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ABSTRACT

Diabetes mellitus (DM) is associated with a significantly
microvascular complications, such as retinopathy, nephropatt
as well as macrovascular disordandacdcdudsrcg laereisr@mase.
Traditionally, taedmmaascular complications of DM have beer
considered distinct and independent disorders; however, date
epidemiological and pathophysiological studies suggest they
been suggestedathatyvals@aumicrovascular network which nouris
the walls of large muscular arteries, may play a role in macrc
atherosclerosis. The effect of hyperglycenvimsan the microves
vasorumnd the potential impact of these effects on macrovasc
atherosclerosis are not known.

Here, we use domadidsipletreptozotocin (STZ) injected
apolipoprbteedicient mouse model to investigate the effects o
hyperglycemia on thiemyasmadvttoseorrelate such effects to
atherosclerotic plaque progression. Hyperglycemia significan
size and necrotao dfdela ,(Bespectively) relative to controls by
weeks of age. However, the densityesft elass an vthseo acomtimicrov
wall of hyperglycemic mice was reduced at each time point e>
vasa vasorum deficiency wasndblsxe ddeypengbylice mic C57BI/6J
mice and hypergl§tEmiice Jnsr2d microvessel density could be

correchgdnsurediated glucose normalization, suggesting a hy|



specific effect. A localized deficiency in VEGF appears to be
reduced neovascularisation. Lastly, hyperglycemic mice fed s
supplemented with be mfratgaursienéd ,to treat microvascular disord
DM, appear to have reduced atherosclerosis.

These findings provide the first indication that, in additi
glomerular capillary beds, hyperglycemia alters the microves
vaswasorum. Such microvascular changes directly correlate ta

and progression of atherosclerosisdiafilcypetghycemic ApoE
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1.0 INTRODUCTION

1.1 DIABETES MELLITUS
1.1.1 Epidemiology

The World Health Organization (WHO) estimates that ove
people worldwide currently live witht.ddabedestimealitsd (DM)
million people are expected to have impaired glucose toleran
fasting glucose (IFG), and many live wifh Theskisease unknow
numbers are projected to excedBa50rnvidhidny rising obesity
rates, increasingly sedentary lifestyles, @&ndDiabatgsg global
is a major cause of global illness and disability, and is the f
cause of ilemihst-inighhme codnthsesuch, DM has become a globe

epidemic and worldwide health concern.

1.1.2 Clinical Diagnosis

Diabetes is a heterogeneous metabolic disease that is ct
chronic hypemgayand glucose intolerance, a state collectively
dysglyce’mi@linically, DM is diagnosed by a fasting plasma gl
valleer .0 mmol/L, a casual plasend 1glcomelvihlaoer a 2
plasma glucose (2BrPG O vaiuel/L in a 75g oral glucose tolerar

(OGTY)Elevated blood glucose levels below the diabetic thres
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FPG values from 6.1 to 6.9 mmol/L or 2hrPG values between

are diagnostic of PGT and IFG

1.1.2 Classification

Hyperglycemia arises from deficient insulin action. In tyj
(T1D), autoi-mmdiragded pancreatic beta cell destruction leads t
insulin production and chronBy kymeérgsycdypa.2 diabetes (T2LC
results from impaired insulin effect, and may involve a combi
insulin resistance and defective luead ecteld siscaeteom. uBed
to describe IGT and IFG, and isnedoatrei 4 d gas beert w e ear
normalcy and incifiEactDkorm of the disease is characterized
impaired i-meudiated glua&se wlpronic hyperglycemia, and a ran

potentially life threatening vascular complications.

1.2 THE VASCULAR COMPLICATIONS OF DIABETES
1.2.1 Micro versus Macro Vascular Complications

The vascular complications of DM have d@saditionally beer
either mocrmacoradscular in origin. Microvascular complications
retinopathy, nephropathy, and neuropathy, predispose people
blindness, chronic kidney disease, and foot ulcers requiring |
amputatiPoBy contrast, macrovascular complications involve tt

development of atherosclerosis and an increased risk of thro
2
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DM is associated wasltwalaraddisease (CVD) mortality rate that «
70%, andoa-f#ld increased risk of dying from myocardial infar«

stroke comparedatee ficn

1.2.2 Microvascular Disorders culadi ©&tubcaoanega s

Although the vascular complications of DM have traditior
viewed as distinct and independent disorders, data from seve
studies show that microvascular abnormalities predict macro\
Microvascuwalageshin the retina and kidney, in particular, are s
correlated to CVD outcome. Proliferative retinopathy is a strc
cause mortality, CVD death, and coronary heart disease (CHL
with T1D and T2D, indeperndteanadfcardiovascliar risk factors
Microalbuminuria (MA) is also a major independent risk facto
persons with diabetes, aneldhttos ineemasepbhe risk of CVD deat!
100%50% depending on the level of inttk@skEldatiaddlyminuria
these data suggest that similar pathways thay underlie micro\

macrovascular disease in diabetes.

1.2.3 Hyperglycemia and Vascular Disease
Despite the possible existence of common underlying fac
fundamental difference in how microvascular and macrovascu

respond to glucoseidoweelsitadplibthed that lowering fasting blooc
3
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glucose levels below 7.0mmol/L significantly reduces the inci
retinopathy, nephropathy, and neuropatiy in pediemnh® with DN
glycemic parameters that define/diagnose diabetes were chos
effectively differentiate indivdad dahseadphnghreitskopathy from

individuals at'iomMomieker, the effect of glucose normalization
cardiovascular risk remains controversial. While accumulatin
suggest that blood gkwadosre impnoales CVD outcome, a similar
glucose threshold does not’é%Fsitrtfloer@reiskntensive glucose
lowering was associated with increased mébYtality in the ACCC(
indicating that the relationship between hyperglycemia and C
possible explanation for these differences is that microvascu

contribute to the pathogenesis of cardiovascular outcomes.

1.3 MECHANISMS OF HYPERGMYUOEHMDADAMAGE

High blood glucose concentrations may induce tissue dar
and macro vessels through four major mechanisms: (1) increa
through the polyol pathway, (2) increased hexosamine pathwe
increased activatiomasept(eikCk isoforms, and (4) increased
intracellular formation of adv-anceédcgsyCAGEBBR)enchese four
cytoplasmic pathways are thought to be amplified by a fifth m

process, namely, overproduction of suypghoxage.ifdgeeher, the
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oxidative stress and endoplasmic reticulum (ER) stress in va:

promote the development of micro and macro vascular compli

1.3.1 The Polyol Pathway

In the polyol pathway, glucose is metalbigbilzea to sorbitol
fructose, by aldose reductase (AR) and sorbitol dehydrogena:
respectively. These reactions are accompanied by oxidation ¢
adenine dinucleotide phosphate (NADPH) to nicotinamide ade
(NAD, and reductiDrmoohyi&ogenated NAD (NADH). Excess glu
flux through the polyol pathway leads to NADPH depletion an
accumulation. NADPH consumption limits the regeneration of
glutathione (GSH), leaving the cell vahnspaltliesod RO&E)tive 0Xx)
1920¢oreover, NADH accumulation inhibits the glycolytic activ
glycerald&ipyhdbesphate dehydrogenase (GAPDH), leading to an

flux of glucose metabthletésutrhdauwgdging pathways.

1.3.2 The Hexosamine Biosynthesis Pathway

In the hexosamine biosynthesis p&tihhwveasyp (ldBP [F fructose
6-P) is converted to-gphospdmieeag-B)cMdMnd finally to uridine
diphosphateN{fdc2Pyl glmcomesa GICNAc) through the action of the
ratemiting enzglmeamiAeubtesehosphate amidotransferase

(GFAT). Cytoptastliicnked GIcNAc transferases catalyze the a
5
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of GIcNAc to specific residues oft tnacsearp piome fmratteria s

and signalling® felceapeby altering their functional activity and/c
capacity. Excessive glycosylatodeimnfd|dnmpgolpaeve been
implicated in activation of the unfolded protein response (UP
ER stress, which dysregulates lipid imdtalmotiestmryactivates prc
pathways, and induces apoptosis in vascularaamooth muscle ¢

endothelial celf8 (ECs)

1.3.3 Activation of Protein Kinase C

Hyperglycemia drec nesspoetshesis of diacylglycerol (DAG), a
key activator of PKQ igloyfoanas Bephhydsesphate and
dihydroxyacetone phosphate (DHAP). Indirect activation of P
mediated by tRAGEEBnd polyol signaffin@l pairkduayed
activation of PKC inhiditsitencdotxidke synthase (eNOS) express
and decreases nitric oxide (NO) geferRkKiOonisafeamsular cells
have also been shown to increase endothelial permeability, il
gene expressmoate pcapillary occlusion, and increase ROS form

which are implicated in the paamadgmmae@asscolfamitisorders

19,28



M.Sc.eBhsk.J. Veerman McMaster UnivMeslitoyal Sciences

1.3.4 Advanced Gly®PabidmcExnd

Eleated intracellular glucose levels also lead to the gene
by way of the Maillard reaction, a nonenzymatic process in w
sugars react with amino groups from proteins. Reactive inter|
methylglycadadbxgglucosalgopxaldare produced during the Maille
reaction and contribute to carbonyl stress independent of AG
precursors can damage the cell by modifying the function of |
by abnormalllynkiogsextracellular manhm@en&EdM,) and/or by
interacting with the receptor for AGE (RAGE) on cells such a
ECs, and VSM&SAGE Binding induces ROS production and nuc
fact@appaB-{BlFactivation, which increase the transcription of

molecuheds pgwflammatory genes and potentidf8:3%ascular damac

1.3.5 Mitochondrial Superoxide Production

These four cytoplasmic processes are thought to be ampl
mitochondrial process, namely, overproduction of superoxide.
glycolysis directly increases the flux of electrons through the
electron transport chaiMupETe)dsTiha an accumulation of electr
within the ETC and increases the generation of superoxide, w
the activity of the GAPDH. By inhibitingirdAie®d, hyperglycem
superoxide production increases themdtuates ghyoalghithiente

four key pathways involved in vascuidf endothelial damage
7
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Figure 1. Pathways of Himpeugéydc®mamaage

Potential mechanisms by which hypedinwagmialnodezesdtissue
glucose flux through the polyol pathway consumes NADPH an
regeneration of glutathione. Increas6-ghosmpharts o(ifr raufcfructose
6-P) to UNBeRtetyl glucosamGineNAJDPleads to increased protein
modificatiO#hibked glycosylation and endoplasmic reticulum (E
Excess glycer-&pdedsydeate-3(f5)yncreades ndsgonthesis of
diacylglycerol (DAG), an activator of protein kinase C (PKC),
formation of methylgliyokratlrathed lmar AGE precursor. Mitochon
overproduction of superoxide inhibits th&mtaswphytef glyceralr
dehydrogenase (GAPDH), diverting upstream glucose metabol

damaging pathways.
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1.4 MECHANISMS OF MICRO AND MACRO VASCULAR DISEAS

Excess glucose flux through the above described pathwa
the pathogenesis of both micro and macroDWascular complicat
However, hypergbpoemndbed disease processes in the small anc
blood vessels differ greatly. Small blood vessels of the micrc
aberrant phases of vasoregression and angiogenesis, while Iz

the maiorraudation develop atherosclerotic lesions.

1.4.1 Structure of Micro versus Macro Vessels

The vascular microcirculation consists of first and secon
(diameter2d0f034dm), terminal a30é4no) e € adidladries) (3
posdapddry venul88%MQ, and first and secon@ @WOder)venules (3
30 Arterioles and large venules are comprised of three distin
endothelial lining and basement membrmaircaa (BMinaknown as th
medial VSMC layer, called the tunica media; and an outer ma
tissue, known as the tunica adventitia. Bynusrtrleagt, capillarie
venules consist of only ECs, BM, and sparsely interspersed p
function as primary exchange vessels, and are classified as ¢
central nervous system), fenestrated (ex. glomeruli), or sinu¢

depending on the nature of their endothelial junctions and th

BMSl

10
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Large blood vessels of the macrocirculation, including th
coronary arteries, have thick muscular walls that also consis
and adventitial layers. The luminal iobiimmosédnatrao vessels is
single, continuous layer of ECs surrounded by subendothelial
that is rich in prdtd@nglycadia consists of many layers (lamelle
circumferentially arranged W$tWMOs eemla¢dideaf collagen and
elastin. The outer adventitia also contains collagen and elas!
fibroblast and SME&. clallcoygeast to microvessels, the adventit
large blood vessels also contains two structurally unique con
specialized microvascular nevasakviksp¥Wwwmnaanthe system

of autonomic ne’fve fibres

1.4.2 ANGIOGENESIS

Unlike large vessels, microvessels have the capacity to ¢
in response to local tissue ischemia or injury, and can do so
mechani¥msculogaeéstis to the de novo formation of blood ves
from vascular prodéantpingekl®nictes the sprouting of new
capillary branchexxifsbimgpvasculattueeiogedlesisibes the
remedtling of conduit vessels through incrdd3es in luminal dia
Physiological angiogenesis is contr-hedabmygpgd olpelmircce of pro
factors, many of which andearpcegudlaitens of hypoxia. Disruptio

this balance, as occurs in diabetes, leads to abnormal vessel
11
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1.4.2.1 Mechanisms of Angiogenesis

Angiogenesis is a complex physiological process consist
overlapping®®liasdsrmation, (2) stabilization, (3) branching,
and pruning, and (4) specialization. The entire process is col
dynamically changing balaarcgi bedwiceaigmals and factors that
induce vessethcpuiesce
Hypoxic Induction

When tissue metabolic demsmamply ,ezekledtrdgger a number
of adaptive responses thriowdgitcithie hrygprosxdaaiption factors (HIFs
37 The master regulator of yaskEy liesr aewslpigusecsusly expressed
heterodimer consistiengubdtad BIiFubunit and algtable HIF
subuittn wethgenated envirorimeadsivHyFis controlled by two
oxygempendent hydroxyihsedroRybdgle (PHD) hydroxylates HIF
1+ at two prolin® meaidiress it for proteasdmadndES8truction
ubiquitin ligase, theimdauHpppedin (VHI® A& osemienxd
hydroxylase, factor thhibpkHlibhgntbidFifies asparginine residues o
HIFL+ and prevents its bindingotoc tinaatoasi pd Bomd@ind p300
Hypoxic conditions inhibit the activity of prolyl and asparagit
lead to-I1HtlFaccumulation in the -tytapgidmsmerdaE in the
nucleus, bind to chmaxoa acmapdnyse elements (HREs), and dire
transcription of a wide array of target genes, many of which

angiogenic regufation
12
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Figure 2. HypoxibkelRdatobs

In weolXygenated environm-emds cilbyp obaiatbt (8l 1F)

hydroxylated b#-hprdorlomglase (PHD), which marks the protein f
ubiquitination and proteasomal degraldiamdan bpyHbBEe von Hippel
complex. A secondehydcoaylianshibitin(Hi,Fmodifies
asparginine residuesamat pridvents its binding to CBP and p30C
transcripti@amcaivadors. Hypoxia inhibits the adtivity of PHD an
leading tdd#HbBEcumulation and nucleaFltradisieciatds nwith

HIFL2 in the nucleus, binds to chresponesmad|bmnreroaxisa (HRES),
and directs the transcription of a numerous target genes, ma:

involved in angiogenesis.

13
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Formation

Sprouting angiogenesis is initiated in response to vascul
growth factor A (VEGFA), a secreted glycoprotein that is pote
under conditions of hypoxia. VEGFA isoforms signal through
tyrosine kihd¥&sGF&Rldg (VEGFR2), but can also bind to co
receptors such as neuropilins (NRP1 and NRP2) and heparan
proteoglycand?(NEB$R1 facilitates monocyte/macrophage che
and antagonizes VEGWIRIZhacgivihtey primary med-iator of VEGFA
induced vasculari®spSpuointgng requires modulation of vascula
permeability, induction of EC migration and proliferation, anc
lumenization, and peewfuascmulafr thannels.

Vessel destabilization and permeabilityearnatienxdluced by V
NO production, endothelial perforation, and EC/pericyte deta
VEGFA is a known activator of eNOS, which is required for N
vasodidd4? VEGFA also induces the formateod otthediwdolae, trar
pores, and fenestrae within the endothelium, which allow leal
and proteins into the extravascular spalkaer. dntdertmalliadtion of
(VE¢adherin in adherens junctions in response to VEGFA looc¢
endothelial cell contacts and relieves periendothelial support
protein extra\la3agenher, vas@didatascular permeability allow

ECs to emigrate from their resident sites and assemble into e

15
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Growing vascular sprouts are led by endothelial tip cell:
selected and guided by extracellular VEG§E®& dFig. 3b). Tip ce
number of phenotypic changes in response to VEGFR2 actival
reversal otbapedapolarity, extension of filopodia, and adoptior
invasive and motil®e bleteswiccthraracteristics allow tip cells to s
matranchored VEGFA and NRP axon guidance molecules, whic
cell chemotaxis and polarize@spfdptcellds gartdotmailed by a
zone of proliferating and differentiating stalk cells, which ar«
of pericyptveered phalanx cells. VEGFA imposes differential bel
these ECs throudhk#héDdd-Match signmdtingay, stifling
VEGFR2 expression in stalk and phalanx cells and limiting e x
to the tip’ cell

Upon encountering their targets (i.e. the tips of other sp
capillarie®)l|lsipuppress their motile behaviodrCand establish r
junctional contacts (Fig. 3c). Fusion of vascular sprouts and
endothelial cells allow nascent vessels to increase their dian
lumenization, which involmndsvpicuond et 68 Pmamhiomg other
mechanfdm&eneration of lumen and onset of blood flow help t
vascular connections, but vessels musdnunmdergerfaother matul

become a functional va<dcular network

16
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Figure 3. Angiogenic Sprout Formation

Mechanisms of angiogenic a)reosstefodmsttabnlization and
permeability are inducmeé dapterBEchbtride (NO) production,
endothelial perforation (calveolae), and EC/pericyte detachm
b,Growing vascular sprouts are led by endothelial tip cells, tr
proliferating and differentiating steMédcphlalamx @eliscyTep
cells are selected and guided by extracellular VEGFA, which
angiogenic capacity of neighbouringikeé!|(® LikMaduglh the delta
signalling pathwsagn of vascular sprouts allows nascent vesse
ircrease their diameter and undergo lumenization, a process i
and vacuole formation. Pericytes (yellow), quiescent endothe

activated endothelial cells (green), basement membrane (blue

17
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Stabilization

Immature vessels are stabilized by recruiting mural cells
ECM. At least three molecular pathways are involved in regul
(1) platdedeitved growth factor (PDGF) B and PPDGE)receptor (Pl
the angedpm (Ahi@)system; and (3) transforming growth factor
signalling.

Tip cells of growing vascular sprouts generate a high col
gradient of PDGFB, which promotes the recruitment of pericy
PDGFR?2 Sphingdpimesphate signalling through the endothelial
differentiation sphgngtetipgug l&dcepiofEDG1), which is also
expressed by mural cells, augments tHi< ogertalece lttheseruitme
pathways ensure that the endothelium of nascent vessels bec
supporting periendbthelial cells

The Tie receptors and Ang ligands further stabilize new
prooting endotherladlcell interactions and vessel quiescence. |
expression of Angl is upregulated during angiogenesis and ¢
endothelial Tie2 activation. Signal tranBikl2cpanhwaypyugh the /
positively reguligimnedssothelial cell recruitmentmy asltrengthening
communications, reducing vascular permeabilPfy, and promoti
all of which contribute to vascular quiescence.

TGP signalling idgl imveésesel maturation in a pleiotropic ai

contexdpendent manheytdi3kes signal through various
19
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transmembrane type | (TGF2R1) and type Il (TGF2RIIl) recepto
regulated by accessory receptors, endoglin aharbetaglycan. T
ALKl and AlaK®& responsible for the majority of signal transdu
and VSMCs. Thendb&llin pathway has been shown to stimulate
migration and prd'liféwmenien, activation dfetlhaglft&rb
pathway inhibits endothelial proliferation and migration, indu
differentiation, and stimulates ECM produeniwora,| tdhedteby solid
interactions and promoting Vessel stabilization
Branching, Remodelling, and Pruning

Maturation of the stabilized endothelial network involves
remodelling, and prunithgeotVVeapalbaty match tissue metabolic
needs. The ECM plays an important role in this vascular patt
the proliferation,diffgranitoation, and survival of’'ECs and mure
ECM regulation is largely mediated through the action of prof
plasminogen activator (UPA), matrix metalloproteinases (MMPF
chymases, tryptases, and cathepsins) and their inhibitors (ex
activator inhibitprti6BAE) inhibitor of MRPEP (dtldaR k)s
liberate mbaturmx angiogenadtéactlmesfunction of ECM structural
proteins, and mordataite imgklractions. As such, their spatial an
temporal distribution plays an important role in determining r

persistence and/o regression
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Specialization

To respond to physiological needs of the host tissue, EC
number of specialized properties, including permeability cont
regulation, adhesion molecule expression, transcellular trans
formation, ang. dthis further specialization is induced by cros:
cells of the perivascular tissue, which produce growth and di
capable of activating specific gerf® Krgresshen programs
specialization process is the ¢sdablijsmmteonhofaocdlformation

of orggrecific capillary®structures

1.4.2.2 Diabetes, Microvascular Disease, and Angiogenesis
Hyperglycemia is knadvameoricaeéfects on the

microvasculature, and can lead to excessive or insufficient n
different vascular beds. Excessive angiogenesis is involved i
>"and nephrébathgreas inhibited angiogenesis is a key feature
neuropathdelayed wound laealimgpaired collateatibvessel form
®. Common to each of these pathologies are early morphologi
microvascular regression. Key morphological changes include
mural cells and thickening df'thehiabilkard tBMincreased

vessel permeability, protein extravasation, capillary microanc

occlusion. Ultimpeefys@mdmicrovessels undergo cellular apopt

21
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vascular regaeprdio@ass which may or may not be accompanied
formation of new vessels.

Pathological neovascularisation in diapectefdicis a result o
alterations in the-lenwe lsadfjipigenic factors. The most extensi
studied angesogefactor, VEGF, is variably increased and/or de«
different vascular beds. Elevated VEGF levels have been con
diabetic retifdfandyhyperglycemsaViEGfe®xpression in renal
podocytes and glomer8idfByapidhareest, VEGF expression is
significantly reduced in human®dhimd etiabmeeicrdpantiy s
both increased and decreased levels of VEGF protein have be
diabetic myo84fUswmh changes imeviEGEiconare dynamic and
context dependent, and may be accompanied by altered expre
angiogenic ptdfeins

Hyperglycemia is thought to alter anqgioqganticeprotein exp
four damaging pathways described above. Aldose reductase h
repress RUNX2 DNA binding and transcriptional activity in hu
ECs, leading to impaired EC migration and proliferation unde
hyperglycdén@aycosylation of intracellular transcription factor:
expression of throhld & maich A2'gin human VSMCs and
kidn&yCs, respectivelynd@tedoP&KC activation has also been

implicated as a mediator of VEGF mRNA and protein producti

22
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VSMCS8 and methytliglgogatl modification-8p3hreepressAr

com@x has been shown2t@roieatémagctivity iff. kidney ECs

1.4.3 ATHEROSCLEROSIS

Atherosclerosis is a chronic inflammatory disease charac
accumulation within the walls of drgteimubeudadarlteings
cause of CVD and cerebrovascular diseasjeriwyhiath account fo

mortality in people with DM.

1.4.3.1 Mechanisms of Atherosclerosis

Atherosclerosis is thought to be initiated in response en
Activated ECs express adhesion proteins (vdscular cell adhes
(VCAM), plaealéothelial cell adhesipmE@dAIMcule
intercellular adhes-lofl @AM, caheahnRI-Eelectin) and secrete
chemotactic factors that actively recruit monocytes and T cel
(Fig. 4). Increased endothelial permeability allows the transn
monocytes, T cells, and lipoprotemma pérdrelesmonbaxyhesinti
differentiate into macrophages and exprésanstc &MeaQler recept
for oxidizeddle heawty lipoprotein (oxLDL) particles. Scavenging n
engulf tdizkived cholesterol esters and become foam cells, wh
to form fatty streaks. As lesion development progresses, acti

foam cells and T cells further stimulate the inflammatory pro
23
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cytokines that induce VSMC growth and migration to the intimn
and secrete ,colyzgemotein, and elastin, which collectively for
fibrous cap and stabilize the lesion. However, VSMCs and inf
also secretaelematrdkng proteases (ex. MMPs, collagenases, ge
cathepsins) which lead to pbgqulinnsngbality. Foam cell death
necrotic core expansion further contribute to lesion destabili
rupture occurs, the blood comes into contact with lipids and
of the necrotic core, initiatnnagnplaheobdertbacdshesrimation. Most
MIs and strokes occur when the thrombus or its emboli occlu«

impair blood flow to the cardi&¢®>or cerebral tissue

24
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Figure 4. Mechanisms of Atherosclerosis

Activated endothelial cells (green) express adhesion molecul
proteins in response to vascular injury. Monocytes migrate in
mature into macrophages, which etopseésrangegnfger recep
oxidized low density lipoprotein (oxLDL). Scavenging macrop
oxLDL particles and become foam cells, which secrete cytokil
proliferation and migration of medial smooth muscle cells (pi
Herem®oth muscle cells secrete collagen, glycoprotein, and e
the fibrous cap. Smooth muscle cells and {fbeagmadehlg also rele
proteases, which lead to cap thinning and plaque destabiliza:
progresses, Isoamdeefjo apoptosis and contribute to necrotic c

expansion.
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Adapted from Glass @neddWifdtum (
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1.4.3.2 Diabetes, Macrovascular Disease, and Atherosclerosi

In people with DM, the atherogenic process is thought to
identical series of events. However, diabetes increases the i
endothelial injury, accelerates plague growth and developmerl
plague stab#detd, pedple with diabetes present with a significe
number of diseased vessel segments t#an those without diabe
Atherosclerotic lesions isolated from diabetic patients also h
cog and inflammatory infiltrate, and a higher frequency of pla
intracoronary thromBd$?foumheiromore, diabetic plaques have h
VSMC apoptosis,-KkBgheatdlh, elevated MMP levels, and lesser
interstitial collagen content, making them less stable and mo
and thrombus fldrmation

Because CVD accounts for over 70% of diabetic mortality
hyperglycimduaced tissue damage in the development and prog
diabetic atherosclerosis has been extensively studied. HoweV

involvement of microvascular disease in this process is unkn

1.5 THE VASA VASORUM and ATHEROSCLEROS
1.5.1 Vasa Vasorum Structure and Function
1.5.1.1 Functional Geometry
The Vv consists of small arterioles, capillaries, and vent

the outer media and adventitia of®’faAgeemab oM aar iayitreate s
27
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in the adveasidiagsorum exterroomm the main wessae!l lumen (

vasorum ihterima®barterial vasa are readily distinguishable fr
venous vasa, for therwmre stmaildét,course, and branch infrequ
while venous vasa are larger, tortuous 3h course, and branch
Microvessels of the Vv are further defined by their branching
order vasalongitudinally between the media and adventitia, w
second order branches originate from first order vasa and wr
around the main ve83$elh(Eigpabie) distrbwtperfusion and

drainage depends on whether they exist as anatomic plexuse:

veif’, or functional endarteries, as PR the coronary arteries

28
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Figure 5. Structure of the Vasa Vasorum

aArterial vasa vasorum (Vv) originate fromsthe main vessel |1
vasorum ihterfaomdhentvtagal vasorum .eMiecnmoaressels

of the Vv are further defined by thgeir, bragstcbrdgrovdsa: rlan
longitudinally between the media and adventitia, while smalle
branches originate from first order vasa and wrap circumfere

main vessel
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Adapted from Langhdimmo dittaemaloQ 7)
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1.5.1.2 Physiologic Activity

Vessels with walls greaeeretkafifioz®l cmliinal diameter
greater tharf®0054mmm in°égeiire Vv microvessels to nourish th
cells within their outer wall layers. The Vv is a dynamic struc
regulate its tone and va$canarcmerfusdengo expansion and
remodelling in response to the |dtaBecicusernvipbayseat
significant role in vessel wall maintenantcef Saduli¢asting the tr
both into and out of the perivascular tissue, the Vv has been

number of large vessel diseases, including atherosclerosis.

1.5.2 Neovascularisation in Atherosclerosis

A general correlation between Vv nédevascbdaotsation and
plaque progression has been well established. In 1984, Barge
Vv microvessels were present in human vessels with atherosc
were absentdisemcsed vessels. He noticed that these microves:
through the media and into the thickened intima, and suggest
neovascularisation might play a role in the pathophysiology c
In support of this hypothesis, numeeoawn stiuadtied thateVyvince d
density is increased in lesions with severe inflammatory burd
haemorrhage, and®tatheuptimcédpal cause of acute coronary thr

in patients dying of myiodArdial infarc
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Experiments in murine models of atherosclerosis have co
from human studies, further supporting the association betwe
neovascularisation and plaque progressdoth.at afpgphEeinrich et ¢
/LDLdoubdeficient mice developed Vv in association with lesi
and showed that adventitial vasa communicaté>with intraplaqt
Vv density was positively correlated with adventitial inflamm:
intraplague haemorrhage in advanced atherosclerosis, and sh

local differences between fibrotic, calcifie’d, and haemorrhag

1.5.3 Neovascularisation and Plague Progression

Vv neovascularisation has been @egerdbewoad andouble
the context of ath®¥réscligricssihe body s natural @rotective res
ischemic injury, but may ultimately contribute to disease pro
Microvessels of the Vv may facilitate plaque progression by t
mechanisms: (1) by altering the delivery and/or drainage of |
inflammatory cells withimdv(@9skVy waeéldiaposing the lesion to
intraplaque haemorrhage. Together, altered solute exchange
haemorrhage contribute to plaque destabilization and increas
rupture.

Microvessels of the Vv serve aana cofdmimaodorhpids
cells into the arterial wall, and may facilitate both leukocyte

retention. Adventitial microvessels in humathoecdronary plaque
32
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fold more VIGAMAIN andedectin than the lumirfdl%ndothelium
and adventitial immune cell accumulation exceeds that of the
fold in Apwie®’ thus confirming a role for Vkaeidtrovessels in |
trafficking. While arterial vasa account for only 30% of total
infldX! aggregated LDL may accumulate in the extracellular sj
high density lipoprotein (HDWhd eéfloxsttarodidhmPhatic arms
Together, enhanced influx and impaired eftlane likely contribu
expansion and'%ecrosis

Intraplaque microvessrdlys foamed endothelial junctions an:
lack mural pericytes, which make them 1¥aklesred prone to ruj
microvessels originate in the adventitia and penetrate the int
breakpointsy berl@atlsites of early necrdticBgore formation
contributing to cholesterol deposition, macrophage infiltratio
of the necrotic core, the accumulation of erythrocyte membra
athecoesrotic plague may represent a potent atherogenic stimu
necrotic core expansion directly correlates with intraplaque e
accumuldtioniv neovascularisation may thuabfidicd hitiatre plaque ¢
and rupture by contributing to expansion of the necrotic core

increased risk of acute coronary events.
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1.5.4 Angiogenic Modulation and Atherosclerosis

The combined studies clearly demonstrate that adventitie
atherosclerotic plaque acquire a significantly altered branchi
theory is that thickening of the vessel wall and increased ox\)
plague constitukatts athmpoxic environment, which activates a
processes in the adventitial Vv. ConsistenA with this hypothe
treatment in ApoEddfpoBIn@Omice significantly increased plaqu
endothelial cell contenttdndoplldqueesiak found that Vv density
correlated more strongly with the numbresgtotthenflammatory cel
atheroma igizepdEficient mice, and showed that Angiostatin cc
reduce plaque angiogenesfistrat&craptiagtdhenosclerotic
progres’®fodimilariypraliferativederazpadlenosine, decreased Vv
density and lesion volume in thedabicti®@stdt fapadE/LDL
Thalidomide prevented Vv neovascularisation and early neoin
hypercholesterolt®mbDcipag® showed thaathiaeht i'n LDLR
IApoB8deficient mice reduc¥d ddusnthitaanld actually promoted
outward remodelling and plaque regressidn in the inominate ¢

While these studies do suggest a role for the Vv in ather
development, there is no conclusive evidence to indicate whe
causaboveanerrelyctiMa addition, since these observations have
reported idhiametic, npcmmgc models, little is known about the

the Vv in diabetic atherosclerosis.
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1.6 BENFOTIAMINE and DIABETIC MICROVASCULAR DISEASE

Benfotiamine isaamaibabléys dipide thiamine derivative that
has been shown to attenuatedhyeerglycaoemsaular
complicationsiipeSted rodents and in pHtitiglo seith DM
oral benfotiamine suppietmegiladiday)7Pprevents incipient diabe
nephropathy and reftliZzophutbhgdimyPperglycadhid®andents
number of placebo controlled trials have reported reduced po
diabetic patients treated with-6@@msgimpie.hent (300
Benfotiamine is believed to act as a coenzyme for transketols:
phosphate pathway enzyme capable of shunting glucose meta
pathways associatddrwitimphsations, including the hexosamin
diacylglycerol,-mmdd AdGEon prdte'dses

While the effects of benfotiamine have been investigated
diabetic retinopphhgpathy, and neuropathy, its potential effec

vasorum in ddabeltesated atherosclerosis has not been examin
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2.0 RATIONALE, HYPOTHESIS, AND OBJECTIVES

2.1 RATIONALE
Diabetes is a major risk factor fovastcarlavrascudacthmacr

longerm complications. Data from several independent studie:
microvascular abnormalities and cardiovascular outcomes are
8.11.118. 1 wever, these studies also show a much stronger rele
glucose levels and microvascular versusZcHrifmeascular outce
explanation for these differences is the possibility that micro
abnormalities contribute to the pathogenesis of cardiovasculz:
vasorum, a distinct microvascular network located within the
vessels,gwreddeneovascularisation in association with atherosc
progression in normoglycemic Hu'mA%Mie vaede motcheel s
mechanisms underlylagotmise marime unknown. These studies suc
that hypergtiynodeuecead damage to the Vv microvasculature could

to atherosclerotic plaque progression in the macrovessels of

2.2 HYPOTHESIS

Accelerated atherosclercesmsci W pnylcer,gay
macrovascular complication of DM, resualdgclednddnypgeglycemi
to the microvessels of the vasa vasorumaclowabeulwiords, dial

diseasenisr@vascohaplication.
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2.3 OBJECTIVES
Using an establiséhnadonhel of hypiewrddgednaiacelerated

atherosclerosis, we intend to:

l1)Examine the effects of chronic hyperglycemia on the vas
relative to the progression and development of atheroscl
a.Verify that hyperglycemcaoaascs ltdteire in our
mouse model by examining the retinal capillaries
b.Quantify atherosclerotic plaque parameters and vasse
density at the aortic root
c. Examine the effects of glucose normalization on the
and accelerated atherosclerosis
2)Investigate the effects of hyperglycemia on cellular hypo
angiogenic protein expression
3)Examine the effects of benfotiamine on the vasa vasorum

atherosclerosis
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3.0 EXPERIMENTAL PROCEDURES

3.1 MATERIALS
3.1.1 Animals

Femalemlmzygous apolipdefictemt Bhice (B6.129P2
ApoB'YY¢ female homozygous low density lipeprotein receptor
deficient mice (B®IF'Z2AS7 male hetero2¥'goice Ins2
(C57BUNE' 1), and female C57BI1/6J weite fCrxhBldéd)from

The Jackson Laboratory (Bar Harbor, ME).

3.1.2 Diets

Standard chow diet (TD9faQ7Wesatrednhdgbkt (TD97363) were
purchased from Harlan Laboratories (Madison, WI). Benfotian
(BFT090707/QB) was purchas®didncm Bhangaaeutical
Chemical Co., Ltd. (China), and a custom benfotiamine diet (

(TD10062) was produced by Harlan Laboratories (Madison, W

3.1.3 Reagents

Polyclonal rabbmaanvion Willebrand F®Ot®2)(wA&$) (A
purchasedaroam(Burlington, ON)."Y4y polxusPKobevas
purchased from HPI, Inc. (Burlington, MA].alMpdwse monoclona

(NB1a®5) was purchased from Novus Biologicals (Oakville, O
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goat amoéuse CD105 (AF1320) and moooséoN&IGHrat ant
(MAB471) were purchased from R&D Systems (Minneapolis, M
rabbit-motise VRG@GH#2479) and polyclemal galcd etaa e ti
casp@®Bs€e€#9661) were purchased from Cell Signaling Technolog
ON). Polyclmmial amabiuse VBGEBEX52), normal rabbit 1gG (sc
2027), normal ge2ad2i8)G ded normal mauae) lgérésc
purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz,
(14131) was purchased from Sig@&)Aldrich (Oakville,
AlexaFluor® 488rgbhttamtl(084), AlexaFluor® 594 goat
antriabbit 1gG1087), AlexaFluor® -4881gGalAaNG),
AlexaFluor® 488ngowseahgGl0R9) Adna@iamidno
phenylin®ABIf purchased fgem (IBlwitrmgton, ON). Biotinylated
rabbit-goait 1gG5@30) and Vector® NovaRED peroxidase subst
(SKE800) were purchased from Vector Laboratories (Burlingto
India Ink (ROtring) was purchased from Grand & Toy Offi
The Matil Kit {I¥Z; yellow) was purchased from Flow Tech Inc.
MA). FluoSpheres® 0.04um diamedefriedamboxoydpheres (F

8793) were purchased from Invitrogen (Burlington, ON).

3.2 ANIMAL MODELS

3.2.1 Streptolzodocend Hyperiglycem
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Five week old femmmieeAweEe placed on standard chow die
randomized to receive multiple low dose (MLD) injections of «
streptozotocin=%0X)o( citratne= kdbffeTywo sets of five
intraperotineal (i.p.)4ipeg/kignw €38 administered over the col
three weeks for each frerigméa). gwowe from each experimental
group were sacrificed at 10, 15nanldoPO0AveelksedfodgReTE
treated (m¥c&5) received low dose (0.05 U/24 hours) insulin pe
(LinShin Canada Inc.) or blank controls(nan%) vaewdk Issacrificed
(hn= 10) weeks of age (Fig 6b). An addnticcem#dI1l@)owpsof ApoE
sacrificed atoF wgekprior to any injection. Plasma and tissue
were collected from each mouse for further examination.

In a parallel experiment, 5 week old female C57BI/6J mic
randomized to receivBTedtbercMilale buffer injettions. A subse

mice from each treatment group were sanrif3g¢ed at 10 weeks

3.2.2 Genethdadted Hyperglycemia
Male heterozy§'8'dsidems(23) were sacrificed at 10 weeks of

age, and their plasma and tissues wemenaaibewcted for further

3.2.3 PDnatuced Dyslipidemia
Five week old fethamnel Apamice were randomly assigned

to standard chefwtow ésggerrn=d4e)t. (All mice had unrestricted
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access to food and water throughout tbedsaudlys Meeksvere sa

of age, and plasma and tissue samples were collected for fur

3.2.4 Benfotiamine Treatment in Hyledrgilgce MiceApoE

Five week old fefhmieeAweEe randomized to one of four
treatment groupsST@)eMtiDn plus standard chewTdiet, (ii) MLD
injection plus bestdpplemaerted dietgifraite Mhjction plus
standard chow diet -cotrdie) iMjleRtion plussbppfemamtiadc
diet (Fig 6¢c). All mice had unfestriaheldwaadee sthitoughout the
study. Mice were sacrificed at 15 weeks of age, and plasma ¢
were collected for further examination. All animal procedures

the McMaster University Animal Research Ethics Board.
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Figure 6. Injection timeline and experimental design

aFive week old mice received multiple low dose injections of
streptozotocin (STZ) or citrate buffer. Two sets of five intrap
injection40@@/kg) were administersed ovedhnde weeks for

each treatment group. Mice were sacrificed at 5, 10, 15, or 2
asterisk), depending onbthieve xpeekmelnt fethmieeApoE

were placed on standard chow diet and randmoem60ed to receive
or citrate bafdé&n (njection. A s-tinesseted fn8¢& received low
dose (0.05 U/24 hours) insulin pellet implants (LinShin Canact
contralBive week old fefmmieeApeEe randomly assigned to rece
STZ oracdetrbuffer infec@)orm{ter one week, half of the mice in e
group were switched to control diet supplemented with 640 m

(CHOW+BNF).
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3.3 PLASMA ANALYSIS

Whole blood glucose levels were mewasimrge d DrExXr to sacri
glucometer (Bayer). Plasma lipid levels were analyzed using
diagnostic kits for total cholesterol and triglycerides purchas

DMA Inc.

3.4 HISTOLOGY AND IMMUNOHISTOCHEMISTRY
3.4.1 Tissue Preparation

Mice were anaesthetized with isoflu®.rdamk,oifnjected with (
200U/mL heparin, and -Llamhedf LiXhPBS plus 20U/mL heparin
through the left ventricle. After PBfSxemdiweilwmie odferfusion
10% neutral buffered fexmialiion tfpbme heart and ascending ao
were, the apex of the heart was cut transversely and the rem
embedded in paraffin. Using the valve leaflets as a point of c
sections (4um in thickness) ofcohle aterdi-o orayicetel wod aes s
slides and used for lesion measurement or immunohistochemi

immunofluorescence (IF) staining.

3.4.2 Immunohistochemistry and Immunofluorescence
Tissues were deparaffinised in xyleneiahd rehydrated thr
dilutions of eth-ambucdie @apitope retrieval (HIER), quenching o

endogenous peroxidase, and blocking serum steps were perfo
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application of the primary antibody. Unless otherwise specifi
manufacturer, all primavgranitnbodaded overnight at 4°C. IHC \
performed using biotinylated secondary antibodies, horseradi
streptavidin, and Nova Red chromogenic substrates. Fluoresc
performed using secondary antibodies 88gged with AlexaFluor
AlexaFluor® 594, followed by DAPI nuspezifcosnaemsigin. Non
was controlled for by incubating similammanteclg&cobirons with |
normal serum absent of the primary antibody. All procedures

according@nrnofexcturers instructions.

3.5 AORTIC LESION ANALYSIS

To determine the extent of athersscteansisf sleeial cross
aorta were stained with hematoxylinsaotiecoslirarddaywae cross
measured at the aortic root reeradteveurytid Otjnrepldhigiton end
Plague volume was estimated by plotting serial measurement:
sectional area and calculating the &Nacundier chetentr weas
asessed at the aortic root by mesaswatriicrgatheerdaataf acedbular

regions.

3.6 RETINAL CAPILLARY DENSITY
Normoglycemic and hypefghyice naitc 5Ap®,E7, 8, 9, 10, and

15 weeks of age (n = 2 per group) wetaranae dthehigdd with is
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with-18mL of -R8@marin solution (20U/mL), abhlperffused with 4

India Ink. Mouse eyes were excised and retinal flatmounts pr
density was estimated using a method WdtBimieélypyaBrowning e
guantification template comprised of 64 sampling boxes align
centred upon the optic disk (Fig 7). The number of vessel int
edges of each sampling box was tallieipHeraderetgednsnod, and
the vasculature. Regional and total capillary densities are pr

number of vessel intersections per number of boxes analyzed
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Figure 7. Retinal capillary density template

A quantification tenseldtef Godnpampling boxes aligned along 8
was centred upon the optic disk. For each tangent (red boxed
of vessel intersections with the edges of each sampling box \
densities were estimated ipheeatradndnod/,epaldiregions by

dividing the total number of vessel intersections by the numb
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3.7 VASA VASORUM QUANTIFICATION
3.7.1 Vasa Vasorum Density

Cross sections of the aorta were immunostained with pol
VWF antibody (1:250), a specific EC marker, followed by Alex
antfriabbit 1gG (1:250) and DAPI nuclear copasetisteain (1:5000)
microvessels were ey lrate d Lif 4byiergelee endothelium with
visible EC nuclei and vessel lumen, (2) a smooth muscle cell
lamellae thick, and (3) a lumen dfatPéverrmbkd sy waan 50pum
defined as the total number of Vv microvessels residing withi

adventitia anddoure petia per aortic cross section.

3.7.2 Microfil Resin Casting

15 week old MiceeEwere anaesthetized with isoflurane and
with-18mL of -R8@marin solution (20U/mL) via the left ventricle.
gauge needle and PE50 polyethylerrentlu loé ,Mnccefrleceived 4
through the left ventricle at a fl03 adbevbrfg5MO&rbfimin
polymerization overnight at 4°C, the heart and aorta were ha
in serial dilutions ol @09y ceénoW&ddrarified specimens were
sent to the Mice ImagieQy &tenlieeUMV@rsity of T-oronto for mict

computed tomogra@iy (magriog.
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3.7.3 Fluorescent Microangiography (FMA)

Normoglycemic and hypefghjicen(ic ABofEer group) at 15
weeks of age were anaesthetized with islbGhukktamfe and flushed
PB&eparin solution (20U/mL) through the-gatigeentricle. Using
needle and PE50 polyethylene tube, mice were perfused with
bead solution contatrdiag &t.eOrdthuo Aaded headymicrospheres
(FluoSpheres® Invitrogen, Burlington, ON)'4% a flow rate of 5
Animals were placed on ice overnight, ahd bhpant ggaldsolidifice
aorta were harvested and embedded in 0.1% agarose gel bloc
used to section the gel-thHicckkse as,1d0dzmerial sections of the
ascending aorta, aortic arch, and descendic@gate®dta were coll

glassides for analysis.

3.8. HYPOXIA AND ANGIOGENIC PROTEIN EXPRESSION
3.8.1 Hypoxia Analysis

Two hours prior to sacrifice; ihScwer&reldiA®mEBnN i.p.
injection of 60mg/kg pimonidazole hydfychoxtieenidaipoxyprob
which fossttmble, immunogeaddpcostem hypoxicseellion&ross
of the aorta were stainedcawnihgfdteddBdIECN1:100), a
mouse monoclonal antibody raisedpagteimstapdomotsiidazole
followed by peroxidase -Eb€jseateerddanyireagent (1:100), Nova

Red substrate, and hematoxthinstdbildgaeiom HilFkder hypoxic
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conditions, aosecticocomsswere stained with a mouse monoclonal
againstlHiRAntigen (1:25), followed by Adeftad-diseri® @88 goat
(1:200) and DAPI nuclear counterstain (1:5000). Staining was

assessed in the intima, mediaadackewdnttidia, and peri

3.8.2 Endoglin Quantification

Hypoximduced endothelial cell activation was examined a
root by immunostaining for-le)ndao dilype(diehatbd? TGF
receptor expressed by acffve @ nalsmdtédirusmof the aorta were
incubated in polyclonal:2®@)t, C®IlOWe(d by biegoaylated anti
secondary antibody (1:200), streptavidin, Nova Red substrate
Using the Vv criteria outlined in 3.4.5, thestibited number of er

microvessels per-a®ctioncmoss quantified.

3.8.3 VESFVEGF Receptors, and Clgaepr€sassspase

Serial esestsons of the aorta were immunostained with po
rabbit VABGR:50), monoclon&l1lrdl1:MBEG)E monoclonal rabbit
VEG-R2 (1:200), and polyclonal eas#@b{tl.2A8Qyelrcmapy
antibody binding was detected using ArdakliRlugpG® 594 goat ar
(1:200) for-A/ESlExaFluor® 48BagdgG a(ti200) -Rdlr, VEGF
and AlexaFluor® 488bdatatla@t(1:200)RRoaMEGlIeaved

casp@#seA sections weaimed with DAPI nuclear counterstain (1:
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VEGRA and cleaved3ciasmas®fluorescence was quantified i
the intima, media, andaadeantitaabyeraking sequential images
each aortisecctasesa. Magmifeoastidamp intensity, and camera exp
were standardized for each stain. Images were processed as
of interest (intima, media, or adventitia) was manually traced
internal clipboard, (2) copieded ag-b3R weleuc oarve rt
thresholded, (3) upper and lower threshold limits were set fo
the total pixel area was measured. Data were normalized to t

interest (intima, media, or adventitia).

3.9 IMAGING

Light micpgsicmages were captured with an Olympus DP71
camera (Olympus America Inc.) mounted atop a Leitz Laborlu
microscope (Leica Microsystems, Germany). Fluorescence im:
with an Olympus DP71 digital camera)(@bumped &dméeéopcaflnc
an Olympus BX41 microscope (Olympus America Inc.). Slideb
(Intelligent Imaging Innovations, Inc) was used to capture all

images.
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3.10 STATISTICAL ANALYSIS
Results are presented as the mean + standard error (SEN
studentest was used to assess differences between experimet

Probability values of less than 0.05 were considered statistic
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4. RESULTS

4.1 MICFAOND MACRASCULAR COMPLICATIONS IN

HYPERGLYCEMIC APOLIPOP®REGFECNERT MICE

4.1.1 ME&D4dnjection induces chronic and progressive hypergly
ApoEmice

Female ApuEe treated w$thZMlledeloped significantly
elevated blood glucose levels by 10 weeks of age (Table 1):
MLDBSTZ and 8.50 + 0.87 mM for citrate buffer control. Hyperc
remained persistent at 15 and 20 weeksrmblaged dydiéould
weeks by implanting 0.05 U/day insulin pellets (9.44 £ 0.76 n
triglyceride and cholesterol levels did not differ significantly
15 and 20 weeks of age (Table 1-STiadireattime ntth art dM £ &s

hypglycemia without altering plasma lipid levels.
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Table 1. Metabolic param’enécs in ApoE

10 weeks ‘ 15 weeks ‘ 20 weeks

Plasma Contrc STAHG Contrc STAHG STZ+Ins Contrc STAHG

Glucos 8.50+£0 32.30+1 7.85+*0 22.96+1 9.44+0. 7.73+0 26.81=:
(mM) M M M

Triglyce 0.58+0 1.40+x0 0.49+0 0.64+0 1.74+£0. 0.63+x0 1.00zx0
(mM) ’

Cholest 4.80+0 10.44+16.74+0 7.00+£1 9.65+2. 5.37+x1 6.33+1
(mM) x -

Tissues

Body |19.08+ 14.50+x(20.19+ 17.86+( 16.70+x019.76+ 17.66=(
Weight h

Lesion 1.10+0 0.55+0 3.83%0 11.*4*101] 2.60+0.15.96+ 16.88+"
(18mm)

6.50+0 4.80+0 8.64+0 5.92 + 7.50+0.14.86+ 8.29%0
Vv Den * ok

N 6-12 6-12 6-12 6-12 510 6-12 6-12

STHG, streptotmdocied hyperglycemic ApoE

STZ+Insulin, strefpeezetbcinsppilermente’d ApoE

Vv Densitynumtedr of vasa vasorum microvesesetiomper aortic cr
*P<0.05,P£0.01, PB.001 relativeatchaeglecontrol mice

P<0.05 relativmac g3 Znice
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4.1.2 Hyperglycetmmdckplh&ve accelerated atherosclerosis at tt
aortciroot

Plague formation at the aortic root was assessed on seri
sections to determinsexlitaqunalcavsa (Fig. 8d), plague volume |
8e) and necrotic content (Fig. 8f) in normbgdycenhic (Fig. 8a)
hyperglycem.icﬁl@l’;‘iﬁ(‘moilfe. At 15 weeks of age, hyperglycemic 1
had d03d larger plageetioomalsarea than normoglycemic control
(0.114 + 0.06flcbr myperglycemic and 0.4f88 + 0.007 mm
normoglycemic). They also had sigamiviccdamiéy(Qréd@dfet plaqu
0.076 *mmrsus 0.199 +°pD .0B®R memrotic content (21.5 + 2.34% v¢
5.57 =+ 2.34%). By 20 weeks of age, dsfdetieorcaels in plaque cro
parameters were no longer significant.

To determine whether plaque poo§fi@sscdtnowas due
hyperglycemia, we examirsed tpbaqu ea cetrsats8d ZApoE
mice that received 0.05 U/day insulin pellet implants (STZ+1In
Insulin supplementation significantsgeceidunaé¢ citipsda qeeacross
to hyperglycemimidA@df 15 weeks of age (Fig. 8g; 0.026 + 0.0
for STZ+Insulin and 0.2f4r+h9p®tflycemic), suggesting that
accelerated atherosclerosis is directly attributable to hyperg

artefact oifnElcZion.
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Figure 8. Hyperglycemia is associated with accelerated devel
atherosclerosis at the aortimiceat®RapApo&ntative images of
H&Estained aortsecdioass from 15 week old noanoglycemic (NG
ST4dnducleyperglycemid®N,Zand -BreAted, insulin
supplemented (ST2+Apdudiice ( Atherosclerotic lesions are
indicated by black arrows, lesion thicknessdihy black bars. Sc
Quantification of pdaquuenaldpsémge volddmand necrotic
contefjtat the aortic root in 5, 1-0/d15N Grech-t B W2 ek
ApoEmice, as indgiQaterdtification of plaqtiencarloasea in 15
weekld ApaoEice supplemented with insukiis. ®it®Btistical analy
mice per group (m=8& per group; me<ab. @G5 EOMQ 1 *

(Studenttest).
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4.1.3 HyperglycefmdckpslEow indications of microvascular cha
in the retina

To assess the effect of hypecglyarimiavarscelassi
abnormalities in our model, retinal microvessel density was a
normoglycemic and hypefghjcen{FdgAp®)E Mice were perfused
with India Ink (R6tring), and retinal flatmounts were preparec
as deibed by BrownfdgBeitetlly, a quantification template compr
64 sampling boxes was centred on the optic disk, and the tot
intersections with each box was tabulated. Density was estim
the average number of vessiedxnapasezreib.nRelative to
normoglycemic controls, hyperglycemic mice had significantly
microvessels immediately after the onset of hyperglycemia. T
was particularly evident in the area immediskglfigurrounding
9a), and persisted from 6 to 8 weeks of age (Fig. 9c). By 15
hyperglycemic mice had a significantly denser retinal microve

normoglycemic controls (Fig. 9b).
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FigureHYperglycemia is associated with microvascular change
retinaRetinal flatmounts from 6 week old normoglycemic and
ApoEmice perfused with India Ink. Hyperglycemia is associate
microvessel deficienciy, thertiegianlsy immediately surrounding -
optic disk (boxed). Representative images taken at low (left,
high (right, scale=100%nb),lmagesfieftioen optic disk from 15
week old Apbde perfused with fluoremsesn$ cailercis@hysm .
Quantification of retinal microvessel density in normoglycemi
hyperglycemit QS AP okice, from 5 to 15 wetksye$ age (

group; mean zpSEDMF.(Studest)s t
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4.2 EFFECTSYBERGLYCEMIA ON THE VASA VASORUM

4.2.1 Hyperglycemmdckplb&ve reduced vasa vasorum density at
aortic root

Vv density was quantified at the aortic root by immunost
antigen, a specific endothelial markewithig.theaintMnarovesse
media, and adventitia were identilfagdrad kadiaotipelisimgle
lumen diameter less than 50¥m, and SMC layer less than two
are reported as the totapomsimbernoifcvOWESsels per aortic cros:
section (Fig. 10b). In norfmgtyecevnvcd ApoiEy increased in a
progressive and significant manner over the 15 week period (
0.66, and 14.86 # 1blandw®6ks, respectively). By contrast,
hyperglycemi"cone)Ehad-ai@roirﬁicant increase in Vv density ovel
time, and had significantly fewer Vv microvessels than normo
each time point examined (4.80 + 0.39, 5.92 +50.61, and 8.29
and @eks, respectively).

To dememe whether Vv deficiency was a direct result of hy
or a side effe€tnjett$drZ, we analyzed VareansdtApoEBTZ
mice that received 0.05 U/day insulin pellet implants (STZ+In
Vv density ime&T&d )’ArpbcEe provided with insulin was similar to
of normoglyceniico AfgoEs, suggesting that decreased Vv densit

specific effect of hyperglycemeatiamd not STZ
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FigurelO. Hyperglycemia is associated with recdudced vasa vas
the aortic root"'imiAp(ﬂErpss$ctions of the aortic root from 15 w
old normoglycemic and hypényglye,emmm WAposEained against
VWF antigen. Vasa vasorum microvessels within the adventiti
(arrows). Represegqéeaatiakeimat low (left, scale=100¥%m) and hi
scale=50%%m) madgn@Qfuaatidinc.ation of vasa vasorum density in !
15, and 20 week old normoglycemic (NGYH&)dAoEerglycemic (
mice. Vasa vasorum density nlembed afsvtdheatoaadlorum
microvessels residing within the intima, media and adventitia
sectiarm8-10 mice per group; mpah. G5 EOMQ 1 X(Stutdent s
testpnd,Quantification of vasa vasorum denkOtweekthe aortic
old NG,-BGZ and STZ+Insumic&)gafd NG-H&ETZnd

In%''fice on C57BI/6J biclagromdikBtedide per group;

mean = SEM); $tesitent s
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4.2.2 Normolipidemic, hyperglycemi{&''@6¢BlA8Joahdviens?2
reduced vasa vasorum density at the aortic root

To control foedeAijxo&ncy, Vv density wastresaseslsed in STZ
C57BI/6J mice andhyeregilyxléytMincse. Bothingdated
C57BI1/6J mice”dtides®evedogpreidicantly elevated blood glucos
levels by 10 weeks of age (22.30 £ 1.37 mM and 21.30 =+ 2.64
8.30 £+ 0.26 mM for C57BI/6J controls) (Table 2). Plasma trigl|
cholesterol levels in C%%Bii64 wedelssgnlbiwantthan
those imagehed Agpmofips (Table 1), and neitheé¥*'€57BI1/6J nor
mice developed atherosclerotic lesions at the aortic root. Mo
hyperglycemic C57BffBthizedhiexds Zewer Vv microvessels than
normoglycemikt6 C xoBkrols (Fig. 10d). These data suggest that
hyperglyciemmduaced Vv deficiency occurs independently of dysli
impaired lipoprotein particle clearance, and atherosclerosis :

deficiency, and provide furtheglgcedsmpeeibtc eefifgpe.r
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Table 2. Metabolic parametans iIM¥niBe/6J

C57BI/6J I ngFita

Plasma Contro STHG HG
Glucose g 54540, 22.00+1. 21.30%2.
(mM)

Triglycer 0. 67+0 1.41+0.2 0.30+0.¢(
(mM)

Choleste 2 3240 3.77+0 0.79+0.0
(mM)

Tissues

B"d(é)we' 19.70+0 15.43+0. 18.97%0.
Lesion A
(18m ) 0 0 °
Vv Dens 7.00%x1. 4.67+0.{ 4.33+0.!

N 3 3 3

STHG, streptotmdocied hyperglycemic C57BI1/6J
Vv Densitynumtedr of vasa vasorum microvesesetliomer aortic cr

"P<0.05 relativmaboclagé control mice
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4.2.3 Fluorescent Microangiography (FMA) imaging confirms \
deficiency in the aortic arch of Hympeaglycemic ApoE

To furtdhveamine the effects of hyperglycemia on the Vv, M
casts of the coronary vasculature were prepared (Fig. 1l1a). (
Mouse Imaging Centre (MICe) at the University of Toronto to
resolution-cointcpoted topmygimCclrp;, however, the degree of
resolution required for 3D analysis of the Vv could not be ac!

The ascending aorta, aortic arch, and descending aorta \
analyzed using fluorescent microangiography (FMA). 15 week
normoglycemic and hypefghjcemierdpmeEfused with an agarose
bead solution containinlgbfélleree scecroypheres. Hearts were
embedded in agarose blocks and cut transversely at 100%m t
sections were cahatysdsfolm support of the reported histologi
findings, hypergly¢emie Apomed fewer Vv microvessels in the

arch compared to normoglycemic controls (Fig. 11c).
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Figure 11. Microfil resin casting and FluoyeGEM®AL microangioc
of the vasa vasoruinmineABoEonary vasculature from a 15 weel
old normoglyceitoApeBerfused with Microfil kasting compou
Micr@GT image of the coronarywv@gsescetatedebiyn the Mice

Imaging Centre (MICe), UnivebsityiohsTofotmteo.aortic arch from
15 week old normoglycemic and hmpeagly)e md cf hpeoE

with 0.0dtameter fluodabedhatlymicrospheres. Ranels on the ri
(scale=50%m) reprmagmtificghhieorn images of boxed regions on t

(scale=100%m). Aortic lumen ( a ) is indicated.
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4.2.4 Accelerated atherosclerosis is associated with vasa va:
neovascularisation in dpshipigdgmémi¢ amo EDLRice

To investigate the effects of accelerated atherogenesis
hyperglycemic model, we measswrtednlelsacgracamsks Vv density in
15 week old &Apb EDLrRice on high fat WEsgerin2diand b).
In these models, we observed a relative increase in plasma I
significant change in blood glucose levels (Table 3). Further]
mice showed a direct correlation between atherosclerotic pro
an¥v expansion (Fig. 12b). These findings are consistent wit
by other grougsaimehicn normoglycemic models, and thus valid

quantification®h¥th’8ds
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Table 3. Metabolic parameardsLiDLRGoE fed Control or

higiiat Western diet

oLk

Plasma Control  Western Control  Western
Blood Glu¢ g 53+ 0. 9.05+ 1. 8.50 + 0. 8.800£92
(mM)
Triglyceril 5 40 4+ 0. 0.74 + 0°C 0.28 £ 0. 1.05 + 0.
(mM)
Cholestel 4, 69 + 0. 9.44 +71. 2.85 % 0. 11.47 +°0
(mM)
Tissues

I+

B"d(é)we" 21.68 + 0 23.18 #1 20.00 + 0 23.43 +°0

Lesion Ar

(1Bm ) 5.86 + 1. 37.51 +'2. 0.34 + 0. 13.94 +°2
Vv Densi 7.83 + 1. 15.83 +'0. 3.25 + 0. 8.33 + 0.
N 4-6 4-6 3 3

Western faigWestern diet
Vv Density, total number of vasa vasorum sectooressels per a

*P<0.05,P<0.01, PA.001 relativeatchseglecontrol mice
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Figure W2steFed Apmthd LDLRice have accelerated
atherosclerosis accompanied by vasa v&uwanmfigrdliideration. e
of lesion-sceotisnal area at the adrdiad roBtnRic & fe &

standard chow (control) mr4GVmscterp eki gup<@u.py;, *

**n<0.01 (StutdestbQQuantification of vasa vasorum density at t
root in ﬁ(aoﬂ LDInRice fed standard chow (control) or Western
(n=46 mice per grOUPBp¥C.01 (Stutdes)sortic cross

section from a 15 wedk dldDWBetiesra, stained with an antibody
against vVWF (med)eamdcounterstain (blue). Atherosclerotic les

(asterisk) and microvessel within the lesion cap (arrow) indic
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4.3 MARKERS OF ANGIOGENESIS AND APOPTOSIS IN

HYPERGLYCEMIC APOLIPOP®REGFECNERT MICE

4.3Hyperglycemi® Mix®eEhave elevated levels oflhkypoxia and H
at the aortic root

Regional hypoxia (Fig-1t3eYpaedsHdi® (Fig. 13b) were
gualitatively assessed on-seextiimmlnaofrmoon ckr5svweeek old
normoglycemic andmigpeggiice. Compared to normoglycemic
controls, hyperglyterde ApadEnore hypoxic cells within the
adventitia (Fig. 13a). Regions staining most intensely for hyg
directly adjacent to atherosclerotcallersvoald, walsetleethe vas
thickest. Hypergly'é‘enrhde AlsmEhad inckeastadnil§ (Fig.
13b) relative to normoglycemic mice, whlith is consistent witkl

stabilization under conditions of hypoxia.
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Figure H8perglycemia is associated with elevated levels of hy
HIFltat the aortic root in 15 WmékeoAd rAizoEsessions

from 15 week old normoglycemic antdnhigeesgdyrced ivcithpoE

an antibody against pinoacrildbardbée(HydoxyProbe Inc.). Orange
arrows indicate hypoxic cells, which are located specifically
surrounding atherosclerotic plague (boxed). Representative i
(left, scale=100¥m) and high (right, sbaleecV % etimagnificati
of the aortic root from normoglycempo®Bmicéyperglycemic
immunostained with an antitodptagaahsgdldldfic lamina (dashed

line) and atherosclerotic lesion (asterisk) are marked. Scale-
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4.3.2 Hyperglycemmdckplh&ve increased endothelial cell activa
the aortic root.

Hypoximduced endothelial cell activation was examined af
root in normoglycemic and hy/'pre'r(géybgenhrircmmpl«»ﬁtaining for
endoglin (Fig. 1l4a)lequhateaRidéeceptor expressed by active
endotheli¥hf®Data are presented as the totmdsitimber of endog
microvesssesiding within the intimia, media, and adventitia (F
Relative to normoglycemic controls, hyperglycemic mice had
endogpimnsitive or active Vv microvessels at 15 weeks of age
for hyperglycemic antod 2®&rmohly@emic). Differences between

groups were no longer significant by the 20 week time point.
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Figure 14. Hyperglycemia is associated with increased endotl
at the aortia Aoottic csessions from 15 wegly odchircoamad
hyperglycemi"cmA@e)I:‘stained with an antibody against endoglin.
taken at low (left, scale=50¥%m) and high (right, scale=20%m)
Endogpimsitive microvessels are imQicaneidi¢atromw D)f.
endogpicsme microvessels at the aortic root in 5, 10, 15, and
normoglycemic (NG) and hypk &gl WgkmnEic efSAEZmice

per group; meanps0SEM{|Stutdent)s
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4.3.3 Hyperglycefmdckplh&ve a relative defieAeacy¢ of VEGF
VEGF receptors at the aortic root

We assesséddréldblated expressiAn WE JERIF, and
VEGFR2 protein at the aortic root in 15 week old normoglyce!
hyperglycemitcmApeBising imnesteflcer(Fig. 1 aya¥EGF
expressed predominantly within the atherosclerotic plaques,
mice had significantly desiniviGGRan normoglycemic controls (
15b). VEGFR1 protein levels, which areldimdetly regulated by
hypoxic confitiverse also reduced in hyperglycemic mice relati
controls (Fig. 15a). Similarly, VEGFR2 expressi-on, which is r
A in an autocrif®e masiségnificantly reduced within the lesions
hyperglycemic mice compared to controls (Fig. 15a). Collecti
observations indicate aabyperatgdemimair+herretgafakied

VEGF expression.

80



M.Sc.eBhsk.J. Veerman McMaster UnivMeslitoyal Sciences

Figure 15. Hypmrglyx associated with + dinade ¥ B/E&FG F

receptor expression at th&eadtibicsrobttha,aortic root from 15
week old normoglycemic and hymdcglymemuitoApoiBed against
VEG-A, VE&RHA and VEBFas indicatedadhthitetaamlirra (dashed
line) and lesion (asterisk) are mQulkedifSaaien 280f/2\WE G F
density within the lesion, media, and adventitia of normoglyc
hyperglycemit QS APokice at 15 weelis6ofmagen £ SEM).

*p<005 (Studeasty.t
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4.3.4 Hyperglycemmdckplb&ve reduced expression of cleaved
caspaxsat the aortic root

Cellular apoptosis was assessed at the aortic root in nor
hyperglycemitmApe by staining for cleaved-3J adtiyated) caspas
l16a). At 10 and 15 weeks of age, hyperglycemi8 mice had les
expression within their atherosclerotic lesions than normogly
16b). By 20 weeks of apetwedidhegenaoes were no longer appare
However, 20 week old hyperglycemic m3cexppalspiogitine caspa
medial smooth muscle cells directly adjacent to atherosclerot

normoglycemic controls did not (Fig. 16a).
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Figure 16. Cleavedl eapmessdon within the emices @f ApoE
Aortic csessions from 15 and 20 week old normoglycemic and
hyperglycemitmip®eBtained with an antibody against cleaved ¢
Internal elastic lamhreal (Wwhe)eaddsatherosclerotic plaque (yell:
asterisk) indicated. P-®sstavaingswasealso noted in medial SM(
20 week old hyperglycemic mbc® uauwttitecatromw 0)f cleaved
casp@setaining area within the yesnoics (NfGoamd HIT Z

induced hyperglycemitm(id&)afnBoEL0, 15, and 20 weeks of age
are normalized to totaédeivimnalnadessiCe per PrDupPb; *

(Studentte st)

84



M.Sc.eBhsk.J. Veerman McMaster UnivMeslitoyal Sciences

85



M.Sc.eBhsk.J. Veerman McMaster UnivMeslitoyal Sciences

4.4 EFFECT OF BENFOTIAMINE EINOPME NDIE® F
MICRAAND MACRMMASCULAR COMPLICATIONS IN

HYPERGLYCEMIC APOLIPOP®REGFECNERT MICE

4.4.1 Benfotiamine supplementation reduces atherosclerosis
normoglycemic and hyperg"]yndemic ApoE

To determine the effect of Ibemfe®dliandine davatiopment,
we measured plasgeeicanassarea and plague volume at the aorti
normoglycemic and hypefghycemit tpomBard chow or
benfotiasupelemented diet. At 15 weeks of age, hyperglycemi
normoglyclepoiEmice on benfestiamiemented diet had plaques th
were smaller-sactrosal area thanfedrmadtchlsw(Fig 17a). In
addition, benfotiamine supplementation reduced plaque volum

standard chow in both mygperoghycgiycemic mice (Fig. 17b).
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Figure 17. Benfotiamine supplementation reduces atheroscler
normoglycemic and hyperdimdee.RadagquocE sreocstsonal area

at the aortigmnoandOevédmytdOreafter in aowtaekfodd 15
normoglycemic (NG) or hyperglymécreide(d Gy nApmlEdiet or
control diet supplemented with benfotiamine (+BNF). Statistic
mice per group (n=3 mice per gmEOpOinmealmtive BM )control

diet withinrsatmeent group (Statd@iacgue volume in NG and

HG Aprmice fed control diet or control diet supplemented witl
(+BNF). Statistical analysis of 3 mice per group (n=3 mice pe

SEM).
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5.0 DISSCSUON

Atherosclerosis, a macrovascular complication of DM, is
cause of CVD and the primary mediator of mortality in people
Much effort has been focused on delineating the cellular and
mechanisms by which hypetgbyaémeimopcbemrosis, but the role o
Vv in this relationship has not been explored.

Here, we show that chronic hyperiglgaissoiaianedpoE
with classical diabetic microvascular and macrovascular path
demonstrate that Vv density is reduced at the aortic root in h
and show that such deficiency directly correlates to accelera
Altered expression of hypoxic markers and key angiogenic pr
with these morphological changes. Lastly, preliminary data in
benfotiamine, a drug used to treat diabetic microvascular dis

atherosclerosis in hmpeeglycemic

5.1 Classical Micro and Macro Vascular Complications in Hyp
ApoEMice

Consistent with previously??Tepatiea Shrodintdst
hypeygkemic A(‘mtnil:ée develop significantly larger atheroscleroti
the aortic root than normoglycemic controls by 15 weeks of a

these lesions largectionarloasea, but also in necrotic content,
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that hypergdymese havendrgreer advanced lesions than controls.
These vascular changes appear to be directly attributable to
hyperglycemia, because they occur prior to the onset of dysli
attenuated when glucose lewglansnelinorPlabuedparameters in
both groups plateau at 20 weeks of age, likely because high
within the aorta induce a physiological threshold on inward p
and luminal narrowing.

In addition to changes $®lshehymergl wesSmiice poE
show indicationensketearigrovessel deficiency in the retina, fol
significant capillary neovascularisation at later time points. |
also seen retinal capillary change®rasS ®zjelytidd one week aft
and vasoregressikmoivenaewelly clinical feature of proliferative
retinop&®®h@apillary dropout leads to ischemia and increased
protein expression in the retina, which is thought to stimulat
neovascularisation and proliferatrv.e Tdie ke i p orreatli nooopua stey
of vascular changes in our hymécglysiesrbestApitE these

reported clinical findings.

5.2 Hyperglycemia and Vasa Vasorum Deficiency
Using this model, we investigated the effects of chronic
the microvessels of the Vv. We foundtmatehhaarglycemic Apo

signifiexptansion of the Vv at any time point examined, despif
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increased lesion size. HYp'&ngtecemdcsSjesed C57B1/6J

mice also had significant reductions in Vv density, indicating
microvascular changes arkyshidademdananaf can occur in the
absence of atherogenesis. Normalization of blood glucose le\
restored Vv density, further supporting a direct role for hype
effect.

Progressive vasodegeneration and vmpsadtedmgagowth of ne
recognized as major underlying factors in the initiation and p
diabetic complications, including retinopathy, nephropathy, a
Diabetic retinopathy is characterized by pericyte loss and de
capillbtgod flow, followed by EC death and’atérrant vessel di
Endothelial damage in the glomeruli of diabetic kidneys restr
intrarenal capillaries, bedainoapol l@eyitnegression, tubulointers
hypoxia, and progressive’ ldRarttibrmoise, structural changes i
the nerve microvasculature, which includeeBBIrahichkening, per
and vessel occlusion, lead to vasoregression, reduced nerve
endoneurial Fypgd¥ireus, early Vv deficiency in our hyperglycer
ApoEmice may represeyteaw@ininionary process in the course of
diabetic microvascular disease. Given the temporal pattern o
the retina, it is possible that this Wwndetfiecidecy o an early
hyperglycemia, and may pimedceckevisebdlelmrasation at a later

time point.
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5.3 Vasa Vasorum Deficiency and Accelerated Atherogenesis

To validate our quantification techniques, we analyzed V
aortic root in normoglemedni®B&RIcE on-feighVestern diet.
We found that Vv expansion directly correlated to atherosclel
dyslipidemi¢ o ED'L'Rice. This observation is consistent with
reported by other groups in humadsiean @ timemded e nefsispid
81.93.95.10%%¢%neovascularisation in normoglycemic, dyslipidemi
models is tloofuagchtitate plaque progression by delivering lipid:
inflammatory cells to arterial wall. Newly formed microvessel
prone to rupture, and may contribute to necrotic core expans
destabilization via emmoaphagee ha

The fact that Vvnegmasitplyelated to plaque progression ir
hyperglycemicmAp®Bneans that Vv neovascularisation is not n
for accelerated atherosclerosis to occur in this model. It is p
micressel density could directly contribute to atherogenesis |
removal via the reverse cholesterol transport (RCT) system, |
accumulation of lipids and inflammatory cells, accelerated pl
necrddisindeed, the venous and lymphatic arms of the Vv are
important for HB’?2 affdubow Vv densities correlate with inflamn
and simbimal thickening in tteeriesrofdrigeduced Vv blood

flow and ischemic injury also induce VSMC proliferation and

deposition, which may further ex&c¥rtbateulpemsdon ofr owish
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Barker et al reported that the occlusion of adventitial Vv in p
intimal hyperplasia and artéfiihevaldsteypedi@orrelation
between adventitiad hgpekdnatenxd atherosclerosis in our hyperg

mice is consistent with this hypothesis.

5.4 Hypdrdauced Expression of Endoglin, VEGF,-and VEGF Re
1 and

In our hyperglycémiceApw& observed increased hypoxia,
elevated odéviedlEt protein, and increndaedeldypardicathelial cell
activation in the aortic root microvessels at 15 weeks of age.
consistent widhgaogremic response. HowV¥ E4RE V B Gd
VEG-R2 levels were lowerghytleenicy mice compared to
normoglycemic controls. This discrepancy between angiogeni
response likely explains the reduced Vv density seen in 15 w
hyperglycemic mice. These findings are consistent with those
al 0D9), who reported that diabetic fibroblasts and db/db mou
defective in their capacity to upregulate VEGF in response to
ischefPaThey attributed this impaired YMEGF upregulation to
methylglyoxalced modification dfidhielragltediHeregion
of transcriptional coactivator, p300, -vhitrlans acd s\eaittiial for HI
and HBEndit'gThis mechanism could reasledneXpa ebseion

VEGF and its receptors in our hyperglycemic mice.
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Although VEGF and endogliniadedibtb ggpesiaand both
contain the same HRE functional consensus sequence within
report differential expseinisitbe pattterxt of hyperglycemia: VEG|
suppressed, while endoglin is upregulated. The reason for th
expression is probably multifactorial. The endoglin and VEGF
synergistically activated by hYpgbdbiat @md olg@ilm s promoter is
more sensitive to TGF stimulation, while hypoxia is a stronge
VEGF promoter. Furthermo-ie:, adthwitghdéid&nds on the
recruittmeim CBP/p300 transcriptidffaCRBaxniv pt3o0@ exhibit
varying degrees of specificity for HIF target genes, and coul¢
regulation on the VEGF and éhdbasithyprwmideetrtse CH1
domains of CBP and p300 are ifidisprssathVatiom Hthkey are
only required for an-a0%radegldbBbréldponsive gene
expressiomdditiomaiestare required to elucidate the relevant

mechanisms that underlie this effect.

5.5 Benfotiamine and Atherosclerosis

Benfotiamine attenuatesirmdwpeadImienmniaascular
complicationsiipeSted rodents and in pHtiéebust wigh DM
effect on the Vv and atherosclerotic progression are unknown
hyperglycemicmbpusE model, we examined atherosclerosis at t

root in mice fed standardenfowswpmmsee mented chow. Early
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preliminary data indicate that benfotiamine reduces plaque p:
hyperglycemic and normoglycemic animals, however, the role
effect has yet to be explored. Thetalkiduytef gelndoseamine

toxicity in microvascular cells has''8eéh'dedlidtosumented

possible that benfotiamine may have a protective effect on th
Vv in hyperglycemic mice. The fact that atherosclerosis was
normoglycemicmAp®®n benfotiamine diet suggests that the dri
affect agbaesis independently of glycemic status. Such an eff

complicate the interpretation of these interventions.

5.6 Critical Appraisal and Significance of Work

Conclusions drawn from this work are subject to a numbe
relating to thrmodeblseself and to the role of angiogenesis in a
Firstly, it is virtually impossible to separate the effects of hy
hypoinsulinemia in animal models of hyperglycemia, which re
insulin to induce higlk bdwebtsglAix®such, the effects that we ha
ascribed to hyperglycemjaCbvBUBG ApaEdins2nay be
equally attributable to the lack of insulin in these models. Se
association between Vv neovascuolarbosacipnognelsatbherbas
been wveelttablished, direct eviderawe astui@lgofoirngha Vv in
this effect is lacking. Lastly, the interpretation of data suppc

angiogenesis in atherosclerosis is complicated by our relativ
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understanding of the mechanisms underlying both of these pr
plieotropic nature of many angiogenic proteins, including VE(
comple¥ity
Despite these concerns, the wovik @sesigmtiéil dretr en eow

insights into the relationship between hyperglycemia and CVI
incidence of DM is steadily increasing, and the cardiovascule
DM account for the majority of morbidity and mortality in peo
Thus, understanding how diabetes and hyperglycemia promote
critical to the identification of novel therapeutic targets and

strategies.

5.6 Future Directions
The following experiments would extermodetdteafiddings of t
provide further insight into the role of the vasa vasorum in d

atherosclerosis:

A. Characterize structural and morphological changes in the
of hyperglycemVeo Mdedeciency at the aortic root should be conf
ex@nded upon using various €®Thamglyesss Mowrld be used to

characterize Vv branching morphology, vessel tortuosity, voll
endothelial surface exchange, among other outcome measure:

capillary ultrasduldtsihedwfurther light on the integrity of cellu
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junctions, BM and pericyte abnormalities, and other markers
The presence of classical features of diabetic microvascular
presence of acellular oapelayiess,mand haemorrhages, would

further support the findings of this work.

B. Extend vasa vasorum analysis to longer time points and di
bed&arly Vv deficiency in hyperglycemic mice may represent

evolutionary propescgremsdioen of diabetic microvascular diseas:
may precede neovascularisation at later stages, as in the ret
vessel growth, as in diabetic wounds. Carrying mice out to lo
would allow us to furthempxraahic®utse bd Vv changes at the a
root. Correlation of these findings to atherosclerotic progres
the fact that plague parameters at the aortic root plateau aft
such, temporal Vv studies teageldave doffeeeeent vascular beds,

such as the coronary arteries or descending aorta, where pla

not plateau as early.

C. Further examine the role of angiogenic factors and methyl
vasorum defidireemmcyrrent fumgdiegptstbat altered expression of

hypoxic markers and angiogenic proteins coincide with struct
aortic Vv. Further quantification of angiogenesis markers at «

using multiple techniques (exsihilO mdhicithhrodp/asma ELISA)
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would strengthen this work. Investigation into the potential r
induced modification of p300 in impaired VEGF expression at
would also provide further mechanistic insidhtioom our results.
of angiogenesis using genetically controllable mouse strains
mice) or administratmdnaardfgiogenic proteins could clarify the

of Vv neovascularisation in diabetic atherosclerosis.

D. Extend vasa vasoruto anabydses hiimardevelopment of
effective therapeutic interventions reltesres eaaanlsliatiog benc
the human disease state. Extending Vv studies into diabetic |
enhance the clinical significanweudf @upwviedsu ftsrtfaerdinsight
into the effeehatsgddicose intolerance on Vv dysfunction and
atherosclerotic progression-ekh®tiprge sreet@d oliccabnormalities
in human forms of DM, including dyslipidemia and insulin res

complicate the interpretation of results.
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6.0 CONCLUSIONS

Hyperglycemia significantly increases the risk of micro a
vascular complications in DM, and microvascular dysfunction
explain the relationship betweésn dridodligdetics€EV®OveUsing an
in vimodel of-i8ddced hyperglycemia, we have demonstrated tl
chronically elevated blood glucose levels are associated with
aortic root. Accelerated development of athyegreooscderosis occu
mice despite this Vv deficiency, and impaired neovascularisa
contribute to atherosclerotic necrosis and core expansion. TF
appear to be directly attributable to chronic hyperglycemia, &
indepemtdy of dyslipidemia, and can be attenuated when gluco
normalized by insulin. A localized deficiency of VEGF and its
aortic root may explain the neovascularisation defect seen in
Lastly, prelimimary at@tahiat benfotiamine, a drug used to trea
microvascular disease, may reduce atherosclerosis in hyperg
knowledge, this is the first evidence to suggest a potential r
neovascularisation imslcbhdretscsathlee next challenge lies in
determining whether temporal changes in Vv neovascularisati

actively contribute to the development and progression of dia
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