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The systematic study of prime ideals\} ncommmtati rin

satisfving polynomial identities lends itself g diverse methods of

agproach. The geometTig method, which we explore at several points
of this thesis, was initiated by C. Procesi in the 1960's. The main
results of our chapter on Prime Tdealy in Affine Algebras are oSty

aaturally developed from this point of view. They lead to certain
- .
algebraic questions which are dealt with in this thesis, cencerning

she structure of prime ideals in affine algebras satisfying polynomial

identities. The interplay between the prime ideals in such an-algebra,
- ’ s N

and the center of the algebra is a theme that is exploited Zrecuently,

[N

through the use of centxal polynomials. We also answer a cuestion

posed by Procesi concerning the growth of affine, prime algebras

satisfving polynomial identities.
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Tntroduction
) “~ : //

The study -of rings satisiying po vacmial identities has developed

.-~

rapidly over the last decade into 2 substantial theory. For a= historical

survey of the subject, tvacing back to Xlein's Erlangexr pzogranm, the inter-
- f e
ested reader is referred to the suzvey aﬁ_mof Jacobson [11]. ?Prime

rings satisfving polyncmial identities arise frequently in algebra. C(Classical

ordexrs in central simple algebras axe perhaps the most immediate examples.

- The aim of this dissertation is 4o build on the known body of results con-

cerning prime rings satisfying polynomial identities, in order to elucidate

a few aspects of the structuzre of their prime ideals. In the thixd chapter,

we take the gecmetric approach in studving the prime ideals of such rings
which are affine over a field. We answer several guestions concexning prime
ideals in this setting. Among othe; things, we give a sufficient condition
for a prime iceal to be £finitely generated (as a two-sided ideal of the ring}.
We remark +that it is still an open problem whether or not every prime ideal

is finitely generated, in an affine prime p.i. ring. In Chapter 4, we con-
centrate on the relatibnship_between the prime ideals of a primé ».i. ring .
and the center of the ring. We investigate condityons under which a prime
ideal of maximal p.i. degree is centrally generated, ané we also explore the

situations where this fails. The main tool in our proofs is the theory of

central polynomials. This, and other background is collected together in

Chapter 2. ~




In chapter 5, we investigate the cbstructicns to localization in a
orime p.i. ring. The relevant background Zrom the theory of noncommmutative

.

localization is colliected together hexre, so that the chapter is relatively’

'_selfécontained- We use the results of Mueller [21], ané censider the ob-

structions to localizing a prime ideal as given by the exigtence of "links”
~ .

between that prime ideal and other prime ideals of the ring. The main theorem

of this chapter, Theorem 5.11, exhibits thve behaviour of such links under
apprepriate ring extensicons. This result is useful for computing the struct-

.

ure of links in many examples of prime p.i. rings. For instance, the comput-

-

ations of Mueller [18] are simplified through its use. The methods of

chapter 5 axe la:gely\module-theo:etic, in contrast to the other chapters.
In chaptexr 6, we exploit a result of Bergman ancd Small in order to obtain
a bound on the size of certain link-closed sets of prime ideals of a prime

2.i. riang. -

Finally, in the seventh chaptex\ we give an answer to a problem of

Procesi concerniing the growth of an Sine prime p.i. algebra over a field.



CEAPTER 2

oreliminaries

Ta order to fix scme of our notation and terminology, and to claris

somehof the known results we shall need, we start with a summary of scme of

.

the relevant definitions and basic theorens. aAll of the results of this

chapter can be found, for example, in Jacobson [12] except those for which

we give specific references.

For our purposes, rings will be associative, but not necessarily
commutative, and will have an identity element, 1, unless specified otherwise.

Following the tradition in commutative algebra, the set of all prime icdeals

of the ring R is called the spectzum of R, denoted Spec(R) ™ The ring R is

'J-

called a p.i. ring if it satisfies a polynomial identity which is proper

on all non-zero factor rings ©f R; a polynomial identity is proper on a ring

i€ not all of its coefficients annihilate the ring. It fo0llows that any

p.i. ring actually satisfies a polyvnomial identity whose non-zIero coefiicients

1]

* Mox Cif Xopea =z-0%« .- where the sum
are 1. creover, 1 Sn(*cl, ..,xn) {(-1) S (L) xo‘(n) , wh

is taken over all permutations 0 of {1,...,a}, then any p.i. ring satisfies

some power of sn' Sn is called the standard identity of degree n. II R is (/;

a prime p.i. zing, then in fact R satisfies some standard identity, and the
smallest integer m such that R satisfies S on is called the p.i. degree of R,
denoted p.i.deg(R) . This integexr m is also +he smallest integer.m such that
R satisfies all of the polynomial identities of mxm matrices over the integexs.

For any ring R, and m > O, we define



Spec_(R) = {oeSpec(R) : R/P is a p.i. ring, and p.i.deg(R/P) = m}.

The following theorem is a sharpening of a theorem originally proved by

Posner, in 1960.

Theorem 2.1. Let R be 2 prime p.i. ring, with center C, and let S = C-{0}.

-1 . . s . .
Then the ring of guotients, § "R = Q, is a simple, Axrtinian ring, with

-1
center S ~C, the gquotient field of C, and Q satisfies exactly the same poly-

nomial identities as R satisfies. °

We shall refer to the above simple, Artinian quotient ring as the

.

Posner Quotient ring of R, denoted 4.(R). By the well-known theorem of

- . P . . N . .. o -
Xaplansky-concerning primitive p.i. Iings, AR is a finite-dimensional
‘algebra over its centexr. Moreover, the dimension of (R} cver its center

is mz. where m = p.i.ceg(R) . —

At the heart of the proof of the above version of Posner’s theorem
is the theorv of central polynomials. A noncommutative polynemial

f(xl,.--,xx) is called a central polvaomial for a ring R in case £ is not

an identity satisfied by R, but f(:-cl,...,xk} Xewy xk-;-lf(xl"”’&&) is an
identity sat.;'.sfied by R. A nontrivial cen‘t:al polynomial for R is a central
polynomial, f(xl,...,x__() , for R such that £(0,...,0) = 0. The fact that
nontrivial central polynomials exist for the ring R = (A_}m- of mxxm matrices
ox;'er a commutative domain A, was discovered in 1972, independently by

Formanek [9] and Razmvslov [ 26].

Definition y@-z. I€ R is any prime p.i. ring, of p.i.-degree m, the Foxmanek

center of R, denoted Fm(R) , is defined to be the subring, without.l, of the

center of R consisting of all evaluations of nontrivial central polynomials

for man matwices.



We remark that if R is any prime p.i. ring of p.i. degree m, then E‘m(R)

is non-zero, and, Zor any non-zero .ideal, I, of R, We have I nE‘m(R) # {0}.
Rarzmyslov's central polyvnomial for tomm. matrices will be denoted by

- T S bl 5 ] 3
hn(xl’ SRR ) SR 'sz-i-") . It enjovs the following propemgs, which we

-

shall use £recuently: '.

- -

El. ‘.'1=1 is a nontrivial central polyaomial for any prime p.i. ring of p.i.
. ) - - /’ ' - -
degree m.

. ':::_‘1 is a mulitilinear in all of its variables. .

E3. hm is alternating in its first m variables X;,..-.X_2.

o+

. The following result is a nice illiustration of the use of Ra—myslov's

central polynomials. The proof, which we include, is due to Amitsur, [11.
AY

Theorem 2.3. Iet R be a prime p.i. ring, of p.i. degree m, with centexr C.

Iet Tyreec eI 20 Syr-eesSp2g he anv elements of R such that

§ =h (:l,--.,:mg;sl,...,smz+l) is non-zerc. Let

L] . ~

A
"
"

i+ )
(=1} ]hm{:l'"":""':mz:sl"”'s ), for any r£ R, where r appears

-
oo+l

. . . . 2
as the :.‘h argument in hm’ in place of ri, i=1l,...,m . Then for all re R,
e T @, h

we have or = L x.g.(z}).

i=l 71 .
Proof: ider % i 1 {2 S V. pa-ad¥Y 2 iven bv
groos Consider the polyncmal’h('\:o, ,xmz ¥iv Yo +1) g N,

m- i . -

E(x%,--- : .-- - z (- . e s X pen - : cea ¥V 2
..(xo.r . rme a‘_’l: :Ym_+l) = i=l( 1) xlhm(xl, 1 Xy pxm2 er [ mﬁ'f‘l)_

XD (X pere s X 2 V¥ 2 )
S R L SRARES L L

L}

where Xy appears, in place of x; . as the i arqument of hm, in the summation.
+ is clear, by inspection, that E is a.xdternating multilinear function
of the m’+ 1 variables XyreeesX 20 using H2 and ¥3. Since the Posner

cuotient ring of R has dimension only m® over its center, H must be

e



- » 4 - -
- . - . PO i .
identical zero on R. Writing this out, we cbtain
L. o2 ) C
:i(:,rlr.-.,rmz;slr---,smz+l) =0 = -El:igi(:) +8xr , as ,:-_ec.;m.red.

- - ;‘ .,
Corollary 2.4. I R is any prime p.i. ring, of p.i. degree“m, with center C, .

then, considered as a C-module, R is isombrphic to a2 submodule of the Zree

b J -

/ﬁ'n%iule & ‘ o .

Proof: Ia the notatian of the theorem, the I, 's must be linear®s incdependent
i 7 RSN
over the:guotient field of C, in 3\_(?.) , since, othexwise, h_, considered as -
) —— B
- ~ AY
- - - - - - - 2 - = ~
an alternating multilinear function of-xfs first m~ variables, defiged en the

P4

1\

—~ /

vector-space span of Tyre<erTp2s would necessariily_ vanish. Therefore,

.

::lc + ...+ :mzc is a direct sum of m~ copies of C, centained in R. SO pulti- /

plication by § gives a C-module homcmo::p'hism from R into-rlce_ PRS- rmzc.

That this homorphism.is one-one f£ollows from the Zact that § i -Zaro—

divisox, biing a non-zero central element of the prime ring Ry

—

P - .
. This wresult was first obtained, using a different approach, by Formanek

[10]. We cbserve immdiately;
-
-

fCn:m::'.'I..‘!..a...""y' 2.5. If C is Noetherian, then R is a finitely—generated é;;dule,

" and R is Noetherian.

\In many of our coasiderations, R will be an algebra over some commut-

.. ativ€ ring A. In this setting, R is called an affine A-algebza if R is

fihitel\{—ge‘nerated, as an A-algebra. When the commutative ring A is clear
»”

from the context, we scmetimes say, simply, that R is affine. We note that

there is some variability in the literature on the use of this terminology,

and Several writers use the unadorned descriptive "affine” to mean affine



~
~

over a £ield in ouxr sense.

_ We shall occasionally use the following theorem, due to Process [ 24,

Theorem 1.2, page 102], which generalizes ‘the Eilbert Nul{.stellensatz £o

-
. - .

affine p.i. algebras over a field.

-
-

Theorem 2.6. If R is any affine p.i. alggbra over a field k, then every

prime ideal of R is the intersection of maximal ideals of R, and if M is

) ’
any maximal ideal of R, then R/M is a £inire-~-dimensional vector space ovex

- -

k.

N ~

-

We conclude our preliminaries with a few cbservations concerning

the Tormanek center, ::‘m(R) , of a prime p.i. ring, R, of p.i. degree m.

Lemma 2.7. If R is any prime p.i. ring-of p.i. degree m, and if PESpecm(R) r

so that R/P is also a prime p.i..ring of p.i. degree zm, then the canonical

r R + R/P maps F_(R surjectively, onto F_(R/?) -

This result is Theorem 2.1, part (3), in Procesi [ 24, chapter VIII].

It follows_ £from the cobsesvation that, given any evaluation of a central
> .
polynomial on R/P, the - elements 0% R/P occurring as the arguments of the

central polvnomial may be lifted to elements of -R, to obtain an evaluation

of the same central polvnemial, in R, which maps onto the given evaluaticn

Corollarvy 2.8. Let R be anv prime p.i. zing of p.i. degree m, and P € Spec(R -

Then P ESpecm(R) if and only if P a ?m(R) . l H

Proef: I£f P es;-ecm(R) , the 'lem:_na tells us that (?m(l?.) +P)/P=1-‘m('&/:?) P

which is non-zere, so Fm(R) g P. Conversely, if F:n(R) = P, then

o



nj
—
)
1]

[}

(5 (R +2)/P = 0, so R? coulé not be of p.i. degree m.

Corollary 2.9. Let R be any prime p.i. xring, of p.i. degree m, with center

C. Then-:

(i) E‘m(R) contains a non-zerc ideal of C.

(zi) I£? E:Spei:m(m , and if D is the center of R/P, then D liés between

(C+P?) /2 and its guotient field.

-~

Proof: The set, .‘.-Im(R) , of all evaluations of l'z.x1 on R, is contained in
'.-“m(R) , and is non-zero by El. Moreover, by EZ, this set of evaluations

is an ideal of C, since, for example, hm(cri,...,‘rmz;sl,---,s

c'-hm(rl,..'.,rmz;sl,...,s ), for any cec, and r.'s, s,"sE€R. This

m3+1 73

¥

proves (i). To prove (ii), just notice that (C+P)/P contains

. (E‘m(RJ +P) /P = Fm(R/P) which, by (i), contains a non-zerc ideal of D.

So D has the same guotient field as (C+P)/P, since it is an integzal
domain containing (C+P)/P and (C+7P)/P contains a non-2Zexo ideal of D. j’

Definition 2.30. Let R be a prime p.i. ring of p.i. degree m. P € Spec(R)

is said to be a-prime ideal of maximal p.i. degree if P ESpecm('R) .

Otherwise, P is said to be of deficient p.i. deqree.

With this terminology, Corollary 2.8 jusi: says that the prime ideals,

P, of déficient p.i. degree, are exactly those containing E‘m(R) . We

remark that we have called maximal p.i. degree is also called "identity-

faithful" in the literature. (c£.[291).



CHAPTER 3

Prime Ideals in Affine Alcebras: A Geometric Point of View

P

We use the notation (R for the ¥ing of mxm matrices over the.
ring R. The procedure of taking a ring R, and forming (R)m, is well-
known to be functorial. Considering (-) — a-f'.mctor from commutati
A-algebras to A-algebras, where A is any comutative coefficient ring,

Amitsur [ 3] and Procesi [ 24] have noted that thexXe Is 2 ef+ adjoint, from

A-algebras back to commutatise A-algebras, which is.Z

sometimes, simply Vm(—) . The front adjumcticon map, fxrom R to (Vm(RJ) '

is denoted €

g+ Tox exarple, if R = A{x,,...,xn} is the free A-algebra

in n noncommuting variables xfb caer X . then it is easy td see that V_(R)

is isomorphic to the A-algebra A[x~'jk: 15i, 3sm, L€kxsn] , of polynomials

in m°n variables, with ER given, up to isomorphism, by the map taking ‘{k
to the mxm matrix with X5 3% in the (i,})-position. t 1s also straight-

forward to check that V_(R/T) is isomorphic to vm'(m modulo the ideal

generated by the entries of ER(I) , if I is any ideal of R. This cbservation
shows that vmi—) takes affine A-algebras to affine commutative A-algebras.

Procési [ 24] has used the functor vm(-) extensively in developing the

. . ,
theorv of representations of p.i. algebras.

Definiticon 3.1. The image of e:__z, where R is the free A-algebra in n non-

commuting variables, A{Xl,..-,xn}, is called the A-algebra of n generic

mxm matrices, and is denoted Alx ,.f.,x ] -
. 1 n °mxm



[

The genexic matrix algebras play a role, in the theory of p.i.

algebras, analogous to that plaved by the ordinary polynomial algebras

in commutative zing theoxy. If£ A is a commutative integral domain, then.

alx, ,---,xn] is an \ptegzal domain satisfying the identities of mxx

matrices, and, provided x> 1, it is a pg.me p.i. ring of p.i. degree m.
One crucial way in which the generic matrix algebras differ from the

ordinarv polvmomial algebras is that, for o, n > 1, A[x.r,...,x;} is

—

not Noetherian. TFor further information on the generic matxix algebras,

we refer the interested reader to Jacobson [12, 1.13 and IZ.4] ané

- “

Procesi [ 25]. .

. in n vaviables, over A is to take the A-sub-

ordinary polynomial al

algebra of the A-algebra of all functions £rom AT t0 A which is generated

10

bv the projection mappings (xl,-.-.,x_l) -x., i=1,...,n. In the contaxt

of classical algebraic geometxy, where A is usually taken to be an alge-

braically closed £ield, one studies affine varieties contained in A~ by

means of studving the structure of the corresponding idkals of the poly-
nomial ring which consist of the fmctic;ns which vanish on them. One
proves, for example, that an affine variety viAn is irreducible if and
only if the corresponding ideal of polynemials vanishing on V is a pri

jdeal, and, moreover, every prime ideal of A[ Xqeannr X, ] "arises in this

‘way. On the other hand, if A is not necessarily algebraically closed,

3

it is not at all well understood which prime ideals of A [xl,..-,xn] arise

~

as the sets of polynomials vanishing on irreducible affine varieties. The

recent work of Silhol [ 34] develops the foundations of classical algebraic

gecmetry in the context of an arbitrary coefficient field, and thexe is

-



Mmoo

given, there, a cxzitexion for a prime ideal of AI_'xl,...,:\\:a to be the

: . . . : o - .
ideal of fmactions vanishing on some subset of A7. ILet us call 2 prime

_ideal of A[:c.,,...,x_l] geometzic if it arises in this way. IE—BR is any
fielé, and A is an algel?_:.}a:.c closure of A, then Silhol's cxiterion is

thas PE:Spec(A[xl,...,x 1) is geometzic if and only if P -K[xl,...,x ]
S _ n

is a prime ideal. We shall give 2 characterization of the gecmetric prime -

ideals of A[xl"""x-;] in texms of the first-order, logic of A.

~

Now, by way of analogy to this, one can realize the genexic matzix

n
- - - - + - £y
algebra A[xl,...,xn] , over A, as the algebra of functions Irom (a)

to (A) which is genera"ced by the projection mappings. As long as A
is an infinite integral domain, this is a faithful realization. A subset

ve (a) - iswcalled an affine variety in mm matrices over A i1Z there s

some set of generic matrix polynomials x::_A'[ xl,.-.,xn] - such that

;] = 2. = b £ 3 7 o3
Y {(aij Ye (A s f((aijk)} 0, for all £g X}. The variety V is

callied prime In case {fsA[xl, . .-,xn] : £ vanishes on V} is a prime ideal.

{we avoid using the texm nirreducible” since it is possible that V is not

-

expressible as‘-ﬂmqj_on of two proper sub-varieties, and yet V is not

prime. .

A simple example of this is to take for V a single point

-

. n ' '
- € wher e mxm matxices (a,. S - Y enerate the
(aljk) (A) o v here th i { :.31) ' ol :.3n) g
algebra of upper triangular mxm matrices. It is a nice exercise to -check
that if V is any variety in mxm matrices which contains at least cne

Ty = a = 1 oyl
ooint (aijk) e (A) such that the matrices {a.ijl) ""'(aijn) generate

the whole algebra (A) , and if V is irreducible, then V is a prime.)



S
'As in the commutative case, where nm = 1, we call a prime iceal of

A[xl,--.,x_zl Eecmet:ic ;€ i+ arises” as the ideal of all generic matrix

polynomials vanishing ' on some subset of (Pd; . We shall give a character-

ization of the geometric prime ldeals of the genexic marxix rings, also in
+exms of the first order logic of (&) . We first handle the commutative

case. . Recall that two algebras are called "elementaxily équivalent“ 1if they

satisty ex‘actly the same Sirst-order sentences. A good general hference
b
for what we shall need from first-order logic is Bell & Slomson [ 6].

Theorem 3.2. Let A be any commutative Noetherian domain, and let
»
?c A[xl....,x_ll be anv prime ideal in the polynomiap ring in n variables /.
- Lo ' .
over A. ILet R = A[xl,...,xn]/.?- Then P is geometxic if and only if R

is a subalgebra of scme A-algebra elementarily equivalent to A.

: b
One particular, and well-known, case of the above theorem is when A

.

" is the field of real numbers. The sub-fields of fields elementarily equiv-
L

-

alent to the real numbers are exactly the formally real £ields, so we recover
the result that,_\ir‘x)rhis case, P is geometric if and only if the quotient
field of R is formally real. (C£. Swan [ 37, Theorem 19.4, page 223]).

-

Proof of the theorem® The direction => is easy: _If P is geometric, then
. L

]

R can be identified with a ring of A-valued functions on some algebraic set

v(?) gAn. Now pointwise evaluations over the points of V(2) give well-

defined A~-algebra homorphisms fxrom R to &, and these combine to give an

erbeddind R = @I A, by sending TeR to the familty (xip)) i (5~ Since
peV(P) = - '

R is an integral domain, a result of amitsux [ 2, Theorem 3, page 475]

‘tells us that there is some ultrafilter, ¥, on V(?), such that the commo—



13

-

site mapping R =~ I a~ I 3T is still an ecbedding. This shows:

y : - DEV(P) DEV(R) "

that R is isomorphic to 2 subalgebra of Scme ultrapower of ‘Al “We now invoke
J

_ Xeisler's TGltrapower Theorem (Bell & Slomson, [ 6, Theorem 2.6, page 150])

which allows us to concliude that ultrapowers of A are elementarily eguivalent

to A. Now to prove the converse imolication, we need 2 lemma about lifting

maps from ultrapoducts to products:

VA ' -
Lermma 3.3. Iet R be an affine commutative A-algebra, and (Sa) ey W £ami lv
of commutative A-zlgebras, and let F be any ult:a.fi_l";er on I. Let

£: R~ I Sa/él-? be anv homomorphism. Then: . N

b

J is any subset of I belonging to F, then F[J, the restriction of

is an ultrafilter cn J, and the projection mapping 7: i S, 3 Sy
: . g . el asg
—_ - N N ’ ’
factors to give an isomorphism w: I sc/ P I Sa/ .‘-’[J.
cel ced

(2) There exists a subset J< I, which belongs to F, and an Agalgebra home—

morphism ¢: R+ I 3 o which makes the following diagram commutative:

ced
£
R - s _/r
' CET e ~
- + 9 ok
Ts_—~Ns_/rF|
ceg & .o J .

Proof of the lemma: (1)} is exactly Theorem 2.2, page 123, from Bell &

—_—

Slomg;on-rs]_ To prove (2), first express R as-a factor ring of a polynomial

“ . .
ring over A: R = A[xl,...,xn]/I. Now, using the fact that A is Noetherian,



. 14
| 4
together with the Hilbext Basis Theorem, choose a finite systen of genex-—
tors for I, SaY Gyr---rGy- Choose element tl,...,tn £ WI S, s° that
each T represents, modulo T, the element £(x,) of the uliraproduct cg' SQ/F:
el - - e
> Taw T = -r - . - -" - -_— g - 4-} Ly
NoOw et u = .,c € 1 = q.(- (c)){'---'\- (G)) - 0.- R l,...'t— - By Zos S

Theoren (Bell & Slomson, [6], Theoxem 2.1, page 90) J belongs to.T. Let

S5 e T_ S. be the restriction of tj o J, 5 = Ls..-,2. The mapping

X, s

RS R

x +~s , from Al X, ,--.,x 1 tO .S s contains each ¢. in its
n n 1 Tn ol o -1

kernmel, by construction. EZence, it contains I in its kernmel, so we cbtain

Ll - 9 ;S .; T = t
+he requireé lifting R = Al xl,...,xn:l/- a.c:.J_.sa \
~ - N

We note'that the above lemma can be formulated in the cogtext of

-
L

aniversal algebra, rathexr than the special context of commutative A-algebras.
It is clear f;om the proof that the requirement that g be‘finitely-generated
for the above 1if +ing to be ooss_ble is not quite sufficient, if R is a2 un-
iversal algebra of some ;vne in some equatlonal class. R must also be
£initely—presented- In particular, the lemma does not hold, in géneral,

in the context of noncommutative A-algebras satisfying the identities of mxm
matrices, so we cannot use this technigue, directly, to prove the analogue
Nof Theorem 3.2 for generic matrix rings. Now we can prove the implication
<w for Theorem 3.2. Suppose there is given an embedding £rom R into some
A-algebra B which is elementarily egquivalent to A. Again, using Keisler's
Ultrapo?e: Theorem, we can replace B by some appropriate ultrapowexr of A,
and so reduce to the case that B is actually an ultrapower of A. Let

W R ; A/F be the giveh embeddigg, where X.is some index set, and T some

ultrafilter on X.- The lemma rells us that Y can be lifted to.2 map

Y : R~ T A, for some subset ¥ of X belonging to F. But now we have R em-
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8 . . i -
> R ’ :

beédded in a power of A. From this, it is easy to see that ? is geometrig,

E~

: = ;
as follows: et T : R+ A be the composite of ¥ with the v projection o~

Gz

™~
mappidg Srom X A to A, for each ¥ € ¥, and let V = {(Tr.tq_c'l) ,...,Wv(fn)) :veEYr,

where x, denotes the coset, modulo ?, of x;. It is clear that P is the

ideal of 2ll polynemials wvanishing on V. For i

then £ ¢ I o= £| =0 o> £(7 (K),.... 7 (X)) =0, for all

th

T={gealx,...x ] £lo= o},

v EY oo Try(f(xl,-...xn)) = 0, for all™yv € ¥ <=> £e n{Kex("

n4'|

<=> £ £ P. This completes the proof of Theorem I

— R

.

Ecuipped with the above Lemma 3.3, Eogethe: with the functor vm(-) .

the analogue of Theorem 3.2 can now be proved for generic matrix rings- . .

Theorem 3.4. Let ® € A[x ,-..,x_] be any prime ideal of the generxic
—_—_— - 1 n ~man , -
matrix ring over the commutative Noetherian domain A, and let
R=A[X, ,eeerXx_] /P be-the corresponding affine prime p.i. algebra.

1 n - maan
Then P is geometric if and only if R is a subalgebra of an A-algebra

elementarily ecquivalent to (A) .
mxam

+ is easy to see that the A-algebras elementarily egquivalent teo
(a) are exactly those of the form (B) , where B is an A-algebra elem—
moan C7 mxam

entarily equivalent to A. So, for instance if A is an algebraically closed

i - i ic. For, by !
field, any P € Sp?cm(A[xl, ,xn] } is geometric or, by Posner's
theorem, the Posner guotient ring ©f R is a central simple algebra of
degree m, and, by choosing a splitting £field for this central simple algebra,
we can get an embedding ¢f R into the mxm matrix ring over a field. How-

ever, not egery prime ideal is geometric, as follows from the following

result of Bergman and Small [7, Coxollary 7.2]:
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-Suppose R € R' axre prime p.i. rings, anc every non-zerodivisor of

2 remains a non-zerodivisor in R'. Then p.i.deg(R) divides p.i.8eg(R') .

Thus, for example, if P is any maximal ideal of A[x,,...,xq]

such that +he factor ring R = A[xl,--..,x_l] /o is isomorphic to
, il

y = - . T 3 w— -
LAJ”\E 1) x(m=-1) ! and i€ m>2, then R can not be emhedded in the ring oI

mca matrices over any £ield, so P is not geometric.

oroof of Theoxem 3.4: The implication => is true for exactly the same

veason as before, when m was 1. The fact that P is geometric give rise to

DEV(E)

‘)

an embedding R~ (a) and the result of Amitsur still allows us ™
mcn i

£ind an ultrafilter, F, on V(2). such that the composite map

R~ (&) (A) /T remains an embedding, and this gives R

T
pEV(P) mxm - DEV(D) mocm

isomorphic to a subalgebra of an ultrapower of (A) , as requireé. For

the converse, we suppose R 1is embedded into some a-algebra elementarily’ -~
- ™~

eqguivalent to (a) - and, for the same reason as before, we can assume £rom
the start that R is actually embedded into an ultrapowexr of (A) . Let

£: R+ T (2 _/F be the embedding. Now RV T (I A

so, up to isomorphism, f is an embedding of R into the mxm matrix ring

over an ultrapower of A. applving Procesi's functor Vm, we can factor £
-

F . - 7 = . (F = £
thrpucgh a map £ : vm(RJ c.&:IA/'.' so that (£} OER £. But now we can

&

use the Lemma 3.3, since £ is a map from an affine commutative A-algebra

o an ultrapower of A. S50 we obtain a map E : Vm(R_) -+ agJ A, for some sub-

of I, as in the lemma. NoOW the composite g = (g) oeR is an em—-

set J
bedding of R into a power of (&) ,-and, as in the commutative case, this

gives that P is geometric as required.

Remark 3.5. Notiee that, in rhe proof of this theorem, we could have

——
N
i
by
A
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avoiced the use of the functor V if we kn-ew that P was a finitely-gen-
erated ideal. Now even thouch the generic matrix rings-A[ Xyr--- 'xn]mxm
are not Noetherian, for m, 2 > 1, it is au open oroblem whetlﬁe: or not
every srime ideal of Al H""nn]mc;a is finitely—g;eneratedn This cuestion
seems to have first appeared in the literature in Small {35]. It is known,
for exe:mple, that an ideal I of R = A'[-xl.....xn]m is finitely-genezated,
if the factor ring R/I is right and left Artinian (Cf. Procesi [ 24, Prop-

osition 5.2, page 11i8]). The remainder of this chapter will be devoted to

an imorovement of this result.

Theorem 3.6. et R =3 {:l,.-.,rv} be any affine algebra over a commutative

Neetherian ring A, and let I be any ideal of R such that R/I is a2 finitely-
generated module over its center. Then I is finitely-generated, as a two
-sided ideal of R.

Proof: Suppose yl,--.,yn are elements of R whose cosets, module I, gen-

erate R/I, considered as a module over its center. Then we have eguations

[ s

of the form: yi- :j = kvlcijkyk modulo I, foxr 1 £ i s v, for appropriate
elements Cijk £ R which are central modulo I. As a f£irst step, let X be

the two-sided ideal of R generated by the elements (c,

- for
iix%p ),

515k

lsi,ksn, 1s 3,p<v. Then K is a finitelv-generated ideal of R con-

tained in I. Imnside R/K, there is the central subring B = (A/AﬂK))[Eij 1,

ik
where Eijk denotes the coset, modulo X, of cijk’ By the Hilbert Basis
n
theorem, B is Noetherian. Moreover, the relations v.x. = L ¢c...v¥v, .
i75 *=1 ijk“k

modulo I, imply that R/I is a finitely-generated B-module. This situation

is handled by the following proposition:



R - T ,g@g;:

Proposition 3.7. Let B be any commutative Noetheri ring, and
- -

s = a{sl,.-.,sm} any affine B-algebra. Let J be any right ideal of S such
+hat §/J is a finitely-generated B-module. Then J is £injtely-generated,
as a right ideal of S.
 Applyving this proposition to our situation above, we deduce that I/X is a
-
- - M - - o- = - ’ - -
finitely-generated right ideal of R/K. 3ut since X was a finitelv-generated .

ideal, hence I is finitely generated as an ideal of R. This £finishes the

g
I

roof of the Theorem 3.6, provided we prove Proposition 3.7.

g -

y
th

roof of Proposition 3.7: Letz_,-..,2_ be elements of S whose cosets,

mocule J, generate S/J as a xight B-module. Without loss of generali%y,
. n
we can choose z. = 1. Then we have' z_-s, = I =z a.. modulo J, for suit-
1 173 kel “x7ijk
able elements aijk £ B. Let J' be the right ideal of S generated by the
n .

elements z - for 1§ i € rand 1l € j sx. Clearly J' is

T -
153 k;l'kaijk ’

contained in J, so there is a natural map £ . 5/J" —>> 5/3. Now §/J°

is a finiteiy—geﬁerated B-module, since the B-submodule of $/J' generated
by the cosets of ZyreeeZy contains the coset of 1, and is closed undex
maltiplication on the ;ight by sl,-..,sm. so that this B-submodule is also
a right S-module. Now the kernel of £ is a2 submodule of the finitely-gen-
erated B-module §/J', so it is a finitely-generated right igeal, J/J3',

" of S/J':. Therefore J is 2 fiQFte;y—generated right ideal of S, since it

is finitely-generated modulo a finitelv~generated right ideal. This com-

pletes the proof.

Note: The proof of the above propositicn was motivated by Wehxfritz [ 38,

proof of (1), page 22].



partial affirmative answex:

lg _

nnection with the guestion of whether or not the prime ideals

are £initelv-generated, Theorem 3.6 gives the following.

torollarvy 3.8. I£ 2 c A [xl....,xn] is anv prime idedl in the A-algebra

-

of n generic rom matrices, where A is any commutative Noetherian domairn,

shen P is finitely-generated if the factor ring, AExl,...,xn] /®, is

a finitely-generated module over its centex.

/ .

This corollary includes, Zor example, the case whexe P is a maximal

ideal, since, in this- case, Xaplansky's theorem on primitive p.i. rings

guazantees that the factor ring is

a finite-dimensional vector space ovex

its center. Moreover, by Theorem 2.6 i€ A is a field then the factor ring

al xl.---.xn] /P is a £inite-dimensional vector space Over A, so Prop-

osition 3.7  gives the additional information that P 1is £initelyv-generated

as a_ right ideal. + is also known that if A is a field, and i£f .

R = A{rl,-..,rv} is a prime p.i. algebra of dimension one (i.e. with the

oroperty that every non-zexo prime
generated module over its center.

[16]. Schelter actually proves iz

ideal is maximal), then R is a £initely-
(C£. Schelter [ 30}, or Malliavin*aramerét

for more general rings A). SO we have:

Ccorollarvy 3.8. If£ P is any prime ideal in the generic matrix ring

al xl,--.,xn] , where A is any field, such that al XyrenceX ] /P

o7 mxam

is of dimension one, then P is £initely-generated.

We can also deduce the result of orocesi [ 24, Proposition 5.2, page

118] that was mentioned before Theorem 3.6, namely:
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Corsllary 3.10. Let S be an affine algebxa over a commutative, Noetherian

zing A. Let M be an ideal of S such that $/M is an Artinian p.i. ring.-

Then M is a finitely-generated ideal-of S.

Proof: This would me immediate from Theorem 3.6, if we knew that S/M was

a finitely—gene,rated module over its center. This does not appear in the

-

literature, but it is not hard to prove:

Crs1¥ T ok 5K 1 t £+1

Proposition 3.11. Let R = A{xl....,xn} be any affine p.i. algebra over a

commutative ring A, such that R is Artinian. Then R is a finitely-generated

module owver its center.
Proof of the propesition: First we need a lemma:

femma 3.12. Let R be anv Artinian ring, with Jacobson radical J, and centex

C. Iet x be any element of C which is a non—zerodivisor modulo ((cha‘) .

Ther x is a non-zerodivisor-'in R, ané hence is invertible in R.

Proof of the lemma: Let 1 = ey + ... * e, be a decomposition of 1 inte a

sum of indecompeosable, ortl'iogonal idempotents of R. Let them be ordered so

that e. X, ..., e.x are not nilpotent, and e - -

1 X are nilpotent.

t+lx, .

R A

Choose a sufficiently large integer M > 0, so that (eix) =0, for -

t+) < i S k. Lety = x . Then y is central, and is a nop-zerodivisor

modulo (CnJ), and we have that €Y cees ey are not nilpotent, and

i
.

v = 0. mte;-e + ... + e , and £ =e +...+ek.

~
Now v = eve is iavertible in eRe; for each ejy is a non-nilpotent, and hence

invertible element of the Artinian ldgal ring ejRej, 1s3st, so if its

. '
inverse is sj, and we let s = sl + ...

+'st we see that s is an inverse of

.

v in ere. Thus, we have eRcyR, and Rec Ry. But this allows us to prove
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-

that eRf = £Re = 0 (since eRf ¢ yRf = Ry = 0, and similarly for fRe.)

Thus e and £ are central. 5S¢ vE = 0, which forces £ £ J, which forces

£ = 0, and we conclude that e = 1, and v is invertible in eRe = R. ' Eeace,

so is x.
=
Before continuing the proof of Proposition 3.11, let us note the

following interesting little corollary to this lemma:

Corollary 3.13. The center of an Artinian ring is semiprimary. N
: /

Srocf of this corollary: With the same notation as in the lemma, C/(TnJ)
is a (‘Qldie semiprime ring sitting inside the semisimple Artinian xing R/JT,

ané the above lemma says that every non—zerodivisor in C/(CnJ) is invert-

idle. Thus, C/(CnJ) is semisimple Artinian. Moreover, if m > O is such

.that J© = 0, then we have (CnJ‘)m = 0, so C is semiprimarv, as required.
This result is known [14 Folgerung 3.6], but not well-known. -

Completion of the proof of Proposition 3.1l: R/J, in the situatiocn of the

™~

proposition, is a semisimple Artinian p.i. algebra, afiine over the semi-

simple commutative ring C/(CnJ). "By Theorem 2.6, R/J is a finitely-gener—

ated ¢/(Cn J)-module. Also, since each Jl/JJ'+1 is a finitelv-generated right -

R/J-module, it is therefore a finitely-generated C/(Cn J)-module too. 3Bv

2

putting together the pieces : R2J 2 J 2 ... iJm = 0, we see that R

-

is a finitely-generated C-module.

¥

LI

-

The follcwinc_'; example shows that the 2ffineness assumptien in “Prop—
osition 3.1l cannot be droppeé. It also shows that the center of an A:ti:i_-

ian ring need not be Artinian, even if the ring is a p.i. ring:
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-
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Example 3.14. Let L be any- field, with X, and K, two subfields of L, of °

finite index in L, such that k = X, NK, has infinite index in L. (For

example, take L = Q(X), ratiocnal functions in one variable over the field

of raticnal m\mbers, with Kj@ Q(XY) . -a.nd X, = Q(xz_x) » and k = Q.) We
e

consider the swbring, R, of 2x2 matrix ring over the riag L[¥]1/ (!2)' of )

dual numbers over L, given by: - ' -

-

.,
X [¥1/¢¢9) enl¥]) /(ed)
2 = 0 =yl ¥l/ )

-
-~

R is an Artinian p.i. ring, and it is easy to see that its center is

s+‘£rl- Q

c = isr—:.k,rlEK r. & X

which is semiprimary, but not Artinian. Moreover, R is not a finitely-gen-

erated C-module. 4 -

The feollowing éeorem gives a criterion that forces an affine prime

p.i. algebra over a field ‘to be a finitely-generated module over its center.

Theorem 3.15. Let R = k{al,...,a

t} be anv prime p.i. ring which is an affine

algebra over a f£ield k, such that there are only finitely many prime ideals
P £ Spec(R) of deficient p.i. degree. Then R is a finitely-generated module

over its center. . *

Proof: Let Ml' ceay Ms be the prime ideals _of R of deficient\p.i. degree.
Since there are only finitely many of them, they must all be maximal. For,
<

by Theorem 2.6, any prime ideal in R is the intersection of maximal ideals:

if the prime ideal is not maximal, it takes infinitely many maximal ideals




to effect this intersection, and if the prime ideal is also of deficient

p.i. degree, all of these maximal ideals must bé of deficient p.i. degree.
Now these Mi‘s are the only prime ideals of R containing the set ,‘Em(R) r

+ of evaluations of Razmyslov's central polvnomial for R, hm’ where p.i.
. ) "
deg(R} = m. Thus, all prime ideals of R/(Em(R)R) are maximai. So

R/(Hm(R)R) is zero-dimensional. Hence, it is Artinian (by Procesi [24,-

Theorem.5.4, page 122}). Hence, Em(R)R is a finitely-generated ideal. 5o

, -

. let Cyren- rS be evaluations of hm on R which generate ‘-:m(R} R, .2as an ideal

of R. Write. c., = h X .penveX 2.3V .-.. v, 2 . for appropriate x..'s
. i m( 11’ - s e R < (m +l)1.)’ mEms

4 Jt

-

and yji's in R. Now let .M be the C-submodule of R spanned by all of the

o 3 . . »
xji's (lSJSm,ISJ.Sk),whereC:.sthecenterofR.

Claim: M contains :-:m(m R.

- - .

proof of the.claim: By Theorem 2.3, we have equations o£f the form

2
m - . .
c.xr'= £ 4d..x.., for any r € R, anéd appropriate elements d.;, € C. Thus,
i . 31731 J:
3=l
' for all r

€ R ¢;T € M, so M contains the ideal of 'R generated by the c¢.'s,
namely Hm,(R) R. i

»

Conclusion of the proof of the theorem: Theorem 2.6 savs that each R/Mi
- ~

is a finite-dimensional vector space ovex K. Since R/(Hm(R) R) is Artinian,
. .

and has the M's for its maximal ideals, it follows that R/(E_(RR is a
. finite-dimensional vector space over k. Hence SO is R/M, since it is a
homomorphic image of R/(Hm(R)R) . Thus it is alsc a finitely-generated
c-module. S6 R is a finitely-generated C-_-modu}é, since it is an extension

of the finitely—generated.c-module M by the finitely-generated c-module gR/M.

- -



and its center is affiné® over K. -

Proof of the corollazy: If y1,.--.yn'generate R, considered as a module

over its center, C, where we wan take vy, = 1 without loss of generality,
a .

hen v.a, = % Y fox ropri .. . I ing,
s yla3 - c;jk‘k’ or appropriate eleggnts cljk e C Letting,
as= k[cijk; 2lli,j,k], we see that the A-submodule of R generated by ’ﬁ$ﬁ\\

Yyreen ¥, must be all of R. Thus R is a finitely-generated module over the ]
central, Negetherian xing A, SO R 1S Noetherian, as reguired. The center of

R is an A-submodule of R, so it is finitely-generated A-module. Since A

is affine over X, then so¢ is the center of R.



- ) CEAPTER 4

Prime Ideals of Ma.x:r.mal P.I. Degree in Prime -2.I. Rings

Beginning this chapter, we study several aspects of the arithmetic

a.nd'alge._braic propexties of prime ideals in prime p.i. rings, especially.
those properties related o localization. To begin with, let R be any
prime p.i. ring, of p.i. degree m, and let P & Specm(R) be any prime ideal

of maximal p.i. degree. Small [ 36] proved the following result.

~

Theorem 4.1. P is localizable. In other words, the set -:(P) = {re

'

is a non-zerodivisor modulo P} is a multiplicative subset of R which satis-

*

fies the Qre conditions in R.

>
Moreover, the set ;(P) consists of non-zercodivisors in R, so that _ |
the localization, R, obtained by inverting the elements of { (®), can be
identified with the subring of the Posner quotient ring Q(R) formed by

-] ’
adicining to R the elements ¢ = of AR, for c € F(P) . Now using central

polynomials, this result has been sharpened by Rowen [ 29].

Theorem 4.2. Let C be the center of R. Then the localizatien, R,, can be

obtained by adjoining teo R only the central elements c-l, c e g(P} nc.

One can think of this result as saving, in the language of torsion
theories, that the P-torsion theory is generated by a central multiplicative
set. This suggests the following problem, which we shall explore in this

chapter:

25



oroblem 4.3. If R is any prime p.i. ring géa;i. degree m, and if

PE SQequRJ, how far is P from being centrally generated, as an ideal of

- . ? v
R? Under what cix tances must P be centrally generated?

v A partial answer to the problem is given by our next result:

Proposition 4.4. As before, let C be the center of R. Then P is centxally

-

generated 1f ?'is a2 maximal ideal, or if C is a Prufer domain.
To prove this, we shall need 2 lemma:
lemma 4.5.. If£ 7 = Png, then P/TR is a torsion C/T-mocdule.

Proof of the lemma: Recall that, from Theorem 2.3, we have an eguation of

o . .
the form >z 8 = L rigi(r), for all r ¢ R, where § is any given evaluation
i=1 ) 5

of Razmvslov's central polynomial for mxm matrices, the elements z, axe

. .
appropriate elements of R, and the functiens S5 are C-linear functions from
R to ¢, given by evaluation of Razmyslov's central polvnomial with r sub-
stituted for one of the arguments. In particulaxr, if r € P, then
gi(r) £ PnC = T. So if we choose § to be any evaluation of hm on R which
is non-zero in R/P (which is possible, by property El of hm), we see that

P-8 £ TR. This proves the lemma, since the coset of § in C/7 is non-zero,

and it annihilates P/TR.

Remark 4.6. MNotice that the above proof shows that /7R is actually anni-

hilateé by any evaluation of h_. This will be used lated.

Now to prove Proposition 4.4, suppose, first of all, that P is any
maximal ideal of R. Then 7 is a maxfmal ideal of C. For F_(R/?), by

Corollary 2.9, contains a non-zkro ideal of the center of R/P. Since P is

-

LT
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.

maximal, the center 6f R/P is a field, so F_(R/P), which equals the image

. . k]

of F_(R by Lemma 2.7, is the entize center of R/P. Thus C, which contains
?m(R),‘élso maps onto the entire centex of R/P, and so C/T is a field. Now

?/TR, as a torsion module cver she field C/T, must be zero. EHence P = TR,

in this case.
- - ’ L3 = - 0 - ) ‘:‘
This part of the propositicn 1S known, and is proved, using a differ-
ent approach, in Rowen [ 29, Theorem 4.16, part (&)].

.

Next, suppose only that C is a Prufer domain. Recall that Prufer
domains are characterized by the property chat. their f£lat modules are precis-

ely their- torsion-free modules. (See, for example, Rotman [27, page 8el) . -

Now R is clearly a torsion-free c-module, since, as we have remarked before,

the non-zexo elements of C are non-zerodivisors on R. Hence, R is a flat
c-module, so that R%(LHT is a flat ¢/7-module. 3ut c/7 is also a prufer

domain, so that REc/m = R/TR must be a torsion-free C/T-module. Thus, BSTR

~

is both torsion ané torsion-free, SO it must be zero. So, again in this case,

P = TR.

Examole 4.7. A simple example where P is not generated by its intersection
with C is the following.- Let o= k[ x,v] be the ordinary commutative poly-
nomial ring in two variables over a field k, let I be the ideal of C gener-

ated by x and v, and let W@ be the ideal of C generated by X. Consider the

v

. 4
ring R =L§ C)' R is cleaxrly a prime, p.i. xing, of p.i. degree 2, and, in

fact, a finitely-generated module over its center, which is just C. embedded

il i

T .
diagonally. The ideal P ={; ) belongs to Specz(RJ, but is not generated

_ T
bv its intersection with the center, because (PRC)R = TR =( £ P

LW
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Notice, however, in this example, that P is the only minimal prime

ideal over WR. In other words, P = YTR . So we ask the question:

Problem 4.3'. When is P = TR

)

Proposition 4.8. Let R be any prime p.i. ring, whose center C is an inte-

.

grally closed Noetherian domain. Then, for any 7 € Spec(C) and P € Spec(R) ,

? is minimal over TR if and only if PnC = 7.

This follows straightforwardly from the following theorem of Schelter

[31, Theorem 3 (Going Down)l:

Theorem 4.9. If R is a prime p.i. ring, integral over an integrally closed

central subring C, then for any primes TTO g™ = C, and Pl <R with ?ln Cc = Tye
there exists a prime PO- < P, of Rsuch that P aC =T

> "1 0 0 - -
Now in the context of the pro}_:osition, R is integral over C since R
is, by Corollaxy 2.5, a finitely-generated C-module. Thus, if P were mini-

mal over TR, and PnC = ' ; 7, then Schelter's theorem would give Q€ Spec(R)

T, contrarvy %o the fact that P was minimal ovexr T7R.

witth?andan

Converselv, if P n C

7, and P is not minimal over TR, then there would be
some prime ideal Q ; Pwith Q2T R. ThenQ n C=T7, SO, in the prime factor
ring R/%/P/Q would be a non-zero prime ideal having zero intersection with

C'JTT, contrary to the fact that R/Q is integzal over C/T.

corollarv 4.10. Let R be anv prime p.i. ring, of p.i. degree m, whose cen-
ter C is an integrally closed Noetherian domain. If P € Specm(R) , then

5= yY(PRCOR .

Proof: The proposition tell us that P is a minimal prime over (P nC)R.
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To see that P}is the only minimal prime over (P NC)R, it suffices to show
that P is the only prime ideal of R whose intersegtion with C is CnP.
This follows £rom the follpwing easy lemma. For a proof, see for example,

Rowen [ 29, Theorem 4.16 ].

Lemma 4.1l. .Let R be any prime p.il. ring of p.i. degree m, with center C.

' %
Let V(F_(R) = {respec(C) : % > Fm(R)}. Then the map P +~ PnC, from Spec(R)
to Spec(C) restricts to Specm(R) to give a hijective map from Specm(R), onto

Spec(C) - V(Fm(RJ) -

k]
So, in our context, if Q is any other prime ideal of R with
@nC =?2nC, then Corollary 2.7 tells us tﬁat Q€Specm(R) , and the above
lemma then tells us that @ = P. This.proves the corollary, since now P

is the only minimal prime ideal owver (P n C)R.

Corollarvy 4.12. In the above context, P has the left and right AR propexr-

ties.

Proof: Since R is Neoetherian by Corollary 2.5, some power of P is contained
in (P nC)R. Moreover, (PnC)R has the left and right AR properties, since

it is centrallv generated, by McConnell [ 17, Corollary 12]. Hence, so does

P.

Later, we shall see thaf the assertion of Corollary 4.10 £fails with-
out the ass;mnptic:n that C be integrally closed. We leave as an open guestion
whether the conclusion of Corollarv 4.12 holds without the assumption that
C be integrally- closed. Thus, in response to Problem 4.3, we see that P 1s

far from being centrally generated, in the general case. The following

proposition gives a more detailed description of Y(PAQR =
~
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Proposition 4.13. Let R be a Noetherian, prime p.i. ring, of p.i. degree

m, with center C, and let PeSpec (R), and ™ = 2nC. Then P is a minimal
prime ideal over TR, and if the minimal dximes over TR are PaQyr--- Qs
then all of the other minimal prime ideals Qi over TR, are of deficient

o.i. degree. If R is a finitely-generated C-module, they satisfy

Kd(R/Qi) < Xa(R/P) , where Kd stands for Krull dimension. : -

Proof: If Q is any prime ideal of R such that TR ¢ Q< P, then
TSTRACSQNRCEPNC = T, so Lemma 4.11 tells us that @ = P, anéd P is indeed
minimal o-ver.'rrR. To see the other cbservations, notice that

a:mR(P/JFi) = Ql Nee. nQr. 'The inclusion -annR(P/fﬁ) 2> an nQ.:__ follows
£rom P'(an’...nQr) SPnQN...nQ_ = YTR . But if anme(P/J?r_ﬁ) then
Pxc /AR & O, for all i. So B-(RxR ¢ Q;. and P£ Q, which implies

that R::RsQi for all i. Thus, xE€ an . nQr. Now remark 4.6 says that
the set, Hm(R) , of evaluations of ﬁa;myslov's central polynomial hm, is con-
tained in annR(P/'iTR); so it follows that Q. N...NnQ. = annR(P/fﬁ ) 3
annR(P/TrRJ E’.Hm(R) . Thus, ever;;r evaluation of hm is zero modulo each Q. -

By property H1 of hm, each Qi must be of deficient.p-:'ﬁ,. degree. Moreover
9, nC2(PnC + F (R 3 PAC, so XA(C/(Q; n Q) < xA(C/(RnC) ). The

additional assumption that R is a finitely-generated C-module gives

Kd((R/Qi) C/(Qi n C)) = Kd(C/(Qi nC)} and KA((R/P) C/Tf) = Xd(¢/7 . By a result

of Segal [33, Lemma 8], we have that the Krull dimension of R/P is the
same whether considered as a C/T—-module or as a module over itself, and

similarly foxr R/Qi. This vields the last assertion of the proposition.

We have seen, in Theorem 4.1 that if R is a prime p.i. ring, then

the Srime ideals of R of maximal p.i. degree are localizable. The well-known
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théorem of Artin [ 4] coﬁcerning prime p.i. rings states that every prime
ideal of R-ié of maximal p.i. degree precisely when R is an Azumava algebra
over its center. Ia this case, all prime ideals of R are centrally gener-
ated. éuppose, now, that R is any prime p.i. ring of p.i. degrée m, and
PE:SpechRJ- The prime ideals, Q. of the localization RP’ correspond Lo
the prime ideals of‘R.which‘a:e contained in P, bf the correspondence

Q + QAR. Now any such prime ideal QE_R_;: is of maximal p.i. degree because
m = p.i-deg(Ry) 2 p.i.deg(R/Q) 2 p.i.deg(R,/PR) = o.i.deg(Q(R/P)) = m.
Tpus, R, is an Azumaya algebra over its center. The following additional

information is available, in case R is affine over a commutative Noetherian

domain.

Proposition 4.14. Let R = A{xl,...,xn} be any affine, prime p.i. algebra

over a commutative Noetherian domain A. Let m be the p.i. degree of R,
and let PESpecm(R) be anv prime ideal of maximal p.i. degree. Then the

localization of R at P, R,» is Noetherian.

Proof: It is known that Azumaya algebras are closed undexX tak;ng coeffici-
ents of reduced characteristic polynomials. (See Schelter [ 31] for 2

proof of this using only the theory of prime p.i. rings. For general inform-
ation on Azumava algebras, see, for example, Xnus and Ojanguren [15].)

As in the proof of Schelter [ 32, Propoéition 5], let CyremerQ ge all of

the coefficients of the reduced characteristic polynomials of all monomials
of length = m? in XyreeerXo, and let B = A[cl,...,ck] be the subring of

Ré generated, over A, by Cyrvn=sCy- B is Noetherian, by the Hilbert Basis

~

+heorem. We now inveoke Sirsov's theorem:
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. . ’ 4 N
Theorem 4.16. ILet S = B{xl,...,xh} be an. affine p.i. algebra over the

commutative ring B, of p.i. degree s m. If all of the monomials in

xl,...,xn of lengﬂnSuF are integral over B, then S is a finitely-generated;

B-module.
(For a proof of this, see, for example, Procesi [ 24, Thecrem 3, page 152} .)

Applving this to our situation, we take § = R[cl,..-,ck], and B as
béfore. The menomials in‘xl,...,xn of length s m2 satisfy their reduced
characteristic polvnomials by the Hamiltén—Cayley theorem, so they are
indeed integral ovér 8. Thus S is a finitely-generated module over the
commutative Noetherian ring B, so S is Noetherian. WNow R, is a localization

of S, since the multiplicative set of central elements of R not in P is

]

still an Ore set in S. Thus RP' being a localization of a Noetherian ring,

-must be Noetherian.

Remark 4.17. Notice that in the above proof, we havé shown that if R is
any prime p.i. ring which is affine over a commutative Noetherian domain,
then therxe arxe finitely many elements_cl....;ck of the center of the Posner
quotient ring of R such that the ring R[cl,-;.,ck] is a finitely-generated

module over its center. ' We shall use this chservation later.

@ n

Coreollary 4.18. In the above setting, nglp = 0.

Proof: R, is a fullv-bounded Noetherian xring, so, by a result of Jategaon-—

a

kar [13], _3,0(R)" = 0, wheze J(R,) = PR, is the Jacobson radical of R,.

--2

7= 0.

Clearly PR c (PRD)n, 50 we deduce that n.e .
. - —_ B n=1



CHEAPTER 5

Obstuctions to Localization /

We ‘have seen in Theorem 4.1 that any prime ideal of maximal p.i.
degree in a prime p.i. ring is localizable. ‘This is not%t true, in general,
for prime ideals of deficient p.i. degree, and in .this chapter we shall
explore this cbservation mozre carefu.lly.' Throughout;. the chapter, we use
the machinery of noncommutative lgcalization in fully- bounded Neetherian ' |
rings, which is developed in Muellexr| 21} ,[ 22]. We start by summa:izing.'

the relevant facts we need.

If R is any ring, and M a right R-module, we denote by E(M) the in-
Jjective envélope of M. If R is right Noetherian, and P is any prime ideal
of R, then E(R/P}, as an injective module, is a direct sum of finitely
may copies of a cer’s:ain jindecomposable injective module, which we denote

bvy E.. P can be recovered from '.-:P

as the unigue prime ideal of R associated
o £ . That is, P is the largest ideal of R which occurs as the annihilator

of a non-zero submodule of E . Thus, the correspondence P -~ E_ is one-to-

X &

one, from Spec(R) into the set of isomorphism classes of injective indecom-
pcs;a.ble right R-module. R is fully right-bounded exactly when this corres-.

pondence is bijective.

I£f P, 0 are prime ideals of the fully bounded Noetherian ring R.
a long link exists from P to Q in case Hcm(E_D,EQ ) # 0 and RE&(R/Q) = KA(R/Q) .

When this happens, we write P = + Q. Iong links provice Spec(R) with

~
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the structure of a directed graph, and the set of prime iddals belonging

to a given connected component of this directed graph is called a link-

-

comonent.

The link-component to which a prime ideal P€ Spec(R) belongs is

denoted by comp(?).- . -
The connection between long-links and localization which we need
is as follows: / €

LL. (Ref, Muelle:[z‘l,"rheorem 5]). P eSpec(R) is localizable if ané only

if comp(®) = {2}. In other words, P is localizable- if and only if it is

not linked to anyv other prime ideal of R.

For the next assertion, we need to introduce some terminology: A

finite set I € sSpec(R), of prime ideals among which there axre no inclu-

" gion relations, is called a localizable set. i1ff nZ=5 is a localizable

semiprime iceal ©of R.
2. -(Ref. Mueller [op. cit.]). If comp(®) is finite, then comp(P) is a
localizable set, and, moreover, it is the smallest localizable set of.-

prime ideals to which P belongs. In this case, comp(P) is called a clan.

L3. A finite set, L, of prime ideals from a given.Krull-dimension stratum

of Spec(R) is localizable if and only if it is a union of clans.

14. (Ref. Mueller [ 22, Theorem7]). IZ C is the center of R, and P, Q€
Spec{R) such that ? -~ =~ Q, then PnC = QnC; moreover, if Ris a

fifxitely—generated c-module, then comp(P) = {QeSpec(R;: QnC =2n ch.



In particular, if R is 2 finitely—-genezated module over its center, eve

prize ideal belongs to 2 localizable set.

Since Noetherian p.i. riags are fally bounded, we have available

all of the above results in investigating jocalization in' Noetherian ».i.

rings. As an illustration of the use of this machinery, in the setting of

Noetherian prime p.i. rings, consider the following problem:

svoblem 5.1. Suppese R is a Noetherian prime p.i. ring such that not all
prime ideals of R are of .maximal ».i. degree. (as remarked in the previous
chapter, this means that R s not an Azumava algebrxa over its center.}

Are there any localizable sets of prime ideals of deficient p.i. degree

in Spec(R)?

mo see that the aaswer to this guestion is affirmative, let S' be -
the ideal of R which is the iﬁtersection of ail prime ideals of R of def-
icient p.i. degree. S' is a proper'semiprime ideal of R, since we have
assumed that there are some prime ideals of deficient p.i. degree in Spec(R) -
A1l of the minimal prime ideals over S' axe of deficient p.il. degree.

in such a way that ? cees P

Let them be enumerated Plf Poe ""_?k Pyr e
are those prime icdeals P, from among Py, -v-r Py with Kd(R/Pi) as larxge
as possible. Let § = 2, --- NP, -

Claim 5.2. S is a localizable semiprime ideal of R. So {Pl,...,Pt} is a

localizable set of prime ideals of R of deficient p.i. degree.

proof: Since K&(R/P,) = ... = Kd(R/Pt), by constructien, L3 tells us that

we need only to check that {Pl""’Pt} is a union of link-components.

- r

. . Suppose that P, were 1inked to some other prime ideal, 2, of R, distinct

N

b

Y

e



frxrom Pl «+++P_- Then P does not contain §'; for if P contained S', it

would contain some prime ideal minimal over S', and, by Xrull-dimension

considerations, it would have to ecual.cne of ?l,.-. ,P_, contrary to -
= [~

assumption. By definition of S', this foxces ¥t s:_::ec:;n (R}, a prime ideal

’

of maximal p.i. degree. So P is localizable, and, by Ll, is not linked
to any other prime ideal, contraxy to assumption.

Notice that throughout this discussion , we have included the assump—
tion that R must be Noetherian. In fact, +the above coastruction breaks

Gown without this assumption, as the following example shows:

~

- -

Example 5.4. Let R . = k[xl,.-.,xn]mm be the k-algebra of a genexic

r

oxm matrices, where k is, for example, any field, ané n>1l. Tor ml:-m_,,

let : -

£ . o ¢ Rn
] ™
generic m,Xm, matrix x;, in R, %‘to the generic mym, matrix x;, in
’

, and let P = ker(£ ). Since £ is surjective, and
j2 3 m., (2 e m, M
B2 1772 b - S 1772

”W

he the natural homeomorphism which takes the

rmz

)

4
R is a prime i. ring of p.i. degree m P is a prime idea& 9f
mz - = g - g’- 2' ml'mz -

R  of deficient p.i. degree. It is easy to see that P is egqual
n.my =t - m,m-1 >

to the intersection of all prime ideals of Rn o of deficient p.i. degree.
I

Bowever, if m>2, P

B is not localizable, by the following result due
m,o—1

to Bergman and Small [7, Corollary 6.9]. -

Theorem 5.4. If R is a local, prime p.i. ring, with maximal ideal P, then

p.-i.deg(R/?) divides p-i. deg(R) .

-

So in our situation, i£ ? were localizable, then the

m,m-1



localization, R, would be a local, prime p.i. ring of p.i. degree m,

withmaxi.mali_deal?=?

——1 R,.such that R/P is of p.i. degree m- 1.

This would contradict the theo_rem if m>2.

As another illustration, we offer the following result which relates
localizability of prime ideals of deficient p.i. degree, and Problem 4.3',

of the previous c¢hapter.

Example 5.5. Let R be aiv ﬁoethe:ian, prime p.i. ring, which is an affirne
algebra over a ._.‘ield, ar}d which has a prime ideal ? of deficient j=P- N
degree which does not belong to any localizable set. Tet C be the center
0f R. Then there exists a prime ideal P, of maximal p.i. degree, such -

that Q £ Y(CAQIR .

Proof: By L3, comp(?) -must be infinite. By a theorem o;E Schelter, [ 31,
Lemma 5], there is some prime ideal @, of maximal p.i. degree, such that
Qs? and Kd(.R/Q) ='Kd(R_/P) +.l. Then QnrCcPnC=72?"'nc for all

P' e comp(P). So each P'¢g c;om:_:(P) contains {(Qn C)R, ané in order to show
that Q # Y(CAQ R , it suffices to show, that not every P'¢ comp(P) can:
contain Q. (For in that case, any minimal prime over (CA Q)R which is
contained in P' will be a minimal prime distinct from Q.) Well if »°
contains Q, the P'/Q is a prime ideal of deficient p.i. degree in R/Q.
Moreove:., it is a height cne prime ideal, since KA(R/P') = KE(R/Q) - 1.
However, the prime ideals of deficient p.i. degree in R/Q are exactly
those which contaim Fm(R/Q) and there can be only finitelyrmany of these
-.of height one, since R is Noetherian and Fm(R) is non-zero. Thus, only

finitely many of the ?* £ comp(P) can contain (CnQ), *so” scme of these do not.



Thus, we see-that the equation @ = J(Qn_C)R_ for prime ideals of
ma;c.i.mal p.i. degree fails, in fairly general circumstances, and its failure
is related to the behavicur of the Qr:‘.me ideals of deficient p.i. degree in
.. 2. )

To see that the same phencmenon can arise even when R is a finitely-

generated module over its center, we present the following example:

E=xamole 5.6.

k[z] + (tz-l) kx[=z,t] (e+D x[z, t]

R= - whexe k is any field.
(t-1 k[=z,t] k[z,¢] |

R is clearly a prime subring of (k[ =z, t:])zzc2 , with center ¢ = k[=z] +

+ (tz- 1) k[z,t], embedded diagonally. Notice that C is not integrally
closed, so that Corollary 4.10 does not apply, even though .R is a finitély——
generated C-module. C is the affine coordinaté: ring of a ruled suxface;

the plane cuxve, ', defined by y2 = x3 + x2 has affine coordinate ring

k+(t2

-1) k[t], and C is the cooxdinate ring of the product of I with
the affine line. The ring R is of the type considered by Mueller [18].
" Now let T = Cn ((z-t) k[z,£]). Clearly T is a prime ideal of C not contain-

ing the Formanek center of R (since tz— 1 does not belong to T} . There-

fore, by Lemma 4.11, there is only one prime ideal of R lving over T, and

it is of maximal p.i. degree. If T' = (z-1t) k[z,t], then
T (e+1)T"
P = ig® the prime ideal of R lying over 7. Geomet-
(t— 1 ot !

rically, the inclusion Cck[z, t] corresponds to the mapping from the plane

onto the surface Spec{C} given bv (z, t) +~ (=, tz -1, t(tz— 1)) , acd the prime
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ideal T co?responds to the curve on Spec(C) which is thé image of the line

z = £ under this map. + is clear, from thié point of view, that the in-

vérse image of T is comprised of the line z = t, together with the two

points (1, -1) and (-1,1). In other words, the minimal prime ideals ovex

T - k[.z, t] are 7, (z-1, £+1), and (z+1, £t-1).  Note that the lattex

two prime ideals contain (t2-1). It follows that the two prime ideals
k[z] + (2-1) x[z, 2] (£+1) k[z,t]

Qy = :
(-1 k[z, t] (t+1, z-1)

lz] + (£2-1) kfz,t] (£+1) k[=z, ]
Q, = .
2 (-1 x[z,t] (t-1, z+1)

are minimal prime ideals over WR. Conseguently P ¥ /7R \/,

To see what goes wrong with the prime ideals of deficient p.i.
degree in R, let § = (z-1, t+1) nC, and consider
§ (t+1) x[z,t]

Q3 = . Q3 is clearly a prime

(-1 kx[z.,t] k[z, ]

ideal of R of deficient p.i; éegree, whose intersection with the centex of
R is the same as that of Ql' Thus, we see that Ql' Q3 are in the same link-
compenent of Spec(R), P is contained in Qe and vet there is no prime ideal

in the same link-component as P which is contained in Q-

Definition 5.7. We say that a fully bounded Noetherian ring R satisfies

-

“Going Down for Link-Ceomponents if, whenever Tl' T, are prime ideals in the’
-
same link-component of Spec(R), and S, is any prime ideal of R contained

in Tl' then there is some prim;z ideal of R, 52' which is contained in '1:2

N\



~and is in the same link-component as Sl.

Proposition 5.8. If R is any Noetherian xing which is a finitely-generated

module over its center, C, then R satisfies Going Down for Link-Components
if -and'only if the inclusion Cc¢ R satisfies the Going Down theorem (ref.

Scheltexr [ 31, Theorem 3]).

. R

Proof: With the notation of the definition, T,nc=T,acC is a prime icdeal

of Spec{C), containing Sl ncC, so if CcR satisfies Going Down, there is some

prime ideal, S, of R contained in T, and lying over §,nC. Conversely,

suppose T' € T are prime ideals of C, and P.is a prime ideal of R lving over

. By the Lving Over theorem (Schelter [32, Theoreml(3) ] there is some
orime ideal P' of R lying over 7', and by thé Going Up theorem (Schelter
[ 32, Theorem 1(1)]) there is a Q€ Spec{R) containing P' and.lyving over 7.
Now P and Q lie in the same link-component of Spec(Rl, so there is some

Q' €0 in the same link-component of P'. Thus, the Going Down Theorem holgs

foxr CcR.

As a.consequence, we deduce the following generalizaticon of Coxollary

4.10:

!
Corollaxv 5.9. If R is any Noetherian prime p.i. ring which is a finitely-
¢ . :
generated module over its center, C, and if R satisfies Going Down for Link-

Components, then for any prime ideal, P, of maximal p.i. degree in R, we

have ? = Y(COP)R .

Proof: I£ P #F Y(CnPIR , then Proposition 4.13 tells us that there is
some prime ideal Q, minimal over (CnP)R, and of deficient p.i. degzee.

Thus QnC 2 Png, and the Going Down Theorem says that there must be some
# .
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prime ideal Q' < Q which lies over PnC, contrary to the £fact that Q is
_ # :

.
-

minimal over (CnP)R.

The nex:t main result we are aiming for in this chapter will show

how long links behave under the following kind of ring extension:

Definition 5.10. A ring extension R + R' is calledé an extension in the

-

sense of Procesi if R' is generated,' as a ring over R, by elements which

centralize R. (ref. Procesi [24, Definition 6.3 (1}, page 52]).

This is.clearly ecuivalent to saying that R' is generated, as an
R-module, by elements which centralize R. For short, we call such exten-

sions Procesi extensions. Procesi extensions arise frecuently in the

setting of p.i. rings. They behave particulaxly well with respect to prime
ideals, since if R - R' is a Procesi extension, and if ?' is a prime ideal
of R', then P' N R is a prime ideal of R. (ref. Procesi [op. cit., Theorem

6.51).

Theorem S5.11. Let R be any fully bounded Noetherian ring, and R = R' any
Procesi extension such that R' is a finitely-generated R-module. Then we
have the follewing relationships between the link structure in Spec¢(R®R and

that in Svec(R'): '

(i} Suppose Pl' ’92 £ Spec(R) , such that P, v P, Then there exist prime
ideals Q.. Q5 £ Spec(R') such ti:xat Q;r R =72y, Q, AR=P,, and Ry T Q-

{(ii) Suppose Qv Q, € Spec(R') , such that Q== Qs Then QAR+~ Q5N R

.

The proof of this result rests on the following lemma.

lemma 5.12. Iet D be any prime ideal of R, and Q any prime ideal of R'.
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Then Q@ is an associated prime ideal of :-*:om__z(R‘ . :-3',.__‘) if and only 1f QAR = P.

Proof of lthe lemma: To start -with, suppose that @ is any associated prime
ideal of EomR(R' 'EP ). tThen Q is the annihilator, in R', of some cyclic
submodule, say ¥ - R', of ':-IomR(R' . EP) , where ¥ # 0. .We need to show that
QnR="P. The inclusion Q‘nREP is true since geEQAR=>y - R'g = O,
which means that Ulxgy) = 0 for all x,yeR'. In partiecular, Y(R'g) = 0O,
which implies that Y(R'}g = 0 (since Y is a right R—_hoﬁxomorphism and g e R).

So g belongs to the annihilator, in R, of Y(R'}). Since P is maximal among

annihilators of non-zero submodules of E_, we decduce that geP. Now QaR

is a prime ideal of R, since R' is a Procesi extension of R, so in ordex to

show that QAR = P, it remains only to show that X&(R/(Q N R)) = K&(R/D). -
to do this, we will show that s™ < QnR, where m.> 0 and s is a semiprime
ideal of R whose minimal prime ideals all lie in the same Xrull-dimension
stratum as P. Since.R' is a finitelv-generated right R-module, .the image

of ¥ is a finitelv-generated submodule of E,. The results of Jategaonkar

=

[ 13] on modules over fully bounded Noetherian rings imply that it has a

Xrull-composition sexies Y(R') = "{m;. }:‘12{0 = 0, where the prime ideals

9:‘. = ann,_z(xi/xi_l) all lie in the same Xrull-dimension stratum as P. Let

$ be their intersection. Then the image of Y is annihilated by Sm, for

some m > O. But since R' is a Procesi extension of R, we have Sm}R.' = R'S",

so we have that U(R'S™RY) = P(R'ST = P(R)S™ = 0, which implies that

m ‘ . .
W+ R -S =0, s0 Smiann SU - R =09, afd we obtain the inclusion

S € Q0R as recuired.

We have now shown that any associated prime ideal, @, to E-iomq((R' » EJ)

o

satisfies QnR = P. For the converse, sugpose @ is any prime ideal of R'



43

seuch that gn R = 2. The diagram of inclusions r/P =+ R'/Q
- +

Z(R/P)

can be ext;d to a diagram R/ - R'/Q

+ / A where A is a non-zero

E(R/P)

N . Ak o
right R-homomorphism. Now E(R/P) = B, v for some k > 0 and we can compose

with one of the projection maps EPk ~ E_ so that the composition

A koL . .
R' > R'/Q * E(R/P) = E; 5y is a non-zero R-homomorphism from R' to =
containing Q in its kernel. Call this map U. We have that

H(Q) = 0 <m> W(R'QR) =0 => W R - Q=0 <> 0cAm k- RD.

y=]

Therefore Q € Q* for some prime ideal Q* which is associated to HomR(s' s E_).
But from the part of the lemma we have already proved, we kncw that

O*n R = P. The equality Q = Q% would follows if we knew that Q. and Q* were
in the same Krull-dimension stratum of spec{R') . This follows from the

following chservaticn:

Observation 5.13. For any prime ideal, Q, of R', lying over P, we have

xd(R/Bg) = XKA(R'/Qp,)-

(proof of the observation: The equality Kd(-bLR) = Kd(MR.) for anylf.:'.nitely—
generated right R'-mocdule M is a xnown result for such Procesi extensions
(cef. Segal [ 33, Lemma 8]). Now KA(R'/Q.) 2 KA(R/BJ), since R/P is an
R-submodule of R'/Q, and Kd‘(R' /QRS S KA(R/P) since R'/Q is a finitely-
generated R/P module. Thus, we have Kd(R' /QR‘) = Kd(R'/QR) = Kd(R/PR) P

»

as required.) This completes the proof of the lemma.



£

44

.

Equipped with this lemma, we can now prove Theorem 5.1l.

Proof of Theorem 5.11, part (i) :’agppose Pl’ Pz, are prime ideal of R such

that Pl + > P, Then H%(EP + E; ) # 0, so let £ be any non-zero homomor-
1 =2

phism E . E! = ¢ ', E nd EL = H R .

rhi from P:L to EPz Let 1 _‘IomR(R ’ Pl) and E2 c:mg(tt ,Egz) By

well-known arguments, these EJ!-'S are injective, as right R'-modules. More-

over, we have that HOIILR. (Ei, Eé) # 0. PFor if erP is .chosen so that

1
£(x) # 0, the R-homomorphism from R to Ej sending 1l to x can be extended,
- "1
by the injectivity of E, , to'an R-homomorphism, call it g, £rom R' to E_ .
L _ 1

L
Then £0g ¥ 0, so that the map h - £0h is a non-zero element of

Homa. (E‘l, Eé) . Now we are ready to invoke the lemma. We know that each
E;_ is a direct sum of indeccmposable injective modules EQ, corresponding

to the associated prime ideals, @, of E:!L, SO we can write E:‘.L = a%s EQ

(direct), and the lemma tells us that Qc.n R=P, for all *ES,, i

1]
-
%]
'

- i £x E i to L E direct
But a non-zerc homomorphism £rom aésl Qa {direct) to ofs, Qa {direct)

gives, by composing with an appropriate injection E -
- Q8 C'»t.Sl Q

appropriate projection I E +> E_ , a non-zero homomorphism £rom E
GsS; Qs . Qs

’ ) .
to EQ. for some Besl an ot—:s2

Observation 5.13 tells us that QS and -
S

QG lie in the same Xrull-dimension stratum, so we conclude that QB - =+ QS'

as desired.

Proof of thecrem 5.11 part (ii): Suppose, now, that Q. and Q, are prime .
i * = =
ideals of R' such that Ql T Qo and let Pl an R, Pz 92 nR. The

lemma tells us that Q. is an associated prime ideal to HomR(R’ v Ep |
i



i =1, 2. By using the assumed non-zero homomorphism from E o E_

2 e

we can easily construct a non-zero homemorphism from HomR(R' r By ) to
. : 1

ao%(R, E:B Y. (For example, define it to be zerd on the complementary

2

direct summand of E and equal to the given non-zero homomorphism from

Ql'
to E. om EQ _). Thus, we have 0 ¥ aomR, (HomR(R' P EP 1. HomR(R' . EP })
1l - 1 2
T - ] ~ T - ry

= Hom(Eom_(R', E, ) 2 R', By ) = HomR(HomR(R » Bg Yo E; ). So let 0
1 2 1 2
be a non-zero homomorphism from _E-Iomq(a' » Eg ) to E_ / and choose anyv
) 1 "2 '
£ Homy(R', E, ) such that § (f) # 0. Since R' is a module-finite Procesi
)2 2, _

extension of R, there exist elements Xqe- ,.,xne R' which centralize R,

&
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and generate R' as an R-module. Let e, = £(x), i=1,..., n. We define"

. n
a non-zero homomorphism f£rom the submodule of E_ generated by (el,.. . ,eﬂ)

2, k

to E‘.P , by sending-: (el,.-. ,en) to :'ﬁi(f) . Of course we need to checic that
2

this is well-defined. So suppose x£ R, such that (e ,-..,en) x=0. Then

1

a
f(xi) x=0, for all i. If r' is any element of R', write r' =

Tor.y.
i=1Tifie

n n
for elements v, €R, and deduce that £(x-x) = f(iglx riyi) = f(iglrixyi)
n . .-
= izl f(ri) Xy, = 0. Hence f:x = 0, and so 0(£f)-x = 0, as reguired. Using

the injectivity of E_ , this homomorphism can now be extended to give a

2, -
. n .- .

non-zere homomorphism from E to E. , and so, bv composition with one of

71 2

n . .
the injections EP -+ EP , we obtain a non-zero homomerphism from E to
1 1 1
EP‘ . Once again, Observatiocn 5.13 implies that Pl and P2 lie in the same
> )
Krull-dimension stratum of Spec(R), so we conclude P, * > P, as required. |
A

This thecrem furnishes a powerful tool in examining link structure
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in Noetherian p.i. rings. The examples considered by Mueller, in [ 18] are .

more manageable by the use of this theorem. These are rings of the form
a X ’ . . . . .
R= v B where A, B are cqmgutatzve Noetherian domains contained in

a larger commutative Noetherian domain C, so that € is finitely-generated

as an A-module and also as a B-module, and X and ¥ are ideals of C satis-

c X

fying X¥ € AnB. In this case, by taking R' = ( vy ¢

) , the extension

. e . . .2 . -
R =+ R' is a module-finite Procesi extensicon. Slgpe R' is clearly a finitely-
generated module over its center, the link-ccmgsnents in Spec(R) are given'

. . J

\ .
bv L4, and the theorem can be used to compute the link-compcnents in Spec(R) -

Schelter [ 32], investigated the following situation: ILet R be any
Noetherian prime p-i. ring, and R' the ring opexated over R by all central
elements of the Posner quotient ring,f(R) , which are integral ovex, R. The

following observations were made: . :

Il. [op. cit., Proposition(S] If R is affine over a field, then R' is a

finitely-generated R-module.

12. [op. cit., Corollary 2 to Proposition 5] Again assuming R is affine

over a field R' is a finitely-generated module over its center.
»

3. [op. cit., Proposition 4] Without the affineness assumption, R' need
not be finitelv-generated module over its center; however, its center is

always a Krull domain.

Definition 5.14. R' is.called the central'inteqral closure of R. If

R = R', R is called centrallv integrally closed.
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For example, if.R is already a finitely-generated module over its .

center, then R', the central integral closure of R, is just the ring gen-

rated by R, together with the integral closure of the center of R, inside

AR )

N

Thus, in many situaticns there is a module-finite Procesi extension,
"R', of R such that R' is finitely-generated as a module over its center,
ané Theorem 5.11 and L4 combine to give information concerning the link

stxucture of R. For instance, we deduce:

Proposition 5.15. Suppose R is any full bounded Noetherian ring such that

there is scme module-finite Procesi extension, R+ R', 'such that R' is a
finitely-generated module over its center. If ? is any prime iceal of R,
then there{é:e at most f_:i.nitely-many prime ideals Q£ Spec(R) such that

P+>Q. In particular, this is true whenever R is any affine Noetherian

prime p.i. algebra over a field.

In other words, for such rings R, the directed graph Spec(R) is
locally finYte. This result is actually known for any Noetherian p.i. zing

.

(ref. Mueller [ 22]).

Proof: Let PeSpec(R). Foxfany Seng link P + + Q, Theorem 5.11 part (i)

tells us that- there exist- prime ide P', @' eSpec(R') lyving ovexr P, Q
respectively, such that p' == = Q°'. %ow there are only finitelv many prime
ideals P', of R', lying over P, and by L4 there are only finitely many
prime ideals Q' ik R' linked to each such P'. Hence, by Theorem 5.11 part
(ii) there can onIy be finitely many prime ideals Q £ Spec{R) _such that

-

P+ =-0. '
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> - CZAPTER 6

The Size of Clans in Noetherian Prime P.I. Rings

In the last chapter, we saw that for a Noetherian p.i. ring R.which °
is a finitelv-generated module over its center, C, ev;ry prime ideal belongs
to a localizable set of prizme ideals, namely comp(®} = {DesSpec(R : Qnc=2ncC},
fo:-example- In this chaptex, we éerive a ﬁound cn the si;e of cqmp(?),_ '
purely in terms of the p.i. degrees of the prime ideals of R invelved, for

certain types of prime p.i. rings R. Cux starting point is the following

-

result due to Bexgman and Small [7, Propositien 6.2].

sroposition 6.1. Let C be a rank one valuation ring, with field of fract-

tions X, and R a finite-dimensional torsion-£free prime C-algebra, such
that R¥ S = R 2 X; ané m = p.i.deg(R). Let Py,...,P, be the prime ideals
of R belonging to the maximal ideal, U, of C, andé let m; = p.i.deg(R/Pi),
i=1,...,r. Theﬁ there exist non-negative integers ci-such that

m= I cm. IfCisthe center of X, then all ¢, can be taken positive
i=1 — -
similtaneously.

As a first applicaticn of this, bringing this together with a result

mentioned in the,previous chapter, we have:

Corollarv 6.2. Let R be any Noetherian prime p.i. zing of p.i. degree n,
which is centrally integrally closed; with center C. Let T be any height

one prime ideal over C, and let P.,...,P_ be the prime ideals of R lying
- l r -

over T, and =, = p.i.deg(R/Pi). Then there exist integers ¢ > 0 such that

wr

m= L c,;m; - In particular, r S m.

- - -

48
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proof: The result I3 frcm' +he last chapter states that C is a Xrull domain,

so the localization C_ is a rank one discrete valuation domain. c1_ is the
i 3

-

center of R, = R & C_, and the prime ideals P'i = P‘R'r are the prime ideals
1 1 1 N

i
over the maximal ideal, ﬂc_r, of C_. Moreover m, = p.i.deg(R_/?'i) + SO
[] o [
.g . -
\cz:*g ‘ :
Dropositse .1 gives the recquired eguation n = .Zlcimi .
l=

-

This result applies, fo-r ex\gj?}e, to the classical situwation where
Cis a De;dekind domain ané R is an order in a centxral simple algebra ovex
the curotient fi?,léé of Cc. If R is actually 2 maximal ordex, it is }cnowﬁ that
r = 1 (ref. AusiZLae: and Goldman, [ 51). Thus in this case the corolkary

just gives the known result that for every prime ideal, P, of R, n.i.8eg(R/P)

gdivides p.i.deg(R). However, even for-the s'imp’lesﬂ'anon-m,aximal orders x

P ~

o
z  Z\ .
can be > 1. Tor example, the Z-order ( possesses the non-trivial
2Z z
2z Z A z
clan Pl = ’ Pz = . We remark also, that, without
2z 2 2z 22 -

the assumption that R be centrally integrally closed, theresult fails. For

example, let pn(t) = (t=1) ... (t-n} ck[t], let C =Kk + pn(t)k[t], andé

let o k[ e] ) pn(t)}c[t] kil
2= . The prime ideals PO = .
_‘Dr'x(t)k[t] k(] ) | pn(t)k[t] k[ €]
c C k[t)
and Pi = i=11l,..-,0 constitute a clan of

p (B)k[e] (e-i)k[¢]

-

(n+l) prime ideals, even though R has p.i. degree 2. The link structuxre in

this example is



50

as is easily checked, using Thecrem 5.1l applied to the extension
kx[t] x[t]

RS ' .
p (k[ t] k[ ]}

r

Cne direction in which Proposition 6.1 can be generxalized is the

following:

Proposition - 6.3. Ilet R be a prime p.i. ring of p.i. degree m, whose center -

C is a reqular local ring. Iet Pl""'P* be the prime ideals of R lying
cver the maximal ideal, U, of C, and let'mi = p-i.deg(R/Pi). Then there

exist integers c, > 0 such that -

z
m= I e;m; - - .
=1

To prove this we need an easy lemma:

Iemma 6.4. ILet C be a regular local ring of dimension >, 1, with maximal

ideal U.. Then there are infinitely many pairwise nonassociated elements of
2

U-UT.

Proof of the lemma: Since C has dimension > 1, there exist two elements

X, v € U which are linearly independent module U2. We claim that for -all

n .
nzl,x+y £7U- Uz, and no two of these elements are associated. Well,

. +,
suppose to the contrary that there exist n, k 2 1 such that (x + Yn k) =
cl(x + yn); for some invertible element ¢ £ C. Then yn(yk -c) = (¢ - Ux.

Since v is irreducible, does not divide x, and since C is a unique factor-

ization domain, we deduce that yn divides (¢ - 1l}. Say (¢ - 1) = ynz, for -

z € C. Then x + yn+k = (1 + ynz)(x + yn), which yields yk - zx - ynz = 1.

This is c¢learly impossible, since the left side belongs to U.
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Droof of the proposition: We go by induction over the dimension of C. If

v

C is cne—-dimensicnal, then it is a rank one discrete valuation domain, and

+he assertion

I

Now E‘m(R) s as

follows f£rom Proposition 6.1 directly, so assume dim(C) > 1.

a non-zero subring of C can be contained.in only finitely

many height ocne prime ideals of ¢. But the lemma tells us that there are

infinitely many height one prime ideals of C of the formsC, s €U - U

2

So there is some such height one prime ideal, sC, with sC _‘-'3 F {R). Now C/sC

o -

is a regular local ring of dimension one less than that of ¢, and since

lying over sC.

v sSC 2 r (R, lemma 4.1l tells us that there is some prime ideal P ¢ Spec (R

Since R is a finitely-generated C-module, R/P is a finitely-

generated C/sC-module, and hence so is the center of R/P. Now Corollary

2.9 (ii) says
since C/sC is
sCe Uecn?P.

- - 1

the induction

shat the center of R/P lies inside the cuotient field of c/scC.
integrally closed, this forces C/sC = center(R/P). Moreover
=> sRcn PJZ_ => P = ¥ysSR <N Pi' by Corollary 4.10. Hence

assumption applies, and gives the theorem for R.

Thus, if R is any Noetherian prime p.i. ring which is a finitely-

generated module over its center, C, the clans of R are particularly well-

behaved at all points T € Spec(C) suchwhat C_ is a regular local ring.

(i.e; the smooth points of Spec(C).)

Problem 6.5.

By

\

Does the same result, m =
i

e

¢.m., hold over the non-smooth
L i3 .

points of Spec(C), assuming, for instance, that C is integrally closed?

Example 6.6.

-

Suppose R is a Noetherian prime p.i. ring which is a finitely-

generated module over its center, C. which is integzally closed and local.

If there is some prime ideal, P, of C such that c/p is regqular local, and

L



3 F (R , then Prublem 6.5 has an affirmative answer for

the maximal ideal of C. <

the clan over
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ReTER 7

Growth in Affine Prime P.I. Alcgebras

LY

Iet R = k{al,...,at} be any affine algebra over a field k, and let C
be any finite-dimensional k-subspace of R which centains 1, and generates
R as an algebra. Let c® denote the k-subspace of R generated by ali m-fold

products of elements of C, for any positive integer m. Since 1 € C, we have
2 3 - . ' . o o P
ce¢cec’ c ..., and since C generates R, we have ul ¢ = R. Define
- - - m=
. ' . . . +
g (m) = duak(cm) . for all m. ¢g_ is a function defined on the set.N of
c c : _
positive integers, and, in scme sense, it keeps track of how guickly the
algebra R grows. Notice, however, that it depends on the choice of C. IZ

D is any other finite-dimen nal k-subspace of R which contains 1, and

m -
generates R as algebra, cbserve that, for scme m' > 0, D contains C, and

hence D© © contains C° for all m. In other words, gﬁ(m'm) = gc(mJ . This

observation motivates the following definitiens, due to Rorho and Kraft (sl

‘Definitions 7.1. The set of all monotone non-decreasing functions

b

£ : N+ +~ [0, ®) is endowed with a gquasi-ordering by the relation f:'l s f2
if, for some m' € N+, fl(m) s fz(m'm) , for all m. The eguivalence class

of a function £, determined by this quasi-ordering, namely {g : £ S g and
g s £}, is denoted ‘H(£), and called the Wachstum (i.e. "growth") of £.

The Wachstum of an alggeT=R, as above, is defined to be  H(g.), and is

denoted W(R. I m the above remarks, that (R does not
depend on the choice of the generating subspace C.

In this chapter, we shall investigate the Wachstum of affine é:rime

53 .
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o.t. algebras. First, a few introductory remarks concerning the above

notions.

Remarks 7.1. ' The crasi-ordering, S, induces a partial ordering, S, on the
above-pentioned eguivalence classes, in the usual way; nawmely Mo < K

if and only if £ 5 g. |

7.2. If £€(m) = ™, where n is any integer = 1, and if g : N~ [0,*) is
any polvromial function of degree n (with real coefficients) then

‘}r(f) = "T(g). In this case, N5 is denoted E’n.

=
H
g
h

. n -
Write g{m) = am + ...+ a5 Clearly a, > 0. choose a positive

integer m' to be greater thard (n+l) times the maximum .of- [a.O], cee s [an[.
Then it is easy to see that g(m) < m'm S (m‘m)n, which shows that

'}((t_g) s '}f(f)\.' For the other inequality, '}f(f) s Q’(g) , Jjust choose
m' 2 1 large enough so that an(m:-)n -1z (r;. times the aximmu OF [aO[,
[all., ... la P It is easy to check that g(m'm) - m" = 0.)

This Wachstum, ?n' will be partigularly impor::.ant in our consider-
ations. An affine algebra, R, over a field, such that H(R s §_, for
some n, is said-to be of polynomially bounded gzowth. If (R = E’n, for

scme n, R is said to be of polynomial growth, of degree n. The fact that

€° S° ifn, #n will follow from the next comment, so that there
n, # 7, i 2 ‘

* can be at most one value. of n such that ')T(R) = 8°n-

-7

+ . .
7.3. If £, g : N =+ [0,%) are non-decreasing functions, and £ s g, then

lim sup(log(£(m)}/log(m)) s lim sup (log(g(m)}/log(m)) . Moreovex, 1if

m == 0 m ==

£ e ?n, then lim(log(f(m))/log(m)) exists, and equals n.

m—+®
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(Proof: There is some positive integex n' such that £{m) < g{m'm), for all

m. Taking logarithms, and dividing through by log(m) gives:

log(£(m}) < log(g(m'm)} - 1+ log(m‘)) log(g(m'm))
log(m) log(m) log(m) log(m*m)

Letting m=+%, we conclude that

lim sup (log(£(m)/log(m)) € lim sup(log(g(m)/log(m). Now suppose

m== o m=-o

that £ ¢ §_. We must prove that L inf(log(£(m) /log(m)) 2 n. Zet M be
m-r-co

a positive integer such that m S £(Mm) for allm € NT. Letme N+ be axbi-
trary, anéd let p be the.‘greatest integer les§ thar or egual to {(m/M)}. Then
Mo < m, so since £ is nondecreasing, this implies g" s £(Mp) S £(m). Taking
logarithms, and dividing through by log(m) gives n - (log(p)/log(m)) S
(loglf(m)) /log{m)) . Observing that (log(p) /log(m}) goes to 1 as m~+®, we

get the desired result.)

Definition 7.4. If R is any affine algebra over a field X, the Gelfand-

Kirillov dimension of R is defined to be lim sup(log(£(m)) /log(m)) , where
m+®

£ ig anv non-decreasing function in R). (For example, we could take
Y g Iwys

=

£= Gor 2S before.) We denote this number by G.XK.dim(R). The above remark,

7.3., shows that it does not depend on the‘choice of £. Moreover, it shows
\ .

+hat if R has polynomial growth, of degree n, then R has Gelfand-Kirillov

-dimensicn n. The converse of this assertion does not hold, in general.

Example 7.5. If R = ::c[xl,...,xD] is the commutative polynomial ring in p

unknowns, over X, then N = fb. For, if we take C to be the K-span

. . ¥ . = m+p .
of {1, Xyr ees xP}, it is easily computed that d.'LmK(Cm) ( P) , which

is a polynomial functicn of degree p in m. Note that, in this case,
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G.K.dim(R} coincides with the Xrull dimension of R. It was proved in ;976,
by Malliavin-Brameret [16] that if R is an affine prime p.i. algebra over

a field, and has Krull dimension p, then G.X.dim(R) = p. We shall prove the
sharper result that such R is of polynomial growth, of degree p. This
result is a partial answer to the following problem posed by Procesi [ 24,

page 185, problem c]:

"Tf R = k{al,...,an} is a finitely-generated, graded p.i. algeﬁra,
let £(m) = dimktam) what can one say about the function £(m)? Is it a
polynomial function in some sense?” i

Qur result will answer thé latter question in ‘the affirmat%ve, in the
case where R is prime, if "in some senseJ is interpreted in the sense Of
being qf polvnomial growth. We remark that in the case that R is not prime,
the.above guestion has a negative answer, as is shown by the examples of
éorho and Xraft [ 8, Satz 2.10]. 'The following remark connects Procesi’s
guestion to the guestion of polynomial growth:
Remark 7.6. Su?psse R = ;E Rm is a graded, affine algebra over a field k,
that R is generated as an aigebra by the finite—dimensional subspace.Rl,
of homogeneﬁus elements of degree 1, and that RD = k. (We presume that
these assumptions were implicit in Procesi's question). If £(m) = dimkiRh),
for m 2 1, then ?{Tf) = ?; if and only if R is of polynomial growth, ’

of degree (n+l). o

Proof: If we take C to be the finite~dimensicnal k-subspace Rbiaal, then
contains 1, and generates R as an élgebra over k. Moreover, -

go(m = dim (¢T) = dim (Ry®...8R) =1+ £(1) + ... + £(m). So we need
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-

to show _that 'h’(g J = ?n+l if and only if Nis) = ?n' Suppose first )

of all, that (£ = P . Then there exist integers M, M' 2 1, such that

m S £(Mm) and £(m) = (M‘m)n, for allm 2 1. We ha&e the inegualities:
. m ,
gC(Mxn) > 14+ €M + ... + £(Mm} 2 I j  (which is a polynomial of
- . . j=l

degree n+l in m) and gc(m) s mi® o+ .en + (1-1'm)n S (m+ 1) (M'm)n.
These inecmalities combine to show ’}ifaf'aa £ Pn+l' The other implicatiocn,
Se £ ?n+l implies £ € ?n’ is proved similarly.
Thus, in order to answer Procesi's question for affine, prime p.i.
‘ | | )
algebras, it will suffice to show that such algebras are of polynomial

growth.

Proposition 7.7. Let R = k{al,.-.,ab} be any affine algebra over a field

k, and let R < R' be any Procesi extension of R such that R' is a finitely-

‘ —
generated R-module. If R is of polynomial growth, of degree n = 1, then /

so is R'. ‘ )

proof: Since R is a subalgebra of R', it is clear that R < WRY,
so it only remains to check that N s ?n- Let Xj,.--X, be elements

of R' which centralize R, and which generate R' as an R-module; choose

t
= ' > i 3 = T X .
%y 1, without loss of generality. Now wrlite xixj k&1 rijk\ﬁc for

1 <i, j $t, for appropriate elements rijk. £ R. Llet C bhe any finite-

dimensional subspace of R which contains 1, as well as all of the rijkls'

and which éenerates R as a k-algebra. Let D be the k-subspace of R'

spanned by xICU cee UX, C. Dis a finite—dimensionai subspace of R' which

contains 1 and generates R' as an algebra, and by our choice of C, it is

s » =l
clear that o is just the k-subspace of R' spanned by xlcm U - U xtc .
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for all m > O. Therefore, g (m = dim (DM S t - aim () = t_-gc(r'n).

Now = £ ?n implies t-gc € ?n’ and this shows that H(R') = Qf(gD) < ?n'

Notice that, in general, if £ is any nondecreasing function from N+
to [0,®), and t any positive integer, it is not necessarily the case that
L
t-£ ¢ 'H(f). However, we do have that £ ¢ ?ﬁ implies t-f € ?n’ for
any n 2 1, and this is the kev observation to the above proof. We have

w

immediately, f£rom the above proposition:

Corollarv 7.8. If R is any affine commutative integral domain, over a

field k, then R has porynomial growth, of dégrpe equal to its Krull dimen-

sion.

Proof: By the Noether Normalization lemma, there is a subalgebra S ¢ R,
which is a commtative polynomial algebra over k, and such that R is a
finitely-generated S-module. Thus, the assertion of the corollary follows

immediately from the above lemma, together with our previous example (7.5)

of commutative polynomial algebras.

We are now equipped to prove the main theorem of this chapter:

-

Theorem 7.9. ILet R be any affine, prime p.i. algebra over a field k. Let
n be the transcendency degree of the quotient field of tge center of R,

over k. Then (R = ?n'

Proof: To see that WR = ?n’ just choose a transcendency basis,

cl""'cn' for the quotient field of the centex of R, such that each <5

belgngs to the center of R. Then since R contains k[cl""'cn 1, we have

W 2 Mkle,...e D = .

n
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For the other ineguality, WIR) s ?n' we make use of Remark 4.17.

It tells us that there are finitely many elements Cqreee Sy from the center

of the Posnexr quotient ring of R such that the extension ring

R' = R[ cl,.-.,ck] is a finitely-generated module over its center, C. Now

C is a commutative demain whose guotient field is the same as that of the
center of R. Moreover, by c::rdilary 3.16, C is affine over k.

Thus, by

Corollary 7.8, M(C) = ?n' Applying Proposition 7.7 to the extensien

CS R, we deduce that M(R') = iﬂn" Therefore MR s A (R = ?n‘

as required.
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