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is to generate 2™ sampling pulses (64 in the system

- _ " ABSTRACT
A review ofl Walsh- Spectral Analysers (WSA) using

direct and fast. transform methods 1is Dresented ‘A serial

‘processor is developed that uses 1ong shift reglsters to .

perforn a Hadamard transform. This is extended by adding
additional hardware to ineld coefficients -in dyadic and
sequency order. | Incoming data 1is thereby stored in a
permuted manner, fellowed by Sequential‘retrieval and

transfer to a Hadamard transform processor. This scheme is
faster than an earlier processor described.by. Geadah and
Corinthios. Also a new pipeline structure with identical.

- - -

stages is evolved.
The design df.a Micrdéﬁbcessqr—based Walsh-Bourier/,/

Spectral. Analyser is given in detail. It uses an off-the-

‘shelf single board microcomputer System 80/10 in conjunétidn

with a specdial purpose board. - The :iatter

a frequency multlpllcatlon module (FMM). _The'purp se of F

within - one cycle of the input 51gna1; this feature 1is
required to compute the Fouriér/WalsEi coefficients of a
periodiC's;gnal wit%out leakage error. 'The'new>FMM circuit
;s a substantial 1mprovement over earlier designs and

permits .a higher frequency of operatxon at a low clock
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frequency.
Two methods (one by Siemens and Kitai and.the other
by. Tadokoro and Higuchi) of Walsh to Fourier conversign are

reviewed.. The convgrsion process 1is*®compared "with the

-
1]

C?oley-Tukey FFE. methods with respect to the n
‘multiplications, meméry requirements,'and effects of
word length in-coméutgt;on. A _

| \The ‘Walsh to Fourier conversion _process is
/z;gzgizzted‘through_soﬁtware to obtain§64 sine and co;ine
components. The instriment is interfaced; to. a HP: 2647A

intelligent ér@bhic terminal for 'the display of Walsh and

Fourier coefficients.
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CHAPTER 1
INTRODUCTION
~In recent years there Has been, a growlng interest®in
the study of orthogonal tr é%;;ms in the area of digital
///;1gna1_proce551ng. This is prlmarlly due to the advances

made in the computer technology and special purpose digital

processors. Research efforts and application of such .

transforms include image and speech processing, selection in

pattern recognition [1,2,3,4,51, analysis and design of
communication systems [6], generalized Wiener filtering [ﬁ]
and spectroscopy. o - ) " .

. The basic‘idea behind the study of complete systems
of orthogonal functions {¢}, is that an& function 2(t)
defined in an interval (0-T) which is square summaﬁle within
the interval can be appfbximated by means of an orthogonal
projection on the subspace M, spanned ‘by the first n

elements of {¢},
!

x(t) = x_ =
. 'n K

L=

1

with thedbroperty that the mean square error can be made

arbitrarily small by choosing n suff1c1ent1y large [81 

{Bessel's inequality). ¢k in Eqn. (1.1) is the kth member

x(t) ) 6> 8 (1.1)

K
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' of the set ' {¢}. The inner product is defined by,

1 T :
x(t),4(t)> =7 J x(t). s (k) dt
8]

The important advantages of a function representation
by orthogonal series expansions are: (i) there are many:

orthonormal set® for which formulas for the nth element of
. . a

the set have been workeéd out and are given in standard

texts, (ii) the invariance of the inner.product, and (1ii)

the ease of extending the projection fto a subspace M .

without the need to be wholly recomputed if the projection

on~MStis known; only <x(t}, ¢n+l> need to be evaluated. ﬁhe

. .
signal representations of various orthogonal transforms are
-

judged in terms of the mean square error criterion.’

]

The literature abounds with algorithms and machine

designs for the computation of the Discrete Fourier

_ Transform [24,25,26], and digital spectral analysers that

. ate based on Fast Fourier Transform (FFT) algorithms are

commercially available [27,28]. While a Fourier analyser
. "'-n___/-“sl’

permits the characterization of signals and systems in the

 frequency domain, an alternative representation in terms of

bi-valued orthogonal Walsh functions has led to ‘the Walsh

Spectral Analyser (WSA) which finds applicaﬁions for . the

following reasons:

1. It can be efficiently implemented on either genefal-

purpose ofr special—pufpose computers due to the

~a



<~ .
binary~ature of Walsh functions.

In certain applications, such as image processing

[11,' fast and computationally effibient Walsh

" analysis may be preferred over Fourier -analysis.

™

For band 1im§ted signals, a measured Walsh Spectrum

may be transformed to- yield corresponding Fourier

spectrmnf 'The‘total'process of Walsh Spectrum’

measurement followed by conversion to Fourier
spectrum 1is - faster than the Cooley-Tukey FFT
algorithm in situations where up to 64 data samples

are used [23]. For data lengths greater than 64,

" this method is superior to the FFT method in applica-

tions ‘where the number L of Fourier components 1is
relatively " small compared ‘with N. The 'numbef of
multiplications in that case 1is a@proximately NL/6.
A 64-point data analysis suffices in many applica-
tions such as amplifier distortion measurement, bio=-
medicag’ signal analysis, power—system spectral

measurements and some areas of pattern recognition.

This thesis deals mainly with the design of a

Microprocessor-based WSA using a fast transform algorithm,

. The approach followed is different from earlier instru-

mepiatioﬁ for -this purpose ‘[15,16,17] in that the ihput

-

sequence is permutfd using minimal LSI hardware, and t,

Walsh Hadamard Transfolm (FWHT) is implemented.

]
(!
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Apart f:ém the display, the instrument is.contained
eniirely within an off-the-shelf Intel System 80/10 wﬁich
consists of a cabinet cohtaining an B080 based singlé-board
cbmputer SBC 8C¢/10, a card cage'with ready—wiréd‘bus and

power supply lines for up to three additional boards, and a

power supply. The cabinet dimensions are 43.2 cm X 8.9mcm\

height, 50,8 c¢m depth (17 x 3.5 x 20 inches). Only_  oOne
1 o

additional specially-designed board .is used: It contains

circuits for trigger level adjustment, A/D conversion, 1K of

read-write memory, a freguency multiplier module (FMM) and a

direct memory access (DMA) contreller.

The FMM circuit {211 generates 64 equally-spaced

pulses within one period of the input signal, so that the
data window spans oqne cycle. The leakage error in the
Fourier spectrum measurement is made negligibly small.

" Another feature of the circuit is that it does not reguire a

high-speed clock for its proper functioning. The signal )

freqﬁency ﬁay lie anywhere with%n the range 0.2 Hz to 10 KHz
without any range switching. A measurement uses two cycles
of input'signal: the first being used for frequency
determination and the second cycle for data aquisition.
This is followed by processing of ‘24 msec durétion,‘to yield
the Walsh spectrum. )

Given the Walsh 'cdéfficienfé -of ‘the 'signal, the

corresponding Fourier coefficlents are obtained by way of a

.



. matrix multiplication so that both spectra are-available.

The Walsh to- Fourier conversion process uses the matrix

ok

]

mhltiplicationﬂ[ZZ],

al = K17F (7, (&l - 1.2)
(b) = k17! [F,1 (B - (1.3)
where '

[a] = {N/2 x 1) cosine coefficient matrix
bl = (N/2 x 1) sine coefggcient matrix
(B] = (N/2 x 1) sal coefficient matrix: -
[a] = (N/Z x 1) cal coefficient matrix
[K]_1 = diagonal (N/2 x N/2) compenﬁation'matrix
{Fa], [Fb} = (N/2 x N/2) convérsion matricesr for

cosine and sine components, :espectivély.
The conversion pcggg§s takes about 1 sec, most of the time
Seing devoted to software multiplication.’ |
‘ The -resylts (Walsh and Fourier components} computed
are in binary form. They are c0nvérted_into signed BCD
numbers and transmitted to a Hewlett Packa?d graphics
terminal type. 2647A with processing - capabflit& for
displaying numerical and graphic data. The‘Walsh/Fourieg
spectrum of a sinusoidal signal as displayed.on fhe,graphics

terminal is shqwﬂ in Fig. 1.1. ‘ .

# ‘ ' .
The instrument uses less than 2K words of program

memory (PROM) and 1K words of RAM. The System 80/10 monitor

is not’made use of so that space is left for additional 2K

\
r
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words of ROM, Also tw&gaﬁditional boards may be plugged
into the card .cage.. Thetsfstem therefore lends itself to
extension to include other measurements at low.cos£. The
use of a System 80/10 éackage and LSI coﬁtroller type 8257
for DMA were found to reduce development costs and time in a
significant way. |

Walsh functions and their properties aré introduced

in Chaptgr 2. . These functions are used in. different

ordé;ings, so there is the need to define the orderings and

to establish the relationship between them.

-

Numerous designs for a WSA are reported 1in the

k]

literature [9,13,14,15,16,17]. A brief review of the

existing designs is presented in Chapter 3. To aid the

. = -
description, - the WSA's are classified into direct and Fast

transfory type. Long shift registers are well suited to the
implemeé;atidn of FWHT. . Improved design techniques to adapt
the FWHT processor to yield the Walsh coefficients in dyadic

. Lo ‘
and sequency ordering are pregeated; they reduce the

processing time when comparec

Y

Also a pipeline architectfdre using’ identical stages is

to an eaflier method [17].

‘evolved.

Chaptef'4 deals with the organization' of the Micro-
processor. based Walsh-Fourier Spectral Analyser, A detailed
description is given of the design of each majér section

shown in the block diagram of‘the instrument.

[~ N
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The process of obtalnlng the Fourier coeff1c1ents

from the Walsh coefficients was flrst repor ted by Slemens
and Kitai [22] and more recently by Tadokoro and nguchl
(23], using a different algorlthm. The two methods are

v

comaared in Chapter S

‘The Walsh to Fourier conversion process ‘is compared,

with the FFT methods with respect to the memory reguirements

and the .effects of-finité'word length in addition to the

number of nmultiplications giveﬁ in reference [23].

-~

The software of the WSA is described with the aid of >

flowcharts in Chapter 6. Here the discussion is limited to

two special purpose subroutines, viz, WIFORM for the

computation of.Walsh transform and WFCON for the Walsh-to-

Fourier Conversion. Data structure used in the .system and

its effect on the accuracy of the fiﬁal-reshlts are

discussed. : . . o,
. :

The llmltatlons of the present de31gn and suggestlons

for 1nDrovement are given.

X

. ‘-".;1"'
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A CBARTER 2
WALSH FUNCTIONS: DEFINITIONS AND ORDERINGS
., “4
2.1~ Introduction ' . ;

A -
Numerous definitions, methods of generation ang

-."" . - [
- application of Walsh functions have appeared in the

literature. This éhapter is concerned with definitions and

the notations used. The definitions outliggd here find use

« in the design of Walsh fg;ctlons generator. The properties

of "Walsh functions that are necesSary‘to‘develoQ algorithms

- for tbe'computation of Walsh coefficients and the Walsh-to-

: . . : 5] . . s
Fourier conversion process are outlined. The significance

of different orderings of Walsh functions and ‘the
relationsHips between them are discussed. _These aid the
development of digital procéssors to.'yield coefficients in

different orderings. " o

& : '
: .

2:2  Walsh functions: Definition

s The set ‘of Walsh functions {@}g.was originally

J’,o“(t)”‘, = .1‘ B - 0 i t <1
’¢l.‘(t)~ _ 1 1_. o . q | .‘ ‘7‘. 0 _(:t % 1/2
o=l R RS
- T \ . L . i .
Y | |
e .
¥ _ | ‘ |
! | Y B

defined by J.L. Walsh in an interval (0-1) recursively [29],
et -] . inter ely

R P i Y
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10
25(t) =1 0< tZ1l/4, 3/4 <t<l
= - - 1/4 <t < 3/4
EHGCEE T © o a<tcl/a, 172 <t < 3/4
= 1i | 1/8 <t <172, 3/6 <t <1
22611y = koo e el »
Sey (B).= o (28) 0 < t<1l/2 ‘

(- k¥l JKioe1y 12 < £ < 1

n -—
2k N Yo b
ot (B =D r{f“A 20 < t°¢ 172
= (-1 K -.-ﬁ(z'c—l? 172 <t <1 ' (2.1)
\ &) |
where ..
k —' l 2' v ey 2n.—l' n = l 2' +e gy e

The functlons in the set {b} exhlblt alternately
- even and odd symmetry with respect to the mlddle of: the
1nterval< The even and' odd Walsh functlons are given

distinct - notatlon, cal(s,t) and sal(s,t) repectively {e].

B

There is a close connection between sal and sine functions

-
0

as wéll as between cal and cosine functlons. ?hey are

\ B - .
related to wal(k,t) by
o/

U}
]

.. < fcal(s,t) wal(k,t), k

sal (s, t) wal(k,t), k.= 2s-1 £2.2b)

-

where s is called the sequency [30]} that- is one half the

‘average number of zero-crossings per second.

USLng this- termlnology, Harmuth [6] developed a ~

recursive deflnltlon of Walsh functlons in the form of a

',dlfference equatlon

: , .
2s (2.2a)
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wal (2k + p,t) =.(rl)[k/2]+p {wal (k, 2(t +'1/4)_.> -

+ (1) K*P wal (k, 20t - 1/4)1 (2.3)

< 1/2; [k/2] represeﬁ%s the 'integer part of k/2.

This definition covers only the interval -1/2 £ t <

1/2;_periodic Walsh functions can be formed by duplicating

the functions over each successiveiinterval. The first 8
Walsh‘functions in the interval 0 to 1 are shown in Figqg.
ool |
Anotﬂer approach is to introduce Walsh Eunctions
through a définitioﬁ in;terﬁs of the binary répresentat}on
of indices. The_fo;mula due to Pratt, Kane ana Andrews [31]
‘{s

PG * k) by

' L i
N\ wal(k,t) = (-1)*t (2.4)
where k is an integer between 0 to 2™ yith the binary
! wo- ‘ o
representation . '
— T
K=ok K een ky kp)y

and t is a real number between 0 and 1 with the binary
expansion . 1 /
t = (tl t2 e w tl) .

Since ki = 0 for all i. > m, only the first m digits of t

appear in Egn. (2.4). Hence, wal(k,t) can be represented by

Y

/Vhere p=20or 1, 4=0, 1, 2, ¢.., wal (0,t). = 1 for -1/2 <
A ‘
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wal (k1) . | -cul . sal

T e L

——

Fig. 2.1 The set of eight Walsh functions

AT TN
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. : N
a 2™ bit string Wg, 0 < 3§« 2™, Choosing to denote 1 by

_Boolean 0 and -1 by Boolean 1, we have

k - W . . : :
= . A I cq .
Wj iil (31 31+l) km—1+l mod 2 (2.5)
j being an integericoqstructed by taking the first m binary

digits of t.

The set of 2" Walsh functions can be thus represented

- by a (2™ x 2™) Boolean matrix which is a useful‘represeﬁtaf

tion in the computation of the Discrete Walsh transform.

‘The Boolean matrix can be considered as the sampled version

of t?é continuous'set of wal(k,t) in Fig. 2.1, the  samples

?

being taken at t = j/2m for j = e, 1, ..;, y R As an

example the Boolean matrix W for m 3 is given in'Fig. 2.2.
The expression within the brackets represents binary to Gray

code-conversion [32]. .ThuS‘Eqn. (2.5) becomes

k -

Wy T P95 Ipein (2.8)

where g? denotes'gpe ith bit of Gray code representation of

K. The design of some Walsh function generators [33,34,35,

36] are based _on Egn. (2.6).

L]

2.3 Properties of Walsh Functions

The properties of Walsh functions which can be

.

established using the -definitions given before are:



e 45 T T R T A 3 S A T R o

Co
1 1 1 1 1
1 1 1 1 -1
1 1 -1 -1 -1
B I 1 -1 -1. 1
W =
1 -1 -1 1 1
1 -1 -1 1 s
1 5-1 1 -1 -1
1 -1 1 -1 1
L .

wal(0,t)
wal{l,t)

wal(2,t)}

wal(3 ’_t). ;

wal(4,t)
"wal(5,t)

wal(6,t)

wal(7,t)

; cal(0,t)
; sal{l,t)

; cal(l,t)

sal(2,t)

; cal(2,t)
; sal(3,t)
; cal(3,t)

i sal(4,t)

Fig. 2.2 Walsh-ordered discrete Walsh functions

form=3
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. , r,. .
lwhere i+ k=1I_.2 (lr+kr)mod2_and i,s k

(1) - walsh functions form a ‘complete ‘set of mutually
orthogonal functions in the unit “interval and ‘hence the
possibility of using them for signal approximation or

fepresentation.“ Due to the orthogonality of wWalsh

functions, the following relation applies:

1 0 k#i
.5 wal(k,t) wal(i,t) dt = {(2.7)
C: 0 : 1 k=1 B

s

It can be shown that the product‘[W] [-ﬁ]T

is 2”™{1] where
[I] is the‘identityxmatfix. |
(ii) wal(k,J) = wal(j,k).f‘Hence W is éYmmetric;
(iii) The product of two Walsh functions yields anooher
Walsh function (closuro proporﬁyi ‘¢
wal(i,t) wal(k,t) = wal{(i@® k), t)

r v represent the rth

bit of the binary representation of i and k respectively.
As an example consider the multiplication of wal(6,t) and

wal(iz,t). Using the binary representation for 6 and 12,

one obtains 10 for modulo 2 additions

. 6 0110
+12 1100

10 1010

]

‘The multiplication of Walsh functions is associative:

[wal(i,t) wal(k,t)] wal(i,t} = wal(i,t) [wal(k,t) wal(%,t}]
waldéh functions farm a group wfth.respect_tqmmultiplication.

(A group [G,']- is

algebraic structure, where G is a set

s
; -+
-3

R S L

e
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" and ¢+ is a composition on that set such that the axioms of

associativity, c¢losure, identity, and inverses are valid

1371.) The inverse of an element in the set {¢}w is the

element itself; the identity element is wal(0,t).

)

2.4 Walsh and Fourier Series Expansion
;A'signal k(t) defined'in an interval (0-T) can bg
represented in terms of thg‘sequency oraéfed Walsh séries
according to

x(t) =
Kk

Il 18

B (k) wal(k,t) B (2.8)
0 .

where the kth Walsh coefficient B(k) is given by

| o _
‘B(K) = % 5 x(t) wall(k,t) dt (2.9)
0

Egn. {(2.8) can be.written “in terms of cal and sal

coefficients A , B in the form

x(t) = Ay + ©_ {Ag cal(s,t) + By sal(s,t)} (2.10)
s=1 ' '
where , -
AS =F.7 x(t) ca&l(s,t) dt (2.11)
o _ . *
1T : y
Bs =F /! x(t) sal{s,t) dt N {2.12)
5 x ‘

g‘Fourier series representation of the signal is given by

o
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;
a
x(t) = 5= +

[a, cos “F— + bk sin ;%531 (2.13)

i =28

-~

where cosine and sine coefficients ayp and bk are defined by

T 21kt

_ 2
a, = 7§ 3 x(t) cos T at . (2.14)
T
. 2 . 27nkt .
bk =7 é x{t) 51n‘—%—- dt N {2.15)
2.5 Ordering of Walsh Functions

b

Walsh functionsin three different orderings are used

[38,39,40,41]. The mathematical ‘nature of Walsh functions

- is such that no universally used ordering exists. This is

in sharp contrast to the complex exponential functions that
are always OJrdered Eywtheir frequency. For the complex
exponentials are characters of the group under modulo N
addition, which has a natural ofdering by arithmetic value.
Geométrically we may consider integers to be points on thé

real 1line, which has only one dimension and hence one

.ordering, On the other hand, Walsh functions are characters

of the dyadic group, which is' the group of binary vectors
under bit-wise addition modulo-2. The space formed by these
vectors, called dyadic space, has many dimensions but only
two points along each axis (0 or 1). Since there is no
natural ordering of the dyadic group, there is no single

ordérihg of Walsh functions. The three types of orderings

L )



used are: {1} segquency or Walsh, (ii) dyadic or Paley,

{ii1) Natural or Hadamard.

2.5.1 Seguency or g;lsh Ordering

18

and

This is the ordering which was originally employed by

Walsh, and is characterised by the fact that wal(k,t) has k

sign chang s in the interval (0-1). The number of sign

chandes is used as generalised frequency [30].

This

ordering resembles the ordering of sinusoidal orthogonal

functions with increasing frequency a is favoured by

o

‘researchers in most engineering applications\[42,43]}.

Fast algorithms for computing Walsh coefficients in

sequency‘ordering reguire data shuffling. Details are'given

a

in Chapter 3, where transform techniques are considered.

2.5.2 Syadic or Paley Ordering

-~
f .

(

This ordering was first used by Paley [7] when he

1
proposed alternatives to the original definition of Walsh.

Let the set of Walsh functions in dyadic order be denoted by

(o, = (Pal(k,t) )} ©(2.16)

Index k in -Egn. (2;16)‘represents the kth member in the set.

The merits of Paley ordering of Walsh functions are [44],

-

R Ty N T WL NUNE UL S
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1. ' Pal(k,t) has a simpler recursive defiﬁition:
Pal,(2k,t) = Pal(k,2t); 0 < t<1l/2
= Pal(k,2t-1); 1/2 <t <1 (2.17)
pa1£2k+1,t) = Pal{k,2t); 0<t<ly2 v
= -Pal(k,2t-1); 1/2 <t<l1 (2.18)

In contrast, the sign to be attached to wal{2k,t) and
wal{2k+1,t) must be determined by splitting k into two parts
2™ + i, 0 < i < 2™ and using

wal(2k,t) = (-1)}*1 wal(k,2t-1)

. . 1/2 < £ < 1
wal (2k+1,t) = (-1)* wal(k,2t-1) S (2.19)
2.  Pal(k,t) can be exXpressed as a product of Rademacher
Y fuhctions:
ki '
Pal(k,t) =  [rad,(t)] ©(2.20)
, | i ;
where
. n i
k = L ki 27; ki e (8,1)
i=0
Rademacher functions are square waves:
rad, (t) = sgn (sin(2i l278)1; i =1, 2, ..., 3 (2.21)
="3.,  Gibbs [44] showed that Walsh functions are eigen

solutions of .logical differentdial equations, and the
hjequation.that gives Pal(k,t) is simpler.

4,  Dyadic ordeting is - preferred in filtering

applications due to the existence of"dyadic convolution.

theory, analogous to arithmetic covolution used in linear
»

¢ -

]
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time-invariant system.
. 5. . “Yuen [45] computed the Walsh spectra of a large class
of'continous functions, including exp(t), sin(t), cos(t) and
several powers of t and compared each spectrum in.sequency
order with that in dyadic order. He showed that in general
the dyadic-ordeféd spectfum shows better convergence towards
the higher-order end. The good convergence property of a
dyadic "ordered .ﬁalsh Spectrum has some Significaﬁt
implications in the case ‘of function approximatidh. It'
means that an estimaté can be made regarding the magnitude
of the expansion goefficiéntsi'and certain hiéheg order
coefficients need not be computed. = The bounds on the
expansion have been derived by Yueﬁrﬁb;Q,

Paley ordered Walsé functions'aféhrelated to sequency
ordered Walsh functions accdrding to

Pal(k,t) = wallb(k}.,t] ' (2.22)

where\b(kj is Gray code to binary code conversionm of k [7].

.This is illustrated below for m = 3.

Pal (K, t} k b(k) ~ wal(b(k),t)
k=0 000 000 b(k) = 0
S 001 001 1
2 010 011 3
3 011 010 2
4 100 111 7
-5 10.1 110 6
6 110 100 4
7 111 101 5
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C.; .
- The formula for a Walsh- function in Paley order can be
written [7],

m
oo Kpeje1 Ji
i=1

5 Pal(k,j) = {(-1) (2.23)

L

k., j. are the ith binary digits in the binary representa-

i i

tion of k and j. <;

2.5.3 Natural or Hadamard Ordering ) N

A third orderlng called Natural or Hadamard orderlng
was proposed by Henderson: [89] . It has the advantage that
" the computatlon of a finite number -of - Walsh coefficients

(o

(normally an 1ntegra1 power of 2) from a given data sequence

is faster than that for dyadic dr»'sequency -orde¥xed
~coefficients. The algorithms used (and called Fast Wals
Hadamard Transform) are discussed in the next chapter.

" set of Walsh functions in this order

-

is related to the sequency ordered Walsh functions by [7]

) wal, (k,t}) = wallb(<k>) ,t] : : ‘(2.25)

-

where <k> 'is obtained b¥% bit'reversal-of k and. b<k> is the

Gray code to binary ¢ode conversion of <k>. For purposea of

illustration, Egn. (2.55) 17 évaluated for N

/

given below [7].

fely = {waly(k,t) g - (2.24).

8 and ‘is
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waly (k,t) ok | <k> . b<k> wallb(<k>) st]
k =0 _ 000. 000 o000 - b(<k>) = 0
1 001 100 111 7
2 010 | 010 011 : a3

3 20 11 110 100 '% e

4 100 . 001 001 1
5 101 . 101 110 . 6
6 1106 o011 0 }ﬁo 2
7 111 11 101 - 5

Y

The formula for a discrete Walsh function” in Hadamard order -

is‘given by 17]

m
| PR SR S
walh(krj)'= (-1) ' . - (2.28)

where k., and 3 are- the binary digits of k and i as used
- . . i 3 .
before. /
&

et i o g T
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) L . WALSH SPECTRAL ANALYSER . -

: .3.I , Concepts of the Walsh Spectral Analyser (WSA)

The purpose of the WSA 1s  to compute the WalshA

Yy i

coeff1c1ents -{B(k)} _of a 51gnal deaned in a flnlte.

interval (O—T) as the 1nner products of a set of orthogonal

Walsh functlons {wal(k t)} and the 1nput 51gna1 x(t), hy;
CB(k) =& f wal(k,t) x(t) dt SRR € PR
ST 0. . 3
- ’ . k = 0' ooy N'-'l B e

In the case of sampled-input signals;"ihtegration_in Egn.
(3.1) is replaced 'by summation. ,'if;there_are N uhiforhly
spaced samples in the interval (bfT);' Eqn.,”(3.lyfpcan_ be
'modlf;ed to | l
N-1 ‘ .

t walf(k, ) X( ) 7 . o (3.2)
=0 | ' i=0,3, ..., N1

B(k) =

Hi= .

i

.~ where X(Ti/N) is a sample of x(t) at the instant Ti/N.

'?ating‘the sampling interval T/N ae unity,'Eqn; (3.2)

' d . - ’ -~
~reduces to = - ‘ :
: &
. O - 1@, 1 ; .
o - , B(k) =g I wal(k i) X(l) - (3.3}
- 3 . ) -, .. L. .1=0 , ’
Q. s = a
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Varied aﬁbroaches are'f0110wedqto'obtain a finite number of

-

Walsh coefficients defined®by Eqns. (3.1) and. (3.3). They

are discussed in sections;3.2;-3.3.9 .

3 2 ‘Review of Walsh Spectral Analysers

3. 2 1 Analog Processors

Walsh Spectral analysers can be classified Entol;
either Analog or D1g1tal type depend1ng “on the nature of
.elements used in bu11d1ng the 1nstrument. Early processors_
.,were of the analoq type, for example the de519n of Gethoff;rﬂ.
”{46] uses an analog Shlft reglster to store N sampled values
‘whlch are comblned in an operatlonal ampllfler (ohe-for each

coeff1c1ent) to obtain the output coeff1c1ent as,ah nalog -

"A‘Olta"ge.J This process ‘is 1llustrated for B(l) 1n1Fig.'3.l.7

equency fllters. . .
- !

Arealetl e \ eratlon and for small data length But it is

.

not attractlve for waveform ana1y31s where many paral%el

¥
outputs ate de51red fronn the view- p01nts of accuracy

(paptlcularly at low frequenc1es), economy and reliability.

The complex1ty of dlgltal 1ntegrated c1rcu1ts {ICS) grows
»w1th tlme.. The advent of the Mlcroprocessor as a- general—
purpose ‘digital electronlc block, whose function is

' dete;ﬁined by programming, is revolutionary. We can look

atmuth‘ [6] employed similar methods- in theg{gesign of

Analog transformatlon is sultable foré?elatively'fast‘

ER I
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for. many technological innoéatibns to improveldigitél
circuit performance, -cost, ‘reliability,. and flexibilityy
qu frequency signai.analysis is not a problem with digital
techniques. These 'considerations  favour the choice of
digital techniques in theé desggn of instrhmentgtion,

3.2.2 Digital Processors |, ' N

Digital WSA'S a;e classified into two viz 1) Direct
method, 2) Faét Walsh Transformétion method. ‘BQFh:accept N
discréte quantized~ input éamples and compute walsh
coefficients according the Eqn.' {3.3):; but the comput}ng
<pnogedufes¢diﬁier1 20 3Tz |

Direct Methods, [9,13,47]. .

A direct type WSA is schematlcally illustrated ,in

Fig.” 3.2. Each input signal sample is multiplied with a

Walsh function of desired sequency {the multiplication
. i

reduces to that of determining the sign of 'the' result as

‘-":_ 7 . g
" Walsh functions take only values *1); the intermediate

results are accumulated in an adder/subtractqr.' To obtain W
coefficients, an N-ary Walsh function generator, N adder/
subtractors -are required. Walsh function jeneratgrs are

also requiféd for transmission of signals by Walsh carriers

and in signal synthesis uiﬂag inverse Walsh -transform

apparatus ‘and in real-time. Walsh . Spectrum measurements,
. o

K2
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X(31)

wal(0,i)

X —= P )
wal(l,i). ‘ . S

(% - . ______ B(2)

wal(2,1i) : :
. i [

| .

[ |

' I

1 L}

| T

X - ""\ L E— B(N-&%‘
wal(7,1)

.

Fig. 3.2 Schematic diagram of a N-coég;;:}ént

Direct-type Walsh Spectral Analyser
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Many. contributions :have been made t Waleh fundtion
generators [33,34,36,48], many of whichlhave@been reviewed
1507 .- o _ ' - )

A WSA of this type was first deeigned.bj Siemens and
‘Kitai {9, 13] and- recently' by Ashouri and COnstantinides
[15]7. Tne instrument developed by Siemens is de51gned to
yield Walsh spectral coefficients of periodic waveforms in
real-time. The computation takes ‘two cycles of input

signal; the first cycle is devoted to measure.the period of

.the input signal using digital. methods and ‘this period

information is used to generate Walsh functions during the

second cycle. An array of 64 Walsh functions are Qenereted
simaltaneously, using a hazard-free type generator [36].
The generator is clocked by 64 pulses generated by a
"Digital Frequency Multiplier“ during the second’ cycle. The
input sample is multiplied by Walsh functions and the
"multiplied. outputs are accumulated, there being 'one
accumulator for each coefficient.® A special purpOEe
‘accumulator using counter methods is -wused. The digital

values of - samples obtained from an Analog to Digital

converter (A/D) are fed into the accumulator ipfja serial

. -manner, starting with ‘the least significant pl The

accumulator has the merit of giving the final resulf in the

~

'desired binary coded decimal form,

The frequency range of input signal analysed " was
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limited tﬁ-about 30 Hz by the-digitaL frequency multiplier
circuit. aAn improved multipiiér ko extend the frequency
rénge was invesFigated in the present wofk, and is deécribed
in detail in Chépteg_ﬁ." ‘

The design due to Ashouri and Constantinides [15]

follows an approéch which is similar to the above, but was -

designed to compute the Walsh spectrﬁm of Delta—sygma
modulated signals. Delta-sigma modulation is a method of

encoding an analog signal x(t) to give at the output L(t)

which' is bi-valued (*1) according to ‘the following

criterion:

- ) t

2 : t2 N
5 Soox(t) 4t = 5 L(t) dt (3.4)°
£ .

1 B3] o .

The kth Walsh coefficient for a delta—Sigmé:modulafgd signal
is then,

N-1 . -
B(k) = ¢ L(t) wal(k,t)
: t=0 ' '

(3.5)

Sincé;L(t) and wal(k,t) can take only two values *1, L(t)

wal(k,t) is realized QSgng ex lusive—OR_gates. The output

is accumulated in an, integratgr for coefficients in analog

form or in an up-down counter which can be realized by using
readily available counter ICS (for an example TTL Bi-

directional Counter 74191/74193) . i

Knauer_ﬁ47] proposed a Hadamard processor following-a

A ¢

7
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“r

similar parallel approach. His instrument computes only 8

coefficients and was used in video-compression applications.

This was considered to be one of the choices in the design.

of a Real-time Walsh-Badamard/ Cosine Image Processor. by
Hein and Ahmed [51].
A hybrid Real-time Walsh waveform analyser differing

in the final accumulation process from the previous

processoré was designed by Tanada and Samo [l4], using'both'

analog and digital technigques. Assuming that a N coef-
ficient representation of a signal defined in.a period (0-T)

is desired, the time interval is divided into N equal parts.

The average value of the signal auring each sub-interval 4@

is obtained by analog integrators and transformed into a .

\

pulse. The pulse width (duration) is given by

D,, =.h aa (1 + X2 IR & )

where 0 < h < 1;§k and E and h are constants. For example,
x(1) = -E; 0 and +E corresponds to time widths.Di+'= 0, hae
and 2hae., A reversed quantity for -x(i) is necessary for

multid@icatiqn with Walsh functions. This is represented by

r- _ ‘ . x(i) — _. ‘ -
Di- = hae (1 - T—) = 2hae Di‘l" (3.7)
that is, the time width D;_ can be obtained from a pulse of
width 2hae by dividing it into Di+ and Di-' With a pulse

sequence P, consisting of D4 with a logic duration of 1 as

its width and another pusle sequence N, consisting of D;_,

Pl
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nmulfiplication can be performed by exclusively selecting

either of the seguences accor ing to the sign of Walsh

function. Representing +1, -1 pf Walsh functions by logic O

o g B .
and- 1 respec ively, the tiplication can be stated as
follows:

If a Walsh function assumes logic 0, select’ Po:

otherwise select N for the summation process. The pulses

o]

interval are combined to get a pulse train alk)

corresponding to the kth Walsh coefficient, el
"N S . .. .
a(k) = ([P, wal’ (k,ik] U [N, wal’ (k,1)1} (3.8).
i=1 , .

where wal'(k,i) is the digital representation of Walsh
function wal(k,1i) with the ‘mapping mentioned earlier. . The
output pulse _train a(k) délivered by the multiplier is

transformed into an analog voltage representing the Walsh

.

coefficient B(k) by.an' adder consistiné of high-speed
current swiiéhes with an integrator connected ;to them.
Alternatively time widths D;, can be ‘qpantized Yith a
sufficient number of clock pulses and the analyser can be
‘constructed ‘with only digital circuits after time-width
transformation.’ pantization of time width introduces
7 errors in the ffgjz ;omputed coefficients; "the error is

" inversely proportibnal to the clock £frequency used in the

process. ~The summation in Eqn. (3.8) can then beaffected

/ ‘ .
P_. and NO selected on the above basis during each time‘



avoided.

‘and -no data is lost.
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- “

using only up-down counters, similar to the  earlier
processors discussed, and two's complement arithmetic is
The direct methods perform N arithmetic operations

(only additions or subtractions) for each coefficient (Egn.

(3.3)); a total of N° operations are needed for a N-coef-

ficient processor.  Fast ‘Pransform methods discussed in
sections 3.3 perform only Nlog,N arithmetic operations. As
a result, from the compptational point  of view, direct
methods a:é inefficient when compared witﬁ transform methods
and are costlier in terms of hardware. In the literature,
it is.often said that Diéect methods are faster and 0pe£ate
in "real-time". The'term "reél-é&me" is loosely defined in
practice.. In electronic systems, processes age*described as
occurring in real time, only wheﬁ they keep pace with the
chronology of events in the "real world" - Ai.e.» ip qhe

environment we perceive events. A processor can collect a

finite segment of data and process it; while processing the

" [previous segment it can acquire and store more data. This

permi?s.the generation of coefficients that are continuously

updatéd; - If the processor is fast enough, a. contiguous

-stream of data is acquired, producing a series ,(of

coefficients (each slightly "out of date" when generated)
7 A processor with this capability can

be certainly called a "real-time" processor and can aléo be

a5
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built using t%g Fast Transform approéch using less hardware.
Direct methods differ from the Fast Transform tnethodé in
that the formeg‘type delivers output coefficienﬁs instan-
tanecusly at the end of -data acquisition (zero response
time) while in the'}aﬁter case there is a finite lag between
ﬁie end of data acquisition and the délive;y of output
coefficients.--High cost of hardware and bulkier equipment
using the direct approach,may‘be justified in applicatigﬁs

requiring zero response time.

\

)r{jB Fast Transform Algorithms and their Hardware

F :
Implementatiﬁﬁg/

The use of Fast Fourier Transform (FFT) algorithms

for gpajfast computation of Discrete Fourier Transform is

‘well known. Wiéh the use o sh functions in engihéering
épplications; similar fa%t algorithms to compute Walsh
coefficients in jadamard/Nat, al order and sequéncy order
(hereafter'called Fast Walsh—Hadamérd ?ransform - FWHT and

Fast Wé}sh Transform FWT respectively) were developed. 4//

e

3.3.1 wWapsh-Hadamard Transform (FWHT)

.;It is well known that an eff}bieﬁt way to implement a
FWHT of ;TN ;gngth data°se?uence (N'= 2™ is to decompose
the transform matrix H(N) in Egn. (3.9) into/p‘matrices that

have many zero elements, thereby reducing the number ,Qf



~where B, (N)

34

arithmetic operations [16]. The FWHT is given by

B (N) = BON) X(N) .. (3.9)

(Nx1) coefficient matrix (vector) in Hadamard

&

6rde;
H(N) = (NxN) Hadamard matrix

X(N) (Nx1l) data vector

For example the decomposition for H(8) is as follows:

1 1 1 1
-1 1 -1 1l -1 1 -1
1 -1 -1 1- 1 -1 -1
‘ -1 -1 1l 1 -1 =1 1 .
H(8) = 1 1 1 -1 -1 -1 -1 (3.10)
\ : -1 1 -1 -1 1 -1 1 - )
, 1 -1 -1 -1 -1 1 1 _ .
-1 -1 1 -1 1. b -1 :
L
= GU . Gl * G2 . (3-11)
=P P P _ (3.12) T
=Q Q Q : . (3.13)
where
1- 1 0 0 0 0 0 0
‘1 -1 0 0 0 0 0 0
0 0 1 1 0 0 0 -0
G0 = 0 0- 1 -1 0 t] 0 0 (3.14)
’ 0 .0 0 0 "1 1l 0 0
0 0 0 0 1l -1 0 0
0 0 0 0 0 0 1 1
(Mﬂp 0 0 0 0 0 1 -1 N

-

o
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(3.15)

(3.16)

(3.17)

(3.18)
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" The factorization in Egn.

2™ can be generated by the

(3.11)

Hadamard xnatrix of order N =
successive Kronecker product of core matrik H{2) of order 2

-

which is the lowest-order Hadamard métrix-[7].
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W

v . 1 1] “. AU "‘_' :
cH(2) =| . | S (3.19)
1 -1 &

" (The Kronecker product U & R of two matrices is obtained by

‘ ] . . ‘ _ '
multiplying U with each element r;. of R and substituting

J - .
the mﬁltiplied matqiceslrij U for the elements of iy in R,)
For example, , A
- H(8) = H(2) ®H(2) @H(2) . - (3.20)

The computation of Walsh coefficients using the

j—

decomposition in .Eqn. (3.11) is known as Fast Hadamard-

ordered Walsh-Hadamard Transform .(FWHT).
The signal flow-graph shown in Figg'BQB illustrates
the computational process represented by Eaqn. (3.11). It

involves three stages (iferations)_of matrix multiplication

corresponding to G2’-Gl and'Gd in that order. _The sighal.

flow-graph in ‘Fig. 3.3 resembles td that of radix-2.

Decimation-in-Time FFT algorithms {24]; the multiplication‘

associated with the FFT algorithms -are absenf in Fig. 3.3.
The following remarks on (FWHT) can be made for the general
case N = me

1. The number of iterations required is N log, N.

]

2. The ith iteration induces 2i-1

i-1

partitions of.s%ze
op N data poiﬁts; o
3. Each iteration1¢onsis£5'of‘repeaped applipatiép of a
basic operation widely known as'Ehe.butte:fly—operqtion in
. , !

Digital signal\Processing.

-
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A butterfly opetation combines two inputs to give two
cutputs according to ] -
' X(1) = x(i) £ (1 + 8729 (3.21)
x (1 +8/23) = x(i) - x (i + N2 (3.22)

where = -i=0, 1, ..., (N/2)-1 /\

i=1, 2, «c., m = log2N

It is seen from Egns. (3.21) and (3.22) -that Ehtermediate

results computed in an iteration are stored in -the same.

memory locations in which original data being transformed .

were stored., . This feature, 'known as 1n—place computatlon,

does not. requ1re extra memory.

%

‘4, . The number of arithmetic operatlons for the process

15 N log2 N. (Note that arithmetic operatlons involve only

addltions and subtractlons-ln the case of FWHTv)

This algorlthm is adop&ed for software 1mplementat10n

of FWHT in a general purpose computer {7,52] due to the
1n—p1ace computational advantage 1the same~§pbroach is
adopted in a MiCroprpcessor;based Walsh-spectral analyser

developéd in theypresent work).

3,3.2 Pipe-line Processor

A pipe-~line hard-wired Hadamard Walsh processor wes‘
designed by Ashouri and Constantinides [15] using the FWHT
élgorithm according to the signal flow-graph shown in Fig..

3.3 and iS‘similar,Eo the one described by Goréinsk& and
& $ : , L1

- ' . L . C. o A . a
.

e oy e
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Works {25] for a pipe-line FFT processor. The structure of

'sw1tches are controlled by a ‘m-bit blnary counter C.

. succeeding stage ‘operates twice as fast as in the precedlng -\\

38
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the processor for N = 8 is given Fig. 3.4, It cgpsists of m
atages; each consisting of a shift register SRy of N/2%

bite, an adder A —'subtractor S and switches. SW.. " The

e okt i o A 2 S ST

Considering the operaltion of the first stage, 5W, is in

position 1. 'N/2 data points are entered sequentially into

SRy. At the (N/2 + 1)th sample, switches SW; change to

~position 2 and -X({(i + N/2) + X(i) 1is entered into'SRl. i

being the index of the data in the last bit of SRlT“ The sum &\

1
CX(i) + X(i + N/2) is formed by A; and entered into the ?

second stage. After N samples, SWy changes to the position . %

1; now -X(i o+ N/2)"+ X (1) from: G'Rl is -entered into .the

s

second Stage. These operatlonS‘are the ones defined by the | //5
iteration number 1 in Eti;/i>;. The operatlon of the other z
stages is 51m11ar, ept that the sw1tches in the i
i
i

stage; they perform succe551ve iterations of FWHT. ° The

binary output of the counter C identifies the order of the

LY

transformed output. it can be seen that there is a delay of

‘N sampllng perlods between ‘the instants at whlch the ith

eample in a data w1ndow of N polnts 1s entered 1nto the‘

proce550f and the 1th coeff1c1ent is avarlable at the

;output. A comparlson of this structure w1th/a new plpellne

structure is glven in. sectlon 3 3, ; i} .

-
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3}3.3 Parallel Array Processor

* L4

Elliot and Shum [16] designed a Parallel Array
Processor based on the decomposition éiven by Egn. (3.12}.

Their design uses two arrays of N registers (the word array -

. , " ' , . L x
1is used in the sense of representing storage gfj;ents for N
data points); one array for .the N ﬂnput data points and the

other for storing intermediaZe results. Each pair of result

'{registers_ is connected to a fixed pair of ' adders/

subtractors. To begin with, N data points are acquired in
the data regiétersl At thdn?nd-of data acquisition, fhe
data regiéters' outputs are clocked into the résuit
registers. The output of the aﬁdersﬂ%ubtractoré are fed

“back to the result régisters based'on‘Eqn. (3.12) and given

.by ; .

X(1) = X(3) + X(3+1) . i =0, 1, «v., N/2 = 1

X(i + N/2) = X(3) - X(3+1) 7

2i’ (3.23)
Th; process of feedqigk is répeated ﬁ times tgwoytain the
Hadamard ordered coefficients., Due to the  parallel
computation scheme used, its reéponse timé'iéﬁ;horéer_than
the previously discussed pipeline'stfucture. For example,64
coefficients cohld be obtained in about 200 nanosecondé with
TTL ICs.. This processor's response time is close to thap.of
the direct type processor. The parallel ‘structure with
‘increased hardwére (ﬁhen compared - to Pipeline or’ Serial
ofgahization)' can be justified in applications with fast

c o

41
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response time as discussed earlier.

3.3,4 Serial Organization: Shift-Register implementation

A processor which performs the butterfly‘opérations
of FWHT algorithms given {h Egns. (3.11 - 3.13) serially is

termed as a serial proéessor. (A pipeline and paraliel type

processors discussed earlier perform m_ and N/2 butterfly

operations at a time- respeéti%éif.) " 7his feature could

/ : .
result in a low cdst solution to the computation of FWHT and

may meet the requirements of many,éngineering applications.
The qrchitecture of a Serial Processor using long .shift
registers, based on Eqn:'(3;13) is illustrated in Fig. 3.35.

The computation according to-Eqn,l(3.13) ig to fetch two

operahds, rqpresentiga“ two data points separated by N/2

-

sampling ‘intervals for a butterfly operation from shift
N J . . . - .

' register memory, and to store the intermediate results in.

another memory.- Note that in-place computational advantage

of the algorithm in Egn. (3.11) is lost in this process, but

results in identical operations'in all iterations.:

The 9focessor consists of four shift registers SR1-4 .

»

of N/2 '‘bits 1long, an adde A, a subtractor S and. four

switchesw SW,, SWp, SW, and the start, all ‘the

c.

switches are in the position 1 jst step is' to shift

" the data X(i), i = 0, 1, .;.,'N—1 from external memory into

SR1 and SR2. It is assumed that external memory is used as

.~

3:.
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‘a buffer to acquire data, while the previous data is

processed in real-time environment. In non-real time
application, data can be entered directly into SRl and SR2.
After N shifts SWy changes to the position 2 and the first

iteration commences. Indexing the  data in SR1-SRZ from

‘right to left, X(0) and X (N/2) are ope:aﬁds to A and ‘S. . The

3 SR4 in that ordera

5

ew operands to A and

outputs of A and S -are shifted into SR

When S output is shifted into SR3-5R4, n

S are fetched by shifting the contents of SR1 and SR2.

after N/2 operations SW_, SW, and'SW change to position 2;
the roles of SR1-SR2 and SR3-SR4 are interchanged. The‘
operands to A and S are obtained from SR3—SR4 ‘and the
outputs of A and S are shifted into SR1-SR2. This is
repeated m times, transformed coefficients are outputted
after m.iterations. Ag the results are outputted segiailyf
new.data for processing can be inputted simeltaneouély.;/ .

Geadah and'Corinthios [17] derived a decomposition

for the Hadamard -transform with a view of implenentation

using a shift register type organigationuas follows

¥

: m ) . ) '
A\ H(N) = = P(N)D o (3.24)
. ; i=1,2,000 - .
where _
D= I(N/2) x H(2) & (3.25)
I(N/2)  I(N/2) oy
= - (3:25a)

. | 1(N/2) -I(N/2)
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where I(N/i) is (N/2 x N/2) identity matrix. Expression

(3.24) is identical to Q in Eqn. (3.13). P(N) is the

'ijdeal' permutation matrix, which operates on a vector of

dimension N according to

P(N) col [X(0), x(1) ... 2872 x(ny2) ... x(N-2) X(N-1)]
. _ o . (3.26)
= col [X(0), X(N/2), X(1), X(N/2+1) ... R(N-2)/2, X(N-1)]

9

The operations in Egn. (3.26)} are equivalent'to storing the
. .

" results of butterfly operatlons in Eqn. (3.25) sequentially.

In the digital 1mplementat10n, Geadah and Corlnthlos

" employed four shift registers, each N/2 bits long. The

. outputs of the adder and.subtractor resulting in a butterfly
. . :

“

"operation are shifted in two lower -shift registers. After-

all the butterfly operations are over in an iteration, "the

s
LY

results are permuted into upper shift registers according to

Eqn. (3.26). This could have been avoided, .if the results

- of the butterfly operation‘were'shifted sequentially into

the two lower shift registers cascaded as one register and

this set used as data memory for the next . 1terat10n as 1is

done in the processor in Flg. 3 5. Since the processor

shown in Fig. 3.5 involves only N shifts :in an iteration

. L4

. instead of 3N/2. shifts in [11], its processing time is

shorter than the latter by a faetor of‘l.s. ‘The hardware

.requlrements of both processors are roughly the same.

Since an add/subtract operatlon can be performed in a

y . . '—h

Y
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-(10x106) = 1.024 msec. This would permit real-time

processing at a throughput rate ofi 1 MHz.
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- few nanoseconds, the.processing time is limited by the speed

w1th which data can be entered 1nto shift registers. Let'fs

be maximum shifting frequency. The process1ng time Tp is

- then mN/f,. For £, = 10 MHz and N = 1024, T - 10x1024/

p

f

v

¥

The processor oganization shown in Fig. 3.5 can be

modlfled for plpellne proce551ng as shown in Fig. 3.6. It

(...

coh51sts of m 1dent1cal stages; each performing one

Fa

it@ration- in Egn. (5.13). The outputs of A and S ‘are
inputted to the next stage. To start with, assume that all
the switches are in position 1. The input/output of ‘A and S
are entered-into upper shift registers. The operands to A

and S are from lower ;hift registers. After N samples are

inputted, . the switches change to position 2 and the roles of

the uppér and lower shift registers are interchanged. This

organization speeds up the computatioh by m times, when

compared to a 51ngle stage structure. For example the pipe-
line processor could be used for real-tlme processrng up to
10 ‘MHZ throughput rate, assuming the maxlmum shlftlng
frequency of 10 .MHz as.before. |

A comparlson of the performance characterlstlcs of
the plpellne structure descrlbed here (called Type 1) w1th
that descrlbed in Sectlon 3 3. 2 (called Type 2) 1is given

below,
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The processing speed in a Type 1 processor is limited
by the time required to shifttone wordtfnd perform
one addition. 1In ije 2,” there is a cascaded delay

of m additions and m shifts. This suggests that Type

1l is faster than'Type 2 by a factor of about m.

In terms of hardware, both types use the same number'

of adders/subtréctors and-switches,'but Typé 1 uses
2mN memory words and Type 2 uses only N memory words.
Type 1 uées‘identical.moduies/stages; not so fo; Type

-

2

There is delay of mN'sampling periods between the

incoming ~ data and the corrgspohding outpu;

coefficients in Type 1 and N sampling periods in Type-

i

-2.

-

Fast Walsh TtanSform Algorithms'(FWT) and their.

Digital Hardware Implementétion

One impléhentation'approach is to first compute the

FWHT for which efficient algorithms and processors we;é

discussed in the preceding sections. Subsequently FWT

coefficients can be obtained using Eqn., (2.25). However,

since this approach involves Gray code-to-binary conversion

in addition to Bit reversal, it .is not a very efficient

~r

. procedure in the case of software implementation .in a

computer. - In the case of hardware implementation,’ this

F/
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involves more hégdware to permute the output coefficients as
well as'exfra processing time. 'This approach had been used-
in»flﬁ]; " C
A FWT algorithm due to Manz ESB] has a -signal floyé
g:aph as shown in Fig. 3.7 for N = 8, It-is essentially a
simple modlflcatlon of the FWHT signal flgw-graph The
first step 1is to permute the N dqta 901nts_1n bit-reversed
order. Example: For N.= 8, X(1) = X{(001), where index 1.is
representéd by 3-bit binary number is-exchangéd witﬁ X (100)
= X{4) due to the bit—:eversal.operation. This is a time
consﬁming,ope:ati&ﬁ {54], if implemented in software. This
can be efﬁédted through hardware during the data acquisition
phase with no increased'comﬁleiity in the circuits and 'is
followed i?’a digital processor built'in the preseht‘work.
The process consists of m .iterations and in ith
iteration data is partitioned into 21 -1 blocks of egqual 51ze
" consisting of N/2171 points. Two types‘of butter fly
'operations are performed altefnéging with biocks in_ an
iteration sfarting'withrthe.nofmal type'as used in FWHT.
The other type'is'called reversed bhﬁterfly‘operation'éna is

.illustrated in Fig.'3.8. Normal butterfly operations are

described by \\ ~ )

| (1) DX # R(Br2) T(3.272)
Xy pq (A1) - X (1+1) + Xk(i+3)"},f' (3.27b)
Kiepq (142) = X (1) - X (i%2) -+ (3.27¢)

v
.
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) (@ %eo1(3)
xk(%q)' xk+i(i+1)
N % (347 Xoy (42)
. i+3 (i+3)
Xk(; a_) = xkd -
: Fig. 3.8(2) Normal{butterfly
o . operati
1]

:

&
ITERATION ¥ 2

L]

X (ie1)

X, (3+2)

X, (1+3).

’ Fig. 3.8}(\:) Revérse butterfly
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-

ITERATION # 3

. B(O)
X s(1)
-1 .

-

' B(2)
X
— B(3)

X ~
5(5)

-1

- B(6)
X 8(7) i

'Fig. 3.7 FWT signal flow-graph for N = 8

operations

-
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|
C “f - I xk+1(1+3) = xk(1+l) - Xk(1+é) | (3/275)

However, reversed butter{ly operatlons are descrrbed by>

xk+l(1{ = . ] . (3. 28a) -
Kppq (1F1) = xk(i+i) - xk'i+a)é? (3-28b)
Xy (142) = Xy (i) * Xy (1+2) ;-4'(3'23°l
Xp4p (143) = xk(i) + xk(r+3) (3.284d)

h Except for these two dlfferences, FWHT and FWT have similar
structures. In the .case of’ software 1mplementat10n, this
‘calls for the 1ncorporat10n of two subroutlnes for normal
and reversed butterfly operatlons instead of one- 1n the case
’of FWHT:'asﬁweal-as prov151on for the chorce between the kwo
in a block. . This. would 1ncre se program memory and

‘.proce551ng t1me sllghtly,when compa _wrth the FWHT.
: . The pipeline processor in Figq. 3 4 could be. modrfled
~-'5% 1mplement the 51gnal =-flow graph in Fig. 3.7. The adder
'and ‘subtractor ‘unlts ‘fh Fig. 3.7 . are 'interchanged
per1od1cally.. For exampbe, the A and &oln the flrst stage .
do not | nterchange,rfin the second stage they are
'1nterchanged for every 4 inputs and 1n the third stage for

‘every two 1nputs. _ But . st111 one needs a b1t—reversal

permutatlon operatlon, before data is entered into the

Rl

'processor. There exists a permutatlon operator [56] 'such . -

that FWHT of the permuted data would yield coe£f1c1ents in

'sequency order. - This would e%lmlnate the need to

L ] . N - -. - ] :’._:,;f; . < .

. interchange’ the adders:and subtr;;gg;s in Flg. 3.7.‘.It also
. " - B 7 . . r:.' 4 5 ..f’". » L.

-
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avoids the use. of two types of butterfly operatlons
mentioned - earller .in the software 1mplementatlon. ~ The
qrmutatlon operator for thlS objective is developed in

Section 3.3.6. . In real-tlme appllcatlons, data comprising N

- samples is acquirefl first and stored in one segment- "of

memory and then the proce551ng "of the acqulred data

-,commences. Meanwh;le new data is acqu1red and stored in

"another segment of input memor "If one could store the

-;data 1n a permuted sequence, the FWHT would then dellver

-

sequency ordered coeff1c1ents. The extra’ tlme necessary to

pernute the FWHT coefficients from a processor is av01ded.

Also extra memory needed for permutatlon 1s ellmlnated.v'rhe

-performance characterlstlcs of?a processor u51%§ this

approach is compared ‘with that .designed by’ Geadah =and:

Corinthios'[i7] in Section 3.4.

-3, ;,6 P@rmutatlon Operator for Input Data to- Obtaln FWT

Through FWHT of Permuted Data. [56]

The set of N orthogonal ba31s Walsh functlons 19//f—_f

Hadamard/Natural'order (rows ofjﬁadamard matrix) are defined

[43] ases__k’ . .D'i:T:' ' ‘;;,Q’/’rf“ 2;“:

_ VU waly (3 = (1) K (3.29)
() '- k = 0{ l, vy N 1
' ” s w—‘;n'l"_‘ :‘_:q’,: o .' _" - 7 J = 0 '} l’ ‘ Ao ] N"l ’

ll where k,j ‘are integers between 0 and"” N-1 w1th blnaryﬂf;;¥
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. Hadamard orde® and index j refers to the discrete

expansions, CoL ' .

kpq 2V T+ K 2“"2

2m—l

k

: 5 o
eee K 27 v + ko 2

m—2 . L .8 . 0
2 - f ig 2% ... + 30_2

m-2,
3

]

-1 + Jpe2

- “kgo ¥ € [0,1]
S o - : ‘ m—1  . l

apd' SEEEE <k,3> Ttszo kg g
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LB
(3.30) -
3.31)
§ - (3.32)
A

index k in Egn. (B:ZSYHtefe:s to the kth Walsh function in

“a

-'sgmpiing period taken as unity.

time with

N-1 7/
B (k)-= I walh(hrj) X(J) {3.33) '
3=0 |
Let S ( ) be a permutatlon operator whlch maps @ set of
1ntegers {0, 1, <.., N- 1} one-to one’ 1nto itself (a o
'bljectlon mapplng) 1t is defined as follows.
g “ D s, (k) 4K (3.34)
™  Let them bit_bihary expan51on of k and k be,
K= kpy Kpop +o Kg =or Ko (3.35)
kK=K 1 kpog »o0 Kg oo k“o (3.36) (
k and K are related as follows
' ks-= km—l’ for s = p (3. 37)
= @ km_s_l; S € {l 2,.0 . rm_l}

The operator Syl® ) performs the bit reversal of

to Gray code conversion of k. From Eqn. (2 25),

" 'seen” that

the b1nary

it can be

.;;} B

W—y

e arimtma o
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B(k) = Bp(k) = Bp(5,(k)) T (3.38)
. N-1 .
e =. ¢ waly(k,3) X(3) (3.39)
R B ' . j=0 :
ﬂ?& . : ] L i
From the definition of waly (k,3) in Egn. (3.29) .
' 'walh(ijjl ='walh(k,§) _ | . {3.40)
using Eqns. (3.39) andr(3.40); ‘
' .. N-1 : .
. B(k) = I walp(k, 5,(3)) X(J) (3.41)
- g b
N-1 : 1 o .
= I walh(k,z) X(Sw {(2)) “(3.42)
2=0 ) . . . . .
S;l(f) is the inwerse operator and is given By-tssj
.o A _ _1 m"l r . .
) ' ' s (k) = ® SR [BR(K)] 2 (3.43)
W I
: : r=0 .
where : @, : bit per bit mod. 2 summation
 srf : shift right r bitd with left zero filled
. BR(*): Bit reversal operator.
Egn. (3.42) can be written as follows:
| P N-1 o |
B(k) = 1L walh(k,z) {2} - (3.44)
T Ta=0 . -
/ 5

%(g) is the permuted sequence and is giiven by

B x(h) ~ RS0 |
. 2 e {0,1,..q,8-1)

] .

- The permutation according to Eqp.,(3.45) is illustraﬁed bf'

Van'éxample for N = 8.

o i —— "

(3.45)

T TLYTE T e



) ) 5,08) =2 r | X(2)
0 0 0o 0 0o 0 0 0
1 0" 0 1 1" 0 0 4
2 0o .1 0 1 1 0 6
3 0 1 1 0o ‘1 o0 2
o 1 0 0 0 1 -1 3
5 . 1 0 1 1 1 1 7
6 1°1 0 1 0 1 5
7 1.1 1" 0 0 1 1

It is also illustrated graphically in Fig. 3.9.

o
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X{e)

X(0) Z(0) = X(0)
{1y  E(@) = XD
X(2) K(2) = x(3)
X(3) X(3) = X(4)

S X(4)  X(4) = X(1)
X(5) X(5) = X(6)
x(6) X(6) = X{2)
X(T) X(7) = X(5)

‘It will be

-

'seen later that mapping of X(%) to X(&) can b? achieved

readily through hardware wiﬁg no extra computing time.

3.3.7 Permutation Operator -for Input DPata to Obtain Coef-

ficients in Dyadic Order thrdugh FWHT of‘Permuted 

Data

Let Bd(k) denote ;heAkth Walsh coefficent in dyddic'

order. . Let SD(')'be a permutation operator’ﬁ?ich maps a set

'of integers {6, 1, ..., N-1} onesto-one onto

bijection mapping). It is defined as follows:

Let Csp) AR,

o [ ‘ ’ ) .
Let the m-bit-binary. expansion of k and K be

5\

k =k k k.

m-1 "m=2 *** “o’
R =k k 'S

m-1 "m-2 "°** To

.k and § are related by

ES %-km—i?s

Ean/

L]

itself (a

(3.46)

(3.47)

">(3:4sf

(3.48) is a bit-reversal operation. From Eqns. (2.22)

b ere i e e me = e e
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X(1)
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X(2) ‘

- X(3) "
E X{4) ‘o .
X(5). o
FX(G) -

X(7)

<
Fig. 3.9 Mapping of X(2) to X(2) for sequency
6r&ere§ transfo;'m' by Sw(.)
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* * ) b
and (2.25) Bg(k) = B, (R) . (3.49)
' N-1 -
\ = 1 waly(k,3) X(3) (3.50)
j=0 . . .
_using Eqn. (3.40) in (3.50), )
‘ .' ) N“l' ‘ ' S . .
By(k) = jiO wal, (k,S55(3)) X(J) (3-51)j
n el E L .
= £ walp(i, ) X(Sp (M) (3.52)
. =0 : . .

where SBl(°) is inverse operaﬁor equal to SD(') in this case.
. N"l ' o ~ i
= I wal, (k,2) X(%) .{3.52a) .

°

=0

1+ Ly e ¢t £ e s e

.whepé X{(%) is the permuted data sequence. The pe:mutation

- can be described by /[

X(&) + X(Sp(8)) {3.53)
\,{ =3 N ) L e {0' l' " ey N-l} ‘ .
o The permutation according to Egn. (3.53) is illustrated by
X an example for N = 8.
L 2 sa2) = & & XK(u°© -t(z)
0 o 0 0 6 o 0o 0 X(0)  X(0) = X(0)
-1 001 1 0 0_. 4 " X1 "x(1)=X(4)
- 2 0.1 0 0 1 0 2 X(2) X(2) = X(2).
| 3 ¢ 1 1 1 1 0 6 X(3) X(3)=X(6)
4 1 0 0 00 1 1 X(4) X(4) =X(1)
: 5 1.0 1 1 0 1 .5 .X(5) X(5 =ZX(5)
6 1 1 0. 0 1 1 '3 X(6) X(6) = X(3)
7 171 1 1 1 1 7. X(7)  X(7) = X(7)




o and

Its graphical representation is shown in Fig. 3.10.

N,

Fig. 3.10 Mapping of X(2) to X(&)) for dyadic

ordreded trans“me by SD(.) )
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3.4 . New Design Approach for a Digital WSA to Obtain Coef-

ficients in Natural, Dygaic‘and Sedueﬁcy Orderings

in sections‘-3.3.6 ang~3.3.7, the permutation
operators S {*) and S {(*) were derivea ﬁith the view that
FWHT of the permuted data seguence would yield output
coeftiqxents>1n seguency and dyadic'oroerings respectively.
This enebles one to edapt a FWHT processor for obtaining
‘transform coefficients iﬁ different orderings.f in designi;g
a dlgltal WSA, the follow1ng approach is consxdered
. 1. = Discrete samples obtained from a signal are stored 1n
tgg‘processo; memory in the permuted sequence.’ Example:

X (0) is stored in memory location 0 and X (1) is stored in

memory location 7 fo y order ffrOm‘Fid. 3;9). In

terms of hargware, ‘this iyvolves provtdingg'édd;ess
information for the memory locat M
‘semicondoctor Random Access Memory (RAM). *:
2. The oata-from RAM is retrieved sequentia11y€End is
‘sent to the serial processor descrlbed in section 3ﬁ8 4. In
the case of software 1mp1ementat10n the 'FWHT on the permuted
data is performed as discussed in section 3.3.1-.
The schematic diagram.of‘hardwa:eocalled a ?etﬁuting
Module to realize data shuffling according  to Eqnsg‘jB.AS)
and (3. 53) is described ,With the eid of Fig.' 3111. It

consists of an addreSS counter AC,,three tri-state gates Gl,

G2, G3 and a set of EXCLUSIVE OR-gates.u AC is m bltS long
. ~ v
i \ ' o

, ‘assuming that one uses
! \‘n »“




b e e

ADDRESS COUNTER (m bits) " CONTROL
AC
et fim-2| | i, 11 [o
Im-3 .
ISl lir

- ~ A
|m_1 -———— ‘o lm’_1 - “_I — -
5 o . _ 21| T -
_ 1 . Gl _ G2 o 1= . G3
T - T 3 T
ﬂ ; B — 1 B
o ‘ . | m- g ) m .
Tri-state . gates G1,62,63. MEMORY ADDRESS
o -
’ /

'Fig. 3.11 Special purpose Permuting Module
® ' ' L
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‘where m = _].og2 N. Let the decimal representation of AC

outputs oe i, From Fig. 3.11,1it pah be seen that inpur to
Gl 1s S, (1) and to G2, it is SDki). During the‘ dara
acqulsltlon phase, one of the three gates GI, G2 and G3 will
be_énabled by control circuitry; Gl for sequency ordered
coefficients, G2 forﬁdyadic ordered coefficients and G3.for
Natural Orderino. As a consedquence, data stored in the
memory would reoreaent X(1), X(l) and X(l) respectlvely
Durlng data retrieval for further processing in a serial-
processor descrlbed earlier, only G3 is enabléad. In the
case of computer implementation, PM could be consideredias_a'
kind of DIEECt Memory Access (DMA)' This is desoribedlin
detall in Chapter 4 where the Mlcroprocessor based WSA 1s
discussed in detail.

Weicompare the new approach with that proposed by
Geadah and Corinthios [17].. Their.algoritbms using shift
registers require a reshufflinq of the intermediate results
of an iteration}‘the reshufflings vary from iteration to
1teratlon and with output coeff1c1ents orderlngs. " This

process takes N/2 shift operatlons for N/2 butterflﬁj

operations and an additional N shlfb&operatlons for data

: reshuffllng in an 1terat10n. This slows down‘the processing

.speed by a factor of 3m/2(m+l) when compared with the new

approach. When pipelined for higher-inpd@ data rate, the

N -



new design uses similar modules:(assuming that one iteration

‘uses one module) in contrast to the use of dissimilar

modules in the case of [17]. ' .
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CHAPTER 4 : (\J
MICROPROCESSOR—-BASED WALSH SPECTRAL eANALYSER '

°

4,1  Design Principles
In 4& Mlcroprocessor based Walsh Spectral Analyser,
one. possible approach- to obtaln [B(k)} is to get

IBh(k)}ﬁ—% by performrng a FWHT through software - and

subsequently reorder By (k) stored 1n system memory accordlng -

consumlng reordering operatlon in software 1mp1ementat10n or:

extra- hardware required as stated in Chapter 3. The other

approach is to 1mp1ement ‘Manz" s alqorlthm [53] which

-

is- time-consuming -through software, so a2 hardware

lmplementatlon is preferred. Until‘ now the bit-reversal

operatlon has . been 1mp1emented ‘only through software in )
'Microprocessor-based signal processors [55]. In Section

3, 3.6, it 'is shown that if the data is permuted accordlng to

delivers {B(k)}k 0. The use of two kinds of butterfly

-

- to Eqn. (2.25). This method is not attractlve ‘due to time-—

requires a reorderlng of 1nputs 1n‘b1t-reversed order. This |

'-Eqn. {3.45), then FWHT of the permuted data sequence

operations of Manz's'algorithm is also avoided; the
>

. processing time and program length are. decreased due to the

reduced bookkeeplng operat1ons by using one k1nd of butter-
fly operatlon. The permutatron operatlon is reallzed
| | 63 R

LY ' - -

. By

e ]

. 1
e e e vt e bt W GRS -

b ——m e
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- through a DMA operation during the'data acquisition pﬁa§e.

In brief, the design principles are as follows:

(1) The input signal is samﬁled and converted into,

dlgltal values. The'acquired data sequence'is‘stored vt

in the system memory in a permuted order through DMA.
(2) After the completlon of data acqu151t10n, the FWHT ;s
performed accordlng to the sxgnal flow-graph of

Chapter 2,

4,2 - System Organization - ;

The .organization of a Microproceésor-based WSA 1is

G

.shoyn in Fig. 4.1. For descriptive purposes, the opefations

of the instrument are divided into four-distinct phases viz;

(1) Data acdu%fition; (2) Computation, (3) -Control,. and (4}

Display of results. The operating principles‘of'functional

blocks shown in Fig. 4.1 are described in the following

o

o o - S ¢
. _. “ ‘.‘ ’
4.2.1 Data Acqguisition .

Fast ‘transform . methods employed for - spectrum

computation accept an_ input data sequence of N samples and

m

» dellver N output coeff1c1ents. Normally N = 27, where m is :

an 1nteger. As a result, an on-line lnstrument for thlS

purpose is required to acquire 2™ Samples of  input signal

-,

o p i

sections. The circuit details of Epe_ blocks are‘dealt
‘with in Section 4.3. — . S

e ——————— e st b d
B By
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(SBC 80/10 u:'
- k9T Eqn. (3 45),

66"

T om

f

for one measurenent cycle.  For perlodlc 51gna1s, it [is

..

‘“ﬁe51red that 2 samples’ span an 1ntegra1 number of per;ods

to av01d leakage_ errors ‘in the computatlon of discrete

;VFOUILGI coeff1c1ents [19].4 Automatlc generatlon of sampllngf

pulses at this-”rate is realized - u51ng " the . Frequency

‘Multlpllcatlon Module (FMM) shown in Fig. 4 1. The FMM, in

conjunctlon w1th afievel cr0551ng detector (LCD),,determlnes

the perlod Tg pf x(t) d1g1ta11y ln the flrst cycle, after

the ptocess is’ started. U51ng the obtalned perlod

'information‘TS, equally spaced pulses at a repetltlon rate
of 2m/T are generated ‘in the ' second cycle. The new
frequency mu1t1p11er circuit [21] 1s descrlbed 1n Sectlon

+

4 3. 4. A multlpllcatlon faotor of 64 1s usedﬂln the system

E bu11t to obtaln .a 64-coeff1c1ent representatlon, of the.

3

SLgnal in a per1od The output pulses of: FMM form convert

.commands“ to -the Analog to D1g1tal Converter (A/D) employed'
to dlglt%ﬁ? x(t) An - elght bit AVD converter with output
~representat10n in two s c0mplement form 1s used-‘thls code
1&! well sulted to b1nary arlthmetlc used in the mlcro—

processor system. @ R T -_" _f

Te

"

. The output of the A/D 15 stored 1n Read—wrlte memory~

', in a permuted sequence accordlng

Assume that memory niocatlons Startang from 0000 to O0O3F

f hexadec1ma; 10r63-decrmal) are as 1gned for data Q:Xrage.

rtlng from a base address 1n ‘the RAM."”



The Gfloutput samnles ohtained‘from“the A/D conuerter are
' indexed as X(0000), 'x(00013, X(0002) , e K X(003F) (in 4
digit hemadeoimal 'representathn). In' +he cdase of,"
_sequential storage,'X(OOOO) would be stored'rn_memory“

'1ocatlon 0000,, X(OOOl)' in 0001 and so on.  The. memory
address for the _next sample storage can be obtained by a

' 51mp1e 1ncrement operatlon of an address counter.' ‘But when

4

.. the data is O. bt stored in a permuted sequence aCCordlng to

' FA 2 . . u
Ban, (3.45), hhe computatlon of memory address “for next

sample‘storage ls not straidhtforward. .For_example,.X(OOOl)
* should be sEored4in.memory location-that'wduld be'occupied‘
by X(OOZO) in the'case'of sequentiaL storage. Hence the .
address of the memory locatlon is to be obtained by addlngl
an offset dependent upon the data index to the base address
as shomn.beS?ijorjX(OOO}),‘ " B
-0000'0000“0060 oodofsg§§e address

. . + 0000 0000.0010.0000 Offset -
_ S 0000 0000 0010 Q000 (0020)

.

It can be seen’ from Egn. (3. 45) that for a data iength’64

re

T oglg the 51x lsbs of the offset are affected, the remalnrng

- bits are a11 zero.,« As a result, the addltlon operatloni

T T T T R T I A

s tiens o)

Aty

ot

" could be avolded by ch0051ng a base address w1th the s}x
‘1sbs zero.‘- The 51x lsbs of the address counter wthh 1s”
'1ncremented by one after the storage of *Each sample are

mod1f1ed by hardware as shown in Flg._4 2. S0 that_ﬁhe flnal

e P ! . Lo M
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- output contains the proper address for data storage. The

4 - _ .

DMA block in Fig. ‘4.1 has been specially designed around the
N - -

LSI perlpheral chip 8257 for this purpose. Hardware details

are descrzbed in Sectlon 4. 3 7

4.2,.2 Computation and Control 4 7
| The system-.BO/lb in Fig. 4.1 is used for the,
follow1ng purp05ﬁs in measuring Walsh coeff1c1ents. |
(1} To generate control and dé&a information so thatJ
external c1rcu1t blocks are properly lnltlallzed for
data acquLSLtlon -
(2} To perform the FWHr“according to the signal flow-
graph in Fig. 3.3. R :
J{3) To output the coefficients for display. .
These are realizeé throughueoftware residiug‘in
System s SBC 80710 program memory. ‘A brief-description of -
530180/10 and software detalls are 1nc1uded in Sectlon 4,3.1

ek L5
and Chapter 6. T . -

In addition to 'Software-Qenerated, command signals,

]
various other 51gnals such as the FMM start 51gnal, the

control 51gnals for enabllng trl-state buffers at appro-

prlate 1nstants, and the-DMA:termlhatlon 51gna1 etc. arep

derlved u51ng TTL c1rcu1ts that an mounted .on the special

.purpoee‘board. They Will be. descrlbed 1ater. u

. v . .
-~ . . . : -

b




_types of gqstructlons_[SS].

4.3 Hardware Design. ' -

4.3.1 System 80/10

. . %, .. ' . :
The - dlscuSS1on- is 11m1ted- to a. functional

%

description. 'Circuit deta1ls are glven in reference [571.

The SBC 80/10 is a complete computer system with

" central processing unit (CPU), system clock, read/wrlte'

memory, non-volatile Read-only memory (ROM) , Input/outpdt‘

(I/O).ports and drivers, serial communication interface, bus

lcontrol-logic and drivers all residing on a 6§.75 x 12 inch

printed circuit card. The System 80710 block diagram is

' shown in Fig. 4.3.

The 8080A contains -six 8-bit general purpose

. . [

registers and an accumulator. The six registers can be
. . .

- addressed individually or in pairs, providing both single .

aﬁ%ﬁ\fﬁble precision operators. The 8080A has a 16-bit

'program counter and allows the CPU to address directly 64K

-

memory locations. It'has a 16—b1t-§tack p01nter reglster

BRI e - I ~
-which controls the addréSsing‘of'a last’ in/first out stack

located w1th1n any portlon of memory. The stack.permlts;

almost unllmlted subroutlne nestlng.f Memory and 1/0 dev1ces

can be 1nterfaced through the 15-b1t \?dress bus and 8-bit

b1—d1rectlonal data bus.n ' . _ ~

The BOSOA 1nstruct10n set 1ncludes flve dlfferent :

r - A

N
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(1) Dpata Transfer type — move data between registers on

between registers and memory.

-

(2) Arithmetic group - add, subtract, increment or

decrement data in registers or in memory.

(3) Logical_group‘— AND, OR, EXCLUSIVE—OR, compare, -

:otate or complement data 1n reglsters or in memory.
(4) Branch group - <conditional or uncondltlonal Jump
- insﬁructidns, subroutine calllinstructlons and return
1nstruct10ns. . . ‘
.(5) Staek, I/O and Machlne control group - 1ncludlng I/O

1nstruct10ns as well as 1nstruct10ns for malntalnlng

the stack and internal control .flags.

The execution time of instructiops varies from 4 to a

maximum of 17 clock cycles; the clock frequency is 2 MHz.

(hexadecimal) to 3FFF.. Non—volatile read—only memo:y‘(ROM)

of up to 4K, 8-bit words in lncrements of 1K can be 1nstalled

in sockets provxded for thls purpose; addresses ‘are from

0000 to OFFF. - ROMs used in the system are type- 8708,

.

erasable and electrlcally programméﬁée.,, . .

:

Communlcatlon between external perlpherals and the

The 'SBC- Oéég'contains space forQ}K of B8-bits %gfdsr

e 8111 static RAMS; addresses of RAM are from 3COO

SBC—SO/IO is through 48 programmable parallel I/O 11nes via -

two 8255 Programmable Perlpheral Interface (P911 "-Also

ser1a1 communlcatlon 1@7 avallable wvia  an 8251 unlversal
. l' N . . w—/

~ 9
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Teletype is interfaced through this module. The address of Lo

73

-synchronous/asynchronous receiver/transmitter (USART). Y ‘;

)
ELS

parallel and serial I/0O ports are given in~Ta51e 4.1.

Table 4.1: I/0 Addresses of SBC 80/10

<)

'1/0 Address
" E4
ES
'E6
E7
ES -
. E9 ~ .
. oa L
 EB
. EC/EE*
ED/EF*

x Jumper selectable

1 k\h‘n -

Function
PPI1 . Port A. : 'jp-
PPI1 Port B '
PPI1 Port C
PPI1 Control Port
PPI2 Port A
PPI2 Port B
PPI2 Port C’
PPI2 Control Port

USART Data Port A -
USART Control Port

) X
2

e

' The SBC-80/10 has an external bus which includes

. system data and address buses and a clock. The DMA modulé’

_and the A/D converter are interfaced to the syétem SBC-80/10

- tﬁroughjtﬁié.bus. The bus clock which is derived-frbmﬂthe

oscillatot‘qf'the-processor'clock.is used in the FMM modﬁle;

no separate ‘klock is needed.

As’ the bus signals are.

'jrequiréd_fqrgthé special purpose circuit board, they are

listed .in Table 4.2. A HP Graphics ‘Terminal 2647a [59] is

F BN

B

b

N : -
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Table 4.2 System bus

PIN ASSICNMENTS FOR CONNECIOR Pl

{System Bus)

74

(COMPQNENT SIDE)

(CXRCUIT SIDE) .

PIN | MNEMONIC § DESCRIETION PIN | MNEMONIC DESCRIPTION
1 GND Signal GND -2 GND Signal GND
3 vGe + SVDC 4 vece + 5vBC
POWER » - 5 vee + 5VDC 6 vee + 5VDC
SUPPLIES 7 VDD +12VDC 8 VDD~ +12vDe
95 {. . VBB - 5VDC 10 VBB - 5VDC
11|" eup- Signal GND 12 GHD Signal GND
13 BCLK/ Bus Clock 14 INIT/ Initialize
: 15 BPRN Bus Pri. In 16 =
BUS 17 BUSY/ Bus Busy 18 = . : ‘
CONTROLS 19 HRDC/ Mem Read Cmd 20 . WG/ .. Mem Write Cmd
) 21 | - 10RC/ I/0 Read Cmd 22 10WC/ 1/0 Write Cmd
23 XAck/ XFER Ackdow 24 =
25 AACK/ Special 26 .
27 : - 28 N
SPARES 29 “30 * .
o 31 CCLK/ Constant Clock 3z -t
33 D> ‘ 34
35 = ‘36 =
37 [l .38 > - .
INTERRUPTS | 39 = ‘30 =
41 == 42 INTRL/ Interrupt request
43 ApRE/E 44 ADRF/ -
45 ADRC/ - 46 ADRD/ R
47 ADRA/ Address 48 ADRB/ +°  Address
ADDRESS 49 ADRB/ Bus 50 ADR9/ Bus
51 ADR6/ : 52 ADR7/ :
53 ADRG/ 54 ADRS/ “
. 55 |, ADRZ/ (1 ADR3/
52 ADRG/ 58 ADR1/
59 > . 60 [
o 61 [ 62 >
63 [in 64 ==
DATA 65 = . 66 >
67 -DATH/ 68 DATZ/ . X
. 69 DAT4/ Data Bus 70, DATS/ Pata Bus .
Chy L1 Tl . paT2/ - L DAT3/ ‘
LT 73 | o,DATO/ C 74 DAT1/ .
. 75 . GHD Signal GND 76 GND Signal GND
- 77 veal> ~10VDC . 78 veal> ~1GVDC
' |POWER 79 VAA -12vDC 80 VAA -12vDC
SUPPLIES ~ | .81 vce + SYDC 82 vece +: 5VDC
' - - 83 vee + 5VDC 8L vee + svDC
a5 GND Signal GND 86 GND Signal GKD

Fused by' Intellec™ MDS Bus.

W
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interfaced -through the USART which provides an RS 232C

interface for serlal I/0 data communication.

A software monltor for the system 80/10, contalned in
two ROMs B226 1is %vailable. This aids the development of
appllcatlon software w1th the following capabllltles.

“1) - it gives the user access to console 1nput and output

A

roitines. as well as paper tape input and output ‘control

software.:

i,

(2 along with a TTY,_it provides -access to‘memory and

.registers and has control commands to begln execution and to

display or alter the contents Qf memory. or reglsters. Ihe

system monltor resides 1in. two ROMS and only 2K of ROM is

available for the user. The system monltor is used ohly for'

program development. In its' final form, the instrument

d:l.spenswﬁy with the system monitor, leav1ng space for an

add1t10na1 2K of ROM space for user's program.

-

4. 3 2 Level Cr0551ng Detector (LCD)

The purpose of ICD 15 to generate a TTL-compat1ble

‘square wave - 51gna1 with period equal to that of 1nput signal
. x(t) for frequency multlpllcatlon purposes. Igﬁ%s designed

‘u51og a‘hlgh speed comparator LM31l1l (G4) as shown in Fig.

4.4(a). When the positive going x(t) crosses Vi as set by

potentiometer Pl, G4 output'goes LO marking the beginhing—of
. . . b B . A\ .

a peried. ‘The output goes HI when negative-going x(t)

P ~ oL T ’ B ' . B .
N L g
, . . - [ .
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" crosses V This is illustrated in Fig. 4.4(b). A 50 mV -

ref’
hysterisis is introduced into the circuit through feedback
resistors to-prevent false triggering by noise during period

" measuremrent.

‘4 3.3  Eréquency Multlpllcatlon Module (EMM)

Analog methods Wthh perform frequency multiplication
often employ phase—locked loop (PLL) technlques. However
. the response of PLL is: slow and .is not satlsfactory for low
frequency signals. Krlshnamurthy et al proposed an analog
method using an analog 1ntegrator, a set of comparators and
1ogic gates [60] « The principle of operatlon is explalned
with reference to Fig. 4.5 for a multiplication factor of 3.
_Ehe fre;uency multllecatlon system con51sts of a square_
wave generator SG, Integrator I, comparators CR1, CRZ and
excluslye-OR gates EORI and EQRZ,all connected as shqown in
'Fig; 4;5: . The tryanqular_waveform_at the output'of I is
compared'With'preSet reference voltages'VRi and VR2 equal to
,1/3 and 2/3 respectlvely of the trlangular wave amplltude in

CR1 and CR2.’ The outp

waveforms correspondlng to c1rcu1t
blotks "are diven in Fig. 4.6.A-_'The ”outputs are then

'ekclusiVe-ORed'in the gate\ EOR1" and finallyﬁthe.outpufhof -

_ gaﬁe EORl 1s exc1u51ve-ORed ‘With square wave A, " The output:
. t waveform F will have a frequency equal to 3 t1mes the 1nput‘

3

frequency. Though the above system 15 de51gned for flxed
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: fEquencf signais, it can be adapted to varying, frequency by
deriving the :éference voltage to the coﬁparatoriﬁfrom the
output of the Integrator I by using a peak éetectog [61].

. -The- above principle can be extended to realizg
frequency multiplication by a factor n by using"(n-l)
comparators with reference vo;téges of magnitude-V/n,'2V/n,
...,“(n—l)V/n .where v reéresegts the peak of -triangular
wave, The low fréquency operaﬁiin méy be limited by the
accuracy of the ih&egéator. The accuracy of '}dlse
positioning will be poorer than that for digital methodé.
Also the %umber of comparators increases with n'and may not
be attractive in terﬁs of - the ‘number of ICs used when
compared to digital methods. Tﬁe frequency tange Qf
operation'of EPLS system 'is lower than thé£ for'digitaf

methods.

There are- also digital méthods using rate multipliers
but these 'usualiy_ddo not dgenerate equally-spaced__pulses
[62]. )

"A digitél téchnique to produce equally ééaced,pﬁlses-
ﬁ}th fast response to changes in input’ frequency (one
pegiod)’was firsg developed by Siemens -and Kital (S} and
other systems using thg same basic principle have since been
reported [63;:6515 \These methods are restricted to low

frequency input signals by the maximum clocking rate for IC

example, 6.6 kHz maximum at a cldck freguency

'
-~
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of 55.MHz, and a ﬁulti?licatiqﬁ factor of 64 (output pulse
frequency:r 363 kHz) usihg Schottky TTL. Thé oufput
frequency is limited by the speed of TTL counter ICs. Due
to the finite set up timel for up/down mode control,

independent up and down counters are used ‘when operated wifh

a 55 MHz clock. In the new method [21] the maximum output

-"frequency is limited by the seftling time of a D/A converter

rather than by the speed  of digital components. Only one

up/down counter is used. In ‘the syStem built, a low cost

-D/A converter was used having a 1 usec settling time. This

limits the maximum ohtput pulse frequency to 660 kHz at a
clock f;equency of only 2 MHz, The maximum output pulse
frequehcy would be increased five.'times, uéiné the D/A
conééiters with 200 ns éettling time‘thak are n;w available
from leading' ménufactureré. Sipce_ the new method  has

evolved from the earlier one, we first describe the earlier

method and its limitations.

Earlier Method oo °
- ' ‘ ) .
~The basic principle of operation may be followed from
Fig. 4.7 which includes three binary counters. Counters F

cand I are up-counters, while down-counter DC is presettable

via its load input LD, Initially all three counters are

cleared and the clock is connected to counters F and I in

cascade. The clock generates pulses of period T where T <<

fs (Tg is the period of the input signal)., During the first

1
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cycle of the signal, the beg&nnlng of which is marked by a
» trlgger sxgnal from the LCD, the 1n§ut perlod is dete:mlned
in terms of accumulated clock pulse count in F and I. At
the end of the flrst cycle DC is preset by 1oad1ng the
_contents (I) of counter I; and ‘switch s;gs operated so that‘

the clock only feeds counter DC. “When the counter contents

(DC) reaches 2 ro, anAoutput pulsé is generated which also

reloads DC with\ During this phasé of operation, DC

receivef pulses at aNrate which is 2% times faster (k being

couﬁter I ducing the f&:st cycle, so there aie 2R uniforle'
spaced pulsés duriﬁg‘time'Ts. In Walsh spectral measurement
applications, a second phase of:huration Ts‘suffices (E.e;
the data w1ndow spans one cycle of the signal}.

. In processes of' this basic type, an error arises
because  résidue (F) in the counter F' is :ignorqg. The
6utput pulse period is ?o = (I)T lnstead of (I)T + (E‘)'I"/zk

LY

The timing error begween consecutive output pulses is

. : (r)r/2X
(1)1 + (F)T/2%

(4.1)

which is roughly -1/(I) maximum. This error is made small

by increasing the minimum count (I) = 3m-1 say, relative to
the maximum possible value of (F) vjé. k-1, Table 4.3
gives errors for different value 'of m, based on a

multiplication factor of 64; Also the maximum input



%
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Table 4.3 Timing Error of FMM

»

k m (bits) ‘Max. Timing Minimum clock Max input
. error ¥ . pulsd count frequency. for
. , _ 10 MHz clock
6 8  -0.763 8192 1221 Hz
6 10 - ~-0.192 : 32768 - 305 Hz

12 -0.048 131072 ' 76 Hz

frequency for a clock frequency of 10 MHz is given for each

- case,

The counter I -has a latched undérflow indicator at

4 -

its mth-bit to establish that (I), > 2™ 1 in any measurement.

-

“An overflow indicator is also provided. The maximum error

(=]

. in Egn. (4.1) can be reduced to ti/%f/xmagnitude halved, but

error which may be positive c‘)f negative) by initializing

13

/zbuntef F to h3lf range (MSB of F=1) 1nstead of zero [9].

An addltlonal timing error lS due to the finite clock

frequency which introduces a maximum error -T in the period

determination. .The normalized maximum timing error is"

L oo - 1 4 (4.2)
27 (I) + (FY ;

[

- and is negligible in comparison with Eqn. (4.1).

"The new-systeh; a block .diagram of which is shown in
Fig, 4.8, usggtthe information contained in the counter F so
as io ob?iéte the erro% given by Egn. (4.1). At ‘the end of_
the‘first qycle the.contents of the counter F and I give the

s
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‘Division by 2K yields an

integer pazt (I) and a fracti%pal part L (ﬁ)/z The
process 'is such that succe351ve output pulses are delayed

relative to those for the earller method by &, 2A, 3A, ces

“where & = T and 0 < v < 1. These succe551vely 1ncrea51ng

delays are achievéd by means oﬁ/an accumulating adder shown

. .
as A and ACC,-a D/A converter and a liﬁe§r'pulse duration

moddlatoz“(PDM}. " The up«counter I and the'down—gounter DC
of Fig. 4.7 are replaced by a’ presettable up—down counter I'
and a latch IL in Fig. 4.8 which serve the Ssame purpose as
before.

Principle of Operation e 7 oot

When initializing the instrument, switches S, and 5 .

b}

are in position 1 so that counters P and I are in'cascade.ﬂx.

The_: counter I 1is in -the up~dbunt mode, and all digital

storage devices'ere cleared. Before proceeding, we note
that if (F) happens to be zero at ‘the end of the first
cycle, 'there should be a zero delay in"PDM‘ It is not
practlcal to make a monostable circuit whose delay commences
at zero, so the PDM c1rcu1t'ls designed to provide a delay
between T f8 (F) = 0 and slightly Dless than 2T i.e.
(2-1/2k)T when (F) is maximum. The circuit uses delay A =ir
(1+v 3T, and td compensate for this, the PDM dircuit is

triggered when counter .I reaches one instead of zero in its’

;"
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down count mode. The one state of the counter I is detected
by Dl,ih Fig. 4.8. In the pulse delay‘gfocess, a carry CY
may be -produced by edder A, ﬁhen a CY coccurs, the counter
is allowed to count down to zero as detected by Do; this
corresponds to a delay of‘the triggering of the PDM by T
secs, as descrlbed shortly.

I The flrst phase, of duratlon Tgs is no different from
that of the system in Fig. 4.7. At its termination switches

v

Sa'and $, are changed to position 2, the contents (I)»0f. I

are latched in IL and counter I is changed to count down.

. At the beginning of the second phase, the output of adder.A

is (F). The digital output eva is converted into an analoé
voltage by the D/A converter, and applied to the PDM
circuit. ‘Counter I proceeds to count down ang oh reaching
one, the PDM circuit is triggered to produce the first

output pulse, the PDM delay being Ay ='[1+T]T- Accumulator

ACC is. clocked so that (A) changes to 2(F}, corresponding to

Y

d PDM delay ng = {142+]T and so'oﬁ. Overflow of adder A
first ?ccurs at che rth output pulse which satlsfles the
condition 4, = [l+r%]T.> 2T; then (A) falls to rw=-1, the
carry latch CY i8 set, and D, is enabled so that the triggef'
pulsé to the PDM-is delayed by.one clock_pulse; The process
of prédueing uniforﬁly-timed output pu;ses continues in thﬁs
way duriné'tﬁe second cycle of the inbut signal; adder A

overflows from time to time and the trigger pulse to PDM is
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N
delayed by timegagnterva{ ‘T whenever it dbéé.' The D/A
converter output during this cycle is a staircase voltage
which falls' in value whenever CY = 1. ' |
Regardless of the state of bY,rthe NOR gate in the

deteqpor circuit it low for a time duration T. *sThe trailing

~

" edge of this ouéput pulse is used to reload the counter I,

so although the PDM circuit is triggered at (I) = 1 when CY
= 0, reload takes place when (I) falls to zero. Likewisé,
when CY =1, the'zéload takes place when (I) falls to -1

{two's complement).

The duration of the rth PDM output pulse is given by
. ' 4

\
L {1+ {rw]mod l} T , (}.3)

Output pulses occur at times tl; tz,letc. from the instant

-

at which the second cycle commences: .
t; = H{I)-1]T + a4
€, = [(I) + (I)71IT + 8, =.[2(1)-1IT + &,

. oetc. Also with every overflow of the adder, there is a

cumulative delay T in the output pulse timing, so that in

general, the time of occurence of the rth output pulse is
tr = [r(I) - 1 + i CYr] T + L (4.4)



1-whe;e ir(bYr is the suQ\?f carries upto and including .’
From Egns. (4.3) and -(4.4) the interval between any.

two successive output pulses is,

(I)T + ¥T = (I)T + (F)T/2% (4.5)

- which is exactly the desired interval. The éxprﬁséiOns
(4.3) to (4.5) id Qre'the,time quantization errors in the
measurement of the petiod-TS of the éignal in the €first
phase due to the finite clock frequenc}, and errors dué to
noﬁlinearity and ‘imperfect aaﬁuétment oﬁ the PDM circuit.
It-is ;eeﬁ that .1 fills the role of a coarse digital timer,
.while F is used for fine timing adjuétmente Small errors in
the.D/A converter or in the PDM circdit’dis?urb the 6utput
pﬁlse positions slightly, but they.. do .nof give rise to
cumulative errors in output pulse timing.
Exa e |
To illustréte the functibning of the éirguit, the

following are assumed:

Clock frequency 100 KHz T = 10 us)
Input signal frequency 59.6.Hz (TS = 16,7785 @s)
Multiplication. factor 2% = 64 (F has-6 bits)

The required PDM characteristic for the above clockifg rate
is shown in Fig. 4.9. A unit increment in (A) gives rise to
a 5/32 wus 1increment in output pulse duration, and the

maximum pulse duration is 10(2-1/64) us < 20 us.
/02 _

-
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In this example, Tg/T = 1677.85 and since the
counters ignore ffactions, the;r contents-at the end of the
first cycle are (I) = 26, (F) = 13, so that v = 13/64. The
idea& outpqt pﬁlsé peribd is Ts764 = 262.16 us. Table 4.4
lists the output (A) of the adder and carry CY{ the PDM

output pulse duration 4 " and the times of 6ccurrence_tr of

r’
the output pulses, using Eqn. (4.4). The first eleven
pulses suffice; The fluéﬁuations of (a) aﬁd.the occurrehce
of the carry are evidentl_ The intervals between successive
output pulsesbare constant at 262.03 us, béing lo;‘by about

0.05% due to the clock gquantization.

Table 4.4 FMM Characteristics -

Output N _ .
Pulse No. (a) CcY Ar (us) tr (gs)
1 13 o 12.03 .  262.03
2 26 0 14,06 524.06 |
3 39 0 16.09  786.09 - -
4 52 ' 0 18.13 11048,13
5 1 1 10.16 1310.16
6 - 14 0 12.19" 1572.19" -
7 27. 0.  14.22  1834.22 .
8 a0 .0 16.25 .  2096.25
9 53 0 18.28 2358.28"
10 2 1 10.31 2620.31,
11 ‘o 12,34 12882.34

1s
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- Maximum Speed

The maximum output frequency’ of the system is
_determlned by the settllng time of -the D/A converter and the
-recovery time of sthe PDM-C1rcu1th The maximum durat;on of
the PDM circuit'outpﬁt pulse is Elightlyaless_than 2T, so if

- . N b
this circuit recovers in a time that is less than T, the

minimum value of (I) is 3. ' This assumes that the D/A .

o .

converter Settles within 2T. 1In the system constructed the-
settling time of the D/A converter determines the maximum
. 1

clock frgguency; A D/A converter type. 7520 with an

P \
operational amplifier type 350J was used. A clock freguency
Of 2 MHz produces a, maximum pulse output freguency of 660
Kﬂzé"Fbrrk = 6} the corresponding maximum input frequency

is 10.3. KHz.

The PDM c1rcu1t used provxdes an output pulse whosep

.duratlon is 1ndependent of analog input voltage variations

durlng the trlgge;ed state.' Thls_Le used. to advantage by

updating =, the‘ D/A converter during the triggered state.

' Figure -4.8 sho°§ tNat the PDM trlgger also clocks the

La

- o . .

accumulatqr; Carry RY is prevented from changing during
. . : : o

é%tly7D/A output updating since clocking of the CY latch
takes place only when an output pulse is generated

Input sggnal Frequenqy Range

Y

.'r ‘j The minimum countn(I) and the numher of blna;y stages
in{ I

‘determin the‘frequency‘range‘cover . Thus if I.angd-

—-}\‘ '

“

(YN
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“its associated modules in the system are 12 bits long, a
fregliency -range of 1365 to 1 in input signal is

accommodated’

.

Timing Errors
Timing errors between any two consecutive pulses are

‘due to the following:

% a) Error due -to the finite clock rate, given by Egn.

- (4.2). For {1y = 26, as in. the example, the max imum
error is 0.058% at (F) = 0. The maximum error at (I)

Ve

= 3 is 0.52%, which compares with the error .obtained

with the system described in [9] for'minimum {1y = -.

- 511.
b) ' The spacings between'consecutive output pulsés vary
-because of'nonliﬂeagity of the D/A converter and of
the PDM characteristic. Let these; combined, give a
tiﬁé error & iq PDM pulse duratioﬁ; The maximum

pulse timing error, normalised with respect to T,, is

§/(I)T and is usually negligible compared with the :

clock quantization error.

4.3.4"Frequency Multiplication System: CircditnDesctiption:

Functional Organization
T =

For descriptive purééses, the frequency multipliéa-

 tion system circuitry can be functionally divided into five
blocks as follows: - . 4

\..k.'

0
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(1) Control circuitrx , ) . *
(2) Fractional counter F and accumﬁlator'ACC
(3)‘ Integral counter I |
(4)  Digitally controlled Pulse duration Modulator
‘(5) Trigger and load pulse.generator.
The circuitrj details ot'eaoh;block are described in the

following sections.

‘Control Circuitry

The circuit, diabram .is shOWn in Fig}' 4.10. It

responds ‘to srgnals from a control panel or from a Micro-

computer "to which this system could be 1nterfaced and starts

"the pulse multiplication process. The Control BSignals are

-~

TTi'Eompatible.. -
“2.1 START: The neoatioe going edge of- the pulse
sets fllp-flop G5 and enables "Trlgger from level crossing
of input 51gnal" to Status Counter SC input through NAND
gate G6 and 1nverter G7. '
2.2 "Trlgger from level crossxng of 1n§uﬁ!)signal.
)" is. der1ved from the input 51gna1 whose positivel

going ™ edge marks the beginning‘of a cYcle- of the input

"signal x(t). ihis signal, gated by the output of flip-flop

G5 activates counter SC. .

- Control éirbuitry also incorporates a’ data multi-
plexer (MPXR) The counter SC is 2 blts long and 15 cleared

lnltlally so that 1ts*two outputs PHASEl and PHASEZ are both
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LO. The first trigger from level crossing of input x(t)

changes- PHASEl output to HI and marks the first phase of

" frequency multiplication process i.e. determination of the

period of inpuE‘signal'x(t). The second trigger changes

PHASE2 to HI and (PHASE1) (PHASE2) represents the second

phase of the multipiication process.

i N ’ . ’ Q\ -

The - PHASE2 signal is the selector -input to MBXR
consisting‘df TTL quadruple 2 tb ]l Data Selector 74157 (G9);
it'repreSents switches Sa and Sy shown in the block diagram

Fig. 4.8. A LO at 1nput S corresponds to p051t10n 1 of S

- and Spyin Fig. 4.8. MPXR in this position gates A 1nputs to‘

- Y éuéputs. HI on S corresponds to position 2 of Sa and Spi

MPXR gates' B inputs témx outputs in’ the position 2. The
four pairs of input signgls'are:

. a) system clock CP gated by PHASEL signal is applied
to 1A input; 1B input is héld HI. 1Y output CP1 férms clock
pulses to counter forminéf:least two .sighificént bifs of

fractional counter F.
- -b) system clock CP gated by PHASEl 51gna1 is applied
to 2A inpput; 2B 1nput is held HI. 2A input is logical

complement of 1A input. The corresponding 2Y output CP2

.§ends clock pulses to counter forming four most significant

1

bits of the fractional counter F. . .
/ c) The carry output of the fractional counter F

followed by'inversion is applied to 3A& input; 3R irput is
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held HI. The corresponding 3Y output €P3 delivers‘cloqk

puligs to integral counter I in up-count mode.

d) 4A input is held HI; system clock CP is connected

‘to 4B 1input. The corresponding 4Y output subplies clock

pulses to the integral counter in down-count mode.

Fractional Counter F and Accumulator ACC:

The circuit diagram is shown in Fig. 4.11, Counter F

+

is 6 bits long and consists of two cascaded binary counters

7476 and 74161, Ca&ry CPl3, generated when the 74161

~counter overflows, drives the integral counter I in the

up-count mode.

Accumulator ACC consists of a 6, bit TTL latch 74174
and serves as a regigter to storé the output of 6 bit adder
.A. The accumulator is loaded with the oﬁtput of Qdder A by
a'tfigger pu}se as exéléined‘laﬁer. The digital..output of
the adder (SB0-SB5) 1is 'éhe sum of - the coﬁéents of the
fractional counter (F) and the contents of ACC, Adder A
consists of a 7482 and a 7453 in‘cascade.

Integral Counter X

‘Thé circuit diagram of an 8 bit integral counter I is
shown in Fig. 4.12; additional cascaded stages may be added
if desired. Countup pulses to I are the éarry,output pulses

of the fractional counter F and ‘count-down pulses‘are'the

bd

clock pulses'CP. The contents (I) of the counter I at the.

beginning of second perioa'of'input signal x(t) are saved in

S
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an 8212 8-bit latch IL. PHASE2 signal which marks the

EY

beginning of the second period is used as clock to latch (I)

¥

intc IL. -

_ The 00000000 and 00000001 states of the counter I are’
aecoded a;‘negative going signals deéignated as ZERO and ONE
respectively by using Hex inverters 7404 and 8 input NAND
gates 7430. These‘signals are ;ombined with the-carry of
adder A to genefate the'trigger puise to PDM and the load
pulse to the counter I. '

Digitally Controlled Pulse Duration Modulator (PDM):

The PDM is required to deliver output pulses of
duration varying -from i to” 2 clock 'periods.‘ The pulse
duration is linearly related to ‘input voltagei_‘Referring to
Fig. 4.13, the PDM consisté-of D/A copvertet followed by

analog pulse duration mgdulator.

D/A Converter

A type AD 7520 10 bit multiplying type converter with

_current outéut is used. The reference voltage is -3.7 volts

derived from =5 ¥olts by zener diode D1 and resistor Ri.
The current output of the D/A is converted_to voltage by a
BB3507J suﬁming"operational amplifier AMP [66], A dc offset
vbltage from’potentiometer Pl is '‘also applied to the summing
amplifier through é 10K input ‘resistor R2. The summing‘
amplifier output is aéplied to the input of the analog pulse

duration modulato:.
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+ Analog Pulse Duraﬁion Modhlator

' Thé pulseAduration modulator uses a TTL monostable
multivibrator . 74121. Its operation is explained by
‘Feferring to Fig. 4,13. In the quiescent state the output
at C_, is BI (typically 4.8V). Diode D2 is reverse biased,
provided that V; is less than the voltage at the C,,, Pin.
Timing capacitor C is qharged_to a value (Vi -~ Voff) where
Voff is the voltage at the;Rexggcext pin in the gquiescent
state {typically 0.7 V). . When triggered by an input pulse,
the voltage Vg4 at\text goes LO (0.7 V) and the voltage a£
Rext/cext goes negative with respect to ground. Capacitor C
.charges linearly, the constant ‘'charging current f being
adjdstable by means of potentiometer P2. Whgn the voltage
-at Rext/cext reachgg the threshold value Vi, (typically 0.7
V), the monostable reverts back to -the guiescent state. The:
pulse duration Tp is given by

ITD ='CVin - C (Voff + Vd‘— Vth) (4.6)

The second term is canéelled by offsetting V,. in the
quiescent>state.

Oncqithe PDM circuit is triggé&ed, the duration of
the output pulse is not.affected by a dhange in Vy.. This
characteristic of _.the circuit i; used to advantage in
'éroviding an early updating' of the, D/A éoﬁver'ter: ‘output,
which now settles while the PDM is in the triggered state.

TQe'measured voltage -vs pulse duration characteris-

-
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‘tics obtained "for the PDM with C = 470 pf, R3 = 500 ohms and

I = 0.760 MAx is shown in Fig. 4.14.

“Priggering and Load Control

As explained previously, the PDM is activatea during
' each output period at one of the following instants,

(a) CY

0 and (I)y = 1

“(b) CY 1 and (1)'= 0

The trigger pulsés commence at the second period of' the
input signal x(t). This is realized by using combinational
logic, NAND and NOR gates as shown in Fig. 4.15.

The load pulSe to the integral counter I lags behind
trigger pulse by one clock pefiod T. Once Fhe PDM circuit .
is triggered, its output pulse is not éf?ected by a change
in its analog input voltage. This permits earlx,updgting of
the D/A converter by the leading edge of the PDM triéger
pulse. Referring to Fig. 4.9, it is also used to update the
accumulator ACC, rather than by usiné th output pulse.
Early up ating will, on occasion, affect the carry .from
| “adder A. A D-flip-flop is-therefore included; it is clocked
by the output pdlse, and pkévides the. tfigger control
signals CY'and CY. This .makes the width of the trigger
pulse to be T. Theuldad pulse to counter I is derived by
trigééring a monostable multivibrator from the t:ailipg edge
of the trigger pﬁlsg. Separaﬁe decoding circuits -for the

triggering and load pdlse-are avoided.
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-4.3.5 A/D.Converter _ \ _ - ) . .

rﬁ\The analog input signal x(t) 1s quantlzed by A/D
xcouverter ADC ' 82AG (succe551ve approx1mat10n, typei in 2.8
usec, It accepts bipolar’ signals within iS VOlts range and

~J
provides an 8 b1t digital output in complementary offset

&

- binary/two' s complement representatlon. The‘c1rcu1t d;agram

is shown in Fig. 4.16(a). - o .

The output pulses of FMM form convert commands. A

*

conversion ‘begins with the negatlve 901ng of a command

¥ ,pulse. Simultaneously the status output ST goes HI,

_Completion of a convers}onris marked.by ST returning to -

LO; a write signal is generated at this instant to write the

:output of A/D in the System 80/10 memory. The .timing
’dragram—ia'Fig 4, 16(5) illustrates the above seqéence of
events.' The output ofgﬁ/n is interfaced to the System 80/10
data bus through an_- elght-blt blpolar 8212 1nput/output.

port. - Thé mode of 0peratlon 1s determlned by the "DENB"

“

51gnal as seens%klow, which is. derlved by comb1n1ng DACK1 _'

apd»A/DR/ of DMA controller.

@

“.,  -DENB (/'STBJ DS1.DS2 =MD output
1.0 0 : o 0 - tri-state
0 R R 1° DATA in
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. LO . -
y STB ° M | ° |
t
. B2 oI, o, DATAL/
s e B3 L4 DI, - DI, DATAZ/
ECOM ADC B4 .DI4 8212 DO4 DATA3/ . -
—joff 82 ps p1; 631 po, _DATAS/.
e gy " G309 . DATAS/
CIN B6 DI, DO, , .
co - B7 I, Do, DATA6/
i
r ST B8 DI 8 903 DATAZ/
- D51  ps2 |
HI *
—— 74504 L "CC : Convert command
DACKI ' L, CIN : Clock.in
. . " G33 €O : Clock out
u DNEB ST : status
AW 7400 |
‘ STATUS

&

: Fig. 4.16(a) Circuit diagram of A/D converter

"2.8ﬁsec ]

Convert Command

< | [

s(k)

Status of A/D

S - u

WRT

Fig. 4.16(b) A/D converter Timing diagram

1]

’
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The *15V supplies required' for A/D .are derived from +5V
ﬁsing;a type 546 pual Power supply module [67].

,

, ) ~

4.3.6 DMA

| Thé DMA function is to generate, upon rEqué t mémor
addresses for the A/D data td be deposited direc ly in‘the
System 80/10 RAM. The Programmable DMA controller 8257
shown in Fig. 4.17(a) has four channels [68]. ip cperates
in three modeé; (1) DMA read, ‘which causes data to be
transferred- from memory to.a periphe:al, {2) DMA~ ﬁfite,
which causes data to be transferred from a peripheral to

memory, and (3) DMA verify, which does not gctually involve

the transfer of data. In the instrumentation built for WSA

- only channel 1 in mode 2 is used. Each channel includes two

sixteen-bit ;egisters;'(l) DMA address register, (2).
Terminal count register. The former is loaded with the

address of' the first memory location to be accessed (memory

- location 0400 Hexadegimal is used as the starting address) .

. The value loaded into the low-ordef 14 .bits of the terminal

count register specifies the number of DMA cycles minus one .

before terminal count TC output is activated. The two most
. ) . J . s .

significant bits of the terminal count registLr specify the

type of DMA opération as follows: ‘ Cm
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Bit 15 Bit 14 Type of DMA operation

verify DMA cycle
write DMA cycle
read DMA cycle
illegal

OO
OO

The 8257 registers are‘programmed by the system 80/10 using
1/0 instruct@ons, and are configured as'I/O devices with the
four MSBs of address éata as 0000 (llll on the system bus);
these four blts are decoded by NAND gate G34 to prov1de a-
chip select (CS) -51gnal to the 8257 ‘as shown in Fig.
4.17(a). The DMA request DRQl is generated through software
via the  output port EB. Upon receiving a DMA transfer
request, the~8257 | _

(1) acquires control of systeﬁ_ 80/10 bus through hold
request (HRQ3 output. HRQ, . after inversion, is
connected to BPRN/ line of the system 80/10 Bus.

(2) acknowledges the DMA request and DACKI output goes LO‘

(DMA reguest on channel 1 1is assumed) The  first

negative going trgmsition of DACKI is used to start
the frequency mpltiplication proceés.- It is also
used to e he A/D output to the sYstem bus.

(3) ‘outputs the'least_significant eight bits'of‘memory
address on 1ts output lines A, to A,. These outputs

are operated by the EXCLUSIVE-OR gates G37 to modify

the address bits according to



. . <111

By = A; + Ay, i=0,1, ..., 4

By = Ag _ " (4.6)
These are connected. to . 8212 I/0 port G39 in bit reversed
order. This is exéctly ‘the operation involved in

N\

implementing Egn. (3.45) in hardware. The inverters (G38)

are used to make the address outputs compatible with the

system 80/10 address bus. Note that bit DI, is held

permanently at logié 0 and six'outpﬁt bits_B0 - B¢ are used
_to derive ADR1/-ADRG/. This means that alternative
locations aré skipped in éepositing the A/D data in memory.
fhejreason‘for doing this is to reformat the data as-a 16

bit word through software, since computations are performed

ar

‘on 16-bit data. In the case of A/D with more than 8 bits,

bit DI, of 8212 may be used to point to the next location to

deposit the MSB of-data, by. complementing it before the

8257 issues the next DMA cycle. The most significant 8 bits ~

_are latched at I/0 port 8212 by AEN and ADSTB signals. The

sequence of events after a DMA request in DMA write mode is

illustrated in Fig. 4.18. ©Note that A/DR/ output of 8257
enabling the A/D output to the data bus and write pulse MEMW

are generated with a delay of one and two clock cycles from

ADSTB pulse respectively. It is possible that a A/b‘

conversion might not have been completed within this time.

To avoid the transfer of incorrect data, memory write pulse

MWTC/ is generated using the monostable mul;ivibrator‘G44
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ST ™D
ADRO/" o1, o, A0/
ADR1/ DL, Do, Al/
R2
AD ; DLy ., D03 A2/
ADR3 8 A3/
— DI, a3 DO,
: DI, DO f—r
| D_Is DO f—o
DL, DO, e
DI . _293 [
55z D81 | -
AEN lov
sv 10K l'g‘ilol’f _
STATUS l_ __,
STATUS |, Q D Q
Gas I_CLK |
74123 -
5V —yB q 7(?4";54 -Q 63 MwTC/
DACK1 GR
VEWR B '

(from 8257)

Fig. 4.17(b) Address data interface between 8257 and

System 80/10 in programming mode
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and flip-flop G45 triggered by the negative going edge of
STATUS output: of AyD as shown in Fig. 4.17(b). This

prolongs the DMA write cycle by not returning an active

READY signal by the system 80/10 memory.

During the programming mode, the 4 LSB address bits

are transmitted from the system 80/10 bus to the 8257_A0—A3

inputs through 8212 I/O Port (G43) as shown in Fig. 4.17(b).

I/0 Ports G39 and G40 are in high impedence state while G43

is enabled during the programming mode of the 8257.

4.3.7 Control

The use of off-the-shelf general purpose peripheral

-ICs, tri-state I/0O ports 8212, and programmable DMA

controller 8257 results in a compact confrol structure. The
control reduces to that'of'initiatinq‘and terminating a DMA
request, This is implemented using a 7474 flip-flop (G48)
as shown in Fig. 4.19. It is set by a BEGIN signal
'gengrated through software by the systeﬁ 80/10. At ‘the

completion of required number of DMA cycles (64 samples in

the systém developed), TC output fgpm_the 8257 goes HI and

resets G45, thereby terminating further DMA requesté.

A provision is made through a two position .switch to

use either the input signal to be analysed or external

marker pulses for frequency multiplication purposes. The

latter mode permits the seguency analysis of non-periodic

LY
.
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ov PR DMA-request (DMAR) °
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Fig. 4.19 Control circuit . -
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signals by computing the sequency coefficients of a signal

defined within the period set by two marker pulses:

4.3.8 'Output Display

Attention to the display of final measured gquantities

is important for the effective use of any 1instrument. In

the case of Walsh spectral measurements, the coefficient

values and a plot of ampiitude vs sequency are desired. 1In

Fourier analysis, the outputs of interest are numerical

~_values of Fourier components, a plot of Magnitude vs

%requenéy and- Phase vs Frequency. These capabilities are
ééded by interfaeing to an intelligent BASIC graphic
terminal 2647A, (The cost of a terminal of this capability
is much higher-than the instrument itself.) The TERMINAL
BASIC contains most of the standard BASIC statements
-together with statements that will ;blow a prograh to
monitor and control terminal operations.  This allows a
program running in the 2647A' to. interact with periQheral

devices (the Walsh Spectral Andlyser in the present case).

-'Detailed operation of the terminal is given in references

[59,69]1.

E<



CHAPTER' 5

ON WALSH TO FOURIER COM{I’ERSION -

M)
5.1  Introduction

W;lsh—td-Fourier Conversion was studied by Blachm%n
[70,71], Abramson [72], Siemens and Ki;ai [22,73] and
recently_'by Tadokoro and Higuchi [23}: Signals cén .be
classifiéé into four spectral categories;

1. - infinite Walsh series with infinite Fourier Series
2. fini;;qﬁalsh series with finite Fourier Series
3. finite Walsh series with infinite Fourier Series .

4. infinite Walsh -series with finite Fougier Series *

The last‘cateéory is of particular interest. It hés_'
been shown that for a bandlimited signal with the highest
' normalised frequency component .(harmonic) F, all the F
Fourier components can be determined from a finite number of
* Walsh coefﬁicients with the sequency up to S without error,
prbvided s > F [22,73,74,75,76]. The Discrete Fourier
Transfo:m of a given sambleﬁ daﬁa sequenée is widely
employed to compute the Fourier coéfficients of a signal.

The DFT is implemented on general or special purpose

computers using FFT techniques. Given N data samples, one

/_\ 117
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" can obtain N Walsh coefficients using Fast Walsh transform
" algorithms as discussed eariler and N Fourier coefficients
using FFT algorithms. Tadokore and Higuchi ([23] have

formuigted an algorithm ¢to obtain N discrete Fourier

coefficients from N discrete Walsh coefficients (a

coefficient obtained using sampled values is referred.to as

a discrete coefficient) and it differs from the method used

r

by Siemens and Kitai. Eitpe:}way, obtaining the Fourier

I

coefficients through the Walsh coefficients redhces- the

number of multiplications when compared to the Cooley-Tukey

FFT algorithm for a data length up to 64. The fast nature

of this process was pufsued‘by Horton for digital impedence
relaying of power lines [7#].‘ Also when the deéired number
L of Fourier components is small compared to the input data
length N, this conversion process is faster. (This feature

is benificial in narrow band signal analysis.) A comparison

of the Walsh to Fourier transformation process with the FFT

method with respect to the number of multiplications,
storage requirements and the finite word length effects is
now considered.

5.2 Walsh to Fourier-Conversion Process _due to Siemens

and Kitai [22)

ThiS'ptocéss is illustrated in. Fig. 5.1. Using the

symmetry properties of the sine/cosihe_ﬁuhctions and cal/sal

N

R R

- a



L1

[

119

(-

"

- B

mmooow.m ._cowumsaommcmw._. I9TINOJ 01 YSTeM T[°§ 1%

. ,u.ﬂuma . . ‘ PN , XTIleu
JUATDTIFS00 OUTS _..H X nm_ S : u:mﬁ.uﬂmmmou HMmT % §] .
. " ” s - N
> mn wm . .
. " - | ‘ ’
¥q fa |
. No, q
. Iq . Y ‘
- L :
: I93I9AU0 JasA1eu
~ 1 0 . SATBUY
— =

4

X9TIN04 03 YSTeN

ot

L . |

unxioads ystepm

yex3deds ysyeM

L S

£y

=




- functions, it can be

£ S 1Y . ‘ . .
own that’ a,’ terms of the Fourier
expansion are functions of only As terms of the correspond-

ing Walsh expansions. similarly b, terms depend only on B._
. lsh ex K. ! s

~

; terms. ' - . ' .

The conversion process to ogta-in b, terms from Bg
] . " 3 .o

. : . C oA . L. ., i . .
-terms is discussed below. _A similar method *applie€®to a,.
terms. ' Equating the odd ?)érts of t,hte‘ Fourier and Walsh

' series r presént’étion (Egns. (2.10) and 2’.13_)_‘? we get,

4

-
.

([ |

\ bk sin 2wkt =
1 . .

e 8

.k sl-,s

T ‘is .taken as unity henceforth. -.Mul"(:i.pl?;ng both sides by

»

si_n~21rf_t'and integrating 'Qv_er unit interval, we get

be = T be g Bgr £= {1, 2, .0, 6h (5.2),
s=1 L o S, e .
where b, . 15 the fth sine }o)efficient of -the sth sal
Ly S : \ : L ' :
function and is given'by . _ o L o R
| ' . L . - '
. bf,—s = 2 .{r) sin 2nft sal-('s,_t) dt
~ similary 'af terms. are,.given by : .
- L o e T
o ap = 1 B, g Bgi £ = (17 2, cfpel o (543)

1
where ag . 4s- the fth' cosine coefficient of- thé sth cal
' r - S . & : c

Be
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B sal (s,f?' ‘ (5.1)
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[bl = [F,) (B]

. where [g]‘is the sine coefficient matrix
) . £ ' -

~ [Fp] is the conversion matrix.
[51 is the Walsh (sal) coefficient matrix.

For a band limited signal xp ()

&

L F R S o

"xb(t) =, "' bk_sin 2kt + I ak cos 27Kt
. " k=1 - k=0

where F is the highest £frequency’ éompdnent -of the
signal. .
_The s5th sal coefficent of xb'iskthenl

0 L 1

. Bg ='g *b(t)nsal(s,t) dt
2 L]
1 Fooo L.
= f [ & by sin 2nkt] sal(s,t) dt
0 k=l.' . :

. ~

where ds,k  is the sth ‘sal coefficient of sin 2rkt.
: : 2 - SR - ’

matrix form, Eqn. (5.8) can be written as,

18l = ] [

where - [B]" fol)'sal‘cogfficiebt matrix

B ;;-,' - {8 = a fihite number) -

SR

' (SxF) conversion matrix °

Hoan
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Ci;fhnction._ In matrix form, Egni(5.2).can be written as,

(5.4)

(5.5)

input

(5.6}

(5.7)°

(5. 8) -
kn

‘(5;9)
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[b] = (Fxl) siné: coeff1c1ent matrlx.
One can solve for the set {bf}f =1 by a system of F llnearly

. independent equations for S > F. Slnce

U
s =L (27 sin (20kt) sal t)*déhi—-l b .
s,k - 71 'é sin (2rkt) sal(s, 47 ks
‘ ‘ ! | g - ) ' -
] = 3 (F17T o (5.10)

s

- From Egn. &;,9), the sine coefficient matrix b is given by °’

~

o= &Y tE) (B (5.1
where . " -’@@' o 'f
‘ - 1 E T /, i ﬁ’fall *
;Q. . . .. ' . 7 . ) Ko
_Using the'ogthogonal propérty'of'Waish £ &t tlons, S emehsiffo‘Q" ¢

- £ 0 ‘
proved that [K].-1 is a non—51ngular d1agonal matrlx [73] .

.OD .

whose elements are” glven by - iJ:df”":' | : R

R R S
- kg, g = sinc | (;ﬁ)@»i _

(5.12) >

As N ="sz + @, kf £ appro‘aoches unl;y. - The rows of the

‘matfix F, represent the, Waish““%sal) expansions of the
corresponding sine functlons. For example, the thlrd row of

Py gives the Walsh expan51on of sin 2= (3¢):

A
[3

¥

sin 67t = = sal(l,t).+ 1.025 sal(3;t) # ...  (5.13)
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Similarly the columns of the matrix F, represent the Fourier
expansions of the sal. functions {sal(s,t)}__ ~ pe For

e A ; . 5_172'.--' .

‘example, the first column of Fb represents the Fourier

coefficients of sal(l,t): .
. M g . il

sal(l,t) = =

sin 27t - %? sin 27{3t) + ... (5.14);

N *

The elements ag si' be S“can be computed using a non-
’ ’ , - . ‘
recursive equation for’ the Fourier transform of a Walsh
" 4 .. " -

function [78]. The pattern of non-zero unigue elements in
Fy, is important in the Walsh-Fourier conversion process and
is djiscussed below. If s is odd, the sal functioh sal(s,t)
Gha5€)‘non-2ero Fourie: coefficients for ‘odd—numberedl
harmonlcs nnly, that is’ bl " b3 gt et b2k 1,s only are
non-zero. - sa1(25 t) can be pon51dered as a wave sal(s,t)
with a time base that has been halved. Consequently .
sal(2s,t) has non-zerp coefficients whose harmonics numbers
ar?)-ty}ce- those - of sal(s,t); that |is b2 251 beZs o
b2(2k—1),25‘are non-zero elements. In general, the non-zero .
. coefficients of sa1(2k51t) are b'k kg b Nk ! "T’.
i * 3-=2 '2 s
b . sy ' s : .
zk(zz—l),zk where s is odd. In view of this property,

m- 1l m-1 m=-2

the matrix Fb of dimension 2 X 2 , has 2 ‘independent

columns elements; any other column of elements is. a subset

~

of. so@ odd-numbered column elements,

The Fb matrix for F =8 is glven below

@ ; .7

-
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+ + 5

£ 1 . 2 3 4 5 6 7 8
1 1.27324 - - -0.52739 -  -0:10490 -  -0.2532 -
2 - 1.21324 - - - -0.52739 - -
3 0.42441 - 1.024624 - -0.68463 - .283584 -
4 - - - 1.27324 - - - -
5 0.25464 - 0.614774 -~ “ 0.920075 - - -.38110 -
6 - 0.424413 .,%;;//,J.— . .':\A__ 1.02462 - -
7 0.18189 - . -0.U7534 - 0.37876 -  0.9144 -
8

- - - - - - - 1.27324

~ denotes zero elements

. 5.3 Walsh to Fourier Conversion ethod of Tadokoro and

Biguchi [23] }

The method described above starts with band limited
'signals. The Walsh and Fourier coefficients used are the

. analog inner products of the input signal with the basis

functlons according to Eqn. (2.11, %{lZ 2.14, 2.15).

The method due to 'Tadokoro and Higuchi can' be
considered as a dlscrete version of that due to slemens and

- Kitai. .Consider a data sequence X(0), ..., X(N-1}) of length

N obtained by uniform sampling of an analog :signal. The

discrete Fourier transform of the data sequence is given by

" N-1 . : .
’ F(k) = % Z X(i) wlk' k = 0' l’ ..y N_l
where, | cj\ : ] |
W = e—32w/N
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‘Given the N DFT boefficients, the corresponding data

sequence X(0) ... X(N-1) is obtianed by the inverse .
transform '
Nl ik :
X(1) = £ F(k) wi¥, i=0,1, ..., 81
k=0 N (5.16)

If the data sequedce is real, then F (k) satisfies the

following symmetry conditions”[?4]

Re[F (k)] = &, Ré[ptu-k)] (5.17a)

Im[F(k)] =B

~Im[F(N-k)] (5.17b)

-~ .

(The notation {*} is used to- differentiate the coefficienfs

- of the DFT from those obtained as the analog inner .product

of the input signal and the basis functions used by Siemens
~ . B

"and Kitai.)

Using the symmetry relations of Eqgns. (5.17a) and

(5.17b) , the data sequence can be represented by,

(N/2)-1
X(i) = - 23
. k=0

N/2 .
+ © 2b sin 21kl 5 1g)
k=1 - N ‘

2rki

0SS N

kC

The discrete Walsh transform of the given data sequence is

given by
! 1 N-17 :
B(k) = § R X (1) wal(k,i}, k =0, 1, ..., N-1
‘ 120 o (5.19)
and the inverse transform is given by
N-1 o ‘ ‘
X(i) = ¢ B(k) wal(k,i), t =0, 1, ..., N-1
k=0 .

. (5.2q(”’—“\
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In terms of <cal' and sal functions, Egqn. (5.20) can be

written as

B, sal(s,1i) {5.21)

U Ny2-1 N/2
X(i) = I A, cal(s,i) + I_ Bg
. s5=0 . s= i

The Fourier component b, is computed according to

'

N-1 i :
I X(i) sin 3%5i (5.22)
=0

- 1
bkzﬁ
. i
Substituting for X(i} from Egn. (5.21) in Egn. (5.22) we get

L

N-1 N/2-1 - N/2

~ 1 o o 2wki
b, =% ¢ [ = A cal(s,i) + ¢ B_ sal(s,i)] sin =/
Kk Njo s=0 5 o ‘g=1 ° ' N
' » (5.23)
¥nterchanging .the order of summation.gives S
- N/2-1 N-1 B .
“-bk'= "L A 1 f cal(s,i) sin 2zki
: s N ,7 .. . N '
s=0 i=0
. N/2 N-1 - .
+ £ B_ % ¢ sal(s;i) sin 2ZEL  (5,24)
I s N ,_ N .
s=1. i=0 . :
N-1 .
The sum %- I cal(s,i) sin 3%55 is the sth cal.
i=0
coefficient of sin 2vik/N.--Similarly-
: N-1 ' .
% I sal(s,i) sin ngl is the sth sal
i=0 :
< . .
‘coefficient of sin 2wvik/N. In the case of analog

integration; due to the odd and’even symmetry of sal/cal

functions, we have the following relations:

;qﬁd



s A ey - e

e st . St " T R e

N o o . 127
: .“ ’ )
3 .
) E
. I cal(s,t) sin 27kt 4t = 0 (5.25)
} 0 .
l . . . N
S sal(s,t) cos 2rkt dt = 0 . 7 (5.26)
0 ,

This simplifies the- conversion process in that b, terms
depends only -on B, terms and ah terms only on A, terms.,
Similar relationships do not hold if the discrete

,p%thonormal basis functions emplbyed in the Fourier series

eXxpansion are {sin 2wki/N}E£§: {éos 2wki/N}§£§. This is

<

illustrated for

L - cal(l,i) sin 2%k
, i=0 ‘
for N = B.in Table 5.1. o '

| Tadokoro and lHiguch; simplified the conversion s
process by emplpying 'é -displaced set of sinusoidal basis

functions so that aé terms depend only on Al terms and bk

terms only on BS terms. The sets of basis ‘functions used

- e

are
: 2ri T, N/2
{sin k [5F= + gl h L] (5.27a)
2vi . omo, (N/2)-1 »
{cos k [ 5+ ﬁ]}k=0’ (5.27b)
With the above choice, Egn, (5.24) reduces to
~ N/z . ~ L.
b, = £ Bs bk,s (5.28)

5=1 .
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1
N

i .

cal(l,t)

sin T

cal(l,t)
X
211

sin
8

N-1

i=0

Table™5.1:

g

1/v/2

1//2

£ cal(l,i) sin

Pirst cal coefficient of sin 5

27i

2 3 4 5
-1 -1 -1 -1
+1  +l/v2 0 -1/v2
/ e

-1 .-1/v2 0 +1//2

*

= -0.25

271

128
6 7
1 1
-1 =1//2

-1 =1/v2 -~

= (4102 - 1 = 1/W2 + 1/72 = 1 = 1//2) /8
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3

where gk,s is the sth discrete sal coefficient o%.the kth
discrete sine function. 1In ma-rix=£g£3i\ﬂqn. (5.28) can be
written ' /////x . ‘ '
- (] = [(F,] (8] ©(5.29)
where [é] = [N/2 x 1] sine coefficient matrix
[;b] = [N/2 x N/2] conversion matrix
[B] = [N/2 x 1] sal coefficient matrix
The‘ith row in [Eb] is the discréte Walsh expansion of the
5 iph' sinusoid and can be obtained by performing ‘a Walsh
; tranSform with the discrete sinusoid as the input data
. sequence.
Sim{lar re}ations exist between the cal coefficieﬁts'
[A] and the cosine components [&]. = The conversion matrix
[Eb] for N = 16 ié gi&en in Table 5.2. The corresponding
% o elements in the matrix [Eb]‘ and P, used iq the previous
L | method are not the same. Thé{diéferences between theﬁ is
due i.:o the differen?:\es‘ in the computation of' the matrix
elements and the basis sinusoidal functions used. Siemeﬁs
and Kitai's method computes the Fourier coefficients as-
D ' analog inner products of the signal and basis functions
according to Eqhs. (2.14) and (2'.‘i5) whereas Taquoro and
Higuchi's method computes.the‘Discrete Fqurfér coefficienﬁs
from the Discrete Walsh coefficients; they formulated the

conversion process as the solution of N linear simultaneoui’.

equationsys The pattern of non-zero elements in Fb and Fb
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Table 5.2: Conversion matrix Fb for N

= 16
1 2 3 4 5 6 7
1.28145 0 - =-0,53079 O -0.10558 0 -0.25488
0 1.30656 0 0 S0 -0.54119 0
0.44998 0 . 1.08636 O -0.72588 . O ~ 0.30066
0 0o 0 1.41420 0 o0 0
0.30066 0 0.72588 0  1.08636 O ~0.44998
0 .54118 0 0 0 1.30656 0
.25489 0 -0.10558 0 . .53078 O 1.28145

0 0 . 0 0 -0 0 0

w

- o o o0 o @ O
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are similar. Hence the number of multiplications needed in

.the conversion process using both the .methods are equal.

(?he matrix Fb'and.K are multiplied and considered as a
single métrii.)

The Discrete Fourie:;~coefficienté. obtained through
the secohd‘method are different from those obtained through
conventional FFT mefhods as they assume a diffefént‘set of
sinusoidal functions; " (The sgts of basis functions assumed
in the conventional DFT ére
21

5

(N/2)-1
k=0 ’

N/2

[sin kil 2y

and [cos %l,ki}

Let Cy and dk be respectively the real and imaginary pafts .

of the kth conventional DFT coefficients. Then

[a, cos

K + bk sin ] _ (5.30)

zrv‘ zrr
= =

kr
N
kr
N

[N R N |

[a, sin = by cos 7l ‘ (5.31)

In practice, the amplitude and the phase of the spectral
components at different frequencies are of interest. To

obtain the former, there 1is no need to transform the

coefficients according to Eﬁns. {5.30) and (5.31), The

latter can be obtained by adding a phase angle kv/N to that
obtained from the Fourier -coefficients computed via the

Walsh coefficients. Due to this,‘the.additional transforma-

. tion according to Egns. (5.30, 5.31) which incredases the

“number of mdltiplications by 2N may be of interest in
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situations where only phase spectra are desired.
.( ~ ‘ ‘-
5.4 A Comparison of the Walsh-to-Fourier Conversion
Process with the Cooley-Tukey FFT Algorithm of
Computing the DFT N =

) Over the yearg many fast -algorithms [24,83,84,85] to
compute the DFT have been developed. Somegbf the ﬁecent
ones.[87]'are teferred-to as very fast Fohrier'trqnsform
algorithms,  We limit buiselves to comparing the Walsh to
Fogrier Transformation with the commonly ‘used Cooley and
Tugey algotithm. - The comparisbns are made on the‘basis of
the number_of'mult@plicationé,_memory requirements,‘and-the‘

effect of finite-word length in their impleméntation.‘

5.4.1 Speed

One of the factors nozmally-considéred in compaiing
the 'speeds of two signal processofs is the number of
8 - .

\Jmultlpllcatlons required. The computation of the DFT

L4
coefficients using the Cooley-Tukey,FFT algorlthm accordlng

to EQn. (5.15) requires (N/2)log,N complex t1p11cat10ns

i.e. 2Nlog,N real multiplications (a complew multiplication °

requires fourireal multiplications).

The Walsh to Fourler conver51on process descrlbed

» ~

above is achleved by the multlpllcatlon of two matrlces Fb

and the- qush coefficients matrix. The number of

-

multiplications needed to obtain the sine components from

-



A

.

LA

133

T

‘sal coefficients is egual to the number of non-zero elements

-~

in F, matrix which is square and -of dimension (N/2 x N/2)

for_a data sequence of length N. . The odd-numbered rows of

~ . . - . N . -

Fb contain N/4 non-zero elements. The kth sine coefficient

- ot R - q
is obtained by ' ' &_/
~ A L~ ' j ' . :
b = I 'bp ; B{27(2i-1)} i {5.32)
. i=1 . . . ‘ .
where - . ) .
k= 23(2q—1), j,q are integers
L Nyl oL N ~
= _—) —_— E —— - N -
. (4)‘2] =532

Example: The yalueé of k,z for ﬁ = 16 are
k 1 2 3 4 5 6 -1 8
¢ 1 1 2 1 3 2 & 1
z 0 1 1 2 0 1-w0 3

o ' '

) .

-

z determ1nes the number of multlpllcatlons requlred foE each

L~ -~

bkf Summlng over z for all bks u51ng Eqn. (5.32), thet

number of multiplications requ;ced is

+..‘ +4+1
(5.33a)

= 1§I§il_"\ - (5.33b)

WIRUE DNS- L VS N T

v—, . - v

An equal number of multlpllcatlons is requlred ‘to obtain the ’

“Fourier c051ne-components, thereby making the total number
y

of multlpllcatlons My, equal to (N -4)/6 Mtob for N = ?,

‘
v a

[
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16, 32 is given below'andais illustrated graphically in Fig.

5.2.

Number of Mhltiplicetions required for- the
o Walsh to-Fourier :Conversion Process
Method \ N, -8 16 - 32 64 128: 256
. FFT. .48 128 ©.320 768 1792 - 4096
Walsh.to - - 10 - 42 - - 170 682 2730 10,922
Fourier. . o : CR ] .o

‘The. Walsh to,Fourler ConveIS1on process is seen to be. faster

- than the FFT method for data 1engths up to 64. In qertaln

dppllcatlons [6{;79], the number of grequency components of

interest is'relatively small compared to N. In the case of
I .

~

the FFT methods, . the number of multlpllcatlons does’ - not

' depend on’ the number of frequency components destired. But‘

in the case of the Walsh to Fourier. conversion,’ b% 11m1t1ng -

the conver31on process to.the selected number of components,

i one may reduce the number of multlpllcatlons. In that case,

k]

for L. =__2‘ frequencya components, the. number of
-hmultiplications required- is - - - Cow e T
e ML, N N __ L
M= 2 [ x3+egt e oo SorT) (5.34a)
= (5:34b)
. . o

B RV

R T

L A e i A A R ST
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10

20
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! - . Walsh to Fourier -
: © method
1 ] | /_—\ . ,’ ’ ,
5; & s L
1 T /&+——FFT method
T 3
4‘3
T .
) t 4 L]
S N N B AT 4 | ‘ F- | - .
1 - 10 20, ¢ - 100 200
; - ] == N .
Fig. 5.2  Number of multiplicdtionms required to compute the

. .Fourier coefficients by the FFT and Walsh to Fourier

Conversion method
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Given N, the nuﬂber- Qf '‘multiplications required for

-different values of L is shown. graphically in Fig. 5.3 where

it is seen that the Walsh to Fourier conversion process

tequires fewer multiplications for all N, btoyided that L is

rélatively small compared to N. -

5.4.2 Memory Requirements ?

-

The amount of memory capacity considered -here

represents only that required for the data and coefficients

storage in ‘a computer-based instrumentation .for Fourier

analysis. In the case of the FFT, N words are required for--

twiddle factors {wk}Eﬁg'and 2N words fof&?nﬁut data; a total

of 3N words‘ére required. (Sincé the FFT calculations are

done  on complex numbers, 2 words are assumed for one data

]
.

point).

A

As the Fast Walsh Transform woperates :2 real data -

yielding real-valued coefficients, thHe- Walsh®% to Fourier

'convetsion method requires N words for the data-énd‘Nz/ls

words for the coefficient storage. The memory requirements

for both methods for different values,of'ﬁ are:

*

N 8 16 32 .7 64 128
~ s ‘ . ‘ ,
" FFT . - 24 48 96 192 384
Walsh to Fourier 12 32 96 320 . 1152 -
Conversion . . : ’
: X ,
. B

g

i v st e 1

g

VL
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!l'l'
)

0 40 - 80. - - 120 - 160 200
_ » ~——Number ‘of coefficients required (L)

Fig. 5.3 Number of multiplicagions required in the Walsh to

Fourier conversion method when the number L of

desired components ‘is less than N
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‘This favors the Walsh to Fourier Method.when compared to FET

for a data lehgth less .than or équal to 32. The memory

reguirements becomes excessive for large values of N for

' Walsh to Fourier conversion.

5.4.3 Effect of Finite Register Length

> In practice, digital signal précessing using gené:al—
purpose Jahd Special;purpose processors requires tiig”
representatfon of data in binary form with a finite numbe -
of bits.' The results of. processing may reguire additional
bits for their representation. For example, a b-bit data’

sample multiplied by another b-bit data results in a product

which is 2b bits long. -The finite register length can be

maintained'bywtruncating or rounding the b least significanﬁ

bits, the effects'of which dépend on such'factérs as whether

-

we use fixed-point or floating-point arithmetic and on the
type of‘repreSenfatidn for the data. In przfessing with
fixed-po;pt arithmetic it is natural, in a ‘signal processing
context, to consider""a’L register as repreéenting a fixéd-

point fraction. Then the products of two fractions remains

a fraction and the finite word-length constraint ¢an be

maintained by truncating or rounding the least significant

bits. The result of addition or subtraction need not be

- truncated or rounded but it can increase in magnitude so

that eventually the sum is not a fraction. This overflow

-
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can be handled by requiring that the input data be
sufficiently'small so that the possibility of overflow: is

avoided, .or by scalinj the results appropriately'when

overflow occurs.

“ In the following discussion we assume the binary data
representation in two's complement form with (b+l) bits.
Errors due to roundoff and truncation in the eomputéﬁ%bn of
the dfscrete.Fourier transform were studied by Oppenheim and
Weinstein tBOi and Welsh [81] for the decimation in time
{DIT) radixﬁg.fast Fourier transfofm'aigorithm. Recently.
Sundafamufthy(and Reddy 182] obtained the error values_for
the DFT using the decimation in frequency (DIF) FFT
algorithmr 'We describe briefly the statistical model used

by them to obtain the 'error values, and we apply similar

technigues to the Walsh to Fourier Transform algorithm

'described earlier to derive the computatiqpal errors. The

results qre,compared‘with Ehe FFT'algorithms' error values
[80,81,82]. . . e

' The error due to axrqundoff‘opération can be modelled
as a random variable ep uniformly distributed withiﬁ the
rangé (-1/2)2_b‘ to (1/2)2_?. It can ,be'-shown that{ the

variance of this error is:

2 _ 1
°eR - 17

x 272b (5.35)
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:In a 51m11ar way the varlance of the error due to scaling Hy

a factor of *1/2 (shifting ‘the number to the right by 1 bit

<

and -truncating the last bit shifted out) is [82],

. O .= (5.36)

The signal‘flow—graphs-éepictihg both the DIT-and DIF FFT
algorithms are shown in Fig. 5.4(a) and 5.4(b) respectively.
At each étage, the algorithm passes-through the entire array

of N complex numbers, two at a time, generating a new N
. . o

. number array. Butterfly operation using the DIT FFT

algorlthm is

1}

Kpp (B4 = Xy (D) + Wy (3)
Xy (3) = X (1) - wx (3) o (5.3?)
The. butterfly operation for the DIF FFT algorxth is </

xk+1(i) = xk(l) + xk(J)

Xk+1(3) = (X (1) - Xk(J)]w - G(5.38)
—Zﬂ]/N

~ 3

where w is some approprlate power of w = e ‘
In implementing the FFT algprlthm with fixed-point
arithmétic we must guard against :overfléw. From Egns.
(5 31) and (5.38), it follows that - ‘ BN .
max [|Xp,q (1)1, [ ()1
£ 2 max'[lxk(l)l, 1Xk(j)|] | (5.39)
Eqn. %3339) suggests that the maximum modulus increases by

no more than a factor of two from stage .to’ stage. As a



e e e et L i T D ST

e+ e T S T T T e e
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Fig. 5.4(a) S:l.gnal flow-graph of the decimation JAin
time FFT algorithm

X(0) »

(1)

X(2)

X(3)

X(4)

X(5)

X(6)

(N

Fig. 5. 4(b) S:Lgnal flow graph of the decimation in

frequencr FFT algorithm
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:eéult, overflow can be prevented by requiring that [x(1)] <

1 and incorporating an attenuation factor of 1/2°at .each

s&age {right ‘shift). Using this step by step &caling.

procedure, the "final result is less than 1. The computation
acqoréing to Eqn. (5.37) introduces.one complex noise source
due to rounding and another due to scaling at each node. 1In

the case of Eqn.‘(S 38}, one complex noise source due to

'scalxng is introduced at each node but ‘the roundoff error

source 1s 1ntroduced at one of the two ncdes in a butterfly
operatlon. Wlth this model for the noise sources due to
computation, the ‘variance of.outéut errors for the DIT and

DIF algorithms respectively are [82]

_ 5 _-2b 1.m '
Oopl =32 (1 - (%71 {5.40)
BF 'ppper 3 2 | |
2 4 -2b .. 1m, - .
gnel = = 2 (1 - (m;:71] S (5.41)
Bl e 3 7

where m = log,N.

A multiplication by factor 1 or. j is noiseieés. In
Egqns. (5,40) and (5.41), it is assumed that such
multiéiications are:noisy. ‘The corqespondlng error values
_by subtracting ther;ariance‘of the noiéé sources @ue to the

-

noiseless multiplications are [82]

' L -2b :
{ ‘ o2 2 _ 3
_ Opnn | = = (5 - 5 - F) -{5.42)
EF ' prr . 3 _ N
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2 .
as =L (= -3+ =) (5.43)
EF DIF 3 6 N 2 : :

WalShlto Fourier Transformation Rounding and Scaling Errors

B e T T

-can be‘ seen that the number

The transformation involves. the computation of  the

Fast{Walsh_&rapsform followed by a matrix multiplication.

1

‘As dﬁ%@{ibed'in Chapter 3, the FWT performs a number * of

repeated butterfly operations analogus to the FFT
algorithms. The butterfly operation in the case of the FWT

is’ ' .
Y

ey (112 X (1) + X ()

xk(i)- "-xk(j) . ‘. (5'44)

Xy (3) ’
gssumina~lxk(i)l-< 1;'i£enation'by iteration scaling similar ‘
to the FFT aigorithms is®adopted to prevent overflow. It
Qé\fkruncations errors
propagating to any~outpdt nodé from the first, second, third

and ith iteration are N/2, N/4, N/8 and N/2% respectively.

The errors in the ith iteration undergo - scalings by m-i

‘ 4
times. Hence the total éerror due to scaling is
.\ N -, ) - . -
2 - 2 N ,1.,m-1 N ,1l.,m-2 N 1l,m-1i
UT = O'e [‘2‘ (Z') . + z (a') + ... + ——i- (Z-) ' + ce. + 1]
s T 2 (5. 45)
o . ‘ = '
which reduces to '
a% = 2 ag [1 - %
S
-2b

1]
'hl
—
[
|
=
—
—
[S4]
-
o
-
S’
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D{/;;;;ining the Fourier Eomponents, we perform a matrix
multiplication., 'As discussed in section 5.4.1, a.maximum of
N/4 real multiplicétions are needed in the worst éase. Note
that the roundoff errors due to successive multiplication’
- are scaleé. Hence. the maximum error dué to roundoff in the

T

computed sine/cosine Fourier components is

°§ = G:R [(%{(N/4)—1 + (%)(N/'“_2 +o.0t (%)(N/4)fi — (%{]
_ {5.47)-
" which reduces to
2 2 4 - 1
o2=0% x401- ] (5.48)
R e =~ 3 | (4)'N7I _ ' ‘

The maximum variance of the error due.to scaling is

g = ¢

2202 O/ dy -2 H L e @)
. | _

s e
(5.49)
Hence the .total error is _ _
-~ : -2b R
. N/4
ohgd = led vl 14 -+ B n Y
‘ WEFT s . R ] 4 - i (5.50)

The second term is due to the scaling errors int:oduced'in

»

the computation of the Walsh coefficients. éqn. {5.50)
after simplification becomes

2 l . = 5 2-2b - -2-2b
T EW k] 36

-2b
1,874 _27%° 1.N/4
{5} - () (5.51)
WFT . 1 S

In general the kth sine or cosine components require a.

number of multiplications z é'N/ZJ+2 where j is defined in

Eqn. (5.32). 1In that case the variance of the computational -

Y
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ercror is giver by - ‘ L .
o2y o5 gm2b 270 eIt 7201wyl
. EW ypp 18 36 ' W T (5.5

‘Eqﬁs. {(5.51) and (5.52) give the variance of the error for
eitherAthe ;iné‘or cosine components where as Eqgns. (5;42)
and (5.43) give the variances of thé “error For both the
componeﬁtsvcombined (variance of a spectral component at a
given frequency). .When comparihg the gﬁ:of perform#nce of
A the FFT'method with the Walsh to Fourier fransfprmation,

%IWFT should be used. ~ From Eqns.- {5.42), (5.43) and

20
(5.51), the Walsh to Fourier transformation introduces a
smaller computational error. The, percentage improvement of

over FFT -algorithms is illustrated in Fig. 5.5.:° P

™
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CHAPTER 6 .

.o e o SOFTWARE DESIGN

-

6.1 Introduction

Software for the WSA is written in thé_vfofm of |

° F

functional modules or subroutines to be called by a main

program. The list of subroutines is given later. “Two of

them, “WTFORM"‘and,“WFCON“ are:special purpose modules for

-

~.the WSA, and are described in detail below. ~ Cther

. ¢ subroutines used are general purpose in nature so that no

. s . . ' e
descriptions are warranted. We also describe briefly the

mdin program which links ‘with a program written in BASIC in

" the HP2647A graphic terminal. Coﬁplete‘séftware details'are

.

* available in a laboratory manual,

s

6.2 WIFORM -(Fast Walsh Hadamard Transform) Subroutine

“'Chapter.4 shows that Walsh spectral analysis sists
+ of two phases, viz, data acquisition and ¢ mpﬁfif;ijf> The

flow=chart pf' a sdbroutine de&gloped

U

r this purpose. is

~ shown in Fig. 6.1. It begins’ ¢ initialization of 1/0 .

ports of the sy?tem180/10_(Por EB: ou:?ut, E9: input, upper:

EA: input, lower EA: output), .the address and the terminal

ount register of the, DMA controller 8257 to BFBF and BFCO '

-

. R 141
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”negatlve. - e e @

coeff1c1ents)

'(hexadecimal)‘ respectively. The DMA controller is se‘t to

obta:l.n 64 data samples w1th the start1ng address for theb"
data storage as 4000 {Hg_j;:ademm\al) qand is 1n ~the wrlte“‘
mode with the above parameter m:.t:.allzatlon.A "DMA request"

51gnal 'lS generated ‘next in the form of a pulse via b1t 5 of |

port EA and data acqu:.s:.tlon commences. Durlng thlsuphase

'the system 80/10 1s in the hold mode and resumes operatlon

after 64 samples are dep051ted in the system Memory.

"The- ouztput of thenA/D.Aconverter has 8. b1t_s., :, The
magnitude of ;. 'co_eff,'i.ci_ent‘ ,vallue may attai’n-a maximum__;of
214'-1.‘ for a 64 point discrete ’Walsh‘ transform with thre'
impli%d binary point .after thve -6th least .-s\igni‘fica‘nt bit;
hence two word (16 b:Lt) data representatlon 15 needed. . ;l‘he

DMA. hardware is designed- so that,the sampled A/D outputs are'

o wrltten w1th alternate memory locatlons sklpped. v@n order

& .
to represent the data as two word numbers the data is

',_reformatted so - thrat the most 51gn1flcant byte is set to

11111111 or. 00000000 ‘dependrng on whether .the least

_ s'Enificant byte (sampled’ A/D output) '-_'is_fpo“%sitiye br

128

.

The next step 1s to perform the FWHT (note that the

. FWHT on the permuted data gw\esQe sequency ordered W,alsh.

. e

Basedgon the s:.gnal flow-graph (Fig. - 3 3) for the

‘ FWH':, diff é‘.n_t varlables are set up for the FWHT. ' Their .
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‘desigﬁatigns.aqg assignments are given below. H;}
Variable . Memory. o ; .
Name ., - Location . Description® '
ocl . 3C 50 16 bit (two word) variable con-
3c 51 taining the starting :address of the
. data array i.e. X(0). (4000 is
_ taken ag the startlng address )
Loc2 .- 3¢ 52 - 16 b1t (two word) riable con-
‘ 3C 53 - taining the separgkion of two
e operands used in {a butterfly
S . operation. Initijalized to 64
. .. decimal and halvéd for each
succeeding -iteration.
LOgE3 o 3C 54 8 bit,(bne'word) variable containing
.. ! . the number of butterfly operations
- N - ima partltlon. Initialized to 32

. . decimal and is halved for the
' succeedlng iteration.. .

LOC4 - & 3C 55

- 8 bifgpone word) variable containing‘
. the number. of blocks in an itera-
RO : tion. Doubled for the succeedlng
T : 1terat10n._
LOC5 " 3C 56 - 8 bit (one word) variable containing:-

, the number of iterations., Decre=-
v  ‘mented by one at the completion of
) each iteration.

@ .

" . With . the wvariables initt;i}zéé— to the values’
Q‘indicatéd above, the first iteratiof of FWHT commences. The

“regiatér pair'DE is loaded %ith ‘the startihg address of the

- —
data af{§§ and ’ serves as a p01nter to the address of the

'upper ope;aﬁa [X(1) in Eqn. (3.21)1, for a butterfly,

_ope:atlon. - By addlng ‘the: value of LOCZ 1oaded in reglster

of the second operand for a butterfly operatlon ‘at the start

5

. ;palr HL w1th the contents of reglster pa1r DE, the addressaJ““:“_“"
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A-

of an lteratlon is derlved. Registers B and C are'loaded

"with the contents of LOC3 and LOC4 respectlvely and serve as

counters "for the number of butterfly operations in a block
I
¢
and the number .of blocks to be performed in an iteration.

t .To perform a butterfly operation, first X(i) = X(l +
&

N/ZJ is computed and is stored in the memory locatlon

-
and the contents of the memory location occupled by X(i +

N/2J) is subtracted.from 1t, thereby obta1n1ng X(l) + x(1 +

N/23)..'The result is stored in memory locations occupied by

decremented and‘tested‘for'rero (completion of a block). If

‘not zero register palrs DE and HL are’ 1ncremented to p01nt

“Occupled by x(1 + N/zj) prev1ouslya‘ Next“ZX(i) is formed"

K(i) . After each butterfly operation, register B 1is .

to the next operands and a branch to the po1nt 2 shown in

butterfly operation.

When the contentsth register B are zero, register C
is decremented in anjiterationﬂan& is tested for zero. ln
the case of 'a non-zero value,.register pairs DE and HL are
u;oated as shown in the £lowchart (Fig. 6.1) to p01nt to the
operands in the next block. Also reglster B is 1oaded with
the cdntents of LOC3, A branch to the point 2 in the
flowchart is_taken'to_cggg;nue the next block'of:butterfly

operations. -

A gzero ‘in the.‘register C indicates that all the

the flow-chart (Fig. '6.1) 15 taken to perform the next I
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1 ENTER

-

In!ﬂallza I70. Porlsz'ihe
. System 80/
Address register of
8257 — BFBF
Terminal Count
register — BFCO

—a e

N :r

Loec 1 — 4000
Loc 2 — 0040
.Loc 3 — 20

Lecd — o1
Loc 5 c

1 -

Send Start Puise .

via Port EB
&

1 .
)

. DE = Loc1 :
HL = LocttLoc2
- B = Loc3

C = Locd

2
IT)O g Bufterfly operation J

( B~ B-1 |

Ll

HL=—HL+1
DE--DE+{

'

£
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: HL-—HL+1 . oo .
. 2 | bE=HL no :
- HL—DE+Loc2
B ~— Loc3
‘ yes
. . Loe5 — Loc5=1 |’
@ -

2 : ' Loc3 —Loc3+2 | Coll BICON |
g Loc 4~ Loc4gXx2
: . Loc2 = Loc2+2

_J ; ‘ o " C = Lloc4

B —Loc3
‘Return to
Malnprogram
6o fo 1 ‘
¢ : Fig. 6.1 Flowchart of WTFORM (FWHT) subroutine (continued)

o
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butterfly operations in the current iteratibn are over. Now
. _ LOC5 is  decremented and tested. " If zero, the FWHT is
) completed and the subrou;ine,"BICON“ is cal}éd'to coﬁvert
the Walsh poefficients inibinary form into-signed BCD form.
At the cbmpletion of Bcﬂ conversion, a retufh to the calling
i _ main program is taken. . ' _ o |
If_LOCS is not zero, the contents of LOC3 (number of .
bdtterfly'operations in a block) is halved, the contents ﬁf.
3 # LOC4 (number of blocks in an iterati®h) is doubled and the -
| contentg of LOC2 (separation of two operands in a butterfly
qperation) ié> Halved.v | With tﬁqsg ‘updatingsv‘oﬁ the
,:féfiablég, a bganch to point.l in the-flowéhart (Fig. 6.1)
¢ | §  {15 made to continue the next iteration. This completes the
.';i descP1pt1on of the flowcha:t. ’

@+
“The results are amallable both in binary and BCD

-

form. The computatlon takes 23 844 msec. for ‘64 Walsh

coefficients. Binary to BCD conversion takes an additional

.99.439 msec.

‘ 6.3 Walsh-to-Fourier Convétglon Subroutlne (WFCON)

Elther of the two processes descrlbed in’ Chapter 5

! can be cons;dered for software implementation of Walsh toh
Fourier conversion in a mdcrocomputér based WSK.,  The

S | pfocess due to Siemens ‘and Kitai Qould yield fourier

doefficients- without- the numerical integration error
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associated with the DFT coeff1c1ents prov1ded the Walsh

coefficients are computed w1thout 1ntegratlon error; this is

" feasible in, the instrument described in the thesis, if the

- signal’ is'integrated over each interval and the integrator

voutput is used as the date seguence for<%WT [14]. The DFT
components obtained by the. process due 'to 'Tudakoro' and
Higuchi are different from thoee obtained_%rom'convenpional
FFT mechods and requires correction in obtaining -phase
1nf0fmat10n of a spect:al component as discussed in Section

5.3, In view of -this, the process due to Siemens and Kitai

was chosen.

&5 The first microprocessor_besed Walsh to Fourier

converter- [75] used the .first:gene:ation 4004 micro-
p:ocesSoE: The connersion time ‘was _1.8;. seconds fof 32
coefficients. The slow speed can be atfcibuced to the long
cycle time of 4004. A later system [76] was based Bn the
decimal  PP$-25 microprocessor, theafonver51on time for 64
decimal coeff1c1ents belng“ﬁ’s seconds. f _

In- the , bresent work, the 64 blnary coded Fourier

coefficients are obtained from 64 Walsh coeff1c1ents’ in .

about one second.

I

The Walsh. coefficients computed .are. in 16 bit two's

.complement form with the implied binary point after tbe 6th

lsb. Two memory locations are used for each coefficiént.

. 3
- .
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As a result, two's complement representation fc;r m‘atrix'
elements 1is 'adopted in céntrast:, to s%gn and magnitude
representation in [75] and sigpned BCD form in [76].° Each
conversion matrix element has a 9 bit ‘fractiorvél part and a
1 bit integer part. -'I_tl is; packed as two bytés with the
.rem;inifhg‘ bits set to 1 or 0 depending on whether the
coefficient. is positive or negative’.‘ Booth's. algoi:ithm_
- [88], which ’is'indepenaentjof the signs of Ithe“oper‘an'd's. for
mﬁltiplic_ation, is employed.. ‘Tdhe, multiplication t\:iiﬁé is
smaller, on the average,_than 'conventional‘ shift and’ édd
‘methods of multiplicatioﬁ. - The Fourier coefficients
computed. are 32 bits long. ' e -

Observation of the conversioq matrix elements for
sine. and cosine components shows that the magnitude of the
corresponding elements in the two matr.{ce\s are the same, but

the signs mlay differ. Earlier implementatiqns stored the

magnitude and the sigds of coefficients for sine and .cosine
.componehts sep_atatel-y,';res.ulting in 'additiionai;’- software
ov.'erhea,ds to fetch the co'rrés‘ponding signs during the
conversion process. It is seen that the signs o.f cosine
conve~rsio‘n matrix -elements e}ther différ or do not differ
from the signs of the cbfr'esponding si_r{e conversion matrix
‘elements alternately as shown in Fig.7'6'.‘2.' Using this
propérty_, during ag’:cun}u'la'tlion, ay partial resuit of a

multiplication is either added to or subtracted from the
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accumulated sum alternately for cosine components, assuming

that the conversion matrix elements for sine components are-

stored,

v

The conversion process is achieved in two stages; in
the first sal coefficient matrix B is multiplied with Fy and

in the second, uncompensated -Fourier components are

<

oy

multiélied by:the appropriate compensation factors. This

procedqée»requires the storage of only odd’ numbered rows of

F, and the diagonal elements of the matfix [K]_l; i.e.=N2/16

a

+ N/2. elements. If implemented as a one-stage procedure,’

the elements of a matrix obtalned by the product of two
< »
-1

matrices F_ Qnd (K] need to be stored; i.e. (N -4)/12

elements ane_IEQuired and this is greater than that for the

former scheme. .If the 1nput signal is sequency limited to

the first N/2 cal or sal components, the correspondlng N/2
sine or cos;ne components are glven by Fb- or- F A; this can

be reallzed by excluding the second stage in a two stage

]
conversion pIOCQSS .

The number of muléiplications increases hy N in the

two stage procedure over that of one stage procedure.

LY

. 3 l .
The maktrix elements bl'l;. bl,3 P bl'(N/z)_l; b3'11&
- [ R
b3, 3r e B3, mv/2)-17 +o0 Pak-1,17 Pok-1,3 cove Pn/2)-1,3
e (N/Z)—l (N/2) -1 are stored in contlguous memory
iocatlons starting with the location OAQO (Hexadecimal) .

Zero-valued elements of F, are not stored. The conversion
' : S )

=
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matrix -Fp, elements are given both in decimal and Hexadecimal

form in Table 6.1.

Flowchart for Walsh—-to-Fourier Conversion Subroutine -

The main task of ‘the conversion subroutine 1is to -

retrieve appropriate Walsh coefficients and conversion

" matrix elements for multiplication to obtain Fourier

coefficients accofding to Egn. {5.32), Siemens' scheme for

" software implementation {73] was adopted in the previous

designs .[74,75).  Only non-zero unique elements of

.

conversion matrix Fp are stored as explained before, Based

on this storage scheme, Siemens' procedure uses the
'following'aigorithm. Let £ be the order of a cbmponent in

, the Fourier sine coefficient matrix b; it can be expressed

as

£ = 2%02q-1) (6.1)

where g defines the row wherein the conversion coefficients

for the fth component. are stored. Note that not all the

coefficients in that row are used for a given £. k in Egn.

—

(611) is used in retrieving thé Wa%%h coefficients in- the

order 2K, 3(2%y, s¢2% ...

The above algorithm requires the computation of k, g

L

for each f£,.in addition to the process of generating actual

memory addresses b&%ed on data representation‘uéing k and_dg.
A different approach, is adopted which avoids, these

computations. The flowchart of the subroutine is shown in



Taple 6.1:
Element " - Walue-
" No. :

. " Decimal Hex
bl 1 1.273240 02 8B
by’3 -0,527393 FE F2
bl'5 ~0.104505 FF CB
b1'7 -0.,253263 FF 7F
bl'g - =0.024944 FF F4
bl’ll 0.010332 00 05
bl'15 -0.125403 FF CO
b1'17 -0.006161 FF FD
bl’19 0.002552 00 01
b1'21 0.000508 .00 Q0
bl'23 0.001225 00 00
bl'25 -0.012442 FF FA
bl’27 0.005154 - 00 02
b1:29 ~0.025909 FF .F3
b1,31 -0.062550 FF EO
b3 1 0.424413 00 D9
b3'3 1.024624 .02 0OC
b3'5 -0,684632 ° FE A2
b3'7 0.283584 00 91
b3'9 -0.086024 FF D4
b3’11 +.—-0.207681  FF 96
b3'13 -0.310816 FF Gl
b3'l5 0.128744 00 41
b3"]g -0.046105 FF ES
b3’21 0.030807 00 OF
b3’27 -0,101556 FF CD
b3'29 -0.151989 FF B3
by’ 0.062956 00 20

3,31

F, matrix elements

Element:
NOO

’

0.065082

159

Value
Decimal Hex
0.254648 Q0 82
0.614774 01 3A
0.920075 01 D7
-0.381108 FF.3D
-0.102706 FF 98
. -0/491790 FF 05
0.328604 00 A8
-0.136112 FF BB
-0.034094 = FF EF.
-0.082311 FF DG
-0.123187 FF Cl
0.051026 "~ 00 1A
-0.095462 FF DO
-0.230467 FF 8B
0.153993 00 4E
-0.063786 . FF EO
0.181891 00 5D
-0.075342 FF DA
0.378769 @0 C1-
0.914430 01 D4
-0.750453 FE 80
0.310848 - 00 9F
"0.,061831 00 1F
0.149274 00 4C
-0.053411 FF ES5
'0.022124 00 OB
- ~-0.111223 FF C8
-0.268516 FF 77
-0.327188 FF 59
0.135526 00 45
0.026958 00 OD
00

21
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Table 6.1 <53ﬁffnued

Element ‘ Vallue . Element Vatue
No. . . S No. ) s
Decimal Hex . . - . . 'Decimal Hex
bg 7 0.141471 00 48 b 0.097942 00 32
b2+l _o.0s8599 FF E2 - bi3'l . 0,236452 00 79
bg’s . 0.294598 00 96 i3s3 -0.157992 F BO
by’ ' '+ 0.711223 01 6C bl3’> - 0.065442 . 00.21
by’ o 0.866628 01 BB b3’ o 0.215735%% 00 6E
by'dy .-0.358960 FF 49 b)3'7; - 0.520830 'Ol 0 .
b2 ~0.071403 FF DC by3 0.779477 01 8F
b33 _pl172383 FF a8 biiri2  -0.322870 FF SB s
barl> 01081531 FF D7  byy'j; -0.239457  FF 86 -
by’ 0.033771 00 11 bi2r1l - _0.578099 FE DI
bgr3? -0.169780 FF AA  bj3‘3;  0.386274° 00 C5
by'21 . -0.409884 FF 2F  bj3'53 -0.160000 FF AF
bg’22 00336383 00 AC -~ by3’5;  0.048535 00 18
b2'23  -0.139335 FF B9 13’ 0.117175 00 38
by'2)  -0.027715 FF F2  by3'e  0.175365 00 59
bg’3y -0.06691} FF DE bl3'3; =0.072638 FF DB
byy ;- 0:115749 00 38 byg 0.084883 _ 00 28
bi1’3 0.279443 00 8F bjg’3. —0.035160 . FP EE
bil-3  0la18216 00 D6 bi273°  -0.006994 FF FD
b]]’S -0.173231 FF A8 bl2’>  -0.01683¢ FF F8.
117 01324092 00 a5  by2'q ~ 0.171428 00 57
bj1’3; 0,782427 01 90 pl3+9  -0l071008 FF DC
il _ol522801 FE PS5 . bya'y;  0.356981 00 B6
~ by’ 0.216551 <00 6E bl212 . 0.861828 01 B9
. oiv15 07129796 FF BE - bl27}7 -0.781115  FE 71
b]1’]q =-0.313355 FF GO bl2’1s © 0.323549 00 a5
bil1% _0l468969" FF 10 . byl’3]  0.064358 00 20
bilr2l 00194253 00 63°  byg’3;  0.155373 ° 00 4F
bi1+23 01103830 00 35 by2'5c  0.015303 - 00 07
b17'55  0.250669 © 00 80 bl2’2>  -0.006339 FF ED
bils27" -01167492 FF aAB bi2+2] 0031867 00 10
byy’3y 0.069377 00 23 pi2r% 9076933 00 27

FEA
b

15,31 .



——————

"Table 6.1 continued

» Element Value
. No.
— Decimal Hex
b ~0.074896 00 26
bi%i% -0.031023 FF Fl
by; 5 -0.006171 FF FD
bj;'7 -0.014898 FF F9
b17'9 0.151260 00 4D
by;'1; ~—0.062654  FF EO
by4'73  0.314983 = 00 al
by;"]5  0.760436 01 85
byj7']> 0.839012 91 ap
bj;']g ~—0.347530 , FF 4F
byy73] -—0.069128 / FF DD
bj;'53 -0.166890" FF AB
Py7%25 -—0.016437  FF-*P8
by7'57 _0.006809 00 03.
by7'5¢ —U.034229 FF“EF
b17:31 -0.082635 FF DG
byg y  0.067013 - 00 .22
big’3 0.161783 00 52
bjg’s -—0.108100 FF C9
blg’'7 + 0.044776. 00 16
big"g - 0.147608 00 4B
bjg’i;  0.356357 -00 B6
bjg’y3 0.533326 01 11
bjg'Is =0 1 FF 8F
bja’ +297864 00 98
bjg 19 0.719107 01 70
byg’,] ~—0.480492 FF 0A
w P1gip3  0.199026 - 00 65
blg's5 .—0.060374 - FF E2
bjg’'57 -0.145756 FF B6
'byg’3y -—0.218139 FF 91
: b19:3l 0.090356 00 2D

-

-

Element

No.
g‘

-

5
221,1
2173

. ba1,s
21,7

b

221,9
21,11

221;15
D21,17
221,19
021,21

21,23

b
b
b

21,27
21,29
21,31

223,1
P23,3
P23,5

23,7

" b3379

323,11
223,13
223,17
523,19
023,21
023,23
P23, 25
023,27
023,29
23,31

bay,13

ba1,25 -

23,15.

a.
Value
" Decimal Hex
0460630 00 1P
0.146375 00 4a
0.219065 = 00 70
-0.090740 FF-D2-
0.169762 00~ 56
0.409843 ' 00 D1,
‘-0.273848  FF 74.
0.113432 00 3A
-0.189249 00 &0
0,456888. 00 E9
0.683781 01 .5E
-0.283231 _FF 6F
-o.lslzﬁe/i'FF B3
-0.365489 FF 45
0.244212 00 7D
-0,101156 FF.CD
0.055358, 00 °'1C
-0.,022930%.. FF F5
0.115278 00 3B
0.278305 = 00 8E
0.339115 00 AD
~0.14047 FF B9
-0.027%40 FF F2
-0.067454 FF DE
0.142620 00 °49
-0.059075 FF E2
0.296991 00 98
- 0,716999 ..01 6F
-0,588426 . FE'D3
0.243734 00 7C
0.048482 00 18
0;117055 . 00 3B
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Table.6.1 continﬁé;ip
Element Value, o Elemént' ' ' Value -
-t ‘No. . "~ : ., No. ; ;
C e ‘ Decimal  Bex .. ., Decimal Hex
: bys 3 0.050930 00 1A  byg ; - 0.043905 ~ 00 16
e b5z’3  -0.021096 FF F6 -  bjg”3  -.0.105996 00 36
; _ b3z’s ~ 0.106055 00 36 - byy': -0.070824 FF DC
i bys' 7 0.256040 00 83 . bag’; . 0.029336 00.0F
o r . ¢ !
: by3’g  =8+240127 - FF'95, b3g’g -0.008899, FF FC
' b=’y .-0.087037° 00 2C byg’7; —0.021484  FF F6
‘ b 0.041797 ~00 15 bsgy” 0.013318  00.06"
. 25'%3‘--0;116814- 00 3B -bgg'}i__ 0.089785 .00-2D
j N b,e™jg —0.048386 FF EB byg'1g - 0.216761  00. 6E~
i 7ol pS2r3] 00243253 00 °7C b5g'37  —0.144835  FF B6 -
# i b5e"53 -7 0.587265 7 01 2C bsg"53, - 0.059993 00 IE
| b5s’55 . 0.715585° 01 6E byg’5s’  0.197769 00 65
;- . bhg’33° -0.296405 . FF 69 b3g737). 0:477457 - 00 F4
L b35’59 «~0.058959 . FF B2 . b22;% 0.714564 01 6D
) . . . ’ e . P2 - [
o by5’31 0.142339 E‘E‘ B8 . byg, 31 0"29598?’. FF "69‘
P bye 0.047157 . 00 18 - by; 1.~ . 0.041072 00 15 -
CT0 . boe'y . -0.113847 . 00 3 b3y"y  -0.0170i3 FF F8 -
¢ bjgts 0.170384 .00 57 b3y’s- -0.003384. FF FF &
by5"3 .. -0.070575 . FF DC.. b31'7 -0.008170 FF FC -
o 'b37%g . -0.037723 FF-ED b31’9 . —0.000805 0000
@ . | bga'7; =0.091072: "FF D2 bjy’y; - 0.000333 ~ 00700
@ - 52011 “ologossi’ oo 1 . .p3i1l _0lo01676  00.00
e b, & ~2.242837- 00 7C  .'b . =0.034108- FF EF °
| X444 '0.36?%%1\* 00 BA |  -0.006784 ° FF ED.
T by;’'53 -0.150600" FFF B3. : -0.016379" FF F8
o ’ B5,755 « 0,281753 . 00 90 5e  0.166300 00 55.
Do byg'Sa 0,6802120 01 SC 3’57 =0.068884 FF DD',
.7 . b33"54: =0.454503 FF 18 r29 -~ 0.346301 00 El
P bye'37 . 0.188261 . 00°60° ° by'sy 0.836045 01 AC
R 6 N DA Lo '
}' - v - . . ;



oL . 163

Fig..fd‘S. -Three address 901nters are used for (1) the
~ conver51on matrix elements (2) the Walsh coeff1c1ents’and
| (3). the Fourier .coefficients (each treated as an one-

d1men51onal array) and are denoted MPRA, MPDArsand STRA

',respectlvely. In computatlons, these 901nters are updated
u51ng “the propertles of the conver51on matrlx,. They are,

& . initialized .to the addresses of the flrst elements of the

respectlve arrays. The'matrlx multlpllc%tlon is car TEd out

‘as follons:'

P-S . ' - | ’

s Step 1: The conver31on process beglns w1th the first

multiplications associated thh it are completed ~ 'The .-'

,multlpllcatlons assoc1ated w1th a converé—\h element - say

. -

bl l'f can be wrltten as’ (bl 1) (Bl)"(bl 1) (Bz)“ (bl l)
k.

:_- <y

(Bg) ... (B 1) (sz),

.suce551ve multlpllcathns startlng w1th 1., Edch successive

ct is aSSLgned to a Four1er component ‘whose 1ndex is

. ot : a so tw1ce the prev1ous value.- .To update the 901nters MPDA,
1“" - STRA, four.varlables denoted SPANl, SPAN2, SPAN3 and SPAN4
jrare’set up.. SPANI and SPANZ are 1n1t1allzed to l SPANB -and
-\SPAN4 are’ 1n1t1a112ed to 2 (for 32 bits’ results) SPANZ and

SPAN4 are doubled by a left Shlft operatlon and are added to

s‘j' . .o" _‘» ..v Coe ' ' ) -

‘matrix- element of the first row in Fy ‘and’ adl of the .

L N/2 Thls shows - that the . 1ndex

s . of Walsh coeff1c1ents assoc1ated w1th bl i.ls doubled for'

the” current values _of the 901nters MPDA and STRA;-'

respectlvely after each multlpllcatlon.\ The uses of SPANll-

i
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"+ _ Entry Point

<" INITIALIZATION . . "] - L

' Set MPRA to OAQO - & .

~ SPAN1=SPAN2=1 ° ' L :

SPAN 35 SPAN4 =2 _ S

ROW =COLMN =16 | - g J
——t1 ‘ -

SPAN2 =2XSPAN2 '

SPAN4=2x SPAN4

MPDA = MPDA+SPAN 2

. STRA= STRA+SPAN4

Call MPY o

- - . : r
' Call ACCM

“SPAN2>32
S er
SPAN4 >64.

: yes e
e ¢ | COLMN=COLMN-1 [ N

Fig. 6.3 " Flowchart of Wa
B _subroutine. = - S :
A [ ) . !

1sh ‘to Fourier conversion -



MPRA = MPRA+2
STRA = TEMP 2
TEMP1= TEMPi+4
MPDA "= TEMP1

SPAN1 = SPAN1+2

SPANR2= SPAN1
SPAN4= SPAN3 -

.60 t01

J..

¥

ROW = ROW -1

MPRR MPRR+2

~_MPDA = TEMP
TEMP2= TEMF2+8.

STRA = TEMP2

SPAN1 =SPAN2 = 1
SPAN3 =SPAN3+4 -
SPAN4 = SPAN3

. Gotai

‘

F:Lg 6. 3 Flowchart of Walsh. to Four:n.er conversion <

L -subroutme (com:mued)

Return

165

i it




'SPAN3. Then step 1 is followéd. " - !

L
and SPAN3 will be explained later.

‘The multiplications associated with a conversion

"element is terminated when either SPAN2Z exceeds 32 or SPAN4

exceeds 64. Then all miltiplications associated with the
conversion element are completed.

Step 2: The next matglx,eiement in the same row as
in: step 1 is used for mUltiplioations; this element is
retrieved-with the pointer MPRA'incremented‘by 2..'The index

of the. first Walsh coeff1c1ent assocrgted with this element

would be hlgher than the 1ndex of the 1n1t1al Walsh

coeff1c1ent for the previous element by 2 : SPANl which

stores the later is incremented by 2; SPANZ is re1n1t1allzed

to the value of SPANl. Since the products’ are contributions

to Fourier componentsuwith3the same-starting index'as. for

When all of the multlpllcatlons correspondiﬁg\fo

row is complete, step 3 is followed, This . can be T

ot

e accompllshed by way of a pounter whlch 1s preset to 16

at ®

. Step 3: The startlng 1ndex of therFourler component v

FEERN

(» - 166

" the p}evious element, SPAN4 is reinitialiied‘to the value of

KA

hto which the products of multlpllcatlons assoc1ated w1th the

new row of elements are a551gned is greater than that of thej

prev1ous row hg 2 . For example, the products aSSOC1atedi_

" with the elements in the third row are assigned to F3, Fgo

'

- ?12 :.:ﬁ 2 (3) ‘As a result STRA rs 1n;t1a11zed:to.the‘
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previous starting value plus 8. SPAN3 which stores the
index of  the first Foufier component corresponding-to a row

iiaincremented by 4; SPAN4 is also set egual to SPAN3. The

- index of the Walsh coefficients associated with the first

element-of the new row is 1 and hence SPAN1 and SPAN2 are
set to 1. Also MPDA is set to point to. the beginﬁing of

.Walsh cogfficiegtbérray. Then step 1 isiﬁolloﬁed;

- If all'of the rows of matrix elements are used, the

w 2

conversion process is complete and is returned to the main
program. . .

e

point OD42. The subroutine assumes a data structuré for °

Walsh coefficients with cal .and sal coefficients inter—

leaved as would be obtéined by the FWHT algorithm.

The conversion time for 32 sine or cosine components.

is. 493 msec maximum, : - o

T.This_subrodtine computes- uncompensated sine or cosine’
‘Spmpohents;: Té compute both, ipﬂhas to . be executed . twice

°£,ﬁ1th the’ pointers . initialized properly. Then they are

N ) ' . ® - S '
. rcompensation  factors which are listed in decimal and
. hexadecimal form in Table 6.2. . - . . ..t
A \ul‘ . '- ‘7 " .- .
‘:-, S, 2 i ) A\ v'.L s
.:-_“ “a L. : ~ P Ao —r— : - _
o - r 3
1: ’ ¢ S, b
. . B o - T e . .
N‘.. ' e o
0 ", ' ¥ . e
' - .;. . N y "
v

The pfbgram'is‘written as a subroutine with the gntry'

cpﬁﬁéhséEEd by‘mﬁltiplying_tge‘Fodrie;?compohents‘with*}

B T



Table 6.2: Compensation matrix elements .

32,32

No
Decimal
" K 1.00080
K3's - 1.00322
'_K3’3 1.00726
K4'4‘, -1.01295.
KS’S' 1.02032.
K6'6 " 1.02942
K7’7 1.04030
K8'8 1.05303
K9’9 1,06767
K16 16 1.08434
Kllhll 1.10312
K12’12 1.12415
K13'13 1.14755
K14114 A1.17349
K15,15 1.20214
K16'16 1.23370
K17'17 1.26841
' K18'18 .1.30651
K19'19 .1.34831
K20'20 1.39414
.K21"21 - .1.44437
K23' 1.5597¢9
K24'24 1.62604
K25n25 1.69879
'K26'26 1. 77876_
K./ 1.86670
27,27
»K28'28 -, 1.96385
‘ f'K29'29’E 2.07104
o K30'30 . 2.18965
K31'31 2.32119
K35’ 1.23370

Value
Hex
0100

0101
0102

0103.

0105
0107

010a -

010E
0111
0116
01la
.0120
0126
012C
0134
013C
0145
014E
0159
0165
0172
0180
018F
01a0
01B3
- 01C7
01DE
01F7
0212

" 0231

(- 0252
015¢C

168
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List of Other Subroutines Used in the WSA

SINCON: -Initializes the variableés to obtain, the Fourier
sine components from sal coeffici;nts;and
computes sine components by calling subroutine
WFCON. The entry point is OE60.

COSCON: Initializes the variabies toiobta;n the Fourier

.-
M

cosine -components from cal- coefficients and
computes cosine components by célling the

" subroutine WFCON: 'The'entry point is OEBO.

“MPY:  Multiplies two 16 bit binary numbers in two's

‘ :
complement form using Booth's algcrithm. The

entry point is OFsdl ) . ‘
ACCM: Usédrto either add or subtract a 32 bit word in
. registers BCDE with'a 32 bit word stored in the

system memory. Used by WFCON subroutine. The

‘L./
entry point is 0%3

s -

BICON: Converts an array of 64 165b§t binary numbers

into an array of_ﬁéﬂsigned BCD numbers. The
entry point is OF00.
CLEAR: /Eiea:s a segment of 252 memory locations. The

B ’ . | N - . A~
, entry point is_OEEO. e i

. . fﬁJ
COMPEN: Multiplies the. cosine and. sine Fourier

.cdmponents obtainéd\bx executing the WFCON

R subroutiné with the compensation factors of, the

 matrix [K]fl; The 'entry point is 0800.

»

T i )

-

Pl
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6.5 Main Program

. o

The main program consists twquprograms,- viz, 1)
program a wrltten in 8080 ASSEMBLY language in the System.
80/10, 2) program ‘B written in BASIC p; the graphlcs

. 'terminal hp2647a. The 1nformat10n transfer between the two %
programs is through a. R5232C serial 1/0 1nterface. . The
flowcharts of the programs are given in FlgsL 6‘4(a) and
6.4(b). Program A is started by the system 80/10 Reset

. switch (this starts the program executlon at 1opat10nv0000)
.and B byfthe'"RUNf command of hp2647a. The start of program
B precedes the Reset-operatign i.e, the start_or program A.
-wThe flowcharts are self explanatory. " The >features of
Pr09ram B are: _. o B j:' ‘ ' S o
1.  An output message "SYSTEM READY. TYPE 1 TO Start, 0
Po TERMINATE" is dlsplayed. o
2. A message in the for‘vpf one ASCII character is typed
‘on the keyboard.of 2647A as the respone to the query in (1).

y ‘3. - After computlng the Walsh coeff;cxents,: an output
/\essage "SEEECTION OF - SPECTRUM. TYPE 'F' E'ora:’ FOURIER‘
SPECTRUM. 'W' FOR WALSH SPECTRUM" is d'isplaye'c}'.'--’:' Dependmg

- on the response, either‘Walsh.grgFourier edeffic1ents are

«:outputted.

4. In ﬁhe case. of Walsh coeff1c1ents, a table of cal and

sal‘poeff1c1ents values in volts w1th the assoc1ated-
‘seguency numbers are given. Also;plots of cal coeff1c1ent

- L s A

’
‘L 4
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¥ ,
Send Prompt Chr ' ’ g

!

Receive RS
No - Is R : . . ) 4
Stop RS = 1 \
. 7 Yes
Call WTEORM Receive RS
. ; 17
Send Prompt Chr " | Send Prompt Chr
T~ S S——
Receive RS
Chr = Character
. Is W &
RS = Response
.. RS=W or* Transmit WC
- WC = Walsh coefficients . 4
FC = Fourier. = . F‘ - }
coefficients - :
' : Cadl SINCON . Send Prompt Chr
) Call COSCON 1 1 4 Receive &s
Call COMPEN Is 7 T
. 2 _RS=l or 0
- . ] * .
" Call’ COMPEN C
© 0 ke o] Transmit FC —

Flg. 6. 4(a) Flowchart of main Walsh spectral analyser o ' '
pmgram in Intel 8080 Assembly 1anguage L. . - & '

1
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6.4(B)

il

F

-Receive PC

)

Display MS # 1

g

Réceive RS

Stop

PC = Promt Char:z.cfer T

RS = Response

MS ¥ 1:
MS ¥ 2:
MS # 3: "IYPE
MS # 4: “TYPE

Flowchart of BASIC program fbr hp 2647A

Teceive PC

Receive RS

-

1

Display MS ¢ 2

Display M5 # 4

|

Call FPLOT

MS = Measagé ]

"SYSTEM READY. TYPE 1 TO START 0 TO TERMINATE"
"SELECTION OF SPECTRUM. TYPE W FOR WALSH COEFFICIENTS,
F FOR FOURIER COEFFICIENTS"

1 IF EOURIER COEFFICIENTS ARE NEEDED™
1 INUE" vt

PR

graphlc termlnal

L

-

i e
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, - j
values vs sequency and sal coefficients values vs sequency

‘are displayed. . The results obtained for a sinusoidal

-

/@bltaqé with a peak to peak voltage of 4 volts are
illustrated in Table 6.3.

In the case of Fourier components}ia table of

magnitude in volts, phase in degrees and the frequency l

(Harmonic number) are gfven along with a plot of magnitude

Vs frequency.~ The‘results of Fourlerfanaly" for the same

sinusoidal 51gnals are illustrated in Table 6.4,

5. - After outputtlng the results as described above, a

<4 -
messagel“Type 1 to Contlnue is dlsplayed. Upon receipt of

a response, the system is ready for the analysis of the next

-

input signal.

6.6 Computational Errors ‘ v

Rl
Y

'6.5,1 Errdrs on Walsh'Coefficients '
The computatlonal errotg/:h the follow1ng dlscu551ons

ate expressed in terméiof the-LSB ‘of the A/D converter.
The 8—b1t.1nputtdata obtalned‘frpm the A/D-convertet
is in_zfs-eomplement form with an accgtacy of t1 lsb; (Thie

' error can be\gonsideredhto be uniformly distributed.) In

e

“computing Walsh coefficient. B(i) {Eqn.' (3.3)1, 64 sampled

signal values are used (either added or subtracted) and the

f1nal result ‘is d1v1ded by 64. ‘Hence a total error in the

. computed error is- tl 1sb. h(?he fractlonal part due to -

T N
R »*

Sl

i
! -
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Table 6.3: Sal and cal coefficients of a sinusoidal

signal 4 volts peak to peak

éoefficients coefficients
sequency ‘ : sequency . u ’
: sal cal ‘ sal s cal
1 ~2,4396 -0.6720 2 +0,0262 +0.0128
3 +1.0236 -0.2753 g $0,0177 +0.003Y
5.  %0.2032 +0.0568, 6 © -0.0067. +0.0092
7 +0.4974 -0.,1276 8 © ~0.0006 +0.0128
9 +0.0446 +0.0153 10 -0.0067 -0.0006
110 -0.0226 40,0116 . . 12  -0.0055 =-0.0006
13 #0.0995 " +0.0214 = 14 -0.0055 =-0.0055
15 +0.2472  =0.0604 16 . +0,0055 +0,0031
17 +0.0153 +0.0104 18 FUT0031  +0.0043
19 40,0018 +0.0018 20 -  -0,0006 =-0,0031"
21, -0.0006 +0.0043 22 -0,0079 -0.0018"
23 -0.0043 -0.0043 24 +0.0079 +0.0067
25 .+0.0262 +0.0067 26 ~ ° —0.0031 =-0.0018
27 . -0.0067 +0.0031 . 28  -0.0018 +0.0006
29 - +0.0446 - #0,0153 30 +0.0055 +0,0006
31 £0,1239 -0,0323 32 "+0.0018 :

B
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’ . | , o o . ‘ o
The level c¢rossing detector was adjusted so that the
synchronizing pulse for frequency multiplication was

] displécediby 13 degrees.

. .

et e, e et i B
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" Table 6.4: Fourier amplitude and phase spectrum of
the signal of Table 6.3 _
' Frequency - Amplitude Phase Frequency Ampilitude Phase .
1 +3,9702 .© +13.0789" R
3 - .« = 4 AR -
‘ 5 - 1 .[_ 6 - - ' . - R J
T - .- L P
97 - . - 10 . - : - r
11, - e 120 0 = e
r ( -, . ) . . ) ) V } . 7"_- i
13 - o= 14 ==
15 Ly - 16 - e
17 - - 18 . - .- .:
19, - -0 - -
21 - - 22 - . T
23- . . =, . . 24 . . - N
25 ) el - 6 - =
27 & = <. = " 28 S A -
29 S R 30 - = -
31 e s - ¢ 2
e N . ‘-' . - '. B ‘ -
- denotes zero ) - - i
o : : ‘K h ‘. ’ ’ L Q
~ . -. rd - ) \ - . Y .
- . . "_0 - " l.‘.!
.” ) /) -
o . > ) ) )
K N g R |
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>

diéision'by 64 is not_neglected:)

_ . . e
6.6.2 Errors in Fourier Coefficients

-~

Each Fourier coefficient is obtained by multiplying a-°

maximum~ of 16 Walsh coefficients with the appropriate

conversion matrix elements see Egn. [(5.32)]. The

-conversion matrix elements are represented with a precision

of nine fractional bits. After the conversion process, the

5

‘* fractional part-is discarded, resulg}ng.in a maximum error
-~ ’ . . c

of -1 1sb, in addition to.errors’ due to finite precision of -

- the conversion elements. The latter errors are negligible

‘when compared’ with the truncation error. Finally the

computed TFourier coefficient is multiplied with the

.compensation element and the frﬁctidhal _part is ignored,:

introduc@ng an additional error of\=1 1sb.

Hence the combined maximum error. is =2

3

computed Fourier coefficient. This error can be mad

-

R LR R R

.o



. ~ CHAPTER 7

SUMMARY AND CONCLUSIONS

Walsh Spectral Analyseys are classified into direct

and transform types. Direct type instrqments,tequire N2

arithmetic operations and transform type ' use Nlog,N

4 . . . * y
operations to obtain N coefficients from a given data length

]

N. The former is costlier in terms of hardware and can bé'

justified in situations where all the N coefficients are
needed immediately after the Nth sample.
A serial processor using long' shift registers

implementing ; Fast Walsh Hadamard Transform is suggested.

The processor is faster than an earlier design used by

-geadah and COIihthiOS‘[l?] by 1.5 times. BAn improved method

to adapt the above design to obtain coefficients in dyadic

~and sequency brderings is given. The method consists of "

storing the incoming data in 'a permuted manner in an
auxiliary memory and retrieving the data sequentially from

.the memory. . The data is sent to the serial processor for

further processing. ' The permutation operation involves a’

binary to Gray code conversion followed by bit-reversal
operation for seqguency ordered - coefficients and a
-eversal'operation for dyadic ordered coefficients.

e T a7



A

- T T 178

This scheme avoids the giffer;nt permutation’ operations
between the iterations of.the FWHT used in the design of
Geadah and Corinthios [17). It also results in identical
stages,  when a Sipelihe structure is used for higher input
data rates.h These process;rs can accept input déﬁa rates of
the order of 1 Mﬁz for'aigital'devices available at preéent.»

Microprocessors prqviéeéan_élternative in realizing a
Walsh Spectral Analyéer. This is lower in cost and Walsh to
Fourier conversion can be implemented through software._ An
instrument based on an off-the-shelf Intei System 80/lq is
developed. It consists_ofla.cabinet contafning an 808?—
based single- board EOmputer SBC SO/IO,na card cage with
ready-wired bus and pbwér supply lines for up  to- three

additional boards and a power supply. Only one additional

'épeciallﬁ-designed board is used. It contains circuits for

triggery 1evelwadjustment,'A/Diconversion, 1K of read-write

.Y -

P ‘
memory, a frequency multiplier module (FMM) and a direct

memory access (DMA) controller. .

The FMM circuiE generates 64 equally-spaced pulses

within one.périod of the input signal, so thét the data

window spans one cycle. The 1eakage error in the Fourié:

spectrum‘ measurement is  made negligibly small. Anpther .

. ‘ T P .
feature of the circuit-is thatiit does not require a high-

- -

speed 619&5\\50: its. proper functioning. . Th€¥”signa1

frequency may lie anywhére'within t ange‘0.2 Hz to 10 Hz-
. \¥~¢,a\\ ) :

. . .
. . »
. ' ‘
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w;thout ariy range switching. A meéasurement uses two cycles,

of “input signal, the first being used fo# frequency,

determinaticn and the second cycle for data acquisition.

This is followed by processing of 24 msec duration, to yield-

the Walsh spectrdm.

-

T “Given the Walsh coefficients of the signal, - the’

b

corresponding Fourier éoefficients‘are'obtéined by way of a
matri# multiplication so that'both'épectra are available;.
he conversioﬁ process takes about 1 sec, most of the time
being'devoted to software multipliﬁation.

The computed results (Walsh and Fourier components)
are transmitted to.a lett Packard‘grabhiéal‘terminal type.-
2647A with processing” capability . for displaying numerical

LA : .
and graphic data. : ;

RED

The ' present ihstrumént is based on an eight bit

v

microprdcgssog, accepting digital data in. 8 blt;f two's
cohplementzrepfesentationﬁ This limits the dyn%miéliange of
the input-sigpal £o 42 dB. For better dynadic fange, an'A/D.
converter_bf 12 bits ‘should be used a?d the use of one. of.
the very recent 16 bit microﬁ;oceséoré is desirable t6
simplify thefsoffware and to reduce the'cbmputation time.

The FMM circuit deveibped in the present ;ork may be
‘exteﬁded to a higher spee;i of operation by in orporlati-ng

multiple D/A converters for fine tuning.adjustment, each D/A

to, be used in a round robin fashion.
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