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ABSTRACT

-

i The im?ortancé of off-shell effects has'ﬂéen investi-
gated in.(d,p) stripping reactiocns and tﬁg mocdel tritdn.

For the stripping reactions a formalism is -developed
for calculaﬁing_differentiél éross-sectiéns_and'angular distri-
butions assuming a direct process. By taking into account the
off-shell backgreound term and its interference several ievelg
in the reaction l?N]d,p)lsN (uhbound) have bé;n interpretéé.
Contributions to the resonances fram other sources are consi-

E&ﬁaeredﬁ by exﬁéﬂding the coupled channel theory off the energy
shell. In three soluble two-channel models, w%th square well, .
d-function and non-lopal interactions, the off-she;l resonance |
and bound state behaviour is discussed. The off-shell T-matrix
for nuclear “eactisns is also derived using the R-matrix theory
and it is discussed in some numerical detail.

For the model triton the ground state energv for twQ
classes of potentials, a rank two and a partly non-local
have been calculétéd. All these potentials fit the low energy
data” but in addition they support a continuum bound state (CBS).
In each class two sets of poteﬂtials, one with a continuum béund
state at k = 5 fm ! the other at x = 7 fm t have been investi--
gated. The rank-two potentials produce a triton ground state
collapse in a2ll cases. The binding increases as the CBS moves to
Higher energies and decreases when the repulsive form factor

becomes stronger.

iii
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- Tﬁ; partly non-lccal poténtials combine langfrange N :
locality with a short range non-locality. Though their non- ¥
local parts acting alorne produce a collapse no collaps; hasf/
‘been found ﬁor the total.ihteractioné. In fact the bindiné

is almost the same as that of the local potential acting
" alone.

-
.
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Well -I knoq\thou‘hast a bitter lot to bear
still ‘tis‘best to bear as. lightly ‘as we may-

the ills that life is heir to.

(Euripides, ' Helen, Chorus, 252)
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' ‘ CHAPTER 1 '

- INTRODUCTION  ° N ST -

Y.l THE IMPORTANCE OF OFF-SHELL EFFECTS

Knowledge of the nuclear interaction is steadilv in-
creésing in the las? few vears. The low energy on—sﬂell T-
matrix for tHE‘two nucleon system now appears  to be well
Known andlthere eﬁisg.several potential models that are quan—-
_ titatively qcéurate dvefrghe elaspic energy range..However,

R

in any problem in nuclear physics involving three -or more
. ’ . . . -
particles knowledge of the on-shell T-matrix, however com-

" plete, does not suffice, since off-shéll T-matrix elemenfs
play an important role. In the past in most cases the solu-

K

tion of such problems has been reduced bv force, 1n other
.3

words, bv the help of 51mollfv%pé assumptlons, to the solution

LAY ——

of effectlve two beody problems. The obvious reason for this
procedure is mainly due to the fact that the two -body prob- }
lem can pé solved exactly and easilyv. Grédually appreciation
of the importance of realistic off-shell behaviour has become
well known, -especially after the invention of the Faddeev
‘equations. However most of the work is focussed on the separable
interactions due to the simplicity of their applicatioﬁ.

* Nowadays the three body problem can 'be formulated

rlgorouslv and can be exactly solved even for reallstlc poten-

tials. It is therefore possible to reinvestigate nuclear problems

o
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to see whether the methods can be-improved by taking into ac-

count the three bddy effects. THe first part of this work is

along this line and deals specifically with the (d,p) reac-

- ~a

tions. In such a system if we assume that in the initial state
there are two particles in a bound state, the deuterocon, which

is accelerated into a target nucleus, different types of reso-

nances can be expected which are .related to the Breakup of the
.deuteron, thé formation of the compound nucleus ard, if pos-
sible, to the scattqfing of the stripped particle by the target.

We are interested/;n particular in the latter case which is

Pl

{ .

known as (4,p) fﬁfippl‘q process to unbound states. The

guestion that we are investigating is how the threé body effects
- AN - = K v

are éoing to influegce the resonancé behaviopr 6f the system.
On the other hand we can have a thrée-body system con-
sisting of three .particles of identical masses. In the low"
energy region this system céuld be in é_résonance:staté,-q—d,
p-d& scattering or in a béuné state, the wodel trifoq. For the
létter‘case‘a significant amount of work has been done using
non-local or partiy nén—local potentials, however although the

on-shell behaviour of these potentials was the same as that '
of a model local potential, the off-shell behaviour has been

substantially different. It is therefore important when using

a non-local or a partly non-local potential to‘détermine whe- '
ther the off-shell behaviour is reasonable. In other worxds, it

is imperative to have criteria with which one will be able to

.reject‘all such interactions which though .they f£it the two-
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body. system very well, produce unreasonable results in the
‘three—godf System.due to their different off-shell behaviour.
We are'addressing this point in the seceond part of the thesis:
In the next ;ection we are giving a shért review and , -
we are outlining the procedures that. we are using to investigate
the off-shell behaviour df'reéonanceé'appeéring in (&,p) strip—
pPing reactions to unbound states.. We also indicate in which
ways our approach differs from others. IQ section I.3 we re-
view previous attempts ﬁo establish criteria fof acceptable
non~-local interactions ang indicate how such criteria can be
established: We devote section I.4 to outlining the' general

™

plan followed ip the thesis.

I.2  CROSS-SECTIONS FOR STRIPPING REACTIONS

Cross-sections for diiect stripping reactions to un;
bound states have been recently subject to 5 thorough inves- -
tigation owing to their ability to provide valuable information
on the angular momentum, parity and spectroscopic factors of

the reaction groducts.
- .2
The theor&es which are usually emploved can be viewed
as extensions to the corresponding ones for stripping te bound
states (PWBA or DWBA) and are mostly concerned with evaluating
the stripping amplitude with a particular accuracy.
For bound state stripping, the used procedure is té

consider only the contribution due to the proton-neutron in-

teraction which is the product of the neﬁtron transfef and the
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deuteron break-up amplitudes, whereby the integral for the

neutron transfer is cut off at a finite radius and it is

approximated, either by the value of the integrand at the

(1)

nuclear radius or by assuming-the nuclear wave function

outside thg.nuclear radius to be proportional to sphefical
(2) . '

Hankel functions .

For resonanc?-states, this appfoach can leéd to sgrioﬁs
errors since the contribution oftEHe integral beygnd the
barrier is very important and it is éntire;y aetermined by
the general requirements of'sqattering theory.'

(3)

Euby and Mines ‘Have discussed this problem. They

used a convergence- factor e-ar to evaluate the outer part

~ 3

"of the integral at several values of a and then extrapolated

(4) used the

numerically to the limit @-+0. Bang and Zimanvi
one pole_apgroﬁimation near a resonance and chose to employ

a Gamow stéte for the nuclear wave funct;On. A different
treatmeﬂt has been given by Vincent and Fortune(s) who have
also discussed the reliability of the éxtrapolation to a+0.
They have used a scattering solution for the A+n wave function
and'ﬁn addition they consider contour integration to improve
the numerical evaluation of the outer part of the integral.

In summary, although the above theories tend to give good fits
to experiment, there is always a suspicion tﬁatfthése fits
might be more indicative of skillful choice of parameters than

inherent accuracy of the theory. An improved theory should

not only prowide reliable analyses of experiment but it should
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alsec provide a more physical dnderstanding of the reaction

mechanisms. .

A

The development of a@faccurate quaﬁEum mqugpical des-
cription of stripping to a resenant state, has been presented
by Lipperheide(s) who has derived the stripping amplitudé using
the graphical technigue of Shapiro(7) and has ta&en into
account the reaction kinemétics by considering the of £-shell
extension of the scattering amplitﬁde. In this elegant
formalism(s) the cross-section for s;ripping to resonant states
is related to the corresponding measured cross seétion for the
scatterlng of the stripped particle on the target The formulae
are obtained within the framework of the R-matrix theorv using
the one pole apprOxlmatlon near an lsolated resonance. This
approximapion which i1s in general a goqd cne, resiaesrin the
assumption that all resonant states of the final nucleus are
long lived and energetically far apart. If however two séateg
are close enough, i.e. if the predominant parts of their widths
overlap, the above approximation is not satisfactory. The same
is true, 1if backgrouﬂd and interference with the background
have to be included. The latter can be guite important, when
one considers an off-shell extension. Sinée, like bound
states, which are seen as peaks in the energy spectrum of the
outgoing protons, resonant states are also seen as peaks, lying
on top of a continuum due to the three body breakup, there-
fore rgsonant—continuum interference can have an app;eciabler

effect on the cross-section. It is our intention to derive an



exact expression of the scattering amplitude within the above

»~

model, thus removing the restriction of - an isolated resonance.

Our derivation is based on the eigenfunctions of a

(9)

Hermitian Hamiltonian which describes the interaction in the

internal region and the solutions of the off-shell Schrédinger

(10) in the external region. We have applied our forma-

(13)

eguation
b

(11,12)

lism to the first approximation of the transition

anplitude and we have shown on the basis of experimental re-

(14,15,16)

sults that off-shell effects are important in (4,p)

stripping procésses. In ‘particular using various numerical

{17}

techniqgues we show that interference with the off-shell

background is more important than the corresponding interference

»

with the on-shell backgrOunq}ls) and cone can use this result to
interpret resonances which appear in (a,p) and (n,n) proces-
ses.

When our results do not entirely agree‘with the ex-

periment we explain themby considering contributions from other

{19,20)

sources which are not included in the first order app'o"-

mation of the'amplitude irrespective of whether the latter =

(21) )

is expanded around a single pole or is calculated in our way.

We test this argument by considering a channel Hamiltonian and

(22)

its coupled eigensolutions which we use to find an ex-

pression for the off-shell T-matrix. Using model calcula-

(23,26)

tions we show again that off-shell effects are important

in reaction processes since they can completely change the

resonance behaviour of the system(27)_
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I .3 'THE GROUND STATE COLLAPSE OF.THE THREE BODY SYSTEM

l The concept of separable interactions has now been wide-
ly accepted and a great deal of work has been done which deals
with their applications. However it has also become clear,

(28) and other works

see for example the Qork of Srivastava
cited there, that not only should the separable potentials be
fitted to the on-shell data but their off-shell behaviour

‘should also be investigateé. 'This realization has prompted a

-

comparison of the off-shell behaviour by means of the. Kowalski-

Noyes(29'30) half-shell function f(p,k).
' This comparison however is restricted to the off-shell_
» behaviour at some energies and the on-shell behaviour at low

energies since the on-shell T-matrix is not known at high
energies. It is therefore interesting to investigate these
interactions by changing their on-shell properties at higher

energies.

The first step in this direction was taken by Beam(Bl)

(32)

and Allessandrini who have found that the rank-one separable

potentiél of Tabakin‘BB) which has a continuum bound state (CBS)
produces a ground state collapse ( has a deeply bound ground
state) in the three-body system. Sofianos et.al.(34) genera-
lized this result by showing that a ground state'collapse oc-
curs in the three particle system for separable two-body
potentials of rank-one if they have a resonéﬁce pole sufficiently
close to the real axis. Even more surprising they found that

the binding energy of the collapsed state tends to increase

when the rescnance pole is shifted t6 higher energies, which

- indicates that a CBS or a resonance pole near enocugh to the



real axis is more "dangerous" &t very high energies than at-
lower energies.

However the picture for separable potentials of rank-

two was less clear. -Sofianos etaal.(34)

con;tructed several
separable potentials of rank-two all having the same two nu-
cleon bound state wave function. The rank—one separakble pdten—
tial with the same bound state wave function, i.e. the UPA to
all the rank—éwo interactions, had a resonance pole close to
the real axis producing a ground state collapse in the tri-
nucleon system. However with increasing repui%ﬁon in the rank-
two interactions éhe ground state collapse soon disappeared
again. On the cne hand it was found tﬁat a ground state col-
lapse could ﬁappen for'separable potentials of rank-two, but
on the other hand it was found not to occur necessarily even

if it occurred for the corresponding UPA. More so, the in-
troduction of an additional répulsion moved the resonance pole
further away from the real axis and it was not clear if this
would not be mainly re5ponsib£§_for the disappearance of the
collapse. Similarly inconclusive was the example of a rank-
two interaction with a CBS. 1In this example they were unaﬁle
to find a collapsed state, finding only weakly bound states in
ﬁhe trinucleon sttem. However as we shall indicate later,
this interaction cannot be regarded as a reasonable one of the

type used in two- and three-nucleon calculations on two counts.

In the first place it violates the shape independent approxima-

A



tion for the low energy parameters, a condition known to pro-

duce anomalous three-particle binding enérgy(3$'3ﬁ)

and even
more its ;;tractive part is of shorter range than the repul-
sive one, a gquite uhphysical éitugpfbn. In'view of these
ambiguities, it is necessarv to investigate this problem to
establish”éleq:ly whether-the presence of a CBS entails a col-
lapse. in the three particle ground state. This we dolb§ firs£
considering two sets of rankﬁtwc-éeparable interactions in

their limiting forms. We construct(37) them with a fixed

deuteron wave function and also a fixed CBS at energies of

E,_. = 2000 and 4000 Mev respectfively. In each set
any number of interactions can be'geﬁeratéa by changiné the
parameters_of the form factors.

In all CéSeS which we have considered, 2 ground staée

collapse.still ﬁccurs(38)

in the three particle system though the
binding energy is somewhat reduced when the repulsive form factor
in the interaction_is made moré repulsive. In addition we find
that the collapsed state becomes even more tightly bound when
the CBS moves to higher energies. This suggests that for this
type of interaction the three particle system 1s not a low
energy system any more. -

Secondly we consider partly non local potentials which
are supposed to provide a better representation of the physical
interaction. Here again we regtrict curselves to the limiting

forms for simplicity. Since local potentials alone can not pro-~

-duce a CBS and since the total interaction is constructed to



‘have a CBS at high energy it is difficulﬁ £o make'prédicéions
in this case. However because of the importance of the local
potential one is tempted ég expect that no cqllépse wiilﬁoqcur.
We shall show that this is inéeed the .case, though we can not

definitely exclpde the possibility that a collapse w&l%‘not

occur if the CBS moves to very higher energies.

'I.4 OUTLINE

- In Chapter II we derive the deuteron-nucleus scéttering
amplitude using the rFaddeev equations. We solve the Sch;édinger
equation off the energy shell in order to relate the differen-
tial cross-section to the off-shell stripping amplitude and
compare our results with the experiment. We are actually in-

-

terested in the process’
1+ (2,3) -2 + (1,3)
where the right-hand side finally proceeds to disintegrate
(1,3) ~ 1 + 3.

If we assume particle 1 to be the target nucleus A and par-
ticles (2,3) to be a deuteron & then the above process is called
a (d,p) or (d,n) stripping depending on whether particle 2

is a proton or a neutron. In the case in which particle (1,3)

remains bound the process is known as stripping to a bound state

£
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as against stripping to an unbound state when (1,3) disintégxates.

We should\pmphasize that this mode of decay is_different from
ﬁhe greak-up érocess (1 + (2,3) » 1+ 2 ; 3) in which the pfo-
jectile disintegrates into.its constituents in the nuclear and
coulomb field of -the ﬁarget A. This is so because in the

stripping to unbound states we assume the formation of the

intermediate nucleus (A+ one particle)}, which then proceeds to

-decay, whereas in the break-up process, the binding effects

between target nucleus and stripped particle are neglected.

In chapter III we improve upon this model by includirng
spin and discuss experimental results using differences in
on-shell and off-shell scattering. Up to this point we have
kept the assumption of a direct reaction mechanism. 'However in
order to be able to describe compound effects we need a
formalism able to describe decay iq all energetically open
channels. We outline such a model in chépter IV. 1In chapter
V we extend the formalism of chapter II thébugh the off-shell
T-fiatrix and wé compare the accuracy of this theory with the
exact calculations. In chapter VI we investigate off-shell
effects in the loﬁ energy three body system, the model triton,
Lsiﬁg separable potentials of rank-two which have continuum
bound states. We devote chapter VII to do an investigation
similar to that of chapter VII but using more realistic

potentials. We give in chapter VIII a summary of our results

with our conclusions.



CHAPTER IT

OFF-SHELL EFFECTS IN (&,p) STRIPPING

Précédures by which to develop interesting solutions
of the three-bédy model are not obvious. The usual“beliéf that
adéquaﬁ% effective potentials can deséribe the "deuteron-nu-
cleaué's}steg rather accuraﬁely is_too simple. On the other
hand exact solutions via the Faddeev equations provide less
physical insight since in this model allowance is not. made for
an additional degree of freedom related to the spectrogcopic
factbrs for stripping reactions. ﬁéwever, this difficulty is not
essential and due £6 the importance of the three-body effects
in (&,p), (p.d), and similar reactions, thé three—bbdy forma-

lation of these cases has some advantage.

IT.1 THREE-BODY APPROACH

We adopt here the formalism of Newton(IB) to fo;mulate
the three-particle scattering problem. This formalism is related
_to the Faddeev equations but it is‘ﬁore concise and is better
suited for our purpose..The main difference is that_we choose our
final and initial states to be the elgenstates of the first
order, rather than the zero order Hamiltonian. The starting
point is to realize that for reafrangement collisions we have
to distinguish between the initial and final %gmiltonians. For
the total Hamiltonian, we have,

[la] + V-

< b

H=Ka+va=Kb

-

where Ka(Kb) is the total kinetic energy of the three particles

a

12
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4

(i,j,k = 1,2,3) in the initial (final) state respectively and v_ (V)
is their total initial. (final) interaction, viz. va = (Z Vi)a'

-
-

] : i
The subscripts a and b refer to the initial and final sys-
tem and Vi i1s the force between the two pafticles labelled

- by j and k, j # k ¥ i. Since the imteractions are additive,
the gcalculation of the scattering amplitudes need not start
R TN .
:wit@iﬁhe kinetic energy as a zero order Hamiltonian. Suppose

the. Hamiltonian is written ~

= +
H Hoa

5]
]

K+ V_ -
ca Ka a Ha

[1b]

K +V, - H

= ' -+
H=4 ob b p = Hp

ob ‘ "

UFLQ .

then one may “first calculate the states of Ho and

a (Hob)
proceed to calculate the exact guantities correspondin§ to the

full Hamiltonian H from those corresponding to Ho

a(Hpb) as a

starting point. For the T-matrix elements, we have

’ _ ()

-

where Hb is a part of the total potential interaction and w(+)(E,a)
is the exact Scattering eigenstate of the complete Hamiltonian

(Ka + va) with outgoing boundary conditions:

/ e
(3] v ey = 6, (E.c) + gé+)Ha¢(+)(E.af' E—
and
[4] . g;+) = (E - H__ + im~L . R

R
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Clearly "in: our” representation ¢, and ¢, are the elgenscates
- of the first order Hamiltonians Hoa and H b’ where‘now we. have

- . >

dropped the arguments for convenience..

2

As #n example of the utility of these expressions we

‘consider a deuteronfstricp&nd*reaction from a nucleus C. Let’

-

the ceute*on lnltlallv 1molnge upon c and 4=3_nav.l:l.v let the

nehtron be bound 1n C to form the nLcleus F .and the c?oton-

.
-

emerge freelyu:‘The full Hamiltdnian H, in an obviocus notation, -

is .
! ’ = o -\- .‘ + ’ . . . “ 2Ty
. H Kye +'KPN”_ vPN +_VCN_+ VCP N }n;tlally
[Fa]l .
=", S A o s
n RPF hNC f VPN + VCN + VCP' -flnally
3 - N - )
- w

‘and we can set

oa = "pc T-fen T Ven' ro Hai= Yoy * Vep
51 R

4

Hop = Xpp ¥ hNC?*fVcNT" Hp = Vep T Vpy -

Then the eigenstates«qf;noa are direct pro@ucts of the eigen-

- r ’ ’ > . £
states of th + (KPN + V,...) and the gigenstates of H are

PN ob’

direct products of .the eigenstates K '+ (K 4+ V. ..). If
TS © ! NC CN

VPN and VCN are known, then the elgenstates of Hoa and ch

_-.can be calculated e\actlv.and S0 can the matrlx TB& in [2],

i

[$%



It is convenient to rewrite [3] uSing the identity
111 1 .
—_-— = O B-3 = . - -
(el 2~ 578 B™ 3
for g;+) and g{T) = (E-H + in)_l_ One Zinds
' S (FY N E)
(7] v | ®a ¥ 9 TH 9,

and conseguently we have for the transition element (21,

o = e ; i (+) -y A
[81 . _ Tz (o7 (H +H g ha)oaj_.

We now cdefine an operater

L)

~ - ’ = 7 +_" : ( +‘) .
(91 "ba T By T HLE h,
such that T, is a2 matrix element of ﬁbé between the eigen-
[n] . -
= . . . . - (+)
states of Hoa and Hob' Invoking relation [6] for g(t) and gé_?:

it is easily shown that

- (+) Ao
Tpa = Hb + Hbga (Ha + hég ha)
or : :
A (+) 2 ]
(10] Tba = Hb + Hbga Taa .

Equation {10] is very useful. It relates the trénsiéion40pera;6r
for the process a-b to that‘déscribing the process a+a and it .is
particularly suited for elastic (or inelastic scéttéring) and re-=
arrangement collisions; .

1+ (2,3) _
SR 1+ (2,3) =>42 + (1,3) E

3+ (1;2) .

s
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le

[}

" The T operators appropriate to the description of the above col-

| N

. S -~ e -~ - - .
lisicns are respectively T,., 7T ané T T refers to the
scattering of particle (1) by tHe bound state of (2,3), while

\T21 and T31 refer to. the cerresponding rearrangements of par-

ticles (2) and (3) with particle (1). In terms of TWl’ these are

T)y = WV, * Vg b g, Ve, - :
(r2] T = Uy Vpy) o+ (Woy ¢ vy e(TR -
Ty = (Vp + Vap) + Vg + Voo
where according to[4} g£+)-= (E-Ky = Vg5 + in)_} . Formal
manipuletions are found ip New 513). For. conciseness

we shall only give the steps;}eading to the final result.

-

. s /
We define the auxlllary/9perators

X _ (+) v (+) 5 N S P
31 %00 = Va1 TTyy 0 oy = VistVige) T TipsaTa s VitV L6 g,

in ®eérms of which the original T's are expressed as

~

Bl Ty = moytTar o Top = VogtTygtrgy, Ty o= Voabrotr,.

11 21

After introducing the two body operators in the three body
Hilbert space, that is

= - (+)
(131. - . Ty = Vaz + Vyqey TV

- etc.

23

then the matrix egquation for the 1's is easily found to be

261 , T =5 + 86"y

+ T .
where G( )(E) = E-K1+;n)“l-1s the three body free Green's



T eperator and

.I" ]

: : o 1T

. s ]

[17] | o t_z ﬁO T2 . .
Jom ™ ) ’
LT3 T 9 .

» » -
: . .. el . .
For the process 1 => 2, which.we are actually interested i

13
»
-

<

-2 single iteration ,of [16] vields,

(+)

=S (+)
[18] 'I‘.*",_.l = V%S + T3 ﬁ T,60 (T, +-?3)‘f T3G Ty + oen &
Applying [18] to a deuteron (d), -(p.= 2, n = 3), impinging onto
a nucleus, (C = i), (C+d) -~ p+(C+n}), and retaining the lower

orcder terms, we have with an cbvious notation

[19] T = v + & + t 1G(+)(t + £ + t DG(+)t

21 js}sl Cp je! Cn Cp) C Cn '

where matrix elements have to be taken between the eigenstates

(20] -

with IXa> referrxing to the spin partd of target and projectile,

bl I3 .
and ]ua> = Iud,kd> the product of the internal wave function
- .
It \
of the deuteron and an initial‘glane wave. A similar expression
- <

holds for |u, > = |u__,k_>, where now u refers to the neutron-

b nc’' ' p nC .

nucleus wave function.

It is easy to give a physical interpretation of the'multiple
scattering series in [18]. First of all we note that the multiple
‘'scattering expansions are rearrangements of the Born series. This

can be seen by considering the Born series for the T-matrix

-
'



e
corresponding to the process 1 + (2,3) => 2 + (1,3) and making
: (+
use of the operator identityv[6] for g+'and4g§ ). We’ shall note

further that if we write T, % v, and limit our expansions
to the first order in the interaction potentials, we find that

[18] -gives

, \ .
.o~ A, N
[21] T21 % Von T Vep

-

which is jus£ the first Born approximation for this process.

Usually only the first term in [21] is:evaluaté& for
the stripping ampliﬁﬁde and it is referred to as direct strip-
'ping. The second term, which descrfﬁes the nucleus-proton
interaction, is accounted for, using distorted rather thgn
plaﬁe waves for. the outgoing proton. This approximation should
wérk well ‘both for bound - and resonant state, stripping.. In
the latter case, however, care must be taken since the evalua-
" tion of the stripping amplitude includes now the region of
space where the compound nucleus forms. This means that other
important final s?ates as C+n might exist and therefore compe-
ting, compound reactions as well as channel coupling might have
to be considerea. In this chapter we shall retain the assump-
tion of a direct reaction mechanism but we shall use the full
scattering wave functicon of the C+n svstem to give a prescri?—
tion for thé stripping amplitude which will be independent

2

of the resonances.
Using [20] and ignoring spins for simplicity, we can
write for the transition amplitude in the plane wave Born

approximation

'
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> .
YRV
nC’ o

—

[22]

T21= <u pn!kd:ud - ' .

Now after eliminating the deuteron potential through partial inté-
gration of the Schrddinger eguation for the relative motfion of

the deutercn the akove expression leads to,

: t -t, :
_ B, nC d,pn.-
L23]. Tzl.__
pz . /"-'—"'_—-.._
{Ln - 2m +in) .
- 3 ) Il
where N : \ -
— jo . > . = : .
= -~ — . - -
[24] &4 o = = U7 = p ) /m +ey) ‘us(ple l_p Vag = ¢ (3)
- 1 —3: -~
Vv o= (5 ]\d-kc)

sl

is the amplitude'describing the deuteron‘break—up and

‘ B AL
_ . - _n - )y
[25] tB,nC (En 2mn) unc(r)e dr
m
+u-a- _ _L_
-k = kd ko m_+m
= C o

is the fully off-shell scattering aﬁplitude for the transferred
neutron with énerg& E  éand momentum P, = hkn #F /iﬁgﬁg impin-
ging on the target nucleus. ©Note that there is a singularity in
the energy dernomindtion of [23] and & term +in is reguired for
an outgoing wave. This singularity. introduces a phase shift ig
the scattered wave that modifies its asvmptotic form. On the
other hand, [25] ensures that no singularity is present in [23]

in the case of stripping to a bound state. Also note that in

[24] €4 is the* binding energy of the deuteron and we have taken

m
= = 4
mp—mn 5 -

m
. - ;oo C . . c
o - —
Setting kn m.ki k ==+ wWhich is the condition for

forward scattering (mc>>mn) we get from [25] the half off-shell

scattering amplitude and consequently from [22] one finds the



{6)

well khown relation for stripping to unbound states

k -
do 2u 1L 2 > =

[26] () = (B |e(= k.-k )| “tm £ _(k_,k_,E_)
dﬂpdE : (2%&)? k_ 2 7d p c n' "mn'n

'wherg the subscript ¢, stands for elastic nC scattering and u is

: - UgaMos
the' reduced mass L with B = n+C. The derivation of [26]
na C i

is given in the Appendix. It will be seen that it is valid only’
undér thg?gssumptiOn that we consider only the states of the
‘nucleus B that can give  the pair C+n. This is so because the
imgginary part of the off-shell'scatteriﬁg émplitude (appeariné
in [26]) is related to the total cross-section via the optical
‘theorem and it ﬂash én assumed that this mode of deéay will
dominate the reaction)_ We shall note here that the nuclear
wave'funcéion.unc(r) is reélly still a sum of channel funétions,
one for each neuEfon:that can be emitted. Only if we were to

. assumenthat_ong and only one partial wave is resonant and the
three body scattering amplitude does not depend on other
partial waves in the (n,C) system, then the cross-section can =

be well predicted by the single level theory.

I1II.2 OFF-SHELL STRIPPING AMPLITUDE

From [26] it is apﬁarent that knowledge of the on-shell
scattgring amplitude does not suffice to determine the ampli-
tude for stripping into unbound states. On the other haid,
the off-shell amplitude is not simply related to its on-shell
value. The technigue most often used to go off-shell is through
separable interactions or through the one pole expansion ap-
proximation. We shall give here an explicit solution,-within

the framework of the R-matrix théory, whigh although it. is easily



o ML . -
R gy
Oobtainahle "does not appear to have been aoolled to calculatlonal

oroblems.

We consider the Schrddinger eguation off-the-energy

shell in the &?Czibiflal wave

(27} (E-H)H’fﬁ’q(E;r) = (E-E‘)jz(qr)
®x2 5 x> 2
ETm KR AE =g

2
_H .4 »
by 7 zmg Sl=mal (g - Dix
(28] _ :
- - 2 L
_x2 a4y
LL T Zma olr a)(dr r )x

2

o

where LE is the logarithmic derivative of an outgoing wave, iz

*

| r0, (kx) I, (kr) _
[29a] Li(ka) = (_BZTEET)I=3 = (—TETEET)r=a = Si(ka? + lPi(ka)
with
(2951 Oi(kr) = Gl(kr}+iFR(kr)=-(kr)ng(kr)+i(kr)ji(kr)
Ii(kr) = Gl(kr)—iFg(kr) = - (kr)ni(kr)—i(kr}jg(kr). .

jz(kr) and ng(kr) are’ the usual spherical Bessel and Neumann
functions and b defines the boundary condition of the internal,
wave function to be specified shortly. We also note the asymp-

totic solutions

Fl(r) g Fa(r) = sin(kr - )
[29¢]) Gn(r) E Ga(r) = cos(kr - %;)
0,(r) £ o_(x) = T o ¥ (4

-
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In the R-matrix theory, it is cusﬁomary to divide the configu-
ration space lnto internal anc external reglons separated at

r=a. The Herm1c1tv of the modified Hamiltonian

[30] CH=H L

is easily verifieé and we may rewrite [26] as follows

{31] (E-H)¢£ q(E.r) =_(E—E')3 (gr)+ (L -Lb)u (Elr)hLLwﬂ,q(E’r)

The operators L, and L. are introduced in [31] to facilitate

the replacement of $ (E ) bv an expansion over a comolete e
l
FE {x)
set of e*genfunctlons u {r) =

of the damlltonlan f withr

elgenvalues E

5 -
[32] ' Hy, (£) = E ¥ (x)
) . e u)(r),
[33] _ wi'q}r) = i Ay - r 5 a i
‘ ‘ O, (kr)
[34] ¥y ,q Errl = Folar)/qr + £{@ KB} ——— r > a .

The right hand side of [31] is simplified by making a suitable

choice for the boundary condition b. The particular choice is

&

- d . _ ]
F33] (a E;-uk(r)) =a = b uA(a)
S50 that
2
[36] J ui(r)dr = f T)(r)rzdr = 1



‘we shall also note in passing that

[37] L.y, (E,z) = L_F, (gxr)/gz r=a

“LTi,q :

which shows the reason for the definition of the operator Lp-
Eguation [31] can now be reduced to calculable form by inserting

[33] and taking overlaps with the basis functions w,. The resul-
~ A

‘ting eguation for wg g (Es2) 1is easily found to be
ra

s, (riu, ()
A A dr +

-

~ a

r
- e ]

o]
(b-L (ké{) Cp At B @
X A

(E,a)

Ye,q

ks

Zma (E—Ek)

Lﬁ(ka) K2 ~ul(a)uk(a)

- ) Fyea) /() - Y oma (BB,

81&

Recalling the usual definition of the R-function

2
2 u, (a)u, {a) Y
ol A A A
(391 R(a,a) = z = -4
2ma (E,-E) y (E,-E)
one finds
-1,2 2 *©
Ri{a,a)l - (q) “(k"=g") s F/ (ar)R(a,r)dr
o) )
40 ’ E, =
Lol Vifq( 2 (1-R(a,a) (L;-b})
with
L -1
[41] L= (g - D er, qar/ea) = 122 T (FE, ()0, (5 - -
* -1 -
(Lz(p)-LQ(XJ)Ig(p) = (ga) L
where ) . p = ga, x = ka.

ferring to [3%9] we shall note in passing that the guantities

Yy T 5= u?(a) are.the usual reduced width amplitudes-
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. From [4C] we can.easilyv find A, and the fully dff—shell
- amplitude either through

[42] T (?erE)‘= J jl(pr)v.(r)l;'f2 cr(E,r)rzdr

"

0)

©r using the known~rel§tion (Bishop(l between the full off-

shell arnd the half—off—shell amplitude. Actually we are in-
terested in the imaginary paft of the forward scattering ampliJ
tude, Im fc(kn,kn,En). By the use of the off-shell optical

theorem we have :

[43)7 . InT(3,&,E) = - —— Mk (22417 (k,0,E) T, (k,q,5) P (5+8)
L (4m) \12 IS 2 L' 2

ey

and conseqguently we find

[44] Inf(3,3,B) = 4=k I (224D |£, (x,q,5) |
i 2‘ ‘
where fz(k,q,E) is found from [40) and [34] at large a, viz.

- )

0;}(x) +fq2—k2)aéa Fo(gr)R(a,r)dr+R(a,a)l
(

[45] £,(k,q,E) =

- F
g (1=R(L,-B)) o (P))

. - e . - 2m

with P = tik_ = 4ig the momentum transfer and k,#k= — E
n n _ A
In {45] certain special cases may b? noted; the half-
: O, (%) 3

off-shell hard sphere scattering element —— — F&(p) or

the corresponding on-shell by putting g=k. Aalsoc one should
" note the influence of the first term which is the contribution

from within the internal region and it is a typical off-shell

effect.

7
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It is more instructive to. rewrite [45] in a manner resembling

the on-shell collision function. Introcucing [29] into [45]

) o, 2ia@orte (L_-L, )R
[46]} ;i(x.q,r.) = 0, 7 (x) £l-R(Lk-bJI . [T-R(L, 57 ] +
' (L'-L )R '
-1 _ - Tex O :

+ 0,7 (p) (l, T - R(L_k_b”}lg.(o) «:}?a(p)/(Zlg) —
where Ik:and‘Lk Stands for LR(DJ and Ll(x) resbectivelykukiA(q)
is given by : _

. -7, ‘
- 2.2
. 147) Alg) = (g°-k )a( F (gr)R(a,r)dr. .
.'\ - J .
— O -

. The first two terms inside the curly brackets in [46] are purely
due tc off-shell effects and they will strongly é%;ect the cross-
’ D
- n

sections with increasing off-shell distance s = — - E

. They
2mn n

are of course zero for kn = k. The remaining part has the
formal structure of the on shell amplitude, where the off-shell
effects are manifested through the off-shell penetrability
Pg(qa)'and the shift factor s (lga). It is apparent that all
these three terms will contribute to the pure resonant cross-
sectlon, and in addition they will also provide for considerablv

more distortion through their interference, with increasing s.
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II.4 QUALITATIVE PICTURE OF THE STRIPPING PROCESS

In deuteron induced reactions, stripping processes occur .

pound reactions, above 30 Mev. In the energy region 3 to 30
Mgv however these otﬁer two processes can be neglected since
theyldo not contribute éubstantiélly*to the total cross-sec-
.tgon. When Coulomb forcgs areineglected (d,p) and (d,n)rreac-
g&ons are eguivalent. o |
In a simple pictureiwe can already see qualitatively
some important features of the process. In fig. (la) the
_ deuterén_dfimpinges on a target A with mém%ntum §d. The deu-
. teron is Qroken‘up and cne of its consé&tuents, say the proton,
ﬁisses thg target. In some cases- the neutron will interact
(elasticafay or inelastically) with the target as shown in fig.
{lb). In éther cases it will be captured by the nucleus to
forﬁ a bound state, fig. (lc) or it will be iﬁstantaneouslf
reléased‘(fig. 1(d). 1In all these processes informétiOn about
the nucleus B = A¥n is obtained. The last mode however is
partiéularly important in extracting information about bound
states which are embedded into continuum (CBS). These sta;esl
appear spaced close to the neutron threshold enerqgy but tﬂey
- can still be resolved experimentally as can be seen from
fig. 2. 2
From the conservation laws we have
(48] p2 = (Ed—?apiz - 'pgép;-zp 4P,COS°
énd b ) ~

Eq = Ep + 64 * En (49)
*Page 334 of Einfiihrung in d;e Grundlagen dexr Kernphysik, H.-von
Buttlar, ref. B(2).

. C s . - . ey - *
in competition with Coulomb excitation, below 3 Mev and with com- ,



fa) Initi&l stace: the {b) Intermediate state:
deuteron & iIs acce- * - The deuteron is broken up.
lerated on the target The proton p misses the
- A. _ - ' o target whereas the neutron

‘n interacts with it.

-

N 3
b e'—* - R
- P *
~
-~ T,
Famn n
Final state: nucleus B (d) Finzal state not bound,
bound. - nua&eus B decays to A+n.
[~
P

B

?

(e} Momentum picture

N~ -

Fig. 1 Schematic diagram of a (d4,p) stripping process.
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|
]
Conrection of stripaine to bound and unbound states
. . . [ -
. - Sreck -up resonences QuCs - ciscrete

. Fig. 2: Schematic view of a- spectrum of the (d,p)

reaction at a given angle. The threshold
for emission of ageutron is denoted by
‘an arrow. - oo

L}

In Fig. 2 a schematic view of the spectrum of a
{(d,p} stripping reaction is shown. For, simplicity
of presentation we assume that the transferred par-
ticle ?3%? neutron. The discrete well separated
stateés the high energy end are followed by a re-
gion where the levelensity bBecomes higher and higher
and may not be resolved experimentally any more.
This region is called continuum®, yet the levels are
still discrete bound states. Above the neutron emis-
siom threshold there will be a population of isolated

- resonances which will go over into an even mere

structureless continuum at lower energies,Ep.
Y -

-

* N . .
Proceedings of 1978 INS International Symposium on
nuclear reaction mechanism, Fukuoka, Japan.
(G. Baur, R. Shvam, F. Rdsel and:D. Trautmany

oy
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, ) Ly
where Ed'is tﬂé birding enefgy of the deuteron. For the. energy
transferred by the stripped particle we have I

. o 2
=B
= + = -
{501 E, = B, 2, Q
: - . : ) p2
where E_ is the excitation energy of the target Eéi its recoil
and Q is the neutron threshold o ?
, ‘ . _ , .
(51 Q= (my *my +m) . :
Using Equations [48] to [31] we get
m m /m.m
. a Vv _ d'p
| - € -E_= = =- - /E
[52] Q- S Eg=(1 + mB)Ep-*j( -LE; -2 LdEpcose
which shows that if we measure Ep at a certain angle we can /7}
get the levels of the nucleus B. . {' L
' It is easy to show that the neutron has moved off he

energy shell by,considering the off-shell distance s which is

related to the stripping anglé via:
2
L] p n
[52] s = - E_ .

- 2m T
N n

-

‘ F - -
If we define ?? - pp = v then we f£ind that, see appendix A

2
[54] _ o S'=€Q§-+ g%— V2
-

which shows that s>0.

—

)



II.V APPLICATIONS - .

‘ . 15 16 SR
We have chosen tc compute the N(d,p) "N reactionleading to

J'=1, 17 ana 17 states at E x = 3-519, 4.318 and 4.398 Mev ’

respectively. These states are unbound agalnst ‘neutron de-

cay and they are observed as resonances (Zeitniz(l4) in the

1=
. . - .
elastic scattering of neutron by N They occur at neuvtren

™

energies'Erl = 1.0985, 1.944 and 2.038 Mev and have been selected

for our investigation because of ambiguities arjsing in their

K

interpretation in earlier works. We have calculated the reso-

nance wave functions Uy (rJ-ln a sguare well pcetential with

radius r 2.65 Im (R—matrix radius a = 4.69 fm) and a depth.

adjusted such that for a given angular mementum £ the function

uA(r) has an eigenvalue egual to the energy of the rescnance

consicered. As boundary condition at r = a we have used b = —1,
2

which defines the eigenvalues Eyp = =V + -——7 Myg s where Mg

is the At root of the spherical Bessel ;unctLOn jﬁ l(“AR) = 0.

Clearly with this bounaary condition the resonance ener-

gles will differ from the eigenvalue E by a "level shift",

AL
but thlS is immaterial for our present investigation. We shall
note here that the use of a nuclear force field with a sharp-
cut-off at a given radius is very crude and a smoother radial
dependence of the potential should be assumed. Indeed ouf
formalism is independent of the choice of the potential form.

We have chosen to yse a sguare well however, to facilitate

comparison with_ earlier works.



To account for difierences between the actual physical

scnance widths and the single particle widths, we have in-
g E

\ | » e o2
7ocucec 2 parameter S to multiplyv the reduced width amolitudes Yy
nc we have chosen S such that®it reproduces the experimental

. .. C e, 15 .
ecucec resonance widths in the N{n,n) svstem. We remark
that in the single level limit the parameter S is the so called

"spectroscopic factor" for the reaction.

We have included only six R-matrix levels in our calculations
. .

ince inclusidR~—4f more levels did not provide for any essential

T vardation of

cur results. We may note in passing ﬁhat in all
we have considered, the variations between thé six
aﬂé the singl gvel limit did not amount to more than 2%,
relative to the resbpance peak, and one may surmise that the
above resonances can he-reasocnably well.described as single
particle ones. Figuré 3 shows the differential cross section
of the =2, E, = 3.519\Mev resonance as a function of the
neutron energy E for different values at the stripping angle
- 82.
of Fuchs et al.

Comparison with oné of the measured cross sectlions

(15) 82 = 15° seems to be good. The anqular

distribution” @s also a good fit to the data but there is a
disagreement at very large off-shell distances (s > 5).
This is partly due to the fact that very large off-shell

distances are already contradicted by our assumption of forward

scattering (mc >> mn) which in turn restricts the amount of
. &
angular momentum that can be transferxrgyd into the target.
We notice that both the single and the six level limit

gave satisfactory results and it is thus -surprising that Fuchs
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(mb/sr)

(do/da)

Fig.

3.

32

% = 34513 Mev

Ml

— e 1 =
1:06 07 =08 03 110

NEUTRON ENERGY (Mev )

The differential cross section as a function of the
neutron energy Ep at different stripping angles 6.
Note that the resonance energy is shifted by 16 eV
due to the 'shift factor'. The inset shows the
differential cross section as a function of the cff-
shell distance s. The experimental points are taken
from the work of Fuchs et al. (15). The R-matrix

parameters for this resonance are r = 2.65, A = 3.2,
and b = -2+ .

e am—— ma B L0
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et al. (1> reported a less satisfactory single level fit. ?ince

in the single levelglimit, the two methods &iffer only.in the
. . . s - . : 4 .
inclusicn of the off-shell background term and evaluation

of the radial wave function cutside the nuclear interaction,

we conclude that the off-shell background term and its inter-

—

ference are cuite important in this case.

In passing we necte ﬁhat contrary ta the case of
the E. = 5.730 resonance (MS3hring -and Lipperheide(B)),WhiCh ‘
becomes symmetric off the energy shell, we see from fig. 4 that
the Ex = 4_.318 Mev rescnance becomes asymmetric as one
goes off-shell. Since changes in the resonance shape are
entirely attributable to the off-shell effects this is indica-
tive of a very strong dependence on them. In the single

. ~
level Ilimit it is the imaginarv part of the off-shell form fac-
tor Fhat accounts for this change in shape and this shows that
its inclusion in the calculations can become rather important.

A rather dramatic change of pattern occurs in the £ = 0
Ex = 4.398 Mev resonance as one traverses the gap between s = 0
and the smallest value of s in the (4&,p)- reaction. This
resonance appears as a dip in the heutron cr%;s—section but
it 1s not observed in the (d,p) reaction and’its interpre-
tation has remained incénclusive so far. It c¢an now be
explained gualitatively by considering the contributions of

the interference terms both on and off the energy shell, It

can be seen from £fig. 5 that the on-shell contribution is
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Fig. 4. The differential cross section as a function of the
: neutron energy E, at different stripping angles 6.
The inset shows the differential cross sectiocn as
a function of the off-shell distance s. The experi-
mental points are taken from the work of Fuchs et
al. (15).
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The differential cross section due to the interference
terms only, as a function of the neutron energy E,. The
solid curve is the on-shell contribution normalized to
the corresponding dip in the (n,n) cross section and re-
duced by a. factor of 10 to facilitate comparison with

the off-shell contribution (dotted graph) at the off-
shell distance s=2.53. The inset shows the total dif-
ferential cross section as a function of s. The experi-
mental points are taken from the work of Fuchs et al. (15)
and they are . upper limits only.
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'stro§gly negative and causes a strong fall—dff, of the cross-
section ét the resonant energy. In'contraét,_the off-shell
contribution is less negative ané balances out the pure
resonant contribution so téat ;ﬁe dip at tﬁe (n,n) cross-section
disap?ears in the (d,é} bréak—up continuum. We should remark
here that our calculations show an angulér distribution that
compares reasonaply well with experiment (see also fig. 5).

The. above arguments seem also appropriate with respect
to the resonance at E, = 5.048 which is the only case éf méjor
discrepancy with the analvsis qf‘Méhring and Lipéerheide(a)
Although we were able to obtain an inverted £=2 resonance in the
{n,n) cross-section our calculations eﬁclude'an & = 2 transition,
since it shows up as a peak in the (&,p) crogg-section. On the other

hand with an 2 = 0 transition we have obtain;;S;;me gualitative

agreement with the experimental data, but our results are not

entirely satisfactory. Skipping ahead, the answer is: maybe this

resonance is a mixture of £=0 and =2 waves. In view of this any
comments on the possible identification of this resonance are
necessarily speculative at this stage. It is po§sible that in-
clusion of other coherent processes, for example "nroton-trans-
fer"(lg) as well as correctioh for distorted wave effects and é
more realistic choice of the pbtential well, will resolve the

ambiguities concerning this resonance, and we shall return to

this point in the next chapter.



II.6 CONCLUDING REMARKS

¥7We have presented-a general framework for the theore- .
tical description of transfer reactions in the continuum,
. which is a natﬁral extension gf the usual formulgtion as a_
three.body collision, under the condition of a direct reactioh
mechanism and within the framework of éhe R-matrix theofy;
we have given an exact expression by which one can calculate
the differential cross—sectioﬁ including background termé.
Our formalism has been applied to a (d,p) stripping reaction
and we have shown that apart from Verifying-earlier,results
we have found in%eresting interferénce effects with the break-
up continuum. With theéé interference effects we were able to
resolve some ambiguities regarding levels in the compound
system.'
Finally we remark that the case of charged-particle-
transfer can be treated in the same formalism by simply re-
placing our in- and out-going wave functions by the.Coulomb

functions.



CHAPTER III

ASSIGNMENT OF J° = 1~ FOR THE 5.048 MeV lével of oy By
CONSIDERING THE ON- AND OFF-SHELL BEHAVIOUR

III.1 INTRODUCTION

n and parity of the Ex = 5.048 MeV level at
Lr

. meutron ene‘rgy-En = 2.732 MeV, in 16N have long been assigne
lSN

The spi
dFlM

as I = 17. The principal evidence has been derived from n-
elastic scattering which concluded that the 2.732 MeV ground state
transition is a 2=0 tranéition leading to J=1 and negative éarity
for this state.

The negative parity assignment is alsoc consistent with

14 (16)

angular distributions of the C(3He,p) réaction (tentatively

2=3 transfer) and the 15N(d,p) reaction (3), where an £=2 compo—
nent was evident. The results of ﬁrevious studies of one or two
nucleon étripping and pick-up to this state (i.e., ref. (16)) have
been ambiguous. A plane wave analysis(s) of lSN(d,p)lsN {2.732
MeV) gave a téntative 2=2 assignment to the stripping pattern. Al-

most a good fit is also obtained . for 2=2 in the distorted wave

(19)

analysis and =0 is'definitély favoured in a later plane wave

analysis(ll)

The presence of this state has been extremely perplexing

<

because of possible interference with the d3/2 single particle
resonance, with J' = (17), (27) arising from the coupling of the

pl/2 proton hole to the d single particle state and merging into

3/2
the broad symmetric structure centred at about 5.1 MeV.

15
The calculations of Fuchs et al.( ) suggest that a

more accurate estimate of the off-shell to on-shell effect can show

>38 -
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whether this respnénce ;s a case of a mixed 2=0, 2 transition. The
formalism that we have developed in Chapter II is especially
suited for such a study because off-shell effects]are calcula-

ted exacﬁly and because both (4,p) stripping‘an&/ilastié scat-
tering can be treated on the same footing.' If this state can
be reache& by a mixed lptransition thén thiS»shduld show up in
bOth reactions aﬁa the spin values of that state can be deter-
mined unampigﬁously.

lSN 15

ITI.2 (n,n)""N REACTION ANALYSIS

»

The- total cross-section of n—lSN up to En = 4.5 Mev

(14) using the R-matrix

has been analysed by Zeitnitz et al
description for a single open channel. This formalism has
been extensively discussed in the literature, see for. example, Lane

(23) 2nd the following is intended only as a summary

and Thomas
of the formulae that we are using here.
The differential cross-sections for collisions of pairs

of unpolarized particles are (with ¢ = jsl}

27n

. - 3
[1) total: ca(tot) > .Z gj (Re ch)
ky Jsi
e = T j o2
[2] elastic: Og; = — I 9. (|ch] )

I k2480 3
o

where gj is the spin statistical factor

_(29+1)
(31 95 % (2T, #1) (2I+1)
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and Re T signifies the_real part @I the sbattéring T-matrix. -The

convention is that of coupling“the intrinsic spin I; of the in-

‘coming particle (neutron) to that of the target (lSN) I to

21’
make the channel spin g = I + sz and then form the total

>

dngular momentum j of the svstem, by coupling s to the

~t

( relative orbital angular momentum £ of the two particlés. If

"there is no reaction the collision matrix U = 1-T is unitary -

and egs. (1) and (2) reduce to;

-

[4]. - o =g =27 5 g.|T/

5 ) :

With a single opén channel, the R-matrix is a simple function’

which is related to the T-matrix by

P
1l +

ccC

QRcc }
L.P R :

(5] T = 1 - exp(-i29_){l + 2i
; : L= 4L 7 ce

In Eg. (5) P the logarithmic

is the penetration factor, L

L £

derivative of an outgeing wave for each partial wave % and ¢c
defines the potential scattering phase-shift. The analysis of
1(14)

Zeitnitz et a was performed by dividing the R-function

into an explicit multi-level sum and a background term,;. and then
expanding the background term about the-méddan energy Eﬁ of

the energy range under consideration. For each resonance a §
X2 minimization technigque was used to obtain the best 2,] valuesf
Instead sf doing this, we retain the R-matrix as a multi-level

expansion and we' assume fixed values of j, s and L. The selec-



yield J"=.(17) for this state.

P
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2+1

“

- tion rules reduce to w= (=) and j= %+s where the resonance

undex consideratiOnrin_lsN has spih J and parity T. In:our-present
‘example the negatlve parity a551gnment restricts the value of s=1
and thus permits the values of 2= (j*l) whlch for j =1, regquires

an even\l value assxgnment. Since earlier fits predlcte§ an -

2=0 value, it is judged necessary to attempt to improve ﬁpon

those fits by cénsidering £=2 contributions. Thus given the

resulits of reference (14), any £=2 component will unambiguously

In the following discuss shall adhere to the PWBA

'analySLS and unless stated otherw1se, make use of the data of

ref. (1l). We eﬁpect such a PWBA analysis to give a reasonable
fit to the w1dth and the dip of the resonance and we try a llnear
combination of =0 and =2 conponents with a X mlnlmlzatlon
(17)
routine -
The results are shown in fig. (6) The fractional
parentage is 35% for =0 and 65% for =2 and this supports the

T
assignment J = 1 . The difference from the experimental data -

indicates the inadequacy of the plane wave approximation. It

is likely that this behaviour is due to a combination of dis-

tortion effects and compound-nucleus effects. We shall note

.in passing that the =2 contribution has been calculated as

d-wave interference with the broad I(lpl/z) x (1dy,5); 17>
single particle resonance at about 5 MeV_. This is doneﬁpy "

neglecting the non-résonant scattering cross-section of~the

partial wavesqhot éontribuﬁ@ng to the resonance, and assuming that



otot(b) x 10

16

Fig-"\. 6 -

1 | ) | L P
265 270 275 280 C)
NEUTRON ENERGY (Mev )

Total cross section for the reaction 15N(n,n)lsN
leading to the 5.048 MeV state of 16N. The two

dashed curves show the 2=0 and =2 contributions. )
The solid curve.is the sum of fhege two contributions.
The experimental points are en Srom the works of
Fuchs et al. (15).
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the cross-section around the resonance is given by .

-

_ 4m (23+1) . ol 3
931? 9 = 73 (2T. + D) (2L, + 1 sin(B8, + %1)

., .k -1
where‘Ei is the potential scattering phase-shift and Si_ the

resonant scattering phase-shift passing through ©/2°at E = E

-
It is obvious that at § = - 3 there should be a minimum in the
cross—-section, for which any deviation from zero can be explained

by contributions of the other partial waves (18)

117.3 1°n(d,0) %N mEacTION ANaLysIs

L4

The disgussion of the previous section strongly supports

the assignment J# =,(l_) to the 2.732 MeV state. Nevertheless

it is important to confirm this assignment through the lSN(d,.p)lsN
reaction; since off-sheli effects ip.%d,p) stripping modify the
@ifferential cross-section and therefore a fit to the angular

distribﬁtion of elastic scattering may be different from fits

to the stripping patterns.

Inclusion of spins in Eg. (26) of Chapter II is straight-

-

ward. In the shell model with no configuration mixing a given

initial state has only oﬁg‘?aiuq of (s,%,3) initially, an8 the .
£inal state has only one s {the same one) and (we assume) one
(2,3)- In the present case we have coupled the orbital and spin
angﬁlar'momentum of the neutron to a subtbtal‘j,and have then
added the spin of lsN: JT, to obtain the total j.-:{For the

differential cross-section in each partial wave (#,j,m) we have

-
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-

2J+1 (udAuoB) 2n(n+1)

do 1 1 )
R = - VEL) x
d B, (23,+1) (27)° MoFna)  @m)? 5 se@®-ne,  ©
- EB, -y
. - - Ed - IF,Q,j (G__rkrE) | -

where Fij is the off-shell elastic scattering amplitude for the

15

stattering of the neutron by N and it is rcalculated in the same way

as in Chapter II. The symbeol n=7 is a parameter of the Hulthen

wave function. < q

As in ;ﬁklprevious section, we use here a linear combination

0f the- =0 and £=2 components
(8l - =
. c(a) uoo(a)o +‘a20(8)2

It is evident that ¢y have to satisfy the condition I o, = 1
2

because the neutron c<an not be scattered by more than one single

particle state simultaneously. To get an inverted shape for the

theoretical £ = 2 component we have calculated it, as interference

rot
el

wave wlith the same -angular momentum £ at the energy En ~ 5.0 Mev

with the potential scattering cross—section o at the partial
which corresponds to the single particle state |(lpl/2)X(ld3/2);1'>
The emphasis here is on the actual mechanics of the calculations
for a reasonable physical 'situation and we don't expect too close
an agreement with the experiment. We shall note in passing that

for the complete potential scattering cross—section we have:



- 45

-~

2
E (221+l)(2£2+1)

dg _ A £ P_. (cosS)s _ «(2s+1)
& - 42 % d
dQ 2 L S',S=0,l L sSS E,

(sl ’

x (Ll,iquILQ)sinis ilsincs lz(cos)(is 2, " S 3 )

Eguation [9] simplifies for s=1 and 2, = 8, =2 ¢o

2 £ p_(coss) {(0000{LC) sinzgo +9.0(1100|L0)sin%g,

dg:ék
an 4 L

‘t1ol o+ 25.J(2200]L0)5in2E2)} .

Figure 7 shows the differential cross-se at the resonance

energy as a function the off-shell distance s, Wwhich is related to

the stripping angle S~hrough Egs. [48] and [52] of Chagpter Ii.
Since the angular distributions show no structufe, the way
\to fit the experimental data is not obvious. The method
hat we have used was to fit the &=0 partial wave as well as
possible and then adjust the £=2 wave to give the best fit to
the data. The frgctional parentage is agout 50% for each partial
wave, which is considerably different than that found in the
nrl6N scattering. As we have noted previously, however,
the off-shell background interferes destructively with an S-wave
resonance’ so that the relative strengths of thé partial waves
are not to be taken too seriously. Therefore the amount of
mixiﬁg inferred here can only be cénsidered gualitatively correct.

The .important result from fig.(7)is that a mixture of .l values

(L=0 and 21=2) is required to_fit the (d,p) data and these
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Fig. 7. Anqular distributions f$¥~xhavjﬁactlon lSN(d,p)16
-leading to the 5.048 MeV state of 16N. The two
dashed curves show the 2=8% and £=2 contributions.
The solid curve is the sum of theése two contribu-
tions. The experimental points are taken from the
work of Fuchs et al. (15). The R matrix radius for

. the 2=0 resonance is R = 3.V fm.
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considerations in conjunction with the results of the previous
'section, show that the angular distribution to the 2.732 MeV

state can be a superposition of £=0 and 2=2 waves. Since& the

‘presence of any 2=0 contributions determines the spin assign-

ment, the spin and parity of the 2.732 MeV level in lGN can be

‘assigned ¥ = 17. This assignment however is in contradiction

A7) 4ho have assigned J" = 2

1

with the_work of Baxter et al

+o that state from measurements on the 8O(d,a)%GN reaction

using a polarized deuteron beam. Detecting the e-particles
near 0° they were able to get lower and upper bounds (/Z, _i)

for the tensor analyzing power T,,. If a measurement of T20

falls well away from both these limits thern unnatural parity

T = (-)J-+l (not including 0 ) can be assigned. In the present

case they have obtained unnatural parity and therefore have
assigned 2 to this level. We should mention here that a 2"
spin requires an =2 transition. . However since an 2=2 wave

does not show up as a éip in the(n,n) cross section the inverted
shape of this resonance must be explained as interference with

another rescnance near this excitation.
C 5
P
IIT.4 CONCLUDING REMARKS

All the states in lGN up to an excitation energy of

4.3 MeV, have been analyzed previously. The 15N(n,n)lsN re-

(14)

action of Zeitnitz et al. predicted a spin and parity as-
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signment of the 2.732 MeV state of J?T = 1 with an £=0

(15)

transfer. The results of Fuchs et al. ; however, defingke;

} ] . - - -
ly favour an 2=2 transfer with JTr = (1 ),(2 ). In the present
study we have shown that a good fit to the data is obtained
by a mixture of 2=0 and 2=2 waves which provide the identi-

fication of Jw‘= (17) for this state, however the results of

Baxter et al(47) may permit a different interpretation.




CHAPTER IV

OFF-SHELL EFFECTS IN COUPLED CHANNELS

i

Iv.l INTRODUCTION

| "We have seen in' the last two chapéers that for deu-
teron stripping reactions some simple choices for the off-
shell éxtrapolatioﬁ have proved reasonably successful, for
example expreéging the transition matrix through its on-shell
valueﬁggggggﬁh single énd isolated resonance. However, there
are difficﬁig;es with this procedure: when resonances are
broad and overlapping the g}ngle pole expansion is.violated
and this can lead to an unphysical off-shell extension. Ege
same is true of course where inelastic channels are ﬁ&esent
since bound states in a closed channei are reflected as reso-
nances in the.open channels. Furthermore we have seen that
off-shell interference can alter the resonance behaviour and
in view Bf the fact that the resonance parameters may depend
on the off-shell extrapolation it is'important to study the
reliability of this extrapclation for (d,p) stripping. Oﬁe
way to do so would be to set up soluble models for the exact
three body scattering and test the resonances against their
theoreﬁical definitions. Interesting work on these lines for
(d,p) and (d,n) stripping to a bouné state has been done by

(20)

"Beregi and Lovas who calculated the transition matrix

48
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elements using the Faddev-like eguations of Alt, Grassberger
and Sandhas and analysed the cross-sections by flttlng to the
transition matrlx 2 Breit Wigner formula.

-

) Another approach is to apply ‘the method of coupled

channels. 1In the conventional (4,p) étrippihg to a bound

state, mahy such applications'have been made. However, in

bound state stripping off-shell effects are not likely to af-

fect the results appreciably since_it is assumed that the in-

teraction:is taking place at the sﬁ;face and the contribution

of thgsT—ﬁatri# from the interio£ can be neglected altogether.

On the other hand in stripping to an unbouhd state the wave

function in the interior is important since a compodnd nucleus:

can be formed which can decay back to the elastic channel or *

to any other channel that is . energetically available. We shall

note here that we are observing the outgoing phrticle only,

and therefore our elastic channel is that formed by the target

nucleus and the stripped particle and it is always off the
- -

energy shell. An example of (d,p) stripping to the-unbound‘

state le deca;ing back in the elastic channel has been discussed

in chapters II and III. In this case the final nUcleuS'Nl6

is unbound to neutron decay and therefore will exclusively decay
back to n—le. Other cases however have been known to exist

where other channels can be reached. (For instance the reaction

Li’(d,n)Be®, where Be® can cecay to (Lif+a), (2me?), (me’+n)
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and the off-shell elastic éhannel’L;7+p).'
Questions now arise as to what the main effects of
“the coupling of channels. off the energy-shellhwill be and
’under what conditions the effegts will be appreciable. For
this‘purpose we present three soluble moaels'and test the
resonance parameters in these models. The details are pre-

sented in the following sections.

-
-

IV.2 * REVIEW OF THE OFF-SHELL ENERGY T-MATRIX

A two-body transition operator T(s) is defined
through the integral equation-

1

[1] T(E) = V + V(E-H_) T (E)

where H, is the kinetic energy operator of the relative

motion, E is the energy parameter and V is an interaction

. 2
potential. Defining a wave operator Q(E) according to the
relation

(2] Q(E) = 1 + (E-H ) Ir(g)
Oy
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it then follows from [1] and [2] that

[31 ‘T(E) = VQ(E)

. . \/ . ~
and . . ‘

/

141 (E-H SVIR(E) = (B-H)-.

Writing [4] in a mixed representation we get

- 2 .
(5] (E + % 73 - ) <x]e® |gim = (5 - 2) <z{gem

where <£[94Eﬂg£m> means Y(E,g,r), with r the space coordinate
vector and g the wave number. In the following we will
restrict ourselves to the case of positive energy para-

meter so that we can introduce the on and off-shell momenta

through the relations

[6] . ' k=/3—%E and q=/3%z
X .

and we shall suppress the notation for the spin operators.

Equation [5] is the Schrddinger equation off the energy shell.

In the many channel case it is a matrix equation

(7] (B-H,-V) [¥> = (2-H ) | ¢>

Now,Iﬂ:contains an internal part HI' that gives rise to the

different target and projectile states C. Clearly
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(81 Ht = H + ﬂI , Hi[c>==gc|c>

It is instructive to' note here that if only the elas-
tic channel is open, two different excited states can decay

to it, and the possibility of coupling still éxists; In this

case however the eigenvalues €, are zero and the momentum
- _ - _
numbers are equal in both channels. With \;I
[o> = N

g1y (. k. x)
[9] - c'Zc ¢

o> = Ildele, ®) s

we Ccan_rewrite [5] ag;follows: -

2 . _ 2 2 .
[10] i[(kc_TR)occ' - Uc‘c]wcc"" g(kc Q)9S |
where we have defined
. 2Hg 2 2Ho aZ 9.(9.+1;
[11] Ucc'==;FT Veer - kc’=;;r (E-eg) To=1[- dr2 + r2 1.

Physicélly we have incoming waves in only one channel so that
only one term survives in the right hand side/of [10].¢ 1In

{ .
fact, in the problem at hand we have off-shell incoming waves

only in the elastic channel and we Willﬁij?Ote this channel with

the subscript 1.



Iv.3 . SQUARE WELL POTENTIALS

For the sake of simplicity we shall consider here two

spinless particles in the relative s—-wave of reduced mass My

in channel 1 and reduced mass Mo in channel *2. Using natural

units-ﬁﬁc;i_we can write the coupled Schrddinger equatioﬁs in “‘:>

——

-the form

a2 2. ‘ ' | .2 20 .
[12] [— + (kl'? Ul)]ul(r) ==U12u2(r)+-fkl-q )jo(qr)
dr™ : ' } ,
d2 2 3 ) '
[13] ' [ + (k,-U,)Ju (r) = U, u.{(r) . T
. dri 2 72 2 2171 .

From [11] we can see that the moméntum nunbers are re-

lated thritjfiiﬂ;>. ~ | . _ :

[14] L k2= k% i x

2, : SV Cee
where ko is a measure of the inelastic thresheold and it is de-

termined by the masses By and Hy e For cur purpose we shall use

J

ul = 1.0 Gev, u2 = 1.01 Gev which gives

[15] 1 (thresholdy ™o = 2(H27Hy) = 20 Mev
2 _ 2 . . _ 2m
or k0 = 0.02 Gev™. We hav 2fined Uij = = vij and we shall further
) 5 _
(23) — -
as;ume that V2l —.V12 and U21 = UlZ‘

The solutions of [12] and [13] proceed in a standard\wgy.

for r < a
i
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3

N . u,(r)-= Asinx,r + Bsinx,x +C singr
\ [16] .t ! ? :
\l ; - .
\ S ouy(x) = eAsinx, r + 8Bsinx,r
-\ . -
and for r > a
. . ik.r
singr 1
_ = 2=ut 4
- ul(r) ot Tll €
[17] \ ik.r

il
H
)]

2
\\\ u, (x) 12 . ,

Insertin\ [16] in [12]1 and [131] we.get five characteristic-

equations from which the Unknown parametgrs are easily.found

to be:
[ ‘l‘
- 5 /2 7 A
2 _ 3 2,2 . _ 2 _ 2 2 . \
(18] Xy =35 (Zkl ko U, Uy [(k0+u2 Ul) + 4012] } i{
2 _ 1 N, 2 L2 2 2
[19] X, = f_(zki«ko UZ_UI‘- [(k0+U2—Ul) + 4U12]
\\\\ 2 2
. U kI-U,-x
[20] o = 12 _ -1 "1™
N U
Ki-q” - '
[22] . c = = 3 -
: k17Uy-q
. We shall note here that ,the dependence of « énd B on
kl,k2 is an apparent one as can be easily seen by direct substi-
tution of [18] ‘and [19]. Matching the wave functions and their

derivatives éLézéé’and after some straightforward algebra we
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get R
b4 . _ _ .
P S . 2 s - s .1 . Singa
(23] 7 ;ffil)e lRl{sinca*_["(ez 1R2) (e:L 1Rl)a](1kl — cosqa)}
11 g - . Dilpyrp,) -
‘—iaziaS(ikl 55533\r cosqa)(ezfel)
T . = (C-l)e * =1
(241 Ty, = D(pé,oz)
where we have defined:
. Ri = kid ’ Pi = x;2, e, = picotpi
[25] _Dxpl'p2) = lRl(cel-Sez) + lSz(cez—Sel)fLS—g)(* 578y e, ).

" We have. evaluated the differential elastic and inelastic cross-sections

: ' 2 .
: - 0. (E;,S) = T, .
[126] . 1'71 11 .
' ~ Cine1(BpsSh = [Ty,|
for different values of the off-shell distance S, which 1is defined

here by
[27] s =2 -E

and it is related to the stripping angle & through a well known

-

relation® (Egs. 48 and 52 of Chapter II). The range of the potentials

. . -1

is fixed at (21.24) Gev or 4 25 £m and the strengths are sochosen
- as to rearoduce a bound state in the second channel at an energy

~

'] = 11.6 Mev or E, = ~8.4 Mev. They are : i
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P
Y] —_ = -
Ui ~ U]2 = O.lIJz‘ 0.002 (Gev)
or

v, = V,. =0.1V, = =2 Mev.

o
H
|.J
[\
o

- Figures 8 and- g\ihow the alfferentlal cross sectlons in the

elastic and. 1nelast1c channels for dlfferent values of s. The
full lines describe the on-shell elastic scattering for s = 0.

One immediately notices that the effect of coupling to the

" second channel is to produce a resonance in the first channel

at about the same energy as the energy of the bound state -in

the second channel. With increasing energy a second resc- ~
-
nance will appear in the first channel around 20 Mev.

~ This resonance is rela;gd‘to the inelastic threshold. In fact

“ ) :

for our particular choiéé:ofuparémeters this resonance develops
at the inelastic threshold (k12i= koé).and couples tq the two
channels in &he ratio of strengths of 1 to 2. Let's discuss
briefly the three.gquantities characterising a resonance, namely,

the position, the width and the height.

In‘generai the change in the height occuxrs in such a-
way as to repro@ucefthe angular stripping pattern of an s—wave.
Otherwise in all caﬁes that we have coﬁsidered in this model,
appreciable differences occur in the elastic channel -in the
other two parameters as one goes off the energy shell. This is

somehow surprising since as it can be seen from [23] off-shell

effects do not enter the determinant in the expression -for the

-

- n
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Fig. § The differential cross-section in channel 1 as a
function of the energy E; at different off~shell
distances.s. We have used h=c¢=1 and sguare well
potentials with strengths V3 = 10 V; = 10 '

The range of all these potentials

T

and the inelastic threshold

vl = =20 Mev.
"is“set at Zlgfz\sev“l
is taken at Eg5 = 20 Mev. The full line is the off-

shell contribution.

Note that 1 Gev~—1 ='0.1978 fm.
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Fig. 9. The differential cross-section in channel 2 as a
function of the energy Ey at different off-shell
distances s. For general description see fig. 8.
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T-matrix and therefoxe we would have expected the position and
the width to remain unaltered by coing off-shell.

The guestion now arises Of the validity of the usual

definition of the resonance. parameters by locating the zéii\?f
’

al part of D(p,,p,) for ex;ﬁiple;

. LImD(2)

. F
(281 =~ ReD(E) =0 = - .
- T2 al
. A | _ —= (ReD(E)) IB=ER

de

- -

In'conéidering this question, there are several factors
- which one immediately notices by looking at the partial wave

amplitude f£(E,s) = §%%§?l. (1) The function N(E,S) has a

right hand cut, (ii) N(E,s) ¥ 0 as |E| > » for S # 0 and

(iii) in the inelastic cross-section no changes occur in the

-

shape and the width of the resonance. These suggest that dif-
ferences in the resonance parameters are not related to the

poles of N(E,s) but to the incoming waves which are not present

in the inelastic channel.

4

Furthermore in the elastic channel, the resonance part
of the transition matrix element is superimposed on the off-shell-

background which is a function of the off-shell mementum. Conse-

quently if this background term is small and the resonance is small
and isolated, %hen [28] is expected to be valid. On the other hand
-~

if a single particle resonance interferes with its continuum the

resonance parameters have to be redefined.
We should emphasize here that it is the desﬁructive
o

interference between background and resonant term that causes
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the changes and one should look with extreme caution at the
expansion of D(E) around a single pole since it underestimates
the importance of the off-shell background. For a complete

: J ’ .
study of the importance of this term we refer to an excellent

.

paper by Bolle and Kowalski (27). Here we shall réemphasige

their .argument that if the cn-shell amplitude is dominated by
a resonance in-a certain energv range, we can not expect that -

the off-shell amplitude is necessarily factorizable for physical

parametric energies in the vicinitTyhof the resonance.

However if off-shell effedts are important we still can
have an off-shell factorized quasi Breit-Wigner form by expanding
£(E,s) in the vicinity of a specified off-shell point. This
point shou}d be so chosen as to provide the simplest realization
of tbe physical :situation. Thus in accord with the analogous
situation for on-shell scattering; we conclude thét in situations
such as the above the resonance parameters should be redefineé
by means of a partial derivative expansdion. Namely, if we de-
fine F(E,s) = D(E)N*(E,s) then we have ﬂ' ' ’

-

2
[29] ) £(E,s) = —IN(E,S) | ;
- (E-E_+AE) + i »




with
) _ | 3ReF ,3ReF :
bE = (s M Z57/=5 g s .-
- r r.
(30]_ T ImF(E, ) |
2~ 5 ]
R E ReF (E, s) Er,sr
and ‘ ReF(Er}sr) = Q.

The example at hand provides substéntial justification for the above
form. In general thé best set c¢f points is.that for which
ReD(Erj.% 0 andemF(Er,sr) % 0. Then [30] is nearly.fulfil%ed
and also reduces to [28] at S=0. In the présent case, exﬁanding
r

arxound Er=li.7 and'sr=3.9 Mev one gets AE=200 keV and 5 = 236 keV

against the exact values of 130 keV and 345 keV respectively.

iv.4 G-FUNCTION POTENTIALS

-

In the case of &§-function potentials resonances can be
produced in the 2=0 state for both positive and negative strengths

of the potential and the problem”“of determining the coupling

. . . 29
constants has beendiscussed extensively by Gauthier and Kamal( ).

I
In this section we want to extend tMfs model off the energy shell
and test the resonance parameters.

If we define the Green's functions

. 1 -ikir'
[31] - -gi(r,r') = T R sinkir e
1



then the gereral solutions of the coupled equations [12] and

"[13] are - T

[32] ul(r}==sinkL;+-gl(r,a)(Ulul(a)+qlzulun)

_ r
o+ (ki—qz) J gl(r,r')siﬂqr‘dr'

0 | | S
[33] uz(r) = gz(r,a)(Uzuz(a)+012ul(a))- .
' 5~
These solutions asvmptotically becone,
L . ikyx
r singr 1~ . \
[34] ul(r) p = e SLnkla(Ulul(a)+U12u2(aL
r 'ikzr
[35] - uz(r)-—;* —-e Slnkza(Uzuz(a)+U12ul(a))'
Using [17] we getuﬁor the T-matrix
. . _ 2
(36) - _ 51nkla Ul(l Uzgz(a,a))+U12gz(a,a) singa
11 kl D(kl:kz) g
(371 o o _ M52 Uip singa
12 K, D(kl,kz) g

From [36] and [37] we expect that the resonance para-

meters will be unaffected when one goes off-shell. This is so,

-

. .
since the resonance giving a pole in the energv in T and T

1l 12
will factorize, independent of the off-shell energy. In other

-
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words, this is a manifestatidn of the fact that the off-shell
T—maﬁr;x.of a separable non-local potential is separable. .On
the cther haqd this will néf be true if more than one resonance
appears in the same channel, since interference will alter the’

resonance parameters. We have, calculated the elastic and inelastic

cross-section as a function of the incoming ehergy at 3 different

-

values of the off-shell distance s. For simplicity we have taken

{24)

the parameters éf reference with U, = 0, i.e. no elastic
potential iﬁ channel 2, Uy, = 4, U, = 16.94 the elastic threshold
E0 = 11.56 Mey-and we fixed the interaction radii at RJ= 1.01
(Gey)_l. Two resonances are produced in the elastic channel. One
at 8.4 Mev and the other at 24 Mev. The first one is usually
referred to as a bound state embédded into continuum and corres-
ponds tozﬁbound state (EZB'= -3.16) in the second channél while
the second cor£e5ponds.to adresonance at 12.44 Mev.

We founé-no variations of "the resonance parameters in
the inelastic channel. The situation however is different in the
elastic channel where we have two resonances interfering with
each other. For better illustration we show in figure 10 the
scattering amplitude [fll(E)l2 = llel(E)l2 at 3 different
values of the off;shell distance s. It is clear that away
from the resonance, off shell effects are small. As one roves
close to the resonance gnergies however the interference ef-

-fects are obvious. The parameters of the broad resonance

change slightly whereas those of the small one change rapidly
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e~

O(E,S) x 10™
(§S)

no

j—a
l

-_- E  (Mev)

Fig.-10. o(E,S) = [lell(El,s)l2 for the two channel model with
delta function potentials as a function of the energy
Ej1 and the off-shell distance S. The potential strgngths
are; Uy2 = 4 Gev and Up = 0, U] = 16.94 both in Gev®.
The interaction radii are fixed at R=1.0 Gev-1 and the
inelastic threshold is taken at Eg = 11.56 Mev. The
full line is the on-shell contribution. Note that for
s=1.5 the resonance at 8.4 Mev is- reduced by more than
a factor of 200 from its on-shell value. Also note that
the energy scale should be multiplied by a factor of 10.

-

»
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as one goes off-ghell- At small off-shell distances Ehe change
in shape and width are small and only the size is reduced con-
éiderably. Pof_ofﬁ—shell distances greater than 1.5 Mev a con-
siderable chanée of pattern occurs; the resonance becomes
symmétric and it is reduced by more than a.facto: of 200 £rom
“Tts on shell value. Furthermore the width is décreased by 0.2
o Mev and there is a rescnance energy shift of 9.32 Mevzéowards
ﬁjthe inelastic-threshold. This shows that in these cases due
to the presence of a second resonance, the G-function'potential‘
does not entirely act as a non-local separable force, of rank one,
for which a single pole 3pansion is possible,and therefore an
off-shell extrapolationf through a Breit-Wigﬁer tvpe formula will

not be accurate. ‘

We close this section giving 'the T-matrix formulae for
the more physical case where only the cougling potentials are
§-functions and the other ones are square wxlls. For simpli-

city we again assume U2 = 0. The result is:

- ’ N 2
sey w o SEE U3RR(aKy) - (-RYU 0 Ok oKy ) U158, (202)  ginca

11 I KD T Tq

-

(377 T _ sink,a l—Agl(a,a)Ul(p(q,kl)+p(kl;ni)) sinaa
12 ko D(k,) q
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4 - C ez -\
where we have defined ' : N qwﬁf/f{
Xcot (xa)-yveot (va) - .
. p(x,y) = : 5 y2 (¥ T .
{381 - . , x 7Y '
) 2 2
ky—-q
2 2 1
Ky = ki - U s A=
1 1 1 . kz_qz \
and . K\
D(ky) =1+ gl(a,a)Ulo(kl,Kl) - (a a)gz(a a)U12 .

e
It should be noted that all equations reduce to Their correct

limits on the energy shell.

IV.5 SEPARABLE POTENTIALS OF RANK ONE

Non local potentlals of rank one are not commonly
used in reaction theory. Thls is so because potentials of the form
vij = Yij(v(r)v(r'n if they are not energy dependent, do not support
more than one bound state for any given value of Yij'. Therefdre
the expansion of the nuclear wave function in terms of the eigen-
states of a separable non—locai Hamiltonian of the above form is
meaningless-except in the case of a single and isolated resonance.
In this case the resonance giving a pole in the energy in the
~reaction amplitude will factorize and since the latte@ is separable-
for a separable potential lt is possible to relate directly the
off-she)l value to its on-shell one. ‘
/,/_///3 ' -We should note here that with a non local pbtential,ome
* can obtain a positive energy bound state}ZO) in one channel .
\\. which by coupling to another channel becomes a resonance. too and

therefore a direct off-shell to on-shell relationship might again



-

-

be possable. U51ng the procedure outlined in the precedlng sectlon

we have for the T-matrix in each partlal wave L;

[39] -T,, =- (Ii(k1’+(k1"q )I¢(q))Ile"Yliyzz)G2£+Yilllz(kl)
11 Dk :
| 2 2 )
\\ir\ ‘ (T (k) H (k=g T (@)D ¥y, (ky)
[40 . = -
) ) [} . . D(kl) i
“with . 'Ig(kl) = J rjl(sl;)v(ridf
. .
T‘ v . L R
- = J I gi(r,r‘)v(r)v(r')drdr'
: 0 0 /
[41] N ‘
-4
. b
S ‘I¢(q) \( vir)gy(r,x’ )3, {qr’)drdr’
N\

- and - . . SR s By \\

D(ky) = (l Y11 11)(1 Y52C5;) le 1£G21°
. \ :

The fully off the energy gﬁelle—matrix\élements are obtained
from [39] and [40] by replacing'li(kl) and fi&kz) by I,(p): They
are symmetric in q and p although not mamifestly so in [39] and

. N
[40]. This can be easily seen by considering the =0 partial

~
wave for which _ ' \\ A
o . ' | ) I(g)-I .
[42] | Iy(q) = =9 ék) . -
_ , _ —q )

' For illustration we consider S-waves only and show some results ™
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of calculations with P

-
-

[43]- @ v = e T -

We have fixed the interaction parameters Y11 =‘0.0;
Yis = 2.0, Yoo = -i8.0, ﬁ =_i.0, and the inelastic threshold
at Ed = &5Mev.%o produce a negative energy bounq state in the
second channel. It is seen from figure ll that the resonance
.parameters do not change as-wé go off the energy shell. There
exist several reasons for\that: i) ‘the T-matrix is ‘separable
and the form factors (I(g),I(k)) have no left hand cuts, -

¥ : -

ii) the resonance in the elastic channel corresponds to a zero

of the real part of the déferminant. In fact, for the example
at hand this resonance corresponds'to a negative energy bound

: state in thé uncoupled second channel, andliii) D(kl) has
only one simple zero and no other resonances, thus the condition

of a single and isclated resonance is fulfilled. .

-5

It is interesting to note hére that poles associated

with the fgrm factors in the inelastic chhnnel‘are not reflected

in the elastic channel. In our example such a éole appears

“at an energy kgR = —az or ki = kg - az, which is below the

-~
.

inelastic threshold. This pole appears as a resonance in the
coupled second .channel but does not show up in the elastic cne.
This is so becausé it does not exist as a bound ‘state in the

uncoupled second channel, since the eigenvalue problem in

this channel will restrict the values of the parameter o TN
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channel model with non local potentials .of the

form V{ﬂ}r') = Yijv(r)v(r') as aAfunction of the

-energy E] and the off-shell distance s~. The v(r)'s
are of the form T with o ='1.0 and the coupyfhg
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. . .
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L

suc;\ghat a > k

<

Thus we conclhde that only bound s;ateé or resonances

-
that exist in the uncoupled inelastic channels will show up as

resonances in the elastic one when the interaction between the

channels is switche@ on and that off-shell effects will not have
- § _ S .-
any effect on the resonance parameters if tkhe interaction

is non-leocal Sepaiable k one. ©On the other hand, if

the separable lnheractLSQ'conSLSts of a2 sum of terms rather

than a single term one exoects the off- gLell effects to nlav
an importagf role and we are‘}nvestlgatlng this.

IV.5 CONCLUDING REMARKS:

r

+ In this chapter we have presented thxee exactly soluble
models for fﬁe studv of off-shell resonances through the coupled

channel ab?roach. These models provide a practical means for
*

_elucidating the bound and resonance propertiés of a nuclear

mode} Hamiltonian. |, - . oo
Our results show under what coﬁditiqn; the isolation.
of sPé;ific_resonahce cdn;fibutions is possible. It is- found
that all'models‘ailow a ;imple pole expansion. However whereas
the.éeparable non;iocal Hamiltonian of rank one is more suitqble‘
to such an expansion, care should be taken when using a square
. i

well Hamiltonian,since off-shell effectgﬂwill have an appreciaﬁle

effect on the rescnance parameters.



'}

CHAPTER V ’ /

EXTENSION OF THE OFF-SHELL T-MATRIX
TC NUCLEAR REACTION, PROBLEMS -

. "

V.1 INTRODUCTION

-

In-Chapters II and III we have used the half-off-
shell scattering amplitude to explain (4,p) resonahces which
arise in the lGN nucleus. Our formalism there was based on

the internal Gkeen's function of the problem and its associated

\\

eigenvalues and eigenfunctions which were taken to be real and

to represent the single particle states of the syétem. How—

ever, in practice many resonances appearing in such processes
. - ; . c -

have compound rather than single barticle nature. In other

words, they are formed or they are decaving via different reac-

tion channels, which can not be accounted for by the'single par-

ticle treatment. In this'chapter we present an extension of

our formalism to describe coupled channels phenomena. Our ap-

proach is an extension .of the off-shell T-matrix in nuclear
3 .
reactions and uses the R-matrix theoxry by utilizing the wave

functions and energy eigenvalues of the compound mucleus. Tt

is an exact approach in the sense that as‘®the number of compound

states used in the calculation is increased, the calculated N

off-shell T-matrix must become eﬁ!;t. We should note hére that

a more.- physical expansion of the R-matrix is possible, for

example in terms of eigernfunctions associated with their complex

-

71
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poles(Bl). In the.present treatment however we wish to aveoid

4 Y

the use of such an expansion since the whole system of eigenfunc-

tions and eigenvalues'becomes energy dependent which will pre—
t\-...
““‘“”Sent some numerical dlftlcultles.

Before we proceed toEPur derivation it is probably worth-
while to xecall the "channel™ concept since there éﬁists go.
ambigquities in the literature. Lane and Thomas(23) give ah
illustrétive example by co@éiderégg the reactions of‘Li7 ﬁith

. protons

Li7+p (elastic scattering)

. (T_\\\\J///,_z_ 1i’+p (inelastic scattéring) B -
. \\h;? gx Be'+n . o ) ¢
< p > BeT > T | : _

i 1ib+a . o .
L] Ld ‘._
He4+He4 . .
L Be8+photon, etc. . . 3
- ) ’ ..- . a
) Iy AR 3 5 e 1

The spin of Li 1is Il =3 and that of q&iéproton 12 ==
therefore the channel spin S can be 1 or 2. ‘Since several inco-

ming orbital angqular momentum waves £ can contggbute tg\/ﬁe reac-

tlon, this reaction can be lnltlated by inci ent wave (1n several

L
’

o <channels c. The fermation of the comnound nucleus Bes. lS pos~

)

- sible when thg §eparatlon distance betwegn L17 and p is smaller~

b

than the channel radius ac. Decay of this compound hucleus leads

-

o outgoing waves in all chanhels for whlch the éelatlve energy

o% mothion is pos;tlve, for example in the present case 6 channels.

- ' - i



A+d

Pig.

. C*. N | '
.\§§§§:?;~ . ther fragﬁents

12.

-

Schematic picture of the various competing .-
channels in a (d,a) reaction. For simplicity
we show only one of the several excited levels
of the compound nueleus C*. This level can
decay into several channels; for example the
bound fragments B/D ((&,p)/(d,n) stripping to
bound states) or the target nucleus A+a where
a2 can be a neutron (in this example (4,p)
stripping to an unbound state) a proton ({d,n)
stripping to unbound state) or both (breakup).
In eaeh of these channels several other chan-
nels might contribute. For example the double
arrows indicate that’ tkse levels can also be
reached by elastic scattering.

73
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Now consider the decay into Be7+n. There are several

~
-

channels that can give this pair which are gssociétea-with
. , - _
the excited states of BeT. We have seen therefore two

different meanings of the channel, the one that is assdcia-

-

ted with a mass difference and the one that is not. A

gualitative picture of the channel concept is given in

- .

figﬁre 12.

In section two we formulate the nuclear reaction

problem and define our notation. In section three we com—

. _ y
pare the results of an R-matxix calculation with the coupled

channel’ results of section IV and discuss the effect of
the distant levels on the off-she;l resonance. We pre-

sent our conclusions 'in secticon four.
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V.2 FORMULATION OF THE NUCLEAR REACTION PROBLEM OFF THE ENERGY SHELL./
2 T S

‘The pPresent derivation is similar in concept to that given in
Chapter 4 but is more general in as much as it is extended to a many

channel problemn.

The Schrodinger equation satisfied within and at the boundary

'is written as -

- L, e .
(11 ' (E-H) [¥> = (E-Ho) | e

where [¢¥> is the totall off-shell wave function and | ¢> represents

plane waves. Since in the R-matrix theorv the Hamllton*an i1s trun-

‘cated at the boundary (a =r ), we intrcduce a Hernlulan hamlltonlan

[21. - R = B+L,

where L, is defined by
x2

2m
P

. b
[3] L = zcjcr Slrg-a ) (a a—“ c) ro(c|

-

.

and b, specifies the boundary condition, in channel c. We shall

denote by L' 'the operator corresponding to the particular case. '

-when bc' is set equal to Lc . the logarithmic derivative of an

cutgoing wave in channel c¢. The surface functions |c) are defined

™

in the usual way and if Hi .is‘the internal part of the HEamiltonian
giving rise to the different taxrget and projectile states occuring
in [e) then,

[4] " (Er-el)]e) = 0.

Using equation . [2] and defining A L= L—Lb_ we can rewrite eguation

Li} as follows: ' - ‘ . ’
~ .
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(5] (B-/4) |¥> = = ALjy> + (B-Hg) |o> —L|¥>"
Now-we can expand the full wave function |¥> in terms of -the
surface functions [c)‘and the radial functions wc(rc) viz:
vy = : _ u_(ry) .

(6] ¥> = Eeledb () = T le) e "¢ |

r

c
and
|¢> = zclc)¢c<rc) -

Clearly the V. *s are the solutions of the coupled eguations

L=

c'vcc'(rc)uc'(rc

173 ' (T - (E-e Nlu (x.) = - I )
and the ¢, 's are the off-shell incoming waves (Bessel functions}.
W will restrict ourselves to the case of a positive energy
parametex in the fellowing so that we can introduce the on-and-
off-shell momenta according to:
61 X 2 2m, (E-€) . 2 2m .

= — = , = =

h2 c ‘hz c

In order to be able to use the R-matrix theory we considex another

expansion of |¥> in terTs of the eigenstates |A> of the

Hamiltonian [/~ , wviz:

[91] | > = i AA(ECch)ll>

(10] « (Ey-AD|x> =0
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¥

where the internal states [ 2> can be expressed@ in-terms of chiannel
states with the help of a suitable set of fixed radial functions
Uie(Te) -

‘C".“.c'_:(rC‘j

[11] ll$‘=2c fe)

r
C

It is easily seen that ukc(rc) are the toupled R-matrix states
which are solutions of the coupled equations

[12] : . (TC _(E}\—EC))uAC = _EC'VCC'u;\C.

" They can be found either by exact numerical meﬁhods or by ex-
pressing them in terms of a complete set of states that are
diagonal in the channel indices. The latter is given in Appendiﬁ B.
We shall use the convention that a matrix element of the “form
<|{> implies integration over‘all coordinates whereas elements of
the form (||> or (|]) imply integration only over the surface

variables. With these definitions we have for the channel projections

-

ulc(rc)
—_— A
A r A .
c

ST ey =y (ry) = NG

From equations [5] and [6] we get for the expansion amplitudes

<AAL]¥> — <ilE-m -L]2>
[14] Ay = - — 9

(EA-E)‘
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In equation [14]‘we‘have taken all channels to be open and we
have used thg reiation
(151 L|¥> = L]e> | \
which is possible since for open channelg the external wave
function-is given by

2

(16] l¥> = EIC)(SCYC - Oczc'yc'ch') _ :

.and the boundary condition operator -enables us to get rid of the

outgoing wave from the right-hand side of our formal expression

for |¥> léaving an explicit expression rather thaﬁ an integral equa-

tion. We should note here that for closed channels L|{¥>=0 and the

germ L|¢> in Eg.[l4]should be omitted. Egquation (l4) can Qe fe@uced

to calculable form by integrating over the radial coorgdinates. If we

meltiply the resulting equatidn by ukc'(ac’)’ sum over A and recall that
- -7

(171 wc'(ac,) = };AA uﬁ'_(_a_ci; _ | ‘.

ac,

then the resulting algebrait equations can be written in the form

- a .
2 2
— | —
(183 2 {5 er = R STo)¥, = eTma e | Roet (Fgrag) 9o (ro)dr )
=0 \0
. - 1/2
: YyaY ) 2
Acth © : A
=v--—--—-——-—- = ee—
[19] Rcc.{ac,ac.) fE ' Yae (2m < ) ukc(ac)
C Cc C
with ' _ _ - ) e
- d bC
°Lc = da Tz )acwc -y
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where R is;fhe usual R-matrix and Yye a@nd SL_ are energy-in-.
dependent reduce& width .amplitudes and boundary condition parameters,
thained‘from‘the channel projection (c|i> of the internal func-
tiehs. Thus weﬂhave succeeded in representing the-behaviour of the
off:shell scattering wave function &c-in the inside region in terms
‘of its properties ip the outside region and in terme of~the eigen—
states and eigenvaluves of the Hamiltonian. Equatiohs (181 are

exact and they are vaLid-for open ané close ehannels.

ff is-interesting eo observe that t? lntegrai in eguation

{ig] 1s not enly a measure qf the off-shell b&haviour of the system,
but also describes compound effects through the internal func-

tion u, (r ). This Ean be seen by noting that in the case of.

&p‘ belng small everywhere except at?r' = 2, we can replace

ﬁfglhntegral with its integrand. This corresponds physically to T

'/a direct reaction in which most of the interaction takes place at

the surface and the off-shell effects are manifested through the

- difference of the s-wave penetrabilities times the incoming wave.
On the other hand this simplification can not be made for a
channel that comprises compound states since in such,e case ;he “
wave function can vary rapidly inside the boundery.

dnce the solutions to eguation [18 ] have been obtained, the

amplitudes AA’ and ﬁence the complete wave function |Y>, may be
extractéd from equations [l14] and [9]. On the other hand, equa-
tion [}8] can be used to construct an expression for the off-

shell T-matrix. -

N



The radial motion channel wave function in the outside_region

‘has the decomposition

/2 - R

_ e ¥ _ ' -1/2
[30]¢c(rc)’iﬁcac? [Fole )Y, OC($C)%§ TeTeer 1P, '
with o = G.3. and X, = kcac an@ where_Fc(pc) end Oc(xp) are .

radial wave functions corresponding to incoming and outgoing

waves, resPectivelv. It should be noted that thehfghatlons

H

between the two sets of solutlons with the same argument are;

I _(x) G (x) ~ iF_(x)

[21) .o < o .

0, (%) Go(x} + iF_(x)

-

where in the absence of Coulomb field the I and O functions are.

spherical Hankel functions and F and G are the spherical Bessel®

functions. In what follows we shall drop the arguments of the
wave functions when they afe evaluaége at the boundary and we

shall use Italic lettering to indicate dependenee on the off-

,shell momenta. We should also draw attention to the fact that

in our derlvatlon the solutions .F, in contrast to the solutlons 0

wre defined off—the énergy shell and the Wronskia% of this pair
is not-constant but depends on r. Since r dependence of the
Wronskian is associated with rion local wave functlons we see here

how the off—shell effects introduce non local effects intd the

wave function. ' Another important point is that since the on-.

shell collision function U{k) is defined as minus the coefffcient,-

- ik .. .. : L .- .
of the outgoing wave e = at infinity corresponding to incoming

wave ¢ % in other words the asymptotic form of the wave

-

function is.

el
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lkr

-ikr _ U(k) ' "

[22] b e

Comparison of Eg. [17] and [19] shows that the usual relatio

U = 1-2iT between the collision matrix U and the T-matrix i

. not valid off_the'energy shell. Inserting Eg. [20] in éq. [18]

we'get an exact expression for the T-matrix off the energy

-

shell. ™\ -
(23] 7 = 0 %Y 2(1-ra)y T (1-Rr(a+8)) o 2re0" 01/ 2 (1 Rd) —13,1/2;
where °§ = Lln—Lout is deflned as the dlfference between the loga-

rithmic derlvatlves of an ingcoming and an out901ng wave and

the term
. Ae ASY-L 2 2—- ® ulc(rc) fc(rc)
(241 B .=Z EE (kmadalt g (2 ) F.(a) dre
- A l : - TAetTe’l et Tet - .

Q

. i;\§ typical off-shell effect. It is useful to define

L3 2 S(p) ¥ iP(p) = S + iP
[25] oL -

<‘ C 1% 2750 + iP(x). = S +ip

where S(S) and P(P) are diagonal matrices defining the level

. shift and the penetrability.

[l

A further. useful variant o? Eq. i2] is obta%ned bf inro-
ducing the matrices F-* %T'(wa) and p(OI)fl which is Just ?.
If we define the off-shell hard ephere scattering pﬁase—shift
Q = Il/zo_l/z.end replece T with iiT then Eg. [Zﬁ] takes the-

form



.,.‘T :
" fp

a.

ca = m-m - (L*=L) .

-»

It is evident that this last form (Eq. [26]) isolates the

partsief'T which depend iny‘on the incgming_and_outgoing

statesJ(iﬁe. P, @ and B)™ rom the'partglﬁhat essentially depend

on what happens in the interitor region-(l—Rd)_lR. ‘Note also °

that the term in the ;qﬁare bracket pfovides an exact description

of both Ehe_resonant part and the ba ground part of the transi-

tlon amnlltude, where- off—shell effects e manlfested through .

_the dlagonal matrix

~

(28] & = QU(S-5) +i(P-P]a = [(S-5) - i(P+2)]

whereas the last term representé‘pure off-shell and compound

b
-~

" effects. : o . ‘ c o
Equation [26] reveals edme other importanf points. Off-

shell effec;séare important both in the direct and the compound
term. Hence the off-shell‘penetrabilitv P alone can net repre—
duce the essential features of ther off-shell dependence of the -
amplltude. Thls is Stlll true, if one considexrs the dlrect
‘contrlbutlon alone Wthh can be derlved bv replaC1ng the integral

. by its value at the channel radlus. We shall note further that
the part lﬁSIde the\square brackets has the formal structure of the

collision- matrlx U where on shell parameters have been replaced

by their off-shell equ;valents. Since for the on shell_case

L)
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-

the last term is zero and &4 = 2iP the well known expressions

for the on-shell T and U matrix follows: - - B

t T o=.1-0(1+2i9/2 (1ora) " Imel/2)q -

[291 )

T_:hl—U . _ T . _ -

-

V.3 RESULTS AND DISCUSSION . -

"We now examine the validityv of the above theory for the

-

case-where exact solutions can be found bv simple means. Such

exact solutions have been studied in chapter IV.
On the other hand our ;alculationé wiFl simulate the prob-

lem of an off-shell nucleon being scattered by the ground state:

-

fﬁaﬁd the“firstﬁ?x;ited state of the target. If we choose the

ground state Yo have J=0 then there is only one entrance channel

and one can select the number of exit channels to represent rea-

-

- — sonably well the physical situation in_thé energy interval under

consideration.

-

The wave "fungtion in channel c with incoming waves in chan-
) . .
— -

nél;iis? \\_ﬁ\

[20] w6w= ¢ 8§ - Qo7 .

Using equation [18] we obtain the coupled equations:for the transi-

tion matrix elememts: ' B S

(311 I (8,0i=Reei@)OLT o = (1= R, ,d )0, + B .0,

"
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.Figure,l3.

by =

1 2 3 4

E U (Mev) B

Exact (solid line) and R-matrix calculations (dotted
and dashed lines) for the resonance at E.=2.48 Mev’

at the off-shell distance s=0. The potential parameters
are Vy,=Vp1 = 1.072, V1] = =32.161, V35 =-39.022 Mev
and aj; =az =6 fm. The dotted line is.for the boundary
condition by =by =0 and the dashed line for by =0.01,
0. Five single particle states are used in both
cases. The energy axis for the R-matrix calculations

is shifted by AE, = 0.068 Mev. - - '

A



) - out .
with : d =1, = b-
c c c
: I S S
) M= L. c ] .

For the set of equations of the above tvpe we take the case of

‘. .- -

two-channels with =0, a, = a, = 6 fm, V = ~32.161 Mev,
| Sk T2 ot (25)
Vs = V2l =.%-072 ﬁgv, Vs = =38.022 and 55 = 21-4§:Mev fm.'
The states that we consider-are: 0 . , -
. o + + . B - + .
Lo XZsl/2;1/2-> and |x X2sl/2;1/2 L 3/27 >

.

' These states jarise respectively from the scattering of an s-wave

-

nucleon by the 0* ground state and the l+ excited étage of the

target. *We take the 17 stété to be about 3.5 . Mev-:higher in energy;
. R F -

Wi;ﬁ zero coupling these states can not be formed in

the compound system and so thev will not show up in elastic or

L4

inelastic scatte®ing. As we turn on channel coupling they show

up as resoénances in the elastic cross-section.

Figure 13 shows t@e JT = 1/2+ resonance in the elastic

channel, |Tll/kl[2, for (n,n) scattering. It appears as a dip in

the cross-section. The solid line is the exact calculation. The
dashed and the dotted lines are indistinguishable from each other

a

and they repnesenf the Rfmatrix calculations with stingle particle
R-matrix stéﬁes and the boundary conditions B, = B, =0 and

Bl-& —O.Dl,“B2 = 0 respectively. We note that shape, size and
width are reproduced to a good degree of accuracy. We should also

note further that there is an energy shift of 0.068 MeV in the R-matrix
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14

FPigqure

12

10

E  (Mev)

. Exact calculation for the resonance of fig. 1 as a
function of energy at different off-shell distances.
These are s=0 solid lines, s=4.29 dotted line and
s=8.58 Mev dashed line. Note how the rescnance chan-
ges its’' shape due to the off-shell background -at
large off-shell dlstances.

— —‘.-—k .

-

-
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12 =

10

Figure 15.

E  (Mev) ~

R-matrix calculation for(the resonance at E_=2.48
Mev. We have used five single particle stafes
and the boundary condition by=bj = 0.0. For
general description see fig. 14.
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calculations 1not shown in the graphs) and we shall return to

thls pomnt late
Flgurelm shows the same resonance for c;‘ferenb values of
the orf-shell,dlstance s, Figurels is the corresponclng R-matrix
calculation. The off-shell distance S in tﬁe-4d,p):stripping"
reaction is defined as the energy difference between thé energy
of the stripped éafticle that i; transferred to the target and
the enérgy related to its off-shell momehtum,vizt s = pi/zﬁ‘—a

-

It is a measure of the stripping angle. = We have chosen to pre-

n

sent the graohs in this way in order to show how the rescnance

changes its shape with varv1ng o;r -shell clstance and how uell

the R—matrlx calculatlons reproduce this change.- In .the present

example it is seen that a resonance in (n,n) scattering can dis-

appeaf completely or can appear inverted by 180° in the (d,p)

cross section.

We have studied thls'fgébgiigg_ier-tMO reasons; first we have

"encountered similar types of rescnances in the reactions 15

and lSN(d,p). One of these was the JTT = 1 state at 5.048 Mev.

N{n,n}

There we have.explaingd it as an interference between the 2=0 and %=2
wave which was also intérfering with its background - Secondly
here we ﬂave a resonance which appears beiow the threshold energy
and the appearance of £hreshold effects is possible. Since we

are below the threshold of the second channel, this channel

is closed and its wave function is a decaying exponentlal

-k,r
v e ? . Usually one tries to eliminate the lnfluence
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N

of the-closed channels by using a large R-matrix radius a.. Our

formaiisﬁ of adjusting the Ebundary condition operator L accof— o
ding té the existing waves in each channel eliminates the clo%ea'
channels ccmpletely but introduces a level sﬁift AE_. in the; - °
- two-channel case this resomance shift is found bv noting that

resonances appear at the real zeros of the function

[32] D(Rll,Rzz;Rlz) = tl-Rlldl)(l—R

2
2295)-Ry 4,4, -

Therefore the position of the resconance is given bv;

Tl .-

S . 2 :
[33a] . open channel l—Rll(Reci)*—R22(Re02)+(RllR227Rlz)Re(dldz)

[33Db] closed channel 1l - Re{Rz.)d2 =0 . . .

Assuming the background part Rgc of the R-matrix to be diagonal

in the éhannel indices, one finds from eguation [33] for the

resonance-shift

) 2 o - 2 - 2
~,
[34] AER X Iallj Rll(klal) + iakzl (k,ay) -
with_ . -
>
- Ac
[(35] T

o
(l—Rcc)

T

where the bar over vy indicates averaging out over those levels =
Ac ging

that contribute to the resonance and

tan x ' : :
o . c _ (2m _ 1/2
[36] M.Rcc v X e sﬁE (ER vcc)) e -
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Figure 16.

7 8 9 10 11 12 13 14 15 18 17

E  (Mev)

Exact calculations (solid and dotted lines) and R-
matrix calculations (dashed and dashed-dotted Llines)
for s=0 and s=5 Mev respectively. We have used

by =by = 0 and five single particle states. The
potential parameters are Vi, = V21 =V11 = -2,

V22 =-20 Mev, and the energy shift A§'=-O.28 Mev.
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Equation-[34]*clearly separates the shift arising from the
omission of-the"background (first term) and that which is due

- to the seconé channel being closed. A rough estimate using

SEp

with the calculated value of (.06 Mev.

Eqgs. [34] ancd [35] gives 4E, = 0.068 Mev which compares well

For -completeness we apply our formalism to another S-wave

"~

resonance which appears as a peak in the elastic cross-section.

i

The potential parameters are_vll = =2 Mev, V22 = -20 Mev,

. _ _ _ _ ) 1

V12 = V21 = g Mev the radius él = a, 21.24 Gev ,ﬁand we .
take ¥ = l,'%% = 1 Gevml and €, = 20 Mev. Exact and R-matrix

4

. calculations are shown in fig. l6.
For the on-shell case we again note that the accuracy is
good, though in this case the R—métrix calculations show a smal-
ler width ahd an energv shift of 0.28 Mev. This narrowing of
the width arises from interference between the nearby levels
and from closing the second channel. An additional source of -

error is also the energy dependénce.of AE In practice however

R
this error can be eliminated by choosing Bc = Sc(Er) which
~implies AE % 0 at the center of the resonance. The off-shell

R

case shows that the accuracy is also good though it deteriorates
somewhat at the tail of the resonance as one ﬁoves away off the
energy shell. Since most of the contributions to these pé%ts
of the resonance come from distant levels, ‘it %; ochvious that
for the present example the influence of the distant levels is

quite strong. The policy with regard to the distant levels
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has been %o tékerne or two levels below and above thg-lével
which isﬁélgsest o the resdnance energy.t—We see that tﬁoﬁgh'
this recipe seems to be good‘for the on-shell casé'it is not
as.good in the off-shell case. This‘is_iﬁ agreement with

our previous observations that the influence of Ehe back-

round on the resonance is stronger off the energy shell.

It can be explained by consideging the off-shell inéegral in
Eq. {241_- Tﬁe description of the phyvsical states ¢c through
the comﬁound states uic and then again throuch one or a few

standing waves (tncoupled states—vpc) chénges both the slope

and the shape of the wave function in the internal region.

*»

Therefore the omission of the distant levels will change the
absolute value of the integral. These changes.are related to the
non~-diagonal parts of the interaction. They are small when

v >> Voer and they become more prounced when Ve X v

ccC cc' "

IV. Conclusions ) .

We have presented a consistent theoretical framework for
the description of the off-shell T-matrix which can be used to
calculate resonances off the energy shell which appéar in strip-

ping processes to unbound states. - -
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. Tnls.‘o*mallsm has the advantage of preV1ous approaches,
- : .
whlch have cealt w;th lsolated resonances. For exammle 1t uses

-

the same paramete*s to descrlbe the resonance in the elastic scat—

-
-

terlng and~1n\strlpplng.to unbound'states, bqt it is also exten-

i

cded to a many channei e;;uation. It is -based on thelreal elgen-
function expensien of the coupled Green's funbtion, These eigen-
functlons/;;e.the coupled R—matrlx states u, (r )} (compound
states) which can be found for example by expressing them in
terms of a coﬁﬁlete eet Qf states that are diagonal in the chan-
nel indices. ‘We”ﬁggeﬂconsidered two different problems in which
compound resonances appear‘and interfere with each other. Our
calculations show that this approach provides a practical means
for such problems and that adequate numerical accuracy is easilyw

obtained in the energy region of interest. It will be interes-—

ting to apply this formalism to expérimental results.



CHAPTER VI \
THE BINDING ENERGY OF THE THREE PARTICLE SYSTEM USING NON-
LOCAL INTERACTIONS WITE CONTINUUM BOUND STATES :

-

VIi.l INTRODU N _
| :The ree particle system has been shown(31’32) to,under;

go‘a gﬁound.state'coliapse in the case of a rank-ond separable
'interaction(33) which has a ntinuum‘Sdﬁnd stafte ICBS). A ground
state collapse has also been oung 34! to .occur for the case of a
rank-one and a rank-two poteA;i 1 havi;g a resonance close to the
real axis. Invesfigaticns of rank-two potentiéls having a CBS_ o
have as yet not been done, and the purpose of this chapter is to
present such a study} To kstablish clearly Qhether the presence
of a CBS in separable forces of rank two entails a coilapse in
the three paf;icle ground state, all our interactions were con-
- structed not only with a fixed deuteron wave function, imélying

a fixed UPA, but also with a fixed CBS energy of Elab = 2000 and
4000 Mev resPectively-for the two sets of potentials. The rank
two interactions and their UPA therefore have the same CBS. The
form factor of the repulsive term in the interactions, is made
increasingly repulsive, but although t%is somewhat reduces the’
three-particle binding energies a ground state collapée in the

. . )
three-particle system still occurs in all cases.

In section 2 we discu construction of the separable

interactions of rank-two and- Q for our choice of their

properties, while the results of our calculations of the ground

1state of the three-particle system are given in Section 3. Final-

ly these res?lts and their implications are discussed in section 4.
‘ -

. .

E‘
94
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VI.2 SEPARABLE INTERACTIONS OF RANK TWO

) Our rank-two ‘potentials acting in an S-state are nor-

malized as follows:

: : 1 52 | . '
. 277 .

-

It iIs importagt to realize that the'decomposition of aAseparable

potential of rank-two (or;higher) is not unique as proved by .
. - »
Fiedeldey and Kok (33) and discussed by de Groot(34)_ The form
faé;g?s can be lihearly‘combinéd, to reexpress the same poten-
. _ m : _
tial.lIf we can define Vik,k'") = 2w2J;§ V(k,k') then
(2} ¥(k,x") == ¢(X)g(k")+h(k)h (k") == g(k)g(k")+h (k)B (k")
with . - . ’
S(k) = —=— {g(k) + anh(k)} - ..
L l—ot l -~
and ¢
(3] hik) = —=— {ag(k) + h(k)} . \
/ 2 - . \\
v 1-« , )

in which o« is a real constant,a2 < 1. A limiting potential can

be defined as one having the property that

[4] . A D'(ikD) = Dl(ikD) = 0

-

where DT and Di represent the Fredholm determinants of the total

and attractive interactions of rank two and one respectively and

T

) _ . om
[51 | Ed- &?kD
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_which if substituted into

. is the two-body binding energv. It can be easily proved that

-

‘any " rank two pptential can be written in the limiting formr which

in the presence of a bound state is edquivalent to the:UPE .

for that ?otentiai This implies that not onlv the bound state

elgenvalues of the attractive part and the comblete Dotentlal
1

co;nC1de in the llmltlng form, but alst their bounq state wave

functlons are 1Qent1cal. It is there*ore_clear that there is

“

no -loss of generality if we corfine our attention to separable

potentials of rankttwofin-the limiting form.

l - This implies that our repu151ve form factor is chosen in-

such a way that.

~— - o
L3 -« .t —

6T ) S g(x)h(k)x2dax _
- . x5+ kS : .
’ O . ) . . J‘ _

-as. was dqné~in\ref.(34) ) -

.In-addition to é fixed deuteron wave function we also im-

‘pose on our: separablea%nteractlons additional constralnts

N

-relatedato the shape independent approxlmatlon; Wthh we shall

. -
-

_brlefly dlscuss here. " .. o ¢

Y
At Iow energles, the phase Shlft 1s given by the effec-

< . *

tlve range expansion - L
.- . ‘ 1 1 . .2. . -
: = - =+ =

[7]»&' 3 kecotd (k) > 5 Tk ...

u 0 .

- kcotd (k) + ik
kcots (k) - lk‘

8] _ s

o

o,
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~ and continued tb ‘complex values of k, leads to the following

result for the bound state pole

: . l-yi T /2
- [91 | Ky = 0’0o .
' ‘ - T .

R ) . T£&oxr limiting potentials the bound state wave'funétion"

- ‘ is given by S
) -‘““hgxﬁ\[lo] \ ‘wB(kJ.z c, _Egigl_i . - :
R . . . - —..-._____‘ k 7 + kD . R

If g(k) onlﬁ'has singularities for_[Imfkf > kD-wé ob—
tain the correct asyvmptotic behaviour
-K_r

» [11] L v fae P

-

With the help of contour integration we obtain

- -

3

- " " . 2 .
[12] AS = g (lkD) ~

‘while in the.vicinity of the deutergn pole (i.e. for k = ik._)

the t-matrix becomes

. ak? . a@ale)
[13] . tleeaxt) = LRIEE

kT + kD

- Making'an analytical continuation to smail-positive k-values

one finds . for +he S-matrix

x? + kD2 - 2ikg? (k)

- Ak+ikp) (k-ikp) R ’

s - [14] Sk) =



The residue offs(ka at k = lkD can be ebtaihed from eqgq. [141]

a -

and compared tOo tne resirlt obtalnable rrom egs. [7] and, [8] in

s . . ’
the same limit, i.e. ;

. —21kD . . -

Ln (RSO0 = e
k*lKD~ D™O0
This comparison vields o o ‘ ;
[151 . A 2 = —&P_._ ’ . - v ’
. - | S l1- rOkD - A

w

This equation gLves an expllc1t relatlon between the asymptotic

normallzatlon constant A of the deuteron wave functior and

~

the effective range parameter r With the ewperwmental values

0"
of ro andka‘= O 23161 fm . for the nucleon—nucleon lnteractlon

in the‘tripiet s-state one finds A = 0. 879. All‘realistic
potentlal models that lnclude the OPEP tall preclct values

of A very close to thls value. de Groot( 33) and McGurk(36)

showed that form factors whlch predicted anomalous values of A
also produced unreallstlc blndlng energles in the trltou.

_A good fit to AS was also required by Sofianos et al(34)
for their potentials and together with‘the correet deuteron
binding energy ensures that eg. [9] is obeved within narrow
limits, as is also the case for all realistic nucleon—nucleon
1nteractlons. It is 1mportant to note here that interaction B
of ref.(34) does not obey the relation eq. [15].. Instead of ™
the value AS = 0.513 fm.—l/2 required by the shape independent ap—
proximation, which is found to be approximately valid for all their’

other potentials, one obtains AS = 0.327 for By- As we already
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pointed out in the introduction this interaction has another
highly undesirablé feature. Its attractive part is shorter

ranged than its repulsion. For these reasons one could dis-

regard the trinucleon binding energv obtained- for 3B,, which
. T ‘s

implied that a CBS in the two-nudcleon system does not necessarily
entail a collapse in the trinucleon system.

Summarizing the constraints on our interactions arising

"from the bohnd state, our interactions must obev

oo

. ) : 2 .
+ s 2 dp p 2
[16] D (ik.) = D, (ik.) = 1 - = =5——— g (p) =20
D 1 p° ﬂ . pz+k 2

and egs. [6] and [15].

To obtain the conditions for a CBS we apply the method
of the cancellation of the Green's function¢37 ~derived by

Krause and Mulligan in coordinate space. We assume a CBS at

and a corresponding CBS wave function ¢(r) alsoc orthogonal to
N

the repulsive form faifon.h(r), i.e.

(17} dré(r)h(r) = 0 . o
0

Therefore for an s-state

o .

SRS a® 2 : -
[18] (5—5 T k7)o (r) = —g(xr) g(xr')é(r'}dr'.
. r .

-
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We can only have a cancellation of the Green's function if

. : C s 2,

[19] o glx) = (=5 + T2 (x) ,
: o ér

~ while the CBS condition at k2 = K2 impl;es that

[20] 7 '5’ ;.='— { drg(;)@(r) - .
‘ . Y

or equivalehtly - ¢

. Jx . a? 2 ' -

(211 I+ dr?{r)(——f TR =0 .

‘ dr
0 .
In momentum space we have, due to the orthogonality condition

13

eg. J[17], the foliowing CBS conditions

[22] . Dytk) = DT (k) =0
where DI(K) and D+(K) are now complex guantities. We have
. . . o 2 .. 2
+ 2 dp _
- _ = g (p)p dp _
[23] ReDl(K) 1 - J > > 0 )
. p =K
0
T 2
Ile(K‘) =Kg (k) = 0 , or
[24] ) N glk) =0

‘The necessary and sufficient condition for a CBS at k2 = K2

is D' (k)= 0 and -

o
~
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[25] - E(<) = 0
where . .
1261 E() = 2 ‘ o -
- £V () - i

"ané f+(n) is thé Jost functionﬂéf the nonlocal intefggtiOn T
which differs from D (<) . © ' It can be shown that ' R
£7(k) # 0 for x > 0,  hence D' (x) = 0 implies E(k) = 0.
Since‘E(k;)‘= 4] is‘asquiated with a spurious state‘zt k = Kg .
and D%(Kc) =0 1implies-a_CBS at k =K, this implies that if
ﬁhere is a CBS it coincides with ' the spurious s-state. Other-
wise 4 spurious state is associated with a node ih ﬁhe physical
scattering solution for Ks'> 0.  This nodeldisappeéré at
scattering energies k2 > FSZ except when we have a CBS, i.e.
kc = K_ 1in which case the node persisté at all positivg energies
and is nearly energy independent.

The rorthogonality condition eqg. [17] becomes in moméntum

space ‘ _ -

‘ 2
[27)] J glnlp) 25, _ ¢
o P -~

.

By imposing this additional condition, similar to the condition

for a limiting representation for a rank two potential given by

eq. [6], we simplify the construction of a sét of potentials_

of rank two having the same bound state and continuum boﬁnd state

propertiés. Our rank—gwo potentials can be regarded és_limiting

representations with respect to both the bound state and the

CBS, i.e. we have both )  '. .ﬂ
: D+(ikb).= DI (ik ) = 0

[28] . - o

oty = DI(K) =0 .

TP .’a.-...r...a_:-_ e
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Unlike the prévious.investigation by Séfianos'et
'a1(3%) we now restrict Quf attenélon to rank two potentials all
having the same bound state and CBS. The additional repulsion
only affects the phasetsh;ft ndt the CBS pole.- In-ref.(34) it
also shifted the resonance po}e furtherjaway‘from_the real axis,
making it difficult to'draw firm cpnclusions'conéerniﬁg collapsed
states In the,Ehrée—particie.5pectrum:

The fo:nzfactofs g(k} and h(k} were all chosen_té.be
sums of Yamaguchi factors#
y '—;15—“ 7 h(k): = -
_ 2+k2" 2

. 2
lBi ) llmi‘{'k.

{291 g(k) =

[ A
o

L

L3

)

The parameters Yi and Bi were constrained to fit the two-body bin-
ding energy for an averaged nu¢leon-nucleon interaction acting
in s-states only, i.e. our potentials should be regarded as an

average over the triplet aﬁfasinglet s-state interactions.

2 2kD : _
E. = 0.431 Mev and A = =——— = 0.513 fm
i a s l—rokD

1

and the CBS conditions i.e. eq. [28]. These are given explicitly/
in appendix C for the special case eg. [29]. We produced two
sets of potentials A; and ‘B, with a CBS at ¥ =5 fm_} (v 2000
MeV) and k = 7 £m (v 4000 MeV) respectively.

The parameters pi and wi of the form factor h({k) were

constrained by means of the orthogonality conditions for limiting

potentials egs. [6] and [27] (see Appendix C).
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The parameters of g(k) and h(k) ‘are given in tables
1 and 2-and the phase shifts for some of the potentials in
Figs. 17 (set A) and.l8 (éet E). All. the rank-two potentials
vprodﬁée the same effective raﬁge‘parémeters A

ay = 11.06 fm - and ry = 2.18 fm.

.We plot the -deuteron wave funct;ons in Fig. 19 and the fgrm
factoré h(k) for some potentials in Figs.20 (set A) and 21 set
B).Some éf ouﬁ potentials (Al to A4 and Bl to BG) fulfill‘the
additional requirement

‘h(0) = 0.

From Figs. 17 to 21 it is seen that with increasing Pgr OX P4

for the potentials Ag ™ A_ and B, to A, |h(k)| becomes

7 5
larger and the phase shifts at lower energies become increa-
singly ‘more repulsive. Since both ReD+(K) and ImD+(K) are zero
.1'.
tand(x) = I_II'E.;TLFS_L
ReD (k)

does not necessarily have to be zero, as happens to be the case

for the Tabakin and our rank-one potentials with a CBS. Using
4
the more usual definition( 4
§5(k} = - phase ot (x) ",

the phase shift jumps by an amount of 7 at k = x in that case,
which can be interpreted as a resonance of zero width. However
with increasing repulsion the zero of 85{k) shifts to values of

k < x. A similar phenomenon occurs for the Mongan singlet

(.

&
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Table i, Parameters of the rank two separable potentials with

a égntinqum bound. state at ¢« = § fmfl
v (0.09459 - 67.80206 -121.09783 -260.53401)
8 (0.75205 . 8.81122 16.31404 32.0 )
w (2.0 . 4.0 8.0 16.0 - )
Al -1.65304 15.13734 ~46.6007 50
A2 ~3.30608 30.27469 ~93.20139 ~ 100 |

C h(0) = 0

A3 -9.91825 90.82406 -279.60417 300
A4 ~13.22434  121.09875 -372.80556 400
AS 12.15222 ~-48.62992 50.
A6 72.91333 -291.77955 300. h(0) # 0
A7 97.2177 -389.0394 400.
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Table 2 Parameters for the rank two separable potentials with

. 2 continuum bound state at «'= 7 fm L
Y. (0.p8971 19.82788 131.22361 -616.72734),
B (0.75205 8.81122  16.31404 1 32.0 )
w (2:0 - 4.0 . 8.0 . 16.0 )
o .
!
©Bl. | -2.08761  18.11946  -5I.57607 50.
B2 -4.17522 36.23891  -103.15214 100.
B3 -12.52566  108.71674 - -309.45643 300 16y < o
B4 © -16.700858  144.95566 -412.60857 400.
B5 - |-41.7522 ., 362.38915 -1031.52143  1000.
B6  [-83.5044  724.7783  -2063.04286 2000,
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Same remarks



1o

»

lUd(Ri Lo
n
i

N
i

VAVE - FUNCTIONS

o

!
oy

-3 | . L !
0. .5 10 —~15 20

R FERMI

Figure 19. Deuteron wave functions as a function of r.
The solid line is for potentials of class A.
The dotted line is for potentials of class B.



1lo9 -

rml/l
¥

B s § Pt & avsy )

.

FORM FACTORS G(K) AND "H(K)
. .
l

n
1

.—J---ao--—"'l"""""'—-ml,"r '

)

1 1 i : { L

FPigure 20.

28 ,/ 25 30

K " FERMI™

Form factors h(k) for some potentials of class
A as a function of k. The solid line is the
attractive part g(k). Note that A7 dces not
fulfill the condition h(0) = 0. The potentials
“are the same as those in Fig. 17. - -



f:

J
FORM FACTORS G(K) AND H(K)

-

[

Pt

=

—

- -
} 3
-

-]

"o

] _

c0 25 . 7 30
K FERMI™
Form factors h(k) for some potentials of class.,

B as a function of k. Note that these form
factors fulfill the condition h(0) = 0. The

.solid line is the attractive rart g(k). The

Rotentials are the same as those in Fig. 18. ~



111

potential\employed by Baghi et al.(44) section VIIC, who
.emmloyed the alternative deFlnltlon o (k) = - phase fT(k)

of the phase shift, whlch is then ‘continllous at kX = k. In-

sectlon 4 we show that the grouna state collaose in three—

-

and four—partlcle svstems 13 closely related to the ‘occur-
renceé of resonances and continuum bound states even for non- "’

-%ocal'interactioﬁs-of rank higher than one. It seems there-.

fore preferable to emp10y_§;definition of §(k), namely SD(k)

-rather than Gf(k) wh;ch stresses this feature. Sofianos et
l(34)

found that the three-particle ‘binding energles rapid- ,
1y increaserfornonlocal interactions, the narrower the

resondnces become (i.e. the closer o the real axis thev move)

I
-~

and reach their maximum at a CBS, which is. consistent with

‘their interpretation as a resonance of zero width. : :

It is interesting to note that the phase shifts for some of
the poteﬁtials with =5 and h(0) # 0 become very repulsive for

k<k and that it can increase to a value larger than 7 at theé CBS.

s
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vIi.4 THRuL—DARTICLL BI\D'NG ENERGIES

-

In- this section we ceonfine our attention to 2 calculation

of the ground state energies -cf the trinucleon system in the so-

called model triton or three—boSon;asuroximation,;with’twp-body

s—-state SOLn—lnaepenceﬁt ln;erachlon, similaxr ‘to hhe ca;culations‘,'

(34)

~of Soflanos-et al - This is ;omple;ely sufficient £for the

purpose of establishing whether a CBS even at-very high energies

in the two-nucleon system would necessarily be associated with
a‘céliénse'in the éiinucleOn svstem or not, for nonlocal ln;erac—
tlons .0f a more general nature than separable potentlals of -rank
one.
’ It is not Aecessary to go into the details of the
calculations of the binding ehergies of the three-particle
systems, since these are well known. Having separabie form fac~-
tors of the Yamaguchi tvpe allowed us to calculate the kernels
of thear coupled integral eqﬁations analytically. For further
details see Sofianés etAal(34)_

The binding energies of the ground states of interac-

tions A and B are given in table 3 together with the results

for the Beregi potential, a 38_l potential of rank-one with

Y Y.
G(k) = —oFmy = —— — , with v, = 17.399 £~ /2 y_ = 53.683 fm
; 2,22 s 2,2 1 2
Bl +k: . B, +k
Bl"= 2.67 fm‘l and 52 = 5.34 £m T producing a CBS at 259.3 MeV
(¢ = 2.5 £fm ) and a deuteron blndlng energy of. -2. 225 MeV.
We also calculated the triton binding energy Et for the
1 ‘ Y1

SO-MOngan potential of rank two with g(%) = E—IIET ’
1

~

gy

-3/2

!
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- Table 3. Thrée—nuclebn grouna State enercgies ]
¢« = 5 fm . S e =77 fm
g(k) alone‘ lé224.24 | Mév g(ki Alcn& ‘ 24551.147 MeV
a1 12163.8618 Mev | BL  24466.013895 Mev
a2 11985.5036 Mev B2 . 24211.91525 Mev
A3 10321:3117, Mev ‘ B3 - . 21703.43753 Mev
Aa: 9172.1828 Mev | - B2 . 19790.39135 M6V,
' 35-7-' 89224735  mMev
~ A5 12001.756 Mev | B . 4065.871 MeV
A6 6417.9 - mev | Beregi 3360.328 eV
A7 4272.34 MevV Mongan 155.4846- MeV
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L | . i | )

h(k) = ——=— and vy, -= 10.290 £m 3/2, g = 2.0 £u %
w 2+k2 1 A ;
o | | :

, Py = 22.355, and
w, = 4.0 fm * with a CBS at 400 Mev. In all cases we found a

collapsed thrée—particle ground state. With increasing repulsion

the binding energies E, of potentials Ai‘to A, decrease -from

12225 MeV.to” 9172 MeV and from,lZZZS MeV to 4272 MeV for

potentialg AS to A7 (wifh hGOY.# 0). From Figs. 17 and 18

~we see that the phase shifts decrease rapidly in the low energy.
regioﬁ'and that h(k) becomes large compared to g(k) for this

. . N fl .
. set of potentials. The same conclusion applies to the set of

1

potentials B, which has a CBS at « = 7 £m ~ (v 4000 MeV)

instead of about 2000 MeV for set A. In that case the binding

energies decrease £rom 24551 MeV to 4066 MeV. In agreement with

(34)

the results Of_Sofiahos et al for rank one votentials we

find that the collapse deepens when the continuum bound state
moves to higher and more "unphysical" (at least in terms of the

relevance of the potential concept). energies. In the

4 -

presence of a CBS or resonance close to the real axis, in the
two-particle interaction, the three-particle system is clearly
not a low energy system any more. It should be noted that the

node in the deuteron wave function of the interactions A and

B is at a shorter distance for k¥ = 7 fm_l than for <« = 5 fm_l

and that its minimum is also less deep in that case. The position

of the node and the corresponding minimum of the wave function

2

are often regarded as an indication of the strength of the

nonlocality of an interaction. However in this case it is
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. ¢lear that the interactions of set B produce ,much more
.deeply bound states in the three-particle system contrary_to
- what physical intuition would lead one to .expect.’

For the singlet Mongan(4l) interaction we foundlEt = 157.5

MeV, which still can be regarded as a collapsed state. It is L e——

not- surprising that this interacﬁion leads to a much less deeply
bound state, since in the first élace it does not support a
'two-part;cle‘bound state and secondly it has a CBS at a much
lower energy, 400 MeV corresponding to x = 3.106 fmol.  As we
have seen thé collapse deepeng Qhen K becomes largér. For the

(26)

Beregi potential with x« = 2.5 fm 1 a much more deeply bound

t
the two-body binding energy

state was found with E, = 3360 MeV indicating the importance of

We also checked that the potential B, of Sofianos et

34
al( ) does indeed only have weakly bound three-particle

(40)

states. The Hall-Post lower bound was not gquite conclusive in

3

this case with a value of EL =184.5 MeV, but this together with our

seaxrch- for zeros of the three—particléu}redholm determinant indica-
ted the absence of deeply hound state for that interaction. This is
the only exception to our general conclusion that a two-particle
CBS is associated with three-particle ground state collapse. .
However as we indicated in section 2 there are good reasons to

reject this potential.
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VI.4 CONCLUDING REMARKS

-

We have édnstructed a large number of increasingly re- -
-pulsite ranketwo'potentialsn:eath set. with a fixed deuteron
wave function, low energy scattering,properties an& positian'
of the CBSt The CBS states were flxed in the very hlgh energy

regxon at 2000 and 4000 MevVv re5pect1vely.

The'follow1ng conclusions can be draWn from-the resurts{'

1. a contlnuum bound state in-two partlcle lnteractlons of

-~ rank two whlch obey the COndltlons outlined in section VI 2

is in general associated wlth a collapse in the ground state

.

‘of the three particle system. - : -

2. If the continuum bound state moves to higher energies the

three-particle system tends to become even more tightly bound.

3. Fixing the continuum bound state bﬁt increasing the re-
pulsion in the two—particle interaction, results in a
considerable decrease in the”three—ﬁarticle binding
energy; without affecting the collapse.

Only one eiception has been found by Sofianos et al(34),
to the general rule that a CBS in the two particle interaction
entails a cqllapée in the three particle ground state. S
However this separable potential of rank two does have two
unacceptable features. In the first place, it does not obey
the shape independatt approximation, which is valid for all

nucleon-nucleon interactions usually employed in the literature.

Its breakdown has been shown to be associated with anomalous

116 -
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(33{35). It also has an  *®

atttactivg part which is of shorter range fhan the repplsivg
part which is even more unphysical. It may be that it is thig
feature which is.mainly'respongible-for,tﬂe absehce'of a éollapse.
The first conclusion appears to be generally valid for.ndﬁ;
local interactions of rank two obeving the shape independent
approximétiqn and having a repulsive form of ghorter range than
the a£tractive_one. L ' oo~

| Thig conclusion appears likely also to héid fqr'any
non-local ipté:acﬁion of rank.higher than two. ﬁowevef, in most

’

physical cases where non-local two-particle interéctions occur
they are oniy,pﬁftly non;local. One usuaily has a local poten-
tial in the outer region and a non-local ong of short range in
the inner region. $ince local potentials cannot produce a EBSf
it may be that even for partly non-local interactions construc-
ted in such a way that a CBS occurs at high energy, no collapse
will occur in the three-particle bound state. This questién

is investigated in the next chapter.



CEAPTER VII

THE BINDING ENERGY OF THE THREE PARTICLE
SYSTEM WITH PARTLY NON LOCAL INTERACTIONS

VII.1 INTRODUCTION S oL .

- -
-

We have shown in uhe preceding chapter that separable
potentials~of rank 1 and~rank¢2.which support a2 continuum bound
state in the two-particle system,- produce unphysioal deeply bound
ssates in the three-particle system.“With increasing two-body
repulsion the collapsed stdte becomes less bound but it'does
not go down enough in order to become a physically acceptable
ground state(38). Ground state collapse in the three—partlcle
system occured even 1n some cases where the two-body system
was unbound as long as it dld support a continuum bound state
(CBS). ’ ) . .

(34) that the four particle

It has also been-shown further
system collapses even sooner than the three-particle one, i.e.
when the resonance pole is still further away from the real
axis, which is due to the higher density of the four particle
system. One could argue that this trend can bo extrapolated and
theréforeAit would be interesting to do nuclear matter calcula-
tions with nonlocal interactions which support a CBS.

A remarkable and so far unexplained featufe of our
results is that the collagssd state becomes even more tightly
bound when the CBS moves to higher energies. This indicate® that

. S \

-
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for non—ldcél‘two-body interactions which suéport a CBS, or

a resonance pole sufficiently close to the real axis, .the three-

[t

KN .
and even more so the four-particle system is not a2 low energy.

b

'system any more.

On the other hand in most physical cases where nonlocal

two-particle interactions occur, they are only partly non-local.

" In practice one has a local potential in the outer region and

a non-local one only id fhe inner region. Since local potentiéis
alone can not pfoducsfzhtBS, one is led to believe that even for
partly non-local interactions constructed in such a way that a
CBS occurs at high -energy, no collapse will oécur in the three-_
particle ground sté%e- This intuitive argﬁmént motivated our
investigation in the.presént cHapter.

In section 2 we discuss the construction of partly
non-local potentiais with a short range nonlocality which pro-
duces a CBS in the total two-body interaction. In éection 3 we
present our results for the three-body bound state with thesé
interactions. We devote section 4 to discussing these results
and their implications.

VIiI.2 PAR?LY NON-LOCAL AND TWO-BODY INTERACTIONS

As before all our two-body interactions have the same

two-body binding energy E, = 3% k2 = 0.383 Mev and low e

- a £ D
effective range parameters a0==ll.65 and r0=:2.27 fm. They
also cobey the relation ‘

. _ 2k
(1] o S '
0D

between the asymptotic normalization constant As and a, and Tgr

(35,36)

which was shown to eliminate unphysical three-particle re-
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Asulté and which is obeyed by all .realistic potential models that
include the OPEP tail..:To work out our constraints we are em—

ploying the method of the cancellation of the Green's function

derived by Krause and Mﬁlliganﬂ%7)in.coordiﬁate space.

For an s-state with a CBS wave function ¢({r) we have

2 T
[2] Q_Eigl + Kzu(rj = dr® v(r;r'j)u(r")
dr .
-
with
. 2 ' . :2

[3] V(r,r*Fvy(xr)é (r-x' )+Al(;—r§ + k%)% (x) (;j—|2-+ z‘_")¢(r') + lzf(r)'f(r')‘ o

~

- Formally we can write the CBS wave function

2

r
— l . ! ] 2 ]
uK(r)__j;f_—_; Vo(r)ux(r)+ll¢(r) { dr uS(r )(dr.z-i'K 1¢(r")
(= + K - 5
ér
4]
A ) ®
+ — f(x) £{(r')u (r')Ydr'
(jlg + Kz) ) -
dr 0

and since uK(r) = ¢ (r) we obtain the conditieon for a CBS at

k2 = K2
PR 2.
[5a] . Ay dr'tb(r')fd—z'*' <?16(x') = 1
- dr

o
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and o s R
Vo(r)¢(r) + )\Zf(r) J f(r')é{r')dr' =0 )
| 0
or
[5b1 £(r) = - cTlv_ () e (x)
N 0 Vo
with o0
5¢] 2 - _ 2
[5¢] B _ CO A2 J VO(;)¢ {r)dr .
0
~ If conditions ([5a,c! are fulfilled, the Green's function
(_~7T¥——;_ cancels out at k2 = 2 and the function ¢{r) which
(.E—i' + Kz)
dr

decreases exponentially like a bound state whve function is a

solution of the Schrddinger equation at that energy. We there-

fore have a CBS at the energy E = 3% «? . The parameters A,
’ ol
can assume the values
= + ] = 1. -
Ai 1 i 1--N
For our potentials we have N = 2,'Al = A, = -1. The jchoice

¢(r) is entirely arbitrary provided it obeys the 'standard boun
state conditions ¢{0) = 0 and ¢(») = 0. In our calculations we

have taken

2 -B.x -Y.Xr
(6] ¢(\r)|= £ C.le * —e *)
) i=1 i
. . . (42)
and the Malfliet-Tjon potential MTV
5 -, r
Scom e .

V.
1 52 1 r

(7] - Vpix) =

n

i
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l

.o
: . ] ) I .
which has also been employed by Haftel = 1nhis investigation
‘of the model trit?n with partly nonlocal potentialé. The CBES

. l . : .
wave function ¢(r) at energy EK should be of short range, in

order to ensure also a short ranged nonlocality. In this work we
have selected cases s&ch'that {Bi’Yi} > max {ai}. To simplify
our calculations and in order to have a realistic deuteron wave
fundtion i.e. a UPA to the full interaction which is free of
any CBS contéébutlon, we impose the following additional condi-

tions on our two—body lnteractlon. Assuming. that

—a

i . : r
\ haa™ -
e 4%} o {0 (2 - 22089 (1) = v myat® (o
d 74 _ = D4 THO= Vgir ud
rf :
we regquire that
_ : [ o
(9a] | J dr g(r)u(o’( ) =0
0 : "
&
[9b] ~ J dr f(r)uéo)(r)-= 0 )
0
with
: | as o2
[9¢c] g{r) = (== + k") ¢(r) -
. ) dr
Therefore equations [5a,c] ‘and [9a,c] determined different
sets of values for the parameters. <
{ci,ei,yi} , i=1,2.

This guarantees:that the bound state wave function ud(r)
of the total'intera?zign eq. (3) is identical.to the bound state

wave,funcﬁion uéo)(r) of the local potential alone, i.e.
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.
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(0)(r) = (r) - It should be noted that our chozce of ¢(r),

eg. [6] guarantees (because ‘of ¢(0) = 0) that _the Fourler trans—
2 Pl

form g(k) of §(r) = (——f + K )¢(r) has the propertv g(m) ‘ =0,
whlch ‘is necessarv for the presence of a CBS in the total in-
teractlon as in the case of rank—one separable potentlals(BS)
We should flnally=note thet‘ell partly nonlocal poten-
tials which we have constructed heue a.nodeless ground state
wave function,aLthough'Bagchi,et,aiﬂ44) haue_argued that for

positive energies a CBS implies a node in the-scattering wave

- fundtion at all energies. We have constructed two classes of

potentials, ohe with a CBS at k = 5 and the other with ¢ = 7 fm T

Their parameters are given in Table 4.

IIT.3 THREE-PARTICLE BINDING ENERGIES

The binding energiéé.of the~ three particle bound states

_of the model triton have b&en calculated by means of the Padé

method. ‘A cdm@uter code was_used(45)u-which vields a de-
tailed solution for 'this problem. For more detfails on this subject
we refer.to the work of D. 31115(46). Fig. 22 shows the CBS wave

function,¢1r). It has a very short range, which'is necessary to
produce also a short ranged gan—locality. In fig. 23 we plot the
phase shlfts of the total interactions. Note that they Jump by

™ at K=5 and K= 7 fm -1

and they all are identical at low energies
as they should be. For comparison we show the ohase shifts of
the non-local interactions acting alone in Fig. 24. In Table 5,

we give the,binding.energies 6f the nonlocal parts of the interac-

" tion acting alone as well as the binding energies of the partly

no%locél one, As expected thé nonlocal parts by themselves produce

2 threewparticlé ground state collapse due to the-presence of the
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CBS. However intereétingly and maybe’someyha£ tnexpectedlf the- com-
plete partlv nonlocal intéractionsas-a‘resurtoftheif lqcality in
the oufer'region é:qduce no ¢oliapée at all.  In fact in both
cases the three particle binding'energy:of the local part acting'
alone is hardly changed by the addition of the short range non-
locality. The actual variation in Et:ig‘about O.BiMéﬁ and this
is the same result as the one usuélly obtained, if short range
moéifications of a gi&eﬁ local reference potential are generated
by means 6f unitary‘transfgrmations. We should note however tﬁat
usually in such transformaticons the deuteron wave function is' y
also modified at short diétanceg Qhereas in our case the deuteron
-wave function remains fixed. Tc confirm the fact tﬁét our partly
nonlocal interactions do- not prodﬁce three-particle collapse we
also calculated the Hall-Post lower boundé'ﬁhich areqalso given %n
table 5. .
It is rather interesting to note that for cur partly nonlo-
cal interactions Et also increases but only slightly with increa-
\sing Kk, whereas the lower bound show a very rapid increase with
increasing k (from 5 to 7 fmfl). It is-therefore possible that
with increasing k the three particle ground stdte would col-
lapse even for partly nonlocal potentiais, with a very repulsive
local core and a very short ranged nonlocality and one should
investigate this possibility. On the other hand our results disprove

the notion that a CBS at high energies in the two particle

interaction necessarily entails a three particle ground state
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Parameters for the partly nonlocal interactions
Kk =5 and k = 7 fm~1L
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‘with CBS at

| C, = -16.26 By = 6-233 Yy =
K = 5 : C, = 4.714 B, = 10.45 Y, =
A] = A, = -1 , C, =.o.9e42
i C -
@y = 1.55 v, = 674.32/41.47
@, = 3.11 ' v, = 1448.44/41.47
= 7 = - - = " s ==
K c; 16.54 B, = 4.635 vy
C, ='4.758 8, = 10.65 Y, =
Ay = A, = -1, C, = 1.0522

R

c".

4.658

3.556

4.635

3.518
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Table 5

Binding énergies for the two and three particle systems

Local alone Rank 1 Rank 2 Total Lower Bouﬁd

E_ (Mev) 0.383 : 0.383 -~ .g.28
kK -5 D ' : .

Ep (Mev) 7.65 10287 10389 7.75 16.56

Ep (Mev) - 0.383 , | 0.2383 50.7
K= 7 ' ,

B (Mev) 7.65 12122 12240 . 8.0 101.4
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‘collapse Such a collapse lS clearly depenGEnt on the off-

shell behaV1our of the two—partlcle 1nteractlon and not only

on the presence of a CBS or a narrow resonance at high energies.

4. Conclusions
We have constructed two partly nonlocal lnteractlons with
the.follOW1ng properties: .
i) Very short range nonlocality consisting of a rank two
potential which acts in“the core region of a local potertial
(which has a strongly repulsive core). B
ii) The éetential is purely local in the outer region.
This‘conforms with the characteristics of many composite
‘particle,interact;ons and with those of the nucleon-
nucleon interaction.
iii) A CB§ occure in.the‘total interactiens at high energies
{(in the region where the concept of a potential already
loses its meaning in ﬁucleon—nucleon scattering).
iv) The nonlocal part of the partly nonlocal potential by
irself produces three particle ground state cellapse.
From the results of our calculations of Ep (the binding energy
of the ground state of the three-particle systemm) we conclude that
1) No' three-particle gsfund state collapse occurs for lnteractlons
hav1ng praperties (i) to (iv) (we do not exclude the possibility
that witll increasing CBS.energy ‘the three particle system ceh

collapse even in such cases). However our results serve as

counter-examples against the tempting conclusion (from

-tz ot g



o | 131
preVious results) that a CBS in the two particle interaction . . -

always produces a three particle collapse in the_ground state

The requirement that theltwo particle rnteraction should not pro-

duce a CBS (orpnarrow resonance) even at very hlgh‘scattering
«‘energzes can therefore not be regarded as a constralnt which must
‘_be imposed on any (even comp051te) two- partlcle 1nteractlon.

2) Our results 1dent1fy at least one of the condltlons by

which three particle ground state collapse can be avoided in

spite of the presence of‘a two partlcle CBS. However it has not

vet been establlshed whether a local duter part of the interac-

tion sufflces to av01d a collapse. The repulsive coreAmay also

be necessary for this,purposel A negative aspect of our present

a

™

'results is that it becomes even more difficult: -
3) To find an explanation for the collapse of the three par-
ticle system.

4) To identify those properties of the two-partgkle interaction
which insure such a collapée.

The presence of a two particle CBS is only a necessary but not

a sufficient condition for the occurrence of the collapse. How-
ever, it is clear that for €hose two-particle interactions_which
are the physically most interesting ones, i.e.\thoSe having a
local tail and a repulsive gpre combined with a short range
nonlocality the occurrence of a CBS or a narrow resonance can

be quite harmless for the three-particle ground state and pre-

sumably therefore also for N > 3,
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CHAPTER VIII -

'SUMMARY

;’This work hae dealt with two Basic subjects. In
the flrst we,have 1nvest1gated bound states embedded into
continuum, whlch arlse in (d,p) stripping to unb hd states;?
This is done by con51derlng the“kinematics of this érocess
-.Whlch is normally referred to as ltS ‘of - shell behav1our.
The second subject deals with the ground state collapse ~of
the three body system (the model triton). This collapse ap-
pears_for.non—local interections which support a continuum
‘bouﬁd state at high energies. We have discussed our re-
sults at length ‘and ptesented our conclusions cansecutive-

ly in each chapter. Here we shall summarize the main fea-:

tures again.

Inspection of the cross-sections of a neutron scat-

tered elastically on N1

and that of a'(d,p).reaction on

the same target reveals striking similarities. First, elmqst
all energy levels appear in both spectra, secondly-alﬁost

all resonances appearing in the (d,p) spectrum are displaced
by the same energy shift in comparison to the (n,n) spectrum,.
and thirdly resoeance shape changes appear in (&4,p). These

observatiocns led Lipperheide( 6) to suggest that since the
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-nucleus N}G is unbound to neutron decay the similarities .
beﬁween the (n,n) and (d,p[ craés—sectioﬁs can be

explained by éonsidering tﬁe strippéd“neutron'to be initial-
ly caught by tﬁe target and subseguently scattered by it. In
fact since the striéped nucleon moves off t@e energy shell
it becbmes.clear that the missing link between the‘(é,pq and
the [n,n) process is the off-shell scattering amplitude.

8
Lipperheide and Mahring( )

. . . 1 . .
some isolated resonances in N 6._ We have extended this formalism

used this idea to interpret

giving an exact expression of the off-shell scattering am-

-plitude which is able to account for more levels of the resonant

16

state. By computing the le(d,p)N reaction leading to

Jn_= 1, 17 and 17 states at the excitation energies 3.519, 4.318,
4.398 respectively we have found reasonable agreeﬁgnt with
experiment. In particular we have found that the change
of shape and the energy shift are related to interference with
the off-shell background,'which in some cases can éompletely
eliminate‘a resonance from the (d,p) sSpectrum. Such a case
for instance is the resonance J W = 1~ at Ex = 4.398 Mev.

-. By computing interference and background effects exact-
ly our formalism has the advantage tﬁat it can be used for
comparison between on-shell and off-shell background and.there—

fore one can make predictions about a spin and parity of the

state under consideration. We have used this technique for
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example for the resonance J" =17 at E, = 2.732 Me§ which
we have ‘shown to be a mixture of 2=0 and &= 2. .

We have taken care of competing processes by develo-
piﬁg a compact formalism in terms of the off-shell T-matrix
usihg the R-matrix theory. Wé have illustrated the useful-
ress of this approach by comparing it to a numbe£ of ekact
célculations. Our’ conclusion is that whergas the on-shell f—
matrix can be expanded arcuné a single pole inrthe case of an
isoléted resonance, such an_expansion is not necessérily adej
" quate for the off-shell T-matrix. The latter depends on the
off-shell distance s and an expansidn in the vicinity of
an off-shell point provides:&n:a'better approximation of the
phvsical situation. We may finally note that our formallsm
can be used for (&,p) and {d,n) reactions by using an ap-
propriate choice of incoming ahd outgoing waves. It can aléo \
be used for any kind of potentials, for instance non-local
separable or not. In fact it will be interesting to use a
non local non separable potential to investigate ﬁhe additional
off-shell behavior which wiil arise from the non locality of
the pdtential. N

As far as the triton is concerned, it is not éo much
the off-shell behavior of the potentials which brings about
the ground state collapse but their non local form. We have

constructed purely non-local potentials which show a collapse

and completely equivalent partly non-local which do not.
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1)

2)

3)

4)

5)

6)

7)

8)
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- We can.not therefore show conclusively the conditions which en-

tail a collapse. We might summarize our conclusions as fol-

For the rank-two égparable interactions a continuum
bound.stateentails a collapse in the three body svstem.
The bindigg becomés stronger when the continuum bound
state is moved to high energies.

The bipding decreases when the repulsive part of the
interactions becomes étronger, T

Our results can be generalized to interactions of

»

higher ranks.
For partly‘non—local interactioﬁé which consist of a
local part in the outer regioﬁ and a rank-two form,
with a CBS, in the inner region, no ;o;lapse §Ecurs
despite the fac; that the non—-local part in itself
produces a collapse.

We can not conclusively prove ;t this stage that a

collapse will not occur for partly non-local poten-

tials when the CBS is moved to very high energies.

The presence of the CBS is a necessary but not a
sufficient condition for the occurrence of the collapse.
For the physically more interesting interactions, those
that have a local tail and a repulsive core combined
with a short range non-locality the occurrence of a

CBS is quite harmless.
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Flnally to flnd an explanatlon for the collapse and
to 1dent1fy the propertles of lnteractlons whlch insure

the collapse the following suggestlons may be made:

~

a)- Use non¥lecal forms\other'than Yamaguchi.-

b) Use dlfferent local forms; thls mlght make the
potentlal less phvsxcal but lt will be easier. to
draw comparlsons..

c) Investlgate the non—local Wronsklan for the

o

appearance of spurlous states.

d) Relate these potentlals to an)equivalent‘lccalf'

. form.

' TEAOZL
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A

‘ \
Die Prage, ob dem mensahllchen ﬁenken gegenstandllche

Wahrhelt zukomme, ist keine Frage der Theorle, sondern
"eine praktlsche Frage ‘In der Praxis muss der Mensch

/_dle Wahrhelt, i.e. WlfkllCthlt und Macht Dlesseltlgkelt

'=ﬁseines Denkens beweisen. Der Streit dber die erkllchkelt
oder NlchtW1rkllChk&lt des Denkens, das'_von der Praxls

" isoliert ist, ist eine reine scholastigche Frage.

(K. Marx, Thesen ﬁber'Eeﬁerbach)

-

The questién_whether objective truth can be attribgted to
-~human thinking is not a £heoretical guestion but a practi-
cal one. In practice man must prove the truth, that is,

reality and power, thissidenis (diesseitigKeit) of hié
thinking. The dispute over the reality or non reality of
thinking,twhiéh is isolated from practice, is a purely

scholastic question.

fK. Marx, Theses on Feuerbach)



and assumlng that onlv one mode’ of decay domlnates the

we can set

S N TERE RCC T
B . :
5 :
=2 e % ,E e
"nAa c n n n g‘

and write for the dif ferentlal cross-— SECthn

reaction,

. A B T HgalM k k _
6] <35—g;-» = 2 __ (% pB) = o2 - & )[2Im £ (5K ,E)
' P (2n%) < "na g P S mnmr.n
[ . ’ . ) ‘1{2 2 Lo
where u stands for. redured mass. and,’ as befo;e 5 = Son kn-En #

B

0.
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. o APPENDIX A R . o~ '
THE STRIPPING AMPLITUDE f"f; )
The dis erentlal c*oss-secglon for *he reactlon a(d, D)B is
knomn to oe(lﬁ) . |
Fli : fan dEP?_ (2“ﬁ~) 7 (Ba) ,Pp“psl*fll A '
Using(II;22fland-the_energy'coﬁservation relation
[2] o _(Ef-gi) = Wy f sp +'Ed  f-wA fzgd . \
we-get : |
- _ ﬁ I
dg 1 -1 da 2
[3] (=) = - (ugr) o v IG5/~ x )| ¢ T S(E_-E.)
a"pcnp 12wH2)2 dA” . “ppB! 2 P l B Arl
T . . J
' . . ) B .
* Now noting that
{4] o] "= (——)( ) -1 £ 1T [ § (E -(W W)l
T T tot J B,An A i
B
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e

441 we ¢an cast Al6] in the form-

| Using [II-48,54] ang {II-
.. ) . ) h - : . . 2
da _ 1.0 dA 53 _n(n+l)\ I - 1 . —
(7] (I o). = =g ¢ )(————9— (S — ) Vel .
P B - (27} Mg '1% {l-n}~ s+(n’ —l)sd
EDEI'i - | o 2 ° .2mn ;

d 2

./\

nlcn shoms t;e dl‘ferent1al CIOSS‘S&CelOP Lo be a function

‘of the o‘f-she1l cls_ance S and tnereeore a functlon of the

4strlEplng angle 5. Some other useful relations may also be noted

Pigufe A.l YVector diagrams describing the coordinates,
used‘in»tigﬁEHEOry of the (d,p) stripping
reaction. . ‘ ‘
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‘Recalling [TT.22]

£81] Te; = <¢f|vnp[_¢i>_~ |
. . -
and using
’ : k> = ' ﬁ >
[9] I¢f> - [¢B’kp r ¢i - l¢dr a
we get
i(n- -+ icl- -
’. - - * - -1 - f. - 1 -r
= PP , d tdc
[10] Tfi Jdrncdrnp¢3(rnc)e Vpn¢d(rnp)e-.. . .
‘From the vector diagrams (fig. Al) we get
> > > Te e - IJcp
pf np ne m_+m r mc+mp Sy
C[11]
Fao=r o+ o T _on.
dc nec pn m.p+mn m.p+mn m
For simplicity of presentation we set ;np = B and ;nc = ;, then
Eg. [10] becomes
- . - u
oo ame e Rk - . -13 (R ~ky 22)
[12] Tfi" r¢B rle dp¢d p) npe n

? s )

Now if we integrate the Schrodinger eguation for the internal

motion of the deuteron we get for the second integral

2 ].l 2 1 ———, -
[13] T=-2 [k -k =B84 v 3 J 8, (Bre P d My g2
I



141

The factof

A= L~k 2B+ %)
. “pn P “n
can be written o
' .22 .22
o 2 - 2 5, H7k HK 2k k -
B S 2 B 2 pn g.__©_ p d -
[14] A=gr k::»+2m kd (m b+ 2m_  2m_- Zm T %a
pn ° n n “n T n
H2k2 H2k2
o _ d
2 2m
m - “"n
or
: 5 U {hx —ﬁk)z
_ 2.2 ,1 1 2.2 HMon 1 AXq™HNy )
(151 & = %] gy T g *ERg (Bp-g e —55 + ey
pn T n 2m, n :
p2- p§, (Pa-Pp)z
[161 - AT om T 20 ) 2m T far

But-from the conservation of enérgy we have

. P2 P2

(171 =2 =, + E_ + ==
2(m_+m_) d  n 2m

P p

whexe E is the energy of the transferred neutron. Noting that

- ==

-
Pd—Pp = Pn’ the momentum of the transferred neutron, we have

from [16] and [17]

[18] A= —2 - E
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APPENDIX B

A POSSIBLE EXPANSION OF THE COMPOUND STATES
The solutions of Eqg. [V—lZ] can be found elther bv nu-
merlcal 1ntegratlon oxr by lntroduCLng a basic set of states
|p> corresponding to 2 model Hamiltonian Hy wHich is diago-
nal in the channel indices. In the present case we have .
[1] . H =4

diag +}Hcoup‘
o«

X

[21 . N Hjag = By + T + <c]vdiag]c>
and
(31 7 .Hcoup = <clvcc>up[c = Ve

The states [p> are the eigenstates of the equation

[4] (Hdiag + Lb - Ep)]p> = g

and their radial parts <ple) ='vpc(r¢)/rc are the solutions of

the uncoupleé equations;

2 2
H d 2 {2+1)
[51] (T +V_(x)=(E_-c )v_ (r) , T=- ( - )
c ¢ Poce pe 2mc dr2 r2
satisfying the boundary condition
(6] a. a;; v c(rc) = bcvpc(rc)/rc = a, .

They have zero components in all but one channel, so that each

one of them is a single particle state only in one of the
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~

. v
channels. The compound states

rd -

: ' T e 1 |
[71 ) A = i T ukc(rc)[c)

can be expanded in terms of this complete set viz:

[8] [A> =1z M, _[p> .

I
P
or '

ulc(rc) =z (r) -

M. v

A c
P PP
Substituting Eg. 8] into Eg.[V-12] we obtain the matrix

equation

(9] . M(E + V) = EM

where E and E are diagonal matrices with elements Ej and

E, respectively and V has matrix elements

{10] ?pfp = <p[vcouplpr> = J vpc(r)vcc,(r)vp,c,(r)dr.
- 0

Diagonalizing Eg. [9] one finds‘the eigenvalues E, and the trans-

A
formations coefficients Mpk‘from which the reduced widths

Yye G20 be found from Eg. [V19] and the R-matrix formed.
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APPENDIX C

EXACT/;EPRESENTATIONS'OF THE CBS CONDITIONS

In this appendix we give the constraints obeyed by
g (k) and h(k) in analytical form, for the special case. of
eg. (29).

The condition
: oc
. , : 2 2
T (3 = DT (i =1 - 2 g (plp dp
D (1kD) = Dl(lkD) = 1 - J 5
0
can be written as

c 'YiYﬁ
[1] z
i3 (Bi+kD)(8j+kD)(Bi+8

. -1
j)

while the asymptotic normalizationlcondition for the "deuteron"

wave function

o

-k r

dr u 2 (r) = 1 (ry > A e D
r ud (r) = ' ud hy - Se
— 0 ’
becomes
YiY5 2,1 1 1 1
[2)IZ ~J [1-A_° (5~ - + )] = 0

D

The CBS conditions can be given (ImDI(K) = 0) as

1
[3] g{k) =L —s—5 =20
: i B.2+K2
i
and =
Y. Y.
[4] o RIS H |
13 B.“4+k“ B_+B8
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which is the analytical form of eq. (20) or (21).
It is easily obtained from eq. (20) if we realize that
eqg. (29) implies that’

- . ‘-Bir - - . ' rat ’
gl(r) = Z.Yie

and therefore (from eg. (19)) that

-B.r - Y. -B.r .
d({r) =2 aie oo X2 e T .
i i Bi +<
(Note that ¢(0)'= 0 is eguivalent to g(k) = 0, i.e. to eg. (A3)).
The condition ReDI(K) = 0 can be analytically expressed as
2
2
BiBs _ K
Iz 5 J =1. (A5)

. . Yy
O R S T T

It is easily proved that egs. (A3) and (a4) are exactly equiva-
lent Lo egs. (A3) and (A5), i.e. to DI(K) = 0..

The form factor h(k) is constrained to obey the ortho-
gonality conditions eqgs. (6) and (27) which are given explicitly

'by egs. (A6) and (A7) respectively

TR o e T = © (A6)
ij i ™D J D 173
and >
i%y T Y p 5
fj (8.%4c%) (. 2+k%) (B.4w.) + 3 0 a7
i. 3 i 73
The additional constraint h(0)-= 0 imposed on some of the poten-

tials  gives

I 25 =0 - i (a8)
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With N = 4 we can choose wy to W, together with P4 arbitrarily,
and then determine Py, P, and p, from egs. (A6) to (A8). -By

increasing P, We make our interactions more repulsive.

.
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