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Abstract

In this thesis, we describe the properties of brane worlds embedded in a space-

time with two extra dimensions. We derive and describe the boundary condi-

tions that branes impose on the bulk fields in the theory, and show that they

reproduce known results for D7 branes in F-theory compactifications of type

IIB supergravity. We show how brane-bulk couplings can stabilize moduli of a

flux stabilized compactification of extra dimensions. An important new ingre-

dient is that the branes can have a magnetic coupling to the flux that stabilizes

the bulk. This coupling allows the system to relax the stringent constraints

of flux quantization, which allows the bulk spacetime to respond to perturba-

tions of the branes. We derive the dynamics of the lower-dimensional effective

theory below the Kaluza-Klein scale, and show that the contributions of the

magnetic coupling can be competitive with the tension of the brane.

We first describe the simplest flux compactification: an Einstein-scalar-

Maxwell theory in 6 dimensions. We find that the effective potential in 4

dimensions gets minimized at the position one would naively expect – at the

stationary point of the sum of all the brane Lagrangians – but its value at the

minimum gets changed by the magnetic coupling to the brane.

Next we find that if the bulk is described by 6 dimensional gauged

chiral supergravity, the effect of the magnetic coupling allows the curvature on

the brane to be suppressed relative to the generic scale of the tension on the

branes. We use this observation to construct an explicit brane-bulk system

that has a technically natural cosmological constant of the correct size. The

classical on-brane curvature vanishes in our construction, and the first order

quantum corrections give a value to the cosmological constant of the right

order of magnitude. We estimate higher loop corrections, and they are greatly

suppressed.
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Conventions and notation

In particle physics, there are various conventions on notation and choices of

signs. Throughout this thesis, we use the following conventions unless specified

otherwise:

• All equations assume natural units: ~ = c = 1. The unit of choice

for energy is GeV ≈ 1.6 · 10−10J. The unit of choice for length is

( GeV)−1 ≈ 2.0 · 10−16m.

• The metric of spacetime has negative signature, ηµν = diag(−1,+1,+1,+1)

(and additional entries with +1 for any extra dimensions).

• The Riemann tensor, Ricci tensor and Ricci scalar are defined as

Rµ
νρσ = ∂σΓµνρ − ∂ρΓµνσ + ΓτνρΓ

µ
τσ − ΓτνσΓµτρ

Rµν = Rσ
µσν

R = gµνRµν (1)

following Weinberg1.

• When dealing with extra dimensions, Greek indices (µ, ν etc.) denote

spacetime indices in the non-compact directions (usually, 4-dimensional

spacetime). Capital latin indices (M,N etc.) denote indices in the full

spacetime. Finally, lower case latin indices (m,n etc.) denote the extra

dimensions only.

1Weinberg, Gravitation and Cosmology, Wiley 1973
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Chapter 1
Introduction

In this thesis, we will discuss the issue of the naturalness of the cosmological

constant. We explain the requirement of technical naturalness, and how the

cosmological constant does not satisfy this within the standard model of par-

ticle physics1. We show an explicit construction of a theory that includes the

standard model, but in which the cosmological constant is technically natural.

Our model is based on the proposal of supersymmetric large extra dimensions

(SLED, (1.1)), and we include sources that explain (and stabilize) the size of

the extra dimensions.

1.1 Decoupling of scales in physics

The notion of naturalness of parameters in a theory of physics relies in part

on the idea of decoupling. We give a quick outline of decoupling, and why

it is relevant. The natural world that we observe can be described at many

different scales. On astrophysical scales, it is well described by massive bodies

1The standard model contains all known forces except for gravity, and all known particles.
It is of great experimental success, and the cosmological constant problem is one of the few
conceptual difficulties within the standard model.

1
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moving under gravity only. To understand the orbits of the planets, say, it

is not necessary to understand any details about the planets. Modeling them

as point masses gives a very good approximation. This is an example where

details on short distances are irrelevant for the physics at large distances. It

is this decoupling between wildly different scales that allows us to make any

progress in physics, by allowing us to figure out small parts of the underlying

laws, and use them to understand the more complicated physics.

With every length scale, there is an associated momentum scale through

the de Broglie relation, p = 1/2πλ (in natural units). There is an associated

energy scale that comes from the relativistic relation E2 = p2 +m2. In terms

of energy, the decoupling of scales states that low energy processes can be

understood well without knowing the details of any high energy processes that

take place at the same time.

1.1.1 Effective field theories

We need to understand what the decoupling of scales entails for particle theory.

A generic quantum field theory in particle physics consists of two parts: First,

a Lagrangian that defines the particles and interactions in the theory. Second,

a domain of validity. This usually takes the form of an energy scale at which

this Lagrangian can no longer be trusted, because in the real world there are

particles that can be created that are not described by this Lagrangian. As

soon as the energies available in a process allow for the excitation of such a

heavy state, a more complicated Lagrangian has to be used. Conversely, given

a Lagrangian that is valid to some very high energy, the low energy behaviour

of the theory can be studied in a reduced, effective theory. This is done by

2
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accounting for the heavy particles in how they change the interactions between

light particles (1.2). The process of finding the low energy theory is referred

to as integrating out the heavy states

Within the context of this thesis, any theory we work with will be

an effective theory. The existence of a fundamental, UV complete theory is

implicitly assumed, though it is not required: even if it is turtles all the way

down, it is worth studying the next turtle!

1.1.2 Naturalness in particle physics

In particle physics, a generic model is described by a Lagrangian which is a

functional of a set of fields and their derivatives. Typically there are various

dimensionless coupling constants, as well as some number of dimensionful cou-

plings (like masses of particles). All other things being equal, one would expect

that the dimensionless couplings are all roughly of the same size. Similarly,

the dimensionful couplings should be set by roughly the same scale.

Naturalness issues arise when there is a large ratio in physical quantities

that are expected to be related to one another. In that case, it should be

possible to explain why there is a large discrepancy. The need for such an

explanation comes in two parts. The first question is why there is a large

hierarchy when the ratio is calculated in the fundamental theory at very high

energy. Since we do not know much about this theory, this question is not

very pressing (and probably not answerable until much higher energies become

experimentally available). The second part of the naturalness issue demands

that the large ratio is understood in every effective theory below some scale,

not just in one specific effective theory. This is called technical naturalness,

3
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and it is the question that we are addressing in this thesis.

1.1.3 Technical naturalness

Our view on technical naturalness is discussed in detail in chapter (6), here I

will just give a broad overview. The point of technical naturalness is that we do

not know the fundamental theory, so we cannot say if a large ratio emerges from

the theory in a natural way. One way this can happen is through the running

of couplings due to quantum effects, which can make some couplings grow

while others shrink. What we do know, is an effective theory that describes

the hierarchy. The question we can ask is how much this description changes

when we integrate out heavy states to obtain a new effective theory which is

only valid at lower energy. Suppose we start with an effective Lagrangian that

is valid to some energy higher than the mass of a certain particle. Whenever

we calculate an effective theory valid below the mass of that particle, this

particle will no longer appear in the effective Lagrangian, and its effects need

to be taken into account by changing the effective couplings in the rest of the

Lagrangian.

In this process, a large ratio is considered natural if it is stable under

integrating out heavy particles. On dimensional grounds, we can estimate for

which type of couplings this may be problematic. A dimensionless coupling λ

can only depend on ratios of scales, and the generic contributions due to loop

effects are proportional to δλ ∝ ln(E/M), with M the mass of the state that is

integrated out, and E the energy scale of the process at hand (e.g. the center

of mass energy of a scattering). Since the dependence on the high mass is

only logarithmic, dimensionless couplings vary only mildly with scale, so they

4
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usually do not ruin an existing hierarchy.

On the other hand, couplings with positive mass dimension tend to get

contributions proportional to the mass that is integrated out. Those contri-

butions can be much larger than the final value of the coupling. In that case,

there is an almost magical cancellation between the dimensionful coupling in-

cluding the heavy state, and the contribution due to loops of the heavy state.

As an example, the cosmological constant changes as Λlow = Λhigh + #M4,

with # a number that can be found from a vacuum loop graph. Here the

cosmological constant problem becomes apparent: When all the contributions

of all massive particles are added to the fundamental cosmological constant,

we should end up with the physical value that sets the cosmic acceleration.

This means there is an immense cancellation between all those contributions.

Even if we assume that there are no new particles above the electroweak scale

(∝ 1 TeV), then the loop graphs have to cancel the bare cosmological constant

to about 48 decimal places... but not beyond that! It is in this sense that the

cosmological constant is not technically natural unless there is a mechanism

at work that is unaccounted for in this description.

1.2 Extended objects in model building

The current best candidate for a complete theory of nature, which describes

all fundamental interactions in a single framework, is string theory. It has

been found (1.3) that the theory requires the existence of various extended

objects, on which open strings can end. They have been dubbed branes2, as a

generalization of membrane.

2To distinguish between physics of the surface and physics of the spacetime in which
they are embedded, the terms bulk and brane physics are used.

5
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If we take the existence of branes seriously, then we need to know how

their existence affects physics at low energy. In particular, when building

models of particle physics beyond the standard model the inclusion of branes

can have a large impact: all non-gravitational3 particles are represented in

string theory by open strings, which need to end on branes. This means that

different particles can have their dynamics restricted to different numbers of

dimensions.

The number of dimensions that particles feel has a large impact on their

behaviour. As an example, the 1/r2 law for gravity and electromagnetism can

be understood as a conservation law, because the area enclosed by the source

grows as r2. This means we can interpret the force law as the number of

(virtual) force carriers per unit area. If the force carrier has access to extra

dimensions, then the force law gets modified to 1/r2+n when measured at

distances smaller than the linear size of the n extra dimensions.

1.2.1 Brane world models

The realization that not all particles have to feel the same number of dimen-

sions has opened up a new class of models to be studied. In those models, the

universe as we know it is a brane, embedded in a higher dimensional spacetime.

From the point of view of string theory (1.4) the total number of dimensions is

expected to be 10 or 11. This means that 6 or 7 of those have to be compact,

and of sufficiently small extent that their existence has evaded our detection

so far.

The only particle that absolutely has to see all dimensions is the gravi-

3The closed string spectrum includes the gravity multiplet (metric, antisymmetric tensor,
dilaton, and fermions related by supersymmetry), and some of the gauge potentials (their
number and rank depend on the string theory).

6
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ton (and its multiplet, if supersymmetry is present). The reason for this is

that it is an excitation of the geometry, and all of the dimensions are part of

the geometry of spacetime. This means that the bounds on the existence of

extra dimensions in a brane world scenario are set by tests of gravity. Due to

its weak coupling at energies that are accessible to accelerator experiments,

there are no significant bounds on the extra dimensions from such experiments.

Useful bounds come from tests of gravity at short distances, such as searches

for deviations from the inverse square law (1.5) or the equivalence principle

(1.6).

Collider physics does place very strong bounds on what extra dimen-

sions can be seen by standard model particles. For any existing particle, there

is a tower of excitations labeled by higher momentum wavefunctions in the

extra dimensions. Pictorially, this is similar to the infinite square well in

quantum mechanics. There is a tower of states, with the step in energy set by

the Kaluza-Klein (1.7) scale, MKK ' 2π/r with r the linear size of the extra

dimensions. If the extra dimensions are strongly curved, the new scale can be

set by the inverse of the radius of curvature instead. Since we have not seen

any such states in colliders, the KK mass scale for standard model particles

must be at least on the order of the TeV scale from experiments at Tevatron.

As we will see in the next section, such small dimensions are not particularly

helpful for the hierarchy problems we try to address.

1.3 Extra dimensions and naturalness

The possible existence of extra dimensions introduces an additional ingredient

in discussions of naturalness. The typical size of the extra dimensions Vn ∝ rn

7



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

introduces a new energy scale r−1 ' MKK. The question of naturalness of

parameters now considers the fundamental, higher dimensional Lagrangian.

At low energies, where the effective Lagrangian is 4 dimensional, parameters

are set not just by the fundamental scale (the string tension (Ts), say), but

also by the size of the extra dimensions. In particular, if the dimensionless

combination Tsr
2 is much larger (or smaller) than 1, this can create an observed

hierarchy that is natural.

At this point, the size of the extra dimensions takes the place of the

unexplained hierarchy in the Lagrangian. This is not yet much progress, as

it is just moving the problem around: why is the size of the extra dimensions

not set by the inverse of the fundamental energy scale in the Lagrangian? Any

model that attempts to address hierarchy problems with extra dimensions

needs to answer this question.

As an example, there is a class of models called warped Randall-Sundrum

(1.8) models, that have 1 extra dimension. In those models the extra dimension

has a brane as its boundary (either on just one end, with the extra dimensions

a half-line, or a boundary on both ends). The effect of the branes is to ‘warp’

the extra dimensions, in a way where distances along the brane directions de-

pend exponentially on the position in the extra dimension. In this setup a

large factor can appear by having a much smaller factor that becomes expo-

nentiated. This means that ratios of the parameters that define the higher

dimensional theory may be of order 102 or less, while still leading to measured

hierarchies of order exp(102) ' 1043.

The reason that this is a desirable property, is that ratios of 100 or

so happen all the time. Their technical naturalness is much less problematic,

because the modifications to the scales from integrating out particles are not

8
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just set by the mass of the heavy state. Generally there are also factors of

coupling constants involved, which can be fairly small as well. For example,

the dimensionless electromagnetic coupling constant is α ≈ 1/137. If such a

moderate hierarchy is natural, then exponentiating it automatically leads to a

large hierarchy that is also natural.

1.3.1 Why 2 extra?

Most of this thesis deals with systems where the known 4 noncompact di-

mensions are supplemented by 2 compact, internal dimensions. There are

various reasons to focus on two extra dimensions. One is a point of practi-

cality: adding more and more extra dimensions adds to the complexity and

intractability of the model. Systems with just one extra dimension have been

studied extensively (1.8; 1.9), but even the qualitative results don’t carry over

to higher dimensions very well. The problem is that for more than 1 extra di-

mension, bulk fields often4 diverge at the location of sources. On the contary,

in codimension-1 systems all fields remain finite at the sources. This makes

codimension-2 the simplest case that has a hope of being representative for

generic brane worlds.

The other reason to focus on 2 extra dimensions has to do with the

specific values of the hierarchies we wish to address. The relation between

the 4 dimensional Planck mass and the higher dimensional gravity scale M? is

given by dimensional reduction:

M2
p 'M2+n

? rn . (1.1)

4For 2 extra dimensions, there are exceptions: a cosmic string, for example, has a conical
singularity but no divergences

9
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M? n MKK = r−1 r
100 GeV 1 10−32 GeV 2 · 1016 m
100 GeV 2 10−15 GeV 0.2 m
100 GeV 3 5 · 10−10 GeV 4 · 10−7 m

1 TeV 1 10−29 GeV 2 · 1013 m
1 TeV 2 10−13 GeV 2 · 10−3 m
1 TeV 3 2 · 10−8 GeV 10−8 m

10 TeV 1 10−26 GeV 2 · 1010 m
10 TeV 2 10−11 GeV 2 · 10−5 m
10 TeV 3 10−6 GeV 2 · 10−10 m

Table 1.1: Some examples of the radius of the extra dimensions for various
numbers of dimensions and various gravity scales.

In order for the gravitational scale and electroweak scale to be natural, we

wish to choose M? near the TeV scale. Since the Planck scale is fixed, this

means that we need to choose the radius of the extra dimensions as

r =
n

√
M2

p

M2+n
?

. (1.2)

From the sizes of the extra dimensions in table (1.1), it is obvious that only 1

extra dimension does not work in this context: The extra dimension has to be

of macroscopic size to solve the hierarchy between the electroweak scale and the

gravity scale. Of particular interest is the second to last line, highlighted with

red, for two reasons. First, the size of the extra dimensions is comparable to the

experimental limits on extra dimensions from tests of gravity (1.5). Second, the

Kaluza-Klein (1.7) scale MKK = r−1 = 10−11 GeV is (more or less) of the right

size for the cosmological constant: if the scale of the cosmological constant is

set by the KK scale, this results in Λ = M4
KK = 10−44 GeV. Comparing this

to the cosmological constant, Λ ' 10−38 GeV4, the discrepancy is a factor of

106. However, in terms of the energy scale MKK the discrepancy is only a

10
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factor of about 30.

The choices in the table (1.1) are only examples, and they depend

(among other things) on the shape of the extra dimensions. This means that

if the extra dimensions conspire to have an effective cosmological constant on

the order of the KK scale, both the electroweak hierarchy problem and the

cosmological constant problem can be solved with 2 extra dimensions with the

size of tens of microns.

The effective cosmological constant is not generically set by the KK

scale, there normally are larger contributions in the bulk. However, when

the 2 large extra dimensions are described by a supergravity, the dominant

contribution is set by the KK scale. This is the proposal of SLED (1.1)

(Supersymmetric Large Extra Dimensions), and we summarize this result in

chapter (6).

In addition to 2 large (micron) extra dimensions, a string theoretical

UV completion requires another 4 extra dimensions. The 6 dimensional the-

ory is an effective description with excitations in those 4 dimensions already

integrated out. We will not be concerned with the other 4, and simply assume

them to be stabilized at a sufficiently high scale.

In order to use this numerology as a genuine solution to the naturalness

problems, it is not enough to just proclaim the size of the extra dimensions.

They are required to be dynamically stabilized, and the parameters that are

required to stabilize the two dimensions at this large size need to be natural

in their own right. Chapter 6 deals with this stabilization, and discusses the

naturalness of the construction.

11
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1.4 Outline of the work

The previous sections describe the questions that guided the work in this

thesis. Chapter (2) explores the interactions of a bulk scalar field with a codi-

mension 2 brane, with applications to electroweak symmetry breaking. The

extra dimensional scalar plays the role of the Higgs field by acquiring a v.e.v.

through its interactions with the brane. The effects of gravity are neglected

in this chapter. Chapter (3) sets up the framework for determining the back

reaction of codimension 2 branes on a general bulk theory involving gravity,

a set of scalar fields, and a bulk Maxwell field. We also describe the effective

potential for the scalar fields below the Kaluza-Klein scale. In Chapter (4)

we explore the consequences of those matching conditions for the simplest

flux-stabilized extra dimensions. This chapter also describes the possibility of

localizing part of the Maxwell flux on the branes due to a magnetic interaction.

Chapter (5) develops the same construction for the Salam-Sezgin (1.10) solu-

tions of gauged, chiral supergravity (1.11). Finally, chapter (6) takes the tools

developed in the previous chapters to describe an explicit realization of the

SLED (1.1) proposal, including the stabilization of the extra dimensions. The

crucial new ingredient of this construction is the localization of Maxwell flux

on the branes. This allows the construction to be robust against perturbations

of the brane properties.

12
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Chapter 2
The Hierarchy Problem and the

Self-Localized Higgs

2.1 Preamble

This chapter is based on the work in (2.1). We describe the interactions of a

6 dimensional scalar field which couples to a 4 dimensional brane. The scalar

field has a (large) mass MB in the bulk. When the interaction with the brane

is neglected all states in the effective theory have a mass larger than the bulk

mass. The most important result of this work considering the theme of this

thesis is that the coupling with the branes can drastically alter the energetics.

In particular, the lowest energy state of the scalar field in the 4 dimensional

effective theory has a mass that is smaller than the bulk mass.

This low mass state is separate from the Kaluza-Klein spectrum, which

does start at MB as usual. The reason that this state can have a smaller mass

than the bulk mass is that it is divergent at the brane location. As a result

the brane potential weighs in competitively with the bulk mass, despite being
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localized at a single point in the extra dimensions.
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C.P. Burgess, Claudia de Rham and Leo van Nierop

2.2 Introduction

In the Standard Model (SM) the Higgs field is in many ways the odd man

out. In the absence of the Higgs the only interactions that remain are gauge

interactions, characterized by only a handful of coupling constants. But with

the Higgs comes the deluge of parameters that parameterize our ignorance

of the ultimate origins of the model’s many masses and mixing angles. And

among these parameters is the one dimensionful quantity, µ, that governs the

size of the µ2H∗H term in the Higgs potential, and by fixing the size of the

Higgs v.e.v. sets the scale for all masses. It is the sensitivity of this parameter

to much heavier scales that is at the root of the hierarchy problem (2.2).

Historically, the hierarchy problem has been one of the main moti-

vations for exploring brane-world scenarios for physics beyond the Standard

Model (2.3; 2.4), for which all of the observed SM particles are trapped on a

(3+1)-dimensional brane within an extra-dimensional bulk. Motivated by the

observations that the Higgs is the lone SM particle yet to be observed, we here

explore the idea that it is the only SM particle that is not confined to a brane:

i.e. whereas all other SM particles live on a brane, the Higgs lives in the bulk.

The hope is that this might account for its special role within the SM.

Brane-world models with the Higgs in the bulk have been examined in

the literature, most often within the context of 5D Randall-Sundrum construc-

tions (2.4). Yet these models differ from the present proposal in one of two

ways: either by imagining the extra-dimensional Higgs to be related to other

fields by supersymmetry (2.5; 2.6); or by taking the Higgs to be the 4D scalar
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component of what is ‘really’ an extra-dimensional gauge potential (2.7; 2.8).

The motivation for doing so is the expectation that the extra-dimensional

gauge symmetries can help alleviate the hierarchy problem, potentially allow-

ing some of the properties of Higgs interactions to be unified with those of the

gauge interactions. Implicit in this is the belief that a Higgs that is a bona-fide

extra-dimensional scalar makes no progress towards alleviating the hierarchy

problems of the usual 4D Higgs.

A model more similar to the one studied here was considered in ref. (2.9;

2.10), although from a different point of view. In ref. (2.9) the authors study

the effects of codimension-2 brane couplings on a massless bulk scalar, with a

focus on couplings close to the critical value for which the symmetry-breaking

properties of the vacuum change. Ref. (2.10) generalizes to massive bulk fields,

but without the focus of this paper on the hierarchy problem, and consequently

without the study of couplings to fermions and gauge bosons described herein.

It is simple to see why extra dimensions in themselves are generally

believed not to alleviate the hierarchy problem. This is because the Higgs

potential,

U = −m
2
B

2
H∗H +

g

4
(H∗H)2 , (2.1)

is always minimized by H∗H = m2
B/g, where in n dimensions g has the (engi-

neering) dimension of (mass)4−n while mB always simply has the dimension of

mass. But the essence of the hierarchy problem is that because mB is propor-

tional to a positive power of mass, it generically receives contributions from

heavy particles that grow with the mass, M , of the particles involved, and so

is dominantly affected by the heaviest such particle that can contribute. Since

mB is a positive power of mass in any number of dimensions it is hard to see
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how the hierarchy problem can be ameliorated simply by placing the Higgs

into the bulk.

In this paper we show why this simple argument is incorrect once the

couplings between a bulk Higgs and the brane are properly taken into account.

The brane-bulk interactions change the argument because the Higgs potential

on the brane, Ub, and in the bulk, UB, can disagree on which value of the

Higgs v.e.v. has the least energy. In this case the system generically resolves

this potential frustration by appropriately balancing these potential energies

with the gradient energies which punish the field for attempting to interpolate

between the two minima. But if the brane has codimension 2 (i.e. there are

two dimensions transverse to the brane, such as for a (3+1)-dimensional brane

situated in a 6D bulk), the Higgs likes to vary logarithmically near the branes,

and the gradient energy associated with this variation is such that the resulting

v.e.v. only depends logarithmically on the UV-sensitive term, mB, of the bulk

potential. Braneworld models can help with naturalness problems for a number

of reasons; brane-bulk couplings provide a new way for them to do so. We show

that the lunch is nevertheless not completely free, however, since the hierarchy

problem gets partially recast as a requirement for the coefficients of the brane

interactions (H∗H)2 and DMH
∗DMH being required to be suppressed by very

different scales. This kind of hierarchical suppression usually does not arise

between two operators like these, that are not distinguished by low-energy

symmetries or selection rules.

We also show how Higgs-brane interactions change another fundamen-

tal piece of widely-held intuition regarding the properties of a bulk Higgs. In

the presence of a (positive) extra-dimensional mass term, UB = +1
2
m2

BH
∗H,

the spectrum of Kaluza-Klein (KK) states would usually be expected to con-
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sist of a multitude of levels (generically spaced by Mc ∼ 2π/L for a toroidal

extra dimension of circumference L, say) that start at energies above a gap,

mk ≥ mB. We show here that brane-Higgs interactions can generically intro-

duce a state which lives within this gap, m < mB, that is ‘bound’ in the sense

that its wave-function is localized at the position of the brane. We call this

the ‘self-localized’ state inasmuch as its localization is a consequence only of

the Higgs self-interactions and not on any geometric effects, such as those due

to warping.

These arguments are presented in more detail in their simplest context

in the next section, §2.3. §2.4 then tries to fashion an approach to the hierarchy

problem by providing a preliminary discussion of the kinds of interactions that

would be required for a realistic model, and the ways in which the low-energy

Higgs couplings resemble and differ from those of the SM Higgs, as a function of

the scales involved. §2.5 then follows with a discussion of some of the potential

signatures and constraints such a scenario might have for Higgs physics. Our

conclusions are briefly summarized in §2.6.

2.3 Vacuum Energetics of Extra-Dimensional

Scalars

In this section we describe the interplay between brane and bulk energetics

for the simplest toy model: a single real scalar, φ, in the presence of both

brane and bulk potentials, Ub and UB. We first review the more familiar

situation of a codimension-1 brane in a 5D bulk, and then contrast this with

the codimension-2 case with 6 bulk dimensions. (The situation for higher
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codimension is sketched in Appendix A.3.) Because they are peripheral to our

main point we neglect gravitational effects in what follows, and so assume the

mass scales involved are low enough for this to represent a good approximation.

2.3.1 Codimension-one

We first consider the codimension-one case, reproducing the results of ref. (2.11).

Consider the following 5D scalar field theory, having both bulk- and brane-

localized interactions,

S = −
∫

d4x dy

[
1

2
(∂Mφ ∂

Mφ) + UB(φ) + δ(y)Ub(φ)

]
, (2.2)

with {xM} = {xµ, y}. The field equation for this model is

∂M∂Mφ− U ′B(φ) = δ(y)U ′b(φ) , (2.3)

and the integration of this equation across the brane position (assuming con-

tinuity of φ) further implies the scalar jump condition

[∂yφ]0 = U ′b(φ0) , (2.4)

where φ0 = φ(y = 0) and [A]0 = A(y = 0+)−A(y = 0−). The classical energy

density per unit brane volume associated with a given field configuration in

this model is then

H =

∫ ymax

ymin

dy

[
1

2

(
φ̇2 + (∇φ)2 + (∂yφ)2

)
+ UB(φ)

]
+ Ub(φ0) , (2.5)
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where ymin < 0 < ymax and ∇ denotes differentiation in the in-brane spatial

directions, {xi}.

We now specialize to the case where the field has only a mass term in

the bulk, while it has a quartic interaction on the brane. Keeping in mind

that φ has dimension (mass)3/2 in 5 dimensions,

UB(φ) =
1

2
m2

B φ
2 and Ub(φ) = −1

2
mb φ

2 +
1

4M2
b

φ4 , (2.6)

where mb > 0 is chosen to ensure that the minimum of the brane potential

occurs at the nonzero value φ2 = M2
bmb, in contrast with the bulk potential

which is minimized at φ = 0.

Since Ub and UB are not minimized by the same configuration, the vac-

uum solution need not correspond to a constant field configuration, ∂Mφ = 0.

Since the solutions to the field equations that only depend on y are expo-

nentials, φ ∝ e±mBy, the general bulk solution is a linear combination of

such terms. If the extra dimension is sufficiently large — |mBymin| � 1 and

mBymax � 1 — then we can drop the solutions which grow exponentially

far from the brane, just as if the extra dimension were noncompact. In this

case the vacuum configuration should vanish at infinity, and the solution is

therefore given by

φ(y) = φ̄ e−mB |y| , (2.7)

where φ̄ is to be fixed using the boundary condition, eq. (2.4), at y = 0: i.e.

−2mBφ̄ = U ′b(φ̄), or (
2mB −mb +

φ̄2

M2
b

)
φ̄ = 0 . (2.8)
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When mb < 2mB the only real solution allowed is φ̄ = 0, but when mb > 2mB

there are three solutions for φ̄, corresponding to φ̄ = 0 and φ̄ = ±φc, with

φ2
c = M2

b (mb − 2mB) . (2.9)

Since H = 0 for φ̄ = 0 and H = −1
4
M2

b (mb − 2mB)2 for φ̄2 = φ2
c , we

see that it is the nontrivial configuration which represents the classical ground

state when mb > 2mB. This can also be seen more generally by writing the

energy density as a function of φ̄,

H(φ̄) = −1

2
(mb − 2mB) φ̄2 +

1

4M2
b

φ̄4 , (2.10)

which is indeed minimized, for mb > 2mB, by φ̄ = ±Mb

√
mb − 2mB, with the

unstable stationary point, φ̄ = 0, situated at a local maximum.

The resulting vacuum

φ2(y) = M2
b (mb − 2mB) e−2mB |y| , (2.11)

extrapolates from the bulk minimum (φ = 0) for large y to the value φ0 =

±Mb

√
mb − 2mB at the brane. This represents a compromise between the

bulk minimum, the value φ̄ = ±Mb
√
mb, which minimizes Ub, and the gradient

energy required to interpolate between the two. Notice that φ0 approaches the

brane minimum in the limit where the bulk potential is very flat, mB � mb.
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2.3.2 Codimension-two

We now contrast the previous results with a similar analysis for the codimension-

2 case of a real scalar field coupled to a 3-brane in 6 spacetime dimensions,

where we show that the larger gradient energy more strongly favors the mini-

mum of the bulk potential relative to that of the brane. Using the action

S = −
∫

d4x d2y

[
1

2
(∂Mφ ∂

Mφ) + UB(φ) + δ2(y)Ub(φ)

]
, (2.12)

we have the equation of motion

∂M∂Mφ− U ′B(φ) = δ2(y)U ′b(φ) . (2.13)

Assuming a flat space-time metric

ds2 = ηµνdx
µdxν + dr2 + r2dθ2 , (2.14)

and integration of the equation of motion across a very small disc centered

on the brane position at r = 0 (assuming continuity of φ) further implies the

condition

lim
r→0

[2πr∂rφ] = U ′b(φ0) , (2.15)

where r measures the radial distance from the brane situated at r = 0. For

configurations depending only on r, this corresponds to using the radial field

equation

1

r
∂r

(
r ∂rφ

)
− U ′B(φ) =

δ+(r)

2πr
U ′b(φ) , (2.16)
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where δ+(r) is normalized so that
∫ a

0
drδ+(r)f(r) = f(0), for any a > 0.

Since our interest is in how the system resolves the frustration of mini-

mizing brane and bulk potentials having different minima, we specialize to the

simple choices

UB(φ) =
1

2
m2

Bφ
2 and Ub(φ) = −1

2
λ2 φ

2 +
1

4
λ4 φ

4 , (2.17)

with both λ2 and λ4 taken to be positive. Keeping in mind a 6D scalar field

has dimension (mass)2, we see that the parameter λ2 is dimensionless, while

λ4 = 1/M4
b .

Provided the extra dimensional radius, L, satisfies mBL � 1, it is a

good approximation to demand the bulk vacuum configuration to vanish at

large r, leading to the following solution

φ(r) = φ̄K0(mBr) , (2.18)

where the modified Bessel function, K0(z), falls exponentially with z for large z

and diverges logarithmically as z approaches zero. Using K0(z) = − ln(z/2)−

γ + O(z) to evaluate r∂rφ → −φ̄ as r → 0, allows the boundary condition,

eq. (2.15), to be written

−2πφ̄ = U ′b(φ0) , (2.19)

and here we encounter the first difference from the codimension-2 case: φ(r)

diverges logarithmically as r → 0, making φ0 = φ(r = 0) ill defined. Regu-

larizing1 by evaluating at a small but nonzero radius, r = ε, gives φε = φ̄ zε,

1This regularization can be done more precisely by modelling the codimension-2 brane by
a small codimension-1 circle at radius r = ε, and using the codimension-1 jump conditions
to relate the exterior bulk fields to the nonsingular fields in the circle’s interior (2.12; 2.13).
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where

zε ≡ K0(mBε) = `+ ln 2− γ +O(ε) , (2.20)

with ` = − ln(mBε) diverging logarithmically when ε → 0 and γ = 0.5772 . . .

being the Euler-Mascheroni constant.

The trouble here lies in the fact that the classical solution for the bulk

field coupled to a brane diverges when evaluated at the brane source. This is

a completely generic feature for branes having codimension 3 or larger — e.g.

the divergence of the Coulomb field at the position of the source charge. It is

also generic for codimension 2, although exceptions in this case also arise, such

as for the conical singularities arising in the static gravitational fields sourced

by some (2.14; 2.15; 2.16) but not all (2.17; 2.12) codimension-2 branes. And

the generic resolution to this problem lies in the need to renormalize the brane-

bulk couplings even at the classical level (2.18; 2.19). As these references show

(and is briefly summarized in Appendix A.2), the requirement that bulk φ

propagators be finite implies the brane couplings also diverge logarithmically

in the limit ε→ 0, with the result

λ2 =
λ̄2

1 + λ̄2
ˆ̀/2π

and λ4 =
λ̄4(

1 + λ̄2
ˆ̀/2π

)4 ,

where the λ̄i are renormalized quantities that remain finite in the limit that

ε→ 0, and

ˆ̀= − ln(µε) = `+ ln

(
mB

µ

)
, (2.21)

for an arbitrary renormalization scale µ. For later purposes we remark that

because the term in the action involving λ2 is quadratic in φ, it is possible

to evaluate the classical scalar propagator, including the brane-bulk mixing,
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without having to assume that λ2 or λ̄2 are small (see Appendix A.2 for de-

tails). In particular the domain of validity of eq. (2.21) includes the regime of

large λ̄2.

If we regularize by replacing φ0 with φε, the boundary condition which

determines φ̄ becomes

−2πr ∂rφ+ U ′b(φ) = 2πφ̄+ U ′b(φε) =
(
2π − λ2 zε + λ4 z

3
ε φ̄

2
)
φ̄ = 0 . (2.22)

For λ2 < 2π/zε this only admits the trivial solution, φ̄ = 0, but for λ2 > 2π/zε

three solutions are possible: φ̄ = 0 and φ̄ = ±φc, with

φ2
c =

(λ2 − 2π/zε)

λ4 z2
ε

. (2.23)

Notice that the criterion distinguishing the existence of one or three solutions

depends only logarithmically on mB (through its appearance in zε), and can

be phrased in a regularization-independent manner by trading λ2 for λ̄2. In

particular, the condition λ2 < 2π/zε ensuring only φ̄ = 0 is a solution then

becomes λ̄2 < 2π/c, where c = ln 2 − γ − ln(mB/µ) defines the finite part of

zε ≡ ˆ̀+ c.

The physical content of these expressions becomes clearer once the rel-

ative energy of these solutions is computed using the classical energy density,

H(φ̄), which is finite once it is expressed in terms of the renormalized quantities

λ̄i. Explicitly, we have

H = lim
ε→0

{
2π

∫ ∞
ε

rdr

[
1

2
(∂rφ)2 +

1

2
m2

Bφ
2

]
+ Ub(φε)

}
(2.24)

= lim
ε→0

{
πφ̄2

∫ ∞
mBε

dz z
[
(K ′0)

2
+ (K0)2

]
+ Ub(φε)

}
. (2.25)
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The integral may be evaluated in closed form (see Appendix A.1), to give

H = lim
ε→0

{
−π

2
φ̄2m2

Bε
2K0(mBε)

[
K0(mBε)−K2(mBε)

]
− 1

2
λ2φ

2
ε +

1

4
λ4φ

4
ε

}
= lim

ε→0

{
πφ̄2zε −

1

2
λ2φ̄

2z2
ε +

1

4
λ4φ̄

4z4
ε +O(ε)

}
, (2.26)

which uses the asymptotic form K2(mBε) ' 2/(mBε)
2 for small ε. Using the

asymptotic limit of eq. (2.21) for λ̄2
ˆ̀� 2π,

λ2 '
2π

ˆ̀

[
1−

(
2π

λ̄2
ˆ̀

)
+ · · ·

]
and λ4 '

(
2π

λ̄2
ˆ̀

)4

λ̄4 + · · · ,

we find the finite limit

H =
1

2
g2 φ̄

2 +
1

4
g4φ̄

4 with g2 = 2π

(
2π

λ̄2

− c
)

and g4 =

(
2π

λ̄2

)4

λ̄4 ,

(2.27)

where c = ln 2− γ − ln(mB/µ), as above.

Notice the kinetic energy has combined with the bulk potential energy

to partially cancel the quadratic term in the brane potential, with the solution

φ̄ = 0 being energetically preferred for λ̄2 < 2π/c — the same criterion found

earlier. Notice also that c > 0 if µ > µ? = 1
2
eγmB ' 0.89mB, and c < 0 if

µ < µ?. c vanishes at the dividing case, µ = µ?, at which point the quadratic

term is simply

g2 =
4π2

λ2?

, (2.28)

with λ2? ≡ λ̄2(µ?). In terms of renormalized quantities the criterion for sym-

metry breaking becomes λ2? < 0, in which case the scalar v.e.v. is

φ2
c = −g2

g4

= − λ3
2?

4π2λ̄4

. (2.29)
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These calculations illustrate how the vacuum energetics of a bulk scalar

depends crucially on the codimension of the brane to which it is coupled. In

all cases the competition between gradient and potential energies in general

allows the brane potential to drag the bulk scalar v.e.v. away from the value

which minimizes UB. But in the codimension-1 case the marginal strength

of brane instability which distinguishes a nonzero from a vanishing v.e.v.,

mb = 2mB, depends strongly on the UV-sensitive scale mB. By contrast, the

corresponding criterion for codimension-2 branes, λ̄2 = 2π/c, is comparatively

insensitive to mB because it is the larger gradient energies which replace UB

in dominating the fight against Ub. (The situation for higher codimension is

explored in Appendix A.3, below.)

2.3.3 The Self-Localized State

Since we expect the quadratic term in H to describe the mass of small fluctu-

ations about the background configuration, there is a potential puzzle hidden

in the weak dependence of g2 on mB. To see why, suppose the two extra di-

mensions are a square torus of volume V2 = L2, for which in the absence of

the brane interactions we would normally expect a Kaluza Klein spectrum to

be labelled by two integers, n1 and n2, with masses

M2
n1n2

= m2
B +M2

c (n2
1 + n2

2) ≥ m2
B , (2.30)

where Mc = 2π/L. The puzzle is that all of these states have masses larger

than mB, a result which seems hard to reconcile with a mass governed by the

size of the quadratic term, 1
2
g2φ̄

2, of H.

We next show that the resolution of this puzzle lies in the existence of
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a lower-mass ‘bound’ state whose mass lies in the gap, m < mB, and whose

presence relies on the influence of the interactions between φ and the brane.

Furthermore, this state is localized near the brane by these interactions, in the

sense that its wave-function falls exponentially away from the brane, with a

characteristic size of order aB ∼ 1/k, where k2 = m2
B −m2. We call this the

self-localized state, inasmuch as its localization is a direct consequence of the

scalar-brane interactions (rather than due to a geometric effect, like warping,

such as considered in ref. (2.20)).

The Fluctuation Spectrum

To this end consider small fluctuations in the bulk scalar field,

φ(t, r, θ) = ϕ(r) + Φnω(r)einθ−iωt , (2.31)

labelled by their energy, ω, and angular momentum,2 n. ϕ(r) here denotes any

of the vacuum configurations described above. The field equation obtained by

linearizing eq. (2.13) in polar coordinates is

1

r
∂r

(
r ∂rΦnω

)
− n2

r2
Φnω − k2Φnω =

δ+(r)

2πr

(
−λ2 + 3λ4ϕ

2
)

Φnω , (2.32)

where k2 = m2
B − ω2. For the purposes of identifying the bound state we

further specialize to axially symmetric modes, and so set n = 0.

The steps for solving for Φω closely parallel those taken above to find

the background solution. Away from r = 0 the bulk solution is a linear

combination of the modified Bessel functions, K0(kr) and I0(kr), although in

2We assume here an axially-symmetric bulk, such as might be generated (say) by two
branes.
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the limit kL � 1 the admixture of I0(kr) can be made negligibly small. In

this case the background configuration is ϕ = φ̄K0(mBr) and the fluctuation

solutions are well approximated by3

Φω(r) = NωK0(kr) , (2.33)

with Nω an appropriate normalization constant (e.g. N2
ω = k2/π when kL�

1). (In this notation the tower of KK states having masses greater than mB

correspond to the ordinary Bessel functions obtained when k is pure imagi-

nary.) The eigenvalue, k, is obtained by imposing the boundary condition at

r = 0, which becomes

2πNω + U ′′b (ϕ)Φω(r = 0) =
(
2π − λ2ẑε + 3λ4z

2
ε ẑεφ̄

2
)
Nω = 0 , (2.34)

where zε = − ln(mBε/2) − γ = ˆ̀+ c is as defined above, and ẑε is the same

quantity with mB → k: i.e. ẑε = zε + ln(mB/k). This equation is to be read

as being solved for k, leading to the result ẑε = 2π/(λ2 − 3λ4z
2
ε φ̄

2), or

ln

(
k

mB

)
= zε −

2π

λ2 − 3λ4z2
ε φ̄

2
= ˆ̀+ c− 2π

λ2 − 3λ4(ˆ̀+ c)2φ̄2

= c− (2π/λ̄2)− (3λ̄4φ̄
2/λ̄2)(2π/λ̄2)3 +O(1/ˆ̀)

→ −
(

2π

λ2?

)[
1 +

(
12π2λ̄4φ̄

2

λ3
2?

)]
as ε→ 0 . (2.35)

3Intriguingly, recasting the field equation to remove the single-derivative term, through
the redefinition φ = ψ/r1/2, leads to the Schrödinger equation for motion of a point particle
in a 1/r2 potential supplemented by a δ-function at the origin. This much-studied equation
is known to exhibit the interesting phenomena of dimensional transmutation (2.21) and
nontrivial limit cycles (2.22).
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Consequently, k = mB e
−2π/λ2eff , or

ω2 = m2
B − k2 = m2

B

[
1− e−4π/λ2eff

]
, (2.36)

where

1

λ2eff

=
1

λ2?

[
1 +

(
12π2λ̄4φ̄

2

λ3
2?

)]
. (2.37)

Clearly this state lives in the gap, with ω < mB, provided only that λ2eff > 0,

and this mass can be hierarchically small if λ2eff � 4π (which lies within the

domain of validity of the approximations used, as emphasized in Appendix

A.2).

There are now two cases to consider. When λ2? > 0 we have φ̄ = 0

and so λ2eff = λ2? > 0, showing that the self-localized state exists. In the

limit λ2? � 4π we find k ' mB and ω2 ' 4πm2
B/λ2? = g2m

2
B/π ' g2N

2
ω,

in agreement with the result computed from d2H/dφ̄2 (once care is taken to

canonically normalize the 4D scalar field). Alternatively, when λ2? < 0 we

have φ̄ = ±φc, with φc given by eq. (2.29), and so λ2eff = −1
2
λ2? > 0. Again

a bound state exists whose mass agrees with the result, −2 g2N
2
ω, obtained by

differentiating H(φ̄).

2.4 A Self-Localized Bulk Higgs and the Hi-

erarchy Problem

Because the above vacuum energetics show that the expectation value of a

bulk scalar coupled to a codimension-2 (or higher codimension) brane is less

sensitive to the details of the model’s ultraviolet completion it can be used to
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provide a new approach to tackling the stability issue of the hierarchy problem.

This section builds a simple illustrative example of this mechanism, in order

to get a sense of its implications.

2.4.1 The Model

The mechanism’s defining assumption is that the usual Standard Model Higgs

doublet, H(x, y), is located in an extra-dimensional bulk, while all of the other

Standard Model particles — i.e. its gauge fields, Aaµ(x), and fermions, ψk(x)

— reside on a brane whose codimension is at least two. (In practice we focus

on the codimension-2 case in what follows, but generalizations to more general

codimension are conceptually straightforward.) We take the brane potential

to prefer an SUL(2) × UY (1) breaking phase, while the bulk potential favors

SUL(2)× UY (1) invariance:

UB = m2
BH

∗H and Ub = −λ2H
∗H + λ4 (H∗H)2 , (2.38)

where m2
B, λ2 and λ4 are all real and positive (evaluated at mBε� 1).

We have seen that the classical vacuum of the higher-dimensional theory

depends crucially on the sign of the renormalized coupling, λ2?, defined at the

(large) scale µ? ' 0.89mB. Notice in this regard that eq. (2.21) implies that

both signs of λ2? can be consistent with positive λ2 when ` = − ln(mBε) is

sufficiently large. We take λ2? < 0 in order to ensure that the total classical

energy is minimized by an SUL(2)× UY (1) breaking configuration.

If we had had SUL(2)×UY (1) invariance throughout the bulk we would

at this point be able to perform a gauge transformation to ensure that the

Higgs doublet everywhere takes the unitary gauge form, H = 1√
2

(0, χ)T , with
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χ real. However because we only have gauge invariance at the brane po-

sition this choice can only be made at ym = 0: H0 = 1√
2

(0, χ0)T , where

H0 ≡ H(x, 0). Away from the brane H in general contains 4 real fields,

H = 1√
2

(ζ1 + iζ2, χ+ iζ3)T , each of which must solve its appropriate field

equations.

The arguments of the previous sections imply that the classical vacuum

solutions may be constructed in terms of K0(mBr) and I0(mBr), with the

coefficient of I0(mBr) negligibly small when the extra dimensions are large

compared with m−1
B — i.e. mBL� 1:

ζi(r) = ζ̄iK0(mBr) and χ(r) = χ̄K0(mBr) . (2.39)

As before the normalizations, ζ̄i and χ̄, are determined by the boundary con-

ditions at r = 0, and so ζ̄i = 0 due to the choice of unitary gauge at the brane,

which implies ζi(0) = 0 there. By contrast, the arguments of previous sections

go through verbatim to imply χ̄ ≡ V 2, with

V 4 = − g2

g4

= − λ3
2?

(2π)2λ̄4

= − λ3
2?

(2π)3
M4

b , (2.40)

where we define λ̄4/2π = 1/M4
b .

Similar arguments for the fluctuations, δH, show that in general all

four components, δζi and δχ, are nonzero in the bulk. However the choice of

unitary gauge at the brane endows δζi with the boundary condition that it

must vanish, and this in turn implies that none of these fields localizes at the

branes in the same way that δχ does.

Since SU(2) × U(1) is only a global symmetry in the bulk, one might
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worry that its breaking by H implies that the δζi contain KK towers of Gold-

stone modes that are systematically light compared with mB. These could

be phenomenologically dangerous, even if their couplings must be derivatively

suppressed (2.23). However (as shown in appendix A.4 in more detail) the only

Goldstone modes in the bulk-Higgs sector are the three self-localized states for

the fields δζi that are eaten by the brane gauge fields via the usual Higgs mech-

anism. All other states with energies smaller than mB are typically removed

by the boundary condition that requires δζi to vanish at the brane, leaving

the lightest remaining bona fide KK modes in δζi with a mass of order mB.

2.4.2 Scales and Naturalness

We now ask how V depends on the other scales in the problem, in order to

identify whether the choices required to have sufficiently small masses for elec-

troweak gauge bosons are technically natural – i.e. stable against integrating

out very heavy degrees of freedom.

The model potentially involves several scales: among which are the

compactification scale, Mc; the scale of extra-dimensional gravity, M∗ �

Mc, (or perhaps the string scale), which controls our neglect of gravitational

physics; the scale of brane structure,4 Λ = 1/ε, used in earlier regularizations,

and so on. In principle the UV scale, M � Mc, to which we imagine being

potentially sensitive, can be any one of these, or some other scale associated

with other types of heavy particles.

Our choices of scales are restricted by the domain of validity of approx-

imations used in our calculations. For instance, use of codimension-2 branes

4For instance, such structure might ultimately arise if the 3-brane were really a higher-
dimensional brane wrapped about further, smaller extra dimensions.
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without resolving the brane structure when discussing the UV physics implies

Λ � M . Ignoring (for simplicity) the influence of the second brane on the

mode functions (i.e. dropping the admixture of I0(kr)) assumes k � Mc,

where k2 = m2
B − m2 for the self-localized mode. Neglect (for convenience)

of gravitational effects requires both M∗ � Mc, and the condition that the

spacetime curvatures generated by the configurations of interest to be small

compared with M2
∗ . For instance if H takes values of order V 2 that change

over distances of order ε, then the resulting gradient energies do not overly

gravitate if (∂H)2/M6
∗ ∼ (V/M∗)

4(Λ/M∗)
2 � 1. In what follows we assume

all of these conditions to hold. The question we ask is not whether these hi-

erarchies themselves are stable under renormalization (as this would require

more information, such as specifying a stabilization mechanism for the size of

the extra dimensions), but rather whether the choices required of the Higgs

potential to obtain an acceptably small V are stable against renormalization,

given the presence of these (and possibly other) scales.

This requires an estimate of the corrections to UB and Ub that might

arise as various kinds of heavy particles are integrated out. Although a pre-

cise statement of this requires specifying the theory’s UV completion, some

generic statements are possible on dimensional grounds for the corrections

due to integrating out heavy particles that interact through small dimension-

less couplings. This is because if such a particle has a large mass M , then its

generic contribution to a coupling, λi, having dimension (mass)n is δλi ∝Mn.

According to this kind of estimate we expect

δm2
B ∝M2 , δλ2 ∝ lnM and δλ4 ∝M−4 . (2.41)
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As a result it is natural to expect the corrections to mB to be dominated by

the heaviest particles that can contribute, and so generically expect mB to be

comparable to the largest scales in the problem (and in particular to satisfy

mB � Mc and mB � MW ). It is the large size of these contributions to mB

that underlie the usual formulation of the hierarchy problem in 4 dimensions,

because in this case the scale of the Higgs v.e.v. turns out to be proportional

to |mB|.

By contrast, in the 6D model of present interest we have seen that the

size of the Higgs v.e.v. is largely independent of mB, depending dominantly

on the dimensionless coupling λ̄2 and the dimensionful coupling λ̄4. But λ̄2 is

dimensionless, and so tends to depend only logarithmically on the large UV

scale M . Potentially more dangerous is λ̄4/2π = 1/M4
b since this more directly

sets the size of V . However this is also not UV sensitive because corrections to

it vary inversely with the relevant particle mass on dimensional grounds, and

so are dominated by the contributions of the lightest particles, rather than the

heaviest.

As stated above, we emphasize that our goal here is not to provide

an ultraviolet completion of the bulk-Higgs model, as would be required to

understand in detail the conditions necessary to produce a large hierarchy

in the first place, as this goes beyond the scope of this paper. Our goal

is instead to point out how the introduction of Higgs bulk-brane couplings

allows interestingly different mass-dependence in low-energy observables, and

to study what this might imply for the low-energy sector.
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2.4.3 Higgs-induced Mass Terms

The phenomenology of any such Higgs hinges on the form of its couplings to

observed Standard Model particles, which are assumed in this framework to

be localized on a brane.

Gauge Couplings

At first sight it is bizarre to restrict the SM gauge fields to a brane and yet al-

low a charged matter field (the Higgs doublet) live in the bulk. This is bizarre

because the SUL(2)×UY (1) symmetry transformations are global transforma-

tions in the bulk (since there is no spin-one field there to ‘gauge’ them), yet are

local on the brane. Nonetheless, it must be possible because we could imag-

ine the UV completion of the brane of interest being an ordinary gauge-Higgs

theory containing vortex- or domain-wall-type defects. Since the Higgs field

defining the defect typically vanishes at the interior of such a vortex/domain-

wall, there generically should be spin-1 states which would be very massive

given the nonzero Higgs in the bulk, but which can remain light by being

localized on the brane. (D-branes also contain localized spin-1 fields.)

More precisely, it can be shown that gauge invariance of such a the-

ory can always be ensured through an appropriate choice of effective interac-

tions (or counter-terms) on the brane. Slightly generalizing the discussion of

ref. (2.24) to codimension two, we may see this formally by taking the Higgs

covariant derivatives to be

DMH(x, y) = ∂MH(x, y)− δ2(y)δµMiκgA
a
µ(x)TaH(x, y) . (2.42)

Here Ta are gauge generators, and as before the xµ lie along the brane directions
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while the ym are transverse. g here denotes the dimensionless gauge coupling

on the brane and κ is a dimensionful constant, required in order to counter the

dimensions of the delta function. One reason for the need for brane counter-

terms can be seen because the off-brane components of this covariant derivative

are not actually covariant under the gauge transformation

δH(x, y) = δ2(y)iκΩa(x)TaH(x, y) , (2.43)

even when supplemented by the standard xµ-dependent nonabelian trans-

formations of Aaµ(x). They are not because there is no gauge potential in

DmH = ∂mH to cancel the term arising when the derivative acts on the delta

function. There is however a counterterm that can be added on the brane such

that the entire combination is gauge invariant.

The implications of a bulk Higgs v.e.v. for gauge boson masses can be

seen by writing out the bulk and brane kinetic terms

Lkin = −
∫

d2y DMH
∗DMH − κbDµH∗0DµH0 (2.44)

= −
∫

d2y
[
∂MH

∗∂MH
]
− (κ+ κb)DµH∗0DµH0 + κ∂µH

∗
0∂

µH0

+
κg2

2
[1− κδ2(0)] (H∗0 {Ta, Tb}H0)AaµA

bµ ,

where DµH0 ≡ ∂µH0 − igAaµTaH0 is the standard covariant derivative on the

brane. This shows that all of the gauge-boson mass terms appear in the brane

kinetic term provided κ δ2(0) = 1 (and so κ = O(ε2)). Notice that this implies

κ+ κb ∼ κb for any scale κb � O(ε2).

Superficially the gauge-boson mass obtained from these equations di-

verges as ε → 0, due to the divergence there of H0. However, this divergence
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is countered by the renormalization of all Higgs-brane interactions due to the

generic ‘dressing’ of these couplings (2.18; 2.19) by the Higgs-brane mixing,

λ2:

κb =
κ̄b

(1 + λ̄2
ˆ̀/2π)2

. (2.45)

Going to unitary gauge at the brane position, for which H0 = 1√
2

(0, χ0)T ,

with 〈χ〉 = V 2K0(mBr), we then have κb〈χ0〉2 = κ̄bV
4(2π/λ2?)

2 as ε→ 0.

The SUL(2) × UY (1) doublet structure of the Higgs then leads in the

standard way to the predictionMZ = MW/ cos θW , where θW is the weak mixing

angle, and the W -boson mass is, MW = 1
2
gv, with

v2 =

(
2π

λ2?

)2

κ̄bV
4 = (246 GeV)2 . (2.46)

Taking κ̄b = 1/f 2, this shows that successful phenomenology requires V 2 =

fv(|λ2?|/2π): i.e. V is the geometric mean between 246 GeV and the scale

|λ2?|f/2π:

V ∼ 109 GeV

(
|λ2?|f/2π
1015 GeV

)1/2

. (2.47)

Recall that within the present framework we have V 4 = |λ2?/2π|3(2π/λ̄4)

— c.f. eq. (2.40) — so defining Mb by λ̄4/2π = 1/M4
b as before we see that

eq. (2.46) also implies that Mb must be of order

Mb ∼
√
vf

(
2π

|λ2?|

)1/4

. (2.48)

This requires either Mb ∼ f
√

2π/|λ2?| ∼ v, or a hierarchy v � Mb �

f
√

2π/|λ2?|, if f
√

2π/|λ2?| � v. In the absence of a symmetry which forbids

a Higgs kinetic term but allows a quartic (H∗H)2 interaction on the brane,
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naturalness argues we should take f and Mb to be the same order of magnitude,

in which case any hierarchy between Mb and v must be due to |λ2?|/2π being

very large or very small. Furthermore, having f and Mb both larger than v

requires |λ2?|/2π <∼ O(1).

Fermion Couplings

Fermion masses in this picture are similarly given by Yukawa couplings be-

tween brane-based fermions, ψk, and the bulk Higgs doublet. In unitary gauge

on the brane, H0 = 1√
2

(0, χ0)T , these have the form

Lyuk =
yij
F

(ψiψj)χ0 , (2.49)

for yij a collection of dimensionless Yukawa couplings, and F representing an

appropriate ultraviolet scale. The resulting fermion masses are

mij =
yij
F
〈χ0〉 =

2πȳij V
2

λ2?F
(2.50)

with

yij =
ȳij

1 + λ̄2
ˆ̀/(2π)

, (2.51)

being the renormalized Yukawa coupling, as required to counter the divergence

of H at the brane position, and the second equality in eq. (2.50) uses yij〈χ0〉 =

2πȳijV
2/λ2? in the limit ε→ 0, where 〈χ〉 = V 2K0(mBr).

Since Lyuk breaks flavor symmetries — unlike the Higgs kinetic terms —

the scale F need not be of the same order of magnitude as5 f . In particular,

5This could arise, say, if the 3-brane is really a higher-dimensional brane wrapped in
extra dimensions, and the flavor structure is associated with this wrapping, since this would
suggest F ' Λ� f .
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since the dominant contributions to couplings having dimensions of inverse

mass come from the lightest scales to contribute, F is typically set by the

smallest UV scale which involves flavor-violating physics while f can be much

smaller than this. Because of this eqs. (2.46) and (2.50) may contain the seeds

of an explanation of the observed smallness of most fermion masses relative to

those of the electroweak gauge bosons, since

mij

MW

=
ȳij
g

(
2f

F

)
. (2.52)

Even a mild hierarchy, F � f , removes some of the burden of having to require

ȳij/g to be very small.

2.4.4 Couplings to the Higgs Fluctuations

We have seen that the spectrum of fluctuations in the Higgs field generically

contains an assortment of KK modes, many of whose masses start above a

large gap, mKK
>∼ mB. For mB sufficiently large these modes need not play

an important role in low-energy observables. The two exceptions to the above

statement are the bulk Goldstone modes, whose masses are generically of order

Mc, and the self-localized state whose mass can lie within the gap below mB,

and be hierarchically smaller if |λ2?| � 2π. Furthermore, this latter state is

present regardless of whether or not the Higgs v.e.v. is nonzero. These light

states are likely to be the ones relevant to Higgs phenomenology in Bulk Higgs

models, and so this section computes their couplings.
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The bulk Goldstone modes

The simplest couplings to compute are those of the bulk Goldstone modes,

δζi, because their vanishing at the brane position guarantees they completely

drop out of any brane couplings that depend only on H0 or ∂µH0, and not

on off-brane derivatives like ∂mH0. In particular this ensures their removal

(in unitary gauge) from the fermion Yukawa couplings and gauge couplings

described above.

The self-localized state

Normalizing the wave-function of the self-localized state in the extra dimen-

sions gives a canonically normalized 4D state h, where χ = h(x)NωK0(kr),

so yijχ = (2π/λ2?)(k/
√
π)ȳijh, with k2 = m2

B − m2
h. The couplings of h to

fermions are then given by interactions of the form

L4D =
2πȳij
λ2?

(
k√
πF

)
(ψiψj)h , (2.53)

leading to dimensionless ‘physical’ Yukawa couplings of order

ŷij =
2πȳij
λ2?

(
k√
πF

)
= ysm

ij

(
mB√
πf

)(
2π

λ2?

)
e−4π/|λ2?| , (2.54)

where the argument of the exponential assumes λ2? < 0 (as required for a

nonzero Higgs v.e.v.), and the last equality compares to what would be ex-

pected in the SM:

ysm
ij ≡

mij

v
= ȳij

(
f

F

)
. (2.55)

Notice that the quantity (2π/|λ2?|) exp[−4π/|λ2?|] falls to zero for large and

small |λ2?|, taking the maximum value of 0.18 when |λ2?|/2π = 2.
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These expressions show that the self-localized Higgs couplings, ŷij, can

differ significantly from what would be expected in the SM, for two reasons.

First, ŷij can be larger than ysm
ij if mB � f , and if sufficiently large the self-

localized state becomes a strongly coupled broad resonance. Second, ŷij can

differ from ysm
ij because of its dependence on λ2?/2π, which acts to suppress

ŷij/y
sm
ij in the limit that |λ2?|/2π is either very large or very small. This

possibility of having ŷij differ from the SM expectation contrasts with 4D

intuition based on the couplings of a single scalar whose v.e.v. generates mass,

since such a scalar must have couplings given by the ratio mij/v. The reason

this conclusion does not hold in the extra-dimensional case is that because

the v.e.v., 〈H(x, 0)〉, responsible for generating masses generically receives

contributions from many KK modes and not just the v.e.v. of the single 4D

self-localized state, h.

2.5 Possible Signatures of a Bulk Higgs Sce-

nario

We next sketch some of the qualitative signatures and constraints that might

be expected for the kind of Higgs scenario described above. What is to be

expected depends somewhat on the choices made for the various scales in the

problem, so we divide the discussion according to four simple options according

to whether or not we take |λ2?| to be large or small, and whether we take

Mc ∼ 1 TeV, or Mc ∼ 10−2 eV (as for large-extra-dimensional models).

45



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

2.5.1 Inclusive Processes

We first consider inclusive processes for which a specific Higgs state is not

measured, and so which involve a summation over all possible KK modes.

These are largely insensitive to the specifics of individual modes, such as the

details of the self-localized state.

Fermion-fermion scattering

An important inclusive observable is the rate for fermion-fermion scattering

mediated by a virtual Higgs. The amplitude for this process is of order

A(ψiψj → H → ψrψs) '
yij yrs
F 2

iGp(0; 0) δ4(pi + pj − pr − ps) , (2.56)

where pµ ≡ (pi+pj)
µ = (pr+ps)

µ. Here Gp(y; y′) is the bulk Higgs propagator,

Fourier transformed in the brane directions, xµ, but evaluated in position space

in the off-brane directions, ym. Gp(0; 0) denotes the same quantity evaluated at

the brane position, and is given (see Appendix A.2 for details) in terms of the

corresponding propagator in the absence of brane-Higgs couplings, Dp(y; y′),

by

Gp(0; 0) =
Dp(0; 0)

1− iλ2Dp(0; 0)
. (2.57)

Eliminating yij, yrs and λ2 in terms of the renormalized quantities, ȳij, ȳrs and

λ̄2, and taking ε→ 0, we find the finite result

A(ψiψj → H → ψrψs) '
ȳij ȳrs
λ̄2F 2

[
1

1− iλ̄2D
µ
p (0; 0)

]
δ4(pi + pj − pr − ps)

'
ysm
ij y

sm
rs

λ̄2f 2

[
1

1− iλ̄2D
µ
p (0; 0)

]
δ4(pi + pj − pr − ps) ,

(2.58)
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where iDµ
p (0; 0) = (1/2π) ln(µ/P ), where P 2 = p2 +m2

B.

If this same process were computed using the exchange of a massive 4D

SM Higgs scalar, we’d have instead obtained

Asm(ψiψj → H → ψrψs) ' ysm
ij y

sm
rs

[
1

p2 +m2
H

]
δ4(pi + pj − pr − ps) , (2.59)

and so the leading effect is to replace the scale p2+m2
H by λ̄2f

2[1−iλ̄2D
µ
p (0; 0)].

The absence of an observed signal therefore implies the order-of-magnitude

bound

λ̄2f
2

[
1 +

λ̄2

2π
ln

(
P

µ

)]
>∼ O(100 GeV)2 , (2.60)

where P 2 = (pi + pj)
2 +m2

B = (pr + ps)
2 +m2

B.

If reactions of this type were to mediate flavor-changing neutral cur-

rents, the strong restrictions on these could potentially bound the scale F to be

quite large. However, because the Yukawa couplings can have the same flavor

structure as in the SM, there can be a GIM mechanism at work (2.25) that

naturally suppresses the dangerous flavor-changing neutral current (FCNC)

reactions produced by bulk-Higgs exchange. We henceforth assume this to be

true, and therefore do not further worry about bounds on the fermion couplings

due to FCNCs.

Vacuum Polarization

As is well known, the contributions to loops of the SM Higgs is well con-

strained by precision electroweak measurements. The main source of these

contributions is through the Higgs contribution to the vacuum polarization

of the electroweak gauge bosons. For an extra-dimensional bulk Higgs, this
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contribution is of order

Πµν
ab (p) ' g2κ2

b tr(TaTb)

∫
d4q

(2π)4
(2p− q)µ(2p− q)ν iGq(0; 0) iGp−q(0; 0)

' g2κ̄2
b

λ̄2
2

tr(TaTb)

∫
d4q

(2π)4

[
(2p− q)µ(2p− q)ν

[1− iλ̄2D
µ
p (0; 0)][1− iλ̄2D

µ
p−q(0; 0)]

]
,

(2.61)

plus a possible tadpole term. Since the remaining integration, d4q, diverges

in the ultraviolet it must be regularized, and this is most conveniently done

using dimensional regularization.

Of most interest for phenomenological purposes is the contribution to

the oblique parameters S, T and U (2.2; 2.26), which involve those terms

in Πµν
ab having the tensor structure (p2ηµν − pµpν). Since the Higgs is an

SUL(2) × UY (1) doublet, it automatically preserves the accidental custodial

SUc(2) symmetry (2.2; 2.27) that preserves the successful mass relation MW =

MZ cos θW , thereby suppressing its contribution to T and making S of most

interest. Because all mass dependence in eq. (2.61) is logarithmic, recalling

the definition κ̄b = 1/f 2 and extracting the conventional factors of g2/4π, we

obtain the estimate

S ∼ 1

4πλ̄2
2

(
p4

f 4

)
, (2.62)

where p2 represents the momentum transfer of interest. Applied to LEP ex-

periments we may take p4 = M4
Z and |S| < 0.1 to conclude λ̄2f

2 >∼ v2.

2.5.2 Higgs Decays to Fermions

Another class of observables involve specifying a specific Higgs KK mode.

Perhaps the simplest of these is the decay rate for specific Higgs states into
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SM particles (although this decay need not dominate the lifetime of a given

KK mode because it must also compete with other channels, such as off-brane

decays into the Goldstone modes δζi).

Generic KK states

For simplicity we start with the decay of a generic KK mode into brane

fermions, assuming the KK wave-functions, Ψ(y), extend throughout much

of the extra-dimensional bulk so that |Ψ(0)|2 ' 1/V2 ' M2
c . Once excited,

such a heavy state can decay through the interaction (2.49), with the rate

Γ(χ→ ψ̄iψj) ' |Ψ(0)|2 |yij|
2

F 2
Mχ ' |yij|2

(
Mc

F

)2

Mχ , (2.63)

where Mχ ≥ mB is the mass of the decaying mode. (Recall that the bulk

Goldstone modes, δζi, do not decay in this way because of the requirement

that they vanish at the brane.) We see that Γ � Mχ naturally follows from

the smallness of the quantities yij and Mc/F (the latter of which is particularly

small in the case of large extra dimensions). Whether these are the dominant

decay channels depends on the availability of light states in the bulk (or on

other branes) into which competing decays can proceed, and how efficiently

these Higgs decays occur.

The self-localized state

Notice that yij vanishes, strictly speaking, when ε → 0 with ȳij and λ̄2 held

fixed (making eq. (2.63) vanish logarithmically in this limit). The same is not

true of the self-localized state, whose wave-function also diverges logarithmi-

cally at the position of the brane as ε→ 0. In this case the decay rate can be
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computed using the interaction of eq. (2.53), leading (on neglect of final-state

fermion masses) to the standard 4D expression

Γ(h→ ψ̄iψj) =
1

8π
|ŷij|2 mh = Γsm(h→ ψ̄iψj)

(
m2

B

πf 2

)(
2π

λ2?

)2

e−16π/|λ2?| ,

(2.64)

which remains nonzero as ε → 0. This drops dramatically, as required in

the unlocalized limit, as |λ2?| → 0, and scales as Γsm m4
h/(16πm2

Bf
2) when

|λ2?| � 2π.

2.5.3 TeV-Scale Compactifications

Suppose, first, the compactification scale, Mc, lies in the TeV range and so,

in the absence of significant warping, the 4D Planck scale, Mp ∼ M2
∗/Mc,

comes out right if M∗ ∼ 1010 GeV. This leaves lots of room to choose the

other scales of interest to be much smaller than M∗ in order to justify our

neglect of gravitational interactions. We do not speculate as to how the extra-

dimensional size is stabilized at this scale.

Choosing Mc this large also ensures that this is the mass of the lightest

KK mode of the bulk Goldstone bosons, δζi, ensuring that these modes do not

play much of a phenomenological role until energies are reached – at the LHC,

God willing – that allow the direct production of KK excitations. The same

is true of the generic KK modes of the field χ, provided we also choose mB to

be large enough.

We have seen that the absence of Higgs detection in oblique or in 2-

fermion to 2-fermion processes implies us to choose f
√
|λ2?| to be at least

several hundred GeV, whereas our use of a 6D calculational framework re-

quires both f and Mb ∼
√
vf(2π/|λ2?|)1/4 to be >∼ Mc. There are then two
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subcategories to consider, depending on the size of |λ2?|/2π.

Weak localization

Consider first the limit of small |λ2?|, for which mh → mB and k → 0. Because

k is small, the ‘bound’ state is not strongly localized relative to generic extra

dimensional scales, and the breakdown of the approximation k �Mc demands

we go beyond the simple large-volume limits used above for the scalar v.e.v.

and wave-function. Taking |λ2?| ∼ 0.01 for illustrative purposes, we see that

requiring f > Mc ∼ few TeV automatically ensures f
√
|λ2?| >∼ several hundred

GeV, and so is large enough to avoid the phenomenological bounds.

For weak localization, the exponential suppression of ŷij for small |λ2?|

allows us to choose mB to be much larger than f without the Higgs-fermion

couplings becoming strong. However we cannot have all χ states be too much

higher than the TeV scale without there being a breakdown of the low-energy

effective theory, such as through the development of unitarity problems in the

scattering of longitudinal W bosons that the SM would suffer in the absence of

a low-energy Higgs particle (2.2; 2.28; 2.29), and this puts an upper bound on

how large mB can be. In this case the χ spectrum resembles the usual intuition

for bulk fields in the absence of brane couplings, consisting of a tower of Higgs

KK modes starting above the gap at mB. Furthermore, because these particles

are likely to have a significant decay rate into the lighter bulk Goldstone states,

any observed Higgs is likely to have a significant invisible width.

Because mB cannot be made exceedingly large without running into

troubles, and because Mc is typically smaller, it should be possible to observe

some of the Higgs KK states at the LHC. Although the mass-Mc Goldstone

states cost less energy, they are more difficult to produce because of the absence
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of direct couplings to the initial brane-based SM particles. The most likely

channel for doing so is the virtual excitation of KK modes of the bulk state χ.

Convincing evidence for these Goldstone states together with an absence for

KK modes for the electroweak gauge bosons would provide the smoking gun

for this scenario: with the Higgs in the bulk but gauge interactions localized

to live only on the branes.

Strong localization

In the opposite limit, |λ2?| � 2π, the lowest energy state becomes localized

to the brane with k ' mB, and its mass drops to m2
h ' 8πm2

B/|λ2?| � m2
B.

In this case mB can be higher than it could for weak localization, provided

that the self-localized state is lighter than a few TeV and so can unitarize the

scattering of longitudinal gauge boson modes.

An upper limit to how large mB can be is found from the condition

that this light, localized Higgs state be weakly coupled

∣∣∣∣ ŷijysm
ij

∣∣∣∣2 ' 8

π

(
mB

f

)2 ∣∣∣∣ 2π

λ2?

∣∣∣∣3 ' 1

8π

(
mh

f

)2(
mh

mB

)4

. (2.65)

Large |λ2?| also implies that the condition f > Mc automatically en-

sures the validity of the phenomenological limits that require f
√
|λ2?| to be

larger than several hundred GeV, and makes the strongest constraint on f the

theoretical condition that Mb be larger than Mc.

For instance for moderately large |λ2?|/2π ∼ 102, then keeping mh at

the TeV scale requires mB ' 10 TeV, and taking Mb ∼ 1 TeV then implies

f ∼ 10 TeV. By contrast, if mB should be the largest scale considered so far,

mB ∼ M∗ ∼ 1010 GeV, then |λ2?|/2π ∼ 1020, and so Mb ∼ 10−5f > 1 TeV
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implies a strong hierarchy between Mb and f > 105 GeV whose naturality

would have to be explained. Notice that the physical couplings, ŷij, are much

smaller than for the SM given these scales.

In this case mB could easily be large enough to preclude the direct

detection of a Higgs KK spectrum, even at the LHC, leaving the burden of

Higgs physics carried by the single self-localized Higgs state. In principle this

can be distinguished from a SM Higgs in several ways. First, it could well have

a large invisible width, if the mass of the self-localized state is sufficiently large

compared with the mass, Mc, of the bulk Goldstone modes. Second, it can be

distinguished by identifying the difference in the strength of its couplings to

fermions from those expected in the SM.

2.5.4 Large Extra Dimensions

An alternative choice (2.3; 2.16; 2.30) would put the scale of extra-dimensional

gravity at M∗ ∼ 10 TeV, which then requires Mc ∼ 10−2 eV. As a result, the

upper bound mB < M∗ automatically keeps the generic Higgs KK modes light

enough to potentially be seen at the LHC, yet absence of the detection of Higgs

KK modes also implies mB cannot be much below the TeV scale.

An automatic consequence of having Mc so small is to make the bulk

Goldstone states, δζi, essentially massless. This ensures that they are always

kinematically available as final states for χ decays, making a significant invis-

ible width for this state inevitable. In fact, the very lightest KK Goldstone

modes in this scenario are light enough to mediate forces between macroscopic

bodies, with generically near-gravitational strength, making them potentially

relevant to precision tests of Newton’s inverse-square law for gravity. Their
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presence is nonetheless unlikely to have been already ruled out due to the ab-

sence of direct couplings to brane matter, and the derivative nature of their

Goldstone interactions.

In this scenario the conditions f,Mb
>∼ Mc pose no significant con-

straint, with more information coming from the phenomenological conditions

that f
√
|λ2?| be larger than a few hundred GeV. Notice that if we also require

f <∼ M∗ then we must have an upper bound |λ2?| <∼ 104, and so the self-

localized state cannot be more than a few orders of magnitude lighter than

mB.

Because the KK tower of modes is so narrowly spaced – by O(Mc) – they

provide almost a continuum of states. Although each of these modes couples

with gravitational strength, their phase space makes their inclusive produc-

tion cross section of order the weak-interaction size (2.3). Once the Higgs is

produced, its phenomenology is likely to resemble that of extra-dimensional

gravitons (2.31) or other bulk matter fields (2.32), including likely large invis-

ible decay channels.

2.6 Conclusions

In this paper we examine a new way for brane-world scenarios to change how we

think about low-energy naturalness problems. We do so by showing how oft-

neglected couplings to branes can dramatically change the vacuum energetics

and low-energy spectrum for bulk scalar fields. In particular, we show that

when coupled to codimension-2 branes bulk scalar fields can have two unusual

properties:

• They can acquire v.e.v.s that are only logarithmically related to the size
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of the UV-sensitive quadratic term, 1
2
m2

Bφ
2, in the bulk Higgs potential;

• They can acquire low-energy KK modes that are localized to the branes

(without the need for warping), and whose mass can lie inside the naive

gap below the energy set by the mass scale mB.

We further use these two observations to explore the possibility of build-

ing phenomenological brane-world models for which all Standard Model par-

ticles (save the Higgs) are trapped on a brane, but with the Higgs allowed to

live in the bulk. We estimate the size of the effective couplings of such a Higgs

to gauge bosons and fermions on the brane, and use these to estimate the sizes

of masses and couplings to the Higgs KK modes.

We do not try to identify ultraviolet completions of the bulk-Higgs

model, and so do not identify at a microscopic level why the electroweak

hierarchy exists in the first place. Our focus is instead on whether such a

hierarchy can be technically natural purely within the low-energy theory. We

identify in eq. (2.4.3) the main obstacle to systematically raising the UV scale

of this effective theory above the weak scale, since this equation generically

requires the two dimensionful parameters f and Mb — governing the size of the

brane potential term (H∗H)2/M4
b and the brane kinetic term (DMH

∗DMH)/f 2

— either to satisfy Mb ∼ f
√

2π/λ2? with both near the electroweak scale, or

to satisfy the hierarchy Mb � f
√

2π/λ2? if both are large compared with the

electroweak scale. This latter hierarchy shows how the problem gets recast

with a bulk Higgs, since both interactions are allowed by the same symmetries,

making it unnatural for them to have coefficients suppressed by very different

scales.
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We provide a very preliminary discussion of possible signals and con-

straints on these models, including the observation that most realizations pre-

dict a significant invisible width for any observed ‘Higgs’, once detected. Sim-

ple estimates are made of Higgs decay rates into SM particles, the scattering

rate for fermions due to virtual Higgs exchange, and the contribution of virtual

Higgs loops to gauge boson vacuum polarization. These are used to outline

the qualitative features of Higgs phenomenology within this class of models.

In all cases we find that the phenomenology of these models is sufficiently

interesting to bear further, more detailed study.
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Chapter 3
Codimension-2 Brane-Bulk

Matching:

Examples from Six and Ten

Dimensions

3.1 Preamble

This chapter is based on the work in (3.1). We generalize the interactions

between general codimension 2 branes and their surrounding bulk derived in

(3.2; 3.3) to include interactions with a bulk gauge field. We describe the

resulting boundary conditions for a class of bulk theories that consist of gravity,

a Maxwell field and a set of scalars with an arbitrary potential and target space

metric. This is sufficiently general to include the bosonic sector of many of

the known higher dimensional supergravities.

In addition to the boundary conditions that the bulk has to satisfy,
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we derive the expression for the 4 dimensional effective potential, found by

integrating out the bulk. We take the branes to be arbitrary functions of the

bulk fields, but limit ourselves to the lowest term in a derivative expansion.

We test our results in various examples at the end of this chapter, and find

that the expressions give reasonable results. In particular the example of D-7

branes in F-theory agrees with known results from string theory, which justifies

our approach to describing brane-bulk interactions.

This chapter sets up the general framework for brane-bulk interactions

that we use heavily in the later chapters. Important for the naturalness of the

cosmological constant is the observation that the low energy theory is insensi-

tive to the value of the brane tensions. Rather, the leading brane contribution

is set by the derivative of the tension with respect to the bulk scalar fields. The

point of this is that it is the brane tension that changes when brane particles

are integrated out, so the possibility that this quantity drops out of the 4 di-

mensional theory can give an explanation of the smallness of the cosmological

constant that works on all scales.
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3.2 Introduction

Space-filling branes, situated around extra dimensions, provide a remarkable

framework for approaching phenomenological problems. Besides being well-

motivated — for instance arising very naturally within string theory — branes

lead to novel kinds of low-energy physics that can cut to the core of many of

the naturalness issues that currently plague particle physics and cosmology.

The realization that not all particles need ‘see’ the same number of

dimensions (because brane-bound particles are trapped to move only along the

branes) is the first type of brane-related insight to have made a major impact

on physics, leading to the recognition that the scale of gravity can be much

smaller than the Planck scale (3.4). A second major revelation came with the

realization that the back-reaction of branes on their environment can strongly

influence their low-energy properties, such as by providing deep gravitational

potential wells within the extra dimensions that redshift the energy of those

branes that live within them (3.5).

Although branes can in principle have a great variety of dimensions,

almost all of the detailed exploration of brane-bulk back-reaction is special-

ized to the case of codimension-1 branes: i.e. those branes that span just

one dimension less than the dimension of the full spacetime. This is partially

because tools for describing how branes back-react on their surroundings are

only well-developed for codimension-1 surfaces, since in this case the problem

can be expressed in terms of the Israel junction conditions (3.6). This restric-

tion to codimension-1 objects is potentially very limiting because the special
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nature of kinematics in one dimension makes it unlikely that back-reaction for

codimension-1 branes is representative of back-reaction for branes with higher

codimension.

The main obstacle to understanding how properties of higher-codimension

branes are related to the bulk geometries they source is the fact that these

bulk geometries typically diverge at the position of their sources. (The most

familiar example of this for a codimension-3 object is the divergence of the

Coulomb potential of a nucleus evaluated at the nuclear position.) It is one of

the special features of codimension-1 objects that the bulk fields they source

typically do not diverge at their positions. They instead cause discontinuities

of derivatives across their surfaces, whose properties are captured by the Israel

junction conditions.

The next-simplest case consists of codimension-2 objects, whose back-

reaction is complicated enough to allow the possibility of bulk fields diverg-

ing at the positions of the sources. Although bulk fields can diverge for

codimension-2 sources, they needn’t do so in time-independent situations. (For

instance, they can instead give rise to conical singularities, such as for cosmic

strings in 4D spacetime (3.7). When bulk fields do not diverge the relation

between bulk and brane properties is easier to formulate, and so better studied

(3.8).) The potential for divergent bulk configurations makes codimension-2

branes more representative of systems with more generic codimension than are

codimension-1 branes. But dynamics in two dimensions is still simple enough

to allow explicit closed-form solutions to be known for the bulk configurations

sourced by codimension-2 branes, allowing a detailed study of their properties.

Tools for describing how bulk fields respond to the properties of source

branes were recently developed in the general case, including where the bulk
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fields diverge (3.2; 3.3; 3.8), opening up the properties of codimension-2 branes

for phenomenological exploration. These tools — summarized (and slightly

generalized) in §3.3 below for a fairly general class of scalar-tensor-Maxwell

theories in n extra dimensions — boil down to a set of matching conditions

that relate the near-brane limit of the radial derivatives of the bulk fields to

the action for the brane in question.

In §3.4 we apply these tools to three kinds of examples: compact ge-

ometries sourced by D7 branes in F-theory compactifications of 10D Type

IIB supergravity; 3-branes coupled to a bulk axion within unwarped, non-

supersymmetric 6D scalar/Maxwell/Einstein theory; and 3-branes coupled to

6D chiral gauged supergravity. We draw the following lessons from these com-

parisons:

• F-theory compactifications (3.10) of 10D Type IIB supergravity sourced

by D7-branes serve as a reality check, since string theory tells us the

detailed form of both the brane and bulk actions (3.9), and explicit

solutions are known for the transverse spacetimes that are sourced by

these branes (3.21). We verify the codimension-2 brane/bulk matching

conditions by checking that the asymptotic forms for the solutions are

related to the known brane actions in the prescribed way.

• In 6D axion-Maxwell-Einstein theory, flux-compactified solutions are

known for the bulk that interpolates between two 3-branes, and these are

simple enough to allow the explicit calculation of how branes contribute

to the low-energy axion potential (3.11). From the perspective of six

dimensions the resulting axion stabilization arises through the require-

ment that both branes be consistent in their demands on the bulk. We
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show that the stabilized value agrees precisely with the result of mini-

mizing the low-energy axion potential as seen by an observer who has

integrated out the extra dimensions below the Kaluza-Klein (KK) scale.

We also show how this potential gives the same value for the curvature

of the maximally symmetric on-brane geometry as is calculated from the

higher-dimensional field equations.

• Stable flux compactifications are also known for 6D chiral gauged super-

gravity (3.12), having up to two singularities that represent the positions

of two source branes (3.13). These solutions are known in explicit closed

form for the most general solutions having a flat on-brane geometry and

axial symmetry in the bulk; and in a slightly more implicit form for

solutions with de Sitter or anti-de Sitter on-brane geometry. In this

case we use the matching conditions to show that the only bulk con-

figurations that can be supported by positive-tension branes have flat

induced on-brane geometries, with (possibly warped) bulk geometries

with nonsingular limits as the source branes are approached. We also

show how geometries that diverge at the brane positions can arise from

specific kinds of negative-tension branes, while no maximally symmetric

solutions exist at all for many kinds of brane sources (presumably cor-

responding to time-dependent runaway bulk geometries, such as those

considered in (3.14)).

§3.5 briefly summarizes some of the implications of these results.
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3.3 The Bulk-Brane system

We start by describing the brane-bulk framework within which we work. This

starts with a statement of the scalar-metric-Maxwell system whose equations

we use, followed by a statement of how the near-brane boundary conditions of

the bulk fields are related to the action of the branes which are their source.

Finally we describe the contribution of each brane to the low-energy scalar

potential that is valid over distances much longer than the size of the extra

dimensions, and identify a constraint which allows a simple description of this

contribution given the properties of the brane tension.

3.3.1 The bulk

The starting point is the statement of the equations of motion that govern the

bulk.

General formulation

We assume the following action for the n-dimensional bulk physics, describing

a general scalar-tensor theory coupled to a Maxwell field,1

S =

∫
M

dnx LB +

∫
∂M

dn−1x LGH (3.1)

where

LB = −
√
−g

{
1

2κ2
gMN

[
RMN + GAB(φ) ∂Mφ

A∂Nφ
B

]
+

1

4
f(φ)FMNF

MN + V (φ)

}
,

(3.2)

1Our metric is mostly plus, with Weinberg’s curvature conventions (3.15), which differ
from those of MTW (3.16) only by an overall sign in the definition of the Riemann tensor.
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and the Gibbons-Hawking lagrangian (3.17) is

LGH =
1

κ2

√
−γ̂ K , (3.3)

and is required in the presence of boundaries in order to make the Einstein

action well posed. Here F = dA is the field strength of the Maxwell field, R

is the Ricci scalar for the 6D spacetime metric, gMN , and GAB is the metric of

the target space within which the scalar fields, φA, A = 1, . . . , N , take values.

γ̂ij = gMN ∂ix
M∂jx

N is the induced metric, and K is the trace, γ̂ijKij, of the

extrinsic curvature, of the boundary surface, ∂M.

This bulk action is chosen to be general enough to include the bosonic

part of the supersymmetric theories of interest. Its field equations are

1

2κ2
(RMN + GAB ∂MφA∂NφB) +

f

2
F P

M FNP +
1

n− 2

[
V − f

4
FPQF

PQ

]
gMN = 0,

(3.4)

GABtuφB − κ2

[
∂V

∂φA
+

1

4

∂f

∂φA
FMNF

MN

]
= 0 ,

(3.5)

and

∇M (fFMN) = 0 , (3.6)

where

tuφA := gMN

[
∇M∂Nφ

A + ΓA

BC(φ)∂Mφ
B∂Nφ

C

]
, (3.7)

with ΓA
BC(φ) being the Christoffel connection built from the metric GAB.
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Metric ansätze

Our interest is in configurations whose geometries are maximally symmetric

in the brane directions, for which it is convenient to specialize to the metric

ds2 = gMN dxMdxN = e2W ĝµν dxµdxν + gmn dxmdxn

= e2W ĝµν dxµdxν + e2C dz dz , (3.8)

where ĝµν(x) denotes a maximally symmetric (n−2)-dimensional metric. The

coordinates are xM = {xµ, xm}, with xµ, µ = 0, . . . , n − 3 labelling the brane

directions, and m = n−2, n−1 (or z = xn−2 +ixn−1) being coordinates for the

two dimensions transverse to the branes. The functions W and C are generally

singular at the positions of any source branes. For instance, if eC = (`/r)a

for r2 = |z|2, then the proper distance becomes ρ = [`/(1 − a)](`/r)a−1 and

eB = `(`/r)a−1 = (1− a)ρ, showing that the metric in this case has a conical

singularity at r = ρ = 0, with defect angle δ = 2πa.

For some applications, particularly very near a brane, it is useful to

further specialize to the most general ansatz consistent with cylindrical sym-

metry in the two transverse dimensions, {xm,m = n− 2, n− 1}. This leads to

the following metric:

ds2 = dρ2 + e2Bdθ2 + e2W ĝµν dxµdxν (3.9)

= e2C
(

dr2 + r2dθ2
)

+ e2W ĝµν dxµdxν

where θ labels the direction of cylindrical symmetry, and the functions B =

B(ρ) and W = W (ρ) depend on the proper distance, ρ, only — or C = C(r)

is a function only of r.
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The bulk scalars are similarly just functions of ρ, φA = φA(ρ), and a

gauge can be chosen to that the only nonzero component for the Maxwell field

is AM = Aθ(ρ) δθM , and so

Fρθ = −Fθρ = A′θ , (3.10)

where the prime denotes differentiation with respect to ρ.

The Einstein equations subject to this ansatz reduce to

1

n− 2
e−2W R̂ +W ′′ + (n− 2)(W ′)2 +W ′B′

− 1

n− 2
κ2 e−2B f(A′θ)

2 +
2κ2V

n− 2
= 0 (µν) (3.11)

B′′ + (B′)2 + (n− 2)W ′B′

+
n− 3

n− 2
κ2 e−2B f(A′θ)

2 +
2κ2V

n− 2
= 0 (θθ) (3.12)

(n− 2)
[
W ′′ + (W ′)2

]
+B′′ + (B′)2 + GABφA′φB ′

+
n− 3

n− 2
κ2 e−2B f(A′θ)

2 +
2κ2V

n− 2
= 0 (ρρ) , (3.13)

while the dilaton and Maxwell equations become

e−B−4W
(
eB+4W GABφB ′

)′
+ GABΓB

CD φ
C ′ φD ′

−κ2

[
∂V

∂φA
+

1

4

∂f

∂φA
e−2B(A′θ)

2

]
= 0 , (3.14)

and (
e−B+4Wf A′θ

)′
= 0 . (3.15)
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3.3.2 Boundary conditions for codimension-2 branes

General formulation

Suppose an (n− 2)-dimensional, space-filling, codimension-2 brane is located

at a position, xm = xmb , within the 2 extra dimensions, with brane action

Sb = −
∫
xb

dn−2x
√
−γ

[
Lb (φA, Aθ, gθθ) + · · ·

]
, (3.16)

where Lb denotes the brane lagrangian, which is potentially a function of the

bulk scalars, φA, and the tangential components of the bulk Maxwell field and

metric, AM and gMN , but not their derivatives. (Ellipses denote the possible

subdominant, higher-derivative effective interactions that can also be present.)

We imagine the geometry surrounding the brane to be given by the axisym-

metric ansatz of eq. (3.9), with the brane located at ρ = 0, so θ denotes the

angular direction about its position. Because our interest is in maximally sym-

metric solutions along the brane directions we do not entertain a dependence

of Tb on any components of AM and gMN apart from Aθ and gθθ.

The induced metric on the brane is γµν = gMN ∂µx
M ∂νx

N = e2W ĝµν .

Because of the warp factor appearing in this metric, for later purposes it is

convenient to define the ‘warped’ tension, Tb, by Tb = e(n−2)WLb, so that the

brane action becomes

Sb = −
∫
xb

dn−2x
√
−ĝ
[
Tb(φ,Aθ, gθθ,W ) + · · ·

]
. (3.17)

The back-reaction of such a brane onto the bulk geometry dictates the

asymptotic near-brane behaviour of the bulk fields nearby,2 through codimension-

2A familiar example of this from electrostatics is the 1/ρ dependence of the Coulomb
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2 matching conditions that generalize (3.2; 3.3; 3.8) the more familiar ones that

are encountered for codimension-1 branes. For the bulk scalars these state

lim
ρ→0

∮
xb

dθ

[
1

κ2

√
−g GAB∂ρφB

]
= − δSb

δφA
, (3.18)

where the integration is about a small circle of proper radius ρ encircling the

brane position, xb, which is taken to be situated at ρ = 0. Similarly, the

Maxwell matching condition is

lim
ρ→0

∮
xb

dθ
[√
−g f F ρM

]
= − δSb

δAM

, (3.19)

Finally, the metric matching condition is

lim
ρ→0

∮
xb

dθ

[
1

2κ2

√
−g

(
Kij −Kgij

)
− (flat)

]
= − δSb

δgij
, (3.20)

where Kij is the extrinsic curvature of the fixed-ρ surface, for which the

local coordinates are those appropriate for surfaces of constant ρ: {xi, i =

0, 1, · · · , n− 2}. Here ‘flat’ denotes the same result evaluated near the origin

of a space for which the brane location ρ = 0 is nonsingular.

Axially symmetric ansatz

Specialized to the ansatz of eq. (3.9) the scalar-field matching condition be-

comes [
2π

κ2
eB+(n−2)W

√
−ĝ GAB φB ′

]
xb

=
∂

∂φA

[√
−ĝ Tb

]
. (3.21)

potential that occurs in the immediate vicinity of a point charge situated at ρ = 0.
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With the same ansatz, the corresponding result for the Maxwell field reduces

to

[
2π
√
−ĝ e−B+(n−2)W f A′θ

]
xb

=
∂

∂Aθ

[√
−ĝ Tb

]
:=
√
−ĝ Jb(φ) , (3.22)

where the last equality defines the quantity Jb.

Finally, for fixed-ρ surfaces in this ansatz, Kij = 1
2
∂ρgij, and the com-

parison ‘flat’ metric is ds2
flat = dρ2 + ρ2dθ2 + e2Wflat ĝµν dxµdxν , with W ′

flat → 0

as ρ → 0. Since Kθθ = B′e2B and Kµν = W ′ e2W ĝµν , we have K = gijKij =

B′+(n−2)W ′, and so the (µν) components of the metric matching conditions

give

[
−2π

κ2

√
−ĝ e(n−2)W [eB ((n− 3)W ′ +B′)− 1]

]
xb

=
√
−ĝ Tb(φ) , (3.23)

while the (θθ) components are,

[
2π

κ2

√
−ĝ eB+(n−2)W ((n− 2)W ′)

]
xb

= −2
∂

∂gθθ

[√
−ĝ Tb

]
(3.24)

:= (n− 2)
√
−ĝ Ub(φ) ,

where the last equality defines Ub. Just as Tb physically represents the brane

tension, Jb can be interpreted as describing microscopic axial currents within

the brane, or equivalently any microscopic magnetic flux these currents enclose

within the brane. Once the dimensions transverse to the brane are dimension-

ally reduced, Ub turns out (3.2; 3.3) to be related to the brane contribution to

the scalar potential within the low-energy 4D effective theory defined below

the KK scale (as is seen in more detail later).
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3.3.3 The brane constraint

These matching conditions, when combined with the bulk equations of motion,

imply an important constraint relating the quantities Tb, Jb and Ub (3.18; 3.2;

3.3). This constraint comes from eliminating second derivatives, ∂ 2
ρ , of the

fields from the field equations, and so can be regarded as the ‘Hamiltonian’

constraint on the initial data when integrating the field equations in the ρ

direction. When written in the form given above, the relevant combination of

Einstein equations is (n− 2)(µν) + (θθ)− (ρρ), which imply

(n− 3)(n− 2) (W ′)2 + 2(n− 2)W ′B′ − GAB φA′φB ′

−κ2e−2Bf (A′θ)
2 + e−2W R̂ + 2κ2V = 0. (3.25)

To turn this into a constraint on brane properties, multiply it through

by e2B+2(n−2)W and take the limit x→ xb, using the above matching conditions

to eliminate the derivatives φA′, B′, W ′ and A′θ in favour of the brane functions

Tb, Jb and Ub. The required matching conditions are

[
eBφA′

]
xb

= e−(n−2)WGAB ∂Tb
∂φB

with Tb :=
κ2Tb
2π[

κA′θ

]
xb

= e−(n−2)W Jb
f

with Jb :=
κ eBJb

2π[
eBW ′

]
xb

= e−(n−2)WUb with Ub :=
κ2 Ub
2π

(3.26)

and
[
eBB′ − 1

]
xb

= −e−(n−2)W
[
Tb + (n− 3)Ub

]
,

where each of Ub, Tb and Jb is dimensionless (keeping in mind eB has dimen-
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sions of length). Using eqs. (3.26) in eq. (3.25) we find the desired constraint:

(n− 3)(n− 2) (Ub)2 + 2(n− 2)Ub
[
e(n−2)W − Tb − (n− 3)Ub

]
(3.27)

−GAB ∂Tb
∂φA

∂Tb
φB
− (Jb)2

f
+ e2B+2(n−2)W

[
e−2W R̂ + 2κ2V

]
xb

= 0 .

This crucially simplifies once we use the fact that near the brane eB → 0

as ρ→ 0. (This states that the circumference of small circles about the brane

must vanish as the radius of the circles vanishes. If not true, the object at

ρ = 0 would not be interpreted as a codimension-2 brane.) The key observation

(3.2; 3.3) is that the quantities κ e2BJb, e
2B−2W R̂ and κ2e2BV also tend to

vanish in this limit (as would be true, for instance, if e−2W R̂, V and Jb were

bounded at the brane positions), implying that the constraint becomes

(n− 2)Ub
[
2e(n−2)W − 2Tb − (n− 3)Ub

]
− (T ′b )2 ' 0 , (3.28)

where (T ′b )2 = GAB ∂ATb ∂BTb.

What is important about this last form of the constraint is that the on-

brane curvature drops out in this limit, meaning that eq. (3.28) cannot be read

as being solved for R̂. Instead, this constraint expresses a consistency condition

for the brane action and junction conditions, imposed by the bulk equations

of motion. In practice it provides a very simple method for computing the

quantity Ub(φ) once expressions for Tb(φ) are given, since solving eq. (3.28)

implies

Ub =
1

n− 3

[(
e(n−2)W − Tb

)
±

√
(e(n−2)W − Tb)2 −

(
n− 3

n− 2

)
(T ′b )2

]
. (3.29)
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Here the root is chosen for which Ub → 0 when (T ′b )2 → 0, and so is ±

according to whether sign
(
e(n−2)W − Tb

)
is ∓. This means that Ub has the

same sign as does
(
e(n−2)W − Tb

)
. Notice also that requiring the square root

never be complex requires

n− 3

n− 2
(T ′b )

2 ≤
(
e(n−2)W − Tb

)2
. (3.30)

This last condition can be nontrivial, even though control over the semiclassical

approximation requires |Tb| � 1 and (T ′b )2 � 1. This is because it can happen

that eW → 0 at the brane, in which case eq. (3.30) becomes a constraint on

the size of (T ′b )2/T 2
b .

For (T ′b )2 �
(
e(n−2)W − Tb

)2
eq. (3.29) becomes

Ub '
(T ′b )2

2(n− 2) (e(n−2)W − Tb)
+

(n− 3)(T ′b )4

8(n− 2)2 (e(n−2)W − Tb)3 + · · · . (3.31)

3.3.4 The classical low-energy on-brane effective action

Over distances much longer than the size of the two compact dimensions trans-

verse to the brane the classical bulk dynamics is governed by the motion of

the massless Kaluza-Klein states. The dynamics are effectively d-dimensional,

with d = n−2. To understand the dynamics from this d-dimensional perspec-

tive, it is useful to integrate out the extra dimensions to obtain the low-energy

lower-dimensional effective theory. At the classical level this amounts to elimi-

nating all of the massive KK states as functions of their massless counterparts,

using the bulk classical equations of motion.

In the present instance the massless KK states consist of the on-brane

metric and Maxwell fields, ĝµν and Aµ, as well as any d-dimensional scalars, ϕa,
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descending from φA and/or from moduli in the metric components, gmn, in the

extra dimensions. To obtain the low-energy potential, V eff(ϕ), for the various

d-dimensional scalars, ϕa, we eliminate the massive Kaluza-Klein modes in the

action, as functions of ĝµν and ϕa. The transverse metric, gmn, is eliminated by

using the trace reversed (mn) Einstein equations, which single out the kinetic

terms for gmn:

1

2κ2
(Rmn + GAB ∂mφA∂nφB) +

f

2
F P

m FnP +
1

n− 2

[
V − f

4
FPQF

PQ

]
gmn = 0,

(3.32)

These comprise two independent equations, which we take to be the sum and

difference of the (ρρ) and (θθ) components. The difference gives

(n− 2)
(
W ′′ + (W ′)2 −W ′B′

)
+ GAB φA′φB ′ = 0 , (3.33)

while the sum is equivalent to contracting eq. (3.32) with gmn, to give

1

2κ2

(
R(2) + GAB∂mφA∂mφB

)
= − n− 3

2(n− 2)
f FmnF

mn − 2

n− 2
V , (3.34)

where we write the higher-dimensional curvature scalar as

R = gMNRP
MPN = R(n−2) +R(2)

where R(2) = gmnRP
mP n = R(2) + (n− 2)(tuW +∇W · ∇W )

= R(2) + (n− 2)
[
W ′′ + (W ′)2 +B′W ′

]
(3.35)

and R(n−2) = gµνRP
µPν = e−2W ĝµνR̂µν

+(n− 2)[tuW + (n− 4)∇W · ∇W ]
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= e−2W ĝµνR̂µν

+(n− 2)
[
W ′′ + (n− 4)(W ′)2 +B′W ′

]
.

Here R(2) = gmnRp
mpn and ĝµνR̂µν respectively denote the curvature scalars

built from the 2D metric, gmn, and the 4D metric, ĝµν .

Using eq. (3.34) to eliminate R(2) from the bulk action then yields

the bulk contribution to the lower-dimensional lagrangian density.3 Using

√
−g =

√
−ĝ √g2 e

(n−2)W , we find

Leff(ϕ) = −
∫

d2x
√
g2 e

(n−2)W

[
1

2κ2
R(n−2) +

4− n
4(n− 2)

f FmnF
mn +

n− 4

n− 2
V

]
= −

∫
d2x
√
g2 e

(n−2)W

{
1

2κ2

[
e−2W ĝµνR̂µν

+(n− 2)
(
W ′′ + (n− 4)(W ′)2 +B′W ′

)]
+

4− n
4(n− 2)

f FmnF
mn +

n− 4

n− 2
V

}
= −

∫
d2x
√
g2 e

(n−2)W

{
1

2κ2

[
e−2W ĝµνR̂µν

+(n− 2)
(

(n− 5)(W ′)2 + 2W ′B′
)
− GABφA′φB ′

]
+

4− n
4(n− 2)

f FmnF
mn +

n− 4

n− 2
V

}
.

= −
∫

dn−2x
√
−ĝ

[
1

2κ2
N

ĝµνR̂µν + VB

]
, (3.36)

where the second to last equality uses the second independent bulk field equa-

tion, eq. (3.33), the last equality defines the bulk potential, VB, and the lower-

3Although in principle the extra-dimensional part of the trace reversed (µν) Einstein
equation, ERµν(x, y) = 0 could also be used to eliminate massive KK modes, this cannot
be used to eliminate R(n−2) from VB because the integration in eq. (3.36) projects onto the
zero-mode component of Eµν = 0.

80



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

dimensional Newton’s constant, κ2
N = 8πGN , is given by

1

κ2
N(ϕ)

:=
1

κ2

∫
d2x
√
g2 e

(n−4)W . (3.37)

In general this depends on the low-energy scalar fields, a dependence that

can be removed by performing a Weyl rescaling to reach the lower-dimension

Einstein frame.

To obtain the complete low-energy scalar potential, V eff , the bulk con-

tribution, VB, must be combined with two other contributions, both associated

with the source branes. The first of these comes from the boundary terms of

the bulk action (3.2; 3.3), such as the Gibbons-Hawking term for the metric,

evaluated at a small surface, Σb, situated a short proper distance, ρ = ε, from

the position of each of the source branes:

SGH =
1∑
b=0

lim
ε→0

∮
Σb

dθ dn−2x
1

κ2

√
−γ̂ K

=
2π

κ2

1∑
b=0

(−)b
∫
ρ=ρb

dn−2x
√
−ĝ eB+(n−2)W

[
B′ + (n− 2)W ′

]
= −

1∑
b=0

∫
ρ=ρb

dn−2x
√
−ĝ

{[
−Tb − (n− 3)Ub

]
+ (n− 2)Ub

}
= −

1∑
b=0

∫
ρ=ρb

dn−2x
√
−ĝ
(
Ub − Tb

)
. (3.38)

Here we use the axisymmetric ansatz, as is appropriate very near the source

branes. The relative sign, (−)b, and the overall sign in the second line arise

because primes denote d/dρ while the derivatives appearing in the Gibbons-

Hawking action and matching conditions are outward directed, and this is

in the dρ direction for one brane and −dρ for the other. The last line uses
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the matching conditions described earlier to exchange W ′ and B′ for terms

involving the brane action, using the fact that the contribution of [eBK]flat

cancels between the two branes.

The second contribution to the 4D scalar potential comes from the

contribution of the brane action itself, eq. (3.16). Combining these with V4B

above gives the full 4D scalar potential in the classical limit as in (3.3),

−
∫

dn−2x
√
−ĝ V eff =−

∫
dn−2x

√
−ĝ VB +

1∑
b=0

[
Sb + lim

ε→0
SGH

]
(3.39)

=−
∫

dn−2x
√
−ĝ VB −

1∑
b=0

∫
dn−2x

√
−ĝ
[
Tb+

(
Ub − Tb

)]
,

where the notation Wb is a reminder that W is evaluated at the brane position.

This shows that (within the classical approximation) the effect of the Gibbons-

Hawking terms is to ensure that the net contribution of each brane to the

low-energy scalar potential is given by the quantity Ub, appropriately warped.

The complete low-energy scalar potential is therefore,

V eff = VB +
∑
b

Ub (3.40)

=
∑
b

Ub +

∫
d2x
√
g2 e

(n−2)W

{
1

2κ2

[
(n− 2)

{
(n− 5)(W ′)2

+2W ′B′ − GABφA′φB ′}
]

+
4− n

4(n− 2)
f FmnF

mn +
n− 4

n− 2
V

}
.

Stationary points

For some purposes it is sufficient to obtain the value of the potential, V eff(φ0),

evaluated at its stationary point, where V ′eff(ϕ0) = 0. This can be obtained
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from the higher-dimensional action by eliminating fields using all of the equa-

tions of motion, and not just those of the massive KK modes. In this case we

may directly use the equation of motion,

1

2κ2

(
R+ GAB ∂MφA ∂MφB

)
= − (n− 4)

4(n− 2)
f FMNF

MN − nV

n− 2
, (3.41)

rather than eq. (3.34) for R(2). Using this to eliminate R from the bulk action

yields

S ext =−
∫

dnx
√
−g

[
1

2κ2

(
R+ GAB ∂MφA∂MφB

)
+

1

4
f FMNF

MN + V

]
cl

=− 2

n− 2

∫
dnx
√
−g

[
1

4
f FmnFmn − V

]
. (3.42)

When comparing with the low-energy theory we must also evaluate the

low energy action at its stationary point. That is, we evaluate the action

S eff = −
∫

dn−2x
√
−ĝ

[
1

2κ2
N

R̂(n−2) + V eff

]
, (3.43)

at the solution to the low-energy field equations,

1

2κ2
N

R̂(n−2) = −(n− 2)

n− 4
V eff , (3.44)

leading to

S ext =
2

n− 4

∫
dn−2x

√
−ĝ V eff(ϕ0) . (3.45)
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Using the previous results for V ext and the brane contribution then gives

2

n− 4
V eff(ϕ0) = −

∑
b

e(n−2)WbUb−
2

n− 2

∫
d2x
√
g2 e

(n−2)W

[
1

4
f FmnFmn − V

]
.

(3.46)

In many cases of interest the bulk contribution to this expression can

itself also be written as a sum of contributions localized at the position of each

brane. This is true, in particular, whenever the bulk action, SB =
∫

dnx LB,

enjoys a classical scaling symmetry, under which LB[λpiψi] ≡ λLB[ψi], for

arbitrary real, constant λ. (This type of scale symmetry generically holds for

higher-dimensional supergravity theories in particular.) When this is true the

lagrange density satisfies the identity

LB ≡
∑
i

pi

[
ψi
∂LB
∂ψi

+ ∂µψi
∂LB

∂(∂µψi)

]
=

∑
i

{
∂µ

[
pi
∂LB
∂∂µψi

]
+ piψi

[
∂LB
∂ψi
− ∂µ

(
∂LB

∂(∂µψi)

)]}
, (3.47)

which shows (3.20) that the action becomes a total derivative whenever it is

evaluated at an arbitrary classical solution. Whenever this is true the entire

low-energy potential can be interpreted as the sum over brane contributions,

much as was done for the Gibbons-Hawking term above.

3.4 Examples

It is instructive to test the above construction by applying it to situations for

which explicit solutions are known for the higher-dimensional theory. We do

so in this section using F-theory compactifications of 10D Type IIB super-

gravity to 8 dimensions in the presence of space-filling D7 branes, and using
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compactifications to 4 dimensions of supersymmetric and nonsupersymmetric

six-dimensional theories.

3.4.1 D7 branes in F-Theory

We start with F-theory (3.10) compactifications of Type IIB supergravity to 8

dimensions, which serves as an example where explicit forms for the bulk and

brane actions are known, as are closed-form expressions for the bulk sourced

by various space-filling brane configurations (3.21). This provides a check on

the validity of the matching conditions, and on the low-energy on-brane scalar

potential.

The bulk fields to be followed in this case are the metric, gMN , and the

axio-dilaton,

τ = C0 + i e−φ , (3.48)

where C0 is the Ramond-Ramond scalar and φ is the 10D dilaton, for which

the string coupling is gs = eφ. The bulk action for these fields in the 10D

Einstein frame is

SB = − 1

2κ2

∫
d10x
√
−g gMN

[
RMN +

∂Mτ ∂Nτ

2 (Im τ)2

]
, (3.49)

which is invariant under PSL(2,R) transformations

τ → aτ + b

cτ + d
, (3.50)

with the real parameters a through d satisfying a d− b c = 1. Quantum effects

are expected to break this to PSL(2,Z), for which the parameters are restricted

to be integers. Since eφ ≥ 0 the field τ lives in the upper-half τ plane, but
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because of the symmetry it suffices to consider τ to live within the fundamental

domain, F , defined by modding out the upper half plane by a PSL(2,Z).

Bulk solutions

The scalar field equation for this action is

∂∂ τ +
2 ∂ τ ∂ τ

τ − τ
= 0 , (3.51)

which is satisfied by any holomorphic function, τ = τ(z), for which ∂ τ = 0.

Explicit solutions to the field equations to this model are known (3.21),

for which two of the dimensions are compactified. Using complex coordinates,

z = x8 + ix9, for the compact dimensions, the solutions are given by

j(τ(z)) = P (z) and ds2 = ηµν dxµdxν + e2C(z,z) dz dz , (3.52)

where the properties of the functions j(τ), P (z) and C(z, z) are now described.

The function j(τ), is the standard bijection from the fundamental do-

main, F , to the complex sphere, given in terms of Jacobi ϑ-functions by

j(τ) =
1728 [E4(τ)]3

[E4(τ)]3 − [E6(τ)]2
, (3.53)

where Ek(τ) are the Eisenstein modular forms (3.22). For large Im τ , j(τ)

diverges zero exponentially quickly, and the factor of 1728 is chosen so that it

asymptotes to j(τ) ' e−2πiτ + · · · .

P (z) is a holomorphic function, whose singularities occur at the loca-

tions of the source branes, z = zi for i = 1, ..., N . Since the singularities of

the metric turn out to be conical when P (z) has isolated poles as z → zi, it
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is convenient to choose P (z) to be a ratio of polynomials. The simplest case

could be taken as P = 1/z, describing a source at z = 0, but it turns out that

the metric obtained from the Einstein equations is not compact in this case.

The metric is compact when P (z) has 24 zeroes, such as for the choice

P (z) =
4(24f)3

27g2 + 4f 3
, (3.54)

with f(z) a polynomial of degree 8 and g(z) a polynomial of degree 12. This

gives a compactification of Type IIB supergravity on CP 1, corresponding to

an F-theory reduction on K3 (3.10).

Finally, the metric function C(z, z) is chosen by solving the Einstein

equation. Using Rzz = 2 ∂∂ C and ∂ τ = 0, this equation of motion is

2 ∂∂ C =
∂ τ∂ τ

(τ − τ)2
= ∂∂ ln

(
Im τ

)
. (3.55)

The required solution is

e2C(z,z) = (Im τ)

∣∣∣∣∣η2(τ)
N∏
i=1

(z − zi)−1/12

∣∣∣∣∣
2

, (3.56)

where η(τ) = q1/24
∏

k(1− qk), for q = e2πiτ , denotes the Dedekind η-function,

and the product runs over the singularities of P (z). The first factor of this

expression is chosen to satisfy eq. (3.55), and the holomorphic factors are

chosen to ensure invariance under PSL(2,Z), and by the requirement that the

result does not vanish anywhere.
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Brane sources

The presence of branes in these solutions is signaled by singularities where

P (z) ' ci/(z− zi), for which q = e2πiτ ' (z− zi)/ci, and so the above solution

implies

τ(z) ' 1

2πi
ln(z − zi) + · · ·

and e2C(z,z) ' k Im τ , (3.57)

for constant k. As z →∞, on the other hand, P (z) remains bounded and so

τ approaches some finite value. In this case the metric function becomes

e2C(z,z) ∝ (zz)−N/12 , (3.58)

and so if we change coordinates to z = 1/w we have

e2C dz dz ' |w|(N−24)/6 dw dw,

which is nonsingular because N = 24. But each individual brane contributed

to this an amount e2C ' |w|1/6 dw dw ∝ r1/6 (dr2 +r2dθ2), which we saw below

eq. (3.9) corresponds to a deficit angle of δ = π/6.

Matching conditions

We are now in a situation to use these solutions to test the matching conditions

found in earlier sections. We can do so even though the geometry involved is

not axisymmetric, because it becomes effectively axisymmetric in the near-

brane limit.
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To this end we assume a brane action of the form

Sb = −
∫

d8x
√
−γ Tb(τ, τ) , (3.59)

where for a D7-brane in the Einstein frame we expect

Tb = T∗ e
φ =

T∗
Im τ

=
2i T∗
τ − τ

, (3.60)

for constant T∗.

Keeping in mind that W = 0 for the bulk solutions given above, the

matching condition for the bulk scalar, eq. (3.21), becomes

2π

κ2

[
eB

4 (Im τ)2
∂ρτ

]
xb

=
2π

κ2

[
r

4 (Im τ)2
∂ rτ

]
xb

=
∂ Tb
∂ τ

=
T∗

2i (Im τ)2
. (3.61)

This uses the change of variables dρ = eC dr and eB = r eC to convert from

proper distance to conformally-flat coordinates near the brane. Using the

near-brane limit τ ' ln r/2πi to evaluate [r ∂ τ/∂ r]xb ' 1/(2πi), we find the

matching condition becomes T∗ = 1/(2κ2).

Notice that since eφ is the string coupling constant, this semiclassical

reasoning presupposes Im τ = e−φ is large near the brane, so that κ2Tb =

κ2T∗/Im τ = 1/(2 Im τ)� 1. This is automatically satisfied as r → 0 because

Im τ ' −(ln r)/2π.

The metric matching conditions can be understood in a similar way.

First, matching the on-brane components of the metric gives, from eq. (3.23)

−2π

κ2

[
eB∂ρB − 1

]
xb

= −2π

κ2

[
r ∂rB − 1

]
xb

= −2π

κ2

[
r ∂rC

]
xb

= Tb(τ, τ) =
T∗

Im τ
,

(3.62)
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which again uses eB∂ρ = r ∂r as well as B = C + ln r. Using eq. (3.56)

gives e2C ' Im τ near the brane, and so r ∂rC ' 1
2

(r ∂rIm τ)/Im τ to get

[r ∂rC]xb = −1/(4π Im τ). Once again the dependence on Im τ is consistent

on both sides and so the matching condition boils down to the statement

2κ2T∗ = 1, as above.

A further check comes from using the values for κ2 and T∗ for a D7-

brane predicted in string theory (3.9). Using T∗ = 2π/`8
s and κ2 = `8

s/4π,

where `s = 2π
√
α′ is the string length, we have

2κ2T∗ = 2

(
`8
s

4π

)(
2π

`8
s

)
= 1 , (3.63)

as required.

Finally, the absence of warping in the bulk solution — W = 0 —

implies that the remaining metric matching condition, eq. (3.24), degenerates

to Ub = 0. To compute Ub in the present instance we use the constraint,

eq. (3.29), specialized to n = 10 dimensions

Ub =
1

7

[
(1− Tb)−

√
(1− Tb)2 − 7

8
(T ′b )2

]
, (3.64)

where Tb = κ2Tb/2π = κ2T∗/(2π Im τ), and use

(T ′b )2 = 2 (Im τ)2∂Tb
∂τ

∂Tb
∂τ

=
1

2 (Im τ)2

(
κ2T∗
2π

)2

=
1

8π2 (Im τ)2
. (3.65)

Clearly (T ′b )2 = 0 because Im τ →∞ as one approaches the brane, and this in

turn ensures Ub = 0, as desired.

As a final check we compute the effective scalar potential, V eff , for

the KK scalar zero mode in the 8D theory on the brane, after dimensional
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reduction. Because Ub = 0 this simply amounts to evaluating the action,

eq. (3.49), at the classical solution to the extra-dimensional Einstein equations,

which state

Rmn +
1

4 (Im τ)2

[
∂m τ ∂n τ + ∂n τ ∂m τ

]
= 0 . (3.66)

We see that V eff = 0 in the effective theory, which is consistent with the

maximally symmetric on-brane geometry being flat.

3.4.2 Brane-axion couplings in 6D

We next apply the above matching conditions to the example of two branes

coupled to a bulk Goldstone mode (axion), φ, in six dimensions. Since 6D

examples with flat on-brane geometries are already discussed in some detail in

refs. (3.3), we concentrate here on solutions to the higher-dimensional equa-

tions for which the on-brane geometry is known to be curved. Our purposes is

to provide a nontrivial example for which the shape of the full low-energy po-

tential, V eff(ϕ), and its value at its stationary point, V eff(ϕ0), can be computed

explicitly directly from the higher-dimensional theory. Because this allows a

check on how V eff varies from its minimum, it allows us to verify that the

extremal point is actually a local minimum of the low-energy potential.

The simplest such a system starts with gravity coupled to a single bulk

scalar and Maxwell field, with the bulk lagrangian density given by,

LB = −
√
−g

{
1

2κ2
gMN

[
RMN + ∂Mφ ∂Nφ

]
+

1

4
FMNF

MN + Λ

}
, (3.67)

where Λ is a bulk cosmological constant whose value can be chosen to obtain

any desired curvature on the brane. Notice that the choices f(φ) = 1 and
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V (φ) = Λ ensure the action has a shift symmetry, φ→ φ+ ξ, that guarantees

the existence of a scalar KK zero mode having a constant profile across the

bulk. This is the only such classically massless scalar KK mode, because the

presence of the bulk cosmological term, Λ, breaks the rigid scaling symmetry

that the Einstein action normally has. This breaking ensures that the presence

of Λ removes the ‘breathing’ mode corresponding to rigid expansions of the

extra dimensional geometry, that would have otherwise have been a low-energy

scalar zero mode.

Bulk solutions

The field equations in this case admit explicit solutions for which the 4D on-

brane geometry is maximally symmetric and the extra dimensions are axially

symmetric (3.8; 3.11). Using the ansatz of eq. (3.9), a simple solution is

ds2 = ĝµν dxµdxν + dρ2 + α2L2 sin2
( ρ
L

)
dθ2 (3.68)

Fρθ = αB0L sin
( ρ
L

)
, (3.69)

with φ = φ0 constant. The bulk field equations imply the following relation

amongst the constants B0, L and Λ:

R(2) = − 2

L2
= −κ2

(
3B2

0

2
+ Λ

)
, (3.70)

and the curvature of the on-brane metric is given by

R̂ = 2κ2

(
B2

0

2
− Λ

)
. (3.71)
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When α = 1 the extra-dimensional metric describes a sphere of radius

L. When α 6= 1 the geometry would still look like a sphere if we redefine

θ → αϑ, although ϑ is then not periodic with period 2π. This indicates there

are conical singularities at both ρ = 0 and ρ = πL, with defect angle given by

δ = 2π(1− α).

Brane properties

We now ask for a pair of brane sources located at these two singularities that

can support this geometry. We again take codimension-2 brane actions of the

form

Sb = −
∫

d4x
√
−γ Tb(φ) . (3.72)

Because the bulk solution has constant scalar, φ = φ0, its derivative,

∂ρφ, vanishes at both branes. This is only consistent with the scalar matching

condition if T ′b(φ) also vanishes for both branes when evaluated at the same

place: φ = φ0. The vanishing of T ′b(φ) at φ = φ0 also ensures Ub(φ) vanishes

there, and this is consistent with the (θθ) matching condition, eq. (3.24),

because W = 0 throughout the bulk in the classical solution ensures ∂ρW = 0

at the brane positions.

Finally, the (µν) matching condition, eq. (3.23), reads

−2π

κ2

[
eB B′ − 1

]
xb

= Tb(φ0) . (3.73)

Using eB = αL sin(ρ/L) gives eB B′ → α as ρ → 0, and so this matching

condition gives the usual expression for the defect angle in terms of the brane

tension,

δ = 2π(1− α) = κ2 Tb(φ0) , (3.74)
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and so Tb = κ2Tb/2π = 1− α.

The 4D perspective

We now show how the above picture is reproduced in the low-energy 4D ef-

fective theory below the Kaluza-Klein scale. Although we cannot ask in the

low-energy theory about the profiles of bulk fields within the extra dimensions,

we can use it to understand the curvature, R̂, of the 4D on-brane geometry

and the value, φ0, to which the low-energy scalar field is fixed.

To this end we explore the scalar potential, V eff , for the KK zero mode of

the scalar, φ, as it is moved away from φ0. To do so requires more information

about the shape of Tb(φ), so we choose for simplicity,

Tb(φ) = M4
b +

µ4
b

2
(φ− φ0)2 , (3.75)

although any choice for Tb(φ) would do, so long as both tensions share a

common zero for ∂ Tb/∂ φ.

With this choice we have

Tb =
κ2M4

b

2π
+
κ2µ4

b

4π
(φ− φ0)2 , Tb ′ =

κ2µ4
b

2π
(φ− φ0) , (3.76)

and so to lowest nontrivial order in κ2

U b =
1

3

[
(1− Tb)−

√
(1− Tb)2 − 3

4
(Tb ′)2

]

' (Tb ′)2

8(1− Tb)
+

3(Tb ′)4

128(1− Tb)3
+ · · · . (3.77)
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Specialized to the above tension this becomes

Ub '
κ2µ8

b

16π
(φ− φ0)2 + · · · . (3.78)

Notice (3.26) that because Ub is quadratic in Tb′, both it and its derivative U ′b

naturally vanish at zeroes of Tb′. Furthermore, the coefficient of (φ − φ0)2 in

U b is suppressed relative to the same term in Tb by an additional power of the

small dimensionless factor κ2µ4
b/8π � 1. The full expression for the effective

potential (3.40) in this case reduces to

V eff =
∑
b

Ub + VB(φ0) +
1

2
V ′′B (φ0)(φ− φ0)2 + · · ·

=
∑
b

Ub +

∫
d2x
√
g2 e

4W

{
−1

8
FmnF

mn +
1

2
Λ

}
+

1

2
V ′′B (φ0)(φ− φ0)2 + · · ·

=
∑
b

Ub +
π

2

(
Λ− B

2
0

2

)∫ πL

0

dρeB +
1

2
V ′′B (φ0)(φ− φ0)2 + · · ·

=

(
Λ− B

2
0

2

)
2παL2 +

1

2

[
V ′′B (φ0) +

∑
b

κ2µ8
b

8π

]
(φ− φ0)2 + · · · .

using that both W ′ and φ′ vanish when φ = φ0. More explicit progress requires

the calculation of V ′′B (φ0), although this can be expected to be non-negative

due if the bulk solution is stable. This shows that V eff(φ) is minimized at

φ = φ0, and this is how the 4D theory understands the value at which φ is

stabilized.

The value of the potential at this minimum has a direct physical inter-

pretation, since it sets the value of the 4D curvature through the 4D Einstein
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equations. These read, as usual

R̂µν −
1

2
R̂ ĝµν − κ2

NV eff ĝµν = 0 , (3.79)

where the 4D Newton coupling is

1

κ2
N

=
2π

κ2

∫ πL

0

dρ eB =
4παL2

κ2
, (3.80)

and so

R̂ = −4κ2
NV eff(φ0) = 2κ2

(
B2

0

2
− Λ

)
, (3.81)

in agreement with the higher-dimensional result, eq. (3.71). Notice that this

agreement requires, in particular, that the brane tensions Tb(φ0) = M4
b drop

out of the low-energy potential.

Finally, notice that evaluating the potential, eq. (3.79), at its minimum

by evaluating the action at the classical solution gives a result that agrees with

the general expression (3.46), which in the present instance evaluates to

V eff(ϕ0) = −
∑
b

e4WbUb −
1

2

∫
d2x
√
g2 e

4W

[
1

4
f FmnFmn − V

]
=

1

2

(
4παL2

)(
Λ− B

2
0

2

)
. (3.82)

3.4.3 Warped and unwarped supersymmetric examples

A large class of examples of explicit flux compactifications with nontrivial

warping and scalar profiles in the extra dimensions is provided by solutions

(3.19; 3.20; 3.23; 3.24; 3.25; 3.13; 3.14) to chiral 6D supergravity (3.12). Our

goal with this example is to identify the properties of the branes that are re-
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quired to source the known solutions. In general the existence of solutions

hinges on the consistency of these brane properties with the form of the in-

tervening bulk, but these solutions are not known in closed form in the case

where the on-brane dimensions are curved. In this situation it is much easier

to investigate the existence of solutions using the equivalent formulation in

terms of minima of the low-energy scalar potential, since it is much easier to

determine when such solutions exist.

The solutions of interest take as their starting point the following

bosonic part of the supersymmetric action

LB = −
√
−g

{
1

2κ2
gMN

[
RMN + ∂Mφ ∂Nφ

]
+

1

4
e−φ FMNF

MN +
2g2

κ4
eφ
}
,

(3.83)

where the constant g denotes the 6D gauge coupling for the Maxwell field.

Because this lagrangian enjoys the property LB → λ2LB when eφ → λ−1eφ

and gMN → λgMN , the arguments of section 3.3.4 imply it becomes a total

derivative once evaluated at an arbitrary classical solution (3.20):

LB(gcMN , A
c
M , φ

c) =
1

2κ2

√
−gc tuφc . (3.84)

Bulk solutions

For this system it is useful to choose a slightly different metric ansatz (3.23),

ds2 =W2 ĝµν dxµdxν + a2
(
W8dη2 + dθ2

)
, (3.85)

where a = a(η), W = W(η) and ĝµν is, a maximally symmetric 4D de Sitter

metric, with R̂ = −12H2. With these choices the proper circumference of a
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circle along which θ varies from zero to 2π at fixed η is 2πa(η), and dρ =

aW4dη. The dilaton is similarly taken to depend only on η, φ = φ(η), and the

Maxwell field is given by Aθ = Aθ(η), so that

Fηθ = Qa2 eφ . (3.86)

In this case the content of Maxwell’s equations is that Q must be a

constant, while the dilaton and the trace-reversed Einstein equations become

φ′′ =
2g2

κ2
a2W8eφ − κ2Q2

2
a2eφ , (3.87)

and

(µν) :
W ′′

W
− (W ′)2

W2
+

1

2
φ′′ =

(
W ′

W
+

1

2
φ′
)′

= 3H2a2W6 (3.88)

(θθ) :
a′′

a
− (a′)2

a2
+

1

2
φ′′ =

(
a′

a
+

1

2
φ′
)′

= −κ2Q2 a2eφ . (3.89)

In all of these equations primes denote d/dη. The ‘Hamiltonian constraint’ —

i.e. the (ηη) Einstein equation — in these variables is similarly

1

2
(φ′)2 − 4 a′W ′

aW
− 6(W ′)2

W2
=

2g2

κ2
a2W8eφ − 6H2a2W6 − κ2

2
Q2 a2eφ . (3.90)

The scale invariance of the full 6D field equations under eφ → eφ/λ and

gMN → λgMN can be seen from the invariance of the above equations under

{
φ, a,W , H

}
→
{
φ+ φ0, a e

−φ0/2,W , H eφ0/2
}
, (3.91)

for φ0 an arbitrary real constant. In the case H = 0 this symmetry implies the
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existence of a one-parameter family of classical solutions, and a corresponding

flat direction (labelled by φ0) that represents a classically massless KK zero

mode coming from a combination of the metric and φ fields.

The above field equations are written so that their right-hand-sides

tend to zero in the near-brane regions, for which a → 0. For regions where

these right-hand-sides are negligible the equations simplify to

φ′′ '
(
W ′

W

)′
'
(
a′

a

)′
' 0 , (3.92)

and so, letting b = {0, 1} for the branes at η = {−∞,+∞} respectively,

φ ' (−)bqbη , W 'Wb e
(−)bωbη and a ' ab e

(−)bαbη , (3.93)

with different choices for the constants αb, ωb and qb applying for the two limits,

η → ±∞. For both asymptotic regions these are related by the constraint,

eq. (3.90), so that

q2
b = 4ωb(2αb + 3ωb) . (3.94)

Notice that it is only consistent in the near-brane limit to ignore the

quantities a2W6, a2eφ and a2W8eφ on the right-hand sides of eqs. (3.88)

through (3.90) if

2αb + 6ωb > 0 , 2αb + qb > 0 and 2αb + 8ωb + qb > 0 . (3.95)

The first of these also guarantees the convergence of the 4D gravitational
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constant, which is given by (c.f. eq. (3.37))

1

κ2
N

=
2π

κ2

∫ ∞
−∞

dη a2W6 . (3.96)

Furthermore, since our interest is in solutions where a → 0 at the

positions of the brane sources, we demand αb > 0. This ensures that the

circumference of small circles encircling the branes vanishes in the limit that

the branes are approached. But if αb > 0, then ωb must also be non-negative.

To see this, suppose ωb were negative. Then eq. (3.94) would imply −2αb −

3ωb > 0, and so adding this to the first of eqs. (3.95) would give ωb > 0,

in contradiction with the assumption that it is negative. By contrast, the

constant qb can take either sign.

Solutions to these equations are known to exist for nonzero H (3.25),

although not yet in an explicit closed form. Closed-form solutions are known,

however, in the special case where H vanishes, given by (3.23; 3.20)

eφ = W−2eφ0−λ3η

W4 =

(
κ2Qλ2

2gλ1

)
cosh[λ1(η − η1)]

cosh[λ2(η − η2)]
(3.97)

and a−4 =

(
2gκ2Q3

λ3
1λ2

)
e2(φ0−λ3η) cosh3[λ1(η − η1)] cosh[λ2(η − η2)] .

Here ηi and λj are integration constants, and there is no loss of generality in

choosing, say, λ2 ≥ 0. The equations of motion require the constants to satisfy

λ2
2 = λ2

1 + λ2
3 — and so, in particular, λ2 ≥ |λ1| (with equality if and only if

λ3 = 0). φ0 is an arbitrary constant corresponding to the scale invariance

associated with the flat direction.

Because the terms involving H in the equations of motion become negli-
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gible in the near-brane limit, the H = 0 solutions also provide a more detailed

picture of the asymptotic regions at η → ±∞. The corresponding metric

singularities are generically curvature singularities, except when λ3 = 0, in

which case they turn out to be conical (3.24). The λ3 = 0 solutions include

the unwarped, constant-dilaton ‘rugby ball’ configurations of ref. (3.19) as the

special case where η1 = η2. Notice also that the limiting behaviour is as given

in eq. (3.93), with

αb =
1

4

[
3λ1 + λ2 + 2(−)bλ3

]
≥ 0 , ωb =

1

4
(λ2 − λ1) ≥ 0 , (3.98)

and

qb = (−)b+1λ3 −
1

2
(λ2 − λ1) . (3.99)

Notice that the condition ωb ≥ 0 follows from λ2 ≥ |λ1|, while αb ≥ 0 is a

consequence of

3(λ2 + λ1)− 2λ3 =
√
λ2 + λ1

(
3
√
λ2 + λ1 − 2

√
λ2 − λ1

)
≥ 0 . (3.100)

A special role is played by the combination

ωb +
qb
2

= (−)b+1λ3

2
, (3.101)

since this dictates the size of the Hubble constant, H. This can be seen by

integrating eq. (3.88), and using eq. (3.96) to obtain (3.25),

3H2

∫ ∞
−∞

dη a2W6 =
3κ2H2

2πκ2
4

=

[(
lnW +

φ

2

)′ ]η=+∞

η=−∞
= −

∑
b

(qb
2

+ ωb

)
.

(3.102)
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When evaluated for the solutions of eq. (3.97), this reduces to the Friedmann

equation

H2 = −2πκ2
4

3κ2

∑
b

[qb
2

+ ωb

]
=
κ2

4

3

[
2π

κ2

∑
b

(−)b
λ3

2

]
= 0 (3.103)

as required. For more general solutions eqs. (3.97) hold only approximately

in the near-brane region, so the constant λ3 could differ for the asymptotic

region near each brane.

Notice, in particular, that eq. (3.102) shows that H2 > 0 (4D de Sitter

space) requires at least one of the qb to be negative. Furthermore, choosing

qb < 0 is sufficient to ensure that the contribution to H2 of the corresponding

brane is positive, because

−
(qb

2
+ ωb

)
=
|qb|
2
− ωb =

√
3ω2

b + 2αbωb − ωb = ωb

(√
3 +

αb
ωb
− 1

)
≥ 0 .

(3.104)

This uses both eq. (3.94) and the property that αb and ωb are both non-

negative.

Brane properties

As usual, the matching conditions relate the asymptotic bulk solutions to the

properties of the source branes. Using W = eW , a = eB and aW4dη = dρ,

and taking the brane action to be Sb = −
∫

d4x
√
−γ Lb = −

∫
d4x
√
−ĝ Tb,

the scalar matching condition, eq. (3.21), becomes

2π

κ2

[
eB+4W ∂ρ φ

]
xb

=
∂

∂φ

[
e4W Lb

]
=⇒

[
(−)b∂η φ

]
xb

= qb =
κ2

2π

(
∂ Tb
∂φ

)
,

(3.105)
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where the sign arises because the direction away from the brane is (−)bdη in

the two asymptotic regions. The (θθ) metric matching condition, eq. (3.24),

similarly becomes

2π

κ2

[
eB+4W ∂ρW

]
xb

= Ub(φ) =⇒
[
(−)b

(
∂ηW
W

)]
xb

= ωb =
κ2Ub
2π

.

(3.106)

Finally, the (µν) components of the metric matching conditions are

−2π

κ2

[
e4W [eB (3∂ρW + ∂ρB)− 1]

]
xb

= Tb(φ) , (3.107)

and so

{
(−)b

[
3

(
∂ηW
W

)
+

(
∂ηa

a

)]
−W4

}
xb

= 3ωb + αb −W4(xb) = −κ
2Tb
2π

.

(3.108)

There are now two qualitatively different cases that are worth consid-

ering separately, depending on whether or not ωb = 0 or ωb > 0.

Solutions with only conical singularities:

If ωb = 0, then eq. (3.94) implies qb = 0 as well, and so both φ andW asymptote

to constants near the brane. Because ωb = 0 implies W ' Wb is constant in

the near-brane regime, the behaviour a ∼ eαbη implies the extra-dimensional

metric is proportional to

e2αbη(W8
b dη2 + dθ2) = dρ2 +

(
αbρ

W4
b

)2

dθ2 , (3.109)

showing that it has only a conical singularity at the brane position, with defect

angle δb = 2π(1− αb/W4
b ).
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When ωb = qb = 0, the matching conditions boil down to

κ2T ′b
2π

=
κ2Ub
2π

= 0 and δb =
κ2Tb
W4

b

= κ2Lb . (3.110)

The last of these relates the tension to the size of the conical defect angle in

the usual way, while the first states that the value taken by φ near each brane

must be at a stationary point of the tension on that brane. (Since this is

also automatically a zero of Ub, the second condition is redundant.) In order

for solutions to exist the two tensions must be related to one another by the

known asymptotic limits of the given bulk solution. That is, if φb = limφ(η)

as η → −(−)b∞, then Tb must satisfy T ′b(φb) = 0 at both ends.

Since its right-hand-side is non-negative, eq. (3.88) shows that it is only

possible to have ωb = qb = 0 at both branes if H = 0. If H = 0 the solutions

given in eqs. (3.97) have this property (for both branes) when λ3 = 0 (and

so also λ1 = λ2 := λ). Notice that W and eφ = W−2 need not be identically

constant in this case unless η1 = η2.

From the point of view of the 4D theory the result H = 0 is understood

for these solutions in terms of the vanishing of the classical low-energy 4D

effective potential,

V eff = VB +
∑
b

Ub = 0 . (3.111)

This vanishes because eq. (3.84) (when φ′ = 0 near the branes) shows that the

bulk contribution to the low energy potential vanishes, VB = 0, and eq. (3.110)

implies Ub = 0 for both branes.

If T ′b should vanish identically, then so must also Ub and V eff . In this

case the vanishing of V eff shows that the flat direction, corresponding to the
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scaling φ→ φ+φ0 and gMN → e−φ0gMN , is not lifted by the classical couplings

to the branes. But if Tb depends nontrivially on φ, then Ub becomes nonzero

as soon as φ differs from its asymptotic value φb, implying that V eff depends

nontrivially on φ0. Since Ub(φ0) is given by

Ub =
1

3

[
(W4 − Tb)−

√
(W4 − Tb)2 − 3

4
(Tb ′)2

]
, (3.112)

where Tb = Tb(φb + φ0), it is non-negative (provided Tb < W4). Because the

bulk action is known to be stable against small fluctuations about the bulk so-

lutions (3.27), it follows that V eff(φ0) must be minimized by any configuration

for which it vanishes, such as φ0 = 0 (which corresponds to limφ = φb). This

shows how the 4D theory sees that the flat direction, φ0, of the bulk equations

becomes fixed at the same value as is chosen by the matching conditions when

viewed from the higher-dimensional perspective.

Solutions with ωb > 0

On the other hand, if ωb > 0 then eW = W → 0 as the brane is approached.

In this case the scalar and (µν) matching conditions are

qb =
κ2T ′b
2π

= Tb ′ and 3ωb + αb = −κ
2Tb
2π

= −Tb . (3.113)

Since αb and ωb are both positive, the last of these conditions implies Tb < 0.

The third matching condition in this case is

ωb =
κ2Ub
2π

= Ub =
1

3

[
−Tb −

√
T 2
b −

3

4
(Tb ′)2

]
, (3.114)

which also requires Tb < 0 if Ub and ωb are to be positive.
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Because we use coordinates for which the branes are situated at η →

±∞, we demand that these matching conditions be satisfied as identities in η

in the asymptotic regimes. Use of the asymptotic forms for the bulk solutions

in this regime corresponds to expanding the brane tension about the value

taken by φ at the brane.

This determines the functional form for the brane action, Tb(φ, a,W ) =

e4WLb(φ, a), required to source the given bulk solution. Because eφ and all

metric functions behave as exponentials near the branes — c.f. eq. (3.93) —

the brane action must have the form Lb = −Λb e
ξbφF

(
a eζbφ

)
, where F(x)

is an arbitrary function and the powers ξb and ζb are chosen to ensure the

η-independence in the near-brane regime of

Tb = −ΛbW4eξbφF
(
a eζbφ

)
, (3.115)

for constant Λb. The parameters ξb and ζb therefore satisfy

4ωb + ξb qb = αb + ζb qb = 0 . (3.116)

In terms of F(x), the scalar matching condition becomes

qb =
κ2

2π

(
∂ Tb
∂φ

)
= −κ

2Λb

2π
W4 eξbφ

[
ξbF(x) + ζb xF ′(x)

]
x=aeζbφ

, (3.117)

while the metric matching conditions similarly give

3ωb + αb = −κ
2Tb
2π

=
κ2Λb

2π
W4 eξbφF

(
a eζbφ

)
, (3.118)

and so on.
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To go further requires making choices for the function F(x). We discuss

for simplicity a power-law, F(x) = xσb , which to concretely illustrate the

brane-bulk interaction.

Power-law tension: F(x) = xσb

Perhaps the simplest choice for the function F(x) appearing above is a power:

F(x) = xσb , for σb a constant. In this case

Tb = −ΛbW4aσb eλbφ , (3.119)

where λb = ξb + ζbσb, and so

4ωb + σbαb + λbqb = 0 , (3.120)

is required to ensure that the η-dependence cancels in Tb within the near-brane

regime. This last equation is to be regarded as being solved for σb.

The scalar matching condition, eq. (3.105), then boils down to

qb = −λbW4
b a

σb
b

(
κ2Λb

2π

)
. (3.121)

The (µν) metric matching condition, eq. (3.108), similarly gives

3ωb + αb =W4
b a

σb
b

(
κ2Λb

2π

)
. (3.122)

Combining (3.121) and (3.122), gives the parameter λb as

λb = − qb
3ωb + αb

. (3.123)
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Clearly qb < 0 implies λb > 0 and vice versa, because αb and ωb are both

positive. Notice that λb > 0 implies Tb → 0 in the ‘weak-coupling’ limit

eφ → 0.

Given αb and ωb, solving the above conditions gives qb = ±2
√
ωb(2αb + 3ωb)

(from eq. (3.94)), λb (from eq. (3.123)), and the combinationW4
b a

σb
b (κ2Λb/2π)

(from eq. (3.122)). The power of a appearing in Tb works out to be

σb =
4ωb

3ωb + αb
> 0 . (3.124)

One might think that the last matching condition, involving Ub, gives an in-

dependent equation that can be used to relate ωb to αb, but this turns out not

to be independent due to the relation between Ub and Tb and the constraint,

eq. (3.94).

The 4D perspective

In this section, we evaluate the full action at its classical solution to determine

the value of Veff at its minimum. For supergravity the full bulk action evaluates

to a total derivative at any classical solution, giving

S
B,ext =

1

2κ2

∫
d6x
√
−g tuφ =

π

κ2

∫
d4x

√
−ĝ
[
∂ηφ
]∞
−∞

= −
∑
b

T ′b
2
.

(3.125)

Adding to this the brane action and Gibbons-Hawking term, which combine

to ∑
b

(
SGH + Sb

)
= −

∫
d4x
√
ĝ Ub (3.126)
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gives the total action evaluated at the classical solution

Sext = −
∫

d4x
√
−ĝ

∑
b

(
Ub +

T ′b
2

)
. (3.127)

Comparing this with eq. (3.45) (for n = 6) gives

V eff(φ0) = −
∑
b

(
Ub +

T ′b
2

)
. (3.128)

Using this in the four-dimensional Einstein equations gives the 4D cur-

vature

R̂ = −12H2 = −4κ2
NVeff(φ0) , (3.129)

and so

H2 =
κ2
N

3
Veff = −κ

2
N

3

∑
b

(
Ub +

T ′b
2

)
= −2πκ2

N

3κ2

∑
b

(
ωb +

qb
2

)
, (3.130)

where the last equality uses the matching conditions to rewrite Ub and T ′b

in terms of the bulk solution. This agrees with the bulk field equations,

eq.(3.102), and so shows that the 4D and 6D pictures agree. In order to

identify the value of φ0 itself requires calculating Veff away from its minimum,

which requires a full dimensional reduction of the supergravity action.

3.5 Conclusions

This paper summarizes the bulk-brane matching conditions for codimension-

2 objects (following the presentation given for scalar-tensor theories in (3.3),

with generalizations to include a general coupling to the Maxwell field (3.2)),
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and describes several applications to higher-dimensional brane systems: F-

theory compactifications involving space-filling codimension-2 D7-branes situ-

ated within 10 dimensions; unwarped 3-brane flux compactifications in 6 di-

mensional scalar-Maxwell-Einstein theory; and warped and unwarped 3-brane

flux compactifications of 6D chiral gauged supergravity. The latter two cases

involve geometries that are maximally symmetric — but possibly curved — in

the directions parallel to the branes.

The comparison with the F-theory compactifications provides a sanity

check on the junction conditions, since both the brane and bulk actions are

explicitly known for Type IIB string vacua (3.9), as are explicit solutions for

the surrounding bulk geometry (3.21). We show that the near-brane asymp-

totic form of the bulk configurations in this case precisely agrees with what the

matching conditions would predict, given the explicit D7-brane action. Fur-

thermore, this comparison lies within the weak-coupling regime since the bulk

solution implies the string coupling becomes weak in the near-brane limit.

When applied to six-dimensional systems, the bulk-brane matching con-

ditions can provide a stabilization mechanism for the bulk scalars (like a bulk

axion, or the dilaton) provided the brane couplings break the appropriate sym-

metry that protects the scalar’s mass. When this is so, the value to which the

scalar stabilizes can be understood from the higher-dimensional point of view

as being due to the consistency of the matching conditions at the two branes.

Alternatively it can be regarded as the value which minimizes the effective

potential in the low-energy, on-brane action below the KK scale, although this

requires a calculation of the potential away from its minimum.

Although many of the bulk solutions considered in six dimensions (su-

persymmetric or not) have de Sitter curvature along the four brane directions
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(3.8; 3.14), we show that for 6D gauged chiral supergravity only 4D-flat branes

can be sourced by positive-tension branes. To establish this we first show that

for any 6D theory a codimension-2 brane tension must be negative whenever

the warp factor tends to zero near the brane. We then prove that the su-

pergravity field equations imply the warping vanishes near the brane unless

the near-brane geometry has a conical singularity. Finally, the desired result

follows once the field equations are used to see that any geometry having only

conical singularities necessarily is flat in the 4 brane directions.

This necessity for negative tension in order to obtain de Sitter and anti-

de Sitter branes echoes the various no-go theorems for finding 4D-de Sitter

solutions from extra-dimensional gravity (3.28), even though the curvatures

of the bulk geometries considered make these theorems not directly apply.

This suggests that the curvature assumptions made in these theorems may be

somewhat stronger than is necessary.

The relation to 4D de Sitter geometries has potential applications to

searches for cosmic inflation within an extra-dimensional context. This is be-

cause inflationary configurations often lay nearby pure de Sitter solutions. In

particular, a broad class of time-dependent solutions are known (3.14) for the

bulk field equations in 6D supergravity, and for some of these the on-brane

4D geometry is likely to undergo an accelerated expansion. The extension of

the arguments of this paper to these time-dependent situations would be most

worthwhile, since they could provide instances of explicit inflationary mod-

els for which there is both a higher- and lower-dimensional understanding of

why the universe accelerates. (By contrast, current inflationary models typi-

cally rely on the low-energy 4D effective theory to conclude that the universe

inflates.) Work along these lines is in progress (3.29).
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Chapter 4
Bulk Axions, Brane Back-reaction

and Fluxes

4.1 Preamble

This chapter is based on the work in (4.1). This chapter describes the physics

of branes in the simplest flux stabilization: 6 dimensional Einstein-Maxwell-

scalar theory with extra dimensions in the shape of a rugby ball with branes

on opposite ends. The rugby ball is sourced by two branes with equal and

constant tension.

We explore the shape of the effective potential that is the result of an

arbitrary small perturbation of the brane tensions. In addition, we find how

the bulk fields respond to the perturbations, by solving the linearized equations

of motion in the bulk in full generality, and relating the integration constants

to the choices made on the branes. We find that the first subdominant term in

the on-brane derivative expansion, a magnetic coupling to the stabilizing flux,

is competitive with the lowest order contribution. The reason for this is that
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Figure 4.1: An example of a rugby ball (though the extra dimensions are less
colorful).

Creative commons license. This image was originally posted to Flickr by Èamonn
at http://flickr.com/photos/68518558@N00/461475611. It was reviewed on 18:16,

20 August 2008 (UTC) by the FlickreviewR robot and confirmed to be licensed
under the terms of the cc-by-2.0.

this coupling allows some of the stabilizing flux to be localized at the branes,

which reduces the energy cost of changing the volume.

The importance of this chapter is that we developed the description of

the localization of bulk flux. In the supersymmetric case (see chapter (5)), this

mechanism allows the bulk to relax when the source branes are perturbed.
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4.2 Introduction and Summary

Brane-world models — where known particles are localized on surfaces within

extra dimensions — have proven to be fruitful places to seek novel kinds of

low-energy physics. As studies over the past decade show, their low-energy

physics can be novel (relative to 4D models, say) because of several different

mechanisms:

Brane vs Bulk Kinematics: Because not all particles are trapped on the branes,

different species experience the kinematics of different dimensions. This ob-

servation is what allows the existence of unusually large extra dimensions and

low gravity scales (4.2; 4.3).

Brane Back-reaction: Because branes can be localized within the extra dimen-

sions, which need not be homogeneous, physical properties can vary from place

to place within the extra dimensions. Such position dependence is generic once

the back-reaction of localized branes onto their geometry is included (4.4).

Dimensional stabilization: Because low-energy degrees of freedom can be lighter

than the Kaluza-Klein (KK) scale, predictions for low-energy dynamics gener-

ically require an equally complete understanding of whatever physics stabilizes

the extra dimensions (4.5).

These last two points in particular considerably complicate discussions of cos-

mology within a brane-world framework (4.6). What appear to be shallow

directions for the scalar potential on a brane for fixed bulk geometry can turn

into much steeper directions once the bulk geometry is allowed to move.
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With a few exceptions, the interplay between brane back-reaction and

the physics stabilizing the bulk remains relatively poorly explored. The main

exception is the case of codimension-1 branes moving within one extra di-

mension, as for Randall-Sundrum (RS) models (4.4). Yet one wonders how

representative codimension-1 systems are of the more generic situation having

higher codimension, for which much less is known about brane back-reaction.

Although some results exist for the back-reaction of branes on ten-dimensional

geometries in string theory (4.7), it is often not possible to be as explicit about

the form of the extra-dimensional geometry and its detailed interplay with

brane back-reaction.

In this paper we compute the low-energy potential for a class of co-

dimension-2 brane models for which explicit compactifications involving both

bulk stabilization and brane back-reaction are known. We focus in particu-

lar on the simplest of brane/flux compactifications: (nonsupersymmetric) 6D

Einstein-Maxwell theory with the extra dimensions stabilized through a com-

petition between a background Maxwell flux and a bulk cosmological constant

(4.8; 4.9; 4.10; 4.11; 4.12). To this system we couple a bulk Goldstone boson

(axion), φ, whose shift symmetry, φ → φ+(constant), is explicitly broken by

its couplings to the two branes that source the bulk through interactions of

the schematic form

Sb =

∫
Σb

(
τb ω + Φb

?F
)
, (4.1)

where the integration is over the 4D brane world-sheet, Σb, whose volume form

is denoted ω so τb(φ) represents a φ-dependent brane tension. FMN denotes

the 6D Maxwell field strength — for which ?F is the 6D Hodge dual — and

the φ-dependent coupling Φb(φ) can be interpreted as the amount of Maxwell
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flux carried by the brane in question.

By computing the back-reaction of the branes onto the bulk fields we ob-

tain the low-energy potential for the resulting would-be Goldstone zero mode,

ϕ, that becomes a pseudoGoldstone boson (pGB) (4.13) in the low-energy 4D

effective theory. The branes back-react onto the bulk fields by changing their

boundary conditions, through a codimension-2 generalization (4.14; 4.15; 4.16)

of the more familiar codimension-1 Israel junction conditions (4.17).

The resulting bulk field equations subject to the brane boundary con-

ditions can be solved explicitly in some generality if the axion-dependence

of the brane tension is regarded as a small change to a background, axion-

independent value. In this limit the would-be zero mode is stabilized to a

fixed value, ϕ = ϕ?, which we compute in two separate ways: first by explic-

itly solving the linearized field equations of the full 6D theory; and second by

minimizing the dimensionally reduced axion potential in the 4D low-energy

effective theory. Both methods agree, and the generality of our result allows

us to follow how the stabilized value and its energy density vary as a function

of the axion couplings to the two branes. In particular we see what happens

when the branes differ in the value for the axion that they prefer. As a by-

product we also compute how the geometry of the extra dimensions changes

due to the presence of the axion-brane couplings.

The calculation reveals the following generic features

1. In the absence of brane fluxes — i.e. Φb = 0 — the low-energy 4D

potential is very generally simply given by the sum of tensions, summed
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over the branes present,

Veff(ϕ) =
∑
b

τb[φb(ϕ)] , (4.2)

where φb(ϕ) denotes the value taken by the (suitably renormalized) 6D

scalar field at the corresponding brane position, regarded as a function of

the zero mode ϕ. This agrees with the probe-brane approximation (which

ignores brane back-reaction) since for brane tensions the contribution of

the back-reaction first arises at second order. In particular the stabilized

value, ϕ = ϕ?, satisfies

∑
b

(
∂τb
∂φ

)
ϕ=ϕ?

= 0 . (4.3)

Because the quantity (∂τb/∂φ)ϕ? governs the coupling of the lightest

mode, ϕ, to matter localized on the brane, these couplings tend naturally

to turn themselves off for small fluctuations of ϕ about its ground state.

This could provide a phenomenologically useful mechanism for naturally

decoupling light bulk scalars from brane matter, along the lines of similar

earlier proposals (4.18).

2. By contrast, nonzero brane fluxes contribute at linear order in two ways,

that are similar in size. The first arises because nonzero background

fluxes are required to stabilize the bulk geometry, ?F = −Qω (with, as

before, ω the volume form). Because of this the Φb
?F term modifies the

value of the brane action, giving an ‘effective tension’

Tb(φ) = τb(φ)−QΦb(φ) . (4.4)
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The second contribution arises because quantization of total flux requires

the amount of bulk flux to change in response to the presence of flux

on the brane, leading to an additional energy cost over and above that

measured by the difference Tb−τb. Although the complete expression for

Veff(ϕ) that results involves an integration of Φb with respect to ϕ, the

predictions for ϕ? and %eff := Veff(ϕ?) turn out to be relatively simple.

The prediction for ϕ? is again given by eq. (4.3) — with no contribution

from Φb — while the prediction for %eff becomes

%eff =
∑
b

{
Tb[φb(ϕ?)]−QΦb[φb(ϕ?)]

}
=
∑
b

{
τb[φb(ϕ?)]−2QΦb[φb(ϕ?)]

}
.

(4.5)

We see in this way that the brane flux ‘contributes twice’ to the vacuum

energy at low energies. In particular, %eff = 0 for branes satisfying

τb[φb(ϕ?)] = 2QΦb[φb(ϕ?)], and so Tb[φb(ϕ?)] = QΦb[φb(ϕ?)].

3. Assuming a 6D kinetic energy of the form F 4∂Mφ ∂Mφ, in order of mag-

nitude the mass of the light 4D would-be zero mode, ϕ, predicted by

the low-energy potential is of order mϕ ∼ (µ/F )2mKKf(ϕ?), where mKK

denotes the KK mass scale and the φ-dependent part of the brane ten-

sion is assumed to be of order µ4. In most cases of interest f(ϕ?) is

given by
∑

b ∂
2τb/∂φ

2 evaluated at ϕ?. When µ� F this mode satisfies

mϕ � mKK, allowing its properties to be described in the effective 4D

theory. (Unlike for a purely 4D theory it makes sense to call φ a pseudo-

Goldstone field even if µ > F , since its shift symmetry is everywhere

unbroken in the extra dimensions except at the positions of the branes.

However, if µ > F then the mass of the would-be zero mode becomes
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comparable with other KK modes, precluding calculating its properties

within the 4D theory.1)

The low-energy 4D theory obtained from models with bulk axions

generically includes a light scalar field, whose small mass is technically natural

because of the weakly broken shift symmetry. What the brane construction

potentially provides is a UV completion that can explain why the masses and

couplings are small in the first place. This could prove useful for a variety

of low-energy applications, such as to extra-dimensional inflationary models,

some of which we briefly describe below while examining specific examples of

our general expressions.

We organize our detailed discussion as follows. Our main results are

presented in the next section, which starts in §4.3.1 by setting out the field

equations describing the system of interest. These are then solved by finding

solutions that are perturbatively close to simple, well-known rugby-ball solu-

tions involving two branes interacting with a spherical 2D bulk. §4.3.2 does

so first for the simpler case where the branes do not couple to the bulk scalar,

with the generalization to scalar-brane coupling following in §4.3.3. §4.4 then

explores the features of these general solutions by examining in detail several

simple illustrative special cases. These include situations where the two branes

agree on the value at which the field ϕ stabilizes, and situations where they

do not. §4.4 also considers several special cases of potential phenomenological

interest for axion and inflationary applications.

1Exceptions to this can arise if the scalar is self-localized at the brane (4.19), but this
usually requires a bulk scalar potential U(φ) that is forbidden in the current examples by
the assumed shift symmetry, φ→ φ+ c.
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4.3 The bulk-brane system

This section defines the system of interest, which we take to be the simplest

theory containing both codimension-two sources (with positive tension) and

a flux mechanism for stabilizing the size of the extra dimensions. This sug-

gests taking the bulk theory to be 6D Einstein-Maxwell gravity coupled to the

Goldstone boson (axion) field.

4.3.1 Field equations and background solutions

Classical brane-bulk dynamics is defined by solving the bulk field equations,

subject to the boundary conditions imposed by matching conditions at each

brane.

Bulk field equations

The bulk action of interest is2

Sbulk = −
∫

d6x
√
−g

{
1

2
gMN

(
1

κ2
RMN +

1

κ2
a

∂Mφ ∂Nφ

)
+

1

4
FMNFMN + Λ

}
,

(4.6)

where RMN is the Ricci tensor constructed from the 6D metric gMN , φ is

the axion field and F = dA is the field strength for the Maxwell potential

AM . The dimensionful parameters of the problem are the 6D gravitational

coupling, κ = 1/M2
g , the bulk axion decay constant, κa = 1/F 2, and the bulk

cosmological constant, Λ (whose value is tuned to ensure the unperturbed

solution is flat in the on-brane directions). Although κa can be absorbed into

2We use a ‘mostly plus’ metric and Weinberg’s curvature conventions (4.20) (that differ
from those of MTW (4.21) only by an overall sign in the definition of the Riemann tensor).
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the normalization of φ, we do not do so because this changes the form of the

brane couplings to φ.

The field equations obtained from this action are the (trace-reversed)

Einstein equation

RMN + λ2 ∂Mφ ∂Nφ+ κ2FMPFNP −
[
κ2

8
FPQFPQ − κ2Λ

2

]
gMN = 0 , (4.7)

where λ := κ/κa = F/Mg. The Maxwell equation is

√
−g ∇MFMN = ∂M

(√
−g FMN

)
= 0 , (4.8)

and

√
−g tuφ = ∂M

(√
−g ∂Mφ

)
= 0 , (4.9)

is the axion equation.

Rugby-ball solutions

We consider geometries that are maximally symmetric in the 4 on-brane direc-

tions and axially symmetric in the two extra dimensions. The corresponding

ansatz for the metric, scalar and Maxwell fields is

ds2 = dρ2 + e2Bdθ2 + e2W ĝµνdx
µdxν , (4.10)

and

Fρθ = A′θ , (4.11)

where ĝµν is an xµ-dependent maximally symmetric geometry and the func-

tions B, W , φ and Aθ depend only on ρ. Primes denote differentiation with
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respect to this coordinate.

Subject to this ansatz the bulk field equations reduce to

(
eB+4W φ′

)′
= 0 (φ)(

e−B+4WA′θ
)′

= 0 (Aθ)

4
[
W ′′ + (W ′)2

]
+B′′ + (B′)2 + λ2(φ′)2 +

3κ2

4
e−2B (A′θ)

2
+
κ2Λ

2
= 0 (ρρ)

B′′ + (B′)2 + 4W ′B′ +
3κ2

4
e−2B (A′θ)

2
+
κ2Λ

2
= 0 (θθ)

1

4
e−2W R̂+W ′′ + 4(W ′)2 +W ′B′ − κ2

4
e−2B (A′θ)

2
+
κ2Λ

2
= 0 (µν) ,

(4.12)

where R̂ is the curvature scalar built from the maximally symmetric metric

ĝµν . The first two of these immediately integrate to give

eB+4W φ′ = ϕ1 and e−B+4WA′θ = Q , (4.13)

where ϕ1 and Q are integration constants.

When ϕ1 = 0 the full set of equations admits a particularly simple

solution of the rugby-ball form (4.8)

ds2 = dρ2 + α2L2 sin2
( ρ
L

)
dθ2 + ĝµν dxµdxν

Fρθ = QαL sin
( ρ
L

)
, (4.14)

with constant φ = ϕ0 and W = 0. The equations of motion imply the following

relation amongst the integration constants:

2

L2
= κ2

(
3Q2

2
+ Λ

)
, (4.15)
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as well as fixing the 4D curvature

R̂ := ĝµνR̂µν = κ2
(
Q2 − 2Λ

)
. (4.16)

A final constraint relating parameters comes from flux quantization,

due to the spherical topology of the extra dimensions. As usually framed, this

implies

n

g
= 2αL2Q , (4.17)

where g is the gauge coupling of the Maxwell field and n is an arbitrary in-

teger. However this expression assumes the absence of any flux localized on

the source branes themselves (4.11). In the presence of brane-localized flux

(more about this below and in Appendix B.1) the flux-quantization condition

instead becomes

n

g
= 2αL2Q+

∑
b

Φb

2π
, (4.18)

where the sum is over all of the branes present, each of which carries the

localized flux, Φb.

Since our interest is in background solutions with flat geometries, ĝµν =

ηµν , we further choose Λ so that R̂ = 0:

Λ =
Q2

2
and so κ2L2Q2 = 1 . (4.19)

With this choice all geometrical properties, like L and Q, can be regarded as

functions of the integration constant α together with the integer n and the

lagrangian parameters κ and g (see Appendix B.2 for details).

The potential singularity in the geometry where gθθ = eB vanishes is
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just a coordinate artefact when α = 1, in which case the two compact dimen-

sions define a sphere. When α 6= 1 the background has a conical singularity

at ρ = ρN := 0 and ρ = ρS := πL. This is interpreted as describing the

back-reaction of two codimension-two source branes located at these positions,

having equal tensions, T (which includes the energy associated with the brane

flux, see eqn. (4.21). Matching at the branes (see below) implies this tension

is related to the deficit angle by

1− α =
κ2T

2π
, (4.20)

similar to the relation between tension and deficit angle for a cosmic string

(4.22).

Finally, notice that the value φ = ϕ0 is not determined by any of the

equations of motion, due to the symmetry φ→ φ+ constant. The parameter

ϕ0 labels a flat direction in the low-energy potential, that can be lifted if the

coupling of φ to the branes breaks this symmetry (such as by allowing the

tensions T to depend on φ). A primary goal of the next few sections is to

identify the effective potential for this low-lying mode below the KK scale, to

determine how the vacuum value after symmetry breaking, ϕ∗, is related to

the couplings on the branes.

Brane matching conditions

As brane sources we use the most general form (involving the fewest deriva-

tives) for a 4D brane action located at positions ρN and ρS (4.11)

Sbranes = −
∑
b=N,S

∫
d4x
√
−g4

[
τb −

Φb

2
εmnFmn

]
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= −
∑
b=N,S

∫
d4x

√
−ĝ e4W

[
τb −

Φb

2
εmnFmn

]
, (4.21)

where ερθ = 1/
√
g2 = e−B transforms as a tensor, rather than a tensor density,

in the two transverse dimensions. The parameter τb represents the tension

of the brane, which can depend on all of φ, W and gθθ without breaking the

condition of maximal symmetry in the on-brane directions. As is shown below,

the parameter Φb similarly denotes the magnetic charge (or flux) carried by

the source branes (which could also depend on φ, W and gθθ).

The presence of such branes imposes a set of boundary conditions on

the derivatives of the bulk fields in the near-brane limits, given by3

[
eBφ′

]
ρb

=
∂Tb
∂φ

with Tb :=
κ2Tb
2π[

eBW ′
]
ρb

= Ub with Ub :=
κ2

4π

(
∂Tb
∂gθθ

)
(4.22)

and
[
eBB′ − 1

]
ρb

= −
[
Tb + 3Ub

]
,

where Tb is defined as the total lagrangian density of the source,

Tb = τb − Φb e
−BFρθ . (4.23)

The Bianchi identities ensure that only two of eqs. (4.22) are independent

of one another, and as a consequence the quantities Ub and Tb are also not

independent. They are subject to the constraint:

4Ub
[
2− 2Tb − 3Ub

]
− (T ′b )2 = 0 , (4.24)

3Notice that we normalize the quantities Tb and Ub without including a factor of e4W

used in ref. (4.15).
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where T ′b = ∂Tb/∂φ. Notice that for the rugby ball solutions T ′b = Ub = 0 and

so eqs. (4.22) degenerate down to eq. (4.20).

As shown in Appendix B.1, the corresponding boundary condition for

the Maxwell field implies that the integral of eq. (4.13) for Aθ(ρ) for a patch

containing each source brane is (4.11)

Aθ(ρ) =
ΦN

2π
+Q

∫ ρ

ρN

dρ̂ eB−4W Northern hemisphere

= −ΦS

2π
+Q

∫ ρ

ρS

dρ̂ eB−4W Southern hemisphere , (4.25)

and the signs are dictated by the observation that increasing ρ points away

from (towards) the North (South) pole, together with the requirement that the

two patches share the same orientation. Requiring these to differ by a gauge

transformation, g−1∂θΩ, on regions of overlap implies the flux-quantization

condition

n

g
=

Φtot

2π
+Q

∫ ρS

ρN

dρ eB−4W , (4.26)

where n is an integer, g is the gauge coupling and Φtot = ΦN + ΦS. It is this

expression that identifies Φb as the fraction of the total Maxwell flux carried

by each brane.

4.3.2 Perturbations I: the Einstein-Maxwell case

Next consider starting with a rugby-ball solution and independently perturb-

ing each of the two brane tensions, τb = τ + δτb, and brane-localized fluxes,

Φb = Φ + δΦb, implying a similar expansion for the total brane action, Tb =

τb − eBFρθΦb = τb − QΦb. This section starts simply and assumes both δτb

and δΦb are independent of φ, with the resulting insights used to inform the
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next section’s discussion of the more general case. The goal is to compute

explicitly how the bulk fields respond to the perturbation, allowing a detailed

examination of how the extra dimensions flex as their source branes change.

In general, because the perturbed branes are different from one another, the

scalar field acquires a nontrivial profile, φ = φ(ρ), and the resulting geometry

warps nontrivially, W = W (ρ).

Linearized solutions

Because the brane perturbations are independent of φ, ∂Tb/∂φ = 0 and so there

is no change to the φ boundary conditions. Consequently the unperturbed

solution, φ = ϕ0, remains a solution. The scalar then drops out of the problem

and the calculation involves only the Einstein-Maxwell system. Writing eB =

eB0 [1 + δB(ρ)] and W = δW (ρ) — with B0 given by the rugby-ball solution

described by parameters Q, L and α — we linearize the field equations in δB

and δW .

The combination of the Einstein equations (ρρ)− (θθ) linearizes to

δW ′′ −B′0 δW ′ = δW ′′ − δW ′

L
cot
( ρ
L

)
= 0 (4.27)

which has as its solution

δW = W1 cos
( ρ
L

)
, (4.28)

where we absorb an additive integration constant, W0, into a re-scaling of the

four on-brane coordinates, xµ.
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The perturbed gauge field again satisfies eq. (4.13), and so

δA′θ =
[
δQ+Q (δB − 4δW )

]
αL sin

( ρ
L

)
. (4.29)

With this and eq. (4.28) the θθ Einstein equation linearizes to

[δB′ sin2 (ρ/L)]′

sin2(ρ/L)
=

10W1

L2
cos
( ρ
L

)
− 3

2L2

(
δQ

Q

)
, (4.30)

whose integral is

δB =
3

4

(
δQ
Q

)
ρ

L
cot
( ρ
L

)
− 10W1

3
cos
( ρ
L

)
−B1 cot

( ρ
L

)
+ δB0 . (4.31)

Notice that the integration constant B1 here is pure gauge, corresponding to

an infinitesimal shift in the radial coordinate ρ → ρ + c. We can fix this

freedom by demanding that ρN = 0, and so eB → 0 as ρ → 0. Since eB =

αL(1 + δB) sin(ρ/L)→ −B1 at ρ→ 0, this implies B1 = 0.

The linearized flux quantization condition, eq. (4.26) is

δQ
Q

+
1

2

∫ πL

0

dρ

L
sin
( ρ
L

)
(δB − 4δW ) +

κ2Q
4πα

(δΦN + δΦS) = 0 , (4.32)

which uses the background relation κLQ = 1 to rewrite δΦb/L
2Q = κ2QδΦb.

Solving this for δQ/Q gives

δQ
Q

= −4δB0 −
κ2Q
πα

(δΦN + δΦS) . (4.33)

In summary, once coordinate conditions are used to eliminate W0 and

B1, solutions to the bulk equations for δW , δB and δAθ involve three inte-
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gration constants — W1, δB0 and δQ/Q — among which flux quantization

imposes one relation. The physical interpretation of the two remaining pa-

rameters is seen by connecting them to two physical quantities. One of these

can be taken as the warping difference between the two branes,

δWN − δWS = 2W1 , (4.34)

which controls the relative redshift of energies on the two branes. The other

can be chosen as the change in proper distance, ρS− ρN = π(L+ δL), between

the two branes, where ρN = 0 and ρS are defined as the places where eB → 0.

Comparing

lim
ρ→πL

eB ' −3παL

4

(
δQ
Q

)
, (4.35)

with the Taylor expansion eB(πL) ' (eB0)′ρS(−πδL) = +παδL gives

δL

L
' −3

4

(
δQ
Q

)
. (4.36)

Matching to brane tensions

All that remains is to eliminate the integration constants δB0 and W1 in terms

of the brane perturbations using the linearized brane matching conditions. In

the present instance only the last of eqs. (4.22) is nontrivial. Besides imposing

the background relation α = 1 − κ2T/(2π), for the linearized perturbations

this condition implies

δ
(
eB
)′
ρb

= −κ
2δTb
2π

, (4.37)
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where δTb = δ(τb−ΦbQe−4Wb) ' δτb−δΦbQ−ΦQ(δQ/Q−4δWb). Evaluating

this at ρ = ρN = 0 and4 ρ = ρS = πL+ δρS, and keeping in mind that it is −ρ

that is the outward direction for the south brane, gives

α

[
δB0 −

10W1

3
+

3

4

(
δQ
Q

)]
= α

[
−2δB0 −

10W1

3
− 3κ2QδΦtot

4πα

]
= −κ

2δTN
2π

α

[
δB0 +

10W1

3
+

3

4

(
δQ
Q

)]
= α

[
−2δB0 +

10W1

3
− 3κ2QδΦtot

4πα

]
= −κ

2δTS
2π

.

(4.38)

When solving these we may approximate δTb ' δτb − Q δΦb, which involves

dropping the back-reaction of those terms proportional to δQ/Q and δWb

in κ2δTb/2π. This neglect is justified because their relative contribution is

of order κ2QΦ/2π, which must be small to justify our classical treatment of

gravity. The solution found within this approximation to eqs. (4.38) then is

δB0 =
κ2

8πα

[
δTN + δTS − 3Q(δΦN + δΦS)

]
W1 =

3κ2

40πα

(
δTN − δTS

)
, (4.39)

Using the above,

δL

L
= −3

4

(
δQ
Q

)
=

3κ2

8πα

[
(δTN + δTS)−Q(δΦN + δΦS)

]
=

3κ2

8πα

[
(δτN + δτS)− 2Q(δΦN + δΦS)

]
. (4.40)

4To leading order δρS does not contribute, and is only mentioned for completeness.
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On-brane geometry and the view from 4D

The curvature of the induced geometry on the branes comes from the linearized

(µν) Einstein equation, which — using e−2BF 2
ρθ = Q2e−8W — gives

R̂ = −4

[
δW ′′ +

δW ′

L
cot
( ρ
L

)]
− 8δW

L2
+

2

L2

(
δQ
Q

)
=

2

L2

(
δQ
Q

)
= − κ2

παL2

[
(δτN + δτS)− 2Q(δΦN + δΦS)

]
. (4.41)

From the point of view of a 4D observer localized on the brane this

curvature would be interpreted as being due to a 4D energy density, %eff . Since

the 4D gravitational coupling, κ2
4 = 8πGN , is related to κ by

1

κ2
4

=
2παL

κ2

∫ πL

0

dρ sin
( ρ
L

)
=

4παL2

κ2
, (4.42)

we have

%eff = − R̂
4κ2

4

= δτN + δτS − 2Q(δΦN + δΦS) . (4.43)

Notice that this agrees with the naive expectation %eff = δτN + δτS in the

absence of fluxes on the brane. The same is not true in the presence of brane

fluxes, however, since the final result for %eff differs from δTN + δTS = δτN +

δτS−Q(δΦN +δΦS). As the above calculation shows, %eff ∝ −δQ/Q and so the

energy cost of the perturbation arises from the change of flux required by the

flux-quantization condition in response to the back-reaction of the branes on

the bulk geometry. Since the flux is homogeneous across the extra dimensions,

its energy cost is expensive since it scales with the volume. Localizing some

of the flux into the branes reduces this extensive energy cost.5

5Of course, this possibility of back-reaction competing with brane tensions is already
suggested by the complete absence of on-brane curvature in the initial rugby ball solution
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The comparative importance of such back-reaction effects depends on

the relative size of the two brane energy scales δτb and QδΦb = δΦb/κL. If

both δτb and δΦb are set by the same scale — i.e. τb ∼ Λ4 and δΦb ∼ Λ

— then δτb ∼ QδΦb when Λ ' Λ? := (κL)−1/3. For Λ smaller than this the

QδΦb term dominates, while δτb is the larger of the two when Λ > Λ?. (For

a similar setup with n transverse dimensions this crossover would occur when

Λ ' (κL)−2/(4+n).) Although κΛ2 must be much smaller than one to justify

semiclassical methods, for fundamental objects it is comparatively large (e.g.

for D-branes κΛ2 is of order the string coupling, gs ' 0.01 say), and so the

tension contribution can therefore dominate. The flux contribution instead

can dominate for lower-tension objects.

It is instructive to check this calculation by directly evaluating the

low-energy potential through dimensional reduction of the 6D theory in the

classical approximation. A general formula for this is computed (including

brane back-reaction) in ref. (4.15), and when this is specialized to linear per-

turbations about a rugby ball it evaluates to

Veff = 2π

∫ πL

0

dρ eB+4W

{
1

2κ2

[
8W ′

L
cot
( ρ
L

)]
− 1

4
(Q+ δQ)2e−8W +

Λ

2

}
,

(4.44)

with the W ′ term arising from the extra-dimensional curvature and the (Q+

δQ)2 term coming from the bulk Maxwell action. In the present instance

all terms involving δW in this expression turn out to be proportional to

sin(ρ/L) cos(ρ/L) to linear order in the perturbations, and so integrate to

zero and do not contribute to Veff . Keeping in mind the background relations

despite the presence of the initial equal brane tensions, T .

142



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

2Λ = Q2 and κLQ = 1, the result therefore simplifies to

Veff ' 2π

∫ πL

0

dρ eB0

{(
−Q

2

4
+

Λ

2

)
(1 + δB)− QδQ

2

}
= −2πα

κ2

(
δQ
Q

)
= −παL

2R̂
κ2

= %eff , (4.45)

showing the equivalence between the 4D and 6D perspectives.

4.3.3 Perturbations II: the Einstein-Maxwell-axion case

In this section we generalize the previous discussion to consider branes and

fluxes that can depend on φ. This allows us to follow how couplings to the

brane lift the flat direction associated with the shift symmetry of the bulk

theory, and so to see how the scalar zero mode, ϕ0, becomes stabilized at a

specific value, ϕ0 = ϕ?.

It is instructive to ask how this stabilization happens from the point of

view of the full six-dimensional theory. To this end imagine trying to integrate

the field equations to obtain the bulk configuration that interpolates between

the two branes. Specializing to solutions that are both axially symmetric in

the transverse directions and maximally symmetric in the on-brane dimensions

we seek bulk profiles as a function only of ρ, starting with initial conditions

set by matching to the brane at ρ = ρN (say). If this matching completely

specified all of the fields and their first derivatives at this brane then the

solution obtained by integration would completely determine the value of the

fields and their radial derivatives at the second brane, and in general these

need not be consistent with what would be obtained by matching to this

second brane.
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But matching to the first brane typically specifies only the derivatives

of the fields at the first brane, and not separately the values of the fields

themselves.6 Consequently the values of the fields at the first brane can be

adjusted to try to allow the solution to properly match to the properties of

the second brane. It is in this way that the system can force ϕ0 = ϕ? if the

brane actions do not preserve the bulk shift symmetry.

From the perspective of a low-energy 4D observer the energy cost re-

sponsible for this stabilization looks like a scalar potential for ϕ0, and our goal

in what follows is to compute its shape for configurations in the immediate

neighborhood of ϕ0 = ϕ?. As the above arguments show, a classical solution

subject to our assumed ansatz should not exist as soon as ϕ0 6= ϕ?, and the

part of the ansatz responsible is likely to be the condition of maximal symme-

try in the on-brane directions. No maximally symmetric solution should exist

for ϕ0 6= ϕ? because this indicates the onset of time evolution in response to no

longer sitting at the minimum of the 4D effective potential. (This development

of time dependence in response to changes in the properties of mutually grav-

itating brane sources resembles what happens for a system of electric charges,

which generically becomes time dependent when an equilibrium arrangement

is disturbed).

Rather than trying to solve for the system’s time-dependent response

(see however refs. (4.23; 4.24)) when ϕ0 6= ϕ? we instead focus on computing

features of the low-energy potential that is responsible. We do so – in both

the 4D and 6D theories – through the artifice of turning on a current that

stops the time evolution, and so removes the obstruction to static solutions.

6Since in general the bulk fields can diverge at the brane positions, this argument should
more precisely be made very near to, and not precisely at, the position of the first brane.
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Since sufficiently small deviations from equilibrium should precipitate motion

only along the low-energy flat directions, it suffices to couple the current only

to these low-energy modes. By computing the amount of current required as

a function of the low-energy scalar mode, we may Legendre transform in the

usual way to determine the shape of the effective potential.

Linearized equations with currents

Since we work within a linearized approximation, we perturb the brane prop-

erties in a way that does not drive the low-energy scalar fields far from their

initial values. This can be achieved if the potential energy of each brane has

a minimum as a function of φ, and although the two branes need not agree on

where this minimum is they should not disagree by too much. It suffices there-

fore to study the brane tensions in the vicinity of these minima, restricting to

quadratic expansions in powers of φ. Writing Tb = T + δTb(φ), we take

δTb(φ) = Tb0 +
Tb2
2

(φ− v̂b)2 , (4.46)

with b = N and S and Tb(φ) = τb(φ) − QΦb(φ), as before. For technical

reasons — see Appendix B.4 — we require that the minimum of the sum of

the brane actions,
∑

b T
′
b = 0, agrees with the minimum of the sum of the

fluxes,
∑

b Φ′b = 0. When v̂N 6= v̂S the two branes differ on which value for φ

they prefer, and we assume that this difference is not so large as to invalidate

a linearized integration of the field equations.

In the higher-dimensional theory the current used to stabilize the solu-
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tions against rolling is7

SJ := −
∫

d6x
√
−g J(φ− ϕ?) , (4.47)

and, to the extent that it suffices to stabilize just the KK zero mode, J can

be taken to be independent of the extra-dimensional coordinates ρ and θ. In

the presence of such a current the field equation for φ becomes

∂M

(√
−g gMN∂Nφ

)
=
√
−g κ2

aJ . (4.48)

Perturbing around the rugby ball solution, our interest is in the lowest

nontrivial order in J , corresponding to situations where the brane tensions only

cause controllably small changes in φ. In this case the leading approximation to

the axion fluctuation is obtained by solving eq. (4.48) with the metric evaluated

at the rugby ball background,

[
sin
( ρ
L

)
δφ′
]′

=
εJ
L2

sin
( ρ
L

)
, (4.49)

where the last equality defines the dimensionless current, assumed small: εJ :=

κ2
aJL

2 � 1.

The Maxwell equation is unchanged by the current, and integrates to

give

Fρθ = A′θ = (Q+ δQ)e−4W+B . (4.50)

7The additional coupling J ϕ? is here inserted to ensure that J couples only to the light
scalar mode, δϕ = ϕ0 − ϕ?, at the linearized level, and not also to the metric fluctuations.
We keep this term even though, as discussed in Appendix B.3, for axions much lighter
than the KK scale, m � 1/L, a misalignment that included metric modes only introduces
subdominant contributions to the axion mass, of order δm2 ' m4L2.
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Recall that both W and B in this expression include perturbations.

Including the stress energy from the current interaction, the linearized

Einstein equations become

R̂
4

+ δW ′′ +
δW ′

L
cot
( ρ
L

)
− 1

2L2

(
δQ
Q

)
+

2δW

L2
+
λ2εJ(φ− ϕ?)

2L2
= 0

4δW ′′ + δB′′ +
2δB′

L
cot
( ρ
L

)
+ λ2(φ′)2 +

3

2L2

(
δQ
Q

)
−6δW

L2
+
λ2εJ(φ− ϕ?)

2L2
= 0

δB′′ +
2δB′

L
cot
( ρ
L

)
+ 4δW ′ cot

( ρ
L

)
+

3

2L2

(
δQ
Q

)
−6δW

L2
+
λ2εJ(φ− ϕ?)

2L2
= 0 ,

(4.51)

where, as before, λ = κ/κa = κF .

Linearized solutions

We now solve those equations to order εJ . Because (φ′)2 is order ε2J , to order

εJ the equation for the warping is unchanged from previous sections, giving

the solution

δW = W1 cos
( ρ
L

)
. (4.52)

The current forces the axion to acquire a profile (which is desirable

because this allows it to satisfy the new boundary conditions at the brane

positions). The perturbed axion equation integrates to give

δφ = ϕ0 + ϕ1 ln

∣∣∣∣1− cos(ρ/L)

sin(ρ/L)

∣∣∣∣− εJ ln
∣∣∣sin( ρ

L

)∣∣∣ , (4.53)
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with ϕ1 and ϕ0 integration constants. Since ϕ0 parameterizes the (previously)

flat direction we solve εJ and all other integration constants in terms of it and

brane properties.

Using these in the Einstein equations as before gives δB as the solution

to

[
δB′ sin2 (ρ/L)

]′
sin2 (ρ/L)

=
10W1

L2
cos
( ρ
L

)
− 3

2L2

(
δQ
Q

)
− λ2εJ(ϕ0 − ϕ?)

2L2
, (4.54)

giving

δB =

[
3

4

(
δQ
Q

)
+
λ2εJ

4
(ϕ0 − ϕ?)

]
ρ

L
cot
( ρ
L

)
−10W1

3
cos
( ρ
L

)
+δB0 . (4.55)

Using this in the linearized flux-quantization condition finally gives a

relation between δQ and δB0,

δQ
Q

= λ2εJ(ϕ0 − ϕ?)− 4δB0 −
κ2Q
πα

(δΦN + δΦS) . (4.56)

As before, the remaining integration constants — in this case ϕ1, W1 and

δB0 — are determined by solving the matching conditions at the brane posi-

tions. The fractional change in the proper distance between the source branes

becomes

δL

L
= −3

4

(
δQ
Q

)
− λ2εJ

4
(ϕ0 − ϕ?) . (4.57)

Matching to branes

The matching condition for the axion at each brane is

lim
ρ→ρb

αρφ′ =
κ2
aT
′
b(φ)

2π

∣∣∣∣
ρ→ρb

, (4.58)
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but an additional complication arises because the right-hand side is ill defined

due to the divergence in φ(ρ) at the brane positions. This requires a renormal-

ization of the parameters defining the brane potentials (4.16; 4.25). To this

end first regularize the matching condition by evaluating it at ρ = ρN +εN and

ρ = ρS − εS. Then define the renormalized parameters

vN := v̂N − (ϕ1 − εJ) ln
(εN
L

)
+ ϕ1 ln 2

vS := v̂S + (ϕ1 + εJ) ln
(εS
L

)
− ϕ1 ln 2 . (4.59)

Because the field profile satisfies

φ(εN) = ϕ0 + ϕ1 ln
( εN

2L

)
− εJ ln

(εN
L

)
, (4.60)

(and a similar result at ρ = πL− εS), these definitions ensure

φ(εb)− v̂b = ϕ0 − vb , (4.61)

and so remain finite in the limit εb → 0. This makes the derivative of the

tension (and the tension itself) finite when evaluated on the brane. Because

the fluxes are also written in terms of φ − v̂b, they do not need a separate

renormalization.

In terms of renormalized quantities the matching conditions directly

relate the integration constants,

α(ϕ1 − εJ) =
κ2
aδT

′
N(ϕ0)

2π
=

(
κ2
aTN2

2π

)
(ϕ0 − vN)

−α(ϕ1 + εJ) =
κ2
aδT

′
S(ϕ0)

2π
=

(
κ2
aTS2

2π

)
(ϕ0 − vS) , (4.62)
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allowing the inference

εJ = − κ2
a

4πα

[
δT ′N(ϕ0) + δT ′S(ϕ0)

]
= − κ2

a

4πα

[
(TN2 + TS2)ϕ0 − TN2 vN − TS2 vS

]
ϕ1 =

κ2
a

4πα

[
δT ′N(ϕ0)− δT ′S(ϕ0)

]
=

κ2
a

4πα

[
(TN2 − TS2)ϕ0 + TS2 vS − TN2 vN

]
.

(4.63)

The first of these identifies the field value where the flat direction gets sta-

bilized, ϕ0 = ϕ?, since this is the solution that corresponds to zero external

current. The condition εJ(ϕ?) = 0 implies ϕ? satisfies

δT ′N(ϕ?) + δT ′S(ϕ?) = 0 , (4.64)

and so when δTb(ϕ0) = Tb0 + 1
2
Tb2 (ϕ0 − vb)2

ϕ? =
TN2vN + TS2vS
TN2 + TS2

. (4.65)

We again fix δB0 and W1 from the last of the matching conditions,

eqs. (4.22), (
eB
)′
ρb

= 1− κ2

2π

[
T + δTb(ϕ0)

]
, (4.66)

which uses Ub(ϕ0) ' 0, as can be inferred either from the second of eqs. (4.22),

or by solving eq. (4.24) to linear order in κ2Tb. As before this leads to the
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conditions

α

[
−2δB0 −

10W1

3
− 3κ2QδΦtot

4πα
+ λ2εJ(ϕ0 − ϕ?)

]
= −

(
κ2

2π

)
δTN(ϕ0)

α

[
−2δB0 +

10W1

3
− 3κ2QδΦtot

4πα
+ λ2εJ(ϕ0 − ϕ?)

]
= −

(
κ2

2π

)
δTS(ϕ0) .

(4.67)

The result is

W1 =
3κ2

40πα

[
δTN(ϕ0)− δTS(ϕ0)

]
, (4.68)

and

δB0 =
λ2εJ

2
(ϕ0 − ϕ?) (4.69)

+
κ2

8πα

{
δTN(ϕ0) + δTS(ϕ0)− 3Q

[
δΦN(ϕ0) + δΦS(ϕ0)

]}
=

κ2

8πα

{∑
b=N,S

[
δTb(ϕ0)− (ϕ0 − ϕ?)δT ′b(ϕ0)

]
− 3QδΦtot(ϕ0)

}
,

where the final line eliminates εJ using eq. (4.63) and λ2κ2
a = κ2. This implies

δQ
Q

= −λ2εJ(ϕ0 − ϕ?)−
κ2

2πα

{
δTN(ϕ0) + δTS(ϕ0)−QδΦtot(ϕ0)

}
(4.70)

= − κ2

2πα

{∑
b=N,S

[
δTb(ϕ0)− 1

2
(ϕ0 − ϕ?) δT ′b(ϕ0)

]
−QδΦtot(ϕ0)

}
.

In terms of these the fractional change in the proper distance between

branes becomes

δL

L
= −3

4

(
δQ
Q

)
− λ2εJ

4
(ϕ0 − ϕ?)

=
λ2εJ

2
(ϕ0 − ϕ?) +

3κ2

8πα

{
δTN(ϕ0) + δTS(ϕ0)−QδΦtot(ϕ0)

}

151



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

=
3κ2

8πα

{∑
b=N,S

[
δTb(ϕ0)− 1

3
(ϕ0 − ϕ?) δT ′b(ϕ0)

]
−QδΦtot(ϕ0)

}
.(4.71)

On-brane geometry and 4D effective potential

The linearized Einstein equation yields the following on-brane curvature

R̂ = −4

[
δW ′′ +

δW ′

L
cot
( ρ
L

)]
− 8δW

L2
+

2

L2

(
δQ
Q

)
− 2λ2εJ

L2
(ϕ0 − ϕ?)

=
2

L2

[
δQ
Q
− λ2εJ(ϕ0 − ϕ?)

]
(4.72)

= − κ2

παL2

{∑
b=N,S

[
δTb(ϕ0)− (ϕ0 − ϕ?) δT ′b(ϕ0)

]
−QδΦtot(ϕ0)

}
.

The presence of the current J complicates the determination of the ef-

fective potential, Veff(ϕ), in the low-energy 4D theory. The appropriate match-

ing calculation turns on a current in the low-energy theory as well, and asks

what potential reproduces the previous results for R̂ and ϕ?.

The most general action for the 4D effective theory involving only the

4D metric, ĝµν , and the low-energy scalar, ϕ, is (up to two derivatives)

Seff = −
∫

d4x
√
−ĝ

[
1

2κ2
4

ĝµν
(
R̂µν + λ2 ∂µϕ∂νϕ

)
+ Veff(ϕ) + j(ϕ− ϕ?)

]
,

(4.73)

where j is the low-energy current, κ4 is given by eq. (4.42) and the 4D axion

decay constant is

f 2 = 4παL2F 4 =
4παL2

κ2
a

=
λ2

κ2
4

. (4.74)

We couple the current j to the difference ϕ − ϕ? purely as a matter of later

convenience.

The equations of motion, specialized to constant scalar fields, ϕ = ϕ0,

152



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

and to maximally symmetric geometries, are

j = −V ′eff(ϕ0) and
R̂

4κ2
4

= −j(ϕ0 − ϕ?)− Veff(ϕ0) , (4.75)

from which j can be eliminated to give

(ϕ0 − ϕ?)V ′eff(ϕ0)− Veff(ϕ0) =
R̂

4κ2
4

=
παL2R̂
κ2

. (4.76)

The functional form for the potential Veff is determined by requiring

eq. (4.76) to reproduce the curvature, eq. (4.72), predicted by the 6D theory,

regarded as a function of ϕ0. This can be obtained by regarding eq. (4.76) as

a differential equation for Veff , whose solution is

Veff(ϕ0) = (ϕ0 − ϕ?)
∫

dϕ

(ϕ− ϕ?)2

[
παL2R̂(ϕ)

κ2

]
(4.77)

= δTN(ϕ0) + δTS(ϕ0)

+(ϕ0 − ϕ?)
{∫ ϕ0

ϕ?

dϕ

[
QδΦtot(ϕ)

(ϕ− ϕ?)2

]
− lim

ϕ→ϕ?

[
QδΦtot(ϕ)

ϕ− ϕ?

]}
.

In general, the coefficient of the term linear in (ϕ0 − ϕ?) in Veff is the integra-

tion constant, which is fixed in the second equality of eq. (4.77) by requiring

V ′eff(ϕ?) = 0, for ϕ? as given in the 6D theory by eq. (4.64).

Two physical parameters of particular interest here are: (i) the effective

on-brane cosmological constant, %eff := Veff(ϕ?), and the low-energy scalar

mass, m2
ϕ := V ′′eff(ϕ?)/f

2. The first of these evaluates to

%eff := Veff(ϕ?) = δTN(ϕ?) + δTS(ϕ?)−Q
[
δΦN(ϕ?) + δΦS(ϕ?)

]
= δτN(ϕ?) + δτS(ϕ?)− 2Q

[
δΦN(ϕ?) + δΦS(ϕ?)

]
,(4.78)
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whose value agrees with our earlier Einstein-Maxwell calculation when δT ′b = 0.

Similarly8

m2
ϕ =

V ′′eff(ϕ?)

f 2
=

1

f 2

[
δT ′′N(ϕ?) + δT ′′S (ϕ?) + lim

ϕ→ϕ?

(
QδΦ′N(ϕ) +QδΦ′S(ϕ)

ϕ− ϕ?

)]
.

(4.79)

In the absence of brane fluxes the effective potential is simply the sum of the

brane potentials. But although the low-energy scalar always stabilizes at the

stationary points of
∑

b δTb, the scalar masses and 4D cosmological constant

in general differ from what would be expected based just on
∑

b δTb.

Comparison with dimensional reduction

As before, we can also evaluate Veff at the classical level by direct dimensional

reduction, which gives the integral

Veff = 2π

∫ πL

0

dρ eB+4W

{
1

2κ2

[
8W ′

L
cot
( ρ
L

)]
− 1

4
(Q+ δQ)2e−8W

+
1

2
(Λ + Jφ)

}
=

παL2

κ2

∫ πL

0

dρ

L
sin
( ρ
L

)[
−κ2Q2

(
δQ
Q

)
+ κ2Jφ

]
= −2πα

κ2

(
δQ
Q
− λ2εJϕ0

)
= −παL

2

κ2
R̂ , (4.80)

in agreement with the 6D calculation above.

8Notice that m2
ϕ diverges if Φtot vanishes linearly with ϕ − ϕ?. In this case the lowest

energy KK mode is not properly captured by our ansatz — see Appendix B.4 — and so the
low-energy potential misidentifies its size. It is for this reason that we require Φtot and Ttot

to agree on the value ϕ? at which they are minimized.
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4.4 Applications and special cases

This section seeks to illustrate the physical implications of the previous sec-

tion’s results by exploring several instructive examples.

4.4.1 Bulk response to stabilizing potentials

Consider first the response of the bulk geometry and the properties of the

low-energy 4D scalar-tensor theory, distinguishing the cases where the two

brane agree on, or compete for, the field value where the low-energy scalar is

stabilized.

Shared minima

As an example where the fluxes and tensions on both branes are minimized at

a common value of ϕ0, consider the special case that all the fluxes and tensions

have the following expansion τb = T + δτb(φ) and Φb = Φ + δΦb(φ) with

δτb(ϕ0) = δτb0 +
δτb2

2
(ϕ0−v)2 and δΦb(ϕ0) = δΦb0 +

δΦb2

2
(ϕ0−v)2 , (4.81)

and so

δTb(ϕ0) = δτb(ϕ0)−QδΦb(ϕ0) = δTb0 +
δTb2

2
(ϕ0 − v)2 , (4.82)

where δTbk = δτbk −Q δΦbk are constants.

The condition fixing ϕ? in this case is ϕ? = v, as one would expect.

Inserting this into the formulae for the relative warping of the two branes and
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the fractional change in inter-brane distance gives

δWN − δWS =
3κ2

20πα

[
δTN0 − δTS0

]
δL

L
=

3κ2

8πα

[(
δTN0 + δTS0

)
−Q

(
δΦN0 + δΦS0

)]
. (4.83)

Similarly, the on-brane expressions for %eff and m2
ϕ yield

%eff = δTN0 + δδTS0 −Q
(
δΦN0 + δΦS0

)
= δτN0 + δτS0 − 2Q

(
δΦN0 + δΦS0

)
, (4.84)

and

m2
ϕ =

1

f 2

[
δTN2 + δTS2 +Q

(
δΦN2 + δΦS2

)]
=

1

f 2

[
δτN2 + δτS2

]
. (4.85)

Notice that only the second derivative of the tension, δτ ′′b (ϕ?), contributes

to the scalar mass, while both the tension, δτb(ϕ?), and the flux, δΦb(ϕ?),

contribute to the on- and off-brane curvatures.

Brane competition

Consider next the case where the two branes each prefer ϕ0 to stabilize at dif-

ferent values, causing them to compete in the value they ultimately determine.

A representative example in this case is

δTb(ϕ0) = δTb0 +
δTb2

2
(ϕ0 − vb)2

δΦb(ϕ0) = δΦb0 +
δΦb2

2
(ϕ0 − vb)2 . (4.86)
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The stabilizing value for the scalar is now neither vN nor vS, but instead the

intermediate value

ϕ? =
δTN2vN + δTS2vS
δTN2 + δTS2

, (4.87)

with the ratio δTN2/δTS2 controlling precisely where ϕ? lies between vN and

vS. Requiring δΦtot = δΦN + δΦS also to have its minimum at the same value

of ϕ? then requires

δΦN2

δΦS2

=
δTN2

δTS2

. (4.88)

The extra-dimensional geometry satisfies

δWN−δWS =
3κ2

20πα

{
δTN0 − δTS0 +

δTN2δTS2

2

[
δTS2 − δTN2

(δTN2 + δTS2)2

]
(vN − vS)2

}
,

(4.89)

and δL/L = (3κ2%eff/8πα), with the 4D vacuum energy given by

%eff = δTN0 + δTS0 −Q
(
δΦN0 + δΦS0

)
+

1

2

(
δTN2δTS2

δTN2 + δTS2

)
(vN − vS)2

−Q
2

[
δΦN2δT

2
S2 + δΦS2δT

2
N2

(δTN2 + δTS2)2

]
(vN − vS)2

= δTN0 + δTS0 −Q
(
δΦN0 + δΦS0

)
+

1

2

[
δTN2(δTS2 −QδΦS2)

δTN2 + δTS2

]
(vN − vS)2 , (4.90)

where the last equality uses eq. (4.88). The result for m2
ϕ is again given by

eq. (4.85). Because ϕ? does not minimize the tension at either brane both the

total tension and total flux get increased by positive amounts. These positive

contributions then act oppositely in %eff .

More complicated competitions can also occur if there is also symmetry-

breaking in the bulk, in which case competition between the bulk and brane
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potentials can lead to self-localization (4.19).

Flux domination

A particular instance of the previous scenario corresponds to the case where

|δτb| � |QδΦb|, since in this case δTb(ϕ) ' −QδΦb(ϕ). Then the stabilizing

value for the scalar becomes

ϕ? =
δΦN2vN + δΦS2vS
δΦN2 + δΦS2

, (4.91)

and

δWN−δWS = −3κ2Q
20πα

{
δΦN0 − δΦS0 +

δΦN2δΦS2

2

[
δΦS2 − δΦN2

(δΦN2 + δΦS2)2

]
(vN − vS)2

}
,

(4.92)

while δL/L = (3κ2%eff/8πα), with

%eff = −2Q
(
δΦN0 + δΦS0

)
− Q

2

(
δΦN2δΦS2

δΦN2 + δΦS2

)
(vN − vS)2 . (4.93)

Because in this case m2
ϕ ' 0 to leading order, the scalar mass — and so also

the stability of the vacuum ϕ0 = ϕ? — is controlled by subdominant effects

(like δτb or loops), even though the flux dominates the classical contribution

to %eff .

4.4.2 Axions

It is instructive to consider the relative sizes of the various scales that arise

naturally when bulk axions receive masses through their couplings to branes,

since these need not be related in the same way as when both axion and
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symmetry-breaking physics share the same number of dimensions. This section

briefly examines several illustrative choices.

There are five scales that naturally arise in bulk-axion models. Three

of these — the extra-dimensional Planck scale, Mg = κ−1/2; the axion decay

constant, F = κ
−1/2
a ; and the KK scale, mKK = 1/L — characterize the bulk

physics. The source branes are responsible for the other two: the scale Λ set

by the φ-independent parts of the brane tensions and fluxes; and the scale µ

set by the φ-dependent terms,

τb0 ' Λ4 , Φb0 ' Λ , τb2 ' µ4 and Φb2 ' µ . (4.94)

These scales are not completely arbitrary. In general, control over the

semiclassical approximation requires Mg to be much bigger than all of the

others. Although the conditions κΛ2 � 1, κµ2 � 1 and κ/L2 � 1 follow

fairly directly from standard arguments (4.26), the condition F � Mg is a

bit more indirect. Because F sets the scale of the bulk symmetry breaking

for which φ is the would-be Goldstone boson, our upper bound on F assumes

the UV completion describing this breaking intercedes below the Planck scale

(before which the UV completion associated with gravity — such as string

theory — should also intercede).

Furthermore, we generically expect µ <∼ Λ for generic types of brane

physics. This follows because it is difficult to have physics contribute to the ϕ

mass without also contributing equivalently to the vacuum energy. Notice in

this regard that it is technically natural to take µ � Λ, because it is only µ

that breaks the shift symmetry of the low-energy scalar: ϕ→ ϕ+ (constant).
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Axion mass

In terms of these scales the mass of the light scalar in the effective 4D theory

is of order

mϕ '
µ2

f
'
( µ
F

)2 1

L
'
( µ
F

)2

mKK , (4.95)

in all three of the scenarios considered above.9 This result doesn’t depend on

which scenario is considered because for all three the scalar mass depends only

on
√
δτN2 + δτS2/f . Provided µ� F , ϕ is much lighter than the KK scale as

is appropriate for its description in the low-energy 4D effective theory.

For the higher-dimensional models of interest here, however, the regime

µ� F can also make sense. Extra dimensions allow this regime even though

the scale µ of explicit symmetry breaking is then much larger than the scale of

the spontaneous breaking: F . Because all symmetry breaking is localized on

the branes, even though µ > F the field φ behaves like a Goldstone boson for

all energies lower than F in the bulk provided one stays away from the position

of the branes. Although this regime is not amenable to a 4D description, the

mass of all KK modes can be computed within the higher-dimensional theory.

In this limit the ‘zero mode’ becomes lost among the generic massive KK

states and is not singled out as being particularly light. In this regime it is

clear that otherwise standard arguments, like cosmological bounds on axion

properties, cannot be made purely within four dimensions without taking the

full dynamics of the extra dimensions into account.

9In some circumstances additional suppression can be achieved, such as if the Goldstone
symmetry is not completely broken by either brane separately (4.27).
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Curvatures

A second robust prediction of all of the above scenarios is the relation between

the change to the extra-dimensional size and the four-dimensional curvature:

δL

L
=

3κ2%eff

8πα
, (4.96)

although the size of %eff itself is not as model independent. This source of this

model dependence is the competition between tension and flux contributions

to %eff , whose competing contributions are of order δ%eff '
∑

b τb0 or δ%eff '∑
bQΦb0, with

τb0 ' Λ4 and QΦb0 ' QΛ ' Λ

κL
'
M2

gΛ

L
'
√

4πα

(
M4

gΛ

Mp

)
. (4.97)

Special things happen for the BPS-like situation when the tension and charge

are precisely related, τb(ϕ?) = 2QΦb(ϕ?), since in this case the two contribu-

tions to %eff precisely cancel.

Whether the tension or the flux dominates in %eff depends on where Λ

sits relative to the two geometrical scales Mp ' 1018 GeV and 1/L. Defining

Λ3
? :=
√

4παM4
g /Mp we have %eff ' Λ4 if Λ > Λ? and %eff ' ΛΛ3

? when Λ < Λ?.

Some representative numerical values are given in Table 1. Intriguingly, Λ? is

of order the QCD scale in the extreme case of large extra dimensions (Mg
<∼ 10

TeV and mKK
<∼ 0.4 eV (4.2)).

4.4.3 Gravitationally coupled scalars

The special case F 'Mg is of particular interest because then f 'Mp and the

low-energy 4D scalar is gravitationally coupled. In this case the light scalar
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Mg Λ? mKK

1015 4× 1014 4× 1012

1011 2× 109 4× 103

107 8× 103 4× 10−4

104 0.8 4× 10−10

Table 4.1: Values of mKK and Λ? as a function of Mg (in GeV).

mass is robustly of order mϕ ' µ2/Mp, and its small size is technically natural

since it is protected by the underlying shift symmetry. There are two situations

for which the existence of such light weakly-coupled scalars are of particular

interest.

An inflationary mechanism

Inflationary models famously require light, weakly coupled scalars; something

that is usually fairly difficult to achieve without fine-tuning in a real micro-

scopic theory. The above estimates point to a fairly generic mechanism for

achieving slow-roll inflation whenever a bulk axion acquires a potential through

its interaction with codimension-two branes. This mechanism can be regarded

as an ultraviolet completion of 4D ‘natural inflation’ models (4.28), that as-

sume the inflaton to be a pseudo-Goldstone particle.

The mechanism rests on two assumptions: (i) the brane energy density,

%eff , must dominate any other contributions to the geometry in the on-brane

directions; and (ii) the brane-axion couplings must have a local maximum

rather than a minimum at ϕ = ϕ?, for which m2
ϕ is of order µ2/Mp (as above)

but negative. In this case because the previous estimates apply near the po-
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tential’s maximum, with an effective 4D scalar potential being of order

Veff(ϕ) ' A+BU (ϕ− ϕ?) , (4.98)

with B ' O(µ4) and A = %eff ' O(Λ4) or %eff ' O(ΛM4
g /Mp) (whichever is

larger). The technically natural choice µ � Λ, (M4
g /Mp)

1/3 therefore ensures

B � A. Here U(x) is a calculable, dimensionless, order-unity function, whose

expansion for small arguments is (by assumption) U(x) ' −1
2
U2 x

2 + · · · with

U2 > 0 and order unity.

Should this potential dominate the 4D geometry it produces a Hubble

scale near this maximum that is of order H ' √%
eff
/Mp and so H is of order

the larger of Λ2/Mp or (M2
g /Mp)(Λ/Mp)

1/2. Because of this, our choice µ� Λ

automatically ensures |m2
ϕ| � H. Provided that H is also small compared

with the KK scale — as is easy to arrange — the resulting cosmology can

be understood within the 4D effective theory, and describes an inflationary

slow roll provided ϕ starts in an initially spatially homogeneous configuration

near the potential’s maximum. This slow roll is inflationary (despite having

f ' Mp) because B � A, since the slow-roll parameters are of order ε '

(BU ′/A)2 and η ' BU ′′/A. η is sufficiently small to inflate for ∼ 60 e-foldings

if B/A ' 0.01, in which case ε ' η2 is even smaller (and so the inflation

typically does not produce an observable signal of primordial gravity-waves).

If A ' Λ4 then B/A ' (µ/Λ)4 and a sufficiently small ratio can be ensured

for the comparably modest hierarchy µ/Λ ' 0.3.

As an existence proof that all parameters can be chosen as required

above consider the intriguing, but extreme, scenario where the QCD axion

is a bulk scalar within large extra dimensions (the last line of Table 1). In
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this case taking µ ' Λ/3 ' ΛQCD ' 0.2 GeV both provides the right scale of

axion-matter couplings, and ensures Λ ' Λ? and so %eff ' Λ4 and H � mKK.

One might imagine that whatever solves the cosmological constant problem

arranges the true ground state of the present epoch to be the unperturbed

rugby-ball solution having R̂ ' 0 and T of order the weak scale, with the

perturbation δτb ' Λ4
QCD arising in the early universe due to the vacuum

energy associated with the QCD phase transition on the brane. Even if it

were not to involve enough e-foldings to account for primordial fluctuations,

such a very late inflationary period could be useful for removing unwanted

relics — like moduli or KK modes — from the much earlier universe.

New long-range forces

Another potential application (or constraint) on the light bulk Goldstone mode

described here comes from the long-range forces that it would mediate if its

mass is sufficiently light. Indeed, one motivation to study the brane-bulk

dynamics explored above is to find sensible UV completions which can have a

technically light scalar whose presence could be sought when testing general

relativity. Such tests provide strong constraints on the existence of any new

forces competing with gravity in the solar system, with a precision that varies

with the mass of the new scalar particle and the nature of its couplings to

matter (4.29).

This section explores what brane-bulk dynamics might say about the

couplings of the low-energy scalar to matter localized on the branes. We find

these couplings can (but need not, depending on the brane properties) realize

some earlier-proposed mechanisms (4.18) for dynamically vanishing when the

scalar is in its ground state.
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To see how ϕ couples to matter localized on the branes, we generalize

the previous discussion to include brane-localized matter fields, generically

denoted by ψ. All brane quantities like tension and flux are regarded as being

functions of both brane and bulk fields,

τb = τb(ψ, φ) , Φb = Φb(ψ, φ) and so on. (4.99)

The main point is that none of this affects the matching conditions and so-

lutions described above, and so in a static (or adiabatic) configuration the

ground-state value ϕ = ϕ?(ψ) still adjusts to satisfy

∑
b

[
∂Tb(ψ, φ)

∂φ

]
ϕ=ϕ?

= 0 . (4.100)

The new ingredient that appears in searches for new forces is the use of

spatially inhomogeneous matter configurations as sources (e.g. planets, stars,

etc.) of spatial variation, δϕ = δϕ(x), for the fluctuation δϕ = ϕ − ϕ? along

the on-brane directions. Regarded graphically, these constrain the amplitude

for emitting a single ϕ particle from the source, with repeated emissions accu-

mulating to give a coherent classical field. But the amplitude for ϕ-emission

from matter localized on a specific brane, b = b0, is controlled by the expansion

of the brane action in powers of the fluctuation,

Tb0(ψ, ϕ) = Tb0(ψ, ϕ?) +

[
∂Tb0(ψ, ϕ)

∂φ

]
ϕ=ϕ?

δϕ+O(δϕ2) . (4.101)

Of these interactions, it is only the term linear in δϕ that acts as an obstruction

to solving the field equations with δϕ = 0, and so it is this linear term that

is subject to the strongest constraint from new-force searches. Unless Tb0 has
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special properties such a term could generate violations of the equivalence

principle, which are strongly excluded once the range of the force becomes

macroscopically large.

Comparing eqs. (4.100) and (4.101) reveals the mechanism for suppress-

ing ϕ-matter couplings. If the action, Tb0 , for the specific brane on which we

live should share the same extremum as does the sum of all branes,
∑

b Tb,

then as ϕ? adjusts to satisfy the condition (4.100), it would also automatically

turn off the dangerous coupling of δϕ to matter localized at brane b0. As the

examples above show, the extremum of the sum of all brane actions need not

agree with the extrema of each brane’s action separately. But it automatically

does so in two simple cases: (i) when none of the branes besides b0 couple to

φ at all; and (ii) when all of the branes couple to φ, but are all extremal for

the same place.

Notice that the argument is not changed by the presence of φ-dependent

brane fluxes, Φb. This is because they do not enter into eq. (4.100) indepen-

dently from their contribution to Tb (even though they do contribute indepen-

dently to the value of %eff).
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Chapter 5
Large Dimensions and Small

Curvatures from Supersymmetric

Brane Back-reaction

5.1 Preamble

This chapter is based on the work in (5.1). We follow the same steps as in

chapter (4), but for a more complicated bulk theory: gauged chiral super-

gravity. The would-be zero mode in this case is a mixture between the scalar

(dilaton) field and the extra dimensional metric. As a result, the stabilization

of the zero mode by brane physics automatically also stabilizes the radius of

the extra dimensions. This mechanism allows us to address the cosmologi-

cal constant problem as a problem of stabilizing the extra dimensions at a

sufficiently large size.

The other consequence of this is that dimensional reduction leads to a

scalar-tensor theory in the Jordan frame. As a result of the Weyl rescaling
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to go to the Einstein frame, the effective classical cosmological constant is

very generally set by the derivative of the brane tensions with respect to the

dilaton. It is this fact that is exploited in chapter (6).

The localization of bulk fluxes on the brane is very important for the

energetics of the bulk in this system. In the absence of the magnetic coupling,

there is only one choice of constant tensions that leads to a rugby ball solution.

When the tension is perturbed, the energy cost is large because the bulk flux

has no way to relax: the strength of the magnetic field is set directly by

parameters in the Lagrangian. The presence of the magnetic coupling allows

the magnetic field to adjust to find a minimum of the effective potential.
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C.P. Burgess and L. van Nierop

5.2 Introduction

Most of what is known about the physics of branes situated within extra

dimensions either neglects their back-reaction onto their environment, or ap-

proximates the surrounding geometry as noncompact by ignoring the physics

responsible for its stabilization at finite volume.1 Although these are often

good approximations, there are also very interesting situations where they are

not.

A particularly interesting case where these effects cannot be neglected is

when it is the back-reaction itself that stabilizes some of the extra-dimensional

moduli. This case turns out to be important for compactifications whose extra-

dimensional volume is very large, such as those arising within large-volume

string vacua (5.4). In particular, the larger the extra dimensions the lower

the string scale (5.5), and once the string scale gets as low as the TeV scale

— such as in supersymmetric extensions (5.6) of ADD-type models (5.7) —

supersymmetry becomes dominantly broken on the branes rather than by the

fluxes in the bulk (5.8; 5.9). In this case it is known that brane-induced

corrections can dominate the leading classical predictions for the potential

governing the lightest moduli (5.10).

The need to include back-reaction when computing the shape of the

low-energy scalar potential is both a potential asset and a liability. The down-

side is the additional complexity required to properly incorporate both the

1Randall-Sundrum models (5.2) are important exception to this statement, where back-
reaction is incorporated through the Israel junction conditions (5.3), but these are restricted
to the limiting special case of codimension-one branes.
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extra-dimensional and brane dynamics within a controlled approximation. The

upside is the potential for progress finding new mechanisms for understanding

long-standing problems. Progress in particular on naturalness problems to do

with the existence of light scalar masses and small vacuum energies, that hinge

on understanding all contributions relevant to the low-energy scalar potential.

And there are a variety of reasons for thinking that brane dynamics could be

useful for understanding these problems (5.11; 5.6).

Six dimensional supergravities provide a fruitful place to explore these

issues because they are complicated enough to exhibit many of the features

of ten- or eleven-dimensional string vacua, yet they are simple enough often

to allow explicit solutions and so more systematic exploration of the various

configurations of physical interest. 6D gauged chiral supergravity (5.12) has

proven particularly useful, providing early insights into chiral fermions and

flux compactifications (5.13; 5.14). This has motivated finding a great many

exact solutions to the classical field equations for this system, including a

broad class of flux compactifications for which the two extra dimensions are

a warped, squashed sphere with singularities at the positions of two positive-

tension source 3-branes. These include solutions for which the on-brane geome-

try is flat (5.6; 5.15; 5.16) (also known as ‘rugby-ball’ solutions), de Sitter/anti

de Sitter like (5.17), time dependent (5.18) or involves other bulk fields (5.19)

or additional branes (5.20).

In this paper we explore brane back-reaction in this system by com-

puting how the flat rugby-ball solutions respond to a general perturbation of

the brane-bulk couplings. In particular, we assume the perturbed brane-bulk

couplings to be given by the leading terms in a derivative expansion of the
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brane action,

Sb =

∫
Σb

(
τb ω + Φb

?F
)
, (5.1)

where ω is the volume form for the space-filling 3-brane, and ?F denotes the 6D

Hodge dual of the background Maxwell flux, FMN (whose presence stabilizes

some of what would otherwise be light bulk moduli, in the same way that

3-form fluxes stabilize some moduli in ten-dimensional flux compactifications

(5.21)). The coefficient τb denotes the tension of the brane in question, which

can be an arbitrary function of the bulk scalar dilaton, φ, appearing in 6D

gauged chiral supergravity. Φb has a similar interpretation (5.6; 5.22) as an

on-brane flux, and can sometimes compete with τb to play an important role

in the low-energy energetics of the back-reaction.

The bulk geometry that interpolates between a generic pair of source

branes is known to be time dependent (5.18), in much the same way that a

random collection of mutually interacting electric charges is also not static.

This is reflected by the generic absence of time-independent solutions once

a brane-bulk system is perturbed. Unlike earlier stability analyses for these

geometries (5.23), we do not deal with this by seeking the time-dependence

of the solutions to the brane-perturbed bulk equations of motion. Rather, we

instead couple an external current that stabilizes this time-dependence in order

to study the energetics of the potential energy that drives it. In practice, at

low energies this current need only couple to the massless Kaluza-Klein (KK)

‘breathing’ mode of the leading-order extra-dimensional geometry, since this

is a flat direction in field space along which the time dependence dominantly

lies.

In this way we find the response of the on- and off-brane geometries as
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a function of the perturbing brane couplings, as well as the shape of the scalar

potential that stabilizes and gives a mass to the low-energy breathing mode, for

general choices for the brane coupling functions τb and Φb. We find instances

where the breathing mode is stabilized by the interaction of the branes on the

bulk, as well as cases where it instead runs away to infinity (which, perhaps

surprisingly, includes the simplest case where both τb and Φb are independent

of the 6D bulk dilaton, φ).

When restricted to the special cases for which our results duplicate

earlier calculations, we fully reproduce earlier expressions. But our system-

atic survey of perturbed solutions also reveals some new ones with surprising

properties. These include (see §4 for a more detailed summary):

• Solutions whose extra-dimensional volumes stabilize at values that ex-

ponentiate any moderately large hierarchies among the brane-bulk cou-

plings, naturally giving enormously large volumes;

• Solutions whose on-brane geometry can be parametrically small com-

pared with the largest energy scales that appear in the brane-bulk cou-

plings (though, alas, not yet small enough to describe the observed Dark

Energy density);

• Solutions for which the value of the breathing mode along the low-energy

flat direction defines the strength of both brane and bulk loop correc-

tions, and for which this ensures that the above two properties can be

stable against quantum effects;

• Models for which the brane-bulk couplings can have the form required

to profit from a ‘chameleon’ mechanism (5.24).
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Our presentation is organized as follows: The next section, §5.3, de-

scribes the linearized solutions to the bulk field equations, and how the inte-

gration constants in these solutions are determined by matching to the func-

tions τb and Φb that define the codimension-2 bulk-brane interactions. These

are then used to provide explicit expressions for the extra-dimensional and on-

brane geometries as functions of these brane properties. The results of the full

6D calculation are compared with the effective 4D picture that captures the

low-energy limit, since the scalar potential in this effective theory provides an

efficient way to understand the implications of brane dynamics on low-energy

properties. This section closely follows the logic of ref. (5.22), which performs

a similar calculation in the non-supersymmetric case.

§5.4 then uses the general results of §5.3 to explore the implications

of several simple illustrative choices for the coupling functions τb and Φb. A

particularly simple toy model — for which
∑

b τb ∝
∑

b Φb ∝ φη, for small

η — is also examined, that exhibits modulus stabilization at exponentially

large volume and parametric suppression of the low-energy on-brane curvature

(or vacuum energy). Finally, this section estimates the effects of brane and

bulk loops for the toy model, and argues that the exponentially large volume,

and the small on-brane vacuum energy (and scalar masses) can be technically

natural.

Our conclusions are summarized in §5.5.

5.3 The bulk-brane system

This section defines the system of interest. The fields of interest are part of

the bosonic sector of chiral gauged supergravity in six dimensions (5.12), for
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which we follow the implications of coupling to nonsupersymmetric branes.

In particular we follow the metric, gMN ; a bulk Maxwell gauge potential, AM ,

whose presence helps stabilize the bulk geometry; and the 6D scalar dilaton,

φ.

5.3.1 Field equations and background solutions

We first describe the bulk equations of motion and brane boundary conditions,

followed by a simple class of rugby-ball solutions near which general solutions

are sought.

Bulk equations

The bosonic action in the bulk is2

Sbulk = −
∫

d6x
√
−g

{
1

2κ2
gMN

(
RMN + ∂Mφ ∂Nφ

)
+

1

4
e−φFMNFMN +

2 g2
R

κ4
eφ
}
, (5.2)

where the two dimensionful constants are the gauge coupling, gR, for a spe-

cific UR(1) symmetry of the supersymmetry algebra, and the 6D gravitational

constant, κ. One of these sets the overall scale of the bulk physics, leaving the

dimensionless combination g2
R/κ as a free parameter. Here F = dA denotes

the gauge potential’s field strength.

The equations of motion from this action are the (trace reversed) Ein-

2We use a ‘mostly plus’ metric and Weinberg’s curvature conventions (5.25) (that differ
from those of MTW (5.26) only by an overall sign in the definition of the Riemann tensor).
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stein equations

RMN +∂Mφ ∂Nφ+κ2e−φFMPFNP−
(
κ2

8
e−φFPQFPQ − g2

R

κ2
eφ
)
gMN = 0 , (5.3)

the Maxwell equation

∇M(e−φFMN) = 0 , (5.4)

and the dilation equation

tuφ− 2 g2
R

κ2
eφ +

κ2

4
e−φFMNFMN = 0 . (5.5)

Since these field equations are invariant under the transformations

gMN → ζ gMN and e−φ → ζ e−φ , (5.6)

withA → A, any nonsingular solution is always part of a one-parameter family

of solutions that are exactly degenerate (within the classical approximation).

Symmetry ansatz

In what follows we restrict attention to solutions that have maximal symmetry

in the four on-brane directions, and axial symmetry in the two extra dimen-

sions. This assumption restricts us to solutions involving at most two source

branes. The corresponding ansätze for the metric and Maxwell field are

ds2 = dρ2 + e2Bdθ2 + e2W ĝµνdx
µdxν and A = Aθ dθ , (5.7)

where ĝµν(x) is a maximally symmetric metric, and all of the functions W , B,

φ and Aθ depending only on ρ. The corresponding Maxwell field strength is
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Fρθ = A′θ, where primes denote differentiation with respect to the coordinate

ρ.

Subject to this ansatz the bulk field equations reduce to

(
e−B+4W e−φA′θ

)′
= 0 (Aθ)(

eB+4Wφ′
)′ − (2g2

R

κ2
eφ − 1

2
κ2Q2 eφe−8W

)
eB+4W = 0 (φ)

4
[
W ′′ + (W ′)2

]
+B′′ + (B′)2 + (φ′)2 +

3

4
κ2Q2 eφe−8W +

g2
R

κ2
eφ = 0 (ρρ)

B′′ + (B′)2 + 4W ′B′ +
3

4
κ2Q2 eφe−8W +

g2
R

κ2
eφ = 0 (θθ)

1

4
e−2W R̂ +W ′′ + 4(W ′)2 +W ′B′ − 1

4
κ2Q2 eφe−8W +

g2
R

κ2
eφ = 0 (µν) .

(5.8)

The first of these can be integrated once exactly, introducing an integration

constant, Q, labeling the bulk flux,

Fρθ = A′θ = Q eφeB−4W . (5.9)

Rugby ball solutions

In the special case that the dilaton is constant, φ = ϕ0, these equations have

a simple solution with extra dimensions having the shape of a rugby ball,

sourced by two branes (5.6):

ds2 = e−ϕ0

[
dρ̂2 + α2L2 sin2

(
ρ̂

L

)
dθ2

]
+ ηµνdx

µdxν

Fρθ = Fρ̂θ e−ϕ0/2 = Qeϕ0/2αL sin

(
ρ̂

L

)
, (5.10)
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where ĝµν = ηµν denotes the usual flat metric of Minkowski space. The extra-

dimensional metric becomes singular at the brane positions, ρ̂N = 0 and ρ̂S =

πL, which are ϕ0-independent because of the coordinate rescaling ρ := e−ϕ0/2ρ̂.

The geometry generically has a conical singularity at these points, char-

acterized by the defect angle δ = 2π(1 − α). In the special case α = 1 the

extra-dimensional geometry is a sphere, corresponding to the supersymmetric

Salam-Sezgin solution (5.13). The deficit angle can be related to the common

tension, T , of the two source branes by (5.27)

1− α =
κ2T

2π
. (5.11)

The equations of motion impose two relations amongst the integration

constants, requiring

2g2
R

κ2
=

κ2Q2

2
(dilaton equation)

and κ2Q2L2 = 1 (Einstein equation) . (5.12)

Additionally, flux quantization due to the spherical topology of the extra di-

mensions implies

n

g
= 2αL2Q =

α

gR
, (5.13)

where g is the gauge coupling of the background Maxwell field and n is an

integer. The couplings g and gR are in general different because the background

Maxwell field need not be the one that gauges the UR(1) symmetry. This last

condition determines the deficit angle, α, and thereby constrains the tension of

the source branes. As is elaborated in more detail below, a minor modification

(5.6) of these solutions allows the source branes themselves to carry some of
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the total flux, Φbranes, in which case eq. (5.13) generalizes to

n

g
=

α

gR
+

Φbranes

2π
=

1

gR

(
1− κ2T

2π

)
+

Φbranes

2π

=
1

gR

[
1− κ2

2π

(
T − QΦbranes

2

)]
, (5.14)

where the last equality uses eqs. (5.12), which imply Q = 2gR/κ
2. This can be

regarded as allowing the tension in these solutions to be arbitrary, provided

the on-brane flux is also dialed, Φbranes(T ), to satisfy eq. (5.14).

For fixed brane flux the above construction describes only a one-parameter

family of solutions, labeled by ϕ0. This one-parameter degeneracy is the one

required by the scale invariance, eq. (5.6), of the classical field equations. Be-

cause of the overall factor of e−ϕ0 in the extra-dimensional metric, eq. (5.10),

the proper distance between the two branes is ∆ρ = e−ϕ0/2πL and the volume

of the extra dimensions is

V2 = 4παL2e−ϕ0 . (5.15)

Our interest in what follows is in how this flat direction gets lifted by

dilaton couplings to the branes. Its connection to the extra-dimensional vol-

ume makes this also a stabilization mechanism for the size of the extra dimen-

sions; a codimension-2 generalization of the better-known Goldberger-Wise

stabilization mechanism for codimension-1 branes (5.28) within RS models.

Brane matching conditions

We take the brane-bulk coupling to be defined by the following lowest-derivative

action, including both a φ-dependent tension and a φ-dependent coupling to

188



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

the Maxwell field (5.6):

Sbranes = −
∑
b=N,S

∫
d4x
√
−g4

[
τb −

1

2
Φb e

−φεmnFmn
]

= −
∑
b=N,S

∫
d4x
√
−ĝ e4W

[
τb −

1

2
Φb e

−φεmnFmn
]
, (5.16)

where the coupling functions τb and Φb can depend on all of φ, W and gθθ

without breaking the condition of maximal symmetry in the on-brane direc-

tions. Because of the explicit factor of e−φ extracted from the Maxwell cou-

pling, these interactions also do not break the bulk scaling symmetry, eq. (5.6),

only when both τb and Φb are φ-independent. Our conventions are such that

ερθ = 1/
√
g2 = e−B transforms as a tensor, rather than a tensor density, in the

two transverse dimensions. The parameter τb has the physical interpretation

of being the tension of the brane, and (as is shown below) the parameter Φb

similarly denotes the magnetic charge (or flux) carried by the source branes.

The presence of such brane couplings imposes a set of boundary condi-

tions on the derivatives of the bulk fields in the near-brane limits,3 given by4

(5.32):

[
eBφ′

]
ρb

=
∂Tb
∂φ

with Tb :=
κ2Tb
2π[

eBW ′
]
ρb

= Ub with Ub :=
κ2

4π

(
∂Tb
∂gθθ

)
(5.17)

and
[
eBB′ − 1

]
ρb

= −
[
Tb + 3Ub

]
,

where, as before, primes denote differentiation with respect to ρ. Tb is defined

3These matching conditions can be derived (5.30) from codimension-1 microscopic models
(5.31) for codimension-2 branes.

4Notice that we normalize the quantities Tb and Ub without including the factor of e4W

used in this reference.
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in terms of τb and Φb as the total lagrangian density of the source,

Tb := τb − Φb e
−φe−BFρθ . (5.18)

As shown in Appendix C.1, the corresponding boundary condition for

the Maxwell field implies that the integral of Fρθ to obtain Aθ(ρ) in a coordi-

nate patch containing each source brane gives

Aθ(ρ) =
ΦN

2π
+Q

∫ ρ

ρN

dρ eφ+B−4W Northern hemisphere

= −ΦS

2π
+Q

∫ ρ

ρS

dρ eφ+B−4W Southern hemisphere , (5.19)

where Φb := limρ→ρb Φb[φ(ρ)] — appropriately renormalized (5.29) — and

the signs are dictated by the observation that increasing ρ points away from

(towards) the North (South) pole, together with the requirement that the

two patches share the same orientation. Requiring these to differ by a gauge

transformation, g−1∂θΩ, on regions of overlap implies the flux-quantization

condition

n

g
=

Φtot

2π
+Q

∫ ρS

ρN

dρ eφ+B−4W , (5.20)

which identifies Φtot =
∑

b Φb as the part of the total magnetic flux carried by

the branes (5.6).

5.3.2 Perturbations

In this section we use the previous discussion to analyze how couplings to the

brane lift the flat direction associated with the scaling symmetry of the bulk

theory, and so to see how the scalar zero mode, ϕ0, becomes stabilized at a
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specific value, ϕ0 = ϕ?. Our discussion closely follows the discussion of the

nonsupersymmetric system in ref. (5.22).

It is instructive to contrast how this stabilization differs from the non-

supersymmetric system. To this end recall how the stabilization occurs in

detail, from the point of view of six dimensions. Given two branes, we seek

the bulk configuration satisfying the field equations that interpolates between

the boundary conditions that each brane specifies. Specializing to solutions

that are both axially symmetric in the transverse directions and maximally

symmetric in the on-brane dimensions requires seeking bulk profiles that de-

pend only on ρ.

What is important is that the brane boundary conditions only specify

the derivatives of the fields near the branes, and not the values of the fields

themselves there. Once the derivatives of the fields are specified at one brane,

the values of the fields at the same brane can be adjusted to try to ensure that

the derivatives take the values required by the other brane at the other brane’s

position. It is in this way that the stabilized value, ϕ0 = ϕ?, is obtained if the

brane actions break the classical bulk scaling symmetry.

This argument shows that a classical solution satisfying all of the bound-

ary conditions is in general impossible given an arbitrary choice for ϕ0. From

the low-energy 4D perspective the absence of a solution when ϕ0 6= ϕ? cor-

responds to the absence of a static solution for a value of ϕ0 that is not an

extremal of the low-energy effective potential, V ′eff(ϕ0) 6= 0. It can still be

possible to map out the shape of the scalar potential for generic ϕ0, however,

provided we turn on an external current, J , coupled to ϕ0 that is designed

to ensure that ϕ0 is a stationary point of the potential, including the current.

The shape of the effective potential can be computed by seeing precisely how
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much current is required as a function of ϕ0. In what follows we define the

current coupling by adding the following term to the action5

SJ = −
∫

d6x
√
−g J , (5.21)

where J is a constant (since our goal is only to couple a current to the would-be

zero mode, ϕ0).

In this kind of construction the stabilized value, ϕ?, corresponds to the

choice for which no external current is necessary, J(ϕ?) = 0. An important

difference between the supersymmetric system of interest here and the non-

supersymmetric one studied in ref. (5.22) is that in the supersymmetric case

it can (but need not) happen that there is no value of ϕ0 for which J(ϕ0) = 0.

As we shall see, from the 4D point of view this corresponds to an effective po-

tential that is a pure runaway, for which V ′eff(ϕ0) only vanishes as ϕ0 → ±∞.

Linearized equations

Our goal is to solve the above field equations by linearizing them about a rugby-

ball solution. This amounts to assuming that the φ-dependent contribution to

τb is small relative to the tension that is responsible for the rugby-ball geometry

itself:

τb = τ + δτb(φ) and Φb = Φ + δΦb(φ) , (5.22)

with the background deficit angle sourced by T = τ − QΦ. The linearized

equations of motion including the current term — derived in Appendix (C.3)

— are given below. All background (rugby-ball) quantities are denoted by a

5As is shown in Appendix C.2, most of the low-energy physics of interest is insensitive
to the detailed form of the current to which we couple, so long as it has a good overlap with
the would-be zero mode.
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subscript 0, and perturbations are universally denoted by δ: so Q = Q0 + δQ

etc. Since we ignore all second-order quantities we may write δQ/Q ' δQ/Q0

and so can use either of these quantities interchangeably. Also, since W0 = 0

for the rugby balls, W = δW .

To linear order the Maxwell field strength becomes

Fρθ = QαLeϕ0/2 sin

(
ρ̂

L

)(
1 +

δQ
Q0

+ δB − 4δW

)
, (5.23)

the on-brane curvature is

R̂ = −4eϕ0

[
2δW

L2
+

1

L
cot

(
ρ̂

L

)
∂ρ̂ δW + ∂2

ρ̂ δW

]
+

2eϕ0

L2

(
δQ
Q

)
− 2κ2J ,

(5.24)

and the remaining linearized field equations become

∂ρ̂

[
sin

(
ρ̂

L

)
∂ρ̂(δφ)

]
=

1

L2

(
4δW − δQ

Q

)
sin

(
ρ̂

L

)

∂ρ̂
[
sin2

(
ρ̂
L

)
∂ρ̂(δB)

]
sin2

(
ρ̂
L

) = − 1

L2

[
δφ+

3

2

(
δQ
Q

)
− 6 δW + κ2JL2e−ϕ0

]
− 4

L
cot

(
ρ̂

L

)
∂ρ̂ δW

and ∂2
ρ̂δW =

1

L
cot

(
ρ̂

L

)
∂ρ̂ δW . (5.25)

Finally, the linearized flux quantization condition can be expressed as

δQ
Q

=
1

2L

∫ πL

0

dρ̂ sin

(
ρ̂

L

)
(4δW − δB − δφ)− κ2Q

4πα

(
δΦN + δΦS

)
. (5.26)
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5.3.3 Linearized solutions

The strategy is to construct the general solution to these linearized equations,

and then to use the brane matching conditions to eliminate the resulting in-

tegration constants in terms of brane properties. To simplify expressions it

is convenient to define the dimensionless coordinate x := ρ̂/L = (ρ/L)e−ϕ0/2,

keeping in mind that its implicit dependence on ϕ0 brings this dependence to

any bulk fields that depend on x. We have some freedom in how to group the

perturbations; which we employ (without loss of generality) to simplify the

linearized flux-quantization condition as much as possible.

First, we solve the equation for the warp factor, W , which has the

general solution

δW (x) = W0 +W1 cosx , (5.27)

where W0 and W1 are integration constants, of which W0 = 0 may be ensured

by rescaling the on-brane coordinates, xµ.

With this solution, the equation to be solved for the dilaton becomes

∂x

[
sinx ∂x(δφ)

]
=

(
4W1 cosx− δQ

Q

)
sinx , (5.28)

which integrates to give

δφ (x) = δϕ0 + ϕ1 ln

∣∣∣∣1− cosx

sinx

∣∣∣∣− 2W1 cosx+

(
δQ
Q

)
ln | sinx| . (5.29)

Here δϕ0 and ϕ1 are integration constants, of which δϕ0 = 0 can be ensured

without loss of generality by absorbing it into the otherwise arbitrary back-

ground value, ϕ0.
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Finally, the equation of motion for δB becomes

∂x
[
sin2 x ∂x(δB)

]
sin2 x

= −ϕ1 ln

∣∣∣∣1− cosx

sinx

∣∣∣∣− δQ
Q

(
3

2
+ ln | sinx|

)
(5.30)

+12W1 cosx− κ2JL2e−ϕ0 .

This integrates to

δB = δB̂0 +B1 cotx− 4W1 cosx− ϕ1M2(x) (5.31)

+
δQ
Q

[
3

4
x cotx−H2(x)

]
+

1

2

(
κ2JL2e−ϕ0

)
x cotx ,

where δB̂0 and B1 are integration constants. Of these, B1 is pure gauge in

that it can be changed arbitrarily by reparameterizing the coordinate ρ. We

fix this coordinate freedom by defining ρ = 0 to be the position of the ‘north’

brane, which requires eB → 0 as ρ → 0; ensuring B1 = 0. The functions M2

and H2 appearing here are defined by

M1(x) :=

∫ x

0

dy sin2 y ln

∣∣∣∣1− cos y

sin y

∣∣∣∣
M2(x) :=

∫ x

0

dy
M1(y)

sin2 y
, (5.32)

and

H1(x) :=

∫ x

0

dy sin2 y ln | sin y|

H2(x) :=

∫ x

0

dy
H1(y)

sin2 y
. (5.33)

For later convenience when discussing flux quantization it is useful to
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absorb parts of these integrals into the definition of δB̂0, by writing

δB = δB0 − 4W1 cosx+ ϕ1

[
M
2
−M2(x)

]
+
δQ
Q

[
3

4
x cotx−H2(x)

]
+

1

2

(
κ2JL2e−ϕ0

)
(x cotx+ 1) , (5.34)

with the number M defined by

M :=

∫ π

0

dx sinxM2(x) . (5.35)

Numerically this evaluates to the value6 M = −1, which we use throughout

what follows.

Flux quantization

Using the above expressions in the linearized flux quantization condition, eq.

(5.26), gives

δQ
Q

=
1

2

∫ π

0

dx sinx
(

4δW − δB − δφ
)
− κ2Q

4πα

(
δΦN + δΦS

)
= −δB0 +

3

4

(
δQ
Q

)
− κ2Q

4πα

(
δΦN + δΦS

)
, (5.36)

which uses the integral

H :=

∫ π

0

dx sinxH2(x) ' −0.613706 ' ln 4− 2 , (5.37)

and the last approximate equality is a numerical inference.7 The absence of

ϕ1 on the right-hand side of eq. (5.36) is a consequence of the definition of δB0

6Maple 11, 10 digit precision, see Appendix (C.4)
7Mathematica 7, with thanks to Ben Jackel.
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used in eq. (5.34). Solving this for δB0 gives

δB0 = −1

4

(
δQ
Q

)
− κ2Q

4πα

(
δΦN + δΦS

)
. (5.38)

Finally, the linearized field equations return the following on-brane cur-

vature,

R̂ = −4eϕ0

[
2δW

L2
+

1

L
cot

(
ρ̂

L

)
∂ρ̂ δW + ∂2

ρ̂ δW

]
+

2eϕ0

L2

(
δQ
Q

)
− 2κ2J

=
2eϕ0

L2

(
δQ
Q

)
− 2κ2J . (5.39)

Notice that all of the ρ-dependence cancels in this expression (as must happen

given our assumption of maximal symmetry), leaving a result that is deter-

mined purely by the change of bulk Maxwell flux and the applied current.

5.3.4 Physical interpretation and renormalization

The above solutions are described by four physical integration constants, which

we can take to be ϕ0, ϕ1, W1 and δQ/Q. These can be traded for four physical

properties of the bulk and on-brane geometries.

W1 can be taken to be the difference between the value of the warping

(which controls the gravitational redshift) between the two branes, which is

given by

δWN − δWS = 2W1 . (5.40)

Similarly, to linear order the near-brane geometry as x = ρ̂/L → 0 is
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governed by

eB ' e−ϕ0/2αL sinx
[
1 + δB(x)

]
(5.41)

' αρ

[
1 + δB0 − 4W1 −

ϕ1

2
+

3

4

(
δQ
Q

)
+ κ2JL2e−ϕ0 +O(ρ2)

]
,

which corresponds to a conical singularity (since the eB vanishes linearly with

ρ), having defect angle αN = α + δ αN with

δ αN
α

= δB0 − 4W1 −
ϕ1

2
+

3

4

(
δQ
Q

)
+ κ2JL2e−ϕ0 . (5.42)

By contrast, as x = ρ̂/L→ π we have

eB → παLe−ϕ0/2

[(
1− 1

2
ln 2

)(
δQ
Q

)
− 1

2

(
κ2JL2e−ϕ0

)]
, (5.43)

which uses H2(π−ε) = (1− ln 4)(π/4ε)+O(ε0). In particular, this shows that

eB does not vanish at ρ̂ = πL. Instead eB vanishes at ρ̂ = π(L+δL), indicating

a change in proper distance between the branes: ρS − ρN = π(L + δL)e−ϕ0/2.

The amount of the change is obtained by comparing eq. (5.43) to the Taylor

expansion of eB about its new zero, giving

δL

L
' −

[
3

4

(
δQ
Q

)
+

1

2

(
κ2JL2e−ϕ0

)]
. (5.44)

The singularity at the ‘south’ brane is also conical (at linear order),

with defect angle given by αS = α + δ αS with

δ αS
α

= δB0 + 4W1 +
ϕ1

2
+

3

4

(
δQ
Q

)
+ κ2JL2e−ϕ0 . (5.45)
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One might imagine that a further observable could be the difference

between the value of the dilaton field at the two branes, φN − φS, since this

governs the relative strength of some of the bulk couplings to each brane

(such as the strength of the bulk Maxwell couplings to brane-localized charged

particles). However a subtlety arises in this case because the profile φ(ρ)

diverges in the limit that ρ → ρN and ρ → ρS. For this reason we defer a

discussion of this quantity to the next section, which deals with renormalizing

these divergences.

Brane matching and renormalization

Ultimately the bulk integration constants should be related to physical prop-

erties of the branes that are the source of the bulk geometry; this is where

the brane matching conditions play a role. In order to perform this matching

we must specify a functional form for the brane tensions, τb, and fluxes, Φb.

We take both of these to be smooth functions of φ, and in many (but not

all) examples we imagine these functions to be extremized at φ = v̂b: that is,

(∂τb/∂φ)φ=v̂b = 0.

The problem in practice with matching is that the argument of τb and

Φb is φb := φ(ρb), but the profile φ(ρ) given in eq. (5.29) diverges as ρ → ρb.

For instance, for x = ρ̂/L = ε� 1 and x = π − ε we have

φ (x = ε) = ϕ0 − 2W1 + ϕ1 ln
∣∣∣ε
2

∣∣∣+

(
δQ
Q

)
ln |ε|+O(ε)

and φ (x = π − ε) = ϕ0 + 2W1 + ϕ1 ln

∣∣∣∣2ε
∣∣∣∣+

(
δQ
Q

)
ln |ε|+O(ε) .

(5.46)
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This divergence is dealt with by renormalizing the parameters that

define the functional form of τb and Φb, and in particular those parameters

that determine the values v̂b. It can be absorbed in the definitions of v̂b by

defining renormalized quantities, vb:

vN = v̂N −
δQ
Q

ln (ε)− ϕ1 ln (ε/2)

vS = v̂S −
δQ
Q

ln (ε) + ϕ1 ln (ε/2) , (5.47)

where the first expression is relevant at x = 0 (the north brane positon), and

the second one at x = π (the south brane). With these definitions,

lim
ε→0

[
φ(ε)− v̂N

]
= ϕ0 − 2W1 − vN

and lim
ε→0

[
φ(π − ε)− v̂S

]
= ϕ0 + 2W1 − vS , (5.48)

and so τb(φ− v̂b) = τb(ϕ0 ± 2W1 − vb) and so on. This is a useful redefinition

because our interest really is in the value at which the zero mode, ϕ0, gets

stabilized, rather than on the value of φ itself at the brane position. And this

is finite as ε→ 0 with renormalized quantities (like vb) fixed.

With this construction in mind, there are four independent matching

conditions:

[
eB∂ρφ

]
ρ=0

=
κ2

2π

(
∂TN
∂φ

)
and

[
eB∂ρφ

]
ρ=πL

= −κ
2

2π

(
∂TS
∂φ

)
[
eB∂ρB

]
ρ=0

= 1− κ2TN
2π

and
[
eB∂ρB

]
ρ=πL

= −1 +
κ2TS
2π

, (5.49)

where, as before, Tb = τb − QΦb e
−4W (ρb). The difference in signs between

north and south brane arises because increasing ρ points away from the north
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brane but towards the south brane.

Specialized to the dilaton profile, eq. (5.29), the first two of the above

conditions become

α

(
ϕ1 +

δQ
Q

)
=

κ2

2π

(
∂ δTN
∂φ

)
α

(
ϕ1 −

δQ
Q

)
= −κ

2

2π

(
∂ δTS
∂φ

)
, (5.50)

while the latter two evaluate to

α

[
−4W1 −

ϕ1

2
+

3

4

(
δQ
Q

)
+ δB0 + κ2JL2e−ϕ0

]
= −κ

2

2π
δTN

α

[
4W1 −

ϕ1

2
+

3

4

(
δQ
Q

)
+ δB0 + κ2JL2e−ϕ0

]
= −κ

2

2π
δTS , (5.51)

where the change in brane action from the background value, T , is δTb :=

Tb − T = δτb −Q δΦb +QΦ[4δW (ρb)− δQ/Q]. However, the terms involving

δW and δQ/Q in κ2δTb may be dropped in the matching conditions because

their contributions are suppressed by an additional factor of κ2QΦ/2π relative

to the leading contributions. Hence, from here on we take δTb ' δτb −Q δΦb.

Eliminating δB0 using eq. (5.38), and solving the above matching con-

ditions gives

δQ
Q

=
κ2

4πα

[
δT ′N + δT ′S

]
ϕ1 =

κ2

4πα

[
δT ′N − δT ′S

]
(5.52)

W1 =
κ2

16πα

[(
δTN +

1

2
δT ′N

)
−
(
δTS +

1

2
δT ′S

)]
κ2JL2e−ϕ0 = − κ2

4πα

[(
δTN +

1

2
δT ′N −Q δΦN

)
+

(
δTS +

1

2
δT ′S −Q δΦS

)]
,
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where δT ′b denotes ∂ δTb/∂φ. These expressions allow the elimination of the

three integration constants (ϕ1, W1 and δQ/Q) and the current, J , to be

completely expressed in terms of brane properties and ϕ0.

In particular, the condition J = 0 is satisfied when ϕ0 = ϕ?, where

[(
δTN +

1

2
δT ′N −Q δΦN

)
+

(
δTS +

1

2
δT ′S −Q δΦS

)]
ϕ0=ϕ?

= 0 . (5.53)

This expression determines the stabilized value, ϕ0 = ϕ?, as a function of the

properties of the branes.

On-brane curvature

Finally, the curvature in the on-brane directions, regarded as a function of ϕ0,

becomes

(
παL2e−ϕ0

κ2

)
R̂(ϕ0) =

1

2

(
δT ′N + δT ′S

)
− 2πα

κ2

(
κ2L2Je−ϕ0

)
(5.54)

=
1

2

[
δTN + δTS +

3

2
(δT ′N + δT ′S)−Q(δΦN + δΦS)

]
.

Of particular interest is this result specialized to the value, ϕ0 = ϕ?,

that solves the field equations in the absence of the current J (if such a value

exists – more about this below). The curvature evaluated at this value is

the curvature predicted by the field equations for the brane geometry, and

eq. (5.53) allows it to be written in two equivalent ways:

(
παL2e−ϕ?

κ2

)
R̂ =

1

2

(
δT ′N +δT ′S

)
ϕ0=ϕ?

= −
[
δTN +δTS−Q(δΦN +δΦS)

]
ϕ0=ϕ?

.

(5.55)

The second of these agrees precisely with the corresponding expression ob-
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tained in the nonsupersymmetric case studied in ref. (5.22). However this is

not also equal to the first equality of eq. (5.55), because in the nonsupersym-

metric case eq. (5.53) no longer holds, being instead replaced by δT ′N+δT ′S = 0.

From the point of view of a brane observer this must agree with the

(maximally symmetric) curvature that is predicted by the 4D Einstein equa-

tions given a 4D vacuum energy, %eff :

R̂ = −4κ2
4 %eff , (5.56)

where κ4 is the 4D gravitational coupling, given in terms of the 6D coupling,

κ, by

1

κ2
4

=
4παL2e−ϕ?

κ2
. (5.57)

Comparison gives

%eff = − R̂

4κ2
4

= −
(
παL2

κ2

)
R̂

= −1

2

(
δT ′N + δT ′S

)
ϕ0=ϕ?

. (5.58)

Notice that this agrees (to linear order) with the more general exact classical

result obtained in eq. (3.81) of ref. (5.32),

%eff = −
∑
b

(
Ub +

1

2
T ′b

)
, (5.59)

given that Ub vanishes to linear order.
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5.3.5 The low-energy 4D effective theory

This section constructs the effective 4D theory that reproduces the low-energy

dynamics of ϕ0 and the 4D metric predicted by the full 6D theory. We do so at

the purely classical level, working perturbatively about a rugby ball solution,

as above.

General form

In this section the two fields of interest in the low-energy theory are the 4D

metric, ĝµν , describing the massless KK graviton, and a 4D scalar,8 ϕ, de-

scribing the low-energy would-be zero mode, ϕ0, associated with the scaling

symmetry of the bulk field equations. (We ignore here any other low-energy

fields, such as other 4D scalars or 4D gauge fields coming from AM or the

metric.)

The most general possible local 4D effective theory describing the in-

teractions of ϕ and ĝµν , up to the two-derivative level, is

Seff = −
∫

d4x
√
−ĝ

{
ĝµν
[
f(ϕ)R̂µν + h(ϕ) ∂µϕ∂νϕ

]
+ VJF (ϕ) + j k(ϕ)

}
,

(5.60)

where f , h, VJF and k are all functions to be determined, and j denotes a

low-energy current that is included to explore the shape of these functions (in

precisely the same manner as J was included in the 6D theory). Our task is

to identify these functions by matching the predictions of this theory with the

low-energy predictions of the full 6D system.

The functions f , h and k differ from VJF in that they already receive

8We use ϕ to denote the 4D field in the effective theory, to distinguish it from the (closely
related) parameter ϕ0 appearing in the 6D solutions.
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their leading contributions when the two source branes are described by their

background tensions, T ; without the symmetry-breaking, φ-dependent con-

tributions δTb(φ). These leading contributions can be obtained by simple

dimensional reduction, which predicts

f(ϕ) = h(ϕ) =
4παL2e−ϕ

κ2
=

1

2κ2
4

e−(ϕ−ϕ?)

and k(ϕ) = e−ϕ if we define j ∝ 4παL2J . (5.61)

To the same approximation the (Jordan frame) potential vanishes, VJF (ϕ) = 0,

since the background branes do not break the classical bulk scaling symmetry.

Low-energy matching conditions

The goal is to determine how these quantities are perturbed by the addition of

φ-dependence to the brane action, δTb(ϕ). Our main focus is on the contribu-

tion to VJF , since (unlike for the other functions) for VJF this is the dominant

contribution. We use the prediction for the low-energy scalar curvature, R̂, as

a function of ϕ — i.e. eq. (5.54) — as our means for doing so.

To make the comparison we compute R̂ in the low-energy effective

theory, assuming a maximally symmetric geometry. Defining for notational

convenience 1/κ̂2
4 := eϕ?/κ2

4 = 4παL2/κ2, the metric and scalar equations of

motion are

e−ϕ
R̂

4κ̂2
4

+ je−ϕ + VJF (ϕ) = 0

−e−ϕ R̂

2κ̂2
4

− je−ϕ + V ′JF (ϕ) = 0 . (5.62)

Eliminating the current between these two equations gives the following ex-
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pression for R̂ as a function of ϕ,

e−ϕ
R̂

4κ̂2
4

= VJF + V ′JF = e−ϕ
d

dϕ

(
eϕ VJF

)
. (5.63)

To obtain VJF we regard eq. (5.63) as a differential equation to be inte-

grated with respect to ϕ, using eq. (5.54) to evaluate the left-hand side as an

explicit function of ϕ. The integral yields

VJF (ϕ) =
1

2
e−ϕ

∫
dϕ0 e

ϕ0

(
δTN + δTS −Q δΦN −Q δΦS +

3

2
δT ′N +

3

2
δT ′S

)
=

1

2

(
δTN + δTS

)
(5.64)

+
1

2
e−ϕ

∫
dϕ0 e

ϕ0

(
−Q δΦN −Q δΦS +

1

2
δT ′N +

1

2
δT ′S

)
.

The integration constant, C, implicit in this integration contributes an amount

C e−ϕ to VJF , with C fixed by matching to the 6D theory at a specific value of

ϕ. A convenient place for doing so is the vacuum configuration (if this exists),

ϕ = ϕ?, defined by j(ϕ?) = 0, for which a prediction — eq. (5.53) — is known

in the 6D theory.

Specifically, solving eqs. (5.62) for j(ϕ) gives

je−ϕ = −
[
V ′JF (ϕ) + 2VJF (ϕ)

]
, (5.65)

and so ϕ? satisfies

V ′JF (ϕ?) + 2VJF (ϕ?) = 0 . (5.66)

This has a simple interpretation in the Einstein frame, which is defined by

rescaling ĝµν = e(ϕ−ϕ?)gµν , so that the 4D action has a canonical Einstein-
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Hilbert term

Seff = −
∫

d4x
√
−g

{
1

2κ2
4

gµν [Rµν + 5 ∂µϕ∂νϕ] + VEF (ϕ) + jEF e
ϕ

}
, (5.67)

with jEF := je−2ϕ? and

VEF (ϕ) := e2(ϕ−ϕ?) VJF (ϕ) . (5.68)

Clearly ϕ? therefore satisfies V ′EF (ϕ?) = 0, as might have been expected. Im-

posing V ′JF + 2VJF = 0 when ϕ = ϕ? satisfies eq. (5.53) then gives

VJF (ϕ) =
1

2

∑
b

δTb(ϕ)− 1

2
e−(ϕ−ϕ?)

∑
b

[
1

2
δT ′b(ϕ?) +Q δΦb(ϕ?)

]
(5.69)

+
1

2
e−ϕ

∫ ϕ

ϕ?

dϕ0 e
ϕ0

∑
b

[
1

2
δT ′b(ϕ0)−Q δΦb(ϕ0)

]
.

Given the Einstein-frame potential, classical vacuum energy is

%eff = VEF (ϕ?) = VJF (ϕ?) =
∑
b

[
δTb(ϕ?)−Q δΦb(ϕ?)

]
= −1

2

∑
b

δT ′b(ϕ?) , (5.70)

as found earlier (using eq. (5.53)). The scalar mass similarly is

m2
ϕ =

κ2
4

5
V ′′EF (ϕ?) =

κ2
4

5

[
V ′′JF (ϕ?)− 4VJF (ϕ?)

]
=

κ2
4

5

∑
b

[
3

4
δT ′′b (ϕ?) +

3

2
δT ′b(ϕ?)−

1

2
Q δΦ′b(ϕ?)

]
. (5.71)

Similarly, chasing through the earlier expressions for the shape of the
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bulk geometry gives

δαb
α

= − κ2

2πα
δTb(ϕ?)

δL

L
= − 3κ2

16πα

∑
b

δT ′b(ϕ?) =
3κ2%eff

8πα

δWN − δWS =
κ2

4πα

[(
δTS +

1

2
δT ′S

)
−
(
δTN +

1

2
δT ′N

)]
ϕ?

=
κ2

8πα

[
Q δΦN(ϕ?)−Q δΦS(ϕ?)

]
. (5.72)

Notice in particular that no warping arises unless the two branes carry different

amounts of localized flux. This is by contrast with the nonsupersymmetric

case (5.22), for which net warping always accompanies a tension difference for

the two source branes. But in the supersymmetric case the flux quantization

condition does not allow such a tension difference without some of the flux

being forced onto the branes.

5.4 Illustrative examples

The previous formulae with which the previous section closed represent the

main results of this paper. We now explore their consequences through a

number of illustrative special choices for the ϕ-dependence of the tensions on

each brane.

5.4.1 Dilaton-independent tensions and fluxes

Consider first the simplest example: where both quantities δτb and δΦb are in-

dependent of ϕ. In this case the condition, J(ϕ?) = 0, defining ϕ? degenerates
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to ∑
b

(
δTb −Q δΦb

)
=
∑
b

(
δτb − 2Q δΦb

)
= 0 , (5.73)

so two situations need to be distinguished. Either a solution to the condition

J = 0 exists — which requires
∑

b δτb = 2Q
∑

b δΦb — or it does not. Consider

each of these in turn.

When J = 0 has solutions

If the constant quantities δτb and δΦb satisfy the condition
∑

b δτb = 2Q
∑

b δΦb,

then maximally symmetric solutions to the 6D field equations exist for any

value of ϕ?. Because no particular value of ϕ0 is selected, this shows that the

flat direction that ϕ0 parameterizes is not lifted. This is consistent with the

observation that the brane action scales the same way as does the bulk action

— and so does not break the bulk scaling symmetry — in the special case

where δτb and δΦb are both ϕ-independent.

In this case formulae (5.70), (5.71) and (5.72) degenerate to %eff =

m2
ϕ = δL/L = 0, while eqs. (5.72) reveal δαb = κ2δTb/2πα, as usual, and

δWN − δWS = κ2(δTN − δTS)/8πα. The new perturbed solution in this case

is a special instance of the general solution to the full nonlinear equations

(5.15; 5.16; 5.17), all of which are known for the symmetries of interest to us.

In particular, the assumption of constant brane action, δT ′b = 0, is known to

be sufficient to ensure %eff = 0, while δTN 6= δTS induces warping. As initially

argued in (5.6), it is the freedom to have nonzero on-brane flux, Φb, that

prevents the flux quantization condition from being an obstruction to reaching

these solutions as perturbations to the initial rugby ball (as one might naively

have thought (5.33), if eq. (5.13) were read as forbidding the possibility of
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having perturbations to αb, and hence also to Tb).

When J 6= 0 cannot be avoided

The perturbative solution found here also allows an exploration of what hap-

pens in the more general situation where the fluxes and tensions are not re-

lated to one another by
∑

b δτb = 2Q
∑

b δΦb. In this case there is no choice

for ϕ0 = ϕ? that can ensure J(ϕ?) = 0, implying that no solution exists at all

to the linearized field equations, subject to the assumed axial symmetry and

on-brane maximal symmetry. In this case studies of linearized stability (5.23)

and exact time-dependent solutions (5.18) suggest that the relevant solutions

are necessarily time-dependent.

We now show how this expectation for time-dependence can be made

more precise in the present context, since J 6= 0 implies the absence of a

stationary point to the (Einstein-frame) scalar potential, VEF (ϕ), for any finite

value of ϕ. To show this we must reconsider the expression derived above for

VJF , but without using the condition V ′EF (ϕ?) = 0 to fix integration constants.

For φ-independent δτb and δΦb expression (5.64) for VJF becomes

VJF (ϕ) =
1

2
e−ϕ

∫
dϕ0 e

ϕ0

(
δTN + δTS −Q δΦN −Q δΦS +

3

2
δT ′N +

3

2
δT ′S

)
=

1

2

∑
b

(
δTb −Q δΦb

)
+ C e−ϕ , (5.74)

where C is the integration constant in question.

A natural choice for C is to demand that VJF remain bounded as eϕ → 0,

since this corresponds to the weak-coupling limit for which both φ and AM

do not strongly self-interact in the bulk. More precisely, inspection of the 6D

action, eq. (5.2), shows that the bulk scalar potential vanishes in this limit,
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allowing the constant part of φ to be absorbed into the definition ÃM :=

e−ϕ0/2AM . This argues that VJF should not become unbounded in this limit,

leading to the requirement C = 0.

With this choice the Einstein-frame scalar potential becomes

VEF (ϕ) ∝ e2ϕ
∑
b

(
δTb −Q δΦb

)
= e2ϕ

∑
b

(
δτb − 2Q δΦb

)
, (5.75)

which describes a runaway to ϕ → ±∞ — whose sign depends on the sign

of
∑

b(δTb −Q δΦb). The absence of a solution here to V ′EF = 0 for any finite

value of ϕ is what underlies the need for a time-dependent solution from the

perspective of the low-energy 4D observer.

5.4.2 Dilaton-brane couplings, vacuum energy and vol-

ume stabilization

The next paragraphs explore some of the implications of nontrivial brane-

dilaton couplings. Of particular interest is how the bulk and brane geometries

depend on the choices made for these couplings. We start with the case where

δτb and δΦb vary only weakly with ϕ, and move on to more strongly varying

examples.

Linear dilaton-dependence

Consider therefore the simple situation where both brane tensions and fluxes

are linear in ϕ, with

τb = τb0 + τb1 ϕ and Φb = Φb0 + Φb1 ϕ , (5.76)
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with τbi and Φbi constant. Since many — though not all — physical quantities

depend only on the average brane action and flux, Teff := 1
2

∑
b Tb and Φeff :=

1
2

∑
b Φb, it is useful to phrase our assumptions in terms of these, which have

the form

Teff(ϕ) = T0 + T1ϕ and Φeff(ϕ) = Φ0 + Φ1ϕ , (5.77)

where

Ti :=
1

2

∑
b=N,S

(τbi −QΦbi) and Φi :=
1

2

∑
b=N,S

Φbi . (5.78)

We describe the resulting geometry as a perturbation about a rugby

ball solution, characterized by a background tension, T , and brane flux, Φ(T ),

related by the background flux-quantization condition, eq. (5.14),

T −QΦ =
2π

κ2

[
1−

(
ngR
g

)]
. (5.79)

With this choice, the condition J = 0 defining ϕ? becomes

0 = δTeff(ϕ?)−Q δΦeff(ϕ?) +
1

2
δT ′eff(ϕ?)

= (T0 −QΦ0)− (T −QΦ) + (T1 −QΦ1)ϕ? +
T1

2
, (5.80)

whose solution,

ϕ? =
1

QΦ1 − T1

[
(T0 −QΦ0)− (T −QΦ) +

T1

2

]
, (5.81)

in this case exists so long as T1 6= QΦ1.

We remark in passing that the assumed linear coupling does not pre-

clude the existence of a vacuum configuration, ϕ = ϕ?, contrary to what
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happens for the nonsupersymmetric situation described in ref. (5.22). What

is different in the nonsupersymmetric case is that ϕ? satisfies
∑

b δT
′
b(ϕ?) = 0

— rather than
∑

b

(
δTb + 1

2
δT ′b −Q δΦb

)
ϕ=ϕ?

= 0 — which has no solutions if∑
b δTb(ϕ) is a linear function of ϕ.

The Jordan-frame scalar potential, eq. (5.69), in the 4D effective theory

then takes the simple form

VJF (ϕ) = QΦ1 + (T1 −QΦ1)(ϕ− ϕ?)− (T1 +QΦ1)e−(ϕ−ϕ?) , (5.82)

and so the Einstein-frame potential becomes

VEF (ϕ) =
[
QΦ1 + (T1 −QΦ1)(ϕ− ϕ?)

]
e2(ϕ−ϕ?) − (T1 +QΦ1)e(ϕ−ϕ?) . (5.83)

Requiring the potential to be bounded from below implies T1 > QΦ1. Notice

that at ϕ = ϕ? this satisfies V ′EF (ϕ?) = 0 automatically (by construction), and

VEF (ϕ?) = −T1 there — which agrees with −1
2

∑
b δT

′
b(ϕ?) = −δT ′eff(ϕ?), as

it must. The physical parameters computed from VEF using eqs. (5.70) and

(5.71) in this case therefore are

%eff = −T1 and m2
φ =

κ2
4

5
(3T1 −QΦ1) , (5.84)

while the extra-dimensional response of eqs. (5.72) becomes

δαb
α

= −
(
κ2

2πα

)
δTb(ϕ?) = − κ2

2πα

[
τb(ϕ?)−QΦb(ϕ?)

]
δL

L
=

3κ2%eff

8πα
= −3κ2T1

8πα
, (5.85)
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and

WN −WS =
κ2

8πα

[
QΦN(ϕ?)−QΦS(ϕ?)

]
. (5.86)

For potentials that are bounded from below — i.e. those with T1 > QΦ1 —

the condition T1 > 0 suffices to ensure m2
ϕ > 0 (and %eff < 0).

Three important properties of these expressions bear special emphasis.

First, %eff quite generally depends on the background quantities T and

Φ only through the combination T − QΦ whose value is constrained by flux

quantization, eq. (5.79). Consequently %eff does not change at all as T is var-

ied, because flux quantization demands Φ must also be adjusted in a way that

precisely compensates. Any value of T is equally good, and what counts for

physical predictions is only the extent to which the values Teff(ϕ?)−QΦeff(ϕ?)

differ from the flux-constrained background combination, T −QΦ. This prop-

erty also remains true for the more complicated examples discussed below.

Second, it is relatively easy to arrange ϕ? ' −50 using only a mild

hierarchy of parameters on the branes. But eq. (5.15) then ensures that the

volume of the extra dimensions, V2 = 4παL2e−2ϕ? , is exponentially large com-

pared with the intrinsic scales on the branes and in the bulk.

Third, what is most striking about this example is that the size of %eff

and m2
ϕ is completely independent of T , QΦ, T0 and QΦ0. In this way this

example captures part of the more general magic of codimension-2 construc-

tions; they can admit classical solutions — like the rugby ball itself — for which

large tensions coexist with flat (or weakly curved) on-brane geometries. Why

is the result independent of the ϕ-independent part of Teff and Φeff? Quite

generally, we know from eq. (5.70) that %eff =
∑

b[δTb(ϕ?) − Q δΦb(ϕ?)] =

2[δTeff(ϕ?)−QΦeff(ϕ?)], and so (apart for the special case where δTeff cancels
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QΦeff) the reason %eff can be small even when T0−QΦ0 is large is because the

condition J = 0 drives ϕ? out to such large values that the terms T0 − QΦ0

and (T1 −QΦ1)ϕ? mostly cancel in %eff .

One is drawn from this last observation to try to identify how robust

this property is, both to the shape assumed for δτb(ϕ) and to the size of

radiative corrections.

Power-law brane actions

In the previous example |ϕ?| becomes very big if T0 and QΦ0 are much larger

in magnitude than are T1 and QΦ1, and so the assumption that δτb is linear in

ϕ typically cannot be justified simply as the first term in a Taylor expansion.

It is useful therefore to examine slightly more complicated functional forms for

δτb(ϕ) and δΦb(ϕ) in order to probe the robustness of the previous example.

Let us consider branes of the general form

τb = τb0 + τbη ϕ
η and Φb = Φb0 + Φbη ϕ

η , (5.87)

again with constant τbi and Φbi. The effective brane action and flux, defined

as before by Teff := 1
2

∑
b Tb and Φb := 1

2

∑
b Φb, then give

Teff(ϕ) = T0 + Tη ϕ
η and Φeff(ϕ) = Φ0 + Φη ϕ

η , (5.88)

where

Ti :=
1

2

∑
b=N,S

(τbi −QΦbi) and Φi :=
1

2

∑
b=N,S

Φbi . (5.89)

As before we perturb about a rugby ball solution with background tension,

T , and brane flux, Φ, related by the background flux-quantization condition,
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eq. (5.79), and so

δTeff = (T0 − T ) + Tη ϕ
η and Q δΦeff = Q(Φ0 − Φ) +QΦη ϕ

η . (5.90)

We find ϕ? by using the condition J(ϕ?) = 0, or δTeff−Q δΦeff + 1
2
δT ′eff =

0, which in the present case gives

(T0 −QΦ0)− (T −QΦ) + ϕη−1
?

[
(Tη −QΦη)ϕ? +

η

2
Tη

]
= 0 . (5.91)

Approximate solutions are possible when |(Tη −QΦη)ϕ?| � |ηTη/2|, in which

case the field stabilizes approximately at

ϕ? =

(
D

Tη −QΦη

)1/η

, (5.92)

where D is defined by

D = Q(Φ0 − Φ)− (T0 − T ) := −(δT0 −Q δΦ0) . (5.93)

This is a real solution if the signs of D and Tη − QΦη are the same. For

η > 0 it is also large — and so justifies a posteriori making the large-ϕ?

approximation — if |D| � |Tη −QΦη|. With this solution we find the low-

energy cosmological constant is

%eff = −δT ′eff(ϕ?) = −ηTηϕη−1
? = − ηTηD

Tη −QΦη

(
Tη −QΦη

D

)1/η

. (5.94)

This reduces to the cases previously considered in the special cases η = 0 and

η = 1. Writing %eff = −(ηD/ϕ?)/(1−QΦη/Tη) shows this result is generically
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suppressed relative to D within the approximations used, since these include

|ϕ?| � 1. Because ϕ ∝ [D/(Tη − QΦη)]
1/η, with all other things equal this

suppression becomes stronger for smaller η > 0.

Exponential branes

As our final example, consider several commonly occurring cases where the

brane action depends exponentially on ϕ. A simple case of this type is when

the entire tension and flux — i.e. both background and perturbation — involve

a common exponential, τb(ϕ) = τb0 +Ab eaϕ and QΦb(ϕ) = QΦb0 + Bb eaϕ.

In this case the average brane action and flux, Teff := 1
2

∑
b Tb and

Φeff := 1
2

∑
b Φb, have the form

Teff(ϕ) = T0 +A eaϕ and QΦeff(ϕ) = QΦ0 + B eaϕ , (5.95)

where

T0 =
1

2

∑
b

(τb0 −QΦ0b) , Φ0 =
1

2

∑
b

Φ0b ,

A =
1

2

∑
b

(Ab − Bb) and B =
1

2

∑
b

Bb . (5.96)

For instance, given the explicit factor of e−φ in the definition of the brane-

flux coupling, eq. (5.16), the special case a = 1 and Ab = Φb0 = 0 (and so

Φ0 = A + B = 0) corresponds to having brane actions that do not directly

couple to the bulk scalar φ.

As before we perturb about a rugby ball solution with background

tension, T , and brane flux, Φ, related by the background flux-quantization
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condition, eq. (5.14),

T −QΦ =
2π

κ2

(
1− ngR

g

)
. (5.97)

The perturbations about this background become

δTeff = (T0 − T ) +A eaϕ and Q δΦeff = Q(Φ0 − Φ) + B eaϕ . (5.98)

The condition J(ϕ?) = 0 defining ϕ? as usual is δTeff(ϕ?) + 1
2
δT ′eff(ϕ?) −

Q δΦeff(ϕ?) = 0, which in this case becomes

[
A
(

1 +
a

2

)
− B

]
eaϕ? = D , (5.99)

where D := Q(Φ0−Φ)− (T0− T ). This has solutions if the sign of both sides

is the same.

The low-energy Jordan-frame potential, eq. (5.69), then is

VJF (ϕ) = C1e
aϕ + C2e

−ϕ + C3 , (5.100)

with C1 =
1

a+ 1

[(
1 +

3a

2

)
A− B

]
C2 =

[
2(

A+ 1
2
aA− B

)1/a
− (2 + a)C1(
A+ 1

2
aA− B

)1+1/a

]
D1+1/a

and C3 = −D ,

leading to a similar expression for the Einstein-frame potential, VEF = VJF e
2(ϕ−ϕ?).

At ϕ = ϕ? the cosmological constant becomes

%eff = −δT ′eff(ϕ?) = −aA eaϕ? = a

[
(T0 − T )−Q(Φ0 − Φ)

1 + (a/2)− B/A

]
(5.101)
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= a

[
(T0 −QΦ0)− (2π/κ2)(1− ngR/g)

1 + (a/2)− B/A

]
,

where the last equality uses the value of T−QΦ dictated by flux quantization.

The scalar mass at the extremum is similarly

m2
ϕ =

a

10

(
6 + 3a− 2B/A
2 + a− 2B/A

)
κ2

4

[
(T − T0)−Q(Φ− Φ0)

]
(5.102)

= − a

10

(
6 + 3a− 2B/A
2 + a− 2B/A

)
κ2

4

[
(T0 −QΦ0)− 2π

κ2

(
1− ngR

g

)]
.

Eq. (5.101) identifies three potential mechanisms for suppressing %eff .

1. The first is if a→ 0, in which case the brane actions become ϕ-independent

and ϕ? recedes to infinity. This is the suppression already encountered

in the examples presented above.

2. The second is if the ϕ-independent parts, T0 and Φ0, are related to one

another in the same way as flux quantization imposes on the background

values, T and Φ. (For the special case where the bulk flux is chosen to

lie in UR(1) direction (so g = gR) and n = 1, the background lies in the

same flux category as does the supersymmetric Salam-Sezgin solution

(5.13), for which T −QΦ = 0.)

3. Finally, the third potential suppression occurs even if T − QΦ 6= 0,

provided |B/A| � 1. That is, if δΦeff dominates δTeff then this only

affects the value of ϕ?, leaving %eff , as always, of order δT ′eff(ϕ?).
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5.4.3 Quantum corrections and technical naturalness

All of the calculations of brane-bulk interactions provided in previous sec-

tions are performed purely within the classical approximation. As such they

leave open the question of how robust their conclusions are to modification by

quantum corrections. And since the streets are littered with classical examples

having small vacuum energies, a proper treatment of quantum corrections is

the crucial to any credible mechanism for understanding the small size of the

observed vacuum energy.

In this section, we take a small step towards filling in this missing step,

more in the spirit of indicating a promising line of inquiry than in providing a

polished example. Our interest is in quantifying the stability of both the size

of the low-energy cosmological constant, %eff , and the size of the bulk volume,

V2, (when this is large compared with more microscopic scales).

The starting point is an enunciation of the essence of the problem: once

parameters are chosen to ensure a large value for %eff and/or V2, are these

choices stable against the renormalization that results when heavy fields are

integrated out? In extra-dimensional brane models this question necessarily

has two parts, to do with integrating out heavy field on the brane and in the

bulk.

We here use one of the previously discussed examples as a toy model

for estimating the size of quantum corrections. We choose a model that has

both has an exponentially large volume and a small 4D on-brane curvature

— i.e. vacuum energy9 — and estimate the size of quantum corrections. The

main idea behind this model is that it is the bulk field φ itself that counts both

9In the model %eff is small inasmuch as it is parametrically suppressed relative to other
scales, though not small enough numerically to describe the observed Dark Energy.
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bulk and brane loops, with weak coupling corresponding to φ being large and

negative. The influence of loop effects is then simply incorporated by tracking

the φ-dependence of the quantum-corrected (1PI) action, for which the above

arguments about brane-bulk back-reaction can be applied.

A toy model

The theory of interest is one of the ‘power-law’ models described earlier. For

our starting point we take a background rugby-ball geometry whose back-

ground tension and flux satisfy the flux-quantization condition, eq. (5.79),

T −QΦ =
2π

κ2

[
1−

(
ngR
g

)]
, (5.103)

with the right-hand-side being small enough to allow semiclassical reasoning,

but not tuned to be inordinately small. Such geometries have flat on-brane

directions, and as above we seek to see how brane-bulk interactions modify

this, including loops.

For the perturbations to this geometry we choose the classical brane-

bulk Lagrangian to have the power-law form,

δTeff = T? (−φ)η , (5.104)

with 0 < η < 1 (and the smaller η is, the larger the suppression in %eff). Here

T? is a function of all of the on-brane degrees of freedom, ψ, such as

T? = µ4 + ĝµν ∂µψ ∂νψ +M2ψ2 + λψ4 + · · · , (5.105)
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which defines the scale µ. In the vacuum ψ = 0 and so T? = µ4.

A hierarchy is dialled in by choosing the scale µ in T? to be small

compared with the typical brane scale, M : i.e. µ2 � M2 � 1/κ. Notice

that taking −φ� 1 does not affect the mass of the ψ particle (or other brane

particles in general) at the classical level, because φ appears only as an overall

factor in the brane action. The goal is to show that the energy scales set by

%
1/4
eff and V−1/2

2 can be hierarchically different from M , and that this can be

protected from quantum effects. Since V2 turns out to depend exponentially

on T?, a relatively small hierarchy between T? and M4 suffices to generate very

large volumes.

The classical part of the story is worked out above, with (choosing

Φeff = 0) eq. (5.92) implying

−ϕ? '
(
T −QΦ

T?

)1/η

'
[

2π

κ2µ4

(
1− ngR

g

)]1/η

, (5.106)

from which eq. (5.15) gives the bulk volume,

V2 = 4παL2e−ϕ? ' 4παL2 exp

{[
2π

κ2µ4

(
1− ngR

g

)]1/η
}
. (5.107)

Eq. (5.94) similarly gives the on-brane vacuum energy as

%eff ' ηT?(−ϕ?)η−1 ' η(T −QΦ)

(−ϕ?)
' 2πη

κ2

(
1− ngR

g

)[
2π

κ2µ4

(
1− ngR

g

)]−1/η

,

(5.108)

revealing a power-law suppression of %eff relative to 1/κ2, whose strength im-

proves the smaller η gets. (e.g. for η = 1 this gives %eff ∼ µ4 while η = 1
2

implies %eff ∝ κ2µ8, and so on.)
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Loop corrections

We now argue that the choice µ � M underlying the classical hierarchy is

technically natural. We do so using the observation that it is the expectation

of the bulk zero-mode, ϕ, itself that controls the size of these loops, so loop

corrections can be incorporated into the above argument by making a modified

choice for the φ-dependence of Teff .

Brane loops:

To see why this is so, imagine first computing quantum corrections involving

loops of the on-brane field, ψ. When computing these loops it is useful first

to adopt a canonical normalization, ψ → ψc := (−ϕ)η/2 ψ, after which the

strength of the self-coupling becomes revealed to be λcψ
4
c with

λc =
λ

(−ϕ)η
. (5.109)

More generally, because (−ϕ)η pre-multiplies the entire brane action,

for the purposes of power-counting brane perturbation theory it plays the role

of 1/~. This ensures that each additional loop is parametrically suppressed

by an additional factor of (−ϕ)−η, with dimensions made up using the typical

brane scale, M . In particular, integrating out a heavy field of mass M should

give a Wilson action (or, alternatively a calculation of the ‘quantum’ 1PI brane

action) of the form

Γeff = T?(−φ)η + T1 +
T2

(−φ)η
+ · · · , (5.110)

and so on.
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Here the Tn generically depend on the brane fields,10 much as did T?.

The point of quantum hierarchy problems is that — on dimensional11 grounds

— each of the Tn is generically of order M4, rather than the smaller µ4. The

question is whether this ruins the above conclusions about the size of ϕ?, and

so also of V2 and %eff .

Now comes the main point. Because each loop correction is suppressed

by an additional factor of (−φ)−η, none of them has the same φ-dependence

as does T?. In particular, none of them require the vacuum value of T? also to

be of order M4 instead of µ4. Better yet, having T1 ' M4 � T? ' µ4 keeps

ϕ? stabilized at large negative values, enforcing the dominance of the leading,

classical, approximation.

To see this in detail we repeat the above classical calculation of the

potential for the bulk modulus ϕ using the loop corrected action, eq. (5.110),

rather than the classical expression, eqs. (5.104) and (5.105). For simplicity

we take Φeff = 0 also at the loop level, though none of our conclusions would

change if we were to assume a similar loop expansion for the brane flux,

Φeff ' Φ1 +
Φ2

(−φ)η
+ · · · , (5.111)

with the dimensions of the Φn again set by the large mass, M , circulating in

the loops.

To one-loop order, the new terms in Γeff are independent of φ, and so

their modifications to the brane-bulk back-reaction are encompassed by the

10Although these would be local for the Wilson action, they need not be for the 1PI action
(5.34).

11These are often stated to be of order the ‘cutoff’ scale, but we make the more conserva-
tive statement that they scale with the physical mass M because cutoffs generically cancel
in all physical quantities (5.35).
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analysis given in the previous section. Assuming −ϕ? � 1 this gives

−ϕ? '
(
D

T?

)1/η

and %eff '
ηD

(−ϕ?)
, (5.112)

where D = (T −T1)−Q(Φ−Φ1) ' (T −QΦ)−T1 is of order the larger of M4

or T −QΦ ∝ 2π/κ2. Since both of these scales are much larger than T? ∝ µ4,

the classical assumption that −ϕ? is large (and all that comes with it) is not

undermined by one-loop corrections. We assume here that D and T? share the

same sign.

The size of the two-loop correction can be similarly estimated. The

equation that determines ϕ? is, at two-loop order

−D + T?(−ϕ?)η
(

1 +
η

2ϕ?

)
+

T2

(−ϕ?)η

(
1− η

2ϕ?

)
' 0 . (5.113)

Using |D| ∼ |T2| ∼ O(M4) and (−ϕ?)η ∼ M4/µ4 � 1 shows the 2-loop term

to represent a small correction to the value predicted for (−ϕ?).

The two-loop contribution to %eff comes in two parts. The first of these

is through the change in ϕ?, though because |δϕ?/ϕ?| � 1 this contribution is

subdominant to the value for %eff already computed at one loop. In particular,

it doesn’t ruin the suppression of %eff by the factor 1/ϕ?.

The second type of 2-loop contribution to %eff comes from the fact that

T ′eff now includes a new term of the form

−δT ′eff ' η T2(−ϕ?)−η−1 =

(
ηT2

−ϕ?

)
1

(−ϕ?)η
, (5.114)

which should be compared to the original contribution, ∼ ηD/ϕ?. Clearly the

new term is subdominant if |D| ∼ |T2| � T?. And so it goes for higher loops,
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each of which is suppressed by an additional factor of (−ϕ?)−η ' µ4/M4, by

virtue of the stability of the initial stabilization at large values of −ϕ?.

Notice that the brane loops also don’t have a large relative impact on

the light scalar mass, which eq. (5.71) gives to be

m2
ϕ '

κ2
4

5

[
3

2
δT ′′eff(ϕ?) + 3 δT ′eff(ϕ?)−Q δΦ′eff(ϕ?)

]
(5.115)

'
(

3ηT?
5M2

p

)
(−ϕ?)η−1 ' 3ηD

5M2
pϕ?
∼ ηM4

M2
p

( µ
M

)4/η

(up to one loop)

'
(

3ηT2

5M2
p

)
(−ϕ?)−η−1 ' 3ηT2T?

5M2
pDϕ?

∼ ηµ4

M2
p

( µ
M

)4/η

(two-loop term) ,

with the final estimates using T2 ∼ D ∼M4 and T? ∼ µ4.

Bulk loops:

The previous loop estimates are restricted purely to brane loops because they

rely on the assumed form of the brane-bulk coupling. But the back-reaction

of the brane loops onto the bulk is computed classically (for the bulk theory)

just as before. How big might be quantum corrections in the bulk sector?

An estimate for the size of bulk loops can be made in a manner very

similar to the one just used for brane loops, because e2φ is the loop-counting

parameter for the bulk 6D supergravity. The simplest way to see this is to

re-scale the 6D metric according to gMN → ǧMN := e−φgMN , in terms of which

the action of eq. (5.2) becomes

Sbulk = −
∫

d6x
√
−ǧ e−2φ

{
1

2κ2
ǧMN

(
ŘMN + ζ∂Mφ ∂Nφ

)
+

1

4
ǧMP ǧNQFMNFPQ +

2 g2
R

κ4

}
,(5.116)

where ζ is a constant. This shows that for bulk perturbation theory it is the
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constant value of e2φ that plays the role of of ~. (The same also remains true

once the action’s fermion terms are included (5.12).) Each loop involving bulk

fields therefore contributes an amount proportional to an additional power of

e2φ, which is small when φ is large and negative (also the regime of weak brane

coupling).

Now imagine integrating out fields in the bulk that are heavy relative

to the KK scale. Loops of these fields potentially modify both the brane

and bulk actions by new local interactions (5.36; 5.37). The loop-generated

couplings arising in this way cannot depend on ϕ in the same way as does

the classical action, (5.2), again indicating that these classical terms are not

themselves renormalized. Loop-generated terms necessarily involve new inter-

actions whose ϕ-dependence can be organized into a series in powers of e2ϕ

(5.38).

This leads one to expect that each bulk loop is exponentially sup-

pressed, by powers of e2ϕ? ∝ 1/V2
2 when −ϕ? � 1. In particular, these correc-

tions to physical properties would therefore be expected to be sub-dominant

to the brane loops considered above.

5.5 Conclusions

This paper computes the back-reaction of a pair of 4D codimension-two branes

onto the 6D geometry that they source, within a framework of flux compacti-

fication that allows a complete calculation of modulus stabilization. Although

performed with a particular (gauged, chiral (5.12)) 6D supergravity, the mech-

anisms exposed by our calculations rely only on broad features (like the pres-

ence of a dilaton and scale invariance of the classical equations) shared by
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a wide variety of higher-dimensional supergravities. This leads us to expect

them to have a wider domain of validity than the particular 6D system studied

here.

The main calculational assumptions are these: (i) we assume all energy

densities and curvatures to be small enough to justify working within a semi-

classical analysis; (ii) we compute brane-bulk couplings to leading order in

a derivative expansion (making the dominant players the brane tensions and

brane-localized fluxes); (iii) we seek solutions that are axially symmetric in

the two dimensions transverse to the branes and whose on-brane geometries

are maximally symmetric; and (iv) we linearize the brane properties about

the choices that source simple rugby-ball geometries (which have flat on-brane

geometries despite having nonzero tensions).

The last two of these assumptions deserve some motivation. The lin-

earization about rugby ball geometries (5.6; 5.13; 5.15; 5.16) is made in order

to allow the search of their immediate neighborhoods in field space to be sys-

tematic; the linearity of the equations allows the construction of their most

general solutions. We do not believe that the qualitative features of our re-

sults (like the existence of very large volume solutions, and the suppression of

on-brane curvatures) depend strongly on this assumption.

By contrast, at first blush the assumption of maximal symmetry might

seem more restrictive, since maximal symmetry is known not to be possible

for a majority of brane configurations and the general situation is expected to

be time-dependent (5.18). We employ a trick to explore such configurations:

we stabilize the time-dependent runaway by turning on an external current

that couples to the system’s low-energy moduli. In this way we can explore

the potential energy cost that drives these runaway solutions, at least at the
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low energies of main interest.

The supergravity of interest has a one-parameter flat direction, labeled

by a particular combination of the 6D dilaton and the breathing mode of the

extra-dimensional metric. Our main calculation interest for this theory is in

the potential energy generated for this flat direction by the back-reaction of

the bulk-brane couplings; and in the related change of shape of the extra-

dimensional geometry. We find that these display the following noteworthy

features:

• Volume stabilization: Any non-derivative coupling of the branes to the

bulk dilaton, φ, breaks the classical scaling symmetry of the bulk field

equations, and so lifts the degeneracy of the classical zero mode. Be-

cause the bulk volume depends exponentially on the canonically normal-

ized dilaton, φ, we find that a mild hierarchy in the brane-bulk coupling

parameters can easily generate an exponentially large extra-dimensional

volume. The exception to this is if the branes also couple only to expo-

nentials of φ, as is in particular often true for D-branes.

• Suppressed on-brane curvature: A remarkable feature of rugby ball ge-

ometries is that their on-brane directions are flat despite the presence of

large brane tensions. We find that perturbations about these geometries

can – but need not – share this feature, having on-brane curvatures that

are parametrically small compared with the generic size of the on-brane

tensions. In particular, a mechanism for achieving such solutions arises

for some types of dilaton-brane couplings since the dilaton can be driven

to roll out to large fields along the flat direction to find places where the

on-brane tension and curvature are the smallest.
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• Relevance of on-brane fluxes: Flux quantization within the bulk provides

a strong constraint on flux-stabilized rugby-ball geometries, and in the

simplest examples gives rugby-ball perturbations whose on-brane curva-

tures are not suppressed. An important part of our ability to find other

solutions with lower curvature is our inclusion of brane-localized flux,

corresponding to a magnetic coupling of the branes to the geometry-

stabilizing fluxes. In this way our calculations bear out the earlier ex-

pectations of ref. (5.6).

• Quantum corrections: In section 5.4.3 we provide a preliminary estimate

of the size of quantum corrections for a particularly promising toy model,

with both exponentially large volumes and a suppressed on-brane curva-

ture. Our estimates indicate these properties need not be destabilized by

quantum effects on the brane or in the bulk. They do not do so because

it is the value taken by the dilaton along the classical flat direction itself

that plays the role of the loop-counting parameter (similar to what hap-

pens for string vacua), and this constrains how quantum effects can alter

the dynamics that determines what this value is. In particular, we find

that provided the brane couplings are arranged to lie within the regime

of weak coupling, the conclusions of the classical analysis are protected

from loop effects.

• Bulk distortion: Although the rugby ball solutions themselves are simple

we find that the nearby geometries are more generic, including warping

and nontrivial dilaton profiles across the extra dimensions.

• Modulus-matter couplings: Having the dilaton couple to branes only

through an overall prefactor implies a universal coupling to ordinary
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matter, if this resides on a brane. This is likely to have interesting phe-

nomenological implications if the moduli can be arranged to be light

enough to mediate macroscopic forces. It is noteworthy that these cou-

plings can have the form required to profit from a ‘chameleon’ mechanism

(5.24).

We regard these properties to be new examples of how low-energy brane

dynamics can change how one thinks about technical naturalness and hierar-

chies of scale. In particular, the natural generation of exponentially large

volumes in the 6D model explored here fills in a key missing step in efforts to

use large volumes to solve the gauge hierarchy problem.

Although none of the solutions explored here have on-brane curvatures

that are low enough to describe the Dark Energy density, the existence in

some models of a mechanism for robust parametric suppression of the on-brane

curvature is very suggestive. We regard this as encouragement to continue to

explore this direction for new approaches to the cosmological constant problem.
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Chapter 6
Technically Natural Cosmological

Constant From Supersymmetric

6D Brane Backreaction

6.1 Preamble

This chapter is based on the work in (6.1). We use the techniques of the pre-

vious chapters to construct a 6 dimensional extension to the standard model.

This model is an explicit realization of the proposal (6.2) of supersymmetric

large extra dimensions (SLED) as an approach to tackle the cosmological con-

stant problem. The possibility to have part of the stabilizing flux localized on

the branes addresses a previous obstruction: the flux quantization condition

in our construction can be satisfied for any value of the brane tensions by

adjusting the value of the dilaton.

The least attractive feature of this construction is that the brane mag-

netic coupling is huge — much larger than any other scale in the problem.
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However, the coupling never appears without an accompanying factor of the

exponent of the dilaton. The dilaton is stabilized at a large negative value,

which causes the combination of dilaton and magnetic coupling that can ap-

pear in loops to be sufficiently small. This means that in the end the con-

struction is stable under quantum corrections, including the large magnetic

coupling. This means that this is a technically natural construction that has

a sufficiently small cosmological constant.
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6.2 Introduction

The cosmological constant problem (6.3) remains an important conceptual

obstacle to our understanding of the hierarchies of the physical world. The

puzzle of why the electroweak scale is much smaller than the Planck (and

possibly GUT) scale has motivated many proposals for what kinds of physics

might lie at TeV energies — supersymmetry, compositeness, extra dimensions

and so on — that have been famously used to motivate many choices made

when designing the now-operational Large Hadron Collider (LHC). But the

same reasoning applied at the much lower, sub-eV energies relevant to the

scale of Dark Energy seems to fail to explain how the vacuum energy can

gravitate as weakly as it appears to do.

Many have remarked that extra dimensions (and large ones) can help

with the cosmological constant problem, because they break the connection be-

tween the energy density of a 4-dimensional vacuum (which we believe should

be large), and the curvature of the visible universe (which we observe to

be small) (6.4; 6.5; 6.6; 6.2; 6.7). The problem in four dimensions is that

the Einstein equations force these to be the same, since 〈Tµν〉 = 1
4
T gµν for

any Lorentz-invariant state, implying Rµν = −2πGT gµν . But once there are

more than four dimensions then we need not demand the vacuum be Lorentz-

invariant in the higher dimensions. And a large energy density that is Lorentz

invariant in the 4D sense (such as a brane tension), can curve the extra dimen-

sions rather than the four dimensions that are Lorentz-invariant. In particular,

explicit solutions to the higher-dimensional field equations with brane sources
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are known that have this property, at least when there are not too many extra

dimensions (6.4; 6.6; 6.2).

But the existence of some choices for brane sources for which bulk

solutions can be flat is not in itself a solution to the cosmological constant

problem. What must be shown is that these choices are sufficiently stable

against integrating out heavy fields, including the electron.

In this paper we provide an explicit example of an extra-dimensional

model which we believe predicts a 4D curvature whose size is controlled by

the Casimir energy of the extra dimensions, R ' m4
KK/M

2
p , where mKK is the

Kaluza-Klein (KK) scale and Mp is the Planck scale. In particular, it can

be much smaller than what would be expected from the scales M � mKK of

particle physics. We regard it as a realization of an earlier general proposal

— supersymmetric large extra dimensions (SLED) (6.2) — wherein ordinary

particles are localized on a space-filling (3+1)-dimensional codimension-two

brane that sits within a (5+1)-dimensional bulk spacetime with two compact

dimensions transverse to the brane. We take the bulk to be described by a

particular 6D supergravity (chiral, gauged supergravity (6.8)), but we believe

the underlying mechanism applies equally well to other 6D supergravities, and

more generally to other low-codimension brane systems interacting through

bulk supergravities, once their back-reaction onto the bulk is accurately in-

cluded.

A proper description of the vacuum energy must include in particular

the energetics that stabilize the extra dimensions, and an advantage of the

particular model we study is that many features of the extra-dimensions are

stabilized within the bulk (without reference to the branes) at the classical level

by a simple flux compactification (6.9), leaving only the single flat direction
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that is guaranteed by the classical scale invariance of the bulk supergravity.

It has been known for some time that brane back-reaction can lift this

last flat direction (6.10; 6.11; 6.12; 6.13), and what is new about our contribu-

tion here is to show that there is a simple choice for the brane-bulk couplings

that can fix this last flat direction without generating an on-brane curvature,

assuming we work only to within the classical approximation in the bulk (more

about quantum corrections below). Two brane properties are required: (i) the

absence of a direct brane coupling to the bulk dilaton (a scalar superpartner of

the graviton in six dimensions); and (ii) a Maxwell-brane coupling that allows

one of the branes to carry a localized amount of the bulk-stabilizing flux.

What is remarkable is that these properties are unchanged under arbi-

trary loops of the on-brane fields, including in particular loops of all ordinary

particles of everyday experience (which we assume to be localized on one of the

branes). This is possible because property (i) — the absence of a coupling to a

bulk field — is automatically preserved by brane loops if it is true at the classi-

cal level. Loops of ordinary particles also cannot alter the brane-localized flux

coupling required by property (ii) if the brane-bound particles do not couple

to the bulk flux field. In the model explored below we assume the brane-flux

coupling occurs on a different brane from that on which all brane particles are

localized.

The requirement for brane-localized flux — property (ii) above — turns

out to be the new crucial ingredient, since it is the possibility of being able to

localize some bulk fluxes onto the brane that allows the system to respond with

little energy to changes of brane tension (6.13). It is also this brane-localized

flux that is responsible for stabilizing the remaining flat direction in the bulk,

which it can do because the bulk flux field couples to the 6D scalar dilaton
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that parameterizes this flat direction.

We lay out our arguments in the following way. First, the remainder

of this section carefully defines the notion of ‘technical naturalness,’ whose

absence is the essence of the cosmological constant problem. We do so be-

cause we believe that a resolution of this problem ultimately points towards a

world with two supersymmetric extra dimensions at sub-eV scales. Although

this seems an extreme possibility, there seem to be no alternatives short of

abandoning technical naturalness altogether. In the words of Sherlock Holmes

(6.14) “...when you have eliminated the impossible, whatever remains, however

improbable, must be the truth.”

§6.3 then describes in detail the simple bulk and brane systems on

whose properties our proposal rests. In particular this section describes the

exact classical solutions that capture the back-reaction of the branes to the

bulk and which govern the geometry of both the on-brane and off-brane di-

mensions. The size of quantum corrections is the topic of §6.4, which studies

both the implications of loops of on-brane and bulk modes. This section argues

why loops of brane-localized fields do not change the conclusions of §6.3 at all,

and why the leading contributions come from bulk loops only. The contribu-

tions of massless and massive fields in the bulk are contrasted, and both are

argued only to generate contributions to the low-energy 4D scalar potential

that are of order m4
KK. Our conclusions are summarized in §6.5, including a

qualitative discussion of why both extra dimensions and supersymmetry are

required. This section closes with a brief summary of what is known about

the potentially rich observational signatures that are implied by the present

framework, together with a summary of issues needing further study. Three

appendices deal with technical issues about localizing flux on branes; calculate
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the low-energy 4D potential for arbitrary small perturbations to the brane ac-

tions; and examine two common objections to the possibility of using extra

dimensions to help with the cosmological constant problem.

6.2.1 Technical naturalness (without cutoffs)

Notions of ‘technical naturalness’ are central to our motivation, so we pause

here to state these carefully. We believe our discussion largely keeps to the

party line, though we make an effort not to cast the issues in terms of cutoffs

in divergent integrals. Those familiar with the issues should feel free to skip

this section entirely.

An understanding of hierarchies of scale, like the electroweak hierarchy

or the cosmological constant problems, comes in two parts. The first part

asks why the hierarchy of scales exists in the first place in the fundamental

theory at very small distances. Because this question is sensitive to physics

at the fundamental scale — possibly the string scale or some other quantum

gravity scale — it might not be answered until we ultimately understand this

fundamental theory in detail. The second part of the understanding asks

why the hierarchy is stable when various massive states are integrated out

to produce one of the effective theories that describes the implications of the

fundamental theory at the low energies we can observe.

Technical naturalness is addressed at this second part of the problem,

since the low-energy effective theory is not unique (depending as it does on

the energy range that is of interest for a particular low-energy observer). Yet

it is implicit in our understanding of physics that a large hierarchy can be

understood equally well in any of the effective theories for which we choose to
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ask the question.

For example, a large hierarchy that is well-understood is the small size

of the nucleus, `n, relative to the size of an atom, a0. Within the standard

model the small ratio `n/a0 ' 10−5 is understood as being a consequence of

two other experimental facts: the electromagnetic coupling constant is weak:

α = e2/4π ' 10−2; and the electron is light compared with the QCD scale,

me/ΛQCD ' 10−3. The small size of the nucleus is then a consequence of the

relations a−1
0 ' αme and `−1

n ' ΛQCD.

But the same question might again be asked within a lower-energy ef-

fective theory below the QCD scale, say within the quantum electrodynamics

of electrons, protons and neutrons. In this theory the small ratio of observ-

ables, `n/a0, is instead understood as a consequence of the small size of α in

this theory, together with the electron being much lighter than the proton:

me � mp. The process of integrating out the quarks and gluons to give the

proton and neutron (or integrating out the muon or other particles) does not

fundamentally change the way we think about nuclei being small, and this is

what it means1 for this hierarchy to be ‘technically natural.’

Contrast this with our understanding of the small ratio between the

observed Dark Energy density, ρvac, and the electron mass (say): ρvac/m
4
e '

10−36. Consider the low-energy theory well below the electron mass, for which

the fundamental particles might be taken to be photons, neutrinos and gravi-

tons. For this theory ρ is given by the cosmological constant that appears

in the low-energy effective action, plus the loop contributions of these very

1As originally formulated (6.15), a small ratio is said to be technically natural if a new
symmetry emerges when the ratio goes to zero. This is a particularly important way of
ensuring technical naturalness in the way we define it here.
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low-mass particles:

ρvac ' λle + low-energy loops , where Leff = −
√
−g
(
λle + · · ·

)
. (6.1)

Compare this with the same calculation, performed in the effective

theory defined above the electron mass, containing electrons in addition to the

previously considered low-energy particles. There is an effective cosmological

constant, λhe, also in this effective theory, whose value is related to λle by a

matching condition that states that the physical quantity, ρ, should be the

same in this theory as in the lower-energy effective theory. This implies that

the renormalized value of λhe in the effective theory above the electron mass

is related to that below, λle, by

λle ' λhe +
km4

e

16π2
, (6.2)

where k is an order-unity number whose value is computed by evaluating an

electron loop graph. This kind of shift, λle → λhe occurs as we match across

the electron threshold because the low-energy theory is obtained by integrating

out the electron, meaning electrons are not present there to contribute to ρ

through loops. Eq. (6.2) expresses how λ must change between the two theories

to ensure that the low-energy theory ‘knows’ about the contributions of virtual

electrons to the vacuum energy.

Now comes the main point. Since all of the masses of particles in the

very low-energy theory below the electron threshold are small, λle is of the

same order of magnitude as is ρvac. Consequently eq. (6.2) implies λhe must be

much larger than ρ in the effective theory above the electron threshold. This
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nevertheless produces a small value for ρ in this higher-energy theory because

of a cancelation of roughly 36 decimal places between λhe and an equally large

electron loop, with the much smaller value, λle, of the lower-energy theory

emerging as the residue.

Instead of there being an understanding in all effective theories why λ

is smaller than m4
e, the small size of λle in the very low-energy theory is un-

derstood as arising as an incredibly detailed cancelation between much larger

quantities like λhe and loops of the many much heavier particles the higher-

energy theories contain. Of course, it is logically possible that this is the way

nature works. But although we know about very many other hierarchies in

nature (besides that between atoms and nuclei), so far as we know none of

these are understood in this way.

It is a radical proposal that advocates that new hierarchies should be

understood so very differently than those we’ve understood well in the past.

A more scientifically conservative approach is instead to seek a technically

natural understanding of poorly understood hierarchies like the electroweak

hierarchy and the Dark Energy density. Of course this is a very tall order for

the Dark Energy, since its very small size means that any successful approach

must modify the properties of comparatively low-energy particles (like the

electron).

Purging cutoffs

Notice that the previous paragraphs are all formulated in terms of physical,

or of renormalized, masses. Technical naturalness is often stated in a cutoff-

dependent way, in terms of the absence of quadratic or quartic divergences

when loop contributions are computed within a low-energy effective theory.
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We deliberately do not phrase things here in terms of cutoffs because we believe

this can be a confusing way to express the physical issues at stake.

At face value quadratic dependence on a cutoff sounds like the same

thing as sensitivity to heavy particle masses, because within a cutoff regular-

ization the value of the cutoff very concretely specifies where the high-energy

theory starts and a low-energy effective theory breaks down. Furthermore,

quadratic or higher dependence on a cutoff indicates a strong sensitivity of

a loop integral to the details of the unknown high-energy physics. However,

from the point of view of a Wilsonian effective field theory, cutoffs are one

of the few things we can be sure never enter into physical quantities, because

they are an artefact of how a theorist decides to organize a calculation into a

low- and high-energy contribution (6.16; 6.17). In particular, damage done by

using a silly or inconvenient regularization, can be undone by appropriately

renormalizing the resulting theory.

From this point of view the scale of the cutoff in the low-energy theory is

really only a proxy for a bona fide mass of a state in the UV completion, and the

presence of quadratic divergences really only provide a qualitative indication

of when heavy masses can appear as an enhancement when integrating out a

heavy particle. But in the end, the relation between cutoffs and heavy masses

is not quantitative, and to properly decide whether heavy masses contribute

significantly to an observable really requires knowledge of the UV completion

that describes its properties, and cannot be decided purely within the low-

energy theory. In general, the coefficients of quadratic divergences do not track

those of heavy masses, and one can get burned by taking the correspondence

between heavy masses and cutoffs too seriously (6.18).
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6.3 Classical brane-bulk dynamics

We start by summarizing the bulk-brane system of interest, which we choose

closely following ref. (6.13). Since our results depend only on the dynamics of

codimension-2 branes within higher-dimensional supergravity (together with

the classical scale invariance these supergravities naturally enjoy), we believe

our results not to be limited to the specific six-dimensional supergravity we

examine here in detail.

6.3.1 The bulk system

We take chiral gauged supergravity in six dimensions (6.8) to govern the bulk

physics, to which we couple two space-filling, positive-tension branes that

strongly break supersymmetry. The bulk fields whose dynamics we follow

in detail are the metric, gMN ; a flux-stabilizing bulk Maxwell gauge potential,

AM ; and the 6D scalar dilaton, φ.

Field equations

The bulk bosonic action restricted to these fields is2

Sbulk = −
∫

d6x
√
−g

{
1

2κ2
gMN

(
RMN + ∂Mφ ∂Nφ

)
+

1

4
e−φFMNFMN +

2 g2
R

κ4
eφ
}
, (6.3)

where F = dA denotes the gauge potential’s field strength, and κ and gR are,

respectively, the dimensionful coupling constants for gravity and for a specific

2We use a ‘mostly plus’ metric and Weinberg’s curvature conventions (6.19) (that differ
from those of MTW (6.20) only by an overall sign in the definition of the Riemann tensor).
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UR(1) symmetry of the supersymmetry algebra. The full gauged supergravity

has more bosonic fields than this, but the rest can be set to zero consistent

with their equations of motion. The background gauge field, AM , need not be

the one that gauges the UR(1) symmetry so its gauge coupling, g, need not

equal gR.

The equations of motion from this action are the (trace reversed) Ein-

stein equations

RMN +∂Mφ ∂Nφ+κ2e−φFMPFNP−
(
κ2

8
e−φFPQFPQ − g2

R

κ2
eφ
)
gMN = 0 , (6.4)

the Maxwell equation

∇M(e−φFMN) = 0 , (6.5)

and the dilaton equation

tuφ− 2 g2
R

κ2
eφ +

κ2

4
e−φFMNFMN = 0 . (6.6)

These field equations enjoy the exact classical symmetry

gMN → ζ gMN and e−φ → ζ e−φ , (6.7)

with AM → AM . This ensures the theory has three important properties:

• It ensures any nonsingular solution is always part of a one-parameter

family of solutions that are exactly degenerate (within the classical ap-

proximation);

• It ensures that there exists a Weyl rescaling, ǧMN = eφ gMN , for which

φ appears undifferentiated in the bulk action only as an overall factor.
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That is,

Sbulk = −
∫

d6x
√
−ǧ e−2φL(ǧMN , ∂Mφ, FMN) , (6.8)

where L only depends on derivatives of φ. Eq. (6.8) is significant because

it shows that the quantity e2φ plays the role of 1/~, and so is the loop-

counting parameter for the bulk part of the theory.

• It ensures that once evaluated at any solution of the field equations —

i.e. eqs. (6.4) through (6.6) — the action, eq. (6.3), evaluates to a total

derivative (6.21),

Sbulk

∣∣∣
soln

=
1

2κ2

∫
d6x
√
−g tuφ . (6.9)

6.3.2 Brane properties

We focus on configurations involving two space-filling (3+1)-dimensional branes,

whose coupling to the bulk fields we take to be given by the leading terms in

a derivative expansion:

Sbranes = −
∑
b

∫
d4x
√
−g4

[
Tb(φ)− 1

2
Φb(φ) εmnFmn + · · ·

]
, (6.10)

where the ellipses indicate terms involving two derivatives or more.3 In general

the coupling functions Tb and Φb can depend on φ, as well as any fields localized

on the branes (which we denote collectively by ψ). If Tb is independent of φ

and Φb ∝ e−φ, then the brane action transforms under the classical scaling

symmetry, eq. (6.7), in the same way as does the bulk action, ensuring that

the brane couplings do not break the classical bulk scale invariance.

3Notice that we normalize the quantity Φb slightly differently than in ref. (6.13).

257



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

The parameter Tb represents the tension of the brane, and our conven-

tions are such that Tb > 0 corresponds to positive tension. The parameter

Φb corresponds physically (6.13) to the amount of magnetic flux that is lo-

calized on the source branes (see eq. (6.23) below). When Tb drops out of

the low-energy energetics – as is the case below – keeping nominally subdomi-

nant terms in the derivative expansion like the magnetic coupling to the brane

becomes important (6.2).

Let us now specify the properties of the two source branes in more

detail. First is the observer’s brane, So, on which all ordinary particles are

imagined to reside,

To = τo + gµν∂µψ
∗∂νψ +M2ψ∗ψ + · · · , (6.11)

and on which there is no flux,4 Φo = 0. ψ here could represent the Higgs boson,

but more broadly is meant as a proxy for all of the fields of the Standard Model.

The goal of later sections is to show that the on-brane curvature can be made

systematically small compared with M4/M2
p in a technically natural way.

Second is what we call the ‘flux’ brane, on which no fields are localized

and for which

Tf = τf and Φf = µ . (6.12)

Here τo, τf , µ and M are dimensionful parameters that define the energy

scales of the system. Although the validity of semiclassical reasoning requires

quantities like κ2τb and κ2M4 to be smaller than order unity, we do not assume

τf , τo or M4 to be particularly small relative to one another, and we wish to

4Since our conclusions depend only on the total brane flux, Φo + Φf , the vanishing of Φo
is not necessary.
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identify when the low-energy 4D curvature is set by scales that are much

smaller than these.

What is important for what follows is that the choices (6.11) and (6.12)

ensure that the classical brane actions are both independent of the bulk field φ.

Our choices also ensure there is no direct coupling between the brane-localized

fields ψ and the bulk Maxwell field, FMN .

6.3.3 Bulk-brane interactions

We next turn to the bulk configurations to which these two branes give rise. In

what follows it suffices to focus on solutions that are maximally symmetric in

the four on-brane directions, and are symmetric under rotations in the extra

dimensions about the two brane positions. This leads to the following ansätze

for the metric and Maxwell field:

ds2 = dρ2 + e2Bdθ2 + e2W ĝµνdx
µdxν and A = Aθ dθ , (6.13)

where ĝµν(x) is a maximally symmetric metric, and the functions W , B, φ and

Aθ depend only on ρ.

In this case the bulk field equations reduce to

(
e−B+4W e−φA′θ

)′
= 0 (Aθ)(

eB+4Wφ′
)′ − (2g2

R

κ2
eφ − 1

2
κ2Q2 eφe−8W

)
eB+4W = 0 (φ)

4
[
W ′′ + (W ′)2

]
+B′′ + (B′)2 + (φ′)2 +

3

4
κ2Q2 eφe−8W +

g2
R

κ2
eφ = 0 (ρρ)

B′′ + (B′)2 + 4W ′B′ +
3

4
κ2Q2 eφe−8W +

g2
R

κ2
eφ = 0 (θθ)

1

4
e−2W R̂ +W ′′ + 4(W ′)2 +W ′B′ − 1

4
κ2Q2 eφe−8W +

g2
R

κ2
eφ = 0 , (µν)
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(6.14)

where primes denote differentiation with respect to the coordinate ρ. The first

of these can be integrated once exactly, introducing an integration constant,

Q:

Fρθ = A′θ = Q eφeB−4W . (6.15)

Evaluated with this ansatz, the brane action, eq. (6.10), becomes

Sbranes = −
∑
b=o,f

∫
d4x
√
−ĝ4 e

4WLb , (6.16)

where Lb is given for each brane in terms of Tb and Φb by

Lb := Tb − Φb e
−BFρθ + · · · = Tb −QΦb e

φ e−4W + · · · . (6.17)

Brane matching conditions

The brane-bulk couplings impose a set of boundary conditions on the deriva-

tives of the bulk fields in the near-brane limits, that are the generalization

to codimension-2 of the more familiar Israel junction conditions (6.22) of

codimension-1. The precise conditions were recently worked out for codimension-

2 branes (6.10; 6.11; 6.12) (see also (6.23; 6.24)), and state:

[
eBφ′

]
ρb

=
∂Lb
∂φ

,
[
eBW ′

]
ρb

= Ub and
[
eBB′ − 1

]
ρb

= −
[
Lb + 3Ub

]
,

(6.18)
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where both sides are evaluated in the near-brane limit,5 ρ→ ρb, and as before

primes denote differentiation with respect to ρ. The quantities Lb and Ub

appearing here are

Lb :=
κ2Lb
2π

and Ub :=
κ2

4π

(
∂Lb
∂gθθ

)
. (6.19)

Notice that it is not necessary to know how Lb depends on gθθ in order to eval-

uate Ub, because the bulk field equations require Ub must satisfy the constraint

(6.10; 6.11; 6.12)

4Ub
[
2− 2Lb − 3Ub

]
− (L′b)2 ' 0 , (6.20)

where L′b = ∂Lb/φ, and so

Ub =
1

3

[
(1− Lb)−

√
(1− Lb)2 − 3

4
(L′b)2

]
' (L′b)2

8(1− Lb)2
+ · · · , (6.21)

where the root is chosen so Ub → 0 when (L′b)2 → 0.

The corresponding boundary condition for the Maxwell field implies

that in a coordinate patch containing each source brane, eq. (6.15) integrates

to (see also Appendix D.1) (6.13)

Aθ(ρ) =

(
Φo

2π

)
eφo +Q

∫ ρ

ρo

dρ̃ eφ+B−4W observer brane

= −
(

Φf

2π

)
eφf +Q

∫ ρ

ρf

dρ̃ eφ+B−4W flux brane , (6.22)

where Φo := limρ→ρo Φo[φ(ρ)] — appropriately renormalized (6.25) — and so

5An important complication for codimension-2 branes over codimension-1 is that both
sides of eqs. (6.18) generically diverge in the near-brane limit; requiring a renormalization
of the brane action (6.25). (This renormalization turns out to be unnecessary in the special
case of D7-branes in Type IIB supergravity (6.12).)
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on.

Requiring these two solutions to differ by a gauge transformation, g−1∂θΩ,

on regions of overlap between the two patches implies the flux-quantization

condition

n

g
=

1

2π

(
Φo e

φo + Φf e
φf
)

+Q
∫ ρf

ρo

dρ eφ+B−4W . (6.23)

This identifies Φtot =
∑

b Φb e
φb as the part of the total magnetic flux carried

by the branes (6.2).

6.3.4 Explicit solutions

A great many explicit solutions to the above field equations and boundary

conditions have been found, starting almost 30 years ago (6.9). Some of these

are known at the linearized level (6.26; 6.13), while others are exact solutions

(6.2; 6.27; 6.21; 6.28; 6.29; 6.30; 6.31; 6.32). Many of these solutions provide

explicit compactifications from six to four dimensions, and provide among the

earliest examples of flux-stabilized compactifications.

For the present purposes, what is most interesting about the exact

solutions is that the most general solutions are known (6.2; 6.27; 6.21; 6.28)

for the special case where the dilaton’s radial derivative, φ′, tends to zero at

both brane positions. As is clear from the boundary conditions, eqs. (6.18),

these solutions are the ones appropriate for the case where the brane actions

do not depend on φ: ∂Lb/∂φ = 0. What is remarkable about these solutions

is that for all of them the on-brane geometries are flat: ĝµν = ηµν . We now

briefly summarize these solutions in more detail.

262



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

Rugby balls

A particularly simple situation is the special case where the dilaton is constant,

φ = ϕ0, since then the solution is very easy to visualize: a rugby ball, sourced

by two branes (6.2):

ds2 = e−ϕ0

[
dρ̂2 + α2`2 sin2

(
ρ̂

`

)
dθ2

]
+ ĝµνdx

µdxν

Fρθ = Fρ̂θ e−ϕ0/2 = Qeϕ0/2α` sin

(
ρ̂

`

)
. (6.24)

With this metric the volume of the extra dimensions is

V2 = 4πα`2e−ϕ0 , (6.25)

showing that the flux-stabilization fixes the extra-dimensional volume in terms

of the scalar-field value, ϕ0.

In these coordinates6 the two source branes for this geometry are situ-

ated at ρ̂o = 0 and ρ̂f = π`. This geometry has a conical singularity at these

points, characterized by the defect angle δ = 2π(1 − α). In the special case

α = 1 the extra-dimensional geometry is a sphere (6.9). For these rugby-ball

solutions the matching conditions, eqs. (6.18), degenerate to a relationship

between the deficit angle and the lagrangian density, Lo = Lf = L, of the two

source branes,

1− α =
κ2L

2π
, (6.26)

as expected from other approaches (6.33).

The equations of motion determine the values of Q and ` as well as the

6Notice the coordinate rescaling ρ := e−ϕ0/2ρ̂ between this solution and the ansatz of
eq. (6.13).
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curvature of the on-brane directions:

Q = ±2gR
κ2

` =
κ

2gR
and ĝµν = ηµν , (6.27)

while the flux quantization condition implies

n

g
=

α

gR
+

(
Φo + Φf

2π

)
eϕ0 , (6.28)

where the last equality uses eqs. (6.27).

The interpretation of this last equation differs according to whether or

not
∑

b Φb e
φb depends on ϕ0. If not — such as in the scale-invariant case

where Φb ∝ e−φb — then eq. (6.28) must be regarded as a constraint on the

parameters of the brane action which, if not satisfied, is an obstruction to

the existence of solutions satisfying our assumed symmetry ansatz. But if∑
b Φb e

φb depends on ϕ0 then this equation can be read as determining the

value of ϕ0, which is not fixed by any of the other field equations.

These properties have a simple interpretation from the point of view

of the low-energy 4D effective theory (6.13; 6.34). The reason ϕ0 is not fixed

by the other equations is because it is the parameter that labels the one-

parameter family of solutions whose existence is guaranteed by the scale in-

variance, eq. (6.7), of the classical bulk field equations. If both Tb and Φb e
φ

do not depend on φ the brane couplings do not break this scale invariance,

implying the classical low-energy potential for ϕ0 must have an exponential

form, Veff = Ae2ϕ0 . In this case there are two situations: (i) ϕ0 labels a flat

direction (and so is undetermined by the field equations) if A = 0, or (ii)

ϕ0 necessarily runs away to ±∞ if A 6= 0 (and so for finite ϕ0 there are no
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solutions to the equations that are maximally symmetric in the on-brane direc-

tions). As is shown in (6.13) (see also Appendix D.2), eq. (6.28) corresponds

in the low-energy theory to the condition A = 0.

However, in the case of interest – c.f. eqs. (6.11) and (6.12) –
∑

b Φb e
φ

does depend on φ, and so the brane-bulk couplings break the bulk scaling

symmetry. In this case ϕ0 appears only in eq. (6.28), which should be read as

fixing its value. From the point of view of the low-energy 4D theory (details in

Appendix D.2), ϕ0 gets fixed because the breaking of scale invariance lifts the

flat direction, through a Goldberger-Wise-like (6.35) stabilization mechanism

for codimension-2 branes. In this case all of the field equations are not satisfied

unless ϕ0 is chosen to minimize this potential.

Unequal tensions

Because the above rugby ball solutions have equal defect angles at both brane

positions, they only describe situations where the two branes have precisely

equal tensions. But the general solutions that apply when φ′ → 0 at both

branes are known (6.21; 6.27; 6.28), including those having two unequal brane

tensions, which we now describe.

In this case the metric can be written

ds2 =W2 ĝµν dxµdxν + a2e−ϕ0

(
W8dη2 + dθ2

)
, (6.29)

where a = a(η), W =W(η) and (as before) ĝµν is a maximally symmetric on-

brane geometry. The dilaton is similarly taken to depend only on η, φ = φ(η),
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and the Maxwell field is given by Aθ = Aθ(η), so that

Fηθ = Qa2 eφe−ϕ0 , (6.30)

with Q an integration constant. With these choices proper distance along the

direction between the branes is dρ = aW4dη e−ϕ0/2, the proper circumference

of a circle along which θ varies from zero to 2π at fixed η is C = 2πa(η) e−ϕ0/2,

and the extra-dimensional volume is V2 = 2πe−ϕ0
∫

dη a2W4. In particular,

when ϕ0 is moderately large and negative — so the bulk coupling satisfies

eϕ0 � 1 — then the ‘radius’ defined by V2 = r2 can become exponentially

large: r2 ∝ e−ϕ0 .

The general solution to the bulk field equations having only conical

defects is known explicitly for these variables, given by ĝµν = ηµν together

with

eφ = W−2eϕ0

W4 =

(
κ2Q

2gR

)
cosh[λ(η − η1)]

cosh[λ(η − η2)]
(6.31)

and a−4 =

(
2gRκ

2Q3

λ4

)
cosh3[λ(η − η1)] cosh[λ(η − η2)] ,

showing that η2 − η1, λ, ϕ0 and Q are the independent integration constants.

The position of the two source branes in these coordinates is η → ±∞.

Since the near-brane limit of the proper distance is

dρ = ∓e−ϕ0/2aW4 dη → ∓C e∓λη dη , (6.32)
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the defect angle in the geometry as η → ±∞ turns out to be

α± :=

(
2λgR
κ2Q

)
e∓λ(η2−η1) . (6.33)

The product of these last two expressions show how the integration constant

Q is fixed in terms of the tensions of the two branes:

α+α− =

(
2λgR
κ2Q

)2

. (6.34)

It is fixed in this way because it must be adjusted to ensure that the solution

to the dilaton field equation is consistent with the boundary condition that

φ′ → 0 at both branes. Once this is done the solutions have three independent

parameters that may be dialed: the two tensions (or defect angles) and the

parameter ϕ0 that labels the orbit of the classical scale symmetry.

The flux-quantization condition is found by computing Aθ(η) near the

brane at η → ±∞, giving

A±θ =

(
Φo

2π

)
eφo +

λ

κ2Q

{
tanh[λ(η − η1)] + 1

}
observer brane

= −
(

Φf

2π

)
eφf +

λ

κ2Q

{
tanh[λ(η − η1)]− 1

}
flux brane , (6.35)

and so flux quantization becomes

n

g
=

2λ

κ2Q
+

1

2π

(
Φo e

φo + Φf e
φf
)

=
(α+α−)1/2

gR
+

1

2π

(
Φo

W2
o

+
Φf

W2
f

)
eϕ0 , (6.36)

where W4
0 = λ/α+ and W4

f = λ/α−. Notice this reduces to the rugby-ball

267



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

quantization condition in the limit that7 α+ = α− = α.

Response to brane perturbations

Crucial to what follows is what happens to these solutions when properties of

the source branes are varied. Most importantly, the above solutions require

their source branes to satisfy two separate conditions:

(i)
∂Lb
∂φ

= 0 (6.37)

(ii) flux quantization (i.e. eq. (6.36)) .

Notice in particular that it is not necessary to require Lo = Lf , which just

corresponds to the special case of rugby-ball solutions.

These conditions provide the motivation for the choices made for the

brane lagrangians given above — eqs. (6.11) and (6.12). The φ-independence

of both Tb and Φb is designed so that both branes do not couple to φ, ensuring

∂Lo/∂φ = ∂Lf/∂φ = 0 as required by condition (i). But because these choices

imply that the flux-quantization condition depends on ϕ0, condition (ii) is

automatically satisfied for an appropriate choice ϕ0 = ϕ?. Using Φo = 0 and

Φf = µ:

eϕ? =
2πW2

f

µ

[
n

g
− (α+α−)1/2

gR

]
. (6.38)

This adjustment of ϕ0 also has an energetic interpretation. This can

be shown explicitly for small perturbations about rugby-ball geometries (see

Appendix D.2 for details), for which condition (ii) can be seen to be the

condition for minimizing the brane-generated scalar potential that lifts the

7Notice that in the equal-tension limit the warp factor at the brane position is W4
o =

W4
f = λ/α, which was set to one in the rugby-ball solution by rescaling the coordinates xµ.
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flat direction for ϕ0 in the low-energy 4D effective theory.

The same thing can also be shown beyond the linearized approxima-

tion. On general grounds, for the system studied here the effective 4D scalar

potential responsible for the on-brane curvature is given by (6.10; 6.12)

Veff(ϕ0) = Vbrane(ϕ0) + Vbulk(ϕ0) , (6.39)

where the ‘bulk’ contribution is given by evaluating the bulk action at the bulk

solution generated by the source branes,

√
−g4 Vbulk = −

∫
d2xLbulk = − 1

2κ2

∫
d2x
√
−g tuφ

=
2π

2κ2

∑
b

√
−g nM∂Mφ =

1

2

√
−g4 L

′
b . (6.40)

where we use the general result, eq. (6.9), nM is the normal vector directed

into the bulk, evaluated at the position of each brane, and we use the dilaton

matching condition, eq. (6.18), to trade nM∂
Mφ for L′b = dLb/dφ evaluated at

the brane.

The ‘brane’ contribution to eq. (6.39) is similarly given by the sum of

the brane action, Lb, and a ‘Gibbons-Hawking’ contribution, for each brane.

This leads to

Vbrane =
∑
b

Ub , (6.41)

with Ub given by eqs. (6.19) and (6.21). Notice in particular that near a zero

of L′b the function Ub vanishes quadratically:

Ub =
κ2Ub
2π
' (L′b)2

8(1− Lb)2
+ · · · , (6.42)
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where Lb = κ2Lb/2π.

Combining terms, the total brane-generated effective potential becomes

Veff =
∑
b

(
Ub +

1

2

∂Lb
∂φ

)
. (6.43)

Notice in particular how Veff vanishes whenever L′b does. This is required by

consistency since all exact solutions are known with φ′ → 0 at the branes

(as is the case whenever L′b = 0), and the on-brane geometry of all of these

solutions is flat. Furthermore, since Ub is quadratic in κ2L′b when L′b is small, it

is only the second term in the sum in eq. (6.43) that contributes in a linearized

deviation away from these flat solutions, consistent with the explicit linearized

analysis of Appendix D.2 and refs. (6.13; 6.34). The Ub term provides the

generalization of the brane-generated potential beyond linear order, that is

exact (up to classical level in the bulk physics) (6.10; 6.11; 6.12).

6.4 Loop effects

In order to have a technically natural cosmological constant, it is not enough

just to have a vanishing classical contribution. Since the cosmological constant

problem is in essence a quantum problem, the problem hasn’t become hard

until loop effects are included. Generically, because the vacuum energy has low

(mass) dimension, it is the largest mass scale that can appear in the loop that

is the most dangerous. In the present instance there are two separate kinds

of loop effects to distinguish: those involving only particles localized on the

brane (which we imagine also includes all the known standard-model loops);

and those that also involve virtual contributions from the bulk supergravity.
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We briefly discuss each in turn.

6.4.1 Brane loops

Consider first those loops involving only brane-bound states. For realistic

brane-world models these include loops of all ordinary Standard Model parti-

cles. Neglecting (for the moment) bulk loops amounts to asking how the bulk

and on-brane geometry classically respond to brane-loop-generated changes to

the brane action.

Now comes the main point. What is important for these purposes

is the observation that brane loops cannot in themselves invalidate the two

conditions, (6.37), given that these are satisfied by the classical brane action

(i.e. such as by eq. (6.10) with eqs. (6.11) and (6.12)). That is, a sufficient

condition for obtaining zero on-brane curvature (at the bulk classical level) is

the absence of a coupling between the bulk dilaton, φ, and the branes, since

this ensures the validity of both conditions (i) and (ii) (6.10; 6.11).

From this point of view the effects of brane loops can be regarded as

generic O(M4) perturbations to the initial brane function To. For the model

considered brane loops alone also cannot modify Φo because brane fields do

not initially couple to the bulk gauge potential, AM . The assumed absence

of heavy brane-localized fields on the flux brane, together with the physical

separation between the observer and flux branes, similarly ensures that brane

loops cannot modify8 flux-brane properties like Tf or Φf .

The upshot is that brane loops can only renormalize the brane ac-

tions (and in the model considered here, only for the observer brane) in a

8That is, the only influence at this order between the two branes is due to the classical
response of the bulk fields, which are computed exactly in the above solutions, and do not
correspond to changes to the flux-brane action.
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φ-independent way. But this does not change the bulk response since we in

any case did not assume anything special about the typical energy scale for

Lo when inferring the flatness of the on-brane geometry.

6.4.2 Bulk loops

Since brane loops cannot lift the flatness of the on-brane directions, the dom-

inant corrections come from bulk loops. And these can come in a number of

varieties, depending on whether or not the bulk states in the loop are short-

or long-wavelength. The purpose of this section is to recap earlier arguments

(6.10; 6.11) that the contribution of bulk loops to the low-energy scalar po-

tential can be naturally of order m4
KK in supersymmetric theories.

We first estimate the generic size of bulk loops in non-supersymmetric

theories, and then how bulk supersymmetry changes these estimates.

Loops involving massless 6D fields

On dimensional grounds the contributions of massless 6D fields to the low-

energy 4D scalar potential is of order δVeff ' m4
KK ∝ 1/r4, and various

contributions of this type have been explicitly calculated for specific extra-

dimensional geometries as Casimir energy calculations (6.36; 6.37; 6.38; 6.39).

Because the bulk states that dominate in the loop have wavelengths compara-

ble to the size of the extra dimensions, this contribution to Veff need not have

a local interpretation from the point of view of the extra dimensions.

We now argue that order m4
KK contributions are the generic size when

the bulk is supersymmetric, since (unusually) the contribution of heavier fields

is not larger than this.
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Massive 6D states

The Casimir energy contributed by 6D states of mass m has also been com-

puted (6.37; 6.38) for simple extra-dimensional geometries. In general this

depends in a complicated way on the dimensionless ratio m/mKK, but the

simplifies considerably when m � mKK. The simplification arises because in

this limit the wavelength that dominates the loop is much shorter than the

size of the extra dimensions, leading to a result that can be described by a lo-

cal contribution to the higher-dimensional effective action. This simplification

allows a very general calculation (6.40) of the contributions of heavy fields to

the low-energy theory to be performed, using general tools (6.41) for studying

the small-distance singularities in correlation functions on curved space.

There are two kinds of such local contributions that massive loops can

generate. Quantum fluctuations that take place further than O(m−1) from the

branes are described by local contributions to the bulk action, integrated over

the full 6D spacetime. Those that occur nearer to the branes themselves can

also contribute local 4D corrections to the brane action. We consider each of

these in turn.

Far from the brane

The contributions in the bulk can be organized in a derivative expansion,

leading to the schematic terms

− δLeff√
−g6

= a1m
6 +m4

[
b1R + b2(∂Mφ ∂

Mφ) + · · ·
]

(6.44)

+m2
[
c1R

2 + c2(∂Mφ ∂
Mφ)2 + · · ·

]
+ log

(
m2

µ2

)[
d1R

3 + d2R(∂Mφ ∂
Mφ)2 + · · ·

]
+ · · · ,
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where all possible terms containing a fixed number of derivatives are included,

for each of which the coefficients ai(φ), bi(φ), ci(φ) and di(φ) are calculable

(and generically nonzero) for any given choice for the heavy fields circulating

in the loops (6.40).9 As indicated, in general these coefficients can be functions

of the background scalar field, φ.

The contribution of this kind of loop to the low-energy 4D potential for

the zero-mode ϕ0 may be estimated by replacing all derivatives by 1/r, where

r is a measure of the extra-dimensional size, with the result integrated over

the extra dimensions:

δVeff(ϕ0) ' ã1m
6r2 +m4

[
b̃1 + b̃2 + · · ·

]
+
m2

r2

[
c̃1 + c̃2 + · · ·

]
+

1

r4
log

(
m2

µ2

)[
d̃1 + d̃2 + · · ·

]
+ · · · , (6.45)

where the coefficients ãi through d̃i are proportional to ai through di, with

numerical factors (and possibly logs of m and r) arising from the details of

the evaluation of the derivatives and the extra-dimensional integration. This

shows that when m� mKK ' 1/r, it is the contributions involving ai, bi and

ci that are much greater than O(m4
KK).

Here is where supersymmetry in the bulk plays its part. If we specialize

to the classical level in the bulk, then there is no Casimir energy, δLeff = 0,

but the classical bulk lagrangian, Lbulk given by eq. (6.3), itself has the form

of eq. (6.44). And working to classical level in the bulk we know that in this

case the work of the previous sections shows that the contributions to the

9For simple toroidal examples it can happen that the vanishing of RM
NP Q and ∂Mφ in the

background can imply that only the first of these survives, making the O(m6) contribution
the only one that grows in the large-m limit (6.38).
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low-energy potential cancel10 to give V c
eff = 0.

Bulk loops change this, but their φ-dependence is easy to establish

because for supersymmetric theories the classical scale invariance implies e2φ

is the loop-counting parameter. In the frame where the classical lagrange

density has the form Lbulk ∝
√
−ǧ e−2φ, the `-loop corrections obtained after

integrating out heavy 6D states of mass m are therefore proportional to δL` ∝
√
−ǧ e2(`−1)φ, which implies in Einstein frame Lbulk + δLeff is given by

−Lbulk + δLeff√
−g6

=

[
2g2

R

κ4
eφ + a1m

6 e3φ +O(e5φ)

]
(6.46)

+

[
1

2κ2
+ b1m

4 e2φ +O(e4φ)

]
R + · · ·

+
[
c1 e

φ +O(e3φ)
]
m2R2 + · · ·

+
[
d1 +O(e2φ)

]
R3 log

(
m2

µ2

)
+ · · · .

Notice in particular that all of the corrections beyond the classical terms

are at least O(1/r6) once evaluated with derivatives of order 1/r and using

the classical flux-stabilization condition, eφ ∝ 1/r2. This ensures all such

contributions to the 4D potential are at most of order δVeff ∝ 1/r4 ' m4
KK for

large r, as claimed. Evidence from explicit calculations for this supersymmetric

suppression is also available for some kinds of compactifications (6.40).

Furthermore, validity of the semiclassical tools used here ensure the

coefficient of proportionality of 1/r4 also cannot be large. For example, for

the rugby ball if we define r using the extra-dimensional volume, so V2 := r2,

10Explicitly, for the rugby-ball solutions it is the coefficients of the R, e−φF 2 and eφ

terms that cancel amongst themselves, which is possible because eφ ∝ 1/r2 for the classical
solution.
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then eqs. (6.25) and (6.27) imply

r2eϕ0 = 4πα

(
κ

2gR

)2

, (6.47)

and so, for example, V2m
6e3ϕ0 = (πα κ2m2/g2

R)3(1/r)4 ∝ (m/Mg)
6(1/r)4,

where we take g2
R ' κ ' 1/M2

g with Mg the 6D gravity scale. The validity of

the semiclassical approximation in the low-energy theory requires m � Mg,

which keeps the coefficient of 1/r4 small.

More precisely, loops involving states with mass κ2m2 > 1 would have

to be computed in the UV completion of the low-energy supergravity. Al-

though string theory provides a natural choice for this, we cannot yet com-

pute these loops for the 6D supergravity studied here since its string-theoretic

provenance is not yet known (see however (6.42; 6.43)). We do know, however,

that at such high energies there are a variety of mechanisms (6.44), including

supersymmetry and the general softening of UV dependence that string theory

brings, that can suppress these contributions from the extreme ultraviolet.

Near the brane

A similar discussion applies to quantum fluctuations of heavy bulk fields lo-

cated near the branes. These also have a local interpretation if the bulk fields

involved have masses m � mKK. Proximity to the brane allows such loops

to modify the brane lagrangian as well as the bulk one. Since each bulk loop

comes with a factor of e2φ, near-brane loop effects are counted by also writing

the brane lagrangians as a series in this variable,

Tb = T
(0)
b + T

(1)
b e2φ + · · · , and Φb = Φ

(0)
b + Φ

(1)
b e2φ + · · · , (6.48)
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and so on. Such corrections are potentially dangerous because they clearly

introduce a φ-dependence to the brane action, and so violate condition (i),

above, that ensured the flatness of the on-brane directions.

The effect of integrating out very massive bulk states therefore corre-

sponds to modifying both the brane and bulk actions as a series in e2φ. And

the implications of the corrections to the brane action can then be estimated

by following how these changes modify the bulk solutions, through the changes

they induce in the bulk boundary conditions. This is evaluated in detail in

Appendix D.2, showing that the result is a contribution to the effective po-

tential that is of order e2ϕ? , where ϕ? is the lowest-order value of the localized

dilaton. The rest of the story is by now familiar: because e2ϕ? ∝ 1/r4, the

resulting contribution to the 4D potential is again δVeff ' 1/r4 ' m4
KK, as

claimed.

The upshot is this: brane loops in themselves cannot cause on-brane

curvature because they cannot introduce a φ-dependence of the brane action

if this was absent at lowest order. Bulk loops can cause on-brane curvature,

but the result corresponds to an effective 4D potential that is of order δVeff '

m4e2φ ' 1/r4, and so is very small for large r because the bulk coupling is so

very weak in this limit. Although the calculation of contributions from loops

arising from above the gravity scale remain beyond our present calculation

reach, similar kinds of volume suppression are known to arise in other explicit

large-volume string compactifications (6.43; 6.44).
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6.5 Conclusions

We provide here an explicit model of brane-localized matter for which both

brane-backreaction and fluxes play a role in stabilizing the size of the extra

dimensions. Remarkably, the stabilization mechanism produces an on-brane

curvature that is parametrically suppressed relative to the generic scales of

masses that define the brane-localized tensions (including loops).

The model of interest involves a generic field theory (a proxy for the

Standard Model, say) localized on a nonsupersymmetric codimension-two brane

within a six-dimensional spacetime whose bulk dynamics is supersymmetric.

The on-brane curvature is found to be of order R ∼ V/M2
p , where V ∼ m4

KK.

This is true even if the Kaluza-Klein scale, mKK, is much smaller than the

generic particle mass, M , on the brane.

The small size of the low-energy effective potential is a consequence of

a cancelation between the direct contributions of the brane and the contribu-

tions of the bulk to which the branes give rise. What is new in this paper is an

explicit calculation of how the system responds to arbitrary small perturba-

tions in brane properties, which confirms in detail the more general arguments

(6.21; 6.10; 6.11; 6.12; 6.28; 6.40; 6.44) that have emerged over the years from

the SLED proposal (6.2; 6.7).

We believe our example provides a useful explicit particular realization

of the general SLED proposal, but expect the result to apply more generally

than just for the specific 6D supergravity considered here. The ingredients we

believe to be necessary to suppress the brane curvature are:

• Codimension-two branes, for which the back-reaction on the surround-

ing bulk only varies logarithmically with distance, and so cannot be
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neglected even when comparatively far from the brane;

• A higher-dimensional bulk, described by a supergravity that enjoys a

classical scale invariance under which the metric scales by a constant

factor while a bulk dilaton shifts. Such a scale invariance appears to be

generic for many supergravities in six and higher dimensions. The bulk

itself need not be required to be invariant under any of the supersym-

metries.

• A bulk-stabilizing flux that can be localized on at least one of the branes

present.

In particular, we expect the mechanism to generalize to 3-branes localized

within a bulk described by more generic 6D supergravities than the particu-

lar Nishino-Sezgin gauged supergravity studied here. But supersymmetry is

crucial, since this is what allows the suppression of bulk loop effects.

We believe the models described here provide a context for understand-

ing why the observed Dark Energy density is so much smaller than all of the

other scales we know about in particle physics. Because the stabilization mech-

anism for the extra dimensions both explains the dark energy density and the

electroweak hierarchy, these problems are related in this framework.

6.5.1 Some observational implications

Realistic applications to an effectively 6D world with large supersymmetric

dimensions require mKK ' 10−2 eV, which corresponds to V2/κ ' (Mgr)
2 '

e−ϕ? ' 1030. Notice flux-quantization gives the value of the stabilized dilaton

by e−ϕ? ' gRµ/κ
2T ' 1030, where T is a generic brane tension and Φ = µ is
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the flux parameter on the flux-brane. The extra dimensions would be expected

to be of order mKK ' 10−2 eV, or r ' 10 microns, and the 6D gravity scale

could be as low as11 Mg
>∼ 10 TeV.

If this is how nature works we will soon know, since the SLED pic-

ture necessarily has many striking observational consequences, some of which

are shared by the non-supersymmetric proposal for sub-eV dimensions (6.45).

Since some of these are described in more detail elsewhere, we only briefly list

some of the main ones here.

• Deviations from Newton’s Law: Since the size of the Dark Energy density

is set by the KK scale, the extra dimensions must generically be of order

micron scales. Deviations from Newton’s inverse-square law must arise

once distances of order this size are probed. This is the smoking gun for

the SLED scenario, since it cannot be avoided. Since only two dimensions

can possibly be this large, the predicted change is a crossover to an

inverse fourth power, although the precise shape depends somewhat on

the details of the extra-dimensional shape (6.49). Present bounds probe

down to about 45 microns (6.50; 6.51) and so are getting close.

• String and gravity physics at the LHC: Given the size of the extra di-

mensions, the measured strength of gravity dictates the gravity scale in

the extra dimensions. The 6D gravity scale to which this points is of

order tens of TeV (though astrophysics requires it to be no smaller than

10 TeV). The string scale and the KK scale for any other extra dimen-

11A gravity scale lower than this produces too much energy loss from supernovae
(6.45; 6.46). Much stronger, but more model-dependent, bounds are also possible if extra-
dimensional states can decay visibly (such as into photons) (6.47; 6.48), but these bounds can
be avoided if visible channels are swamped by invisible higher-dimensional ones (6.45; 6.46)
(some potential examples of which are discussed in (6.43)).
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sions is then generically found to be lower than this (6.46; 6.43). This

means that quantum gravity is becoming strong at LHC energies. This

implies a variety of signals for the LHC, including excited string states

for all Standard Model particles (6.52), new neutral gauge bosons (6.53),

energy loss into gravitons (6.54) and other particles (6.46; 6.55; 6.56) in

the extra dimensions, and possibly black holes (6.57) or other aspects of

high-energy gravity (6.58). Even though supersymmetry is broken only

at very low scales in the bulk, supersymmetry must be nonlinearly re-

alized on any brane and so superpartners for ordinary particles (and so

also the MSSM) are not predicted (6.46). Results for new experimental

searches at the LHC are even now starting to come out (6.59; 6.60).

• Dark Energy quintessence cosmology: The same physics that makes the

value of the potential, ρ = V?, small at its minimum (and thereby gives

a small Dark Energy density) also makes the mass of the would-be zero

mode very light: m2 '
√
V?/Mp (and in an equally technically natural

way). Since this is of order the present-day Hubble scale, Dark Energy

phenomenology is that of a quintessence model rather than of a cosmo-

logical constant (6.61). The same requirement that makes the on-brane

curvature small — the absence of a direct brane-dilaton coupling — also

ensures that the light scalar field naturally has quasi-Brans-Dicke cou-

plings to brane matter. This means they can naturally evade tests of

the equivalence principle (6.50), but the couplings need not be small and

so are potentially constrained by a variety of long-distance tests of Gen-

eral Relativity that bound scalar-tensor models (6.62; 6.63), as well as

laboratory bounds on light scalars with an effective 2-photon coupling
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(6.64). Present-day bounds on deviation from GR in the solar system

provide nontrivial constraints, but need not be fatal (6.61). One reason

for this is because the Brans-Dicke couplings of the light scalar turn out

to be field dependent, and so can evolve cosmologically. For parts of

parameter space (6.61) these couplings can be acceptably small in the

solar system during the present cosmological epoch.

• Exotic sterile neutrino physics: Although not absolutely required, the

SLED scenario predicts there to be a variety of massless fermions in the

extra dimensions, whose mass is protected to be small because they are

related by supersymmetry to the graviton or bulk gauge fields. These

fermions can mix with Standard Model neutrinos, leading to a poten-

tially rich spectrum of sterile neutrino mixing (6.65) whose masses are

naturally in the sub-eV range due to the large size of the extra dimen-

sions (6.66; 6.67).

There are likely even more consequences, since only the surface of what might

be seen has yet been scratched. Should all of these be seen together, there

could be little doubt about what is going on.

6.5.2 Outstanding issues

We now summarize potential challenges that these models remain to face.

First, it is an unpleasant — though technically natural — feature of

the model that a large number must be inserted for µ as a parameter in

the lagrangian in order to obtain a sufficiently low KK scale. This does not

cause a problem with the approximations made, however, since it is only the

combination gRµe
ϕ? ' κ2T <∼ 0.1 that appears in the brane lagrangian. ϕ? also

282



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

appears on its own in the bulk lagrangian, but the loop approximation in the

bulk is under good control because the loop counting parameter there is e2ϕ? '

10−60. We expect this feature is likely something that can be improved in more

complicated examples, preferably with more explicit contact with a UV string

construction, since most of the known 10-dimensional string compactifications

having very large volumes (6.68) generically obtain equally large volumes as

are required here without having to dial in such small parameters. They do so

because they predict the volume to arise as the exponential of another, much

smaller, modulus, for which parameters of order 10 need be used.

Second, much could be gained if this picture could be properly em-

bedded into a controlled UV completion, such as if it were obtained from an

explicit string vacuum. Until this is done the contributions to ρ from states in

the far UV cannot be properly computed.

Third, SLED models face a variety of phenomenological challenges as

well as opportunities. In particular, as mentioned above, strong bounds on

light gravitationally coupled fields must be evaded in order not to conflict

with known physics in the solar system. The cosmology of the universe before

nucleosynthesis is also challenging, due to constraints from energy loss into the

extra dimensions (together with stronger, but more model-dependent bounds

that arise if extra dimensional fields can decay too frequently to visible states).

The nature of inflationary cosmology is also unknown (see however (6.69) for

first steps towards an inflationary theory where extra dimensions evolve during

inflation, allowing the gravity scale to be much higher during inflation than

it is at present). We regard these to be model building challenges, but much

easier to solve than is the cosmological constant problem itself.
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Chapter 7
Summary and conclusions

In this thesis we developed the tools to calculate the back reaction of codimension-

2 branes. In general, bulk fields tend to diverge at the presence of branes in

codimension-2 or higher. In order to describe brane couplings to these diver-

gent fields, the parameters in the brane action need to be renormalized at the

classical level.

When the branes couple to a flat direction of the bulk physics, gener-

ically the flat direction is lifted and the corresponding modulus in the extra

dimensions is stabilized. This stabilization is of particular interest in gauged

chiral supergravity, where the zero mode has overlap with the volume in the

extra dimensions. We have shown that this mechanism can lead to exponen-

tially large volume in the extra dimensions, from only a moderate hierarchy

of the brane parameters.

An important brane contribution that we include is a magnetic coupling

to a stabilizing bulk Maxwell flux. Although the corresponding brane term is

subdominant in a derivative expansion, it can be the dominant contribution to

the low energy potential. The reason for this is that the dominant term — the
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brane tension — can drop out of the low energy theory. The contribution from

the magnetic coupling allows a relaxation of the flux quantization condition

in the bulk, by allowing some of the flux to localize at the branes (at a low

energy cost).

In the regime of small perturbations around rugby ball solutions that

are sourced by branes with constant, equal tension we find both the effective 4

dimensional potential, and the bulk response to the perturbations. In the case

of a simple Einstein-Maxwell-scalar system, we correct the probe-brane results

by including the brane localized flux, which is competitive with the probe-

brane results. The more interesting case is with a supersymmetric bulk, where

we find that the size of the potential is very generally set by the derivative of

the brane tension with respect to the dilaton.

Finally, we use that observation to construct a model with a 6 dimen-

sional supersymmetric bulk coupled to completely nonsupersymmetric branes.

We find that for an appropriate choice of brane-bulk couplings the cosmolog-

ical constant can be made on the order of magnitude of the observed value.

The importance of this result is that we do so in a technically natural way:

once we choose the parameters in our model, they only get corrections through

quantum effects that are of the same order (or smaller) than the classical val-

ues.

7.0.3 Outlook

Although we have found interesting new results from including back reaction

of branes on their surrounding spacetime, we have only scratched the surface.

The results in this thesis are all dealing with maximally symmetric configura-
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tions in the brane directions. In order to explore the cosmology of this type

of models, work on a timedependent generalization has begun (7.1) but is far

from done. In order to make contact with a more fundamental theory, it would

also be worthwhile to have a string-theoretic construction of this system.

In addition we believe that our techniques carry over to codimension-2

objects in string theory, as long as they are applied to a sufficiently long-

distance limit. In particular, the renormalization procedure presupposes that

some new physics interjects to regularize the bulk divergences before the weak

coupling approximation breaks down. Still, the results for F-theory from chap-

ter (3) are evidence that our approach to codimension-2 objects is quite

broadly applicable. We are using this to investigate the possibility to ob-

tain de Sitter solutions in higher dimensional supergravities (7.2). This has

not yet lead to new de Sitter solutions, but our results do challenge some of

the no-go results in the literature (7.3)
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Appendix A
Appendix for chapter 2

A.1 Some Properties of Bessel Functions

This appendix summarizes a few properties of modified Bessel functions which

are used in the main text. The modified Bessel functions are linearly indepen-

dent solutions to the differential equation

z2y′′ + zy′ − (z2 + ν2)y = 0 , (A.1)

with Iν(z) chosen to be regular at z = 0 and Kν(z) chosen to fall off to zero

as z →∞. They are defined in terms of ordinary Bessel functions, Jν(z), and

Hankel functions, H
(1)
ν (z), by

Iν(z) = i−νJν(iz) and Kν(z) =
π

2
iν+1H(1)

ν (iz) . (A.2)

The expansion of these functions for small argument is used in the text. For

0 < z �
√
ν + 1 it is given by

Iν(z) ' 1

Γ(ν + 1)

(z
2

)ν
, K0(z) ' − ln

(z
2

)
− γ
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and Kν(z) ' Γ(ν)

2

(
2

z

)ν
if ν > 0 . (A.3)

The asymptotic form at large z is similarly given (for z �
∣∣ν2 − 1

4

∣∣) by

Iν(z) ' 1√
2πz

ez and Kν(z) '
√

π

2z
e−z . (A.4)

The energy integral encountered in the main text can be evaluated

explicitly, using the following Bessel-function identities

K ′ν = −Kν−1 −
νKν

z
= −Kν+1 +

νKν

z
, (A.5)

which imply in particular K ′0 = −K1, K ′1 = −K0 −K1/z = −K2 +K1/z and

K ′2 = −K1 − 2K2/z. Repeated application of these shows that

d

dz

[
1

2
z2
(
K2

0 −K2
1

)]
= z K2

0 and
d

dz

[
1

2
z2
(
K2

1 −K0K2

)]
= z K2

1 ,

(A.6)

and so

z
(
K2

0 +K2
1

)
=

d

dz

[
1

2
z2K0

(
K0 −K2

)]
. (A.7)

A.2 Classical Divergences in Brane Couplings

This appendix summarizes the derivation of the renormalization of the codimension-

2 couplings encountered in the text, with an emphasis on identifying its domain

of validity.

Consider to this end the following bulk-brane quadratic action for a

single real scalar field,

S = −1

2

∫
d4xd2y

[
∂Mφ ∂

Mφ+m2
Bφ

2
]

+
1

2

∫
d4x λ2φ

2 . (A.8)
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(The unusual sign for the brane term is chosen to be consistent with its use in

the main text.) The exact propagator, G(x, y;x′, y′), for this theory satisfies

the differential equation

[
∂M∂

M −m2
B + λ2δ

2(y)
]
G(x, y;x′, y′) = iδ4(x− x′)δ2(y − y′) , (A.9)

while the propagator in the absence of the brane coupling, D(x, y;x′, y′), in-

stead satisfies

[
∂M∂

M −m2
B

]
D(x, y;x′, y′) = iδ4(x− x′)δ2(y − y′) . (A.10)

It is useful to regard these as the position-basis representation of two

abstract operators, G and D, so that G(x, y;x′, y′) = 〈x, y|G|x′, y′〉 (and simi-

larly for D). In this case the above relations can be written G−1 = D−1 − iV ,

where 〈x, y|V |x′, y′〉 = λ2δ
2(y)δ4(x− x′)δ2(y − y′). Multiplying on the left by

D and on the right by G then allows this to be written as G = D + iDV G,

whose position-basis expression is equivalent to the integral equation

G(x, y;x′, y′) = D(x, y;x′, y′) + iλ2

∫
d4x̂ D(x, y; x̂, 0)G(x̂, 0;x′, y′) . (A.11)

After Fourier transforming the translation-invariant xµ directions

G(x, y;x′, y′) =

∫
d4p

(2π)4
Gp(y; y′) eip·(x−x

′) , (A.12)

eq. (A.11) becomes the exact statement

Gp(y; y′) = Dp(y; y′) + iλ2Dp(y; 0)Gp(0; y′) . (A.13)

Since this no longer involves convolutions it may be solved explicitly. Special-

izing first to y = 0 implies Gp(0; y′) = Dp(0; y′)/[1− iλ2Dp(0; 0)], which when
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re-substituted into eq. (A.13) gives

Gp(y; y′) = Dp(y; y′) + iλ2
Dp(y; 0)Dp(0; y′)

1− iλ2Dp(0; 0)
. (A.14)

Notice that no approximations have been made that implicitly restrict us to

small λ2.

The problem with the solution, eq. (A.14), is that the quantity Dp(0; 0)

diverges, and this observation lies at the root of the need for renormalization.

The expression for Dp(y; y′) may be explicitly constructed as the following

mode sum, using polar coordinates {ym} = {r, θ} in the transverse dimensions,

with r = 0 representing the brane position:

Dp(r, θ; r
′, θ′) = −i

∞∑
n=−∞

ein(θ−θ′)

∫ ∞
0

(
qdq

2π

)
1

p2 + q2 +m2
B

Jn(qr) Jn(qr′) ,

(A.15)

where1 p2 = pµp
µ. To isolate the divergence in Dp(0; 0) evaluate at r = r′ = 0

and use Jn(0) = δn0 to get

DΛ
p (0; 0) = −i

∫ Λ

0

(
qdq

2π

)
1

p2 + q2 +m2
B

= − i

2π
ln

(
Λ

P

)
+O

(
P 2

Λ2

)
,

(A.16)

where P 2 = p2 +m2
B.

Renormalization may also be performed without resorting to an expan-

sion in powers of λ2. The goal is to redefine λ2 = λ̄2(Λ) → λ̄2(µ) in such a

way as to absorb the divergence in DΛ(0; 0):

λ2

1− iλ2DΛ
p (0; 0)

≡ λ̄2(µ)

1− iλ̄2(µ)Dµ
p (0; 0)

, (A.17)

1The generalization of this expression to the case where the transverse geometry has a
conical defect at the brane position is given in ref. (2.19).
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or, equivalently

1

λ̄2(Λ)
≡ 1

λ̄2(µ)
+ i
[
DΛ
p (0; 0)−Dµ

p (0; 0)
]

=
1

λ̄2(µ)
+

1

2π
ln

(
Λ

µ

)
, (A.18)

in agreement with the usage in the main text.

A.3 Higher codimension

In this appendix we examine how the arguments of §2 change for a Higgs living

in a (4 + n)-dimensional bulk coupled to a codimension-n brane, with n ≥ 3.

We divide the discussion into a derivation of how the brane couplings

renormalize in arbitrary codimension, and then examine the energy density

that governs the size of the resulting scalar expectation value.

A.3.1 Coupling renormalization

We start with a discussion of brane coupling renormalization. The main com-

plication in the higher-codimension case is the appearance of power-law di-

vergences, with all of the pitfalls and complications which these entail for the

low-energy description (2.29).

Consider the (n+ 4)-dimensional scalar field

S = −
∫

d4x dny

[
1

2
(∂Mφ ∂

Mφ) +
1

2
m2

Bφ
2 + δn(y)Vb(φ)

]
, (A.19)

with brane potential

Vb = −1

2
λ2φ

2 +
1

4
λ4φ

4 , (A.20)

living in a flat space-time with metric

ds2 = ηµνdx
µdxν + dr2 + r2γab(θ)dθ

adθb . (A.21)
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Here the θa are coordinates for the n− 1 angular directions, whose total vol-

ume we denote by $ =
∫

d(n−1)θ
√
γ. We focus for simplicity on spherically

symmetric solutions (independent of the angular directions), although this

assumption is not crucial (since higher modes in the angular directions are

regular at r = 0).

As for codimension 2, the relation between the propagator, G, in the

presence of the brane coupling, and the propagator, D, in its absence, is

Gk(y; y′) = Dk(y; y′) + iλ2
Dk(y; 0)Dk(0; y′)

1− iλ2Dk(0; 0)
, (A.22)

and as before the need for renormalization may be traced to the divergence

in Dk(0; 0). The nature of this divergence can be divined from the mode sum

giving the propagator, D, in the absence of brane couplings

[
tu −m2

B

]
D(x, y;x′, y′) = iδ4(x− x′)δn(y − y′) , (A.23)

which, in brane-Fourier space,

D(x, y;x′, y′) =

∫
d4p

(2π)4
Dp(y; y′) eip·(x−x

′) , (A.24)

has as solution

Dp(x;x′) = −i
∫ ∞

0

qn−1dq

$

1

p2 +m2
B + q2

[
1

(qr)ν
Jν(qr)

] [
1

(qr′)ν
Jν(qr

′)

]
+ · · · ,

(A.25)

with ν = (n − 2)/2. The ellipses in this last equation represent those terms

involving the nontrivial angular modes.

Using the asymptotic form for Jν in the limit qr � 1: Jν(qr) =
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(qr)ν/[ν!2ν ] +O(qr), we find

Dp(r = 0; r′ = 0) = − i

(ν!)2 22ν

∫ ∞
0

qn−1dq

$

1

m2
B + p2 + q2

, (A.26)

which diverges as a power of the UV cutoff, Λ, as

DΛ̃
p (0; 0) = − i

(ν!)2 22ν

∫ Λ̃

0

qn−1dq

$

1

m2
B + p2 + q2

. (A.27)

= − i

$ (ν!)2 22ν

[
qn

nP 2
− qn+2

(n+ 2)P 4 2F1

(
1,
n+ 2

2
;
n+ 4

2
,− q

2

P 2

)]Λ̃

0

,

where P 2 = m2
B + p2 and 2F1(a, b; c; z) denotes the Hypergeometric function.

Our focus is on even n, n = 2m, in which case the hypergeometric

function can be simplified to the following terminating series

2F1(1,m+ 1,m+ 2, z) = −(m+ 1)z−(m+1)

[
log(1− z) +

m∑
j=1

zj

j

]
. (A.28)

Using this in the expression of the brane-brane propagator for even codimen-

sions, we get

DΛ̃
p (0; 0) =

i22−m

$[Γ(m)]2

[
(−)m

2
P 2(m−1) log

(
1 +

q2

P 2

)

+
1

2

m−1∑
j=1

(−)j−m

j
q2jP 2(m−1−j)

]Λ̃

0

.(A.29)

For even codimension, n = 2m, we redefine Λ2 = Λ̃2 + P 2, leading to

DΛ
p = − i22−m

$[Γ(m)]2
(−P 2)m−1

[
log Λ +

m−1∑
j=1

1

2j

(
1− Λ2

P 2

)j]
+ (finite) .

(A.30)
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For odd codimensions, a similar argument gives

DΛ
p = − i22−n

$[Γ(n/2)]2

[n/2−1]∑
j=0

(−)j
P 2jΛn−2−2j

n− 2− 2j
+ (finite) , (A.31)

where [n/2− 1] denotes the largest integer smaller than n/2− 1.

Renormalization proceeds as for codimension two, with the requirement

that

λ2(Λ)

1− iλ2(Λ)DΛ
k (0, 0)

=
λ2(µ)

1− iλ2(µ)Dµ
k (0, 0)

, (A.32)

where µ is the renormalization scale, leading to the following expression,

1

λ2(Λ)
=

1

λ̄2(µ)
+ i
(
DΛ
k −D

µ
k

)
. (A.33)

The divergence of propagator on the brane also induces divergences in

the expression of the 4-point function, which should be absorbed by a renor-

malization of λ4,

G
(4)
k1,k2,k3,k4

(y1; y2; y3; y4) = −6i λ4

[
4∏
i=1

G
(2)
ki

(yi; 0)

]
δ4

(∑
i

ki

)
(A.34)

= −6i λ4

[
4∏
i=1

Dki(yi; 0)

1− iλ2Dki(0; 0)

]
δ4

(∑
i

ki

)
.

The quantity λ4/(1−iλ2Dki(0, 0))4 is finite if λ4 is renormalized in the following

way

λ4(Λ) =
λ̄4(

1 + iλ̄2 (DΛ
k −D

µ
k )
)4 . (A.35)

Similar expressions can be found for higher-point couplings.
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A.3.2 Boundary condition and energy density

We now turn to the classical solutions for φ(r), and the boundary conditions

which communicate the information of the brane potential to the bulk theory.

Just as in the main text the singular form of the bulk solutions require us

to regularize the boundary condition by evaluating it at r = ε rather than

at r = 0. Smooth results are obtained as ε → 0 once the bare couplings are

eliminated in terms of the renormalized couplings.

The classical solution to the bulk field equation that vanishes far from

the brane is

φ(r) = φ̄
Kν(mBr)

(mBr)ν
. (A.36)

Integrating the equation of motion over the brane, we obtain the boundary

condition

$εn−1φ′ε = −λ2φε + λ4φ
3
ε . (A.37)

The energy density for such a field configuration is similarly given by

H = v

∫ ∞
ε

rn−1dr

[
1

2
(∂rφ)2 +

1

2
m2

Bφ
2

]
+ Ub(φ(ε))

= v
m2

B

2
φ̄2 εn+1 (mBε)

−nKν(mBε)Kν+1(mBε) + Ub(φ(ε)) . (A.38)

In general both of these last equations become finite once expressed in terms

of renormalized quantities, although the cancellation becomes more regular-

ization dependent in the higher-codimension case due to the appearance there

of power-law divergences rather than logarithms. Rather than working this

through in complete generality, we restrict ourselves here to an illustrative

calculation for codimension three.
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A.3.3 Codimension-3

For a codimension-3 brane the divergent part of the brane-brane propagator

goes as

DΛ
p = −2iΛ

π$
, (A.39)

and so the divergent part of the boundary condition (A.37) cancels identically

if 2Λ/π = ε. The leading order part of the boundary condition becomes

φ̄

(
mB +

$

λ̄2

− µ+
π$3λ̄4

2λ̄4
2m

2
B

φ̄2

)
= 0 , (A.40)

where to simplify the notation we rescale µ→ πµ/2. The system has solution

φ̄ = 0 as well as

φ̄2 = −
(

2λ̄4
2m

2
B

π$3λ̄4

)
meff , (A.41)

although the second solution is only possible when

meff =

(
$

λ̄2

− µ+mB

)
< 0 . (A.42)

These conclusions are consistent with the form of the energy density, which in

this case is

H =

(
π$

4m2
B

)
meff φ̄

2 +
λ̄4

4

(
$

λ̄2mB

)4 (π
2

)2

φ̄4 . (A.43)

Notice that the criterion for having a nonzero v.e.v. in this case depends more

strongly on mB, relative to the codimension-2 case.

A similar argument can be made for higher codimensions. Notice that

for codimension-4 and higher, the propagator includes sub-leading divergences

which should also be renormalized. Doing so, we recover a finite energy density

with slightly different criteria on having a nonzero v.e.v.
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A.4 Bulk Goldstone modes

A natural worry arises when the Higgs is regarded as a bulk scalar while

the Standard Model gauge bosons are confined to a brane. Since the bulk

SU(2)× U(1) rotations are not gauged, their spontaneous breaking might be

expected to bulk Goldstone modes, corresponding to KK towers of bulk scalar

modes whose lightest members are massless (or with masses set by the KK

scale, if the global symmetries are broken by boundary conditions). Since

only three of these 4D KK states are eaten by the Higgs mechanism, the

remainder could survive and generate a potentially dangerous large number

of light states. In this section, we show that only three massless Goldstone

modes are produced, all of which are eaten by the gauge fields on the brane.

We start with the argument in a nutshell: when choosing a specific vac-

uum, such as the unitary gauge choice of the main text, one expects Goldstone

modes connecting to nearby vacua. Since all vacua have the same profile in

the extra dimensions, the Goldstone modes also share this profile. The modes

with the smallest energy cost have only momentum along the brane directions,

and so are effectively already four-dimensional. These modes turn out to be

the self-localized states of those components of the Higgs doublet that do not

acquire a v.e.v.

To see this explicitly we repeat the calculation of the light states in

section 2.3.3, for the Higgs doublet H. The equation of motion analogous to

Eq. (2.32) is

[
1

r2

(
(r∂r)

2 + ∂2
θ

)
+ ∂µ∂

µ −m2
B

]
H =

δ+(r)

2πr
(−λ2 + λ4H

?H)H . (A.44)
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This equation may be linearized around the vacuum by setting

H =

 0

ϕ(r)

+
∞∑
n≥0

 ζn1 (r) + iζn2 (r)

χn(r) + iζn3 (r)

 sin(nθ) , (A.45)

with ϕ(r) = φ̄K0(mBr) and where we introduce an infinite tower of excitation

modes along the angular direction. Each one of these modes satisfies the

equations of motion

[
1

r
∂r (r∂r)−

n2

r2
− k2

]
χn =

δ+(r)

2πr

(
−λ2 + 3λ4ϕ

2(r)
)
χn (A.46)[

1

r
∂r (r∂r)−

n2

r2
− k2

]
ζni =

δ+(r)

2πr

(
−λ2 + λ4ϕ

2(r)
)
ζni , (A.47)

where, as before, k2 = m2
B − ω2.

The field χ0 is the ‘physical’ self-localized state, discussed in the main

text, and has a mass as calculated in Eq. (2.36) with (2.37). The same goes

through for the zero mode of the other fields ζ0
i , but taking into account the

different factor of λ4 between equations (A.46) and (A.47), their masses are

given by

ω2
ζ0 = m2

B

[
1− e−4π/λζ0

]
, (A.48)

with now
1

λζ0

=
1

λ2?

[
1 +

4π2λ̄4φ̄
2

λ3
2?

]
. (A.49)

In the broken phase, φ̄ is given by Eq. (2.29) which leads to

1

λζ0

= 0 , (A.50)

showing there are three massless 4D Goldstone modes, ζ0
i . The bulk profile of

these modes is enforced by the boundary condition imposed on the brane, and

as argued in section 2.4.1, choosing unitary gauge on the brane removes these

321



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

three massless states as they become ‘eaten’ by the brane gauge fields.

Turning now to the infinite tower of angular dependent modes (n 6= 0),

the profile of these modes is now of the form χn, ζni = Nn
i Kn(kr), where Nn

i

is the normalization constant and we expect k to be determined by the the

boundary condition (2.34) which takes the form

2π r∂r

 χn(r)

ζni (r)

∣∣∣∣∣∣
ε

=

−λ2 +

 3

1

λ4ϕ(r)2

  χn

ζni

∣∣∣∣∣∣
ε

. (A.51)

In the limit ε→ 0, this reduces to

2nπNn
i (kε)−n

(
n! +

(n− 1)!

log(εmBeγ/2)

)
= O

(
(kε)−n+2

)
. (A.52)

We see we must have Nn
i = 0 if these modes are to remain bounded, and

so there are therefore no light modes of this form having ω < mB. All the

remaining excitations along the radial direction form a Kaluza-Klein tower of

states starting at the bulk mass mB and are thus harmless. There are therefore

only three massless states ζ0
i playing the role of four-dimensional Goldstone

modes, one self-localized massive mode (χ) with mass 0 < m < mB and a

tower of Higgs excitations with mass higher than the bulk mass.
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Appendix B
appendix for chapter 4

B.1 Brane fluxes and flux quantization

To see how to interpret the parameter Φb, rewrite the brane flux term as a

regularized 6D integral weighted by a scalar function s(ρ) whose support is

nonzero only in a short interval |ρ − ρb| < ε away from the brane, and is

normalized so that
∫

d2x
√
g2 s = 1. That is,

Sflux =
Φb

2

∫
d6x
√
−g6 s ε

mnFmn = Φb

∫
d6x
√
−g4 s Fρθ . (B.1)

Then the δAθ Maxwell equation becomes

∂ρ

(√
−g6 F

ρθ − Φb

√
−g4 s

)
= 0 , (B.2)

which integrates to give

e4W
(
e−BA′θ − Φbs

)
= Q . (B.3)

This is the bulk solution found in the text away from the brane, where s = 0.

Imagine now integrating this to obtainAθ(ρ) in the vicinity of the brane
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at ρb = 0, using for s a simple step function: s = 1/(πε2) for ρ < ε and s = 0

for ρ > ε. Assuming W ' Wb is approximately constant and eB ' ρ for ρ < ε,

the solution satisfying Aθ(0) = 0 is

Aθ(ρ) =
1

2

(
Qe−4Wb +

Φb

πε2

)
ρ2 , (B.4)

and so at ρ = ε in particular

Aθ(ε) =
Φb

2π
+O(ε2) . (B.5)

The junction condition for A′θ at ρ = ε can also be seen by subtracting

the solution, eq. (B.3) evaluated at ρ < ε — where s = 1/(πε2) — from the

same solution evaluated at ρ > ε — where s = 0. Since the RHS is the same

in both cases we get the following jump discontinuity across ρ = ε:

[
e−BA′θ

]ρ=ε+

ρ=ε−
= − Φb

πε2
. (B.6)

This can be related to the derivative of the brane action with respect to Aθ
by rewriting eq. (B.1) as

Sflux = Φb

∫
d6x
√
−g4 s Fρθ =

2πΦb

πε2

∫
d4x
√
−g4 Aθ(ε) , (B.7)

and so (keeping in mind the relative sign between the tension and flux terms)

[
e−BA′θ

]ρ=ε+

ρ=ε−
= +

1

2π

(
∂Tb
∂Aθ

)
, (B.8)

as stated in ref. (4.15).
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B.2 Rugby-ball response

This section provides the explicit solutions for the properties of rugby ball

solutions as functions of the assumed (shared) brane tension, and in particular

computes the response to small changes in its value.

Rugby ball configurations solve the field equations

RMN + ∂Mφ ∂Nφ+ κ2FMPFNP −
[
κ2

8
FPQFPQ − κ2Λ

2

]
gMN = 0 , (B.9)

and

∇MFMN = 0 , (B.10)

subject to the ansatz

ds2 = ĝµν dxµdxν + dρ2 + α2L2 sin2
( ρ
L

)
dθ2 (B.11)

Fρθ = αQL sin
( ρ
L

)
, (B.12)

with φ = ϕ0 constant. The bulk field equations give the 2D and 4D curvature

scalars as

−R(2) =
2

L2
= κ2

(
3Q2

2
+ Λ

)
, (B.13)

and

R(4) = R̂ = 2κ2

(
Q2

2
− Λ

)
. (B.14)

The gauge potential corresponding to eq. (B.12) is

A± = αQL2
[
±1− cos

( ρ
L

)]
dθ ± Φ±

2π
dθ , (B.15)

where the ± sign indicates the solution for the northern or southern hemi-

sphere, since A must evaluate to the brane flux at the corresponding pole.

Requiring the difference between these two solutions near the equator to be a
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well-defined gauge transformation, gA+− gA− = dΩ, implies the constants Q

and L must be related by

gQ =
N

2αL2
, (B.16)

where we define N = n− gΦtot/2π.

Eqs. (B.13) and (B.16) determine the constants Q and L in terms of α

and Λ, with solutions

1

L2
=

8α2g2

3N2κ2

[
1±

√
1−

(
3N2κ4Λ

8α2g2

)]
=

1

2L2
min

[
1±

√
1−

(
3N2κ4Λ

8α2g2

)]
,

(B.17)

and

Q =
N

2αgL2
=

4αg

3Nκ2

[
1±

√
1−

(
3N2κ4Λ

8α2g2

)]
. (B.18)

These provide two solutions for L and Q for each given value of α and Λ, sat-

isfying L2 ≥ L2
min = 3N2κ2/16α2g2. Starting with the lower sign in eq. (B.17)

the radius L falls from L → ∞ to L =
√

2 Lmin as Λ climbs from 0 to

Λmax = 8α2g2/3N2κ4. On this branch Λ � Λmax implies 1/L2 ' κ2Λ/2.

Then switching to the branch corresponding to the upper sign has L fall from
√

2 Lmin to Lmin as Λ recedes from Λmax back to zero. There are no real

solutions with Λ > Λmax, or with L < Lmin.

For each of these solutions the last equation, eq. (B.14), gives the on-

brane curvature, R̂. There is a choice Λ = Λf , for which R̂ vanishes, given by

Λf = Q2/2. For this choice L and Q become

1

Lf (α)
=

2αg

Nκ
and Qf (α) =

2αg

Nκ2
, (B.19)

and so

Λf =
Q2
f

2
=

2α2g2

N2κ4
. (B.20)

Because Lmin < Lf <
√

2 Lmin we see that this solution lies on the branch
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corresponding to the upper sign of eq. (B.17). In particular

κ2Q2
fL

2
f = κ2

(
2αg

Nκ2

)2(
Nκ

2αg

)2

= 1 . (B.21)

Notice that the semiclassical approximation requires the curvature to

remain small compared with the relevant energy scales, and so in 6D requires

R3 to be much smaller than Λ or Q2. Because R ' κ2Λ and κ2Q2 this

requires κ3Λ and κ3Q2 must both be much smaller than unity. So for Λ ∼

Q2 ∼ α2g2/N2κ4 the semiclassical limit implies α2g2/N2κ � 1. This in turn

ensures κ/L2
f � 1, showing that this value of Lf lies within the classical limit.

The above expressions can be used to check the linearized analysis

performed in the main text. To this end, suppose we start with α = α0, with

Λ = Λ0 = Λf (α0) chosen so that R̂ = 0 for this value of α. Then we change the

brane tension (but not the brane flux), and so also α, without also adjusting

Λ. Choosing the upper sign, the radius and magnetic flux become

1

L2
=

8α2g2

3N2κ2

[
1 +

√
1−

(
3N2κ4Λ0

8α2g2

)]
=

(
2α2

3α2
0

)
1

L2
0

[
1 +

√
1− 3α2

0

4α2

]
,

(B.22)

and

Q =
4αg

3Nκ2

[
1 +

√
1−

(
3N2κ4Λ0

8α2g2

)]
=

(
2α

3α0

)
Q0

[
1 +

√
1− 3α2

0

4α2

]
.

(B.23)

The last equality in these two equations is obtained by using eq. (B.20) to

trade Λ0 for α0, and then using eqs. (B.19) to express the result in terms of

the values L0 and Q0 that correspond to α = α0. These equations show how

the values of L and Q adjust to compensate for the change of α. The on-brane
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curvature similarly changes, and is given by

R̂ = κ2(Q2 − 2Λ0)

=
32α2

0g
2

9N2κ2

[√
1− 3α2

0

4α2
+ 1− 3α2

0

2α2

]
, (B.24)

which vanishes as α → α0, as it must. For α = α0 + ∆α, then α2
0/α

2 '

1− 2∆α/α0 and so

R̂ '
(

16α2
0g

2

N2κ2

)(
∆α

α0

)
=

4

L2
0

(
∆α

α0

)
= −2κ2∆T

πα0L2
0

= −8κ2
4∆T , (B.25)

which uses the matching condition 1− α = 4GT = κ2T/2π in the form ∆α =

−κ2∆T/2π, as well as the definition of the 4D gravitational coupling: κ2 =

4πα0L
2
0 κ

2
4. Defining the 4D potential, Veff , by R̂ = −4κ2

4 Veff gives the expected

result

Veff ' 2∆T . (B.26)

The factor of 2 arises because a change of α requires an equal change of tension

for both branes if it is to preserve the rugby-ball form.

B.3 Misaligned currents

This Appendix uses a simple model to track the implications that arise if

the external current happens not to be aligned precisely with the lightest

mode of the system. When this happens errors can arise in the identification

of quantities like low-energy masses, but this section argues that these are

generically suppressed by powers of the light mass divided by heavier masses.

Consider then the toy 4D lagrangian

L√
−g

= − 1

2κ2
4

R− 1

2

[
(∂ϕ)2 + (∂χ)2

]
− V (ϕ, χ) , (B.27)
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whose potential is given by

V = V0 +
1

2

(
m2ϕ2 +M2χ2

)
+ J(ϕ+ ζ χ) , (B.28)

with masses assumed to satisfy m � M . Here ϕ is meant as the analog of

the KK would-be zero mode in the main text, while χ is representative of

some other, more massive, KK mode. The goal is to ascertain the extent to

which our method of determining the low-energy mass would be thrown off by

a small coupling — parameterized here by ζ — of the external current to a

heavy state.

The classical equations of motion for the scalar fields are

tuϕ−m2ϕ = J and tuχ−M2χ = ζ J , (B.29)

while the Einstein equation reads

Rµν + κ2
4

(
∂µϕ∂νϕ+ ∂µχ∂νχ

)
+ κ2

4V = 0 , (B.30)

and so

R
4κ2

4

= −V = −V0 −
1

2

(
m2ϕ2 +M2χ2

)
− J(ϕ+ ζ χ) . (B.31)

Evaluated at the particular solutions

J = −m2ϕ and χ = − ζJ
M2

=

(
ζm2

M2

)
ϕ , (B.32)

this last equation gives

F(ϕ) :=
R

4κ2
4

= −V0 +
1

2
m2ϕ2

[
1 +

(
ζm

M

)2
]
. (B.33)

329



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

In terms of F(ϕ) the method of the main text gives the low-energy

scalar potential as

Veff(ϕ) := ϕ

∫
dϕ

ϕ2
F(ϕ) . (B.34)

For F(ϕ) = A+Bϕ+ 1
2
Cϕ2 the integral evaluates to1

Veff = −A+Bϕ lnϕ+
1

2
Cϕ2 +Dϕ , (B.35)

where D is the integration constant, and so when applied to the above toy

model this gives

Veff(ϕ) = V0 +
1

2
m2ϕ2

[
1 +

(
ζm

M

)2
]
. (B.36)

This expression correctly identifies the value of the potential at its minimum

to be V0, and — provided ζ <∼ O(1) — gives the correct mass for the field ϕ,

up to corrections of relative order m2/M2.

B.4 When brane fluxes and tensions compete

This Appendix briefly discusses another kind of competition, which would

arise if δTb(ϕ0) and δΦb(ϕ0) at the same brane were not minimized by the

same scalar configuration. A simple representative in this category is

TN(ϕ0) = T +TN0 +
TN2

2
(ϕ0−vT )2 and ΦN(ϕ0) = Φ+ΦN0 +

ΦN2

2
(ϕ0−vφ)2 ,

(B.37)

together with δTS(ϕ0) = δΦS(ϕ0) = 0, so the ‘south’ brane plays no role in the

stabilization of ϕ0.

1The singular form of V ′′eff(0) when B 6= 0 corresponds to the pathological case where
brane fluxes and tensions are not extremized for the same value of ϕ, discussed in more
detail in Appendix B.4.
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In this case because the flux is irrelevant for determining ϕ?, its value

is simply ϕ? = vT . The warping difference is also insensitive to Φb and so

becomes WN −WS = (3κ2TN0/20πα), while δL/L = (3κ2%eff/8πα) with

%eff = TN0 −QΦN0 −
QΦN2

2
(vT − vφ)2

and m2
ϕ =

TN2

f 2
+
QΦN2

f 2
lim
ϕ→vT

(
ϕ− vφ
ϕ− vT

)
. (B.38)

Clearly, the expression for the mass is singular when vT 6= vφ. The reason for

the singularity, is that for this choice of brane there is no solution satisfying

the ansatz with which we work. The obstruction lies with the Maxwell field,

which we choose to lie in the Fρθ direction only. However, the perturbation

that gets excited by moving ϕ0 away from equilibrium, if we do not stabilize

with an external current, necessarily gets a time dependent Maxwell field.

But a changing magnetic field induces an electric field, so the Fρt and Fθt
components cannot both remain zero.

To see that the Maxwell field must acquire a time dependence, consider

a perturbation, δϕ, that oscillates about the background vT ,

ϕ = vT + δϕ(ρ) e−imt . (B.39)

In the flux condition, eq. (4.56), the brane fluxes now have a part that is

linear in δϕ that becomes proportional to e−imt. If we now assume that δQ

does not acquire any time dependence, we get a contradiction: δB has a

part proportional to e−imt according to the flux condition, but in matching

it with the brane in eq. (4.37), if δQ is time independent the right hand side

is either constant or proportional to (Φ − vT )2 ∝ e−2imt. This shows that

the matching conditions cannot be satisfied unless the magnetic field becomes

time-dependent.
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Appendix C
Appendix for chapter 5

C.1 Flux quantization with brane fluxes

To see how to interpret the parameter Φb, rewrite the brane flux term as a

regularized 6D integral weighted by a scalar function s(ρ) whose support is

nonzero only in a short interval |ρ − ρb| < ε away from the brane, and is

normalized so that
∫

d2x
√
g2 s = 1. That is,

Sflux =
Φb

2

∫
d4x
√
−g6e

−φ s εmnFmn = Φb

∫
d6x
√
−g4e

−φ sFρθ .(C.1)

Then the δAθ Maxwell equation becomes

∂ρ

(
e−φ
√
−g6 Fρθ − e−φΦb

√
−g4 s

)
= 0 , (C.2)

which integrates to give

(
e−BA′θ − Φbs

)
= Qeφ . (C.3)

This is the bulk solution found in the text away from the brane, where s = 0.

Imagine now integrating this to obtainAθ(ρ) in the vicinity of the brane
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at ρb = 0, using for s a simple step function: s = 1/(πε2) for ρ < ε and s = 0

for ρ > ε. Assuming W ' Wb is approximately constant and eB ' ρ for ρ < ε,

we set Aθ(0) = 0 and integrate tof find Aθ(ε),

Aθ(ε) =
Φb

πε2

[
1

2
ρ2

]ε
0

+Q
∫ ε

0

dρρeφ =
Φb

2π
+Q

∫ ε

0

dρρeφ , (C.4)

and so as long as eφ diverges less fast than ρ−2 at the brane we have

lim
ε→0
Aθ(ε) =

Φb

2π
. (C.5)

The junction condition for A′θ at ρ = ε can also be seen by subtracting

the solution, eq. (C.3) evaluated at ρ < ε — where s = 1/(πε2) — from the

same solution evaluated at ρ > ε — where s = 0. Since the RHS is the same

in both cases we get the following jump discontinuity across ρ = ε:

[
e−BA′θ

]ρ=ε+

ρ=ε−
= − Φb

πε2
. (C.6)

This can be related to the derivative of the brane action with respect to Aθ
by rewriting eq. (C.1) as

Sflux = Φb

∫
d6x
√
−g4 sFρθ =

2πΦb

πε2

∫
d4x
√
−g4 Aθ(ε) , (C.7)

and so (keeping in mind the relative sign between the tension and flux terms)

[
e−BA′θ

]ρ=ε+

ρ=ε−
= +

1

2π

(
∂Tb
∂Aθ

)
, (C.8)

as stated in ref. (5.32).
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C.2 Alternative currents

In this section, we check that the details of the current are not important for

the stabilization of ϕ. Define for comparison purposes the current

SJ = −
∫

d6x
√
−g J eφ . (C.9)

This choice keeps the scale invariance of the bulk action intact. Compared

to the current used in the main body, the changes to the linearized equations

of motion arise only in the φ and δB equations. Here we write only the

contributions to these equations due to the current:

(sinx δφ′)
′

= · · · − κ2JL2eϕ0 sinx(
sin2 x δB′

)′
sin2 x

= · · · − κ2Jeϕ0 , (C.10)

where the δB term was present before but lacked the factor eϕ0 . By contrast

the δφ contribution given above didn’t exist for the current used in the main

text.

The resulting change to the perturbations that is a consequence of the

current only is

(δφ)J = κ2JL2eϕ0 ln |sinx|

(δB)J = κ2JL2eϕ0

[
−H2(x) +

1

2
(1 + x cotx)

]
. (C.11)

The resulting changes in the matching conditions to the brane are as follows:

δQ
Q

+ κ2JL2eϕ0 =
κ2

4πα

(
T ′N + T ′S

)
1

2
κ2JL2eϕ0 = − κ2

4πα

[
δTN + δTS −QΦN −QΦS +

1

2
(T ′N + T ′S)

]
.

(C.12)
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Relative to the main text, the current appearing in the first of these equations

is new, and in the second equation it is half the size as found in the main text

(apart from the trivial scaling by eϕ0 throughout). The resulting 4D curvature

is unchanged because it is the combination

L2R̂ = 2

(
δQ
Q

)
− 2κ2JL2eϕ0 =

κ2

2πα

(
T ′N + T ′S

)
− 4κ2JL2eϕ0 . (C.13)

Here the current contribution is twice the result of the main text, so with

the current being only half as large for a given ϕ0, the curvature remains

unchanged.

Using the corresponding current in the 4 dimensional theory — i.e.

using
√
−ĝ j — yields in general a different Einstein-frame effective potential.

However, VEF (ϕ?) and V ′′EF (ϕ?) agree. Since the coefficient of the kinetic term

is unchanged, neither is the mass of the dilaton and the cosmological constant.

This shows that we can extract the properties at the stationary point reliably,

even though the shape of the potential away from this point can depend on

the detailed definition of the current that is used. This reflects a general

property: the detailed form of a scalar potential can be varied (as always) by

performing a field redefinition, though any dependence on the field variables

used ultimately drops from any physical prediction.

C.3 Linearization around the rugby ball

This appendix computes the linearization of the field equations about the

rugby ball solutions, with

eB = eB0(1 + δB) = e−ϕ0/2αL sin

(
ρ̂

L

)
(1 + δB)

W = δW and φ = ϕ0 + δφ (C.14)
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Fρθ = (Q+ δQ)eφ+B−4W = Qeϕ0+B0

(
1 +

δQ
Q

+ δB + δφ− 4δW

)
.

Using these in the d’Alembertian for the dilaton gives

tuφ =
1√
−g

∂M
(√
−g gMN∂Nφ

)
=

eϕ0

√
−g

∂ρ̂
(√
−g ∂ρ̂φ

)
=

eϕ0

sin (ρ̂/L)
∂ρ̂

[
sin

(
ρ̂

L

)
∂ρ̂(δφ)

]
, (C.15)

where we use ∂ρφ = ∂ρ(δφ) to allow the use of the background metric. Simi-

larly,

δ

(
2g2

R

κ2
eφ − 1

2
κ2Q2 eφe−8W

)
=

(
2g2

R

κ2
− κ2

2
Q2

)
eϕ0δφ

−eϕ0Q2κ2

(
δQ
Q
− 4δW

)
= −eϕ0Q2κ2

(
δQ
Q
− 4δW

)
, (C.16)

where the second line uses the rugby ball condition for the background value

of Q. With these the dilaton equation becomes

∂ρ̂ [sin (ρ̂/L) ∂ρ̂(δφ)]

sin (ρ̂/L)
= −Q2κ2

(
δQ
Q
− 4δW

)
= − 1

L2

(
δQ
Q
− 4δW

)
,

(C.17)

which is the form used in the main text.

Similarly, the linearization of the Einstein equation, eq. (5.8), uses

δ

(
g2
Re

φ

κ2

)
=

1

4
κ2Q2eϕ0δφ =

eϕ0

4L2
δφ

δ
(
κ2Q2eφ−8W

)
= κ2Q2eϕ0

(
2δQ
Q

+ δφ− 8δW

)
=
eϕ0

L2

(
2δQ
Q

+ δφ− 8δW

)
δ(B′)2 = 2∂ρB0 ∂ρ(δB) =

2eϕ0

L2
cot

(
ρ̂

L

)
∂ρ̂(δB) . (C.18)

Since J is perturbatively small, the background metric can be used to simplify
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the current term in the action,

δ(
√
−g J) = δ(

√
−ĝ e4W+B J) =

√
−ĝ e−ϕ0αL sin

(
ρ̂

L

)
J , (C.19)

ensuring that J appears as a new contribution κ2J to the Einstein equations,

eq. (5.8). Finally, the derivative terms for δB become

δB′′ +
2

L
cot

(
ρ̂

L

)
B′ = eϕ0

∂ρ̂
[
sin2(ρ̂/L)∂ρ̂(δB)

]
sin2(ρ̂/L)

. (C.20)

Putting this all together yields

∂ρ̂
[
sin2 (ρ̂/L) ∂ρ̂(δB)

]
sin2 (ρ̂/L)

= − 1

L2

[
δφ+

3

2

(
δQ
Q

)
− 6δW + κ2JL2e−ϕ0

]
− 4

L
cot

(
ρ̂

L

)
∂ρ̂W (C.21)

∂ρ̂
[
sin2 (ρ̂/L) ∂ρ̂(δB)

]
sin2 (ρ̂/L)

= − 1

L2

[
δφ+

3

2

(
δQ
Q

)
− 6δW + κ2JL2e−ϕ0

]
− ∂2

ρ̂W ,

and

R̂ = −4eϕ0

[
2W

L2
+

1

L
cot

(
ρ̂

L

)
∂ρ̂W + ∂2

ρ̂W

]
+

2eϕ0

L2

(
δQ
Q

)
− 2κ2J , (C.22)

which are the equations solved in the main body.

C.4 Some useful integrals

This appendix evaluates the integrals Mi and Hi encountered in the main

text.
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Evaluation of M

This section evaluates the constant encountered in the ϕ1 perturbation. The

integrals of interest are

M1(x) =

∫ x

0

dy sin2 y ln

∣∣∣∣1− cos y

sin y

∣∣∣∣
M2(x) =

∫ x

0

dy
M1(y)

sin2 y

and M =

∫ π

0

dx sinxM2(x) . (C.23)

First of all, notice that the logarithm in the first line is antisymmetric under

y → π − y, while sin2 y is symmetric. This means that the first integral

integrates to 0 if x = π: that is, M1(π) = 0. These observations justify the

following manipulations:

M1(π − x) = M1(π)−
∫ π

π−x
dz sin2 z ln

∣∣∣∣1− cos z

sin z

∣∣∣∣
= −

∫ x

0

dy sin2(π − y) ln

∣∣∣∣1− cos(π − y)

sin(π − y)

∣∣∣∣
=

∫ x

0

dy sin2 y ln

∣∣∣∣1− cos y

sin y

∣∣∣∣
= M1(x) . (C.24)

The same manipulations applied to M2 then give:

M2(π − x) = M2(π)−
∫ π

π−x
dz
M1(z)

sin2 z

= M2(π)−
∫ x

0

dy
M1(π − y)

sin2(π − y)

= M2(π)−
∫ x

0

dy
M1(y)

sin2 y

= M2(π)−M2(x) . (C.25)

Numerical evaluation of M2(π) is complicated by the weak conver-
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gence of the integral near π. It can be evaluated more efficiently by using

the above expressions to relate it to M2(π/2). That is, numerical integration

gives M2(π/2) = −0.5 to within the numerical (Maple 11) precision. Using

this, we find

M2(π) = 2M2(π/2) = −1 . (C.26)

Hence M2 satisfies

M2(π − x) = −1−M2(x) . (C.27)

To evaluate M, use

M =

∫ π/2

0

dx sinxM2(x) +

∫ π

π/2

dx sinxM2(x)

=

∫ π/2

0

dx sinxM2(x) +

∫ π/2

0

dx sin(π − x)M2(π − x)

=

∫ π/2

0

dx sinxM2(x) +

∫ π/2

0

dx sinx
[
−1−M2(x)

]
= −

∫ π/2

0

dx sinx = −1 . (C.28)

Evaluation of H

Recall the definitions,

H1(x) =

∫ x

0

dy sin2 y ln |sin y|

H2(x) =

∫ x

0

dy
H1(y)

sin2 y

H̄ =

∫ π

0

dy sin yH2(y) . (C.29)

In this case numerical evaluation gives (Maple 11):

H1(π) =
π

4
(1− ln 4) . (C.30)
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Similar numerical integration to evaluateH2(φ) is complicated by the apparent

singularity at the endpoints caused by the factors of 1/ sin2 y in the integrand.

These can be dealt with by repeating the arguments of the previous section,

which in this case give

H1(π − x) = H1(π)−
∫ π

π−x
dy sin2 y ln |sin y|

= H1(π)−
∫ x

0

dy sin2 y ln |sin y|

= H1(π)−H1(x) . (C.31)

Next consider the following symmetry properties of H2:

H2

(π
2

+ x
)

= H2

(π
2

)
+

∫ π/2+x

π/2

dz
H1(z)

sin2 z

= H2

(π
2

)
−
∫ π/2−x

π/2

dy
H1(π − y)

sin2(π − y)

= H2

(π
2

)
+

∫ π/2

π/2−x
dy
H1(π)−H1(y)

sin2 y
, (C.32)

and simplify using

∫ π/2

π/2−x
dy
H1(y)

sin2 y
=

∫ π/2

0

dy
H1(y)

sin2 y
−
∫ π/2−x

0

dy
H1(y)

sin2 y

= H2

(π
2

)
−H2

(π
2
− x
)
, (C.33)

to get

H2

(π
2

+ x
)

= H2

(π
2
− x
)

+H1(π)

∫ π/2

π/2−x

dy

sin2 y

= H2

(π
2
− x
)

+H1(π) cot
(π

2
− x
)
. (C.34)
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The evaluation of H now proceeds, with

H =

∫ π

0

dx sinxH2(x)

=

∫ π/2

0

dx
{

sinxH2(x) + sin
(π

2
+ x
)
H2

(π
2

+ x
)}

=

∫ π/2

0

dx
{

sinxH2(x) + sin
(π

2
− x
) [
H2

(π
2
− x
)

+H1(π) cot
(π

2
− x
)]}

= 2

∫ π/2

0

dx sinxH2(x) +H1(π)

∫ π/2

0

dx cos
(π

2
− x
)

= 2

∫ π/2

0

dx sinxH2(x) +H1(π) . (C.35)

This can now be integrated numerically without problems, giving (to ten dec-

imal places) a result consistent with H = −2 + ln 4.
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Appendix D
Appendix for chapter 6

D.1 Localized brane fluxes

An important role is played by brane-localized flux in the discussion of the

main text, and in particular the choice of large values for Φb. In this ap-

pendix we use a simple but explicit model of microscopic brane dynamics to

explore how reasonable these choices might be. In particular, one might worry

that microscopic details (like flux quantization) of brane-localized flux could

obstruct its role in the relaxation mechanism for the low-energy curvature.

Ideally this question should be addressed within string theory, which

provides the most likely UV completion. However we are handicapped by

the lack of a controlled derivation of 6D gauged chiral supergravity from an

explicit string vacuum (see however (6.42; 6.43)). Instead, as a first step we

model the codimension-2 brane with localized flux as a very small cylindrical

codimension-1 brane situated at ρ = ε which surrounds the position of the

codimension-2 brane at ρ = 0, along the lines of refs. (6.10; 6.24). We regard

this brane, together with a suitably smooth interior configuration for ρ < ε, as

a specific UV completion of the codimension-2 brane. Although this is unlikely

to be a realistic microscopic realization of brane flux localization, it has the
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advantage of allowing an explicit examination of many of the consistency issues

involved.

Consider therefore the following codimension-1 brane action,

S5 = −
∫
ρ=ε

d5x
√
−g5

[
Z1(φ)DmσD

mσ + T1(φ)
]
, (D.1)

describing a small cylinder at radius ρ = ε, where σ is a brane-localized

Stückelberg field whose covariant derivative is

Dmσ = ∂mσ + gbAm . (D.2)

This is invariant under the gauge transformations

Am → Am −
1

g
∂mΩ and σ → σ +

gb
g

Ω . (D.3)

Here g denotes the bulk gauge coupling while gb denotes a corresponding brane

gauge coupling.

The presence of a field like σ is important for stabilizing the size of the

codimension-1 brane at a small but nonzero radius (6.10; 6.11; 6.24). For ε

sufficiently small the codimension-1 brane becomes effectively a codimension-2

brane, whose action can be found by dimensional reduction. Having a finite

codimension-2 brace action in this limit generally requires the quantities

t1(φ) := ε T1(φ) and z1(φ) := ε Z1(φ) , (D.4)

remain finite in the limit of small ε.

In the region exterior to the brane, ρ ≥ ε, and in the presence of

any bulk matter fields having charge g, the single-valuedness of the gauge

group element, eiΩ, requires Ω(θ + 2π) − Ω(θ) = 2πs for some integer s. The

Stückelberg field can also wind nontrivially as a function of θ if its target space
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should be a circle,

σ(θ + 2π)− σ(θ) = 2πnf , (D.5)

for some nonzero integer n, where 2πf denotes the circumference of the target-

space circle. This boundary condition is consistent with gauge transformations

provided

σΩ(θ + 2π)− σΩ(θ) = σ(θ + 2π) +
gb
g

Ω(θ + 2π)− σ(θ)− gb
g

Ω(θ)

= 2πnf + 2πs
gb
g
, (D.6)

is also an integer multiple of 2πf . This is automatically true if the brane gauge

coupling is quantized in units of the bulk gauge coupling: gb = kfg for some

integer k. In this case because σΩ(θ + 2π)− σΩ(θ) = 2π(n+ sk)f differs from

σ(θ+ 2π)−σ(θ) = 2πnf , large gauge transformations (those with s 6= 0) map

different choices for σ boundary conditions into one another.

Brane equation of motion

The equation of motion on the brane is

∂m

[√
−g5 Z1(φ)Dmσ

]
= 0 , (D.7)

and we are interested in solutions that depend on θ only. Since none of the

bulk fields that appear in this equation of motion depend on θ this simplifies

to

∂θDθσ = 0 , (D.8)

which has as solution

Dθσ = ∂θσ + kfgAθ = C , (D.9)
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where C is independent of θ. However, since all of the bulk fields depend only

on the radial coordinate ρ, they do not depend on any of the five on-brane

directions (including θ), and so C can depend on any of them. In particular,

C can be a function of the dilaton, φ.

The requirement that σ be single-valued up to integer multiples of 2πf

then means that

2πfn = σ(θ + 2π)− σ(θ) =

∮
dθ ∂θσ = 2πC − kfg

∮
ρ=ε

Aθ dθ , (D.10)

which implies that C is given in terms of the flux,

Φ :=

∮
ρ=ε

Aθ dθ , (D.11)

by

C =

(
n+

kg

2π
Φ

)
f . (D.12)

Notice that the transformation of Φ under large gauge transformations (i.e.

those with s 6= 0) ensures that C is invariant even though n→ n+ ks.

We now specify in more detail the system interior to the codimension-1

brane, with the goal of deriving a second relationship between C and Φ, from

which we may eliminate C. At first sight one might worry that any expression

for Φ won’t be gauge invariant, since Φ transforms under large gauge trans-

formations. However once we match through to a smooth inner configuration

the noncontractible loop whose topology underlies the existence of large gauge

transformations disappears. The nontrivial large gauge transformations nec-

essarily become singular somewhere once they are extended into the interior

region.
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The cylinder’s interior

We next specify the interior of the cylindrical brane, which we require to be

everywhere smooth. We keep the action in the interior the same as in the

bulk, apart from only one change: we take the dilaton potential to be

V = V0 e
φ , (D.13)

for a general constant V0. If we write V0 = 2g2
R/κ

4, we effectively choose the

value of gR = gin
R interior to the cylinder to differ from its value on the outside.

We take the interior solution to be the Salam-Sezgin solution,

ds2 = e2W ĝµν dxµdxν + e−ϕin

[
dρ̂2 + e2B dθ2

]
, (D.14)

with

φ = ϕin , W = Win and Fρθ = Qine
ϕin/2eB−4W , (D.15)

where ϕin and Win are constants, and

eB = `in sin

(
ρ̂− ρ̂c
`in

)
. (D.16)

The center of the interior geometry is located at ρ̂ = ρ̂c, which need not be

ρ̂ = 0 due to our choice that the codimension-1 brane is located at ρ = ε for

both the exterior and interior geometries.

Like in the exterior geometry the equations of motion still imply

`in =
κ

2gin
R

, Qin = ±
√

2V0 = ±2gin
R

κ2
and ĝµν = ηµν , (D.17)

which shows that we can dial the value of V0 to achieve any desired flux for

the interior gauge field. Choosing a gauge with Aθ(ρc) = 0, with all other
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components of AM vanishing, the gauge fields become

Fρθ = Qine
−4Win+ϕin/2

[
`in sin

(
ρ̂− ρ̂c
`in

)]
and so Aθ(ρ) = Qine

−4Win`2
in

[
1− cos

(
ρ̂− ρ̂c
`in

)]
. (D.18)

(D.19)

Matching conditions

Continuity of the metric and dilaton at the brane location, ρ = e−ϕin/2ρ̂ = ε,

implies

ϕin = φ(ε) = φb

Win = W (ε) = Wb

and e−ϕin/2`in sin

(
ε̂− ρ̂c
`in

)
= eBb = αbε , (D.20)

where ε̂ = ε eϕin/2 and φb, Bb and Wb are the (regulated) values of the dilaton

and warping at the brane in the exterior bulk solution. From this we find the

value of the gauge field at the brane is,

Aθ(ε) ' Qine
−4Win`2

in

1−

√
1−

(
αbε eφb/2

`in

)2
 . (D.21)

Next we impose the jump discontinuity of the gauge field across the

brane position. For the above interior and exterior solutions and brane action,

this reads

Qin −Qout = −e
B+4W

√
−g5

δS5

δAθ
' 2gbCZ1e

4Wb

αbε
. (D.22)

Using this to trade Qin for Qout in the gauge potential, eq. (D.21), we see that

347



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

when αbε e
φb/2 � `in the result for Aθ(ε) is proportional to

(αbε)
2Qin = (αbε)

2Qout + αbε
(

2gbCZ1e
4Wb

)
. (D.23)

Although the first term on the right-hand side vanishes in the codimension-

2 limit where ε → 0, the second term need not because the finiteness of

the dimensionally reduced codimension-2 action obtained from S5 requires

z1 = limε→0 ε Z1 be finite in this limit. In terms of this the brane-localized flux

becomes

Φ =

∮
ρ=ε

Aθ dθ = 2πAθ(ε) = 2παbgbCz1 e
φb . (D.24)

Combining this last result with eq. (D.12) allows us to solve for C,

giving the quantization condition

C

f

(
1− αbg2

bz1 e
φb
)

= n . (D.25)

Equivalently, using this to eliminate C from the flux gives

Φ

2π
=

nfαbgbz1 e
φb

1− αbg2
bz1 eφb

. (D.26)

Notice that although this expression is quantized in the sense that it is pro-

portional to an integer, it is also φb-dependent through the quantity z1(φb) e
φb .

Furthermore, the regime of weak coupling and small derivatives has g2
bz1 e

φb �

1 and so we may approximate the denominator by unity, leading to a contri-

bution to Φ that is proportional to z1 e
φb . (Intriguingly, if g2

bz1 e
φb were in-

stead large we would find the φb-independent result Φ → −2πnf/gb, and so

gΦ/2π → −n/k would be quantized at rational values.)

In the special case that the brane does not break the bulk classical scale

invariance then T1 ∝ eφb/2 and Z1 ∝ e−φb/2, so writing ε = ε̂ e−φb/2 we see that

t1 = ε T1 is φb-independent and z1 = ε Z1 ∝ e−φb , as expected. This means Φ
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is independent of φb, as is also argued to be true for the scale invariant case

in the main text.

On the other hand, the case of most interest in the main text is where

Φ = µ eφb , which corresponds to choosing z1 to be φb-independent. The above

calculation then gives the coefficient, µ, as

µ = 2πnαbgbz1f = 2πnk αbgz1f
2 . (D.27)

In particular, we seek situations where gRµ is very large, while keeping gRµ e
φb

small. This we can arrange in several ways: (i) by making f very large (so

σ takes values on a very large circle); (ii) by making the integers k and/or n

very large; or (iii) by making gRgz1 large. All of these choices come down to

including a lot of current on the codimension-1 brane, as one might expect.

Large n means a very high gradient in σ, which can be interpreted as a lot

of particles in the current. Large k means a comparatively large coupling, gb,

which gives σ a large charge. Finally, large f gives both a large brane charge

and a large gradient.

The main worry with these choices would be if they would indicate

a failure of the low-energy derivative expansion, on whose validity the entire

calculation rests. However since µ appears systematically in the brane action

only through the combination µ eφb this expansion appears to be under control

provided only that this product be small. eφb also appears without factors

of µ in the bulk action, but extremely small values of eφb are there under

control because this is the small quantity that controls the bulk loop expansion.

In particular, there seems to be no consistency restriction on how large the

parameter f can be.
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D.2 The view from 4 dimensions

In this section, we ask what the scalar potential is that lifts the flat direction

parameterized by ϕ0, as would be seen from the perspective of a brane-localized

4D observer. To do so we draw heavily on the results of (6.13), which computes

this potential for geometries that are perturbatively close to the rugby-ball

geometries.1

Writing the brane action as

Sb = −
∫

d4x
√
−g4 Lb = −

∫
d4x
√
−g4

(
Tb +

1

2
Φbε

mnFmn

)
, (D.28)

we calculate the low-energy 4D effective potential in the special case that the

tensions satisfy Tb = T + δTb, where δTb is much smaller than the (positive)

average tension, T . We further assume the background rugby-ball geometry

satisfies
ngR
g

= 1− κ2T

2π
, (D.29)

so that no background brane-localized flux is present.

We compute the response of the bulk to deviations δTb = Tb − T by

linearizing the bulk equations in δTb and δΦb, obtaining the general solutions

as a function of the parameter ϕ0 that labels the orbits of the bulk scaling

symmetry. The brane-bulk matching conditions define the boundary condi-

tions that are then used to eliminate the integration constants in terms of

brane properties. This allows the calculation of the stabilized value ϕ0 = ϕ?

and the energy cost for deviations of ϕ0 from ϕ?. In this way the features of

the low-energy 4D potential can be mapped out (6.13). (We emphasize that

this linearization is not required for the arguments of the main text, for which

the general exact classical solutions are known. This limit is simply one for

1Beware the notational change, as ref. (6.13) denotes Lb by Tb; denotes Tb by τb; and
denotes Φb by Φbe−φ.
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which we can explicitly calculate the view in the 4D effective theory, to check

our general results.)

Writing

δLb =
(
Tb − T

)
−QΦb e

ϕ0 = δTb −QΦb e
ϕ0 , (D.30)

(which uses the result that W = 0 for the unperturbed rugby-ball geometry),

the stationary point, ϕ?, for the scalar zero mode turns out to be given by

(6.13)

0 =
∑
b

(
δLb +

1

2
δL′b −QΦb e

ϕ?

)
, (D.31)

where prime denotes differentiation with respect to φ. When δTb and Φb are

both independent of ϕ0 for all of the branes, then this simplifies to2

0 =
∑
b

(
δTb − 2QΦb e

ϕ?
)
, (D.32)

with solution

eϕ? =

∑
b δTb∑

b 2QΦb

. (D.33)

The Jordan frame potential of the low-energy effective 4D theory is

shown in ref. (6.13) to satisfy

(eϕVJF )′ =
1

2
eϕ
∑
b

(
δLb +

3

2
δL′b −QΦb

)
, (D.34)

which for φ-independent δTb and Φb can be integrated to give

VJF (ϕ) = Ce−ϕ +
1

2

∑
b

(
δTb −QΦb e

ϕ
)
, (D.35)

with C an integration constant. The corresponding Einstein-frame potential

2Recall δL′b denotes differentiation with respect to φ with AM and gMN fixed, and because
AM and gMN depend on ϕ0 this is not the same as differentiating δLb with respect to ϕ0.
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is

VEF (ϕ) = e2(ϕ−ϕ?) VJF = Ceϕ−2ϕ? +
1

2

∑
b

(
δTbe

2(ϕ−ϕ?)−QΦbe
3ϕ−2ϕ?

)
. (D.36)

The integration constant C is set by demanding that V ′EF vanishes at ϕ = ϕ?:

Ce−ϕ? =
∑
b

(
−δTb +

3

2
QΦb e

ϕ?

)
, (D.37)

leading to the full Einstein-frame potential

VEF =

(
1

2

∑
b

δTb

)(
e2ψ − 2 eψ

)
+

(
1

2

∑
b

QΦbe
ϕ?

)(
3 eψ − e3ψ

)
, (D.38)

where ψ := ϕ− ϕ?.

The 4D on-brane curvature obtained from the full 6D field equations

agrees (by construction) with the curvature obtained from the 4D Einstein

equations with VEF evaluated at ϕ?. Using (D.38), we find

V? := VEF (ϕ?) =
1

2

∑
b

(
−δTb + 2QΦb e

ϕ?
)
, (D.39)

which vanishes by virtue of the stabilization condition defining ϕ?, eq. (D.32).

Notice that this condition is also equivalent to the linearized version of the

warped flux-quantization condition, eq. (6.36)

0 = δ

[
(α+α−)1/2

gR
+

1

2π

(
Φo

W2
o

+
Φf

W2
f

)
eϕ?

]
=

1

2gR

∑
b

δαb +
1

2π

∑
b

δΦb e
ϕ?

=
κ2

4πgR

∑
b

(
δTb − 2QΦb e

ϕ?
)
, (D.40)

which uses δαb = κ2δLb/2π = κ2(δTb −QΦb)/2π, as well as the unperturbed
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rugby-ball relation Q = 2gR/κ
2.

Bulk loop corrections to the brane action

In general, bulk loops induce a φ-dependence to the brane action, and so gen-

erate a nonzero curvature for the on-brane directions. The most UV-sensitive

contributions come when very heavy bulk particles circulate in the loop, and

because these involve only very short wavelengths they generate local correc-

tions to the brane action. We now argue that these UV-sensitive bulk loops

contribute only to V? at order m4
KK, where mKK ' 1/r ' V−1/2

2 is the Kaluza-

Klein scale.

Loops involving comparatively long-wavelength states at the KK scale

need not generate only local effects on the branes, but also only give rise to

contributions to the low-energy vacuum energy that are of order δV? ∼ m4
KK

(and so are not larger than the UV loops we examine below). Because e2φ is

the loop-counting parameter in the bulk, an estimate for the size of the UV

loop-generated curvature can be found by repeating the above arguments, but

now writing Tb and Φb as a series in powers of e2φ, rather than taking them to

be φ-independent.

To this end we write

δTb = δT
(0)
b + δT

(1)
b e2φ + · · ·

Φb = Φ
(0)
b + Φ

(1)
b e2φ + · · · , (D.41)

where T
(1)
b and T

(0)
b are φ-independent and similar in size, as are Φ

(1)
b and Φ

(0)
b .

With these choices we have

δLb = δT
(0)
b −QΦ

(0)
b eϕ0 + δT

(1)
b e2ϕ0 −QΦ

(1)
b e3ϕ0

and so δL′b = 2 δT
(1)
b e2ϕ0 − 2QΦ

(1)
b e3ϕ0 . (D.42)
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The condition defining the stationary point, ϕ?, is given by

0 =
∑
b

(
δLb +

1

2
δL′b −QΦb

)
=

∑
b

(
δT

(0)
b − 2QΦ

(0)
b eϕ? + 2 δT

(1)
b e2ϕ? − 3QΦ

(1)
b e3ϕ?

)
. (D.43)

At lowest order this is solved by ϕ
(0)
? satisfying eq. (D.33), and to next-to-

leading order the correction, δeϕ? , satisfies

δeϕ?
∑
b

2QΦ
(0)
b =

∑
b

(
2 δT

(1)
b e2ϕ

(0)
? − 3QΦ

(1)
b e3ϕ

(0)
?

)
. (D.44)

If δT
(1)
b and QΦ

(1)
b are similar in size then only the first term on the right-

hand-side of this last expression dominates. We keep both here because our

interest in the main text is in the case where δT
(1)
b and QΦ

(1)
b eϕ

(0)
? are similar

in size.

The corrected Jordan-frame potential due to the brane perturbations

then solves eq. (D.34), or

(eϕVJF )′ = eϕ
∑
b

[
1

2
δT

(0)
b −QΦ

(0)
b eϕ + 2 δT

(1)
b e2ϕ − 5

2
QΦ

(1)
b e3ϕ

]
, (D.45)

which integrates to

VJF = Ce−ϕ+
∑
b

[
1

2
δT

(0)
b −

1

2
QΦ

(0)
b eϕ +

2

3
δT

(1)
b e2ϕ − 5

8
QΦ

(1)
b e3ϕ

]
, (D.46)

with C an integration constant, as before.

The Einstein frame potential, VEF = e2(ϕ−ϕ?)VJF , similarly is

VEF = Ceϕ−2ϕ? +
∑
b

[
1

2
δT

(0)
b e2(ϕ−ϕ?) − 1

2
QΦ

(0)
b e3ϕ−2ϕ?
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+
2

3
δT

(1)
b e4ϕ−2ϕ? − 5

8
QΦ

(1)
b e5ϕ−2ϕ?

]
.(D.47)

As before, enforcing V ′EF (ϕ?) = 0 fixes C, giving

Ce−ϕ? =
∑
b

[
−δT (0)

b +
3

2
QΦ

(0)
b eϕ? − 8

3
δT

(1)
b e2ϕ? +

25

8
QΦ

(1)
b e3ϕ?

]
. (D.48)

The full next-to-leading Einstein-frame potential then is

VEF =

(
1

2

∑
b

δT
(0)
b

)(
e2ψ − 2 eψ

)
+

(
1

2
eϕ?
∑
b

QΦ
(0)
b

)(
3 eψ − e3ψ

)
+

(
2

3
e2ϕ?

∑
b

δT
(1)
b

)(
e4ψ − 4 eψ

)
+

(
5

8
e3ϕ?

∑
b

QΦ
(1)
b

)(
5 eψ − e5ψ

)
, (D.49)

with ψ = ϕ− ϕ?. Evaluating this at ϕ?, and using (D.43), we find

V? = VEF (ϕ?) = −e2ϕ?
∑
b

δT
(1)
b + e3ϕ?

∑
b

QΦ
(1)
b . (D.50)

This is clearly of order e2ϕ? if δT
(0)
b , δT

(1)
b , Φ

(0)
b eϕ? and Φ

(1)
b eϕ? are all of the

same order. Recalling that the flux-quantization condition relates ϕ? to the

stabilized extra-dimensional radius by r? by eϕ? ' O(1/r2
?), we see that the

loop-corrected brane action gives a result of order 1/r4
?, which is also similar

to the size of a generic bulk Casimir energy.

D.3 No-go results

There are a number of famous no-go results, that superficially appear to con-

tradict our results. In this appendix we describe two of these, describing why

they do not represent real obstructions.
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D.3.1 Weinberg’s no-go theorem

The best-known obstruction to finding a relaxation mechanism that sets the

cosmological constant to zero is due to Weinberg (6.3). His is a general ob-

jection to using scale invariance to solve the cosmological constant problem.

Although his argument is phrased quite generally, it is easier to describe the

issues within a simple toy model.

Why at first sight scale invariance seems to help

At first sight, scale invariance provides a very attractive way to approach why

the vacuum energy might be zero. To see why, consider the following simple

scale-invariant toy theory:

S = −
∫

d4x
√
−g

(
1

2
∂µχ∂

µχ+ ψγµ∂µψ + λχ4 + gψψχ

)
. (D.51)

This action is invariant under the rigid rescalings ψ → ζ−3/2ψ, χ → ζ−1χ

together with gµν → ζ2gµν , although this symmetry is anomalous and so does

not survive quantization. However at the classical level it restricts the potential

to only have a quartic term, and ensures the scale-invariant point, χ = 0, is a

solution to V ′(χ = 0) = 0. Because scale invariance precludes the existence of

any dimensionful parameters, it also guarantees that the potential vanishes at

this scale-invariant minimum: V (χ = 0) = 0.

Suppose we put aside (for now) the anomaly in scale invariance, and ask

whether the fact that V ′ = V = 0 is automatically satisfied means that scale

invariance can help solve the cosmological constant problem. At first sight the

answer is ‘no’, because having V = 0 when χ = 0 is not in itself sufficient. It

is insufficient because not only does scale invariance ensure V = 0; it makes

all masses zero. After all, the cosmological constant problem is the puzzle of

why the effective scalar potential is minimized at a value that is much smaller
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than the other nonzero masses in the problem.

A more promising attempt might be to consider the case where λ = 0.

In this case all values of χ are equally good as vacua, and for all of these

except χ = 0 the mass of the fermion ψ is nonzero, m = gχ, because the scale

invariance is spontaneously broken. Since it is broken masses can be nonzero,

but notice that the potential energy is nevertheless still minimized (trivially,

since V = 0) at zero. Scale invariance guarantees that V = 0 remains true

even once scale invariance is broken, because all values of χ are related to one

another by a symmetry (scale transformations), and so V must have the same

value for all of them (and so must in particular vanish, because V = 0 for the

scale-invariant point where χ = 0).

Phrased this way, spontaneously broken scale invariance sounds like

a promising approach to having vanishing vacuum energy while still having

nonzero masses.

Weinberg’s objection

Weinberg’s objection to the above argument is that, although promising, scale-

invariance in itself cannot solve the cosmological constant problem, even as-

suming that it could be made not anomalous. That is because scale invariance

can never preclude quantum corrections from generating a nonzero scalar po-

tential, like λχ4 which we’ve seen is completely scale invariant. And if such

a potential is generated, the only minimum is again the scale invariant point,

χ = 0, for which all masses vanish.

The problem with scale invariance is not that quantum corrections raise

the minimum of the potential from V = 0; it is that quantum corrections

generically lift the flat direction and make the scale-invariant point the only

minimum.
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Relevance to the 6D model

Weinberg’s analysis is not specific to four dimensions, and applies equally

well to extra-dimensional theories that are scale invariant. It is particularly

pertinent for the supergravity models discussed in the main text, for which the

bulk enjoys a classical scaling symmetry. Although the analog of the scale-

invariant point may seem less clear in the extra-dimensional model, it is χ =

eϕ0 that plays the role described above, since this transforming multiplicatively

under a scale transformation rather than shifting. This shows that having a

potential minimized only at the scale invariant point corresponds in the extra-

dimensional model to having a runaway potential that is only minimized for

infinitely large values of the dilaton, φ.

And in the main text we’ve also seen that in the special case where the

branes couple to φ in the scale-invariant way, the generic form for the classical

low-energy potential is Veff = Ae2ϕ0 , revealing the generic runaway Weinberg’s

argument requires.

But nothing in this argument precludes finding the minima obtained in

the main text. For more general kinds of brane-dilaton couplings the shape of

the potential is more complicated since its form is no longer dictated by scale

invariance. Nothing forces it to be minimized only at the scale invariant point

in this case.

Furthermore, nothing in the argument says how large the corrections to

the potential have to be. In the 6D model described above, supersymmetry in

the bulk generically acts to suppress the size of quantum corrections, regardless

of whether or not these are scale invariant.

So this argument, while true, doesn’t preclude the behaviour found in

the main text.

358



Ph.D. Thesis — L. van Nierop McMaster - Physics & Astronomy

D.3.2 What is the 4D mechanism?

Another general objection to the kind of calculation presented here asks what

the ultimate mechanism looks like in 4 dimensions. That is, even though the

full theory is extra-dimensional, why can’t I ask what the perspective is of a

4D brane-localized observer? After all, if there is a mechanism at work in 4D,

this could be more widely useful than a particular higher-dimensional example.

The basic response to this question is that the underlying mechanism at

work in the brane back-reaction is higher-dimensional, and cannot be simply

seen in a purely 4D framework involving only a small number of 4D fields.

Ultimately, this is why the KK scale must be as low as sub-eV energies in

order to be relevant to the observed Dark Energy density: if it were higher

the extra dimensions could have been integrated out and we would be back to

the unsolved problem of understanding why the Dark Energy is small in four

dimensions.

Of course the world does appear four-dimensional below the KK scale,

and in this energy range a 4D observer must be able to understand what is

going on. But when the KK scale is as low as the Dark Energy scale, ρ ' m4
KK,

there really is also no cosmological constant problem in 4D since ρ is as big as

the largest UV scale — i.e. mKK — would suggest it should be. The essence

of the SLED mechanism is that above the KK scale the gravitational response

of the vacuum must be understood in 6D, even though all non-gravitational

physics remains 4D (because it is localized on the brane).

Arguments why a 4D mechanism is necessary

But a more subtle objection3 asks why a thought experiment cannot be per-

formed that allows the vacuum energy to be understood within a 4D effec-

tive theory, even if the cosmological constant were larger than mKK. After

3We thank Nima Arkani-Hamed for making this argument to us.
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all, one can imagine adiabatically changing the underlying parameters of the

model in such a way as to generate an effective 4D cosmological constant,

Leff = −
√
−g A, with A > m4

KK. If so, because energy cannot be directly

extracted from ρ, no consistency issue would preclude us from analyzing the

theory in an effective 4D approximation, provided the Hubble scale remains

small enough: H2 ' A/M2
p � m2

KK. (If H were to become larger than mKK

then sufficient energy could be extracted from the time-dependent geometry

to excite KK modes and force us outside of the domain of the effective 4D

description.)

In this picture, it seems we are again forced to be able to understand

what keeps ρ from being large purely within a 4D context.

But again it is the scale invariance that saves the day. As you adiabati-

cally manipulate the underlying parameters in the 6D theory, what is generated

is a potential, V (ϕ0), for the entire flat direction rather than just a cosmolog-

ical constant. Since the flat direction partially involves the extra-dimensional

metric, general covariance precludes generating just a ϕ0-independent con-

stant.

So instead of getting a constant like Leff = −
√
−g A one instead gets a

potential like Leff = −
√
−g A eaϕ0 , where a is order unity. But if A rises above

m4
KK, then not only does V rise above m4

KK, but also so does its derivative, V ′.

Once this is true a 4D description is no longer possible, because the equation

of motion for ϕ0 implies that having V ′ this large generates a time derivative

ϕ̇0 that is equally large, which provides an energy source that can generate

KK modes.

The upshot is that there is no effective 4D understanding of the cos-

mological constant problem; but this does not mean that no solution exists,

it simply means that the KK scale cannot be much larger than the observed

Dark Energy density. It also means that the existence of a light field, ϕ0, in
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the low-energy theory is a crucial part of the story, making it unavoidable that

there be a scalar-tensor gravity in the long-wavelength limit.
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