
Model Based System Consistency Checking Using

Event-B

MODEL BASED SYSTEM CONSISTENCY CHECKING USING

EVENT-B

BY

HAO XU, B.Sc.

a thesis

submitted to the department of computing and software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Science

c© Copyright by Hao Xu, October 2011

All Rights Reserved

Master of Science (2011) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Model Based System Consistency Checking Using Event-

B

AUTHOR: Hao Xu

B.Sc.

SUPERVISOR: Dr. Tom Maibaum

NUMBER OF PAGES: xii, 132

ii

To my family.

Abstract

Formal methods such as Event-B are a widely used approach for developing critical

systems. This thesis demonstrates that creating models and proving the consistency

of the models at the requirements level during software (system) development is an

effective way to reduce the occurrence of faults and errors in a practical application.

An insulin infusion pump (IIP) is a complicated and time critical system. This thesis

uses Event-B to specify models for an IIP, based on a draft requirements document

developed by the US Food and Drug Administration (FDA). Consequently it demon-

strates Event-B can be used effectively to detect the missing properties, the missing

quantities, the faults and the errors at the requirements level of a system develop-

ment. The IIP is an active and reactive time control system. To achieve the goal

of handling timing issues in the IIP system, we made extensions of an existing time

pattern specified using Event-B to enrich the semantics of the Event-B language. We

created several sets to model the activation times of different events and the union of

these time sets defines a global time activation set. The tick of global time is specified

as a progress tick event. All the actions in an event are triggered only when the global

time in the time tick event matches the time specified in the event. Time is deleted

from the corresponding time set, but not the corresponding global time set while the

event is triggered. A time point is deleted from the global time set only when there

iv

are no pending actions for that time point. Through discharging proof obligations

using Event-B, we achieved our goal of improving the requirements document.

v

Acknowledgements

First of all, I offer my sincerest gratitude to my supervisor, Dr. Thomas Maibaum,

who has supported me throughout my thesis with his patience and knowledge. Through

two years of study, I learned the patience and the preciseness of the academic research.

Without him this thesis would not have been completed or written.

This thesis came about as a result of the author participating in a project at the

McMaster Software Certification Centre in year 2011. This project includes a group

of two professors and four graduate students. I am grateful to the following members

of this project: Dr. Alan Wassyng, Dr. Mark Lawford, John Stribbell, Linna Pang,

Grant Whinton and Esteban Bucio. To work together with such a group of people

with passion and inspiration is my honor.

I am very grateful to the committee members: Dr. Mark Lawford, Dr. Emil

Sekerinski and Dr. Thomas Maibaum. Thanks for the valuable comments and cor-

rections.

Finally, I am deeply grateful to Dr. Thomas Maibaum and Dr. Chris George for

their help in careful proofreading the thesis.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Motivation . 1

1.2 Why Event-B . 3

1.3 Overview of the Chapters . 4

1.3.1 Chapter 1: Introduction . 4

1.3.2 Chapter 2: The Event-B Language 4

1.3.3 Chapter 3: The Insulin Infusion Pump 5

1.3.4 Chapter 4: Modelling the IIP 5

1.3.5 Chapter 5: Future Work . 6

1.3.6 Chapter 5: Conclusion . 7

2 The Event-B Language 8

2.1 Mathematical Languages . 9

2.1.1 Sequent Calculus . 9

2.1.2 Inference Rules . 11

vii

2.1.3 Set Theory . 15

2.2 Event-B Notation . 17

2.2.1 Components and Relations . 17

2.2.2 Context and Machine Notation 18

2.3 Proof Obligation Rules . 21

2.3.1 Invariant Preservation Rule 22

2.3.2 Feasibility Rule . 22

2.3.3 Guard Strengthening Rule . 23

2.3.4 Simulation Rule . 24

2.3.5 Witness Feasibility Rule . 24

2.3.6 Well-definedness Rule . 25

3 The Insulin Infusion Pump 26

3.1 Components . 27

3.2 Commands and Actions . 28

3.3 Interaction Behaviour . 31

3.4 Requirements of IIP . 34

4 Modelling the IIP 35

4.1 Refinement Strategies . 35

4.2 System Structure Review . 40

4.3 Initial Model . 43

4.3.1 Model Description . 43

4.3.2 Formalizing the States . 44

4.3.3 Formalizing the Events . 45

viii

4.3.4 Summary of the Initial Model 46

4.4 First Refinement: Refining Phases . 47

4.4.1 Model Description . 47

4.4.2 Refining the State . 47

4.4.3 Refining the Events . 49

4.4.4 Summary of the First Refinement 51

4.5 Second Refinement: Basal Profile Setting 52

4.5.1 Model Description . 52

4.5.2 Refining the State . 52

4.5.3 Refining the Events . 54

4.5.4 Summary of the Second Refinement 56

4.6 Time Constraint Patterns . 56

4.6.1 An Existing Time Pattern . 56

4.6.2 Extension of Time Pattern . 58

4.6.3 A Time Pattern with Unpredictable Events 62

4.6.4 Time Pattern for Classifying the Events 64

4.6.5 Discussions of Zeno Behaviour 67

4.6.6 Comparison with Other Approaches 69

4.7 Third Refinement: Introducing the Time Pattern 70

4.7.1 Model Description . 70

4.7.2 Refining the States . 71

4.7.3 Refining the Events . 76

4.7.4 Summary of the Third Refinement 96

4.8 Summary of the IIP Model . 97

ix

4.8.1 Summary of Refinement Stage 97

4.8.2 Summary of Inconsistencies 99

5 Future Work 101

5.1 Future Work on the IIP Project . 101

5.2 Future Work on Technical Research 102

5.2.1 No Support for Real Numbers 103

5.2.2 Refinement Consistency Proof Obligation Rules 104

5.2.3 Completeness of the Model . 105

6 Conclusion 108

A IIP Requirements 111

A.1 Infusion Control . 111

A.2 Basal Programming and Administration 111

A.3 Bolus Calculation and Administration 112

A.4 Drug Reservoir . 113

A.5 Pump Suspension . 113

A.6 Alerts and Alarms . 114

B Model Summary 115

B.1 Initial Model . 115

B.1.1 Model . 115

B.1.2 Proof Obligations . 116

B.2 Refinement One . 116

B.2.1 Model . 116

x

B.2.2 Proof Obligations . 118

B.3 Refinement Two . 119

B.3.1 Model . 119

B.3.2 Proof Obligations . 120

B.4 Refinement Three . 120

B.4.1 Model . 120

xi

List of Figures

2.1 Contexts and Machines Relation Example 18

3.1 IIP . 27

4.1 Structure of the IIP . 41

4.2 Events Trail . 67

4.3 Time Line with Events . 68

4.4 Proof Tree in Rodin . 77

4.5 Proof Tree Structure . 77

4.6 Proof Tree of INFU START NORMAL/inv32/INV 81

4.7 Proof Tree of INFU START EXBO/inv32/INV 82

4.8 Proof Tree of BO PROC/inv6/INV 93

4.9 Proof Tree of BO PROC/inv9/INV 94

4.10 Refinement Relations . 99

xii

Chapter 1

Introduction

To develop robust and correct software has been the intention of some software devel-

opers for a long time. To design faultless software, people have to totally understand

the required behaviour of the system and the cooperation between each part of the

system. This presents a problem, which is how to make the requirements and the

definitions of the systems accurate and faultless. For safety critical systems, it is

necessary to find a formal way to detect and correct the limitations or faults in the

documentation. This is one reason why formal methods play a significant role in the

cycle of software engineering.

1.1 Motivation

The Insulin Infusion Pump (IIP) is a semi-automatic, patient controlled medical

device whose purpose is to control the blood glucose (BG) level of diabetics by con-

tinuously or intermittently infusing insulin from an insulin reservoir into the patient.

An IIP simulates the behaviour of the pancreas, which accurately delivers (using a

1

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

biological feedback mechanism) insulin to the body during normal activities of human

beings.

The necessary accuracy and the complexity of the simulation of the pancreas

behaviours by the IIP make it a high risk system. The faults and errors are arise

from the system itself and because of the actions of the patients. A recent report

from U.S. Food and Drug Administration (FDA) indicated that over 5000 adverse

events for the Insulin Pump were reported during 2008 [YZPLJRJ10]. To avoid the

occurrence of the faults and errors, designing a robust system with low errors and

high fault tolerance becomes necessary.

Considering the situation mentioned above, in 2010 the FDA proposed a draft of

some documentation for the Generic Insulin Infusion Pump (GIIP) [FDA10]. This

document includes the requirements for the GIIP, with accompanying definitions and

the hazards analysis for it as well.

To judge the correctness of a model is far easier than making the same judgement

about the corresponding program [Abr10]. A project at McMaster University’s Mc-

Master Centre for Software Certification (McSCert) is trying to create models which

contain all the features described in the document and formally prove the models are

faultless, and then implement a practical infusion pump based on the formal models.

Because the documents describing the GIIP are a draft, to find a method to make

the requirements of the system complete and faultless is necessary and useful. This

article describes the approach which we are using to identify the faults and errors in

the requirements documents by creating some formal models and then developing the

associated proofs about the models in the context of the formal specification language

Event-B.

2

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

1.2 Why Event-B

Event-B is an extension of the B method [Abr96], which was developed by Jean-

Raymond Abrial several years ago [Abr10]. Its notation is based on propositional

logic and Zermelo-Fraenkel set theory [CM08]. Event-B uses refinement to relate

different stages of the system description and uses the underlying mathematical lan-

guages to prove the consistency of every refinement (with respect to its predeces-

sor) and invariant preservation for each event. The mathematical languages used in

Event-B include sequent calculus, predicate logic, equality language, the boolean and

arithmetic language and some advanced data structures [Abr10].

Event-B is a mature formal method which has been widely used in a number

of industry projects in a number of domains, such as automotive, transportation,

space, business information, medical device and so on. An FP7 project supported

by the European Commission, called the Deploy Project [Dep08], is using Event-B

to improve system dependability, to handle system complexity and to reduce the

capital spent on the testing and debugging stages of software development. A recent

technical report [MS10] written by Mery described a formal development of a Cardiac

Pace Maker using Event-B, which shows the feasibility and validity of using Event-B

during the development cycle of a medical device.

Another reason for using Event-B is that it is a tool-supported formal specification

language. The Rodin platform [rod09, ABH+10], an Eclipse-based IDE for Event-B,

provides a user friendly user interface to create, refine and mathematically prove

properties of models. Proof obligations are automatically generated after models

have been created. The most powerful aspect of the Rodin platform is that a semi-

automatic theorem prover is embedded in the tool, which saves lots of time compared

3

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

to creating the proofs manually. The Rodin platform is open source, so it supports a

large number of plug-in tools, such as the animation tools AnimB[CM09], ProB[LB08]

and model decomposition tool [SPHB10], The introduction of these plug-in tools

makes modelling and proof construction more flexible.

1.3 Overview of the Chapters

We give a brief outline for each chapter in this thesis.

1.3.1 Chapter 1: Introduction

This chapter presents the motivation for the research topic and the reasons for choos-

ing Event-B as our modelling language. Although our intention is to make the FDA

requirements documents faultless and correct, the creation of models and the correct-

ness proofs related to the models are only on an abstract level. We can fix the bugs

and errors in the documents, but on the implementation level, bugs may still exist.

Our intention in this thesis is to formally improve the requirements document, which

is key for producing safe software by manufacturers.

1.3.2 Chapter 2: The Event-B Language

Event-B is a mature and widely used formal specification languages. The intent of

this chapter is to give a brief introduction to Event-B. Event-B supports a refinement

based formal method; in other words, starting with each model, the designer refines

the so called abstract model to a more concrete model. Refinement, the concept of

mathematical proof and proof obligations and corresponding rules are introduced in

4

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

this chapter. More details about Event-B can be found in J.R. Arial’s book [Abr10].

1.3.3 Chapter 3: The Insulin Infusion Pump

In this chapter, we present a detailed informal description of the IIP, that is system

behaviour and requirements description in natural language. The version of the doc-

ument [FDA10] used as our starting point is an incomplete one. Some inconsistencies

of the IIP requirements exist in this document, but the reader should note that these

faults and errors are detected and fixed in subsequent chapters. The IIP is a complex

system; our interests are mainly focused on the pumping process and the constraints

for basal, bolus and extended bolus injections, so the requirements for these parts are

described in detail in this chapter.

1.3.4 Chapter 4: Modelling the IIP

Modelling the IIP follows the typical approach to modelling in Event-B [Abr10] by

refinement. This chapter provides a formal description to the properties of the IIP

using the Axioms, Context and the Invariant parts of the Machine encapsulating the

model.

Although Event-B describes systems using discrete events, with the help of some

existing time patterns, it can handle timing issues as well. This thesis makes an

extension of a time constraint pattern put forward by Mery [CMR07]. A sub-section

in chapter 4 defines an extension of the time pattern and illustrates the usage of

the extended time pattern on the IIP example. We create several sets to model the

activation times of different events and the union of these time sets defines a global

time activation set. All the actions in an event are triggered only when the global

5

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

time matches the time specified in the event. When the action is activated, the time

is deleted from the corresponding time set, but not the corresponding global time

set. A time point is deleted from the global time set only when there are no pending

actions for that time point.

During the process of modelling the IIP and proving relevant proof obligations,

several inconsistencies and missing properties of the draft FDA document are identi-

fied.

1.3.5 Chapter 5: Future Work

This chapter describes some future work that should be undertaken both on the IIP

project and for the Event-B formal method.

The development of the IIP is a long term project. The work that has been done

in this thesis focuses on the correctness checking of the requirement documents by

creating a model and then checking relevant properties. Future work such as adding

new features of the IIP, introducing environmental variables and even code generation

are important issues which we have to address in the future.

Through the development of the IIP, some disadvantages of Event-B emerged,

which forces us to reconsider the formal method. This chapter proposes several issues

related to the disadvantages of the Event-B language, such as Real Number support,

checking of model completeness. Moreover, the new time pattern in this thesis results

in the creation of an obstruction to using refinement in the development of the model

when using Event-B. We provide some general discussion and propose some partial

solutions to the above issues.

6

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

1.3.6 Chapter 5: Conclusion

This chapter provides some conclusions about the formal method we applied in the

project. The main contributions of this thesis are presented in this chapter:

We created a safety critical system model by using Event-B;

The correctness of the requirements document is (indirectly) checked by discharging

the POs generated from the IIP model;

To handle the timing issues encountered during the development of the IIP model,

we created several time patterns and applied them to the model.

7

Chapter 2

The Event-B Language

Event-B is an event based formal specification language. This chapter illustrates the

Event-B language through the following perspectives: the mathematical languages

that Event-B is based on, the Event-B notations (the structure of each component of

the model) and the Proof Obligation (PO) rules. Because Event-B is a rich formal

specification language, it is impossible for us to illustrate all the details of Event-

B in this thesis. We choose some fundamental features of Event-B from [Abr10]

and present them in this chapter. The descriptions in this chapter are intended to

help readers to understand the IIP models specified using Event-B in the following

chapters. Detail knowledge of Event-B and the semantics of logic expressions used in

Event-B can be found in [Abr10, Abr96].

8

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

2.1 Mathematical Languages

2.1.1 Sequent Calculus

The definitions of some terms (sequent, sequent rules, theory) shall be presented before

we describe the sequent calculus.

A sequent is constructed from two parts: the hypotheses, which includes several

predicates, and the goal, which has only one predicate. We write a sequent in the

following format:

H ` G

The above sequent means that the goal G holds when a set of hypotheses H hold.

An inference rule is is a relation between the antecedent and the consequent used

when we construct a sequent based proof. An inference rule is made up of two parts:

the antecedent part, which includes a finite set of sequents (the antecedent part can

be empty), and the consequent part, which includes one sequent. We write a sequent

rule in the following format:

A

C
R

The A stands for the antecedent part; the C stands for the consequent part; and the

R stands for the name of the inference rule. This inference rule says that the inference

rule R yields a proof of sequent C when we have the proofs of each sequent in A when

A is not empty. When antecedent A is empty, we say the inference rule R yields a

proof of sequent C.

A theory is a set of inference rules.

Through the definitions of sequent, inference rule and theory we see when we want

9

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

to prove a sequent in a theory we can construct a proof tree. Each node in the tree is

represented by a tuple (S, R), in which S and R stand for the consequent of a sequent

rule and the name of the relevant inference rule, respectively. The antecedent part of

a node in the proof tree is the collection of all the consequent parts of the subtrees

of this node. The leaves of a tree are those inference rules which have an empty

antecedent part.

Below is an example to illustrate the construction of a proof tree. We have a

theory including inference rules R1 to R6 and sequents from S1 to S6, which are

written as follows:

S2 S3

S1

R5
S4 S5

S2

R2
S4

R1
S6

S5

R3
S6

R4
S3

R6

To prove the sequent S1, we can create the following proof tree:

S1 R5

S2 R2

S4 R1

S5 R3 S6 R4

S3 R6

The root (S1,R5), whose antecedent parts are the consequent part of its offspring

nodes (S2,R2) (parent node of (S4,R1) and (S5,R3)) and (S3,R6) (antecedent part

is empty), is the sequent that we intend to prove. The node (S5,R3) only has one

child node (S6,R4). The tree has three leaves (S4,R1), (S6,R4) and (S3,R6). All

the leaves are sequent rules with empty antecedent.

10

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

2.1.2 Inference Rules

The theory of underlying Event-B is based on some initial inference rules. This theory

is refined or extended by propositional logic and predicate logic. We summarize in

Table 2.1 (the initial theory), Table 2.2 (the propositional logic extension), Table 2.3

(the predicate logic extension) the inference rules in Event-B and their definitions.

These inference rules form the core of the approach to discharging proof obligations1

in Event-B. We can construct proof trees for each proof obligation through the sequent

calculus and discharge them by using the following inference rules.

Initial Theory

The basic rules are HYP, MON and CUT:

H,P ` P
HYP

H ` Q
H,P ` Q

MON
H ` P H,P ` Q

H ` Q
CUT

Rules Definitions
HYP If goal P of a sequent is in the hypotheses, then the sequent is proved.
MON To prove a sequent, we only need to prove another sequent with fewer

hypotheses (without P) but with the same goal Q.
CUT If we proved a goal P under hypotheses H, then P can be added to

hypotheses H to prove another goal Q.

Table 2.1: Initial Inference Rules

1Proof obligations and proof obligation rules are explained in detail in Section 2.3.

11

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Propositional Logic Extension

The propositional logic extends the initial inference rules by adding falsity, negation,

conjunction, disjunction and implication. Each of the rules has two corresponding

rules labelled with L (the hypotheses part of the consequent) and labelled with R

(the goal part of the consequent).

H,⊥` P
FALSE L

H,` P H ` ¬P
H `⊥

FALSE R

H ` P
H,> ` P

TRUE L
H ` >

TRUE R

H,¬Q ` P
H,¬P ` Q

NOT L
H,P `⊥
H ` ¬P

NOT R

H,P,Q ` R
H,P ∧Q ` R

AND L
H ` P H ` Q
H ` P ∧Q

AND R

H,P ` R H,Q ` R
H,P ∨Q ` R

OR L
H,¬P ` Q
H ` P ∨Q

OR R

H,P,Q ` R
H,P, P =⇒ Q ` R

IMP L
H,P ` Q

H ` P =⇒ Q
IMP R

H,Q ` P H,¬Q ` P
H ` P

CASE

12

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Rules Definitions
FALSE L If the hypotheses of a sequent included false assumption, then the

sequent is proved.
FALSE R If a goal P and its negation ¬P are both proved under hypotheses H,

then H is false.
TRUE L This rule can be proved by using MON (substitute P by >).
TRUE R This rule can be proved by using HYP L and AND L.
NOT L To prove a sequent which says the goal Q of the sequent is proved

under the hypotheses H and ¬P , we only need to prove the sequent
with hypotheses H and ¬Q, and with goal P.

NOT R If we succeed in proving the goal ⊥ under hypotheses H and P, then
the the sequent with goal of ¬P can be proved.

AND L The relation between hypotheses H and some predicate P is conjunc-
tion.

AND R To prove a sequent with goal P ∧ Q, we should individually prove
the sequent with the same hypotheses H, but with goals P and Q,
respectively.

OR L To prove a sequent with hypotheses include P ∨Q, we have to prove
the sequent with the same goal R, but with hypotheses P and Q,
individually.

OR R If we succeed in proving the goal Q under hypotheses H and ¬P and
goal Q, then the new sequent with new goal P ∨Q can be proved.

IMP L This rule is a derived rule from OR L and FALSE R (substitute
P =⇒ Q by ¬P ∨Q).

IMP R This rule is the same as rule OR R (substitute P =⇒ Q by ¬P ∨Q).
CASE To prove a sequent with goal P, we should prove the sequent with

hypotheses Q and the sequent with hypotheses ¬Q.

Table 2.2: Propositional Logic Extension Inference Rules

13

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Predicate Logic Extension

The predicate logic extends the previous inference rules by adding variables, expres-

sions, quantified predicates, equality. The recursive definition of an expression is: an

expression is either a variable or an expression such as A 7→ B, where A and B are

expressions. The quantified predicate is written in the form of 2x ·P , where 2 stands

for the universal quantifier ∀ or the existential quantifier ∃, x stands for a non-empty

list of variables, P stands for a predicate. The notation [x := E]P stands for the

instantiation of the quantified variable x by expression E in the predicate P.

H,∀x · P, [x := E]P ` Q
H,∀x · P ` Q

ALL L
H ` P

H ` ∀x · P
ALL R (x not free in H)

H,P ` Q
H,∃x · P ` Q

XST L (x not free in H and Q)
H ` [x := E]P

H ` ∃x · P
XST R

H ` ∃x ·Q H,Q ` P
H ` ∃x · P

CUT XST (x not free in H)

[x := F]H,E = F ` [x := F]P

[x := E]H,E = F ` [x := E]P
EQ LR

[x := E]H,E = F ` [x := E]P

[x := F]H,E = F ` [x := F]P
EQ RL

14

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Rules Definitions
ALL L If we can prove a sequent with a quantified predicate ∀x · P and an

assumption [x := E]P in the hypotheses, then the sequent without
the assumption [x := E]P is proved.

ALL R To prove a sequent with a quantified predicate ∀x · P as its goal, it is
enough to prove a similar sequent without quantifier “∀” in the goal

XST L If we can prove a sequent with a predicate P in the hypotheses, then
we can prove a sequent with an instantiation of variable x in P .

XST R If a goal of a sequent is obtained by an instantiation of a quantified
variable x in predicate P , then we say the sequent with a goal which
says ∃x · P is proved.

CUT XST This is a derived rule from CUT, XST L and XST R.
EQ LR This inference rule applies the equality assumption from left to right

in the remaining hypotheses and goal.
EQ RL This inference rule applies the equality assumption from right to left

in the remaining hypotheses and goal.

Table 2.3: Predicate Logic Extension Inference Rules

2.1.3 Set Theory

Event-B uses first order logic and set-theoretical notation to define the constants,

relations and data structures used in models. The notation of Event-B follows

the classic set-theoretical notation such as cartesian product : E 7→ F ∈ S × T ,

power set : E ∈ P(S), set comprehension : E ∈ {x · P |F}, set equality : S = T ,

in which E and F stand for expressions; S and T stand for sets; P stands for a

predicate. The set comprehension says that E is the set of elements in F that satisfy

the predicate P .

We list some of the binary relation operators and their definitions in Table 2.4.

The function syntax is defined in Table 2.5.

15

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Name Syntax Definition
All binary relations r ∈ S↔ T r ⊆ S × T
Domain E ∈ dom(r) ∃y · E 7→ y ∈ r
Range E ∈ ran(r) ∃x · x 7→ E ∈ r
All total relations r ∈ S←↔ T r ∈ S↔ T ∧ dom(r) = S
All surjective relations r ∈ S↔→ T r ∈ S↔ T ∧ ran(r) = T
All surjective and total relations r ∈ S↔↔ T r ∈ S↔→ T ∧ r ∈ S←↔ T
Converse E 7→ F ∈ r−1 F 7→ E ∈ r
Domain restriction E 7→ F ∈ S � r E ∈ S ∧ E 7→ F ∈ r
Range restriction E 7→ F ∈ r � T E 7→ F ∈ r ∧ F ∈ T
Domain subtraction E 7→ F ∈ S �− r ¬E ∈ S ∧ E 7→ F ∈ r
Range subtraction E 7→ F ∈ r �− T E 7→ F ∈ r ∧ ¬F ∈ T
Relational image F ∈ r[U] ∃x · x ∈ U ∧ x 7→ F ∈ r

Table 2.4: Binary Relation Operators

Name Syntax Definitions
All partial functions f ∈ S 7→ T f ∈ S↔ T ∧ (f−1; f) ⊆ id
All total functions f ∈ S→ T f ∈ S 7→ T ∧ S = dom(f)
All partial injections f ∈ S 7� T f ∈ S 7→ T ∧ f−1 ∈ T 7→ S
All total injections f ∈ S� T f ∈ S→ T ∧ f−1 ∈ T 7→ S
All partial surjections f ∈ S 7� T f ∈ S 7→ T ∧ T = ran(f)
All total surjections f ∈ S� T f ∈ S→ T ∧ T = ran(f)
All bijections f ∈ S�� T f ∈ S� T ∧ f ∈ S� T

Table 2.5: Function Operators

16

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

2.2 Event-B Notation

2.2.1 Components and Relations

As we noted in the introduction to this thesis, a typical Event-B model has two kinds

of components: machines and contexts. A context describes the constant part of a

model, namely carrier sets and, constants, together with axioms and theorems stating

their properties. A machine defines the dynamic part of a model, namely variables,

invariants, theorems, variants and events.

Terms such as refines, extends, sees are used to describe the relations between

components of an Event-B model. The meaning of the relations are defined as follows:

• A machine refines another machine means that the new machine is a more

concrete version of the old one;

• A context extends another context means that the new context includes all of

the content of the previous one;

• A machine sees a context means that the machine can use all the sets and

constants in the context;

• A machine can refine only one machine or no machine at all;

• A context can extend more than one (including one) or no context at all;

• A machine can see more than one (including one) or no context at all;

• The extension of contexts is transitive (if C1 extends C2, then C1 extends all

the contexts extended by C2);

17

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

• The “sees” relation is also transitive (if M1 sees C1, then M1 sees all the contexts

extended by C1).

Figure 2.1 gives an example to illustrate the relations between machines and con-

texts. The relations between the components of the model satisfy the rules presented

Figure 2.1: Contexts and Machines Relation Example

above. From figure 2.1, we see M0 is an abstract machine (refines no machine) and

does not see any context. C2 extends both C1 and C0. Note that the “sees” relation

between M3 and C2 is implicated, because M2 sees C2; M3 refines M2 and there is

no extension for C2.

2.2.2 Context and Machine Notation

Context

A context is the static part of the model. A typical notation for a context is illustrated

as follows. The terms in uppercase are predefined in the Event-B tool Rodin Platform.

CONTEXT
<context name>

18

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

EXTENDS
<context list>

SETS
<set list>

CONSTANTS
<constants list>

AXIOMS
<label>: <predicate>
...

THEOREMS
<label>: <predicate>
...

END

All the elements such as the carrier set, the constants, the axioms and the theorems,

are implicitly included in the extending contexts. The axioms in a context are some

predicates which play the role of the hypotheses in HYP (see section2.1.2). The

axioms can be directly used as hypotheses in all proof obligations (POs) without being

proved (i.e.,they are assumptions). The labels are the identifiers of the predicates. In

contrast, the theorems need to be proved before being used as hypotheses in POs.

The theorems are some predicates which are derived from the axioms or some already

proved predicates. We generally derive some theorems to make the discharging of POs

easier, using them as auxiliary assumptions.

Machine

We present the general structure of an Event-B machine. A machine has a format

similar to a context and the machine is the main mechanism for describing the system

behaviours.

MACHINE
<machine name>

REFINES
<machine name>

19

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

SEES
<context list>

VARIABLES
<variable list>

INVARIANTS
<label>: <predicate>
...

VARIANT
<variant>

EVENTS
<event list>

END

The invariants are some predicates which describe the invariant properties of the state

transitions (event triggering) in the machine. A special kind of invariant, which is

called a gluing invariant, connects the current machine and the refined machine. The

intension of introducing gluing invariants is to maintain the refinement consistency.

The theorems are predicates that have to be proved about the machine. The variant

only appears when a machine includes a convergent event (see section 2.2.2). The

next section indicates the notation of Event in detail.

Event

An event describes a transition between the states of the machine.

Event =̂
<event name>

Status {ordinary, convergent, anticipated}
refines

<event list>
any

<abstract parameter list>
where

<label>: <predicate>
...

with
<label>: <witness>
...

20

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

then
<label>: <action>
...

end

The status of an event can be ordinary, convergent (the event decreases the vari-

ant) or anticipated (the event does not increase the variant). The any indicates the

abstract parameters in an event. The abstract parameters are those variables that

will have to be refined. In practical examples, people use abstract parameters as the

input variables. The “where” clause indicates the guards of the event, which are the

trigger conditions for some actions. The witnesses of an event are contained in the

“with” clause. A witness is always used to indicate those abstract parameters which

disappear when an abstract event is refined to a concrete one. The actions of an event

are contained in the “then” clause.

2.3 Proof Obligation Rules

Proof obligations are some sequents which are automatically generated by the Rodin

Platform tool using existing proof obligation rules. Before we present various proof

obligation rules, we define the general notation of an event from [Abr10]:

Event =̂
any

x
where

G(s, c, v, x)
then

v : |BA(s, c, v, x, v′)
end

where s stands for the carrier sets, c the constants, v the variables, x the abstract pa-

rameters, and v′ the substituted variables. G stands for the guards of the event, while

21

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

v : |BA(s, c, v, x, v′) indicates actions of the event. The notation BA(s, c, v, x, v′),

called the before after predicate in Event-B, describes the state change after the

actions occur. The axioms and theorems are denoted by A(s, c), the invariants by

I(s, c, v), and the gluing invariants by J(s, c, v, w) (w stands for the concrete vari-

ables2).

2.3.1 Invariant Preservation Rule

The invariant preservation rule (INV) says each event shall satisfy the invariants in

the machine. The generated POs derived using the INV rule are always denoted

by “event name/ invariant name/ INV”. The INV rule is written as the following

sequent:

A(s, c), I(s, c, v), G(s, c, v, x), BA(s, c, v, x, v′) ` inv(s, c, v′)

where the inv(s, c, v′) is the modified invariant after substitution for variable v.

2.3.2 Feasibility Rule

Event-B supports nondeterministic actions which are written in the form of v :

| BA(s, c, v, x, v′). The nondeterministic assignment says variable v is assigned a

value which satisfies predicate v : | BA(s, c, v, x, v′). The feasibility rule (FIS), which

denoted by “event name/ action label/ INV”, is needed to make sure that the nonde-

terministic action assigns the variable v an existing value satisfying the before after

2Concrete variables are those variables which are refined through the abstract variables.

22

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

predicate BA. The FIS rule is written as the following sequent:

A(s, c), I(s, c, v), G(s, c, v, x) ` ∃v′ ·BA(s, c, v, x, v′)

2.3.3 Guard Strengthening Rule

A refined model should satisfy the requirements of the abstract model, so if the event

in the abstract model is enabled, then the corresponding concrete events in the refined

model shall do the same; guards enable or disable the actions in events. The guard

strengthening rule (GRD) ensures that the guards in the refined event are stronger

than those in the abstract event. The GRD rule is named “event name/ guard label/

GRD”. Suppose an abstract event and a refined event have the following format:

Event event0 =̂
any

x
where

g(s, c, v, x)
...

then
...

end

Event event1 =̂

refines
event0

any
y

where
H(y, s, c, v, x)

with
x : W (x, s, x, c, w, y)

then
...

end

Then the GRD rule is written as the following sequent:

A(s, c), I(s, c, v), J(s, c, v, w), H(y, s, c, w),W (x, s, c, w, y) ` g(s, c, v, x)

where W (x, s, c, w, y) is the witness predicate, in which the abstract parameters x

and y are different.

23

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

2.3.4 Simulation Rule

The simulation rule (SIM) ensures that the actions in the refinement simulate the

actions in the corresponding abstract machine. Suppose we have two events:

Event event0 =̂
any

x
where

...
then

v : |BA1(s, c, v, x, v′)
end

Event event1 =̂
refines

event0

any
y

where
H(y, s, c, w)

with
x : W1(x, s, c, w, y, w′)
v′ : W2(v′, s, c, w, y, w′)

then
w : |BA2(s, c, w, y, w′)

end

The above events present a general format of events, both of which include abstract

parameters. Because the abstract parameters x and y are different, while the variables

v and w are also different, we have two witness predicates W1 and W2. The SIM

rule which is written in the form “event name/ action label/ SIM”, has the sequent:

A(s, c), I(s, c, v), J(s, c, v, w), H(y, s, c, w),W1(x, s, c, w, y, w′),

W2(v′, s, c, w, y, w′), BA2(s, c, w, y, w′) ` BA1(s, c, v, x, v′)

The BA1 and the BA2 stand for the before after predicates of the variables in the

abstract event and in the concrete event respectively.

2.3.5 Witness Feasibility Rule

The witness feasibility rule (WFIS) ensure the existence of the witness predicate in

a refined event. The rule is written in the format “event name/ abstract parameter

name/ WFIS”. Suppose we have a refined event:

24

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Event =̂
any

y
where

H(y, s, c, w)
with

x : W (x, s, c, w, y, w′)
then

BA(s, c, w, y, w′)
end

The PO sequent is presented as follows:

A(s, c), J(s, c, v), H(y, s, c, w), BA(s, c, w, y, w′) ` ∃x ·W (x, s, c, w, y, w′)

2.3.6 Well-definedness Rule

The well-definedness rule (WD) ensure that all the axioms (axm/ WD), theorems

(thm/ WD), invariants (inv/ WD), guards (grd/ WD) and actions (act/ WD) are

well-defined. There are lots of well-definedness conditions for some mathematical

expressions. We list several of them in table 2.6:

Expressions Well-definedness condition
E/F F 6= 0
EmodF E ≥ 0 ∧ F > 0
card(S) finite(S)
min(S) S 6= ∅ ∧ ∃x · (∀n · n ∈ S =⇒ x ≤ n)
max(S) S 6= ∅ ∧ ∃x · (∀n · n ∈ S =⇒ x ≥ n)

Table 2.6: Well-definedness Rules

25

Chapter 3

The Insulin Infusion Pump

This chapter describes the system behaviours and the functionalities of the IIP, based

on the requirement document [FDA10] from FDA. There are a variety of insulin

infusion pumps. The FDA document describes a generic IIP which contains some

essential features of an IIP. To make our motivation clear, we omit some extendable

features such as bolus correction and food bolus calculation. (Detailed requirements

can be found in [FDA10].) Therefore, in this thesis we present a generic IIP, which

includes all the basic, common functionalities for different kinds of IIPs. The main

functionalities of the IIP are the programming and delivery of basal, temporary basal,

normal bolus and extended bolus insulin. Note that the description presented below

may contain some mistakes or inconsistencies, which are exactly those defects we

are looking for through specifying the IIP system in Event-B and discharging POs

generated from the Event-B tool (Rodin Platform).

26

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

3.1 Components

The IIP structure is illustrated by the following simple figure 3.1 and we give a brief

explanation for each of the parts.

Figure 3.1: IIP

Reservior :

The reservoir is the place where insulin is stored. The amount of insulin in the

reservoir can support several days usage, the time of course depending on usage.

Tube :

The insulin runs through the tube from the device to the user.

Cannula :

The cannula connects the patient and device at the end of the tube on the patient

side.

Pump:

The piston (may another kind of pump) in the pump pushes the insulin in the reservoir

through the tube, consequently delivering the insulin to the patient.

Control panel :

The control panel accepts commands from and sends visible information to the users.

27

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Battery :

Battery is not included in the IIP models.

Sensors :

The battery sensor detects the amount of electricity left in the battery.

The reservoir sensor measures the insulin left in the reservoir.

Flow rate sensor detects the flow rate in the tube.

Alarms:

The battery low alarm, which will be on when the battery is low.

The battery empty alarm, which will be on when the battery is discharged.

The reservoir low alarm, which will be on when the insulin in the reservoir is low.

The reservoir empty alarm, which will be on when the reservoir is empty.

Controller :

The software part of the device, which interacts with other components of the device,

sequentially controls the pumping process, notifies the user about the insulin that

is delivered in real-time and handles exceptions. This part is the core of the whole

device and the controller is what we are going to design and implement (our model

also focuses on the controller).

3.2 Commands and Actions

The following commands can be performed by manipulating the buttons (either ab-

stract or concrete) on the control panel.

Cmd-1 Power on (Turn on the IIP.)

Cmd-2 Power off (Turn off the IIP.)

28

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Cmd-3 Prime on (This command is used to avoid air-in-line problems with the tube.

The prime on start command is always executed after reservoir refill and before pump-

ing.)

Cmd-4 Prime stop (This command is executed when the priming process is finished;

in other words at this time the tube is fully filled by insulin; there is no air left in

the tube. This process can be assigned to a command manipulated by the user or an

automatic process directed by the controller.)

Cmd-5 Basal profile settings (This is a set of commands programmed by users.)

Cmd-5-1 Basal rate increase (Increase the basal rate.)

Cmd-5-2 Basal rate decrease (Decrease the basal rate.)

Cmd-5-3 Basal rate confirm (Confirm the basal rate.)

Cmd-5-4 Basal rate start time (Select the start time of a selected basal rate.)

Cmd-5-5 Basal rate duration increase (Increase the duration (length of time) of

a selected basal rate.)

Cmd-5-6 Basal rate duration decrease (Decrease the duration of a selected basal

rate.)

Cmd-5-7 Basal rate duration confirm (Confirm the duration of a selected basal

rate.)

Cmd-6 Temporary basal settings (This is a set of commands used to temporarily

override a period of basal rate delivery in the basal profile. The sub-commands are

almost the same as those in Cmd-5.)

Cmd-7 Start (Start the IIP.)

Cmd-8 Pause (Pause the processing performed by IIP.)

Cmd-9 Resume (Resume the IIP from the paused state.)

29

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Cmd-10 Stop (Stop the IIP. This command can be executed during the normal

bolus or extended bolus delivery process. The priming process should be executed

after Cmd-10 has been executed.)

Cmd-11 Normal bolus settings (This is a set of commands used to set the bolus.)

Cmd-11-1 Normal bolus dosage increase (Increase the dosage of bolus.)

Cmd-11-2 Normal bolus dosage decrease (Decrease the dosage of bolus.)

Cmd-11-3 Normal bolus dosage confirm (Confirm the dosage of bolus.)

Cmd-11-4 Normal bolus start (Start the confirmed bolus.)

Cmd-12 Extended bolus settings (This is a set of commands used to set the extended

bolus.)

Cmd-12-1 Extended bolus rate increase (Increase the rate of extended bolus.)

Cmd-12-2 Extended bolus rate decrease (Decrease the rate of extended bolus.)

Cmd-12-3 Extended bolus rate confirm (Confirm the rate of extended bolus.)

Cmd-12-4 Extended bolus start time (Specify the start time of the extended

bolus.)

Cmd-12-5 Extended bolus duration increase (Increase the duration of extended

bolus.)

Cmd-12-6 Extended bolus duration decrease (Decrease the duration of extended

bolus.)

Cmd-12-7 Extended bolus duration confirm (Confirm the duration of extended

bolus.)

Cmd-13 Alarm off (Turn off any kind of alarms.)

Besides the commands programmed by the users through the control panel, there

30

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

are some actions performed by the users which are not related to the controller but

must be done.

Act-1 Equip (change) the battery.

Act-2 Equip (refill) the reservoir.

Act-3 Connect the IIP to the body (of the user).

Act-4 Disconnect the IIP from the body (of the patient).

3.3 Interaction Behaviour

In this section, we describe the interaction between users and the device from the

very beginning to completion for a typical one day usage of the IIP. Commands and

actions described in the last subsection are shown in a sequence in this subsection

to exhibit their priority. Note that we suppose that the initial state of the power of

the device is off, the reservoir and battery are unequipped and the insulin pump is

disconnected from the users’ body.

1. Equip or change the battery (Act-1).

2. Equip or change the reservoir (Act-2).

3. Turn on the device (Cmd-1) or return to step 1 if the battery is low or empty.

4. Turn off the device (Cmd-2) or return to step 2 .Turn on the device will detect

the amount of insulin left in the reservoir. If an empty reservoir is detected step 2

should be taken.

5. Prime the IIP (Cmd-3). The priming process pushes the air out from reservoir

and tube.

31

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

6. Stop the priming process (Cmd-4).

7. Equip the pump to the patient’s body (Act-3).

8. Set the basal profile (Cmd-5).

8.1 Increase the basal rate (Cmd-5-1) or decrease it (Cmd-5-2).

8.2 Confirm the basal rate (Cmd-5-3).

8.3 Set the start time of the selected basal rate (Cmd-5-4).

8.4 Increase the duration of the basal rate (Cmd-5-5) or decrease it (Cmd-5-6).

8.5 Confirm the stop time of the basal rate (Cmd-5-7) and repeat through step

8.1 to step 8.5 until all the basal rates are set.

9. Start to deliver the basal rate (Cmd-6).

10. Set the temporary basal rate (Cmd-6). The temporary basal rate can override

the existing basal rate. The sub commands for this process are almost the same as

those in step 8.

11. Pause the insulin pump (Cmd-8). This step can happen at any time during the

basal delivery.

12. Resume the IIP from a suspension state (Cmd-8).

13. Set the normal bolus (Cmd-11).

13.1 Increase (Cmd-11-1) or decrease (Cmd-11-2) the normal bolus dosage .

13.2 Confirm the dosage of normal bolus (Cmd-11-3).

13.3 Start the process of normal bolus (Cmd-11-4) and the process of normal bo-

lus will be finished automatically. The normal bolus delivery can be stopped (Cmd-

10).

14. Set the extended bolus (Cmd-12).

14.1 Increase (Cmd-12-1) or decrease (Cmd-12-2) the rate of the extended

32

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

bolus.

14.2 Confirm the rate or dosage of the extended bolus (Cmd-12-3).

14.3 Set the start time of the extended bolus (Cmd-12-4).

14.4 Increase (Cmd-12-5) or decrease (Cmd-12-6) the duration of the extended

bolus.

14.5 Confirm the duration of the extended bolus (Cmd-12-7), which means the

stop time of the extended bolus is set. In step 13.3, the extended bolus can be stopped

(Cmd-10).

15. Pause the IIP (Cmd-8); makes sure all the pumping activations are stopped.

16. Disconnect the device from the user (Act-4).

17. Return to step 5 if the disconnection of the device to the user in not because of a

dying battery or empty reservoir. If the disconnection was the result of changing the

battery and/or the reservoir, return to step 1 or step 2.

18. Resume the IIP (Cmd-9) if the pause or disconnection is not the result of a

failure.

19. Turn off the IIP (Cmd-2).

Note that step 11 can be executed at any time after the basal rate has been set,

because the battery being empty or the reservoir being empty will trigger the pump

to stop (this will be mentioned in next section, the system requirements description)

and the patient can press the pause button during the basal delivery. Step 19 can be

executed at any time. Note, although command 13 Alarm off is not mentioned here,

it can be administered by the user when any alarm is on.

33

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

3.4 Requirements of IIP

A rational process [DLPPCC86] of software design should begin from the require-

ments document. Requirements always contain some “black box” specifications of

the system on an abstract level.

Because Event-B models can be refined through different abstraction levels, we

can either create the model on a very abstract level and consequently prove its ade-

quacy or refine the model to as concrete a level as the code and accordingly prove the

correctness of the code. Our project is mainly based on the requirements published by

the FDA. The main content of these requirements are on an abstract level, but some

details of the system behaviour are still included. An Event-B model can both handle

abstraction and the introduction of implementation detail. Although, as we will ob-

serve, this draft requirements description contains some mistakes and incompleteness

aspects, it is the starting point of the whole project. The requirements present a large

number of constraints on the system, either on software or hardware. This thesis is

focused on the software and our interest is to detect and correct the faults and incom-

pleteness appearing in the requirements using a formal modelling approach. Because

[FDA10] is a confidential document, we only exhibit parts of the requirements from it

and create a re-description of it. The rewritten requirements document can be found

in Appendix A. One issue we have to note here is that [FDA10] uses unconstrained

values to represent some undetermined constant values, but in the next chapter we

will show that constraints are essential for these constant values.

34

Chapter 4

Modelling the IIP

4.1 Refinement Strategies

This chapter presents the modelling process of IIP and is the main contribution in this

thesis. We made some extensions to an existing time constraint pattern and apply the

new patterns to the IIP model. From the model analysis and all the proof obligations

being discharged, we detected several inconsistencies and missing properties from the

requirements document.

As we described in Chapter 2, Event-B is a refinement based specification lan-

guage; the models are refined step by step, both to develop the abstract specification

itself, as well as from an abstract level to a concrete level. (We will not actually

embark on an implementation, so we will ignore the latter use of refinement.) Most

of the time, the abstraction (the initial model) directly affects the difficulties of creat-

ing the model. An improper initial model may result in an unreasonable refinement

or increase the difficulty of doing refinement. Therefore, a good refinement strategy

is important during the modelling process. Unfortunately, there does not exist any

35

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

standards related to refinement strategies in Event-B. Engineers always establish the

refinement strategy by using their Event-B experience.

Below are some of our own understanding of the refinement strategies.

Program or Algorithm: For a simple program or an algorithm, the initial

model shall focus on the purpose of the algorithm. Firstly, we can determine the

output of the algorithm and focus the initial model on the final state. In the initial

model we can temporarily write the algorithm body as an abstract event. The second

stage is to find how the output transits to the final state. The abstract events in the

model, which can be refined to several events, represent the body of the algorithm.

In this stage, there always exist some events in pairs. For example, we want to find

out the minimum value in an array of numbers. There are several algorithms that

can be used to solve this problem. The initial model of different algorithm can be a

same initial abstraction. We define the array as a total function. The machine of the

model includes a final event which indicates the minimum value in the array and an

abstract event which describes how the minimum value was found. The refinement

here is focusing on the abstract event. We can introduce two variables to indicate

the index variation when the algorithm searches for the minimum value in the array.

The initial event assigns these two variables to the start index and the end index.

The abstract event is refined into two events: one describes the increasing of the start

index by comparing corresponding elements for the two indices, the other describes

the decreasing of the end index by means of the same comparison. When the two

variables are equal to the same value, the minimum value is found in the array.

The strategy of specifying a system is different from specifying a small piece of

program.

36

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Interaction Systems: Suppose the purpose of the system is to handle the in-

teraction between serval components. The components can include the users (human

beings). The strategy for creating the model for this kind of system is not only fo-

cusing on the interaction between agents but also focusing on the abstraction of the

components. The refinement stage could be an abstract component decomposition

process. The relation between concrete components could be introduced in this stage.

We use a bank transaction as an example; our initial model can simply abstract the

bank accounts as an agent and the users as an agent. A relation between users and

bank accounts should be introduced. To describe the balance changing in the bank

account for the account holder and the actions on the user side, the events could be

modelling the cash transaction between the two components. During refinement, we

could refine the two components into sub components in terms of their features. For

the bank account, there are several sub accounts, such as savings account, checking

account. The events between the sub accounts can be interpreted as money transfer

between sub accounts, but the total amount is stable. On the user side, the users

can be refined into several components, which describe the user information, such

as id, contact information. Each of the above pieces of information can be a con-

crete component. When we refine the transaction events between the users and the

accounts, for each piece of basic user information, a check must be made through

the relation between users and the sub components. Therefore, when modelling the

interactive system, one of the refinement strategies is to focus on the abstraction of

the components and their relations.

Control Systems: For control systems, the purpose is to monitor and to control

some phenomenon. There are two solutions for specifying the control system.

37

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

• Solution One:

To create the initial model, we have to find out the control goal of the system and

then list the possible input and output variables used for describing the control goal.

The next step is to make a comparison between the input and output of the controller

and then find some key variables (abstract variables) to describe the phenomenon.

Our preference is to start from the outputs, because these outputs are directly related

to the control goal. From the outputs we can find the corresponding relevant input

variables. In other words, the initial model describes the core feature of the system

through the state change producing output variables. In the refinement stage, we can

refine the existing events to indicate how these outputs are produced. The input will

be introduced, but in an abstract way in terms of abstract parameters in Event-B.

At the next refinement stage, we shall describe why these inputs should be included

and how these inputs are transformed to the output. We can refine the model by

adding environmental variables: monitored variables and controlled variables. Some

new environment events which describe how the monitored variables are transformed

to input variables and how the output is transformed to controlled variables may be

introduced into the model at this stage. The connection between the environment

and the controller are described by gluing invariants (Event-B terminology).

• Solution Two:

The core of solution two is that all the variables are interpreted as monitored

variables, controlled variables, input variables and output variables[PM95] (the same

classification as those in solution one). Solution two also starts from the control goal.

The difference is that solution two emphases the introduction of the output variables

38

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

and the controlled variables on the same abstract level. The state change of environ-

ment variables 1(controlled variables) and the controller variables (output variables)

are specified in separate events. The connection between controlled variables and

output variables should be specified on this level as well. The refinement stage could

introduce details of how the value of controlled variables and output variables are pro-

duced, which is the same as solution one. This stage will also introduce the monitored

variables and input variables.

The above two solutions are exemplified some practical examples. Examples such

as a traffic lights controller and a location access controller, found in J. R. Abrial’s

book [Abr10], use solution one, which introduces the controller variables first and then

introduces the environment variables in a later refinement. Solution two follows the

Four-Variable model of Parnas and Madey [PM95]. The typical examples are a tank

water level controller specified in Michael Butler’s paper [But09b] and a mechanical

press controller in the Event-B book [Abr10].

Based on the above discussion, although both solutions are used in specifying

control systems, the resulting models will both include the environment and con-

troller descriptions. We can see the emphases of these two solutions are a little bit

different. Solution one emphasizes the control process. In other words, it starts from

describing how the controlled variables are produced. Solution two emphasizes the

synchronization of the controller and the environment.

In the early phase of modelling the IIP in Event-B we are interested in the flow

rate control of the pump, so we decided to use solution one to create the model. Using

solution one on the IIP model, we need to make an abstraction of the core input or

output variables. The following sections propose the refinement steps which follow

1Environment variables and controller variables are the terms used in Event-B.

39

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

the idea in solution one. Another interesting topic is illustrated in this chapter. A

time concept is not included in Event-B, so we should find some appropriate solutions

for dealing with timing issues we meet in this time relevant system in a way that does

not change the semantics of Event-B. Fortunately, some time constraint patterns

[Reh06][CMR07] specified in Event-B have already been proposed by some Event-

B experts. To handle some timing issues occurring in our project, we made some

necessary modifications and extensions to the existing patterns. The new patterns

can easily handle the timing issues encountered in the IIP model. We hope that the

new pattern can also be applied to similar time relevant control systems.

4.2 System Structure Review

From the description in Chapter 3, we have created figure 4.1 to intuitively illustrate

the structure of the IIP on an abstract level.

This description is constructed from two parts: a software part and a physical part.

The internal functional variables depend on the environment variables [But09a]. The

information flow (represented by continuous line arrows), physical effect (represented

by fine dashed line arrows) and user actions (represented by dashed line arrows) are

tagged by numbers. Note that this structural graphic illustration is a brief description

of the system; not all the information is included. Through the refinement process

we will go further and excavate more details of the IIP.

The description of the arrows is:

Information flow

1. Information, including visual or audible warning or alarm, interaction guides and

feedback.

40

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Information flow
Physical effect
User actions

UI

Software Part

Controller

Physical Part

Deliver Path

Other

Battery

Pump

Reservoir

Alarm

2

1

3

3

1

4

5

6

7

8

1

2

3

4

5

2

6

7

9

10

11

12

13
8

Outside Environment

User

Figure 4.1: Structure of the IIP

41

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

2. Programmed variables, which includes the basal and bolus settings, pausing and

resuming the pump.

3. Alarm confirmation. The user confirm the system warnings, alerts or alarms.

4. The controller sends commands such as on, off and flow rate to the pump (physical

pump).

5. Turn on or turn off message sent from the controller to the alarm.

6. Sensor sensing the amount in the reservoir.

7. Sensor sensing the flow rate in the delivery path.

8. Battery amount.

9. Environment information, which is outside the whole device, such as humidity,

temperature, air pressure and so on.

10. Battery level.

11. Reservoir amount. The reservoir volume should be updated after each pump

stroke. (requirements 4.2A.4, 4.3A.4)

12. Flow rate or insulin progress. The system shall display the amount of insulin the

patient gets. (requirements 3.8A.3)

13. Various alarms, warnings or alerts.

Physical effect

1. Piston in pump pushes the reservoir.

2. Insulin delivered to the delivery path. Here we omit the infusion apparatus, which

is not related directly to our system.

3. Insulin delivered through delivery path and arriving at the patient side of the IIP.

4. Tactile alarm to the user.

5. 6. 7. 8. The consuming of the battery by the whole software part, reservoir sensor,

42

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

pumping process, alarm respectively.

User actions

1. Change or equip reservoir.

2. Interaction with UI, consequently programming the sending commands to the soft-

ware controller.

3. Change or equip battery.

As presented before, the intention of this thesis is to create a model focused on the

control process of the system. Therefore, for now we only focus on the controller part

of the system. From the perspective of the refinement strategy described in the last

section, we see this figure 4.1 indicates an intermediate abstraction of the system.

There will be a more abstract level above the abstraction level represented in this

figure.

4.3 Initial Model

4.3.1 Model Description

The initial model is the highest abstraction of the system. From the requirements,

we see the dynamic activities of the system (events) include two phases: the prepara-

tion phase and the insulin infusion phase. The preparation phase includes the power

on/off, pump priming, input settings (user programmed variables). The insulin infu-

sion phase is the main activation phase of the system. To create the initial model of

the IIP, we should understand the control goal of IIP. The control goal is to simulate

the behaviour of the pancreas (continuously or intermittently infusing insulin from

43

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

an insulin reservoir into the patient). Because the requirements from the FDA do

not include the system design documents and the separation between hardware and

software is not clarified, we made an assumption about the main output variables

from the controller to the physical pump, namely the combined insulin flow rate. In

other words, the output of the controller is the amount of insulin to be infused per

minimum system time unit2.

4.3.2 Formalizing the States

The state of any Event-B model has two parts: the static part and the dynamic part.

The context defines the static state (carrier sets, constants) and the corresponding

properties of the static state, by means of axioms or theorems. The context of our

initial model is denoted by C0, which contains an enumerated set called state (con-

sisting of on and off). N is a default context set in Event-B, so we do not need to

write it in our context.

CONTEXT C0
SETS

state

CONSTANTS
on
off

AXIOMS
axm1 : state = {on, off }
axm2 : on 6= off

VARIABLES

rate

power

INVARIANTS

inv1 : rate ∈ N
inv2 : power ∈ state

inv3 : power = off ⇒ rate = 0

Because determining whether the system is running depends on the state of the

power supply, on this level we introduce two variables (dynamic part of the state),

2Because Event-B does not support floating point numbers, to accurately indicate the value of
variables we avoid using division in the model. All the flow rates, which have type N, can be
interpreted as the insulin amount per minimum system time unit.

44

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

rate (combined flow rate) and power (the power state of the whole system). The

properties of these variables are given by invariants. inv1 and inv2 indicate the type

of rate and power. The invariants can also be refined in later refinement stages in

terms of gluing invariants, so on this abstract level we simply say the type of rate is

a natural number. In the further refinement we can restrict its range if appropriate.

inv3 indicates a property of the abstract model. When the power state is off, the

combined flow rate shall be zero. The reason why we use implication in one direction

is that there exists a situation when the power is on, but the infusion process is

paused, which means the combined flow rate is equal to zero at this moment.

4.3.3 Formalizing the Events

The event part describes the behaviour of the system. There are four events which

indicate the state transitions in this abstract model. The POWER ON event and the

POWER OFF events just simply describe the power state changes of the system. The

INFU START and the INFU PROC indicate the main functional behaviour of the

system. Notice that an abstract parameter ready, which has type BOOL is introduced

in the POWER ON event.

Event POWER ON =̂
when

grd1 : power = off
then

act1 : power := on
end

Event INFU START =̂
any

ready
where

grd1 : ready ∈ BOOL
grd2 : ready = TRUE
grd3 : rate = 0
grd4 : power = on

then
act1 : rate :∈ N1

end
Event INFU PROC =̂

when
grd1 : power = on

then
act1 : rate :∈ N

end
Event POWER OFF =̂

when
grd1 : power = on

then
act1 : power := off
act2 : rate := 0

end

45

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

The abstract parameter ready will be refined into several events which describe the

preparation phase in the next refinement. We use ready to abstract the states where

the system is getting ready to infuse insulin: TRUE means ready; FALSE means

unready. The act (actions) are triggered by the grd (guards). The INFU START

says when the system is at a ready stage, the power is off and the rate is 0, the

combined flow rate rate is assigned as a positive integer value. Notice that because

this is an abstraction of the model, the :∈ symbol, which stands for unpredictable

assignment, is used to handle the nondeterministic value of the combined flow rate.

To describe the flow rate changing during the process and for the further refinement,

we introduce another event, INFU PROC. The flow rate can be modified to any value

in the natural numbers, but the precondition is that the state of power is on.

Initialisation
begin

act1 : rate := 0
act2 : power := off

end

Although the events for describing the pumping process have been presented, the

initial state of the model is not defined. The above event provides for the initialization

of the model. Because the initialization does not need any trigger condition, there is

no guard for this event.

4.3.4 Summary of the Initial Model

This section described the initial model of IIP by following the control goal of the

system. The context of the initial model is called C0 and the initial abstract machine

is IIP0 sees C0. Two constant values on, off and a carrier set state are included in

46

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

C0. The IIP0 is constructed using variables: power, rate and events: Initialization,

POWER ON, INFU START, INFU PROC, POWER OFF.

By running this model in the Rodin Platform, 11 proof obligations (see Appendix

B.1.2) are generated and all of them are automatically proved. The full version of

the initial model can be found in Appendix B.1.1.

4.4 First Refinement: Refining Phases

4.4.1 Model Description

As we discussed in section 4.3, the behaviour of the system can be abstracted to two

phases: the preparation phase and the infusion phase. In this first refinement, we

are going to separate these two phases by refining the abstract parameter ready in

the event INFU START and refining the INFU PROC into several abstract events.

Two new events PRIME (priming the pump) and BP SET (basal profile setting) are

introduced to eliminate ready. The INFU PROC event is refined into several sub

events which include pausing, resuming and stopping of the infusion process.

4.4.2 Refining the State

The static state (context variables) is extended by an enumerated carrier set status

and constants working, paused, stopped which indicate the status of the infusion pro-

cess. Two constants b 2 n, s 2 n, which represent two total functions intended to

convert the non-numeric elements in a set to numbers. From the requirements we

see that the pump is enabled for infusing the insulin under the precondition that

the pump has been primed and the basal profile has been set. Two variables prime,

47

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

bp set are introduced to describe the priming process and basal profile being set in

the model. The variable infu stat is an auxiliary variable used to indicate the infusion

status.

CONTEXT C1
EXTENDS C0
SETS

status

CONSTANTS
working

paused

stopped

b 2 n

s 2 n

AXIOMS
axm1 : status = {working , paused ,

stopped}
axm2 : working 6= paused
axm3 : paused 6= stopped
axm4 : working 6= stopped
axm5 : b 2 n ∈ BOOL→{0 , 1}
axm6 : b 2 n(TRUE) = 1

axm7 : b 2 n(FALSE) = 0

axm8 : s 2 n ∈ state→{0 , 1}
axm9 : s 2 n(on) = 1

axm10 : s 2 n(off) = 0
VARIABLES

prime

bp set

infu stat

INVARIANTS
inv1 : prime ∈ BOOL
inv2 : bp set ∈ BOOL
inv3 : infu stat ∈ status
inv4 : infu stat = stopped ∨

infu stat = paused
⇒ rate = 0

inv5 : infu stat = working ∨
infu stat = paused
⇒ power = on
∧ prime = TRUE
∧ bp set = TRUE

Because this refinement eliminates ready, the corresponding event will contain the

witness statement:

ready : ready = (power = on) ∧ (prime = TRUE) ∧ (bp set = TRUE).

However, the witness should be equal to a number but not a predicate. A simple

solution is to convert non-numeric variables to numeric variables. We defining a total

function b 2 n from BOOL to {0, 1} and a total function s 2 n from state to 0,1.

The corresponding properties are shown in the context C1. Then the witness can be

expressed as follows:

48

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

ready : b 2 n(ready) = s 2 n(power) ∗ b 2 n(prime) ∗ b 2 n(bp set).

We use prime = TRUE to indicate the priming process is complete, similarly for

bp set. The invariant inv4 says: when the infusion process has not started or been

paused, the combined flow rate shall be equal to zero. inv 5 says the pump is working

or is paused under the circumstance that the preparation stage has been done. In

other words, the power should be turned on; the pump should be primed; the basal

profile should be set.

4.4.3 Refining the Events

This section refines the delivery process into several sub events and adds a priming

process and basal profile setting phase into the model. Some new guards and actions

are added to corresponding events3.

EVENTS

Initialisation
extended

begin
⊕act3 : prime := FALSE
⊕act4 : bp set := FALSE
⊕act5 : infu stat := stopped

end

Event PRIME =̂

when
grd1 : power = on

grd2 : prime = FALSE
then

act1 : prime := TRUE
end

Event BP SET =̂
when

grd1 : power = on
grd2 : bp set = FALSE

then
act1 : bp set := TRUE

end

The above events describe the preparation phase of the system. In Initialization,

prime, bp set and infu state are given initial values FALSE, FALSE and stopped,

respectively. The PRIME and BP SET are two straightforward events, which indicate

3⊕ indicates the expression is a refined guard or action.

49

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

the state change of prime, bp set. We will see in the following refinement that BP SET

can be refined to a sequence of events which describe the user input. The following

events are the refinement of the infusion phase.

Event INFU START =̂
refines INFU START

when
⊕grd2 : prime = TRUE
⊕grd3 : bp set = TRUE
⊕grd5 : infu stat = stopped

with
ready : b 2 n(ready) =

s 2 n(power)∗b 2 n(prime)∗
b 2 n(bp set)

then
⊕act1 : rate :∈ N1
⊕act2 : infu stat := working

end
Event INFU PROC =̂
refines INFU PROC

when
⊕grd2 : infu stat = working

then
⊕act1 : rate :∈ N1

end
Event PAUSE =̂
refines INFU PROC

when
⊕grd2 : infu stat = working

then
⊕act1 : rate := 0
⊕act2 : infu stat := paused

end

Event RESUME =̂

refines INFU PROC

when
⊕grd2 : infu stat = paused

then
⊕act1 : rate :∈ N1
⊕act2 : infu stat := working

end

Event INFU STOP =̂

refines INFU PROC

when
⊕grd2 : infu stat = working
∨ infu stat = paused

then
⊕act1 : rate := 0
⊕act2 : infu stat := stopped
⊕act3 : prime := FALSE

end

Event POWER OFF =̂

refines POWER OFF

then
⊕act3 : prime := FALSE
⊕act4 : bp set := FALSE
⊕act5 : infu stat := stopped

end

INFU START is refined by adding guards describing that when priming and basal

profile setting are done and when the infusion status is stopped, then the flow rate

shall be assigned as a positive nature number and the infusion status set to working.

Correspondingly, the INFU STOP just refines INFU PROC by resetting prime, bp set

and infu stat values. The reason we do not set bp set back to FALSE is that stopping

50

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

the infusion process will not delete the existing basal profile set by the user.

As discussed in the last section, the main refinement in this model is to refine the

INFU PROG event into four events INFU PROC, PAUSE, RESUME, INFU STOP.

The meanings of PAUSE and RESUME are easy to understand. The pump pause

event only triggers when the current infusion state is working, the pump can transit

to paused state and the combined flow rate rate set to 0. The RESUME event has

the opposite behaviour to PAUSE. The INFU PROC event describes the infusion

behaviour except for the case when the pump is paused or stopped. Because the flow

rate will be equal to zero only when the pump is paused or stopped, we assign the

combined flow rate in INFU PROC as a positive natural number.

4.4.4 Summary of the First Refinement

In this refinement, context C1 extends C0; IIP1 refines IIP0 ; IIP1 sees C1. This

refinement mainly refines the INFU PROG event to events which describes the pause,

resume, stop behaviours of the infusion process; new events for describing the prepa-

ration phase are introduced. A small technique for converting non-numeric expression

to numeric expressions is used in C1. The full version of refinement one can be found

in Appendix B.2.1.

By running this refinement in the Rodin Platform, 25 POs (see B.2.2) for IIP 1

and 4 POs for C1 are generated and 2 of them need to be discharged manually. All

of the other POs are automatically proved by Rodin.

51

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

4.5 Second Refinement: Basal Profile Setting

4.5.1 Model Description

From the requirements document, we see that the basal profile can actually be the

context for the model if we are only modelling the infusion phase of the system,

because the basal profile is just a bunch of data input from the user and their state

is not varying during the infusion process. Here we treat the data of temporary basal

and basal profile data as independent data. However, in the initial model and the first

refinement we have already divided the whole system process into two phases: the

preparation phase and the infusion phase. We refine the basal profile setting event

into several concrete events.

4.5.2 Refining the State

Before the refinement, let us review the requirements describing the basal profile in

[FDA10] requirements document. “The pump shall allow the user to program a basal

profile with a set of basal rates, ranging from 0.05 to x (some undetermined maximum

value) Units/hour in 0.05 Units/hour increments. For each basal rate in the profile,

the user shall define the duration of the particular rate. Durations of all basal rates

shall not overlap with each other, and shall together cover 24 hours of a day.”

From the requirements we see that the basal profile includes a set of basal flow

rate segments. All of these basal segments shall not overlap with each other, but

have to cover the whole day. In other words, each minimum time unit during the day

has a corresponding basal flow rate. So we can create two carrier set ts, and ba rs to

represent the time set for day time and the set of all possible basal rates. Because

52

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Event-B does not support real numbers, for simplicity we use the natural numbers

to describe time approximately. The accurate of the time definitions here depend on

the time unit used in the system. For example, if the requirements of system time

accuracy is a minute, then the time set ts for one day is 0..1439. If accuracy is seconds,

then ts shall be 0..86399. In this refinement, we do not consider the time unit for

the system for the moment, so we simply define the day time as a constant set which

is a subset of N (axm1). For the basal rate we define it as a subset of N1 (axm3).

From the requirements we see the basal profile shall be in terms of ts→ ba rs (total

function from time set to basal rate set). The reason why we are using 7→ (partial

function) to describe the basal profile in inv1 is that we only care about the state

change when an event triggers. Considering Event-B is an event based specification

language, we only need to specify the event when the basal rate is changing. Even

if we need the amount of basal insulin that has been delivered, the amount can be

calculated from the rate multiplied by the difference between the current time minus

the latest basal change time.

CONSTANTS
ts
ba rs

AXIOMS
axm1 : ts ⊆ N
axm2 : ts 6= ∅
axm3 : ba rs ⊆ N1

axm4 : ba rs 6= ∅

VARIABLES

bp

INVARIANTS

inv1 : bp ∈ ts 7→ ba rs
inv2 : bp set = TRUE ⇒

bp 6= ∅ ∧ 0 ∈ dom(bp)

Because we only need the start time of the corresponding basal rate, we shall be

very careful when we make the assignment of initial value to the basal rate (the value

of basal rate when the infusion process starts), which will be illustrated in the next

refinement. To avoid the occurrence of issues such as the start time being before

53

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

the minimum start time in the basal profile we made a design assumption that the

minimum start time of the basal profile is 0. Therefore the user shall program the

basal rate at time 0. The above discussion describes the content of inv2, which says

when the basal profile is set, the basal profile is not empty and 0 shall be included in

the domain of bp.

4.5.3 Refining the Events

This refinement only focuses on the basal profile settings. The basal profile setting

is an interaction behaviour between the user and the device. The controller gets the

input from the user (environment), validates the input, and makes the corresponding

state change in the controller. The basal profile setting process is a database setting

process, which includes adding, deleting, modifying, and reading.

Event BP ADD =̂
any

BA T
BA R

where
grd1 : BA T ∈ ts
grd2 : BA T /∈ dom(bp)
grd3 : BA R ∈ ba rs
grd4 : bp set = FALSE
grd5 : power = on

then
act1 : bp := bp ∪ {BA T 7→

BA R}
end

Event BP DEL =̂
any

BA T
where

grd1 : BA T ∈ dom(bp)
grd2 : bp set = FALSE
grd3 : power = on

then
act1 : bp := bp \ {BA T 7→

bp(BA T)}
end

Event BP OVERRIDE =̂

any
BA T
BA R

where
grd1 : BA T ∈ dom(bp)
grd2 : bp 6= ∅ ⇒ BA R 6=

bp(BA T)
grd3 : BA R ∈ ba rs
grd4 : bp set = FALSE
grd5 : power = on

then
act1 : bp := ({BA T}�−bp)∪
{BA T 7→ BA R}

end
Event BP VIEW =̂

any
BA T
result

where
grd1 : BA T ∈ dom(bp)
grd2 : result = bp(BA T)
grd3 : power = on

then
skip

end

54

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

In Event-B one usage of abstract parameters is to describe the input variables from

the environment; another use of abstract parameters is to describe some abstract

variables which need to be refined (see ready in Section 4.3.3).

The BA T, BA R stand for the input basal rate start time and basal rate respec-

tively. The BP ADD event adds a new pair which does not exist in the basal profile.

The BP DEL event deletes an existing pair from the basal profile. Because for differ-

ent times, the corresponding basal rate may be different, in BP DEL the start time

only is enough to derive the corresponding basal rate from bp. The BP OVERRIDE

event finds an existing pair in the basal profile and changes the corresponding basal

rate to another value. grd2 says the input BA R substitutes the relevant basal rate of

BA T under the condition that bp is not empty. The action act1 in BP OVERRIDE

says the bp is equal to the domain subtraction (�−) BA T from bp and union the new

pair of start time to basal rate. The BP VIEW just simply views the content of the

basal profile, so there are no actions in this event. Notice that the basal profile setting

has no relation to the priming process, but is directly related to the condition when

power is on. Therefore power = on exists in all the events related to the basal profile

setting in the form of a guard.

Initialisation
extended
begin

⊕act6 : bp := ∅
end

Event BP COMP =̂

refines BP SET

when
⊕grd3 : bp 6= ∅
⊕grd4 : 0 ∈ dom(bp)

There are two previous events that have some changes during this refinement

stage. The BP COMP (basal profile complete) refines the BP SET by adding guards

such as bp is not an empty set and 0 is included in the domain of basal profile. The

55

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

reason for adding these two guards has been discussed in the last section.

4.5.4 Summary of the Second Refinement

This refinement focuses on the basal profile settings by introducing several new events

to describe the process of basal profile setting. The context C2 extends C1; the

machine IIP2 refines IIP1; IIP2 sees C2. This refinement is mainly about the basal

profile function. The new added events illustrate the interaction between users and

the device. By running this model on the Rodin Platform, 13 POs (see Appendix

B.3.2) are generated and all of them are automatically proved by Rodin. Because

we only refined two existing events in IIP1, the Appendix B.3.1 only shows the new

events and refined events.

4.6 Time Constraint Patterns

As we mentioned at the beginning of this chapter, IIP is a time related control system.

To use Event-B for systems where timing is important, it is necessary to find ways of

expressing time properties in Event-B specifications. The time constraint pattern for

Event-B development and its practical usage can be found in [CMR07] and [Reh06].

4.6.1 An Existing Time Pattern

In this subsection we briefly present the time constraint pattern in [CMR07]. The

proposed solution is to create a time activation set at, which records all the predictable

activation time points of the system. Time elapsing is specified in terms of a special

event TICK TOCK. For any time that is smaller than the minimum value in the

56

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

time set, the current time will jump to that value in one step without taking on any

intervening time value. Each event related to a predictable time point is guarded by

some time constraint. Once the specified time constraint is satisfied for some event,

the relevant action is triggered and the time point is deleted from the activation time

set.

MACHINE Time Pattern
VARIABLES

time
at

INVARIANTS
inv1 : time ∈ N
inv2 : at ⊆ N
inv3 : at 6= ∅⇒ time ≤ min(at)

EVENTS
Initialisation

begin
act1 : time := 0
act2 : at := ∅

end
Event POST TIME =̂

any
tm

where
grd1 : tm ∈ N
grd2 : tm > time

then
act1 : at := at ∪ {tm}

end

Event PROCESS TIME =̂
when

grd1 : time ∈ at
then

act1 : at := at \ {time}
end

Event TICK TOCK =̂
any

tm
where

grd1 : tm ∈ N
grd2 : tm > time
grd3 : at 6= ∅⇒tm ≤ min(at)

then
act1 : time := tm

end
END

From the time constraint pattern model we can see this model does not have

any context. The variables time, at stand for current time and time activation set

respectively. The relavant invariants says:

inv1 – the current time should be a natural number.

inv2 – the activation time set should be a subset of the natural numbers.

inv3 – when at is not empty we can infer that the current time is smaller than or

equal to the minimum value of at.

57

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

The main events POST TIME, PROCESS TIME, TICK TOCK describe the cre-

ation of the active time set, the deletion of the current active time from at, and time

progression. The POST TIME event says for any time tm, which is bigger than the

current time, it should be added to the at set. Because this is a pattern, only one

basic guard (grd1) occurs in the PROCESS TIME event. Once the time reaches a

time point appearing in at, the current time should be deleted from at. Another

important event TICK TOCK is an updating of the current time variable to keep the

current time as the latest time stamp.

4.6.2 Extension of Time Pattern

The time constraint pattern in the last section has already been applied to several

practical cases such as the IEEE 1394 protocol [CMR07] and business information

systems [BFRR10]. One of the contributions in this thesis is trying to extend this

pattern and make it more applicable for time related medical devices such as IIP.

Through the discussion of the time constraint pattern, some disadvantages are

discernible. We create a model called Counter Example to indicate the problems we

meet if we follow the pattern illustrated in Section 4.6.1.

The main disadvantage of the time pattern is that it is unable to handle the sit-

uation when an unpredictable event disables the predictable events. A new variable

state is introduced into the model and the guards of PROCESS TIME are extended by

state = FALSE. We have two unpredictable new events NOD EVT1, NOD EVT2,

which are triggered through the environment, in the model. This NOD EVT1 simply

changes the state from FALSE to TRUE and the NOD EVT2 has the opposite be-

haviour. Suppose the POST TIME event assigns the at as a set {t1, t2, t3...tn} in an

58

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

MACHINE Counter Example
VARIABLES

time

at

state

INVARIANTS
inv1 : time ∈ N
inv2 : at ⊆ N
inv3 : at 6= ∅⇒ time ≤ min(at)
inv4 : state ∈ BOOL

EVENTS
Initialisation

begin
act1 : time := 0
act2 : at := ∅
act3 : state := FALSE

end
Event POST TIME =̂

any
tm

where
grd1 : tm ∈ N
grd2 : tm > time

then
act1 : at := at ∪ {time}

end

Event NOD EVT1 =̂
when

grd1 : state = FALSE
then

act1 : state := TRUE
end

Event NOD EVT2 =̂
when

grd1 : state = TRUE
then

act1 : state := FALSE
end

Event PROCESS TIME =̂
when

grd1 : time ∈ at
grd2 : state = FALSE

then
act1 : at := at \ {time}

end
Event TICK TOCK =̂

any
tm

where
grd1 : tm ∈ N
grd2 : tm > time
grd3 : at 6= ∅⇒tm ≤ min(at)

then
act1 : time := tm

end
END

incremental order. If NOD EVT1 triggers before some value ti in at and NOD EVT2

triggers after some time tj(tj > ti), then the PROCESS TIME event shall be disabled

and the state of at is {ti, ti+1...tn}. When the TICK TOCK event iterates to ti, it will

stop at the current state and endlessly assign ti to time, which means the time will

never reach tj. So the paradoxical behaviour arises from specifying the model using

the time pattern discussed in the last section.

Since we mentioned the infinite iteration of time, it is necessary to discuss another

disadvantage or even mistake, about the TICK TOCK event. Before the discussion,

59

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

one important property of Event-B should be declared. Only one event can be trig-

gered at any point during the execution of the model. Notice that the guard of

TICK TOCK, at 6= ∅⇒ tm ≤ min(at), constrains the abstract parameter tm to iter-

ate to the minimum value of at. But when the tm equals min(at), the TICK TOCK

event is still enabled. This situation may result in the livelock of the system, which

means the system continuously executing TICK TOCK without turning to the other

events. The strategy for solving this problem is to disable the TICK TOCK event

after each iteration and check wether other events should be triggered. Once some

predefined event or unpredictable event is triggered, the TICK TOCK is reset to

enabled and executes the next iteration.

To avoid the two disadvantages mentioned above, we made an improvement to the

pattern in [CMR07] by adding unpredictable events and by modifying the specifica-

tion of the tick tock event to a self incrementing clock. We introduce the definitions of

predictable and unpredictable events and their definitions here [XM11]. Predictable

events are those events whose occurrence and timing can be derived from the user

defined program. Unpredictable events are those events whose occurrence time is un-

predictable. In other words, unpredictable events are those events that we do not

know whether or when they occur. Examples of such unpredictable events includes

user initiated events such as powering off, pausing the IIP, etc. The time increasing

in the model is approximately smooth. Smoothly increasing the time is a sufficiently

good way to handle and capture the unpredictable events in the model. The variables,

POST TIME, NOD EVT1, PROCESS TIME are the same as that in Counter Ex-

ample. The core of this pattern is the unpredictable event and the new TICK TOCK

event. The modified places are detailed below.

60

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

inv4 : at 6= ∅⇒ time ≤ min(at) ∨ state = TRUE

We add this new invariant, which says when at is not an empty set the time should

be smaller than the minimum value of at or the state is TRUE.

The modification of the model is focused on the NOD EVENT2 and TICK TOCK.

First we add grd2 into NOD EVENT2 and then act2. act2 says at is substituted by

its subset and all the elements in the subset are bigger than the current time. For

TOCK TOCK we shrink the guards into one guard which is almost the same as inv4,

except for time = min(at). act1 in the TICK TOCK event is changed from assigning

time an abstract parameter to increasing it by one.

Event NOD EVENT2 =̂
when

grd1 : state = TRUE
grd2 : at 6= ∅

then
act1 : state := FALSE
act2 : at : |at ′ = {i |i ∈ at ∧ i > time}

end
Event TICK TOCK =̂

when
grd1 : at 6= ∅⇒ time < min(at) ∨ state = TRUE

then
act1 : time := time + 1

end

Through the modification of the Counter Example, we see time in TICK TOCK

keeps on incrementing even if the event PROCESS TIME is disabled by the guard

state = FALSE. Because in TICK TOCK the guard removes the time = min(at)

condition, livelock will never happen in this case. When time = min(at), the

TICK TOCK is disabled. If state = FALSE, PROCESS TIME is triggered; if

state = TRUE, PROCESS TIME is disabled but the TICK TOCK event is enabled

and time increments automatically until NOD EVENT2 happens. Because the past

time will never come back, the later events will only be triggered in the future, all

the elements in at smaller than or equal to the current time shall be deleted from at.

61

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

4.6.3 A Time Pattern with Unpredictable Events

This new time pattern extended the old one by adding new unpredictable events and

by fixing the livelock issue. The new one can effectively handle the unpredictable

events, especially under the circumstance when those events appear in pairs. Because

a model may contain lots of unpredictable events, we present a general definition of

the time pattern.

MACHINE New Time Pattern
VARIABLES

time
at
v

INVARIANTS
inv1 : time ∈ N
inv2 : at ⊆ N
inv3 : inv(vi)
inv4 : at 6= ∅⇒

time ≤ min(at) ∨ ¬p(vi)
EVENTS
Initialisation

begin
act1 : time := 0
act2 : at := ∅
act3 : vi : |v ′i ·p(vi)

end
Event POST TIME =̂

any
tm

where
grd1 : tm ∈ N
grd2 : tm > time

then
act1 : at := at ∪ {tm}

end
Event NOD EVT i =̂

when

grd1 : p(vi)
then

act1 : vi : |v ′i ·¬p(vi)
end

Event NOD EVT j =̂

when
grd1 : ¬p(vi)
grd2 : at 6= ∅

then
act1 : vi : |v ′i ·p(vi)
act2 : at : |at ′ =
{x |x ∈ at ∧ x > time}

end

Event PROCESS TIME =̂

when
grd1 : time ∈ at
grd2 : p(vi)

then
act1 : at := at \ {time}

end

Event TICK TOCK =̂

when
grd1 : at 6= ∅⇒

time < min(at) ∨ ¬p(vi)
then

act1 : time := time + 1
end

END

Symbol Definition

62

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

time – current time

at – activation time set

v – a list of variables v1, v2, v3, vi...

inv(vi) – the corresponding invariants of the element vi in v

p(vi) – predicate using variable vi in v, which is used as a guard of some pre-

dictable events (may disable the predictable events)

Pattern Description

This pattern deals with both predictable events and unpredictable events.

POST TIME are those events which create or change at. A time point which is

bigger than the current time shall be added to at. This event creates the activation

time set for the predictable events, so the unpredictable time points are not included

in at.

PROCESS TIME describes the predictable events; it simply specifies the state

transitions of the model when the current time corresponds to a predictable time

point in at.

The NOD EVT indicates those events which are unpredictable. We put i, j... after

NOD EVT to show there may exist several unpredictable events in the model. These

unpredictable events can appear independently or in pairs. If NOD EVT i appears

independently, in this pattern the PROCESS TIME will never be triggered because

of the guard p(vi). If these events appear in pairs, then NOD EVT j sets vi back

to the value which satisfies p(vi). At the same time, the time points in at that are

smaller than the current time shall be deleted from at because the relevant time has

already elapsed.

63

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

The expression vi : |v′i ·p(vi) is the notation called before-after predicate assignment

in Event-B, meaning vi is assigned a value that satisfies p(vi).

The inv4 says that if at is not empty, then the current time is smaller than or equal

to the minimum value of at or p(vi) is not true. The reason we add “∨¬p(vi)” in inv4

is that TICK TOCK may be disabled when time = min(at) under the circumstance

that the predictable events are disabled by some unpredictable events. Therefore,

except when p(vi) is true, time must be smaller than the minimum of at.

Note that the pattern allows some variations. For example, some of the events

can be merged into a single event, such as merging POST TIME and NOD EVT into

one event. The application of the new time pattern is exhibited in the refinement of

the IIP.

4.6.4 Time Pattern for Classifying the Events

This section discusses another issue often occurring in a time related system – two or

even more events triggering simultaneously.

If we use the time pattern discussed in the last subsection to specify this kind

of issue, some problems may occur. These problems are a consequence of the state

transition mechanism of Event-B – only one enabled event will be randomly picked

and executed for each state transition in the model. Suppose we have two events

PROCESS TIME A and PROCESS TIME B. One of the guards in these events is

time = time′ ∧ time′ ∈ at. When this time constraint is satisfied, these two events

are enabled and will be enabled for execution. Event-B will randomly pick one of

them, say PROCESS TIME A, and execute its actions. But examining the pattern,

we see one of the actions is at := at \ {time}, so time′ will never be included in at.

64

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

The triggering of event PROCESS TIME A directly results in another event PRO-

CESS TIME B being disabled. Because the time variable time continually increases

in TICK TOCK, the PROCESS TIME B, which we are expecting to be executed,

will never happen.

In trying to solve this kind of problem in Event-B, we have come up with two

solutions.

Solution I: Combining the Events

If we combine these events, which have the same time constraints, together into one

event, the time pattern discussed in section 4.6.2 is an effective way of addressing

this issue. Note that the combination of events is dangerous, because it does not

mean the old events shall disappear. The old events may still be kept in the model

with a slight change to the guard. Therefore, a new issue of deciding wether to keep

the old event arises. Moreover, in practice, especially in the development of large

scale systems, figuring out all the state transitions with the same time constraints is

really a tough job, never mind the problem of combining them together. Even if the

developer successfully combines these events into one, checking the correctness of this

event is an enormous task. This solution potentially increases the safety risk and the

complexity of the system, so we are not recommending it here.

Solution II: Classifying Events

This solution is a modification of the time pattern with unpredictable events. For

a large model including a large number of events, we can classify the events into

several categories. The criterion for the classification is derived from the variables.

65

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

For example, we have PROCESS TIME A and PROCESS TIME B in the model.

We can find the corresponding events such as POST TIME A and POST TIME B

in the model. Instead of using at as the activation time set, for each category we

define an independent time set. The union of these sets defines a global time set

which is at. Consequently, we create the independent set for the POST TIME A/B

event and delete the time point from each of the corresponding time activation sets in

the PROCESS TIME A/B event, instead of deleting the time point from the global

time activation set. Only when all of the events in the model sharing a given time

constraint are executed, will the time in TICK TOCK increase. Therefore, the most

important invariant in the time pattern will also be modified.

at a ∪ at b ∪ ... 6= ∅⇒ time ≤ min(at a ∪ at b ∪ ...) ∨ ¬p(vi)

We present the modification of those events which are used to handle this time issue.

Event POST TIME A =̂

any
tm1

where
grd1 : tm1 ∈ N
grd2 : tm > time

then
act1 : at a := at a ∪ {tm1}

end

Event POST TIME B =̂

any
tm2

where
grd1 : tm2 ∈ N
grd2 : tm2 > time

then
act1 : at b := at b ∪ {tm2}

end

Event PROCESS A =̂

when

grd1 : time ∈ at a
then

act1 : at a := at a \ {time}
end

Event PROCESS B =̂

when
grd1 : time ∈ at b

then
act1 : at b := at b \ {time}

end

Event TICK TOCK =̂

when
grd1 : at a ∪ at b ∪ ... 6= ∅⇒
time < min(at a ∪ at b ∪ ...)
∨ ¬p(vi)

then
act1 : time := time + 1

end

66

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

In POST TIME A, we change at := at ∪ {tm} to at a := at a ∪ {tm1}. Corre-

spondingly, PROCESS TIME A deletes the current time from at a (the independent

time activation set for A). We make a similar change to POST TIME B and PRO-

CESS TIME B. The guard of the TICK TOCK event uses at a ∪ at b ∪ ... instead of

at. Note that we are not using p(vi) in PROCESS TIME A and PROCESS TIME B

but keeping it instead in TICK TOCK, because p(vi) has no relation with this time

issue. Its occurrence or non occurrence has no effect on the pattern. On the other

hand, TICK TOCK describes the behaviour of time; it will be constrained by all the

other p(vi) which may appear in events that are similar to PROCESS TIME.

4.6.5 Discussions of Zeno Behaviour

Zeno behaviour is often exhibited in hybrid systems which perform continuous and

discrete dynamic behaviour [GT08]. Zeno behaviour occurs when an infinite number

of discrete transitions happen in a finite amount of time [AAS05].

In principle, our patterns may encounter this Zeno behaviour resulting in the

TICK TOCK event being disabled because of infinite occurrences of other events

preventing a next tick event. To indicate the nonexistence of Zeno behaviour in

our time patterns, we draw the figure 4.2 of an event sequence to explain the Zeno

behaviour. Suppose we have events C, D, E, F, A, B and T (TICK TOCK). The

Figure 4.2: Events Trail

sequence of execution of all the events is illustrated by figure 4.2. The Zeno behaviour

67

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

says that there are infinite numbers of events between the last two Ts.

The following reasons indicate that the Zeno behaviour does not exist in our time

patterns. As we presented in chapter 2, the Event-B models are discretized models.

The trigger point of all the events actually follows the sequence specified in the natural

numbers. We can express the execution order of the events as the sequence in figure

4.2, but actually the trigger time of all the events except for T are triggered at the

same time as the immediately preceding T, because event execution in Event-B is

instantaneous, taking no time.. The real trigger times of all the events following the

discrete times are illustrated by figure 4.3. Therefore, in our time patterns there does

Figure 4.3: Time Line with Events

not exists any events which trigger time between two Ts.

As the time activation set corresponding to an event is finite, each time when

an event is triggered the cardinality of the corresponding activation set is decreased

by one. Because of the finitness of the sets in our models, Zeno behaviour will not

appear in our models.

From a practical aspect, each event in the IIP model takes time, so even if some

unpredictable events trigger between two TICK TOCK events, the TICK TOCK

event still will be reached. Therefore Zeno behaviour does not exist in the IIP models.

68

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

4.6.6 Comparison with Other Approaches

Comparision with Event-Action Systems

An event-action system is a software system which trigger actions in the system in

response to events triggered by the environment. The triggered actions may trigger

some new events, which will trigger other actions. The event-action systems are gen-

erally used to model distributed systems. A general-purpose platform called Yeast

(Yet another Event-Action Specification Tool), was created by Krishnamurthy and

Rosenblum in [KR95] for constructing distributed systems using event-action speci-

fications. The system can handle both temporal and non-temporal events. Time is

specified by date and time. Once the date and time have been reached, the date and

time will always be past and then any future date and time will be reached. Yeast

differentiates events from actions. The events in Yeast describes the events either trig-

gered from the environment or generated from the triggered internal actions. Events

can be transient and permanent.

The concept of actions and events in event-action systems is different from Event-

B’s use of these terms. In Event-B, an event describes several actions. Event-B does

not differentiate the events in the environment and the reactions from the system

itself. Because timing is not included in the semantics of Event-B, we create patterns

to enrich the timing semantics. The idea of specifying time is similar to that in Yeast.

Once a time has been reached, the time point will always be in the past.

Comparison with Timed Automata

The classic timed automata [LV95, AD94] use the real numbers to describe the con-

tinuous time. There is typically more than one clock in the automaton. A system

69

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

transition happens when the passage of time satisfies the time constraint on the tran-

sition, which forces the transition between the states, otherwise the system will stay

in the previous state. In classic timed automata, the clock can be reset to zero.

The time is described in a discretized way using the natural numbers in our so-

lution. The concept of time in our solution is quite general. The global time set

indicates the predictable system transition time points. We only have one clock and

the time elapsing is specified as an time tick event. The system transitions happen

when the timing constraints (included in the guards) are enabled. We can inter-

pret the constraints on transitions in classic timed automata to the guards in our

predictable events. Unpredictable events with unpredictable trigger time are con-

strained by environmental actions other than the elements in the activation time set.

We never reset the time variable to zero.

4.7 Third Refinement: Introducing the Time Pat-

tern

4.7.1 Model Description

This model is the essential refinement for the whole system. The strategy for the

refinement is to classify the categories of the infusion process. From the requirements

we see the main behaviours of the IIP are described in terms of two kinds of insulin

infusion processes, called basal and bolus.

The basal insulin delivery, which supports the basic insulin requirements in the

daily life of a user, is of long duration, with small amounts of insulin being infused

into the user over the whole day. The basal profile specified in Section 4.4.4 is used

70

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

to treat this kind of long duration insulin therapy. The basal insulin delivery can be

temporarily overriden by the user. We call this kind of basal temporary basal.

The bolus insulin delivery, which is used to deal with food intake, relative to

estimates of exercise levels, has a short infusion period, with relatively large amounts

of insulin being processed. The bolus process includes two variants: an instant insulin

delivery (normal bolus) and an extended insulin delivery with duration (extended

bolus).

From the discussion above, we can classify the insulin infusion process into four

categories: basal, temporary basal, bolus, extended bolus. We can apply the time

pattern illustrated in Section 4.6.4 on the features of the insulin therapy mentioned

above. The requirements expend a lot of words in describing the system behaviour

when the insulin infusion pump is paused and resumed during infusion delivery, so

the pause and resume of the IIP are essential behaviour. Pause and resume satisfy

the definition of unpredictable events we described in Section 4.6.3, so using the time

pattern with unpredictable events to handle the pause and resume of IIP is a good

choice.

4.7.2 Refining the States

Because this refinement introduces a large amount of constants and variables, we

discuss them separately.

Static States

This abstraction level of the model has reached the concrete level of specifying the

detailed behaviour of the insulin pump. The TICK TOCK event in the time pattern

71

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

we are going to apply on this refinement has a global time activation set, so using

the same time unit through the whole model is very important. Intending to specify

the system in an accurate way (although using real numbers to describe time is a

better choice, but real numbers are not supported by Event-B), we should make our

time unit as small as possible. From the above discussion, we made a choice of using

seconds as our minimum time unit. Therefore, for all the variables related to time,

times are calculated in seconds. For example, the insulin flow rate can be interpreted

as the insulin amount delivered per second.

CONSTANTS
tba dmax // maximum duration of temporary basal infusion

m f // maximum flow rate at which the physical pump can function correctly

exbo max // the upper limit of extended bolus the user can be infused with

bo max // the upper limit of bolus the user can be infused with

exbo dmax // the maximum duration of extended bolus infusion
AXIOMS

axm1 : ts = 0 .. 86399
axm2 : tba dmax ∈ 1 .. 86399
axm3 : m f ∈ N1

axm5 : exbo max ∈ N1

axm8 : bo max ∈ N1

axm9 : exbo dmax ∈ 1 .. 86399

The intended meanings of the constants are indicated in the comments beside

them. As we discussed above, we choose the second as our time unit. To describe a

whole day time point set we use axm1. Although the requirements document does not

specify the value of temporary basal duration, we made an assumption here that the

duration of a temporary basal infusion is at least 1 second and at most 86399, which

means the temporary basal duration will not exceed one day. The same assumption

is made about the duration of extended bolus. Although we know the extended bolus

72

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

infusion is quite short, for the moment we only can specify the duration of extended

bolus does not exceed a day.

Dynamic States

The number of dynamic states of the model is greater than the static ones and their

invariants have a direct relationship with the POs of the model. Most of the variables

are the quantities mentioned in the requirements. Some of the auxiliary variables, such

as basal state (ba stat) and bolus state (bo stat), are conducive to clearer expression

of the state transitions in the model. Current time (t) and current day (day) are the

variables we add into the model for handling timing issues, which are not mentioned

in the requirements. The variables and invariants can be found in:

VARIABLES
ba r // basal rate

ba stat // basal state

tba r // temporary basal rate

tba t // temporary basal stop time

tba stat // temporary basal state

bo r // bolus rate

bo stat // bolus state

bo req // bolus request amount

bo am // bolus delivered amount

exbo a // extended bolus start time

exbo t // extended bolus stop time

exbo set // extended bolus setting finish

exbo req // extended bolus amount requst

exbo r // extended bolus rate

exbo stat // extended bolus state

t // current time

day // current day

at ba // basal activation time set

at tba // temporary basal activation time set

at exbo // extended bolus activation time set

73

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

INVARIANTS
inv1 : ba stat = on⇒ ba r ∈ ba rs
inv2 : ba stat ∈ state
inv3 : tba stat = on⇒ tba r ∈ ba rs
inv4 : tba stat ∈ state
inv5 : tba stat = on⇒ tba t ∈ N1

inv6 : bo stat = on⇒ bo r ∈ 1 .. m f
inv7 : bo stat ∈ state
inv8 : bo stat = on⇒ bo req ∈ 1 .. bo max
inv9 : bo am ∈ 0 .. bo req
inv10 : exbo a ∈ N
inv11 : exbo t ∈ N
inv12 : exbo set ∈ BOOL
inv13 : exbo set = TRUE ⇒ exbo a < exbo t
inv14 : exbo set = TRUE ⇒ exbo req ∈ 1 .. exbo max
inv15 : exbo stat = on⇒ exbo r ∈ N1
inv16 : exbo stat ∈ state
inv17 : t ∈ N
inv18 : day ∈ N
inv19 : at ba ⊆ N
inv20 : at tba ⊆ N1

inv21 : at exbo ⊆ N
inv22 : exbo set = FALSE ⇔ at exbo = ∅
thm1 : at ba ∪ at tba ∪ at exbo ⊆ N
inv23 : (at ba ∪ at tba ∪ at exbo) 6= ∅

⇒
t ≤ min(at ba ∪ at tba ∪ at exbo) ∨ infu stat = paused

inv24 : tba stat = on⇒ ba stat = off ∧ bo stat = off
inv25 : infu stat = paused ⇒ ba stat = off ∧ tba stat = off ∧ exbo stat =

off ∧ bo stat = off
inv26 : bp set = FALSE ∧ infu stat = stopped ⇒ at ba = ∅
inv27 : bo stat = on⇒ exbo stat = off
inv28 : ba stat = off ⇔ ba r = 0
inv29 : tba stat = off ⇔ tba r = 0 ∧ at tba = ∅
inv30 : exbo stat = off ⇔ exbo r = 0
inv31 : bo stat = off ⇔ bo r = 0
inv32 : rate ≤ m f
inv33 : rate = ba r + tba r + exbo r + bo r

Invariant Description

The invariant inv1 to inv12 and inv14 to inv21 indicate the types of the above
variables.

74

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

inv13 – when the extended bolus setting is complete, the extended bolus start
time shall be smaller than the extended bolus stop time.

inv22 – the extended bolus setting is not complete is equivalent to the extended
bolus activation time set is an empty set.

thm1 4 – the global time activation time set is a subset of the natural numbers.

inv23 – the global time activation set is not an empty set implies the current
time is smaller than the minimum time point in the global time set or the
infusion process is paused.

inv24 – the temporary basal is in process implies there is no basal and no
normal bolus in process.

inv25 – the infusion process is paused implies all the insulin process is stopped.

inv26 – basal profile setting has not completed and the infusion state is stopped
implies the basal time activation set is an empty set.

inv27 – normal bolus is in process implies the extended bolus is not in process.

inv28 – basal infusion is not in process is equivalent to current basal flow rate
is equal to 0.

inv29 – temporary basal rate infusion is not in process is equivalent to the
current temporary basal rate is equal to 0 and the relevant time activation
set is an empty set.

inv30 – extended bolus is not in process is equivalent to the current extended
bolus flow rate is equal to 0.

inv31 – normal bolus is not in process is equivalent to the current normal bolus
flow rate is equal to 0.

inv32 – the combined insulin flow rate is smaller than or equal to the maximum
flow rate.

inv33 – the combined insulin flow rate is equal to the sum of all possible insulin
process rates.

Almost all of the above invariants are derived from the requirements documents.

Some of them are derived from the requirements in an augmented form. Some require-

ments are represented in terms of events in the next section. Notice that, because

Event-B does not have mechanisms for checking the completeness of system prop-

erties, there may exist some missing properties of the system. Furthermore, only

4thm stands for those invariants that can be derived from other invariants.

75

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

discussions with domain experts can help determine whether there are missing re-

quirements.

4.7.3 Refining the Events

As we mentioned before, our strategy in this refinement is to classify the insulin

infusion process into four categories. This subsection will separately describe the

events related to these four different insulin infusion processes. Apart from the four

categories of insulin infusion, there exist some interesting issues such as infusion start,

infusion pause and resume. Because this refinement is a big leap of abstraction to

concretion, some inconsistencies and undefinedness occurred during the discharging of

POs on this abstract model and we made some corrections to the original requirements

document.

Proof Trees in the Rodin Platform

Before refining the events, we should first have presented the reasons behind our

intension of discharging the POs generated by our model. Why do we have to prove

these POs and how do we prove those POs in the Rodin Platform? The Rodin

Platform can generate a bunch of POs, and most of the POs are automatically proved.

For the rest of the POs, we need to prove them interactively with the tool. For all the

POs, the Rodin Platform will generate a proof tree to describe how the PO is proved

or why it is not proved. The following figure 4.4 is a very simple example which is

the proof tree of the PO (PAUSE/inv5/INV) in refinement two. Each line in the

proof tree indicates a node in terms of a sequent. Arrows with the same indentation

mean the nodes come from the same father node. On the right of a node, a comment

76

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Figure 4.4: Proof Tree in Rodin

explains the discharge justification. Figure 4.5 is the structure of the PO tree in figure

4.4. When all the leaves of the PO trees are proved the whole PO is discharged. So

Figure 4.5: Proof Tree Structure

when we are discharging those POs which are not automatically proved by the Rodin

Platform, we only need to focus on those branchs which have not been proved. When

we meet some leaf sequent that we cannot prove, we can add an assumption to the

sequent. If the sequent can be proved by adding the assumption, but the assumption

77

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

cannot be proved, this means maybe we forgot to add some guards or some constant

property is missing or even an invariant is wrong.

Discussion of Infusion Start

This subsection gives a discussion of the infusion start event. The infusion start is

an interesting issue; it is the first enabled event in the second phase in the second

refinement. However, when other new events are introduced in this refinement, some

issues occur. In later subsections we will add a new event called EXBO SET into the

model, because the extended bolus is an infusion process with delay. The user can

program the start time and stop time for the extended bolus. The extended bolus

setting may occur before the INFU START event. If the extended bolus start time

exbo a is later than the start infusion time, then everything goes well. If the extended

bolus start time exbo a is equal to the start infusion time, then the combined flow rate

becomes basal rate ba r and exbo r. If the extended bolus start time exbo a is before

the start infusion time, then a problem occurs. In the requirements document, this

situation is not described. The extended bolus cannot infuse (exbo stat = off) if the

infusion status is stopped (infu stat = stopped). The requirements did not mention

whether the programmed extended bolus should be executed (when the infusion start

time is during the programmed duration of extended bolus) or the extended bolus

should be cancelled and the user is informed about the delayed infusion start (when

the infusion start time is bigger than the extended bolus start time).

From the above discussion, we chose the latter solution. The programmed ex-

tended bolus will be cancelled if the infusion start time is later than the programmed

extended bolus start time. For the temporary basal and normal bolus, this situation

78

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

does not exist. Both of them are instantly delivered, when the controller gets the

input from the user. Notice that on this abstract level, we are not considering the

action and reaction delay between controller and the real physical pump. All the

events are triggered instantly, which is also a feature of Event-B. Therefore, there

must be three cases to describe the INFU START event.

Event INFU START NORMAL =̂
refines INFU START

any
CT

where
⊕grd6 : CT ∈ 0 .. 86399
⊕grd7 : at exbo 6= ∅⇒ CT < exbo a
⊕grd8 : ba stat = off ∧ tba stat = off ∧ exbo stat = off ∧ bo stat = off
⊕grd9 : at ba = ∅ ∧ at tba = ∅

then
⊕act1 : rate := bp(max ({i |i ∈ dom(bp) ∧ i ≤ CT}))
⊕act3 : t := CT
⊕act4 : at ba := {i |i ∈ dom(bp) ∧ i > CT}
⊕act5 : ba r := bp(max ({i |i ∈ dom(bp) ∧ i ≤ CT}))
⊕act6 : ba stat := on

end

INFU START NORMAL indicates the normal situation, where the start time

(CT) is smaller than the start time of the extended bolus (exbo a) (grd6). We use the

CT abstract parameter to indicate the current time when the infusion starts. The

grd8 says when the infusion starts, the previous state of the insulin infusion shall be

off. Corresponding to the time pattern, INFU START (including the two cases not

yet discussed), is a typical POST TIME event in the time pattern 4.6.3. act1 says

the flow rate (rate) change to the basal rate (ba r), is equal to the corresponding

value in bp of the biggest time point in the domain of bp that is less than or equal

to the current time. The basal state is set to on and the activation basal time set is

overriden by a set with all the elements bigger than current time (t).

The second and third case of start infusion is similar to case one; to save space we

only present the different parts of case two and case three as compared to case one.

79

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Event INFU START EXBO =̂
refines INFU START

where
⊕grd7 : at exbo = {exbo a, exbo t} ∧ CT = exbo a
⊕grd10 : exbo t − exbo a > 0
⊕grd11 : exbo req/(exbo t − exbo a) ∈ N1
⊕grd12 : exbo set = TRUE

then
⊕act1 : rate := bp(max ({i |i ∈ dom(bp)∧i ≤ CT}))+exbo req/(exbo t−

exbo a)
⊕act7 : exbo r := exbo req/(exbo t − exbo a)
⊕act8 : exbo stat := on
⊕act9 : at exbo := at exbo \ {exbo a}

end

For the case when the start infusion time is equal to exbo a, the combined flow

rate becomes the basal rate plus the extended bolus rate (exbo r). ba r holds the same

value as that in case one. The extended bolus state (exbo stat) is set to on; exbo r is

set to a corresponding value; the activation set of the extended bolus set subtracts

the extended bolus start time.

Event INFU START LATE EXBO =̂
refines INFU START

where
⊕grd7 : at exbo = {exbo a, exbo t} ∧ CT > exbo a

then
⊕act7 : at exbo := ∅
⊕act8 : exbo set := FALSE

end

INFU START LATE EXBO describes the case when the start infusion time is

bigger than exbo a. at exbo should be set to the empty set and the auxiliary variable

(exbo set) set back to FALSE. By running these three events in the Rodin Platform,

we see there are several POs which are unproved. We pick up two POs which can not

be discharged. Through the automatic proof by the Rodin Platform the proof goal

of PO INFU START NORMAL/inv32/INV stays the same, so there may exist some

inconsistency or missing properties of our model. By adding hypotheses and doing

80

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Figure 4.6: Proof Tree of INFU START NORMAL/inv32/INV

81

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Figure 4.7: Proof Tree of INFU START EXBO/inv32/INV

82

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

interactive proof with the proof goal, we finally obtained two leaf goals, indicated in

figure 4.6. The content in the parentheses next to each node (sequent) in figure 4.6

are the hypotheses made for the sequent. These two goals are both related to the

constants in our model, so these two proof goals shall be the missing properties in our

model (also in the requirements document). Therefore, we extended the properties

(axioms) of constant variables by adding axioms max(ba rs) ≤ m f and finite(ba rs)

to the context. The new axioms say the maximum basal rate shall be smaller than

the maximum flow rate for the pump to function correctly.

The figure 4.7 is another proof tree of a failed proof obligation, namely

(INFU START EXBO/inv32/INV). After interactive proof, we see there exists one

unproved goal in the proof tree. This unproved goal is also a property of the constant

variables. One issue we should mention here is that the requirements document does

not mention the extended bolus flow rate. The exbo r is described in terms of the

extended bolus amount over the duration, so there do not exists any constraints on

the exbo r. At the first stage of modelling the system, almost all the events related to

the extended bolus rate failed to discharge the POs. Therefore, we added the upper

limit of the extended bolus (exbo rmax) and from the interactive proof in figure 4.7,

a new axiom max(ba rs) + exbo rmax ≤ m f . The sum of maximum basal insulin

flow rate and the maximum extended bolus insulin flow rate shall not exceed the

maximum insulin flow rate enabling the pump to function correctly. The grd11 of

the event INFU START EXBO should be revised to exbo req/(exbo t − exbo a) ∈

1 .. exbo rmax.

83

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Discussion of Infusion Pause and Resume

Although the requirements describe in detail the system behaviour of the basal in-

fusion when the system is resumed from the pause state, the requirements do not

mention the case where the start time of the extended bolus is set before the pump

resume. For the solution of similar issue met in start infusion, we made the same

assumption that when the pump is resumed from a paused state, if the start time

(exbo a) is earlier than the resume time, then the extended bolus shall be cancelled

and the extended bolus set exbo set shall be set to FALSE.

The PAUSE event is a straightforward event which refines the event with the same

name in the abstract model. The actions of PAUSE just set the different infusion

insulin rates to zero. The reason why at tba is assigned the empty set is that the

pause will interrupt any possible infusion process and when the temporary basal is

paused, it is impossible to resume it. The basal rate has higher priority than the

temporary basal.

Event PAUSE =̂
refines PAUSE
then

⊕act3 : ba r := 0
⊕act4 : ba stat := off
⊕act5 : tba r := 0
⊕act6 : tba stat := off

⊕act7 : at tba := ∅
⊕act8 : exbo r := 0

⊕act9 : exbo stat := off

⊕act10 : bo r := 0

⊕act11 : bo stat := off

end

As we discussed, the resume event may encounter the same situation as the in-

fusion start event. We are going to discuss two cases: one is that the resume time

is smaller than or equal to the start time of the extended bolus; another is that the

resume time is greater than the start time of the extended bolus.

Event RESUME 0 =̂

84

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

refines RESUME
when

⊕grd3 : at exbo = {exbo a, exbo t} ∧ t ≤ exbo a
then

⊕act1 : rate := bp(max ({i |i ∈ dom(bp) ∧ i ≤ tmod86400}))
⊕act3 : ba stat := on
⊕act4 : ba r := bp(max ({i |i ∈ dom(bp) ∧ i ≤ tmod86400}))
⊕act5 : at ba := at ba \ {i |i ∈ at ba ∧ i ≤ t}

end
Event RESUME 1 =̂
refines RESUME

when
⊕grd3 : at exbo = {exbo a, exbo t} ∧ t > exbo a

then
⊕act1 : rate := bp(max ({i |i ∈ dom(bp) ∧ i ≤ tmod86400}))
⊕act3 : ba stat := on
⊕act4 : ba r := bp(max ({i |i ∈ dom(bp) ∧ i ≤ tmod86400}))
⊕act5 : at ba := at ba \ {i |i ∈ at ba ∧ i ≤ t}
⊕act6 : at exbo := ∅
⊕act7 : exbo set := FALSE

end

The behaviours of these two events are almost the same. act1 changes the value of

the combined flow rate to the value of the basal rate and sets the basal state (ba state)

to on. ba r is transitted to the corresponding value at the current time in the basal

profile (bp). The time activation set (at ba) is assigned as a new activation time set.

The act6, act7 describe the cancellation of the extended bolus infusion. RESUME 0,

RESUME 1 are typical NOD EVTj event in the time pattern in Section 4.6.3.

Basal Infusion

From the requirements we know the basal infusion process is always running from

when the infusion starts, except for the case when the temporary basal is in process

or the pump is paused. Here we only need to focus on the basal flow rate fluctuation

during the pumping process. For the basal rate changing event we still have two

cases to discuss. These cases are not related to basal itself, but related to combined

85

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

flow rate. The requirements say that when the bolus is on, the combined flow rate

shall increase to the maximum flow rate with which the pump can function correctly.

Therefore, we need to consider two situations: basal rate changes when bolus in

process; basal rate changes when there is no bolus in process.

Event BA CHANGE 0 =̂
refines INFU PROC

when
⊕grd3 : tmod86400 ∈ dom(bp) ∧ (at ba 6= ∅⇒ t ∈ at ba)
⊕grd4 : ba stat = on
⊕grd5 : ba r ∈ ba rs
⊕grd6 : rate − ba r + bp(tmod86400) ≤ m f
⊕grd7 : bo stat = off

then
⊕act1 : rate := rate − ba r + bp(tmod86400)
⊕act2 : at ba := at ba \ {t}
⊕act3 : ba r := bp(tmod86400)

end
Event BA CHANGE 1 =̂
refines INFU PROC

when
⊕grd3 : tmod86400 ∈ dom(bp) ∧ (at ba 6= ∅⇒ t ∈ at ba)
⊕grd4 : ba stat = on
⊕grd5 : ba r ∈ ba rs

then
⊕act1 : rate := m f
⊕act2 : at ba := at ba \ {t}
⊕act3 : ba r := bp(tmod86400)

end

The above two events illustrate that the state change of ba r are the same, the only

difference is the combined flow rate. Actually for the second event BA CHANGE 1,

it is unnecessary to reassign the value of the combined flow rate. But since Event-B

has its model refinement consistency rules, we still put rate := m f here. Both of

the basal rate change events are typical PROCESS TIME events in the time pattern

in Section 4.6.3.

86

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Temporary Basal Infusion

The temporary basal infusion process is defined in terms of by two events, which

correspond to the variables tba r and tba stat changing events, because the temporary

basal infusion shall start immediately when the pump receives the input variables.

Here we use TBA D, TBA R to indicate the duration and flow rate of temporary

basal from input. We specified two events TBA ON and TBA OFF to illustrate the

state transition related to temporary basal. The TBA OFF is an abstraction of two

events: temporary off when time reaches the stop time (t = tba t); temporary off

caused by the user (t < tba t). The two situations described in TBA OFF have the

same system behaviour, so we combine them as one event on this level. They may

need to be refined in future refinement stages.

Event TBA ON =̂
refines INFU PROC

any
TBA D
TBA R

where
⊕grd3 : TBA D ∈ 1 .. tba dmax
⊕grd4 : TBA R ∈ ba rs
⊕grd5 : tba stat = off
⊕grd6 : bo stat = off
⊕grd7 : rate ≥ ba r
⊕grd8 : at tba = ∅
⊕grd9 : ba stat = on

then
⊕act1 : rate := rate − ba r + TBA R
⊕act2 : tba r := TBA R
⊕act3 : ba r := 0
⊕act4 : tba t := TBA D + t
⊕act5 : tba stat := on
⊕act6 : ba stat := off
⊕act7 : at tba := {TBA D + t}
⊕act8 : at ba := at ba \ {i |i ∈ at ba ∧ i < TBA D + t}

end
Event TBA OFF =̂
refines INFU PROC

87

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

when
⊕grd3 : t ≤ tba t
⊕grd4 : rate ≥ tba r

then
⊕act1 : rate := rate−tba r +bp(max ({i |i ∈ dom(bp)∧i ≤ tmod86400}))
⊕act2 : tba r := 0
⊕act3 : tba stat := off
⊕act4 : ba r := bp(max ({i |i ∈ dom(bp) ∧ i ≤ tmod86400}))
⊕act5 : ba stat := on
⊕act6 : at ba := ran(λi ·i ∈ dom(bp)∧i ≥ t−day∗86400 |i+day∗86400)
⊕act7 : at tba := ∅

end

The behaviour of the temporary basal is like a flow rate override. The temporary

basal rate overrides a period of basal rate infusion, but with this override there exists

an unpredictable situation. Such unpredictable situations may result in some prob-

lems. For example, when the temporary basal starts, there exists some start time

point of basal between the current time and the programmed time tba t. These start

time points of basal will be disabled. If the temporary basal is being infused until

the time reaches tba t, to satisfy the timing invariant inv23 (the current time shall

be smaller than or equal to the minimum value in the global time set), we use act8

in TBA ON to delete the time points which are smaller than tba t in at ba. However,

the unpredictable stop of temporary basal may result in some basal rate changing

event not triggering because of the deletion in act8. Our solution for this problem

is to recreate the at ba set. In act6 in TBA OFF we recreate the at ba set when the

temporary basal infusion is finished.

Extended Bolus Infusion

The behaviour or the processing of the extended bolus infusion is quite like the system

itself. The events related to extended bolus also have two phases: a setting phase and

a delivering phase. The setting phase includes the variable setting and programmed

88

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

variable modification. Because there are only three input variables, for simplicity

we are not considering the input order of these three variables. The modification of

the programmed variables event time shall be between the time when the setting has

been finished and the programmed time when the extended bolus starts infusion.

Event EXBO SET =̂
any

AM
DUR
ACT

where
⊕grd2 : AM ∈ 1 .. exbo max
⊕grd3 : DUR ∈

1 .. exbo dmax
⊕grd4 : ACT ∈ t .. t + 86399
⊕grd5 : AM /DUR ∈

1 .. exbo rmax
⊕grd6 : exbo set = FALSE
⊕grd7 : at exbo = ∅

then
⊕act1 : exbo req := AM
⊕act2 : exbo a := ACT
⊕act3 : exbo t := ACT +

DUR
⊕act4 : at exbo :=
{ACT ,ACT + DUR}

⊕act5 : exbo set := TRUE
end

Event EXBO SET MOD =̂
any

AM
DUR
ACT

where
⊕grd2 : AM ∈ 1 .. exbo max
⊕grd3 : DUR ∈

1 .. exbo dmax
⊕grd4 : ACT ∈ t .. t + 86399
⊕grd5 : AM /DUR ∈

1 .. exbo rmax
⊕grd6 : exbo set = TRUE
⊕grd7 : t < min(at exbo)

then
⊕act1 : exbo req := AM
⊕act2 : exbo a := ACT
⊕act3 : exbo t := ACT +

DUR
⊕act4 : at exbo :=
{ACT ,ACT + DUR}

end

The infusion process of the extended bolus includes extended bolus on and ex-

tended bolus off. Because the extended bolus can also be manually stopped, we use

one event EXBO OFF to describe the extended bolus stop delivering event.

Event EXBO ON =̂
refines INFU PROC

when
⊕grd3 : t = exbo a
⊕grd4 : exbo stat = off
⊕grd5 : at exbo = {exbo a, exbo t} ∧ exbo t − exbo a > 0
⊕grd6 : exbo req/(exbo t − exbo a) ∈ 1 .. exbo rmax
⊕grd7 : exbo set = TRUE

89

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

⊕grd8 : bo stat = off
then

⊕act1 : rate := rate + exbo req/(exbo t − exbo a)
⊕act2 : exbo r := exbo req/(exbo t − exbo a)
⊕act3 : exbo stat := on
⊕act4 : at exbo := at exbo \ {exbo a}

end
Event EXBO OFF =̂
refines INFU PROC

when
⊕grd3 : exbo a ≤ t ∧ t ≤ exbo t
⊕grd4 : exbo t − exbo a > 0
⊕grd5 : exbo r ∈ 1 .. exbo rmax
⊕grd6 : exbo r = exbo req/(exbo t − exbo a)
⊕grd7 : exbo stat = on
⊕grd8 : rate ≥ exbo r

then
⊕act1 : rate := rate − exbo r
⊕act2 : exbo stat := off
⊕act3 : exbo r := 0
⊕act4 : at exbo := ∅
⊕act5 : exbo set := FALSE

end

Because for the extended bolus infusion there does not exist the problem, related to

time point overriding, the events only handle the variables related to extended bolus.

The extended bolus infusions are typical PROCESS events; once time reaches the

activation time, the actions trigger and the time point is deleted from the activation

time set.

Normal Bolus Infusion

Normal bolus infusion has some different features derived from the above infusion

process. The normal bolus is a very short therapy of insulin which is like an injection.

On this level we are not expecting to describe the physical model of an injection. Our

amount of insulin delivery during time is still a square shape liquid delivery. However,

there still exist several interesting issues related to normal bolus.

90

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

The stop time decision: Although the requirements say that when the normal

bolus is requested, the combined flow rate shall become the maximum flow rate the

pump can use and function correctly, how to decide the stop time of the normal bolus

is not mentioned. We work out two solutions for this problem. Notice that, for both

of these solutions we are not considering the time delay and physical effects such as

acceleration of the pump.

Solution one is to add sensors to the physical pump to decide the stop time of

bolus infusion. Suppose we have a piston style IIP. We can decide the start time and

stop time from sensing the piston position in the reservoir. This solution has one

problem. The basal rate changing during this short period is ignored, because by

comparing the basal and bolus, we see their magnitudes are hugely different. This

short period basal insulin delivery inaccuracy is in the range of tolerance for insulin

infusion.

Solution two is to control in real-time the insulin flow rate and accurately calculate

the amount of insulin as bolus has been delivered. Once the delivered amount of

insulin satisfies the amount of required bolus, control the basal rate to a programmed

rate through the basal profile at current time. This solution can accurately deliver the

anticipated insulin amount. But the accuracy of the control is based on the accuracy

or the calculating speed of the device.

Based on the above discussion, we decided to use the second solution to specify

the normal bolus. We create three events (BO ON, BO PROC, BO OFF) to describe

the behaviour of bolus infusion.

Time handling: The solution we described above needs the delivered amount

of insulin to be monitored at each time unit (obviously the smaller the time unit

91

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

is, the more accurate is the pump infusion), so we have to add the notion of time

increasing to BO PROC. However, our method of specifying the IIP is by following

the time patterns described in Section 4.6.4. The TICK TOCK event in the model

is the self incrementing clock. If we add a time tick in BO PROC, the model will

have two clocks. Trying to solve this problem, we disable the TICK TOCK event by

adding guard bo stat = off . Therefore, when the normal bolus is being delivered,

the BO PROC temporarily becomes the clock. Once the normal bolus is stopped or

finishes delivering insulin, the TICK TOCK is assigned back to be the global clock.

Event BO ON =̂
refines INFU PROC

any
AM

where
⊕grd3 : tba stat = off
⊕grd4 : AM ∈ 1 .. bo max
⊕grd5 : bo stat = off
⊕grd6 : ba r ∈ ba rs
⊕grd7 : exbo stat = off

then
⊕act1 : rate := m f
⊕act2 : bo r := m f − ba r
⊕act3 : bo stat := on
⊕act4 : bo am := 0

⊕act5 : bo req := AM
end

Event BO OFF =̂
refines INFU PROC

when
⊕grd3 : bo am ≥ bo req
⊕grd4 : bo stat = on

then
⊕act1 : rate := ba r
⊕act2 : bo stat := off
⊕act3 : bo r := 0
⊕act4 : bo req := 0
⊕act5 : bo am := 0

end

Because the normal bolus flow rate depends on the value of other infusion process

flow rates, the BO PROC event has lower priority than other events at a specific time

point (grd4). act2 is a predicate assignment. Because in Event-B the actions in the

same event are executed in parallel, act2 uses predicate assignment to implement the

objectives of a sequential assignment.

Event BO PROC =̂
refines INFU PROC

when
⊕grd3 : bo stat = on

92

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

⊕grd4 : t /∈ at ba ∪ at tba ∪ at exbo
⊕grd5 : bo am < bo req

then
⊕act1 : rate := m f
⊕act2 : bo r , bo am : |bo r ′ = m f − ba r ∧ bo am ′ = bo am + bo r ′

⊕act3 : t := t + 1
end

From the POs generated from the above events, we got two undischarged POs.

One is BO PROC/inv6/INV, whose initial goal is to prove bo stat = on⇒ bo r′ ∈

1 .. m f . By interactive proof with the Event-B tool we get following proof tree:

Figure 4.8: Proof Tree of BO PROC/inv6/INV

The proof tree in figure 4.8 indicates there are two leaf goals that have not been

proved. They are the two properties which are missing from the model. For the

goal ba r ∈ ba rs, because ba r is a dynamic variable, this proof goal is a missing

guard from the BO PROC event. For the goal m f > max(ba rs), we see the axiom

max(ba rs) ≤ m f added from the prove obligation in 4.7.3 could be more strict. So

93

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

the axiom in C3 shall be updated.

The second PO is BO PROC/inv9/INV, whose initial proof goal is bo am′ ∈

0 .. bo req. By automatic proof there are two proof goals generated 0 ≤ bo am +

(m f − ba r) and bo am+ (m f − ba r) ≤ bo req.

Figure 4.9: Proof Tree of BO PROC/inv9/INV

By using the restricted axiom derived from 4.8, the first proof goal is proved. The

second goal must be the missing guard in BO PROC. By reviewing the BO PROC

event, we see grd5 could be replaced by bo am+ (m f − ba r) ≤ bo req. The PO can

be discharged now. However, by analysing the semantics of the new grd5, we derived a

question: what if the requested bolus is smaller than the maximum flow? This is a case

which is not mentioned in the requirements. The requirements say once the normal

94

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

bolus is in process, the flow rate shall become the maximum flow, which is wrong

when the requested bolus amount over the minimum time unit plus the basal rate is

smaller than the maximum flow rate ((bo req/timeunit) + ba r < m f). Considering

this special case we added a special event BO SPEC into the bolus infusion process.

Event BO SPEC =̂

refines INFU PROC

any
AM

where
⊕grd3 : tba stat = off
⊕grd4 : AM ∈ 1 .. bo max
⊕grd5 : bo stat = off
⊕grd6 : ba r ∈ ba rs

⊕grd7 : exbo stat = off
⊕grd8 : AM + ba r < m f

then
⊕act1 : rate := AM + ba r
⊕act2 : bo r := AM + ba r
⊕act3 : bo stat := on
⊕act4 : bo am := 0
⊕act5 : bo req := AM

end

act1 and act2 are the assumed actions when this special case occurs. Notice that

the AM here stands for the amount of insulin delivered during the minimum time

unit.

Timing and other Events

The event for describing time increments in this model follows the TICK TOCK event

described in section 4.6.4. The only difference is the guards. The reason for adding

grd4 has been described in the last subsection. For grd3, we added another event

BA T RESET for counting days and extending at ba to our model.

Event TICK TOCK =̂
when

⊕grd2 : (at ba ∪ at tba ∪ at exbo) 6= ∅
⇒
(t < min(at ba ∪ at tba ∪ at exbo) ∨ infu stat = paused)

⊕grd3 : t 6= 86400 ∗ day
⊕grd4 : bo stat = off

then
⊕act1 : t := t + 1

end

95

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

The reason why we add this new event into our model is that the domain of basal
profiles in our system is one day, but we are using the natural numbers to describe
the elapsed time. Therefore the basal profile likes a period of fixed time sliding on
the time line towards one direction.

Event BA T RESET =̂
when

grd1 : t = 86400 ∗ (day + 1)
grd2 : bp set = TRUE
grd3 : power = on

then
act1 : at ba := ran(λi ·i ∈ dom(bp)|86400 ∗ (day + 1) + i)
act2 : day := day + 1

end

Once the current time reaches 86400, the day is incremented by one and the basal

activation time set is reset to a new time activation time set with each element 86400

bigger than the corresponding time point in the previous day.

Except for all the events described above, the events used to describe the prepara-

tion phase are not refined on this level. The Initialization, INFU STOP, POWER OFF

events assigned all the variables an initial value. To save space we are not describing

them here.

4.7.4 Summary of the Third Refinement

This refinement introduced timing issues and the corresponding solutions for them

by applying several timing patterns in Event-B. The infusion process was categorized

into four kinds. We created four activation time sets for each of the insulin infusion

categories. The union of these activation time sets represents the global time set.

An event TICK TOCK was used to control time incrementing in the whole system.

Because this model is quite near the concrete level, inconsistencies and some miss-

ing properties could be determined from this model. By using interactive proof in

the Rodin Platform, some missing variables and some properties missing from the

96

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

requirements were found. The third refinement is still focused on the controller of

the system; the input variables are expressed in terms of abstract parameters. When

creating our model, we created a mapping between the requirements documents and

our model. By running the third refinement of IIP, 301 POs are generated. 298 POs

are generated from the machine, 75 of them are proved interactively, the rest are

proved automatically by the Rodin Platform. 3 POs are generated from the Context;

all of them are proved automatically. For the full version of refinement three (modi-

fied model without fault or inconsistency already found), see Appendix B.4. To save

space, we did not record the variables and the invariants in Section 4.7.2.

4.8 Summary of the IIP Model

The IIP is a time related interactive control system. The models presented in this

chapter mainly focus on the controller part.

4.8.1 Summary of Refinement Stage

The strategy performed in the refinement process follows the sequence: output vari-

able abstraction → system behaviour abstraction (including the interaction with

users) → internal algorithms (including input variable abstraction) → connecting

controlled variables → connecting environment variables → implementation refine-

ment.

Notice that, all the above stages may includes several sub refinement stages. Be-

cause this project is still under development, the specification presented in this thesis

only reaches the internal algorithms stage. Because of the special features of this

97

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

system (the user setting information such as pre-setting of basal profile settings), we

added a user setting stage before the internal algorithm stage. The summary of the

specification is given in the following paragraphs.

Specification Summary

Initial Model – The initialization of the model is an abstraction of the system
behaviour by a unpredictable output variable assignment. Some events
related to prerequisites of the system operating process (the power state)
are also specified in this abstract level.

First Refinement – This refinement step refined the abstraction of system
behaviour into two phases. Phase one focuses on the setting of the basal
profile and the priming process. The second phase refines the infusion
process event to start, pause, resume and stop infusion sub-events.

Second Refinement – The basal profile setting is one of the important pro-
cesses in phase one. The structure of the basal profile is a simple database.
To indicate the data accessing, adding, rewriting etc. behaviour, the sec-
ond refinement refines the basal profile setting by introducing detailed
events.

Third Refinement – The second phase of the system is refined by apply-
ing the time patterns to the infusion process. Through the analysis of
the requirements, we separate the infusion process into four infusion pro-
cess categories (basal, temporary basal, normal bolus and extended bolus).
Each of the infusion processes has several corresponding variables. We use
a special event TICK TOCK to describe time elapsing.

We illustrate the relations between refinement steps in figure 4.10:

The whole IIP project, including learning Event-B, analyzing the requirements

document, creating models and discharging POs, took about half a year. Because

understanding the Event-B language took a period of time, we cannot accurately

estimate the time spent on the project by an expert in Event-B. If a brand new

project has similar scale, we estimate that two months is a reasonable time to finish

it.

98

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Figure 4.10: Refinement Relations

4.8.2 Summary of Inconsistencies

The main intention in the thesis is to check the correctness and consistency of the

requirements documents by creating the model and proving the proof obligations

generated from the Event-B model of IIP. We found some inconsistencies and some

missing properties of the requirements.

Inconsistencies and Missing Properties

Quantities Added

– The maximum extended bolus flow rate.

– The minimum time unit of the system.

– The maximum duration of the temporary basal infusion.

– The maximum duration of the extended bolus infusion.

– The maximum dosage of the normal bolus.

– The maximum dosage of the extended bolus.

Properties Added

99

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

– The sum of maximum basal flow rate and maximum extended bolus
rate should be smaller than the maximum flow rate of the pump. (This
is the situation when the device is equipped with a powerful pump
which can handle the combined flow rate of all infusion processes.)

– The infusions, such as temporary basal, extended bolus and bolus,
shall only be executed after the pump has started infusion.

Description Modified

– When the normal bolus infusion starts and the normal bolus amount
over the minimum time unit plus the current basal rate is smaller
than the maximum flow at which the pump can function correctly, the
combined flow shall be equal to the sum of normal bolus amount over
the minimum time unit and the current basal rate.

System Behaviour Completeness

There are some situations not considered in the requirements docu-
ment. For these missing situations, we made some reasonable assump-
tions to specify the behaviour of the system.

– When the programmed extended bolus start time is later than the
infusion start time, the extended bolus needs to be cancelled.

– When the programmed extended bolus start time is between the period
of pause and resume, the extended bolus needs to be cancelled.

– When the infusion pump is not powerful enough to handle the com-
bined flow rate for different infusion processes, that is, if the expected
combined flow rate exceeds the maximum flow at which the pump
can function correctly, there is a question of what the infusion pump
should do. (Because we cannot make a reasonable solution to this
problem, the model does not indicate any specification for this issue.)

– When the programmed bolus amount is smaller than the amount of
insulin the pump can deliver during a minimum time period in the
system, the setting of the flow rate is not mentioned.

100

Chapter 5

Future Work

This chapter presents some future work that should be undertaken on the IIP project

and some interesting issues related to Event-B which we are investigating.

5.1 Future Work on the IIP Project

The final goal of the IIP project is to create a faultless practical design process for

IIP, so there is a long way to go on the this project to arrive at our destination.

For now, we are focusing on the specification stage. To enhance the persuasiveness

of the specification, we are using different kinds of specification languages and the-

orem provers and some hazard analysis techniques on this project, such as tabular

expressions, pvs, Event-B, fault trees etc.

The work we are doing now mainly focuses on writing the specification of the

IIP. From the description in chapter 4, we see model checking can be used for the

validation of the requirements and to enhance the correctness of the system. Because

our modelling strategy on IIP using Event-B is following the sequence described in

101

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Chapter 4, there are lots of refinement steps that should be undertaken in the future

development of the model. The Event-B specification that has been built for this

model only includes some core features of the insulin pump and the the environment

variables have not been introduced into the specification, so we are going to add

new features and environment variables in the next step of refinement, then connect

the environment variables with already existing models. From the perspective of the

whole system, the alarms and some exception handling methods should be considered

during the future analysis. The model of IIP written in Event-B so far is not that

complex. In future refinement steps, by adding new features and environment vari-

ables, the complexity of the system will rapidly increase. To handle this complexity,

the model decomposition mechanisms should be introduced. A feasible scheme for

model decomposition is to decompose the whole system into sub models, namely a

controller model, an environment model, an alarm model, a fault events model.

People working on this project are writing in parallel specifications using differ-

ent specification languages. By comparing the differences between these specification

languages we can determine the suitability of the specification languages for specify-

ing different issues. For different components or issues of the system, we could use

different specification languages to describe them.

5.2 Future Work on Technical Research

We used Event-B as the specification language on this project. We found some

disadvantages that became obstacles during specification of the system. We present

some tentative solutions for these disadvantages.

102

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

5.2.1 No Support for Real Numbers

Event-B does not support real numbers; all the values related to numbers can only

have type N or Z. This disadvantage results in another problem, which is the integer

division problem. All the division in Event-B is an integer division, which decreases

the accuracy when we want to express some division calculation.

We can partially solve this problem when the numbers are Q (rational numbers),

which are a subset of R). We can use a surjection function fraction ∈ N × N1 to

define the fractions (rational numbers). The arithmetic operators can be represented

by a new relation fraction × fraction�� fraction. For example, the plus operator

can be interpreted as plus ∈ fraction × fraction�� fraction together with several

relevant events: an event for calculating the sum of the new numerator part, which

are the results of multiplying the numerator by the least common multiple (lcm);

an event for reduction, which divides both numerator and denominator by the lcm,

which is described in the previous event. All the arithmetic operators need to be

redefined. However, if we use this solution in a rational number related system, the

unreadability and the complexity of the model will definitely increase.

Another solution (actually not a solution, but a special case) of this problem is to

keep on using N or Z to represent floating point numbers, when the number of decimal

places is fixed or the accuracy of the factional part is specified in the requirements.

We can amplify the order of magnitude of a floating point number until it becomes an

integer. The designers should unify the units when they are amplifying the floating

point numbers.

Certainly, the best solution is that the developers of Event-B add support for real

numbers in Event-B.

103

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

5.2.2 Refinement Consistency Proof Obligation Rules

Event-B is a refinement based specification language. For each refinement stage, there

are a set of PO rules used to check the consistency between the refinement and the

refined model. A typical refinement rule intending to check the refinement consistency

is SIM (see proof obligation rules in Chapter 2), which checks that the actions in the

refinement simulate the actions in the abstract model. In other words, the events in

the refinement can not change the variables in the abstract model.

Although this feature is a meaningful property of Event-B, it increases the dif-

ficulty when we specify the system with timing issues using the time patterns (see

chapter 4). In refinement three of IIP, we split the infusion process into four differ-

ent infusion processes. A traditional method of doing the refinement without timing

issues being considered is to refine these four infusion processes one by one. The

constraint between different infusion processes could be added to the events in terms

of guards. The reason we refine these four infusion process in one step is because

we have a TICK TOCK event and a global activation time set in our specification.

The actions for each infusion process may modify the global time activation time set.

If we refine the model step by step, the SIM rule will be violated, because the new

added event may change the variables of the time activation set. The scale of the IIP

is not that big, so refining four infusion processes together in one step is acceptable.

If the scale of a system is very large, but the time clock is unique, the complexity will

not support human beings in refining the model in only one step.

Therefore, the reason for the problem we meet on the IIP is that it indirectly

results from the time pattern we are using.

104

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

One solution (may result in faults) to the problem resulting from refinement con-

sistency PO rules is to add new variables to describe the old variables in the abstract

model. However, some other issues will come up. The first issue is when we add new

variables which have the same meaning in the refinement, the old variables and new

variables will both appear in the new model. The readability of the model becomes

bad; the readers of the model will get confused when they are reading the model.

This is redundant (not the redundancy used in fault tolerant systems) when we de-

sign a system. The second issue is that this solution may include some potential

safety hazards. The new variables which have the same meaning as those variables

in the abstract model may subtly change some variable values (the variables are not

expected to be changed) which will not be captured by the POs. That is why we say

this solution may result in faults.

Another solution for this problem is: first we use the new variables to indicate the

old variables in the old model; secondly, at the final step of refinement we remove all

the old variables and copy all the invariants related to the old variables to the final

model; in the third step, we substitute all of the old variables by new variables. The

model finally obtained by using this solution is theoretically the same as the model

obtained from the one step refinement approach. We have not had a chance to create

the model by using this solution, so the feasibility and the correctness remain to be

proved.

5.2.3 Completeness of the Model

Although Event-B is very powerful for checking the correctness of invariants and the

guard completeness of the existing events and the actions, it is weak on checking

105

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

the completeness of invariants and events. In other words, if the specifier forgets to

write some events or some invariants during the model construction, only using PO

discharging, it is hard to find these missing things, such as the special case of bolus

delivery in the IIP model (which is not directly detected from the POs).

One solution is to use the animation plug-in tools (AnimB[CM09], ProB) on the

Rodin Platform to check the completeness of the model. This solution is similar to

software testing, but this way of testing is model based testing. However, during the

model animation, how to choose the typical test cases is another issue. Even if all

the chosen test cases are running well, we cannot say that the model we created is

complete. Another problem is that some restrictions of the animation tool makes the

model animation become impossible in some cases. For example, nondeterministic

assignment frequently appear when the Event-B model is at a very abstract level. The

AnimB tool does not support the nondeterministic assignment to a variable from an

infinite set. When this situation occurs, we cannot get the test output that we expect.

Another solution is an idea derived from the IIP project. We are working on this

project by using different specification languages. One of the specification languages

is tabular expressions (tables) [JP10, JW05]. Tabular expressions have a number of

formats, such as function tables, and event tables. One of the significant properties

of function tables is completeness and disjointness checking of conditions in the table.

If event tables have the same properties (unfortunately, we did not find much related

work on event tables), we can write the guards of events in the condition part of tables.

Then at least from the perspective of existing guards, we can check the completeness

of the events and accordingly create a partially complete model (the completeness

of invariant and the completeness of ignored guards cannot be checked). Combining

106

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

the completeness checking in tables and model consistency checking in Event-B will

increase the reliability of the system.

107

Chapter 6

Conclusion

This thesis presents a practical case study to demonstrate the system model consis-

tency checking by using Event-B. This thesis is made up of three parts.

The first part is the background knowledge description, which includes the funda-

mental explanation of Event-B and the IIP project. Event-B plays the role of fault

detecter on the specification level during the development of the IIP system. Actually,

Event-B can be used throughout the whole development of the software. Comparing

Event-B to the V-model [For91], the refinement stages can be interpreted as design

stages, such as subsystem design and detailed design in the V-model. The differences

between traditional software development and formal methods based development are

that the validation or testing in traditional software design is taken at the implemen-

tation stage, but formal methods, especially those that have such characteristics as

refinement like Event-B, check the validation and verify the consistency of the system

during each refinement stage, which evidently reduces the occurrence of errors or bugs

in the final implementation.

The second part of the thesis focuses on the usage of Event-B in a practical project

108

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

development as an example. The main contributions of the thesis are described in this

part. Intending to handle timing issues encountered in the IIP project, we created

patterns in Event-B. One pattern is used to handle the triggering times of predictable

events and the triggering times of unpredictable events. The main idea of this pattern

is to create a global activation time set and a self incrementing clock, in terms of a

time event. For each trigger of the time event, the time variable increments by one.

A main guard of the time event is that the current time shall be smaller than the

minimum value in the global time set. Once the time variable reaches the time

specified in the activation time set, the time event is disabled by the main guard and

the corresponding predictable event is triggered in the model. Because of the self

incrementing mechanism of the time event, the unpredictable events can be easily

captured. Because some predictable events may be disabled by the triggering of

unpredictable events, to prevent the time event from being disabled when time reaches

a time point which is an element in the global activation time set; but the time event

is not deleted from the global activation time set; we extended the guard in the

time event to make it continuously tick when some unpredictable event is triggered.

Another pattern is used to handle the timing issue of events triggering at the same

time. This pattern is built on the previous pattern. We handle events triggering at

the same time by classifying the events into several categories. For each category

we create a corresponding activation time set. The union of these activation time

sets substitutes the global activation time set in the previous time pattern; this new

global time set prevents some predictable events from being skipped because of the

time being inappropriately incremented.

109

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

The intention at the specification level is to detect the potential faults and in-

consistencies present in the requirements, through creating the model and discharg-

ing the POs generated by the Event-B tool. The proof tree structure in the Rodin

Platform is a translation from the sequent calculus to the mathematical language of

Event-B. From the interactive proving with the Event-B tool, we detected several

missing quantities, missing properties, wrong requirements and even missing system

behaviour. We presented some discussion and finally made some reasonable changes

to deal with the detected problems.

Part three presented future work both on the IIP and on the technical issues we

encountered during the usage of Event-B, such as real number support, new variable

introduction during refinement, and model completeness checking, Some tentative

solutions are proposed to handle the above issues. Each of these problem could be

an interesting research topic. We would be interested to see if these problems can be

solved by the Event-B community.

Formal methods are the future of software and even system development. There

exist a variety of formal specification languages. People who are interested in for-

mal methods are making contributions to this domain. The development of formal

methods, not only the theoretical fundamentals, but also tool support, have made

are rapid progress over the past few years. In the words of the author of the Event-B

book [Abr10] as an ending to this thesis. We believe in the near future we will be

able to say “faultless systems – yes we can”!

110

Appendix A

IIP Requirements

A.1 Infusion Control

1.1 The pump shall suspend all active basal delivery and stop any active bolus during

a pump prime or refill.

1.2 The pump shall prohibit any insulin administration during the priming process

and resume the suspended basal delivery, either a basal profile or a temporary basal,

after the prime is successfully completed.

1.3 The average flow rate in any continuous 60 minute period shall remain accurate

within ±x% of the programmed rate.

A.2 Basal Programming and Administration

2.1 The pump shall allow the user to program a basal profile with a set of basal rates

(at least two), ranging from 0.05 to x Units/hour in 0.05 Units/hour increments and

the duration for each basal rate.

111

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

2.2 Durations of all basal rates shall not overlap with each other, and shall together

cover 24 hours of a day.

2.3 Only one basal rate can be activated at any single point of time.

2.4 The pump shall allow the user to temporarily override the current basal delivery

with a temporary basal, provided that no normal bolus or other temporary basal is

in progress.

2.5 The programmed infusion rate of a temporary basal shall not exceed x Units/hour

and the duration of a temporary basal shall not exceed y hours.

2.6 The pump shall allow the user to stop a temporary basal while it is in admin-

istration and resume the previously active basal profile after the temporary basal is

finished.

2.7 When the user chooses to stop a temporary basal, the pump shall resume the

active basal profile prior to the temporary basal.

A.3 Bolus Calculation and Administration

3.1 The pump shall allow the user to define the dosage of a normal bolus in x Units

increments.

3.2 The combined flow rate (basal rate + normal bolus rate + extended bolus rate)

shall be limited by the maximum flow rate. Normal bolus and extended bolus should

not be in progress together.

3.3 The pump shall deliver a valid normal bolus at the highest rate that satisfies

requirement 3.2.

3.4 The pump shall not allow a normal bolus to start when another normal bolus is

in progress.

112

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

3.5 The pump shall not allow an extended bolus to start when another extended

bolus is in progress.

3.6 The pump shall start a valid extended bolus at the time the user specifies. The

extended bolus delivery shall be distributed evenly over its duration.

3.7 The user shall be able to stop an active normal or extended bolus and the bolus

shall not be resumed after the suspension.

3.8 When the user stops the bolus the amount of insulin that has been delivered

shall be displayed.

3.9 Date/Time change shall result in bolus delivery stopping.

A.4 Drug Reservoir

4.1 The reservoir volume shall be recomputed after priming process.

4.2 The reservoir volume shall be updated after each pump stroke by subtracting

the amount of insulin delivered during the stroke.

4.3 The reservoir volume shall be recalculated at the start and end of every basal

profile segment, every temporary basal, and every bolus.

A.5 Pump Suspension

5.1 When the user sends a pause command to the pump, the current pump stroke

shall be completed prior to suspending the pump.

5.2 When the pump is in suspension mode, insulin deliveries shall be prohibited.

5.3 If the suspension occurs due to a fault condition, the pump shall be stopped

113

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

immediately without completing the current pump stroke.

A.6 Alerts and Alarms

6.1 If the insulin remaining in the drug reservoir is less than x Units and an infusion

is in progress, a Low Reservoir alert shall be issued.

6.2 If the insulin remaining in the drug reservoir is 0 Units and an infusion is in

progress, an Empty Reservoir alarm shall be issued.

6.3The pump shall monitor the insulin (bolus and basal) delivery in progress. When

the actual volume delivered differs from the expected delivery by more than x%, the

pump shall signal an alarm and stop the delivery.

6.4 If the currently activated basal profile or the currently ongoing temporary basal

has been paused for more than more than x minutes, it shall signal an audible alarm

for every y minutes up to z.

6.5 For each bolus whose dosage exceeds the limit, the pump shall prompt the user

to either confirm this bolus or cancel it.

6.6 If the user requests a normal/extended bolus when another normal/extended

bolus is in progress, the pump shall issue an alert and deny the request.

6.7 The pump shall continue notifying the user every x minutes while an alarm

remains unacknowledged and not overridden by alarms with higher priorities.

114

Appendix B

Model Summary

B.1 Initial Model

B.1.1 Model

CONTEXT C0
SETS

state

CONSTANTS
on
off

AXIOMS
axm1 : state = {on, off }
axm2 : on 6= off

END
MACHINE IIP0
SEES C0
VARIABLES

rate
power

INVARIANTS
inv1 : rate ∈ N
inv2 : power ∈ state

inv3 : power = off ⇒ rate = 0
EVENTS
Initialisation

begin
act1 : rate := 0
act2 : power := off

end
Event POWER ON =̂

when
grd1 : power = off

then
act1 : power := on

end
Event INFU START =̂

any
ready

where
grd1 : ready ∈ BOOL
grd2 : ready = TRUE
grd3 : rate = 0

115

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

grd4 : power = on
then

act1 : rate :∈ N1
end

Event INFU PROC =̂
when

grd1 : power = on
then

act1 : rate :∈ N
end

Event POWER OFF =̂

when
grd1 : power = on

then
act1 : power := off
act2 : rate := 0

end

END

B.1.2 Proof Obligations

INITIALISATION/inv1/INV

INITIALISATION/inv3/INV

POWER ON/inv3/INV

INFU START/inv1/INV

INFU START/inv3/INV

INFU START/act1/FIS

INFU PROC/inv1/INV

INFU PROC/inv3/INV

INFU PROC/act1/FIS

POWER OFF/inv1/INV

POWER OFF/inv3/INV

B.2 Refinement One

B.2.1 Model

CONTEXT C1
EXTENDS C0
SETS

status

CONSTANTS
working
paused
stopped
b 2 n
s 2 n

AXIOMS
axm1 : status = {working , paused , stopped}
axm2 : working 6= paused
axm3 : paused 6= stopped
axm4 : working 6= stopped
axm5 : b 2 n ∈ BOOL→{0 , 1}
axm6 : b 2 n(TRUE) = 1
axm7 : b 2 n(FALSE) = 0
axm8 : s 2 n ∈ state→{0 , 1}
axm9 : s 2 n(on) = 1

116

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

axm10 : s 2 n(off) = 0
END
MACHINE IIP1
REFINES IIP0
SEES C1
VARIABLES

power

rate

prime

bp set

infu stat

INVARIANTS
inv1 : prime ∈ BOOL
inv2 : bp set ∈ BOOL
inv3 : infu stat ∈ status
inv4 : infu stat = stopped ∨

infu stat = paused ⇒ rate = 0
inv5 : infu stat = working ∨

infu stat = paused ⇒ power =
on∧prime = TRUE∧bp set =
TRUE

EVENTS
Initialisation

extended
begin

act1 : rate := 0
act2 : power := off
act3 : prime := FALSE
act4 : bp set := FALSE
act5 : infu stat := stopped

end
Event POWER ON =̂
refines POWER ON

when
grd1 : power = off

then
act1 : power := on

end
Event PRIME =̂

when
grd1 : power = on
grd2 : prime = FALSE

then
act1 : prime := TRUE

end
Event BP SET =̂

when
grd1 : power = on
grd2 : bp set = FALSE

then
act1 : bp set := TRUE

end
Event INFU START =̂
refines INFU START

when
grd1 : power = on
grd2 : prime = TRUE
grd3 : bp set = TRUE
grd4 : rate = 0
grd5 : infu stat = stopped

with
ready : b 2 n(ready) =

s 2 n(power)∗b 2 n(prime)∗
b 2 n(bp set)

then
act1 : rate :∈ N1
act2 : infu stat := working

end
Event INFU PROC =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working

then
act1 : rate :∈ N1

end
Event PAUSE =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working

then
act1 : rate := 0
act2 : infu stat := paused

end
Event RESUME =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = paused

then
act1 : rate :∈ N1

117

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

act2 : infu stat := working
end

Event INFU STOP =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working ∨

infu stat = paused
then

act1 : rate := 0
act2 : infu stat := stopped
act3 : prime := FALSE

end

Event POWER OFF =̂
refines POWER OFF

when
grd1 : power = on

then
act1 : power := off
act2 : rate := 0
act3 : prime := FALSE
act4 : bp set := FALSE
act5 : infu stat := stopped

end
END

B.2.2 Proof Obligations

axm6/WD

axm7/WD

axm9/WD

axm10/WD

INITIALIZATION/inv4/INV

INITIALIZATION/inv5/INV

POWER ON/inv5/INV

PRIME/inv5/INV

BP SET/inv5/INV

INFU START/ready/WD

INFU START/ready/WFIS*1

INFU START/inv4/INV

INFU START/inv5/INV

INFU START/grd2/GRD*

INFU PROC/inv4/INV

INFU PROC/act1/FIS

INFU PROC/act1/SIM

PAUSE/inv4/INV

PAUSE/inv5/INV

PAUSE/act1/SIM

RESUME/inv4/INV

RESUME/inv5/INV

RESUME/act1/FIS

RESUME/act1/SIM

INFU STOP/inv4/INV

INFU STOP/inv5/INV

INFU STOP/act1/SIM

POWER OFF/inv4/INV

POWER OFF/inv4/INV

1* indicate those POs which are interactive discharged

118

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

B.3 Refinement Two

B.3.1 Model

CONTEXT C2
EXTENDS C1
CONSTANTS

ts

ba rs

AXIOMS
axm1 : ts ⊆ N
axm2 : ts 6= ∅
axm3 : ba rs ⊆ N1

axm4 : ba rs 6= ∅
END
MACHINE v0.7 IIP2
REFINES v0.7 IIP1
SEES v0.7 C2
VARIABLES

power

rate

prime

infu stat

bp

bp set

INVARIANTS
inv1 : bp ∈ ts 7→ ba rs
inv2 : bp set = TRUE ⇒ bp 6=

∅ ∧ 0 ∈ dom(bp)
EVENTS
Initialisation

extended
begin

act1 : rate := 0
act2 : power := off
act3 : prime := FALSE
act4 : bp set := FALSE
act5 : infu stat := stopped
act6 : bp := ∅

end

Event BP ADD =̂
any

BA T
BA R

where
grd1 : BA T ∈ ts
grd2 : BA T /∈ dom(bp)
grd3 : BA R ∈ ba rs
grd4 : bp set = FALSE
grd5 : power = on

then
act1 : bp := bp ∪ {BA T 7→

BA R}
end

Event BP DEL =̂
any

BA T
where

grd1 : BA T ∈ dom(bp)
grd2 : bp set = FALSE
grd3 : power = on

then
act1 : bp := bp \ {BA T 7→

bp(BA T)}
end

Event BP OVERRIDE =̂
any

BA T
BA R

where
grd1 : BA T ∈ dom(bp)
grd2 : bp 6= ∅ ⇒ BA R 6=

bp(BA T)
grd3 : BA R ∈ ba rs
grd4 : bp set = FALSE
grd5 : power = on

then
act1 : bp := ({BA T}�−bp)∪
{BA T 7→ BA R}

119

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

end
Event BP VIEW =̂

any
BA T
result

where
grd1 : BA T ∈ dom(bp)
grd2 : result = bp(BA T)
grd3 : power = on

then
skip

end

Event BP COMP =̂

refines BP SET

when
grd1 : power = on
grd2 : bp set = FALSE
grd3 : bp 6= ∅
grd4 : 0 ∈ dom(bp)

then
act1 : bp set := TRUE

end

B.3.2 Proof Obligations

INITIALISATION/inv1/INV

INITIALISATION/inv2/INV

BP ADD/inv1/INV

BP ADD/inv2/INV

BP DEL/inv1/INV

BP DEL/inv2/INV

BP DEL/act1/WD

BP OVERRIDE/grd2/WD

BP OVERRIDE/inv1/INV

BP OVERRIDE/inv2/INV

BP VIEW/grd2/WD

BP COMP/inv2/INV

POWER OFF/inv2/INV

B.4 Refinement Three

B.4.1 Model

CONTEXT v0.7 C3
EXTENDS v0.7 C2
CONSTANTS

tba dmax

m f

exbo rmax

exbo max

bo max

exbo dmax

AXIOMS
axm1 : ts = 0 .. 86399
axm2 : tba dmax ∈ 1 .. 86399
axm3 : m f ∈ N1

axm4 : exbo rmax ∈ N1

120

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

axm5 : exbo max ∈ N1

axm6 : finite(ba rs)

axm7 : max (ba rs) + exbo rmax <
m f

axm8 : bo max ∈ N1

thm : max (ba rs) < m f
axm9 : exbo dmax ∈ 1 .. 86399

END
MACHINE IIP3
REFINES IIP2
SEES C3
EVENTS
Initialisation

extended
begin

act1 : rate := 0
act2 : power := off
act3 : prime := FALSE
act4 : bp set := FALSE
act5 : infu stat := stopped
act6 : bp := ∅
act7 : ba r := 0
act8 : ba stat := off
act9 : tba r := 0
act10 : tba t := 0
act11 : tba stat := off
act12 : bo r := 0
act13 : bo stat := off
act14 : bo req := 0
act15 : bo am := 0
act16 : exbo a := 0
act17 : exbo t := 0
act18 : exbo set := FALSE
act20 : exbo req := 0
act21 : exbo r := 0
act22 : exbo stat := off
act23 : t := 0
act24 : day := 0
act25 : at ba := ∅
act26 : at tba := ∅
act27 : at exbo := ∅

end
Event POWER ON =̂
refines POWER ON

when
grd1 : power = off

then
act1 : power := on

end

Event PRIME =̂

refines PRIME

when
grd1 : power = on
grd2 : prime = FALSE

then
act1 : prime := TRUE

end

Event BP ADD =̂

refines BP ADD

any
BA T
BA R

where
grd1 : BA T ∈ ts
grd2 : BA T /∈ dom(bp)
grd3 : BA R ∈ ba rs
grd4 : bp set = FALSE
grd5 : power = on

then
act1 : bp := bp ∪ {BA T 7→

BA R}
end

Event BP DEL =̂

refines BP DEL

any
BA T

where
grd1 : BA T ∈ dom(bp)
grd2 : bp set = FALSE
grd3 : power = on

then
act1 : bp := bp \ {BA T 7→

bp(BA T)}
end

Event BP OVERIDE =̂

refines BP OVERIDE

any
BA T
BA R

where
grd1 : BA T ∈ dom(bp)

121

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

grd2 : bp 6= ∅ ⇒ BA R 6=
bp(BA T)

grd3 : BA R ∈ ba rs
grd4 : bp set = FALSE
grd5 : power = on

then
act1 : bp := ({BA T}�− bp) ∪
{BA T 7→ BA R}

end
Event BP VIEW =̂
refines BP VIEW

any
BA T
result

where
grd1 : BA T ∈ dom(bp)
grd2 : result = bp(BA T)
grd3 : power = on

then
skip

end
Event BP COMP =̂
refines BP COMP

when
grd1 : power = on
grd2 : bp set = FALSE
grd3 : bp 6= ∅
grd4 : 0 ∈ dom(bp)

then
act1 : bp set := TRUE

end
Event INFU START NORMAL =̂
refines INFU START

any
CT

where
grd1 : power = on
grd2 : prime = TRUE
grd3 : bp set = TRUE
grd4 : rate = 0
grd5 : infu stat = stopped
grd6 : CT ∈ 0 .. 86399
grd7 : at exbo 6= ∅⇒ CT <

exbo a
grd8 : ba stat = off ∧

tba stat = off ∧
exbo stat = off ∧bo stat =
off

grd9 : at ba = ∅∧at tba = ∅
then

act1 : rate := bp(max ({i |i ∈
dom(bp) ∧ i ≤ CT}))

act2 : infu stat := working
act3 : t := CT
act4 : at ba := {i |i ∈

dom(bp) ∧ i > CT}
act5 : ba r := bp(max ({i |i ∈

dom(bp) ∧ i ≤ CT}))
act6 : ba stat := on

end
Event INFU START EXBO =̂
refines INFU START

any
CT

where
grd1 : power = on
grd2 : prime = TRUE
grd3 : bp set = TRUE
grd4 : rate = 0
grd5 : infu stat = stopped
grd6 : CT ∈ 0 .. 86399
grd7 : at exbo =
{exbo a, exbo t} ∧ CT =
exbo a

grd8 : ba stat = off ∧
tba stat = off ∧
exbo stat = off ∧bo stat =
off

grd9 : at ba = ∅∧at tba = ∅
grd10 : exbo t − exbo a > 0
grd11 : exbo req/(exbo t −

exbo a) ∈ 1 .. exbo rmax
grd12 : exbo set = TRUE

then
act1 : rate := bp(max ({i |i ∈

dom(bp) ∧ i ≤ CT})) +
exbo req/(exbo t−exbo a)

act2 : infu stat := working
act3 : t := CT
act4 : at ba := {i |i ∈

dom(bp) ∧ i > CT}
act5 : ba r := bp(max ({i |i ∈

dom(bp) ∧ i ≤ CT}))
act6 : ba stat := on
act7 : exbo r :=

exbo req/(exbo t−exbo a)

122

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

act8 : exbo stat := on
act9 : at exbo := at exbo \
{exbo a}

end
Event INFU START LATE EXBO =̂
refines INFU START

any
CT

where
grd1 : power = on
grd2 : prime = TRUE
grd3 : bp set = TRUE
grd4 : rate = 0
grd5 : infu stat = stopped
grd6 : CT ∈ 0 .. 86399
grd7 : at exbo =
{exbo a, exbo t} ∧ CT >
exbo a

grd8 : ba stat = off ∧
tba stat = off ∧
exbo stat = off ∧bo stat =
off

grd9 : at ba = ∅∧at tba = ∅
then

act1 : rate := bp(max ({i |i ∈
dom(bp) ∧ i ≤ CT}))

act2 : infu stat := working
act3 : t := CT
act4 : at ba := {i |i ∈

dom(bp) ∧ i > CT}
act5 : ba r := bp(max ({i |i ∈

dom(bp) ∧ i ≤ CT}))
act6 : ba stat := on
act7 : at exbo := ∅
act8 : exbo set := FALSE

end
Event PAUSE =̂
refines PAUSE

when
grd1 : power = on
grd2 : infu stat = working

then
act1 : rate := 0
act2 : infu stat := paused
act3 : ba r := 0
act4 : ba stat := off
act5 : tba r := 0
act6 : tba stat := off

act7 : at tba := ∅
act8 : exbo r := 0
act9 : exbo stat := off
act10 : bo r := 0
act11 : bo stat := off

end
Event RESUME 0 =̂
refines RESUME

when
grd1 : power = on
grd2 : infu stat = paused
grd4 : at exbo =
{exbo a, exbo t} ∧ t ≤
exbo a

then
act1 : rate := bp(max ({i |i ∈

dom(bp) ∧ i ≤
tmod86400}))

act2 : infu stat := working
act3 : ba stat := on
act4 : ba r := bp(max ({i |i ∈

dom(bp) ∧ i ≤
tmod86400}))

act5 : at ba := at ba \ {i |i ∈
at ba ∧ i ≤ t}

end
Event RESUME 1 =̂
refines RESUME

when
grd1 : power = on
grd2 : infu stat = paused
grd4 : at exbo =
{exbo a, exbo t} ∧ t >
exbo a

then
act1 : rate := bp(max ({i |i ∈

dom(bp) ∧ i ≤
tmod86400}))

act2 : infu stat := working
act3 : ba stat := on
act4 : ba r := bp(max ({i |i ∈

dom(bp) ∧ i ≤
tmod86400}))

act5 : at ba := at ba \ {i |i ∈
at ba ∧ i ≤ t}

act6 : at exbo := ∅
act7 : exbo set := FALSE

end

123

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

Event BA CHANGE 0 =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working
grd3 : t − day ∗ 86400 ∈

dom(bp) ∧ (at ba 6= ∅⇒
t ∈ at ba)

grd4 : ba stat = on
grd5 : ba r ∈ ba rs
grd6 : rate − ba r + bp(t −

day ∗ 86400) ≤ m f
grd7 : bo stat = off

then
act1 : rate := rate − ba r +

bp(t − day ∗ 86400)
act2 : at ba := at ba \ {t}
act3 : ba r := bp(t − day ∗

86400)
end

Event BA CHANGE 1 =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working
grd3 : t − day ∗ 86400 ∈

dom(bp) ∧ (at ba 6= ∅⇒
t ∈ at ba)

grd4 : ba stat = on
grd5 : ba r ∈ ba rs
grd6 : bo stat = on

then
act1 : rate := m f
act2 : at ba := at ba \ {t}
act3 : ba r := bp(t − day ∗

86400)
end

Event TBA ON =̂
refines INFU PROC

any
TBA D
TBA R

where
grd1 : power = on
grd2 : infu stat = working
grd3 : TBA D ∈ 1 ..

tba dmax

grd4 : TBA R ∈ ba rs
grd5 : tba stat = off
grd6 : bo stat = off
grd7 : rate ≥ ba r
grd8 : at tba = ∅
grd9 : ba stat = on

then
act1 : rate := rate − ba r +

TBA R
act2 : tba r := TBA R
act3 : ba r := 0
act4 : tba t := TBA D + t
act5 : tba stat := on
act6 : ba stat := off
act7 : at tba := {TBA D +t}
act8 : at ba := at ba \ {i |i ∈

at ba ∧ i < TBA D + t}
end

Event TBA OFF =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working
grd3 : t ≤ tba t
grd4 : rate ≥ tba r

then
act1 : rate := rate − tba r +

bp(max ({i |i ∈ dom(bp) ∧
i ≤ tmod86400}))

act2 : tba r := 0
act3 : tba stat := off
act4 : ba r := bp(max ({i |i ∈

dom(bp) ∧ i ≤
tmod86400}))

act5 : ba stat := on
act6 : at ba := ran(λi ·i ∈

dom(bp) ∧ i ≥ t − day ∗
86400 |i + day ∗ 86400)

act7 : at tba := ∅
end

Event EXBO SET =̂
any

AM
DUR
ACT

where
grd1 : infu stat = working
grd2 : AM ∈ 1 .. exbo max

124

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

grd3 : DUR ∈ 1 .. exbo dmax
grd4 : ACT ∈ t .. t + 86399
grd5 : AM /DUR ∈ 1 ..

exbo rmax
grd6 : exbo set = FALSE
grd7 : at exbo = ∅

then
act1 : exbo req := AM
act2 : exbo a := ACT
act3 : exbo t := ACT +DUR
act4 : at exbo :=
{ACT ,ACT + DUR}

act5 : exbo set := TRUE
end

Event EXBO SET MOD =̂
any

AM
DUR
ACT

where
grd1 : infu stat = working
grd2 : AM ∈ 1 .. exbo max
grd3 : DUR ∈ 1 .. exbo dmax
grd4 : ACT ∈ t .. t + 86399
grd5 : AM /DUR ∈ 1 ..

exbo rmax
grd6 : exbo set = TRUE
grd7 : at exbo = ∅
grd8 : t < min(at exbo)

then
act1 : exbo req := AM
act2 : exbo a := ACT
act3 : exbo t := ACT +DUR
act4 : at exbo :=
{ACT ,ACT + DUR}

end
Event EXBO ON =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working
grd3 : t = exbo a
grd4 : exbo stat = off
grd5 : at exbo =
{exbo a, exbo t}∧exbo t−
exbo a > 0

grd6 : exbo req/(exbo t −
exbo a) ∈ 1 .. exbo rmax

grd7 : exbo set = TRUE
grd8 : bo stat = off

then
act1 : rate := rate +

exbo req/(exbo t−exbo a)
act2 : exbo r :=

exbo req/(exbo t−exbo a)
act3 : exbo stat := on
act4 : at exbo := at exbo \
{exbo a}

end
Event EXBO OFF =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working
grd3 : exbo a ≤ t∧t ≤ exbo t
grd4 : exbo t − exbo a > 0
grd5 : exbo r ∈ 1 ..exbo rmax
grd6 : exbo r =

exbo req/(exbo t−exbo a)
grd7 : exbo stat = on
grd8 : rate ≥ exbo r

then
act1 : rate := rate − exbo r
act2 : exbo stat := off
act3 : exbo r := 0
act4 : at exbo := ∅
act5 : exbo set := FALSE

end
Event BO ON =̂
refines INFU PROC

any
AM

where
grd1 : power = on
grd2 : infu stat = working
grd3 : tba stat = off
grd4 : AM ∈ 1 .. bo max
grd5 : bo stat = off
grd6 : ba r ∈ ba rs
grd7 : exbo stat = off
grd8 : AM + ba r ≥ m f

then
act1 : rate := m f
act2 : bo r := m f − ba r
act3 : bo stat := on
act4 : bo am := 0

125

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

act5 : bo req := AM
end

Event BO SPEC =̂
refines INFU PROC

any
AM

where
grd1 : power = on
grd2 : infu stat = working
grd3 : tba stat = off
grd4 : AM ∈ 1 .. bo max
grd5 : bo stat = off
grd6 : ba r ∈ ba rs
grd7 : exbo stat = off
grd8 : AM + ba r < m f

then
act1 : rate := AM + ba r
act2 : bo r := AM + ba r
act3 : bo stat := on
act4 : bo am := 0
act5 : bo req := AM

end
Event BO PROC =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working
grd3 : bo stat = on
grd4 : t /∈ at ba ∪ at tba ∪

at exbo
grd5 : bo am+(m f −ba r) <

bo req
grd6 : t 6= 86400 ∗ day
grd7 : ba r ∈ ba rs

then
act1 : rate := m f
act2 : bo r , bo am : |bo r ′ =

m f − ba r ∧ bo am ′ =
bo am + bo r ′

act3 : t := t + 1
end

Event BO OFF =̂
refines INFU PROC

when
grd1 : power = on
grd2 : infu stat = working
grd3 : bo am ≥ bo req

grd4 : bo stat = on
then

act1 : rate := m f − bo r
act2 : bo stat := off
act3 : bo r := 0
act4 : bo req := 0
act5 : bo am := bo am

end

Event TICK TOCK =̂

when
grd1 : infu stat = working
grd2 : (at ba ∪ at tba ∪

at exbo) 6= ∅
⇒
(t < min(at ba ∪

at tba ∪ at exbo)
∨ infu stat =

paused)
grd3 : t 6= 86400 ∗ day
grd4 : bo stat = off

then
act1 : t := t + 1

end

Event BA T RESET =̂

when
grd1 : t = 86400 ∗ (day + 1)
grd2 : bp set = TRUE
grd3 : power = on
grd4 : (at ba ∪ at tba ∪

at exbo) 6= ∅
⇒
86400 ∗ (day +

1) ≤ min(at ba ∪ at tba ∪
at exbo)

∨ infu stat =
paused

then
act1 : at ba := ran(λi ·i ∈

dom(bp)|86400 ∗ (day +
1) + i)

act2 : day := day + 1
end

Event INFU STOP =̂

refines INFU STOP

when
grd1 : power = on

126

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

grd2 : infu stat =
working ∨ infu stat =
paused

then
act1 : rate := 0
act2 : infu stat := stopped
act3 : prime := FALSE
act4 : ba r := 0
act5 : ba stat := off
act6 : tba r := 0
act7 : tba t := 0
act8 : tba stat := off
act9 : bo r := 0
act10 : bo stat := off
act11 : bo req := 0
act12 : bo am := 0

act13 : exbo a := 0
act14 : exbo t := 0
act15 : exbo req := 0
act16 : exbo r := 0
act17 : exbo stat := off
act18 : t := 0
act19 : day := 0
act20 : at ba := ∅
act21 : at tba := ∅
act22 : at exbo := ∅
act23 : exbo set := FALSE

end
Event POWER OFF =̂
refines POWER OFF
END

127

Bibliography

[AAS05] A.D. Ames, A. Abate, and S. Sastry. Sufficient Conditions for the

Existence of Zeno Behavior. 2005 and 2005 European Control Confer-

ence. CDC-ECC ’05. 44th IEEE Conference on Decision and Control,

pages 696–701, December 2005.

[ABH+10] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son

Hoang, Farhad Mehta, and Laurent Voisin. Rodin: an Open Toolset

for Modelling and Reasing in Event-B. International Journal on Soft-

wore Tools for Tethnology Transfers, Volume 12(No. 6):pages 447–466,

April 2010.

[Abr96] Jean-Raymond Abrial. The B-book: assigning programs to meanings.

Cambridge University Press, 1996.

[Abr10] Jean-Raymond Abrial. Modelling in Event-B: system and software

engineering. Cambridge University Press, first edition, 2010.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theo-

retical Computer Science, Volume 126:pages 183–235, 1994.

128

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

[BFRR10] J. W. Bryans, J. S. Fitzgerald, A. Romanovsky, and A. Roth. Patterns

for Modelling Time and Consistency in Business Information Systems.

Proceedings of the 2010 15th IEEE International Conference on Engi-

neering of Complex Computer Systems, pages 105–114, 2010.

[But09a] Michael Butler. Modelling Guidelines for Discrete Control Systems.

Deploy deliverable d15, d6.1 advances in methods public document,

July 7th 2009.

[But09b] Michael Butler. Using Event-B Refinement to Verify a Control Strat-

egy (Unpublished). ECS, University of Southampton, May 2009.

[CM08] Dominique Cansell and Dominique Méry. The event-b modelling

method: Concepts and case studies. Logics of Sepcification Languages,

pages pages 47–152, 2008.

[CM09] Christophe and Mathieu. Animator of B System Model in the Rodin

Platform. May 2009. Electronically available at http://www.wiki.

event-b.org/index.php/AnimB.

[CMR07] Dominique Cansell, Dominique Méry, and Joris Rehm. Time Con-

straint Patterns for Event B Development. LNCS, Volume 4355:pages

140–154, 2007.

[Dep08] Deploy Project. February 2008. Electronically available at http://

www.deploy-project.eu/.

129

http://www.wiki.event-b.org/index.php/AnimB
http://www.wiki.event-b.org/index.php/AnimB
http://www.deploy-project.eu/
http://www.deploy-project.eu/

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

[DLPPCC86] David Lorge Parnas and Paul C. Clements. A Rational Design Process:

How and Why to Fake It. IEEE Transactions on Software Engineering,

Vol. SE-12(No.2), February 1986.

[FDA10] FDA. Safety Requirements for Generic Insulin Infusion Pump

Software. March 2010. Electronically available at http://www.

fda.gov/MedicalDevices/ProductsandMedicalProcedures/

GeneralHospitalDevicesandSupplies/InfusionPumps/

ucm202511.htm.

[For91] Mooz H. Forsberg, K. The Relationship of Systems Engineering to the

Project Cycle. First Annual Symposium of the National Council on

Sesteems Engineering (NCOSE), October 1991.

[GT08] R. Goebel and A.R. Teel. Zeno Behavior in Homogeneous Hybrid

Systems. 2008. CDC 2008. 47th IEEE Conference on Decision and

Control, pages 2758 –2763, December 2008.

[JP10] Ying Jin and David Lorge Parnas. Defining the Meaning of Tabular

Mathematical expressions. Science of Computer Programming, Volume

75:pages 980–1000, November 2010.

[JW05] Ryszard Janicki and Alan Wassyng. Tabular Expressions and Their

Relational Semantics. Fundam. Inf., Volume 67(No. 0169-2968):pages

343–370, March 2005.

130

http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

[KR95] B. Krishnamurthy and D.S. Rosenblum. Yeast: a general purpose

event-action system. Software Engineering, IEEE Transactions on,

Volume 21(No. 10):pages 845–857, October 1995.

[LB08] Michael Leuschel and Michael Butler. Prob : an automated analysis

toolset for the B method. Iinternational Journal on Software Tools

for Tethnology Transfer (STTT), Volume 10:pages 185–203, 2008.

[LV95] Nancy Lynch and Frits Vandraager. Forward and Backward Simula-

tions - Part II: Timing-Based Systems. Information and Computation,

Volume 128, 1995.

[MS10] Dominique Méry and Neeraj Kumar Singh. Technical Report on For-

mal Development of Two-Electrode Cardiac Pacing System. HAL:

inria-00465061, February 2010.

[PM95] David Lorge Parnas and Jan Madey. Functional Documents for Com-

puter Systems. Science of Computer Programming, Volume 25:pages

41–61, 1995.

[Reh06] Joris Rehm. A Methods to Refine Time Constraints in Event B

Framework. In Stephan Merz and Tobias Nipkow, editors, Automatic

Verification of Critical Systems - AVoCS 2006, pages 173–177, Nan-

cy/France, September 2006.

[rod09] Rodin Platform and Plug-in Installation. April 2009. Electronically

available at http://www.event-b.org/install.html.

131

http://www.event-b.org/install.html

M.Sc. Thesis - Hao Xu McMaster - Computing and Software

[SPHB10] Renato Alexandre Silva, Carine Pascal, Thai Son Hoang, and Michael

Butler. Decomposition Tool for Event-B. In Proceedings of the Work-

shop on Tool Building in Formal Methods - ABZ Conference, Orford,

Canada, February 2010.

[XM11] Hao Xu and Tom Maibaum. An Event-B Approach to Timing Issues

Applied to the Generic Insulin Infusion Pump. To appear in LNCS in

2012, FHIES 2011.

[YZPLJRJ10] Yi Zhang, Paul L. Jones, and Raoul Jetley. A hazard analysis for a

generic insulin infusion pump. Journal of Diabetes Science and Tech-

nology, Volume 4(Issue 2):pages 263–283, March 2010.

132

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Why Event-B
	Overview of the Chapters
	Chapter 1: Introduction
	Chapter 2: The Event-B Language
	Chapter 3: The Insulin Infusion Pump
	Chapter 4: Modelling the IIP
	Chapter 5: Future Work
	Chapter 5: Conclusion

	The Event-B Language
	Mathematical Languages
	Sequent Calculus
	Inference Rules
	Set Theory

	Event-B Notation
	Components and Relations
	Context and Machine Notation

	Proof Obligation Rules
	Invariant Preservation Rule
	Feasibility Rule
	Guard Strengthening Rule
	Simulation Rule
	Witness Feasibility Rule
	Well-definedness Rule

	The Insulin Infusion Pump
	Components
	Commands and Actions
	Interaction Behaviour
	Requirements of IIP

	Modelling the IIP
	Refinement Strategies
	System Structure Review
	Initial Model
	Model Description
	Formalizing the States
	Formalizing the Events
	Summary of the Initial Model

	First Refinement: Refining Phases
	Model Description
	Refining the State
	Refining the Events
	Summary of the First Refinement

	Second Refinement: Basal Profile Setting
	Model Description
	Refining the State
	Refining the Events
	Summary of the Second Refinement

	Time Constraint Patterns
	An Existing Time Pattern
	Extension of Time Pattern
	A Time Pattern with Unpredictable Events
	Time Pattern for Classifying the Events
	Discussions of Zeno Behaviour
	Comparison with Other Approaches

	Third Refinement: Introducing the Time Pattern
	Model Description
	Refining the States
	Refining the Events
	Summary of the Third Refinement

	Summary of the IIP Model
	Summary of Refinement Stage
	Summary of Inconsistencies

	Future Work
	Future Work on the IIP Project
	Future Work on Technical Research
	No Support for Real Numbers
	Refinement Consistency Proof Obligation Rules
	Completeness of the Model

	Conclusion
	IIP Requirements
	Infusion Control
	Basal Programming and Administration
	Bolus Calculation and Administration
	Drug Reservoir
	Pump Suspension
	Alerts and Alarms

	Model Summary
	Initial Model
	Model
	Proof Obligations

	Refinement One
	Model
	Proof Obligations

	Refinement Two
	Model
	Proof Obligations

	Refinement Three
	Model

