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. ABSTRACT

This thesis addresses itself to two main veians of computer-

aided design of eléctrical networks, namely, «simulation and -

optimizaticn. 4 oritical review of the state of the art in
-

-
-

simulation approaches to nznetworks for analysis and sensitivity

evaluation, design concepts and optizmization algorithms, is
. .

presented. A new approach for the simulation andedesign of lumped

' L]
networks in the time domain is presenjed. The approach is based

on the transmission-line matrix'ﬂﬁphod of numerical analysis. The

. . -«
exploitation of general simulators which can be used as a tool in

the integrated design process of electrical networks is given with
. —

specific examples. A new approach for the analysis and design of

cascaded networks has been developed. This approach proves to be

-~ .

efficient and very useful for sensitivilty and tolerance analysis.
. Y .

The approach has alsoc been generalized to 2p-peort cascaded

.

netWorks.

iii
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CEAPTER 1

INTRODUCTION .

Methods of analysis and sensitivity evaluation: for

electrical circuits in the time domain and cascaded circuits in
the frequency domain are the subjects of this_thes\is. Analysis
a.n_d sensitivity evaluation form an integral part of any computer-
aided circuit design scheme.

The’circuit design . problem c¢an be classified into twWoO
types. The first is the clz.a.ssical type, used during the 'last
decade, from which we ob%ain one set of c:‘.rc‘uit parameter values.
.This set of parameter_values. let the desired circuit response (or
-respon:?es) meet optimally the given specifications. Co-nverting
the result:?. obtained tﬂ: the real world can be either very
difficult or very expensive ‘especially‘ if wmass production 1is
‘anticipated. -This _is due to the high price of elements, if xhey
are a?vailable, with very precise values. This suggests the seccon
type which considers ‘c;he problen:; more seriously from the
manufacturing point of view. lIn this case tolerances oo design
parameters, post—producticn tuning of certain components and yield
maximization can be considefed. This in turn "leads to a: mo;.-e
sophisticated problem where 2 nominal set of param'eter-s and their
associated manufacturing tolerances (and/or tuning) are the

outcomes. B2oth types of design have these steps in commol
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- -
-

a) npumerical circuil apalysis',

[y

. b) first-order sensitivitires-'(needed for the optimization

process), )
¢) large-change sensitivities.

This thesis addresses the time-domain analysis of lirear

—

-

lumped networka‘and the sensitivity of the response w.r.t. design’

varia.bies, the use of gereral 'simulai:ors to obtain} the quadratic
approx..mation of\ a circuit response which is further useci in the
design procedure, and the response and sensitivity analysis for
" mascaded networks in the frequency domain. | ‘

Chapter 2 presents a review of existing met':fhod:s of éircuit
analysis, sensitiv*t-s; analysis and optimiz’&tion. Different
problem formulations are alsc given. A section in the chapter is
_devo‘c:ed to the presentation and formulationA of the problem with
practical considerations. Similar‘ problem foru;ulations and
" methods, which were not developec; by elec_trical engineers but
which deal with the same type of problem, &e briefly discussed.

A new approach for time-domain analysis and first-;order
sensitivities of}}umped networks is presentéd in Chapter 3. The
lumped elements a;'e modeled by transmission-liﬁe sections or stubs
ind the modeled network is analyzed bY the transmiséion-line
m:;&:rix (TLM) .method, which provides an exact solution to' t‘he
rﬁodel. Compensation of errors arising in mo;:i'eling_ the network

elements is discussed in this chapter. Sensitivities of the

model’s response w.r.t. design variables, time and time 3tep are
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_ciei‘:‘.vec-i.‘ A;vantages of - this method over existing methods are
menuioned. - S ls

Chapter & deals with the use of general simulators and
their exploitation to ‘obtain the response (of any general network)
at different points in the parameter space. . These response values
are subsequently used to obtain 2 multidimensional polynoma.l
approximating the response func;.:.on within an :Ln»erpolat* on
.re.gicn_. ) The design - 'is then pe*formed using the polynomials
instéad of the real response. For this approach the sensitivities
" w.r.t. design variables are ;btained fror the polyrnomial
app:;oximation c;lirec_tly. - Two specific examples are given in this

. N
chapter.

An exact and efficient approach o network analysis for
cascaded “structures is presented in Chapter"S. It is very useful
for- diffe_zr-entia.l and large-change sensitivity evaluations. It
facilitates the exploitation of symmetry to reduce computational
effort for the analysis. Algorithms for evaluating first- and
second-order sensitivities, the effect of ,a multiple of
sipultaneous large ct;anges in the variable parameters, a;':d the
evaluation of the response, as well as the (s‘ensitivity of the
response, at the vertices of a tolerance region are given in this
chapter. Tt is also .shown how responses at ¢ifferent loads in
branched networks, which may be connected .in series or in pa:';.llél

with the main cascade, can be obtained analytically in terms of

the variable elements. The approach has also been generalized to
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deal with 2p-port cascaded elementgi

Appendix A includes a finite difference formula used to
approxima.e the first-order derivative of the :ime-domain response
w.r.t. time needed 1in Table 3. 7.

The data supplied to the general simulator SPICE2 for the
analysis of the current switeh emitter follower example in Chapter
L is shown in Appendix B.\ Appendix C includes the derivations for
the formulas in Chapter 5, Section 5.6, for the branched circuits.

Original contributions claimed for this thesis are:

(1 A_complete exposition of the design problem of eléctrical
circuits and suitable methods of formulation.

(2) A critical review af optimization methods, used in -the
design of c;rcu;ts, developed by electrical ensineers.

(3) The development of 2 new method for analy51s ‘and
sensitivisy evaluation of lumped -linear cireuits in” the
tiéé doma%n. ! '

(4) The illustration of efficien%‘fxploitation of general
circuit simﬁlators in the design procgdure. |

(5) A new approach to the analysis and sensitivity evaluation
of cascaded networks. |

(6) AlgoFithms which employ this new approach and their use in

the design of cascaded networks.

&



CEAPIER 2

SIMULATION AND OPTIMIZATION OF ELECTRICAL NEIWORKS:
- P

4 CRITICAL REVIEW

2.1 Introduction

-

The classical computer-aided eircuit design problex can be
stated as follows: after choosing the appfopriaée circuit
Lopology (configuration) with known compqpents, find a2 single set
of designable.pgrameter values which let the circuiﬁ response oOr
performance opti;élly meet some given spe:ificgtions.

The pfsb}ém may be reformﬁlated as a2 nonlinear programming
" problexm (minimizing an objective function subjeet . Lo constraints)
where the objective and constraints embody the design criteria.
The objective function . itself is usually of the least sguares,
least pth or minimax form. |

The evaluation of a suitable objective function involves
+ne evaluation of the response function. F(s, ¢), which is a
function of the network parameters f (SgsIStQ{il"jgpacitors,
inductors, gmitter area Bfﬁintegrated circLits transistor, etc.)
and of other independent varaables % (frequency, time, temperature,
tunable network elements, etc.). The function F(g, Y) is usually
assumed to be continuous in the ranges of ¢ and ¥ of interest.
Performance specificatioﬁs are usually functions of ¥ only,

whereas design constraints are generélly functions of ¢.

(\J

L



This chapter reviews _the methods and techniques of each
step inveolved in the design procegu;e, namely the respdnsg
-rev;iuation {or circuit analysis), derivative ev%luatﬁon
(differenfial sensitivity), large-change séngigivity, objective

formulstion and design specification, and optim tion approaches

Vusgd in thé'd?sign of electronic ‘circuits.

X The last section déﬁls with optimgl design whe ertain
additional practical  engineering probiems are considered.
centering problep'formulated in a nonlinear programming form 1s
presented. Furﬁher- practical considerations such- as tuning,
tolerance aﬁsignmeandeer modél and environmental uncertainties
are discussed.

The diffiéﬁlties facing the designer wishing to avail
himself of efficient nonlinear programming aids are elaborated on.
Further development of available algorithms and problen
formulations which can improve the state of the arti are suggested

-

in Chapter 6.
' g

2.2 Methods of Analysis

.2.2.1 Linear Networks in the.Frequency Domain (the A.C. Case)-
A linear network is deécribed by a set of linear equations
of the form

Ax=Db, (2-1)

where A is the’ matrix describing the circuit {with complex

-



- T -

coefficients) and can be the nodal admittance matéi: Y, the mesh
impedance matrix % or the tableau matrix (Hachtel, Brayton and
Gustgvson 1971). x is éhe unknown vector consisting of voltages,
currents or both, E is a knmown vector consisting essentially of
sources exciting the circuit. An important feature of the matrix
A is «pat it is sparse for -large peﬁworks. The sparsity of the
matrix increases with the size of tﬁe nftwork. Sparse matrix
techniques (éee Duff 1977) for stpring the matrix A& and for the
pear-optimum ordering of the equa ions, are usually usec. The
reordering of the.equations is performed so as to preserve the
sparsity and to reduce téé number of fill-ins (ecreated nonzero
elements which were formerly zeros) during the LU decomposition,
which is often-used to solve these equations. At each frequency
point of interest the matrix § is rebuilt and the set of.equations
resolved. Only the numerical values of the entries of the L and U
matrices, where & = %q, are changing but their structures remain
fixed. A

. For certain circuits special methods may be more efficient
than general methods of analysis. As an exaﬁple, cascad;d
networks, such as the one shown in Fig. 2.1, are analyzed by the

transmission or chain matrix, where each element is considered as

a two—port subnetwork described by a 2x2 matrix of the form

L. 1 23, (2.2)

which relates the input to the output of emch two—-port subnetwork.

rx.J
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Fig. 2.1 A cascaded network, consisting of two-port subnetworks

connected in cascade, with conventional directioms of

currents and voltages.

L

The analyfis is carried out by assuming a current throuéh the load

with a value of one (hence the voltage across the load can be

known) and by successive matrix multipiication we can obtain the

information at +the input (the source) end. Suppose that the

_computed voltage at the source end is ch and the actual source

voltage 1is vSa‘

®or all voltages and

computed values by the

»

Since the network is ‘linear, the actual values

currents are found by multiplying ﬁhe

- -
factor vSa/ch (Bandier, Rizk and Tromp

19763\Efndler, Popovié and Jha 1974, Green 1969, Parker 1969}.

A special case of the linear A.C. analysis is the D.C.

analysis of resistive networks. The equations, which are real in

this case, are set up in the same way as in the A.C. case and then

solved once.
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2.2.2 Linear Networks in the Time Domain

in .‘some problems we are interested in the transients of the
cir'cuit and the analysis has-to be carried out in the time domain.
The network equations deseribing the linear network, using _the

state-variable approach (Chua and Lin 1975) which is commonly

used, are ) _ -
x = Ax + Bu, - (2.3)
vy = Cx.+ Du, ‘ - - (2.%)

where A is Ta coefficient matrix relating the . state vector x
(capacitor voltages and inductor currents, for example) to. its
time derivative :.c_, and I:_3 is a coefficient matrix coupling the
effects of the independent 3source vector u. Equation (2.4) -give's

the output vector y, where C and D are coefficient patrices.

. : ot @
Equation (2.3) is a s3et of first-order differential equations

whose solution is given' by

x
e N - A(t-t ) '
x(t) = At ¢ e~AT B u(r) dr + e~ °© x(to), * (2.5)
< L 22 = )
)

and the output vector is

ACt-t ) t

y(8) = ce” O x(ty) +{g At s e7AT Bu(ryar + gg(t)}.. (2.6)
t .
Q

v

Di_fférent approaches to evalué.ting eét and the integrals in (2.5)
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and (2.6) exist (Calahan 1972, Chua and Lin 1975, DeRusso, Roy and

Close 1966). - o -

A new method for analyzing lumped, linear networks in the =

time domain has been developed by Bandler, Johrs and Rizk (1977)
The lumped elements are mndeled by their equivalent distributed
ransmission—line models. The transmission-line network is then
analyzed using the ILM‘GéraﬂSmission-line matrix) metbod. Tnis
approach avoids the formulaticﬁ of the state equ;tions} of the

original network and the evaluation of eét or any integrals.

2.2.3 Nonlinear Networks: the D.C. Case

In the nonlinear D.C. case the network equations are

expressed in the form

£(x) = 0. (2.7)

These equations are usually solved by the Newton-Raphson algorithm
(see Table 2.1).

Another method, which is equivalent to the Newton-Raphson

.method, is to linearize the equations describing the nonlinear

elements of the circuit. The liﬁearized formulas are then
represented by linear elements, “called the discrete or~the
companion elements (Calahan 1972, Chua and Lin 1975) and the
resulting linear circ?it is analyzed succqfsively until
convergence is reached.

Piecewiﬁe-linear analysis is also used in solving nonlinear

networks (Chua ]971). Other approaches dealing with circuits with
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tiple solutions are described in Branin (1972), Chao,_Liu and

Pan (1975), and Chua and Ushida (1976). _ S

: - -~ -

-

2.2.4 Nonlinear Networks in the Time Domain

\ Noplinear transient networks may be analyzed by different

methods. One method is to formulate the state equatioms of the . .

network, which a}e ordinary differential-equations in the normal
1 .
form e

T

= £(x, &), . ' - (2.8)

where x 1s the vector of state variables. Equation (2.8) is then
solved by a nﬁmerical integfﬁtion scheme. tability of the
<Ategration and its ability to deal with stiff equations.(éear
1971) are some crlteria for choosing the integration scheme for
the analysis. Tég tableaw apprbach (Eacﬁtel, Brayton and
Gustavson 1971) is another method for solving nenlinear netqorké.'
The method diseretizes, at the. circuit component (branch) level,
the derivative operator d/dt, obtaining nonlinear algebraié
difference equations soived by the Newton-Raphson algorithm. = The
process proceeds in two loops, one for solfing the nonlinear
algebraiec difference equations and the ;ext for the time
iteration. In the Newton-Raphson iteration a set of linear
equations are repeatedly solved and the sparsity of the
coefficient matrix of these equations should be taken into

consideration.
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The nonlinear netuork.problah in the éime domair may be
reduced to a sequence of D.C. analyses. This is achieved by
discretizing the time derivative operator, then replacing the
nonlinear elements by their corresponding companion {linearizedd
elements and solving.a D.C. network. The tableau approacﬁ and the
companion ap;*oach have advantages over the state-space approach
in the case of iarge networks. The reason is that formulating the
state equatlons of a large network requires emendous ef‘ort.
The TLM meuﬁod when used for analyzing nonlinear networks shares
this advantage with the former two approaches.

This presentation of .different tybes of networks and

.

methods of solutioms 1is summarized in Table 2.1.
2.3 Response Fuﬁction Derivatives
It is well known that optimization techniques which use

derivatives are superior to nongradient techniqueé if first-order
‘sensitkvities are readily available. In order to get the
" derivatives of the response function F(e¢, ¥), which is a funcpidg
'of certain voltéges and/or cu;repts of the circuit, sensitivities
of these voltages and/or currents with respect to the wvariable
par;meters have to be evaluated. One of the most commonly used
approaches to evaluate ;hese sensitivities is the ad joint=-network
;pproach (Direétor and Rohrer 196%a). In this approach an adjoint

network 1is cpnstructed, naving the same topology 2as the original

network, and analyzed. The results of both analyses are used to
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evaluate the required sen tvitfes.

As an example, in the frequency domain, if the metwork is
represgnted by its admittance matrix Y at a frequency point and
the equations are I V = I, then the equations representing the

- -

I
adjoint network are

(2.9

g

-
. ¢ =<
o
l:—i’

where

denotes transpose,

s |

is the vectof of node voltages of thne adjoint network,

is the current excitation vector of the adjoint network.

Y =)

~

Y and Y, for example, are substituted into some derived formulas
to evaluate the sensitivities (Bandler and Seviora 1970, Director
and Rohrer 1969b).

Branin (1973) demonstrated that the sensitivities, in
general, can be obtained by matrix manipulation without the need
of'defining what is‘termed the adjoint network. Note also ﬁhat at, .
each freguency two sets of equations are solved. Using the L.U.;L
deconmposition we can achieve some saving by avoiding ﬁbe
decompoSition of the matrix t;anspose (Director 1971). For-
cascaded networks, an analysis approzch newly developed, described
in Chapter ‘5, provides, with little additionmal computational
‘effort all the infofmation needed %to evaluate the required

sensitivities. In the linear D.C. case the adjoint network is
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linear and botk original and adjoint networks are.analyzed once to
caleulate the sensitivities. A n?nlinear D.C. network wil% have
an associated linear adjoint network which has to be analyzed.

B In the time-domain case sensitivities are much more
difficult tq'evaluate because ﬁhe equgtions are in the form of .
ordinary differential équations. Hachtel and Robrer- (1967) used
variational techniques to get an adjoint set of equétions which,
when solved along withlthe original set, allow sensitivities to be
evaluated. In the adjoint-network approach, if tﬁé original
network is analyzed in the interval t = [O, tf], the: adjoin£
network ?; analyzed in the interval t = [0, tf], where T = [tf -
t]. The integrétion involving the adjoint network is backward, on
the time axis. ?he fb;mulas for the seqsitiviiies are integral
formulas, i.e., in evaluating the sensitivities with respect to k
variables, k integrations have to be peffo?med after analyzing the
original and adjoint networks. Other methods can:be used to
evaluate the sensi;ivities {Parker 39?1) but they do ndt\app;ar
easier or more efficient than the ad joint-network approach.\

The TLM method can, in parallel- with the response
evaluation, provide the sensitivity of the time ‘response w.r.t.
all the design variables (as is shown in Chapter 3).

An appreoach déveloped by Bandler and Abdel-Malek
(Abdel-Malek 1977, Bandler, Abdel-Malek, dJohns and Rizk 1976,
Bandler and Abdel-Malek 1978a) avoids the evaluation of the exacz//

response function derivatives. Multidimensional polynomia/
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approximations of the response functions are.performed usiné a
ainimal numbe}'of evaluations of the actual functions within an
;ntgrpolation region. “The approximations are used in the
obtimiiation process instead df the aétuai fﬁnctions. The
derivatives of the approximations are efficiently and- rapidly
obtained. During optimization the approximation is u;;gatéd in
different regions iIn the space or.in smaller interpolation regions
as indicated by the optimization or to obtain higher accurﬁcy,
respectifely. ’

In some cases the response derivative is evaluated as a
éecond-order sensitivity. An example of such a casé is the group
delay which is obtained by finding the semsitivity of the output
voltage w.r.t. frequen;y. An approach which makes use of the
adjoint-network concept to find the exact group delay sensitivi-
ties 1is deseribed in Rizk (1975) and Bandler; BRizk ané Tromp
(1976). | Q
2.h Large-change Sensitivity

Large-change sensitivities are important in . the centering
and tolerancing problem'described in Section 2.7. Here, we are
interested in large changes iﬁ the variable parameters which often
result in a considerable change;in the response function.

Fidler (1976) and Schwarz (1977) explored the‘relatlonship
between large-change and differential sensitivity for bilinear

networks (wnere the network function is a ratio of polyncmials).
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They 'showed that two analyses of the network, lwlwith the variable
element perturbed in addition to the analysis of the nominal
network are r-equired to evaluate any large-chaege and differential
sensitivity of differ'ent network ﬁmctions w.r.t. this element.

Singhal v:Lach and Bryant -(1973) expressed the network
function (the bilinear function) in terms of the variable
parameters exblieitly. The approach requires the solution of the
net‘:work with at most k+1 differenf. excitations (where k is the
number of variables), evaluap,ion of some of the principal minors
of a matrix of order k-t»f'ia::d the solution of two triangular
systems of equations. _ Once the coefficients of the ‘bilinear
function is obtained any large change can be easily evaluated.

Gadenz, Rezai-Fakhr and Temes (1973) used the adjoint~
network concept fo.r' evaluating large-change effects. This
approach requires k+1 analyses of the adjoint network and the
solEtion of a linea.r-set.' of equations of order k. For any set of
large cl;langes the linear system has to be resolved.

Goddard, Vi}.lalaz and Spence (1971) replaced the large
change in an element by 2 current source whose value is identical
to the current initially flowing ,through" the change of the
.elemerit- If the no_dal admittance matrix is used for the analysis, '
only the r.h.s. of the matriﬁc equation is changed. Since the
inverse of Y (or its LU factorization) is obtained previeusly for

the original analysis, only matrix multiplication by the new

current vector (or forward and backward substitution) is required
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to obtain the new.network response.”

Leung and Spence (1975) used matrix inverse modification
methods onuseholder relétions) to evalua£e the cgange in response
due to multipar§meter large changes.

The new abproach presented in Chapter 5 for cascaded

nétworks provides large-change sensitivities ‘without any

additicnal effort (than the analysis). The reason is that the

‘variable parameter can heu\felated explicitly with the network

functicn and hence any change ian this function due to a~chanée in
the variable can be easily evaluated. . -

We have to note}that the aforementioned approaches are for
linear s?stems ‘in the frequency domain. Rezai=-Fakhr and Temes
{1975) partitioned the .nonlinear network into iwo parts. The
first is the linear nomimal circuit described by its pulse-
response matrix and the second consists of all independent
sourcés, all element incremeﬁts and_all nonlinear eiements pulled
out of the network. Combining the circuit relatidns a reduced set
of nonlinear equations is obtained which has to be sol%ed
;ter;tively, at each time step, fof-each set of large changes.

In the quadratic appro;imation approach (Bandler and
Abdel-Malek 1978a) once the coefficients of the polynomial are
i2£§i88d (after (k+1)(k+2)/2 analyses), any large-change
sensitivity can be easily obtained by substituting in the
multidimensional -polynomial the perturbed parameter value. This

value has to lie within the limits of the approximation region,

<
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where the approximatioﬁ of éhe response function. is assumed to be
valid. This approach is approximate but its advantages are that
it is véry fast and can be applied in the frequency and time
domains (Bandler, Abdel-Malek, ﬁalsgaard; Elrazaz and Rizk 1978).‘
2.5 ] besign Spe;iricatidns and Error Functions

The problem where the response function has to meet 2
single specificétion function S(v), assuming we have one
independent variable ¥, can be demonstrated by an aﬁplifier
example: Consider Fig. 2.2(a), in which V1(jm) is the input
voltage (voltage ;f the source) to the amplifier at frequency w
and Vz(j@) is the output voltage at tﬁe same frequency. Tﬂ; gain

of the amplifier, which is a linear giapuit, is usually given by

- Vz(jm)
F(g, V) = G(g, w) & 20 log10 ;:?3;7 . (2.10)

The problem is to obtain ¢ which results in a gain as close as

possible, in scme sense, t; a desired gain, for example, such as
the one shown in Fig. 2.2(b).

Apother situation which is frequently encountered in

practice is the problem defined by upper and lower specifications.

‘ Iin filter design, for example, we are generally interested in two

band types (consisting of intervals of frequency w), nawely the
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. —o+
V,(jw) amplifier ‘ v, (jw)
’ | o
(a)
gain :
'
\response specification S{w)
—

(b) - ’
Fig. 2.2 An amplifier design problem indicating (a) an applied
voltage Vl(jm) and output voltage Vz(jm), where w is the

frequency and j = v-1, (b} a possible'gain specification

for the amplifier.
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stopband and the passband. In the stopband the signal is to be
prevented from passing through the filter by making the losses as
nigh as possible. This can be expressed by a lower specification
(or bound) of large ;value. In the passband the situation is
reversed and it is expressed by an upper specifiéation (or bound)
.of 2 small wvalue. Figure 2:3 shows the‘ upper and lower
specifications of a bandpass filter and a response function
?iolatiﬁg these specifications on the interval th’ wu].

' A suitable objective for a problem with upﬁer and lower
specifications will reduce the amount by which the acﬁﬁal response
fails to meet the specifications, or increase the ampuﬁt by which
the circuit response exceeds the specifications (Bandler 1969).

In electrical circuit design more than one reéponse
function might have to meet given specifications. As\an example,
a circuit can be designed to meet desired specificatiéhagin both
frequency and time domains. In this case we have wmore than one
independent variable ¥, namely ¢1, wa, ey ¢n, where n 1s the
number of these independent variables. Accordingly, we have n
response functions 51(f, ¢1), Fz(?, wz), cees ?n(¢, wn) and n
specifications Sj(¢1), Sz(wa), ceey Sn(wn). The corresponding

error functions are given Sy

ej(ch wj) = wj(wj) (Fj(g, wj) - Sj(wj)), j=1,2, ...,n, (2.17)

~
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Sz (¥
S,(¥)
. stopband
s?opbcn
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e/

¥, Yy

a

Fig. 2.3 The respouse function of a bandpass filter

violating upper and lower specifications.
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for the continuous cése with wj ‘as a positive Jjth weighting
function. It is necessafy in practiée, on a &igital computer, Lo
cbnsider a discrete set of samples of w, such that satisfying the
specification at these sampie points implies satisfying them
21lmost everywhere. Thus, for the discrete case, taking I:j as the ’

sndex set for the jth functions, .

3o A 3 o3y o odemdeey o3 3
e;(¢) = ¢ (o, ¥3) = wi(Fi(g) S{), eI o (2.12)
is the jth error function evaluated at the ith sample point along

the vJ axis.

In'general;'we can have upper and lower specifications for
each wj. In the design of "a lowpass filter, fpr example, We can
have upper‘and lower specifications in the frequegcy domain, and a

single specification in the time domain. The error functions will

be of the form

ete, ¥y = wteel) Fle, v - sl (2.13)
o~ u - u

el(¢, w1) = wl(¢1) (F1(g, ¢1) - sl(w1)), (2.18)
s, ) = W20 2Ly, ¥ - S2AN, (2.15)

where the subscripts u and & are for upper and lower
specifications, respectively, w1 is the frequency w and wz is the
time t. F{éures 2.4(a) and 2.4(b) show the specifications in the

frequency and time domains, respectively.



- 24 -
Ft, ! Fig; v
4
: : 17,1 .
7777, S;¥)
. % '
(2) .
Sgwh .
S
@) ) —g‘p1=:°°
F4s?
\ | i
F2(¢,¥2)
AN
/N
(b)
b // V \32(‘;,2)
© \_‘/’/\ —y2=t '

Fig. 2.4 An example of multiple objectives in filter desigm,
(2) the insertion loss specification inm the frequency
domain of a lowpass filter, (b) an impulse Tesponse

specification in the time domain of the lowpass filterx.

-~



a Iﬁ the preceding discussion we considered that each
, response function and each specification is a function of one
ihdépendent.variable wj. In some cases we are confronted with
response functions and specifications which ame functions of the n
independent variables. These vgrié%?es ecan for instance, be time
ané temperature; frequ;ncy and 2 tunable “circuit parameter; or
frequencies in a swo-dimensional frequenly respoase of a
. two~dimensional digiiél filteﬁ. The response f;nctioﬁf and the.

_ specifications will be F(eo, %) and S(¥), respgctivély, where

{ i
] _ - .
¢1
5 .
1 w .
@ v AL L (2.16)
K -

The freguency response function of a two=dimensional
lowpass digital filter, for example, of a symmetrically

constrained finite impulse response (zero phase) is given by

-

Rabiner,. McClellan and Parks (1975), namely,

-j(n1m1+n2m2); 2y B2
= e r ¢ alk,2) coskm1 COSLW o5 (2.17)
k=0 2=0

where the a(k,t) are the filter coefficients, and the specifica-

- -

tions are
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2 2 2
1 m1+w2$_§:p,

Stuyy wy) = - (2.18)

0 wz

2

. where w and w, are the edges of passband and stopband,

respectively. In the ‘discrete case the response'funciion

evaluated at ‘the ith sample polnt is denoted by

\ Fo(8) 2 F(S, ¥,), o 2.19)

for -

v i
1
- 2
. \bi

¥ = . y ie I, (2.20)
n
- S
A

where ¢;, wi, .ey wg are the values of the independent variables
at the ith sample point in the index set I.
In general, where we have upper and lower specifications,

the error functions are generalized to

s .

ey (8) = e, (¢ ¥e) = W (F;(e) - Sy3lr 1 € I (2.21)
A e

e,5(¢) = e (0, ¥) = wzi_(Ficf) - Spylr L€ Iy (2.22)

where Iu and Iz are index sets, not necessarily disjoint. These
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can be used in a suitable cbjective for the approximation problem.

Figures 2.5(af and 2.5(b) show two possible cases in two
dimensions.
Suppose
. { a3’ je X,
fi = ie I, (2.23)
=€y k ¢ IL,
where
Iu = {1, 2, -+ nu}, (2.24)
IL = {1, 2, -.., nz}, (2.25)
I ={1,2, ..., o, +n,l, (2.26)°

and acecording to a numbering scheme where the error functions for

upper specifications are considered first:

j=1 ir 1 £
k:i—nu ifi_)
Let
A
Mf(¢) = max fi(¢).
= ieI -

Then the sign of Mf(¢) indicates whether

satisfied or violated. That is, 1f

> 0 the specificatilons
Mf(¢) = 0 the specifications
<0 ’the specifications

.

nu,

(2.27)

(2.28)
' %

the specifications are °

are violated,
are just nmet,
]

are satisfied.

>
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N
e.‘
t
L

(a) Su(m’,wz)
4¢f/////
o - -
FS
4
(b)
Q

frequehcy

Fig. 2.5 Multidimensional specifications, (a) a possible
specification for 2 two-dimensional digital filter,
(b) upper and lower specifications for an amplifier

to be designed to operate over 2 specified tempera-

ture range.
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2.6 v Optimization Approaches in Circuit Design
" ' '

Optim;zation approaches which have been used in circuit

design are quite numerous. - In this section we review the 7%

which we feel have been the most significant.

|
/

2.6.1 Nonlinear Programming Approach .

Optimal _‘design of filters has been treated as a nonlinea-r
programming problem by’ Lasdon and Waren (1966). éy defining an -
additional independent variable ¢k+1’ where k is -the number of

variables, Waren, Lasdon and Suchman (1967) formulated the problem

as the nonlinear program

. minimize ¢k+'l
subject to
¢k+1 2 €. ie Iu, (2.29)
¢k+1 2. 'ezi! i € I!'! (2-30)

plus all other constraints. At least one of the éonstraints has
+o be active at the optimum, otherwise ®101 could be further
minimized without violating any of the constraints. If the
optimum Orer is negative then the specif‘ications are satisfied,

while if it is positive. the specifications are violated. Lasdon
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and Waren applied the interior penalty sequential unéonstr-'ained
minimization technique by Fiacco and MeCormick (1968) along with
the Fletcher-Powell variable metric method (Fletcher ‘a.nd Powell
1963) to solve this type of problem. ‘ This technique has been-
applied -to *.:.he design of"cascade crystal-f‘éalizable lattice
filters, linear arrays (Lasdon, Suchman and Waren 1966), planar
arrays (Waren, Lasdon and éuchman 1967), and acoustic sonar
trlansducer arrays (Lasdon, Waren and Suchman 1973).

Other: penalty functions- can also be used along with the
Fiacco-Mc;Cormick met;hod like the Zangwill ﬁenalty function

(Zangwill 1967)

2(s, r) = U(4) +(1/a.--)i!§1 {xi(cicg))]z, (2.31)
where - _
X,(C,(#)) = [min(0, C;(e))]y if Ci(e) = yle),  (2.32)
and
| X, (C,(&)) = Cy(e), if €, (¢) = by(9), (2.33)
m=mn, + D {2.34)

which has the advantagé of not requiring an :Lni‘:.ial feasible point
and the ability to handle equality constraints. The method 1s
sensitive to the initial choice of r, and ill-conditioning arises
when r approaches zeroc. .

Another penalty function is the Powell extension (Powell

1969) to the Zangwill transformation
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. (X, (C,(8))+s,)?

P(¢, r, 3) = U($) + L - - (2.35)
-~~~ = i=1 i.

f;are constants during each- sequential optimization

and xi(qi(f)) is as defined by (2.32) and (2.33).

where si_aﬁd-r
The value of Sy ts updated by (Powell 1969)

s s v gy, £ (2.36)

—

where j is the present iteration number,.and the wvalues of ry form
a decreasing set approaching zero.

(The ill-conditioning problem which arises in penalty
function methods .when r tends to zero has been studied by
Charalambous (1675&), where he extended the work by Powell. The

apprgach is based on the simple idea of ﬁerturbing the constraints

loutward§_for~the interior penalty function,-gnd inwards for the

exterior penalty function .by a certain aﬁount so that the r para-

meter does not have to ténd to zero at the optimum. The factor by

which the constraints are perturbed and the updating formula are
i

similar to the s, factor and its updating formula in Powell's

transformation.)

2.6.2 The GRG Method
Waren et al. (1977} developed 2 generalized reduced

gradient (GRG) algorithm for solving the nonlinear program



subject tb
hi(?-) = 0, i=112, ..., By (2.37)
gi(i) 20, i=1, 2y, .ony ngr (2-38)
by converting it-to
minimize U(d)
subject to
hi(g) - ¢k+i = 0, i=12 ..., dh’ - (2.39)
Si(g) - ¢k+n-h+i = O, 1= 1, 2, “e oy ns, (2.1‘0)
0ps S 0g X 0y4s i=1, .oy k+ny, (2.41)
boy = Pyy © 0, i=zk«+1, y kK + 1y, (2.42)
¢k+!1h+i 2 0.1 i=1, 2! s ngt (2-143)
where -

n, is the pumber of equality constraints,
ng is the number of inequality constraintas,
k is the number of variables,

¢k+1' weey ¢k+nh+ng are nonnegative slack variables.

. L
At each stage of the optimization process the variables are
sepa:ated into dependent and independent variables. The number of

natural dependent variébles is the number of active constraints
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a

n_. The slack wvariables of the nonactive constraints are the

additional dependent variables. All the remaining ones are taken

as ipdependent\variablesu The active constralnts are then solved

-

for the natural dependent varlables n, in terms of the natural

independent ones k - n,-. This reduces the objective function to a

function of k - n, variables only. The generalized reduced

gradient algorithm solves the original problem as a sequence of

reduced problems. The reduced problems are solved

variable metric gradient method.

using a

Waren et al. used the GRG method in the design of

dielectric interference filters. The problem, defined by

inequalities, 1s reformulated as a nonlinear prograa (as in

. Section 2.6.1). The numbers of variables and constraints are

considerable. The GRG method apparently handles this large

problem efficiently and yields satisfactory results.

2.6.3 Least pth Optimization

Temes and Zai (1969) generalized the least squares wmethod

of Marquardt (1963) with appropriate damping in the spirit of.

-

‘Levenberg (1944) to a least pth method.

They suggested a simple objective of the form

U= & [e ()7,
iel

where the ei(¢) are special cases of {2.12) when the

(2.44)

number of

-
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independent variables 1s equal | to one and p 2 2 is any even
number. The method was applied to fhe cptimization of a
four-variable RC active equalizer, where b was equal to 1bﬂ? The
maximum deviation from the .desired specification farlp = 2 wWas
found to be 33 percent higher. They al;o demonstrated the
nonuniqueness of the optimum in that partiéular problem. They

obtained q%fferent sclutions with different starting points.

AN

ForLlarge values of p in (2.44) accuracy and convergence
problems arise due to very large and very small numbers involved
in the calculations. Bandler and Charalambous (1971) alleviated

this ill-conditioning by considering the objectlive

ei(g) p|1/p
U = M(s) b , for 1 <p < =, (2.45)
P = iel M(f)
where
M(e) % max e ()] (2.36)
- = 1e¢I -

The error functions, in general, can be real or complex- functions.

Hebden (1971) employed this type of scaling in some related work.

~ .

2.6.4 Generalized Least pth Objective
Very recently, Charalambous (1977b) proposed the "following

generalizatidn of the chiginal generalized least pth objective due

to Bandler Charalambous (1972¢) (Charalambous and Bandler
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1976)
.1 49i1/q )
M [z ui[-M"i'] } for M £ 0,
i¢K oo
Up = {4 _ . (2.47)
0 ~for M = 0,

where the ¢ i are related to n real, nonlinear functions (assumed

differentiable), identified by an index set I, such that

’

o, = £, = &, : (2.48)

i i
rand where
M = max Qi, - (2.49)
ieI
) uizo,1=1, 2, ...y Oy © (2.50)
N
and
r
if M> 0O then K = J and @ = P,
if M< 0 then K = Iand @ = =-p,
_whef'e

J= {1 ¢, > 0}. (2.51)
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Hhen.minimizing {2.%7) the values‘of u,, £ and p are kept
fixed. At each optimum‘point reached a change is made to one or
more of ui; £ and p, such that the sequence of optimum points of
Up tend to a minimax optimum. Depending on lwhich of the
parameters %e change at each optimpm point of Up; different

algorithms can be generated, such as the following.

Algorithm 1 (Bandler and Charalambous 1972¢) Here, we keep u; = 1,

i=1,2, -.., 0, and let § = 0 and strictly increase the value of
4

. ; / .
p at each optimum point of Up w.n.t. ¢ such that p = =. It should

be moted that if £,($)° 20, 1= 1,2, «.0y By this algorithm turns
out to be the well kmown Polya algorithm (Cheney 1966} .

Bandler and Charalambous (f972a, 1973). considered necessary

and sufficient conditions for optimality in generalized least pth

optimization for p =+ = and related them to the conditions for

minimax optimality (Bandler 1971, Dem'yanov and Malozemov 1972).

Algorithm 2 Here, we Keep Uy

"
b
’-l'
"
-
»

., n, with p

constant and, at each optimum point Up, change the value of & .

such that it tends to Hf(;), where ; “s the solution of the

—

minimax problem. Charalambous and Bandler (1973, 1976) considered

the following two variations for changing £.



L

Algorithm 2.1
et - M (8T v e - (2.52)

where ';r is the solution point of Up at tﬁe rth optimization and €

-

is a small number.
m;_nm_a_._a This method updates Er as .in Algorithm 2.1. if

Mf(Z", e7) < 0, otherwise

e (1 o) g AT D, , (2.53)

where
- .
0 <A < 1. a (2.54)

In both algorithms, for the first optimization %the margin.
E1lis min [0, Mf(fo) + €], wh‘ere 20 is the'starting'. point. F.‘ér r
> 1 the first algorithm will let all the @ i be negative and be
considered in the objective function and the maximum is to be
moved away from the margin. Tn the second algorithm, § starts
with zero and increases approaching Mf(i). The small aumber ¢ 1s
introduced to avoid M = 0. It is well lmown that the minimax
solution will not change if 2 constant 1is added to all the
functions .fi. If this comstant is greater than .le(§)1 the second

algorithm wil-l be used throughout the whole optimization even if
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Hf(‘f) 5 0.

Algorithm 2.3 Charalambous (1975b) and Bandler et al. (1976a,
1976b) took £ 1 to be the lower bound on the maximum predicted
under convexity assumptions after eacﬁ optimizaticn.' The constant
g° is used as a loﬁer bound‘ror the (r+1)th optimization so that
all the functions less than this constant are discarded and
considered inactive. The asgoéiated algorithm is called the £
algorithm. Any combination of Algorithm 1 and Algorithm 2 can, of

course, -be used.

"Algorithm 3 Recently, Bandler et al. (1976b), Chu (1974) used
extrapclation to P = w,.after’performing least pth approximation
with different values bf p, with ui =1, 1=1, 2, ...,. n, to
obtain the minimax solutiom.

The main drawback of the-above three algorithms is that the
unconstrained ébjective function becomes more and more

ill-copditioned as we get closer to the minimax solution.

/ -

Algorithmn % (Charalambous 1977b) Very recently Charalambous

introduded the parameters uy into the least pth objective function
to overccme the i1l-conditioning problem. ‘hny of the foregoing
three algorithms can be used ir conjunction with the following

updating formula for u, after each optimum point of Up is reached,

N
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-r
namely 2 - Initially, we set u, = 1, = 1, 2, ..., 1.
Subsequently,
1
u - vy (2.55)
T v i
- j=1 3
wher
r
-r _r q=-1 *
e, (& ,8) -
Uy ‘LZ':___-‘ e KGpT,E0)
M(g’ +5 ) ] =
v . . :J_),f (2.56)
0 1 e K(o7,ED)
= .

Frem the theoretical and numerical results presentgd by
Charalambous (1977b), it is clear that this algorithm is superior
to the other three algorithms.

) <
2.6.5 Leastrpth Objective and Nonlinear frogramming

Bandler and Charalambous (Charalambous 1973, Bandler and
Charalambous 1974) suggested that the nonlinear programming
problem c¢ould be solved using ﬁinigax techniiues by transforming

qythe problem to minimizing w.r.t. ¢ the unconstrained function

M(s, a) = max [U(¢), U(¢) - aisi(¢)], (2.57)
1515;;8 = ~ ~ .

where

f



¢ =|- . (2.58)

and

e >0, £21,2, ..0y a- " (2.59)

(Equality constraints can be transformed to two inequality
constraints). They related the Kubn-Tucker necessary conditions
for optimglity of the nonlinear programming problem to the
necessary conditions for optimalit? ;f M(g, E)' These conditions
require that the c parameters be positive and satisfy

™~

I:ls ui
r o <1, . (2.60)
i=1 i —
where the uy are the Kuhn-Tucker muitipliers (mot knmown a priori).
Sufficiently large values should be assigned to & to ensure that

the inequality (2.60) is satisfied.

This minimax problem- can Dbe. solved by least pth
optimizétion (Charalambous 197%a), with large valiues of p, by
letfing

o

01 =- U{-?), (2-61)
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41 = uls) - «8y - j= 1f 2, ey Bgs (2.62)
, .

M - M(i, E)- ’ (2-63)

-

T1l-conditioning can arise when the minimax solution 1is
appro;ched‘ because of the tendency ‘of the first pargial
derivatives to be discontinuocus. Charalambous (1977a) éttacggs
the problez bY defining a sequence of’_leabt pth optimizatioﬁs

where ;he objective Mnction to -be minimized w.r.t. ¢ is °

r r
= .ol
where
. | g, =1, i=1, 2, ...y BTy (2.65)
¢y = 01(£, sr) = U(f) - Er, (2.66)
or r r .
°J+1 = °j+1(2’ E y & y = °1 e ngj ] J = 1, 2y eeey nss (2-67)

M= Mo, o, €7D = M, &) - €, (2.68)
where r is the optimization number. He proved that if

s=ga = (a, + 1) ‘g_ . (2.69)

the point i is a stationary point of the functiecn Up(t, ar, Er)
for any p and §, where 3 is the optimum of the nonlinear
pnégramming problem, n are the multipliers at the optimum &, n; is
the number of ponstraints with multipliers greater than or equal

to a certain small number €q-
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An ;pp;oximation‘to the multipliers which 1s an e§£imate to
% (since E cannot be knouwn beforehand) is used in updating a.
“ .

2.6.6 Minimax Approximation via Linpear Programming

Tshizaldt and Watanabe (1968) had the objective function M =
max}ei(f)[, i ¢ I. They transformed the problem to a noalinear
program of the form of (2.29) and (2.30), with the difference.that
the upper and lower specifications cdincide, and an additiomal

constraint

¢j/¢3 >0, 321,02, caay K (2.70)
The last constraint is to prevent ¢j from changing sign during the
iteration process. By taking the first-order approximation to the
constraints at a peoint ¢r, the problem is reduced to a linear
program, which 1s given by

minimize Xt 1

subject to

k- a?lcf)- .

Wy jE1 oy~ a¢j X3~ Xice T + ei(g Y £0, eI, (2.71)
k aF, (s") -

-~y Ji1-¢j —-?;;—- Xy = a1 T ei(g ) £.0, 16 I, (2.72)

'-in"’ F =1, 2, ...y k, (2.73)



- 43 -

where

A

= v X1 T Pket

A .
®
¢

X
39y

ard F,(¢) is the approximatirng function (or the response
funetion). T

The supez;script r denotes the iteration number of a
sequence of linear programming problems. . The linear program 1is
sclved by the simplex method. Some examples which include the
design of attenuation and group delay‘equalizers have been
préseqted. A discussion of this method is also presen_ted by Temes
and Calahan (1967).

Bandler, Srinivasan and Charalambous (A972) developed the
grazor search method for non:linear minimax optimization. The
method 1is based on a linear programming problem which wuses
gradient information of one or more nea.r paximum functions to
produce a downhill direction followed by a linear search to find a
minimum in that direction. They first define a subset J =1 such

that
3ed, b = ] Mf(gi’) - fi(_¢_3) _S_‘cj, $e¢ I}, (2.7%)

ed > 0, (2.75)

where ¢j denotes a feasible point at the beginning of the jth

jiteration and ej is the tolerance with respect to the current



T
Hf(¢j) within which the £, for i ¢ J lie. Linearizing f; at o3

sr,d) = 7T, (6 2?1 e 36T, D (2.76)

To get A¢3 in the descent direction for M (¢j)

-

zrri(gj)'"-agj < 0, ie J(gj, eJ)- (2.77)
Considering
sed = - 1 o ve oh, | (2.78)
- ied R .
z ai =1, : (2.79)
leJ
ai >0, ' (2.80)

(2.77) can be written as

-t ehy oo veeh) <o (2.81)

This inequality suggests the linear programming problem

J o3
maximize akr . (3 , ) 20
subject to
Sileeh) oS- 0 e
S Y T ieg. v T rt'
-
and subject to (2.79) and (2.80). k. denotes the number of
elements of J(¢J, ej). A golden section search follows each
- 341

linear program to obtain ¢
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Madsen et- al. (1975a, 1975b) developed two minimax
algorithms based on successive linearizations of the nonlinear
functions and the resulting linear sjstems are solveci in the
minimax sense. At the rth stage of the first algorithm a minimax
solution A¢r to the linearized system is found subject to the
constraints '

{1a67]] = max m’j‘l < a5, (2.83)
3 -

‘where 1¥ is automatically adjusted during the process to satisfy

the inequality
Ma(e" + 207 < Mo(eh), (2.84)

so that the new point becomes

¢I‘+1 - ¢r‘ - A¢r“ (2.85)

The choice of a" gives the flexibility of taking a large
step if the linear approximations .represent the nonlinear
functions well enough. If the decrease in the maximum function
(the nonlinear one) does not exceed a small multiple of the
decrease predicted by the linear approximations (the maximtm of
the linearized Mctions) then 7% remains 7.

The ~second algorithm is similar to the first one but does
not require derivatives. I+ uses the. Broyden updating formula

(Broyden 1965) to approximate the derivatives, where the initial

-
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approximatépn is obtained by perturbation.

Comparison by _Hadsen et al. of the new algorithms with
existing ones has béen{réported. Design 6f microwave reflection
amplifiers was also carried out. Madsen and Schjaer-Jacobsen
‘(1976) treated common singulariﬁies in nonlinear minimax problems
by modiinng the first algorithm. They developed aﬁ automatic
procedure to detect ill-conditioning and singularities in a given

problem which slow convergehce. Intuitively, the.reason for slow

convergence is that the upper bound “on the step taken in each
iteration is very small when a narrow valley is reached. However,
a common feature of these algorithms is that they have a quadratic

-final convergence (Madsen and Schjaer-Jacobsen 1978a).

. 2.6.7 Minimax Optimization of Constrained Problems
Bandler and Srinivasan (1974) suggested an unconstrained
minimax objective for a constrained minimax problem. The‘

constrained problem is to minimize Hf of (2.28) subject to

54(¢) 2 0, 321, 2, ceey n. (2.86)

-

The problem is reduced to
minimize P11

subject to

-

beq = S5(0) 20, 1eI (2.87)
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and (2.86). The problem is then reformulated as an unconstrained
minimax problem. We may, for example, minimize M of (2.49) (with

E=0) w.r.t. ¢ and ¢k+1’ where

.

1T % (2.88)
°i+'l = 01 - 31(@'1 - fi(g)) , 1=1, 2,' R (2.89)
it = %1 T Cian g5(s8) i=12, «.vy 0 (2.90)
where
ui>.0 ’ i_: 1, 2, «ony ng+ _1 (2.91)

and sufficiently large.

Dutta and Vidyasagar {1977) developed two algorithms for
solving the nonlinear constrained minimax problem. They are
prlncipally a generalization of Morrison's least squares algorithm
(Morﬂison 1968) and are quite similar to Algorithm 2.3 as proposed

by Charalambous.

2.6.8 Other Methods

_ Charalambous and Comn (1975, 1978) .proposed a minimax
optimizatioﬁ algorithm which overcomes the difficulty of
discontinuities in the minimax objective's firsat derivatives.
Their approach is direet, unlike the generalized least pth

approach. : u



Einarsson (1975) employed the modified Lagrangians
(Rockafellar 1974) (augﬁ;nted Lagrangians) in solv}ng minimax
problems. In his formulation an assumed active function is to be
minimized w.r.t. ¢ subject to n-1 nonlinear constraints. If this

function is, for example, f1(¢) the constraints will be =«

£,00) - £() K0, 1=2, ... D (2.92)

The Hestenes-Powell (Eestenes 1969, Powell 1969) method is used
for updating the multipliers. This method requires the
constraints te be bqualities: The. algorithms developed are thus

based on knowing the active set of éonstraints in advance.

2.7 Centering, Toleranéing and Tuning

_ In the classical design pfobleﬁ, we are interested in
finding one sinéla point in the feasible region. This kind of
solution is iﬁpractical from the manufacturing' point of view.
Many other poinﬂs (design outcomes) can also meet the required
specifications. The designer can ?ake advantage of this fact and
assign tolerances on component values (Bandler 1974, Geher 1971,
Hersom 1971, Karafin 1971, Seth 1972) so as to minimize production
cost. The cost of a component may be assumed, for example, to be

inversely proportional to the tolerance assoclated with it.

. .
—— The formulation~-of the design problem considering

manufacturing tolerances, post-production tuning and model

D
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uncertainties, besidesrthe objective of reducing the cost, renders
the .design more practical -and tends -to alleviate realization
problems. .

In practice, during ‘circuit fabricaticn components are
either specially made, chosen randbmly or selectively from stoék.
These components usually have statistical distributions which have
to be considered during the design process for electrical circuit
components..-The aim of tolerance assignment is, consequently, to
obtain a region .in which every point represents an outcome
optimally taking into consideration the aforementioned concepts.

All the outccmes, or at least a large percentage, have to meet the

specifications, after tuning 1f necessary.

2.7.1 Definitions

-

Consider the vector of homihal design parameters

"
o
1
0
£ 0 %%, (2.93)
0
*k

3fining a nominal point and a vecpor of associated manufacturing

tolerances
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e=| %2, | (2.9%)

e

desceribed as th; tolerance vector and let

I, & (1, 2, ..., K}, " (2.95)

where k represents the number of network design parameters,
assumed independent for simplicity in the ensuing presentation.’
A nominal point ¢0 will have a tolerance reglon Re
associated with it defined, under the assumption of independent
variables, as
R Atpl f-cceg v (2.96)
This region is a convex regular polytope of ¥ dimensions with
sides of 1length Eei, ie I¢, and centered at ¢0. The extreme

points of the tolerance region, the vertices, are

g 2

J2te leg = el veg up, we =11 L e T, (297

and the index set of the vertilces

. I, 8 1, 2, ..., 2. . (2.98)
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-

Any point in the tolerance region is a possible outcome given by 2

point ¢, which 1is

2 = _¢_ + § By = (2-99) .
where
)
€4 _1 o
g 8 €2 (2.100)
" *k
and ¢ ¢ R , where )
- | S x
Ryo=fpl-1Lw T iell (2.101)

Figure 2.6 depicts 2 tolerance region inscribed in the constpain;,

regien for a two-dimensional-case. In general,

\ .
RS fo ] g ()20, 1 Iq}, (2.102)

where

A
Ic = {1, 24 ---» mc}, (2.103)

is the index set for the performance ‘specifications (response -
constraints) and other parameter constraints, mc being the total

number of constraints.
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Fig. 2.6 A toleranke regica Re,inscribed'in the comstraint Tregion

R,. If .= 0 the conventional nominal design problem is

implied.
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2.7.2 Worst-case Design <.

§
In Horst-case “dusign the whole tolerance region has to lie

in-the constraint regiom, i.e., it is required that -

Rc= Rc' : | (2.1048)

This is design with\100$ yield, where the yield Y is given bY

number of outcomes whlch meet specifications

ne

total number of outcomes

The 2k-vertices of the tolerance reglon are usually the points
considered as candidates ‘for worst case. There are two main
reasons. -The first is that 1t is impractical, or even impossible,
to consider explicitly Fhe infinite aumber ‘of points contained in
the tolerance region. The sécond is that one~-dimensional
convexity of the const}aint region may be assumed. Bandler (1974)
proved, in this case, that it is sufficient for worst-case desién

to require_ that

va Rc. . (2.105)

Sandler and Liu (1975) investigated the validity [}4 these
-
assumptions for networks which possess bilinear dependence on each
parameter. In their investigation they studied the behaviour of
the modulus squared of the biiinear network function, wniéh is a

biquadratic functiocn given by

4
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c¢2 + 2ds + €

2 r . (2.106)
& + 239 + D

and they" proved that the worst case assumptions they considered
are often valid in the frequency-domain case.

Brayton, Hofr;an and Scott (1977) proved, for lirear D.C.
networks, that if..each ﬁarameter is at its extéeme value <%he
curren$d ~and voltages of the network will be at their local or
global e;igema. | The investigation of this kind of problem in
nonlinear ﬁetworks or in the time domain has not yet been

reported.

2.7.3 Eixed Tolerance Problem

.In this problem we want to find fo,'the center of the
tolerance reglon, where the manufacﬁuring tolerances on the
components are held fixed. The problem is baﬁically a centering
problem.

Let us consider a problem with upper and lower performance

specifications. The error functions in this case are

3

ne

3 :

e (¢ woq (F (8%) = Syylr L€ Tn 3 I, (2.107)
3y & Iy _

e, (¢7) = Wy, (Fy(87) S,gdr i€ Iy, 3l (2.108)

where ] denotes.the jth vertex contained in Iv, and ¢J is this

-

o’



vertex: According to a specified vertex numbering schemei'eéch 3
will have a corresponding.p. Any suitable objective function can
be formulated to incorporate these error functions and then
minimized to -obtain the optimal ¢0. We have to njte tha£ a
worst—case design, in this case, is not nec rily aphievable
since we mi.ght not be able to inseribe the whole tolerance regio;:,
with preselected fixed edges, in the constraint region.

’

2.7.4 Variable- Tolerance Problem

) In many cases the manufacturing tolerances are ccnsideﬁed
as variables instead of fixed. The larger they are the cheaper
the cifcuit componenté "'will be. The design problem 1s
reformulated as a nonlinear program (Bandler 1974, Bandler 1977,

Bandler and Liu 1974, Pinel and Roberts 1972) as follows:

R minimize C(s°, <)

w.r.t. ¢0 and ¢ subject to

¢ ¢« R, for all u ¢ Ru’ : (2.109)

where ¢ is as given in (2.99), and

-~

o, ¢ > 0. _ . (2.110)

- -
-

~

The objective funetion C is directly related to the component

cost, and generally possessSes the properties

S
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c (go, E) + constant as ¢ ~ =, S (2.111)
c (s, &)~ as e, +0 . (2.112)
A common form of this objective is
S O _
Tooey s . (2.113)
=1
where the ¢, are constant weights.- The number of variables 'for
the optimization is 2k, namely, k irdependent nominal variables
and k asso;:iated tolerances. -

For large problems, with a :‘Large number ;af variables, the
n;:mber' of vertices of the tolerance reglon becomes enormous.
Selection ss:hemes which include purging (dropping of constraints
or vertices) as well as addition of i.rertices of the tolerance
region during the optimization process a.llefiate the need for
considering the 2° vertices (Sandler, Liu and Chen 1975, Bandler,
Liu and Tromp 1976b). One of these schemes is based on the
ﬂ:i‘.t:er'at;ive solution of necessary conditions for tke worst vertex
derived .from the Kuhn-Tucker conditions. Efficient selection
schemes relevant to the tolerance problem are still not well
developed. | B

The tolerance problem described here implicitly solves the
centering problem, in which we' are interested in finding a
"center"_‘ of the constraint region. Other centering approaches
include +the performance contours a'pproa.ch developed by 3Butler

e
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. (1971, 1973), and the simplicial approximation.approach (Direq;oé
and Hachtel 197T). -
Madsen and Schjaer—Jacobsen (1978b, 1978c) extended their
Téarlier work on minimax approximation (see Section 2.6.6) %o
minimax optimization with fixed tolerances and the maximization of
a single variable tolerance. (4 single degree of freedom in
tolerances has also b;en considered by Bandler et al. {1975).)
Centering is implicit in these formulations.
2.7.5 Tolerancing and Tuning
Tuning some of the components.after production is quite

common in electrical circuit fabrication. Considering independent

tuning in the design.procedure, a tuned des;gn will imply ¢ such

that

for some p € R;f'with

A t2
T= . (2.115)
L *x ’
An example of Ro iS
) R = { - 13T 6
o = 12 | =1 5_91-5_1, ie R (2.118)

-

¢ =& +Eu+ E 0, - (2.114)°



The corresponding tuning region is defined as

R (u) = {8 | PO

- -~

p-tSe<ed +Eu+tl, (2.UD

- — —

tm

which is centered at &0 + E u. Figure 2.7 illustrates the °

- -

constraint, .tolerance and the tuning regions.

The-design problem in this case 1s

minimize C(s°, ¢, t) .

subject to (2.109), where, 4 is as giver in (2.114), and the

constraints ‘

T tzo\) . (2.118)

for all u ¢ Ru and some p € Rp. C is a function which represents

T
the component cost, for example, ﬂ : {
_ ) 3

0 |
k0% ok

Ioe, T+ I ¢ 5, (2.119)
— e -

1 i i

-

- L}
where the el and ¢, are constants. These may be set -togzerc Ff

the corresponding element is not to be ‘toleranced or tuned,

respectively. The worst-case solution of the problem must satisfy

R, (1) O R, # 8 (2.120)
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| Ltuning region R,(x)

Fig.

2

2.7 An illustration of the constraint, tolerance and tuning
regions and a possible outcome . 1f t = 0 we recover

the essential features of Fig. 2.6. w—t



for all u ¢ R, where 0 denotes a null set.

The problem can be reduced hy separating the components
into effectively tuned and effectively. tpleranced paraméters.
ﬁandler eﬁ #i. (1976a), Liu (1975) proved that the solution of the
reducgi’problem is the solution qf the original‘one under certain

conditiéns.

2?7.6 Uncertainties
The values of & sufficient to give an acceptable design
depend on'gther uncertainties influenéingAdesign performance. In
th¥ simulation of actual circuits models or equivalent circuilts
.af; used, where uncertainties a;e associated with the model
parameters. In microwave circuit design, for example, parasitic
affects exist due to electromagnetic-céupling. Models availéple
~=¥or common parasitic gléments normally iqplude embirical
uncertainties on the values of the model _parameters- These
uncertaintieé are due to the fact that the model itself is
pecessarily approximate and that further approximations often have
to be madé in the implementation of existing model formulas.
Non-ideal términations -glso alter - the perforﬁance, i.e.,

mismatches at the and the load of the circuit (Bandler, Liu

and fromp 1976

In modeling a physical circuit the vector of nominal model

parameters po will have a vector of/model uncertainties associlated
L

'~ _with it, such that the model fmeters are described by (Bandler
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1977)
. P =20 + A0 g (2.121)
where - 3
_5-1 -
s 5 %2 ) (2.122)
- - 5m--- )
and for example
- 1Ly L0

where n is the number of model parameters with uncertainties and,
.in general, n # K. Although the model parameters a.nd the
uncertainties are explicit functidns of the physical parameters 4_;,
it is dif;ficult to map the tolerance region from the ¢ space to .
| the p space in selecting candldates for the worst-case deslign.

Let g(w} dencte a set of nonlinear constraint functions

such that

gly) 2 0 - (2.123)

- e

represents an acceptable situation for a particular setting of ¥.
The nominal performance of the design under ideal environmental
effects will be denoted by go(w). The measured performance might

be described by
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8 = s?_ (p, ¥) + ugi (P, O ¥)» 1=1,2,-.-,m(¥), (2.124)

where 53 is the deviation from the ideal performance and q is a

- gector of external parameters, e.g., ones affecting our abllity to

measure the performance.

2.7.7 Design with Yield Less Than 100 Perceit

In worst—case design the yield is restricted to 100%. This
may render the circuit very expensive due to tight tolerances.
The restriction of 100% yield may be relaxed in order to increase
the tolerances and reduce the éost of the elements. The overall
cpsﬁz in this case, aithough failing circuits are discarded, will
have to be lower than the one obtained by worst-case design.

The design problem with a restricted yield can be set up as

minimize C (¢0, €)
«% -~
subject to
Y > X, (2.125)

where X is the specified percentage. For unrestricted yield the

problen might, for example, have the objective function

C =

[0 By

]
— /Y. (2.126)
t

i=1 %1

4

In both formulations the yield has to be estimaéad.
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The yield when the parameters are statistically distributed

T

; Y = J P($) déq doy ... dop, - (2.12Ty

R
’ c

——is 'defined bY

-

»

where P(s) is the, probability distribution funetion of the
variable parameters; This k~fold integrati&n is not very
attractive, especially wken the yield estimation is incorporated
in an optimization process. Karafin (1974#) approximated_the.yield
by computing upper and - lower qqundg on ¥ using truncated Téylor

, series approximations for the constraints. GHe assumed that each
constraint is normally distributed for all choices of cqmponent
tolerances.. The yield estimation probleﬁ itself has been treated
largely by the Monte Carlo analysis (Elias 1975) -

Becker and Jensen (HQTH) ;sed pattern search for maximizing
the yield by findé&g a set of noginal variables which is optimal
for specified tolerances. A feasible solution search precedes the
yield optimization..

In the si 1icial approximation approaqp_(Director, Hachtel
and Vidigal 1978) while finding the cente;ﬂ of the constraint
regioﬁ an approximaéion'to.this region is also obtained. A crude
estimate of the yileld can pe obtained by performing the HEnte
Carlo analysis directly in the parameter 3pace. The vyield

estimation procedure can be improved by testing a sample point (of

the Monte Carlo analysis) which 1lles outside the approximate

~
\.
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region. to determine whether or not it lies outside the actual

region. If it.lies inside the actual region it can be used to

improve the approximate region.

_Bandler and Abdel-Malek (1978a) derived exact formulas for
the yield and.its sensitivities w.r.t. design parameters. The
formuiasa ire based upon multidimensional linear cuts of the
tolerance orthotope and uniform distributions of outcomes between
tolerance‘extremgs in the érthotope. .

This approach has been generalized to estimate the yield

when components have arbitrary statistical distributiops

.(Abdel-ﬂalek 1977, Abdel-Malek and Bandler 19782, 1978b, 1978e) .

(W

2.7.8 ﬁelated Work and Extensions

" Tromp (1977, 1978) has generalized the tolerance assignment
problem so that physical tolerances, model uncertainties, exéernal
disturbing effects and dependently toleranced parameters can be
considered in a unified ménngr. In essence, the approach begins
with the definitions of the kOi-dimensional vector ?01, the

ki-dimensional vector ¢i and the kui-dimensional vector ui so that
¢i is a function of ¢Oi and u% for a11 1 = 1, 2, ... n, and ¢Ol
1-1 )

- -

itself;depends on all ¢ for 1 =2, 3, ..., .

input parémeters, e.g., the physical parameters available
to the manufacturer might be ildentifled as ¢1, whereas ¢n would be
the output vector, e.g., the sampled response of a system or thé

P

vector of constraints g, which defined Rc of (2.102). The
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b

quantities ¢2, ceey 23-1 can be identified, for example, as

intermediate or model parameters. The variables ;_xi, i=1, 2
..., D, create the upavoidable or undesirable fluctuations and

generally embody the unknown or intangible.

.

The tolerance region in the ¢-3pace is obviously no longer-=
restricted to be an onthotope in this' formulation.

Polak and Sang‘iova}nni-Vir;centelli' (1978) recentiy
!:ormulated the design centering, tolerancing and tuning problem as

a mathematical programming problem in the fbrm

mimize C(¢01 E) E)

subject to

min min max giu)'}_ 0 (2.128)
iel neR peR ~
[d - it -~ [+]

and the constraints (2.118), where ¢ is as given in.(2.111:). They
demonstrated that their formulation s equivalent to the ome of
Bandler, Liu and Tromp (1976a). They suggested a new algo"ithm
which deals with the nondifferentiable constraints (2. 128) The
algorithm solves the problem 'as a sequence of approximating
‘problems with H‘j ] R as a discrete set. They showed that, under
_certain conditions, the accumulation points of the sequence of -
stationary points of the approximating problems are stationary
points of the original problem.

Bindler and Abdel-Malek (1978b) introduced a generalized .’

Ieast pth i‘unctic} of the form of (2..117) to convert a tolerance

AN



" and tuning problem to an equivalent tolerance problem.  A4n

expanded cons;traint region, namely the tunable constraint region

[+
by

R_,, replaces the ariginal regiocn Bc» The region is given for p==

-

A

... R = {¢ "max =in g, (¢ +Tp) 2 0}, (2.129)
- - © peR ) eI, T T T :

[N
-

g
where ¢ :.s given by (2.99).. They based some definitions of yield

upon R and described worst-case design and worst-case centering.
Hidsen and Schjaer-Jacobsen (1578b, 1978c) proposed the use
of :.nterval arithmetic to detemine worst case wit.h..n the

tolerance regicn. Ir this case the ocne-dimensional convexity

assumption is not required, a_md the qu:gt case car lie at an edge

of the tolerance region instead of a vertex.
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CEAPTER 3
TRANSMISSION-LINE MODELING AND SENSITIVITI
EVALDATION FOR LUMPED NETWORK SIMULATION

_-: ;;;\BESIGN IN THE TIME DOMAIN :

3.1 .ntroduction

The transmission-line matrix (TLM) method of numerical
analysis provides a new approach to the time-domain analysis of
lumped netwcrks. The method has previocusly been extenszvery used
for so}ving 'electrouagnetic . vector field problems in two and
rhree dimensions (Akhtarzad and Johns 1975) - ‘The technique has
also been used for soXwing the diffusion equation (Johns 1975) .

fn its application to lumped nretworks (Bandler, Abdel-
Malek, Johns and Rizk 1976, Jonﬁs 1976), the TLM method has some
advantages because Lt provides an exact solution to the
transmission-line networks used to model the actuai networks.
This chapter demonstrates ﬁou the transmission-line models for
lumped netuorks can be obtained and bhow to compeqsate for modeling

errors in terms of additional network elements.

Unlike the methods menticned in Section 2.3 the TLM method ‘//A

pro\ides exact sensitivities for the model w.r.t. design variables
with some additional effort. No integration schemes are. involved.
A symmetrical LC lowpass filter has been optimized in,tpe time

domain using TLM analysis, the required gradients being obtained

~ .
L.
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from the sensitivities derived.
e Sensitivities with respect to the time step are also
derived, from which an approximation to the time semsitivities is
btained. Using these formulas and the TLI_{ results, We can
..

e:trapolate to -the near emct impulse response.

[N
™~ -.ot-.-_‘-.*-—_._..

3.2 Transmission-line Modeling
The time-domain response of a lumped network can be fouﬁd
using the TLM method, after choosing an appropriate transmission-

line model for the network. Inductors and capacitors are

represented either by transmission lines or by stubs.

3.2.1 Link Modeling

First consider the modeling of a series inductor and a
shunt capacitor, each by a transmission line. -~ To simplify the
ana.lysis,' certain assumptions must be made. We will let all tlie
tran on=1line models have the.sa.me length, and let the time
tg.icen by a puise to travel along each tra.nsmis;ion line be the
same, namely, T. ~The lumped- inductor L shown {n Fig 3.1(a) can
have the trensmission-line model .gshown in Fig. 3.1(b) wi‘c.h an

inductance per unit length Ld’ where

(3.1)
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0
L
-
O
(a)
L J
]
C=—/= =
O

()

£ -—
T -0
: 2
pumnd = eror
L .
e o
- (b)
1] L] * o
TZ
—C—" error
—0
(d)

Fig. 3.1 Lossless transmission-line models of a series

4nductor and a shumt capacitor.
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The velocity of propagation on the transmission line may be

expressed as _ — -

/" 1 ; L )
_ (3.2)
T - .
\de Cd .

TR 1 '
Cd =I_ - - (3.3)

The basic parameter which determines how 'pulses are
scattered throughout a -transmission-line network is the
characteristic impedance ZO’ which for %the model of inducter, is

obtained from (3.1) and (3.3). Thus,

.-: - Ld
Z = -~
0 C&_l

. ) (3.%)

i

The error associated with the zodel of the inductor is due
e

to the distributed capacitance given in (3.3). This pay be

approximated in the lumped circuii: by a lumped shunt capacitor Ce

representing the error, woich is given by

2 T |
- c - c = [-} E_ =‘L— - . (3'5)
d

L~
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This lumped capacitor is shown dotted in Fig. 3.1(b).
The characteristic Iimpedance for a transmission line
modeling a lumped capacitor (Fig. 3.1(c)) may be derived in the

same way, the result being

T “ .
ZO = E ’ (3-5)

" and the error this time will be represented by a serles lumped

inductor L, (Fig. 3-1(d)) of value

L =
=3

2
- | (3.7

Tt is clear that if T is small then for the zodel of the induc;tor |
ZO and Ld @re large while the tunwanted shunt distributed
capacitance Cd is small. On the othe:_- hand, for the model of the
capacitor ZOA and the unwanted L 4 wiil be small if T is small. - So,
as T becomes smaller, the, transmission-line model represents more
closely the lumped element.

Consider the lumped network shown in Fig: 3.2(a). It is

composed of M simple resistive networks with scattering matrices

51, 52, cees SH' connectéd either by a simple pair of wires or a

pair of wires containing a series inductor or a shunt c¢apacitor or

. both. In the transmi:.sﬁ!on-line ‘model these connecticns are

~ .
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—0 o—
~— —C —O— —C
& 8 & o
(a)
1 1 1
t i t I
—o— —0— — o
S, S,
—C —_——
1 1 -=
(b)

i . '
Fig. 3.2 Lumped network and 1ink transmission-line model.

)
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replacedrby transmission-line sections of propagation time T as
shown in Fig.-3.2(b). Tn this case the model is called a link
transmission-line modél (Johns 1976).

The numerical nethod oberates by considering a pulse o be
injected into the input terminals of the whole network. The pulse
scatters on reaching the first subnetwork being-partly reflected
and pgftly' transmitted. This scattering occurs at every
subnétuork, pulses racing to andffro between subnetworks. The
output impulse' function is -the stream of pulses at ﬁhe output
terminals.

ir ﬁne mtﬁ netwofk has N ports with incident and reflected

voltages given by (Johns 1976)

Vi17 v:T_
i
._i = va ' Y_; = Y:&Z (3.8)
| Ve Vo |

then the scattering equation is

Wwo=s v , (3.9)

k-m’- - é

whepe the ;ubscript k denotes the kth time atep. If all the

k

1

{ncident and reflected pulses are assembled into the partitioned

vectors
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v o= v‘é , T v‘; (3.10)"
B =
theﬁ the scattering equation for the entire network is
=S, | (3.11)

]
where S in this case is a bloek diagonal partitioned matrix with

- 51’ SZ' e SH on the diagonmal.

The reflected pulses are the incident pulses at the next

time s'tep and they are related by

/////~ ' k+13i = ¢ kgr' ' (3.12)
where C is the connection matrix indicating the - transmissiocn of
reflected pulses from one subnetwork to become incident pulses on

a neighbouring subnetwork. The iteration equation is

eV =CS e (3.13)

The method will e unconditionally stable for a passive RLC lumped

petwork and, ~therefore, it will be useful for stiff networks

(Johns 1976).
. ~
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3.2.2 Stub Modeling

4 lumped network consisting of resistive, inductive and
capacitive eleménts may also 'be_ modeled‘ by stub
tra.m‘smi_ssion—lines. In this case, the time taken by a pulse to
_travel to the ent of _the_ stub and back again is T. Following the
same procedure used in the link transmission=line models, an
inductor is modeled b& a short—circuit studb with characteri-stic

-

impedance

2L
Z, =7 - (3.18)
and the modeling error is a capacitor given by
T2 U
Ce = Ty s ) (3.15)

-

T
0% 3’ (3.16)

-

Le =EE . N {3.17)
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The elements with these models are shown-in Fig. 3.3.
Consider the lumped network in Fig. 3.4(2), which is
represented by a resistive petwork with N pairs of terminals to

which all -of the inddctors and capacitors are conngcted as shown.

" 4 transmission-line model for the circuit is shown in Fig. 3.4(b)

in which,all'of +he inductors are replaced by short-circuit stubs
~ . . - .
and all the capacitors are replaced by open-circuit stubs. The

reflected pulses

’ : (3.18)

will be scattered instantaneously into the N stubs. These pulses
will travel to the ends of the stubs and be reflected or reflected’
and inyerted for capacitive or inductive stubs, respectively. The

pulses then return to the resi;tive network and become incldent

pulses

E = 2 . (3.19)

R

=l

If the scattering matrix of the resistgve network is the N x N
) ' s
matrix S then, at the kth iteraticg,
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Fig. 3.3 Stub models of an inductor and a capacitor.
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Reflection of the pulses at the end of the stubs gives the

incident pulses at time k+1, obtained using the same formula as-

.{3.12), where C, in this case, is an N x q;diagonal matrix with an

entry of 1 for a capacitive stub and -1 for an inductive stub.:

»

The iteration routine is therefore exactly as (3.13).
To'enable the , incident pulses Vi to converge simultaneously
it is sufficient that toe propagatio; time T be the same for all
the stubs. This propagation time is therefore the same es the
iteration time. This method-is also unconditionally stable for a
lumped network of positive resistors, inductors and capecitorsr

!

3.3 Discussion

r

7r should be noted that the stub ‘modeling leads to an

impliecit routine. The reason is that the scattering matrix &

involves the entire resistive network. Thus, to calculate S it is

=

necessary to invert a get of simultaneous equations describing the

network. ° If the network is nonlinear, then this inversion 1is

Ll

required before every iteéation.;ﬁln link transmission-line

modéling, nowever, the iteration routine is explicit, the

complexrty of equations belng independent of the number of

subnetworks or nodes. ‘The scattering matrices .of the networks are -

small enough to be g!?culated by simple formulas, for example, the'

scattering matrix of the subnetwork in Fig- 3.5(a) is given by e

v ’ —

B

-t ’,

(3.20) ~

VA
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Fig. 3.5 Example of two simple subnetworks.
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R(R$Z,+Z,) 4224 (25-2 )

R + 2Z 221
1 - 1 :
§:§::E; . (3.21)
- R(H+Z1+22)+222(Z1—22)
222 ) R+ 222

— —

and the scattering matrix of the subnetwork in Fig. 3.5(b) is

2,24-2,2,-Z57, 22,2, 2.2,
1 )
27,2 2.7 -2.2.-2.72 22.2
Z 20 il 0y 223 123721%5-%; 3 1%2
22,2, -t 2,2,-2,25-23%, |
) (3.22)

In general, & network may be mocdeled by either ome or both
types of model. Thg LC lowpass filter in Fig. 3.6(a) can kave the
1ink model of Fig. 3.6(») or ike stub model of Fig. 3.6(¢) or the
ixed model of Fig. 3.6(d)- ‘

“
3.5 Example
The following example illustrates the TLM routine for link

modeling. Consider the circuit of Fig. 3.6(a) (Bandler, Abdel-

Malek, Johns and Rizk 1976) and its link transmission-line model

in Fig. 3.6(b). Let the time step T be 0.1 second and the

component values. I..2 = I"& = 1, C3 =. 2- and R1 = RS = 1. The

characteristic impedances Z,,- ZB'and- z, are 10, 0.05 and 10,

respectively. . An incident pulse of ‘value’ 0.5 is launched into the
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Fig. 3.6 LC lowpass filter and differeat types of
models (a) the filter, (b). link model,

(¢) stub model, (&) mixed model.-

~
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.

. transmission line representing the source resisiance and hits the

first Jjunction at time t = O. The pulse scatters producing
reflected and transmitted pulses. The transzitied pulses travel

towards -the output, ing scattered at the other Jjunctions. The

pulses propaga:é forward and backward between the Jjumctions.

.

-

Table 31 gives the incident and reflectecd pulses at the junctions

of Fi 6(b) at different times. 2

3.5 Compensafen of Errors o . -

TLM method arise only froz how well: the
transmission-line Do represents the actual- circuil. Errors 4o
not arise- from the numerical solution of the nodel. Ir certain

-

cases the wmwanted distribuéed elements are reduced when the step
size T is reduced. ° A distributed capacitoer iﬂ modeling an
induc;or is an example of suchk a case. We have to note that this
capacitor is kxnown before any calculation is started, since T has
to be chosen. 1If the distributed error capaciior is %taken to be
«wo lumped capacitors placed at each end-éf the transmission line,
each of these.lumped capacitors will have a_value‘of Cd 2/2. The

inductor and the two capacitors representing modeling errors are

shown in Fig. 3.7T. To compensate for nodeling error

degree) we can subtract the error capacitor frem the

neighbouring network components. As T increases the amount to be

>

subtracted increases and it becomes obvious that. there may be 2

\\Iimit to such compensation.’
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L TABLE 3.1

| INCIDENT AND REFLECTED PULSES OF TEE -CIRCUIT IN FIG. 3.6(b)

SO & 3 v 2v§ = = B
0.0 " 0:5 T - . 0.90909 - _-‘ - - - -
0.1 - - 0.50909 ~0.9000% - 0.00904 .
0.2 ~  _0.9000% 0.7363% - - - . -
0.5 - J . 0.7363 -0.71125 0.00895 0.01619
0.4 - -0.71125 0.58193 -~ - - -
0.5 - - _ 0.58193 -0.54452 0.01589 0.02151
t 3yt 3y 3y R Ay Byt
($) m 1 1 2 2 1 1 2
0.0 - - - - - - -
0:1 - - - - - - . -
0.2 0.0090% 0.00895 - - 0.01800 - - -
0.3 - - - - 0.01800 ~0.01472 0.00327
0.% -0.01619 0.015§3~-0.01472 0.04680 - - -
0.5 . - - - - 0.04680 -0.03829 0.00851
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Fig. 3.7 An inductor with wo capacitors representing modeling

Y

- . -

error. ’

¥

- The Iigpulse response of the Chebyshev filter shown _n Fig.

3.8 ( tthaei, Young and Jones 19634) was found by Ku.ta-sﬁnpson,

Euler, TLM and TLM with cogpensation. The results are shown in

Table 3.2. The advantage of compensation is clear from the table.

cOmpa"ing the percentage error between the Kutta-Simpson
integration method and other methods. . The actual comﬁénents and
the new components after cogpensation are given‘in Table 3.3.
3.6 Sensitivity Evaluation

- Ope of the Tfeatures of the fLM method is that simple
calculation.‘of exaét sensitivities w.r.t. design variables are

possidle. Sensitivities ‘are calculated iteratively in the same

iteration process for caleulating the impulse response.

"



T rABLn 3.2

COH?ARISON “BETWEEN DIFFEREKT HETEODS OF IHTEGRATION—

AND TLH HDDELING "IE AND HITEOUT COHPEHSATIOH

Percentage Error for T =

> Eutta N - o : -

(s) Simgpson ~  Euler Link Modeling Link Modeling
: with Compensation

1.1 0.003981 -38.5 =83 -'6.9
2.1 0.035665 -12.8 -2.3 - 1.4
3.1 0.101499 0.0 - 0.9 0.1
3.1 . 0.160644 8.2 - 0.3 0.3

- 5.1 0.161516 13.1 " 0.3 0.2
6.1 0.094384 11.1 1.3 - 0.3
7.1 0.002772 520.3 48.9 -21.8
8.1  =-0.054%62 57.9 - 1.2 0.5
9.1  =0.051167T 45.6 0.7 - 0.7




Fig. 3.8 Chebyshev Miter with T elements.

TABLE 3.3
COMPONENT VALUES OF THE FILTER SHOWN IN

FIG. 3.8 BEFORE AND AFTER COMPENSATION

Component Values in Ohms, Henries and Farads

State Ry L C Lu -~ C L6 R

No Compen- 1.0 1.7058 1.2296  2.5408 1.2296 1.7058 1.0
sation

- With Com- 1.0 1.7017 1.2247 2.5327  1.2247 1.7017 1.0
pensation . .
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" 3.6.3 First-order Sensitivities
‘ Equations (3.11) or (3. 20) describe the relationship
befwe-e.q appmpriate incident and reflected voltages for the whole
network and the derivati_ve#_)‘r.r.t. the « parameters of the whole

network can be written as

R - u T .
LT S0 e 0T
akgr 28 . 3, ¥
3¢1 . ,3¢1 § -0- a¢1
) = : : . (3.23)
: : 0 .. 0 :
Y ] as akfi
3¢ as 0 S 3d
. _ x| L x 2L |

. The r.n.s. vector is obtained from an equation of the form of

(3".12) after difrérentiati_.ng it w.r.t. the jth parameter, viz.,

%k~ 3 T '
-+ k-1 , (3.24)

where C is constant

It is clear that the matrix in (3. 23) is very sparse since,
for example, a§m/a¢J vanishes if §m does not contain the Jth
parameter. Although this matrix is sparse, the two vectors on the

left and right hand 'sides are full and all the information has to

be transferred in each iteratlon. So in calculating the
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sensitivities, we have to find the sensitivity of all the incident
pulses w.r.t. qll the parameters. The sensitivity of the impulsze
response will ge the sensitivity of the stream of pulses_at'the
output.port w.r.t. éhe parameters. ) .
Consider a subnetwork which .simply connects tTwWo
ﬁransmisaion lines bhaving .21 and 2, as théir characteristic

' impedances. The scattering matrix S is given Dy -

1 22-21 2z,
S = . (3.25)
ot Z.+2
172 222 Z1-22
th
L Z, = $ 41 Z, ?j+1 (3.26)
Then
3§m 222 -1 1
Y 2 '
{j (Z1+Zz) =1 1
3%. 221 1 -1
= . (3.27)

RAAATS (z1+22)2 1 =1

The expressions (3.25)-(3.27) can be Pitted into the scheme of

(3.23) for this subnetwork.

f
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" 3.6.2 Second-order Sensitivities

Differentiating (3.11) or (3.20) w.r.t. the jth parameter,

we get
X akf a8 - 3T
z — S (3.28)
ke T2 : :
L 39, 26
where akvi/a‘:,J is found from (3.24).
- If we differentiate (3.24) and (3.28) w.r.t. &, we get,
reégpctively,
2 2
P kfi 3 k-1fi
=C . (3.29)
39,305 - 29,30
2 2 i 2 -1
chy Er 2°s . 3S akgi s 3,V 357 .
+ 8§ — . {3.30)

= v
30,30, ~ 20,204 ke * 20, 39, * 3 305 SETHETY

N
&

Equatioh (3.30) holds for subnetworks when subscript m is applied

to both sides but scme of the derivai:;ves of Sm are zero.

3.7 Examples
The symmetrical LC lowpass filter shown in'Fig._ 3.6(a) has
been optimized in the time domain. Fig. 3.9 shows a specified

impulse response for L2 = Ll& = 1.0, C3 = 2.0. Taking 100 sample



- 91 =

duyjaelg ‘01 =

)

B

*

.N.N = ﬂU/FQJ‘ —\- = qu un— Uﬂ.-.—cﬁ—

mu 60 c._ = N._ :¢ juyod Burjaels ‘sysApeue |iIL guysn =oﬁmnfﬁﬁ_o
Ol G 0
[ 1 2 1 1 t t 1 1 S | .
-GO -
B . o
‘90ds « pezjw)jdo -1
aN.
. q |DHIYY
D |D}ju] e
’ 1¢-

6'¢t

indino

abpyjoa

*314



- 92 -

po..n..s, us:.ns TLM, a.nalys:.s, least 4th approximation vielded the

solution in 21 s (22£ "‘unc.:.on evaluations) and 17 s {19 function

evaluations) from starting’ po:.n..s a and b, respectively, with a

maximuz error of about 3x10 ~7.. The specifications or Fig. 3.10

were met with a minipax error of .00219992 after 37 s (46 function

4

evaluations) using 33 sample points for optimization. The

.starting point was La = Ln =, C3 = 1.0 and the optimum point

reached was L, = L, = -T6645547 and Cy = 2.3739%03. The minimax-
solution was reached using third-order extr;apqlatiori, after 23
sequence of least pth .opt.imizations where the values gf p were H,
16, 6%, 256 and 102k. FLOPT2, 2 program described in Bandler and
Chu-(1576), - was 'uséd in these examples. The computer was a 042108

6400.

3.8  Sensitivities w.r.t. Time and T

Differentiating (3.11) or (3.20) w.r.t. T we get

bed b
3,V . 3. Vv

o =i§-kfl.+§ﬁ—-. (3.31
3T 3T

\aT |
Usually the scattering patrix S ipcludes the parameters ¢ which

are functions of T as obt ined from the modeling.

The term 35/3T can be obtained from

s

¢



- 93 -

. Y, Z,
‘gy99L'Q = ‘1 = "7 UOTINTOS

mmhm ¢ =
' "
01 = no = \; = N; juyod 8urjaedg .mﬂmhaaca Wil Sugsn :oﬁucNﬁEﬁugo o~ € '31a’
: Ol g 0
998 | 1 1 ' ) L. 1 PR L 1
. GO~ .

\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 775

.ZU I.MU\WIIIII!ifJTIIIJ!I\A\\ 0
| : o

i o
- pezjuydo e
: | ~ o
\ S
Ir i . m
F

-&’ .

|oHu]




>

3s - 35 2% -
— = ——— — - . N 2
3T § 36 3T o (3-32)
- \ N
.> Suppose is the characteristic impedance of a line modeling an

inductor. If &, = L/T then a¢J/«aI = -¢j/'I. " For the capacitive

3
obtained from’ (3.12), where

case, 3¢ ./3T. = ¢37'I. The second term om the r.h.s. of (3.31) is

'aviavr

—=— = C 7% k=1~. (3.33)-

aTl < 3T

Note &that the differentiation is at discrete time steps and the

information is transferred iterativély with the original i‘éeraﬁion

scheme of the TLM metl;lod. Thus the above derivatives can only be-

obtained at poizits corresponding to fixed pumbers of iteratioms k,
i.e., at t = kT, whgbe t is time. Let £(t,T) be an interpolation
to the approximation "of the impulse response obtaj_:ned at discrete
times. t.l, ta,'tB‘, by “the TLM methcd, w_here |

¢ -t, . =nT, (3.38)

where n is an integer. The parameter T 1s chosen arbitrarily,

although it is known that the smaller the T the more accurate is

the modeling.
Suppose that the analysis is done twice with two dn.ffer-ent

time steps T and TZ,' respectively. In the first analysis we will



3 | .:*9.5--_

get f(t,TQ -at points, in general, time _n‘I1 apai'g, and in the
second analysis ftt,TZJ at points aT, apart> Fig. 3.11
illustrates the situation.
A first-order change in f(t T) is given by
- af af Lo
| sf =gt e gTeT, QQ (3.35)
where At and AT are changes in .t and T, respectively. Thus,
3f af at 3t -
Tt T T S (3.36)
N -~
From the relation t = KT we have
=k AT (3137)
therefore, for a ﬁérticular k,
' F
S af ar - af
—_ === kK —-+ . (3.38)
aT AT=0 2T k at T aT
The term'%% is obtained from (3.31).

Table 3.4 shows, for the circuil of Fig. 3.6(a), where

£,.(T)

oy
; = kvgfzr,

-7

TN
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TABLE 3.4
i~§%. OSTAINED FROM THE TLM ROUTINE VERSUS
k R h . .
%{-BI CENTRAL DIFFERENCES WEERE T'= 0.1.
1 3af ) 3L ,
€ "~k 87T X at "~ Difference
(_s? _ " (central differences) (%)
0.5 0.13999 : 0.14638 %.56
1.17, 0.13649 R AR 0.89
1.7 0.05300 ' 0.05315 ' 0.28
2.3 -0.03086 -0.03101 0.48
. 2.8 . =0.08180 .=0.08206 : 1.54
3.5 . -0.09538 ~0.09569 . .. . 0.32
5.1 -0.08170 -0.08202 . 0.39
4.7 ~0.05493 . . -0.05521 _ © . 0.51

5.3 ’ -0.02705 ’ -0.02727 0.81

5.9 -0.00535 -0.00549 2.62
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lar)
kAT -

given in Abpendix A, There is a difference between the numbers in

the two columns which we can attribute tO'—'lt and the inexactness'

k 37
of calculating 3f/3t. However, it is clear that this difference

islvery small.

| Table 3.5 compares the resulls obtalneg_ggg'“ﬂ
fraz the TLM routine, and the ones obtained by pe"turblng T to
0.701 and 0.099 from its initial wvalue 0. 1 (i.e., repeat the
adalysis with these_fgew values of ‘TQ, and using central

differences.

Two .analyses were performed witk two different time steps,

namely, 0.1 and)0.071h3, and 3f/3T at constant time was estimated

@ \ - -

by -perturbation as Af/AT. This Af/AT was used to extrapolate to‘

_the exact response. The extrapolation formula

.

'  fextrapolated - T =2 AT ° - (3.39)

Table 3.6 compares the .exact responsé cbtained by the

inverse'Laplace transform and the extrapolated response. Table

3.7, on ‘the othér hand, compares the exact response and the
extrapolated one, where afla? was caleculated using (3.38) for
which-3f/at is calculated by the central difference formula givén

in Appendix A.

versus 3f/at calculated py the central difference formula

obtained

-,

S
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A COHPERISON BETHEEN af/aT FOR CONSTANT k OBTAINED

BI TLM AND PERTURBATION

2,1 R 4

Kk L = E_E Difference
- TTe0.t01 .. 1=0.089 . aT|, 3T\, (%)
o o ' (central -
c;;fferencea)-
11 % 0/13581327  0.13281062  1.50132°  1.50137 0.006

41 0.08g83793  0.05659663  =3.34935  -3.34976  0.019

71 '-0.01400295 -0.01576903  0.88304 0.883§7  0.105
101 0.00345630 d‘._do_:mj‘zg - 20.12850 -0.129911 ' 0.4TH
131 -0.00061299 -0.00057152 « -0.02073  =0.02050 - 1.109
._ ) -
TABLE 3.6

USING Af/AT TO PREDICT RESPONSE FOR T=0

£(t,T) - Af

c = . f £ Diff.

(s) | T=0.1 T=0.5/7 aT. “exact extra. (1)
S

0.5~ 0.04255324 0.04333199 -2.72562x107> 0.044141 0.043916 0.510

1.5 0. 17926209 0.17938925 -ll 21435x10 -3 4. 179524 0. 179473 0.028
2.5 0. 19006031 0.18991132 14 51465x10 -3 0 189777 0. 189815 0.020
3.5 0.10754101 0.10727103 9.44860x10 3 0.106988 0.107069 0:076

4.5 0.02373052 0.02339983%57“&10-2 ‘0.023053 0.023152 0.429
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TABLE 3.7.

USING 2f/3T TO PREDICT RESPONSE FOR =0

£ . £

(s) ‘Taxact - extfapcglated Diff?;'?nce
0.5 - 0.0uL141 0.0448152 0.014
. 1.1 0.134981 6.13599é 0.008
1.7 0.193099 o.%93111 0.006.
2.3 < 0.198260 "'0.198272 0.006
2.9 0.162173 ;9.162183 0.006 .
" 35 0:106985 0.10639% 0.006
‘ 8.1 0.052558 ' 0.052561 0.006
5.7 " 0.011055 0.011054 0.009
5.5 -0.013432 -0.015435 0.022
5.9 -0.022686 0.017

-0.022690
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3.9 Conclusions .

Tﬁe TLM ‘method is a new approach-ta the.analysis of. lumped
networks. -The-distinct advantage of the TLM method is that ;he
numérical procedﬁfe usgd solves the transmission-liﬁe model
éxactly. Ebrors_arise only from how well the transmission-line
model represents the actual circuilt. To a certain limit the
compensation of these errors by additional eleménté can Iimprove
the results. |

Another advantage is that if the transaissioﬁ-line network -
‘;s physically stable, which iq true i; the case of passive linear
networks, then the TLM solutién will be gtable. This means that
stiff networks whiéh give rise to instability in most methods do
not cause instability in the TLM method. Different transmission-
line models can be sbtained for the same netuofk, some of the
models can be viewed as impi;cit methods énd some as explicit.

The derived fbfmulas permit sensitivi;y evaluation of the
impulse response with respect to design parameters and makeg the
TLM méthod‘suitaéle for automated network design. Sensitivities
with respect to time and time step can be easily obtained and it
has been demonstrated how this 1nformation is used to improve
accuracy.

Possible developments in the m;thod lie in improvimg the
accuracy by using nore complicated transmission-line elements and
models and the investigation of limitatlons on modeling general

sets of coupled ordinary differential equations.
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CHAPTER U
. EFFICIENT USE-OF SIMULATION: PROGRAMS IN THE

- ANALYSIS OF. COMPLICATED NETWORKS

4.9 ‘;':roductio'n .
Several gepera.l purpose simulatofs have been developed' in
. the last -decade. These si.mulatorsAare designgd to be as ger'zerl"al
as possible, i.e., to handle any ;:ircuit ccnfigurati‘o\ri, a;. many
types _E_:f_.el.ectrical .elements as xposs-ible, ‘to perform D.(':_., A.C.
and tiné‘-domain analyses. As a result, these simulators are
1arge‘, r-equiripg a huge m.emory and CPU time to perform the
analysis <;f ::ncircuit of a reasonable size. The inclusion of such
simulators in an optimization. program, where it will be called
hundreds. of times is an ubsolet—,e idea. Another I;andiéap for theéé
simulators is that most of them do not-pr‘ovide sensitivities which
are needed for the optimization process.

The ¢trend in circuii:.\de-sign is increasingly towafds
consideration of production yield, design centering, optimal
assignment of component tolerances and post-production tuning in
an  integrated fashion. The scope and size of the resulting design
problems have expanded immensely as a result. The c¢irecuit
designer confronting the design of a reasonably sized circuit

which he has to accomplish in a limited time will be forced to

avoid developing his own analysis program.

¥ T
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. With the use of the 'm;zltidin;ensional approxima,t.ion “approach
developed by Bandler and Abdel-Ma.lek (1978a) one  can exple1 17
general gircuit s:.mulators to perform the. design w:x.thoub the
. explicit. requirement of sensitivit:.es.' Knowing a nom:.nal solution

and the. assoolated tolerances, ooe "prun of the simulator at
(k+1)(k+2)/2 Qrese1 ected sets of k parameter values lead to a set
of quadra...::.o models of. the response '-z r.t. t.he parameters. Those
}models are's“ubsequent.ly used to -carry cut the optlmlzation
processes. - . -

Problems also ari.ee when the available simulator does not
handle {or does not incl{ide) one, or mo_re, .of‘ the elements in the

ci.rcuit. to be analyzed. This chapter is concerned” yrith the
efficient dse of these generallsimulators in the- modeling ap;?roach
and how to overcome the problem of nonexisting elements in' the
simulat_o.r.‘ Two examples are given, one.i_s_ an active filter and
the second is a current switch emitter :ollower.
4.2 The Use of General Simulators

Quadratic models (Bandler and Abdel—_Malek 197ga) of the

circuit response Ww.r.t. thé parameters at appropriate sample

points in the frequency or time domains permit the use of general

-
-

purpose simulators without‘explicit requirement of sensitivities.
These models are subsequently used to cafry out the optimization
process. The models may be updated and the process repeated

depending oh the accuracy required and the conditiening of the
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. problem. . '_ N “ ST -
% To minimlze computational effort, the simulatob should
provide responses at (k+1)(k+2)/2 base points, where Kk zs the

dimension of ¢,_sq1tably arranged within an interpolation region

1 . N
described by Abdel-Malek (1977) . . :

& - E i E E, " (ll.'l)

where & is the center of the interpolﬁtion region and ﬁ defines
the size. Flgures u‘1(a) .and 4.1(b) deplct suitable arrangements
of the base po;nts for a two-dlmenslonal and a three—dlmen51onal
cése, respectively.

The pﬁbgram SPICE2 (Nagel 1975), the available simulator,
has been used to obtain. circuit responses at the base points
needed for the modeling and design of different networks (Bandler,
ﬁbdel—Malek; Dalsgaard, Elrazaz and Rizk 1978). The program can
be run with different sets of parametér values. In order to -
reduce the overhead time, and assuming thafi the circuit is not
very large, the program cah be gsed only once by supplying the
data in such aqlmy phat'the circuit islrepeated with different
sets of nodes (where there is mno interconnection between each set“
of nodes except the ground node) with different sets of parameter

values. In the frequency-domain case the overall nodal admittance

matrix is, consequently, & block diagonal matrix with each block
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Fig. 4.1 Arrangement of the -base points w.r:t. the centeIs

n regions in (a) two dimemsions and

\
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of interpolatioc

(b) three dimensiomns.
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representing a Y matrix of the cireuit. Fig. 5.2 shows such an

example. ‘Ihe reordering of the equations to reduce fill-ins, when
these equations are .solved by LU factorization, would not affect.

the va.lidity of supplyi.ng the - data in this way. We have to note’

" bere that this can also be done for circuits to be analyzed in the

time doma.in :Lf the companion network or the tableau approach is

.used for the a.nalysis. '

5.3 Examples . . -

4.3.1 An Active Filter

We ooosio;} here the a.nal}sis of  an Tactive filter (Fig.
%.3) to be designed in +he worst-case senise everywhere in the
range of -a tunable pa.rameter, nanely, Rl&' The actii'e filter is
based on an active bandpass realization consj_.sfered by Budak and

Zeller (1972). The operational ._amplifiers employed are taken as

ponideal, in particular, the one-pole roll-off model given by

/ . - o
0 a '

-~ A(s) = Fara ) (4.2)

where s 1s the complex frequency variable, AO =2 X 105

is the
D.C. gain and w, = 127 rad/s the 3 dB radian bandwidth. A nonzero

output resistance R is assumed for the operational amplifiers.



*gONTOA

aojousaud wuq“unoummu y3jTs saufl o/ (zo) () pajeadai

. _ , o
jynoayo Teurdrao aul s} YoTUM*ZH01dS 03 poyTddns IN2AFD < 'y ‘B1d

b

!
!
i

- 107 -

-t

S
»




-

+(8)v, 103 330-T101. ofod-ou0 puv ¥ §L =¥ ‘Y 0§ =

'

3

1

o+

W YITH 1937FJ PATIOE srqeung g'y ‘914

My



R 4

- 109 - -

Replacing the operational amplif:iers by their_- equivalent circuits
.we obtain the circuit of Fig. 4.4. Since- the program (SPICEZ)
does not ha.ndle a frequency dependent gain of the form of (&.2),
the gain had to be represented by the transfer funetion of an
additional small circuit. Th; transfer function of a series RL
circuit .driven by a voltage source of Ao @, can represent equation
(5.2). This is achieved by choosing a wvalue of 1 H for the
:.nductance, (m -1)2 for the first resistor and a varue of 1 & for
the output resistor. The voltage across the output resistor lS )
“the output volt.a:ge of the first operational amplifier. The ¥
term- at the input to the second- amplifier can be modeled by 2
current leaviné a node connecting two voltage controlled current

o~
sources which are controlled by the voltages to be subtracted.

h g

Figure 4.5 shows the equivalent circuit supplied to SPICEZ2 to
.
perform the analysis. Fifteen cirecuits conneeted ir caéeade were
actually supplied once to the program to obtain the response 1v21
y? C.l and Cz, and
R2 is equal to 26.5 kR. The center Dbase point and the sizes of

at fifteen base points. The variables are R,, R

the interpolation region are given in Table 4.1. Figure 4.6 shows

the response of the filter with R1 = 12.8214 ko, C. = 0.7R294 uF,

2
C.l = 0.70106 F and Rl‘ = 188 g (a2 peoint in the interpolation

region) obtained by SPICEZ2 and exactly similar to the response

obtained by a specially written program.

-
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frequency Hz
Fig. 4.6 Response of the active filter at a point in

the interpolation region.
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TABLE 4.1

THE CENTER BASE POINT AND THE SIZE OF THE INTERPOLATION REGION
FOR THE QUADRATIC APPROXIMATION OF THE RESPONSE OF THE

ACTIVE FILTER OF FIG. 4.3 R
4/’ '
J— R Ry o C,
(k2) (2) (uF) (vF)
Center Base Point 10 200 0.75 T 0.75
Size § 5 100 0.375 0.375

4.3.2 A Current Switch Emitter Follower

The circuit shown in Fig. 4.7 was employed by Ho (1971)
for time-domain sensitivity calculations, and for worst-case
design and yield optlmizatlon by Abdel-Malek and Bandier (1978¢c).
Here we will consider the analys;s of thls circuit by SPICEZ.
Figure 4.8 shows the charge-control model to be used for each
transistor. The charge-control diode model corresponds to that of
the emitter-base junction. Table 4.2 lists the values of the
_ e¢ircuit parameters and model parameters, which were obtained from
a worst-case design of this netwoyk (Abdel-Malek 1977) .

The program SPICEZ could not handle the nonlinear

capacitance in the form of the one give %o (] transistcr model '
of Fig. 4.8. 1In order to overcome this problem (assuming we want

to analyze the network with the given transistor model exactly and

&
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Fig. 4.8 The tramsistor model.
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TABLE 4.2(a)

CIRCUIT PARAMETER VALUES

R, ‘ 281.33 &
. R2 g5.00 0
R 24 g -
3 78
Ry 45.53 @
B, - © 403V
Eq 1.13 V
E, 1.66 ¥
CO : 1.25 pt
TABLE 4.2(b) -

DIODE MODEL PARAMETERS

Isp diode saturation current 0.6 x 10794
CJD depletion layer capacitance g.12 pfF

T'ID transit t;ime‘ 0.01 ns

8 inverse of thermal potential 38.688 v

I = ISD(exp(BVD)-T)
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. 7
TABLE 4.2(c)
TRANSISTOR MODEL PARAMETERS
Ig saturation current 0.6 x 1079 &
a common base current gain 0.99
Ry base resistance "° 50.0 &
CC collector junction capacitance 0.5 pF
Cx emitter junction depletion 0.12 pF =
layer capacitance ‘
T base transit time 0.01 ns
8 inverse of thermal potential 38.668 V"
IC = a IE
dIE
C.=0C... + IT ———
E JE dvEE
RB and CC are assumed zero for transistor T3

TABLE 4.2(d)

TRANSMISSION-LINE PARAMETERS

¥

characteristic impedance §2.004 2

T delay time 0.25 us
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not with any other model) "the current:passiﬁg through the
nonlinear part of the capacitaﬁce was represented by the current
:L.l of a two-dimensional current controlled current source. The
currents controlling this source are 12 and i3 in two small

" additional networks-as showp in Fig. 4.9. The coefficients of the
poiynomial representing :i..l are .all zero except the coefficient of
the cross terms which has the value one. In the circuit-uhere'i2
is passing Py = P,Ig so as to let i, be equal to P Ig exp{ VBé).
The current i3 will represent dVBE/dt.- We have to note that the

~ zero valued voltage sources in the additional network have to be
-lntroduced sznce the current controlled sources in SPICEZ can only
be controlled by currents passing _*hrough independent voltage
sources. The results were checked by the companion-network
approach (Rizk 1978).

TQE analysis was alsovperformee by SPICE2 using the built-
in models. The parameters of these models were fed in the data to
match the model as closely as possible to the given model {Fig.
4.8). Responses obtained by the companion network, by SPICE2 and
by the ' equations (Abdel-Malek 1677) are shown in Fig. 4.10.
Note thae the two responses obtained . by SPICEZ2 were almost
identical.

The running time of SPICEZ, where we modeled the nonlinear
capacitance, was 92 s, while using the built-in models the running

time was only 7 s. This - difference is mainly due to the
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Fig. 4.9 Transistor model described to SPICE2.

-
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of analysis.
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addlt:.ona.l elements we have :Lntroduced in modeling . the nonlineaf

capacitance” which resulted in having 12 additional nodes and ncde
- voltages. - The data supplied to SPICE2 in the two cases is given

in Appendix B. |

4.4 Conclusions

" The possible exploitation of géneral purpo%e simulators to-

perform the analysis of circuits (even_ if they can not handle the
‘circuit directly) ‘and obtain the pultidimensional approximation

models to carry out sophisticated optimal design problems (design

centering, tolerance signment, post—production- tuning, worst-
case design and 3,;ield lﬂ?&'\qn) has been described. -



ANALYSIS AND SENSITIVITY EVALUATION FOR "

F!ASCADED STRUCTURES

-
-

5.1 Introduction

This chaptgr presénts a new and comprehensive treatment §f
computerrorientedi cascaded network analysis. The analysis of
cascadqd networks plays a Qery important role in the design and
optimi;ation of micré‘gve eircuits, sc that an attractive épproach
wh%éﬁ ‘_fécilitates efficient analytical and numerical
ipéesiigatfons of response, firsi- and higher-order sensitivities

of response, simultaneous and arbitrary large—-change sensitivity:

‘evaluation is highly desirable. As is well-known, first-order

sepsitivities, for example, are useful in network optimization by
gradient methods. —

In tolerance assignment, the response and its first-order

_sensitivity at the vertices of the tolerance region are- needed.

:This inforﬁation is also very useful if a worst-case search

algorithm has to identify the worst vertex.
The appreach we_have developed permits efficient
(a) exact analysis of cascaded networks in any directioen,

(h) exact evaluation of first-order response sensitivities at



(e)

(d)

(e)

{2)

(b)

(e)

.any location; -
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exact evaluation of the effects of ‘any number of

simrltaneous large changes in any elements,

the exploipation of network structure:

-

1. ;esponses' at different loads in° branched networks
which may be comnected in Series or in parallel with
the main cascade, can be obtained analftically in
terms of the variable -elements. Sensitivity ‘and
large-change effects w.r.t. these variables can be

»

. easily eveluated,

2. symmetry can be taken into consideretion to reduce

computational effort (Banéler, Biernacki and ﬁizk
1979), |
evaluation of éhe_exact effect due to simultaneousl?
growing elements in apfropriate locatiens. . _ ~
The conceptual advantaées enjoyed by our apprecach and
apblicable to'2-port elements are

ail calculatioqs are-applied directly to the given network:
ne auxiliary or adjoint network is defined,

all caleulations involve at most the premultiplieation of
t;o by two me}rices by row vectors of postmultiplications
by column %ectors: no explieit matrix inversicon is ever
required,

response functions, sensitivities or large-change effects

are represented analytically in terms of the parameters to

\
™
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-

be investigated: all parts of the network to be Kkept

-

‘constant are reduced numerically to 2 few two-element

vectors appeéring as constants in the formulas,

td) calculations can be carried out easiiy by hénd, if
- - : * »
b appropriate, or are readily programmed. - T -

The approach is not confifed to 2-port elements. It has .

been generalized in.this chapter to 2p—poTrt elemenﬁs.

5.2 Thegretical Foundation
Consider the two-port element depicted in ?ig._5.1. The

basic iteration, also summarized by Table 5.1, 1s ¥ = Ay, where A

is the transmission or chain matrix, y contains the output voltage

and current and ¥ the corresponding input quantities.

N

s YEAY Y,
—> -—
+ O —0 +
« e - ;a A Y4 e
- O— L -

Fig. 5.1 Notation for az element in the chain, indicating

reference directions and voltage and current variables.

e
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TABLE 5.1

PRINCIPAL .CONCEPTS INVOLVED iH THE ANALYSES

Voltage seledtor

Current selector

. Equivalent source

Equivalent load

1<

e

ne

Rl

-1

Concept ' Def‘:l_.nition Implication
Basic iteration E =AYy y == E
- Forward operaticn ?é = E'f ﬁ = ?&f = ET!
Rever;;e operat'ion :r: = Av y = cv ==>'E = ev

e, ==> Uy OF Vo

efy_:V—ZI

-

y = Vper (I Vi -Ipde,

Ty -1
s=éstsr %21 T s
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a
Egtga:g_analx;ig (see Fig. 5.2 and Table 5.1) consists of
initializing a ﬁT row vector as either [1 0], [0 1]l or a suitable
- linear_combination'and successively premultiplying each constant

chain matrix by the resulting row vector until an ,glgmgni_gﬁ

interest, a reference plane or a termination is reached.’

tforwcrd —>ur v<-reverse E
O Lo o Lo o - &
' !
oA ]
¢ Lo o— o o e
o |
1 |
1 ]
I ]
s
prd
V
|
|

Fig. 5.2 Forward and reverse analyses of a cascaded network with

source and load impedances assumed constant.
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nggngg_gnalxgig, which is similar to cohventionai analysis
of cascaded networks, proceeds by initializing a f column vector
as either [1 0]'r or [O T]T or a suitable linear combination and
succqssively postmultiplying each constant matrix by the resulﬁing
column ;ector, again until either an §1gmgn§_g£_1n&gng§1,‘a
reference plane or a termination is reached. ’

In summary, assuming a.cascade of n two-ports we have

ey BN R P SIPUIY LN e

-~ -

-{5.1)

and, applying forward and reverse analysis up to Ai, this reduces

to an expression of the form

|

-t

Al

Y
5
1<

(5.2)

where
Z = C E . (5-3)
and ¢ and d relate selected output and input variables of ‘interest

explicitly with AT.

The typical formula will, therefore, contain factors of the

form

functicon evaluation: Av==>0Q . (5.4)

first-order sensitivity: GTGA v ==> §Q (5.5)



T ‘ .

partial derivative: u Ei-v ==> Q! (5.8)
- =T . '

large-change sensitivity: u” aA v ==> aQ ., (5.7)

" where the parameter ¢ is contained- in A. A full reverse analysis

taking
' n o 1 Q
vy val =
T ~2 0o 1
yields
1 .0
[vi vi] = A.i+1 Ri+2 e An‘[ '
- - - s = 0 1

and a corresponding full forward analysis taking

_1 _1 T 0 ‘v 0 T - 1 0
(a; w1 = [y 2l =
~ 0 1
yields
1 0 T
G S e R I

5.2.1 Reference Planes
In considering more than one element 1n the cascade Wwe

divide the network into subnetworks by reference planes. These in
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turn are chosen so that no more than one element is to be
explicitly considered between any pair of reference planes. In
Fig. 5.2 the element & is the only element'whose effect is to bé
consideréd. In Fig. 5.3 the elements Ak, al and a3 are considered
in éﬁe kth, the ith and the jth subnetworks,'respeéti?ely. Note
that the superscripts of .& here, and from now on, denote the
subnetwérk and not thelelement. . Forward aﬁd‘reverse analyses are
initiated at thg reference planes. A forward i£eration of the
structure of Fig. 5.3 is illustrated in Fig. 5.4, where equivalent
(Thevenin) sources are jteratively determined. Reve}se iteration
ijs shown in Fig. 5.5, where equivalent (Norton) sources are

iteratively determined.

i
1
Ak P : e e Ai - .en Aj
qﬁ-
1
!

Lo

!
I
&
]
. l-.~
. ‘ |
|

Fig. 5.3 Subnetwork i cascaded with subnetwork k (at source end)

and j (at load end).
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I | S
i ; e\l function of
\' -V ... forward iteration V bos
S : S ' subnetwork i
I I
Fig. 5.4 For&ard jiteration for Fig. 5.3, transferring an
equivalent source accounting for design variables
from subnetwork k from one reference plane to the
other.
i 1
function of K k . .
- Y I, reverse iteragfion ... Y'L I
subnetwork i i . L
l

Fig. 5.5 Reverse iteration for Fig. 5.3, tramsferring an
equivalent source accounting for design variables .

from subnetwork j from one reference plane to the

other.
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5.3 Network Functions in Terms of Elements Under Consideration
Performing forward analysis from the source of the ith
subnetwork to the input of A and reverse analysis from the load

* to the output of Al we pave

v (g, Zg 1) Ai(Viv e vl othyy = T e 2Ty 59

and the current through the voltage_source_of'the ith subnetwork

i

. T
-t 44 i -1 kK -k
Ig =y, AV v (thL' IV = VEYL -1 (5.9)

From (5.8), letting Ii = 0 and Yt = 0, we have Ig = 0 and the

Thevenin voltage

vi v:
.. - s s
VS =V = =73 , (5.10)

T 3
(u +z 2) Aiv1 Q11+zéQ21

where the Q terms have been defined in (5.4). Letting Vé = 0 and

L= de-1 Qutput impedance
IL = 0, we have IS = IL and the .

T
i 1
(“ *Zsua) Av, @,

1

T (5-11)
2

i
L
—_ T -
Q.. +2.R
Ii (u +ZSE2) & v1 1178

i
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where, again the Q terms of ,(5.%) are used to ‘obtain a compacﬁ’
expression. These %ressions for VJ and ZJ permit equivalent

Thevenin sources to be moved in a forward iteration.

From (5.8) and (5.9), letting_I% = 0 and zg = 0 we have I.Lk

= 0 and the jpput admittance

T
bty itk

= A (v. 4D o3 Irtqm

I{ = '(5.12)

m‘L' o e

4 222

Letting V; Q0 and Zé = 0, we have ‘J’lE = 0 and the Norton current

r

-
-

i,
g =

*

L -1

]

LS Ty atel = rrred
-Ip(Yug = up) ATV, = "IL(IIL{.Q12 Qae) (5.13)

These expressions for I]'Tf and ‘.{t permit equivalent Norton sources

to be moved (if "desired) in a reverse iteration.

The input current Ig for Ii = 0 is obtained via (5.12) as

E é (v +Yiv -
T vt e —
s s Ty
U, A (v -o-!'iv
,
= Tki( ri ) .‘Vi(Qi YiQi)
¥ A ¥+iVo 2122

= (5.18) )

T i~
, (u izhn,) Ky, sy Q3+ *zsqu"z 0,
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Tables 5.2 and 5.3 sﬁmmarize the procedures and the effort
required 1in evaluating the different factors’ in. the_;derived -
equations. o |

hserul special cases of these fbrmﬁias for Is anleL in

Fig. 5.2 are, from (5.14) and (5.10), respectively,

-7
R4 %1
Ig=Vs — 71 =_VS'E:: . (5.15)
u; Avy
. P
\
and - \
Vs VS .
¥V, == = . (5.1 )
L u1TAV1 Q11 ’

Table 5.4 gives some.useful formulas which can be obtéinéd for
variations in a particular element &. -We note, for example, that,
since A is arbitrary and at most only one full analysis yields all
_Q11, 5Q11; Q;1 and &Q11, the corresponding VL, GVL; aVL/a¢ and AVL
w.r.t. all possible parameters anywhere in the cascade can be
evaluated exactly for one network analysis. This particular
special case;is equivalent to +he results of previous researchers:

(Bandler and Seviora 1970, Therrien 197%).
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',TgéLE 5.2

NOTATION AND IMPLIED INITIAL CONDITIONS

_ Factor

Identification

~ Forward Reverse
= ., . _ ; )
uy (®) v, (+) 44 voltage voltage
;T (" v ) ’ {+). | voltage- curreﬁt
-1 -2 ) 12 . ag
- - _.
ET (®) v () .curr-ent voltage
~2 ~1 21
;T " v (+) current curr;ent
22 T2 22 _
(#) denotes either A, SA, 3A&/3¢ or AA
(+) denotes Q, §Q, Q' or aQ, as taken (5.6) or

(5.7), respectively

from (5.4%), (5.5),

-
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TABLE 503

ANALYSES. REQUIRED BY CERTAIN TERMS

Y

Apnalysis Required

Term

ule Forward and reverse (conventiopal) cascade

- analysis to- any corresponding reference plane,
whichever is convenient ;

uTg, 5;3 Preferably cne reverse analysis to source
reference plane {(aveiding calculation of u, and
up) ' i

uTz1 Erzz Preferably one forward analysis to load

- reference plane (avoiding caleulation of v, and
va) ) -

-7 7 ‘

u v One forward analysis to input of A and ome
reverse analysis to oytput of é

-T =T .

u1 v, u2 . v Ope full forward analysis to imput of A and one

- T - reverse analysis to output of 4 B

-T =T :

u Ve uo " v Ope full reverse analysis to output of & and
one forward analysis to input of & ’

g? T Ef v One full forward analysis‘ﬂéfinput of 5 and one

- T full reverse apnalysis to output of A

= ey, UV <

w2 1T 2 2
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TABLE 5.4 e

_ FUNCTIONS -OF INPUT CURRENT IS AND OUTPUT VOLTAGE VL-FOR

CHANGES IN A ONLY

Variable . \Eﬁ Qutput

v
A I = Vg %2-1- v, = 33-
) H L,.B/
sA oI = Vg8Q,,-158Q, . = _‘i 5
= = - -
4 s Q, = L g S
T v .
22 g ¥Ry~ Wy, ﬁ Q!
¢ 3 Q.” e k"a\ 11
| N X
b
sA oI V42Q,,-158Q,4 _ W= - VE
~ S Q,,+4Qy, L V V80,
s ]

-/
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5.4 First- and Second-order Sensitivities
The first-order sensitivity of V. w.r.t. a variable

‘parameter ¢, is given using (5.16) by

v 3,
aVL S 3¢J |
a¢1 = ‘Qa - (5-17)

11

-

Differentiating (5.17) w.r.t. ¢, We get

aavL s | Q4 ) - 7

—_— e LY. | T

38,964 S 20, | 394 / Qq4
2
37944 3Q,, 3Q,,

Q1 en2 - 23 3
929% ®q 3%
= -V 2 . (5.18)
11

The evaluation of 3Q11/8¢1 and 23Q,,/3¢, is straightforward
(see Table 5.4). For ‘the evaluation of the term 32Q11/a¢2a¢1, we
assume that the variables are numbered consecutively from the
source end to the load end so that this term is expressed, for

example, by

f}ﬁg'

2
- kol
Teg00, - 39y SV 3e, I (5.19)

r : | - T
J ey
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Note that ﬁT ijs a function of a certain chaln matrix which

-1
contains the variable dq A is the chainrmatrix’ containing ¢2- and

v, is evaluated at the reference place following A.

5.5 The Evaluation of V; and .its Sensitivities w.r.t. Design
Parameters at all Vertices of the Tolerance Region
Algorithms concerned with finding worst vertices of the

tolerance region need the value of the response at the _vertiees

(Leung and Spence 1975) as well as the sensitivit}r of this reponse

w.r.t. the design parameters (Bandler, Liu and Chen 1975, Tromp

1978).

Assume that we have partitioned the petwork by reference
planes into subnetworks suck th;;: each subnetwork contains one
chain matrix containing .a. variable parameter. Each reference
plane is chosen to fall immediately a.fter- a variable element.

The Ihevenin voltage/impedance of the ith subnetwork 1s
considered as the source voltage/impedance of the (i+1)th
subnetwork, given by (5 10) and (5.11), respectively, where J =
11, We have to note here that the terms Q11’ Q21, Q%z and Q22 '
are as defined in (5.4) with v, and V¥ set to e, and ey,
r‘espectively, since the appropriate reference plane immediately
follows the element &i The number of pai"s of terus Vé +1 and
st'ﬂ to be evaluated is 21 sipnce each subnetwork contains cne

variable element with two extreme values {assuming that each Ai

contains only one variable parameter).
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T

Differentiating (5.10) w.r.t. Sy where &, does not belong

to gi, but Vé and'Zé are functions of &, (i.e., ¢y is in a
subnetwork h befo;g the ith subnetwork) we get .
» - vi z
zi
avi‘“1 (Q +'zs Q21 %:i % %Zi'qé1
a¢h ) . 11 S Q21 ' o5
and differentiating (5.11) w.r.t. éh’ we éet‘
i
sz’ (@) o2 Q) ::h %G, - (q21+z Qo) §;§ Q21
oy (@}, + 23 Q3

i
2zt (@,Q5, - @0,

21
_= 34 i i .2
no(Q7; + z Q21)

i

(5.21)

On " the "other hand, the derivatives w.ret. 6y which is

contained in A* (Z; and V; are not functions of ¢i), are

-

i i
. aQ 3Q
i+ -v; (a 1L, zé - 21y
S ®4 ®5
= - - (5.22)
b, i, zi Ql )2

- Q34 s <21
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and _ - . . \
; o
.4 ot _QL . %5 5 Qi L 3%
i+ (Q +Z. Q )( +Z ) - (Q +Z Q )( +Z )
ZS s 21 S 3. S 3,
, i _ i
Y i i.i.2 ’
i (Qqy + 2g %y
{5.23)
at, 2, 2, 205,
where , R and correspond to (5.6) and Table 5.2.
3¢ 8¢i B¢i 3¢i

This senS'v tivity information is carried out through the analysis
for each subnetwork. The number of variables for which
: et a gl i+ ;
sensitivities ol Vs and ZS exist at the (i+1)th subnetwork is
i so that 2> .1 sensitivity ecaleulations are performed. Baving ‘IL
and I as zeros, the expression relating VL and the last sels of
VS and "S' is given by (5.10), so that Zk {ralues for VL and its

sensitivities can be obtained from appropriate values of Vs ZS

and A.

5.6 | Branched Circuits

* Consider, as an example, the cascaded circuit sk;own in Fig.
5.6, which has two bganches, cne connected in series and one in
parallel. 1In the series and parallel branches we highlight, for
example, the elements B“and c, respectively. The series branch
can be thought of eé;uiva.lently‘ as an element consisting of a

series impedance connected in cascade with the main circuit as

!
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b + VBL - . - + VCL -
: o asnn el e
load ) load
| | ] i
6 . o - o ., ©
Y18 -—-cl>-—-'— —_ ——-rl.>--—i-—<|:>——— Yie
B c
E‘IB GZB ___ci)....-._—cg——— ——-6——-_—_—-6——1'-1‘[(3
? 7 ? ¢
f g h k
l - _ 1 § —— A
| d-{-——{» Ot T.—&l)_ + e
: — T o —T —o o7
| 1 Z : I r‘-l l
@1 | D e
' | 1 -
. - < < 0 o
1 [ I 1 'l
1 1 { 1 o
Y1z Y1z Y1y Yy

Fig. 5.6 An example of a cascaded circuit with a branch
connected in series and a branch connécted inm
parallel. Branches are represented in the cascade

¢

by their equivalents. Reference planes where

different analyses are initiated are labelled.’

S S S
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shown in Fig. 5.6. This impedance Z may be taken as the inverse

of the input admittance derived in (5.12) and is given by

—T
e 2 Lip
Z = e 2 ’ . (5.24)
. s 2 I8

where the subscript B distinguishes terms associated with the
branch fr;ﬁ that of the cascaded main circuit. The forwar&
analysis is initiated at reference hlane_ d and the reverse
analysis is initiated at reference plane b. (See Fig. 5.6.)
Similarly, the parallel branch can be &thought of
equivalently as an admittance Y connected in shunt in the cascade.

The admittance ¥ (as in (5.12}) is given by

-1
5c ¢ Yic |

Y =_1.;T C v ] . (5'25)_
ic T Iic

where the forward analysis is initlated at reference plane e and
the reverse anaiysié is initiated at reference pléﬁe c.

Different formulas relating the ioad voltages of the
branches to the variables can be deri;ed. The loaa voltage of the

series branch can be derived (Appendix C.1) as a function of B as



T

where

where

T L3
e Y1z Vs
N ;? Bv .;T
“sp 2 718 212 1 Y1z
ﬁfz is the result at reference plane [ of a forward
analysis initiated at the socurce,
V1Z is the result at reference plane g 6f -é reverse
analysis initiated at the load reference plane a.
It can also be obtained (Appendix C.2) as a function of C
as
[orf. . - ur, ] oo,
~1If ~1Yg Y 11 <1¥ 'S
(C) = ' (5.27)
e S R
=18 ~ ~1B -1 <1
X 1
ﬁ?! is the result at reference plane h of a forward
analysis,
-
Viy is the result at reference plane k of a reverse
apalysis, ) ) -
GﬁYf is .the result at reference plane h of a forward
analysis initiated at reference plane T,
ETIg is the result at reference plane R of a E;;;érd

analysis initiat®d at reference plane g.

’//&The load voltage of the parallel branch can alse

be derived
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(Appendix C.3) as a function of C as

_
el Yy 's
¥..(C) = . (5.28)
- ;: C v, .;T ve v
~1c 2 lic Y |y 1Y

and (Appendix C.4) as a functicn of B as

T
e] Yix s
Vo (B) = . . (5.29)
-~ P L P
~iC I J1C 12 0 1 ~12 :
5.7 Algorithms
5.7.1 Two Algorithms for Evaluatiqi of Large Changes —

The two following algorithms are used to obtain responses
at the base polnts for the multidimensional quadratic
interpolation (Bandler and Abdel-Malek 1979). The first is used
EPen one;parameter at a time is perturbed and the second is used

when pairs of parameters are perturbed simultanecusly.

Algorithm 1  Multiple One-at-a-time Changes
Step 1 Initizlize Q@ and v.
‘ Set L1 -1, m+ 1, J+ n.
Comment n is the total number of elements in the cascade and

o is a counter for the variable elements.




Step'a

‘Step 3

Step 4

Step 5

Comment

-Step 6

Step 7

Step 8
Step 9

Step 10

if i =2 8o to Step T.

- W5 -

Ir =2 go to Step 5.

Lm is an ‘element of L, an index set containing

-~

supersceripts of the Kk matrices containing the k

variable parameters and ordered'consecutively. it

is assumed that each matrix contains only one

variable.

3T « 3t at.

i+«1+1.

Ifi-= %m go to Step 5.
Go to Step 3.

Let x©° - U.

_—

x1, xz, ceny xk are working arrays to store

vectors required in the evaluation of the.
changes taking place.

m+m+ 1. Go to Step 3.

Ifn-= ﬁk go to Step 10.

v=aly

J+3-1.

IfJ ='£m go to Step 10.

Go to Step 8.

the U

large

Evaluate Q using the stored xm, v and the perturbed

‘Aj. Ir j =2, stop.

Positive and'negafive extremes .0f the variable

are considere¢ simuiltaneously.

1 a3
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Step 11 - o - m'-.i. Go to Step 8.

‘Algorithm 2 Multiple Palrwise Changes

This algorithm is ' for evaluating the response at the

.. k(k=1)/2 base points where two parameters are perturbed at a time.

At the first k-1 points following those considered in Algorithm 1

the parameters indicated byrthe subscripts
1,2 1,3 ... Nk

are changed; at the next k-2 points the parameters indicated by

the subscripts
- 2,3 2,4 ... 2,k - “
are changed, and 'so on, until the final point at which parameters

k-1 and k are perturbed. Figure 5.7 serves to illustrate the

analyses involved.

Step 1 Initialize &), 3y, G, and 5.
N Set 1 -1, m =~ ff,q «0, r+land s+ k- 1.
Comment u: and u; are vectors to be initialized as u? and
2, resp*tively. They have the same role as u? and

ug in the forward analysis initiated at a reference

Plane immediately following the first variable

element.
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> 2

/ vuricble'\\\..%— ]
o4 1. 2 3 o
stage
1 uO :
2 w0 - "
3 VS,ZS (2 sets) : _
u° ul>x!
5 - VS Zg (1se'r)
u°, 1 —>x2 ua xS
v
- v
changes (1,3),(2,3) .
8 : v
change (1,2)
Fig:. 5.7 Illustration for a cascade of 6 two—ports of the principal

stages in the calculations involved in the multiple pairwise
changes algorithm. Three variable elements are considered,
hence three sets of simultaneous analyses are effectively

-

perfo:med.



Step 2

Step 3

Step 4

Step 5

Step 6

Step T

- 188 « - o

Ifi=12, 8 to Step 4.

-Lm is an element of L an index set containing

superscripts of the k matrices containing the X

variable parameters as indicated in Algorithm 1.

QT oT .1
R T
0T OT i
uy” -, A
If m = 1 go to Step 5. !
W17 o 1T A, i
~1 4, 2
1T LIT 43 _ .
b T2 i ’ Y
qT qT ,i
v, v 2 2
qT - .qT L1
Uy, * 3 2

This step is not performed until we reach a variable
element, since the analyses involving the uJ do not
begin until the jth variable element has been
considered. ‘ '
Set 1 « i + 1. l | .
Ir i= 2 8 to Step T.

Go to Step 3.

If m = k go to Step 9.

Calculate the Thevenin impedances and voltages
Zg(my 1)y --es Zglms)s

Vs(m,1), ooy Vs(m,s).

s« 3-1.



Step 8

Step 9

Step 10

‘Step 11

Step 12

;Step 13

»
- -

e

For the first variable elegpent k-1 sets of Zg and Vg
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have to be evaluated since changes in this element
will be coupiéd one at a Eime ﬁith chanées in the
next k-1 variable elements. For the gecond‘variable
e%gmep? g-a sets of ZS and Vs are calculatéd and;fg
on. See Fig. 5.T7.

Ifrm=1go to Step 13.

Set p = 1.

p is an internal counter. -
r P

Too <

Ifp=9q3g %o Step 12.

When the analysis has reached 2a reference & plane

immediately preceding an element containing a

variable whose change is to be assoclated with any
l\

previously encountered variable a snapshot of the

L
appropriate u vectors is taken and stored in the x

arrays. See Fig. 5.7.
Set r+r+ 1. =
p+p+ 1.

Go to Step 10. ‘ 5

Set r = + 1.

Ifm=kgo to étep 16.

OT OT i
-1 "1 é "
OT OT i

Uy + Uy A
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- Step 14

Step 15

Step 16

Step 17

- .
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Ir'm = 1 go to Step 15. .
21T o 1T il

2y L2 o B ~
1T 1T i
u” -8, A%
"qT qT ,i -
Uy *8y 2
qT qT 1 i
4 v 2

In Step 7 we calculated sets of Zg and Vg accounting

for variations in Ai. In Steps 13 and 14, however,

we carry forward the analyses for which ai is
considered fixed.

Set L -1 + 1. - . ) )
m*-m+1r. -

q+-q+ 1.

qT

Initialize u} and ugT
ql

v and ugT are initialized to start a forward‘

and go to Step 6.

analysis at a reference "plane immediately following

'é variable element Ai.-

Set r -~ 1. -

m+m = 1.
Initialize V4 and Vs

E; this. step we start the analysis from the load

end. ——

If o= £, 89 to Step 20.

Set ] = n. ;
] .
n is the ﬂgtal pumber of elements in the cascade.
. _ -

"
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£
Step 18, L ﬁj \LE )
IS
. ‘ J . - .
vy v AT Yo o~ : -
3«3 -1
Step 19 Ir § = 5_ g0 to Step 20.

Go to Step 18.

Step 20 p~1.

Step 21 "Calculate Q using Vg, Zg» 3d and v and the
appropriate x. i |

Comment ) When "8\539;; t;e kth variable eleﬁent we calculate

k-1 values of Q, and when the variable element k-1
is reached we calculate.k-2 values of Q ard S0 on 2as
jllustrated in Fig. 5.7-
Step 22 " If p = q go to Step 23.
Set r =T - H. . -
p-p+ i |
Go to Step 27.
Step 23 " If m = 1 Stop.
Set q = q - 1.
n+~m- 1. ~

Go to Step 18.

5.7.2 First- and Second~order Sensitivities
The following algorithm, -which is similar to Algorithm™ 2

can be used to obtain the first- and second-crder aensitivities'of
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V, w.r.t. the design variables. Figure 5.8 illustrates the main
ﬁ .

stages of the algorithm.

Algorithm 3 |
Step 1 Initialize EO and V-
Setiv;,m*- 1, q+« 0, r+ 1, §+n.
Cogment _ p is the total, number of elements in the cascade.
Step 2 iri =.Lm go to Step 6. | o
lgzmngn; Lm is an element of L, an index set containing'
) superscrigts of the. kK matfices containing  the k
vériable.paramebers and ordered consecutively. ‘
Step 3 E‘o:r . EOT ,i'
Iftm=T _.g'o to Step 4.
E1T ‘_21'1‘ &i;
. .
un - un Ai.
ggmﬁgng u1, ua, s u? ‘are working arfays used %to proceed
- with the evaluation of the gradiénts o -O w.r.t.
the q variables already passed/égfzi:{;Srward
énalysis. ' . -
Step 4 Set L - i+1. y -
Step 5 Iri=2 8 to-Step 6.

Go to Step 3.
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‘ /vcriable —i\

O - 1 2 3 —Q
woze | \
1 u®
2 uO=x!
3 Ot |
[ uP—x2
4 - ol
uO—x3
S '
. ol —w2, =W’
e : l v
v
VL
7 3y
' 513’ st '333
v
8 92
\. Si2+522
9 g v
v
10 = 94

%\Fig. 5.8 Tllustration of the primcipal stages in the caleculation

of first~ and second-order sensirivities w.r.t. three

variable elements.

A . -
gi - 5Q11/3¢i , & l,2s3"

a4 .2
Sij =3 Q11/3¢i8¢j , £,3 = 1,2,3.

©
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Step & = - uo. -
If m= 1go to Step 10.
Qpnm Once a vari_able element is reached the uo is stored

in x® to be used in the calculation of the
fiprst-order sensitivity.

Step T Set p + 1. . . ’ X

Step 8 W - ut.

-

Sr el

Ifp

q go to Step 10.

Comment . The w arrays are used bo store the appropriate
‘gradients of uo, namely, u1,. u2, ...y for the

caleulation of second-order sensitivities.
Step 9 Set p « p+1.
Go to Step 8.
Step 10 If m=k go to Step 12.

: i

S

Y -

— m g
oT , 0T ,i"

1T 1T Ai.

LT | (@=DT 1

LY

Comment. At this step a new u 1s troduced which is equal to

-

'\uibmultiplied by the derivative of AT w.r.t. ¢,

where Al is a functionm of ¢m only.

-~ -~
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L 4
Step 11 Set 1 + i+1.
D+ o+l
) q. - q+1.
Go to Step 5.
Step 12 Set r « r-1.
If n =1 go to Step fé- ) r
Step 13 v - éq v. .
13-
Copment This step is concerned with t.e re;erse analysis.
Step 14 Ird=2 éo to Step 15.
Go to Step 13.
Step 15 Caleulate 3Q/as_ and 32/,
Comment At this point the first-order derivative of Q w.r.t.

¢m can be evaluated, since uo and v at the reference
planes before and after the element are Kknoown.

32Q/a¢§ is evaluated uqing uo, v and aaﬁj/a¢§.

Step 16 "If m = 1 stop.
a., Set s+~ m-1. p = 1.
Step 17 Calculate 32Q/a¢sa¢m.
Ir ﬁ:q go to Séep 19.
Comment . aZQ/a¢sa¢m ié evaluated using the appropriate Er,

BAJ/a¢m and v, where 3 = 1, ..., m-1.

Step 18 Set p+~p+ 1. . 2

//’—#\\\\ _ r+r = 1.

s+ 38 - 1.
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Go to Step 17.

Step 19 Set q +q = 1. .
me~m=- 1.
rer -1

Go to Step 14.

5.7.3 Respcnse Value and its Derivatives w.r.t. all Variable
Parameters, at all Vertices of the Tolerance Region
Figure 5.9shows an é&¥ample of the stages involved in the
following algorithm to obtain the response and its sensitivities

»
at the vertices (3 variables ==> 8 vertices) of the tolerance

region. Jf
Algorithm 4
Step 1 Initialize u;, U4, and~-v.
-~ - (/ -
Set i« 1, m« 1, §J < n.
Step 2 Iri-= m go to Step 6.
Step/ 3 b - ot oAt .
ET +.E§ Ai.

Set 1 « 1 + 1.
Step 4 Iri=1 goto Step 5.

Go to Step 3.

Step 5 If m=k go to Step T.
Step 6 ‘Calculate ?S, ZS s
aVS avs

3¢1v seey a¢m ’
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varigble
/N TN

o = 1 2 .3 —0
stage I ) .
=
1 —uy,up
2 tnlz d
=

Uyl r

Vs:Zg
3 ——— 2sats { VA,

9Z4 /3,
4 z Uyl *

U x N
Ug,ls
VgiZs
5 4sats ( Vg /0, Vg /o,
~ 0Zg fBepy, 025 01 -
15 v
v
. V,,3V, /3¢
7 gsats { — © .
3V, f3pg, 3V, 3y

® denotes Initiclization of uy,us

Fig. 5.9 Illustration of the principal stages

Algorithm 4.

L 4
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azs ‘ aZs
3¢1’ ce-y an ]

2% sets all togetker.
Setm+=m + 1. .
1 «1+ 1.

Initialize u, and u, and go to Step &4.

Step 7 It n = 2 go-to Step 10. ‘ -
Step 8 v = ~j v.
Set j - j-1.
Step S If J = Lk go to Step 106.
Go to Step 8.
Step 10 Calculate Q, 3Q/3é,, ..., 3Q/3& 2% times.
St;b.

k]
5.8 _ Numerical Example
The cascaded seven-sectionrbandpass filter shown in Fig.

5.10 (Borton and Wenzel 1965, Bandler, Charalambous, Chen and Chu

1976) serves as a numerical example. A1l sections are quarter- .

wave at 2.175 GHz. The normalized minimax characteristic

impedances are (Bandler, Charalambous, Chen and Chu 1976)

0 _ .0 _
21 = ZT = 0.506463
0 _ ,0 _
. 22 = 26 = 0.303051 -
0o _ 0 _
23 = 25 = 0.722061
zg = 0.235593
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The’ output voltage V at a normalized frequency of 0.7 is
0. kgT&O?QO - 33. 9011594x10 3, verified twice using (5. 10) onée

associating at with Zg_"and ‘once with Zy. Furthermore, one

analysis yielded ' -

vL(zﬂ+o.o3) 0.49838950 ~ j 0.034901610

.+ ¥,(23-0.03) = 0,49062912 + § 0.034959186

The open-circuit voltage at %the load end was calculated

using (5.10) as
Vo = 0.98624507 + § 0.09226690%

and the Thevenin impedénce using (5.11) is

- < 0.98119253 + j 0.20103391

. A o
which further verified vL“

One analysis taking €5 = 0.021, €y = q.02u yielded

v (Zz-ea, 5 5) - 0.49719716 + § 2.2191360x107>
L(z . s-es) - 0.49583538 — j 2.3636314x107 -2
v (22-e2,20+c ) = 0.49732462 + 3 1.7909912x10 -2
-3

VL(22+c Z +c.) 0.49751427 - j 8.3726470x10

2’755
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A multidimensional quadratic approximation was carried out

fr

for V_ following the approach of Bandler and Abdel-Malek (1978a).
The variables for the approximation were the characteristic
impedances as well as the normalized frequency.‘ The circuit
_responses at 45 base points (wb._ich is eqdal to (k+1)(k+2)/2, where
'k is B) were needed to eiral?ate the coefficients Of the quadratic " |
' polynomial approximating the response functiol@mﬂﬂé\
Abdel-Malek 1978a). A base peoint -is a point where the
approximation and tt)e actﬁa.l function coineide. The center bas-e
point, which is the\.uter of the interpolation region in vft;ich
the approximation is /a.ssumed to be valid; had the characteristic
impedances given before and a normalized f{requency of 0.7. 16
base -points were determined {using Algorithm 1)} by varying one
parameter at a time by +5 w,r.t. its value at the. center of
interpolation. i"o’r the characteristic impedances § was chosen to
be 0.03 a.ndb for the normalized frequency it was 0.01. At the
remaining 28 Base points only two parameters were perturbed at a
time from their values at the center of interpolation by 2
percentase of their & and Algoritbm 2 was used to evaluate the
response at these points. -
Note that when the normalized frequency was perturbed a
whole new analysis had to be‘per%-formed.
fhe symmetry of the structure was taken Into consid-eration
in choosing these pase points. Letting & be the center of the

~

interpolation region, the base points can be' expressed~by (Abdel-
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(
) Malek and Eandler_1978b)

- -

To' 92 ... "1=DIY -1 B gl [ 3 --- 8l (530

N is equal to 45 in our case, : -

1. is a k-dimensional identity matrix,

~k
gk is a zero vector of dimension K,
0.03
D= - ’
0.03

L 0.01]



- 163 -

Q. mo ’ ..1
b L
Po m- m- Nol @., N-l.-.m-
[+] ) . ¢
' ’ r.. s \
1 -’ovﬂ »
' T . .
L)
-. - *
[ 4 ~ e,
. ¢t o e
' \- d@r.. |A.Vo\..
nf. . \ . ) n
ot g
X



“\

- 164 -
<

Examining this B matriz ve pote that the entries for perturbing
» ~
two parameters at a time are the same as for ‘.:heir éorresponding

—_—

symmetrical parameters. The choice of base points given by (5.30)

preserves symetry in the appropriate coefficients of the

multidimensional polynomials. |
Takiﬁg the optimal nminimax qharaczxristic ;mpedances

(Bandler,® Charalambous, Chen and Chu 1976):

. Z. = 2. = 0.606595 -

22 = 26 = 0.3035%7

3‘3‘ = ZS ::\%87
zu = 0.235183

and calculating the group delay using the derivative of VL w.r.t.

» obtained from the quadratic approximatioﬁ yielded

P-4

TG = 0.893 ns,

while the exact group delay is (Bandler, Rizk and Tromp 1976)

-

TG = 0.865 ns.
’ exact

The sensitivity of the output voltage VL w.r.t. length %,

A .
of the fourth section and the sensitivity w.r.t. Zu are evaluated
at a normalized freqi&ncy of 0.5.as R .
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L3V I . L
—— = .0.2804064 + j0.5161026 '
az.u
3vL - - -
- - : — = -2.61736% +)3u*a17395
- - : : 3214 * i

=)
— e —

Without any further effort {since the two parameters._belong

r

to the same element) we obtain

-

- | 2

L

= 11.71675 + 35.415667

Table 5.5 compares the results obtaipred by this method and the one
obtained by the adjoint-network method (Rizk 1975). Taking two
parameters in different elementa, for example Zu.and ZS’ we obtain

the secbnd—ordet term

22V,

3zuaz5

-3

= -30.12383 - j7.516802.

-

5 was chosen.

, \

4 Algorithm 4 was used to evaluate Vp, 3V /3Zy, 3V /3Z, and 3V /3Z
_ N L L Y 5

at the eight vertices of vhe tolerance region (23 vertices wherzﬁgﬁx\
: *

is the number of toleranced variables). The results are tabulated

//A A tolerance of *0.03 oo Z,, Zy and Z

in Tadle 5.6. They were checked individually by reanalyzing the

eircuit at each vertex.

. -
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TABLE 5.5 -

COHPARISOH-OF SECOND-ORDER_SENSITIVITIES WITE DIFFERENT APPRQACHES™

1st Order
- . Sensitivity by
Adjoint Network

-

Term - Adjoint Network 2nd Order " The New Approach
. Sensitivity by .
Perturbation
2

3

.
aZ ';,L‘,_ 11.71675+.45. 415667 11.713232+15.431066  11.T1675+35.415667
528y ; 675+35-415¢

5.9 Cascaded Networks of 2p-port Elements
The approach we have -developed can also be utilized in the
analysis and design of <ascaded. networks consisting of 2p=-port
lements. Consider the 2p-port element shown in Fig. 5.11,
‘5Cossessing p input ports and p output ports. Its traﬁsmission
matrix is given by

»

1247 342

5
A= ’
N LT T Ay Ay

~

where §11, A12, 521 and &22 are p x p matrices. Thg input

quantities in this case are
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2p port
element

A

.\‘

Fig. 5.11 A 2p-port element: a generalization of Fig. 5.l.

L)
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-

1
|
1

‘9

‘4'0..

i |
n
e

and the output quantities are

- ' yEp

¥

where the elements with subscripts 1 to p dénéte voltages and from

p+1 to 2p denote currents. L

For the forward and reverse analyses the matrices 01, UZ'

V1 and Va are initizlized suck that

-
v
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-
E, == U1 or V. o
B, => T or Yo
where
1P
5:1% ,
-// 0
~pP

and where
1p i{s the unit matrix of order p,

Op is the null matrix of order p.

We can now derive in an analogous manner to the derivation of

(5.8)
® =T =T | v '
o= @ ez A Y e L -0, (53D
where
.§1,.§é, 21 and 22 are the matrices obtained from forward_—ﬁm
and reverse analyses, . .
VS is the vector c;:£aining tpe p source voltages,
VL is the vector of load voltages,
9 IL '{s the vector of current sources at the 1oads (if any),
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ZS is a d:!.agonal matrix containing the impedances of the

sources,

I is a diagonal matrix containing the load admittances.

To evaluate the unknowns ‘_T , having. obtained numerical
values for (5.31), a system of p linear equations is solved. When
% is perturbed or when derivativgs are required, only 6p3
additional multiplications and the solution of ‘a p-system of
lj.near equationsq are needed and not a whole reanalysis of the
entire cascadéd elircuit.

To obtain the Thevenin voltages of the subnetwork on the

1.h.s. of the element é,’ we let EL =Qand ¥ =01in (5.31), which

< ~L
glves
-~ - -
=T =T |
AT RS SR RCTRS ST
where

Q,=U, 4 Vi (5.33)
&, =.§§ ATy ' (5'3'3)

and from (5.32) |
T == Qnrls Q)7 s (5.35)
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The .cutput impedance matrix or the Thevenin impedance is obtained
one column at a time by letting VS = 0, IL = 0 and I‘L = 0 except
I, (which iﬁe current source at the load end for the ith port)

which leads t

0= (Qq + 25 Q) Ty - Q2 *+ Zg 9.22)‘ Ll (5.36)
0

where Q. and Q,q are as defined in (5.33) and (5.3%)

respectively, and

e = U7 4 T (5.3
G =LA T T 5.38)

2 Equation (5.36). can be written as
I

Heo0 O

= (Q + Z

(Qqq *+ 25 %) ¥ = W2 * 3s Q) =C, I -39

ps. R 9% §

k

’
-

Foo BN
{

where Ei_ris the ith column of the matrix (912 + %S 922). From
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(5.39) we get’

z
T2y |
. 1. o
L, = @y rZs L) Gt zmai . (5.50).
s |

which is the ith columm of the p X P gTH matrix.Figure 5.12 shows
the %TH and YTH of ;he ?ubnetwork: preceeding the element %.
Similar formulas can be derived (analogous to (5.12) and (5.13))
for the input admittance matrix and the Norton current equivalen;

matrix.

5.10 Conclusions

An important claim we make is that equations (5.8) - {5.14)
can be used to generate'iﬁ a straightforward wmanner, réllowing
differencing or differentiating (as appropriate), any desired
exéct formulas for multiple network analyses, sensitivity and
tolerance analysis with simultaneous .1arge changes. All
calculations are carried forward simultaneously and redundant
caleulations are obviated as demonstrated by the. examples and
algorithms presented. .

The ecaleculation of the first- and second-order

f
sensitivities of a circult reponse involves one addipﬂonal
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analysis of the adjoint network (assuming the analysis of the ~

orig:.nal net;uork Bas already been performed} and k(k+1)/2 a.nalyses

to find second—order sensitivities ca'lculated by finite

differences. A

more efficient approach is to . calculate these

second-order sens:x.t:.v:.tles using the adjoint-netucrk concept by

performing only k analyses. _ Using the new appzoach for the

analysis of cascaded structures, however, less t.ha_n k analyses are -

performed and no " additional memory is required.

The algorithm f‘g{ evaluating the response and its

sensitivities at the vertices of the tolerance region proved to be

very efficient.

tolerances on th

The seven-section filter example wWas run with

e character:.st:.c impedances of the stubs and

tracSmissio'c lines (all seven). It took 0 269 s CPU time to

evaluate only the response at the 128(2 ) wertices. Using the

conventional method of reana.lyzms the circuit for d:.fferen

component va.lués would take 0.0T4 x 128 = 9.472 s CPU, where one

analysis is performéd in approximately 0.074% s. For the case of.

evaluating the response and its sensitivities at vertices

discussed in Section 5.5 (Algorithm 4), it took 0.118 s CPU time -

compared with 8 x

0.074% = 0.592 s for 8 analyses. The savings in

computational effort is subs tial.

o

Symmetry of the networks: “analyzed can be exploited leading

to saving cf computatzcnal effort (Bandler, Biernacki a.nd Rizk °

197%). Branched

circuits can be handled readily. _E‘ormulas,

—-—
——

F)
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f

' similar to (5.26)-(5.29), can be derived for other branched

structures using the}ame concepts so as to render the se‘zi;itivité
analysis and design of these circuits as simple as possible. The
approach should prove- to be very suitable for computer—é.ided :

design of cascaded microwave circuits and systems consisting of

" 2-ports. It is also readily .extendable to 2p-port hefbworkg.

-~

Sy
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—
CEAPTER 6

CONCLUSIONS

This thesis reflects the current state of the.art in
computer-aided Elesign of electronic circuits. t clarifies the
weaknesses, <the disadvé.ntages and advantages of the different
methods of analy;is, sensitivity evaluation, optimization and
problem formulation.

The TLM method proyed to be suitable for autcmated network
design in the time domain. This is due to its ability to obtain
the response sensitivities w.r.t.Athe?design variables very
easily. It avoids the formulation of the state equations which
can be rather difficuit for large networks. Another advantage of
the TLM method is that‘it is stable for stiff znetworks which cﬁhse
_instab‘ ity in most of the numerical methods. The use of more
complicated transmission-line elements and zodels can improve the
method's accuracy. The extension of the method to* handle
nonlinear networks is possible.

The multidimensional polynomial approximation facilitates
the design of circuitsvby expleoiting large and general simulation
programs to conduct the analyses. Saving in the circuit
designer's time and effort is achieved by using this apbroach.

The new approach for the analysis of cascaded structure,

besides the substantial savings in computational effort, gives a
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deep insight to the design problem. "Ihe design variables can be
nighiighted explicitly in different formulas from which. we can "
extract the exact analysis, differential a;:.d. large=-change
sensitivities. The approach permits the exploita‘..:.{‘onxz of network
structure: symmetry, branches, etc. Different algorithms which
employ this approach can be implemented easily on microconputgrs
since they are simple .and. compact.

Promising directions for further research and improvezents
in existing methods and approaches have been revealed by this
work. All the algorithms lwhich have been referred {0 are
sequential algorithms. Aside fr;:m the human =zind, whick
apparently has been taught to think sequentially, the conmputers
which we now use are substantially sequential. It will not be
very long be-fore parallel machineé will be widely available. The
parallel processers will be much faster than present machires.
b{ew optimization- a.l'gorithm:; suitable for the new computling
machines have to emerge or the existing ones have to be modified.
In some of the ill-conditioned problems, for example, it is
required to run the problem from different starting po'ints ,. which
might be-considered as running different problems in parallel.
The tolerance-tuning problem can also be formulated to fit a
~pa:.-al1el algorithm because it is inherently a parallel problem.

Automated éptixﬁal design of éirc&its where the topology is

not fixed has oftez.z been suggested. Presently, the location and

type of components Lo be added to the given network have to be

-



- 178 =

specified a priori. Fully automated  design, where the tqpélogy
can ch;ﬁge arbitrarily, and criteria for augmenting or shrinking
the circuit are not well estaﬁlished. This will need‘optinization
pmethods where the number of variables can be automatically
increased or decreased in.an effective Zanner éuring the process.

Other design aids would be

(a) Algorithms which indicate and aect upen the existence of
sycmetry.

(b) Algorithms which stack the constraints in the order of
complexity to avoid unnecessary caleculations, s?z:%ihg with

sets of crude but pot pecessarily linear approxi ticns.

(e) Algorithms which permit the flexibility of exanirning fhe

effects of alternative objecpives and weights without
rerunning the whole problem each time a change 1s mnade.

In centering, toleraﬁcins, and tuning péoblgms sevefal
concepts need further developuent. Erricient vertex selection
schemes will lead to an enormous reduction of the tolerance
problem as well as the possibility of full automation of the whole
process. This - concept is related to deﬁermining active
constraints. ’

The reliability problem 1s an extension to the tolerance
assignment problexm. The main difference, we feel, 1s the

‘redgndancy which enhances system reliability and observation that

not every component fails sipultanecusly. Parameﬁer changes to be

considered might be much larger than in tolerance assignment.



- 180 =~

APPENDIX A
CENTRAL DISFERENCE FORMULA APPROXIMATING

FIRST-ORDER DERIVAIIVE

The formula used to obtain 3f/3t from the response is

1y 1967)

. i 1 3 .
bsz-(us-"s‘uﬁ)fj, : (A1)

where

1 Tk :
pf(t) =3 {r(c +3 Y + (e -

vl

)] \§r (42)

and

. h . R ,
sr(t) = £t + 35 ) - (-3 ). - (a3)

Equation (A1) can bde rewritten as —

2 1

£y = 35 [£06en) = £(ee)] = T3 [£(8e2n) = £(8-20)]  (A4)

-

In Tables 3:4—3:? {Chapter 3) b was equal to 2T.
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APPENDIX 3

»

With the Equivalent Circuit of the Emitter Junction
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JLIESQ:I el

L
[- 3

281.33
3.
78.24
45.333

8 o Zo=9
DC 4.83
DC 1.13
DC 1.635
PWL(® ~-.
RS -.776
© DMOD
DMOD
DMOD
DMOD
9.12P

8. 5P

0. 12P
e.5P
g.12pP

5o.

50.

1.

1.

1.

1.E-8
1.E-8
1.E-8

DC 9.

IJ--OQQS

e 00 e e
O

0

‘O

0

vi2 2.

===-=========“!=3======’=

1.248E-12

2.084 TD=.258S

776 .95NS
1.8 -1.9

285

e’

VT1 2 3200E-10 3.8668E-2

32008E~10 3.8668E-2

22 VI3 2.32008E-10 3.8668E-2

9

4 POLY(2)
4 POLY(2)
POLY(2)

9.91238S 1.4
.PRIKT TRAN V(10,9)
.PLOT TRAN V(10,9)
.XODEL DMOD D IS=.6E-9

VI4 VI? € 00 90 1
VIS VIs 090 e e 1
Ve VI9 6 0 0 9 1
NS

=

-1.59 _43XS —-1.55 .6NS

-1.53

1.4NS

-.TT6)

/
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With Built-in Transistor Models

ATTEXTITERETER

EZIATTISWISTRIXISSIT . ’ 4

R1 4 3 281.33 .

R2 T o 7. : )

R3 2 @ 78.2¢ -

R4 10 1 45.533 . - ¥
Cl 10 © 1.248E-12 :

T1 2 @ 8 © Z8=92.004 TD=.23NS

VE2 © S DC 4.3

VE3S @ 6 DC 1.13

VE4 ,@ 1 DC 1.655

VEL %3 e PWL(@ -.776 .0SNS -.776 .2NS -1.55 .438S —t.33 .6KS
—. 776 _8%NS ~-.776 1.KS —1.55 1.25NS <—1.35 1.48S -.776)
D1 9 10 DMOD .

QT1 2 3 4 QMOD _ ~
Q2 T 6 4 QMOD -

QT3 © B8 9 QMI . .
.TRAX ©.0125§S 1.4XS :

.PRINT TRAN Vv(f0,0)

_PLOT TRAK V(10,0)

.MODEL DMOD D IS=.6E-9
MODEL Q0D NPN BF=99

+  CJC=@.5F
.MODEL QM1
+  mce0. -
.END

-

. 18=.6E-9
F MC20. NME=O.
NPN BF=99. IS=.6E-9 TF=.QINS CJE=@.12PF~JE=0.

L
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FORHULAS?ﬁELATIHG THE LOAD VOLTAGES OF THE BRANCEES

_ TO THE VARIABLE ELEMENTS .

c.1  To Obtain Vg 2s a Function of Vg and B

The voltage across the impedance 2, representing the

) . branched,circuit,'in terms of VBL is given by

- ot Bv

v, = u;g Bv,p Vg (ch)

, and it can be expressed in terms of voltages in the main cascaded

—

circuit as

LN

where ?12 {s the result of .the reverse apalysis at }eference plane

f£f. So (C2) can be written, substituting for the chain matrix of

the element representing the branch, as

S B R - '
Vg o= eyl o 1 Yz < Y1z L (€33

-



o I ‘-.'
N =Y
. : - - '183-;
-~ - I. - .
L R ST B I Bl I LR A ST (cs)
/7 o 1| o Tt "
-. --4\ . . . : { .
- celv_zv o " - )
/ i .. N N " . . .
The load voltage of the main cascade V can be expressed by
e " -\ to- K o -
LI Vg 5 |
v, = R (C6)}
LT [ 7y ' _
. <12 0 1 -1?'.
\ - and (C1) can be rewritten as /\
o .
- " VBL T -7 . (CT)
-
~
- “Substituting for Vz of (CS) we have
P T '
AT _
T )
“'13- -1B
and su@pting for VL from (C8) and Z from (5.24), we get
. \
\ .
‘. . %5 8 Y1
a,. v v
~2 «1Z =T S .
Us B Yip
VaL *© 1 Z ’ (c9)
::T Bv u ~—I| v .
~1B-~ ~1B ~12 0 1 ~12Z
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hence . hd

& Yz Vs

T2 .
—r —
up 3 Yip Y5z L 1-\ Y1z

. VBL(E) =

C.2  To Obtain Vg, 2s a Function of Vg and C ‘

From (C7) and (C2) we can write VBL as

T
&1 iz Tzl L , '
vBL = TIT 5 . (C10)
218 2 I3 el

The load voltage VL can be expressed (compare with (C8)) by

Vg |

v, = — . ) (C11)
E‘fx iy '
b o I

We can write, using notation defined for (5.27),

N i 0
T — ﬂ
) €y Y9z = Riyr L J Viy- ‘ (C12)

Similarly,

: 1 -0
T _ =T -
2151z * Y1vg [ } Viy- (C13)
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Substituting these terms and VL of (C11j into (C10) we obtain

1 0 '
—r -
[Wlyr = B1yg! [- } Y1y Vs

. Y 1
Vo (C) = 1 . (C1%)
BL < _TB - 1 0
Y 2 Y18 Y1y Y1y
Y 1
C.3  To Obtain V. as a Function of Vg and C
The voltage across I in terms of vCL is given by
Vy = 85¢ & ¥y¢ Yoo (€15)
and in terms of V,, as
V., = eT v.., V {C16)
Y <1 1Y L° .
But VL is also giveﬁ,by
Vs
v, = (€17

So, substituting this VL into (C16) and the resulting Vy into

(C15) we get
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T

. & Ty s |
Vo (©) = i 1o - (C18)
| 8 S ¥ic Yiv |, | T1y
Y 1
c.& To Obtain V., as a Function of Vg and B
From (C15), (C16) and (C6} we can write Vo 38
T -
¢ Yy s
. (C19)

V.. (B) = - .
S R bR
Yie & Tic Sz |, L]z
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