1	ASSESSING SEASONAL DYNAMICS OF SOIL CO2 EFFLUX USING
2	CONTINUOUS MEASUREMENTS IN A TEMPERATE PINE FOREST
3	
4	
5	
6	
7	
8	
9	
10	
11	By
12	Emily Nicholas, B.Sc.
13	·
14	
15	
16	
17	
18	
19	A Thesis
20	Submitted to the School of Graduate Studies
21	In Partial Fulfillment of the Requirements
22	For the Degree
23	Master of Science
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	McMaster University
38	© Copyright by Emily Nicholas, October 2011
39	
40	

41	
42	
43	
44	
45	
46	
47	MASTER OF SCIENCE (2011) McMaster University
48	(Environmental Science) Hamilton, ON
49	TITLE: Assessing Seasonal Dynamics of Soil CO ₂ Efflux Using
50	Continuous Measurements in a Temperate Pine Forest
51	1
52	AUTHOR: Emily Nicholas, BSc. Honours (McMaster University)
53	
54	SUPERVISOR: Dr. M. Altaf Arain
55	
56	NUMBER OF PAGES: ix, 79
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	

PREFACE Assessing Seasonal Dynamics of Soil CO2 Efflux Using Continuous

96 Measurements in a Temperate Pine Forest is a thesis based on a field study 97 where the primary author, Emily Nicholas has contributed in 70% of data 98 collection and 90% of the data analysis and writing of the results. Other

99 contributors include M. Altaf Arain, Jason J. Brodeur and Samantha L.

100 MacKay.

102	This study explores the seasonal dynamics of soil CO2 efflux (Rs) in a
103	temperate pine plantation forest located in Southern Ontario, Canada. Rs
104	was continuously measured from June 15, 2008 to December 31, 2010 at
105	this site using an automated soil CO2 chamber system. The minimum Rs
106	values ranged from 0.1 to 0.7 g C m ⁻² day ⁻¹ in the winter when the ground
107	was covered with snow, while maximum values ranged from 8.3 to 11.0 g
108	C m ⁻² day ⁻¹ in late summer when temperature was highest in the region.
109	The total modeled annual Rs values for 2008 through 2010 were 1100±220,
110	1240±250 and 1150±230 g C m $^{\text{-}2}$ year $^{\text{-}1}$, respectively. Annual values for 2008
111	were modeled from January 1 to June 15, 2008. Rs over the winter (January
112	1-March 31) was 150, 160 and 150 g C m ⁻² , accounting for about 13% of
113	annual Rs. Component analysis of Rs conducted by making continuous
114	measurements in a trenched plot where live roots were excised indicated
115	that heterotrophic respiration (Rh) contributed approximately 72 and 80%
116	(895 and 920 g C m $^{\text{-2}}$ year $^{\text{-1}}$) of annual Rs in 2009 and 2010, respectively.
117	Similarly, continuous Rs measurement in a litterless plot where the surface
118	litter layer was removed contributed 65 and 57% (800 and 655 g C m $^{\text{-2}}$ year
119	¹) of annual Rs in 2009 and 2010, respectively. Results of this study

iv

121 this forest, except during the severe dry conditions.

122

123	In order to explore the impact of soil water limitations on Rs a through-fall
124	exclusion experiment conducted from April 1 to July 3, 2009 - the spring
125	and early summer season, when net carbon uptake is at a maximum at this
126	site. Through-fall exclusion caused a large reduction in daily Rs. By the
127	end of the exclusion period daily Rs in the through-fall exclusion area was
128	3.1 g C m $^{\text{-2}}$ day $^{\text{-1}}$ as compared to 8.4 g C m $^{\text{-2}}$ day $^{\text{-1}}$ in the reference area,
129	indicating a strong soil water control on Rs during dry periods. This
130	experiment further suggested that Rs became less sensitive to temperature
131	and increasingly more sensitive to water as soil water content depleted
132	due to the through-fall exclusion. Analysis of Rs versus temperature
133	relationships indicated that the mean Q_{10} value during the through-fall
134	exclusion period was 1.8, while during the non-exclusion period in 2009
135	the mean Q_{10} value was 2.8. This study helps to better understand the
136	seasonal dynamics of Rs, and its components and controls in temperate
137	conifer forests in Eastern North America. These forests are considered a
138	large sink of carbon, and changes in Rs dynamics in this region may have
139	implications for the global carbon cycle.

v

140	
141	
142	
143	
144	
145	
146	
147	ACKNOWLEDGEMENTS
148	
149	I would like to thank all the people that have helped me through
150	the completion of my MSc. Without their constant support, guidance and
151	advise this would not have been possible.
152	
153	First, I would like to thank my supervisor, Dr. Altaf Arain, for
154	giving me this opportunity, and for helping me get through the many
155	hurdles encountered along the way. Most importantly, I want to thank
156	him for his patience, both in the field- work and in the writing process.
157	His guidance and support was a critical building block in both the design
158	of the project and completion of this document.
159	

160	Next, I would like to thank everyone in the climate lab, that have
161	been there through this process. In particular, I would like to extend
162	thanks to Jason Brodeur, for his constant assistance with technical work
163	and ongoing support. You have always been a role model for me due to
164	your hard work and dedication to everything you do. You have been more
165	help than you could ever imagine. Also, to Samantha MacKay, for her
166	support in both the lab and the field. You made everyday and interesting
167	adventure. I would like to thank Myroslava Khomik, for her endless
168	support with the Li-6400, willingness to respond to e-mails and give
169	advice. All of your work for my project is much appreciated.
170	I would also like to extend much thanks to Zoran Nesic for his
171	constant support with the automated chambers. Your knowledge and
172	willingness to help is the reason for successful collection of my data.
173	
174	Much thanks to my mom and dad for their on-going support as I
175	continued along my educational path. Without the constant support from
176	my parents I would not have been able to achieve what I have today.
177	
178	Finally, I would like to thank my husband, Michael Hayman, for his
179	on-going support especially near the end when I had little energy left to

vii

- 180 finish. Your encouragement and support was the voice of reason I needed.
- 181 Without you this would have never been possible.

- **TABLE OF CONTENTS**

195 TITLE PAGE

196
197
198 DESCRIPTIVE NOTE

i

199ii

200	PREFACE	
201		
202		iii
203	ABSTRACT	
204	••••	
205		iv
206	ACKNOWLEDGEMENTS	
207		vi
208	TABLE OF CONTENTS	
209	••••	viii
210	LIST OF FIGURES	
211	•••••••••••••••••••••••••••••••••••••••	x
212	LIST OF TABLES	
213		xiv
214	CHAPTER 1: LITERATURE REVIEW	
215		1
216	CHAPTER 2: INTRODUCTION	
217	•••	13

218	CHAPTER 3:	
219	METHODOLOGY	
220		16
221	3.1. Site Description	
222		16
223	3.2 Through-fall Exclusion Setup	
224		17
225	3.3. Rs Measurements using an Automated Soil CO ₂	
226	Chamber System	
227		
228		18
229	3.4. Meteorological Measurements	
230		19
231	3.5. Soil CO ₂ Efflux Data Processing	
232		20
233	3.6. Soil CO ₂ Efflux Model	
234		21
235	CHAPTER 4: RESULTS	
236		22

237	4.1. Climate	
238		
239		22
240	4.2. Seasonal and Inter-annual Trends in Rs	
241		24
242	4.3. Impact of Through-fall Exclusion on Rs	
243		26
244	4.4. Environmental Controls on Seasonal Dynamics of Rs	
245		28
246	CHAPTER 5: DISCUSSION	
247		30
248	5.1. Seasonal and Annual Rs	
249		30
250	5.2. Through-fall Exclusion Impacts on Rs	
251		33
252	5.3. Comparison of Rs to Ecosystem Respiration, Re	
253		35
254	CHAPTER 6: CONCLUSIONS	
255		37

256	REFERENCES	
257		
258		39
259	TABLES	
260		
261		46
262	FIGURES	
263	•••••	
264		50
265	APPENDIX	
266	SOIL CO2 CHAMBER MANUAL	
267		63
268		
269		
270		
271		
272		
273		
274		
275		

277

278	Figure 1: Daily mean environmental values for 2008, 2009 and	
279	2010. (a) air temperature (Ta), (b) soil temperature (Ts) at 5 cm	
280	depth for the exclusion and reference areas, (c) daily totals of	
281	precipitation (PPT) and (d) soil water content (SWC) in 0- 20 cm	
282	layer, for both the reference and drought areas. Measurements	
283	are shown using the dots in blue (reference) and pink	
284	(exclusion). Vertical dash lines indicate drought period from	
285	April 1 to July 3, 2009.	
286		
287		50
288		
289	Figure 2: Daily mean Rs for 2008, 2009 and 2010 for all reference,	
290	exclusion, heterotrophic and litterless chambers.	
291		
292		51
293		
294	Figure 3: Comparison of daily mean Rs for reference and exclusion a	reas.

xiii

295	Vertical dash lines indicate drought period from April 1 to July 3, 20	09 .
296	52	
297		
298	Figure 4: Half-hourly Rs during precipitation events on June 28	
299	and 29, 2009. Soil temperature (Ts) at 5 cm depth is also shown.	
300		
301		53
302		
303	Figure 5: Continuous winter Rs data for two, three day periods	
304	in 2009 and 2010. (a) Continuous half hourly data for March 14 to	
305	March 17 2009 and (b) continuous half hourly data for January	
306	12 to January 15, 2010.	
307		56
308		
309	Figure 6: (a) Daily mean Rs averaged for all chambers for	
310	January through March 2009 (green) and 2010 (purple), (b)	
311	temperature (Ts) at 5 cm depth for January through March 2009	
312	(solid line) and 2010 (dashed line), (c) soil water content (SWC)	
313	in 0-20cm layer soil for January through March 2009 (solid line)	
314	and 2010 (dashed line), and (d) daily totals of accumulated snow	

315	depth for January through March 2009 (green) and 2010 (purple).
316	
317	
318	
319	Figure 7: Cumulative Rs for all chambers during 2008, 2009 and 2010.
320	
321	58
322	Figure 8: Relationship between half-hourly Rs vs soil
323	temperature (Ts) at 5cm depth and fitted models for the
324	exclusion and non-exclusion periods. The light grey dots
325	illustrate the raw data during the non-exclusion period while the
326	dashed line represents the Q10 relationship for that time period.
327	The darker grey open dots illustrate the raw data during the
328	exclusion period while the solid line represents the Q10
329	relationship for that time
330	period
331	
332	Figure 9: Relationship between half-hourly residuals of Rs and
333	soil water content (SWC) for reference and exclusion areas. The
334	dark circles indicate the bin averaged values of this relationship.

335	Values above the zero line indicate a model overestimation while	
336	values below the zero line indicate a model for a given SWC	
337	value.	
338		
339		60
340		
341	Figure 10: The Q ₁₀ values for both the Ts only model (circles)	
342	and Ts+SWC model (squares) during each season for 2008, 2009	
343	and 2010. Each chamber is represented by a different colour for	
344	inter-annual comparisons.	
345		62
346		
347	Figure 11: The R_{s10} values for both the Ts only model (circles)	
348	and Ts+SWC model (squares) during each season for 2008, 2009	
349	and 2010. Each chamber is represented by a different colour for	
350	inter-annual comparisons.	
351		63
352		
353	Figure 12: (a)Daily averaged continuous Rs from reference area	
354	for 2009 (black) and 2010 (grey). Daily averaged manual	

355	measurements from the Li-6400 which were measured in 2004-	
356	2006 for Khomik et al., 2010. Error bars represent standard	
357	deviation of each measurement and (b) scatterplot between	
358	Li6400 Rs and Continuous Rs where the lines represent the linear	
359	relationship between the two measurement types.	
360		
361		64
362		
363	Figure 13: Comparison of half-hour measurements from both	
364	the Li-6400 (circles) and the automated chambers (squares) in	
365	2009 and 2010. (a) represents data from the non-through-fall	
366	exclusion area, while (b) represents data from the through-fall	
367	exclusion area. The error bars represent standard deviation from	
368	each	
369	measurement	
370		65
371		
372		
373		
374		

375	
376	
377	
378	
379	
380	
381	
382	
383	LIST OF TABLES
384 385	Table 1. Automated chamber details for measurement dates and types of
386	measurements being done for 2008 through 2010
387	46
388	
389	Table 2. Seasonal total Rs values in g C m ⁻² season ⁻¹ for 2008 through 2010.
390	Error estimates represent error within the model only
391	47
392	
393	Table 3. Average seasonal root mean squared error (RMSE) and average
394	seasonal correlation coefficient (R ²) for each chamber using Rs-Ts
395	relationship and Rs-Ts relationship that includes SWC; (-) represents
	xviii

396	insufficient	data	for	modeling.
397				
398				
399	Table 4. : (a) Mode	el parameters for ea	ch chamber, whe	re a = Q_{10} , b = R_{s10}
400	and c and d are fit	ted parameters for	SWC. (b) Root m	ean squared error
401	(RMSE), bias error	(BE), and correlatio	n coefficient (R2)	for each chamber
402	using			Rs-Ts
403				
404				
405				
406				

407 Chapter 1: Literature Review

1.1 Soil CO₂ Efflux (Rs)

409	SoilCO ₂ efflux from the forest floor is a product of decomposition of plant
410	litter and soil organic matter (heterotrophic respiration) and from root respiration
411	of both symbiotic microbes and mycorrhizae which feed on root exudates
412	(autotrophic respiration) (Jassal and Black, 2006). Soil CO2 efflux (Rs) is an
413	important contributor to total ecosystem respiration as it can account for more
414	than two-thirds of ecosystem respiration on an annual basis (Gaumont-Guay et
415	al., 2006a). Rs is influenced by both the quantity and quality of soil C stored in
416	both the forest floor and mineral soil layer. However, Rs in forest ecosystems is
417	controlled by multiple factors including; soil temperature, soil water content
418	(Saiz et al., 2007) and precipitation (Hui and Luo, 2004) as the primary ones.
419	Other important factors are stand age, forest management activities, soil
420	properties and carbon input rates into the soil (Saiz et al., 2007). Various models
421	have been used to describe the main controlling factors on Rs (Joffre et al., 2003
422	and Richardson et al., 2007). Most models use both soil temperature and soil
423	water content relationships to estimate Rs (Borken et al., 2006); Davidson et al.,
424	1998; Drewitt et al., 2002 and Gaumont-Guay et al., 2006a). Further advancement
425	in models and understanding of the dynamics of Rs is a vital step to estimating

426 the future global C budget under current and future climate changes (Joffre et al.,

427 2003 and Xu and Qi, 2001).

428

429

430 **1.2 Soil CO**, Efflux Components and Contributions

431 Litter Layer Contributions to Rs

432 The litter layer of a forest is said to be a major contributor to soil CO, 433 efflux.. Zimmerman et al., 2009 discovered that the litter layer of a tropical 434 montane forest contributed 37% of all the soil CO, efflux and surface temperature 435 explained 92% of the diurnal variation of the litter layer. A litter layer field study 436 conducted by DeForest in 2009 in an oak dominated forest found that soil 437 temperature and moisture explained 85% of the variation in the mineral soil, but 438 only 60% in the litter layer. The contrasting results provided by these two studies 439 can be attributed to the thickness of the litter layer, soil temperature and soil 440 moisture, therefore it is evident that additional studies that include a litter layer 441 component will be crucial to the further understanding of soil CO₂ efflux in all 442 environments.

443 Heterotrophic Contributions to Rs

444 Heterotrophic respiration is defined as the respiration of soil microbes and 445 fungi which are a function of how much available soil carbon is present (Unger et 446 al., 2009). In a drought simulation study conducted by Unger (2009) it was 447 determined that the heterotrophic respiration contributed 60% of the total 70% 448 soil CO₂. It was also determined that the heterotrophic respiration decreases as 449 drought is induced (from 2 μ mol CO₂ m⁻² s⁻¹ to 1 μ mol CO₂ m⁻² s⁻¹). Interestingly, 450 even though heterotrophic respiration decreased its contribution to the total soil 451 CO₂ efflux increased by 12%. Unger (2009) speculated that this was due to a 452 decrease in understory respiration as the autotrophic respiration did not 453 fluctuate. In a natural drought study conducted by Nikolova and colleagues 454 (2009) both a beech and spruce stand were studied. For both the beech and 455 spruce forest, heterotrophic respiration was strongly correlated with soil 456 temperature, however during the drought year the beech forest had a 457 significantly lower correlation with soil temperature while the spruce forest 458 showed no changes with this relationship (Nikolova et al., 2009). The available 459 soil water was not significantly correlated to the heterotrophic respiration in the 460 spruce forest while the beech forest showed a positive relationship for 461 heterotrophic respiration and available soil water until a threshold (100 mm). 462 These studies highlight the difficulty in assuming that all forest and soil types will respond equally to drought conditions, therefore more studies will improveour knowledge on this important topic.

465

466 Autotrophic Contributions to Soil CO₂ Efflux

467 Autotrophic respiration is known to contribute between 10 and 90% to 468 total soil respiration depending on vegetation type and season (Tang et al., 2005). 469 The autotrophic component can be described as respiration from the understory 470 vegetation and tree roots (Tang et al., 2005). Unger et al., (2009) used metal rings 471 to cut off root respiration and allowed them to decompose for one year. They 472 found that autotrophic respiration had little variation (0.1- 0.2 μ mol CO₂ m⁻² s⁻¹) 473 and only contributed 10% of total soil CO, efflux (Unger et al., 2009). This low 474 contribution can be explained by the low productivity of this forest compared to 475 others. In another study, conducted in a temperate forest, Borken et al., (2006) 476 found that root respiration was only slightly affected by low soil moisture due to 477 the fact that roots are able to uptake water from deeper soils. In order to 478 determine conclusive results and to fill the knowledge gaps more studies in 479 differing forest types are required to not only quantify autotrophic respiration, 480 but also heterotrophic respiration and litter layer respiration.

483 Soil CO₂ efflux, in the dormant season can contribute from 10-50% of the 484 total annual soil CO₂ efflux and therefore it can play an important role in the 485 carbon cycle (Schindlbacher et al., 22007). Many studies conducted on measuring 486 soil CO₂ efflux are concentrated on the growing season, due to the ease of taking 487 measurements and the misconception that it is the most important time to 488 measure due to its large contribution to total soil CO₂ efflux. There may be 489 important information that lies within the winter soil efflux measurements and 490 they should not be overlooked. In fact, in an rainfall exclusion study conducted 491 by Borken et al., (2006) noted that during the winter enhanced respiration 492 potentially could have occurred in the rainfall exclusion plot during wet periods. 493 An extensive study (Schindlbacher et al., 2007) on winter soil CO₂ efflux, in an 494 Austrian mountain forest, showed winter efflux contributed 12% of the total soil 495 CO_2 efflux (62 g C m⁻²). As noted by Schindlbacher (2007) the snow cover acts as a 496 physical barrier which disrupts the diffusion of CO₂ from the soil to the 497 atmosphere and it also insulates the soil to allow for potential microbial activity 498 as temperatures will remain above freezing in the soil. For both of these reasons 499 winter soil CO₂ efflux is misunderstood and further studies will only enhance the 500 limited knowledge in this topic.

501

502 **1.4 Impact of Droughts on Rs**

503 During a drought period, soil moisture is the primary limiting factor to 504 decomposition of SOM. As drought conditions increase, solutes rich in carbon 505 and nitrogen accumulate in the cytoplasm of the microbes and fungi. This 506 process occurs to allow the cells of the microbes to resist dehydration during 507 water limiting periods (Jarvis et al., 2007). In Mediterranean climates, droughts 508 occur frequently, therefore, microbes in the soil have adapted to support these 509 times of limiting soil moisture. Eventually rewetting occurs and microbes take up 510 the water, increase in volume and release some of the accumulated cytoplasmic 511 solutes into the soil resulting in increased soil carbon release to the atmosphere 512 (Jarvis et al., 2007 and Reichstein et al., 2002). Therefore, as there are increases in 513 soil moisture after a drought, soil CO, efflux increases due to increased 514 heterotrophic respiration, as a result of the stimulation of soil microbial activity 515 (Jarvis et al., 2007). Jarvis and colleagues discuss the "Birch Effect" which is when 516 soil becomes dry in either a natural or lab experiment and when rewetting occurs 517 there is a sudden increase in mineralization, decomposition, and the release of 518 inorganic carbon dioxide. Jarvis (2007) conducted a Mediterranean forest drought 519 experiment when the soil CO₂ efflux was 0.26 µmol CO₂ m⁻² s⁻¹, after a rainfall

520	event the efflux increased to 4.1 μ mol CO ₂ m ⁻² s ⁻¹ . A lab experiment conducted
521	with the same soil concluded that 1 hour after rewetting the soil CO_2 efflux
522	increased the most substantial compared to 24 hours later. This burst of soil CO_2
523	efflux can be a substantial contributor on an annual basis. In contrast, a study by
524	Fierer and colleagues (2003) found that in a Mediterranean climate the additional
525	carbon in SOM, after rewetting, is not highly liable and was not found to
526	contribute to soil CO ₂ efflux. Muhr (2008) and colleagues completed a similar lab
527	study as to Jarvis and colleagues (2007) with soil columns from a Norway spruce
528	forest. Soil CO ₂ efflux during a drying period was measured followed by
529	measurements during rewetting periods. The soil CO ₂ efflux decreased as the
530	drying period progressed (average decrease was 20%) and after rewetting
531	occurred the upper soil layer showed an increase in soil CO ₂ efflux levels (unlike
532	the mineral soil layer). The total regeneration of efflux took several days and this
533	was attributed to the majority of soil microbes dying off with a population re-
534	growth of a few days after rewetting.

535 In a study, which modeled drought effects on decomposition dynamics, 536 results stressed the importance on belowground processes for ecosystem carbon 537 balances. The model used by Reichstein and colleagues (2002), predicted that soil 538 microbial respiration most likely contributes the largest amount of carbon to

ecosystem respiration, as microbial regrowth is substantial after rewetting dry soil. When the dynamic soil organic matter decomposition sub-model was applied, the liable carbon pool size varied by 7%, despite the drastic changes in litter fall each month. Therefore, it was found that these litter inputs would not significantly influence the overall carbon pool for decomposition throughout the year. These litter inputs only influenced soil microbial respiration by 5%, which was found to be insignificant (Reichstein et al., 2002).

546 Soil moisture affects the microbial decay of SOM in temperate forest 547 ecosystems, which will in turn affect the root or rhizosphere respiration. The soil 548 moisture is affected by the changes in precipitation, evaporation, and soil water 549 content (Borken et al., 2006). In temperate forest ecosystems, the soil microbes are 550 known to have a soil moisture threshold where their productivity levels of decay, 551 are influenced by optimum soil moisture contents. This threshold of soil moisture 552 may limit or inhibit decay if moisture is too high, or too low (Borken et al., 2006 553 and Risk et al., 2008). Risk and colleagues (2008) conducted a study where the 554 decomposition-temperature response was studied at different depths. The results 555 illustrated that surface soil had much higher SOM decomposition rates compared 556 to a 35 cm depth, where every gram of soil carbon was 100 times less active in 557 decomposition. It was also noted that soil temperature and moisture were

558 strongly coupled and seasonal changes in both parameters influenced SOM 559 decomposition. In the early season, saturation of the soil strongly inhibited soil 560 CO, efflux, but as the season progressed temperatures increased, the soil dried, 561 the pores became aerobic and high soil gas diffusivities replenished the oxygen 562 content. As these temperature intervals occur, the SOM decomposition rates have 563 small boosts (Risk et al., 2008). However, in general, during a drought the 564 decomposition of SOM is known to decrease (Borken et al., 2006 and Risk et al., 565 2008).

566 It is well known that in a temperate forest ecosystem a summer drought 567 will decrease the total soil CO, efflux, however the amount of reduction varies 568 depending on contributions from the litter layer, heterotrophic and autotrophic 569 respiration (Borken et al., 2006, Davidson et al., 1998, Irvine et al., 2002 and Muhr 570 et al., 2008). In a through-fall exclusion experiment of 84 days for two sequential 571 years soil CO, efflux decreased by 53 mg C $m^{-2} h^{-1}$ and 68 mg C $m^{-2} h^{-1}$, which is a 572 10-30% annual reduction in soil CO, efflux (Borken et al., 2006). However, even 573 though these results show that soil CO, decreases with summer droughts it does 574 not prove if this CO₂ will be released at a later time. In a natural drought during 575 August/ September, in a mixed hardwood forest, the forest experienced rapid 576 declines in soil CO, efflux which was correlated exponentially with a declining

577 soil matric potential (Davidson et al., 1998). Irvine (2002) similarly conducted a 578 natural drought study in a ponderosa pine plantation which found both root and 579 microbial respiration to decline. In these temperate ecosystems, it was found that 580 the types of soil microbes have different thresholds of soil moisture. During a 581 drought fungal decomposition dominates, as they are more resistant to limited 582 water compared to heterotrophic bacteria (Borken et al., 2006 and Swift et al., 583 1979). Borken and colleagues (2006), suggest that further research is required to 584 evaluate the function of fungi and their role in SOM decomposition and soil CO, 585 efflux. The preliminary results indicate that fruiting fungus respired relatively 586 large amounts of old SOM under drought conditions. However, there are still 587 many uncertainties with respect to the extent to which fungi can store carbon to 588 use for rapid growth of fruiting bodies, therefore limiting the knowledge of 589 fungal decomposition rates (Borken et al., 2006).

In a dry tropical forest located in northern Ethiopia, the combined effects of seasonal drought and limited fresh litter quality account for slow decomposition rates of SOM. Therefore, litter inputs are important for decomposition rates (Descheemaeker et al., 2009). Decomposition is necessary for nutrient cycling and soil formation, and is controlled by climate, topography, parent material, forest age and density, chemical composition of the litter, soil

596 chemical and physical characteristics and soil organisms (Descheemaeker et al.,597 2009).

598 Studies on the effects of drought, in tropical forests, are becoming 599 increasingly important as severe droughts are becoming more common in the 600 future (Brando et al., 2008). In tropical climates, decomposition of soil organic 601 matter is greatly reduced during droughts (Bonal et al., 2008; Brando et al., 2008 602 and Meir et al., 2008), which will ultimately lead to a decrease in soil CO, efflux. 603 Drought experiments are especially important in tropical forest ecosystems as it 604 is known that, on both seasonal and inter-annual time scales, effects of variation 605 of soil moisture availability on soil CO, efflux are much larger than soil 606 temperature (Davidson et al., 2008 and Meir et al., 2008). Through-fall exclusions 607 have been known to provoke changes in the carbon cycling processes, such as 608 reduced litter fall and substrate limitation for heterotrophic microbes, which 609 would result in a decline in decomposition of SOM. Thereby, reducing the 610 amount of heterotrophic respiration within the litter layer and mineral soil layer 611 (Davidson et al., 2008). During droughts, some carbon is not released in the form 612 of heterotrophic respiration due to the moisture limitations; therefore, this carbon 613 is stored in the soil as liable organic matter. This soil organic matter will 614 eventually decompose and be released when moisture content of the 615 decomposing tissue increases (Meir et al., 2008).

616

617 **1.5 Temporal and Spatial Dynamics of Rs**

High spatial and temporal variability in Rs have been reported in many forest types (Law et al., 2001 and Raich and Tufekciouglu, 2000) due to: species composition, stand age, management practices, and climatic conditions (Xu et al., 2001). The development of realistic carbon emission models is hindered by the poorly understood variability of soil CO_2 efflux, in both space and time, (Khomik et al., 2006) therefore; larger sample size experiments are required to identify how the above parameters affect soil CO_2 efflux.

625 Temporal variation in soil CO₂ effluxes are generally less than the spatial 626 variation (Khomik et al., 2006; Law et al., 2001 and Xu et al., 2001), averaging 22% 627 over the summer months (Law et al., 2001). In a mixed wood boreal forest, 628 Khomik and colleagues (2006), measured soil respiration to have similar 629 variation patterns over the years, with decreasing variation values towards the 630 winter and increasing though the spring and summer. The minimum value for 631 soil CO₂ efflux was reached in March for both years, with values of $0.5 \pm 0.1 \mu$ mol 632 $CO_2 \text{ m}^{-2} \text{ s}^{-1}$ in year 1 and $0.4 \pm 0.2 \text{ }\mu\text{mol} \text{ }CO_2 \text{ }\text{m}^{-2} \text{ s}^{-1}$ in year 2. Overall, it was 633 concluded that a strong, positive, exponential relationship existed between 634 seasonal variability of manually measured soil temperature and soil respiration 635 (Khomik et al, 2006). Temporal variations are mainly explained by changes in soil 636 temperature and soil moisture (Khomik et al., 2006 and Xu et al., 2001), where 76-637 95% of all the temporal variability was explained by soil temperature and 638 moisture in a ponderosa pine plantation (Xu et al., 2001). The seasonal trend of 639 soil CO₂ efflux, for the Mediterranean pine plantation, followed the same trend as 640 soil moisture during the summer, when soil water content was low. When soil 641 moisture was high, in October 1998 to May 1999, soil CO₂ efflux followed the 642 same trend as soil temperature (Xu et al., 2001).

643 Khomik and colleagues (2006) discovered a significant spatial variability 644 in soil respiration along a measured transect, observed at a mixed wood boreal 645 forest, with the largest variability during the summer and the least amount of 646 variability during the winter. The coefficient of variation between summer and 647 winter months were 74% and 4%, respectively. These results were seen due to a 648 decrease in root respiration during the winter, which limits the spatial variability 649 in the distribution of tree roots. Heterotrophic respiration also decreased in the 650 winter due to a decline in soil temperatures, and therefore beyond the capability 651 of the instrument to detect a significant amount of soil respiration (Khomik et al.,

652 2006). Other studies have reported that spatial variability of soil nitrogen, 653 phosphorus, magnesium and organic matter could individually explain 44-55% 654 of the spatial variability in soil respiration, within a ponderosa pine plantation 655 (Xu et al., 2001). However, Khomik and colleagues (2006) found that this was not 656 valid for the mixed wood boreal forest, where only the C:N ratio in the LFH layer 657 correlated with soil respiration. Xu and colleagues (2001) also discovered a large 658 spatial variation among the 18 sample points, in a ponderosa pine plantation, 659 which had statistically different soil CO_2 efflux values (P<0.01). Law and 660 colleagues (2001) also noted statistically different values for bare soil (P<0.01). 661 The value reported for coefficient of variation is approximately 30%, however 662 larger variations were seen in the non-growing season compared to the growing 663 season. The majority (84%) of the spatial variation can be explained by fine root 664 biomass, microbial biomass, and soil physical and chemical properties as well as 665 the changes in soil temperature and soil moisture. There variables accounted for 666 less than 34% of the total spatial variation (Xu et al., 2001).

667 Spatial variability may also occur in forests with differing species, which 668 may result from significant variability within leaf area index. Therefore, shading 669 in some areas, would cause a decrease in soil temperature or interception of 670 precipitation in other places, which would decrease soil moisture (Khomik et al.,

671 2006). As soil temperature and soil moisture are the primary constraining factors 672 of soil CO₂ efflux, variability would be seen on the forest floor.

673 Spatial variability may also be attributed to changes in species. Deciduous 674 broadleaf trees are known to have higher soil CO₂ efflux compared to coniferous 675 trees (Khomik et al., 2006 and Raich and Tufekciouglu, 2000). Broadleaf tree 676 species would have higher soil CO₂ efflux rates due to their larger amount of 677 liable carbon which is available for decomposition during the leaf fall period 678 (Khomik et al, 2006). The needles from conifers contain large amounts of lignin 679 which is more difficult to decompose (Schlesinger, 1997). The deciduous species 680 also contain less leaf area during the spring, allowing for increased amounts of 681 radiation to penetrate to the soil, therefore warming the soil and increasing the 682 soil CO₂ efflux.

683 **Chapter 2: Introduction**

684 Release of carbon dioxide (CO₂) to the atmosphere from decomposing soil 685 carbon (C) and root respiration is referred to as soil CO₂ efflux (Rs) (Joffre et al., 686 2003). Rs is a product of both biological and physical processes which can be 687 broken down into autotrophic (Ra; root respiration) and heterotrophic (Rh; 688 microbial respiration) components (Gaumont-Guay et al., 2006b; Irvine et al., 689

15

2008). It has been known for some time that ecosystem respiration is most often

690	dominated by the CO_2 efflux from the soil (Irvine et al., 2008). It has also been
691	determined that reduced soil water may constrain both root and microbial
692	respiration (Unger et al., 2009). Microbial respiration may decrease due to
693	microbes dying off (Muhr et al. 2008), while root growth respiration may
694	decrease due to decreased photosynthesis and the reduced water availability. In
695	forest ecosystems, which store a large amount of C (Dixon et al., 1994; Turner et
696	al., 1995), it is also important to consider the forest floor litter layer because
697	changes in its thickness and organic matter content can impact its contribution to
698	Rs (Gaumont-Guay et al., 2006; Jassal et al., 2005). Recently, there is an increased
699	interest in partitioning Rs into its components along with emphasizing the
700	physiological connections between above- and below- ground processes (Irvine
701	et al., 2008).
702	
703	Severe weather events, such as droughts, may significantly influence the
704	seasonal dynamics of Rs in forest ecosystems. Many studies have explored the
705	impact of drought on Rs (Borken et al., 2006; Breda et al, 2006; Davidson et al.,
706	1998; Granier et al., 2007; Hanson et al., 2003; Krishnan et al., 2006; Reichstein et

- al., 2002; Unger et al., 2009), however, to our knowledge, none have focused on
- the impact of early growing season droughts on Rs in forests, in particular in

709	eastern North America. Although it is not uncommon for summer droughts to
710	occur in eastern North America (Hanson and Weltzin, 2000), over the last few
711	decades this region has experienced large changes in precipitation patterns,
712	where despite an overall increase in annual precipitation, frequency and severity
713	of drought events have increased (Sheffield and Wood, 2008). As the early
714	growing season is the most critical period for net C uptake in the forest
715	ecosystems in this region (Peichl et al., 2010a, their figure 7), a severe drought
716	event during this period may severely impact the C balance of forests growing in
717	the region (Noormets et al., 2008). In particular, changes in soil C pools would be
718	critical, because they account for 50–60% of the C stored in temperate forest
719	ecosystems (Turner et al., 1995). Changes in soil C dynamics in this region may
720	have implications for the global C cycle because eastern North American forests
721	are considered a large sink of C and as a result of forest regeneration on former
722	agricultural lands and fire suppression efforts (Rhemtulla et al., 2009).
723	In this study, we explored the dynamics of soil CO2 efflux (Rs) in a
724	temperate pine forest in Southern Ontario, Canada. We continuously measured
725	Rs in a mature (planted in 1939) white pine forest, from June 15, 2008 to
726	December 31, 2010 using an automated soil CO_2 chamber system. The main
727	advantage of the automated chamber systems is their ability to take continuous
728	long-term measurements of Rs, thereby enhancing knowledge of diurnal and
-----	---
729	seasonal variations and environmental controls on CO2 production and Rs (Cai et
730	al., 2010; Drewitt et al., 2002; Gaumont-Guay et al., 2006a, b; Janssens et al., 2000;
731	Jassal et al., 2005; Tang et al., 2005). This approach has the potential to provide
732	much more reliable estimates of seasonal and annual Rs as compared to
733	conventional manual chambers that have low temporal resolution (Bolstad et al.,
734	2004; Khomik et al., 2010). Eddy covariance flux and meteorological data were
735	also measured at this site since 1939. Further details of eddy covariance flux and
736	meteorological measurements and its gap-filling are given in Arain and Restrepo-
737	Coupe (2005) and Peichl et al. (2010a, b). In the past manual soil CO_2 efflux
738	measurements were made at this site on bi-weekly to monthly intervals using a
739	portable soil chamber unit from 2004 to 2006 (Khomik et al., 2010). However,
740	these periodic manual Rs measurements were unable to capture the fluctuations
741	in soil CO2 efflux due to warm/cold or dry/wet weather events which frequently
742	occurs in this region, in particular during spring and autumn seasons.
743	In order to further explore and quantity the impact of dry soil conditions
744	on Rs, we continuously measured soil CO_2 efflux during a through-fall exclusion
745	experiment conducted at this site in the spring and early summer of 2009. Further
746	details of through-fall exclusion set-up are given in MacKay et al. (2011).

747	The main objectives of this study are; (i) to examine and quantify the
748	seasonal dynamics of Rs and its components, (ii) to determine how Rs might be
749	influenced by changes in soil temperature and soil water content and (iii) to
750	investigate the effect of an induced early growing season through- fall exclusion
751	or soil water stress on Rs.
752	
753	Chapter 3: Methodology
754	3.1. Site Description
755	This study was conducted at the mature (70-year old in 2009) forest site of
756	the Turkey Point Flux Station, located near the northernshore of Lake Erie, in
757	southern Ontario, Canada (42° 42' 35.20" N, 80° 21' 26.64" W) (Arain and
758	Restrepo-Coupe, 2006; Peichl et al., 2010a, b). The Turkey Point Flux Station is
759	part of the Canadian Carbon Program (CCP), formerly known as the Fluxnet
760	Canada Research Network (FCRN). The forest is dominated (>82%) by eastern
761	white pine (Pinus strobus L.), which was planted on cleared Oak savannah land in
762	1939 to stabilize sandy soil. Other tree species include 11% balsam fir (Abies
763	balsamea L. Mill) and native Carolinian species, including 4% Oak (Quercus
764	velutina L., Q. alba L.), 2 % Red maple (Acer rubrum L.) and some wild black
765	cherry trees (Prunus serotina Ehrh). The understory consists of ferns (Pteridium

766	aquilinum L.), mosses (Polytrichum spp.), poison ivy (Rhus radicans L.ssp.) and
767	Rubus species. The leaf area index is 8 (Chen et al., 2006). The 30-year mean
768	annual temperature is 7.8 °C and the mean annual precipitation is 1010 mm, of
769	which 438 mm falls between May and September, and 133 mm falls in winter as
770	snow (Environment Canada climate records at Delhi, Ontario from 1970-2000).
771	The soil at this site is sandy (>98% sand) and well drained, with low to moderate
772	water holding capacity. The water table resides approximately 7 meters below
773	ground level. Further site details are given in Peichl et al., (2010a, b).
774	
775	3.2. Through-fall Exclusion Setup
776	The through-fall exclusion setup consisted of a 20 m × 20 m area that was
777	covered by flat-bottomed aluminum troughs (0.61 m x 3.05 m), mounted on
778	wooden stands at a 2° slope from a height of 1.37 to 0.84 m, in order to exclude
779	precipitation from the area beneath. The exclusion began on April 1, 2009 and
780	ended on July 3, 2009, spanning a total of 93 days. It excluded more than 90% of
780 781	ended on July 3, 2009, spanning a total of 93 days. It excluded more than 90% of precipitation falling on this area (MacKay et al., 2011). Stem flow was not
780 781 782	ended on July 3, 2009, spanning a total of 93 days. It excluded more than 90% of precipitation falling on this area (MacKay et al., 2011). Stem flow was not excluded; however it has minimal impact on soil water content in the vicinity of
780 781 782 783	ended on July 3, 2009, spanning a total of 93 days. It excluded more than 90% of precipitation falling on this area (MacKay et al., 2011). Stem flow was not excluded; however it has minimal impact on soil water content in the vicinity of trees, as shown by periodic manual measurements following the precipitation

785	was negligible at this site. Troughs were removed at the end of exclusion period
786	and rainfall occurred on July 5, effectively ending the rainfall-free period in the
787	exclusion area. Litter SWC was not measured during this time, however manual
788	measurement of SWC were made of the root zone (0-20 cm). Further details of the
789	through-fall exclusion setup are given in MacKay et al. (2011).
790	
791	3.3. Rs Measurements using an Automated Soil CO ₂ Chamber System
792	Rs was continuously measured from June 2008 to December 2010 by
793	automated non-steady state chambers (Drewitt et al., 2002; Jassal et al., 2005). The
794	chambers consisted of a hemispherical dome that opened and closed above a
795	cylindrical body. The chamber cylinders have an internal diameter of
796	approximately 52.5 cm, a height of 13 cm, and a thickness of 1 cm. Each cylinder
797	was mounted on a chamber collar that was installed on fairly level ground and
798	inserted approximately 2 to 4 cm into the soil. The hemispherical dome has a
799	headspace height of approximately 20.5 cm. A foam gasket seals the dome
800	around the cylinder when the chamber closes for each measurement, providing
801	an air-tight seal for proper measurements. The chambers contain a small fan that
802	circulates the air inside, preventing stagnation zones and microclimate formation.
803	To maintain consistent pressure within the chamber during its closing and

operation, a 30 cm coiled tube was installed on the top of the chamber lid toallow pressure equalization.

806

807	From June 2008 to May 2009, three chambers were used as reference
808	(control) chambers, while one measured heterotrophic respiration. In order to
809	measure heterotrophic respiration root exclusion was achieved by severing live
810	tree roots in the area surrounding the chamber. In May 2009, two additional
811	chambers were installed, one in the through-fall exclusion area and one in the
812	reference area, while the LFH layer was removed in an existing chamber to
813	measure litterless respiration. In May 2010, two additional chambers were
814	installed, one as a reference and the other measuring heterotrophic respiration in
815	the through-fall exclusion area. See further details of chamber installation in
816	Table 1. Throughout the growing season, vegetation was removed from inside
817	the collars to eliminate any potential photosynthesis effects. In this analysis, we
818	use April 1 through November 30 to represent the growing season (8 months).
819	
820	During the winter, Rs data was occasionally lost when snowfall
821	completely filled the collars, and when heavy ice and snow on the dome forced

822 the chamber to remain shut for extended periods of time. On site visits, snow was

823	removed from the top of the dome and the collar rim to ensure a continued tight
824	seal for measurements. The chamber volume was corrected for snow
825	accumulation in the chambers during the winter months, using snow depth
826	measurements conducted at the site using a sonic ranger (CR50, Campbell
827	Scientific Inc.), as well as occasional manual measurements in each collar during
828	site visits. During this process, we assumed that although the porosity of snow
829	will change, its effect on the volume of the chamber and resulting efflux is
830	minimal.
831	
832	3.4. Meteorological Measurements
832 833	3.4. Meteorological Measurements Soil temperature (2, 5, 10, 20, 50 and 100 cm depth) and soil moisture (5,
832 833 834	 3.4. Meteorological Measurements Soil temperature (2, 5, 10, 20, 50 and 100 cm depth) and soil moisture (5, 10, 20, 50, 100 cm depth) were measured continuously alongside the eddy
832 833 834 835	 3.4. Meteorological Measurements Soil temperature (2, 5, 10, 20, 50 and 100 cm depth) and soil moisture (5, 10, 20, 50, 100 cm depth) were measured continuously alongside the eddy covariance flux and meteorological measurements. Soil temperature and soil
832833834835836	3.4. Meteorological Measurements Soil temperature (2, 5, 10, 20, 50 and 100 cm depth) and soil moisture (5,10, 20, 50, 100 cm depth) were measured continuously alongside the eddycovariance flux and meteorological measurements. Soil temperature and soilmoisture were also measured at 5, 10, 20 and 50 cm depths in both reference and
 832 833 834 835 836 837 	3.4. Meteorological Measurements Soil temperature (2, 5, 10, 20, 50 and 100 cm depth) and soil moisture (5,10, 20, 50, 100 cm depth) were measured continuously alongside the eddycovariance flux and meteorological measurements. Soil temperature and soilmoisture were also measured at 5, 10, 20 and 50 cm depths in both reference andthrough-fall exclusion areas in 2009 and 2010. Manual soil moisture
 832 833 834 835 836 837 838 	SAL Meteorological MeasurementsSoil temperature (2, 5, 10, 20, 50 and 100 cm depth) and soil moisture (5,10, 20, 50, 100 cm depth) were measured continuously alongside the eddycovariance flux and meteorological measurements. Soil temperature and soilmoisture were also measured at 5, 10, 20 and 50 cm depths in both reference andthrough-fall exclusion areas in 2009 and 2010. Manual soil moisturemeasurements were made in the root zone (top 0-20 cm) at 54 locations in both
 832 833 834 835 836 837 838 839 	3.4. Meteorological MeasurementsSoil temperature (2, 5, 10, 20, 50 and 100 cm depth) and soil moisture (5,10, 20, 50, 100 cm depth) were measured continuously alongside the eddycovariance flux and meteorological measurements. Soil temperature and soilmoisture were also measured at 5, 10, 20 and 50 cm depths in both reference andthrough-fall exclusion areas in 2009 and 2010. Manual soil moisturemeasurements were made in the root zone (top 0-20 cm) at 54 locations in boththrough-fall exclusion and reference areas at bi-weekly intervals using a manual

841	Precipitation was measured about 1.5 km northeast of the site by a
842	weighed accumulation rain gauge, (T200B, Geonor Inc.). Additional tipping
843	bucket rain gauges, one installed alongside the accumulation gauge (TE525,
844	Texas Instruments) and on the top of the eddy covariance tower (CS700;
845	Campbell Scientific Inc.), were used to cross-check and gap-fill the precipitation
846	data.
847	
848	3.5. Soil CO ₂ Efflux Data Processing
849	Rs data were quality-controlled using a MATLAB (The MathWorks Inc.)
850	program that estimated the slope of time versus high-frequency (1 Hz) CO ₂ efflux
851	for each half-hourly measurement interval. Data spikes within the continuous
852	half-hourly fluxes were detected and removed by applying season-specific
853	maximum and minimum thresholds to the data. Gaps also resulted from data
854	loss during chamber malfunctions, calibrations, and winter snow and ice
855	problems. On a few occasions, compressed air ran out earlier than expected due
856	to air leaks, causing data gaps. Over the entire year, gaps represented
857	approximately 19% of half-hourly data in each chamber, with the highest
858	occurrence during the winter. However, we were able to capture much (73%) of
859	the Rs data in winter (January 1-March 31). Gaps extending less than four

860	consecutive half hours were filled using linear interpolation. Longer gaps were
861	filled using modeled Rs values as described in the following section.

863 3.6. Soil CO₂ Efflux Model

864	To investigate the impact of soil temperature (Ts) and soil water content
865	on Rs, two separate empirical models were fit to the data. Rs was first modeled
866	as a function of Ts only, for which the Q10 model (Black et al., 1996; van't Hoff,
867	1884) was used:

868
$$Rs = a * b^{((Ts-10/10))}$$

869 Where R_s is the soil CO_2 efflux (µmol CO_2 m⁻² s⁻¹) and Ts is the soil temperature at 870 5 cm depth (°C), both measured half hourly. Fitted parameter "a" is Rs at 10 °C 871 (µmol CO_2 m⁻² s⁻¹). The parameter "b" (Q₁₀ coefficient b) is the relative increase in

(1)

$\,$ 872 $\,$ $\,$ the respiration rate for a 10 $^{\circ}C$ increase in temperature.

873

874 Soil water control was included in the model by multiplying equation 1 875 by a logistic function, following Richardson et al. (2007). Thus, Rs was modeled 876 as a function of both Ts and soil water content as:

878
$$Rs = a * b^{((T_s - 10)/10)} * \frac{1}{1 + \exp(c - d * SWC)}$$
(2)

879	Where Rs, Ts, a and b are described above, SWC is the soil water content within
880	the 0-20 cm root zone(m ^{3} m ^{-3}), and fitted parameters "c" and "d" control the
881	shape of the logistic SWC function, which scales between 0 and 1.
882	

883	We conducted our modeling analysis on seasonal basis for all chambers,
884	including Rs from reference, exclusion, heterotrophic and litterless chambers for
885	2008, 2009 and 2010. The seasons analyzed included winter/spring (1 January - 30
886	June), summer (1 July -30 September) and autumn (1 October-31 December).
887	Winter and spring season were combined together so that there is enough data
888	points to allow spread in Rs values to fit the model. Error estimates were
889	calculated for the modeled data using a Monte Carlo simulation where at a
890	minimum of 100 runs were performed for each year of data. Error outputs were
891	small due to the large data set, few data gaps and a well-defined area (footprint)
892	for each soil CO ₂ efflux measurement. Correlation co-efficient were also
893	calculated among chambers to capture spatial heterogeneity. On average the
894	spatial variability among chambers which measured the same Rs components
895	was 20%.

897 Chapter 4: Results

4.1. Climate

899	The daily mean air temperature (T $_{\scriptscriptstyle a}$) ranged from -13.3, -16.3 and -19 °C in
900	winter to 27.4, 25.3 and 23.8 $^\circ C$ in summer in 2008, 2009 and 2010, respectively.
901	The annual mean values for T_{a} were 8.8, 7.7 and 7.9 $^{\circ}\text{C}$ (2008, 2009 and 2010
902	respectively), which were similar to the regional 30-year mean value of 7.8 $^\circ$ C. In
903	March, $T_{_a}$ rose above 0 $^\circ C$ and continued to increase until mid August. From this
904	point it gradually declined throughout the rest of the year, falling below 0 $^\circ\mathrm{C}$ in
905	mid December (Figure 1a). Soil temperature at 5 cm depth (T_s) closely followed
906	the seasonal dynamics of Ta, however, it remained consistently near 0 $^{\circ}$ C in the
907	winter (Figure 1b). The minimum Ts values of -2.2, -1.7 and -1.2 $^\circ C$ were observed
908	in January 2008, February 2009 and February 2010, respectively. The maximum $T_{\rm s}$
909	was observed in July 2008, August 2009 and August 2010 with values reaching
910	21.6, 22.0 and 21.9 °C, respectively.
911	
912	Total annual precipitation at the site was 1140, 995 and 890 mm (2008, 2009
913	and 2010 respectively), which was comparable to the 30-year regional mean value

of 1010 mm. The area received approximately 500, 400 and 450 mm (2008, 2009

and 2010 respectively) of precipitation during the growing season (April through

November), with a notable dry period from August 29 to September 25 in 2009,

917	where only 13 mm of precipitation was observed (Figure 1c). Maximum snow
918	depth on the forest floor was about 20 cm in late February 2009 and about 19 cm
919	in late January/early February, 2010. Snow depth declined at a rate of
920	approximately 0.5 cm per day until no snow was present in early April (Figure
921	5d).
922	
923	SWC in the root zone (0-20 cm) peaked in late winter/early spring with
924	maximum values of 0.36, 0.25 and 0.22 m ³ m ⁻³ , in April 2008, February 2009 and
925	March 2010, respectively. Generally, after peaking, SWC gradually decreased
926	over the remainder of the growing season (Figure 1d). Minimum SWC values in
927	the reference area were 0.05, 0.06 and 0.06 m^3m^{-3} during September in 2008, 2009
928	and 2010, respectively.
929	
930	4.2 Seasonal and Inter-annual Trends in Rs
931	The seasonal trend of daily mean Rs for each chamber is shown in Figure
932	2. Distinct highs and lows were observed in Rs throughout the growing season
933	that closely followed the air temperature (Figure 2 and 1a). A maximum daily
934	mean Rs of 8.3, 9.2 and 11.0 g C m ⁻² day ⁻¹ was recorded in August 2008, August
935	2009 and July 2010, while a minimum daily mean of about 0.7, 0.1 and 0.2 g C $\rm m^{\text{-}2}$

936	day ⁻¹ was observed in December 2008 and January 2009 and 2010. Following a
937	rapid rise in temperature in mid June in 2009, Rs increased from approximately
938	$3.0~g~C~m^{\text{-}2}~day^{\text{-}1}$ to about 7.0 g C m $^{\text{-}2}~day^{\text{-}1}$ in 16 days, while in 2010 Rs increased
939	from 3.0 g C m ⁻² day ⁻¹ in mid-March to about 9.0 g C m ⁻² day ⁻¹ in early June in 17
940	days.

942	We observed a sudden increase in Rs during and immediately after
943	precipitation events (Figure 4). For example, on June 28 in 2009 maximum Rs
944	increased from about 6.5 to about 7.5 g C m ⁻² day ⁻¹ immediately following a 22
945	mm precipitation event (Figure 4), where Rs declined to previous levels within 6
946	hours after the rain event.
947	
948	Figure 5 shows half-hourly winter Rs values for two selected periods:
949	March 14-17, 2009 and January 12-15, 2010. These periods were chosen as good
950	quality continuous winter Rs data was available. In 2009, Rs ranged from 0.1 to
951	1.6 μ mol m ⁻² s ⁻¹ while in 2010, there was an increase in variability among

952 individual chambers where Rs ranged from 0.2 to 1.7 $\mu mol\ m^{\text{-}2}\ s^{\text{-}1}$ with low Rs

- 953 values measured in the litterless and heterotrophic chambers (Figure 5a, b).
- 954 Overall, half-hourly Rs trends in all other chambers in 2010 were similar to

values observed in 2009, except reference chamber 1 where Rs was generallyhigher.

957

958	Seasonal dynamics of daily mean winter Rs is shown in Figure 6, along
959	with seasonal dynamics of Ts, SWC and snow depth. Daily Rs values in the
960	winter ranged from 0.1 to 1.7 g C m ⁻² day ⁻¹ (Figure 6a). In 2009, Rs decreased in
961	January, reaching a minimum in late January and early February, likely due to
962	colder Ts resulting from minimal snow depth during that period. Generally, high
963	daily Rs values coincided with high SWC. For example, in mid-February, 2009
964	SWC increased to 0.2 m ³ m ⁻³ while Rs values ranged from 0.5 to 1.2 g C m ⁻² day ⁻¹
965	(Figure 6a, c). In 2010, snow depth was generally high from January-February (7-
966	19 cm) when Rs values were about 1.0 g C m ⁻² day ⁻¹ . In early/mid-March daily Rs
967	started to increase regardless of snow status on the ground.
968	
969	Overall, maximum carbon loss occurred in summer months in 2008, 2009
970	and 2010 (i.e. 591, 535 and 463 g C m ⁻² season ⁻¹ , respectively) (Table 2), while
971	annual carbon emissions for 2008, 2009 and 2010 were 1355, 1243 and 1196 g C m $^{\circ}$
972	² year ⁻¹ , respectively. Winter Rs contributed 150, 160 and 150 (approximately

973 13%) to the annual Rs in 2008, 2009 and 2010, respectively.

975 4.3 Impact of Through-fall Exclusion on Rs

976	Through-fall was excluded from April 1, 2009 to July 3, 2009, during which
977	270 mm of precipitation fell. Approximately 90% of the total through-fall
978	exclusion area was covered and stem flow was considered negligible. As a result,
979	annual precipitation in the through-fall exclusion plot was approximately 625
980	mm in 2009. Over the through-fall exclusion period, precipitation events caused
981	variations in SWC in the reference area that were absent in the through-fall
982	exclusion area (Figure 1d). SWC in the reference area decreased from 0.15 to 0.08
983	m ³ m ⁻³ over the through-fall exclusion period, while SWC in the exclusion area
984	reached a minimum of 0.053 $\textrm{m}^{3}\textrm{m}^{\text{-3}}$ on the last day of exclusion (Figure 1d). Ts was
985	similar in both the reference and exclusion areas, except during the through-fall
986	exclusion experiment, when it was approximately 1°C lower than the reference
987	area, and during May-July in 2010, when the exclusion area had slightly higher
988	Ts.
989	
990	SWC was slightly higher (0.2 $m^3 m^{-3}$) in the reference area as compared to
991	the exclusion area ($0.17 \text{ m}^3 \text{ m}^{-3}$) in the early spring of 2009, before the start of

992 through-fall exclusion. At the onset of the growing season in early April 2009,

993	SWC declined in both areas, however, the decline in the exclusion area was more
994	rapid than in the reference area. The SWC in the exclusion area reached a
995	minimum value of 0.053 $m^3 m^{-3}$ in early July 2009, at the time of the removal of
996	exclusion troughs. During the post-through-fall exclusion period, continuous
997	SWC measurements again indicated slightly higher values in the reference area
998	as compared to the through-fall exclusion area. The difference in SWC in the
999	reference and through-fall exclusion areas during the pre- and post-drought
1000	periods as indicated in the continuous measurements may be due spatial
1001	difference in SWC. However, bi-weekly manual SWC measurements conducted
1002	at 54 locations across each of the exclusion and reference areas showed similar
1003	SWC values in both areas during the post-through-fall exclusion periods (see
1004	Figure 1d). Similar trends in SWC were also observed in 2010.
1005	
1006	The through-fall exclusion coincided with a large decrease in Rs in both
1007	exclusion chambers (Figure 3). Daily Rs in the exclusion area on the last day of
1008	the experiment was 2.2 g C m ⁻² day ⁻¹ , as compared to 7.0 g C m ⁻² day ⁻¹ in the
1009	reference area; a 68 % decrease, suggesting a strong soil moisture control on Rs at
1010	our site under dry conditions (Figure 3). Rainfall occurred on July 5, 2009, two
1011	days after the removal of troughs, causing a rapid increase in the exclusion area

1012 Rs to approximately 8.0 g C m⁻² day⁻¹, producing similar values to those

1013 measured in the reference area (Figure 3).

1014	Over the through-fall exclusion period, there was a 36% reduction in
1015	cumulative Rs in the exclusion area as compared to the reference area (i.e. 205 g C $$
1016	$m^{\text{-2}}$ vs. 320 g C m^{\text{-2}}, respectively) (see Figure 7). The largest decline in Rs was
1017	observed during the last 20 days of the exclusion period, when the soil was the
1018	driest. Annual total Rs value in the exclusion area in 2009 was 1010 g C $m^{\text{-}2}\text{year}^{\text{-}1}$
1019	(Table 2).

1020

1021 4.4 Environmental Controls on Seasonal Dynamics of Rs

1022 Overall, trends in Rs and Ts were highly correlated during all three study 1023 years. Our analyses indicated that variation in Ts best explained temporal 1024 variability in Rs, with mean coefficients of determination, R² values of 0.82 and 1025 0.88 for all chambers using the Ts-only and Ts-SWC model, respectively. Table 3 1026 shows the performance measures for the Ts-only and Ts-SWC models for 1027 individual chambers for each season. In general, the Ts-SWC model simulated 1028 Rs values more accurately than the Ts-only model, especially during the summer 1029 when R² values for Ts-SWC model ranged from 0.68 to 0.92 as compared to 0.38 1030 to 0.90 for the Ts-only model. In the winter and spring, the Ts-SWC model always

1031	produced a better fit to observed Rs, with R ² values ranging from 0.85 to 0.93,
1032	while the T _s -only model yielded R^2 values ranging from 0.38 to 0.91.
1033	The heterotrophic and litterless Rs values were also best represented by
1034	the Ts-SWC model with R^2 values ranging from 0.42 to 0.67 and 0.40 to 0.50 for
1035	the heterotrophic and litterless chambers, respectively (Table 3).
1036	
1037	Figure 8 displays the Q_{10} relationship of soil temperature and Rs for both
1038	the non-exclusion and exclusion periods. The Q_{10} value for the non-exclusion
1039	period is 2.4. However, the Q_{10} values for the chambers within the exclusion area
1040	produced much smaller values during the water limiting period (1.5). An
1041	analysis conducted using the residuals of the Rs-Ts relationship (δ_{Rs}) (Figure 9)
1042	indicated near zero values when SWC was greater than 0.12 m³ m-3. δ_{Rs} values
1043	were above zero when SWC was between 0.07 and 0.12 $m^3m^{\text{-}3}$ (Figure 9) and δ_{Rs}
1044	values became increasingly negative when SWC declined below 0.07 m ³ m ⁻³ ,
1045	suggesting strong soil water control on Rs in our forest during dry periods. This
1046	phenomenon was further corroborated by the difference in T _s -only model
1047	performance during the non through-fall exclusion ($R^2=0.82$ to 0.85), and the
1048	through-fall exclusion ($R^2 = 0.73$ to 0.75) periods. When both Ts and SWC were
1049	considered in the model, R ² values increased, particularly for the exclusion

period, (i.e. R² value increased from 0.73 to 0.89.) Model improvement for the
non through-fall exclusion period was much less where R² increased from 0.87 to
0.89.

1054	Figure 10 displays the Q_{10} value (fitted parameter 'b') for individual
1055	chambers for each season from 2008 to 2010 using the Ts-SWC model. The Q_{10}
1056	values in the winter/spring ranged from 1.15 to 5.01, while they ranged from 2.0
1057	to 6.3 in the autumn (Table 4). The maximum value of Q_{10s} in the summer reached
1058	up to 5.0 (Figure 10). Overall, the reference chambers yielded the largest Q_{10}
1059	values, followed by the through-fall exclusion, heterotrophic and litterless
1060	chambers.
1061	
1062	In general, base respiration at 10 °C, R_{S10} (model parameter 'a') values were
1063	larger when the Ts-SWC model was used (Figure 11). During the winter/spring
1064	season, $R_{\rm s10}$ values ranged from 2.60 to 4.09 (µmol CO_2 m^{-2} s^{-1}) which is slightly
1065	lower than the autumn values that ranged from 2.23 to 5.21 $\mu mol~CO_2~m^{-2}~s^{-1}$
1066	(with a couple of outliers not included in this range). During the summer,
1067	however, the R_{s10} values were much smaller and ranged from 2.7 to 3.49 µmol

 $CO_2 \text{ m}^{-2} \text{ s}^{-1}$ (Figure 10 and Table 4).

1070	Both Ts-only and Ts-SWC models were used to evaluate the SWC and $T_{\rm s}$
1071	controls on Rs during the through-fall exclusion period. The Q_{10} values in the
1072	reference area ranged from 3.6 to 3.7 using Ts-only model, while they ranged
1073	from 2.5 to 2.6 for the Ts-SWC model ($R^2 = 0.87$ to 0.88). Similarly, the Q_{10} values
1074	in the exclusion area during the non-exclusion period ranged from 2.5 to 3.1, with
1075	Rs_{10} values ranging from 2.6 to 3.0 $\mu mol\ CO_2\ m^{-2}\ s^{-1}$ (R² = 0.85 to 0.88). A separate
1076	curve was fitted to the Rs-Ts relationship for the exclusion period (see Figure 8,
1077	dark grey circles and solid line). The Q_{10} values over the through-fall exclusion
1078	period in the exclusion area were much lower and ranged from 1.5 to 2.0, with
1079	$R_{\rm s10}$ values ranging from 1.5 to 2.0 (µmol CO2 $m^{-2}s^{-1}$).
1080	
1081	Chapter 5: Discussion
1082	5.1 Seasonal and Annual Rs
1083	Annual Rs values have been investigated by many researchers; however,
1084	there is much variation among their methodologies (e.g., equipment type,
1085	measurement frequency, predictive models and parameters used in gap filling)
1086	and ecosystem characteristics (soils, vegetation types), from which these annual
1087	values are achieved. In 1992, Raich and Schlesinger reported that annual

1088	estimates of Rs ranged from 250 to 1255 g C m ⁻² year ⁻¹ for all types of forests.
1089	Other pine forest studies have reported annual Rs ranging from 598 to 1330 g C
1090	m ⁻² year ⁻¹ (Hui and Luo, 2004; Irvine et al., 2008; Law et a., 1999; Palmroth et al.,
1091	2005; Zha et al., 2007). Our Rs values for 2008, 2009 and 2010 are near the higher
1092	end of this range, with annual Rs of 1100, 1240 and 1150 g C m ⁻² year ⁻¹ . These
1093	values are comparable with a pine plantation forest in the Sierra Nevada, USA,
1094	which reported an annual Rs estimate of 1184 g C m ⁻² year ⁻¹ (Tang et al., 2005).
1095	
1096	Our annual Rs estimates using automatic chambers are higher than an
1097	earlier manual chamber study conducted in 2006 at our site by Khomik at al.
1098	(2010), who reported annual Rs of 671±33 g C m ⁻² year ⁻¹ . As mentioned earlier,
1099	Khomik et al. (2010) used a portable Li-6400 (Li-COR Inc.) soil chamber system at
1100	bi-weekly to monthly intervals, while our study used an automated chamber
1101	system, which was able to capture continuous (24-hour) fluxes throughout the
1102	year. A study conducted by Savage and Davidson (2003), reported that on daily
1103	basis manual (portable) chambers underestimate Rs by 2 to 30% as compared to
1104	the automated chambers. Our results further supported the finding of Savage
1105	and Davidson (2003), causing an underestimation of annual Rs values (Figure
1106	12a). A linear regression relationship fitted to manual Rs data from Khomik et

1107	al., and our continuous Rs data (Figure 12b) indicated a 29% decrease in Rs
1108	values from manual chambers (R ² value of 0.56). Because Li-6400 Rs
1109	measurements were not conducted continuously over the year, therefore they
1110	may have missed large fluctuations in Rs due to variable weather patterns and
1111	events. However, in contrast fine temporal resolution, continuous chambers
1112	captured much less spatial variability as compared to manual Rs measurements.
1113	Khomik et al. (2010) conducted manual Li-6400 measurements over a 100 m
1114	transect, while our automatic chambers were located in two 20 m x 20 m areas for
1115	the duration of the study. A comparative study using manual measurements by
1116	the Li-6400 in the vicinity of the automatic chambers showed that both types
1117	showed similar half hourly results (Figure 13). Discrepancies in seasonal and
1118	annual Rs may arise due to different temporal and spatial scales of the two
1119	measurement methodologies. For example, periods of augmented Rs that
1120	immediately follow precipitation events would not be measured by the portable
1121	chamber system, and thus, would not be estimated by models derived from this
1122	data.
1123	

Although winter Rs values are generally low in cold regions (Khomik etal., 2006), they may contribute between 10 to 50% of total annual soil respiration

1126	(Schindlbacher et al., 2007). Most studies in the literature do not include
1127	measurements taken during the winter (Elberling, 2007). Thus, there is a need for
1128	continuously measured winter Rs data, because an over- or underestimation of
1129	the ecosystem's carbon sequestration potential could result if it is ignored
1130	(Schindlbacher et al., 2007). Because of relatively mild winter conditions of our
1131	site, we were able to measure much of the winter Rs at our forest. Winter
1132	(January 1 to March 31) Rs contributed 150, 160 and 150 g C m $^{\cdot 2}$ (~13%) of annual
1133	Rs in 2008, 2009 and 2010, which is lower than winter Rs reported by other
1134	studies (Elberling, 2007; Lee et al., 2010).
1135	
1135 1136	5.2 Through-fall Exclusion Impacts on Rs
1135 1136 1137	5.2 Through-fall Exclusion Impacts on Rs IPCC (2007) predictions of future climate change suggest an increase in the
1135113611371138	5.2 Through-fall Exclusion Impacts on Rs IPCC (2007) predictions of future climate change suggest an increase in the frequency and intensity of severe drought events in various regions, including
1135 1136 1137 1138 1139	5.2 Through-fall Exclusion Impacts on Rs IPCC (2007) predictions of future climate change suggest an increase in the frequency and intensity of severe drought events in various regions, including eastern North America that may alter the soil carbon dynamic in forests growing
 1135 1136 1137 1138 1139 1140 	5.2 Through-fall Exclusion Impacts on Rs IPCC (2007) predictions of future climate change suggest an increase in the frequency and intensity of severe drought events in various regions, including eastern North America that may alter the soil carbon dynamic in forests growing in these regions, highlighting the need to evaluate and quantify the impact of
1135 1136 1137 1138 1139 1140 1141	5.2 Through-fall Exclusion Impacts on Rs IPCC (2007) predictions of future climate change suggest an increase in the frequency and intensity of severe drought events in various regions, including eastern North America that may alter the soil carbon dynamic in forests growing in these regions, highlighting the need to evaluate and quantify the impact of severe droughts on Rs in forests. During the drought the lack of soil moisture
1135 1136 1137 1138 1139 1140 1141 1142	5.2 Through-fall Exclusion Impacts on Rs IPCC (2007) predictions of future climate change suggest an increase in the frequency and intensity of severe drought events in various regions, including eastern North America that may alter the soil carbon dynamic in forests growing in these regions, highlighting the need to evaluate and quantify the impact of severe droughts on Rs in forests. During the drought the lack of soil moisture inhibits soil CO ₂ production because microbes do not decompose soil organic
1135 1136 1137 1138 1139 1140 1141 1142 1143	5.2 Through-fall Exclusion Impacts on Rs IPCC (2007) predictions of future climate change suggest an increase in the frequency and intensity of severe drought events in various regions, including eastern North America that may alter the soil carbon dynamic in forests growing in these regions, highlighting the need to evaluate and quantify the impact of severe droughts on Rs in forests. During the drought the lack of soil moisture inhibits soil CO ₂ production because microbes do not decompose soil organic matter within the upper soil layers (Borken et al., 2006; Gaumont-Guay et al.,

1145	fall exclusion experiment conducted at our temperate pine forest site, induced
1146	water limiting conditions and caused a 36% decrease in Rs during the exclusion
1147	period. This decrease was similar to results of past studies conducted in
1148	temperate forests. For example, a temperate forest in Massachusetts, USA saw a
1149	10-30% decline in Rs during a drought, primarily due to reduction in
1150	heterotrophic respiration (Borken et al., 2006). It cannot be determined whether a
1151	decrease in heterotrophic respiration was the cause of the Rs reduction at the
1152	Turkey Point site during the through-fall exclusion in 2009, however further
1153	studies at the site can investigate this possibility by placing a chamber in the
1154	exclusion period above a trenched area (excluding all roots). In a cool temperate
1155	forest in central Korea, there was a significant suppression of Rs during both 2005
1156	and 2006 early and late summer droughts (Lee et al., 2010). Similarly, a temperate
1157	pine forest that experienced water limiting conditions during the summer
1158	months in the Belgian Campine Region, recorded up to a 50% decline in Rs during
1159	these water-limiting periods (Curiel Yuste et al., 2003).
1160	
1161	Soil temperature and soil moisture are the two major controls on Rs
1162	(Davidson et al., 1998; Lloyd and Taylor, 1994; Borken et al., 2006; Unger et al.,
1163	2009), which may have confounding effects on Rs (Joffre et al., 2003). We found

1164	that in our forest, the variation in Rs explained by T_s decreased during the
1165	through-fall exclusion period as indicted by our T _s -only model ($R^2 = 0.82$ to 0.85)
1166	during the non-exclusion period compared to ($R^2 = 0.73$ to 0.75) the exclusion
1167	periods (Table 3). The Q_{10} values during the exclusion period averaged to 1.8,
1168	while during the non-exclusion period the Q_{10} values averaged to 2.8 (Table 3).
1169	Without consideration of SWC condition, the larger Q_{10} values would suggest
1170	that there may be a major change in the ecosystem response to T _s . However, SWC
1171	may have a confounding effect on Rs. Our exclusion period Q_{10} value of 1.8 is
1172	very similar to Q_{10} values of 1.4 for volumetric soil moistures of < 14% reported
1173	by Xu and Qi (2001) in young ponderosa pine plantation forest in western USA.
1174	Our results are consistent with Borken et al. (2006) as well who found that
1175	during the exclusion period Rs was less correlated to Ts, while it was more
1176	correlated to soil water content. Similarly, in their experimental drought study,
1177	Joffre et al. (2003) found that the temperature sensitivity of soil respiration was
1178	strongly affected by soil water status and severe soil moisture limitations caused
1179	low Rs values in drought plots.
1180	

- 1181After the troughs were removed on July 3, a 12 mm precipitation event
- 1182 occurred on July 5 that caused an increase in R_s from 2.0 to 4.5 g C m⁻² day⁻¹. This

1183	rain event rewetted the upper soil layer, and we infer that soil microbial
1184	populations increased and rapidly began to decompose carbon compounds
1185	within the litter and upper soil layers (Borken et al., 2006). Many studies in
1186	forests have reported increased Rs after precipitation events. For example, in a
1187	boreal aspen stand, Rs increased rapidly from 3.6 to 9.0 $\mu mol \; m^{\text{-2}} \; s^{\text{-1}}$ after a large
1188	rain event in August that ended a dry spell (Gaumont-Guay et al., 2006a). These
1189	results suggest the importance of considering soil water content when modeling
1190	Rs as it can have a confounding effect on Rs-Ts relationship when SWC values are
1191	low.
1192	
1193	5.3 Comparison of Rs to Ecosystem Respiration, Re
1194	Over the three years of study, the annual Rs value at our forest site was
1195	approximately 92% of the annual ecosystem respiration (Re) measured by the
1196	eddy covariance system. Such a large ratio of Rs/Re is a common occurrence in
1197	the literature, as chamber-based methods have shown as much as a 25%
1198	overestimation of eddy-covariance derived Re (Gaumont-Guay et al., 2006). Some
1199	studies have even reported overestimation of chamber-based Re values that
	······································
1200	include leaf and wood respiration in addition to Rs (e.g. Griffis et al., 2004,

1202	20-37%, 18%, 20-40% and 50% overestimation, respectively). Some of the possible
1203	explanations for this phenomenon may be the differences between spatial
1204	coverages of the automatic chamber systems and eddy covariance flux footprint
1205	(Law et al, 2001; Drewitt et al, 2002). Also, there are difficulties involved in
1206	estimating nighttime Re with eddy covariance systems during stable atmospheric
1207	conditions, and subsequently, in applying methods to gap-fill the flux data
1208	(Baldocchi, 2008). At such small scales, forest floor heterogeneity may lead to
1209	challenges in up-scaling chamber-based measurements (Xu and Qi, 2001). Even
1210	with these challenges, automatic chamber-based measurements still provide
1211	valuable information about soil CO_2 efflux contributions to ecosystem
1212	respiration. Though manual chamber measurements (e.g. Bolstad et al., 2004;
1213	Khomik et al., 2010) may account for more spatial variability, automated
1214	chambers are important, as they capture Rs at a greater temporal frequency. The
1215	automated chambers are able to reveal rapid responses of Rs to drying and
1216	wetting events and to the passing of weather fronts understanding that is
1217	necessary for investigating seasonal changes in model parameters. Improved
1218	understanding of Rs dynamics and availability of continuous data is essential to
1219	develop, improve and validate soil respiration models. In particular, availability

1220 of measured Rs data during extreme weather, such as water limiting events,

1221 would help to better constrain these models.

1222

1223 Chapter 6:

1224 Conclusions

1225 Rs was continuously measured from June 15, 2008 to December 31, 2010 1226 in a temperate pine plantation forest located in Southern Ontario, Canada using 1227 an automated soil CO₂ chamber system. The total annual Rs values for the 1228 reference area for 2008 through 2010 were 1100±220, 1240±250 and 1150±230 g C 1229 m^{-2} year⁻¹. The winter months contributed about 160 g C m^{-2} , which was 1230 approximately 13% of annual Rs. Heterotrophic respiration contributed about 895 1231 (72%) and 920 (80%) g C m⁻² year⁻¹ of the annual Rs, while soil without a litter 1232 layer contributed 800 (65%) and 655 g C m⁻² year⁻¹ (57%) of the annual total Rs in 1233 2009 and 2010, respectively. Rs was simulated using models that considered soil 1234 temperature only (Q₁₀ model), as well as soil temperature and soil moisture 1235 relationships (Q₁₀ and logistic model). In general, the model that included both 1236 soil temperature and soil water content estimated Rs more accuracy with 1237 seasonal R² values ranging from 0.68 to 0.92 as compared to 0.38 to 0.90 for the 1238 soil temperature only model.

1240 An early growing season through-fall exclusion study conducted to induce 1241 a water limiting period (April 1 to July 3) suggested that although soil 1242 temperature was the dominant control on Rs, Rs became less sensitive to 1243 temperature and increasingly more sensitive to soil water content as the soil 1244 dried due to the through-fall exclusion. The mean Q10 value during the exclusion 1245 period was 1.5 and 2.7, while during the non-exclusion period the mean Q10 value 1246 was 3.6 and 3.7 for the Ts-only model and Ts-SWC model, respectively. This 1247 study provides information about Rs dynamics during the winter season when 1248 soil CO₂ efflux measurements are difficult make, therefore giving improved 1249 estimates for annual values. It also helps to better understand the impact of early 1250 growing season water limitation on Rs, where as SWC decreases the dependence 1251 on this control increases. This study provides insight into the soil CO₂ efflux 1252 seasonal dynamics in temperate forests in eastern North America.

7. References

1255	Arain, M.A. and Restrepo-Couple, N., 2005. Net ecosystem production in a
1256	temperate pine plantation in southeastern Canada. Agricultural and Forest
1257	Meteorology, 128, 223-241.
1258	Arain, M.A., Yuan, F., and Black, A., 2006. Soil- plant nitrogen cycling modulated
1259	carbon exchanges in a western temperate conifer forest in Canada.
1260	Agricultural and Forest Meteorology, 140, 171-192.
1261	Baldocchi, D.D., 2008. Breathing of the terrestrial biosphere: lessons learned from
1262	a global network of carbon dioxide flux measurements systems. Australian
1263	Journal of Botany, 56, 1-26.
1264	Borken, W., Savage, K., Davidson, E.A., and Trumbore, S.E., 2006. Effects of
1265	experimental drought on soil respiration and radiocarbon efflux from a
1266	temperate forest soil. Global Change Biology, 12, 177-193.
1267 1268 1269 1270	 Black, T.A., Den Hartog, G., Neumann, H.H., Blanken, P.D., Yang, P.C., Russell, C., Nesic, Z., Lee, X., Chen, S.G., Staebler, R. and Novak, M.D., 1996. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology 2, 219-229.
1271	Breda, N., Huc, R., Granier, A., Dreyer, E., 2006. Temperate forest trees and
1272	stands under severe drought: a review of ecophysiological responses,
1273	adaptation processes and long term consequences. Annals of Forest
1274	Science 63, 625-644.
1275	Bolstad, P.V., K.J. Davis, J.M. Martin, B.D. Cook, and W. Wang, 2004. Component
1276	and whole-system respiration fluxes in northern deciduous forests, Tree
1277	Physiology, 24, 493-504.
1278 1279 1280 1281 1282	 Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B., Gross, P., Bonnefond, J.M., Elbers, J., Longdoz, B., Epron, D., Guehl, J.M., and Granier, A., 2008. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Global Change Biology, 14, 1917-1933.
1283	Brando, P.M., Nepstad, D.C., Davidson, E.A., Trumbore, S.E., Ray, D., and
1284	Camargo, P., 2008. Drought effects on litterfall, wood production and
1285	belowground carbon cycling in an Amazon forest: results of a throughfall
1286	reduction experiment. Biological Sciences, 363, 1839-1848.

1287	Cai, T., Flanagan, L.B., and Syed, K.H., 2010. Warmer and drier conditions
1288	stimulate respiration more than photosynthesis in a boreal peatland
1289	ecosystem: Analysis of automatic chambers and eddy covariance
1290	measurements. Plant, Cell & Environment, 33, 394-407.
1291	Chen, J.M., Govind, A., Sonnentag, O., Zhang, Y., Barr, A., and Amiro, B., 2006.
1292	Leaf area index measurements at Fluxnet-Canada forest sites. Agricultural
1293	and Forest Meteorology, 140, 257-268.
1294 1295 1296	Christensen, T.R., Jonasson, S., Callaghan, T.V. and Havstrom, M., 1999. On the potential CO2 release from tundra soils in a changing climate. Applied Soil Ecology, 11, 127-134.
1297	Curiel Yuste, L., Janssens, I.A., Carrara, A, Meiresonne, L., and Ceulemans, R.,
1298	2003. Interactive effects on temperature and precipitation on soil
1299	respiration in a temperate maritime pine forest. Tree Physiology, 23, 1263-
1300	1270.
1301	Davidson, E.A., Belk, E., and Boone, R.D., 1998. Soil water content and
1302	temperature as independent or confounded factors controlling soil
1303	respiration in a temperate mixed hardwood forest. Global Change Biology,
1304	4, 217-227.
1305 1306 1307	Davidson, E.A., Richardson, A.D., Savage, K.E. and Hollinger, D.Y., 2006. A distinct seasonal pattern in total ecosystem respirations in a spruce-dominated forest. Global Change Biology, 12, 230-239.
1308 1309 1310 1311 1312 1313 1314	 Deforest, J.L., Chen, J, and McNulty, S.G., 2009. Leaf litter is an important mediator of soil respiration in an oak- dominated forest. International Journal Biometeorology, 53, 127-134. Descheemaeker, K., Muys, B., Nyssen, J., Sauwens, W., Haile, M., Poesens, J., Raes, D. and Deckers, J., 2009. Humus Form Development during Forest Restoration in Exclosures of the Tigray Highlands, Northern Ethiopia. Restoration Ecology, 17, 280-289.
1315	Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C.,
1316	Wisniewski, J., 1994. Carbon pools and flux of global forest ecosystems.
1317	Science 263, 185–189.
1318	Drewitt, G.B., Black, T.A., Nesic, Z., Humphreys, E.R., Jork, E.M., Swanson, R.,
1319	Ethier, G.J., Griffis, T., and Mergenstern, K., 2002. Measuring forest floor

1320 1321	CO2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology, 110, 299-317.
1322 1323	Elberling, B., 2007. Annual soil CO2 effluxes in the High Arctic: The role of snow thickness and vegetation type, Soil Biology and Biochemistry, 39, 646-654.
1324	Fierer, N. and Schimel, J.P., 2003. A Proposed Mechanism for the Pulse in Carbon
1325	Dioxide Production Commonly Observed Following the Rapid Rewetting
1326	of a Dry Soil. Soil Biology and Biochemistry, 67, 798-805.
1327	Gaumont- Guay, D.I., Black, A., Griffs, T.J., Barr, Morgenstern, K., Jassal, R.S.,
1328	Nesic, Z., 2006a. Influence of temperature and drought on seasonal and
1329	interannual variations of soil, bole and ecosystem respiration in a boreal
1330	aspen stand. Agricultural and Forest Meteorology, 140, 203-219.
1331 1332 1333 1334	Gaumont- Guay, D.I., Black, A., Griffs, T.J., Barr, A.G., Jassal, R.S., and Nesic, Z., 2006b. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology, 140, 220-235.
1335	Griffis, T. J., T. A. Black, D. Gaumont-Guay, G. B. Drewitt, Z. Nesic, A. G. Barr, K.
1336	Morgenstern, and N. Kljun (2004), Seasonal variation and partitioning of
1337	ecosystem respiration in a southern boreal aspen forest. Agricultural and
1338	Forest Meteorology, 125, 207–223.
1339	Granier, A., Reichstein, M., Breda, N., Janssens, I.A., et al., 2007. Evidence for soil
1340	water control on carbon and water dynamics in European forests during
1341	the extremely dry year: 2003. Agricultural and Forest Meteorology 143,
1342	123-145.
1343 1344 1345	Hanson, P.J. and Weltzin, J.F., 2000. Drought disturbance from climate change response of United States forests. Science of the Total Environment, 262, 205-220.
1346 1347 1348 1349	 Hanson, P.J., O'Neill, E.G., Chambers, M.L.S., Riggs, J.S., Joslin, J.D., Wolfe, M.H., 2003. Soil respiration and litter decomposition. In: Hanson PJ, Wullschleger SD, Eds, North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Springer, New York, pp. 163-189.
1350	Hui, D. and Luo, Y., 2004. Evaluation of soil CO ₂ production and transport in
1351	Duke Forest using a process-based modeling approach. Global Change
1352	Biology, 18, 1-10.

- 1353 Irvine, J., Law, B.E., Martin, J.G. and Vickers, D., 2008. Interannual variation in 1354 soil CO₂ efflux and the response of root respiration to climate and canopy 1355 gas exchange in mature ponderosa pine. Global Change Biology, 14, 2848-1356 2859. 1357 IPCC (Intergovernmental Panel on Climate Change), (2007). Climate Change 1358 2007: The physical science basis. Contribution of Working Group I to the 1359 fourth Assessment Report of the Intergovernmental Panel on Climate 1360 Change. Summary for Policymakers. IPCC secretariat, c/o WMO, 1361 Switzerland. (http://www.ipcc.ch, 12.03.2007). 1362 Jarvis, P., Rey, A, Petsikos, C., Wingate, L., Rayment, M., Pereia, J., Banza, J., David, J., Miglietta, F., Borghetti, M., Manca, G., and Valentini, R., 2007. 1363 Drying and wetting of Mediterranean soils stimulates decomposition and 1364 1365 carbon dioxide emissions: the Birch effect. Tree Physiology, 27, 929-940. 1366 Jassal, R., Black, A., Novak, M., Morgenstern, K., Nesic, Z., Gaumont-Guay, D., 1367 2005. Relationship between soil CO₂ concentrations and forest-floor CO₂ 1368 effluxes. Agricultural and Forest Meteorology, 130, 176-192. 1369 Jassal, R. and Black, A., 2006. Estimating heterotrophic and autotrophic 1370 respiration using small- area trenched plot technique: Theory and practice. 1371 Agricultural and Forest Meteorology, 140, 193-202. 1372 Janssens, I.A., Kowalski, A.S., and Ceulemans, R., 2000. Forest floor CO2 fluxes 1373 estimated by eddy covariance and chamber-based model. Agricultural and 1374 Forest Meteorology, 106, 61-69. 1375 Joffre, R., Ourcival, J.M., Rambal, S., Rocheteau, A., 2003. The key-role of topsoil 1376 moisture on CO2 efflux from a Mediterranean Quercus ilex forest. Annual 1377 Forest Sciences, 60, 519-526. Kicklighter D.W., Melillo J.M., Peterjohn W.T., Rastetter E.B., McGuire D.A., 1378 1379 Steudler P.A., Aber J.D., 1994. Aspects of spatial and temporal aggregation 1380 in estimating regional carbon dioxide fluxes from temperate forest soils, 1381 Journal of Geophysical Research, 99, 1305–1315. 1382 Khomik, M., Arain, A. and McCaughey, J.H., 2006. Temporal and spatial
- 1382 Variability of soil respiration in a boreal mixedwood forest. Agricultural
 1384 and Forest Meteorology, 140, 244- 256.

- Khomik, M., Arain, A., Liaw, K.L. and McCaughey J,H., 2009. Debut of a flexible
 model for simulation soil respiration soil temperature relationship:
 Gamma model. Journal of Geophysical Research, 114, 1-11.
- Khomik, M., Arain M.A., Brodeur, J.J, Peichl M., Restrepo-Coupé, N., and
 McLaren, J.D., 2010. Relative contributions of soil, foliar, and woody tissue
 respiration to total ecosystem respiration in four pine forests of different
 ages. Journal of Geophysical Research., 115, G03024,
- doi:10.1029/2009JG001089.
- Krishnan, P., Black, T.A., Grant, N.J., Barr, A.G., Hogg, E.H., Jassal, R.S.,
 Morgenstern, K., 2006. Impact of changing soil moisture distribution on
 net ecosystem productivity of a boreal aspen forest during and following
 drought. Agriculture and Forest Meteorology 139, 208-223.
- 1397 Lavigne, M. B., Ryan, M.G., Anderson, D.E., Baldocchi, D.D., Crill, P.M.,
- 1398 Fitzjarrald, D.R., Goulden, M.L, Gower, S.T., Massheder, J.M.,
- 1399 McCaughey, J.H., Rayment, M., and Striegl, R.G., 1997, Comparing
- nocturnal eddy covariance measurements to estimates of ecosystemrespiration made by scaling chamber measurements at six coniferous
- 1402 boreal sites. Journal of Geophysical Research, 102, 28 977–28 987.
- Lavigne, M.B., Foster, R.J. and Goodine, G., 2004. Seasonal and annual changes in
 soil respiration in relation to soil temperature, water potential and
 trenching. Tree Physiology, 24, 415-424.
- Law B.E., Kelliher F.M., Baldocchi D.D., Anthoni, P.M., Irvine, J., Moore D., Van
 Tuyl, S., 2001. Spatial and temporal variation in respiration in a young
 ponderosa pine forest during a summer drought. Agricultural and Forest
 Meteorology, 110, 27–43.
- Law, B.E., Baldocchi, D.D. and Anthoni, P.M., 1999. Below- canopy and soil CO2
 fluxes in a ponderosa pine forest. Agricultural and Forest Meteorology, 94,
 171-188.
- Lee, N.Y., Koo, J.W., Noh, N.J., Kim, J., and Son, Y., 2010. Seasonal variation in
 soil CO2 efflux in evergreen coniferous and broad-leaved deciduous
 forests in a cool-temperate forest, central Korea. Ecological Research, 25,
- 1416 609-617.

1417 1418 1419	Liski, J., Nissinen, A., Erhard, M. and Taskinens, O., 2003. Climate effects on litter decomposition from arctic tundra to tropical rainforest. Global Change Biology, 9, 575-584.
1420	Lloyd, J. and Taylor, J. A.: On the temperature dependence of soil respiration,
1421	Functional Ecology, 8, 315–323, 1994.
1422	Mackay S.L., Arain M.A., Brodeur J.J., 2011. The impact of induced drought on
1423	transpiration and growth in a temperate pine plantation forest.
1424	Agriculture and Forest Meteorology, School of Geography and Earth
1425	Sciences, Masters Thesis.
1426	McLaren, J. D., Arain, M.A., Khomik, M., Peichl, M., and Brodeur, J., 2008. Water
1427	flux components and soil water-atmospheric controls in a temperate pine
1428	forest growing in a well-drained sandy soil. Journal of Geophysical
1429	Research, 113, 1-16.
1430 1431 1432	Meir, P., Metcalfe, D.B., Costa, A.C.L and Fisher, R.A., 2008. The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests. Physiological Transactions of the Royal Society, 363, 1849-1855.
1433	Moren, A.S. and Lindroth, A., 2000. CO ₂ exchange at the floor of a boreal forest.
1434	Agricultural and Forest Meterorology, 101, 1-14.
1435 1436 1437 1438	Muhr, J., Goldberg, S.D., Borken, W. and Gebauer, G., 2008. Repreated drying- rewetting cycles and their effects on the emissions of CO ₂ , N ₂ O, NO, and CH ₄ in a forest soil. Journal of Plant Nutrient Soil Science, 171, 719-728.
1439	Nikolova, P.S., Raspe, S., Anderson, C.P., Mainiero, R., Blaschke, H., Matyssek, R.
1440	and Haberle, K.H., 2009. Effects of the extreme drought in 2003 on soil
1441	respiration in a mixed forest. European Journal of Forest Respiration, 128,
1442	87-98.
1443	Noormets, A., McNulty, S.G., DeForest, J.L., Sun, G., Li, Q., and Chen, J., 2008.
1444	Drought during canopy development has lasting effect on annual carbon
1445	balance in a deciduous temperate forest. New Phytologist, 179, 818-828.
1446	Palmroth, S., Maier, C.A., McCarthy, H.R., Oishi, A.C., Kim, H.S., Johnson, K.H.,
1447	Katul, G.G. and Oren, R., 2005. Contrasting responses to drought of forest
1448	floor CO ₂ efflux in a Loblolly pine plantation and a nearby Oak-Hickory
1449	forest. Global Change Biology, 11, 421-434.
1450	Peichl M., Arain M.A., Brodeur J.J., 2010a. Age effects and climatic controls on

1451 carbon fluxes in pine forests. Agricultural and Forest Meteorology, 150, 1452 1090-1101, doi:10.1016/j.agrformet. 2010.04.008. 1453 Peichl M., Brodeur J.J., Khomik M., Arain M.A., 2010b. Biometric and eddy-1454 covariance based estimates of carbon fluxes in an age-sequence of 1455 temperate pine forests. Agricultural and Forest Meteorology, 150, 952-965, 1456 doi:10.1016/j.agrformet.2010.03.002. 1457 Peichl M., Arain M.A., Ullah S., Moore T., 2009. Carbon dioxide, methane, and 1458 nitrous oxide exchanges in an age-sequence of temperate pine forests. 1459 Global Change Biology, doi: 10.1111/j.1365-2486.2009.02066.x. 1460 Presant, E.W. and Acton, C.J., 1984. The soils of the regional municipality of 1461 Haldimand-858 Norfolk, Vol.2. Report No.57 of the Institute of Pedology: 1462 Research Branch, Agriculture 859 Canada, Ministry of Agriculture and 1463 Food. 1464 Raich, J.W. and Tufekciouglu, A., 2000. Vegetation and soil respiration: 1465 correlations and controls. Biogeochemistry, 48, 71-90. 1466 Raich, J.W. and Schlesinger, W.S., 1992. The global carbon-dioxide flux in soil 1467 respiration and its relationship to vegetation and climate. Tellus Series B-1468 Chemical and Physical Meteorology, 44, 81-99. 1469 Reay D, Sabine C, Smith P, Hymus G., 2007. Spring-time for sinks. Nature, 446: 1470 727-728. 1471 Reichstein, M., Tenhunen, J.D., Roupsard, O., Ourcival, J.M., Rambal, S., 1472 Miglietta, F., Persesottis, A., Pecchiaris, M., Tirone, G. and Valentini, R., 1473 2002. Severe drought effects on ecosystem CO2 and H2O fluxes at three 1474 Mediterranean evergreen sites: revision of current hypotheses? Global Change Biology, 8, 999-1017. 1475 1476 Richardson, A., Hollinger, D., Aber, J., Ollinger, S. and Braswell, B., 2007. 1477 Environmental variation is directly responsible for short- but not long-1478 term variation in forest-atmosphere carbon exchange. Global Change 1479 Biology, 13, 788-803. 1480 Richardson, A.D. and Hollinger, D.Y. 2007. A method to estimate the additional 1481 uncertainty in gap-filled NEE resulting from long gaps in the CO₂ flux 1482 record. Agricultural and Forest Meteorology, 147, 199-208.

1483	Risk, D., Kellman, L., Beltrami, H. and Diochon, A., 2008. In situ incubations
1484	highlight the environmental constraints on soil organic carbon
1485	decomposition. Environmental Research Letters, 3, 1-4.
1486	Rhemtulla J.M., Mladenoff D.J., Clayton M.K., 2009. Historical forest baselines
1487	reveal potential for continued carbon sequestration. Proceedings of the
1488	National Academy of Sciences, 106, 6082–6087. DOI:
1489	<u>10.1073/pnas.0810076106</u> .
1490	Saiz, G., Black, K., Reidy, B., Lopez, S., and Farrell, E.P., 2007. Assessment of soil
1491	CO2 efflux and its components using a process- based model in a young
1492	temperate forest site. Geoderma, 139, 79-89.
1493	Savage, K. and Davidson, E.A., A comparison of manual and automated systems
1494	for soil CO ₂ flux measurements: trade-offs between spatial and temporal
1495	resolution. Journal of Experimental Botany, 54, 891-899.
1496	Schindlbacher, A., Zechmeister-Boltenstern, S., Glatzel, G., and Jandl, R., 2007.
1497	Winter soil respiration from and Austrian mountain forest. Agricultural
1498	and Forest Meteorology, 146, 205-215.
1499 1500 1501	Sheffield, J., Wood, E.F., 2008. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics 31, 79-105.
1502	Tang, J., Misson, L., Gershenson, A., Cheng, W. and Goldstein, A.H., 2005.
1503	Continuous measurements of soil respiration with and without roots in a
1504	ponderosa pine plantation in the Sierra Nevada Mountains. Agricultural
1505	and Forest Meterorology, 132, 212-227.
1506 1507	Turner D.P., Koerper G.J., Harmon M.E., Lee J.J., 1995. A carbon budget for forests of the conterminous United States. Ecology Applied, 5,421–436.
1508	Unger, S., Maguas, C., Pereira, J.S., Aires, L.M., David, T.S., and Werner, C., 2009.
1509	Partitioning carbon fluxes in a Mediterranean oak forest to disentangle
1510	changes in ecosystem sink strength during drought. Agricultural and
1511	Forest Meteorology, 149, 949- 961.
1512	van't Hoff, J. H., 1884. Etudes de dynamique chemique, Frederrk Muller,
1513	Amsterdam.
1514	Wickland, K.P. and Neff, J.C., 2008. Decomposition of soil organic matter from
1515	boreal black spruce forest: environmental and chemical controls.
1516	Biogeochemistry, 87, 29- 47.
- 1517 Xu, M., and Qi Y., 2001. Soil surface CO2 efflux and its variation in a young
 1518 ponderosa pine plantation in the Sierra Nevada Mountains, California.
 1519 Global Change Biology, 7, 667-677.
- IS20 Zimmermann, M., Meir, P., Bird, M., Malhi, Y. and Ccahuana, A., 2009. Litter
 IS21 contribution to diurnal and annual soil respiration in a tropical montane
 IS22 cloud forest. Soil Biology and Biochemistry, 41, 1338, 1340.
- 1522 cloud forest. Soil Biology and Biochemistry, 41, 1338-1340.
- 1523 Zha, T., Xing, Z., Wang, K.Y., Kellomäki, S. and Barr, A., 2007. Total and
- 1524 Component Carbon Fluxes of a Scots Pine Ecosystem from Chamber
- 1525 Measurements and Eddy Covariance. Annuals of Botany, 99, 345-353.

1526 Table 1: Automated chamber measurement dates and types of measurements from 2008 though 2010.1527

Chamber Identification	Measuring Dates	Type of Measurement	
Reference 1	June 2008 through December 2010	Reference	
Reference 2	June 2008 through December 2010	Reference	
Reference 3	May 2010 through December 2010	Reference	
Evolution 1	June 2008 through March 2009	Reference	
Exclusion 1	April 2009 through December 2010	Exclusion	
Exclusion 2	May 2009 through December 2010	Exclusion	
Exclusion/Heterotrophic	May 2010 through December 2010	Exclusion/Heterotrophic	
Litterless	June 2008 through April 2009	Reference	
Litterless	May 2009 through December 2010	Litterless	

Table 2: Seasonal total Rs values in g C m⁻² season⁻¹ for 2008 through 2010. Error estimates represent error within the

1532 model only.

						Exclusion/		
	Reference 1	Reference 2	Reference 3	Exclusion 1	Exclusion 2	Heterotrophic	Heterotrophic	Litterless
Winter 2008	148.22	-	-	107.95	-	-	95.87	131.38
Winter 2009	100.71	123.84	-	63.93	110.57	-	61.49	72.16
Winter 2010	101.54	66.77	119.97	88.65	73.47	83.46	40.01	37.29
Spring 2008	372.76	-	-	312.61	-	-	268.06	326.18
Spring 2009	323.1	338.15	-	161.72	238.12	-	287.6	226.34
Spring 2010	388.61	397.47	521.2	302.68	351.04	251.11	189.38	216.42
Summer 2008	591.04	-	-	509.94	-	-	440.34	506.89
Summer 2009	562.81	539.84	-	467.37	531.32	-	419.77	360.71
Summer 2010	442.37	478.28	468.07	357.24	468.07	361.53	294.71	278.62
Fall 2008	243.81	-	-	192.16	-	-	166.26	215.24
Fall 2009	262.56	235.27	-	201.33	217.64	-	136.02	141.23
Fall 2010	212.84	205.89	188.61	172.89	188.61	143.15	110.8	122.18
Annual Total 2008	1355±3.47	-	-	1122±1.16	-	-	970 ±0.86	799±0.74
Annual Total 2009	1249±1.17	1237±1.52	-	894±1.01	1097±0.89	-	904±1.32	800±0.50
Annual Total 2010	1145±1.42	1148±1.06	1298±1.87	921±1.36	1081±1.01	839±1.74	635±1.02	655±0.94

Table 3: Average seasonal root mean squared error (RMSE) and average

1537 seasonal correlation coefficient (R²) for each chamber using Rs-Ts

1538 relationship and Rs-Ts relationship that includes SWC; (-) represents

1539 insufficient data for modeling.

WINTER/SPRING	Ts	Ts+SWC	Ts	TS+SWC
	R	MSE		R2
Reference 1	0.64	0.56	0.90	0.92
Reference 2	0.85	0.61	0.83	0.91
Reference 3	1.42	-	0.38	-
Exclusion 1	0.44	0.41	0.83	0.85
Exclusion 2	0.60	0.55	0.91	0.93
Exclusion/Hetero	-	-	-	-
Heterotrophic	0.49	0.58	0.60	0.90
Litterless	0.51	0.47	0.83	0.85
SUMMER	Ts	Ts+SWC	Ts	TS+SWC
	R	MSE		R2
Reference 1	0.82	0.79	0.60	0.68
Reference 2	0.69	0.81	0.59	0.70
Reference 3	1.45	1.00	0.56	0.79
Exclusion 1	0.74	0.84	0.38	0.58
Exclusion 2	0.99	0.92	0.30	0.54
Exclusion/Hetero	0.71	0.63	0.48	0.59
Heterotrophic	0.65	0.84	0.42	0.67
Litterless	0.63	0.61	0.40	0.50
AUTUMN	Ts	Ts+SWC	Ts	TS+SWC
	R	MSE		R2
Reference 1	0.55	0.63	0.75	0.77
Reference 2	0.55	0.53	0.83	0.84
Reference 3	0.68	-	0.77	-
Exclusion 1	0.44	0.41	0.83	0.84
Exclusion 2	0.45	0.44	0.86	0.87
Exclusion/Hetero	0.45	-	0.74	-
Heterotrophic	0.42	0.40	0.73	0.75
Litterless	0.43	0.42	0.60	0.61

Table 4: (a) Model parameters for each chamber, where parameters a (Q₁₀),

b (R_{s10}) c and d are fitted to observed Rs from each chamber using Rs-Ts

relationship (parameter a and b only) and Rs-Ts relationship that includes

SWC.. (b) Root mean squared error (RMSE), bias error (BE), and correlation coefficient (R²) for each chamber and each model.

(b)

	(a)					
Model Parameters	Rs-Ts	Model	Rs	-Ts Mode	el with SV	VC
Chamber	a	b	а	b	с	d
Reference 1	3.2	2.4	3.6	2.6	1.0	29.0
Reference 2	3.8	2.3	3.7	2.5	1.0	26.0
Exclusion 1	1.4	2.7	2.5	3.0	6.0	115.0
Exclusion 2	1.6	2.5	3.1	2.6	6.0	119.0

	Rs-Ts model			Rs-Ts model with SWC		
Chamber	RMS E	BE	R ²	RMSE	BE	R ²
Reference 1	0.89	0.02	0.85	0.81	0.04	0.88
Reference 2	0.89	0.01	0.82	0.77	0.03	0.87
Exclusion 1	0.99	-0.01	0.73	0.74	0.03	0.85
Exclusion 2	1.03	-0.003	0.75	0.74	0.03	0.88

1567 1568 1569

Figure 1: Daily mean environmental values for 2008, 2009 and 2010. (a) air temperature (T_a), (b) soil temperature

- (T_s) at 5 cm depth for the exclusion and reference areas, (c) daily totals of precipitation (PPT) and (d) soil water
- 1570 content (SWC) in 0-20 cm layer, for both the reference and exclusion areas. Manual measurements are shown using

1571 the dots in black (reference) and grey (exclusion). Vertical dash lines indicate exclusion period from April 1 to July

1572 3, 2009.

Figure 3: Comparison of daily mean Rs for reference and exclusion areas. Vertical dash lines indicate exclusion period from April 1 to July 3, 2009.

Figure 4: Half-hourly Rs during precipitation events on June 28 and 29, 2009. Soil temperature (Ts) at 5 cm depth isalso shown.

Figure 5: Continuous winter Rs data for two, three day periods in 2009 and 2010. (a) Continuous half hourly data

1591 for March 14 to March 17 2009 and (b) continuous half hourly data for January 12 to January 15, 2010.

1594 **Figure 6:** (a) Daily mean Rs averaged for all chambers for January through March 2009 (green) and 2010 (purple),

(b) temperature (T_s) at 5 cm depth for January through March 2009 (solid line) and 2010 (dashed line), (c) soil water

1596 content (SWC) in 0-20cm layer soil for January through March 2009 (solid line) and 2010 (dashed line), and (d) daily

totals of accumulated snow depth for January through March 2009 (green) and 2010 (purple).

Figure 8: Relationship between half-hourly Rs vs soil temperature (Ts) at 5cm depth and fitted models for the

1607 exclusion and non-exclusion periods. The light grey dots illustrate the raw data during the non-exclusion period

while the dashed line represents the Q10 relationship for that time period. The darker grey open dots illustrate theraw data during the exclusion period while the solid line represents the Q10 relationship for that time period.

Figure 9: Relationship between half-hourly residuals of Rs and soil water content (SWC) for reference and

1612 exclusion areas. The dark circles indicate the bin averaged values of this relationship. Values above the zero line

1613 indicate a model overestimation while values below the zero line indicate a model for a given SWC value.

Figure 10: This figure compares the Q₁₀ values for both the Ts only model (circles) and Ts+SWC model (squares)
during each season for 2008, 2009 and 2010. Each chamber is represented by a different shade for inter-annual
comparisons. The lines over the squares and circles represent the standard deviation of each model parameter.

1623 **Figure 11:** This figure compares the R_{\$10} values for both the Ts only model (circles) and Ts+SWC model (squares)

1624 during each season for 2008, 2009 and 2010. Each chamber is represented by a different colour for inter-annual

1625 comparisons. The lines over the squares and circles represent the standard deviation of each model parameter.

- 1626
- 1627

Figure 12: (a)Daily averaged continuous Rs from reference area for 2009 (black) and 2010 (grey). Daily averaged
 manual measurements from the Li-6400 which were measured in 2004- 2006 for Khomik et al., 2010. Error bars

represent standard deviation of each measurement and (b) scatterplot between Li6400 Rs and Continuous Rs wherethe lines represent the linear relationship between the two measurement types.

1635Figure 13: Comparison of half-hour measurements from both the Li-6400 (circles) and the automated1636chambers (squares) in 2009 and 2010. (a) represents data from the non-through-fall exclusion area, while (b)1637represents data from the through-fall exclusion area. The error bars represent standard deviation from each1638measurement.

1640 Appendix

1679	
1680	User Manual for the Automated Soil Chambers
1681	
1682	(Updated from the UBC Chamber Manual prepared by Zoran Nesic)

1684	Each chamber is constructed with a PVC cylinder and covered by a
1685	transparent plastic (Polymethyl methacrylate) dome that connects to the
1686	cylinder's aluminum frame. A torsion spring provides force to close the chamber
1687	dome during measurement, while a chamber-mounted, two-way pneumatic
1688	cylinder (model BFT-173-DN, Bimba Manufacturing Co.), opens the dome when
1689	compressed air is pushed through the tubing. The opening and closing of the
1690	chamber dome is controlled by a solenoid valve (model 45A-AA1-DAA-1BA,
1691	Mac Valves Inc.), which controls the supply of compressed air to the pneumatic
1692	cylinder. The main control unit, consisting of a CO_2 sampling system, infrared
1693	gas analyzer (Li-840, LiCOR Inc.) and a data logging computer was housed in an
1694	insulated box. An AC linear pump is used to supply air to the IRGA, and
1695	electronic relays switch the chambers and the pump on and off. Industrial air
1696	cylinders were used to operate these chambers.
1697	The chamber domes are closed for 1-minute intervals, during which, CO_2
1698	concentration is measured within the headspace of the chamber. Measurements
1699	are cycled through the chambers for a total of three cycles per half hour period.
1700	Thus, each half hour consists of three, minute-long CO ₂ concentration
1701	measurements per chamber. Concentrations measured during the 15 seconds

1702 following dome closure are discarded to ensure the sampling tubes are free from

1703 air from the previous sampled chamber.

1704

1705 The soil CO₂ efflux, Rs (
$$\mu$$
mol CO₂ m⁻² s⁻¹) is calculated as:

1706
$$Rs = \rho_a \frac{Ve}{A} \frac{dSc}{dt}$$
(3)

1707 where Qa is air density in the chamber headspace (µmol m⁻³), Ve is the effective 1708 volume of the chamber (m³), A is the area (m²) of the soil surface covered by the 1709 chamber, and dSc/dt is the time rate of change of CO₂ mixing ratio in the chamber 1710 headspace (μ mol CO, mol⁻¹ dry air s⁻¹). One half-hourly value was produced by 1711 the average of 3 measurements at each collar for computation and analysis 1712 purposes. 1713 The mean Ve value was calculated using the following equations by 1714 injecting CO₂ through the top of the chamber domes for one minute and 1715 recording the CO₂ concentration change (in ppm): $Ve = \frac{IRT}{PV(S_c - S_m)}$ 1716 (4)

1717 Where S_c (µmol CO₂ µmol⁻¹ dry air s⁻¹) is the rate of CO₂ concentration 1718 increase during the calibration period, I (µmol CO₂ s⁻¹) is the rate of injection of 1719 CO₂ during the calibration period, S_m (µmol CO₂ µmol⁻¹ dry air s⁻¹) is the rate of

- 1720 change of CO₂ concentration, P is the atmospheric pressure (Pa), V is the volume
- 1721 of the chamber (m³), T is the chamber air temperature (K), and R is the universal
- 1722 gas constant, (8.314 J μmol⁻¹ K⁻¹). The mean value of the effective chamber volume
- 1723 calculated using above procedure was 0.069 m³. See further details in Drewitt et
- 1724 al. (2002) and Jassal et al. (2005).

1. Automated chamber system

1726	The a	utomated chamber system is comprised of the following major units;
1727		
1728	-	the control unit which houses the computer, PDQ56, the pump, the LI840
1729		(see attached manual) and sampling tubes
1730	-	the chamber itself, with the clear dome which is hinged onto the collar
1731	-	the chamber pneumatic system for opening and closing the chamber lid
1732	-	cables for sampling air, returning air to the chamber and Dekeron tubing
1733		for compressed air
1734	-	thermocouples on the bottom for air temperature measurements (not
1735		installed at the moment)
1736	-	crossover cable and data software for operation
1737	-	dual regulator to have multiple compressed air tanks (see manual attached
1738		for regulator)
1739		

Figure 1: Set Up of Automated Chamber System

1751 1752		
1753	2. Dat	a 2.1 Field Data Collection
1754		
1755	-	data is stored in the computer which is housed in the main unit
1756	-	this computer can be logged onto by connecting the laptop to the chamber
1757		computer using the yellow crossover cable (see picture)
1758	-	The yellow cable and blue cable plug into the same outlet. Keep the blue
1759		crossover cable connected at all times so you are able to connect into the
1760		chambers from the lab.
1762		Fuse T4A
1764		
1766		
1768		
1770		Blue Cable
1772		
1774		
1776		
1778		Yellow Cable
1780		
1782		USB for Backup
1784		
1786		
1788		
1789		
1790		
1791	-	connect by opening "Radmin Viewer" and typing in password 'goodluck'
1792	-	you can transfer data to the laptop by using the transfer button and
1793		selecting the folder which you would like to transfer the data to (to keep
1794		simple transfer data to 'field data' folder on desktop of laptop)
1795	-	you can also simply collect data by removing the purple 4GB USB key
1796		(backs up data daily) and replacing with an empty purple 4GB USB key

- put this data on the field laptop in the 'field data' folder and name with 1797 'TP39_chamber_YYYYMMDD' and ensure it contains the following 1798 subfolders; MET-DATA, UBC_FLUX, and UBC_PC_SETUP 1799 this data will be moved to the data computer in the lab into the 1800 -1801 'DUMP_data' folder within the TP39_chamber subfolder to be processed 1802 at a later time 1803 1804 1805 2.2 Data Processing
- 1806

1813

- 1807 once data is in the DUMP_data folder under 'TP39_chamber' you can
 1808 process the data(calculating fluxes)
- 1809 open Matlab and type in the command 'mcm_start' and press enter

- a screen will open (see image below). Select (1) site = TP39 (2) data type=
 chamber and (3) year
- 1816 under 'Directory for Dumped Data' press the corresponding button. Here
- 1817 you will need to select which group of data you would like to process.
- 1818 Now click GO!

1819	-	Matlab will ask if you want to add to the 'To Burn' folder, press enter, wait
1820		until Matlab is done!
1821	-	to calculate soil CO2 efflux reselect the site, data type and year and press
1822		GO! under the 'Recalc Fluxes from HF Data' box. Matlab will prompt for a
1823		date , start date 'YYYY,MM,DD' press enter, end date 'YYYY,MM,DD'
1824		press enter.
1825	-	allow to calculate fluxes (this may take some time)
1826	-	now add new data to .mat files by selecting site, data type, and year once
1827		again and click the GO! button under 'Convert .mat to Annual Data'
1828	-	at the end Matlab will last to 'fill gaps with field data' select 'N' for now,
1829		the it will ask to 'plot all data' select 'Y' for yes
1830	-	it is important to view all your data to ensure all equipment if working
1831		
1832		
1833	2.3 V	iew Data for Analysis
1834		
1835	-	you will want to view the data on your own computer for further analysis
1836		and cleaning
1837	-	to find data go to 'My Computer' and select "fielddata on 'arainserv server
1838		(arainserv)'(Z:)"
1839	-	click on 'SiteData' folder, click on 'TP39_chamber', open 'MET-DATA'
1840	-	folders in 'MET-DATA' are; annual, data, hhour, hhour_field and log
1841	-	you will want data in the 'annual' folder, copy and paste data into a folder
1842		onto your own computer
1843	-	open Matlab
1844	-	open script 'clean_all_efflux_data_EN'
1845		\circ make sure the directory is correct for where your data is saved (in
1846		our case the C drive)
1847		o this script removes all data due to a daily system restart, spikes and
1848		occurrences when the chambers were broken
1849		\circ you will need to edit this script as you get new data from the field

1851	 this script also plots your data for cleaning purposes 			
1852				
1853	*NOTE: If Matlab cannot find files check to see what directory Matlab is looking			
1854	in. Change if necessary			
1855				
1856	2.4 Checking data for goodness			
1857				
1858	- to ensure that you are getting good data you should do the following for			
1859	data control			
1860	 open Matlab, open script 'check_CO2_data_EN' 			
1861	\circ this script has 2 commands (1) to check data for a group of days or			
1862	(2) to check data for only 1 day			
1863	\circ change the date within these lines to desired days, highlight and			
1864	press F9			
1865	\circ make sure you have copied 'data' files into a new folder on your			
1866	computer under C:\DATA\data			
1867	\circ a plot should open (see images below) with a title displaying			
1868	chamber number, half hour and data file			
1869	\circ x and y axis are time in seconds and CO2 concentration in ppm,			
1870	respectively			
1871				
1872	- to read plot:			
1873	\circ slope of line is written in black text and standard deviation (sd) is			
1874	written in black text with brackets			
1875	 delay time = blue dots with black circles 			
1876	 current chamber data= red dots with black circles 			
1877	\circ data used in calculation of slope= red dots with green circles			
1878	 you can include more or less data by points by changing the 			
1879	'slopeskipstart' in the 'ACS_init_all.txt' script (see UBC			
1880	manual pg. 62 for example)			
1881				

1882	-	check for good data:		
1883		\circ when sd= 0.4 or less	'excellent data'	
1884		\circ when sd= 0.5 to 0.6	'good data'	
1885		\circ when sd= 0.6 or greater	'poor data'	
1886				
1887	-	example in picture 1:		
1888		• Sample 1: slope= 0.34	sd=0.48	'good'
1889		• Sample 2: slope= 0.33	sd=0.39	'excellent'
1890		• Sample 3: slope= 0.35	sd=0.39	'excellent'
1891				
1892	•	We would keep all of this data b	oecause it is either ex	cellent or good
1893				
1894	-	example in picture 2:		
1895		• Sample 1: slope= 0.06	sd=1.2	'poor'
1896		• Sample 2: slope= -0.00	sd=1.3	'poor'
1897		• Sample 3: slope= 0.40	sd=0.9	'poor'
1898				
1899	•	We would not keep any of this of	data because it is all	poor quality
1900				
1901	-	to view next chamber press enter and click on 'figure 1'		
1902	-	to exit from viewing all data hol	ld down together 'Ct	rl + c'

1908 1909 1910	Picture 2: Example of Poor Quality Data
1911	2.5 Cleaning winter data
1912	
1913	- snowfall decreases the volume of the chamber, therefore when calculating
1914	the fluxes the volume needs to be modified
1915	- once you have determined the new volumes of the chambers by snowfall
1916	depth you can fix your winter data
1917	- to change the volume of the chamber open the text file 'ACS_intit_all.txt'
1918	and change the line 'chamvol' (should be at 0.69 m ³ currently)
1919	 see UBC chamber manual for an example of this file on page 62
1920	- save text file with new volume and recalculate the fluxes for only specific
1921	days with a volume change

1922	-	make sure you change the volume back to the original volume after you
1923		are done
1924	2.6 Sc	ripts for chamber system
1925		
1926	-	See matalb scripts from the UBC chamber manual for software and
1927		calculation scripts
1928	-	Scripts used for post processing data are as follows:
1929		
1930	(1)	clean_all_efflux_EN.m
1931		
1932	-	used to plot raw efflux data, use this data to find spikes within data
1933	-	make data a NaN which with later be filled with modeled data in
1934		following scripts
1935	-	plot clean half hour data and check to see if bad data is removed
1936	-	this script also saves the clean data by each individual year
1937		
1938	(2)	interp_all_efflux_data_EN.m
1939		
1940	-	loads all clean data to fill gaps that are 3 or less half hours long by taking
1941		the average of the data points before and after the gap
1942	-	the interpolated data is saved and used for modeling the data
1943		
1944	(3)	Modeling Scripts
1945	a)	model_efflux_2008_EN.m (4 chambers as of June)
1946	b)	model_efflux_2009_EN.m (6 chambers as of May)
1947	c)	model_efflux_2010_EN.m (8 chambers as of May)
1948		
1949	-	these scripts use the interpolated data along with continuous soil moisture
1950		and soil temperature data to model gaps remaining in the efflux data
1951	-	the soil temperature and efflux is modeled using the Q10 relationship
1952	-	the residuals are taken from this relationship and plotted with rooting
1953		depth soil moisture using a logistic relationship
1954	-	the modeled data is then used to fill the efflux data where gaps are present
1955	-	in order to use this script you must choose the Ts and SM depths along
1956		with each soil pit
1957	-	I have used the rooting depth (0-15 cm) for SM and 5 cm depth for Ts
1958	-	Chamber 1,2,3,5,7 use the reference soil pit

1959	-	Chamber 4,6,8 use th	ne drought soil pit	
1960	-	2008 soil pit data con	mes from the old pits (pit A)	
1961	-	2009 and 2010 soil pit data comes from the sapflow datalogger		
1962				
1963	(4)) model_efflux_all_ye	ears_EN.m	
1964				
1965	-	use this script to con	nbine all years of data and plot continuous filled data	
1966	-	it first loads all the f	illed data and then combines as one variable for each	
1967		chamber		
1968				
1969	(5)) check_CO2_data_EN	N.m	
1970				
1971	-	use to check slopes of	of data	
1972	-	see section 1.4 for m	ore details	
1973				
1974				
1975				
1976	3.0 Co	ommon Questions an	d Troubleshooting	
1977				
1978	3.1 H	ow do I get the comp	uter to sample additional chambers?	
1979				
1980	a)	You'll need to change one line in the acs_init_all.txt:		
1981		from:		
1982				
1983	с.с	chNbr = 6;	%Number of chambers connected to the system	
1984	to			
1985	с.с	chNbr = 8;	%Number of chambers connected to the system	
1986				
1987				
1988	b)	And in the c:\ubc_fl	ux\gii\ubc_GII-ACS-DC.ini (sometimes also called	
1989		ubc_gii_LI840.ini) yo	ou edit:	
1990		-		
1991	nu	mOfChambers = 8	' Number of chambers connected to the system	
			-	
1992				
1992 1993	3.2 W	hat do I do if the cha	mbers are off (no lights are on)?	
1995	- Most likely the power bar tripped in the field due to inclement weather.			
------	---	-------		
1996	All you do is simply unplug the battery from the main power bar and plu	g		
1997	it back in. This will turn the entire system back on			
1998	- If the system does not turn back on, it is possible that there is not enough			
1999	power due to the battery being off for a long period of time. Turn all			
2000	switches to 'off' position and just turn the 'Li840' switch to 'on'. Let stand			
2001	for some time and then turn all switches to how they originally were. Do			
2002	not turn switches back on until you know that the Li-840 is on (green ligh	t		
2003	is on)			
2004				
2005	3.3 What if the chambers are not opening, but the system is on?			
2006				
2007	- the chambers use compressed air to open, so if they will not open it is			
2008	likely that the compressed air has run out			
2009	- it is also possible that the compressed air pressure is too low. As a rule it			
2010	is good to keep it at 30 psi			
2011				
2013	3.4 What if the chambers will not close, but the			
2015	system is on?			
2017		1		
2019	- sometimes the spring can become disconnected	(3)		
2021	so always check this first			
2023	- also, the spring may just be too loose. This is	0		
2025	unlikely, but you can always adjust it to have	>		
2027	more tension by moving the axle into higher	-		
2029	notches (see image on left- more tension as you	- CAR		
2030	move up the notches)			
2031				
2032				
2033	3.5 What does it mean if the compressed air is being lost at a faster rate?			
2035				
2037	- Most likely there is a leak somewhere. Check	44		
2039	all connections first will the 'Snoop'. Be sure	N		
2041	to check at the chambers, at the main box and			

90

at the regulator

2044	-	If no leaks can be found then your pressure could be too high. Make sure
2045		that the pressure always remains between 30 to 35 psi
2046	-	It is also possible that compressed air is being leaked out of one of the
2047		pneumatic cylinder valves. If this is the case, they can be tightened with a
2048		wrench. An indication of this would be a hissing noise coming from the
2049		back of the chamber and you can feel a steady stream of compressed air
2050		coming out of the valve (see picture below – valves are labeled as 1 and 2) 2
2051	-	You will have to send it back if this is the case – e-mail Zoran to let him
2052		know.
2053		
2054	3.6 W	'hy isn't all my data backing up on the USB key?
2055		
2056	-	this happens because the system always keeps all the half hour files. To
2057		get the system to back up newer data you must delete old data right off
2058		the computer system. Make sure whatever data you delete you have saved
2059		back in the lab on the data computer.
2060		
2061	3.7 W	hat do I do if the pressure of the Li-840 is low (below 75)?
2062		
2063	-	if all chambers are reading low numbers for the licor it is more than likely
2064		that the filter needs to be changed because it is dirty
2065	-	complete a calibration if you change the filter. Instructions for this are in
2066		section 3.2
2067		
2068	3.8 W	'hat do I do if the pressure of the Li-840 is only low for one chamber?
2069		
2070	-	If this is the case then something is obstructing the sample intake of this
2071		specific chamber. It may be due to snow, water or dirt being sucked up
2072		over time.
2073	-	First check the line and make sure nothing is stuck inside of it. If
2074		something is obstructing the tube then you will have to flush air through
2075		it.
2076	-	It is also possible that the intake port at the bottom of the box needs to be
2077		flushed to do an obstruction. The procedure is as follows:
2079		
2081		
2083	1.	

Ca Vera

2084 2085 2086 2087	Ensure that the Main Power and the PC Relay switches are turned on. The power to the Licor and the computer can be on or off. Turn the pump and all the chamber switches to the off position. Disconnect the intake lines for the chamber(s) that will have their intake ports flushed.
2088	
2090	
2092	
2094	
2096	2. Disconnect tubing from lower fitting
2098	on Bypass flow meter.
2100	
2102	
2104	3. Plug the tubing with a Swagelok plug
2106	
2108	
210)	
2113	
2115	
2117	4. Disconnect tubing from the manifold.
2119	
2121	120-0
2123	5. Connect pressure supply line from
2125	N2 tank and pressurize to no more than
2127	20 psi.
2129	6. Toggle the switch for the desired
2130	chamber from the off to the on position a few times. You should hear and feel air
2131	coming out of the corresponding intake port underneath the chamber control
2132	box.
2134	
2136	7. After this is completed,
2138	put system back as it was,
∠140 2142	and check in the now/
∠14∠ 2144	improved
2144	
2148	

Deleted: ¶ ¶ ¶

2149			
2150			
2151			
2152			
2153			
2154			
2155			
2156	4.0 Ir	stallation and Maintenance	
2157			
2158	4.1 Ir	stalling the Chamber	
2159		-	
2160	-	After a location was selected the base of the cl	namber was dug into the
2161		ground about 4 cm to ensure that it doesn't m	ove when the chamber is in
2162		operation. Once this piece is in the soil you ca	n place the chamber metal
2163		flange and dome to the base.	-
2164	-	Hook up all tubing and ensure that it is tight s	so there are no leaks. To
2165		check for leaks use SNOOP from the trailer.	
2166	-	Plug in the main plug and then go to the main	n unit and turn the switch to
2167		the 'on' position. If the chamber closes and sat	mpling the turn it to the
2168		'auto' position.	
2169	-	Now you will have to change the program us	ing the instructions for
2170		section 2.1.	
2171	-	The chamber settings should be as follows for	normal use:
2172			
2173		M/C Manual 'Auto'	N/A 'Auto'
2174		PC Relays 'ON'	Pump 'ON'
2175		LI840 'ON'	Chambers 'Auto'
2176		Computer 'ON'	Main Switch 'ON'
2177			
2178	4.2 M	aintenance of the Li-840	
2179			
2180	-	For specific details on the Li-840 please see the	e attached manual
2181	-	The Li-840 should be calibrated once a year at	the beginning of the
2182		growing season	
2183	-	The filter also needs to be changed before you	i calibrate.
2184	-	To calibrate the Li-840 you must	

2185	0	Turn off entire chamber system and set all switches to off, then turn
2186		main switch off
2187	0	Remove the filter and replace with a new one
2188	0	Take out green connector which is plugged inside the Li-840
2189		(remember red=1, black=2)
2190	0	Unscrew the 'in' and 'out' tubes and the computer plug
2191	0	Unscrew the Li-840 from the metal bracket and completely remove
2192		from the box and bring to trailer to do actual calibration
2193	0	Replace the green connector with one of the gashound green
2194		connectors, i.e. Li-820. Make sure the wires are in the same place,
2195		red=1, black=2.
2196	0	Hook up to laptop using the 'LICOR' grey serial cable and the back
2197		'LYNX' box with USB adaptor.
2198	0	Open Li-840 program and connect through port 2
2199	0	Connect the ground CO2-Li820 tube to where the CPEC was
2200		connected
2201	0	Run N2- and zero CO2 after turning N2 cal tank on and turning
2202		black dial to left
2203	0	After completed turn N2 black dial off
2204	0	Turn on CO2 cal, type in CO2 concentration of tank, span CO2 and
2205		turn off tank and dial when done
2206	0	Turn the N2 dial back on and check to see that all numbers read
2207		zero.
2208	0	Turn off all gases and put things back to how they were before.
2209		
2210		
2211	4.3 Mainten	ance of the Chambers
2212		
2213	4.3.1 Yearly	Maintenance
2214	- Ever	y year in the spring all the fans should be changed in each chamber
2215	regai	dless of the condition they are in. This will prevent you from having
2216	to po	ssibly change them during the winter
2217	- The f	ans are ordered online from Newark (Multicomp Axial Fan: Part #
2218	70K8	506)
2219	- Webs	site for the fans is http://canada.newark.com/
2220	- As st	ated above, do the Li-840 calibration and change the filter
2221		

2222		
2223	4.3.2	Bi-yearly Maintenance
2224	-	You should also clean the domes and under the flange with a cloth/paper
2225		towel and water to remove dirt and dead bugs. This can be done
2226		approximately 2-3 times a year during the growing season.
2227	-	Also, every month all the connections should be checked with 'SNOOP' to
2228		ensure that there are no leaks. While you are doing this you can also make
2229		sure no animals have been chewing any of the tubes.
2230		
2232	4.3.3	Monthly or Every Field Visit
2234	-	Every time you do a field visit check to see if all
2236		the chambers are closing and opening properly.
2238		The chambers should form a tight seal when they
2240		are closed and when opening the dome should
2242		move in a smooth motion
2244	-	Each visit, check the compressed air tanks to
2246		ensure they still have air left. Also check the
2247		pressure at which the tanks are at, it should be 30 psi (see image to right)
2248	-	When changing a compressed air cylinder you must close both cylinders
2249		before you detach them from the dual regulator. Turn the 'Service' dial to
2250		have the arrow pointing at the cylinder that that is not empty. Remove the
2251		empty cylinder and put on a full one. Turn both compressed air cylinders
2252		back on and check for leaks. Also, ensure that the pressure is still at 30 psi.
2253	-	During the winter snow will accumulate on the collar edges so it is
2254		necessary to brush this snow off to keep a complete seal when the
2255		chamber is taking measurements. Also, in the winter the chambers may
2256		freeze shut. If you are able to lift them up do so, if not leave them until the
2257		ice melt and they open themselves.
2258	-	Most of the data loss occurs during the winter months due to the snow
2259		accumulation inside the chamber, however this data can be modeled at a
2260		later time.

2261If the chamber is completely buried with snow and closed, brush all the2262snow off so that the chamber can function properly.