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ABSTRACT 

Background and Objectives: Informed health care decision making depends on the 

available evidence base.  Where the available evidence comes from different sources 

methods are required that can synthesise all of the evidence.  The synthesis of different 

types of evidence poses various methodological challenges.  The objective of this thesis 

is to investigate the use of Bayesian methods for combining evidence on effects from 

randomised and non-randomised studies and additional evidence from the literature with 

patient level trial data.   

Methods: Using a Bayesian three-level hierarchical model an approach was proposed to 

combine evidence from randomised and non-randomised studies while adjusting for 

potential imbalances in patient covariates.  The proposed approach was compared to four 

other Bayesian methods using a case study of endovascular versus open surgical repair 

for the treatment of abdominal aortic aneurysms.  In order to assess the performance of 

the proposed approach beyond this single applied example a simulation study was 

conducted.  The simulation study examined a series of Bayesian approaches under a 

variety of scenarios.  The subsequent research focussed on the use of informative prior 

distributions to integrate additional evidence with patient level data in a Bayesian cost-

effectiveness analysis comparing endovascular and open surgical repair in terms of 

incremental costs and life years gained. 
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Results and Conclusions: The shift in the estimated odds ratios towards those of the 

more balanced randomised studies, observed in the case study, suggested that the 

proposed Bayesian approach was capable of adjusting for imbalances.  These results were 

reinforced in the simulation study.  The impact of the informative priors in terms of 

increasing estimated mean life years in the control group, demonstrated the potential 

importance of incorporating all available evidence in the context of an economic 

evaluation.  In addressing these issues this research contributes to comprehensive 

evidence based decision making in health care.    
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PREFACE 

This thesis is a “sandwich thesis” that combines three individual manuscripts prepared for 

publication in peer-reviewed journals.  One of the manuscripts is already published, 

another has been accepted for publication and the third is in submission.  The 

contributions of C. Elizabeth McCarron to all of the papers in the thesis include: 

developing the research ideas and research questions, performing the analyses, 

interpreting the results, writing all of the manuscripts, submitting all of the manuscripts, 

and responding to reviewers‟ comments.  The work in this thesis was conducted between 

the winter of 2009 and the fall of 2011.   
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CHAPTER 1 

INTRODUCTION 

 

 

Background and Rationale 

 

 

The International Network of Agencies for Health Technology Assessment defines health 

technology assessment (HTA) as, “a multidisciplinary field of health policy analysis 

studying the medical, social, ethical, and economic implications of development, 

diffusion, and use of health technology” [1].  Examples of health technologies include 

pharmaceuticals, devices, and surgical procedures [1].  In health systems throughout the 

world, HTA plays an essential role in supporting decision making about access to 

technology, its diffusion, and innovation [2]. 

 

In a cost-containment environment, economic evaluation plays an important role in HTA.  

The economic evaluation of health care technologies involves the comparison of 

alternative interventions in terms of their relative costs and effects [3].  By comparing 

costs and effects, economic evaluations inform decision making regarding the efficient 

allocation of scarce resources.  Cost-effectiveness research is used as formal inputs into 

decisions about which interventions and programmes should be funded from collective 

resources by health systems around the world [4].  The increasing use of economic 

evaluations to inform health care decision making raises important methodological issues 

for this area of research.  One of these issues is the need to synthesise evidence on effects 
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from all sources of available evidence [4].  Depending on the technologies being 

compared, the body of available evidence could include a variety of different sources 

(e.g., randomised controlled trials (RCTs), non-randomised/observational studies). 

 

Bayesian statistical methods represent a valuable set of analytical tools for combining 

evidence from different sources [4].  Based on Bayes‟ theorem, named after the 18
th

- 

century Presbyterian minister Thomas Bayes, Bayesian statistics have enjoyed a revival 

in recent years [5].  While the application of Bayesian methods to the economic 

evaluation of health care technology is relatively new, the potential for these methods to 

take into account all available evidence to inform decision making is profound.  At its 

core, Bayes‟ theorem describes a process of how to modify existing beliefs as additional 

information becomes available.  With this comes the opportunity for a more iterative 

approach to health care decision making, one flexible enough to take advantage of all 

available evidence.  An example of such an approach, within a real world health policy 

setting, is seen in the Programs for Assessment of Technology in Health (PATH) 

Research Institute reduction of uncertainty through field evaluation (PRUFE) framework 

established in Ontario, Canada [6].   

 

The objective of the PRUFE framework is to provide a comprehensive evidence base 

upon which informed decisions regarding the cost-effectiveness of new health 

technologies can be made [6].  This process relies on the use of both systematic literature 

reviews and patient level field evaluations to provide research comparing the costs and 
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effects of these technologies.  A recent example revolved around the decision by the 

Ontario Ministry of Health and Long-Term Care to reimburse endovascular aneurysm 

repair (EVAR) for abdominal aortic aneurysms in patients at a high risk for morbidity or 

mortality following surgery.  The available evidence consisted of a systematic review, 

including both randomised and non-randomised studies [7], as well as a patient level 

economic evaluation comparing EVAR and open surgical repair (OSR) in high risk 

patients [8].  However, the randomised and non-randomised studies were analysed 

separately and the patient level data were analysed using standard techniques (i.e., non-

parametric bootstrap methods) that gave no consideration to external evidence.  In both 

instances, the analyses failed to take advantage of all of the available evidence.  Critical 

to the success of approaches such as the PRUFE framework, is the existence of methods 

capable of combining evidence from different sources.    

 

 

Methodological Issues in Evidence Synthesis 

 

 

Depending on the types of evidence being combined, a researcher may face various 

methodological challenges.  The specific issues addressed in this thesis are: 1) how to 

combine evidence from randomised and non-randomised studies, and 2) how to combine 

patient level data from a trial based economic evaluation with additional evidence from 

the literature.  The objective of this dissertation is to investigate the use of Bayesian 

methods for combining evidence from these different sources.  The methods are 

examined against the background of a comparison of EVAR and OSR for the treatment 

of abdominal aortic aneurysms.   
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Issue 1: Combining randomised and non-randomised studies 

 

 

Beyond the importance of basing health care decision making on all available evidence, 

there may be other practical reasons to combine different types of comparative evidence 

(e.g., randomised and non-randomised studies).  For certain health care technologies, 

especially non-drug technologies, there may be a lack of randomised studies [4].  In 

addition, when synthesising evidence on effects as part of an economic evaluation used to 

inform decision making at a population level, issues may arise concerning effectiveness 

relative to efficacy.  RCTs are designed to provide estimates of efficacy in an ideal 

setting, while non-randomised or observational studies may better reflect estimates of the 

effectiveness of the treatments in the real world.  In exchange for the greater 

generalisability associated with non-randomised studies, there is also an increased 

likelihood of imbalances among patient characteristics due to the non-randomised nature 

of the studies [9].  These imbalances, if not accounted for in some way, could bias the 

results.  The extent to which bias in the results is affected by factors such as the impact of 

the imbalances, the relative number of randomised and non-randomised studies and the 

study arm sizes must also be understood.    

 

 

Issue 2: Combining patient level trial data and additional evidence 

 

 

Economic evaluations of patient level data refer to studies involving primary data 

collection, usually from alongside a RCT [3].  Traditional approaches for analysing 

patient level economic evaluations rely solely on the information contained in the trial 
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data [3].  The consequence of which is that these analyses effectively ignore all other 

external sources of evidence.  When the results of these economic evaluations are used to 

inform decision making, the failure to take into consideration all of the available evidence 

could have important health policy implications.  Not only could the results influence 

decisions regarding the funding of one intervention compared to another, but they could 

also have an impact on decisions regarding the need for future research.  Another 

important issue relates to how to value the additional evidence relative to the patient level 

data, which would require a careful consideration of potential differences between the 

two sources of information.  Despite the potential for Bayesian methods to take 

advantage of all available evidence, a recent review of Bayesian patient level economic 

evaluations found that only half of the included studies used some type of informative 

prior in their analysis [10].  Where there are sources of evidence in addition to the trial 

data, not incorporating these into the analysis fails to exploit the full potential of the 

Bayesian approach and could undermine the results.  

              

Outline for the Thesis 

 

This thesis consists of three papers that are related to the issues discussed above.  The 

three papers are separated into different chapters beginning from Chapter 2. 

 

Using a case study, Chapter 2 proposes a new approach for combining evidence from 

randomised and non-randomised studies by adjusting for imbalances in patient 

characteristics between study arms.  The proposed approach extends the Bayesian three-
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level hierarchical model initially developed by Prevost et al. [11] for combining different 

types of study designs.   Imbalances in patient characteristics are adjusted for using 

differences in the patient characteristics between study arms.  The proposed method is 

compared to four other Bayesian approaches: 1) three-level hierarchical model 

unadjusted for potential imbalances as in Prevost et al. [11], 2) three-level hierarchical 

model adjusted using aggregate study values [11], 3) informative prior downweighting 

the non-randomised studies [12], and 4) prior constraint downweighting the non-

randomised studies [11].  This comparison is undertaken using data from the previously 

published systematic review of EVAR versus OSR for the treatment of abdominal aortic 

aneurysms [7].   

 

A simulation study is conducted in Chapter 3 to assess the performance of the newly 

proposed Bayesian approach beyond the single case study used in Chapter 2.  Sets of 

balanced randomised and imbalanced non-randomised studies were generated using 

simulation techniques.  The same models considered in Chapter 2 are also investigated in 

this chapter with the exception of the prior constraint model.  Six scenarios were 

examined to assess the sensitivity of the results to changes in the impact of the 

imbalances and the relative number and size of studies of each type.  The values selected 

for the various criteria were meant to reflect realistic scenarios such as might be 

encountered in practice (e.g., more patients enrolled in non-randomised studies than 

randomised studies [12]), yet at the same time testing the robustness of the proposed 

approach.   
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Chapter 4 explores the use of informative Bayesian prior distributions as a mechanism by 

which additional evidence can be incorporated into a trial based economic evaluation.  

The additional evidence from the literature is combined in a Bayesian meta-analysis and 

is then used to inform the prior distributions for effects in the two arms of the trial.  The 

patient level data were taken from the previously published economic evaluation that 

compared EVAR and OSR in high risk patients using a one year prospective 

observational study [8].  The additional evidence represents information that was 

available at the time of the original economic evaluation and was taken from the same 

published systematic review used in Chapter 2 [7].  Two types of informative priors were 

examined to represent different potential valuations of the additional evidence relative to 

the patient level data.  Namely, the external information was taken both at face value as 

well as being treated with scepticism by explicitly downweighting its information relative 

to that from the patient level data. 

 

Chapter 5, the concluding chapter of the thesis, provides an overall summary of the 

research.  This chapter also identifies potential areas of future research as well as 

discussing the implications and contributions of the work undertaken in this thesis.    
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CHAPTER 2 

 

The importance of adjusting for potential confounders in Bayesian hierarchical 

models synthesising evidence from randomised and non-randomised studies: an 

application comparing treatments for abdominal aortic aneurysms  
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Abstract 

Background: Informing health care decision making may necessitate the synthesis of 

evidence from different study designs (e.g., randomised controlled trials, non-

randomised/observational studies).  Methods for synthesising different types of studies 

have been proposed, but their routine use requires development of approaches to adjust 

for potential biases, especially among non-randomised studies.  The objective of this 

study was to extend a published Bayesian hierarchical model to adjust for bias due to 

confounding in synthesising evidence from studies with different designs.    

Methods: In this new methodological approach, study estimates were adjusted for 

potential confounders using differences in patient characteristics (e.g., age) between 

study arms. The new model was applied to synthesise evidence from randomised and 

non-randomised studies from a published review comparing treatments for abdominal 

aortic aneurysms.  We compared the results of the Bayesian hierarchical model adjusted 

for differences in study arms with: 1) unadjusted results, 2) results adjusted using 

aggregate study values and 3) two methods for downweighting the potentially biased 

non-randomised studies. Sensitivity of the results to alternative prior distributions and the 

inclusion of additional covariates were also assessed. 

Results: In the base case analysis, the estimated odds ratio was 0.32 (0.13,0.76) for the 

randomised studies alone and 0.57 (0.41,0.82) for the non-randomised studies alone.  The 

unadjusted result for the two types combined was 0.49 (0.21,0.98).  Adjusted for 

differences between study arms, the estimated odds ratio was 0.37 (0.17,0.77), 
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representing a shift towards the estimate for the randomised studies alone.  Adjustment 

for aggregate values resulted in an estimate of 0.60 (0.28,1.20).  The two methods used 

for downweighting gave odd ratios of 0.43 (0.18,0.89) and 0.35 (0.16,0.76), respectively.  

Point estimates were robust but credible intervals were wider when using vaguer priors. 

Conclusions: Covariate adjustment using aggregate study values does not account for 

covariate imbalances between treatment arms and downweighting may not eliminate bias.  

Adjustment using differences in patient characteristics between arms provides a 

systematic way of adjusting for bias due to confounding. Within the context of a 

Bayesian hierarchical model, such an approach could facilitate the use of all available 

evidence to inform health policy decisions.  



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

11 

Background 

 

Health technology assessment has been defined as a multidisciplinary field of policy 

analysis studying the medical, social, ethical, and economic implications of development, 

diffusion, and use of health technology [1].  Evidence on the effects of interventions from 

comparative studies is a critical component of this process.  The different types of study 

designs (e.g., randomised, non-randomised/observational) used to assess the effects of 

interventions can be arranged into a hierarchy, at the top of which is the randomised 

controlled trial (RCT) [2].  Randomisation increases the likelihood that the treatment 

groups will be balanced in terms of known and unknown prognostic or confounding 

variables.  Consequently the treatment effects estimated from RCTs are less subject to the 

potential confounding effects of extraneous variables [3].  Evidence from RCTs alone, 

however, may not be sufficient to inform decision makers.  In particular, the strict 

inclusion and exclusion criteria which are often applied in RCTs may limit their 

generalisability relative to non-randomised studies [4,5].   In some cases, compliance to 

randomisation, among the randomised studies, might also be an issue.  Furthermore, the 

scarcity of randomised studies for certain non-drug technologies, such as medical devices 

and surgical procedures, may necessitate the use of evidence from non-randomised 

studies in addition to that available from randomised studies [4].  Contrary to ignoring 

evidence from non-randomised studies, it has been argued that all available evidence 

should be used to inform health care decision making [4,5,6,7].  Such an approach 
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requires methods capable of synthesising evidence from both randomised and non-

randomised studies.  

     

Bayesian hierarchical modelling [5,8] has recently been proposed for synthesising 

evidence from randomised and non-randomised studies.  Prevost et al. [5] applied their 

method to combine evidence relating to the relative risk for mortality from five 

randomised trials and five non-randomised studies evaluating mammographic screening.  

Other applications of Prevost‟s model include Grines et al. [9] and Sampath et al. [10].   

 

As an extension to the model, Prevost et al. [5] proposed the inclusion of study covariates 

to explain differences in mean effects at the study type level.  Although this is important, 

the authors did not model differences between study arms, which may be a limitation of 

this approach when dealing with non-randomised studies due to potential differences in 

baseline characteristics.  Adjustment made using aggregate values will not account for 

potential imbalances between study arms resulting from the lack of randomisation.  

Another extension proposed by Prevost made use of a prior constraint, reflecting the 

assumption that evidence from non-randomised studies, having been derived from study 

designs with potential weaknesses [4], may be more biased than evidence from 

randomised studies.  The effect of the prior constraint is to downweight the evidence 

from the non-randomised studies. This approach has been criticized as it may not 

eliminate bias [11].
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The objective of this paper was to extend the Bayesian three-level hierarchical model 

developed by Prevost et al. [5] in order to accommodate the greater potential for bias 

among the non-randomised studies by adjusting study estimates for potential confounders 

using differences in patient characteristics between study arms.  Modeling differences 

between study arms is important in order to correct for potential imbalances within 

studies which could bias the results.  We applied this new model to a subset of studies 

from a systematic review of endovascular (EVAR) and open surgical repair (OSR) in the 

treatment of abdominal aortic aneurysms (AAAs) [12].  The results were compared with 

those using covariates representing aggregate values for patient characteristics (e.g., 

mean age) within studies, as in Prevost et al. [5] and Sampath et al. [10], and with two 

approaches for downweighting biased evidence.  Prevost‟s prior constraint to 

downweight the non-randomised studies was considered as well as an additional 

approach that combined a prior distribution based on the non-randomised studies with 

data from the randomised studies [8].   

 

Methods 

 

Prevost’s original Bayesian three-level hierarchical model  

 

The three-level Bayesian hierarchical model proposed by Prevost et al. [5] extends the 

standard two-level random-effects meta-analysis [13] to include an extra level to allow 

for variability in effect sizes between different types of evidence (e.g., randomised versus 

non-randomised study designs).  In addition to variability between study estimates within 
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each study type, this model has the capacity to deal with any added uncertainty due to 

study design [14]. The three levels allow for inferences to be made at the study, study 

type, and population levels.  Although the model can accomodate more than two types of 

study designs, the application presented by Prevost et al. [5] combined evidence from two 

study types, randomised and non-randomised. 

 

This model can be written as follows: 

 

yij ~ Normal(ψij, sij
2
)  (eq.1) 

ψij ~ Normal(θi, σi
2
)  (eq.2) 

θi  ~ Normal(μ, τ
2
)   (eq.3) 

                                 (i = 1 or 2 for the 2 study types;  

j = 1,...,ki studies). 

 

At the first level of the model (eq.1), yij is the estimated log relative risk in the jth study 

of type i, which is normally distributed with mean ψij and variance sij
2
. The ψij represent 

the underlying effect, on the log relative risk scale, in the jth study of type i.  At the 

second level of the model (eq.2), the ψij are distributed about an overall effect for the ith 

type of study, θi, with σi
2 
representing the between-study variability for studies of type i.  

At the third level of the model (eq.3) the study-type effects are distributed about an 

overall population effect, μ, with τ
2
 representing the between-study-type variability.  
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To try to explain between study heterogeneity, Prevost et al. [5] extended their model to 

include a covariate for age at the study type level.  This is shown in the equation below. 

 

                                       ψij ~ Normal(θi + (α × xij),  σi
2
) (eq.4) 

 

 

In equation 4, xij took the values of 0 and 1 for studies of women aged less than 50 years 

and studies of women 50 years and over, respectively.  The same approach was used by 

Sampath et al. [10] to adjust for study covariates representing continuous variables such 

as average age and proportion of males in each study.  Grines et al. [9] did not conduct 

covariate adjustment but rather used funnel plots to assess heterogeneity among 

individual study estimates.   

 

Extension of Prevost’s model to adjust for imbalances between study arms 

 

While heterogeneity refers to unexplained variation, bias refers to systematic deviations 

from the true underlying effect due, for example, to imbalances between study arms [2].  

One potential source of bias is confounding [15], where an extraneous factor is associated 

with both the exposure under study (e.g., treatment) and the outcome of interest, but is 

not affected by the exposure or outcome [16].  Only when the groups being compared are 

balanced in all factors, both those that can be measured and those that cannot, that are 

associated with exposure and that affect the outcome (other than treatment) will it be
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certain that any observed differences between the groups are due to treatment and not the 

result of the confounding effects of extraneous variables.  Randomisation increases the 

likelihood that the groups will be balanced not only in terms of the variables that we 

recognize and can measure but also in terms of variables that we may not recognize and 

may not be able to measure (i.e., unknowns) but that nevertheless may affect the outcome 

[3].  In contrast, the greater likelihood of imbalances within the non-randomised studies 

could have implications especially when combining both types of study designs. In order 

to deal with this problem, we extended Prevost‟s three-level model to adjust for 

differences within studies rather than adjusting for aggregate values at the study type 

level as in equation 4.  The proposed approach uses the variation in imbalances across 

studies to adjust for differences in patient characteristics between treatment arms within 

studies.  As with RCTs, the resulting balance in patient characteristics within studies 

should avoid the influence of confounding.   

 

The following presents an extension of Prevost‟s model based on odds ratios, but could 

be extended to relative risk.  This analysis was undertaken using a binomial model in 

which the odds of the event (e.g., death) are calculated for each study and study arm level 

information is incorporated in the model. The model can be written as follows:  

 

rCij ~Binomial(pCij, nCij) and 

           (eq.5) 

rTij ~Binomial(pTij, nTij)  
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 log odds(pCij) = γij  and 

           (eq.6) 

 log odds(pTij) = γij + ψij  

ij ij

M
2

ij i m mT mC i

m 1

~Normal( (x x ), )

 

(eq.7) 

   θi ~Normal(μ, τ
2
)          (eq.8)                                                                                                                

    

 (i = 1 or 2 for the 2 study types;  

 j = 1,...,ki studies, m = 1,..,M confounders). 

 

It is assumed that the number of events in each arm in the jth study of type i (i.e., rCij and 

rTij for control (C) and treatment (T), respectively) follows a binomial distribution defined 

by the proportion of patients who experience the event in each arm in the jth study of 

type i (i.e., pCij and pTij) and the total number of patients in each arm in the jth study of 

type i (i.e., nCij and nTij), as shown in equation 5.  Equation 6 describes the log odds for 

the event in the control (γij) and treatment (γij + ψij) arms of each of the ki studies.     

 

This model assumes that the log odds ratio, ψij, follows a normal distribution with a mean 

which is the sum of θi (i.e., the overall intervention effect in the ith type of studies) and a 

study specific bias adjustment, αm(xmTij-xmCij), that is proportional to the relative 

differences between the study arms in each of the studies (eq.7).  In this expression, xmTij 

and xmCij are the values of the m-th potential confounder in each of the study arms (i.e., 

treatment and control) in the jth study of type i while αm represents the mean bias for the 

m-th potential confounding variable, across all the studies.  The remaining variables were 

defined as before.
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Prior distributions for the unknown parameters were intended to be vague.  Normal priors 

with mean zero and variance 0.26 truncated to be positive, were specified for both 

random-effects standard deviations (σi,τ).  The priors for σi and τ corresponded to the 

priors used in Grines et al. [9] as they represented what may be considered reasonable 

priors in many situations [13].  These priors support equality between studies while 

discounting substantial heterogeneity.  A Normal prior with mean zero and variance ten 

was used for the overall population effect (μ). Vague Normal priors with mean zero and 

variance 1000 were assigned to the log odds (γij‟s).   These priors were applied to 

generate results both adjusted and unadjusted for potential confounders.  In addition to 

these priors, the adjusted model also required priors for the bias coefficients (αm) for each 

of the m-th potential confounders.  These were also given vague Normal prior 

distributions with mean zero and variance 1000.   

 

Alternative methods for potentially biased evidence 

 

For comparison purposes, we also considered two approaches proposed to downweight 

the evidence from non-randomised studies. This is generally done by increasing the 

variance.   The first method considered was the prior constraint used by Prevost et al. [5] 

to assess the influence of the assumption that the randomised studies were less biased 

than the non-randomised studies, and hence that |μ – θ1| < |μ – θ2|.  This approach 

increased the relative proportion of the between-study-type variance (τ
2
) associated with 

the non-randomised studies compared to the randomised studies.  In so doing the 
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interpretation of μ is altered.  Since the constraint gives more weight to the randomised 

studies, μ no longer represents the total population studied.  The overall effects in the 

randomised and non-randomised studies are represented by θ1 and θ2, respectively. The 

second approach was the informative prior distribution used by Sutton et al. [8] which 

included the evidence from the non-randomised studies via the prior for the treatment 

effect and combined this with a likelihood based only on the data from the randomised 

studies.  Sutton et al. [8] centred their informative prior for the population mean on the 

non-randomised pooled estimate but used a variance four times larger than that of the 

randomised studies.  The same approach was used for the current analysis, hence an 

informative Normal(-0.5619,0.8179) prior distribution was specified for μ.  The same 

prior distributions as previously specified were used for the other unknown parameters.   

 

Analyses  

 

All of the analyses were conducted using MCMC simulation implemented in WinBUGS 

1.4.3 software [17].  A „burn-in‟ of 100 000 iterations was followed by a further 100 000 

iterations during which the generated parameter values were monitored and summary 

statistics  such as the median and 95% credible interval of the complete samples were 

obtained.  History plots, autocorrelation plots, and various diagnostics available in the 

package Bayesian Output Analysis [18], performed on two chains, were used to assess 

convergence.  See additional file 1: Appendix for WinBUGS codes.  The data are 

available from the author upon request.
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Illustration 

Data 

 

Data from a previously published systematic literature review evaluating EVAR and OSR 

in the treatment of AAAs [12] were used to illustrate the impact of adjusting for 

imbalances between study arms when combining evidence from randomised and non-

randomised studies.  The review identified 79 comparative studies of which four were 

randomised and 75 were non-randomised.  One of the primary outcomes was 30-day 

mortality reported as an odds ratio.   

 

Evidence of the relative imbalances within the randomised and non-randomised studies, 

together with information on the predictors of perioperative mortality in patients 

undergoing OSR, from several risk scoring methods (e.g., Leiden score) [19], were used 

to inform the choice of covariates for adjustment in both the base case scenario and 

sensitivity analyses.  No adjustment was made for imbalances in the original study [12].  

The extent to which some covariate data were missing was also considered in an 

additional sensitivity analysis, in which values for the missing covariates were imputed. 

 

Base case scenario    

 

In the base case analysis, the results were adjusted for imbalances in age, gender, and 

cardiac disease.  For all three covariates imbalances were greater among the non-
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randomised studies.  The three covariates were available in a total of 44 studies, four 

randomised and 40 non-randomised.  A description of the data is given in Table 1. 

 

Sensitivity analyses 

 

Priors 

 

A sensitivity analysis was conducted to assess the impact of using different prior 

distributions for the between-study (σi) and between-study-type (τ) standard deviations.  

The vague priors used in the base case analysis (σi, τ ~ half-normal (0,0.51
2
)) were 

compared to the more informative yet “fairly unrestrictive” priors used by Prevost et al. 

[5] (σi ~ half-normal(0,0.36
2
), τ ~ half-normal(0,0.18

2
)) and to a set of less informative 

priors.  The latter involved Normal truncated to be positive priors with mean zero and 

variance one for the between-study standard deviation for the randomised studies (σ1) and 

the between-study-type standard deviation (τ).  A Uniform prior over the range (0,10) 

was specified for the between-study standard deviation for the non-randomised studies 

(σ2).  The prior distributions for the other unknown parameters remained unchanged from 

the base case analysis. 
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Imputation for missing data 

A second sensitivity analysis was conducted to use all the studies providing comparative 

information (i.e., 79 studies including four randomised) rather than a subset of studies 

(i.e., 44 studies including four randomised) and to adjust for additional covariates which 

could affect the 30-day mortality risk.  Among the other risk factors used to predict 

mortality following AAA surgery, the Leiden and modified Leiden scores both included 

pulmonary and renal disease [19].  These may be particularly relevant in the current 

context, as imbalances in pulmonary and renal disease were found to be greater among 

the randomised studies than among the non-randomised studies [12].   

Since all five covariates were present together in less than one third of all studies (i.e., 

two randomised and 23 non-randomised studies), missing covariate values were imputed.  

Multiple imputation was conducted using R 2.9.2 software [20] assuming that the 

covariates were missing completely at random.   

This approach implemented the bootstrap method to first impute values for each missing 

variable by randomly selecting from the observed outcomes of that variable and then 

generated multiple imputations (three datasets)  using iterative regression imputation, 

looping through until approximate convergence.  The data are described in Table 1.  The 

result was a single imputed dataset of 79 studies (four randomised and 75 non-

randomised) which was then analysed, in WinBUGS, adjusting for imbalances in age, 

gender, cardiac disease, pulmonary disease, and renal disease.  Results were generated 

using all three types of priors described in the sensitivity analysis. 
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Results  

Base case scenario 

 

Unadjusted for potential confounders   

 

The four randomised and 40 non-randomised studies were first analysed separately 

without adjusting for differences in study arms using a standard Bayesian two-level 

hierarchical model [13] together with a Normal(0,10) prior distribution for the population 

mean and a Normal(0,0.26) truncated to be positive prior distribution for between-study 

standard deviation.  This produced estimates of the pooled median odds ratio for the 

randomised studies alone of 0.32 (95% credible interval (CrI) 0.13,0.76) and for the non-

randomised studies alone of 0.57 (95% CrI 0.41,0.82).   

 

 

In comparison, the Bayesian three-level hierarchical model estimated the pooled median 

odds ratio for the randomised studies to be 0.43 (95% CrI 0.19,0.75) and for the non-

randomised studies to be 0.54 (95% CrI 0.40,0.76).  When randomised and non-

randomised evidence was combined, the overall median odds ratio from the three-level 

model was 0.49 (95% CrI 0.21, 0.98).  This comparison illustrates the effect of the three-

level hierarchical model allowing the cross contribution of evidence between the 

randomised and non-randomised studies.  As a result, the estimated odds ratios for the 

study types were drawn towards one another and the uncertainty associated with them 

was reduced.  The relative discrepancy in the number of randomised and non-randomised 

studies resulted in the pooled estimate for the randomised studies being greatly 
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influenced by the non-randomised studies‟ estimate.  The odds ratio in the non-

randomised studies however, was drawn in by a much smaller amount.  

 

 

Adjusted for differences in age, gender and cardiac disease between study arms 

 

Upon synthesising the randomised and non-randomised evidence, the three-level 

hierarchical model adjusting for imbalances between study arms in terms of age, gender 

and cardiac disease (eq.7) was applied to the data.  Important differences were observed 

compared to the unadjusted analysis.  Posterior median odds ratios were 0.35 (95% CrI 

0.17,0.63) for the randomised studies and 0.39 (95% CrI 0.25,0.61) for the non-

randomised studies.  The overall estimated odds ratio was 0.37 (95% CrI 0.17,0.77).   

 

„Naive‟ adjustments made using the mean age, proportion of males and proportion of 

patients with cardiac disease in each study, as in Prevost and Sampath [5,10], produced 

estimates of 0.57 (95% CrI 0.27,1.03) for the randomised studies and 0.62 (95% CrI 

0.44,0.87) for the non-randomised studies.  The estimated population odds ratio was 0.60 

(95% CrI 0.28,1.20).   

 

Alternative methods for potentially biased evidence 

 

The prior constraint resulted in estimated posterior median odds ratios of 0.44 (95% CrI 

0.20,0.76) and 0.54 (95% CrI 0.40,0.76), respectively for the randomised and non-

randomised studies and an overall estimate of 0.43 (95% CrI 0.18,0.89).  An informed
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prior distribution centred on the pooled estimate from the analysis of the non-randomised 

studies alone with a variance four times that of the randomised studies generated a single 

overall estimate of 0.35 (95% CrI 0.16,0.76).   

 

Figure 1 compares the estimated odds ratios obtained from separate analyses of each type 

of study design using a two-level Bayesian hierarchical model with a three-level 

Bayesian hierarchical model synthesising evidence from both types of designs.  In 

addition the estimates obtained when adjusting for differences in age, gender and cardiac 

disease between study arms or using aggregate study values are also presented.  Estimates 

resulting from approaches downweighting the non-randomised evidence are displayed as 

well.  All odds ratios are described in terms of the numerically approximated (via 

MCMC) median value of their posterior distribution and the associated 95% Bayesian 

CrI.       

 

 

Sensitivity analysis 

 

 

Priors 

 

 

As shown in Table 2, all three sets of priors produced similar values for the study type 

effects θ1 (randomised), θ2 (non-randomised) and for the overall odds ratio μ, though the 

precision of the credible intervals varied.  Our vaguest priors produced an overall 

estimate which was not statistically significant.
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Imputed dataset 

 

 

Adjustment for imbalances in pulmonary and renal disease in addition to age, gender and 

cardiac disease increased the estimated posterior median odds ratios for each of the study 

types and for the overall estimated odds ratio, though the inferences remained the same 

(Table 2).   

 

 

 

Discussion  

 

We expanded the methods initially proposed by Prevost et al. [5] to take into account 

differences in patient characteristics between study arms.  Comparison of the estimated 

odds ratios between the unadjusted three-level model, dominated by the 40 non-

randomised studies, and the model adjusted using study arm differences revealed an 

overall odds ratio that had moved closer to the pooled estimate from the four randomised 

studies alone.  The estimate was more precise than the randomised studies‟ estimate, 

reflecting the additional information from the adjusted non-randomised studies.  „Naive‟ 

adjustments made using aggregate values in each study (centred about their respective 

mean values across all the studies) resulted in estimated odds ratios that were relatively 

closer to the pooled estimate from the non-randomised studies alone.  The prior constraint 

proposed by Prevost et al. [5] did not alter the type level estimates to any noticeable 

extent.  It did however change the contribution that each made towards the population 

level estimate.  Relative to the unadjusted model, the introduction of the constraint 

resulted in a population level estimate which had moved towards the randomised studies‟ 
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estimate both in terms of its location and precision.  However, the shift and the precision 

of the credible interval were both less than when the model was adjusted for study arm 

differences.  Sutton et al.‟s [8] informative prior approach resulted in an overall odds 

ratio that was slightly closer to the randomised estimate than the model adjusted for 

imbalances.  Its estimate was also slightly more precise.   

 

All of the methods, with the exception of the model using aggregate study values for 

adjustment, produced population level estimates that had moved towards the randomised 

studies‟ estimate.  While this lends credence to the ability of the extended model to adjust 

for potential confounders, this new model, in its current form, has some potential 

limitations.  Because the imbalanced studies are adjusted, but not downweighted the 

credible intervals do not reflect the uncertainty due to this source of bias [15].  While 

downweighting itself may not eliminate bias, in conjunction with adjustment, it would 

give the biased studies less weight in the analysis.  Ideally, this would be achieved by 

inflating the variances in such a way that, like the study specific bias adjustments, the 

downweighting was proportional to the relative differences between the study arms.  

Also, in its current form the proposed model does not address the extent to which 

variation in age, gender, and cardiac disease across studies may explain variation in study 

estimates.  Rather, the objective of this study was to propose a method to adjust for 

differences in patient characteristics within studies, as a way of controlling for potential 

confounders.  A practical limitation, as evidenced by this example, is the availability of 

arm level data from the primary papers.  Any analysis could only be based on a subset of 
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studies for which information on potential confounding variables happened to be 

available.  This could bias the results if the observations were not missing at random [21].  

Assuming that the covariates were missing completely at random the current analysis 

attempted to impute the missing values, though admittedly the two-stage nature of the 

current approach may appear inelegant (i.e., using R to impute the data and then 

analysing the new data in WinBUGS).  A more natural solution would be to include the 

unobserved covariate values along with the unobserved parameters inside the MCMC, 

although this may add an additional layer of complexity.  Due to the focus of the paper 

being Bayesian hierarchical models for combining randomised and non-randomised 

studies rather than methods to impute missing data, and for convenience, we decided to 

generate the missing values using R.  Finally, adjustment cannot address the problem of 

unknown potential confounders [21].  

 

 

Despite these limitations, we believe that the approach presented in this paper provides a 

systematic way of incorporating potentially biased evidence, relying on bias adjustment 

rather than arbitrarily downweighting the evidence.  Prevost‟s and Sutton‟s approaches to 

downweighting assume the evidence from non-randomised studies is uniformly more 

biased, which, if there are well balanced non-randomised studies, may not necessarily be 

the case.  Future research would be required to assess the generalisability of the proposed 

model beyond this single applied example.   In particular, simulation studies would be 

necessary to ascertain its broader applicability.  Part of the justification for combining 

evidence from both randomised and non-randomised studies rests on an all available 
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evidence approach to health care decision making.  The extent of missing covariate data 

in the current example suggests authors should be encouraged to better report the main 

characteristics of their study populations.  The current example also illustrates the impact 

of different prior distributions on the precision of the results.  The choice of prior could 

have implications in terms of informing health care decision making and may be 

particularly important in situations in which the data are not very informative [22].   

 

Conclusion 

 

 

Synthesising evidence from both randomised and non-randomised studies requires 

methods for incorporating potential biases.  In this paper, we propose a new approach to 

deal with bias due to confounding when combining randomised and non-randomised 

studies.  This approach uses differences in patient characteristics to adjust for imbalances 

between study arms.  Including aggregate study values for patient level covariates does 

not account for imbalances and downweighting may not eliminate bias.  Within the 

context of a Bayesian hierarchical model the proposed approach could facilitate the use 

of all available evidence to inform health policy decisions.  

 

Competing interests 

The authors declare that they have no competing interests.



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

30 

Authors’ contributions 

CEM conceived of the study, developed the model, analysed and interpreted the data, and 

drafted the manuscript.  EMP conceived of the study, helped with statistical analysis, and 

critically reviewed the manuscript.  LT conceived of the study, helped with statistical 

analysis, and critically reviewed the manuscript.  RG conceived of the study, and 

critically reviewed the manuscript.  JET conceived of the study, acquired the data, and 

helped with interpretation and drafting of the manuscript.  All authors read and approved 

the final manuscript. 

 

Acknowledgements 

CEM is funded through a Doctoral Fellowship from the Social Sciences and Humanities 

Research Council of Canada.  JET holds a 2007 Career Scientist Award, Ontario Ministry 

of Health and Long-Term Care.  

 

 

 

References  

 

1. International Network of Agencies for Health Technology Assessment 

[http://www.inahta.org/HTA] 

2. Centre for Reviews and Dissemination: Systematic Reviews: CRD’s guidance for 

undertaking reviews in health care.  York: University of York; 2009. 

3. Gordis L: Epidemiology.  Philadelphia: Elsevier Inc.; 2004.



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

31 

 

4. Ades AE, Sculpher M, Sutton A, Abrams K, Cooper N, Welton N, Lu G: Bayesian 

methods for evidence synthesis in cost-effectiveness analysis. 

Pharmacoeconomics 2006, 24(1):1-19. 

5. Prevost TC, Abrams KR, Jones DR: Hierarchical models in generalized synthesis 

of evidence: an example based on studies of breast cancer screening.  Stat Med 

2000, 19:3359-3376.   

6. Sculpher MJ, Claxton K, Drummond M, McCabe C: Whither trial-based 

economic evaluation for health care decision making.  Health Econ 2006, 

15:677-687. 

7. Sutton AJ, Cooper NJ, Jones DR: Evidence synthesis as the key to more coherent 

and efficient research.  BMC Med Res Methodol 2009, 9:29. 

8. Sutton AJ, Abrams KR: Bayesian methods in meta-analysis and evidence 

synthesis. Stat Methods Med Res 2001, 10(4): 277-303. 

9. Grines CL, Nelson TR, Safian RD, Hanzel G, Goldstein JA, Dixon S: A Bayesian 

meta-analysis comparing AngioJet thrombectomy to percutaneous coronary 

intervention alone in acute myocardial infarction.  J Interv Cardiol 2008, 

21:459-482. 

10.  Sampath S, Moran JL, Graham PL, Rockliff S, Bersten AD, Abrams KR:  The 

efficacy of loop diuretics in acute renal failure: assessment using Bayesian 

evidence synthesis techniques.  Crit Care Med 2007, 35(11): 2516-2524.



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

32 

 

11.  Eddy DM, Hasselblad V, Shachter R: An introduction to a Bayesian method for 

meta-analysis: the confidence profile method.  Med Decis Making 1990, 10:15-

23. 

12. Hopkins R, Bowen J, Campbell K, Blackhouse G, De Rose G, Novick T, O‟Reilly 

D, Goeree R, Tarride JE:  Effects of study design and trends for EVAR versus 

OSR.  Vasc Health Risk Manag 2008, 4(5): 1011-1022. 

13.  Spiegelhalter DJ, Abrams KR, Myles JP: Bayesian Approaches to Clinical Trials 

and Health-Care Evaluation.  Chichester, West Sussex: John Wiley & Sons Ltd; 

2004. 

14. Ades AE, Sutton AJ: Multiparameter evidence synthesis in epidemiology and 

medical decision-making: current approaches.  J R Stat Soc Ser A 2006, 169:5-

35. 

15. Greenland S: Multiple-bias modelling for analysis of observational data.  J R 

Stat Soc Ser A 2005, 168(Part 2):267-306. 

16. Rothman KJ, Greenland S, Lash TL: Modern Epidemiology Third Edition.  

Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008. 

17. Lunn DJ, Thomas A, Best N, Spiegelhalter D: WinBUGS -- a Bayesian modelling 

framework: concepts, structure, and extensibility. Stat Comput 2000, 10:325-

337. 

18. Bayesian Output Analysis Program (BOA) Version 1.1 User’s Manual 2005 

[www.public-health.uiowa.edu/boa/BOA.pdf]



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

33 

 

19. Nesi F, Leo E, Biancari F, Bartolucci R, Rainio P, Satta J, Rabitti G, Juvonen T: 

Preoperative risk stratification in patients undergoing elective infrarenal 

aortic aneurysm surgery: evaluation of five risk scoring methods.  Eur J Vasc 

Endovasc Surg  2004, 28:52-58. 

20. The R Project for Statistical Computing  [http://www.r-project.org/] 

21. Deeks JJ, Dinnes J, D‟Amico R, Sowden AJ, Sakarovitch C, Song F, Petticrew M, 

Altman DG:  Evaluating non-randomised intervention studies.  Health Technol 

Assess 2003, 7(27):1-173. 

22. Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR: How vague is vague? 

A simulation study of the impact of the use of vague prior distributions in 

MCMC using WinBUGS.  Stat Med 2005, 24:2401-2428.



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

34 

Figure 1 - Estimated overall (μ) and study type (θ1, θ2) odds ratios from Bayesian 

hierarchical models  

Perioperative mortality in studies of EVAR and OSR for the treatment of abdominal 

aortic aneurysms (four randomised controlled trials and 40 non-randomised studies) 

Odds Ratio       
(95% CrI) 

0.32 (0.13,0.76) 

                                 
0.57 (0.41,0.82) 

                                                                  
0.49 (0.21,0.98) 

0.43 (0.19,0.75) 

0.54 (0.40,0.76) 

                                
0.37 (0.17,0.77) 

0.35 (0.17,0.63) 

0.39 (0.25,0.61) 

                                
0.60 (0.28,1.20) 

0.57 (0.27,1.03) 

0.62 (0.44,0.87) 

                                 
0.43 (0.18,0.89) 

0.44 (0.20,0.76) 

0.54 (0.40,0.76) 

                                
0.35 (0.16,0.76) 
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0.43 (0.19,0.75) 

0.54 (0.40,0.76) 
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Table 1.  Covariate Data: Average Imbalance between Study Arms 

Study Type 

Base Case 

3 Covariates
a 

(k=4 randomised and 40 

non-randomised) 

Imputed data 

5 Covariates
b 

(k=4 randomised and 75 

non-randomised) 

 

Non-randomised 
Average Difference  

(EVAR-OSR) 

Average Difference  

(EVAR-OSR) 

Male (proportion) 0.09 0.10 

Age (years) 2.40 2.53 

Cardiac disease (proportion) 0.12 0.14 

Pulmonary disease 

(proportion) 

not considered as missing in 

43% of the 75 non-

randomised studies 0.10 

Renal disease (proportion) 

not considered as missing in 

54% of the 75 non-

randomised studies 0.05 

Randomised 
  

Male (proportion) 0.05 0.05 

Age (years) 0.82 0.82 

Cardiac disease (proportion) 0.05 0.05 

Pulmonary disease 

(proportion) 

not considered as missing in 

25% of the 4 randomised 

studies 0.13 

Renal disease (proportion) 

not considered as missing in 

50% of the 4 randomised 

studies 0.07 

a.male, age, cardiac disease, b.male, age, cardiac disease, pulmonary disease, renal disease 
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Table 2.  Adjustment for Differences in Patient Characteristics between Study 

Arms: Sensitivity to Prior Distributions 

 

  Type of Prior 

 

Dataset Posterior 

Estimate 
Median OR (95% 

credible interval) 

Base Case 

Analysis: 

“Reasonably 

Vague” 

(Grines) 

Sensitivity 

Analysis:     

“Fairly 

Unrestrictive” 

(Prevost) 

Sensitivity 

Analysis:  

“Vaguest”             

Base Case 

3 Covariates
a
 

(k=44) 

Overall (μ) 

 

Randomised (θ1) 

 

Non-

Randomised (θ2) 

0.37 (0.17,0.77) 

 

0.35 (0.17,0.63) 

 

0.39 (0.25,0.61) 

0.37 (0.23,0.60) 

 

0.36 (0.21,0.59) 

 

0.38 (0.25,0.57) 

0.37 (0.18,1.25) 

 

0.34 (0.13,0.74) 

 

0.40 (0.23,0.68) 

Imputed 

5 Covariates
b
 

(k=79) 

 

Overall (μ) 

 

Randomised (θ1) 

 

Non-

Randomised (θ2) 

 

0.45 (0.20,0.95) 

 

0.42 (0.18,0.78) 

 

0.49 (0.33,0.72) 

 

0.47 (0.28,0.74) 

 

0.46 (0.25,0.73) 

 

0.49 (0.33,0.71) 

 

0.44 (0.13,1.31) 

 

0.39 (0.14,0.87) 

 

0.49 (0.32,0.74) 

a.male, age, cardiac disease, b.male, age, cardiac disease, pulmonary disease, renal disease 
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Appendix to Chapter 2: WinBUGS Code 

#Model 

model{ 

for (j in 1:k){ 

#Likelihood for within-type model 

rOSR[j] ~ dbin(pOSR[j],nOSR[j])     

rEVAR[j] ~ dbin(pEVAR[j],nEVAR[j])    

logit(pEVAR[j]) <- gamma[j] + psi[j]  

logit(pOSR[j]) <- gamma[j]  

gamma[j] ~ dnorm(0,0.001) 

#Covariate Adjustment  

psi[j] <- theta[type[j]] + alpha1*(cadEVAR[j]-cadOSR[j]) + alpha2*(maleEVAR[j]-maleOSR[j]) + alpha3* 

(ageEVAR[j]-ageOSR[j]) + (sigma[type[j]]*z[j]) #Differences between study arms 

psi[j] <- theta[type[j]] + alpha1*(cad[j]-cad.bar) + alpha2*(male[j]-male.bar) + alpha3* (age[j]-age.bar) + 

(sigma[type[j]]*z[j])     #Aggregate study values 

z[j] ~ dnorm(0,1)} 

#Likelihood for between-type model 

for (i in 1:2){ 

theta[i] <- mu + (tau*epsilon[i])  

#Prior for base case 

sigma[i] ~ dnorm(0,4)I(0,)    #Reasonably vague 

#Priors for sensitivity analysis 

sigma[i] ~ dnorm(0,8)I(0,)    #Fairly unrestrictive 

sigma[1] ~ dnorm(0,1)I(0,)   #Vaguest 

sigma[2] ~ dunif(0,10) 

epsilon[i] ~ dnorm(0,1) 

OR.type[i] <- exp(theta[i])} 

#Prior constraint 

for (i in 1:1){ 

low.epsilon[1] <- min(epsilon[2],-epsilon[2]) 

up.epsilon[1] <- max(epsilon[2],-epsilon[2]) 

epsilon[1] ~ dnorm(0,1)I(low.epsilon[1],up.epsilon[1])} 

for (i in 2:2){ 

low.epsilon[2] <- max(epsilon[1],-epsilon[1]) 

mod.epsilon2 ~ dnorm(0,1)I(low.epsilon[2],) 

sign ~ dbern(0.5) 

epsilon[2] <- (mod.epsilon2*sign) - (mod.epsilon2*(1-sign))} 

alpha1 ~ dnorm(0,0.001) 

alpha2 ~ dnorm(0,0.001) 

alpha3 ~ dnorm(0,0.001) 

cad.bar <- mean(cad[]) 

age.bar <- mean(age[]) 

male.bar <- mean(male[]) 

mu ~ dnorm(0,0.1) 

#Informative prior 

mu ~ dnorm(-0.5619,1.2226) 

#Prior for base case 

tau ~ dnorm(0,4)I(0,)    #Reasonably vague 

#Priors for sensitivity analysis 

tau ~ dnorm(0,30)I(0,)    #Fairly unrestrictive 

tau ~ dnorm(0,1)I(0,)    #Vaguest 

OR.overall <- exp(mu)} 
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Abstract  

 

Background: Bayesian hierarchical models have been proposed to combine evidence 

from different types of study designs.  However, when combining evidence from 

randomised and non-randomised controlled studies, imbalances in patient characteristics 

between study arms may bias the results.  The objective of this study was to assess the 

performance of a proposed Bayesian approach to adjust for imbalances in patient level 

covariates when combining evidence from both types of study designs.   

Methodology/Principal Findings:  Simulation techniques, in which the truth is known, 

were used to generate sets of data for randomised and non-randomised studies.  Covariate 

imbalances between study arms were introduced in the non-randomised studies.  The 

performance of the Bayesian hierarchical model adjusted for imbalances was assessed in 

terms of bias.  The data were also modelled using three other Bayesian approaches for 

synthesising evidence from randomised and non-randomised studies. The simulations 

considered six scenarios aimed at assessing the sensitivity of the results to changes in the 

impact of the imbalances and the relative number and size of studies of each type.  For all 

six scenarios considered, the Bayesian hierarchical model adjusted for differences within 

studies gave results that were unbiased and closest to the true value compared to the other 

models. 

Conclusions/Significance: Where informed health care decision making requires the 

synthesis of evidence from randomised and non-randomised study designs, the proposed 

hierarchical Bayesian method adjusted for differences in patient characteristics between 
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study arms may facilitate the optimal use of all available evidence leading to unbiased 

results compared to unadjusted analyses. 
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Introduction 

 

Evidence of the effects of interventions is a critical component of health care decision 

making as it contributes to the comparison of alternative interventions in terms of their 

relative costs and effects.  Such comparisons form the basis of decisions regarding the 

economically efficient allocation of scarce resources.  An all available evidence approach 

to informing these decisions may require the synthesis of evidence from different types of 

study designs (e.g., randomised controlled trials (RCTs) and comparative non-

randomised or observational studies).  Recently, Bayesian hierarchical models have been 

proposed to combine evidence from different types of study designs such as randomised 

and non-randomised studies [1,2].   

 

Due to their inherent design, RCTs are more likely to be balanced in terms of patient 

characteristics between study arms than non-randomised studies, but they are subject to 

strict inclusion and exclusion criteria which may limit their generalisability.  Despite the 

greater generalisability associated with non-randomised or observational studies, the 

increased likelihood of imbalances among the study arms compared to RCTs suggests the 

results may be more subject to the potential confounding effects of extraneous variables.  

Although other sources of bias, both internal (e.g., performance, attrition) and external 

(e.g., population, intervention) [3], may exist, it is the increased likelihood of imbalances 

among the non-randomised studies that constitutes the principal difference between 
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randomised and non-randomised studies [4].  When these imbalances exist in factors that 

are also related to the outcome, bias may be introduced.   

 

In order to address the problem of bias due to imbalances between study arms in non-

randomised studies, we proposed [5] an extension to the Bayesian three-level hierarchical 

model, initially developed by Prevost et al. [1], and applied it to a case study. The 

proposed approach involved adjusting study estimates for potential imbalances using 

differences in patient characteristics between study arms.  Results from the case study 

indicated a shift in the estimates for the model adjusted for differences towards the 

estimate for the randomised studies alone [5].  While this shift lends credence to the 

proposed model‟s ability to adjust for imbalances, these results pertain only to a single 

applied example.  

 

Given the importance of using all available evidence for decision making and the 

increased use of Bayesian hierarchical models to combine evidence from different study 

types [6,7], the objective of this paper was to assess the performance of the proposed 

Bayesian approach to synthesise evidence from randomised and non-randomised studies 

and adjust for imbalances in patient characteristics within studies.  To meet the study 

objective, we conducted a simulation study to generate sets of randomised and non-

randomised studies in which bias that could be explained by covariate imbalances was 

introduced in the non-randomised studies.  The data were also modelled using three other 
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Bayesian approaches: 1) results unadjusted for potential imbalances [1], 2) results 

adjusted for aggregate study values (e.g., mean age) [1] and 3) downweighting the 

potentially biased non-randomised studies [2].  The sensitivity of the results to changes in 

the impact of the imbalances and the relative number and size of studies of each type was 

also assessed.   

 

Methods 

The following presents the four models being compared, the scenarios considered, and 

the methods used to conduct the simulation study.  

2.1 Bayesian methods to combine evidence from randomised and non-randomised 

studies 

2.1.1 Unadjusted for potential imbalances (model I) 

The first model presented is the Bayesian three-level hierarchical model unadjusted for 

potential imbalances.  We undertook this analysis using a binomial model in which the 

odds of the event were calculated for each study and study arm level information was 

incorporated into the model.  We assumed that for each study type (indexed by i) there 

were ki studies (indexed by j), which allows for a different number of studies for each 

study type (i.e., randomised and non-randomised). 
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The model can be written as follows: 

 

  rCij ~ Binomial(pCij, nCij)  and  rTij ~ Binomial(pTij, nTij)      (eq. 1) 

 

  log odds(pCij) = γij  and  log odds(pTij) = γij + ψij                           (eq. 2) 

  2

ij i iψ ~ Normal(θ , σ )                                                                         (eq. 3) 

  2

iθ ~ Normal(μ, τ )                                                                                              (eq. 4) 

(i = 1 or 2 for the 2 study types; j = 1,...,ki studies). 

 

At the first level of the model, represented by equations one and two, it was assumed that 

the number of events in each arm in the jth study of type i (i.e., rCij and rTij for control (C) 

and treatment (T), respectively) followed a binomial distribution defined by the 

proportion of patients who experienced the event in each arm in the jth study of type i 

(i.e., pCij and pTij) and the total number of patients in each arm in the jth study of type i 

(i.e., nCij and nTij).  Equation two described the log odds for the event in the control (γij) 

and treatment (γij + ψij) arms of each of the ki studies.     

 

 

The second level of the model, represented by equation three, assumed that the log odds 

ratio comparing treatment and control, ψij, followed a normal distribution with a mean of 

θi (i.e., the overall intervention effect in the ith type of studies).  The within-study-type 

variability for studies of type i was represented by σi
2
.  At the third level of the model, 
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represented by equation four, the study-type effects were distributed about an overall 

population effect, μ, with τ
2
 representing the between-study-type variability.    

 

Prior distributions for the unknown model parameters were intended to be vague.  

Normal priors with mean zero and variance 0.26 truncated to be positive, were specified 

for the random-effects standard deviations (σi,τ).  These priors support equality between 

studies while discounting substantial heterogeneity and represent what may be considered 

reasonable priors in many situations [8].  In keeping with Prevost et al. [1], Normal priors 

with mean zero and variance ten were used for the overall population effect (μ).   Vague 

Normal priors with mean zero and variance 1000 were assigned to the log odds (γij‟s). 

 

2.1.2 Adjustment using study arm differences (model II) 

The following presents the extension of the Bayesian three-level hierarchical model (I) 

proposed by McCarron et al. [5].  The model was specified as before except equation 

three was replaced by equation five. 

 

ij ij

M
2

ij i m mT mC i

m 1

~Normal( (x x ), )                                      (eq. 5) 

               (i = 1 or 2 for the 2 study types; j = 1,...,ki studies; m = 1,..,M confounders). 

 

As shown in equation five, this model assumed that the log odds ratio, ψij, followed a 

normal distribution with a mean which was the sum of θi (i.e., the overall intervention 
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effect in the ith type of studies) and a study specific bias adjustment,
ij ij

M

m mT mC

m 1

(x x ) , 

that was proportional to the relative differences between the study arms in each of the 

studies.  In this expression, xmTij and xmCij were the values of the m-th potential 

confounder in each of the study arms (i.e., treatment and control) in the jth study of type i 

while αm represented the coefficient for the m-th potential confounding variable across all 

the studies.  This variable described the impact of the imbalances on the study specific 

log odds ratios.   

 

The priors for the unknown parameters were the same as for model I with the addition of 

a vague Normal prior with mean zero and variance 1000 for the coefficient (αm) for the 

m-th potential confounder. 

 

2.1.3 Adjustment using aggregate study values (model III) 

This approach was initially proposed by Prevost et al. [1] to try to explain between study 

heterogeneity.  The model was specified in the same way as in section 2.1.1, except 

equation three was replaced by equation six:   

2

ij i m mij iψ ~ Normal(θ + (α × x ), σ )     (eq. 6) 

 

(i = 1 or 2 for the 2 study types; j = 1,...,ki studies; m = 1,..,M confounders). 

 

In this approach, xmij represented the value of the m-th potential confounder aggregated 

across study arms (i.e., treatment and control) in the jth study of type i.  This is in contrast 
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to the previous approach which adjusted using the difference in the m-th potential 

confounder between the study arms.  The prior distributions were the same as in the 

previous models. 

 

2.1.4 Downweighting using an informative prior (model IV) 

The informative prior approach used by Sutton and Abrams [2] included the evidence 

from the non-randomised studies via the prior for the treatment effect and combined this 

with a likelihood based only on the data from the randomised studies.   

 

As in Sutton and Abrams [2], we centred the informative prior for the population mean 

(μ) on the non-randomised pooled estimate but used a variance four times larger than that 

of the RCTs.  Such a prior reflects scepticism regarding the non-randomised evidence and 

would be appropriate in situations where a researcher believes that although the non-

randomised evidence provides some information, concern that serious biases may exist 

(e.g., as a result of imbalances in study arms) means that it should be treated with caution.  

The pooled estimate for the non-randomised studies was generated using a two-level 

Bayesian hierarchical model (simple Bayesian random-effects model).  We chose to use a 

variance that was four times as large as that for the RCTs, because this was the variance 

inflation factor used by Sutton and Abrams [2].  Other choices are possible, however.  

The more the variance from the non-randomised studies is inflated, the more their 

evidence is downweighted.  
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2.2 Assessment framework 

The effect of these models is to produce a weighted average of the evidence from the 

randomised and non-randomised studies, where the weights are determined either 

implicitly, as in the Bayesian three-level hierarchical models (I,II and III), or explicitly, 

as in the informative prior approach (model IV) [9].  The results for each of the four 

models were simulated under different scenarios which varied as a function of the impact 

of the imbalances in the non-randomised studies, and the relative number and size of 

studies of each type.  These factors were selected as they were deemed to be the most 

important in terms of calculating a weighted average of the evidence from the 

randomised and non-randomised studies.  For the purpose of this simulation study, 

imbalance in a single continuous covariate (i.e., age) was considered, but the analysis 

could be extended to adjust for other covariates [5].  Imbalances in age between study 

arms were only assumed for the non-randomised studies, in keeping with the general 

assumption that due to their design RCTs are more likely to be balanced.   

 

Table 1 presents the parameters used in the six scenarios considered.  Two different 

values were investigated for the impact of the imbalances in the non-randomised studies 

(αm).  Log scale values of 0.10 and 0.50 were chosen as they represent lower and upper 

estimates of what may appear reasonable in terms of variation in the between-study log 

odds ratios [8].  A magnitude of 0.10 would indicate that there is not much systematic 

variation in the study specific log odds ratios while a magnitude of 0.50 would result in 
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much more systematic variation.  This means that, all else being equal, every one unit 

increase in the difference in age between study arms would result in an increase in the 

study specific log odds ratio of 0.10 or 0.50.  For example, the impact of going from no 

imbalances to a one year difference in mean age between study arms would increase the 

study specific log odds ratio from a true value of -0.20 to values of -0.10 and 0.30 

respectively. 

 

The impact of the precision and quantity of information contained in each of the two 

types of studies (i.e., randomised and non-randomised) was examined by comparing 

study sizes of 100 to 500 patients per arm and 500 to 1000 patients per arm for the 

randomised and non-randomised studies respectively and four randomised studies with 

40 non-randomised studies. These values reflect the fact that non-randomised studies tend 

to be larger than randomised studies [2].  Also, the number of studies in a meta-analysis 

of RCTs in medicine tends to be small and it is common to see meta-analysis performed 

on five or fewer studies [10].  These values were also based on the systematic literature 

review comparing endovascular aneurysm repair (EVAR) and open surgical repair (OSR) 

[11] that informed the results of the previous case study [5].  For the six scenarios 

presented in Table 1, it was assumed that the true log odds ratio was -0.20, which 

corresponds roughly to an odds ratio of 0.82.  Although this represented a much more 

modest treatment effect than was observed for 30-day mortality in either the randomised 
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or non-randomised studies in the EVAR case study [5], this odds ratio may better reflect 

the magnitude of relative treatment effects seen in practice for other conditions.      

 

2.3 Simulation study 

As the truth is known, simulation studies allow one to assess model performance relative 

to this known truth [12].  This is in contrast to a case study, like the one in which we 

initially proposed model II, where the truth is not known.  In order to demonstrate 

empirically whether model II is able to adjust for imbalances we have conducted a 

simulation study.  The simulation study was concerned with synthesising evidence from 

randomised and non-randomised studies and adjusting for bias due to imbalances in the 

non-randomised studies, consequently we have simulated data under a model that 

produces imbalances in the non-randomised studies (see supporting Figure S1).   

 

Each simulated data set consisted of a number of hypothetical randomised (i.e., four) and 

non-randomised studies (i.e., four or 40) comparing treatment and control groups.  The 

outcome was defined as a dichotomous variable indicating the occurrence or not of the 

event of interest (i.e., death).  Each data set for each of the two study types was generated 

by the following model:
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            rCij ~ Binomial(pCij, nCij)  and  rTij ~ Binomial(pTij, nTij)             (eq. 7) 

log odds(pCij) = γij  and  log odds(pTij) = γij + ψij   (eq. 8)  

ψij = θi + αage(xageTij − xageCij)       (eq. 9) 

 

The number of subjects in the control (nCij) and treatment (nTij) groups in the jth study of 

type i were assumed to be equal and were sampled from a uniform distribution of either 

100 to 500 or 500 to 1000 patients.  Based on the data for perioperative mortality from 

the previous systematic literature review [11] the probability for the event (i.e., death) in 

the control group (pCij) in each of the ki studies was drawn from a beta distribution with 

mean 0.04 and variance 0.001.  For scenarios 1- 6, the true log-odds ratio (θi) was -0.20 

for both the randomised and non-randomised studies.  A possible explanation for the 

effect of treatment on mortality in our simulation study was assumed to be differences in 

age between study arms (xageTij - xageCij), as shown in equation nine.  Age is related to 

mortality and αage addresses the relationship between differences in age and mortality.  

The variables xageTij and xageCij are both sampled from uniform distributions based on the 

age distribution observed in the previous systematic literature review (i.e., xageTij ~ 

uniform(75,90), xageCij ~ uniform(70,85)) [11].  As randomisation will likely minimize 

differences between study groups, xageTij and xageCij were assumed to be equal in the 

randomised studies.  Simulated values were generated for the number of events and 

subjects as well as for the age in the control and treatment groups given the impact of the 
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imbalances (αage), the number of randomised and non-randomised studies, and the study 

size being considered.   

 

In order to justify the number of simulations (i.e., 100), we calculated the difference in 

mean treatment effects for each of the models (I,III,IV) relative to the difference model 

(II) and compared these to the standard errors of the differences in treatment effects.  This 

was repeated across 100 simulations for each of two seeds (starting values for the 

simulation).  The results across both seeds suggested that 100 simulations were sufficient 

to average out the sampling variation.  For scenario 1, for example, the differences in 

mean treatment effects relative to model II were 0.27 for model I, 0.28 for model III and 

0.10 for model IV.  The standard errors of the differences were 0.02, 0.03 and 0.02 

respectively for the three comparisons.  For the second seed the mean differences were 

0.27, 0.28, and 0.09 respectively and the standard errors were approximately 0.02 across 

all three comparisons, illustrating that sampling variation was small compared to the size 

of the differences that were detected.          

 

Markov chain Monte Carlo (MCMC) simulation using the Gibbs sampling technique was 

used to assess the models.  The Brooks, Gelman & Rubin, Geweke and Heidelberger and 

Welch diagnostics available in the package Bayesian Output Analysis [13], performed on 

two chains, were used to assess convergence.  To provide a sense of the convergence 

diagnostics we give the Brooks, Gelman & Rubin diagnostics for the overall log odds 
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ratio (μ) for each of the models in scenario 4: the estimated values for the ratio of total 

variability to within-chain variability were approximately 1.01, 1, 1.01, and 1for models I 

through IV respectively, suggesting little between-chain variability.  Based on these and 

the results from the other diagnostics, we decided to use a burn-in of 50 000 iterations for 

every model for each simulated data set except for the unadjusted and aggregate models 

in scenarios 2 and 5, which required a longer burn-in of 100 000 iterations to converge.  

After discarding the burn-in iterations, we sampled from a further 10 000 iterations with a 

thin rate of 20, for each of the two chains, such that summary statistics for the parameter 

values were based on thinned samples of 1000 iterations.   

 

The simulated data sets were generated in R 2.9.2 [14].  The Bayesian hierarchical 

models (I,II,III,IV) were fitted to each generated data set in WinBUGS 1.4 [15] using the 

R 2.9.2 package R2WinBUGS.  To validate the simulation model the mean value for αage 

was calculated across all 100 simulations for model II and compared to the true value.  

The results for the six scenarios were 0.10, 0.10, 0.10, 0.52, 0.51, and 0.51 respectively.  

These correspond to true values of 0.10 for scenarios 1-3 and 0.50 for scenarios 4-6.   

 

2.4 Criteria for assessing model performance 

The median value of the overall log odds ratio (μ) was calculated for each simulated data 

set.  The four different models for the six scenarios were then evaluated relative to the 
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true value using the criterion of bias under repeated sampling.  The estimated bias in the 

log odds ratio was defined as the mean value of the median log odds ratios across the 

simulated samples minus the true value [12].  As the results may be subject to sampling 

variation, we also reported the bias divided by its standard error, which is equal to the 

standard error of the mean of the median log odds ratios and would be expected to follow 

a standard normal distribution.  If an estimation technique is unbiased, we would expect 

the observed bias divided by its standard error (Z-statistic) to lie between -1.96 and +1.96 

ninety-five percent of the time.  Formulas for the various calculations are given in 

supporting Figure S1.     

 

Results 

Table 2 shows the point estimates for the mean of the median log odds ratios, and the 

associated standard errors of the mean median log odds ratios as well as the estimated 

bias and Z-statistics for each of the four models in the six scenarios.  As shown in this 

table, the estimates of the pooled effect size appear to be unbiased for the model adjusted 

for differences (model II) across all six scenarios.  The informative prior approach 

appears to give less biased results than the model adjusted for aggregate study values 

while bias is roughly equal for both the model adjusted for aggregate values and the 

unadjusted model.  An increase in the study arm size for the non-randomised studies 

relative to the randomised studies tends to increase the precision of the estimates for all 

of the models.  However, combining evidence from four randomised studies and 40 non-
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randomised studies seems to increase the precision of the estimates the most compared to 

the other scenarios.  In general, as might be expected, there is more variability in the 

model estimates when the assumed value of the impact of imbalances in age across all of 

the studies (αage) is greater.  The most extreme cases of bias appear to occur with the 

aggregate and unadjusted models in scenario five, when the value of αage is 0.50 and there 

are four randomised and 40 non-randomised studies, and scenario two, when αage is 0.10 

and there are 40 non-randomised studies.  However, as shown in table 2, the extent of the 

bias is more pronounced in scenario five compared to scenario two, where the magnitude 

of the impact of the imbalances is relatively smaller.   

 

Figure 1 presents the point estimates and the confidence intervals for the overall log odds 

ratio (μ) for each of the models in the six scenarios.  Comparing the point estimates to a 

log odds ratio of zero (i.e., no effect) indicates that among the aggregate and unadjusted 

models and even the informative prior, for scenarios 4-6, the impact of the imbalances is 

such that it alters the estimate as to whether or not the treatment is effective, thus 

deviating from the truth.  

 

Discussion 

This simulation study demonstrated that when bias in the non-randomised studies can be 

explained by covariate imbalances between study arms, the proposed Bayesian three-
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level hierarchical model adjusted for differences in patient characteristics within studies 

can handle this problem.  Using simulation techniques, wherein the truth is known, we 

have been able to produce empirical evidence that this is the case.  Failure to take into 

account these imbalances could bias the results.   

 

Specifically, six scenarios incorporating different aspects of the impact of the imbalances 

and the relative numbers and sizes of each study type were considered.  The results from 

the model adjusted for differences in patient characteristics within studies were, in every 

scenario, unbiased and closest to the true value compared to the results from the other 

models.  This trend was robust to changes in the magnitude of the impact of the 

imbalances across studies as well as to both the relative number and size of studies being 

combined.  Results also showed that none of the previously proposed Bayesian 

approaches could handle the issue of bias due to covariate imbalances.  In certain 

instances, the bias observed among the other models was such that it changed the 

treatment estimate from one of benefit to one of harm.  This could have implications in 

terms of health care decision making.              

 

A practical limitation of the study concerns the number of simulations. There are no exact 

standards for the number of simulations necessary to average out sampling variation. We 

had initially considered performing 1000 simulations, but given the breadth of the study 

in terms of the number of scenarios considered and the associated run times, which 
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ranged from five to 40 hours (1.83 GHz processor) for the 100 simulations, depending on 

the scenario, we determined that this would not be feasible.  All of the parameters in each 

of the models were sampled and none were marginalised.  This was done to ensure that 

the appropriate probabilistic dependence between the unknown parameters was 

propagated through the model.  This could be particularly important when propagating 

inferences which are likely to be strongly correlated.  For example, the current study 

considers both baseline levels and treatment differences estimated from the same studies 

[8].  In addition, the study is based on the assumption that there is also some association 

with imbalances in patient characteristics.  As such it was important to sample all 

parameters in our simulation study.  In other cases, perhaps, some parameters could be 

marginalised which could potentially improve the speed of the algorithm.  Concerns 

regarding the number of simulations conducted were mitigated by comparing the effect 

sizes relative to the standard errors for each of two data sets.  The results of these 

comparisons suggested we could be reasonably confident that the number of simulations 

was adequate.   

 

Another potential limitation is that we assumed that the only source of variation between 

study estimates was due to imbalances between treatment arms in a single patient 

characteristic.  As such, the underlying study type effects in both the randomised and 

non-randomised studies were assumed to be the same, which may not always be true.  In 

practice, there may be other unexplained reasons why the estimates may differ.  For 
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example, patients enrolled in RCTs may be comparatively younger than those enrolled in 

non-randomised studies.  The result of incorporating different values for the study type 

treatment effects is that there is no longer one true underlying effect, as there was in the 

six scenarios we considered.  As the objective of the simulation study was to evaluate the 

performance of the proposed model in terms of adjusting for bias due to covariate 

imbalances, we did not address this issue in our study.  Such an analysis would likely 

require a separate simulation study in which each scenario considered would involve its 

own base case assuming no imbalances.  This would allow one to distinguish between the 

borrowing of strength across study types that is part of Bayesian hierarchical modelling 

and the appropriate adjustment for imbalances.  This is left for future research.  Future 

research could also assess the practical implications of these results within a decision 

analytic model.  Another potential area of research could be the choice of prior 

distribution for the random-effects standard deviations (σi,τ).  In contrast to the half-

normal priors used in the current analysis, other suggestions include an inverse gamma 

distribution such as 1/σi
2

 ~ Gamma[0.001,0.001].  Though, because such a distribution 

gives a high weight near zero for the standard deviation, the true variability may be 

underestimated [8,10].  As the current analysis relies on the existence of within-study-

type and between-study-type variability, such a prior could be problematic, especially in 

those scenarios with only four non-randomised studies.   
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Despite potential limitations, we believe the results of this simulation study demonstrate 

the ability of the Bayesian three-level hierarchical model adjusted for differences to 

account for imbalances in patient characteristics within non-randomised studies that 

could bias the results.  Such an approach does, however, rely on authors reporting the 

main characteristics of their study populations.  This is important as the unadjusted model 

performed poorly in the presence of imbalances between study arms, as shown in our 

simulations.  Unfortunately, few studies report all relevant covariates [4].  For example, 

in the initial case study, over half of the non-randomised studies were missing 

information on at least one covariate.  Based on the results of our study, and the 

performance of the proposed approach, authors should be encouraged to improve the 

reporting of covariate information as this would facilitate adjustment for future evidence 

synthesis. The performance of the informative prior approach depends on how well one 

anticipates the impact of the imbalances on the results and downweights the evidence 

accordingly.  Though the factor we used to inflate the variance and downweight the non-

randomised studies was based on Sutton and Abrams [2], this value was somewhat 

arbitrary.  In practice the selection of an appropriate discount factor would require a 

careful consideration of the relative weight and information each study type should 

contribute to the analysis.  Nonetheless, the factor of four used for model IV in the 

current study means that in calculating a weighted average of both study types, the 

randomised studies would contribute the majority of the information.  This reflects the 

existence of scepticism regarding the evidence generated by the non-randomised studies, 

but assumes there is still some value in combining these studies with the randomised 
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studies.  As has been demonstrated, by holding constant the amount by which the non-

randomised studies were downweighted, downweighting is not an automatic procedure, 

nor does it explicitly address the potential for imbalances in patient characteristics within 

individual studies.  Only one of the methods for downweighting used in the case study 

was considered in this analysis.  The number of failures that occurred when simulating 

values for the prior constraint method [1] suggested that it could not be used reliably in 

the situations being investigated.  However, the results of the case study suggest it is 

unlikely that this method would be able to handle the covariate imbalances, especially in 

those scenarios where the relative number or size of the non-randomised studies was 

greater compared to the randomised studies.  Adjustment using aggregate study values 

attempts to explain heterogeneity across studies by adjusting for variation in study level 

characteristics.  However, the absence of variation in mean age across studies does not 

preclude the presence of imbalances in age within studies.  This will not be adjusted for 

using aggregate study values.   

 

Based on the six scenarios considered, covariate adjustment using differences in patient 

characteristics between study arms (i.e., model II) provides a way of adjusting for 

imbalances that is robust to changes in the magnitude of the impact of the imbalances and 

the relative number and size of the studies of each type (i.e., randomised or non-

randomised studies).  This is important as this new methodology provides a way to 

synthesise randomised and non-randomised studies by adjusting for bias in non-
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randomised studies that is due to imbalances between treatment arms.  Where informed 

health care decision making requires the synthesis of evidence from randomised and non-

randomised study designs, such Bayesian hierarchical models adjusting for covariate 

imbalances could facilitate the optimal use of all available evidence. 
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Figure 1.  Overall log odds ratios for Bayesian hierarchical models scenarios 1-6 

The overall log odds ratios (μ) and associated 95% confidence intervals (CIs) from the 

simulations are presented for scenarios 1-6.  A solid line intersects the x axis at the true 

overall log odds ratio (i.e., -0.20).  A dashed line intersects the x axis at no effect (i.e., 0).   
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Table 1.  Simulation parameters for scenarios 1-6 

 Criteria 

Scenario Impact of 

imbalances 

in non-

randomised 

studies
a
 

Number of 

randomised 

studies 

Number of 

non-

randomised 

studies  

Study arm 

size 

randomised 

studies
b
 

Study arm 

size non-

randomised 

studies
b
 

True 

overall log 

odds ratio 

1 0.10 4 4 100-500 100-500 -0.20 

2 0.10 4 40 100-500 100-500 -0.20 

3 0.10 4 4 100-500 500-1000 -0.20 

4 0.50 4 4 100-500 100-500 -0.20 

5 0.50 4 40 100-500 100-500 -0.20 

6 0.50 4 4 100-500 500-1000 -0.20 

a
αage measured on the log scale , 

b
sampled from a uniform distribution 
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Table 2: Simulation results comparing Bayesian hierarchical models for scenarios 1-6 

Scenario Model Mean median log 

odds ratio 

Standard error mean 

median log odds ratio 

Bias Z-statistic 

1 

Unadjusted (I) 
0.06253 0.02268 0.26253 11.57665 

Adjusted for differences (II) -0.20836 0.02374 -0.00836 -0.35207 

Adjusted for aggregate 

values (III) 0.07407 0.02622 0.27407 10.45383 

Informative prior (IV) -0.11156 0.02437 0.08844 3.62828 

2 

Unadjusted (I) 
0.18750 0.01330 0.38750 29.12960 

Adjusted for differences (II) 
-0.20216 0.01010 -0.00216 -0.21398 

Adjusted for aggregate 

values (III) 0.19520 0.01355 0.39520 29.17138 

Informative prior (IV) 
-0.12240 0.02385 0.07760 3.25356 

3 

Unadjusted (I) 
0.05473 0.02079 0.25473 12.25142 

Adjusted for differences (II) 
-0.23125 0.01816 -0.03125 -1.72104 

Adjusted for aggregate 

values (III) 0.05979 0.02189 0.25979 11.86562 

Informative prior (IV) 
-0.13908 0.02235 0.06092 2.72561 

4 

Unadjusted (I) 
0.87357 0.06602 1.07357 16.26034 

Adjusted for differences (II) 
-0.22000 0.02535 -0.02000 -0.78904 

Adjusted for aggregate 

values (III) 0.98388 0.07572 1.18388 15.63405 

Informative prior (IV) 
0.85343 0.09327 1.05343 11.29504 

5 

Unadjusted (I) 
1.14790 0.03313 1.34790 40.67943 

Adjusted for differences (II) 
-0.20083 0.01146 -0.00083 -0.07268 

Adjusted for aggregate 

values (III) 1.28827 0.03734 1.48827 39.85580 

Informative prior (IV) 

0.64133 0.05340 0.84133 15.75488 

6 

Unadjusted (I) 

0.70170 0.06319 0.90170 14.27030 

Adjusted for differences (II) 

-0.19981 0.01721 0.00019 0.01117 

Adjusted for aggregate 

values (III) 0.78753 0.06303 0.98753 15.66646 

Informative prior (IV) 

0.69489 0.09509 0.89489 9.41122 
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Figure S1.  Flow chart depicting data simulation, analysis and output for scenarios 1-6 

The flow chart depicts the simulation of the data in R, the analysis of the simulated data in 

WinBUGS and the statistics used to assess the performance of the four models. 
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Non-randomised Studies 

N = 4     Number of non-randomised studies           

for scenarios 1,3,4, and 6 

N = 40 Number of non-randomised studies                                     

for scenarios 2 and 5 

nC ~ uniform(100,500)  Control group study arm size                   

for scenarios 1,2,4, and 5 

nC ~ uniform(500,1000) Control group study arm size                  

for scenarios 3 and 6 

nT = nC   Treatment group study arm size 

pC ~ beta(1,25)  Control group event probability  

rC ~ binomial(nC,pC)  Control group number of events 

λ = log(pC/(1 – pC))  Control group log odds of an event 

ageC ~ uniform(70,85) Control group mean age  

ageT ~ uniform(75,90) Treatment group mean age 

β = λ + θ + αage *(ageT – ageC)    Treatment group log odds of an         

              event         

pT = exp(β) / (1 + exp(β))  Treatment group event probability 

rT ~ binomial(nT,pT)   Treatment group number of events 

age = (ageC + ageT) / 2  Study mean age 

 

Randomised Studies 

Nr = 4     Number of randomised studies            

nCr ~ uniform(100,500)  Control group study arm size                    

nT r= nCr   Treatment group study arm size 

pCr ~ beta(1,25)  Control group event probability  

rCr ~ binomial(nC,pC) Control group number of events 

λr = log(pCr/(1 – pCr)) Control group log odds of an event 

ageCr ~ uniform(70,90) Control group mean age  

ageTr = ageCr  Treatment group mean age 

βr= λr + θ + αage *(ageTr – ageCr)   Treatment group log odds          

      of an event        

pTr = exp(βr) / (1 + exp(βr))            Treatment group event probability 

rTr ~ binomial(nTr,pTr)     Treatment group number of events 

ager = (ageCr + ageTr) / 2         Study mean age 

 

DATA SIMULATION: R 

S = 100   Number of simulations 

θ = -0.20   True log odds ratio 

αage = 0.10  Impact of imbalances in age in scenarios 1,2, and 3 

αage = 0.50  Impact of imbalances in age in scenarios 4,5, and 6 
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ANALYSIS:  WinBUGS 

N = 4     Number of non-randomised studies for scenarios 1,3,4, and 6 

N = 40 Number of non-randomised studies for scenarios 2 and 5 

Nr = 4     Number of randomised studies            

i = 1,.......,N For non-randomised studies 

j = 1,.......,Nr For randomised studies 

nCi   Control group study arm size non-randomised study i 

nTi   Treatment group study arm size non-randomised study i 

rCi   Control group number of events non-randomised study i 

rTi   Treatment group number of events non-randomised study i 

nCrj   Control group study arm size randomised study j 

nTrj   Treatment group study arm size randomised study j 

rCrj   Control group number of events randomised study j 

rTrj   Treatment group number of events randomised study j 

ageCi   Control group mean age non-randomised study i 

ageTi   Treatment group mean age non-randomised study i 

ageCrj   Control group mean age randomised study j 

ageTrj   Treatment group mean age randomised study j 

agei   Study mean age non-randomised study i 

agerj   Study mean age randomised study j 

 

 
OUTPUT 

θk = median log odds ratio for simulation k 

θbar = Mean median log odds ratio = 

1

 / 
S

k

k

S  

SD = Standard deviation = 
2

1

[1/ ( 1)] ( )
S

k bar

k

S  

SE = Standard error mean median log odds ratio = /SD S  

Bias = θbar − θ 

Z-statistic = Bias / SE 
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application of endovascular versus open surgical repair for abdominal aortic 

aneurysms in high risk patients  

 

C Elizabeth McCarron MA, MSc
1,2***

, Eleanor M Pullenayegum PhD
1,3

, Lehana Thabane 

PhD
1,3

, Ron Goeree MA
1,2

, Jean-Eric Tarride PhD
1,2

 

 

1
Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, 

Ontario, Canada 

 

2
Programs for Assessment of Technology in Health (PATH) Research Institute, St. 

Joseph‟s Healthcare Hamilton, Hamilton, Ontario, Canada 

 

3
Biostatistics Unit, St. Joseph‟s Healthcare Hamilton, Hamilton, Ontario, Canada 

 

***
Corresponding author 

 

Citation: McCarron CE, Pullenayegum EM, Thabane L, Goeree R, Tarride JE. The 

impact of using informative priors in a Bayesian cost-effectiveness analysis: an 

application of endovascular versus open surgical repair for abdominal aortic aneurysms in 

high risk patients.  Submitted October 3, 2011 to Medical Decision Making.  

All authors must transfer copyright to the Society for Medical Decision Making, 

publisher of Medical Decision Making (MDM).  Permission is usually granted to reprint 

work published in MDM for limited educational purposes and in other scholarly 

publications. 

 



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

70 

Abstract: 

 

Background: 

 

Bayesian methods have been proposed as a way of synthesising all available evidence to 

inform decision making.  However, few practical applications of the use of Bayesian 

methods for combining patient level data (i.e., trial) with additional evidence (e.g., 

literature) exist in the cost-effectiveness literature.  To address the lack of such applied 

examples, the objectives of this study were to compare Bayesian and non-Bayesian 

methods to assess the impact of incorporating additional information into a cost-

effectiveness analysis. 

  

Methods:  

 

Patient level data from a previously published non-randomised study were first analysed 

using traditional bootstrap techniques and then compared using bivariate Normal 

Bayesian models with vague and informative priors. Two different types of informative 

priors were considered to reflect different valuations of the additional evidence relative to 

the patient level data (i.e., „face value‟ and „sceptical‟).  Models were compared in terms 

of estimates for expected costs and effects and cost-effectiveness acceptability curves 

(CEACs). 
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Results: 

 

The bootstrapping and Bayesian analysis using vague priors provided similar results in 

terms of both cost and effect estimates and CEACs.  The most pronounced impact of 

incorporating the informative priors was the increase in estimated life years in the control 

arm relative to what was observed in the patient level data alone.  In our example, the 

incremental difference in life years originally observed in the patient level data was 

reduced and the CEACs shifted accordingly.   

 

Conclusion: 

 

The results of this study demonstrate the potential impact and importance of 

incorporating additional information into an analysis of patient level data.  As the results 

suggest this could alter the decision as to whether or not a treatment is cost-effective and 

should be adopted.
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1. Introduction 

 

Economic evaluations are an important tool for informing health care decision making.  

As they compare the relative costs and effects of alternative interventions, economic 

evaluations provide decision makers with information necessary to make rational 

decisions regarding the allocation of scarce resources.  Critical to this process are the 

sources of evidence from which estimates of the relative costs and effects are derived.   

 

In the case of an economic evaluation conducted alongside a clinical trial (i.e., a patient 

level analysis), cost and effect data would be determined for each patient in the study.  

These sample data could then be used to generate estimates for the mean costs and effects 

for patients under each of the treatments being compared.  As these values represent 

estimates for the true mean costs and effects, uncertainty around these sample values is 

often incorporated using the non-parametric bootstrap method [1].  The bootstrap 

propagates uncertainty using only the information contained in the data, effectively 

completely discounting all other sources of evidence external to the trial (e.g., literature).  

In contrast, in a Bayesian approach the trial data as well as any external evidence can be 

taken into account through the combination of the prior distributions (i.e., external 

evidence) and the likelihood function (i.e., the data from the trial) [2], thus allowing for a 

more comprehensive approach to the incorporation of uncertainty.  
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Despite the importance of incorporating all available evidence to inform decision making 

[3-6], a recent review [7] of sixteen trial based Bayesian cost-effectiveness studies 

reported that 50% of the studies used non-informative or vague priors only in their 

analyses.  This provides little guidance to policy makers on the potential of Bayesian 

methods to integrate all available evidence to capture the uncertainty inherent in decision 

making [7].  Non-informative or vague priors are appropriate in those situations where 

there is a genuine lack of additional (i.e., prior or new external) information.  However, in 

those situations where prior information exists, or new information becomes available 

either during the course of a trial or after its completion, failure to take this into account 

could impact the results.  Through the use of the prior distribution the Bayesian approach 

provides a mechanism by which this additional information can be incorporated into a 

trial based cost-effectiveness analysis.   At the very least it would be useful to have a 

sense of what impact this external evidence might have on the trial results.   

 

Six of the sixteen studies in the review examined the impact the information contained in 

the priors had on the cost-effectiveness results [8-13].  The sources used to inform the 

prior distributions included trials, Medicare claims data, and informal reasoning.  Of the 

six studies, three reported [8-10] that the more informative priors led to higher 

probabilities of cost-effectiveness for the respective interventions and one study [11] 

reported that the more informative priors were associated with lower probabilities of cost-

effectiveness.  Two studies [12,13] indicated that the results were insensitive to changes 
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in the prior distributions.  In addition to the potential impact on the results of using 

informative priors based on external evidence, there are also issues to consider 

concerning the relative value of this information compared to the patient level data from 

the trial.  For instance, one study in the review examined the potential impact of 

discounting the additional information. This study [8] compared three different prior 

distributions: 1) a non-informative prior disregarding all information from an additional 

trial, 2) a prior that used 50% of the information from the additional trial and 3) a prior 

using all of the information from the additional trial. The authors concluded that the 

different prior distributions, and the strength of information contained therein, may lead 

to different decisions.  For example, given a willingness to pay of 30,000 Netherland 

guilders per event-free survivor, the probability of cost-effectiveness was 0.65 for the 

non-informative prior, 0.80 for the prior based on 50% of the information from the first 

trial, and 0.90 for the prior based on all of the information from the first trial.    

 

These results speak to the potential impact on decision making that additional evidence 

could have when combined with a patient level economic evaluation.  To the best of our 

knowledge, no other study has attempted to evaluate the impact on the cost-effectiveness 

results of using different methods to incorporate the external evidence. To generalise 

these findings, the objective of the current analysis is to compare the results of a 

traditional frequentist analysis (i.e., non-parametric bootstrap) that relies only on the 

information contained in the patient level data to a Bayesian approach incorporating 



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

75 

evidence from both the patient level data as well as other sources (i.e., published trials).  

Contrary to the studies from the review which tended to rely on a single source of 

information (e.g., a trial) to inform their priors, our analyses combined the results of 

published studies, available at the time of the original analysis, in a meta-analysis.  The 

paper also makes use of two different types of informative prior distributions to reflect 

different potential valuations of the additional information (i.e., „face value‟ and 

„sceptical‟).   These prior distributions are then used to combine the additional 

information with the patient level data from a published trial based economic evaluation 

comparing endovascular aneurysm repair (EVAR) with open surgical repair (OSR) [14].     

 

2. Case study  

 

A previous trial based economic evaluation comparing elective EVAR and OSR for the 

treatment of abdominal aortic aneurysms for patients at high surgical risk provides the 

patient level data for the current analysis [14].  These data were based on a one year non-

randomised study conducted at a single site in Ontario, Canada.  Total costs expressed in 

2006 Canadian dollars and life years at one year were reported for 140 EVAR patients 

(treatment group) and 52 OSR patients (control group).  Despite the non-randomised 

nature of the trial, the two groups were matched in terms of clinical characteristics [14].  

The estimated mean costs indicated that EVAR ($34,147) was slightly less expensive 

than OSR ($34,170) and estimated mean life years indicated EVAR (0.96) was more 

effective than OSR (0.85).  Thus, on the basis of point estimates only, EVAR dominated 



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

76 

OSR in terms of incremental cost per life year gained.  However, when sampling 

uncertainty in the trial data was incorporated using the non-parametric bootstrap, the 

differences in costs were not statistically significant at the 5% level (mean difference of   

-$24; 95% confidence interval (CI) of -$11,582 to $9,165).  EVAR was still more 

effective than OSR in terms of life years at one year (mean difference of 0.11; 95% CI of 

0.022 to 0.213).  Cost-effectiveness acceptability curves (CEACs) were used to represent 

decision uncertainty and the results indicated that at a willingness to pay of $50,000 per 

life year gained (LYG) the probability of EVAR being cost-effective was 0.76.   As part 

of this health technology assessment, the authors conducted a systematic review of 

published studies comparing EVAR and OSR [15]. However the results of the review 

were not incorporated into the analysis of the trial data.  

 

3. Methods                                                                                                                                                   

The following describes the methods being compared and introduces the sources of 

evidence used to illustrate the potential impact of incorporating informative priors into a 

Bayesian trial based economic evaluation. 

 

3.1 The bootstrapping method 

 

The bootstrapping method is non-parametric by nature, meaning it makes no assumption 

about the parametric distribution of the data.  The method re-samples with replacement 



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

77 

from the original sample data to build an empirical estimate of the sampling distribution 

for the statistic of interest [1].  Although non-parametric bootstrapping does not assume 

any particular form of distribution, the choice of statistic used implicitly does.  For 

example, if the sample mean is the statistic chosen to be monitored in the repeated 

samples, the results will be similar to those based on a parametric assumption of 

normality [16], provided the sample size is large enough.  

 

One thousand bootstrap replicates were generated to estimate the sampling distribution 

for the sample mean costs and effects for both the EVAR and OSR groups as well as for 

the incremental costs and effects of EVAR compared to OSR.  Using the percentile 

method, the limits of the 95% CIs around the sample means were calculated based on the 

25th and 976th ordered values.  

 

3.2 Bayesian analysis 

 

The basis for making inferences from a Bayesian perspective is Bayes‟ theorem.  In 

essence Bayes‟ theorem describes the combination of information from two sources, the 

likelihood and the prior [2].  The likelihood function summarizes all of the information 

that is contained in the data (e.g., a trial).  In the current analysis this refers to the patient 

level data comparing EVAR and OSR [14].  The prior distribution represents information 

that is available in addition to the data.  In this analysis the prior describes the 
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information from the literature available at the time of the original analysis [15].  In the 

absence of additional information, vague or uninformative prior distributions can be used.  

The less informative the prior, the more weight is given to the data in the analysis.  The 

priors are combined with the data to generate the posterior distribution which represents 

what is now known about the unknown quantity (e.g., mean effects) given the prior 

information and the data. The posterior is proportional to the product of the likelihood 

(i.e., the data) and the prior [2]. 

 

3.2.1 Bivariate Normal likelihood 

 

In order to allow for the potential correlation between costs and life years, the cost and 

effect data were modelled using correlated Normal distributions [16] where the 140 

EVAR and 52 OSR patients were indexed by i and the two study arms were indexed by j 

(i.e., j=1 for EVAR and 2 for OSR): 

                                                    Cij ~ Normal(μCj, σCj
2
)       (eq.1) 

                                                    Eij ~ Normal(μEij, σEj
2
)       (eq.2) 

                                                    μEij = μEj + βj (Cij − μCj)      (eq.3). 

 

Here the costs have a Normal distribution with mean μCj and standard deviation σCj 

(eq.1).  The effects have a Normal distribution with mean μEij and standard deviation σEj 

(eq.2).  As seen in equation three, the mean of Eij depends, through the parameter βj, on 

how much the cost Cij is above the mean cost μCj.  The subtraction of μCj ensures that μEj 
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remains interpretable as the overall mean effect in the jth arm of the study.  As implied by 

the regression in equation three, effects have been made a function of costs.  The model 

allows the correlation between costs and life years to be different in the two study groups, 

through the separate respective βj parameters [16].   

 

3.2.2 Vague priors 

 

In addition to the likelihood function, a Bayesian analysis requires prior distributions for 

the unknown population parameters.  In the initial analysis vague priors were used so that 

the resulting inferences essentially depended only on the data.  In that regard, we would 

expect the results from the Bayesian analysis to be similar to those from the non-

parametric bootstrap approach [16].   

3.2.3 Informative priors 

 

In order to incorporate all available evidence in the Bayesian cost-effectiveness analysis 

the results from a published systematic review [15], which identified eight non-

randomised studies conducted in high risk patients, were combined with the trial data.  

The review provided estimates of 30 day post-operative mortality for the eight studies of 

high risk patients.  Two of the high risk studies also provided estimates of longer-term 

mortality, but not at one year (i.e., mean follow-up of 26.8 months for EVAR and 27.6 

months for OSR in one study [17] and 15.6 months for EVAR and 19.8 months for OSR 



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

80 

in the other study [18]).  In addition to the body of evidence in high risk patients, the 

review also contained information from another eight non-randomised studies that were 

not restricted to high risk patients, but measured mortality at 30 days and one year post 

treatment in a mixed population of low to high risk patients.     

 

To estimate the one year mortality rate in a high risk population, the 30 day mortality 

rates observed in the eight high risk studies were combined with conditional probabilities 

measuring the probability of being dead at one year given you are alive at 30 days.  These 

conditional probabilities were calculated from two sets of evidence.  First, the two high 

risk studies reporting mortality data at around two years were used [17,18], assuming that 

the one year and two year probabilities of being dead conditional on being alive at 30 

days were similar. The second set of evidence consisted of the eight studies which 

measured mortality at 30 days and at one year in a mixed risk population [15].    

 

Table 1 presents details of the studies used for the informative priors, including the 

mortality rates at 30 days for the eight high risk studies and the mortality rates at one year 

conditional on being alive at 30 days for the two high risk and eight mixed risk studies.  

For EVAR, the mortality rates for both 30 days and conditional on being alive at 30 days 

for the studies were fairly consistent with those from the trial (i.e., 3% vs. 1% for 30 day 

mortality and 4% high risk, 5% mixed risk vs. 6% for conditional rates).  In contrast, the 

studies reported, on average, lower mortality rates for OSR compared to the trial (i.e., 6% 
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vs. 10% for 30 day mortality and 3% high risk, 3% mixed risk vs. 9% for conditional 

rates). In order to estimate the one year mortality associated with EVAR and OSR in high 

risk patients, for each of the two sets of evidence, binomial models were constructed in 

WinBUGS [19] to combine information on 30 day mortality and longer-term mortality. 

The details of these calculations are provided in the Appendix.  In the absence of 

additional information on costs, the informative priors were limited to effects.   

 

For each of the two sets of data used to estimate the one year mortality to inform the prior 

on effects (i.e., two high risk studies and eight mixed risk studies), two different types of 

informative prior distributions for μEj were examined [20].  Table 2 presents these details 

along with the vague priors.  As evidenced by the informative prior distributions given in 

Table 2 for the mean life years, the lower mortality rates for OSR reported in the 

literature translated into higher estimates for mean life years in the OSR group (i.e., 0.93) 

relative to the patient level data (i.e., 0.85).  The results for EVAR were roughly the same 

for both the informative priors (i.e., 0.95) and the patient level data (i.e., 0.96).  The first 

informative prior used in the analysis was labelled a „face value‟ prior since the 

additional information was taken at face value and no concession, beyond that due to 

between study heterogeneity, was made for any potential differences between the 

additional information and the patient level data.  This could reflect a belief that the 

evidence from the literature was of high quality and as reliable as the patient level data.  

The second informative prior was labelled „sceptical‟ since caution was being expressed 



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

82 

due to concerns about the additional information.  Specifically, there could be issues 

concerning the risk level of the patients in the studies, the time periods over which 

mortality was measured or the quality of the evidence.  In that case, the additional 

information could be explicitly given less weighting than the patient level data. To 

downweight the external evidence relative to the trial data, we used a prior variance for 

mean life years that was four times the variance of the patient level data.  This was based 

on a previous study by Sutton and Abrams [20].  To get a better understanding of the 

impact of using different inflation factors to downweight the additional information, a 

sensitivity analysis was conducted (e.g., inflating the variance by two rather than by 

four).  

   

3.2.4 Estimations  

 

All posterior distributions of quantities of interest for both the informative priors and the 

Bayesian cost-effectiveness analyses were estimated in WinBUGS [19].  For all Bayesian 

analyses an initial burn-in of 100 000 iterations was discarded to ensure convergence.  

History plots, autocorrelation plots, and various diagnostics available in the package 

Bayesian Output Analysis [21], performed on two chains, were used to assess 

convergence.  Posterior estimates were based on a subsequent sample of 100 000 

iterations.  These posterior distributions were summarized as posterior means and 95% 

credible intervals (CrIs).  In contrast to a frequentist 95% confidence interval, a Bayesian 

95% credible interval is an interval that has a 95% probability of containing the true 
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parameter value.  Other estimated quantities included the mean cost difference (ΔC) and 

the mean effect difference (ΔE) between the EVAR and OSR groups.  Representation of 

decision uncertainty was done through the use of CEACs which show the probability of 

EVAR being cost-effective at different threshold values (e.g., $50,000 per LYG).  

 

4. Results 

 

4.1 The bootstrapping method  

 

The estimated values for the mean and incremental costs and life years and their 

associated 95% CIs are presented in Table 3 for both the EVAR and OSR groups.  These 

estimates are based on the patient level data from Tarride, Blackhouse, De Rose, Novick, 

Bowen, Hopkins et al. [14] and the 1000 bootstrap replicates that were used to estimate 

sampling uncertainty.  The results closely correspond to those from the original study 

(i.e., ΔC = -$24(-$11582, $9165) and ΔE = 0.11(0.02, 0.21)) [14].      

 

4.2 Bayesian analysis  

 

4.2.1 Vague prior distributions 

 

The bivariate Normal likelihood was used to accommodate the negative correlation 

observed between total costs and life years in both the EVAR (-0.20) and OSR (-0.31) 
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groups. The posterior mean estimates and 95% CrIs obtained from the Bayesian analysis 

with vague priors were similar to the mean estimates and 95% CIs from the non-

parametric bootstrap (Table 3).  The CEACs were also quite similar (Figure 1).  These 

results reinforce the vagueness of the prior distributions and suggest that most of the 

information in the analysis is coming from the patient level data.  

  

4.2.2 Informative priors 

 

In contrast to the results for the vague prior distributions, the incorporation of informative 

priors for mean life years increased the posterior estimates for mean life years in the OSR 

group from 0.85 LYG to between 0.87 LYG and 0.89 LYG depending on the type of 

prior used (e.g., „face value‟).  Similarly the associated 95% CrIs shifted upwards and as 

a result of the added information became narrower.  The posterior estimates for mean life 

years and the associated intervals were unchanged for EVAR.  These results were 

consistent across both types of priors for both sets of evidence (Table 3).  

 

The extent of the increase relative to the mean values observed in the non-parametric 

bootstrap and vague models reflected the weight of the information associated with each 

type of informative prior.  In the current analysis the weight of the additional information 

relative to the data decreased as the priors moved from „face value‟ to „sceptical.‟  This 

was also apparent in the incremental estimates as the differences in mean life years 
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between EVAR and OSR got progressively larger as the additional information was given 

less weight.  In terms of the 95% CrIs associated with these incremental differences they 

all shifted downwards and became more precise compared to those based on vague 

priors.  The shifts in the credible intervals were such that for the „face value‟ priors the 

incremental differences in life years ceased to be statistically significant at the 5% level.  

They remained statistically significant, though barely, for the „sceptical‟ priors in which 

the variance was inflated by a factor of four.  A sensitivity analysis revealed that the 

additional evidence for the OSR group would have to be downweighted by between two 

and half and three times the variance of the patient level data in order for the results to 

remain statistically significant.   

 

Due to modelling the correlation between costs and effects, the informative priors on life 

years also impacted the mean costs.  As the mean life years in the OSR group increased, 

the mean costs in the OSR group decreased.  Since the incremental costs and effects both 

directly contribute to the estimation of the CEACs, the combined impact of these changes 

on decision uncertainty can be seen in a comparison of these curves.  Figure 1 shows the 

impact of the priors on the probability of EVAR being cost-effective compared to OSR at 

different threshold values. The curves indicate that the more informative the prior, the 

lower the probability that EVAR was cost-effective for a given willingness to pay.  For 

example, at a willingness to pay of $50,000 per LYG the probability of EVAR being 

cost-effective was approximately 0.60 and 0.70 respectively for the „face value‟ and 
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„sceptical‟ priors for both sets of evidence, which compared to a probability of about 0.80 

for the vague model.   

 

5. Discussion 

 

By comparing the non-parametric bootstrap to a Bayesian approach with both vague and 

informative priors this study has sought to assess the potential impact of incorporating all 

available evidence into a trial based economic evaluation.  While the non-parametric 

bootstrap and the Bayesian approach using vague priors produced similar results, our 

study has demonstrated the potential for informative priors to impact expectations and 

decision uncertainty.  For instance, in the bivariate Normal model if the external evidence 

was taken at „face value,‟ a decision maker would have to be willing to pay 

approximately $20,000 per LYG, in order for EVAR to have a greater probability of 

being cost-effective than OSR.  Alternatively, when the external information was ignored 

and vague priors were used, EVAR was more likely to be cost-effective relative to OSR 

for all values of willingness to pay.  Based on whether the additional information was 

incorporated into the analysis and depending on a decision maker‟s willingness to pay for 

a LYG, this could result in very different funding decisions.  These results also speak to 

the importance of incorporating the potential correlation between costs and effects, even 

when the correlation appears modest.  The impact on decision uncertainty observed in 

this study as well as in the studies from the previous review [7] suggest the synthesis of 
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evidence from different sources could also play a role in decisions about future research, 

ensuring that resources are used efficiently.  This could be particularly important in those 

situations where the additional information suggests something different from the patient 

level data, as was observed in our case study.  

 

In addition to exploring the potential impact of combining all available evidence, this 

study also considered how the additional information might be weighted or valued 

relative to the patient level data from the original cost-effectiveness analysis.  As the 

objective is to combine all available evidence to inform decision makers, this study 

provides insight into how multiple sources of evidence may be combined together in the 

prior and used in addition to the trial data.  Integral to this process is an understanding of 

how to value the additional information relative to the patient level data.  Attempts were 

made to assess the impact on the cost-effectiveness results of different types of 

informative prior distributions.  Specifically, two types of priors were examined (i.e., 

„face value‟ and „sceptical‟).   

 

In terms of deciding how much the additional information should contribute to the 

analysis, a more thorough consideration would need to be given as to why the mortality 

rates for OSR reported in the literature differed from the patient level estimates.  This 

could have implications both in terms of the weight ascribed to the additional information 

and to the potential need for future research.  Unfortunately, none of the studies in the 
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literature provided detailed information on all of the clinical characteristics necessary to 

evaluate the risk level of the patients.  In addition, although both the trial based economic 

evaluation and the studies from the literature were non-randomised, the trial was well 

balanced in terms of patient characteristics, while there was evidence of covariate 

imbalance among the literature studies.  Again, though, attempts to understand the 

potential impact of these imbalances are limited by the extent of missing covariate data.   

 

In combination, these factors (i.e., real surgical risk level unknown in many studies and 

non-randomised evidence) suggest that we may be unlikely to take the evidence from the 

literature at „face value.‟  As in our case study, this essentially gives the external evidence 

and the patient level data for the OSR group equal weighting.  Rather some degree of 

downweighting would seem to be necessary.  The results of the sensitivity analysis 

indicate that the additional information for the OSR group must be downweighted by at 

least 60% in order for the incremental differences in effects to remain statistically 

significant at the 5% level.  Whether this represents a reasonable valuation of the 

evidence in the literature relative to the patient level data is not clear and likely would 

require additional research.  Future research could also look at the feasibility of using 

models that elicit expert opinion concerning the rigour and relevance of the studies being 

combined [22].  The use of hierarchical modelling either instead of or in addition to the 

use of informative priors could also be explored as a way of combining additional 

evidence with patient level data.  Specifically, methods have been proposed that use
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estimates from previously published meta-analyses to adjust and downweight studies 

[23].  Again, the limited availability of covariate data would likely make any assessments 

regarding adjustment and downweighting difficult in the current analysis.     

 

This paper focussed on the use of the prior distribution to combine all available evidence 

in a Bayesian cost-effectiveness analysis.  A possible concern was the absence of data for 

life years at one year post treatment for the eight high risk studies from the literature.  

This meant that these values had to be estimated.  Though actual data would have been 

preferable, the similarity of the outcomes for both sets of information (i.e., two high risk 

and eight mixed risk studies) reinforced the results.  Under ideal circumstances, 

additional information on total one year costs in EVAR and OSR patients would also 

have been available.  Another possible limitation of the analysis is that the study has 

assumed Normal distributions for both costs and life years.  Although the data may be 

skewed, and as a result, the costs and effects not normally distributed, the central limit 

theorem (CLT) states that for any population distribution of costs and effects the 

distributions of the sample means will converge to Normal distributions as the sample 

size increases [24].  The simulation results of Nixon, Wonderling and Grieve [24] suggest 

that the CLT can be invoked in the current study to justify the assumption of Normal 

distributions for both costs and life years.  Their simulations were based on different 

scenarios for sample size and skewness and indicate that for moderate to large sample 

sizes (i.e., n>50) the CLT performs well [24]. However, other distributions which may fit 
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the data better could lead to more efficient estimators for the population means [25].  The 

associated increase in precision could have implications in terms of decision uncertainty 

and consequently future research priorities.  Gamma distributions, for example, have 

been used to deal with the potential skewness in cost data.  Since the assumption of 

distributions other than normal can lead to misleading conclusions if the assumptions are 

incorrect [25] it may be safer to assume normality [26], provided the sample size is 

sufficient to justify the CLT.  

 

Despite these limitations, this study has demonstrated the potential importance of using 

all available evidence to inform decision makers.  Where cost-effectiveness analyses and 

economic evaluations are a critical input to health care policy making, it is paramount 

that these policy decisions be based on the available evidence.  This study contributes to 

the literature an example of how this may be achieved using actual data from a previous 

patient level cost-effectiveness analysis and evidence available from the literature at the 

time of the original analysis.  Future research could focus on further refinements and of 

course the approaches undertaken will likely vary depending on the context and 

availability of data.  
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6. Conclusion 

This analysis indicates that ignoring specific sources of evidence could undermine cost-

effectiveness results.  Not only might it change inferences and possibly influence 

decisions regarding the cost-effectiveness of one intervention compared to another, but it 

could also impact decisions regarding the need for future research.  Only when all 

available evidence is taken into consideration can we be confident of well informed 

health care decisions. 
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Table 1.  Mortality data for patient level and additional studies 

Study Only 

high 

risk  

Length of Follow-

up (days) 

30 day mortality* Mortality at end of follow-up conditional on 

being alive at 30 days† 

EVAR OSR EVAR OSR 

Patient level   Patients Deaths 

(%) 

Patients Deaths 

(%) 

Patients Deaths 

(%) 

Patients Deaths 

(%) 

Tarride 2008 Y 365 140 1 (1) 52 5 (10) 139 9 (6) 47 4 (9) 

Additional           

High risk           

Du Toit 1998 Y 30 12 0 (0) 10 1 (10)     

Carpenter 2002 Y 30 174 7 (4) 163 7 (4)     

Forbes 2002 Y 30 7 0 (0) 31 0 (0)     

Patel 2003 Y 30 16 0 (0) 35 6 (17)     

Ianneli 2005 Y 30 34 0 (0) 28 1 (4)     

Mendonca 2005 Y 815 EVAR          

840 OSR 

18 1 (6) 31 2(6) 17 2 (12) 29 2 (7) 

De Donato 2006 Y 30 19 1 (5) 8 1 (13)     

Parmer 2006 Y 475 EVA          

602 OSR 
52 0 (0) 46 0 (0) 52 0 (0) 46 0 (0) 

Mixed risk           

Zarins 1999 N 365     185 8 (4) 60 2 (3) 

Becquemin 2000 N 365     71 3 (4) 105 2 (2) 

Cohnert 2000 N 365     35 3 (9) 37 0 (0) 

Ting 2003 N 365     26 1 (4) 24 0 (0) 

Ballard 2004 N 365     22 1 (5) 107 2 (2) 

Elkouri 2004 N 365     94 0 (0) 258 0 (0) 

Greenberg 2004 N 365     199 7 (4) 78 3 (4) 

Bush 2006 N 365     695 40 (6) 1120 77 (7) 

*Mortality data at 30 days for mixed risk studies were not used in calculations.  

†Only applies to studies with mortality data beyond 30 days.
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Table 2. Vague and informative prior distributions for the Bayesian models 

Parameter Vague prior Informative prior
‡
 

  Face value prior Sceptical prior 

EVAR 

 

   

Mean costs 

(μC1) 

Normal(25000,1E11) Not applicable Not applicable 

Precision costs 

(1/σC1
2
) 

Gamma(0.50,1E-07)) Not applicable Not applicable 

Mean life years 

(μE1)
§ 

Beta(1,1) Normal(0.95,1.01E-03) Normal(0.95,8.38E-04) 

Normal(0.95,4.73E-04) Normal(0.95,8.38E-04) 

Standard 

deviation life 

years (σE1
2
) 

Uniform(0,10) Not applicable Not applicable 

Relationship 

between costs 

and life years 

(β1) 

Normal(0,10000) Not applicable Not applicable 

OSR 

 

   

Mean costs 

(μC2) 

Normal(25000,1E11) Not applicable Not applicable 

Precision costs 

(1/σC2
2
) 

Gamma(0.50,1E-07)) Not applicable Not applicable 

Mean life years 

(μE2)
§ 

Beta(1,1) Normal(0.93,2.21E-03) Normal(0.93,8.76E-03) 

Normal(0.93,2.12E-03) Normal(0.93,8.76E-03) 

Standard 

deviation life 

years (σE2
2
) 

Uniform(0,10) Not applicable Not applicable 

Relationship 

between costs 

and life years 

(β2) 

Normal(0,10000) Not applicable Not applicable 

‡
Informative priors were only available for mean life years (μEj) in the EVAR and OSR groups. 

§
Two informative priors for each type derived from two sets of evidence (i.e., two high risk and eight 

mixed risk studies).
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Table 3.  Results for non-parametric bootstrap and Bayesian models with vague and 

informative priors 

Model Annual mean costs ($)
||      

(μCj) 

Incremental($)
|| 

(ΔC) 

Mean life years
||
      

(μEj) 

Incremental
|| 

(ΔE) 

 EVAR OSR EVAR-OSR EVAR OSR EVAR-OSR 

Bootstrap 
34147 

(32485,36356) 
34170 

(24331,45606) 
-23 

(-11586,9692) 
0.96 

(0.93,0.98) 
0.85 

(0.76,0.93) 
0.11 

(0.02,0.20) 

Bayesian models 
Vague priors 34150 

(32240,36050)
 

34170 

(23620,44750) 

-18 

(-10740,10660) 

0.96 

(0.93,0.99) 

0.85 

(0.75,0.94) 

0.11 

(0.01,0.21) 

Informative priors: 

Two high risk 

studies
¶
 

      

Face value 34150 

(32250,36060) 

32840 

(22460,43110) 

1318 

(-9116,11870) 

0.96 

(0.93,0.98) 

0.89 

(0.82,0.96) 

0.07 

(-0.005,0.14) 

     Sceptical 34160 

(32270,36050) 

33630 

(23180,44030) 

531 

(-10050,11160) 

0.96 

(0.93,0.98) 

0.87 

(0.78,0.95) 

0.09 

(0.002,0.18) 

Eight mixed 

risk studies
** 

      

Face value 34180 

(32290,36070) 

32790 

(22420,43030) 

1387 

(-9012,11900) 

0.96 

(0.93,0.98) 

0.89 

(0.83,0.96) 

0.06 

(-0.007,0.13) 

     Sceptical 34170 

(32270,36070) 

33600 

(23130,44010) 

565 

(-9986,11190) 

0.96 

(0.93,0.98) 

0.87 

(0.78,0.95) 

0.09 

(0.00002,0.18) 
||
Values in parentheses represent 95% confidence intervals for non-parametric bootstrap and 95% credible 

intervals for Bayesian models. 

¶
High risk studies reporting mortality after 30 days used in the calculation of the informative priors. 

**
Mixed risk studies reporting mortality at one year used in the calculation of the informative priors.
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Figure 1.  Cost-effectiveness acceptability curves (CEACs) for non-parametric 

bootstrap and Bayesian models with vague and informative priors 

 

 

  

 

 

Legend: Two CEACs are reported for each type of informative prior (i.e., face value and 

sceptical).  Each of the two CEACs refers to the set of evidence on longer-term mortality 

used in the calculation of the informative priors (i.e., two high risk or eight mixed risk 

studies).
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Appendix to Chapter 4: Calculation of Informative Priors 

 

The following presents the methods used to combine the studies from the literature and 

generate the informative prior distributions for the cost-effectiveness analysis comparing 

EVAR and OSR in high risk patients.  Eight studies presenting 30 day mortality in high 

risk patients were found in the literature [15].  The studies did not present information on 

life years, nor did they present mortality data at one year.  Therefore, mortality at one 

year in high risk patients was estimated by combining 30 day mortality rates from the 

eight studies in high risk patients with probabilities of being dead at one year conditional 

on being alive at 30 days from two sources of evidence.  The two sets of evidence were 

as follows: 1) two high risk studies presenting mortality data at around two years; 2) eight 

studies conducted in a mixed risk population and reporting mortality data at one year. 

Table 1 of the manuscript presents the details of the studies.       
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For each of the two sets of data the binomial model given below was used to generate 

estimates for 30 day mortality and one year mortality conditional on being alive at 30 

days:   

     

               deathsEVARmn ~ Binomial(pdeadEVARmn,patientsEVARmn) and  

               deathsOSRmn ~ Binomial(pdeadOSRmn,patientsOSRmn)                         (eq.4) 

               log odds(pdeadEVARmn) = ψmn and log odds(pdeadOSRmn) = γmn        (eq.5) 

ψmn ~ Normal(θm, σm
2
)                       (eq.6)                                                                                                                                               

γmn ~ Normal(αm, τm
2
)       (eq.7)                                                                                     

ψm.new ~ Normal(θm, σm
2
)           (eq.8)                                                              

γm.new ~ Normal(αm, τm
2
)                                 (eq.9) 

 

(m = 30 for deaths occurring 0 to 30 days after treatment or 1 for deaths occurring after 

30 and up to 365 days post treatment; n = 1,…..,xm studies). 

 

As shown in equation four, this model assumed that the number of events in each arm of 

the nth study of time m (i.e., deathsEVARmn and deathsOSRmn for the treatment and control 

groups, respectively) followed a binomial distribution defined by the proportion of 

patients who died in each arm in the nth study of time m (i.e., pEVARmn and pOSRmn) and 

the total number of patients alive in each arm in the nth study at time zero and 30 days 

post treatment (i.e., patientsEVARmn and patientsOSRmn).  Equation five describes the log 

odds for death in the treatment (ψmn) and control (γmn) arms of each of the xm studies.  For 

each of the two time periods, the log odds of dying for both the treatment and control 

groups were assumed to follow normal distributions with means of θm and αm, 

respectively.  Between-study variability for studies at time m was represented by σm
2 

for 

the EVAR group and τm
2
 for the OSR group.  Predictions for the log odds of dying in the 
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patient level trial are provided in equations eight and nine for EVAR and OSR 

respectively.  These distributions incorporate all of the uncertainty associated with θm and 

αm, the pooled effects in the mth time periods, and σm
2
 and τm

2
, the between study 

variability for the mth time periods. 

 

Prior distributions for the unknown parameters θm, σm
2
, αm, τm

2
 were intended to be 

vague. Normal priors with means of zero and standard deviations of 100 were specified 

for the mean log odds θm and αm (i.e., 30 day and one year mortality conditional on being 

alive at 30 days for EVAR and OSR respectively).  Normal prior distributions with 

means of zero and standard deviations of 0.50 truncated to be positive were used for the 

between-study standard deviations (σm, τm).  
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Summary of the posterior distribution and posterior predictive distribution for the log 

odds of dying for EVAR and OSR from the Bayesian meta-analysis 

Variable Parameter Mean Standard deviation 

30 day mortality    

EVAR 
θ30 -3.83 0.4852 

ψ30.new -3.83 0.7058 

OSR 
α30 -3.00 0.3678 

γ30.new -3.00 0.722 

One year mortality 

conditional on being 

alive at 30 days 

   

Two high risk 

studies 

   

EVAR 
θ1 -3.73 0.9317 

ψ1.new -3.73 1.113 

OSR 
α1 -3.90 0.9121 

γ1.new -3.90 1.066 

Eight mixed risk 

studies 

   

EVAR 
θ1 -3.14 0.2386 

ψ1.new -3.14 0.467 

OSR 
α1 -3.98 0.4433 

γ1.new -3.98 0.9845 
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After combining the studies to generate estimates for the mean log odds in both the 

EVAR and OSR groups for 30 day mortality (i.e., ψ30.new and γ30.new)  and one year 

mortality conditional on being alive at 30 days (i.e., ψ1.new and γ1.new) , the 

corresponding probabilities were derived by exponentiating the results.  The resulting 

values were used to estimate the probabilities of dying for EVAR and OSR between zero 

and 30 days post-operative (i.e., pdeadEVAR30 and pdeadOSR30) and the conditional 

probabilities used to estimate mortality after 30 days and up to one year (i.e., 

pdeadEVAR1|aliveEVAR30 and pdeadOSR1|aliveOSR30).   

 

In order to convert these probabilities into life years, we assumed death was equally 

likely to occur at any time within the respective time periods.  As a result we assumed 

mean life years of approximately 0.04 (i.e., 15/365) for patients who died between zero 

and 30 days and mean life years of approximately 0.46 (i.e., 168/365) for patients who 

died after 30 days and up to one year after treatment.  Life years of one were applied to 

those patients still alive at one year.  The probability of being alive at one year for EVAR 

(paliveEVAR1) and OSR (paliveOSR1) was calculated as one minus the respective probabilities 

of being dead by one year in each of the groups.  That is,  

paliveEVAR1 = 1 − pdeadEVAR30 − (pdeadEVAR1|aliveEVAR30  (1-pdeadEVAR30)) and  

paliveOSR1 = 1 − pdeadOSR30 − (pdeadOSR1|aliveOSR30  (1-pdeadOSR30)).  
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Based on these assumptions the following equations were used to estimate mean life 

years in the trial at one year for EVAR and OSR respectively:   

μE1 = (paliveEVAR1 1) + (pdeadEVAR30  (15/365)) + (pdeadEVAR1|aliveEVAR30  (1-pdeadEVAR30) 

 (168/365))   

μE2 = (paliveOSR1  1) + (pdeadOSR30  (15/365)) + (pdeadOSR1|aliveOSR30  (1-pdeadOSR30)  

(168/365)).  

 

Summary of the posterior predictive distribution for mean life years for EVAR and OSR 

from the Bayesian meta-analysis 

Variable Parameter Mean Standard deviation 

Two high risk 

studies 

   

EVAR μE1 0.9548 0.03179 

OSR μE2 0.9281 0.04704 

Eight mixed risk 

studies 

   

EVAR μE1 0.951 0.02176 

OSR μE2 0.9301 0.04601 

 

The mean and standard deviation of μEj, the predictive value of mean life years, are used 

as the parameters of the Normal „face value‟ prior distributions for mean life years in the 

trial.  The mean of the posterior predictive distribution, μEj, and a variance four times the 

variance of the patient level data are used for the „sceptical‟ prior.  The standard 

deviations for mean life years in the patient level data were 0.01447 and 0.04678 for 

EVAR and OSR respectively. 
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CHAPTER 5 

CONCLUSIONS 

 

The economic evaluation of health technologies plays an important role in informed 

health care decision making.  Similarly, the associated methodological issues and 

challenges offer important opportunities to advance knowledge in the field of HTA by 

providing new insights and approaches.  This thesis has addressed issues related to 

synthesising evidence on treatment effects from different sources of information.  

Specifically, we have conducted research on combining evidence from randomised and 

non-randomised studies and combining patient level trial data with additional evidence 

from the literature.  This final chapter offers a summary of the findings of the thesis as 

well as identifying potential areas for future research.  The implications and contributions 

of the thesis research are also discussed. 

 

In Chapter 2 [13], we proposed a new approach for combining evidence from randomised 

and non-randomised studies and adjusting for covariate imbalances that could bias the 

results.  This approach involved Bayesian hierarchical modelling and adjustment using 

differences in patient characteristics between study arms. The analysis compared the 

proposed approach to four other Bayesian hierarchical methods in the context of a case 

study comparing EVAR and OSR for the treatment of abdominal aortic aneurysms.  As 

the case study provided evidence of greater imbalance among the non-randomised studies
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relative to the randomised studies, the methods were assessed in terms of whether they 

moved the estimated odds ratios from the less balanced non-randomised studies towards 

the more balanced randomised studies [9].  The closer the estimated overall odds ratio 

was to the odds ratio for the randomised studies alone, the better the model was deemed 

to have accounted for covariate imbalances.  Based on the data in this case study, we 

concluded that the proposed Bayesian hierarchical model adjusted for differences in 

patient characteristics between study arms was capable of accounting for imbalances that 

could otherwise bias the results.  As the synthesis of evidence from randomised and non-

randomised studies likely necessitates some concession as to the possibility of 

imbalances, this research offers a potential approach that would allow both randomised 

and non-randomised studies to contribute usefully to the estimation of treatment effects.  

Though in order to do this, the work also points to the need for researchers to better 

report covariate information so as to facilitate adjustment for future evidence synthesis.  

As the results were based on a single case study, however, it was unclear how they might 

be affected by changes in factors such as the impact of the imbalances or the relative 

number or size of the randomised and non-randomised studies.  

                                                                                                                                                         

To assess the influence of these factors on the performance of the proposed Bayesian 

method adjusted for differences in patient characteristics between study arms, we 

conducted a simulation study in Chapter 3 [14].  Six scenarios involving changes in the 

impact of the imbalances and the relative number and size of studies of each type were 

examined.  Unlike in the case study in Chapter 2 [13], because the truth is known
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in a simulation study, model performance was assessed relative to this known truth [15].   

Across all six scenarios the Bayesian hierarchical model adjusted for differences within 

studies gave results that were closest to the true value compared to the other models.  

These results reinforced those observed in the single applied case study of EVAR and 

OSR in Chapter 2 [13], where the new method moved the estimated odds ratios from the 

less balanced non-randomised studies towards the more balanced randomised studies.  

Furthermore, this simulation study demonstrated that when bias can be explained by 

covariate imbalances between study arms, the proposed Bayesian approach handles this 

problem in a way that appears robust to changes in the underlying characteristics of the 

studies.  In so doing the model adjusted for differences outperformed the other models. 

This research adds support to the proposed approach in terms of its ability to adjust for 

covariate imbalances when combining randomised and non-randomised studies, thus 

strengthening the assertion that non-randomised studies can contribute usefully to the 

estimation of treatment effects.   

 

The proposed method for synthesising evidence on effects from randomised and non-

randomised studies, that was the focus of Chapters 2 [13] and 3 [14], was based on taking 

weighted averages of the two sources of information, where the weights were determined 

implicitly.  In Chapter 4 [16], we investigated the informative prior approach [12].  This 

approach is based on an explicit weighting of the evidence sources.  As seen in the 

preceding chapters this allows for the downweighting of one source of evidence relative
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to the other source.  The amount by which to downweight the evidence is not an 

automatic process, but rather requires careful consideration.  In Chapter 4 [16], we 

explored the use of the informative prior approach to combine evidence on effects from 

an existing patient level economic evaluation comparing EVAR and OSR in high risk 

patients [8] with additional evidence from the literature [7].  Combining the additional 

evidence with the patient level data resulted in higher estimated mean life years in the 

OSR group compared to those based on the patient level data alone while the estimates 

for EVAR were unchanged.  Consequently, the incremental estimates decreased and 

uncertainty regarding the cost-effectiveness of EVAR increased.  The more the evidence 

from the literature was downweighted the closer the results were to those from the 

original economic evaluation.  This research provides an applied example of the potential 

importance of synthesising evidence from all available sources.  Using an actual 

economic evaluation that was used to inform decision making regarding reimbursement 

of EVAR in high risk patients in the province of Ontario, this chapter outlines how 

additional evidence might have been incorporated.  However, a key limitation, especially 

from a policy making perspective, is the choice of inflation factor used to downweight 

the evidence from the literature.  A more thorough consideration of the relative 

differences between the literature studies and the patient level data would be required 

when conducting such an analysis in practice.  Again, however, these assessments would 

rely on the necessary data being sufficiently reported. 
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Underpinning the research in this dissertation is the question, how do the sources of 

evidence differ?  Chapters 2 [13], 3 [14], and 4 [16] have each addressed this question in 

trying to combine randomised studies with non-randomised studies and patient level data 

with study level evidence from the literature.  By examining how sources of evidence 

differ we can gain insight into how best to combine them together.  Future research could 

consider issues related to further refinements and practical applications of the work 

conducted in this thesis.  For example, how to downweight as well as adjust for 

imbalanced studies within the Bayesian hierarchical model proposed in Chapter 2 [13].  

While we have used an informative prior approach for combining patient level data with 

additional evidence in Chapter 4 [16], hierarchical modelling could also be explored.  

Within such an approach, and with appropriate data, adjustment for imbalances might 

also be possible.  Methods that explicitly downweight sources of evidence also pose 

interesting challenges for future research.  In particular, how to quantify differences 

between sources of evidence.  

 

The research presented in this thesis has important implications for the future of health 

care decision making.  The establishment of the PRUFE framework [6], whereby 

information from both systematic reviews and patient level field evaluations can be 

combined, attests to the importance of a comprehensive approach to evidence based 

decision making.  This thesis focussed on the development and use of methods capable of 

combining evidence on effects from different sources, an essential element of any 

comprehensive approach.  Despite limitations, this thesis research provides insights and 
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ideas as well as practical examples of how to address some of the challenges faced in 

evidence synthesis.  Their potential to combine all available evidence makes Bayesian 

methods ideal for the kind of comprehensive approach envisioned by the PRUFE 

framework.  As health care is of such vital importance both individually and collectively, 

the evidence upon which decisions are based must be carefully considered.   

 

Taking advantage of all available evidence has the potential either to reinforce belief in 

the effect of one intervention compared to another, or to introduce a healthy questioning 

of that belief.  The result of which could be to expedite decisions, or, where necessary, to 

allow for a careful reconsidering of the evidence.  Regardless of the outcome, the 

consequence would be a more prudent approach to health care decision making, defined 

by a comprehensive evidence base.  Evidence synthesis could also contribute to 

informing decisions about the need for additional research, thus helping to ensure 

research dollars are used efficiently.  If new ideas are required to address the challenges 

facing, for example, the Canadian health care system [17], then let comprehensive 

evidence based decision making be at the core of these new initiatives.  Let decision 

makers know what is working and what is not and let them have the flexibility to respond 

accordingly.    

 

Health care decision making is not static; it must be responsive and flexible.  As has been 

demonstrated by the research conducted in this thesis, the potential exists within a 

Bayesian approach for these goals to be achieved as well as allowing for the necessary 
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comprehensiveness.  By addressing important issues such as how to deal with possible 

imbalances when combining randomised and non-randomised studies and how to 

integrate external evidence when analysing patient level economic data, we have 

contributed to the further development and application of Bayesian methods in HTA.  In 

helping to move the methodology forward, the preceding chapters of the thesis form a 

coherent and substantial body of work that contributes significantly to the advancement 

of knowledge in the field of HTA.
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ABSTRACT AND KEYWORDS 
 
Objectives:  Due to potential advantages (e.g., using all available evidence), Bayesian 

methods have been proposed to assist health care decision making. This review provides 

a detailed description of how Bayesian methods have been applied to economic 

evaluations of patient level data.  The results serve both as a reference and as a means by 

which to examine the appropriate application of Bayesian methods to inform decision 

making.  

 Methods:  MEDLINE, EMBASE, and Cochrane Economic Evaluation databases were 

searched to identify studies, published up to November 2007, meeting three inclusion 

criteria: 1) the study conducted an economic evaluation; 2) sampling uncertainty was 

incorporated using Bayesian methods; 3) the likelihood function was informed by patient 

level data from a single source.  Data were collected on key study characteristics (e.g., 

prior distribution, likelihood function, presentation of uncertainty).  

Results:  The search identified 366 potentially relevant studies, from which 103 studies 

underwent full-text review.  Sixteen studies met the inclusion criteria.  Half of the studies 

used uninformative priors; most studies incorporated the potential dependence between 

costs and effects, and presented cost-effectiveness acceptability curves.  Results were 

sensitive to changes in the priors and likelihoods.   

Conclusions:  Limited use of informative priors, among the included studies, gives 

policy makers little guidance on one of the main benefits of Bayesian methods, the ability 

to integrate all available evidence to capture the uncertainty inherent in decision making.
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Keywords: Bayes Theorem, Cost-Benefit Analysis, Uncertainty  

INTRODUCTION 

 

Economic evaluation in health care can be defined as the comparison of alternative 

options in terms of their costs and consequences.(6)  The purpose being to inform the 

efficient allocation of scarce resources.(5)  Two main approaches exist, those using 

patient level data and those using decision analytic modelling.   

 

When patient level data are used, economic outcomes are the result of a single sample 

drawn from the population.(19)  However, decisions are made at the population level.  

Consequently, uncertainty arises from using limited samples to estimate the true 

(population) value of costs and effects.  This source of uncertainty can be referred to as 

sampling variation.(13)  Two methods have been used regularly in the applied literature 

to incorporate sampling variation: the nonparametric bootstrap method, and Fieller‟s 

method.(6)  Both methods propagate uncertainty using only the information contained in 

the original data. 

 

The last 25 years have seen an increase in the prevalence of Bayesian statistics.(2)  In 

particular, the Bayesian Initiative in Health Economics & Outcomes Research was 

established, “to explore the extent to which formal Bayesian statistical analysis can and 

should be incorporated into the field of health economics and outcomes research for the 

purpose of assisting rational health care decision making.”(15)  
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Under a Bayesian interpretation, parameters of interest are ascribed a distribution 

reflecting uncertainty concerning the true value of the parameter.(4)  A Bayesian analysis 

synthesises two sources of information about the unknown parameters of interest.  One 

source is the prior distribution, which represents information that is available prior to (or, 

more generally, in addition to) the data (e.g., previous trials, literature, expert opinion).  

In the absence of prior information, vague or uninformative prior distributions can be 

used.  The less informative the prior, the more weight is given to the data in the analysis. 

The other source of information is the data, which contribute to the analysis through the 

likelihood function.(23)  The likelihood summarises all of the information about the 

unknown parameters that is contained in the data.(22)  These two sources of information 

are combined through the use of Bayes‟ theorem.  Bayes‟ theorem updates the prior 

information by taking into account, via the likelihood, the newly observed data.  The 

result is a posterior distribution that represents what is now known about the unknown 

parameters based both on the data and the prior information.(23)  Posterior distributions 

can be generated using simulation techniques such as Markov Chain Monte Carlo.   

 

The inferential outputs from a Bayesian analysis and the ability to make direct probability 

statements regarding unknown quantities provide a natural way of informing policy 

makers. The ability to take into account all available evidence, through the combination 

of the prior and the likelihood, speaks to another potential advantage.  By focussing on 

the vital question: how does this new piece of evidence change what we currently 

believe? Bayesian methods present a more iterative approach to evaluation because prior 
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beliefs can be updated as new evidence becomes available.(22)  Another potential 

advantage is the use of a likelihood function to model the underlying distribution of the 

data. (17)  

 

In the wake of a renewed interest in Bayesian statistics, the primary objective of this 

review is to describe how Bayesian methods have been used to handle uncertainty due to 

sampling variation in patient level economic evaluations.  The results serve as a 

reference, detailing how these methods have been used to evaluate health care 

interventions.  Specifically, the review focuses on describing the priors, the likelihoods, 

the presentation of uncertainty, and sensitivity analyses in these studies.  Concentrating 

on these aspects gives a sense of how Bayesian methods have been used to incorporate 

additional information, accurately model the data, communicate the impact of 

uncertainty, and assess the robustness of the results.  Findings and implications from the 

review are discussed.  

 

METHODS 

  

Data Sources and Search Strategy  

We conducted a comprehensive search strategy to identify all relevant published 

Bayesian analyses (to the second week of November 2007).  We developed the search 

strategy in MEDLINE and modified it for other databases.  Only articles in English were 

considered.  Ovid MEDLINE In-Process & Other Non-Indexed Citations and Ovid 
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MEDLINE (1950 to Present), EMBASE (1980 to 2007 Week 45), and Cochrane Library 

NHS Economic Evaluation (Issue 4, 2007) databases were searched.  In addition, we 

searched the reference sections of relevant papers for potentially eligible studies.   

 

Search terms were derived based on mapping keywords for Bayesian analysis (e.g., 

Bayesian, WinBUGS) and economic evaluation (e.g., cost, economic) to indexed subject 

headings within the respective databases.  Terms were also derived based on investigator-

nominated terms and keywords from the titles and abstracts of potentially relevant 

studies.  Relevant keywords and subject headings were then combined allowing for 

alternative spellings and suffixes.  Operators denoting the proximity of various search 

terms in relation to others were also used in order to derive a comprehensive retrieval 

strategy.  The search strategy is provided in Supplementary Table 1 

(www.journals.cambridge.org/thc). 

 

Study Selection  

We screened citation records in two stages.  In the first stage, the titles and abstracts of 

retrieved articles were screened for potential inclusion or exclusion.  In the second stage, 

those records not excluded at the first stage underwent a full-text review.  Included 

studies met the following criteria: 1) the study conducted an economic evaluation 

comparing two or more health care interventions; 2) the impact of uncertainty (sampling 

variation) on the results of the economic evaluation was incorporated using Bayesian 

methods; and 3) the likelihood function was informed by patient level data from a single 

source (trial, study, etc.). 

http://www.journals.cambridge.org/thc
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Excluded studies involved only patient level costs or only patient level effects, 

incorporated any sort of decision analytic modeling, or used Bayesian methods for 

purposes other than the incorporation and assessment of sampling variation (e.g., 

evidence synthesis, value of information analysis, heterogeneity).  In both stages, a single 

reviewer (CEM) selected articles for inclusion.   

 

Data Synthesis and Analysis                                                                                                                                                                

In the context of the current analysis a descriptive synthesis of the included studies was 

undertaken.  An abstraction form was developed to collect information on key study 

characteristics.  To get a sense of how Bayesian methods were used to combine 

additional information with the data, the type of prior distribution was recorded.  To 

illustrate how the underlying data were modeled and whether these distributions allowed 

for issues such as the potential dependence between costs and effects or skewness in 

costs, information was collected on the likelihood functions.  To understand how 

Bayesian methods were used to inform decision makers, the presentation of uncertainty 

was documented.  Attention was also given to whether the studies explored the sensitivity 

of the results to changes in the priors and the likelihoods, as this could have implications 

for the results.   The data were then synthesized to provide an overall description of the 

use of Bayesian methods to handle uncertainty in economic evaluations of patient level 

data.   



Ph.D. Thesis – C. Elizabeth McCarron; McMaster University – Health Research 

Methodology 

124 

RESULTS                  

 

Literature Review 

The literature search yielded 366 potentially relevant bibliographic records.  From the 

366 citations, 103 articles were retrieved for relevance assessment.  The selection of 

included studies is presented in the QUORUM diagram given in Figure 1.  Sixteen 

studies met the final inclusion criteria.(1,3,4,7,9-12,14,16-18,20,26-28)  Thirteen of these 

studies were classified as methodological papers with applications (1,3,4,9-12,14,16-

18,27,28) and three were classified as application papers (7,20,26).  For the purpose of 

this review the former classification pertains to those papers that used applications merely 

for illustrative or pedagogic purposes.  The latter refers to those papers whose primary 

objective was an economic evaluation, where Bayesian methods were used to incorporate 

sampling uncertainty.  Supplementary Table 2 (www.journals.cambridge.org/thc) 

describes the included studies. 

       

Assessment of Bayesian Methods       

  

Prior Distributions  

The most common type of prior used for either costs or effects was a vague or 

uninformative prior.  Uninformative priors for costs were used in 14 studies 

(1,3,4,7,9,11,12,14,16-18,20,26,27) and for effects in 13 studies (1,3,4,7,9,12,14,16-

18,20,26,27).  These priors were incorporated either exclusively (3,7,9,12,14,17,26,27), 

or as part of a sensitivity analysis (1,4,11,16,18,20).  Informative priors (empirical, 

http://www.journals.cambridge.org/thc
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subjective, or structural) were included in half of the studies (1,4,10,11,16,18,20,28).  

Priors based on empirical data were used for effects in five studies (1,4,10,11,20) and for 

costs in three studies (1,4,20).  Data sources for the empirical priors included previous 

trials (1), pilot studies (10,11), the literature (4), and individual Medicare claims data 

(20).   

 

Priors based on subjective opinion were applied equally to costs (1,10,11,28) and effects 

(1,16,18,28).  Subjective priors most often reflected informal reasoning.(1,10,11,16,18)  

However, one study (28) referred to a process of eliciting expert opinion.  Experts who 

participated in the study were asked about the mean and the probability interval to obtain 

the prior mean and variance of the parameters of interest.  Structural priors, denoting the 

relative relationship between parameters as opposed to the actual numerical values, 

appeared in one of the studies. (16)  In this case, the prior represented the belief that the 

variances of costs should not be too different between patient groups.  The effect of this 

prior information was to moderate the influence of the extreme costs.  Table 1 describes 

the prior distributions. 

 

Likelihood Functions 

Two of the applied studies (7,26) did not specify the distributional form of their 

likelihood functions, and one of the methodological papers (3) analyzed the individual 

level data using two different approaches.  Therefore, there are 13 examples where costs 

and effects are modeled directly (1,3,4,9-12,14,16-18,27,28), and two examples using 

regression-based modeling of net benefits (3,20).  
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The majority of studies incorporated the potential dependence between the cost and effect 

data.  This was achieved through the use of both multivariate normal distributions and 

regression analysis.  Two of the studies (27,28) that applied regression analysis directly 

to costs and effects included covariates in their likelihood functions and assessed the 

resulting impact on uncertainty.   

 

For three of the studies (1,4,12), the use of multivariate normal distributions was based 

on large sample approximations for the means of costs and effects.  Where the likelihood 

functions allowed for a specific relationship between the cost and effect data, costs most 

often depended on effects: four studies (10,11,16,27) allowed costs to depend on effects 

whereas only one study (3) allowed effects to depend on costs.  Different distributions 

were used for effects based on whether the outcome measure was a continuous or discrete 

random variable.   

 

Six studies (3,9,10,11,14,16) incorporated the potential skewness in the cost data.  Three 

of these studies used gamma distributions (3,10,11) and two (14,16) used lognormal 

distributions.  One study (9) divided total cost into three components and applied 

distributions (e.g., lognormal) to each of the cost components.  Table 2 describes the 

likelihood functions.         

 

Presentation of Uncertainty                                                                                                                                                                                   

The predominant approaches to the presentation of uncertainty were Bayesian 95% 

credibility intervals (0.95 posterior probability that the true value lies in the interval), and 
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cost-effectiveness acceptability curves (CEAC) (posterior probability that the 

intervention is cost-effective given the data and willingness to pay).  Almost all of the 

studies presented cost-effectiveness acceptability curves.(1,3,4,7,9-11,16-18,20,26-28)  

Six studies (1,3,10,11,12,27) presented Bayesian 95% credibility intervals for the 

incremental cost-effectiveness ratio (ICER), two studies (3,10) presented credibility 

intervals for the incremental net monetary benefit (INMB), and one study (11) presented 

credibility intervals for the incremental net health benefit (INHB).  Another study (14) 

that compared multiple treatment options and incorporated two measures of effectiveness 

proposed the cost-effectiveness acceptability plane frontier (CEAPF) as an alternative to 

the cost-effectiveness acceptability curve.  Table 3 summarizes the presentation of 

uncertainty in each study.         

 

Sensitivity Analysis 

In addition to assessing the impact of sampling variation on the results, 10 studies 

(1,3,4,9,11,16,18,20,27,28) considered the sensitivity of the results to changes in the prior 

distributions and the likelihood functions.  Of those studies, four (1,4,11,16) used 

different priors, four (3,9,27,28) used different likelihoods, and two (18,20) changed both 

the priors and the likelihoods.  Table 3 describes the sensitivity analyses that were 

conducted. The following summarizes the findings of those studies. 



Priors: The study by Al and Van Hout (1) assessed the sensitivity of the results to three 

different prior distributions for costs and effects: an uninformative prior disregarding all 
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information from a previous trial, an empirical prior equal to the posterior of the previous 

trial, and a subjective prior that uses only 50% of the information from the previous trial.  

The authors concluded that different prior distributions may lead to different decisions.  

For example, given a specific willingness to pay, the probability of cost-effectiveness was 

0.65 for the uninformative prior, 0.80 for the subjective prior, and 0.90 for the empirical 

prior.   

 

Another study (16) that assessed the impact of different priors found that varying the 

prior information on effects made negligible difference to conclusions, since the data 

quite strongly indicated an improvement in effectiveness.  However, the impact of the 

prior information on costs was much more substantial.    For smaller willingness to pay 

values, where cost is a real consideration, the different priors produced quite different 

probabilities of cost-effectiveness.  When weak prior information was used, the 

probability of cost-effectiveness never went below 0.70.  When structural prior 

information was used, the probability of cost-effectiveness went from 0.45 to 0.65 for 

smaller willingness to pay values.  The authors argued that this difference was primarily 

being driven by two outlying observations.  The use of structural prior information, 

representing the belief that the variances of costs should not be too different between 

patient groups, effectively mitigated the impact of the outliers and resulted in a 

correspondingly lower cost-effectiveness acceptability curve for small willingness to pay 

values.  In the remaining studies (4,11) the priors did not appear to be a source of 

sensitivity.  
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Likelihoods: Hahn and Whitehead (9) compared five different likelihood functions for the 

cost and effect data.  For two of the likelihoods only one cost was considered, namely 

total cost.  In the other three, the total cost was broken down into three components.  Four 

of the likelihoods used normal or multivariate normal distributions for the cost and effect 

data.  The remaining likelihood used other distributions (e.g., lognormal) for the cost 

components.  The cost-effectiveness acceptability curve associated with this likelihood 

was different from those based on the other four likelihoods.  In particular, the 

willingness to pay value for which the probability of cost-effectiveness is 0.50 was 

greater than that suggested when the other likelihoods were used.   

 

In the regression framework presented in Vazquez-Polo, Negrin, Badia and Roset (28) 

the authors assessed the sensitivity of the results to the inclusion of covariates, first using 

a continuous outcome and then a binary outcome.  When the continuous outcome was 

used the willingness to pay value at which the probability of cost-effectiveness is 0.50 

was approximately 75% greater without covariates than when covariates were included.  

When the binary measure of effect was used the control treatment dominated the new 

treatment.  Similar results were found in the other study by Vazquez-Polo, Hernandez 

and Lopez-Valcarcel (27) that used only a single continuous outcome.  In this study the 

cost-effectiveness acceptability curve was also higher when covariates were included in 

the likelihood. The study by Bachmann, Fairall, Clark and Mugford (3) compared the 

joint modeling of costs and effects using a binomial-gamma likelihood and a regression-

based model of net benefits.  Both likelihood functions produced similar results; 
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however, the point estimate for the incremental cost-effectiveness ratio was 

approximately 20% higher for the binomial-gamma likelihood. 

 

Priors and Likelihoods: One study (20) examined the cost-effectiveness impact of 

generic drug entry using two approaches to Bayesian net benefit regression analysis. One 

approach pooled the data from the pre and post-entry periods and used uninformative 

priors to estimate the regression parameters.  The second approach proceeded in two 

steps.  In the first step, the authors assumed uninformative priors for the regression 

parameters and updated these with data from the pre-entry period.  In the second step, the 

authors used the posterior distributions generated in the first step as empirical priors for 

the regression parameters.  Information from the post-entry period formed the likelihood 

data and was used to update the parameter values.  At a willingness to pay of $US5000, 

the probabilities of cost-effectiveness for the four non-generic drugs were 96.7%, 77.6%, 

96.3%, and 97.0%, respectively, in the pre-entry period in the pooled analysis.  These 

probabilities reduced to 36.7%, 62.7%, 33.0%, and 60.1%, respectively, in the post-entry 

period.  The probabilities became 94.1%, 71.9%, 89.1%, and 92.1% in the analysis using 

the pre-entry data as a prior to update the post-entry data.   

 

In O‟Hagan, Stevens and Montmartin (18), the only substantial aspect of prior 

information was in regard to the true mean effect.  When an informative prior was used 

for the effect measure the cost-effectiveness acceptability curve was uniformly higher 

than when a weak prior was used.  On the basis of the weak prior the uncertainty 
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associated with the decision was much greater, although in both cases the probability of 

cost-effectiveness was greater than 0.50 for all willingness to pay values.  To test the 

robustness of the conclusions to changes in the likelihood, the authors replaced the 

assumption of normally distributed costs with lognormal distributions.  Quite substantial 

differences in the cost-effectiveness acceptability curve were observed, especially for 

small willingness to pay values.  While the probability of cost-effectiveness still 

exceeded 0.70 for almost all willingness to pay values, it never went beyond the level of 

0.90 that was reached when the informative prior was used. 

 

The sensitivity of the results to changes in the priors and the likelihoods is discussed in 

terms of changes in the probability of cost-effectiveness, as represented by the cost-

effectiveness acceptability curve.  This measure is chosen based on the frequency of its 

use among the studies as well as the relevancy of the information it imparts to decision 

makers.  However, when considering the impact of using a more informative prior 

distribution, estimates of the mean difference in costs and effects might be more 

revealing.  In general you would expect the probability of cost-effectiveness to change 

when using an informative prior, even if the point estimates of the mean differences in 

costs and effects stayed exactly the same, because the probability of cost effectiveness is 

a function of both the point estimates and the uncertainties.  Al and Van Hout (1) 

reported posterior mean differences in costs and effects of NLG 2149 and 0.098, NLG 

2567 and 0.137, and NLG 2564 and 0.158 (NLG = Netherland guilders), for increasingly 

informative priors.  The only other study to do so was O‟Hagan, Stevens and Montmartin 
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(18) which presented posterior estimates of the mean differences in costs and effects of    

-£574 and 1.24 (weak prior), and -£626 and 2.03 (informative prior).  From the 

perspective of a decision maker, the issue therefore becomes one of whether the primary 

impact of the more informative prior is to reduce uncertainty, or if it actually changes the 

estimated differences in costs and effects in such a way as to alter the relative cost-

effectiveness.  

 

DISCUSSION AND LIMITATIONS                                                                                                                                   

 

The Bayesian approach allows for the ability to accurately model the data and to 

incorporate additional information, in the form of prior distributions.  The use of priors 

based on previous data may be less susceptible to accusations of subjectivity than opinion 

based priors, but they may also fail to subscribe to the notion of a fully Bayesian analysis.  

Some Bayesians would argue that such an approach is not in fact Bayesian at all since no 

subjective beliefs are employed.(4)  Despite the use of more informative priors among 

some of the included studies, the most common type of prior found in this review remains 

the vague or uninformative prior.  This may reflect a deliberate attempt to give more 

weight to the data in the analysis.  However, if prior information exists, the use of 

uninformative priors seemingly negates a fundamental feature of the Bayesian approach.  

The ability to incorporate genuine prior information in addition to the data in the final 

analysis is compromised when uninformative priors are used.(23)  
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The rationale for choosing certain likelihoods and priors reflects the need to accurately 

model the data and to include all relevant prior information in the analysis.  Likelihood 

functions, chosen based on the need to accommodate specific characteristics of the data 

(e.g., skewness, dependence), together with prior distributions, are intended to represent 

the totality of available evidence.  Where the studies gave a reason for using 

uninformative priors (1,11,14,16,18,20,26), most stated a lack of genuine prior 

information.  However, one study (7) commented, “vague priors ensured that the trial 

results had a larger influence upon the analysis than the prior beliefs.”  Reasons for using 

informative priors included the presence of preceding trial or study results, which though 

the populations might differ, were viewed as being informative.  The study by Shih, 

Bekele, and Xu (20) justified their use of prior information on the basis of preserving 

some of the original cost-effectiveness information in decision making.                    

 

In a Bayesian analysis of patient level data, one would assume that any estimate of the 

impact of sampling variation would be conditional on both the prior distribution and the 

likelihood function.  The sensitivity of the results to changes in the priors and the 

likelihoods was considered in 10 of the included studies.(1,3,4,9,11,16,18,20,27,28)  The 

results suggest that a failure to include sensitivity analysis could affect the estimated 

uncertainty and potentially lead to inappropriate inferences.  Several authors (22,24,25) 

have recommended the use of sensitivity analysis when reporting the results of Bayesian 

analyses.  
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The results of this review are intended to provide, for the first time, a comprehensive 

description of the use of Bayesian methods to handle uncertainty due to sampling 

variation in patient level economic evaluations.  The review was limited to published 

studies identified from three databases and relied on a single reviewer.  However, the 

search strategy covered the largest databases and was designed in consultation with a 

trained research librarian.  The review was limited to patient level economic evaluations 

using information from a single source and did not consider decision analytic models 

using several data sources (e.g., Fryback, Chinnis and Ulvila (8)).   

 

Despite these limitations, we believe that this review serves as a reference to those 

engaged in, or considering Bayesian analysis of patient level data.  The decision to use 

Bayesian methods, rather than more traditional approaches, requires consideration of the 

relative advantages and disadvantages, in terms of informing health care policy decisions.   

 

Potential disadvantages of Bayesian methods in health care evaluation include a lack of 

expertise, difficulty specifying and potential subjectivity of priors, as well as the 

additional complexity.(22)  Future research on the choice and elicitation of prior 

distributions in practical applications would seem critical to ensuring the ability of the 

Bayesian approach to synthesize all available evidence is fully exploited. 
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POLICY IMPLICATIONS 

To the extent that important health policy decisions are informed by the results of 

economic evaluations, and that these results are subject to uncertainty, a comprehensive 

and robust approach is required.  This would include the use of all relevant evidence to 

inform decision makers.  The ability to combine informative priors with the data, as well 

as providing a natural way of handling uncertainty, suggests Bayesian methods may offer 

certain advantages over traditional methods.  
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Table 1.  Description of Priors for Effects and Costs 

   

Author(s)  Type of prior(s)
1,2,3,4

 

  Effects Costs 

Methodological Papers with Applications   

Heitjan 1999 Uninformative Uninformative 

Al 2000 Uninformative Uninformative 

 Empirical Empirical 

 Subjective Subjective 

Briggs 2001 Uninformative Uninformative 

 Empirical Empirical 

O‟Hagan 2001a Subjective Uninformative 

 Uninformative   

O‟Hagan 2001b Uninformative Uninformative 

 Subjective Structural 

O‟Hagan 2002 Uninformative Uninformative 

Hahn 2003 Uninformative Uninformative 

Heitjan 2004a Empirical Subjective 

   Uninformative 

Heitjan 2004b Empirical Subjective 

     

Vazquez-Polo 2005a Uninformative Uninformative 

Vazquez-Polo 2005b Subjective Subjective 

Negrin 2006 Uninformative Uninformative 

Bachmann 2007 Uninformative Uninformative 

Application Papers     

Fenwick 2002 Uninformative Uninformative 

UK BEAM Trial Team 2004 Uninformative Uninformative 

Shih 2007 Uninformative Uninformative 

  Empirical Empirical 
1. Uninformative: no information  

2. Empirical: data based 

3. Subjective: opinion based  

4. Structural: relationship based   

Total number of priors for effects = 22 [uninformative = 13(59%), empirical = 5(23%), subjective 

= 4(18%)].  Total number of priors for costs = 22 [uninformative = 14(64%), empirical = 3(14%), 

subjective = 4(18%), structural = 1(5%)].  Percentages rounded to nearest whole number. 
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Table 2. Description of Likelihoods   

  

Author(s)  Distributional form of likelihood
1,2,3

 

Methodological Papers with Applications 

Heitjan 1999 (meanEffects, meanCosts)~Multivariate normal 

 Large sample approximation 

Al 2000 (meanEffects, meanCosts)~Multivariate normal 

 Large sample approximation 

Briggs 2001 (meanEffects, meanCosts)~Multivariate normal 

 Large sample approximation 

O‟Hagan 2001a (Effects, Costs)~Multivariate normal 

O‟Hagan 2001b Effects~Binomial 

 Costs|Effects~Lognormal 

O‟Hagan 2002 Effects~Weibull 

 Costs~nonparametric 

Hahn 2003 i.Effects~Normal 

   Costs~Normal 

 ii.Effects~Normal 

    Cost components~Normal 

 iii.Effects~Normal 

    Cost components~other distributions 

 iv.(Effects, Costs)~Multivariate normal 

 v.(Effects, Costs components)~Multivariate normal 

Heitjan 2004a Effects~Binomial 

 Costs|Effects~Gamma 

Heitjan 2004b Effects~Weibull 

 Cost|Effects~Gamma 

Vazquez-Polo 2005a Effects~Normal 

 Costs|Effects~Normal 

Vazquez-Polo 2005b i.(Effects, Costs)~Multivariate normal 

 with probit model for effects 

 ii.(Effects,Costs)~Multivariate normal 

Negrin 2006  (Effects,logCosts)~Multivariate normal 

Bachmann 2007 i.Effects|Costs~Binomial 

   Costs~Gamma 

 ii. Net benefit~Normal 

Application Papers   

Fenwick 2002 Not Specified 

UK BEAM Trial Team 2004 Not Specified 

Shih 2007 Net benefit~Normal 
1. (effects,costs): effects and costs determined simultaneously, 2. cost|effects: costs depend on effects,  

3. effects|costs: effects depend on costs.  Total number of distributions = 29 [multivariate normal = 9(31%), normal 

= 9(31%), binomial = 3(10%), gamma = 3(10%), weibull = 2(7%), lognormal = 1(3%), other = 1(3%), 

nonparametric = 1(3%)].  Percentages rounded to nearest whole number.    
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Table 3. Presentation of Uncertainty and Sensitivity Analysis  

   

Author(s)  Presentation of Uncertainty Sensitivity Analysis
2
 

Methodological Papers with Applications 

Heitjan 1999 95% Credibility Interval ICER No 

Al 2000 95% Credibility Interval ICER Prior 

  CEAC   

Briggs 2001 CEAC Prior 

O‟Hagan 2001a CEAC Prior 

    Likelihood 

O‟Hagan 2001b CEAC Prior 

O‟Hagan 2002 CEAC No 

Hahn 2003 CEAC Likelihood 

Heitjan 2004a 95% Credibility Interval ICER Prior 

  95% Credibility Interval INHB   

  CEAC   

Heitjan 2004b 95% Credibility Interval ICER No 

  95% Credibility Interval INMB   

  CEAC   

Vazquez-Polo 2005a 95% Credibility Interval ICER Likelihood 

  CEAC   

Vazquez-Polo 2005b CEAC Likelihood 

Negrin 2006  CEAPF
1
 No 

Bachmann 2007 95% Credibility Interval ICER Likelihood 

  95% Credibility Interval INMB   

  CEAC   

Application Papers 

Fenwick 2002 CEAC No 

UK BEAM Trial Team 2004 CEAC No 

Shih 2007 CEAC Prior 

    Likelihood 
1. proposed as an alternative to the cost-effectiveness acceptability curve when considering more than one 

measure of effect.  2. refer to paper for description of priors and likelihoods.  Number of presentations of 

uncertainty = 24 [cost-effectiveness acceptability curves (CEAC) = 14 (58%), 95% credibility interval for 

incremental cost-effectiveness ratio (ICER) = 6 (25%), 95% credibility interval for incremental net 

monetary benefit (INMB) = 2(8%), 95% credibility interval for incremental net health benefit (INHB) = 

1(4%), cost-effectiveness acceptability plane frontier (CEAPF) = 1(4%)].  Number of sensitivity analyses = 

10 [Prior sensitivity = 4(40%), Likelihood sensitivity = 4(40%), Prior and Likelihood sensitivity = 2(20%)].  

Percentages rounded to nearest whole number.     
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Figure 1.  QUORUM Diagram of Studies Considered for Inclusion 
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Supplementary Table 1. Search Strategy   

 
DATABASE SEARCH STRATEGY 

Ovid MEDLINE(R) In-Process & Other Non-

Indexed Citations and Ovid MEDLINE(R) 

<1950 to Present> 

 

1 Bayes Theorem/ (7604) 

2 (Bayesian or WinBUGS).ti,ab. (7744) 

3     (Baye$ adj3 (analy##s or decision$ or 

estimat$ or forecast$ or method$ or predict$ 

or theor$ or uncertai$ or simulat$ or net or 

sensiti$ or probabil$)).ti,ab. (5091) 

4     or/1-3 (11069) 

5     *economics/ (9551) 

6     exp "Costs and Cost Analysis"/ 

(133465) 

7     (cost$ or budget$ or economic or 

pharmacoeconomic$ or pharmaco 

economic$ or price$).ti. (78603) 

8     (cost$ adj2 (benefit$ or effective$ or 

minimi#ation or utilit$)).ti,ab. (51677) 

9     (econom$ adj5 (analy##s or evaluat$ or 

impact$)).ti,ab. (11481) 

10     or/5-9 (202891) 

11     (trial$ or stud$).ti,ab. (4692913) 

12     4 and 10 and 11 (160) 

13     limit 12 to english language (153) 

14     from 13 keep 1-153 (153) 

EMBASE <1980 to 2007 Week 45> 1      Bayes Theorem/ (5666) 

2     (Bayesian or WinBUGS).ti,ab. (5495) 

3     (Baye$ adj3 (analy##s or decision$ or 

estimat$ or forecast$ or method$ or predict$ 

or theor$ or net or simulat$ or sensitiv$ or 

uncertai$ or probabil$)).ti,ab. (3686) 

4     or/1-3 (7542) 

5     exp Health Economics/ (205516) 

6     Economic Aspect/ (68420) 

7     (cost$ or budget$ or economic or 

pharmacoeconomic$ or pharmaco 

economic$ or price$).ti. (49966) 

8     (cost$ adj2 (benefit$ or effective$ or 

minimi#ation or utilit$)).ti,ab. (45739) 

9     (econom$ adj5 (analy##s or evaluat$ or 

impact$)).ti,ab. (10396) 

10     or/5-9 (280087) 

11     (trial$ or stud$).ti,ab. (3655381) 

12     4 and 10 and 11 (192) 

13     limit 12 to english language (186) 

14     from 13 keep 1-186 (186) 

Cochrane Library NHS Economic Evaluation 

Database <Issue 4, 2007> 

 

1       (baye*)  

2       (baye* theorem)  

3       (baye* near/3 (analy**s or decision* 

or estimat* or forecast* or method* or 

predict* or theor* or net or simulat* or 

uncertai* or probabil* or sensiti*)):ti,ab,kw  

4       (Bayesian or WinBUGS):ti,ab,kw  

5       (#1 OR #2 OR #3 OR #4)  

6       (trial* or stud*):ti,ab 

7       (#5 AND #6) 
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Note: Methodological Papers with Applications refers to papers that used applications merely for 

illustrative or pedagogic purposes; Application Papers refers to papers whose primary objective was an 

economic evaluation, where Bayesian methods were used to incorporate sampling uncertainty. 

 

 

 

 

 

 

 

 

 

Supplementary Table 2. Description of  Included Studies  

      

Author(s)  Source of 

patient data 

Number of 

Interventions 

Effects Costs Type of 

Economic 

Evaluation 

Methodological Papers with Applications       

Heitjan 1999 Trial 2 Proportion Direct CEA 

Al 2000 Trial 2 Proportion Direct CEA 

Briggs 2001 Trial 2 Life years Direct CEA 

O‟Hagan 2001a Trial 2 Natural units Direct CEA 

O‟Hagan 2001b Trial 2 Proportion Direct CEA 

O‟Hagan 2002 Trial 2 Life years Direct CEA 

Hahn 2003 Trial 2 Natural units Direct CEA 

Heitjan 2004a Trial 2 Proportion Direct CEA 

Heitjan 2004b Trial  2 Life years Direct CEA 

Vazquez-Polo 

2005a 

Simulated 

data 

2 Quality adjusted life 

weeks 

Direct CUA 

Vazquez-Polo 

2005b 

Trial 2 Proportion Direct CEA 

   Change in visual 

analog score 

 CUA 

Negrin 2006  Trial 3,4 Incorporated both a 

proportion and a 

change in quality of 

life into a single 

analysis 

Direct CUA 

Bachmann 2007 Trial 2 Proportion Direct CEA 

Application Papers           

Fenwick 2002 Trial 3 Life years Direct CEA 

UK BEAM Trial 

Team 2004 

Trial 4 Quality adjusted life 

years 

Direct CUA 

Shih 2007 Individual 

Medicare 

claims data 

5 Proportion Direct CEA 

Abbreviations: Cost-Effectiveness Analysis (CEA), Cost-Utility Analysis (CUA)                  


