entirely linear way, related by a positive proportionality constant. A correlation
of negative one means the same, but with a proportionality constant that is nega-
tive. A zero correlation implied that the variations of the two variables are entirely
independent.

The interdependency between variables prohibits their variances alone from
completely describing the constraints imposed on the collective variation of their val-
ues. Some interdependencies are straightforward to identify. In most cases, a cross-
section follows a 1/

√
E contour at small (. 100 meV) neutron energies[13], therefore

an interdependency exists between its thermal values; the relative values at various en-
ergies cannot take on permutations that are contrary to 1/

√
E. Consequently, strong

correlations, and hence significant covariance, tend to exist in a cross-section’s ther-
mal range. Similarly, the physics of neutron/nucleus interaction dictates covariances
in other energy regions. Dependencies also exist as a mathematical necessity between
some cross-sections. Naturally, the variation of the total cross-section is related to
the variation of a constituent cross-section that contributes part of the total, such
as the absorption cross-section. Other dependencies are not so a priori known, such
as those between cross-sections of different nuclides, which result from experimental
data collection and the inability to wholly isolate nuclides during measurement.

The covariance matrix contained in the ENDL is constructed by a group of
experts during an evaluation process, and therefore depends to some degree on expert
judgment. A collection of procedures and computer tools are selected and employed
by the evaluation group during covariance estimation, at great computational cost[14].
Cross-section processing codes such as NJOY or AMPX[15][16] feature routines that
collapse ENDL covariances to a multi-group energy structure that is consistent with,
and applicable to, the multi-group constants described in section 1.1.

The tools, therefore, for propagating uncertainties through cross-section pro-
cessing to produce multi-group covariance matrices are widely available. Uncertainty
propagation through lattice calculations are another matter. One has everything one
might need to perform such a propagation – a set of multi-group constants and its
associated covariance matrix – except for a complete set of tools to do so. The avail-
ability and capability of computer codes to conduct lattice uncertainty analysis is the
focus of chapter 2.

1.5 The purpose of lattice physics uncertainty

analysis

The purpose of conducting uncertainty analysis on a reactor calculation is identical
to that of performing the reactor calculation itself. That purpose, of course, is to
predict the properties and behaviour of the reactor under a variety of conditions, from
normal operation to accident scenarios. Uncertainty analysis is required merely from
the admission that there is more than one solution to the flux and multiplication that
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can be reasonably expected. Rather than there being a single outcome that is certain,
there is a range of possible outcomes that emerges given the range of possible input
values that exists due to our foggy view of their true measure and the simplifications
(i.e. discretization of energy) in the solution method.

Some operational reactor properties can be measured with acceptable con-
fidence on a day-to-day basis. For such properties, the impact of uncertainty on
their predicted values is diminished (but still present), because their predicted values
can be replaced or supplemented by measured quantities. There are a great num-
ber of properties, however, that cannot be adequately measured in-core, either due
impracticality of instrumentation placement, or unacceptably large instrumentation
uncertainty. An example is the spatial power distribution on the level of fuel pins,
for which the knowledge of the neutron flux is required with a high spatial resolution.
In the area of reactor physics specifically, the uncertainty in neutron flux drives the
uncertainty associated with many calculation end-products, including macroscopic
cross-sections, local reaction rates and isotopic concentrations during burnup. During
fast-acting transients like those corresponding to some reactor accidents, calculated
predictions of reactor behaviour are even more important.

Traditionally, reactor safety analysis has been performed with the use of con-
servative assumptions and large safety margins to account for unknown and unquanti-
fied uncertainties associated with calculation solutions. Sufficiently large safety mar-
gins combined with sufficiently pessimistic and conservative assumptions can guard
against calculation uncertainties; a value that is worse than predicted may still be
better than that which was pessimistically presumed. However, it prompts the ques-
tion of what exactly constitutes a “sufficient” margin in the face of an unquantified
uncertainty! Another drawback of that approach is the use of conservatisms, which
may even be non-physical, e.g. assuming a variable has a large value in one calculation
and simultaneously a low value in another calculation, depending on which is more
conservative in each context. Conservative assumptions do not lead to any realistic
prediction of actual system behaviour, but merely a dipiction of a probably unrealistic
and plausibly impossible scenario.

Comprehensive uncertainty analysis alleviates the need for conservative as-
sumptions and provides a realistic and justifiable range of solutions from which safety
margins can be properly established. A best-estimate solution can be determined,
which lacks any conservative contrivances and is based solely on realistic assumptions
and models. When evaluated with consideration to its quantified uncertainty, the
best-estimate solution provides valuable information that is unavailable through a
conservative approach.

Lattice physics, being the first calculation step at which problem-dependent
specifications are involved, is the first opportunity at which uncertainties of nuclear
physics quantities can be propagated in the context of a realizable, designed system.
Uncertainties associated with lattice calculation outputs will propagate through all
subsequent calculations that depend on those outputs. Therefore, lattice uncertainty
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analysis forms the foundation of reactor physics uncertainty analysis in general, as
well as the capability to establish realistic and comprehensively justifiable reactor
safety margins that include the effects of fundamental nuclear data.

1.6 OECD/NEA uncertainty analysis in modeling

benchmark

The Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation
and Development (OECD) in 2006 began work to establish an Uncertainty Analy-
sis in Best-Estimate Modeling (UAM) benchmark[17], through which international
participants would develop and share acquired experience in the field of uncertainty
analysis for multi-scale, multi-physics nuclear reactor analysis. The motivation of
the benchmark was based on the recognition by the NEA of the growing interest in
unertainty analysis methods applied to reactor safety, “In recent years there has been
an increasing demand from nuclear research, industry, safety and regulation for best
estimate predictions to be provided with their confidence bounds”[17, p. 3].

The benchmark is organized into a sequence of nine steps, referred to as ex-
ercises, that collectively span a typical light-water reactor (LWR) safety analysis. The
first exercises involve the calculation of covariance matrices appicable to multi-group
cross-sections, followed by covariance propagation through resonance self-shielding
and lattice physics calculations. Uncertainties are then to be methodically propa-
gated to larger scale analyses that incorporate additional physics, including nuclear
fuel performance and thermal-hydraulics, and additional sources of uncertainty includ-
ing those associated with geometry (manufacturing), isotopic enrichment and mate-
rial temperature. The final exercises involve full-core multi-physics (coupled reactor
physics/thermal-hydraulics). Summarily, the objective of the benchmark exercises is
to establish a set of best-practices and procedures for performing comprehensive un-
certainty analysis, to disseminate insight gained by participants during the evolution
of their uncertainty assessment strategies, and to foster the development of computer
tools that facilitate uncertainty and sensitivity analysis.

As a result in part due to the UAM benchmark, tools and procedures for
uncertainty analysis in lattice physics have been rapidly emerging from a number of
academic and research institutions. It is in the context of the OECD/NEA UAM
benchmark that a great deal of this dissertation was developed.
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Chapter 2

Review of practices and literature

Uncertainty propagation of fundamental nuclear data through reactor physics cal-
culations is an emerging field, and thus at the time of this writing most available
toolsets are essentially still in their infancy. The approaches of currently available
tools for performing lattice uncertainty propagation broadly fall into two categories:
1) sensitivity-based approaches, and 2) statistical approaches. After a brief overview
of the two approaches, this chapter will discuss four particular lattice uncertainty
tools in additional detail.

Sensitivity-Based Approaches

Tools of the first group estimate the uncertainty of a scalar response function (i.e.
a calculation output functional such as k∞) that results from an input parameter
uncertainty through use of the sensitivity of the response to the input[18] according
to perturbation theory. The response, as a function of the input parameter, can
be precisely represented by a Taylor series expansion of infinite order. However,
lattice physics uncertainty tools predominantly, if not exclusively, employ a first-
order approximation in which second and higher-order terms are neglected, thereby
estimating a linear relationship that is characterized by the partial derivative of the
response with respect to the parameter. The oft-used “sandwich rule”[18], which
is described in more detailed in section 3.2, is used to calculate the uncertainty of
the response given the estimated sensitivity from a Taylor series expansion, and the
uncertainty of a parameter[18]. This approach has elsewhere been summarized thusly:

The probability distribution of the objective function is approximated by
the probability distribution of its low-order approximation, which can be
directly calculated from the probability distribution of the source uncer-
tainties. [19, p. 10]

The most widely adopted technique for determining lattice physics response
sensitivities is that of adjoint analysis[20][21][22][23][24]. By solving for the “adjoint-
flux”, φ+, which is the solution to the adjoint formulation of the neutron transport
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equation, estimates of the sensitivities of lattice responses to input parameters can
be analytically formulated. Adjoint-based sensitivity and uncertainty analysis is an
efficient technique when the number of responses is small and the number of input
parameters is large, because the computational effort associated with this technique
is related to the determination of the forward and adjoint of the function taken by
each response, and not to the size of the input parameter population. Sensitivities
to every input parameter are simultaneously determined with the computational ef-
fort equivalent to just a few best-estimate lattice calculations[25]. In the context of
lattice physics, adjoint analysis is particularly well-suited to the estimation of k∞
sensitivities with respect to self-shielded, multi-group cross-sections. Recall, however,
that multi-group nuclear data covariance (produced by NJOY, for example), apply
to unshielded, infinite-dilution cross-sections. Therefore, uncertainty propagation re-
quires the sensitivity of k∞ to unshielded data, which can be assembled using the
chain rule of calculus, if the sensitivities of the shielded cross-sections to unshielded
cross-sections are also known.

The determination of the shielded-to-unshielded data sensitivity is problem-
atic with adjoint analysis, and has motivated the use of other methods specifically
targeting that particular sensitivity in the context of adjoint-based tools. Another
difficulty encountered with adjoint sensitivity analysis applied to lattice physics is the
propagation of geometry uncertainties, for which a smooth change in the geometry
input parameter causes a discontinuous change in cross-sections as a function of space.

Other methods for calculating sensitivities include automatic differentia-
tion[27] and direct numerical perturbation[28] [29] (also known as direct differentiation
and numerical sensitivity analysis, respectively). In recent lattice physics uncertainty
research – in particular the work by UAM participants – automatic differentiation
and direct numerical perturbation have received less attention than adjoint-based
methods. Automatic differentiation is a source code transformation procedure that
involves the insertion of extra lines of code into calculation software, the purpose of
which is to compute partial derivatives between variables, determined according to
the mathematical operations performed on the variables in the base code. Several
automatic differentiation post-processing packages are commercially available, that
scan pre-existing software source code and add sensitivity-related instructions where
it is deemed appropriate. Verification that the automated sensitivity post-processing
properly captures the sensitivities between all variables of interest demands evalua-
tion by an individual with thorough familiarity – at the source code level – of the
base software. Software subjected to automatic differentiation may also be prone to
substantial increases in execution time and memory usage[25].

Direct numerical perturbation is a straightforward numerical alternative to
the adjoint method, by which partial derivatives of the response are estimated by
making small changes to the input parameter of interest and evaluating the response
with each change, according to, for example, a method of finite difference. In com-
parison to adjoint methods, direct numerical perturbation can be more efficient when
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the number of responses is large, and the number of inputs is small. In terms of
computational effort, numerical perturbation is essentially the inverse of adjoint anal-
ysis, in that the number of required lattice calculations is equal to the number of
perturbed input parameters, but independent of the number of responses; the sensi-
tivity of all responses with respect to a single parameter are simultaneously available
after each calculation. Numerical sensitivity analysis offers additional flexibility over
adjoint analysis – all input parameters, including temperatures and geometries, can
be perturbed in a straightforward manner without relying on a priori knowledge of
how they are mathematically related to the responses.

For the case of a nonlinear functions, a first-order finite differencing scheme
better approximates the true partial derivative when the perturbation size is small,
as this reduces the contributions from the higher-order terms. However, when im-
plemented on a computational machine, tiny perturbations can be subjected to a
host of numerical issues that can cause significant error in the estimate of the partial
derivative. Such limitations stem from finite bit-length floating point representation,
numerical convergence criteria, and rounding errors. Therefore, the perturbation size
must be small to reduce the effect of the trunction of higher-order terms, but must
also be large to reduce the effect of numerical errors. This has been referred to as
a “step-size dilemma”[26]. The “complex-step derivative approximation” has been
proposed as a strategy for greatly reducing the effects of numerical error[26]. Direct
numerical perturbation is discussed in more detail in section 3.2, as is a rationale
behind the selection of perturbation sizes when applied to lattice physics calculations.

Statistical Approaches

The second group of approaches involves a Monte Carlo1 sampling of input parameters
across their probability distributions. Lattice simulations conducted for each sample of
input parameters produce a corresponding probability distribution of each response.
The computational effort related to statistical uncertainty analysis is independent
of both the number of responses and the number of parameters, and depends only
on the desired confidence associated with the statistical measures of the response
distributions. This class of methods is also trivially parallelizable, as the simulation
applied to each input sample can be executed on its own CPU independent of every
other simulation.

The flexibility of this approach is equally good as that of direct numerical
perturbation; all input parameters can easily be subjected to Monte Carlo sampling,
and the statistics of all responses can be easily compiled. Also, unlike the first-order
approximations employed by sensitivity-based approaches, statistical sampling is not
constrained to some finite order truncation of power series that relate responses to
parameters; all high-order terms are implicitly treated.

1Monte Carlo sampling of input parameters should not be confused with Monte Carlo solution
methods of the transport equation.
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Statistical methods are gaining popularity for lattice uncertainty analysis
as a result of their flexibility concerning a variety of input parameters, competitive
computational requirements when faced with many responses, and easily parallelizable
nature. Statistical sampling is discussed in additional detail in section 3.1.

2.1 Currently available tools

This section describes selected tools for performing lattice uncertainty propagation
that are currently available to analysts, as well as those that are in the development
stage as reported in literature. The tools described in the remainder of the chapter
are selected to span several common methodologies for performing analysis of lattice
uncertainty.

2.1.1 TSUNAMI-1D/3D

The Tools for Sensitivity and Uncertainty Analysis Methodology Implementation
(TSUNAMI)[30][31] is the leading, state-of-the-art sensitivity and uncertainty toolset
that is incorporated into the SCALE[32] code system developed by Oak Ridge Na-
tional Laboratory (ORNL). TSUNAMI is the natural benchmark against which the
capabilities of competing tools must be measured.

TSUNAMI is an adjoint-based sensitivity tool employing generalized per-
turbation theory (GPT). Forward and adjoint flux calculations are performed for
one-dimensional geometries using the XSDRNPM[33] deterministic transport solver
in a sequence controlled by TSUNAMI-1D[30], and for three-dimensional geometries
by the KENO V.a[34] Monte Carlo2 solver in a sequence controlled by TSUNAMI-
3D. TSUNAMI codes were first introduced in July 2004 as part of release version
5 of SCALE[35]. Original and subsequent versions of the TSUNAMI codes, includ-
ing those released with SCALE 5.1 and SCALE 6, suffered from several limitations
that hindered their usefulness in comprehensive lattice physics uncertainty analy-
sis – primarily, the inability to calculate covariance of the homogenized, few-group
cross-sections that are the primary output of lattice calculations. This shortcoming
was addressed by ORNL with the development of SCALE 6.1, that overlapped with
the work of this dissertation, and was recently released in the summer of 2011[36].
SCALE 6.1 includes a TSUNAMI-2D sequence, that uses the deterministic transport
code NEWT[37] to calculate forward and adjoint flux for two-dimensional systems.
TSUNAMI-1D and TSUNAMI-2D of SCALE 6.1 include the capability to calculate
covariance of few-group, homogenized lattice cross-sections, although this feature is
still absent from TSUNAMI-3D in the SCALE 6.1 release.

2A Monte Carlo solution of the transport equation should not be confused with Monte Carlo
sampling of input parameters.
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Another limitation in even the most recent versions of the TSUNAMI family
of codes is their sole focus of propagating nuclear data uncertainties. While uncer-
tainties of this type certainty account for a large portion of the uncertainty associated
with lattice responses (as will be shown in chapters 5 and 6), other source uncer-
tainties, such as those associated with material temperature, are still of moderate
importance and should be included in an analysis for the sake of completeness. For
the same reason, so should geometric and material composition uncertainties. Con-
cerning output uncertainties, TSUNAMI lacks the capability to calculate uncertainties
associated with burnup effects, including the uncertainties associated with k∞, few-
group homogenized cross-sections, and isotopic concentrations, all as a function of
power history.

Method Overview

The TSUNAMI family of codes traces the sensitivity of k∞ with respect to a self-
shielded cross-section along a multi-step path that is stitched together using derivative
chain rules. A thorough description can be found in the documentation of SAMS[38]
– the code of the TSUNAMI sequence that is tasked with calculating sensitivities –
but is summarized in this section with deliberate brevity.

The first step in a SAMS sensitivity trace is the calculation of Sk,Σ, the
sensitivity of k∞ with respect to a particular macroscopic cross-section, Σ at some
region of discretized space. The formulation of the sensitivities to macroscopic cross-
sections are derived by first principles from the transport equation. An important
simplification is introduced in the SAMS calculation of Sk,Σ, namely, that pertur-
bations of the neutron flux caused by perturbations of cross-sections is insignificant
and can be neglected[38, pp. F22.2.2]. Sensitivities must subsequently be computed
that relate macroscopic cross-sections to each other as well as to the number densities
(total cross-section) of nuclides, as they constitute an implicit influence through the
dilution dependency of resonance self-shielding effects. A third link in the chain of
sensitivities are those of macroscopic total cross-section with respect to the component
microscopic cross-sections of each nuclide.

Sensitivities calculated by SAMS can be labeled as either “explicit” or “im-
plicit”. Explicit effects are those perturbations of k∞ that are due to cross-sections
directly perturbing the loss and gain operators of the transport equation. For exam-
ple, the expression for the explicit sensitivity of k∞ to a particular fission cross-section,
Σi
f,g,z of isotope i, at energy group g, and spatial region z, is formulated as,
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1
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where,
φg,z is neutron flux of group g in region z,

φjg,z is the jth component flux moment of group g in region z,

φ+
g,z is the neutron flux adjoint of group g in region z,

φ+j
g,z is the jth component adjoint flux moment of group g in region z,

l is the Lengendre order corresponding to the jth flux moment,

L is the highest Legendre order of scattering,

I is the total number of isotopes present,

G is the total number of energy groups,

R is the total number of spatial regions,

and,
Vz is the volume of spatial region z

As shown above, explicit sensitivities are evaluated numerically as a function of for-
ward/adjoint flux and nuclear data, but formulated from first principles. Implicit
effects involve the perturbations that cross-sections have on one another through res-
onance self-shielding, and are computed through automatic differentiation. SCALE
self-shielding modules were processed with the GRESS[27] automatic differentiation
code which produced sensitivity versions of the self-shielding executables[39][40]. When
called by the TSUNAMI sequence, the GRESS-enhanced self-shielding modules not
only perform resonance shielding calculations on cross-sections but also record sen-
sitivities of those shielded cross-sections with respect to its input parameters. Sen-
sitivity versions of all the self-shielding modules were present in SCALE 5.1, but
the most rigorous of the modules, CENTRMST[41] has subsequently been removed
as of SCALE 6.0. The removal of CENTRMST from the TSUNAMI sequence was
motivated by its unreasonably long execution time and computational resource con-
sumption, as well as due to limitations in the automatic differentiation tool that
produced CENTRMST from its non-sensitivity version[42].

2.1.2 SUSD3D

The code SUSD3D[43] is a sensitivity and uncertainty calculator that takes for-
ward and adjoint flux solutions and produces the uncertainties of responses that
arise from cross-section covariance. The flux solutions are supplied by one of sev-
eral compatible deterministic transport codes including ANISN[44], DOT-3.5[45],
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DANTSYS[46], DORT, and TORT[47]. Coupling between SUSD3D and the transport
code DRAGON[48] is currently under development[24].

As with TSUNAMI, explicit sensitivities are formulated by first principles
from the transport equation, and solved numerically as a function of flux and nu-
clear data. The explicit sensitivity formulation is described elsewhere[43, pp. 61-63],
but a noteworthy characteristic of SUSD3D is that the nuclear data used to solve
the explicit sensitivities is not necessarily the same nuclear data that was used by
the coupled transport codes to compute the forward/adjoint flux. Rather than the
coupled transport codes passing their microscopic cross-sections(which may not pro-
vide sufficient information to calculate explicit sensitivities) to SUSD3D, only the
flux solutions are passed. SUSD3D then looks up cross-section data from an ENDL,
using NJOY to create cross-sections of the same energy structure employed by the
transport solver. This method will result in cross-sections that are identical to those
used by the transport code only if the ENDL selection and NJOY parameters (e.g.
weighting function, temperature, etc.) are consistent with those employed to create
the transport code’s multi-group library.

The SUSD3D package is capable of only calculating explicit sensitivities,
and cannot account for implicit sensitivity components that arise through resonance
self-shielding effects. ORNL has observed that the implicit sensitivity component can
contribute up to 40% of the total k∞ sensitivity[49].

2.1.3 XSUSA

The XSUSA[50] code is a statistical sampling code developed by Gesellschaft für
Anlagen- und Reaktorsicherheit (GRS) and implemented with the SCALE code sys-
tem. XSUSA samples self-shielded cross-sections and performs a single SCALE sim-
ulation for each sample, generating a collection of responses whose distribution can
be subsequently measured. Because XSUSA samples cross-sections that are already
self-shielded, implicit effects cannot be captured in the uncertainty propagation pro-
cedure. The number of samples taken, and hence the number of SCALE simulations
executed is determined by the user’s desired confidence level associated with the re-
sponse uncertainties. XSUSA benefits from all the qualities of a statistical approach:
the number of calculations is independent of the number of parameters and responses;
all high-order perturbation effects are inherently captured in the analysis; and the un-
certainty and covariances of all responses are trivially easy to calculate subsequent to
performing the simulations. XSUSA facilitates uncertainty propagation for 1D, 2D
and 3D models by invoking the appropriate SCALE transport solver that corresponds
to each dimensionality.

GRS has reported good agreement between XSUSA and TSUNAMI in the
context of pin cell simulations, and has also applied XSUSA beyond lattice physics,
to core diffusion calculations. Uncertainties associated with homogenized, few-group
cross-sections, diffusion coefficients and power distribution have all been calculated
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for uranium and MOX test cases that have been reported in literature[51].

2.1.4 CASMO-5/DP

The Paul Scherrer Institute has developed a version of the CASMO-5 transport
code[52] that implements a direct numerical perturbation strategy for sensitivity and
uncertainty analysis. Without access to the proprietary CASMO-5 library format,
multi-group constants could not be perturbed directly, thus PSI added routines to
CASMO-5 that perform the perturbation after the multi-group constants are read
from the library. The CASMO-5 library records multi-group constants for neutron
total absorption and total scattering, but not partial cross-section components thereof
such as capture

(
σγ
)
, alpha emission

(
σα
)
, nor elastic or inelastic scattering

(
σno

and σγn′ , respectively
)
. The numerical perturbation routines of CASMO-5 there-

fore consult an ENDL, through NJOY, to estimate the proportions of partial cross-
sections in order to establish their individual sensitivity contributions. Like XSUSA
and SUSD3D, CASMO-5 direct numerical perturbation routines cannot account for
implicit, self-shielding effects on the response sensitivities.

2.2 Themes in lattice sensitivity and uncertainty

analysis

Themes emerge from current literature regarding the propagation of lattice uncertain-
ties. These themes are not so much a result of the objectives of lattice uncertainty
analysis, but more a product of the limitations of the analysis methods commonly
employed for the task. This section brings attention to several trends of currently
available lattice uncertainty toolsets.

Physics parameters are the only sources of uncertainty.

Lattice sensitivity and uncertainty tools are currently focused on propagating covari-
ance of physics parameters (e.g. cross-sections, χ, ν̄) and neglect uncertainty associ-
ated with other model parameters including enrichment, material compositions, ma-
terial temperatures, and geometry dimensions. The implicit assumption that physics
parameters dominate the uncertainty in lattice outputs may indeed prove to be rea-
sonable. However, without a comprehensive study of uncertainty contributions from
all sources, it is impossible to conclusively demonstrate the validity of neglecting
non-physics uncertainties.

Adjoint-based sensitivity and uncertainty analysis is particularly ill-suited
to the propagation of geometry uncertainties, due to the complicated relationship
between geometry and macroscopic cross-sections. Not only is the relationship non-
linear, but also discontinuous. That is to say, smooth changes in a geometric param-
eter (e.g. the diameter of a fuel pin) do not result in a smooth change in macroscop
cross-section, but rather a stepwise change.
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While XSUSA and CASMO-5/DP employ uncertainty propagation method-
ologies that are fundamentally suitable to the propagation of all types of parameter
uncertainties, it is not clear from published literature whether the treatment of mod-
elling uncertainties are currently implemented in those codes. In general, analysis
of the sensitivities and uncertainty contributions arising from modelling parameters
compared to those of physics parameters is a subject not yet adequately addressed in
the field of lattice physics.

Infinite-dilution covariances are applied directly to self-shielded cross-sections.

With the notable exception of TSUNAMI, implicit uncertainty contributions related
to resonance self-shielding effects are ignored by lattice uncertainty tools. Equiva-
lently, problem-independent covariance matrices that correspond to infinite-dilution
cross-sections are applied to self-shielded cross-sections, without commensurate modi-
fication to the covariance. Addressing self-shielding effects on cross-section covariance
is problematic for adjoint methods (hence TSUNAMI’s use of automatic differentiation
for that step), and also problematic even for statistical sampling and direct numerical
perturbation methods depending on the resonance parameters that are used by the
lattice code (as will be shown in chapter 3).

The evolution of lattice uncertainties with burnup is not commonly studied.

A comprehensive reactor uncertainty analysis must necessarily involve the variation
of fuel properties with burnup. During burnup, the isotopic composition of reactor
materials change as fission products, decay products and activation products are cre-
ated, and as isotopes are subjected to fission and neutron capture. The change in
material composition not only affects the fuel properties, but also the uncertainties
associated with those properties, given that different isotopes do not share the same
cross-section covariance matrix. Therefore, the consideration of burnup effects on
lattice uncertainties is an essential component to any practical reactor uncertainty
analysis.

It should be noted that burnup will cause variation in both explicit and
implicit components of lattice output uncertainties. As isotopic concentrations change
due to irradiation, a related change of their dilution occurs, and thus so does the degree
to which their cross-sections are self-shielded.

Uncertainty associated with k∞ has received the most attention.

Lattice uncertainty tools have historically focused on quantifying the uncertainty as-
sociated with the lattice multiplication constant, k∞. However, k∞ is not an especially
important output of lattice physics calculations. The outputs of primary concern, and
those that are used in ensuing reactor analysis (such as 3D core diffusion) are homoge-
nized, few-group lattice cross-sections. In other words, quantifying the uncertainty of
k∞ is not particularly useful in facilitating subsequent uncertainty analysis of reactor
core properties including: the core multiplication constant, keff ; or three-dimensional
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power distribution. The starting point to full-core uncertainty analysis must be the
quantification of all lattice output uncertainties, especially homogenized, few-group
cross-section covariance.

The capability to calculate these uncertainties of interest has only recently
been added to the TSUNAMI-1D and TSUNAMI-2D sequences (as of SCALE 6.1).
Few-group cross-section covariance calculation has been performed using XSUSA and
reported in literature[51], and CASMO-5/DP was designed with this capability in
mind. Therefore, in recent years the topic of few-group, homogenized cross-section
covariance has had increasing attention, although currently the only toolset with the
capability to quantify that covariance in three dimensions is XSUSA, coupled with
the 3D Monte Carlo transport solver in SCALE.

Multi-group cross-section libraries are often ill-suited
to lattice uncertainty analysis.

An equivalent statement can be that evaluated covariance matrices are often ill-suited
to particular multi-group cross-section libraries. To propagate nuclear data uncer-
tainties, the parameters for which there is a covariance matrix must exist on the
multi-group library. In other words, the cross-section library and covariance library
should involve a common set of parameters. However, partial cross-sections

(
such as

(n, γ), (n, α), etc.
)

are often not stored on multi-group libraries because they are
not individually necessary to solve the transport equation. Rather, it may be only
aggregate cross-sections, such as (n, absorption) = (n, γ)+(n, α)+ . . . , that are stored
there. If only aggregate cross-section parameters exist on the libraries, and if only
partial cross-section parameters have covariance matrices, then information required
to propagate uncertainties is missing – namely, the proportions by which the partial
cross-section covariances should be applied to the aggregate cross-sections. It is due to
this common occurrence that uncertainty tools such as SUSD3D and CASMO-5/DP
consult ENDLs in addition to those used by their respective transport solvers; ENDLs
contain the information that the multi-group libraries lack.

Choices for three-dimensional lattice uncertainty analysis are limited.

As most of the nuclear industry is concerned with LWR-type reactors that can be
reasonably modelled by a two-dimensional geometry, uncertainty analysis tools have
developed a similar focus. For example, TSUNAMI-3D, unlike its one and two-
dimensional counterparts, lacks the capability to calculate covariance associated with
homogenized, few-group cross-sections. Similarly, all uncertainty tools designed to be
coupled to two-dimensional lattice solvers (e.g. CASMO-5), are limited to the same
dimensionality.

For application to LWRs, the limitation of analysis tools to one or two dimen-
sions is not a hindrance to the propagation of uncertainties. In the case of CANDU R©

reactors, however, three-dimensional modelling is a necessary component to lattice
analysis[54][53], and, therefore, propagation of uncertainties for three-dimensional
models is a necessary component to lattice uncertainty analysis.
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2.3 Problem statement

The objectives of the work described in this dissertation were to develop a comprehen-
sive lattice physics uncertainty and sensitivity analysis tool that is applicable to LWR
and CANDU R© reactors. The tool must: propagate all input parameter uncertainties;
thoroughly treat implicit uncertainty effects of resonance self-shielding; calculate co-
variance of all lattice calculation outputs, including k∞ and few-group, homogenized
cross-sections; quantify the evolution of lattice uncertainties during burnup; and be
applicable to two and three-dimensional nuclear systems.

Some currently existing tools can do some combinations of the lattice uncer-
tainty analysis requirements listed above: TSUNAMI-3D can quantify k∞ uncertainty
and implicit effects, but not homogenized, few-group uncertainties; XSUSA can cal-
culate homogenized, few-group uncertainties, but not account for implicit effects; etc.
Similarly, no currently available tool has demonstrated the capability for treating
modelling parameter uncertainties, nor the effects related to burnup, as detailed in
the previous section.

This dissertation aims to achieve comprehensive lattice sensitivity and un-
certainty analysis by accounting for all relevant effects in all relevant dimensionalities,
coupled to DRAGON, a Canadian Industry Standard Tool (IST) best-estimate lattice
solver proven for conducting safety analysis for CANDU R© reactors.
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Chapter 3

Methodology

Three methodologies have been adopted to perform the lattice physics uncertainty
propagation described in this dissertation – statistical sampling, direct numerical per-
turbation, and adjoint sensitivity analysis. Uncertainty analysis by the first two meth-
ods was achieved by developing a set of new tools which add to the unique contribution
of this dissertation. A primary focus in the development of the original tools of this
dissertation was to capture all problem-dependent, implicit uncertainty effects that
arise through resonance self-shielding. Recall from chapter 2 that difficulties related
to quantifying self-shielding effects in lattice uncertainty propagation leads to these
effects being neglected by most currently available tools. This chapter presents a de-
tailed overview of the implementations of the statistical sampling and direct numerical
perturbation tools developed in this work, include a comprehensive description of their
capabilities and any simplifying assumptions that were employed. Adjoint-based sen-
sitivity and uncertainty analysis was performed using the TSUNAMI code to provide
a benchmark of the quantified output uncertainties.

The basis of the implemented statistical sampling method is to treat all
uncertain values as dependent random variables by sampling them according to a
multi-variate probability density function (PDF). For each randomly sampled set of
inputs, there exists a corresponding set of outputs which are the solution to the lattice
physics equations acting on the the input sample. Inputs can be randomly sampled
either one at a time, in groups, or all at once.

The implementation of the direct numerical perturbation method involves
calculating partial derivatives of outputs with respect to each input of concern one
at a time, and uncertainty propagation is performed using the sandwich rule. The
direct perturbation method offers is more computationally demanding than the statis-
tical sampling method, but offers additional information of value, namely sensitivity
coefficients and rank of importance corresponding to each input parameter.

Computer codes have been developed in this work to propagate lattice
physics uncertainties in conjunction with two best-estimate lattice physics solvers.
SCALE-Statistical Sampling (SCALE-SS) was a preliminary implementation of the
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statistical sampling methodology with the lattice physics solvers of the SCALE Code
System[32] developed by Oak Ridge National Laboratory (ORNL). The purpose of
developing SCALE-SS was to have a vehicle for propagating uncertainties of both
one and two-dimensional system that could be directly compared to TSUNAMI[30],
which is the native nuclear data uncertainty analysis module of SCALE that is based
on an adjoint-based sensitivity approach. The SCALE-SS code developed in this work
calculates uncertainties associated with k∞ and determines the contribution to that
uncertainty resulting from each uncertain input. The code has a limited number of
features and capabilities and served primarily as a feasibility exercise in propagating
uncertainties using a stochastic method comparable against a validated and widely
accepted adjoint tool.

DRAGON Implementations of Numerical Or Statistical Analysis of Uncer-
tainties in Reactors (DINOSAUR) was developed in this work to propagate uncertain-
ties of both nuclear data and problem-dependent model data through lattice calcula-
tions performed by the solver DRAGON[48]. Uncertainties are propagated through all
stages of the calculation including resonance self-shielding, multi-group neutron trans-
port solution, and flux- or volume-weighted homogenization. Both statistical sampling
and direct numerical perturbation methods for performing uncertainty analysis can
be performed using DINOSAUR. The code generates uncertainties associated with
predictions of k∞, spatially-varying multi-group neutron flux, and few-group homoge-
nized neutron flux and cross-sections. The relative contributions to output uncertain-
ties arising from each uncertain input can be established, in addition to first-order
partial derivatives and sensitivity coefficients of output variables with respect to var-
ious inputs.

3.1 Statistical sampling

When statistically sampling lattice physics inputs such as neutron interaction cross-
sections, each input is treated as a dependent random variable. Random implies that
the variables can take on different values according to a PDF, while their dependency
requires that values of some variables cannot be generated without regard to those of
other variables. The first two statistical moments (mean and variance/co-variance)
of the variable PDFs must be known to perform the statistical sampling uncertainty
propagation; higher-order moments can be assumed when not given. For simple lat-
tice systems consisting of a single fuel pin and moderator, the number of nuclear
data inputs is large. The value of each cross-section (e.g. (n, g), (n, 2n)) or reaction
parameter (e.g. ν̄, χ) in every energy group for every nuclide is treated as a random
variable. For pin cells consisting of a modest number of nuclides, each with several
multi-group reaction properties of interest, the random variables used in the lattice
calculation can number in the tens of thousands. That number further increases for
larger systems such as fuel bundles or assemblies, which contain additional nuclides.
The input vector of length n, which is defined in this text as a vector consisting of
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all the input variables for a particular system, has a corresponding n × n variance-
covariance matrix that describes the uncertainty associated with each element of the
input vector, as well as the correlations that exists between elements. By defini-
tion, the covariance matrix consists of the second statistical moment of the random
variables, and the first moment is taken to be the reference input vector, which is
stored on the unperturbed nuclear data library used as an input when calculating the
best-estimate lattice solution.
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Figure 3.1: A partial input vector, with N enegy groups

Figure 3.1 shows part of a lattice physics input vector, similar to those which
are commonly encountered in LWR and CANDU lattice cells. While figure 3.1 shows
neutron cross-sections discretized into N energy groups, input vectors typically in-
clude additional nuclear data which is not shown, such as resonance parameters and
tables describing group-to-group scattering, as well as the listing of certain data sev-
eral times corresponding to various temperatures. Because multi-group nuclear data
libraries are designed to be problem-independent with a wide range of applicability,
they generally contain far more data than is needed for any one particular lattice cal-
culation. Problem-dependent inputs to lattice calculations are supplied by the user in
a file known as an input deck that generally consists of non-nuclear properties, such
as mixture compositions, geometry and temperature of materials.

Although the covariance matrix for the input vector is large, many of its
elements are zero. Variables in the input vector associated with the zero values of

29



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

the covariance matrix needn’t be included in the sampling procedure, since even an
infinite number of samples of such a variable would produce no value other than
the reference value. For the variables that remain – those with non-zero covariance –
rather than generating new vectors directly from their PDFs, the approach of this work
was to statistically compute vectors of perturbation factors, that when multiplied by
the reference input vector will produce a population of vectors whose mean is equal
to the reference and whose elements have dependencies as given by the covariance
matrix.

When generating values of several dependent random variables according
to a covariance matrix, their mutual dependencies demand that they be generated
simultaneously in vector form rather than one at a time. A procedure for generat-
ing vectors of dependent random variables consistent with a given covariance matrix
involves performing a spectral (eigenvalue) decomposition of the matrix.

Σ = V ×D×VT (3.1.1)

The matrix of absolute covariance, Σ, in equation (3.1.1) is decomposed into
the product of three matrices, where V is a matrix whose columns are eigenvectors
of Σ, and D is a diagonal matrix of eigenvalues that correspond to the eigenvectors
in V. The Σ1/2 matrix is defined as:

Σ1/2 = V ×D1/2 ×VT (3.1.2)

where D1/2 is a diagonal matrix whose elements are the roots of the elements in
D. Generating a vector, G, of n normally distributed dependent random variables,
G = [x1, x2, . . . , xn]T , with means µ = [µ1, µ2, . . . , µn]T and covariance defined by Σ
can be achieved as shown below.

G(µ,Σ) = Σ1/2G(0, 1) + µ (3.1.3)

G(0, 1) is a vector of n independent, normally-distributed random variables,
each with a mean of zero and standard deviation of one. Note that the above formu-
lation of equations (3.1.1) through (3.1.3) involves Σ, an absolute covariance matrix,
rather than the typical evaluation of nuclear data uncertainties which is by relative
covariance. Therefore, directly generating random vectors of nuclear data would first
involve the calculation of absolute covariance by the multiplication of an evaluated
relative covariance matrix with a set of means, or reference values, of the nuclear
data. This method leads to several practical inconveniences. Firstly, the matrix de-
composition procedure would be intimately tied to the reference values of the inputs
to be randomly sampled; if one wished to re-evaluate lattice physics uncertainties
based on new reference values (i.e. ENDF vs. JEFF vs. JENDL), the covariance
decomposition would need to be performed again. In other words, the calculated
Σ1/2 matrix is not cross-compatible between different nuclear libraries by virtue of
their potentially inconsistent reference data. Secondly, even when concerned with a
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single nuclear library, some data have more than one reference value. An example is a
neutron cross-section whose reference value is temperature-dependent, which is gen-
erally the case. For such data, the matrix decomposition in equation (3.1.1) must be
performed once for each set of reference data (e.g. for each temperature), resulting in
a list of Σ1/2 matrices that must be applied selectively against the different reference
values of the data.

The method of generating vectors of perturbation factors rather than gener-
ating new input vectors directly alleviates the practical issues described above. The
procedure for generating perturbation factors is as follows. Equations (3.1.1) and
(3.1.2) are calculated similarly, but with the substitution of a relative covariance
matrix, Σr in the place of the absolute covariance Σ, ultimately resulting in a ma-
trix Σ

1/2
r . The Σ

1/2
r matrix is identical to the matrix Σ1/2 if and only if all of the

variable reference values are equal to unity. Next, a vector of perturbation factors
P = [p1, p1, . . . , pn]T can be found.

P = Σ1/2G(0, 1) + [1.0, 1.0, . . . , 1.0]T (3.1.4)

Once again, G(0, 1) is a vector of n independent, normally-distributed ran-
dom variables, each with a mean of zero and standard deviation of one. Therefore,
P ≡ G(1,Σ). The calculation of perturbation factors is entirely independent of the
reference values of the random data, and can be computed and stored even if the
reference data is unknown. Therefore, the decomposition of covariance is de-coupled
from the underlying nuclear library of reference values. The nuclear data can be
subsequently randomly sampled by using the precomputed perturbation factors in
combination with a particular set of reference values, µ = [µ1, µ2, . . . , µn]T .

G(µ,Σ) = PTµ (3.1.5)

The method for generating input vectors using perturbation factors is es-
sentially identical to using equations (3.1.1) through (3.1.3) to generate input vectors
on data with assumed reference values of unity, and later scaling those vectors by the
data’s true reference values, µ. Once a new input vector has been randomly gener-
ated using either equation (3.1.5) or equation (3.1.3), its values must over-write and
replace the reference values of the multi-group nuclear data library accessed by the
lattice solver. In the case of SCALE, the multi-group library used in this work is
the AMPX-format ”44GROUPNDF5” library in 44 energy groups, and in the case of
DRAGON the 69-group library is of a WIMS-D format. When the reference values of
the multi-group reference library have been replaced with their randomly generated
counterparts, the lattice physics equations will be solved using the perturbed data
as inputs, resulting in a set of outputs that correspond to the new input data set.
The uncertainty of an output response is then quantified from first-principles by the
calculation of the variance of its sample set. Covariance between output responses
can be calculated from first-principles using equation (1.4.1).
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Therefore, the method of propagating uncertainties described in this dis-
sertation is as independent as possible from the internal behaviour of the lattice
physics codes, and only requires information regarding the format of the lattice code’s
multi-group nuclear library. The generating of perturbed WIMS-D format libraries
can just as easily be used to propagate uncertainties with other lattice codes as it
can with DRAGON, granting that the other lattice codes are themselves compatible
with the WIMS-D library format. Likewise, SCALE-SS was used to propagate input
uncertainties using two lattice solvers that were each compatible with the AMPX-
format 44GROUPNDF5 library - XSDRNPM[33] and NEWT[37]. They both are
lattice solvers in the SCALE Code System; XSDRNPM solves the neutron transport
equation in one dimension and NEWT solves it in two. The same set of perturbed
44GROUPNDF5 libraries were used to propagate uncertainties through both codes’
lattice calculations with no additional modifications or extensions required. In other
words, the uncertainty analysis tools are library-dependent, but independent of the
lattice solver.

As an example, consider the 69-group radiative capture cross-section, (n γ),
of Pu239, whose reference values are shown in figure 3.2a. A set of 256 perturbation
factors, each of 69 groups, were generated using equation (3.1.4). Those factors were
then used in combination with the Pu239 (n, γ) covariance matrix shown in figure
3.3 to calculate samples of the cross-section according to equation (3.1.5), which are
shown in figure 3.2b.
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(a) reference

(b) 256 statistical samples

Figure 3.2: Pu239 (n, γ) cross-section
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Figure 3.3: Pu239 (n, γ) 69-group relative covariance matrix
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3.1.1 Covariance decomposition

The random generation of input vectors having a given covariance invariably involves
an eigenvalue decomposition of the covariance matrix. Since the decomposition forms
the basis for randomly generating all input vectors, precise determination of the ma-
trix’s eigenvectors and eigenvalues is of critical importance. The algorithm used in
this work to decompose covariance matrices is based on the Jacobi Rotation method,
working to machine precision (iterations cease when all double-precision, off-diagonal
elements underflow to zero). The Jacobi Rotation method is applicable to any sym-
metric matrix, and the motivation for its use in this work is subsequently described
in this section.

Note that when generating real-valued input vectors or perturbation fac-
tors, equation (3.1.2) requires that the eigenvalues of the covariance matrix be non-
negative. Since, by definition, a covariance matrix must be both symmetric and
positive-semidefinite[55], its eigenvalues must always be positive or zero. However,
in practice, a covariance matrix may fail the positive-semidefinite test and negative
eigenvalues can arise through two mechanisms. Firstly, covariance matrices may lose
their positive semi-definite characteristic during linear interpolation to a new energy
group structure, a process which can also cause them to become non-symmetric. Sec-
ondly, numerical eigenvalue decomposition algorithms may produce negative eigen-
values even when working on positive semi-definite matrices, as a result of numerical
precision limitations. In both cases, what should be small, non-negative eigenvalues
may be incorrectly identified as small (in absolute value), negative eigenvalues. Sim-
ilarly, zero-valued eigenvalues may be calculated as being small, positive eigenvalues.
The potential calculation of negative eigenvalues of a matrix that, by definition, should
be positive semi-definite demands one or more of the following actions: pre-process
the covariance matrix thereby forcing it to be positive-semidefinite and symmetric; or
post-process the decomposition of the covariance by substituting negative eigenvalues
with zeros. The latter strategy is essentially equivalent to retroactively forcing posi-
tive semidefiniteness on the covariance matrix by adjusting its spectral components
rather the covariance matrix directly.

A matrix can be pre-processed to guarantee positive semidefiniteness by
scaling the elements of the matrix in a reasonable way until the negative eigenvalues
vanish. For example, a diagonally dominant symmetric matrix with non-negative di-
agonal elements is necessarily positive semidefinite[56]. Diagonal dominance requires
that in any row, the diagonal element is not less than the sum of the absolute values
of all other elements in the row. This property equally applies to the columns of a
covariance matrix as a result of its symmetry.

For a diagonally-dominant matrix, A: Ai,i >=
∑
j 6=i

Ai,j ∀ i (3.1.6)

A matrix can be adjusted to guarantee positive semidefiniteness by utilizing
the property of diagonal dominance and appropriately scaling diagonal or off-diagonal
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elements so that equation (3.1.6) is satisfied. For nuclear data, typically the variance
of variables (diagonal entries) carries more significant uncertainty information than
the co-variance (off-diagonal entries). Therefore, down-scaling off-diagonal elements
of the covariance to satisfy equation (3.1.6) is preferable to up-scaling the diagonal
elements. Once a matrix has been processed in this way and is necessarily positive-
semidefinite, a more specialized eigenvalue algorithm, such as the Cholesky decom-
position, can be performed. In the work presented in this thesis, covariance matrices
pre-processed for symmetry (as shown in figure 3.4), and post-processed for positive-
semidefiniteness. The rational behind this approach is that even when pre-processed
for positive-semidefiniteness, negative eigenvalues can still sometimes appear due to
the numerical precision of decomposition algorithms, and therefore a rejection of tiny,
negative eigenvalues could still be necessary despite the pre-processing.
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Figure 3.4: Forcing the symmetry of a covariance matrix

Because this work does not pre-process covariance matrices to ensure a
positive-semidefinite condition, a more general eigenvalue decomposition algorithm
than Cholesky was adopted. The Jacobi Rotation algorithm requires only that the
target matrix be symmetric, and will solve for negative eigenvalues if they exist.
A simple post-processing operation is subsequently performed that sets all negative
eigenvalues to zero, to avoid imaginary components from appearing in Σ1/2

r .
Table 3.1 shows the Jacobi-calculated eigenvalues of the U238 (n, γ) covari-

ance matrix in 69 energy groups. Of the 69 eigenvalues, 24 are negative, but small
in magnitude; the largest (absolute value) negative eigenvalue is six orders of mag-
nitude smaller than the dominant (largest magnitude) eigenvalue. In this case, the
covariance decomposition post-processing routines of DINOSAUR would replace the
24 negative eigenvalues with zeros.
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1.90E-01 1.38E-05 8.46E-10 3.54E-20 -2.18E-10
9.98E-02 4.94E-06 6.26E-10 2.67E-20 -5.25E-10
3.94E-02 1.41E-07 3.75E-10 4.38E-22 -5.94E-10
2.65E-02 6.86E-08 2.87E-10 -9.40E-22 -1.61E-09
1.26E-02 3.64E-08 1.97E-10 -9.16E-21 -2.83E-09
5.37E-03 2.53E-08 6.52E-11 -1.35E-20 -4.57E-09
5.01E-03 2.07E-08 5.94E-12 -2.30E-20 -8.12E-09
2.20E-03 1.46E-08 1.40E-19 -3.15E-20 -9.83E-09
1.42E-03 1.18E-08 1.14E-19 -8.16E-20 -1.19E-08
5.92E-04 1.02E-08 1.04E-19 -1.51E-19 -1.90E-08
3.83E-04 6.97E-09 6.57E-20 -1.69E-19 -3.16E-08
2.31E-04 4.83E-09 4.99E-20 -7.79E-12 -3.65E-08
1.43E-04 3.50E-09 4.95E-20 -1.25E-10 -1.12E-07
6.71E-05 1.34E-09 4.91E-20 -1.59E-10

Table 3.1: U238 (n, γ) covariance matrix eigenvalues

3.2 Direct numerical perturbation

Direct numerical perturbation of an input value is used to calculate a first-order
estimate of the partial derivatives of output variables with respect to the perturbed
input. When the partial derivatives of an output with respect to its inputs are known,
the covariance propagation can be performed by the sandwich rule. Implemented in
DINOSAUR, the direct numerical perturbation method produces information other-
wise unavailable by conducting a statistical sampling, such the partial derivative and
sensitivity coefficient of k∞ with respect to a particular cross-section in a particular
energy group. The compilation of sensitivity coefficients against all inputs facilitates
a more thorough analysis of the propagation of their uncertainties. The basis of the
direct numerical perturbation used in this work is the first-order estimation of partial
derivatives as shown below,

f ′(x) ≈ f(x+ ∆x)− f(x)

∆x
(3.2.1)

A small perturbation is made by DINOSAUR on a variable, for example the
gth energy group of a cross-section σ belonging to some nuclide, denoted as σg, by
multiplying it by a scaling factor 1 + δ, where ideally δ � 1. The output of interest,
k∞, is a function of the variable, and hence can be written as k(σg). When acting
on the perturbed σg + δσg, the function output will also be perturbed from k(σg) to
k(σg(1 + δ)). Therefore, the first-order estimate of the partial derivative of k∞ with
respect to σg is:

∂k(σg)

∂σg
=
k(σg(1 + δ))− k(σg)

δσg
(3.2.2)

While the first-order estimate of the partial derivative grows more accurate
with a smaller perturbation, δ, there is a practical constraint imposed on the size of the
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perturbation by the numerical reality of the lattice solver DRAGON. The response,
k∞, is calculated by DRAGON to a (default) precision of six decimal places, which
consequently demands a minimum perturbation on σg such that the perturbed value
of k∞ is distinguishable from the unperturbed value by at least two decimal places
so that the difference can be reasonably quantified. Equivalently, a nuclear datum
should be perturbed to a degree no less than what is required to produce a change
in reactivity of at least 0.01 mk for the lattice model under investigation. Applied
to input variables with especially low sensitivity as it relates to k∞, the perturbation
demanded by numerical considerations may be so large as to no longer result in a
suitable estimation of the partial derivative about the unperturbed value.

If a covariance matrix is supplied, DINOSAUR calculates the uncertainty
associated with k∞ using the sandwich rule shown in equation (3.2.3).

∆2k = S × COV × ST (3.2.3)

where S is a row vector of partial derivates of k∞ with respect to each input, and
COV is a covariance matrix associated with the inputs in S.

In addition to calculating the partial derivatives of k∞ with respect to input
cross-sections (and parameters ν̄ and χ) and associated uncertainties, DINOSAUR
routines also compute dimensionless sensitivity coefficients, which indicate the ratio
of relative change in output to the relative change in input. Given that different input
cross-sections can vary by six or more orders of magnitude, an absolute perturbation
of 1 barn may be a significant change for some inputs but be trivial for others. The
dimensionless sensitivity coefficient, as defined in equation (3.2.4), is a more reason-
able metric for comparing sensitivities with respect to inputs whose reference values
show such a dissimilarity in magnitude.

Sxg =
∂k/k

∂σxg/σxg
(3.2.4)

Discrete energy groups are not, in general, of equal width. For example, the
first (highest energy) group of the WIMS-D-format IAEA library spans an interval
from 10 MeV to 6 MeV, whereas the last (lowest energy) group has a width that is
nearly one-billion times smaller, ranging from 5 meV to 10 µeV. It is reasonable to
conclude that cross-sections of some energy groups have greater influence on k∞ than
others, thereby producing higher sensitivities, merely as a result of the relative widths
of the groups in which they reside, and their occupying vastly different fractions of
the available energy spectrum. A modified sensitivity parameter, sensitivity per unit
lethargy, SL, removes biases in sensitivity coefficients and discontinuities in energy-
dependent sensitivity profiles that arise solely due to energy group widths.

SL,xg =
Sxg

µ−g − µ+
g

=
Sxg

log(E+
g /E

−
g )

(3.2.5)
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where lethargy, µ that corresponds to energy, E, is,

µ(E) = log

(
Eo
E

)
(3.2.6)

where Eo is the largest neutron energy of interest in the system, usually taken to be
20 MeV. In equation (3.2.5), µ−g , µ+

g , E−g and E+
g are the lower and upper lethargy

and energy boundaries of group g, respectively.
Unlike the statistical sampling method, by which multiple inputs can be

sampled simultaneously, the calculation of partial derivatives and sensitivity coeffi-
cients must be performed on one input variable at a time. This implies solving the
lattice physics equations N times for each cross-section, where N is the number of en-
ergy groups. For light water reactor fuel cells, there are twenty or more cross-sections
of primary importance, which, when discretized into sixty-nine energy groups, re-
quires nearly fourteen-hundred solutions of the lattice equations, each working on a
set of inputs that includes a single perturbed variable. DINOSAUR co-ordinates the
perturbation of each variable with an associated solution of the lattice equations by
DRAGON, and subsequently determines partial derivatives and sensitivity coefficients
by scanning the appropriate DRAGON output files for the resultant change in k∞.

A useful benefit of the numerical perturbation method is that virtually all
of the computation effort involved is in the calculation of partial derivatives, and very
little effort is needed in propagating covariance using the sandwich rule. Therefore,
recalculating output covariance based on new input covariances is a trivial task; one
must merely resolve the sandwich equation using the same partial derivatives. This
is in contrast to the statistical sampling approach, which is strongly tied to the input
covariance from the very beginning of the analysis.

3.3 Generating nuclear data libraries

Through either statistical sampling or numerical perturbation, the uncertainty analy-
sis performed in this dissertation requires the creation of nuclear data libraries, which
are copies of a reference library with the exception of some values which have been
strategically changed. When some data in a library is modified, additional steps must
be taken to ensure that the new library is physically appropriate and its data, when
taken as a whole, is self-consistent. Some variables are subject to inherent limitations
on their possible ranges of variation, either individually or as a group. As examples,
neutron interaction cross-sections cannot in reality be negative, and nor can the inte-
grated spectrum of fission neutron energies vary from unity. However, considerations
regarding the range of possible values taken by variables is not all that is required
to produce a sensible library. A library’s collection of variables generally possesses
interdependencies and redundant information, such that the change in one variable
demands changes in other variables to achieve library self-consistency. A nonphysi-
cal or inconsistent library has the potential to cause unpredictable behaviour by the
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lattice physics code which is using the library as source of inputs, leading to numer-
ical convergence failure, program crashes, or incorrect solutions. Therefore, lattice
physics uncertainty analysis codes must follow a set of consistency rules that regulate
the changes made to nuclear data.

3.3.1 Consistency requirements

Total vs. Constituent Data Consistency

Neutron cross-sections can be categorized as being either fundamental1 cross-sections,
which correspond to a particular nuclear reaction, or as aggregate cross-sections, which
are the sum of multiple fundamental cross-sections, that generally describe broad
mechanisms of neutron loss or production. Fundamental cross-sections include those
of the (n, γ) reaction, (n, fission), (n, α), (n, 2n) and others. An example of an aggre-
gate cross-section is (n, total), which describes the total probability of any neutron
interaction of any type occurring, or (n, absorb), which is the sum of all reaction cross-
sections in which the incident neutron is absorbed by the target nucleus. Naturally,
aggregate cross-sections depend on the magnitudes of their constituent components,
so if a perturbation is performed on (n, γ), a correction is warranted on both (n, total)
and (n, absorb) belonging to the same nuclide.

Scattering Table vs. Scattering Vector Consistency

Nuclear scattering reactions, both elastic and inelastic, are not fully described by
multi-group cross-sections alone. Accordingly, libraries also commonly store the en-
ergy and angular characteristics of the scattered neutrons in tables of values that are
distinct from the multi-group scattering cross-section. While the group cross-section
represents the likelihood of such scattering reaction taking place, the tables, referred
to as scattering tables, describe in more detail the properties of the scattered neutron.
Therefore, when making changes to a scattering group cross-section, its associated
data tables require adjustment for the sake of consistency.

Table 3.2 shows a representation of a generic group-to-group scattering table,
with entries σi→j, that describe the probability of a neutron with incident energy, i,
being scattered to group j. If the terms in the scattering table are in units of area (i.e.
barns), then the sum across a row is equal to the appropriate group cross-section, as
in equation (3.3.1).

σSi =
N∑
j=1

σi→j (3.3.1)

1Despite the term ’partial cross-section’ being widely used, the term ’fundamental cross-section’
is chosen for this text to avoid confusion between partial cross-sections and partial derivatives.
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Out-group
1 2 3 . . . N

In-group
1 σ1→1 σ1→2 σ1→3 . . . σ1→N
2 σ2→1 σ2→2 σ2→3 . . . σ2→N
...

N σN→1 σN→2 σN→3 . . . σN→N

Table 3.2: Group-to-group scattering table

When only multi-group uncertainties are known, an assumption must be
made regarding how that uncertainty is allocated between each component of the
scattering table. The most reasonable treatment in the absence of more detailed
uncertainty information is to assume that the uncertainty is primarily associated with
a scattering reaction taking place, and not with the distribution of neutron energy
post-scattering. Essentially, this is equivalent to assuming full correlation between
the each column of every row of the scattering table. Therefore, given a perturbation
to a nuclide’s scattering cross-section in group i, the scattering table is subject to the
following correction:

σSi → (1 + δ)σSi
σi→j → (1 + δ)σi→j ∀j

Other Consistency Requirements

There are many additional requirements for consistency that depend on the specific
collection of data on a library and how that data is represented. Library-specific
consistency requirements are described in detail in sections 3.4.3 and 3.5.3.

3.4 SCALE-SS

The set of tools designated as SCALE-SS were developed as part of this dissertation
to calculate the uncertainty associated with keff when solved using the SCALE Code
System. SCALE-SS uses a statistical sampling technique to generate a collection of
new nuclear data libraries that are identical in structure to a reference library used by
SCALE but with modified data. An objective of SCALE-SS was to properly propagate
nuclear data uncertainties through all stages of a lattice physics calculation, including
resonance self-shielding.

The SCALE Code System contains a collection of routines and modules for
performing nuclear analysis, including lattice calculations. A description of SCALE
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lattice components and modules is shown in table 3.3, and a program flow dia-
gram of a SCALE lattice calculation sequence in figure 3.5. Other SCALE lat-
tice modules that perform the calculation using alternate techniques, such as CEN-
TRM/PMC/WORKER in place of NITAWL, are not described in this section and
were not exploited by SCALE-SS.

Item Description
44GROUPNDF5 Problem independent, 44-group cross-section

library

MIPLIB SCALE routines for producing problem-
dependent library containing only the nuclides of
relevance

ft11f001 AMPX master library containing only nuclides of
relevance

BONAMI SCALE self-shielding for unresolved resonances
via the Bondarenko method

NITAWL SCALE self-shielding for resolved resonances via
a Nordheim Integral Treatment

ft04f001 AMPX working library containing region-specific,
self-shielded cross-sections

XSDRNPM SCALE 1-D discrete-ordinates transport solver

NEWT SCALE 2-D discrete-ordinates transport solver

Table 3.3: SCALE lattice sequence component description

The statistical sampling uncertainty tool for SCALE that was developed as
part of this work was intended to serve as a basis for comparison with TSUNAMI-1D.
Therefore, the functionality of SCALE-SS and TSUNAMI-1D are similar - multi-
group nuclear data uncertainties are propagated through resonance self-shielding and
neutron transport calculations, resulting in a quantification of uncertainty associated
with k∞. SCALE-SS was also designed, however, to allow a much broader set of
problem-dependent uncertainties to be addressed, in many cases for variables not
easily adoptable in adjoint methods.

The nuclear data covariance matrix which described input uncertainties was
44GROUPV6REC, an uncertainty library evaluated by ORNL and adopted by the
OECD/NEA as the UAM benchmark covariance matrix at the time of the develop-
ment of SCALE-SS. It contains uncertainty information for a wide range of nuclear
data belonging to over 300 nuclides, in a 44 energy group structure. The 44-group
structure of the covariance file is the same as SCALE’s 44-group cross-section library,
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Figure 3.5: SCALE lattice calculation sequence

44GROUPNDF5, which is based on the ENDF/B-V nuclear data evaluation. This
multi-group cross-section library was used as the reference values for the statistical
sampling of input variables by SCALE-SS.
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3.4.1 AMPX-format 44GROUPNDF5 library

The 44GROUPNDF5 library was developed by ORNL and is recommended only for
fully-moderated LWR systems. It contains cross-sections and nuclear parameters
for all nuclides of the ENDF/B-V2 data files. Collapsed from a 238-group parent
library, 238GROUPNDF5, it has the same 44 energy group structure (see table 3.4)
as the employed covariance library, 44GROUPV6REC. No interpolations, extensions
or modifications of the covariance are necessary for uncertainty propagation using this
44-group library, as each group covariance can be applied on a one-to-one basis to the
library cross-sections.

Group Upper energy Group Upper energy
limit (eV) limit(eV)

1 2.00E+007 24 1.77E+000
2 8.19E+006 25 1.00E+000
3 6.43E+006 26 6.25E-001
4 4.80E+006 27 4.00E-001
5 3.00E+006 28 3.75E-001
6 2.48E+006 29 3.50E-001
7 2.35E+006 30 3.25E-001
8 1.85E+006 31 2.75E-001
9 1.40E+006 32 2.50E-001
10 9.00E+005 33 2.25E-001
11 4.00E+005 34 2.00E-001
12 1.00E+005 35 1.50E-001
13 2.50E+004 36 1.00E-001
14 1.70E+004 37 7.00E-002
15 3.00E+003 38 5.00E-002
16 5.50E+002 39 4.00E-002
17 1.00E+002 40 3.00E-002
18 3.00E+001 41 2.53E-002
19 1.00E+001 42 1.00E-002
20 8.10E+000 43 7.50E-003
21 6.00E+000 44 3.00E-003
22 4.75E+000 1.00E-005
23 3.00E+000

Table 3.4: 44GROUPNDF5 energy group boundaries

2Except for the default O16 data, which is from the ENDF/B-VI evaluation.

44



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Cross-Sections

Neutron cross-sections and reaction parameters are tabled in 44GROUPNDF5 accord-
ing to ENDF Section (MT)3 numbers. A list of common MTs stored on 44GROUP-
NDF5 is shown in table 3.5, which is a partial reproduction of the table found in
Appendix B of the ENDF format guide[2].

Reaction/
MT parameter Description
1 (n, total) Total neutron cross-section, sum of MT=2, 4, 5, 11,

16–18, 22–26, 28–37, 41–42, 44–45, 102–117
2 (n, no) Elastic neutron scattering cross-section
4 (n, n′γ) Inelastic neutron scatting cross-section
16 (n, 2n) Production of two neutrons
18 (n, f) Fission cross-section
27 (n, abs) Neutron absorption, sum of MT=18, and MT=102

through MT=117
101 (n, disap) Neutron disappearance, sum of MT=102 through

MT=117
102 (n, γ) Radiative capture
103 (n, p) Production of a proton
104 (n, d) Production of a dueterium nucleus
105 (n, t) Production of a tritium nucleus
106 (n, He3) Production of an He3 nucleus
107 (n, α) Production of an α-particle
452 ν̄ Average number of fission neutrons (prompt plus de-

layed) per fission
1018 χ Spectrum of fission neutron initial energy
3xxx σ∞ Infinite dilution cross-sections (i.e. MT=3002 for

(n, no), MT=3018 for (n, f), MT=3102 for (n, γ), etc.)

Table 3.5: 44GROUPNDF5
MT numbers of relevance

The uncertainties associated with several fundamental cross-sections were
propagated directly using SCALE-SS. Uncertainties related to an aggregate cross-
section, such as (n, total), are not propagated directly from its associated covariance
matrix, in cases where its covariance matrix exists. Instead, its uncertainty will
be manifested by directly sampling its constituent cross-sections, and adjusting the
aggregate based on the new totals. This process of varying aggregate cross-sections
by directly sampling its component reactions can be referred to as indirect component

3Except MT=1018, and MT=3xxx, which are not part of the ENDF standard

45



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

sampling. Table 3.5 shows all MTs that can be varied by SCALE-SS by both direct
(shown in bold) and indirect component sampling.

For each MT listed in table 3.5 there is an array of 44 values, each of which
corresponds to one of the available neutron energy groups. Infinite-dilution cross-
sections are available for some reactions. In the case of neutron-producing or scat-
tering MTs, or more generally, any that have one or more neutrons in the reaction
exit channel, such as MT=2, MT=4 and MT=16, there are additional tables of data
that store energy and angular characteristics of post-reaction neutrons. SCALE-SS
does not adjust the energy or angular profiles of these neutron tables, but in the case
of elastic scattering, will apply an adjustment as described in section 3.3, so that
the sum of scattering out-group cross-sections is equivalent to the sampled scattering
in-group cross-section.

Resonance Parameters

The 44GROUPDF5 library contains resonance parameters for self-shielding in both
the unresolved and resolved resonance energy regions. Self-shielding due to unresolved
resonances is performed in SCALE by the BONAMI[57] code using the Bondarenko
method. Bondarenko Factors for energy groups containing unresolved resonances
are tabled in the library as a function of temperature and background cross-section,
σo. BONAMI calculates problem-dependent Bondarenko Factors for each resonant
nuclide by evaluating the actual background cross-section present in the nuclide’s
material mixture, and subsequently interpolating between the σo values on the table.
The Bondarenko Factors used by BONAMI are fractional values that express the ratio
of the shielded cross-section at the problem dilution to that at infinite dilution,

BFg(T, σo) =
σ̄g
σ∞g

(3.4.1)

where BFg is the Bondarenko Factor of a cross-section in group g, as a function of
temperature, T , and background cross-section, σo, and where σ̄g and σ∞g are the
shielded and infinitely dilute cross-sections, respectively.

Resonance self-shielding effects arising due to resolved resonances are com-
puted by the NITAWL[58] module of SCALE. NITAWL has the capability to solve a
collision density equation at resonance energies subject to several assumptions. The
Nordheim formulation of collision density is shown in equation (3.4.2), with consid-
eration to a maximum of three nuclides: one absorbing nuclide and two moderating
nuclides. System heterogeneities are accounted for by the use of a Dancoff factor.
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φ(E)ΣT (E) =

≤3∑
i=1

[
(1− P ∗o (E))

αi

∫ E/(1−αi)

E

φ(E ′)Σsi(E
′)
dE ′

E ′

+ P ∗o ΣT i(E)W (E)

]
(3.4.2)

where,
φ(E) is the energy-dependent neutron flux
ΣT (E) is the energy-dependent total macroscopic cross-section

of the absorbing mixture
P ∗o is the Dancoff-corrected first-flight escape probability out

of the absorbing mixture
αi is the maximum fraction of energy that can be lost by a

neutron during an elastic collusion with nuclide i
Σsi is the macroscopic, isotropic scattering cross-section of

nuclide i
ΣTi is the macroscopic, total cross-section of nuclide i
W (E) is the energy-dependent neutron flux in the moderator
i is an index to the absorbing and moderating nuclides

Equation (3.4.2) is a simple collision density balance equation that describes a nec-
essary consequence of an assumed steady-state condition. Namely, that any neu-
tron/nucleus interactions (collisions) with an energy in dE about E occurring in an
absorbing mixture involve neutrons that have have been previously scattered into
dE from higher energies within the absorber, or alternately, neutrons already having
energy dE about E that have leaked into the absorbing mixture from the adjacent
moderator. Several additional assumptions involved in the formulation of equation
(3.4.2) are described in NITAWL documents[58].

NITAWL solves equation (3.4.2) on a fine energy mesh across each resolved
resonance, which is uniquely characterized by a set of resonance parameters. The
fine-mesh resonant cross-section is constructed by NITAWL for use in the equation
by using the resonance parameters to define a curve according to the single-level
Breit-Wigner formulae, shown in equations (3.4.3) through (3.4.5).

σln,n(E) = (2l + 1)
4π

k2
sin2(φl) +

4π

k2
g

Γln
Γ

sin(2φl)

2
χ(X, ξ)

+

(
Γln
Γ
− 2 sin2(φl)

)
ψ(X,χ) (3.4.3)

47



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Parameter Description
Γ total resonance width
AWRI ratio of the nuclide mass to the mass of a neutron
E ′r effective resonance energy, related to Eo (see [58])
k neutron wave number
Γln neutron resonance width
Γlγ capture resonance width
Γlf fission resonance width
g a statistical factor
Eo resonance energy
l the spin of the resonance
σpo potential scattering cross-section, used when invoking an

NR approximation as well as to determine the energy
range of the slowing-down calculation

Table 3.6: 44GROUPND5 resolved resonance parameters

σln,γ(E) =
4π

k2
g

ΓlnΓlγ
Γ

ψ(X, ξ) (3.4.4)

σln,f (E) =
4π

k2
g

ΓlnΓlf
Γ

ψ(X, ξ) (3.4.5)

where, ψ(X, ξ) and χ(X, ξ) are doppler shape functions,

ψ(X, ξ) = ξ/(2
√
π)

∫ ∞
−∞

exp
[
− (

ξ

2
)2(X − Y )2

]
(1 + Y 2)−1dY (3.4.6)

χ(X, ξ) = ξ/(
√
π)

∫ ∞
−∞

exp
[
− (

ξ

2
)2(X − Y )2

]
Y (1 + Y 2)−1dY (3.4.7)

and,

X = 2(E − E ′r)/Γ (3.4.8)

ξ = Γ
√

AWRI/(4E ′rkT ) (3.4.9)

where the resonance parameters are listed in table 3.6. The equations listed above
can be found in the NITAWL theory manual[58].

3.4.2 44GROUPV6REC covariance library

The covariance library used by both SCALE-SS and TSUNAMI as part of the feasibil-
ity study, 44GROUPV6REC, is one of four covariance libraries that are included with
SCALE 5.1. It is a library of relative covariance of multi-group cross-sections and is set
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aside from its three peer libraries in SCALE 5.1 as being the one based on more recent
data evaluations (ENDF/B-VI for most data, rather than ENDF/B-V) and covering
the most isotopes. Although intended for application with ENDF/B-VI cross-section
data, it is used in this work with the 44GROUPNDF5 cross-section set for two reasons.
Firstly, this covariance was chosen for the sake of consistency with the OECD/NEA
UAM benchmark activities, which distributed solely the 44GROUPV6REC library to
the benchmark participants4. Secondly, intended as a study of feasibility and compar-
ison to other methods, namely TSUNAMI, the choice of covariance can be arbitrary
so long as it is used as a common source of uncertainty by both uncertainty tools.

44GROUPV6REC shares the same SCALE 44-group energy structure as the
cross-section library 44GROUPNDF5 (see table 3.4). The covariance library contains
uncertainty information for a wide range of nuclides and reactions, making it suit-
able for broad application to many different lattice problems. Consistent with this
broad applicability, the covariances relate to problem-independent, unshielded cross-
sections. The library contains covariance only for the multi-group data shown in table
3.7 (see table 3.5 for more details). The full list of over 300 nuclides available in the
uncertainty library can be found in SCALE covariance documentation[59].

Covariances exist in 44GROUPV6REC between energy group values of the
same cross-section (i.e. thermal values of U235(n,γ) are correlated), between different
cross-section group values belonging to the same nuclide (i.e. U235(n, γ) and U235(n,
fission) are correlated), and between group values of cross-sections of different nuclides
(i.e. U235(n, γ) and Pu239(n, γ) are correlated).

MT Reaction
1 (n, total)
2 (n, no)
4 (n, n′γ)
16 (n, 2n)
18 (n, f)
102 (n, γ)
103 (n, p)
104 (n, d)
105 (n, t)
106 (n, 3He)
107 (n, α)

Table 3.7: MTs supported by 44GROUPV6REC

4It has since been replaced in the UAM benchmark by a more recent covariance evaluation,
44GROUPCOV
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3.4.3 Procedures and rules

Recall that SCALE-SS replaces multi-group cross-sections with randomly generated
values as described in section 3.1. Because SCALE-SS was intended to propagate
uncertainties through all stages of a lattice calculation, the propagation sequence of
SCALE-SS, shown in figure 3.6, mirrors that of a standard SCALE lattice calculation
sequence (refer to figure 3.5).

Item Description
44GROUPV6REC Problem independent, 44-group cross-section un-

certainty library
DECOMP SCALE-SS routines for covariance matrix eigen-

value decomposition; see equations (3.1.1) and
(3.1.2)

Σ1/2 Matrix for generating dependent, random vari-
ables; see equations (3.1.1) and (3.1.2)

SCALELIB SCALE-SS routines for randomly generating new
problem-independent cross-sections and writing
them to separate AMPX-format master libraries

Master Libraries Problem-independent cross-section libraries that
are populated with random values

Working Libraries Problem-dependent libraries containing self-
shielded cross-sections

KUNCERT SCALE-SS routines for calculating the variance
associated with k∞

Table 3.8: SCALE-SS uncertainty propagation sequence component description

The cross-sections that are randomly sampled by SCALE-SS are fundamen-
tal reactions and are shown in bold in table 3.5, which necessitate the correction of
numerous other variables stored on the 44GROUPNDF5 library, such as aggregate
cross-sections, scattering matrices, and resonance parameters. If resonance param-
eters are not adjusted to be in some way consistent with the new cross-sections,
uncertainties will not be properly propagated through the self-shielding calculations
of the lattice sequence.

Sampling Procedure

All nuclear data that are statistically propagated by SCALE-SS are sampled accord-
ing to a Gaussian PDF. For each variable, the mean of the PDF is taken to be the
variable’s reference value on 44GROUPNDF5, and the covariance is extracted from
44GROUPV6REC. As previously mentioned in section 3.1.1, the covariance is pre-
processed for symmetry and post-processed to guarantee positive-semidefiniteness.
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Figure 3.6: SCALE-SS uncertainty propagation sequence

Since the sampling is done according to a Gaussian PDF, negative cross-section val-
ues are occasionally generated. Naturally, variables with large relative covariance tend
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to produce more negative values than variables with smaller covariance. Negative val-
ues are not rejected by SCALE-SS, and they are written as-is to the new multi-group
libraries for later use by the lattice solvers of SCALE. It is noteworthy that the refer-
ence library, 44GROUPNDF5 contains negative cross-sections from the onset, which
makes subsequent discrimination against negative values by SCALE-SS problematic.
The existence of a small collection of negative cross-sections ultimately caused no no-
ticeable issues with the solution of the lattice equations or the quantification of output
uncertainties, particularly because while some microscopic cross-sections were nega-
tive, the macroscopic cross-sections associated with each mixture tended to remain
positive. SCALE-SS can sample more than one cross-section at a time. When two or
more cross-sections belonging to a particular nuclide are sampled simultaneously, the
covariances between cross-sections are included in the sampling procedure. However,
for simplicity, SCALE-SS neglects covariances between cross-sections of different iso-
topes. This was intended as a temporary simplification for preliminary purposes, and
isotope-to-isotope covariances may be treated as the code is updated. The effect of
cross-isotope covariances is small for the test problems described later in this chapter,
as determined with TSUNAMI.

Cross-Section Consistency Rules

When the SCALELIB module of SCALE-SS builds new AMPX master format li-
braries, many cross-section values that are not randomly sampled must be corrected
or recalculated to be consistent with the sampled data. A number of cross-section
consistency rules are used by SCALELIB to ensure a self-consistent set of data in
each new library.

MT Description Rule
1 (n, total) Sum of MT=2, 4, 5, 11, 16–18, 22–26, 28–37,

41–42, 44–45, 102–117
2 (n, no) Corresponding row of scattering table is scaled

uniformly with the 1D scattering cross-section
27 (n, abs) Sum of MT=18, and MT=102 through MT=117

101 (n, disap) Sum of MT=102 through MT=117
1018 χ Sum of all groups normalized to 1.0
3xxx σ∞ Scaled uniformly as the weighted cross-section

Table 3.9: SCALE-SS cross-section consistency rules

The rules for MT=1, MT=27 and MT=101 are straightforward and involve
the re-totaling of aggregate cross-sections, whose constituent MTs may have been
changed by the sampling process. The rule for elastic scattering, MT=2, corrects
the group-to-group scattering matrix as described in section 3.3.1, uniformly scaling
each row according to the change in the 1D scattering group cross-section. The χ
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normalization rule expresses the mathematical necessity that the fission spectrum, χ,
is a probability distribution whose sum is unity. Finally, recall that for several cross-
sections, 44GROUPNDF5 records multi-group infinite-dilution cross-sections, σ∞, in
addition to the cross-sections weighted by a problem-independent generic flux, σ.
Infinite-dilution cross-sections are stored in 44-group vectors, MT=3xxx (e.g. 3018,
3102, etc.), and also in distinct data fields as part of the Bondarenko self-shielding
block of the library. Given that both infinite-dilution and weighted cross-section data
are a function of the same continuous-energy cross-sections, any uncertainty that af-
fects σ should also affect σ∞.

Recall that,

σg =

∫
g

σ(E)W (E)dE∫
g

W (E)dE
(3.4.10)

where,
σg is the weighted cross-section in group g
Eg is the lower energy limit of group g
σ(E) is the continuous-energy cross-section
W (E) is a continuously-varying weighting function (see sec-

tion 1.1)

If a perturbation, δ, is applied to a weighted cross-section σg such that the
perturbed cross-section is σ′g = (1 + δ)σg, an assumption can be made relating the
change in group value from σg to σ′g to the change in continuous-energy values from
σ(E) to σ′(E) for all values of E within the energy limits of g. If the group cross-
section σg in equation (3.4.10) is replaced with its perturbed counterpart, σ′g, we would
have,

σ′g = (1 + δ)σg = (1 + δ)

∫
g

σ(E)W (E)dE∫
g

W (E)dE
(3.4.11)

Since perturbations are step-wise applied to cross-section on a group-by-
group basis, it is constant for all energies, E within a particular group, and can
therefore be moved inside the integral of equation (3.4.11). Upon making the sensible
assumption that small perturbations in σ(E) will not cause a related perturbation on
the continuous-energy weighting function residing in the same energy group, W (E)
can be treated as constant. This is perfectly reasonable since W (E) is a generic
weighting function that is independent of the underlying nuclear data at resonant
energies. Therefore, a perturbation of σg is taken to be solely the result of pertur-
bations of σ(E). It is reasonable to introduce an artificial correlation between all
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continuous-energy cross-sections within the energy limits of group, g, treating the
continuous-energy perturbations as being uniformly applied to all σ(E) falling within
the limits of that group.

σ′g =

∫
g

(1 + δ)σ(E)W (E)dE∫
g

W (E)dE

=

∫
g

σ′(E)W (E)dE∫
g

W (E)dE
(3.4.12)

where,
σ′(E) = (1 + δ)σ(E) (3.4.13)

The only assumptions employed when arriving at this conclusion are that the group-
wise cross-section perturbations are uniformly applied to all continuous-energy data
within the group, and that no change in the fine-structure of the weighting function
within the group occurs as a result of the uniform perturbation of the cross-section.
This correction of the infinite-dilution cross-section arising from the change in flux-
weighted group values is important for propagating uncertainties through resonance
self-shielding calculations, and is noted as the final rule in table 3.9.

Resonance Parameter Consistency Rules

Bondarenko resonance parameters for unresolved resonance self-shielding include in-
finite-dilution cross-sections, the treatment of which has been described above, and
Bondarenko Factors (see equation (3.4.1)), which relate the self-shielded cross-section
at the problem dilution to the infinite-dilution cross-section. Like the infinite-dilution
cross-section itself, Bondarenko Factors depend on continuous-energy cross-sections,
and should show variation as a result of cross-section perturbations. Recall the
shielded cross-section, σ̄ at a particular problem-dependent dilution (background
cross-section), σo from equation (1.2.4). In this section it is more convenient to
express the self-shielded cross-section in terms of the lethargy variable rather than
energy. Recall that,

µ = log

(
Eo
E

)
and hence, dµ = − 1

E
dE (3.4.14)
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Hence,

σ̄g =

∫
g

σ(µ)

σt(µ) + σo
dµ∫

g

1

σt(µ) + σo
dµ

(3.4.15)

Where the integrals are taken over an energy group, g, and the background cross-
section, σo is assumed to not vary within the group for the sake of simplification. Note
that this is a simplifying assumption also employed by multi-group lattice physics
codes. A uniform perturbation of the continuous-energy cross-section within the
group, consistent with equation (3.4.13), will cause a related perturbation on the
total cross-section of the same nuclide, σt(µ), and on on the shielded cross-section,
σ̄g.

σ̄′g =

∫
g

σ′(µ)

σ′t(µ) + σo
dµ∫

g

1

σ′t(µ) + σo
dµ

(3.4.16)

If only one cross-section is being sampled at a time, then the absolute change
in the total cross-section is equal to the absolute change in the sampled cross-section.
However, if more than one cross-section is simultaneously sampled, then the change
in total cross-section is equal to the net change in all of its constituent cross-section
components. To simplify the notation in this text, the former is taken to be the case.
Therefore, a perturbation of δ applied to the weighted, and therefore, continuous-
energy cross-section, would result in the following expression.

σ̄′g =

∫
g

(1 + δ)σ(µ)

δσ(µ) + σt(µ) + σo
dµ∫

g

1

δσ(µ) + σt(µ) + σo
dµ

(3.4.17)

Since the perturbation is constant within the energy group, it can be excluded from
the integration, and equation (3.4.17) reduces to,

σ̄′g = (1 + δ)

∫
g

σ(µ)

σt(µ) + σ′o
dµ∫

g

1

σt(µ) + σ′o
dµ

(3.4.18)
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where,

σ(µ) is the unperturbed continuous-energy cross-section
σt(µ) is the unperturbed continuous-energy total cross-section

and,

σ′o is the effective perturbed background cross-section

σ′o = σo + δσg (3.4.19)

Recall the definition of the Bondarenko Factor in equation (3.4.1). Substi-
tuting the expression for the perturbed infinite-dilution cross-section from equation
(3.4.10),

BF ′g(T, σo) =

(1 + δ)

∫
g

σ(µ)

σt(µ) + σ′o
dµ∫

g

1

σt(µ) + σ′o
dµ

(1 + δ)σ∞g

which is equivalent to,

BF ′g(T, σo) = BFg(T, σ
′
o) = BFg(T, σo + δσg) (3.4.20)

Therefore, unresolved resonance shielding using Bondarenko Factors applied to a per-
turbed cross-section is equivalent to solving the problem with unperturbed cross-
sections at a different background cross-section. This is the most rigorous method to
propagate changes in group cross-sections through resonance self-shielding using the
Bondarenko method.

If, however, perturbations are sufficiently small such that δσ is significantly
smaller than σt(E) + σo, then,

σt(E) + σo + δσg

can be approximated by,
σt(E) + σo

According to this approximation, the Bondarenko Factors are left unmodified. This
is only a reasonable approximation when δσg � σt(E) + σo. While this applies to
many cross-sections of many nuclides, it only becomes questionable in cases of ex-
tremely low dilution. However, this approximation is employed by SCALE-SS, with
the explicit recommendation that for more rigorous uncertainty propagation through
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Bondarenko self-shielding, equation (3.4.20) be implemented in the propagation pro-
cedure as part of future work. In summary, the uncertainty propagation through
unresolved resonance self-shielding by SCALE-SS has proper consideration for the
appropriate adjustments in infinite-dilution cross-sections, and when sampling mul-
tiple cross-sections simultaneously, the perturbation of each cross-section will be re-
flected in adjusted background cross-sections for the others. The change in effective
background cross-section resulting from a cross-section’s own perturbation, however,
is neglected in SCALE-SS.

Consistency adjustments of resolved resonance parameters are more compli-
cated. The reference values in 44GROUPNDF5 of the resolved resonance parameters
in table 3.6, that correspond to continuous-energy cross-sections formulated in equa-
tions (3.4.3) through (3.4.5) are, by default, physically consistent with the reference
flux-weighted and infinite-dilution multi-group cross-sections. The task of developing
consistency rules for the resolved resonance self-shielding is to calculate an adjusted
or perturbed set of resonance parameters, Γ′n, Γ′γ, Γ′f , E

′
o, etc., that are physically con-

sistent with the perturbed multi-group cross-sections, σ′, that are generated by the
statistical sampling procedure. Making use of a previously employed assumption that
a change in multi-group cross-section is uniformly applied to the continuous-energy
cross-sections that lay within the energy limits of the group, a perturbation of σn,γg to
σ′ n,γg = (1 + δ)σn,γg should manifest a constant scaling of the Breit-Wigner function in
equation (3.4.5) by a factor of (1 + δ). Likewise, for σn,ng and σn,fg . Taking the (n, γ)
reaction as an example, recall that corresponding Breit-Wigner formula of equation
(3.4.5) for an (n, γ) resonance is,

σn,γ(E) =
4π

k2
g

ΓnΓγ
Γ

ψ(X,χ)

where the dependence of the parameters on the resonance spin, l, is implicitly present
but not written to simplify the notation of this example. Substituting the expression
for ψ(X, ξ) in equations (3.4.6), (3.4.9) and (3.4.8),

σn,γ(E) =
4π

k2
gΓnΓγ

√
AWRI

4
√
πE ′rkT

I (3.4.21)

where,

I =

∫ ∞
−∞

exp

[
− Γ2AWRI

16E ′rkT

(
2(E − E ′r)

Γ
− Y

)2 ]
(1 + Y 2)−1dY (3.4.22)

Employing the continuous-energy cross-section correlation assumption, as in equation
(3.4.13),

σ′n,γ(E) = (1 + δ)
4π

k2
gΓnΓγ

√
AWRI

4
√
πE ′rkT

I

=
4π

k2
gΓnΓ′γ

√
AWRI

4
√
πE ′rkT

I (3.4.23)
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where,
Γ′γ = (1 + δ)Γγ (3.4.24)

similarly,
Γ′n = (1 + δ)Γn (3.4.25)

Γ′f = (1 + δ)Γf (3.4.26)

Equation (3.4.24) is not an exact resonance parameter correction, however, because
the resonance full width, Γ, which is the sum of the partial widths, Γn, Γγ and Γf ,
appears in the integral, I, as shown in equation (3.4.22). The full width is not stored
in 44GROUPNDF5, but is rather calculated by NITAWL as the sum of the partial
widths, which will naturally change when a partial width is corrected as shown in
equation (3.4.24). However, if the change in partial width, δΓ is small compared
to the unperturbed total width, Γ, equation (3.4.24) is a reasonable adjustment to
the resolved resonance parameter for consistency with a perturbed multi-group cross-
section. Naturally, this condition cannot be simultaneously satisfied for each partial
width. Also problematic with this formulation of perturbed resonance widths is that
the adjustment of one partial width, such as Γγ, will change the other two cross-
sections, σn and σf , as well.

Therefore, when a multi-group scattering, radiative capture, or fission cross-
section is perturbed due to random sampling by a factor of δ, the corresponding
partial width of any resolved resonance whose peak energy, Eo, falls within the group
energy limits is scaled uniformly with the multi-group cross-section.

Parameter Description Rule
BF Bondarenko Factors Remain unchanged

Γn,γ,f Resonance partial widths Scaled with corresponding multi-
group cross-section

Table 3.10: SCALE-SS resonance parameter consistency rules

3.4.4 Test cases

Three test cases from the OECD/NEA UAM benchmark[17, pp. 30-32] were used
to investigate the effectiveness of SCALE-SS, and the statistical sampling method in
general, in propagating lattice physics uncertainties. The test cases are thermal, LWR
pin models, which are within the range of applicability of the cross-section library
44GROUPNDF5. Each pin model corresponds to a unique LWR reactor type, a
PWR, BWR, and VVER, that feature varying lattice arrangements, fuel enrichments,
lattice geometry, temperature, and material compositions. The fuel cell models are
based on the physical core designs of actual nuclear facilities, Peach Bottom unit #2,
Three Mile Island unit #1, and Kozloduy unit #6, respectively. Uncertainty analysis
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using TSUNAMI-1D and SCALE-SS was performed on each model at hot, zero-power
(HZP) state.

The one-dimensional transport solver, XSDRNPM, used by both TSUNAMI-
1D and SCALE-SS, demands an axisymmetric input model consisting of a set of
concentric circles or tubes to represent fuel pins and their surrounding moderator.
Therefore, the fuel pellets, gaps and cladding of the geometries can be used by XS-
DRNPM without modification (because they are already a set of concentric tubes),
but the moderator boundaries, which are either square or hexagonal, must be re-
placed by a circular boundary of some appropriate diameter. The common Wigner-
Seitz approximation[60][61] substitutes a circular boundary in place of the true re-
flective polygonal boundary such that the diameter of the circle conserves the vol-
ume of moderator in the cell. Reflective circular boundaries can be computationally
problematic[61], therefore an isotropic return (white) boundary condition is applied
to the outer boundary of Wigner-Seitz approximate models. The uncertainty propa-
gation by SCALE-SS was performed on Wigner-Seitz approximate models using XS-
DRNPM and the true, two-dimensional geometries using NEWT. The BONAMI code
was used for resonance self-shielding in the unresolved region, and resolved resonance
self-shielding was performed using the NITAWL code, for uncertainty sequences by
both SCALE-SS and TSUNAMI-1D.
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Parameter Value
Unit cell pitch [mm] 18.75
Fuel pellet diameter [mm] 12.1158
Fuel pellet material UO2

Fuel density [g/cm3] 10.42
Fuel enrichment, w/o 2.93
Cladding outside diameter [mm] 14.3002
Cladding thickness [mm] 0.9398
Cladding material Zircaloy-2
Cladding density [g/cm3] 6.55
Gap material He
Moderator material H2O

pitch

moderator

fuel

clad

gap

Reactor conditions HZP HFP
Fuel temperature [K] 552.833 900.0
Cladding temperature [K] 552.833 600.0
Moderator temperature [K] 552.833 562.0
Moderator density [kg/m3] 753.978 748.4
Reactor power [kW] 3.293 3293
Void fraction - 40%

Figure 3.7: Schematic of the Peach Bottom-2 BWR lattice cell

60



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Parameter Value
Unit cell pitch [mm] 14.427
Fuel pellet diameter [mm] 9.391
Fuel pellet material UO2

Fuel density [g/cm3] 10.283
Fuel enrichment, w/o 4.85
Cladding outside diameter [mm] 10.928
Cladding thickness [mm] 0.673
Cladding material Zircaloy-4
Cladding density [g/cm3] 6.55
Gap material He
Moderator material H2O

pitch

moderator

fuel

clad

gap

Reactor conditions HZP HFP
Fuel temperature [K] 551.0 900.0
Cladding temperature [K] 551.0 600.0
Moderator temperature [K] 551.0 562.0
Moderator density [kg/m3] 766.0 748.4
Reactor power [kW] 2.772 2772.0

Figure 3.8: Schematic of the Three Mile Island-1 PWR lattice cell

61



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Parameter Value
Unit cell pitch [mm] 12.75
Fuel pellet diameter [mm] 7.56
Fuel pellet material UO2

Fuel density [g/cm3] 10.4
Fuel enrichment, w/o 3.3
Central void diameter [mm] 1.4
Central void material dry air
Cladding outside diameter [mm] 9.1
Cladding thickness [mm] 0.69
Cladding material Zr+1% Nb
Cladding density [kg/m3] n/a
Gap material He
Moderator material H2O

pitch

moderator

fuel

central void

gap

clad

Reactor conditions HZP HFP
Fuel temperature [K] 552.150 900.0
Cladding temperature [K] 552.150 600.0
Moderator temperature [K] 552.150 560.0
Moderator density [g/cm3] 767.000 752.5
Reactor power [kW] 3.000 3000

Figure 3.9: Schematic of the Kozloduy-6 VVER lattice cell
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3.4.5 OECD/NEA UAM benchmark cases results

Both the best-estimate and uncertainty quantification results for the UAM test cases
are described in this section.

Lattice cell XSDRNPM NEWT
PB-2 BWR 1.33856 1.33892
TMI-1 PWR 1.42367 1.42397
K-6 VVER 1.33149 1.34040

Table 3.11: SCALE 5.1 best-estimate predictions of k∞, using 44GROUPNDF5 li-
brary

The uncertainty of k∞ was calculated by TSUNAMI-1D using an adjoint
sensitivity technique, and by SCALE-SS generating two-thousand statistical samples
of all nuclides that possessed covariance. Cross-sections were sampled one at a time
so that the contribution to k∞ arising from each multi-group reaction or parameter
could be separately quantified.

PB-2 TSUNAMI-1D SCALE-SS-1D SCALE-SS-2D
reaction/ (XSDRNPM) (NEWT)

nuclide parameter %∆k/k %∆k/k %∆k/k

U238 (n, γ) 0.3609 3.0254 2.9943
U235 ν̄ 0.2715 0.2726 0.2437
U235 (n, γ) 0.1612 0.1636 0.1775
U235 (n, fission) 0.1076 0.1056 0.1048
U235 χ 0.0720 0.0813 0.0768
O16 (n, α) 0.0525 0.0539 0.0501
U238 ν̄ 0.0396 0.0418 0.0399
U238 (n, fission) 0.0496 0.0467 0.0462
H1 elastic scatter 0.0322 0.0328 0.0322
H1 (n, γ) 0.0282 0.0278 0.0275
O16 elastic scatter 0.0137 0.0110 0.0119

Table 3.12: Major contributions to uncertainty in PB-2 k∞

Tables 3.12 through 3.14 show the largest individual contributions to k∞ un-
certainty resulting from uncertain multi-group input cross-sections and parameters.
For many input parameters, there was reasonable agreement between SCALE-SS and
TSUNAMI-1D. Some disparity is expected due to subtle differences in the capabilities
and approximations of each code. For example, as described in chapter 2, TSUNAMI-
1D employs first-order perturbation theory, whereas the statistical sampling procedure
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TMI-1 TSUNAMI-1D SCALE-SS-1D SCALE-SS-2D
reaction/ (XSDRNPM) (NEWT)

nuclide parameter %∆k/k %∆k/k %∆k/k

U238 (n, γ) 0.2937 2.3844 2.3726
U235 ν̄ 0.2646 0.2627 0.2688
U235 (n, γ) 0.2428 0.2747 0.2669
U235 (n, fission) 0.1280 0.1345 0.1327
U235 χ 0.0610 0.0767 0.0760
O16 (n, α) 0.0528 0.0526 0.0518
U238 ν̄ 0.0359 0.0380 0.0356
U238 (n, fission) 0.0415 0.0392 0.0393
H1 elastic scatter 0.0308 0.0317 0.0316
H1 (n, γ) 0.0189 0.0192 0.0194
O16 elastic scatter 0.0123 0.0103 0.0104

Table 3.13: Contributions to uncertainty in TMI-1 k∞

K-6 TSUNAMI-1D SCALE-SS-1D SCALE-SS-2D
reaction/ (XSDRNPM) (NEWT)

nuclide parameter %∆k/k %∆k/k %∆k/k

U238 (n, γ) 0.3502 2.5470 2.5260
U235 ν̄ 0.2715 0.2696 0.2679
U235 (n, γ) 0.1836 0.1993 0.1947
U235 (n, fission) 0.1101 0.1163 0.1135
U235 χ 0.0626 0.0725 0.0766
O16 (n, α) 0.0509 0.0512 0.0505
U238 ν̄ 0.0365 0.0357 0.0365
U238 (n, fission) 0.0471 0.0419 0.0446
H1 elastic scatter 0.0314 0.0334 0.0308
H1 (n, γ) 0.0257 0.0254 0.0265
O16 elastic scatter 0.0124 0.0104 0.0103

Table 3.14: Contributions to uncertainty in K-6 k∞
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of SCALE-SS implicitly captures all higher-order terms. Also, the calculation of sen-
sitivities by TSUNAMI-1D assumes that perturbations of cross-sections do not cause
related perturbations on neutron flux, which is a phenomena that is also captured by
SCALE-SS. Lastly, the resonance parameter treatment by SCALE-SS includes sev-
eral necessary approximations, as outline in section 3.4.3. Therefore, differences in
calculated uncertainties for multi-group inputs that are strongly self-shielded, partic-
ularly by resolved resonances, should not be surprising, in general. What is notable
is the large discrepancy in k∞ uncertainty using SCALE-SS caused by the (n, γ)
cross-section of U238, which is caused almost entirely by uncertainties in the resolved
resonance range. In LWR thermal reactor fuel mixtures, U238 is of especially low dilu-
tion, implying that resonance self-shielding effects for cross-sections of this nuclide are
strong, and the self-shielded cross-sections will vary substantially compared to their
infinite-dilution counterparts. Also, of the resolved U238 resonances, the partial width
corresponding to the (n, γ) cross-section, Γγ, is large compared to the other partial
widths, Γn and Γf , which is in violation of the assumptions introduced when deriving
the resonance parameter correction in equation (3.4.24).

The multi-group inputs that contribute significant uncertainty to k∞ for the
LWR fuel cells are also those that correspond to the primary fission-source (U235

n,f , U235
ν̄ ,

U235
χ , U238

n,f , U238
ν̄ , U238

χ ), neutron absorption (U238
n,γ , U235

n,γ , H1
n,γ) and neutron slowing-

down (H1
elastic, O16

elastic) terms in the neutron transport equation. This is a logical
result, since the reactions in question are highly linked to k∞. It is also noteworthy
that when comparing uncertainties between LWR fuel cell types, the contribution
by each input shows only small variation, and that the rank of importance of each
uncertain input is identical. Likewise, the one-dimensional equivalent models of the
fuel cells showed excellent agreement with the true, two-dimensional geometry in
tems of relative uncertainty. This is the case even for the Kozloduy-6 VVER cell,
which showed a 5 mk difference in the best-estimate k∞ prediction depending on
dimensionality. In fact, the relative uncertainties of k∞ for each fuel cell model in
tables 3.12 through 3.14 show close consistency despite the dissimilar value in the
underlying best-estimate values of k∞ shown in table 3.11.

Despite the clear error in propagating U238
n,γ cross-section covariance in the

resolved resonance range, SCALE-SS demonstrates that the statistical sampling pro-
cedure can, in general, be a useful and capable tool in performing lattice physics un-
certainty analysis. As the only noteworthy discrepancies between the statistical sam-
pling method and the adjoint-based TSUNAMI method were related to self-shielding,
it suggests that the key to propagating all multi-group input uncertainties accurately
is the correct adjustment of related inputs, such as resonance parameters. However,
the resonance parameters used by NITAWL for self-shielding by the Nordheim integral
method are not well-suited to adjustments derived from perturbations in multi-group
cross-sections. As a result of the difficulties with NITAWL, another transport code
involving different resonance parameters was adopted for the lattice uncertainty in-
vestigations in this dissertation.
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3.5 DINOSAUR

The main focus of this dissertation was the development of DINOSAUR, and its ap-
plication to LWR and CANDU lattice physics uncertainty propagation. DINOSAUR
propagates uncertainties using both a statistical sampling and direct numerical per-
turbation technique. After the successful demonstration of the statistical sampling
method using SCALE (as well as the evident importance of resonance parameter cor-
rection), the statistical sampling method was deployed with the Canadian Industry
Standard Toolset (IST) lattice code DRAGON. As with SCALE-SS, DINOSAUR cre-
ates new multi-group nuclear data libraries whose data has been modified compared
to a set of reference data. The solution of the lattice physics equations applied to each
new library is performed using the code DRAGON. The resonance parameters used
by DRAGON for self-shielding are better suited to corrections due to multi-group
perturbation, and thus DRAGON resonance parameters are adjusted by DINOSAUR
to provide correct consideration of self-shielding effects on the evolution of covariance
through the lattice calculation sequence.

DRAGON is a modular lattice code that solves lattice problems by executing
a calculation sequence. An input deck is used to specify problem-specific parameters
such as the geometry to be solved and the composition and temperatures of material
mixtures, as well as to describe how the calculation is to be performed, by specifying
execution parameters for each module that is employed. A flow diagram of a typical
DRAGON lattice calculation sequence is shown in figure 3.10. Some steps of the
lattice sequence can be accomplished by several different modules in DRAGON, the
choice of which depends on problem-specific considerations, and therefore not every
DRAGON sequence is identical. Figure 3.10 is an example of one possible sequence,
and happens to be the one used for the DRAGON lattice calculations performed in
this dissertation.

Several nuclear data library formats are supported by DRAGON. The library
used in this dissertation is the IAEA 69-group library in a WIMS-D4 format. The
IAEA library is freely available from the International Atomic Energy Agency (IAEA)
along with associated documentation. The WIMS-D4 library format is included in
the IAEA documentation. A detailed format description of the library is essential
when modifying the library data with sampled or numerically perturbed values.
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LIB:

GEO:

EXCELT:

SHI:

ASM:

FLU:

EDI:

DRAGLIB
Library

WIMS-D4
Library

MATXS
Library

WIMS-AECL
Library

Input
deck

MICLIB

GEONAM

TRKNAM TRKFIL

MICLIB

PIJNAM

FLUNAM

k-effective Homogenized
Properties

Figure 3.10: DRAGON lattice calculation sequence
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Item Description
DRAGLIB Multi-group cross-section library in the

DRAGLIB format
MATXS Multi-group cross-section library in the MATXS

format
WIMS-D4 Multi-group cross-section library in the WIMS-D4

format
WIMS-AECL Multi-group cross-section library in the WIMS-

AECL format
LIB: Interpolates microscopic cross-sections and calcu-

lates macroscopic cross-sections for each mixture
GEO: Reads lattice cell geometry, associates macro-

scopic cross-sections with spatial regions
EXCELT: Tracking module for 2D and 3D geometries
SHI: Performs self-shielding calculations; shielded

cross-sections written to MICLIB
ASM: Generates collision probability matrix
FLU: Solves the neutron transport equation
EDI: Editing module for recording problem data
MICLIB Contains microscopic and macroscopic cross-

sections
GEONAM Contains geometry data
TRKNAM Contains region volumes, surface area vectors and

other tracking information
TRKFIL Contains track lengths
PIJNAM Contains collision probability matrices
FLUNAM Contains transport solution

Table 3.15: DRAGON lattice sequence component description

3.5.1 WIMSD4-format IAEA library

During the 1990s, the IAEA identified the need to update the aging WIMS-D4 libraries
with the latest nuclear data. It subsequently launched the WIMS Library Update
Project (WLUP) to produce new WIMS-D4 format libraries that would replace the
existing WIMS-D4 library, which was based on evaluated nuclear data from the early
1960s. The resulting 69 energy group IAEA library contains data for 173 materials,
whose data sources are several evaluated nuclear data files, including ENDF/B-VI,
JENDL-3.2, FOND-2.2, CENDL-2.1, CENDL-3 and JEF-2.2. A full list of materials
and other library data is available in WLUP documentation.

Validation of the library was performed as part of the WLUP project by
using library data to predict lattice parameters of over 200 benchmark cases of varying
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Group Upper energy Group Upper energy Group Upper energy
limit (eV) limit(eV) limit(eV)

1 1.00E+007 25 2.77E+001 49 3.50E-001
2 6.07E+006 26 1.60E+001 50 3.20E-001
3 3.68E+006 27 9.88E+000 51 3.00E-001
4 2.23E+006 28 4.00E+000 52 2.80E-001
5 1.35E+006 29 3.30E+000 53 2.50E-001
6 8.21E+005 30 2.60E+000 54 2.20E-001
7 5.00E+005 31 2.10E+000 55 1.80E-001
8 3.03E+005 32 1.50E+000 56 1.40E-001
9 1.83E+005 33 1.30E+000 57 1.00E-001
10 1.11E+005 34 1.15E+000 58 8.00E-002
11 6.73E+004 35 1.12E+000 59 6.70E-002
12 4.09E+004 36 1.10E+000 60 5.80E-002
13 2.48E+004 37 1.07E+000 61 5.00E-002
14 1.50E+004 38 1.05E+000 62 4.20E-002
15 9.12E+003 39 1.02E+000 63 3.50E-002
16 5.53E+003 40 9.96E-001 64 3.00E-002
17 3.52E+003 41 9.72E-001 65 2.50E-002
18 2.24E+003 42 9.50E-001 66 2.00E-002
19 1.43E+003 43 9.10E-001 67 1.50E-002
20 9.07E+002 44 8.50E-001 68 1.00E-002
21 3.67E+002 45 7.80E-001 69 5.00E-003
22 1.49E+002 46 6.25E-001 1.00E-005
23 7.55E+001 47 5.00E-001
24 4.81E+001 48 4.00E-001

Table 3.16: IAEA energy group boundaries

configurations. The WIMS-D4 code using the IAEA library predicted the reactivity
of H2O moderated UO2 (<6 wt% U235) critical experimental assemblies to within 1%
for most cases. For D2O moderated UO2 critical lattices, the predicted values fell
within the experimental uncertainties for all eleven benchmark cases. The validation
conducted by the IAEA WLUP participants demonstrates that the IAEA library is
adequate for use in both LWR and heavy water reactor (HWR) analysis.

Cross-Sections

There is a fixed number of cross-sections and multi-group parameters stored in the
IAEA library (see table 3.17), which is rigidly enforced by the WIMS-D4 format. The
cross-sections that are included are those that are necessary for solving the lattice
equations with little redundancy or additional information present.
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Every material in the library (except dosimetry materials) possesses XT,
XA and P0 data in 69 energy groups. Fissionable nuclides also have associated XF
and VF data, and common moderating materials (H1, H2 O16, C12) possess a P1

scattering matrix. A sole fission spectrum, χ, is contained in the library and is nuclide-
independent, having been constituted from the weighted averaging of the spectra of
U235 (54%), U238 (8%) and Pu239(38%). The spectrum is recorded only for the fastest
27 energy groups, with no data fields allocated for the appearance of fission neutrons
in the remaining groups.

Reaction/
ID parameter Description
XT (n, total) Total neutron cross-section
XA (n, abs) Neutron absorption cross-section
XF (n, f) Fission cross-section
CHI χ Nuclide-independent spectrum of fission neutron

initial energy
VF ν̄σf Fission yield cross-section
P0 (n, no) Group-to-group P0 scattering cross-section matrix
P1 (n, no) Group-to-group P1 scattering cross-section matrix

Table 3.17: IAEA cross-sections

Neutron producing processes, such as (n, 2n) and (n, 3n) are not explicitly
referenced, so their influence is embedded in other stored data. The shedding of
neutrons, when thought of as being opposite to absorbing neutrons, can equivalently
be expressed as a negative absorption. Therefore, (n, 2n) and (n, 3n) are amalgamated
with absorption reactions, but contribute their cross-section along with a negative
sign.

XA ≡ σ(n,γ) + σ(n,f) + σ(n,α) + σ(n,p) + · · · − σ(n,2n) − 2σ(n,3n) (3.5.1)

The (n, xn) processes are threshold reactions with considerable cross-sections
in heavy nuclei that tend to eclipse other neutron absorption events. Therefore, the
absorption cross-sections stored in IAEA are often negative for nonfissionable heavy
nuclides in the fastest few energy groups, by virtue of the large cross-sections of
(n, xn) at those energies and the formulation in equation (3.5.1). In the case of
fissionable nuclides, the difference between the absorption and fission cross-sections,
XA−XF, may be negative, similarly revealing the signature of (n, xn) cross-sections.
For example, figures 3.11 through 3.13 show the cross-section of U238

n,2n and that of

another significant absorption process, U238
n,γ .

Likewise, the group-to-group scattering matrices in IAEA reflect contribu-
tions of (n, xn) neutron emissions.
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Figure 3.11: U238 (n, 2n) cross-section, ENDF/B-VI.8

Figure 3.12: U238 (n, γ) cross-section, ENDF/B-VI.8
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Figure 3.13: Cross-sections comparison near the U238 (n, 2n) threshold

P0,g→g ≡ σs0,g→g + 2σ(n,2n),g→g + 3σ(n,3n),g→g (3.5.2)

Resonance Parameters

The resonance parameters in the IAEA library are fundamentally based on a Bon-
darenko-type method, similar to the Bondarenko Factors described in section 3.4.1,
and consist of resonance integrals that are tabulated by temperature and background
cross-section. A resonance integral is, in general, a function involving a continuous-
energy cross-section integrated over the energies of one or more resonances. The most
simple form of a resonance integral is merely the cross-section integrated over a single
resonance.

I =

∫
res

σ(E)dE (3.5.3)

More complicated resonance integrals involve the integration over multiple resonances,
for example all the resonances in an energy group, of the product of a cross-section
and weighting function (i.e. neutron flux),

Ig =

∫
g

σ(E)φ(E)dE (3.5.4)
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Recall that a self-shielded, group cross-section is defined as,

σ̄g =

∫
g

σ(E)φ(E)dE∫
g

φ(E)dE
(3.5.5)

If the resonance integral in equation (3.5.4) is calculated over an entire energy group,
then the self-shielded cross-section in equation (3.5.5) is reduced to,

σ̄g =
Ig∫

g

φ(E)dE
(3.5.6)

Moreover, in the resonance region, the neutron flux tends to vary as 1/E, thus,

σ̄g =
Ig

ln(Eg/Eg−1)
=
Ig
ug

(3.5.7)

Where, Eg and ug are the upper-energy limit and lethargy width, respectively, of
group g. As this simplified example demonstrates, the use of resonance integrals can
be convenient when computing self-shielded cross-sections.

The resonance parameters stored in IAEA, which is a WIMS-D4 format
library, are naturally intended to be compatible with the resonance self-shielding
calculations performed by WIMS-D4, therefore a brief description of the WIMS self-
shielding formulation is warranted in this section. Unlike the slowing-down equation
solved by NITAWL (equation 3.4.2), which accounts for system heterogeneities by
using a Dancoff factor, the basis of WIMS resonance self-shielding is the following
expression for an infinite, homogeneous medium.

ΣT (E)φ(E) =
∑
i

1

1− αi

∫ E/αi

E

Σi
s(E

′)φ(E ′)
dE ′

E ′
(3.5.8)

where,

αi =

(
Ai − 1

Ai + 1

)2

(3.5.9)

and,

Ai is the equivalent number of neutron masses of nuclide i
ΣT is the total macroscopic cross-section of the mixture
Σi
s is the macroscopic scattering cross-section of nuclide i,

assumed to be isotropic
φ is the neutron flux
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After the application of several simplifying assumptions, which are described else-
where[62], the expressions for the self-shielded cross-sections are ultimately reduced
to,

σ̄a(T, σb) =
Ia(T, σb)

1− Ia(T, σb)

σb

(3.5.10)

σ̄νf (T, σb) =
Iνf (T, σb)

1− Iνf (T, σb)

σb

(3.5.11)

where,

σ̄a is the shielded absorption cross-section
σ̄νf is the shielded fission yield cross-section
Ia is the absorption resonance integral
Iνf is the fission yield resonance integral
T is temperature
σb is equal to δrσ

r
p + σo

δr is the Goldstein-Cohen intermediate resonance factor
σrp is the potential scattering cross-section of the resonant

absorber
σo is the background cross-section arising from all other nu-

clides, with units of barns per absorber atom

The resonance integrals, Ia and Iνf stored on the library have been calculated
in a somewhat circular way,

Ia(T, σb) =
σ̄a(T, σb)σb
σ̄a(T, σb) + σb

(3.5.12)

Iνf (T, σb) =
σ̄νf (T, σb)σb
σ̄a(T, σb) + σb

(3.5.13)

The shielded absorption and fission yield cross-sections of equations (3.5.12)
and (3.5.13) have been calculated for each group of the reference IAEA library by
the GROUPR module of the cross-section processing code NJOY[8] according to the
formulation shown below.

σ̄(T, σb) =

∫
g

σ(T, µ)dµ

σt(T, µ) + σb∫
g

dµ

σt(T, µ) + σb

(3.5.14)

For problem temperatures and dilutions other than the those for which the
resonances integrals have been tabulated, an interpolation strategy is used to estimate
values of resonance integrals that correspond to the problem specifications.
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3.5.2 69GROUPV6REC covariance library

The 69-group IAEA library demands an identically-sized covariance matrix that holds
the associated uncertainty information. A covariance matrix of the correct size can be
generated by one of two ways. The matrix can be collapsed by a flux-weighting directly
from the high-resolution ENDF data files to the desired group structure by using a
cross-section processing code such as the ERRORR module of NJOY. Alternatively,
an existing multi-group covariance library can be linearly interpolated to a new energy
group structure that does not vary radically from the original in terms of the number of
groups as well as the total energy range spanned collectively by all groups. The latter
approach was adopted for this work. While the collapsing of a new covariance directly
from the nuclear data files is more mathematically rigorous, the resulting covariance
would not have been subjected to the level of scrutiny, evaluation, or calibration that
was afforded to, for example, the 44GROUPV6REC library from its evaluators at
ORNL. Therefore, all of the mathematical approximation that accompanied a linear
interpolation of the covariance was deemed to be less important than the expert
judgement buried in the 44-group ORNL covariance library.

The code ANGELO2 [63] was used to perform a covariance interpolation
from the 44-group structure (see table 3.4) of 44GROUPV6REC to the 69-group
structure (see table 3.16) of the IAEA library. A limitation of the ANGELO2 code
is its inability to process covariance data between cross-sections of different nuclides.
Aside from the omission of nuclide-to-nuclide covariances, the uncertainty content
of the interpolated library is identical to the original, and thus 69GROUPV6REC
contains covariances for the same nuclides and cross-sections listed in table 3.7.

3.5.3 Procedures and rules

DINOSAUR propagates uncertainties by varying the values of variables used as inputs
during successive calls to the lattice code DRAGON. The varied nuclear data inputs
are stored in a collection of new multi-group libraries, and varied model parameter
inputs are stored on a collection of DRAGON input decks. In a similar manner as
SCALE-SS, there is minimal direct interaction between the uncertainty propagation
routines of DINOSAUR and the lattice solver itself. The lattice uncertainty propa-
gation sequence of DINOSAUR consists of eleven modules that perform a variety of
functions, and is shown in figure 3.14.

Uncertainty propagation procedure

DINOSAUR has the capability to propagate nuclear data uncertainties using both
a statistical sampling and a direct numerical perturbation approach. The statistical
sampling method of DINOSAUR is essentially identical to that of SCALE-SS, but
with the additional capability of sampling data according to a uniform distribution.
Naturally, when nuclear data is modified by DINOSAUR, either through direct per-
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Figure 3.14: DINOSAUR uncertainty propagation sequence

turbation or statistical sampling, a set of consistency rules are enforced to ensure that
dependent quantities such as aggregate cross-sections and resonance parameters are
adjusted to reflect the changes in the sampled or perturbed inputs.

When activated in direct numerical perturbation mode, DINOSAUR follows
a series of calculation steps, with one parameter perturbed at a time, first across all
energy groups, and then repeating such calculations for all reactions and all isotopes.
DINOSAUR creates, for a single given reaction

(
e.g. (n, γ)

)
, 69 new WIMS-D4 for-

mat libraries, with each library containing a perturbed value of that cross-section in
a single energy group. This is achieved by multiplying the value in question by a
perturbation factor, (1 + δ), that is supplied by the user of DINOSAUR. DINOSAUR
subsequently calls the code DRAGON 69 times, with each DRAGON call reading
one of the perturbed libraries. The resulting changes in k∞ indicate its sensitiv-
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Item Description
IAEA Multi-group cross-section library in the WIMS-D4

format
69GROUPV6REC Covariance matrix in 69 energy groups
Input Deck Problem-specific modelling parameters
Problem

Uncertainties Probability distributions of input deck modelling
parameters

MODCOV Translates the covariance from its ENDF format
to a format used by DINOSAUR

DECOMP Performs an eigenvalue decomposition of the co-
variance

EXTEND Increases the byte length of the IAEA library to
accommodate a 69-group fission spectrum, χ

IAEA+ IAEA library with extended fission spectrum
SEEDGN Generates a set of unique random seeds when DI-

NOSAUR is launched in multi-threaded mode
WIMLIB Generates a set of random or perturbed WIMS-D4

libraries based on a reference library
DECKUA Generates a set of random DRAGON input decks

based on a reference deck
DRAGON DRAGON lattice calculation sequence, equivalent

to figure 3.10
Output deck DRAGON lattice sequence output summary
RDDRAG Extracts k∞ from output deck, and calculates sen-

sitivities when in perturbation mode
KUNCRT Calculates ∆2k statistically from a population of

k∞
Sensitivity

coefficients Partial derivatives, dimensionless sensitivity coef-
ficients and sensitivities per unit lethargy

SNDWCH Calculates ∆2k using the sandwich rule
Output Library Homogenized multi-group cross-section library in

ASCII format
RDASCI Parses output libraries and extracts homogenized

cross-sections and flux
CALCOV Calculates covariance and correlation matrices for

homogenized cross-sections and flux

Table 3.18: DINOSAUR uncertainty propagation sequence component description
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ity with respect to each input, which are subsequently used with the covariance
69GROUPV6REC to calculate the uncertainty of k∞, ∆2k, arising from the cross-
section using the sandwich rule. For lattice calculations like those shown in chapter 4
and chapter 5, there are about twenty reactions of statistical significance (spanning all
isotopes), which demand approximately 1400 (20 × 69) DRAGON calculations. The
current implementation of the sandwich rule in DINOSAUR neglects the effects of
covariance between reactions, therefore, the calculation of the total ∆2k uncertainty
reported by DINOSAUR in direct numerical perturbation mode is estimated by taking
the root-sum-of-squares of the uncertainty contribution of each cross-section, which
is a precise determination if and only if the reaction cross-sections are independent.
As shown in chapters 4 and 5, the good agreement between the total cross-section
uncertainty from the direct numerical perturbation mode and the statistical sampling
mode (which does account for reaction-to-reaction covariance), indicates that such
covariance is not a dominant effect in the overall uncertainties of cross-sections on
lattice reactivity.

Whether propagating uncertainties through statistical sampling or direct
numerical perturbation, the reference IAEA must be subject to a minor correction
on its fission spectrum, χ. Initially the reference library contains a spectrum record
length sufficient to store χ values for 27 energy groups. The DINOSAUR module
EXTEND lengthens the library, modifying all relevant format flags and record length
indicators, so that the spectrum spans all 69 groups. The newly formed groups are
then set to an identical nonzero quantity that is two orders of magnitude smaller
than the smallest pre-existing value found in the first 27 groups. The entire spectrum
is then renormalized. The extension of the spectrum in this manner is necessary to
accommodate potentially large uncertainties associated with the fission spectrum at
low energies, and the artificial increase in thermal spectrum has been found to be
sufficiently small as to not change the best-estimate calculation of k∞ when applied
to several thermal LWR test cases.

In addition to propagating uncertainties associated with variables in the
IAEA multi-group nuclear library, DINOSAUR has the capability to propagate un-
certainties in DRAGON problem-specific input deck parameters, such as material
temperatures and densities, component geometries and so on. The user can create
a table of distributions and associate each distribution with one or more parameters
that appear in a DRAGON input deck. Each distribution is specified by a distribu-
tion type (Gaussian or uniform), relative variance and mean. DINOSAUR will then
create a collection of random input decks whose uncertain parameters are statistically
sampled according to their specified distributions in a similar manner as is performed
when sampling multi-group nuclear data.

Cross-Section Consistency Rules

The cross-section consistency rules enforced when DINOSAUR makes changes to
WIMS-D4 format libraries have some commonalities with the corresponding rules
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used by SCALE-SS, but include an additional set of assumptions. Namely, in ad-
dition to updating aggregate cross-sections with new totals derived from changes to
fundamental cross-sections, DINOSAUR must first derive fundamental cross-sections
from the reference aggregate cross-sections. Unlike the AMPX-format library accessed
by SCALE, the WIMS-D4 library does not store records of most fundamental multi-
group parameters. Only the fission cross-section, (n, fission), and fission neutron
yield, ν̄, are explicitly or implicitly described in their entirety. Other fundamental
processes, such as (n, γ), (n, 2n) and elastic scattering must be estimated from the li-
brary’s aggregate cross-sections, (n, total) and (n, absorb), while exploiting pertinent
underlying theory to compose sound assumptions when necessary.

ID Description Rule
XS (n, no) Elastic scatter set to XS = XT - XA

X2N (n, 2n) For each group, equal to the magnitude of XG,
only when XG is negative

XG (n, γ) Set to XG = XA - XF + X2N
(n, α) Alpha production assumed zero
(n, n′γ) Inelastic scattering assumed zero

NU ν̄ Set to ratio of XV/XF
CHI χ Linked to a single fissionable nuclide (i.e. U235)

Table 3.19: DINOSAUR fundamental cross-section rules

The first rule in table 3.19 states that elastic scattering is the balance be-
tween the absorption and total cross-sections. Strictly, this difference is in fact the
sum of both elastic and inelastic scattering. However, the inelastic scattering cross-
section tends to be small for low mass number nuclides, and hence for the moderating
materials that dominate the slowing-down behavior of the system. Inelastic scattering
does not exist at all in the case of hydrogen-1. Even for heavy nuclides, such as U238,
the inelastic cross-section only becomes appreciable compared to its elastic counter-
part at energies near 1 MeV and higher. The elastic and inelastic cross-sections for
these materials is shown in figures 3.15 through 3.17.

The second rule involves the (n, 2n) cross-section. Recall from equation
(3.5.1) in section 3.5.1 that the net effect of (n, xn) reactions is incorporated into
the absorption cross-section, XA. Due to the nature of (n, xn), they typically are
associated with large cross-sections above their threshold energies for heavy nuclei,
that drives XA below zero, or alternately, to a value less than XF for fissionable nuclei.
Since, for heavy nuclei, (n, 2n) in particular tends to be so large compared to other
neutron absorbing reactions, the approximation is made that (n, 2n) represents the
entire absorption cross-section where it exists, and other absorbing reactions such as
(n, γ) are neglected and assumed to be zero.

The next three rules are related to the second, and sets the radiative capture
cross-section equal to the difference between the total absorption cross-section, XA,
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Figure 3.15: Elemental carbon scattering cross-sections, ENDF/B-VI.8

Figure 3.16: O16 scattering cross-sections, ENDF/B-VI.8
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Figure 3.17: U238 scattering cross-sections, ENDF/B-VI.8

and the magnitude of the fission cross-section XF and the (n, 2n) cross-section, X2N,
that was computed according to the second rule. This rule can be stated equivalently
by defining the capture cross-section, XG, to be zero whenever X2N is nonzero, and
to be the difference between XA and XF otherwise. For a given nuclei, in no energy
group can XA and X2N be simultaneously nonzero. Estimating the capture cross-
section in this way is implicitly assuming that other absorbing reactions such as (n,
α), (n, 3n) and (n, p) all cause negligible contributions to the absorption cross-section
compared to (n, γ) and (n, 2n). While not entirely justifiable at all energies, no
better assumption can be made given the multi-group information that is present in
a WIMS-D4 format library.

The rule for defining the fission neutron yield, ν̄, is straightforward and
without approximation, and is merely the recognition of the ratio of the fission yield
cross-section, VF, and fission cross-section, XF, both of which are stored for all energy
groups in the library.

The final rule concerns the problem-independent, library fission spectrum,
χ. To propagate spectrum uncertainties, the spectrum must be associated with a
single fissionable nuclide, in order to establish which covariance data should be used to
represent the uncertainty of the spectrum. For thermal, uranium-fueled LWR lattices,
nearly all the fissions are of U235 nuclei, therefore the assumption can be made that the
U235 covariance be applied to the library fission spectrum. This selection of nuclide
is not mandatory, however, and is left to the discretion fo the user of DINOSAUR.

Once the fundamental parameters, XS, XG, X2N, XF and NU have been
determined or estimated, they can be modified by DINOSAUR through either statis-
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tical sampling or direct numerical perturbation. Afterwards, the inverse of the rules in
table 3.19 are implemented to re-calculate the aggregate cross-sections using the new
totals of the modified fundamental data. Changes to the scattering cross-section are
reflected by a corresponding consistency adjustment to the group-to-group scattering
tables in a way identical to SCALE-SS, which is described in general in section 3.3.1.

Resonance Parameter Consistency Rules

The resonance parameter consistency rules used in DINOSAUR result in adjustments
to the resonance integrals shown in equations (3.5.12) and (3.5.13), that are derived
from changes in the weighted multi-group cross-sections. Continuous-energy cross-
sections are used as an intermediary parameter when relating the integrals to the
weighted group cross-sections, similar to the equations that related the SCALE Bon-
darenko Factors to the same. Recall the self-shielded, homogeneous medium cross-
sections in equation (3.5.14) that are computed by the GROUPR module of NJOY,
and used in the calculation of the IAEA library resonance integrals. Given the deriva-
tion of a perturbed continuous energy cross-section in equation (3.4.13) of section
3.4.3, a perturbed GROUPR self-shielded cross-section can be defined as,

σ̄′(T, σb) =

∫
g

(1 + δ)σ(T, µ)dµ

σt(T, µ) + δσ + σb∫
g

dµ

σt(T, µ)) + δσ + σb

(3.5.15)

= (1 + δ)

∫
g

σ(T, µ)dµ

σt(T, µ) + δσ + σb∫
g

dµ

σt(T, µ)) + δσ + σb

(3.5.16)

= (1 + δ)

∫
g

σ(T, µ)dµ

σt(T, µ) + σ′b∫
g

dµ

σt(T, µ)) + σ′b

(3.5.17)

= (1 + δ)σ̄(T, σ′b) (3.5.18)
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where,

1 + δ is a perturbation factor which was applied to the
weighted cross-section, σ

µ is neutron lethargy
(
see equation (3.4.14)

)
σ(T, µ) is the unperturbed continuous-energy cross-section
σt(T, µ) is the unperturbed continuous-energy total cross-section
σ̄(T, σb) is the unperturbed shielded cross-section in group g eval-

uated at σb and T
σo is the unperturbed background cross-section
σ′b is the effective perturbed background cross-section,

σ′b = σb + δσ
T is temperature
σ̄′(T, σb) is the perturbed shielded cross-section in group g evalu-

ated at σo and T

The familiar consequence again emerges that the perturbing of a weighted cross-
section requires the evaluation of the shielded cross-section at a modified background,
σ′o. This is accomplished in DINOSAUR by a multi-step procedure. First, the un-
perturbed self-shielded absorption and fission yield cross-sections are calculated by
re-arranging equations (3.5.12) and (3.5.13) and solving for σa and σνf ,

σ̄a(T, σb) =
Ia(T, σb)σb
σb − Ia(T, σb)

(3.5.19)

σ̄νf (T, σb) =
Iνf (T, σb)σb
σb − Ia(T, σb)

(3.5.20)

where, Ia(T, σb) and Iνf (T, σb) are found in the table of resonance integrals, and σb
and T are provided by the library as resonance table indexing parameters. Each
σ̄(T, σo) that is implicitly given in the resonance integral tables must be substituted
by σ̄(T, σ′o = σo + δσt). DINOSAUR calculates the values of σ̄(T, σ′o) by linearly
interpolating between the given values of σ̄(T, σo). After DINOSAUR has interpolated
for σ̄(T, σ′o), they are used in the calculation of perturbed self-shielded cross-sections,
as shown below.

σ̄′(T, σb) = (1 + δ)σ̄(T, σ′b) (3.5.21)

which are subsequently used to re-calculate new integrals for the resonance table.

I ′a(T, σb) =
σ̄′a(T, σb)σb
σ̄′a(T, σb) + σb

=
(1 + δa)σ̄a(T, σ

′
b)σb

(1 + δa)σ̄a(T, σ′b) + σb
(3.5.22)

I ′νf (T, σb) =
σ̄′νf (T, σb)σb

σ̄′a(T, σb) + σb
=

(1 + δνf )σ̄νf (T, σ
′
b)σb

(1 + δa)σa(T, σ′b) + σb
(3.5.23)
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where the parameters δa and δνf relate to the individual changes in both the absorption
and fission yield cross-sections, keeping in mind that DINOSAUR may sample many
cross-sections simultaneously. The resonance parameter consistency rules used by
DINOSAUR are the implementations of equations (3.5.21) through (3.5.23).
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Chapter 4

OECD/NEA UAM benchmark
cases results

The code DINOSAUR, which is fully described in chapter 3, was used to generate
uncertainty solutions for three light water reactor test cases of the OECD/NEA Un-
certainty Analysis in Modelling benchmark. The LWR test cases include BWR, PWR,
and VVER pin cell models, whose specifications can be found in figures 3.7 through
3.9 in section 3.4.4. The statistical sampling method, sampling from both normal and
uniform distributions, was used to calculate the total uncertainty associated with k∞,
as well as covariance matrices for two-group, spatially-homogenized cross-sections and
neutron flux by taking 1024 samples while varying all input cross-sections simultane-
ously. Additionally, the individual contributions to k∞ uncertainty was quantified by
taking 128 samples for each cross-section, while varying that cross-section alone.

The direct numerical perturbation method was also used to calculate k∞
uncertainty contributions, as well as its sensitivity to group values of all major uncer-
tainty contributors. Perturbations were performed by subjecting cross-section group
values to a multiplicative scaling that varied according to its sensitivity with k∞ –
cross-sections characterized by small sensitivity were perturbed by a larger amount
to achieve a sufficiently large change in k∞ to adequately assess the underlying par-
tial derivative. The most sensitive cross-sections were scaled by 1%, with the scaling
gradually increasing to 100% for the decreasingly sensitive cross-sections.

Present in the following sections of this chapter are evaluations of lattice
output uncertainties for each LWR cell, consisting of: the relative standard deviation
of k∞, partitioned by its individual uncertainty components; sensitivity profiles of k∞
with respect to all relevant multi-group inputs; and covariance and correlation ma-
trices for spatially homogenized, two-group lattice properties. The two-group lattice
cell output properties of concern are macroscopic total (ΣT ), scatter (ΣS), absorption
(ΣA), and fission yield (νΣF ) cross-sections, whose fast/thermal boundary is set to
0.625 eV. Tables of uncertainty contributions to k∞ as well as sensitivity plots to
group-wise cross-sections are shown for each LWR cell in sections 4.2 through 4.4,
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and subsequent discussion of all case results can be found in section 4.5.

4.1 Simulation and modelling parameters

The DRAGON lattice sequence that was used by DINOSAUR during the uncertainty
propagation procedure is shown in figure 3.10. Thirty integration line angles, and a
tracking line density of sixty per centimetre were used as EXCELT tracking param-
eters for the flux solution by the FLU module on a finely discretized geometry. The
SHIBA module performed resonance self-shielding on a more coarse geometry and
tracking system. Isotropic return (white) boundary conditions were applied to every
lattice cell under investigation.

(a) flux solution (b) self-shielding

Figure 4.1: PB-2 DRAGON model discretization
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(a) flux solution (b) self-shielding

Figure 4.2: TMI-1 DRAGON model discretization

Lattice cell Hot zero power Hot full power
PB-2 BWR 1.33909 1.21328

TMI-1 PWR 1.42480 1.40340
K-6 VVER 1.36718 1.34899

Table 4.1: Best-estimate predictions of k∞

The best-estimate predictions of k∞ computed by the DRAGON lattice se-
quence is shown in table 4.1 for HZP and HFP conditions. The decreases in reactivity
associated with HFP cases is the result of Doppler broadening of intermediate-energy
radiative capture resonances in fuel and clad material, and a decrease in moderator
densities. The latter effect is most pronounced in the case of the PB-2 BWR cell,
which is characterized by a 40% coolant/moderator void at full power.
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4.2 Peach Bottom unit 2 Boiling Water Reactor

The contributions to PB-2 BWR k∞ uncertainty at HZP and HFP are shown in
tables 4.2 and 4.3, respectively. Dimensionless sensitivity profiles of k∞ to uncertainty
contributors can be found in figures 4.3 to 4.23.

Statistical Statistical Direct
reaction/ Uniform Gaussian Perturbation

nuclide parameter %∆k/k %∆ k/k %∆ k/k

All All 1.0041 1.0043 1.0347
U238 (n, γ) 0.9031 0.8771 0.8734
U235 (n, γ) 0.4160 0.4680 0.4415
U235 (n, fission) 0.2656 0.2486 0.2653
U235 ν̄ 0.1513 0.1364 0.1376
U238 ν̄ 0.1205 0.1243 0.1178
H1 (n, γ) 0.0517 0.0532 0.0514
O16 (n, γ) 0.0493 0.0431 0.0475
ZrNat (n, γ) 0.0461 0.0387 0.0455
U238 (n, fission) 0.0421 0.0427 0.0414
U238 scatter 0.0216 0.0223 0.0215
H1 scatter 0.0181 0.0170 0.0169
O16 scatter 0.0118 0.0106 0.0117
Sn118 (n, γ) 0.0082 0.0090 0.0089
U234 (n, γ) 0.0056 0.0061 0.0065
Hf178 (n, γ) 0.0028 0.0028 0.0032
Cr52 (n, γ) 0.0025 0.0023 0.0025
ZrNat scatter 0.0015 0.0017 0.0016
FeNat (n, γ) 0.0011 0.0012 0.0012
U235 scatter 0.0008 0.0007 0.0008

Table 4.2: Contributions to uncertainty in PB-2 k∞ at HZP
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Statistical Statistical Direct
reaction/ Uniform Gaussian Perturbation

nuclide parameter %∆ k/k %∆ k/k %∆ k/k

All All 1.3660 1.3432 1.3865
U238 (n, γ) 1.2278 1.2081 1.2429
U235 (n, γ) 0.4464 0.4606 0.4939
U235 (n, fission) 0.2511 0.2982 0.2747
U235 ν̄ 0.1646 0.1730 0.1334
U238 ν̄ 0.1350 0.1383 0.1682
U238 (n, fission) 0.0626 0.0610 0.0623
O16 (n, γ) 0.0489 0.0511 0.0507
ZrNat (n, γ) 0.0426 0.0471 0.0491
U238 scatter 0.0373 0.0412 0.0382
H1 scatter 0.0250 0.0225 0.0228
H1 (n, γ) 0.0240 0.0246 0.0263
O16 scatter 0.0203 0.0190 0.0197
Sn118 (n, γ) 0.0118 0.0138 0.0133
U234 (n, γ) 0.0077 0.0079 0.0086
Hf178 (n, γ) 0.0035 0.0039 0.0042
ZrNat scatter 0.0032 0.0038 0.0037
Cr52 (n, γ) 0.0021 0.0020 0.0022
U235 scatter 0.0013 0.0013 0.0015
FeNat (n, γ) 0.0010 0.0010 0.0010
FeNat scatter 0.0001 0.0001 0.0001

Table 4.3: Contributions to uncertainty in PB-2 k∞ at HFP

Figure 4.3: Sensitivity profile of PB-2 k∞ to U238 (n, γ)
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Figure 4.4: Sensitivity profile of PB-2 k∞ to U235 (n, γ)

Figure 4.5: Sensitivity profile of PB-2 k∞ to U235 (n, fission)

Figure 4.6: Sensitivity profile of PB-2 k∞ to U235 ν̄
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Figure 4.7: Sensitivity profile of PB-2 k∞ to U238 ν̄

Figure 4.8: Sensitivity profile of PB-2 k∞ to H1 (n, γ)

Figure 4.9: Sensitivity profile of PB-2 k∞ to O16 (n, γ)
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Figure 4.10: Sensitivity profile of PB-2 k∞ to ZrNat (n, γ)

Figure 4.11: Sensitivity profile of PB-2 k∞ to U238 (n, fission)

Figure 4.12: Sensitivity profile of PB-2 k∞ to U238 scatter
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Figure 4.13: Sensitivity profile of PB-2 k∞ to H1 scatter

Figure 4.14: Sensitivity profile of PB-2 k∞ to O16 scatter

Figure 4.15: Sensitivity profile of PB-2 k∞ to Sn118 (n, γ)
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Figure 4.16: Sensitivity profile of PB-2 k∞ to U234 (n, γ)

Figure 4.17: Sensitivity profile of PB-2 k∞ to Hf178 (n, γ)

Figure 4.18: Sensitivity profile of PB-2 k∞ to ZrNat scatter
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Figure 4.19: Sensitivity profile of PB-2 k∞ to Cr52 (n, γ)

Figure 4.20: Sensitivity profile of PB-2 k∞ to FeNat (n, γ)

Figure 4.21: Sensitivity profile of PB-2 k∞ to U235 scatter
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Figure 4.26: PB-2 HZP two-group homogenized lattice covariance
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Figure 4.27: PB-2 HZP two-group homogenized lattice correlation
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Figure 4.28: PB-2 HFP two-group homogenized lattice covariance
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Figure 4.29: PB-2 HFP two-group homogenized lattice correlation
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4.3 Three Mile Island unit 1 Pressurized Water

Reactor

Statistical Statistical Direct
reaction/ Uniform Gaussian Perturbation

nuclide parameter %∆k/k %∆ k/k %∆ k/k

ALL ALL 1.0250 1.0221 1.0386
U238 (n, γ) 0.8703 0.8825 0.8412
U235 (n, γ) 0.5035 0.4788 0.5254
U235 (n, fission) 0.2248 0.2493 0.2423
U235 ν̄ 0.1499 0.1312 0.1384
U238 ν̄ 0.1106 0.1077 0.1065
O16 (n, γ) 0.0466 0.0563 0.0466
H1 (n, γ) 0.0361 0.0326 0.0326
U238 (n, fission) 0.0361 0.0378 0.0357
ZrNat (n, γ) 0.0259 0.0265 0.0228
H1 scatter 0.0196 0.0160 0.0165
U238 scatter 0.0176 0.0195 0.0180
O16 scatter 0.0104 0.0092 0.0096
Sn118 (n, γ) 0.0082 0.0084 0.0081
U234 (n, γ) 0.0058 0.0054 0.0044
Hf178 (n, γ) 0.0023 0.0020 0.0017
ZrNat scatter 0.0016 0.0014 0.0014
Cr52 (n, γ) 0.0014 0.0014 0.0014
FeNat (n, γ) 0.0010 0.0010 0.0009
U235 scatter 0.0010 0.0011 0.0010

Table 4.4: Contributions to uncertainty in TMI-1 k∞ at HZP
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Statistical Statistical Direct
reaction/ Uniform Gaussian Perturbation

nuclide parameter %∆k/k %∆ k/k %∆ k/k

ALL ALL 1.0553 1.0803 1.0965
U238 (n, γ) 0.8331 0.8794 0.9002
U235 (n, γ) 0.5398 0.5411 0.5429
U235 (n, fission) 0.2524 0.2391 0.2421
U235 ν̄ 0.1249 0.1297 0.1381
U238 ν̄ 0.1074 0.1023 0.1092
O16 (n, γ) 0.0480 0.0451 0.0509
U238 (n, fission) 0.0363 0.0342 0.0367
H1 (n, γ) 0.0320 0.0299 0.0312
ZrNat (n, γ) 0.0271 0.0279 0.0398
U238 scatter 0.0194 0.0210 0.0204
H1 scatter 0.0192 0.0177 0.0173
O16 scatter 0.0118 0.0124 0.0124
Sn118 (n, γ) 0.0081 0.0089 0.0086
U234 (n, γ) 0.0046 0.0054 0.0125
Hf178 (n, γ) 0.0021 0.0022 0.0031
ZrNat scatter 0.0015 0.0015 0.0016
Cr52 (n, γ) 0.0013 0.0014 0.0015
U235 scatter 0.0012 0.0011 0.0014
FeNat (n, γ) 0.0010 0.0010 0.0012
FeNat scatter 0.0000 0.0000 0.0001
U234 scatter 0.0000 0.0000 0.0003

Table 4.5: Contributions to uncertainty in TMI-1 k∞ at HFP

Figure 4.30: Sensitivity profile of TMI-1 k∞ to U238 (n, γ)
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Figure 4.31: Sensitivity profile of TMI-1 k∞ to U235 (n, γ)

Figure 4.32: Sensitivity profile of TMI-1 k∞ to U235 (n, fission)

Figure 4.33: Sensitivity profile of TMI-1 k∞ to U235 ν̄
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Figure 4.34: Sensitivity profile of TMI-1 k∞ to U238 ν̄

Figure 4.35: Sensitivity profile of TMI-1 k∞ to H1 (n, γ)

Figure 4.36: Sensitivity profile of TMI-1 k∞ to O16 (n, γ)
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Figure 4.37: Sensitivity profile of TMI-1 k∞ to ZrNat (n, γ)

Figure 4.38: Sensitivity profile of TMI-1 k∞ to U238 (n, fission)

Figure 4.39: Sensitivity profile of TMI-1 k∞ to U238 scatter
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Figure 4.40: Sensitivity profile of TMI-1 k∞ to H1 scatter

Figure 4.41: Sensitivity profile of TMI-1 k∞ to O16 scatter

Figure 4.42: Sensitivity profile of TMI-1 k∞ to Sn118 (n, γ)

109



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Figure 4.43: Sensitivity profile of TMI-1 k∞ to U234 (n, γ)

Figure 4.44: Sensitivity profile of TMI-1 k∞ to Hf178 (n, γ)

Figure 4.45: Sensitivity profile of TMI-1 k∞ to ZrNat scatter
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Figure 4.46: Sensitivity profile of TMI-1 k∞ to Cr52 (n, γ)

Figure 4.47: Sensitivity profile of TMI-1 k∞ to FeNat (n, γ)

Figure 4.48: Sensitivity profile of TMI-1 k∞ to U235 scatter
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Figure 4.53: TMI-1 HZP two-group homogenized lattice covariance
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Figure 4.54: TMI-1 HZP two-group homogenized lattice correlation
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Figure 4.55: TMI-1 HFP two-group homogenized lattice covariance
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Figure 4.56: TMI-1 HFP two-group homogenized lattice correlation
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4.4 Kozloduy unit 6 Vodo-Vodyanoi

Energetichesky Reactor

Statistical Statistical Direct
reaction/ Uniform Gaussian Perturbation

nuclide parameter %∆k/k %∆ k/k %∆ k/k

ALL ALL 0.9912 1.0155 1.0331
U238 (n, γ) 0.7829 0.8738 0.8662
U235 (n, γ) 0.4798 0.4961 0.4611
U235 (n, fission) 0.2151 0.2526 0.2557
U235 ν̄ 0.1355 0.1348 0.1378
U238 ν̄ 0.1060 0.1085 0.1064
ZrNat (n, γ) 0.0512 0.0481 0.0460
H1 (n, γ) 0.0505 0.0472 0.0469
O16 (n, γ) 0.0446 0.0429 0.0458
U238 (n, fission) 0.0363 0.0364 0.0368
U238 scatter 0.0185 0.0210 0.0201
H1 scatter 0.0178 0.0166 0.0160
O16 scatter 0.0108 0.0136 0.0114
Hf178 (n, γ) 0.0096 0.0094 0.0100
U234 (n, γ) 0.0056 0.0061 0.0062
ZrNat scatter 0.0012 0.0015 0.0013
U235 scatter 0.0007 0.0007 0.0007
FeNat (n, γ) 0.0004 0.0004 0.0004

Table 4.6: Contributions to uncertainty in K-6 k∞ at HZP
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Statistical Statistical Direct
reaction/ Uniform Gaussian Perturbation

nuclide parameter %∆k/k %∆ k/k %∆ k/k

ALL ALL 1.0532 1.0617 1.0799
U238 (n, γ) 0.9848 1.0128 0.9165
U235 (n, γ) 0.4786 0.4362 0.4679
U235 (n, fission) 0.2368 0.2329 0.2593
U235 ν̄ 0.1264 0.1308 0.1377
U238 ν̄ 0.1155 0.1092 0.1094
H1 (n, γ) 0.0487 0.0441 0.0443
ZrNat (n, γ) 0.0432 0.0492 0.0506
O16 (n, γ) 0.0427 0.0482 0.0459
U238 (n, fission) 0.0385 0.0373 0.0383
U238 scatter 0.0222 0.0217 0.0223
H1 scatter 0.0164 0.0180 0.0167
O16 scatter 0.0133 0.0116 0.0132
Hf178 (n, γ) 0.0101 0.0097 0.0104
U234 (n, γ) 0.0051 0.0062 0.0066
ZrNat scatter 0.0015 0.0014 0.0014
U235 scatter 0.0007 0.0008 0.0008
FeNat (n, γ) 0.0004 0.0004 0.0005

Table 4.7: Contributions to uncertainty in K-6 k∞ at HFP
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Figure 4.57: Sensitivity profile of K-6 k∞ to U238 (n, γ)

Figure 4.58: Sensitivity profile of K-6 k∞ to U235 (n, γ)

Figure 4.59: Sensitivity profile of K-6 k∞ to U235 (n, fission)
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Figure 4.60: Sensitivity profile of K-6 k∞ to U235 ν̄

Figure 4.61: Sensitivity profile of K-6 k∞ to U238 ν̄

Figure 4.62: Sensitivity profile of K-6 k∞ to H1 (n, γ)
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Figure 4.63: Sensitivity profile of K-6 k∞ to O16 (n, γ)

Figure 4.64: Sensitivity profile of K-6 k∞ to ZrNat (n, γ)

Figure 4.65: Sensitivity profile of K-6 k∞ to U238 (n, fission)
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Figure 4.66: Sensitivity profile of K-6 k∞ to U238 scatter

Figure 4.67: Sensitivity profile of K-6 k∞ to H1 scatter

Figure 4.68: Sensitivity profile of K-6 k∞ to O16 scatter

125



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Figure 4.69: Sensitivity profile of K-6 k∞ to U234 (n, γ)

Figure 4.70: Sensitivity profile of K-6 k∞ to Hf178 (n, γ)

Figure 4.71: Sensitivity profile of K-6 k∞ to ZrNat scatter
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Figure 4.72: Sensitivity profile of K-6 k∞ to FeNat (n, γ)

Figure 4.73: Sensitivity profile of K-6 k∞ to U235 scatter

127



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

F
ig

u
re

4.
74

:
S
en

si
ti

v
it

y
to

m
a
jo

r
co

n
tr

ib
u
to

rs
of

H
Z

P
K

-6
k
∞

128



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

F
ig

u
re

4.
75

:
S
en

si
ti

v
it

y
to

m
in

or
co

n
tr

ib
u
to

rs
of

H
Z

P
K

-6
k
∞

129



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

F
ig

u
re

4.
76

:
S
en

si
ti

v
it

y
to

m
a
jo

r
co

n
tr

ib
u
to

rs
of

H
F

P
K

-6
k
∞

130



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

F
ig

u
re

4.
77

:
S
en

si
ti

v
it

y
to

m
in

or
co

n
tr

ib
u
to

rs
of

H
F

P
K

-6
k
∞

131



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Figure 4.78: K-6 HZP two-group homogenized lattice covariance
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Figure 4.79: K-6 HZP two-group homogenized lattice correlation
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Figure 4.80: K-6 HFP two-group homogenized lattice covariance
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Figure 4.81: K-6 HFP two-group homogenized lattice correlation
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4.5 UAM benchmark results discussion

The uncertainties associated with calculated lattice physics outputs shows remarkably
little variation against the method of calculation. Uncertainty contributions derived
by sampling from Gaussian and uniform distributions show virtually no statistically
significant differences. Likewise, the uncertainty predictions made through direct
numerical perturbation agree well with their statistically sampled counterparts. In
the case of extremely small uncertainty contributors, however, for example those that
contribute to ∆k/k a quantity less than 5E-5, precision limitations related to the
solution of the system eigenvalue makes precise uncertainty quantification challenging,
because even large changes in the values of these contributors leads to values of k∞
that are inadequately dissimilar from the best-estimate solution. Thus, it is in the
context of very small uncertainty contributors that noticeable discrepancies outside
the expected statistical error are occasionally found.

In general, the agreement between direct perturbation uncertainty propaga-
tion and statistical propagation suggests that first-order, linear perturbation theory is
reasonably suited to lattice calculations and introduces no unreasonable assumptions
in regard to the relationship between k∞ and neutron cross-sections.

The uncertainty associated with k∞ also shows little variation between LWR
reactor designs. Despite their differing pin radii, enrichment, material densities and
operating temperatures, the rank of importance of most uncertainty contributors
across the test cases are either identical, or statistically indistinguishable. The to-
tal uncertainty associated with the infinite multiplication constant due to nuclear
data is approximately 1% for five of the six test cases. The singular exception is that
of the PB-2 lattice at hot, full-power. The increased k∞ uncertainty for the PB-2
HFP test case is almost entirely a consequence of an increase arising from the contri-
bution of U238 (n, γ). Recall that this particular lattice cell is characterized by a 40%
coolant void. The decrease in moderation resulting from the coolant’s reduced atom
density causes a hardening of the neutron flux spectrum, and thus increases the flux
seen at intermediate and high energies (see figure 4.82), where k∞ is most sensitive to
U238 (n, γ), as shown in figure 4.3. Neglecting covariances between energy groups, it
is possible to estimate the individual contributions to ∆k/k from a particular cross-
section group value when the partial derivative and variance of the cross-section at
that group is known. Figure 4.83 shows the per-group contributions of U238 (n, γ) to
PB-2 k∞ uncertainty, and the cumulative uncertainty starting at the thermal end of
the spectrum and moving to the fast end. As expected, at HFP, there is less total
contribution to uncertainty from thermal groups, and a large increase from higher
energy groups.

Doppler broadening of resonances not only plays a role in decreasing the
best-estimate prediction of k∞ of the LWR lattice cells at HFP, but also leads to
increased uncertainty contributions by strongly resonant cross-sections, particularly
U238 (n, γ), U235 (n, γ), and ZrNat (n, γ). The change in contribution by these
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Figure 4.82: PB-2 normalized flux vs. energy group

Figure 4.83: PB-2 ∆k∞/k∞ contributions from uncorrelated U238 (n, γ) energy groups
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reactions to ∆k/k is too subtle to be identified through the 128 statistical samples
(the statistical uncertainty associated with 128 samples is larger than the effect of the
power change), but is readily seen from the results of the direct numerical perturbation
as shown in tables 4.4 and 4.5, for example.

Interesting observations related to neutron scattering can be made from
the sensitivity studies performed using direct numerical perturbation. The sensitiv-
ity of k∞ to energy-dependent scattering cross-sections is complex, but the general
behaviour of neutrons in uranium-fueled thermal reactors can explain some trends
related to the elaborate scattering sensitivity profiles shown in the previous section.
When fast neutrons are scattered inside fuel material, reactivity suffers because the
neutrons can be absorbed by large capture resonances at intermediate energies as they
lose speed during collisions. Therefore, larger scattering cross-sections of fuel nuclides
corresponds to lower reactivities and hence a negative sensitivity. As shown in the
previous section, the sensitivity of k∞ to scattering cross-sections of U238, U235 and
O16 are consistently negative. The sensitivity to the primary moderating material,
H1, shows a more nuanced and interesting profile, however. The sensitivity to H1

scatter is positive over most of the energy spectrum, but negative at high energies.
This may result from high-energy, fission neutrons that are being ejected from the
fuel, which meet the moderator at the fuel/moderator interface, have potential to
be reflected by the moderator back into the fuel from which the neutron was in the
process of escaping. For the sake of supporting reactivity, fission neutrons should
penetrate deep into the moderator before suffering collisions, allowing them to es-
tablish sufficient distance to the fuel material that they are unlikely to wander back
before being fully thermalized. A low scattering cross-section at high energies makes
the moderator more transparent to fast neutrons, and decreasing the chance of a
collision in close proximity to the fuel interface. Consequently, it is reasonable for
k∞ to exhibit negative sensitivity to the H1 scatter cross-section at high energies,
because an increase of that cross-section increases neutron opacity of the moderator
and reflection back to the fuel. Similarly, intermediate energies of the scatter cross-
section are associated with a large, positive sensitivity, likely because it corresponds
to a rapid thermalization of neutrons that are probably located far from fuel pins,
since they would have already suffered several moderating collisions before reaching
intermediate energies. The characteristics of zirconium scattering are similar, given
that zirconium is concentrated at the fuel/moderator interface and has potential to
be involved in fast neutron reflection. The sensitivity studies indicate that ZrNat, like
H1, is negatively related to k∞ at high energies that correspond to fission neutrons.

The lattice output covariance matrices are a function of direct and indirect
pathways of uncertainty propagation through the homogenization process. Note that
the energy condensation of cross-sections to a two-group structure involves a flux-
weighted averaging of multi-group cross-sections. The direct uncertainty pathway is
through the multi-group cross-sections themselves. Naturally, if uncertainty exists
in the quantities being averaged, there is a directly related uncertainty in the av-
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erage quantity. Multi-group cross-section covariance also causes uncertainty on the
multi-group neutron flux that is the solution of the lattice equations. Therefore, a
component of the uncertainty on the two-group cross-sections is a consequence of the
uncertain weighting function used to produce the two-group averaged values, referred
to as the indirect effect.

The indirect uncertainty effects act to introduce additional covariance be-
tween cross-sections, because the perturbation on flux is propagated through all av-
eraged quantities that employ the flux as a weighting function. Cross-sections in fast
energy groups are more likely to cause indirect effects, and are also more prone to those
effects, because the profile of fast flux is fairly unconstrained. Conversely, thermal
flux is generally constrained to a Maxwellian distribution defined by the temperature
of the moderator with limited potential variation, even when faced with changes in
higher energy cross-sections. Essentially, neutrons in thermal equilibrium have had
enough random collisions to ’forget’ the cross-sections experienced at fast energies.

For example, the covariance matrix of the spatially homogenized, 69-group
flux of the TMI-1 PWR case at hot, full-power is shown in figure 4.84, and the relative
standard deviation of flux in each group in figure 4.85. It can be seen in those figures
that there is a great deal more flux uncertainty in the thermal-energy portion of the
energy spectrum. However, the thermal flux are all strongly correlated, as shown
in figure 4.86, indicating that the profile of the thermal flux sees little variation;
the thermal values tend to move in unison. In the fast region, however, a large anti-
correlation exists between the flux above 367 eV (the first 20 groups) with those below.
Therefore, there exists a large variation in the profile of fast flux, which is used as a
weighting function to collapse the first 45 groups into a single fast group during energy
condensation. Take the fast group of the 2-group, homogenized scattering cross-
section, Σ1

S, of TMI-1 HFP case as an example. The uncertainty of that homogenized
cross-section will have contributions from several multi-group cross-sections belonging
to several nuclides. Scattering cross-sections, such as H1 (n, scatter) will provide
a direct uncertainty component due to its multi-group uncertainties that are part
of the weighted average of Σ1

S. Additionally, non-scattering cross-sections, such as
U238 (n, γ) will contribute uncertainty to Σ1

S by causing a related uncertainty on the
fast flux that is used as a weighting function applied to microscopic scattering cross-
sections. When examining the relative uncertainty in Σ1

S of TMI-1 HFP, ∆Σ1
S/Σ1

S, the
component from H1 (n, scatter) was found to be 5.62E-04, whereas the component
from U238 (n, γ) is 9.00E-4. Therefore, the radiative capture cross-section of U238

contributes 60% more uncertainty to the fast homogenized scattering cross-section
than does the scattering cross-section of the primary moderating material, solely as
a result of indirect uncertainty effects.

The output covariance matrices share a common feature that the largest
uncertainty is associated with the fast group of the macroscopic absorption cross-
section. The homogenized, 69-group absorption uncertainty is shown in figure 4.87.
The 69-group absorption covariance shows that even before the flux-weighted aver-
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Figure 4.84: TMI-1 HFP 69-group homogenized, normalized flux covariance

aging of group values, there is substantially greater uncertainty associated with fast
absorption. The increased high-energy uncertainty is further bolstered by the indirect
uncertainty effects that also generally arise at high energies.

From the homogenized correlation matrices, a naturally large dependency
is observed between total and scattering cross-sections of the same group. This is
merely a consequence of the spatially homogenized scattering cross-section being an
order of magnitude larger than the absorption cross-section, and thus being nearly
equal to the total cross-section. There is a strong correlation between the absorption
and fission yield cross-sections for a similar reason; fission is a nontrivial component
in the calculation of absorption. Conversely, the correlations between scattering and
absorption cross-sections are small, and are driven mainly by indirect uncertainty
effects in the weighting function.
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Figure 4.85: TMI-1 HFP 69-group homogenized flux uncertainty

Figure 4.86: TMI-1 HFP 69-group homogenized, normalized flux correlation
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Figure 4.87: TMI-1 HFP 69-group homogenized absorption covariance

142



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Chapter 5

CANDU lattice

This chapter details the results of DINOSAUR uncertainty propagation applied to a
representative model of a CANDU R© 37-element fuel bundle in an infinite lattice con-
figuration. To the extent that certain specific design specifications of the CANDU R©

bundle are proprietary intellectual property, the model used in this work is an ap-
proximate equivalent, whose specifications are similar yet not necessarily identical to
that of any bundle that is actually in service, and is referred to simply as a generic
CANDU R© bundle.

Like the uncertainty propagation and sensitivity analysis that was performed
for UAM LWR cells, the generic CANDU bundle was subjected to a statistical sam-
pling of cross-sections according to normal and uniform probability distributions, and
direct numerical perturbations were used to establish sensitivity profiles to impor-
tant multi-group data. Studies were conducted beginning-of-cycle (BoC) fuel and
end-of-cycle (EoC) fuel after 180 days of burnup at a constant, high power. Uncer-
tainties associated with k∞ and atomic number densities of bundle materials, fission
products and activation products were calculated as a function of burnup. Note that
mid-burnup models are, by definition, evaluated at full-power, as is the EoC lattice.

In addition to the treatment of physics uncertainties, the DECKUA module
of DINOSAUR was used to statistically propagate uncertainties in the temperatures
of the fuel, coolant and moderator of the CANDU R© lattice at hot, full-power. Only
uniform probability distributions were used for temperature sampling. Also, sensitiv-
ity of k∞ to changes in material temperatures was computed manually using numerical
perturbation. As temperature uncertainty contributions are not yet addressed in the
UAM benchmark, corresponding temperature uncertainty analysis was not included
in chapter 4.

143



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

5.1 Simulation and modelling parameters

The specifications used for generic CANDU R© modelling in this discretization are
shown in tables 5.1 through 5.3. The spatial discretization of the DRAGON models
for neutron transport and resonance self-shielding are shown in figures 5.1 and 5.2. As
always, isotropic return boundary conditions are applied to the outer cell boundary.
The best-estimate predictions of k∞ are shown in table 5.4.

The sampling of material temperatures was performed without recalculation
of material densities based on the new temperatures in order to isolate the effects of
temperature uncertainties on microscopic cross-sections as a result of their depen-
dency on temperature through Doppler broadening. A density change, which can
equivalently be regarded as a fractional change in all macroscopic cross-sections, can
already be deduced from the sensitivity analysis conducted for each cross-section.
The Doppler broadening dependency, however, represents a separate mechanism for
uncertainty propagation in lattice physics that deserved an explicit and dedicated ex-
amination. Lattice components whose temperatures are related (e.g. moderator with
calandria rube, and coolant with pressure tube and fuel clad) had their temperatures
varied in a way consistent with a full correlation. For example, as coolant temperature
was varied, pressure tube temperature was varied identically. The relative standard
deviation applied as inputs to fuel, moderator and coolant temperature were assumed
to be 2%. Although high-fidelity estimates of CANDU R© temperature uncertainties
are absent in literature, estimates of LWR fuel temperature uncertainties range from
2%[64] to over 25%[65], depending on reactor operating conditions. The statistical
propagation of each of the three uncertain input temperatures involved 1056 random
samples.

Parameter Value
Lattice pitch [cm] 28.575
Fuel pellet diameter [mm] 12.24
Fuel pellet material UO2

Fuel density [g/cm3] 10.4
Fuel enrichment, w/o 0.7
Cladding outside diameter [mm] 13.08
Cladding thickness [mm] 0.42
Cladding material Zr alloy
Pressure tube material Zr + 2% Nb alloy
Calandria tube material Zr alloy
Cladding density [g/cm3] 6.44
Gap material CO2

Moderator material D2O

Table 5.1: Generic CANDU R© operating temperatures
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(a) flux solution (b) magnified

Figure 5.1: CANDU R© DRAGON model discretization

Figure 5.2: CANDU R© DRAGON model discretization for self-shielding
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Material Nuclide Percent weight

Zr alloy ZrNat 99.71

FeNat 1.60

CrNat 1.10

NiNat 0.06

Zr + 2%Nb ZrNat 97.50

alloy Nb93 2.50

Uranium U234 0.00

fuel U235 0.70

U238 99.30

Moderator D2O 99.8

H2O 0.2

Table 5.2: Generic CANDU R© material compositions

Reactor conditions HZP HFP
Fuel temperature [K] 560.66 941.29
Cladding temperature [K] 560.66 560.66
Moderator temperature [K] 345.66 345.66
Moderator density [g/cm3] 1.083 1.083

Table 5.3: Generic CANDU R© operating temperatures

BoC EoC
Lattice cell HZP HFP HFP

Generic CANDU R© 1.12675 1.20613 0.98723

Table 5.4: Best-estimate predictions of CANDU R© BoC k∞

The effects of burnup, and the changing material composition that results,
was studied only statistically using DINOSAUR. The multi-group nuclear data of all
nuclides that appear during irradiation were subjected to 96 samples of statistical
variation. On each sample of varied data, a full 180-day burnup calculation was con-
ducted at a constant power of 900 kW/bundle. This is not a reflection of the true
power irradiation of in-core bundles in operational CANDU R© plants, in which fresh
bundles start burning at low power (100 W to 200 W), and then ramp up to higher
power (< 900 W) before ultimately falling once again to low power. However, the
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purpose of this burnup investigation is to study the effect of cross-sections on creation
and removal rates of nuclides, and the influence of burnup product cross-sections on
lattice parameters. The mapping of simulation burnup to in-core burnup histories
of real bundles introduces an additional degree of freedom on lattice properties that
was undesirable when attempting to isolate cross-section uncertainty consequences.
Due to the large computational effort necessary to calculate 180 days of fuel burning,
and the large number of nuclides that appear during burnup and contribute to lattice
properties, a per-nuclide investigation by either a statistical sampling or direct nu-
merical perturbation method was not feasible. A list of nuclides that appear during
burnup as either fission products, activation products, or decay products are listed in
table 5.5.

Kr36 In115 Nd143 Eu153 Ho165 Pu240

Mo95 Sb125 Nd145 Eu154 Er166 Pu241

Tc99 Te127 Pm147 Eu155 Er167 Pu242

Ru101 I127 Pm148 Gd154 Pa231 Am241

Ru103 I135 Pm149 Gd155 U232 Am242

Ru106 Xe131 Sm147 Gd156 U233 Am243

Rh103 Xe134 Sm148 Gd157 U234 Cm242

Rh105 Xe135 Sm149 Gd158 U236 Cm243

Pd105 Xe136 Sm150 Dy160 U237 Cm244

Pd107 Cs133 Sm151 Dy161 Np237

Pd108 Cs134 Sm152 Dy162 Np239

Ag109 Cs135 Eu151 Dy163 Pu238

Cd113 Cs137 Eu152 Dy164 Pu239

Table 5.5: Nuclides in IAEA that appear during CANDU R© burnup

5.2 BoC lattice

Fresh, generic CANDU R© lattice cells were evaluated at HZP and HFP conditions. In
a similar manner as the LWR analysis, 1024 samples were taken when sampling all
cross-sections simultaneously. When individual contributions to k∞ uncertainty were
identified by sampling multi-group cross-sections one at a time, 128 samples were used
for each investigation. The contributions to k∞ uncertainty are shown in tables 5.6
and 5.7, and sensitivity profiles in figures 5.3 to 5.24.
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Statistical Statistical Direct
reaction/ Uniform Gaussian Perturbation

nuclide parameter %∆k/k %∆ k/k %∆ k/k

ALL ALL 1.2642 1.2300 1.2451
U238 (n, γ) 1.0877 1.1130 1.1492
U235 (n, fission) 0.2774 0.2609 0.2791
U235 (n, γ) 0.2708 0.2957 0.2887
U235 ν̄ 0.1465 0.1421 0.1426
ZrNat (n, γ) 0.1323 0.1392 0.1420
H2 (n, γ) 0.1091 0.1058 0.0949
U238 ν̄ 0.1011 0.0995 0.0909
O16 (n, γ) 0.0710 0.0635 0.0665
H2 scatter 0.0615 0.0666 0.0650
U238 (n, fission) 0.0383 0.0365 0.0364
U238 scatter 0.0156 0.0142 0.0144
O16 scatter 0.0109 0.0117 0.0109
Cr52 (n, γ) 0.0077 0.0076 0.0077
H1 (n, γ) 0.0047 0.0047 0.0046
FeNat (n, γ) 0.0040 0.0044 0.0040
ZrNat scatter 0.0016 0.0014 0.0016
H1 scatter 0.0002 0.0002 0.0002
U235 scatter 0.0002 0.0002 0.0002

Table 5.6: Contributions to uncertainty in CANDU k∞ at HZP (BoC)
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Statistical Statistical Direct
reaction/ Uniform Gaussian Perturbation

nuclide parameter %∆k/k %∆ k/k %∆ k/k

ALL ALL 1.2640 1.3143 1.2741
U238 (n, γ) 1.1963 1.2052 1.1837
U235 (n, fission) 0.2789 0.2576 0.2645
U235 (n, γ) 0.2779 0.2966 0.2946
U235 ν̄ 0.1374 0.1423 0.1417
ZrNat (n, γ) 0.1269 0.1466 0.1369
H2 (n, γ) 0.1095 0.1051 0.0912
U238 ν̄ 0.0937 0.0913 0.0904
H2 scatter 0.0674 0.0633 0.0647
O16 (n, γ) 0.0668 0.0727 0.0664
U238 (n, fission) 0.0395 0.0377 0.0361
O16 scatter 0.0204 0.0197 0.0091
U238 scatter 0.0164 0.0144 0.0139
Cr52 (n, γ) 0.0076 0.0077 0.0005
H1 (n, γ) 0.0042 0.0048 0.0045
FeNat (n, γ) 0.0037 0.0040 0.0040
ZrNat scatter 0.0016 0.0016 0.0016
H1 scatter 0.0003 0.0003 0.0002
U235 scatter 0.0002 0.0002 0.0002

Table 5.7: Contributions to uncertainty in CANDU k∞ at HFP (BoC)
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Figure 5.3: Sensitivity profile of CANDU R© k∞ to U238 (n,γ)

Figure 5.4: Sensitivity profile of CANDU R© k∞ to U235 (n, fission)

Figure 5.5: Sensitivity profile of CANDU R© k∞ to U235 (n, γ)
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Figure 5.6: Sensitivity profile of CANDU R© k∞ to U235 ν̄

Figure 5.7: Sensitivity profile of CANDU R© k∞ to ZrNat (n, γ)

Figure 5.8: Sensitivity profile of CANDU R© k∞ to H2 (n, γ)
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Figure 5.9: Sensitivity profile of CANDU R© k∞ to U238 ν̄

Figure 5.10: Sensitivity profile of CANDU R© k∞ to O16 (n, γ)

Figure 5.11: Sensitivity profile of CANDU R© k∞ to H2 scatter
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Figure 5.12: Sensitivity profile of CANDU R© k∞ to U238 (n, fission)

Figure 5.13: Sensitivity profile of CANDU R© k∞ to U238 scatter

Figure 5.14: Sensitivity profile of CANDU R© k∞ to O16 scatter
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Figure 5.15: Sensitivity profile of CANDU R© k∞ to Cr52 (n, γ)

Figure 5.16: Sensitivity profile of CANDU R© k∞ to H1 (n, γ)

Figure 5.17: Sensitivity profile of CANDU R© k∞ to FeNat (n, γ)
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Figure 5.18: Sensitivity profile of CANDU R© k∞ to ZrNat scatter

Figure 5.19: Sensitivity profile of CANDU R© k∞ to H1 scatter

Figure 5.20: Sensitivity profile of CANDU R© k∞ to U235 scatter
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Figure 5.25: CANDU R© HZP two-group homogenized lattice covariance (BoC)
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Figure 5.26: CANDU R© HZP two-group homogenized lattice correlation (BoC)
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Figure 5.27: CANDU R© HFP two-group homogenized lattice covariance (BoC)
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Figure 5.28: CANDU R© HFP two-group homogenized lattice correlation (BoC)
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Temperature Uncertainties Propagation

A summary of sensitivity and uncertainty results associated with input temperatures
is shown in table 5.8. Homogenized, few-group covariance and correlation matrices
resulting from each uncertain input temperature are shown in figures 5.30 to 5.35.

Input temperature
Item Fuel Moderator Coolant
∆k/k Statistical 0.0239% 0.0137% 0.0127%
∆k/k Perturbation 0.0240% 0.0132% 0.0127%
dk/dT -1.43E-5 -2.14E-5 -1.28E-5
Sensitivity -1.20E-2 -6.59E-3 -6.41E-3

Table 5.8: Material temperature uncertainty propagation results

(a) Fuel (b) Moderator (c) Coolant

Figure 5.29: CANDU R© k∞ vs. input temperatures
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Figure 5.30: CANDU R© homogenized covariance due to fuel temperature
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Figure 5.31: CANDU R© homogenized correlation due to fuel temperature
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Figure 5.32: CANDU R© homogenized covariance due to moderator temperature
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Figure 5.33: CANDU R© homogenized correlation due to moderator temperature
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Figure 5.34: CANDU R© homogenized covariance due to coolant temperature

169



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Figure 5.35: CANDU R© homogenized correlation due to coolant temperature
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5.3 BoC results discussion

Uncertainty in the infinite multiplication constant of the generic CANDU R© lattice
is typically much larger than the LWR cells investigated in chapter 4, with the only
comparable case being that of the PB-2 BWR at hot, full-power with substantial
coolant void. However, whereas the PB-2 uncertainty, which is driven by U238 (n, γ),
is primarily a result of under-moderation due to coolant void, the large contribution
from that cross-section to the uncertainty of CANDU R© k∞ can be attributed to its
larger relative contribution to thermal reaction rates in CANDU R© fuel compared to
LWRs and is therefore essentially an enrichment phenomena.

Cross-Section Sensitivity and Uncertainty

The sensitivity of CANDU R© k∞ to multi-group cross-sections varies substantially
compared to the UAM lattices which feature an LWR neutron spectrum. The best-
estimate, normalized neutron flux of CANDU R© and TMI-1 at HFP are shown in
figure 5.36, and the relative ratio of normalized flux of the two cells in figure 5.37.
There is substantially greater thermal flux in the CANDU R© lattice at energies up
to 0.28 eV, and substantially less flux at energies above that threshold, compared
to the PWR. This is reflected in the sensitivities of CANDU R© k∞ to multi-group
cross-sections, which tend to be large below 0.28 eV. The difference is plainly seen for
the sensitivity to U238 (n, γ), the most important uncertainty contributor, in contrast
to the same sensitivity in the context of LWR lattices. The PB-2, TMI-1 and K-
6 sensitivity profiles to that reaction, shown in figures 4.3, 4.30, and 4.57, exhibits
large peaks at intermediate and high energies that are absent from the corresponding
CANDU R© sensitivity profile in figure 5.3. Similarly, an increase in thermal sensitivity
can be readily observed with respect to several other cross-sections as well

(
e.g. ZrNat

(n, γ), O16 (n, no), FeNat (n, γ)
)
.

Figure 5.36: CANDU R© and TMI-1 normalized neutron flux

171



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Figure 5.37: CANDU R© flux to TMI-1 flux ratio

Naturally, since the CANDU R© lattice is heavy water moderated, the sen-
sitivity to H1 cross-sections is reduced by an order of magnitude or more compared
to LWR cells. However, an interesting sensitivity profile to deuterium exists. Note
the k∞ sensitivity to H2 scattering cross-section is negative at very high energies, as
shown in figure 5.11, which is expected given the coolant’s potential to reflect fission
neutrons at the fuel/coolant interface, and is positive at the intermediate energies
which correspond to the thermalizing of neutrons far from the fuel. However, at even
lower energies, the sensitivity again becomes negative. This is likely the result of the
temperature disparity between the coolant, which lies inside the pressure tube, and
moderator, which lies outside of the calandria tube. The coolant’s higher temper-
ature substantially increases the possibility of neutron up-scattering within a short
distance of the fuel. Up-scatter events imposed on neutrons that initially are of the
thermal distribution associated with the cooler moderator, will push the neutrons to
higher energies; energies at which the fission-to-capture ratio of fuel material tends to
be lower. The negative thermal sensitivity caused by the up-scatter effect is entirely
absent for the LWR cells, whose moderator and coolant are the same.

Microscopic cross-section uncertainties cause more covariance on CANDU R©

lattice outputs (i.e. k∞ and homogenized, few-group cross-sections) than they do for
LWR cells. The moderately large uncertainty contribution from H2 scatter pushes
the CANDU R© homogenized scattering cross-section covariance higher, and the total
cross-section covariance higher along with it. The larger fast-group absorption and
fission uncertainties are attributable to contributions from U238 (n, γ) and U235 (n, fis-
sion), respectively, which contribute more to CANDU R© ∆k/k. than LWR ∆k/k, as
shown in tables 4.4 and 5.6, for example.
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Temperature Sensitivity and Uncertainty

The relationship between reactivity and temperatures of fuel, moderator, and coolant
were found to be remarkably linear. An analysis of 1056 samples of each (scatter plots
shown in figure 5.29), resulted in a calculated correlation that was, to a high precision,
equal to unity. This indicates that a first order perturbation system is an excellent
approximation for material temperature uncertainty propagation. The sensitivities of
k∞ with respect to temperatures are such that even large temperature uncertainties
would contribute an amount of uncertainty to k∞ that is of only moderate importance
compared to contributions from cross-section uncertainties.

Fuel Temperature Uncertainty Effects

The homogenized, two-group covariance matrix of the lattice that results from fuel
temperature uncertainty is straightforward to interpret given the data available on
the IAEA library that is temperature-dependent. Multi-group cross-sections are
temperature-dependent in the last (slowest) 42 energy groups, up to 4 eV. Above 4 eV,
there are temperature-dependent resonance integrals for 13 groups, up to 9.112 keV.
The fastest groups, from 9.112 keV to 2 MeV are entirely temperature-independent.
Therefore, in the homogenized two-group cross-sections, there can emerge variation in
the broad thermal group due to the thermal-dependency of multi-group data across the
entire range of the broad group. However, variation in the broad fast group emerges
only from whatever little temperature variation exists from 0.625 eV to 4 eV, in com-
bination with the temperature variation of resonance integrals, which ultimately stem
from Doppler broadening of resonance peaks. In the case of CANDU R© fuel material,
the two nuclides principally responsible for reaction rates are U235, involved primarily
at thermal energies, and U238, which dominates effects at fast and epithermal ener-
gies, and whose effects are also present at thermal energies. Therefore, uncertainty
in the fast group of homogenized absorption and fission cross-sections resulting from
fuel temperature uncertainty will be driven by U238 effects, and likewise, the thermal
group uncertainty driven by a collection of nuclides. The capture cross-section of U238

features a large number of very strong, densely packed resonances, which cause signifi-
cant uncertainty to arise in the Σ1

A homogenized cross-section in figure 5.30. However,
the fission resonances of U238 are weak and sparsely populated. Consequently, there
are no fission resonance integrals of U238 stored in the IAEA library, and hence no
temperature-dependent variation of data above 4.0 eV, which leads to ν̄Σ1

F having no
significant uncertainty. Both broad-group thermal cross-sections, Σ2

A and ν̄Σ2
F show

covariance in figure 5.30 due to the temperature-dependent variation of thermal data
of all fuel nuclides.
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Moderator Temperature Uncertainty Effects

In a well-thermalized lattice, neutrons that escape resonance absorption will be slowed
through elastic collisions with moderating nuclei and eventually reach a thermal equi-
librium with the moderator material, taking on an energy distribution of the Maxwell-
Boltzmann type. Uncertainty associated with moderator temperature propagates to
uncertainty in the neutron energy distribution, which in turn introduces uncertainty
in few-group cross-sections that are averaged using an energy-varying flux profile as
a weighting function. Since the effect of moderator temperature is almost entirely
limited to thermal equilibrium phenomena, the fast flux is subject to virtually no
variation, which can be seen by the trivial covariance associated with fast cross-
sections in figure 5.32. The fast group homogenized scattering cross-section shows
less covariance than does the absorption and fission yield, because microscopic scat-
tering cross-sections tend to be flat and slowly varying at low energies compared to
absorption cross-sections, and therefore less sensitive to changes in weighting function.

The correlation shown in figure 5.29b implies a negative coefficient of re-
activity with respect to moderator temperature. The negative reactivity exists for
lattices of fresh fuel because the fission cross-section of the fissile material, U235, de-
creases with increasing neutron energy in the neighborhood of 0.03 eV, which is the
mean kinetic energy of neutrons thermalized to a temperature of 345 K. However, as
fuel is burned and plutonium accumulates, the temperature reactivity has potential to
change and become less negative, due to a significant Pu239 resonance located at 0.296
eV that causes its fission cross-section to increase with increasing neutron energies in
the neighborhood of thermal equilibrium.

Coolant Temperature Uncertainty Effects

The uncertainty of coolant temperature effects the incidence of up-scatter occurring
to thermal neutrons entering the fuel channel from the moderator. The up-scatter un-
certainty leads to a small uncertainty in the thermal flux profile seen by fuel nuclides,
and therefore a small uncertainty on the homogenized thermal group cross-section.
Because most scatter reactions take place in the moderator rather than the coolant,
the relative uncertainty associated with the cell-homogenized scatter cross-section is
nearly zero, as shown in figure 5.34.

5.4 EoC and mid-burnup lattice results

The lattice k∞ against burnup is shown in figure 5.38. The solid line in the figure
indicates the best-estimate prediction of k∞, while dashed lines represent the 0.95/0.95
two-sided confidence limits calculated using Wilks’ forumula. The variation of relative
k∞ uncertainty with burnup is shown in figure 5.39. Spatially homogenized, two-group
cross-section covariance and correlation matrices corresponding to the state of the
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lattice after the 180 days of burnup are shown in figures 5.40 and 5.41, respectively.

Figure 5.38: CANDU R© k∞ versus burnup, with 95th percentile confidence limits

Figure 5.39: CANDU R© k∞ uncertainty versus burnup
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Figure 5.40: CANDU R© EoC homogenized relative covariance
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Figure 5.41: CANDU R© EoC homogenized correlation
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Figure 5.42: CANDU R© best-estimate selected nuclide mass

The mass of all 82 lattice nuclides were recorded at each burnup timestep.
Figure 5.42 shows the best-estimate prediction of mass for several fission and activa-
tion products, and figure 5.43 shows the mass of the same nuclides when predicted
with 96 statistical samples of cross-sections. Nuclide concentrations, when average
over the full lattice cell volume, are shown in detail for selected nuclides in figures
5.45 through 5.65, where best-estimate predictions are drawn with solid lines, and
0.95/0.95 confidence limits with dashed lines.
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Figure 5.43: CANDU R© statistical samples of selected nuclide mass
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Figure 5.44: U238 conc. vs. burnup Figure 5.45: U235 conc. vs. burnup

Figure 5.46: U234 conc. vs. burnup Figure 5.47: Pu239 conc. vs. burnup
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Figure 5.48: Pu240 conc. vs. burnup Figure 5.49: Pu241 conc. vs. burnup

Figure 5.50: Am241 conc. vs. burnup Figure 5.51: Am242 conc. vs. burnup
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Figure 5.52: Am243 conc. vs. burnup Figure 5.53: Cm242 conc. vs. burnup

Figure 5.54: Cm243 conc. vs. burnup Figure 5.55: Cm244 conc. vs. burnup
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Figure 5.56: Np237 conc. vs. burnup Figure 5.57: Np239 conc. vs. burnup

Figure 5.58: Pd107 conc. vs. burnup Figure 5.59: I135 conc. vs. burnup
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Figure 5.60: Tc99 conc. vs. burnup Figure 5.61: Xe135 conc. vs. burnup

Figure 5.62: Sm149 conc. vs. burnup Figure 5.63: Gd157 conc. vs. burnup
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Figure 5.64: Kr83 conc. vs. burnup
Figure 5.65: Lumped fission product
conc. vs. burnup

5.5 EoC results discussion

Although the yield fractions and decay rates of nuclides on the IAEA library were
not modified, uncertainty arises in the atomic densities of lattice nuclides during
burnup as a result of uncertain multi-group cross-sections. The production rates of
activation and fission products inherit uncertainty from their respective capture and
fission cross-sections, as do all nuclides in their subsequent decay chains. Similarly,
the removal rate of nuclides also varies as the rate of radiative capture, and also the
fission rate if the nuclides are so capable. An additional indirect effect exists, in that
the uncertain cross-sections result in an uncertain neutron flux distribution, which is
equally involved in determining reaction rates.

As burnup starts, the multiplication constant of the infinite lattice rapidly
declines as fission product poisons are born. The poison nuclides will gradually set-
tle at steady-state concentrations, including, notably, Xe135, which will typically do
so after a period of several days at constant power. Plutonium-239, resulting from
U238 neutron capture, simultaneously accumulates in the fuel and its large fission-to-
capture ratio offers an improvement to reactivity that eventually outweighs the poison
effect of fission products as their net concentration growth rate slows. The resulting
plutonium peak in reactivity can be observed as a local maximum in figure 5.38 at
approximately 20 days of burning at 900 kW per bundle; approximately 800 MW-days
per tonne of fuel. The time at which the plutonium peak is encountered in operational
CANDU R© cores is a function of bundle power histories, which as previously noted,
are not constant at 900 kW. As more fission poisons, whose steady-state settling times
are characterized by long time constants, continue to accumulate and Pu239 is both

185



Ph.D. Thesis - M. Ball; McMaster University - Engineering Physics

Ge72 Kr84 Nb94 In113 Te130 Nd144

Ge73 Kr86 Mo96 Sn115 I129 Nd146

Ge74 Rb85 Mo97 Sn117 Xe128 Nd148

Ge76 Rb87 Ru99 Sn118 Xe130 Nd150

As75 Sb86 Ru100 Sn119 Xe132 Sm154

Se76 Sb87 Ru102 Sn126 Ba134 Gd152

Se77 Sr88 Ru104 Sb121 Ba135 Gd160

Se78 Y89 Pd104 Sb123 Ba136 Tb159

Se80 Zr90 Pd106 Te122 Ba137 Tb160

Se82 Zr91 Pd110 Te123 Ba138

Br79 Zr92 Cd111 Te124 Ce140

Br81 Zr93 Cd112 Te125 Ce142

Kr80 Zr94 Cd114 Te126 Pr141

Kr82 Zr96 Cd116 Te128 Nd142

Table 5.9: IAEA lumped fission product contents

burned and transmuted to Pu240, the reactivity again falls and continues to decrease
for the remainder of the irradiation. The reactivity decrease over the full length of
the 180 days at 900 kW/bundle burnup is 121 milli-k.

Not all fission products are explicitly recorded in the IAEA library. Some
are treated as an aggregate lumped fission product (LFP), which is a construct repre-
senting an amalgam of properties of 79 fission product nuclides. The properties of the
lumped nuclides are weighted in atom density according to their relative yields from
three parent fissile nuclides, U235, U238 and Pu239 assuming fractional fission rates
of 54%, 8% and 38%, respectively. Lumped nuclide cross-sections are weighted in
energy assuming infinite dilution and a temperature of 700 K, by the same weighting
function used for all other library nuclides. The nuclides whose properties constitute
the LFP are shown in table 5.9. The rationale behind the inclusion of nuclides in the
FLP with associated selection criteria can be found in WLUP literature[62]. The LFP
has no associated covariance matrix in the 69GROUPV6REC covariance library as
it is not a nuclide, however, an LFP covariance could be calculated from those of its
constituent nuclides if the atom weighting function is precisely known. In this burnup
uncertainty study, without detailed weighting functions, no LFP covariance could be
reasonably assembled and it is therefore treated as having no associated cross-section
uncertainty.

The variation of k∞ uncertainty shown in figure 5.39 reveals a surprising
uncertainty characteristic of the lattice during burnup. The relative uncertainty in
reactivity falls quickly at the beginning of the irradiation and reaches a global min-
imum of just less than 1.02% ∆k∞/k∞ at 30 days of irradiation, corresponding to
approximately 1193 MW-days per tonne of burnup. The change in uncertainty was
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tested for correlation with various individual isotope concentrations, but no significant
correlation was observed. The variation of k∞ uncertainty with burnup is, therefore,
likely emerging from a complex set of competing phenomena involving several iso-
topes. Behaviour of ∆k∞/k∞ has two dominant features, the decline during the first
30 days of burnup followed by a steady rise, and each stage can be analyzed separately
to some degree, in an effort to determine its underlying causes, as though they are
two independent components in superposition.

Recall the rapid accumulation of fission product poisons beginning at the
onset of fuel irradiation. As their concentrations grow, they become responsible for an
increasing frequency of parasitic absorptions of neutrons, which dulls the sensitivity
of k∞ to U238 (n, γ), since it is accountable for a smaller fraction of total absorption
reaction rate. Naturally, as the sensitivity to U238 capture diminishes, sensitivities
to fission product absorptions rises. However, fission product capture cross-sections
tend to have less relative uncertainty than that of U238 (n, γ). Therefore, in terms
of the total absorption rate, high-uncertainty captures by U238 are substituted with
low-uncertainty captures of fission product nuclides such as Xe135, Sm149, and with
LFP captures, which have no quantified uncertainty whatsoever. Now considering
the inverse side of neutron multiplication, the relative fission rate of U235 decreases
as Np239 decays to the fissile Pu239, whose fission cross-section uncertainty is signifi-
cantly larger than that of U235. In this case, it is low-uncertainty reactions that are
substituted with high-uncertainty reactions. Relative multi-group uncertainties for
several selected nuclide cross-sections can be found in appendix A.

Speaking more generally, the uncertainties associated with actinide cross-
sections tend to be large. As burnup continues and actinides are produced in increas-
ing quantities, reaction rate uncertainties will tend to grow. Additionally, uncertain-
ties cascade over time due to indirect effects; uncertain flux yields uncertain nuclide
densities which yield uncertain flux. After 20 days of irradiation, the benefit to pre-
diction confidences due to decreasing U238 capture sensitivity is overwhelmed by the
increased uncertainties arising from indirect effects and other actinide uncertainties.
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Chapter 6

Conclusions

The objective of this work was to conduct lattice physics sensitivity and uncertainty
analysis on LWR and CANDU R© systems by developing and applying new methods
that comprehensively addresses all relevant sources of uncertainties. These uncertain-
ties play a prominent role in steady-state reactor physics calculations such as those
used for maximum power license compliance, as well as for transients such as antic-
ipated operational occurrences (AOO) and design basis accidents (DBA). Rigorous
integration of these uncertainties has been limited in the past by computational re-
sources. However, using modern computational tools and large parallel computational
abilities have allowed us to resolve such uncertainties for the first time.

Sources of uncertainty must not be limited to merely physics parameters
such as cross-sections, but include model parameters such as material temperature
and density of coolant and moderator. While several previous works have focused on
a limited number of output variables of interest (such as k∞), little work has exam-
ined the uncertainties in homogenized, few-group properties, and neutron flux. The
treatment of resonance self-shielding effects on lattice uncertainties – a phenomena
oft-neglected during lattice uncertainty investigations – was also a requirement of this
work, to achieve a completeness of the analysis and to preserve applicability of the
tool to nuclear systems that feature especially low material dilution, and hence a
large degree of self-shielding. CANDU R© lattice analysis additionally demands two-
dimensional as well as three-dimensional capabilities.

In order to achieve the objectives, a new tool was developed using a Monte
Carlo statistical approach. Verification of the tool was performed for pin-cell ge-
ometries of several reactor types through comparison to adjoint-based sensitivity ap-
proaches (e.g., the commercial code TSUNAMI, which is part of the SCALE code
package). At each point in the verification, care was taken to ensure consistency in
input ENDL and uncertainty covariance libraries. Additional verification using nu-
merical perturbation sensitivity methods were also performed using additional tools
developed in this thesis. This work was submitted to the OECD/NEA UAM bench-
mark and was a significant contribution to that international work.
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Beyond the verification, the Monte Carlo tool was used to perform the first
uncertainty analysis for CANDU R© lattice calculations which could address not just
nuclear data uncertainties, but those also associated with lattice parameters including
coolant, moderator and fuel temperature. Sensitivity coefficients were also determined
for key parameters. Finally, integrated uncertainties were determined for all key out-
put variables and few-group cross-sections based on a combination of all multi-group
physics parameter and physical input uncertainties. This thesis provides the only
results from Canada contributed to the UAM international benchmark and includes
the first published few-group cross-section uncertainties and covariance for CANDU R©

lattice physics.
This work offers unique contributions to the field of lattice physics uncer-

tainty analysis that can be categorized in two ways. One set of contributions relates
to the methodology and tools that were developed to conduct the analysis while sat-
isfying the above requirements. Other contributions arise through the subsequent
analysis of four specific lattice systems using the methodology and tools that were
developed.

On the Methodology and Toolset

With respect to the methodology, the work described in this dissertation offers a
unique approach to lattice uncertainty analysis that address all implicit sensitivity ef-
fects resulting from resonance self-shielding of cross-sections (which are often neglected
by other methods), by employing a novel set of resonance parameter corrections that
are derived according to reactor theory from perturbations in multi-group data. The
toolset DINOSAUR performs statistical sampling and direct numerical perturbation
of lattice inputs, and conducts all related parameter corrections, including those per-
taining to resonance parameters, and is coupled to the lattice code DRAGON, which
is part of the Canadian Industry Standard Toolset.

A statistical sampling approach was employed by DINOSAUR to propagate
uncertainties of both physics and model parameters, with a separate direct numerical
perturbation approach to generate sensitivity profiles and ranks of importance of in-
puts. By virtue of the coupling to DRAGON, the uncertainty propagation conducted
by DINOSAUR is unique in that it can be applied to one, two and three-dimensional
nuclear geometries, all using deterministic solutions of the transport equation. When
this work was commenced, the available mainstream tool, TSUNAMI, was restricted
to only 1D and 3D geometries1, and furthermore, 3D geometries required a Monte
Carlo rather than deterministic solution to the transport equation. Resonance self-
shielding effects are fully addressed by a unique approach that involves the adjust-
ment of resonance integrals derived from perturbations in multi-group cross-sections.
A separate approach, which was also described in this dissertation, involves a differ-

1As discussed in chapter 2, TSUNAMI-2D was developed concurrently with this work and was
recently released in July 2011.
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ent set of resonance parameters for self-shielding by the Nordheim integral treatment,
and highlights the challenges of performing comprehensive lattice physics uncertainty
analysis with multi-group data libraries that were never intended to facilitate such an
endeavour.

Physics and model parameter uncertainties can be simultaneously or indi-
vidually propagated using DINOSAUR. By model parameter, what is meant is any
parameter that is defined in the input deck of the lattice simulation, including ma-
terial temperatures, densities, isotopics, and geometries (e.g. fuel pin diameters).
Model parameters are statistically sampled by DINOSAUR according to user-defined
probability distributions in a similar manner as physics parameters (i.e. multi-group
cross-sections). The treatment of both model and physics parameters implies that
every potential source of uncertainty in lattice physics can be addressed during anal-
ysis.

At the time this work began, mainstream tools were focused on quantify-
ing uncertainty of the lattice k∞, and not other lattice calculation outputs including
homogenized, few-group cross-sections2. DINOSAUR has the capability to calculate
covariance and correlation matrices for every output calculated during a best-estimate
lattice calculation. The evolution of lattice properties and their associated uncertain-
ties during burnup can be predicted using DINOSAUR. Adjoint-based methods face
challenges in predicting such burnup-related uncertainties, which are straightforwardly
obtained with DINOSAUR’s statistical sampling method. Furthermore, DINOSAUR
offers several advantages over adjoint-based sensitivity and uncertainty tools, in terms
of: the diversity of input parameters and output responses for which uncertainties can
be examined, computational efficiency when investigating a large number of responses
and/or parameters, the parallelizability of the underlying methodology, and the cap-
ture of all high-order terms of the responses as a function of parameters.

On the Analysis

DINOSAUR was used to conduct sensitivity and uncertainty analysis on three LWR
fuel cells, and a CANDU R© lattice. In total, over 60,000 best-estimate and uncertainty
lattice calculations were performed to generate the statistics of the lattice outputs and
their sensitivities with respect to uncertain parameters. A summary of the contribu-
tions resulting from the analyses are presented in this section.

The statistical sampling used by DINOSAUR for each analysis in this dis-
sertation was performed in duplicate, using distinct probability distributions for the
input parameters – normal and uniform. The analyses demonstrate that the uncer-
tainty results tend to be independent of the choice of input parameter distribution.
Therefore, the uniform distribution is preferred, as it produces a set of random values
that are the most tightly packed about the reference value, given a particular variance.

2Again, due to the rapid development of tools in part due to the OECD/NEA UAM benchmark,
new tools, namely XSUSA, were later developed to quantify additional lattice output uncertainties.
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Conversely, the tail ends of a Gaussian distribution have the potential to yield random
parameter values that are so far from the reference value that numerical instabilities
can arise during the solution of the transport equation working on those parameters.
This is particularly true for cases where largely negative values are generated for a
cross-section, which are clearly nonphysical.

With respect to the multiplication constant, k∞, the ranking of importance
of isotope physics parameters – the degree to which they contribute to k∞ uncertainty
– is fairly uniform between lattice cell types3. This broadly suggests that the ranking
of importance of physics parameters is fairly constrained for thermal, uranium-fueled
reactors. Fission and absorption parameters of the primary fissionable isotopes, U238

and U235 are consistently the top contributors to k∞ uncertainty for lattices of fresh
fuel. The large sensitivity of k∞ to U238 (n, γ) conspires with that cross-section’s
significant covariance to make it the dominant source of k∞ uncertainty for all the
lattice cells that were investigated.

Physics parameters result in significant neutron flux uncertainty. It was
found that the flux uncertainty contributes significantly to the uncertainty of few-
group, homogenized cross-sections whose formulation incorporates the flux as a weight-
ing function in their energy and volume averaging. Indeed, it was shown that this
indirect pathway of cross-section uncertainty propagation can be more important to
quantifying homogenized parameter uncertainties than the component contributed
directly by the cross-sections that are averaged. In other words, the uncertainty
associated with a weighted average can be more due to the uncertain weighting func-
tion (i.e. flux) than the uncertain parameters that are being averaged (i.e. cross-
sections). Therefore, the consideration of flux uncertainties that arise from uncertain-
ties in physics parameters is necessary to accurately quantify the covariance of lattice
calculation outputs.

This dissertation constitutes what is probably the most rigorous CANDU R©

lattice physics sensitivity and uncertainty analysis ever conducted, which includes a
study of the evolution of lattice uncertainties as a result of burnup. Even with no
consideration given to uncertainties of isotope yield fractions and decay rates, consid-
erable uncertainties were found in CANDU R© properties during burnup. Such burnup
related uncertainties result wholly from the uncertainties in fission and absorption
rates of isotopes, leading to uncertain isotope concentrations and uncertain neutron
flux at each timestep. A decrease in k∞ uncertainty is seen at the onset of burnup,
most likely due to the rapid accumulation of fission products, followed by a steady rise
in uncertainty that is likely attributable to the slow buildup of transuranic actinides.

For CANDU R© lattices, when isolating the effect of temperature uncertain-
ties to the Doppler broadening of cross-sections (i.e. de-coupled from corresponding
material density changes), the resulting uncertainties associated with lattice outputs
are small in magnitude compared to those that result from multi-group cross-section
covariance. Thermal uncertainties would need to be exorbitantly large (≈ ± 20%) to

3A natural and obvious exception applies to those isotopes that are not common to each system.
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achieve uncertainty contributions to lattice properties that are of significance com-
pared to the contributions from multi-group cross-section uncertainties. Temperature
uncertainties of that magnitude are unreasonably large for typical, steady-state op-
erations, but may be realized during some transients that correspond to accident
conditions.

6.1 Future work

A challenge emerged during the development of DINOSAUR that is related to the
uncertainty library 44GROUPV6REC and the reference library IAEA not spanning
a common set of parameters. Whereas the covariance matrices correspond to many
partial cross-sections, such as (n, γ), (n, α), (n, 2n), etc., the IAEA library tends
to include aggregate cross-sections such as (n, total) and (n, absorption) instead.
Therefore, assumptions had to be made regarding the degree to which each partial
cross-section contributed to the aggregate cross-sections, in order to apply their in-
dividual covariances in a sensible way. While the assumptions that were made are
rather reasonable, they constitute an area of potential improvement.

Future work must be conducted to eliminate the need for assuming the
relative magnitudes of various partial cross-sections. A new library, based on the latest
data evaluations (i.e. ENDF/B-VII) will be generated using the NJOY cross-section
processing code. The new library will not be of the constrained WIMS-D4 format,
but rather a different format in which all important partial cross-sections are uniquely
represented. DINOSAUR will be extended to perform statistical sampling and direct
numerical perturbation on the new library, which will subsequently be converted to the
DRAGON-readable WIMS-D4 format. This approach will ensure that the aggregate
cross-sections of the WIMS-D4 library correctly capture the effects of each partial
cross-section according to their true relative contributions. The adoption of ENDF/B-
VII physics data will improve the quality of best-estimate lattice calculations, and will
also be consistent with the latest covariance evaluations from Oak Ridge National
Laboratory, 44GROUPCOV.

6.2 Recommendations for future work

A widely adopted strategy in performing lattice physics uncertainty analysis, includ-
ing the strategy adopted in this work, is to employ multi-group covariance matrices
– such as the 44-group matrices evaluated by ORNL – as the basis for propagating
physics uncertainties through the lattice calculation sequence. To the extent that
some lattice sequences involve energy group structures that differ from the ORNL 44-
group structure, interpolation of the covariance is required. A feature of multi-group
covariances, such as 44GROUPV6REC, is that they are a product of all underlying
physics uncertainty effects, including: resonance parameter uncertainties; continuous-
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energy cross-sections and weighting functions; and so on. To address the implicit
uncertainty effects of resonance self-shielding, one must work backwards, using for-
mulations that relate the variation in multi-group data to variations in the resonance
parameters used for self-shielding. This is a rather clunky and circular procedure.

From the experience gained during the work of this dissertation, there is the
following recommendation for future work. Exploiting the flexibility of the statistical
sampling approach, uncertainty propagation can begin at the level of continuous-
energy nuclear data files, rather than at the level of multi-group libraries. The
ENDF/B-VII data files include covariance matrices on a very fine energy mesh, for
cross-sections as well as resonance parameters. Therefore, the fine mesh covariances
can be used to generate statistical samples of the entire ENDF/B-VII evaluation. For
each randomly generated variation of ENDF/B-VII, standard cross-section processing
can be performed. After processing, the resulting libraries will consist of multi-group
data and resonance parameters that will necessarily be entirely consistent with the
variations in continuous-energy data in the randomly generated ENDF/B-VII. A full
best-estimate calculation, from lattice physics to full-core diffusion can be carried out
for each variation, thus growing a population of reactor physics outputs whose un-
certainties can be statistically calculated. The number of statistical variations of the
ENDF/B-VII evaluation depends only on the desired confidence associated with sub-
sequent reactor physics calculations. This approach, while more demanding in terms
of the statistical sampling, requires the fewest number of assumptions regarding the re-
lationships between parameters – especially those between multi-group cross-sections
and resonance parameters.
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Appendix A

Cross-section uncertainties

This section contains 69-group relative covariance matrices of selected microscopic
cross-sections from the 69GROUPV6REC covariance library, ordered by nuclide atom-
ic number.

(a) relative covariance

(b) relative standard deviation

Figure A.1: Xe135 (n, γ) 69-group uncertainty
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(a) relative covariance

(b) relative standard deviation

Figure A.2: Sm149 (n, γ) 69-group uncertainty
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(a) relative covariance

(b) relative standard deviation

Figure A.3: U235 (n, γ) 69-group uncertainty
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(a) relative covariance

(b) relative standard deviation

Figure A.4: U238 (n, γ) 69-group uncertainty
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(a) relative covariance

(b) relative standard deviation

Figure A.5: Pu239 (n, fission) 69-group uncertainty
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(a) relative covariance

(b) relative standard deviation

Figure A.6: Pu240 (n, γ) 69-group uncertainty
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(a) relative covariance

(b) relative standard deviation

Figure A.7: Pu240 (n, fission) 69-group uncertainty
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(a) relative covariance

(b) relative standard deviation

Figure A.8: Pu241 (n, γ) 69-group uncertainty
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(a) relative covariance

(b) relative standard deviation

Figure A.9: Pu241 (n, fission) 69-group uncertainty
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