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' ABSTRACT

This thesis investigates the problem of motion for
extended bodies from the viewpoint of classical field theory,
where.the‘classical field is the bgdy's energy-momentum or
matter tensor.

In Special Relativity a syrnmetric and divergence-free
matter tensor combined with inertial frames is used to generate
a kinematics for extended bodies; but I have shown that -if the
matter tensor also obeys the weak eneréy condition, £hen both
types of massless spin radiation must have an infinife spatial
extent in all Lorentz frames. This does not agree with the
observation that finite light beams put é torgque on cfystals
as they change their polarization while traversing the crystal.

In General Relativity I have suggested a kinematics .

"analogous to that accepted in Special Relativity and applied

it to the simplest non-trivial example of static, spherical

stars. In essence one looks for special sets of vector fields
whose matter currents are conserved. Such ; set of ten vector
fields defines a special frame and integrals of the conserved

matter currents define ten momenta which give the kinematics.

a simple application of de Rham cohomology theory shows that the

conserved matter currents for isolated bodies will have mechanical

potentials which enable the momenta to be found from flux inte-

.

grals evaluated in the vacuum region surrounding the body.

iii



These potentials contain the full ﬁiemann curvature allowing
a body's General Relativistic momenta to be determined by its
vacuumrgravitationél field. i

This approach has several important differences with
prgvious attempts at a General Relativistic kinematics. By
wogking directly Qith the matter tensor employed in Einstein's
equations, it seems unnecessary to invent energy pseudo-tensors 4
or other secondary objects to define momenta. By integrating
matter currents which yénish in the vacuum, the momenta receive
no contribution from vacuum regions. In this way one avoids
the problem of motion without matter, Q%ich arises if the vacuum
is endowed with momenta. By integrating divergénce—free matter
currents, one obtains conserved momenta for isolated bodies.
The existence of divergence-free vector fields is a very weak
condition, gquite unlike the existence of metric symmetries, so.
that conserved momenta can be obtained in the absence of metric
symmetries, as is explicitly done for six of the ten momenta
for static spherical stars. |

Although an example of this kinematics has been given for
static spherical stars, much remains to be done. I have shown
£hat there are many conserved matter currents for arbitrary
bédies, but it is not yet known how to use Einstein's equations
to single oﬁt the physicaily interesting ones for arbitrary space-
times. Related to this problem is the question of the final form

of the mechanical potential. ‘Work in this area will shed some

iv .



light on the special frames. Are they directly analogous to the
inertial frames of flat space, but determined by the matter
distributioné What is the Qroup of transformapions which links
the sgecial frames in arbitrary space-times? If it is not the

Poincaré group, then would the group provide a richer physical

structure?
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CHAPTER I
iNTRODUCTION

The problem of motion is a venerable one and the major
contributions ﬁf its understanding in this century have come
from both Spgcial and General Relativity. In the first modern
kinematics the motion of an extendéd body is reduced to an
equation for the line described by the body's mass centre
which réquires a Gaiilean frame for its definition. In "the .
absence of external forces, Newton's first law requires the
mass centre to travel a straight line in the Galilean frame.

The advent of'Special Relativity did not qualitgtively change
this view éf motion. However, the view of both space-time and
matter did change - the Galilean frame was exchanged for a
Lorentz frame and the centre of mass became the centre of

energy or centroid. As yet the problem of motion is unsolved
for General Relativity, but it is the suggestion of this thesis
that the same view of motion holds in General Relativity with
Lorentz frames replaced by special frames determined by the matter
distribuﬁion and the centroid defined as a moment of the matter
tensor. This is a very difficult problem and although much work
remains to be done, ﬁhis thesis has made contributions towards

/

The first of these is in the realm of Special Relativity

its resolutionﬂ

and has to do with the frame dependence of the centroid. This'
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work is presented in chapter III and has been published as "Mini-
mum Size of Radiation with Spin"l. Previous treafments of
Special Relativistic Kinematicsz'3 have suppressed the centroid’s
frame dependence by using only the rest frame centroid. ‘The to-
tal angular momentum which has no Loréntz covariant splitting is
usuaily split‘into a rotational part about the rest frame cen-
troid and an orbital part due to the linear momentuﬁ acting at
thé rest frame centroid. Chaptef IIT obtains a kinematicé ap-
plicable to massless bodies or gulses of massless radiation as
well as massive ones. Here the total angular ﬁomentum is split
frame dependently into a spin about the frame's centroid and an
orbital part due to the ‘linear momen tum acting at that frame's

. centroid. The important fesult which follows from this decom-
position is that all the other centroids can be foﬁnd simply
from the body's spin and lineax ﬁomentum, the centroid being
dﬁiqug when the spin vanishes. Applying this result to massless
bodies with spin shows that they must have an infinite spatial
extensioq.’ This is the massless case of the well known centroid
theoremz’4 for massive bodies.

With Special Relativistic Kinematics thus completed one
can see how to write if ipvariantly and discover how much of it
can be incorporated into General Relativity. This is accomplished
in sections 2.3, 2.4 and 4.4. 1In Special gelativity the ten~
momenta one uses to describe the centroid are the integrals

of matter currents arising from vector fields associated with

. . 5 . . .
the inertial frames~. The ten vector fields which give the

)
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matter currents are Killing and this ensures that the matter

currents are conserved as are their momenta for isolated bodies.

It is this reliance on metric symmetries and their Killing

-

7

vector fields for conserved momenta which has hindered all pre-

6:7 4t incorporating Special Relativistic ideas

vious attempts
into General Relativity. When the kinematics is invariantly
wfitten one immediately sees that it is the conserved matter
currents which are crucial to obtaining an équation 5f motion
for the dentroid and not the metric symmetries. This very for-
tunate gi}cumstance creates the possibility of an analogous
kinematics for General Relativity. In section 4.2'it is shown
éhat the existence of a conserved matter current is an extremely
weak‘condition quite unlike the eglstence of metric symmétries.:
Consequéntly one can inquire as éﬁgghe existence in General
Relativity of special coordinate frames with the Qroperty that
their ten vector fields; analogous to the ten Killing vector

>

-fields qéﬂ}nertial frames, generate'consérved matter currents.
. -+:.f .,l .
As yet this is an unsolved problem. However, section 4.5 gives

an examélé of a fully General Relativistic speéial frame for
static, spherical stars with a geodesic centroid and its momenta
coincide with the Special Relativistic énes in the weak field
limit. Since there may be many special ffames for static, spheri-

cal stars, the frame was picked hy the symmetries so that four

of ten momenta would be the direct analogues of flat space

N
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momenta and arise from the metric symmetriés. The

matter was then restricted so that the remaining six momenta
wouldvbe conserved even though théxki:tnot come from metric
symmetries. Although the resulting ma&tter is unphysical, this
example shows that kinematically interesting c?nserved matter

. currenfs not due to metric symmetries and capable of giving
geodesic centroid motion do exist in General Relativity. Many
questigns posed in section 5.2 remain to be answered, but a new
approach has been opened to the problem of motion in General
Relativity.

-Another novel feature of this thesiirig its“use'of two-
forms whose exterio; derivative is-a matter current three-form.
Such matter currents are automatically conserved and section 4.3
examines when such two-form potentials exist for conserved mat-
ter currents.’ fﬁg use of such potentials is more than just a
calculational convenience to convert the three dimenéional inte-
grations for momenta to two dimensional ones. For under very
general conditions discussed in section 5.1 these potentials can
depend linearly on the full Riemann curvature as happens in
section 4.5 for the Schwarzchild.momenta. This circumstance

permits the purely mechanical momenta to be derived from flux

integrals of the vacuum gravitational field surrounding a body.

This is a very strong version of the equivalence principle and
provides another approach to the conserved matter currents of -

a special frame. Such curvature dependent potentialsjexpress

S . .
.the long range character of the gravitational field and should

N



have more general applications in’ discussing singularities anad

the patching together of different solutions to Einstein's

equations.



CHAPTER 1II

REVIEW OF KINEMATICS

2.1 Inertial Frames

Through Einstein's penetrating analy5158 of mechanics,
the existence of inertial frames appears somewhat mysterious,
but absoluﬁely essential to the problem of motion in flat space
physics. Geometrically an inertial frame is a set of global

qoordinate functions x" whose vector fields

— )
Du = _Ei {la)
ax
are orthonormal
g(Dy,Dv) = -1 p=v=0
= +1 p=v#£0
= 0 nFEv

. . .9 . . .
where g is the space-time metric”. Because of this an inertial

frame has no gravitational forces

u
F\J}\ = 0 W,v,Ae(0,1,2,3)

and its basis vectors satisfy Killing's equation

R u9=0 | (0,1,2,3)

'In any inertial frame, there are six more Killing vector fields
with a simple coordinate representation, three rotational
b 3

a
A — - X — (1b)
$c = x Bxb 3 x>

where é, b, ¢ are a cylic permutation of (1,2,3), and three

6



pseudo-rotational or boost vector fields

Ba = xo 9 + ox2 9 . (lc)

. 3x? a X

-

Inertial frames have many other nice properties, but the fact
that the gravitational forces vanish and that the ten vector fields
(1) are Killing is sufficient to generate a Special Relativistic

Kinematics for appropriately described matter.

2.2 The Matter Tensor
The mechanical properties of matter are described with
'a second rank tensor T, called here the matter tenéor. In ge-

neral it has four properties: ’ l

/

1) *- v vector fields X,Y T (X,Y) = 0 iff there is no matter '
: P at ‘point p

2) V timelike vector fields W T(Wrgf >0 \H_“d;////*
®

3) ¥V vector fields X,Y T(X,Y) T(Y,X)

)4) V. v = 0

Il

Property 1 says that the patter tensor vanishes where
the matter does. Central to the problem of motion is the con-
cept of an isolated body. Such a body is not contiguous with
any other matter and is realized as a woild tube of non-vanishing
T surrounded by an immediate region of vacuum where T does
vanish.y | )

. Property 2 is the weak energy condition and it assumes

that the energy of a body is always positive. It is used in the

- *



next chapter to show that-in Special Relativity a spimning
body must have a minimum size. .
Both property 3 that the matter tensor is symmetric
and Property 4 that it is divergence-free are crucial to ob-
taining conserved momenta.
In General Relativity the matter tensor is assumed to

héve these four properties as welllo,but the last two obtain

by virtue of the field eguations

G = 8nT.

If a general relativistic energy could be defined.for

physical ﬁanifolds} then property 2 would assure its po itivity,

as is explicitly done in Chapter 1V for Schwarzchild manifolds.

-

-

2.3 _Conserved Matter Currents

Any vector field K has a matter current J, associated

with it via the matter tensor by

JKE T(K,*). , (2)

. 3
Using the metric, the matter current may be regarded as either

a vector field or a one-form. For the present JK will be taken
as a one-form having the coordinate expression

B a
=7 w
JK GBK

- O . .
where w are the coordinate basis one forms.

For any compact three-surface I, a quantity of motion



QK(Z) can be defined as

"
*
o

QK(E) (3)
E .

where the right hand side is the integral over I of the three-
form thaf is dual to the one—form,JK. This quantity of motion
can be thought of as the total amount of matter in I that is
flowing along the vector field K.

Coﬁsider a compact four-dimensional region V4 whose
boundary BV4 cén be sliced by some spétial hyper-surface into

two disjoint three-surfaces I r

1" "2

av = z + Z - (4)

Then choosing avq for £ in (3) and noting that El and 22 have

opposite orientations allows the use of (4) in (3) to give

Qg (3V4) +J *JK=J * Ty

- z

1 2

This says that the total amount of matter flowing along K into

V4 (in —Zl) may differ from the total amount of matter flowing

4 (in 22) by an amount QK(BV4).

along XK out of Vv
The conserved matter currents arise from the vector fields
V whose quantity of motion vanishes for any three-surface which

bounds a compact four-surface.

QV(8V4) = 0 ; V compact V4 (5)



e

Stoke's theorem27 states that the integral of the exterior deri-
vative of a p-form w over a compact pt+l-surface I is the inte-

gral of the form over the surface's boundary:

L -

Combining (3) and (5) and using this theorem .shows that conserved

matter currents arise from vector fields V satisfying
Y

d*JV = 0 ;- \' compact'v4
J
va
which will be true if and only if
d*JV =0 .
This is equivalent to
*d*JV = 0 (6)
or in components
a
JV ;o =0

Thus a conserved matter current is divergence-free and in
Chapter IV it is shown that regardless of metric symmetries
‘ [

every vector field can be rescaled to give a conserved mattéri

current.
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2.4 Special Relativistic Kinematics

The last three sections can be used to obtain a geo-
desic law of motion for isolated bodies in flat space, i.e. a
Special Relativistic Kinematics.

Consider the divergence of a matter éurrent Jg of an

arbitrary vector field K

7o (Ta

B
K;o X7)sa

B
With properties 4 and 3 of the matter tensor, this becomes

3% =31 T“B(KB_ + K

K ja 2 ja a;B)' (7)

So a sufficient condition for JK to be conserved is that

which is just the component form of Killing's equation

oQKg = 0

stating that K is a metric symmetry.

In flat space physics there is no connection between
the matter and the space-time, so the condition that K be a
metric symmetry is also necessary for Jg to be conserved, in
the following sense. Suppose Jv is conserved for some T, but v

is not a metric symmetry

VG:B + VB;a # 0 . (8}
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Then (7) becomes

TQB(V -V

o;8 gral =0 - (2)

Now without altering the geometry or the value of (8), the mat-

ter T may be replaged with more arbitrary matter

T' = T+t

So by (7) and (9) the divergence of J; is'

_ 1 _aB
J, =zt (v, .

Via i B B;ﬂ)

which will not vanish unless V is Killing. Thus in flat space
physics conserved matter currents for arbitrary matter distri-
butions arise from Killing vector fields alone.

The Special Relativistic momenta are the ten gquantities

of motion

PG = QV(Z) (10)

where V is any of the ten Killing vector fields (1) associated
with an inertial frame and I is some compact constant time sur-
face of that frames’g. For an isolated body a constant time
surface will slice the body's world tube disjointly provided
the body's motion is causal. Then to obtain momenta for the

body I can be chosen as any portion of the constant time surface,

whose boundary 3 lies in the immediate vacuum region surrounding

the body.

LA
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Consider a compact four dimensional region V4 which
contains a segment of the isolated body's world tube and whose

boundar? 8V4 is made of three pieces

. ' v =L - El + C (11)
where Zl is arbitrary but has the same orientation as the con-
stant time surface I and like I has its boundary in the vacuum,
and C3 is a three-dimensional "collar" surrounding the body's

world tube and lying entirely in the vacuum. The gquantities

of motion for the surfaces in (l11) are then from (5) and (10)

_ _ 3
0 = P, QV(El) + QV(C ) . (12)

Since the matter vanishes on C3 so does its/matter current and

by (3)
3
QV(C ) =0
reduéiﬁg (12) to

, PV = QV(Zl) . (13)

Thus the special relativistic momentum Py for an isoclated body
can bé‘found by integrating *JV over any compact three surface
Ly which'has the same orientation as a constant time surface
and has its boundary entirely in the vacuum. This important
result permits the evaluation of the derivative

30, (Z) Q (2)-0 (L))

on At~+0 At

1.



14

where I is the constant time surface xo = t and Zl is xo = t+4t.

When the Q. (Z) is a momentum for an isolated body, this deriva-

tive vanishes

BPV

= 0 . (14)
on

The kinematics is then obtained by introducing the cen-
troid curve which is the world line of the centre of energy
for the isolated body. This is done invariantly in Chapter
IVand in the usual way5 in Chapter IXII. The centroid curve i;
quite ‘frame dependent; but because of (14), it is a line of
constant slope in an inertiﬂi frame. Since the inertial coor -
dinates have vanishing connection cocefficients, such a line is
geodesic. In this way an isolated body is found to OSSY a
geodesic law of motion in flat space.

Before finishing this section it is worth showing the
momenta, here defined invariantly, do in fact reduce to the

usual non-~invariant expressions. From (3) and (10) one has

Pv = *JV . (15)

where V is a member of (1) and £ is an inertial constant time

. . a .
surface. In local coordinates with w as basis one-forms, *Jv

*

is

*J.. = ']é H yVn T A ¢

v v peBy

where n is the permutation tensor. Since I is a constant x

surface (15) reduces to
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_ 0 _B '
PV = J T BV . (16)
When V is any of the Dy

and (16} is

which is the usual expression for the linear momenta PU' When

V is any of the ¢c

VB = xaﬁs - beB
b a
the (16) is
_ 0 . a_ .0 b
P¢c = T bx T ax
; z

which is the usual definition of Ji@' the spatial components

of the so called angular momentum tensor. Similarly the three

o - .y .
Py, are the components J a One can easily verify that p¥ and

pv

J transform invariantly under the Poincaré group which links

the inertial frames.

2.5 Field Momenta in General Relativity

One very important difference between General Relativity
and all other classical field theories is that the source-free

fields in General Relativity are by definition matter-free. In
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other field theories there are two kinds of matter; that of
ponderable bodies where the sources reside, and that of‘the
source-free field. 1In Classical Electromagnetism the electro-
magnetic field has tﬁe Maxwell stress tensor for its matter
tensoy® and the ponderable body whether charged or not has some
other\matter tensor. This distinction between'field-and‘
matter appeared most acutely in the attempts to build a burely
electromagnetic model of'chargell. The Maxwell stress tensor
for the charge had to be augmented by Poincaré stresses of |
completely unknown origin in order to prevent the charge from
exploding. The all pervading character of the electromagnetic
field made it seem somehow immaterial - even though the field
has a well défined matter tensor. On the other hand General
Relativity takes any matter tensor; whether it arises from a
pure classical field or not, and with Einstein's eguations uses
the matter tensor as a source for space-time curvature. Thus
unlike any other classical field theory General Relativity .
assumes a unified description of matter by means of the matter
ltensor. Consequently for matter-free regions the source-free
gravitational fields occurring there are truly immaterial.

To gain some insight into General Relativity, the weak
field approximation was done to make it’look more like electro-
mégnetism. However, the pure gravitational field, unlike the

pure electromagnetic field, has no matter tensor associated

with it and consequently no momenta. Unlike the electromagnetic

hoed
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case, no field momenta could be imparted to bodies and cause

them to attractlz. To avoid this problem various energy
complexes were introducedl?. Although they could be transforyed
away like the gravitationaivﬁorces on a geodesic particle,
these complexes were regarded as physical prbperties of the
vacuum field. 1In this way vacuum regions were endowed Qith.

momenta and the physical problem transformed to motion without

oy -
matter. _— :

. . 14
From a consideration of these complexes Komar sugges-
ted that one migh® associate an invariant momentum P(X) with %

certain vector fields X by

6 ;v HeBy
L ot

P (X) :LE:L;‘-J Loaxwivl g W% wPawY . A7)

in the notation of this thesis. Using the Stoke's theorem
and a result from appendix II this can be rewritten
_ 1

,
J * (X[u;v]muamv) .

9l

Komar observed that in the Schwarschild geometry where 31 is
a surface at infinity énclosing the star and_x is the time-
like Killing vector field g% in the Schwarzchild coordinates
then
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.15 . e
Moss and Davis latq@;@%lnted out that the integral would

give the same result for a BZ’enclosing the star anywﬁere in
the vacuum, so that Komar's "energy" in this éase was well
localized to the star and not diffused through the vacuum aé
previously suspeécted. |

Manoff16 noticed a connection bet&een Komar's momenta
and the Ricci tensor. For any vector field on a manifold with

no torsion one has

p _ P _ _mP a
x-;mB X =-IR X (18)

in local coordinates where IR is the Riemann curvature tensor.
On raising the index o and breaking the first term on the left

hand side into symmetricand antisymmetric pieces one obtains

H ’ o
P ¢ - —JRp X0 . ’

[p;a]' (pra)
X + X ] - o 8

H B ;} r B

Interchanging p and a« in the first two terms on the left hand

side and tracing over p and B gives

(:8)  _ o

_ oy lazBl LB o _ oo
X .8 + X .8 X .8 —{R X {19)

where R is the Ricci tensor. From (18) the second term turns

out to be } "
(a;B) 1l o;8B 1 _B;a
X == + = x°
87 2% 872 s
_ 1 o8 1 B \)a 1 o o
=3 X . 4 > X .8 + - R X .
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Substituting this result into (19), finally gives

2x[u:v] - MoV o MY v iw (20)
HAY . \Y HAYS HAY)
x

Now if the arbitrary vector field X is a Killing vector field T,

then the last term on the right hand side of (20) vanishes as

Killing vector fields are divergence-free and the term beside

it becomes

MiV o _ oW LV
5 Y R oo

Thus the integrand of Komar's momenta for a Killing vector

.field is really minus twice the Ricci current\of the Killing

v

vector field

(- ZRU\)C\J) wCawbawY (21)

|-

1
P(T) = B npaBG

z

So that Komar's considerationlqof energy momenfﬁm complexes
actually led him to integrate Ricci currents of Killing vector
fields rather than Einstein or matter currents. lSince the
Schwarzschild vacuum has a vanishing Ricci tensor, this explains
Moss and Davis' observation15 that the vacuum made no contri-
bution to Komar's Schwarzchild integral. )

Manoff16 further notices that under certain restric-

tions Komar's "energy" for a time-like Killing vector field could

be written as an integral of an Einstein or matter current.
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Taking ¢ in (21) as a time-like Killing coordinate vector

field and I as a constant time surface of this coordinate

allows the reduction of (21) to

o 0o (22)

On using the coordinate identity relating the Riceci tensor to

the Einstein tensor G-

| | By | 0 a
_ Rv_Gv 26\)(G~0+2Ga).
a#0

for RO0 in the integrand, allows the "energy” to be written as

3 1 0 1 a
P(—z) = = -G |+ == I G
0] gn J 0 g [ a#0 a
z N

Apart from the minus sign the first integrand is the Einstein
current of the Killing vector field g% . Thus if the sum of the

pressures vanish in these coordinates '<,\
[

I g =o a#o0

Komar's "energy” is in fact minus the integral of the time-like
Killing vector field's matter current. In flat-space the integral
of the time-like Killing vector field's matter current is minus

the energy and what is surprising about Manoff's observation is

the amount of special pleading required to obtain M as the integral

of =J in the Schwarzchild geometry..

3 In fact when the matter
2t

> o S
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tensor is trace-less, the Ricci tensor in (22) may be replaced
by the Einstein tensor and since the right hand side of (22}

is M for the Schwarzchild geometry, one has

* = - % M .

J 3

3t
L

Thus in General Relativity one cannot even expect a metric sym-

metry to generéte the appropriate momenta as shown by this example.

An*imporﬁaht ﬁoint of departure for this thesis from most
previous work on t;éuEUbjecf is its explicit attempt to find
momenta as integrals of matter currents which'receive no contri-
bution from vacuum gravitational fields. This approach éakes
into account the‘SPecial nature of the gravitational field and
avoids the physical problem of motion without matter. The static,
sPhericél example of Chapter IV has this property and was picked
so that its energy would be the direct analogue of flat space
enefgy, but with the correct value -M.

The crucial property of a Killing vector field is that it
generates a conserved matter current. According to Tfautmane,
one should not expect conserved matter currents in arbitrary
space-times which do not have Killing vector fields. -Returning
to (20) and substituting the Einsteiﬁ tensor and curvature sealer
R for the Riccl tensor one obtains

1 u Xu:y vV M

GquB - - 2x[u;v]_v - 5 RX" 4 oy T X v
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With Einstein's equations the left hand side becomes the mat-

ter current and taking its divergence removes the first term

on the right hand side leaving

u

= L1 -1 Wivo P
#dxJ. = g=(=5 RX" + X"' 7 X )

HAY Y i H

It is not yet known which vector fields X cause this expres-
sion to vanish, but its vanishing is Manoff's necessary and
sufficient condition'® for a vector field to ha;e a conserved
matter current. The vaniFhing of a vector field's divergence
is a rather weak condition, unlike the existence of a metric
symmetry. In the fourgp chapter it is shown that regardless

of metric symmetries any smooth vector field with a non-vani-
shing matter current can be locally rescaled to haﬁe a conserved
matter current. Contrary to expectation Killing vector fields
are far from necessary for conserved matter currents, but

the problem is to select the physically interesting ones from

this multitude of non-trivial conserved matter cd&;gnts.

2.% Equations of Motion in General Relétivity :
b4, v

1/ To reduce the motion of an extended body to a world

line satisfying certain equations of motion appears to reédﬁre
privileged frames to define‘ghe momenta which characterize the
line. These frames are somewhat less privileged than the iner-
tial frames of flat space 'in that they are determined by Ein-

stein's equations and are not independent of the matter distribution.
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17.18 4n4g it

One such recent theory is that of Dixon
relies heavily on normal coordinates. For any point x and a

time-like unit vector n at that point, he defines the momentum

as

K _ K aB U v op
P (x,n) = J Ka T nB\J‘JDm Al AW

z

and the angular momentum as

KA KAL0R H v p
s =
(x,n) J Aa T nBUUDm AW AW

X

where Kz and A;A are complicated "®itensor” funétions of the
DeWitt and Brehme two-point world function which requires

Riemann normal coordinates for its definition. The integration
is performed on a hypersurface that contains all the geodesicé
whose tangent vectors aé X are pérpendicular to n. The loose
indices k,A in thé integrand refer to the point x and merely
reflect the integral's dependence on x. Now if the gravitational
field is not too strong, one can find a unique time-like N satis-

fying
K A A K
P {x,N)N"-P (x,N)N =0
provided PK(x,N) is not null. With n determined in this way it

19 . ' . . .
is then claimed that there is a unique world line of points

-z fSr which
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PK(z,N)SKA(z:N) -0

Parameterizing this line by s which under more restrictions

is the proper time along z, Dixon obtains the equations of

motion
) K 1 « A
— P = = R dz uv K
ds 2 Apv ds S + F
8 KA _ K az’ _ ph 4z ok
ds - ds ds

where F and & appearing as force and torque terms are really
integrals of higher multipole moments of the matter tensor.
For spaceg of constant curvature, F aﬁd 6 vanish by Einstein's
equations ana then the equations of motion reduce to the
(Matthisson-Papetrou equations for a dipole particle. It seems
R_hat this correspondence was a key factor in fhe particular
E;éige of K.-and A in Dixon's definition of momentalB.
Mathematicaily one might ask why it is necessary to
intréduce point dependent integrals to defiﬂe momenta when one
. b . :
could more-sim%&f;i tagrate matter current three forms. The
drawback is that nzidoes not yet know which matter curr%nts
should be used. Because the integrands for pixon's momenta
depend linearly on the matter tensor, this theory avoids en-

dowing the vacuunug}th any momenta. Unfortunately the momenta

. . . 18 | : .
are not necessarily conserved which Dixon interprets as ev1~,>
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dence for Bondi's gravitational induction. This interpreta-
tion does ascribe the change in "energy" of an isolated body
to the vacuum gravitational fields, even though these fields
have no "energy". The important di¥Binction between such
ﬁultipole moment kinematics and the theory envisioned here
is that the momenta used in the thesis are integrals of con-
served matter currents and so for an.isolated body are them-
selves conserved. In this approach the motion of a body is
reduced to the body's‘Centroid curve whose, equations of motion
are found from the fact that the centroid curve is a line of
constant slope in the privileged frame needed to define the

momenta.



CHAPTER III

COMPLETION OF SPECIAL RELATIVISTIC KINEMATICS

3.1 Introduction

The centroid t.heoremzo—23 states that if a body with

positive energy density is to have a certain mass and rest
frame spin, then it must also have a minimum size, ensuring
that no part of the body travels faster than light-@uring the
rotational motion. Here and thfoughout the word "spin" refers
to classical rotational angular momentum,

The present work extends this purely Kinematical result
to massless bodies with well defined mbmentum, centroid and
spins both parallgl'and perpendicular to the direction of motion.
Intuitively one sees that a massless body is frozen in time,
'50 any rotational angular momentum must be gained at theAprice
of an infinite moment arm. This is the necessary reason for

the "terms at infinity"24'25

which give rise to the spin
electromagnetic radiation.

It will be shown that radiation with only parallel spin
must in any frame and at every instant occupy at least an entire
spatial plane perpendicular to its direction of motionzef Though
not proven here, this plane is the expected limit of the centroid
disc for massive‘rotating bodies.

In a special frame where the radiation has only per-
pendicular spin, it will be shown that at every instant this
sort of radiation must at least £ill the interior of a spatial

parabola whose latus rectum‘is parallel to the direction of

motion. The shape and orientation of this region changes

26
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from frame to frame, but in any frame and at every instant

this radiation must contain points infinitély distant in the
direction of motion. Such radiation canno£ be causally absorbed
or emitfed in a finite time, which is the classical analogue of
Abbott's quantum field theoretic argument28 against the exis-
tence of such particleé. The author has not examined the case
of rotating tachyons, but their "zero mass limit" should give
Trise to this radiation29. .

Any postulated radiation with conserved momentum,con-
served ron-zero spin, having a positive energy density and which
is also finite in size would contradict the centroid thedrem, 50
that all such radiation must be infinitely large.

At least one important conclusion can be drawn from this
work. Classical Electfomagnetiém is an incomplete theory as
it cannot explain Beth's observation30 that light beams with
finite cross section do possess angular momentum. Before it can
be claimed that the properties of light may essentially be un-
derstood within-the bounds of Classical Electromagnetism, this
theory must be enriched by some new physical concept which can
give finite light pulses an equivalent to spin.

The extension of the centroid theorem is divided into
two parFs. ;n the first section the centroid or centre of
energy is ‘used to define a spin that is apprOpriaté to a general

,/fgody, This spin contains the same inférmation as the more usual
intrinsic spin tenspr3 but the differences should be noted.
The definitions employed here make sense for finite bodies,
though they Qill apply to certai; infinite systems also. 1In

the last section the results of the first are used to construct

minimum sizes for the two types of radiation which are found to
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to be infinite, contrary to expectation.

3.2 Spin as the Total Angular Momentum About a Centroid
A general body is to be described by a symmetric and
divergence-free energy tensor, T“v, defined over a flat space

time. One then defines the body's total angular momentum by

gHY x[uTvIO (2.1)

I

and its momentum by

0

pH M . (2.2)

Fn

v ‘
where the integration is done on a constant time surface, v,
of some inertial frame. These integrals are assumed to.be
finite. The pr0pefties of the THY ensure the conservation of
these quantities, provided certain integrals involving ™V vanish
on the boundary of v. With a large enough volume these integrals
will always be zero for a finite body, but this is’ not necessary
for infinite systems 25.
| The minimal desiderata of an isolated body are cémpleted
on introduqing the centre of energy or cehtroid

I MO0

¢ F — {2.3)

which is assumed to be well defined. At the heart of the theorem
is the observation that if the energy density is everywhere
‘positive, then the body must contain all possible centroids.

Applying this definition to the conserved JOv one obtains Newton's

first law 3 ’ "7
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u 0
M= X QM : (2.4)
0
P
where the a' is the x° = 0 centroid. These centroids alwavs
have the non-covariant form
a" = (0,ah) : (2.5)

To find the relation between. this kind of centroid for two

a .
different frames it must be expressed generally in terms of

quantities with known transformation rules. This is accomplished

by substituting (2.4) via (2.3) into (2.1) for the J°Y and

with (2.2) one obtains the perspicuous relation

JOv _ a[OP\J] . {(2.6)

Remembering (2.5) one can then solve for the a¥ giving

r

. (2.7)

This equation determines the x0=0 centroid for any frame, so

writing a! for the x0=0 centroid of a boosted frame gives
iy Ou
at = - i, (2.8)
p0
Regarding the a¥ as a ~fts. coordinates can be found in

the unboosted frame by applying the Lorentz transformation

At which connects the two frames

_y NEide |
P A (2.9)
A%p®

The a" can be spatially or temporally different from a

R ol
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To see the differences clearly (2.6) must be used to motivate

the definition of spin as

ne

s = gV [qu]

- a . (2.10)

In any frame this spin is éhe total-éngular momentum about a.
centroid for that frame. In the rest frame of a body it is
the intrinsic spin tensor, but it does not transform like a
tensor, because due to (2.6) it appears in every frame with

the general form

s"™=(o 0 o 0] S (2.11)

L4

Unlike the intrinsic 'spin tensor it does not require a preferred
frame for its definition. Within any frame it transforms as
an axial 3-vector and is the remains of the total angular momen-
tum after all the orbital angular momentum has been removed.

The polarization vector

s

o (2.12) -

- 1 VR
W = = €
" 5 uvpo J P

also removes all the orbital angular momentum. This allows

the components of suv'to be found in any fradé as

= W (2.13)

which is obtained on evaluating the components of le by using

(2.10) and (2.11), and solving for the s .
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With this decompgsitionsaf the total angular momentum

and the explicit form of the Ag and by lapsing into obvious

vector notdtion, (2.9), which relates the two centroids, c¢an now

be written as

ao _ (Byn-a)PO

! (2.14)

~

where B,y are the usual boost parameters and 3 ié the boost
direction. The difference between the two centroids is trans-
parent. The a" has been shifted ﬁfom the'au by a certain
amount parallel to the momentum and by a purely spatial amount
() perpendicular to the spin vector. S#nce the world line Y ik
‘ parallel to the momentum and passes through a”, a vanishing
spin requires all possible centroids to lie on this line. A
non-zero spin destroys the uniqueness of thga'c"l and multiplies
it into a bundle of world lines all parallel to the momentum

which pierce the'x0=0 plane at

_ | b= 2+ (B . (2.15)
A”p®
N ) : N
As remarked earlier a positive energy density forces the body

R ol

to contain all these points, Thus from a knowledge of the

body's momentum and polari®ation vector, (2.15) enables one to
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<

find the minimum size of a general body in“an arbitrary frame.

This equation makes use of all six independent quantities in

v .. s .
"V and the four remaining gquantities P" determine the

‘

direction of motion, so that no further independent informa-

the J

tion can be,ﬁad from the Poincaré symmetry.

3.3 The Centroid Theorem for Radiation with Spin

The methods of the previous section are completely

general, but since the massive case is well known it will
not be treated.:'ﬁhe-massless case naturally subdivides into
two types of radiation depending on whetherkfhe.polarization

i
vector is space-like or parallel to the momgy%ﬁm(

3.3.1p%p =10, wtw > 0
U ~ u

For this radiation a frame can always be found where
»

the momentum and polarizaﬁion vectors have the values

pH

E(1,1,0,0) (3.1.1)

w" = Es(0,0,0,1). (301%2)
On taking the coordinate origin of the frame at the
x"=0 centroid for this frame, (2.15) simplifies to

© Bn Bn
- _ _ Y X .-S'
b - ( l_Bn ! l_Bn r o)E . (3.1-3)
X X

so that in the x0=0 surface all the posstble centroid world
lines occupy a two dimensional region which is perpendicular
& the spin vector and contains the direction of motion. Since

the choice of the constant time surface was arbitrary, this

S
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‘region is the same at any instant. The actual region'is de-
termined by tﬁe values of 8 and n which describe permissable
Lorentz boosts. There are many_boosts which will shift the
centroid by the same amounti?but if it is claimed that a cer- .
tain point is in the region, then at least- one boost which

does move the centroid to that point must be exhibited. Since
there are only two boost directions present in (3.1.3), one

need only consider boosts in their plane and a single parameter
8 suffices to specify the boost direction. Expressing the region
in polar coordinates'(R,¢), now allows egquation (3.13) to be

written as

Bsing: Bcos@ y S
1-BcosB ' 1-BcosH ' E

(Rcosd, Rsind, 0) = (- (3.1.4)

' [
where sin€@ is ny and cosf is n. By taking ratios of components

from both sides of this equation one has

cotd = —-tand {3.1.5)

‘which is always true provided C”‘
g8 = ¢ + %} . .(3.1.6)

Substituting this value for 6 back into (3.14) and solving
for f yields

g = — . (3.1.7)

. 5
R§1n¢ + E

Althouéh (3.1.6) shows the centroid qaﬁ be moved in all direc-
tions perpendicular to the spin vector, the restriction that

L~S be less than one, allows it to be shifted only certain\iiij
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tances. On rewriting (3.17} as

2 Rz(cosz¢ + sin2¢)

g° = . (3.1.8)
(Rsing¢ + %)2

and reverting to rectangular coordinates afggr applying the

inequality for 8, gives

y> =5 % - 38 . (3.1.9)

%] o
p| 1=

Thus any point in this parabolié disc i§ a possible
centroid and the assumption of positive energy density requirea\_
the radiation to be at least as large as the disc at any
instant in this frame. The radiation is travelliné in the x-
direction and aé the parabola opens out there will be points
in the disc that have an indefinitely large separation in the
direction of motion. Consideration  of the Lorentz invariant
projection of this separation on the momentum vector shows
the property of an infinite size in the.direction of motion to

persist in all physical frames.

3.3.2 p“Pu =0, w'||p¥

The spin of this radiation is a Lorentz invariant and
in any frame the momentum and polarization vectors can have

the wvalues

pH

It

E(l,lKO,D) (3.2.1)

w¥ = Es(1,1,0,0) : (3.2.2)

Again setting the coordinate origin at the x0=0 centroid
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for tnis frame, (2.15) works out to

N Bn Bn
b= (0, -y, 1)
- nx nx

S
E - (3.2.3)
Unfortunately all three boost directions appear here, so

to find which boosts shift the centroid whither, a spherical

parameterization of the boost directidn is introduced

nx = COSsp
ny = sinpcos®b {(3.2.4)
n_ = sinpsinbd

where p lies between 0 and w,and 6 between 0 and 27. Using-

polar coordinates for the y-z plane then gives

Bsinpsin® Bsinpcose)g

{(0,Rcoséd,Rsing) = (0, I-Bcosp ' 1-Beosp 'E {3.2.5)
(\-
§ -
As before, this implies
6 = ¢+3T“- (3.2.6)

so that the centroid may be moved from the origin in any direc-
tion to the y-z plane. Putting this value of 8 inte (3.2.5)

yields

B
R = —Bsinp : (3.2.7)
: 1-Bcosp
allowing the centroid to be sent any distance in the y-z plane.

To see this consider (B,p) as polar coordinates of some

unphysical boost space with rectangular coordinates (n,g).
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The physically possible boosts theﬁ correspond to the interior
points of the unit semidisc in the upper half of this boost
piane. On the other hand (3.2.7) describes lines in the boost
plane with negative slope R and a constant 7 intercept‘of cne.
Such lines even with arbitrariiy large values of R always
intersect the semidisc of physical bdsts, so in fact there are
boosts which zan move the centroid to any point in thé plane
perpendicular to the direction of motion at x0=0. Since the
choice of frames merely alters the value of E, this is true
for theqx0=0 surface of all frames. Finally since the choice
" of constant time surface is arbitrary, the assumpﬁidn of
positive energy density demands that radiation with parallel
spin must in all frames and at all times occupy at least an

entire plane that is normal to the direction of motion.

3.4 Conclusions

The work presented in section 2 permits the extension
of the centroid théorem to general bodies in arbitrary frames
and in section 3 the theorem is given for massless bodies. The
result that these bodies must be infinitely large is purely kine-
metical and rests on three assumptions: Poincaré symmetry of
Space—tiﬁe; the boay has a pasitive energ§ density, conserved
momentum and angular momentum; all the angular momentum comes
from the.integrated antisymmetricﬁmomenf of the momentum density.
The free fields for radiation pulses in both‘Flassical Electro-
magnetism and the linear approximation to General Relativity
satisfy these assumptions. Consequently such radi;tion having

\
\

S
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parallel spin must also have an infinite size perpendicular to
its direction of motion. This is not observed for light.

In 1936 R. A. Beth 30

found a torque due to the change
in polarization of a finite light beam. The idea of the experiment
was to pass light through a quartz plate and measure the resui—
tant torque as the light changed its polarization. Assuming the
conservation of angular momentum at the crystal's boundary,
Beth conéluded that he was observing torques due to chaﬂges in
the‘angular momentum of the electromagnetic field. The measured
torque agreed well with the calculated torque per unit area
exerted on an infin}te plate by.plane waves. The theorem clari-
fies the theoretical need for infinite plates and infinite waves,
but they do not correspond to the experimental situation. It
is natural to introduce plane waves for the resultant simplicity
of calculatioQ, vet in the end one must be able to properly
superpose them and recover the realistic situation. Any
possible superposition satisfying the above assumptions and
still maintaining a spin will also maintain at least an infiniée
plane of radiation. This means that Classical Electromagnetism
is incomplete as it cannot_possibly produce the observed localised
light beams which have a polarization dependent angular momentum.
_The Neoclassical position conjectures the possibility
of recovering the basic facts of electrecdynamics without resof—'
ting to field quantization31 and several provisional theories

have been suggestede. Unless a Neoclassical theory alters
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the connection between mechanical quantitiés and the field
quantities in Classical Electromagnetism (e.g. permitting
singularities) it cannot hope to recover the basic fact of
localised light beams possessihg angular momentum. On the
other hand, the difficulties involved with a relativistic
position operator for massless particle533 leave open

the question of whether field quantization will avoid or ac-

commodate this purely classical theorem.

“

o



CHAPTER 1V

MOMENTA WITHOUT SYMMETRIES

4.1 Introduction

.

This work sketches a General Relativistic Kinematics
of extended bodies based on conserved matter currents, which
is analogous to Special Relativistic Kinematics. 1In the last
section ten General Relafivisticxmamenta.are calculated for
certain static, spherical stars by curvature dependent flux inte-
grals evaluated in the vacuum close to the star. These momenta agree
with the appropriate flat space limit34 and the example is the only
one where time symmetry generates the correct energy. Such stars
cannot be perfect fluids, but their centroids are geodesic
hY
( There is a further analogy between Classical Electro-
magnetic theory .and the approach taken here for cbnserved
matter currents and their momenta. The conserved matter cur-
rents are found from a matter tensor which satisfies Einstein's
equations, so that the matter is the source of the vacuum gravi-
tational field.‘ Although the momenta may be found with flux
integrals of the vacuum field, the mom?nta truly belong to the
sources of these fields. This is in direct analogy with Classi-
cal Electromagnetism where one can find the charge with a flux
integral of the electromagnetic field but the charge is a proper-
ty of the source for the electromagnetic field. Because of this
the exterior Schwarzchild solution has no momenta, while the
interior solution does - it is the star which has the momenta and

not the vacuum. d

39
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It has been the practice in relativity to use two "ener-
gy tensors". One, the matter tensor, is used to solve the
field equations and the other object, usually the pseudo-
energy tensor, is used to find.the "momenta" which are usually
non-zero for vacuum regions. This work suggests that only the
matter tensor is necessary to obtain the momenta needed for
kinematics. The logical-®conomy of such a proposal is attrac-
tive, and if successful, the physical problem of "momenta"
without matter would be avoided.

The basic ingredient of a kinematical theory-is a body
of finite spatial extent surrounded by vacuum. In both Special
and General Relativity such bodies are described by a matter
tensor which is non~zero inside a world tube and vanishes in the
immediate regions outside the tube. Only after the kinematics
of such isolated bodes are understood, should one try to incor-
porate the infinite matter f%elds or the dynamics due to the pre-
sence of "external" matter fields. The goal of a kinematical
theory would be to provide conserved quantities describing the
body and associating a geodeéic with its motion. The next
section shows that regardless of metric symmetries there is

an infinity of non-trivial conseresa matter currents. It is
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not yet known how to reduce this plethora of conserved gquantities
to the physically interesting ones which can associate geodesic
motion with an arbitrary isolated body. However,this work does
pre¥ide some direction to the task.

&he Einstein, Infeld, Hoffmann result that Einstein's equa-
tions florce a particle to obey certain laws of motion points to a
1inK between a body's vacuum gravitational field and the mechanical
quantities needed for its kinematics. In the linearized theory
Qhere Special Relativistic Kinematics apply, Misner et al. have
éiven this link explicitly. Their notation and convention535
will be used throughout this chapter. In the flat space. tensor

theory. of gravity36

the gravitational field is described by a
fourth rank tensor H with the same symmetries as the curva-
ture tensor and is regarded as a lineériggd relic of real curva-

ture in a fully General Relativistic problem. In this theory

the matter tensor T obeys the field equatiOn37

ghove = 16nT"V
0B

.and the flat space momentum and total angular momentum are

3
respectively ! ey
o1 Halj 2
A {’ B0 8y
py _ 1 HVe0i v uv0j pjov  vjou. .2
J .16_'" (XH , X H ,G.+H -H )d SJ r

»
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H are coordinate functions of an inertial frame whose

where the x
constant time surfaces contain the closed two-surfaces of inte-
gration situated in the vacuum surrounding the isoclated body.
It is a remarkable property of the linearized theory that the
purely mechanical quantities P“, "V are determined by the vacuum
gravitational field of the body. This appealing feature may
also be shared by a General Relativistic Kinematics where the
General Relativistic momenta would be calculated from analogous
flux integrals involving the full vacuum curvature, as is ex-
plicitly done for the example in the last section.

The third section examines the question of when the
usual three surface integral for a conserved-quaﬁtity can be
replaced by a flux integral of some potential whose existence
is guaranteed. This is basically a topological ,rhatter38'_40
and physicists are probably more familiar with an analogous problem
in electromagnetic theory concerning the existence of a vector
potential for the electromagnetic field tensor. Provided the
region of interest V4 in the space-time manifold has no three-
dimensional holes characterised by the third deRham cohomology
H3(V4JR), a mechanical potential will always exist in V4 for a
conserved matter current. A globally defined mechanical potential
may not exist for spatially closed universes and so to obtain

.conserved guantities for an entire universe of this sort, a

three-surface integration may have to be performed4l. However,
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the usual kinematical situation is that the region V4, contai-
ning the body and its surrounding vacuum, has no missinb points
and can be covered by a single coq;d%nate system. 1In this case
a mechanical potential will always exist throughout V4 for any
conserved matter current and the conserved quantitié; can be
obtained from flux integrals evaluated in the vacuum. Although
the potential's existence is guaranteed, one is at a loss for
its explicit form until the matter currents for which it is
needed are known precisely.

The fourth sectionrewrites Special Relativistic Kinematics
in an invariant fashion, basing it solely on the existence
of qonserved matter currents and to that extent indepéndent.
of ’Eurvature or the laws governing the matter tensor. This
provides the scafolding. for a General Relativistic Kinematics
and shows how seven of the fen momenta determine a frame depen-
dent, but fully General Relativistic centroid curve for the body .
In Special Relativistic Kinematics all the centroid curves are
geodesics and a General Rel&tivistic Kinematics would be estab-
lished when Einstein's equatiops could be used to single out those
physically interesting conserved matter currents whose momenta
give a geodesic centroid curve.

To further demonstrate the possibilitf of a General
Reiativistic Kinematics within the framework developed here,
a non-trivial example is presented in the last section. Here
static, spherically symmetricbodies are used, but.these symmetries

N :

are a two edged sword. On the one hand, they make the calcula-

.
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"

3
tions tractable, and provide four of ten conserved matter cur-

rents @hich determine the remaining matter currents that should
be conserved. On the other hand, they so severely restrict the.
geometry . it is surprising that there is enough freedom left

to construct a kinematics. Strictly speaking these symmetries °*
are unphysical, but they are an approximation to a physical *
situation and perhaps this is why they do permit a kinematics
under certain restrictions. Six of the tef momenta do not ari%g
from metric symmetries and this feature of momenta without
symmetries is cfucial to any General Relativistic Kinematics
based on conserved matter currents. In this example, the
mechanical potential is particularly powerful since its vacuum
flux integral avoids integrating the arbitrary functions in

the matter tensor for the staﬁic, spherical bodies. Although
the potentials are found by an ad hoc method, this method may
have some relevance to the wider problem of finding the
physically interesting conserved matter currents for an arbi-
trary body.

The approach taken here has several important differences
with previous work on this topic. By using matter currents depen-
ding linearly on the matter tensor, the conserved quan{ities
receive no contributions from the vacuum ;ﬁere the matter tensor
vanishes. Thus no energy is ascribed to a vacuuﬁ region contai-

q
ning source-free gravitational fields. In Synge's point dependent,

though fully Gemneral Relativistic 1:h»~:-:ory42

N .‘

"curvature currents"
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“flatness.

45

are integrated ﬁo obtain conserved quantities and this can give /
"energy" to Ricci flat regions. Dixon glso gives a point de-
pendent General Relativistic theory18 which integrates matter
currents to obtain "momenta", but these currents are not neces-
sérily conserved and so neither are the "momenta". This cir-

cumstance permits an-isolated body io acquire "mass" from the
p n—t Y

surrounding vacuum. However, the abundance of conserved cur-

' rents shown here may make it possible to find preferred points

Sor which Dixon's matter currents will be conserved. In that

case, one would be closer to the sort of kinematics ‘envisioned

6,43

here. Finally there are the linearized theories3 which are !

Lol
really flat space theories; though when the curved space-time
is asymptotically Minkowskian, Misner et.al.ascribe Special .

Relativistic momenta to the entire curved universe. The theory

sk?tched here does not require the linearized theory or asymptotic
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4.2 Conserved Currents
By describing matter with a smooth second rank tensor

f
T, one can immediately introduce a matter current J,, associated

1

v
with any vector field V. In local coordinates the“components

of ngare

o _ B
JV =T BV (1)

and the matter current is conserved when it satisfies

=0 . . (2)

9 . P .
In both General and Spec:.al5 Relativistic Field
Theories where the matter tensor obeys

uv

Vv RY)
IR S A TR - (3)

a sufficient condition for (2) is that the vector field V
generate a metric symmetry and thereby satisfy Killing's

equations

va;3+v6;a=0._ ) | (4)

In flat space there are enough of these Killing vector fields to

erect a kinematical theory based on their conserved matter

36,43,5

currents and no conditions weaker than (3) and (4) are

needed. However; in General Relativity where the matter affects
I .

the geometry, Killing vector fields are quite unphysical as a
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mere speck of dust being out of place will éestroy the metric
symmetry. Consequently a General Relativistic Kinematics
based on conserved matter currents requires a much weaker con-
dition than (4) for (2)}. The close connection between symme-
tries and conserved currents given by Nother's theorem for

: N\
Lagrangian theories43'5

“has led.to the feeling that symmetries
are really needed for momentaG, On the other hand it is well
known4j that a matter current will yield a conserved quantit&
for some region of space-time provided (2) hdlds in that re-
gfon, irrespective of any metric symmetries. Thus if con-
served currents were sufficiently common, there maylﬁell be a
General Relativistic Kinematics founded on them.

- In fact every smooth vector field K can be rescaled
to >
K = fK J (5)

with the function f chosen so that: K is divergenee-free

K%a = 0 . (6)

To see this, consider another local coordinate expression for
" (6)

(V3 K% ,a = 0, (7

where g is the absolute value of the metric's determinant in
these coordinates. Substituting (5) into (7) gives a.differenﬂ

~tial equation for £
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(Vg £ K", = 0 , (8)

(8) becomes

where g is the absolute value of the metric's determinant
in a frame where K is a coordinate field, satisfies (6).
This trick can be played on any non-zero matter curfent
JV and because of the linearity of T the /xgl_lcan be pushed through
to rescgle V. It should be realized that Einstein's equations must
. be solyed to obtain this scale factor. Thus every smooth
vector ield V on a space—time manifold with a matter tensor

gives rise to a conserved matter current JG where

v = '

al-

and this /g is evaluated in a coordinate frame where Jy is a
coordinate vector field. Consequently there is an infinity
of conserved matter currents regardléss of metric symmetries.

Presumably there will be enough conserved matter currents to build

a General Relativistic Kinematics.
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43 Conserved Quantities and de Rham Cohomology

A conserved guantity comes from integrating the three-
form *Jv dual to the conserved JV' In local coordinates with wa

as basis one-forms it is given by

I_I

- a B .y .8
*JV = g VnaBYdmam:\w (9)

where n is the .permutation tensor. _Now (2) is a local coordi-

nate condition equivalent to *J, being closed

d*JV = 0 . _ {10)

'So every conserved matter current has a closed three-form
asso¢lated with it. The conserved guantity generated by the
congerved Jv on a closed and bounded three-surface I is defined

by

PV = *JV . : (11)

Z
The physically interesting Py arise when I is a spatial hyper-
surface; but because.*Jv is closed, an application44 of Stokes
tﬁeorem shows that any two L's with the same orientation and
non;zero boundaryyield the same Py-
if *J,, were globally exact

*Jy, = dGV ' (12)
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where ev is a two-form; then (10) would be automatically satis-

fied and Stoke's theorem could be used on (1ll), allowing

: ' P, =| 8 (13)

where 3L is the boundary of the coméact I in (11). Sinée not
all closed forms are exact, the definition (1l1) is more
general than the flux integral (13). |

It turns out that the existence of closed forms which
are not exact hinges on the topology of the manifold>o 40
If the region of physical interest on the manifold is smoothly
contractable (homotopic) to a point, then all closed forms
in this region are exact. This version of Poincaré's Lemma
covers almost all physica%\situations and de Rham cohomology
theory treats the odd exceé?iqns. The theory employs equivalence
classes of closed p-forms called de Rham cohomology classes and two
closed p-forms are in the same class when'they differ by an exact

h de Rham cohomology classes for a differentiable

p-form. The pt
manifold M form a vector spade over the reals which is denoted-by

HP (M,R). All closed.p-forms being exact on M is equivalent to
HP (MR) = 0,

as the class of exact p-forms is the zero element of the vector
space. The de Rham isomorphism theorem then shows that for

HP(MJR) to be non-zero the manifold must have compact p-dimensional
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surfaces which have zero boundary and are not the boundary of
compact p+l dimensional surfaces. Such surfaces are said to
enclose p-dimensional holes and may be created by removing
points from the manifold, rendering compact regions non-compact;
or by having the manifold close on itself. 1In the latter case,
the p—dimension;l hole is deprived of any locality. The hall-
mark of a p-dimensional hole is the existence of a closed p-

form o and a compact p-surface ¢ with no boundary, such that

o # 0. ' o {14)

(o]

So a suffigient condition for (12) is that the mani-
4
fold have no three dimensional holes

H3(MJR) =0 . . (15)

The only manifolds seriously considered by physicists which do
not satisfy (15) are'spatially closed universes such as those with
topologyIRxs3 or wormholes with]RxSlxs2 topology. In such situa-
.tions one may have to abandeon the flux integral (13) and use “
the definition (1ll) tc calculate a conserved quantity for the
entire universe4l.

However, the problem of Kinematics is essentially a
local one dealing with isolated bodies of finite spatial extent

surrounded by vacuum. The world tubes of such bodies can always

_———— s et s
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be sliced into two disjoint pieces by a spatial hypersurface V3
. .
which is non-compact. This surf%Fe can be regarded as a three-

dimensional submanifold of M and since it is non-compact, its top

cohomclogy vanishes

1 (PR =0 . (16)
Thus on V3,a potential ev'must exist for any closed *Jy and the
flux integral (13) can be used to find Py for any-compaét z COnE\\
tained in V3. 0f course one wants to use the same Gvﬁthrbughout

an entire four-dimensional submanifold V4 containing the matter-

‘filled world tubes. Another version of Poincaré's lémma states

that for an n-dimensional manifold IRxN -

Pl wmam) = 18N NR) (17).
wh&re N is any n-1 dimensional manifold. So if V is:mxv3, one
has

B vim = o, (18)

X

by combining (16} and (17). Physically the démand that V4 have
the toPology]va3 means that the spatial slices through the
body's world tube hayé the same toﬁology at different times. By
this physically mild assumption, (18) guarantees the existence

of & potential 8, for every conserved J,, throughout the four-

v
dimensional V4 containing the isolated matter, ensuring the
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equivalence of (11) and (13)  in V4.

A potential is only unique up to an exact two-form.
1

Any Gv

given by

8, = 8, +dx (19)

where ¥ is an arbitrary differentiable one-form, yields the

same *Jy andﬂPV as 9

*Jyy is proportional to T, it vanishes where T does, and here

(12) becomes

3o =0 . . (20)

So the potential is closed in matter-free regions.

Consider the usual physical situation where the re-

gion V4 containing the tube of an isclated body and its surroun-

ding vacuum is homotopic to a point so that

4
WP(v*m®) =0 , p=1,2,3,4.

Suppose there is a conserved matter current, which gives a non-zero P

calculated from either (l1) or (13) for a compact I in V4 which

slices the body's world tube into two disjoint pieces and has

“its boundary 9I lying entirely in the vacuum. It is obvious

that the conserved current's potential cannot vanish throughout

the vacuum, as there its integral over 3L gives the non-zero P,

PV = J 0y # 0 . (21)
D)

v in (12) and (13) respectively. Also since

op

v
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.
\

-1

cutting the matter-filled region out of V4 wﬁile leaving the rest
of V4 intact would not g}ter (21). But then from (20), BV would
be closed on the matter-less remains of V4 and (21) then fits

the criterion (14) for the existencelbéxé two-dimensional hole.

This hole cannot be repaired by merely filling fih the missing . N

points. Just the right amount of matter needed to smooth the po-

tentials must be returned as well. 8 cuum potentials

characterize the matter in a similar ¥on to the vacuum gravi-
tational field and it would be no accidént if an explicit ex-

pression for a potential contained the gravitational field.

4.4 General Relativistic Kinematics

The work of the lést two sections has shown that there
are many conserved matter currents, irrespective of metric symme-
tries, and that flux integrals evaluated in the vacuum exist for
' conserved quantities associated with the conserved matter currents
of an isolated s&stem. This gives some reason to hope that there !
will-be sufficient conserved currents to describe tﬁe system's
motion by momenta which depend on the vacuum gravitétional field
surrounding the system. Assuming the existence of several con-
served currents enables Special Relativistic Kinematics to be
mimicked in the following manner.

. a .
Every coordinate system X~ on any space-time has a set

of ten associated vector fields

)
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Du = m IJE(01112'3) ’
ax
a 39 b 3 . . ,
e = x —5 - X —3 (a;b,c) cyclic permutation of (1,2,3) (22)
ax ax
Ba = x —— +x® 25 ac(1,2,3)
X X @

which generate the Poincaré Lie algebra by taking the commutator
of any two of them for their Lie bracket. A frame will be called
special when each of the vector fields (22) generate a conserved
m@tter current by (1), and when the xO coordinate singled out

by the algebra is time-like. The inertial frames of Special
Rela%ivistic Field theories are special because their vector
fields (22) are all Killing vector fields, but thére are many
special frames which are not inertial. Apart from vacuum uni-
verses where every frame with a time-like coordinate is trivially

special, their existence in General Relativity is an unsolved

problem. Given one special frame x*; then irrespective of the

matter tensor, there are many linearly related ones. The frame

x* given by

« Aasxs + a’

Where AGB is any constant matrix and the a® are<:;;;;;;22, also

has conserved matter currents for its associated vector fields {22).

' The additional requirement that x0 is time-like restricts the

constants Aas somewhat, but these linearly related special frames

do have a subset of Poincaré related special frames where the AaB

are Lorentz matrices. When the matter tensor is taken into ac-
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=

"

ount there may be additional n&nlinear transformations which give

rise to whole new families of linearly related special frames.
Suppose that a space-time region c¢ontaining the world

tube of an isolated body and its surrounding wvacuum has no

holes and admits a special frame. Since special frames are local

objeqts, the frame is only required to be special for the isolated

body, and it need not remain so for distant matter-filléd '

regions. Provided the body's motion is causal, the requirement

that the xo coordinaté is time-like ensures the existence of

compact spatial bhypersurfaces I which slice the body's world

tube disjointly and have their boundary 3 lying enéirely in

the vacuum. Familiar integration arguments45'applied to

conserved quantities P, calculated on such surfaces I yield

v

dap

\
— =0 (23)
dx

and when the V are from (22) for the,spécial frame, the PV

will be called momenta. ’

The matter tensor is assumed to obey the weak energy

condition
T(U,U0) > 0,

where U is any time-like vector field. This energy condition

and the metric convention force

2 PDO <0, ‘ (24)
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as can be seen by using a constant x0 surface in (11) for PDO'
The ten momenta enable the body's motion to be reduced
to the centroid curve for the special frame. This curve comes

from the four vector fields
K]J':Xu-—-a—o
gx

r

“whose matter currents JKU are not conserved. Consequently the

integrals of *JKﬁ are strongly surface dependant. The coordinates

of a frame's centroid curve are defined by the four functions

J{'f *JK : ) -
cn(x%) = L (25) *

where T is a -constant xo surface whose boundary lies in the

vacuum. Because I is a constant xo surface and the integrand

is linear in xu, C0 reduces to

co = x0 . (26a)

To find the remaining functions, the PB momenta are used.
a

a

Explicitly from (1), (11) and (22) they are

p= | amed 2aad 2y o@n
axa 9x

z

A possible choice for this I is T of (15). So with I in (27)
and by the lineafity of its integrand, (27) simplifies to

_ 0
Pga = Ppa* *+ Ppof2 (28)
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on using (1), (11), (22) and (25). Because of (24}, (28) can be

.
L)

solved for the Ca giving

P P
” ca=. —(591) x0 . B& | (26b)

o - Fpo

Since thesé momenta obey (23}, the x0 dependence of Cp is ex-
plicitly given in (26). |

The frame depehdence of the Cu in (25) is quite compli-
cated, but within a Poincaré family of special frames, its ffame
dependence is identical to its behavior for iﬁertial'framesl-
In Special Relativistic Kinemat@cs, the inertial ffaﬁes are dis-
tinguished from all other families of special frames, by being -
the family of special frames whose coordinates are orthonor-

mal, ensuring that the

entroid curve (26) is geodesic. Un-
fortunately for General Re iyistic. Kinematics sufficiently
littlé is known about special frames, lhat it is unclear whether
one should look for a linearly related famiiy of special frames
whose generic tube of centroid curvesl are all geodesic or
contain a geodesic, etc. The only apparent salvatign to thig‘.
problem is a weaker sufficiency condition for (2) than (4)

thch relies more heavily on Einstein's equations than (3).
Asian indication that such a condition does ip fact exist, the
next section p;ésents non-trivial special frames for static,
spherically symﬁetric stars and calculates their General Rela-

tivistic momenta.
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4.5 Schwarzchild Momenta

In this section the previous considerations are ap-
N plied to static, sSpherically symmetric space-time regions
with the Schwarzchild vacuum solution holding outside the
matter's world tuhe which has no event horizon. First a special
frame is found with the help of the metric symmetries. Me-
chanical potentials whose exterior derivatives give the matter
;ufrent forms throughout the frame are then found (Appendix
III). The existence o0f these curvature dependent potentials is
very importan€ as\ﬁyey allow the purely mechanical momenta to
be found from flﬁ# integrals of the vacuum gravitational
field:
| The symmetries are quite restrictive and their presence
alone permits the quantities of interest to be written in thé

following manner. All tﬁé\calculations are done in the curva-

ture coordinates46 with.

_ . d52 = -eYdt2 4 eadr2 + r2d82-+ rzsinzedrb2 , (29)

where y and a are arbitrary functions only of r. The full cur-.
_vature is given by €, the "double dual" of the Riemann ten- °

sor, and its non-vanishing components are

_ —a .
- tr _ e -1 t6 . _otd _ _ 1 -«
) S erT 70 % T e 2r ¢ %, r ¢
‘ (30)
B¢ _1 -a 1 2, re _ v _ 1 -o
© 8¢ 2 € (Y,rr Z(Y,r)'ia,rY,r) € 19 < ré¢ 2r © Y,x° N
As.can be found from tﬁe Riemann tensor given by Synge . -
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.f
The Einstein tensor has the non-vanishing componehts

t _ 1 —-a _ r _ 1 -a _

G £ = 5 le [l-ra'r} 1) , ¢ - ;j (e [l+rT,r} 1),
r (31)
8 $ 1l -a 1 2.1 1 1
= = = + — —_— - -— .

G 8 G ¢ 2 € (T,rr 2 (Y,r) -+r Y,r r a,r 2 a,rY,r)

Since the static, spherical body has no event hori-
zon, these coordinates may be used throughout the région con-
taining the body and its surrounding vacuum with the usual

caveat for spherical coordinates. .Applying Einstein's equa--

~

tions

G =: 81T , (32)

to the vacuum region gives the exterior Schwarzchild soclution:

Pl

eV = e ®=3.- 2,
r
tr  _ 00 _ _ 24 _t8 _ k¢ _ .x6 _ ré _ M
T rTC ey S e T g T xe 58 pp T 30 3F
G=0

where M is a positive number, corresponding to the mass of the

star in- the weak field approximation.

The .special frame is to be determined by a specific mat-

ter tensor which will satisfy some equation of state relating the

independent’'a and y. It is doubtful that a special frame will
'exist%regardless of the equation of state and depending on the
relation between a and y different frames will be special. To

exhibit a special frame the symmetries can be used to generate
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four of the ten conserved currents. The fourmyvector fields of
{22) which are Kiliing are then Dt, ¢a. This does not determine
the frame, but one such frame is the rectangular version of the-
curvature coordinates -

t = t, x = rsinfcos¢ , y = rsinGSin¢ , 2 = rcosf . (34)

Because of the spherical symmetry, it suffices to check only' two

of the remaining six vector fields and see whether they give rise

to conserved matter currents. Picking the two vector fields

as

_ 3 _ sinb 3
Dz = cosf 3T = 38 ¢ ) (35)
3 oy O sinf® 3 ’
= — —— - e ——
Bz rcosé T tcos? 5 t - 36 {(36)

-

a short calculation using (32), (31}, (1) and the connection

coefficients yields (Appendix I)

u 1l -
J = cosB(e "-1)(a +
Dz :u 167r2 (. I X Y,r)
H t -0
J = c -
Bz 1w T TgnZ COSO(E Tl )

Since Dt is time-like, the vanishing of these divergences would

make (34) a special frame. This can only happen if the furth;r

restriction : i v

@ Lt Y =0 (37)
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A

is placed'on the geometry. All matter currents are trivially
conserved in the vacuum and (33) guarantees (37) in the vacuum
regions, so (37) is realiy a restriction on the matter consti-
tuting the static, spherical star. Thus for mattér with (37)
as its equation of state, (34) is a non-trivial special frame.

Using (1l), (29}, (31) and (32), the conserved guan-

tity due to the Killing vector field g% is

_ 1 JR %(a+y) -

e . (re —r)'rdr

N

Pa
at 0

which on integrating by parts with (33} can be written as

[R %(aw)'
0

[—J— — -a_
= -M + r(e le (o r+Y'r)dr .

L
3 '

Pa
Bt

The enérgy condition forces the integrand to be positivess; but
with (24) and to agree with the Newtomian limit, the star's energy
must be ;M. This shows that even when Killing vector fields do
exist in General Relativity they cannot be relied 6n to

give the physically expected conserved quantities. However,
(%Q%Jis the neceséary and sufficient condition for the

General Relativistic energy of a static spherical star to be

the direct analogue of flat space enexgy. It should be

pointed out that (37) is a strong condition and is not

satisfied by any isolated static spherical perfect fluidss.

-
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Although one can now f?nd the PDa and P¢é by inspection, it

is an important matter of principle to be able to find curva-
ture dependent mechanical potentials for all ten conserved
matter currents. The existence ofJEurvature dependent po-
tentials shows the 1¥nk between a body's gravitational field

and its momenta enabling its kinematic quantities to be found
from its gravitational field. Hopefully if one knew how to ob-
tain geodesic motiop from conserved matter currents for arbitrary
space-times one might be able to define the momenta with the ap-
propriate curvature dependent potentials. Until constructive
existence theorems are found for conservéa matter:currents in
general space-times, explicit forms for the éotential will have
to be follnd by ad hoc procedures.

“One such method sufficient fdr the present purposes,
but possibly having a wider applicability, bégins by considering

the two-form BV whose dual is the potential

ev = *BV . (38)
Then (l13) becomes
Pv = l *Bb . (39)
E '

Using (1), (32) and the fact thatyG is the trace of S, (1l1) can

be written as

_ 1 Wo_p 3 ..v A ‘
Py BT J *Gval<w 'axu>v @) (40)

z
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where <wp,—§—> is the trace. Comparing (39) and (40), it ap-
Ix

pears that a local coordinate expression for B%, depending

on the full curvature and linear in V, might be found; if w®

could be somehow freed from the trace, while maintaining the

relation between the integrands

w3, = dufy : (41)
obtained by combining (38) and (12). The simplest such candidate
for Bv is
8, = I%? Yuv\'{Guv.p)\mp‘r\mA , ;.(42)
where Y is any vector field ensuring (41). On substifuting ;

(L), (32), (42) into (41) and taking the dual of the resulting
equation, further simplifications using the Bianchi identities
and symmetries of € show that (41) has the local coordinate

equivalent (see Appendix II)

A u H,Vv pA
G" vV = .
" (v'y );dG v (43)

So given a G, V, € and the connection coefficients, a solution
of (43) for Y guarantees not only that Jv is conserved, but

) -

If there is ore

also, that its potential is the dual of {

A .
not yet known that a solution to (43) for Y exists for

conserved current JV; Work in this direction may have some
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bearing on the constructive existence theorems for conserved
matter currents needed for the sort of kinematics envisioned

here for arbitrary space-times.

Proceeding towards a solution of {(43), 1e diagonal

form of G and € allows its reduction to

Ao [t Al tA [r Al rA .
G WY 2[(V ™Y );te et (Vi7y ):rs -
+ (V[ey“)_e{;e)‘m + (VWYH)_ b 1 ., (44)

¢~ A

where there is no sum on repeated indices and indices with square
brackets are antisymmetrized. A short calculation involving

the connection coefficients for a-diagonal metric yields

(V[pYA])-p = (vlPgrly + vy 2 g Teg

ax"’ PP b
e e A (45)
aFp 9x PO .
#A
where the only sum is explicit in the last term. Then substi-
tuting (29), (30), (31), (45) into (44) and simplifying gives b
&
the four partial differential equations‘eéquivalent to (43) .t
: g
t 1-e% L 1-e% o lrot] (o, t] [o,t]y |
v - =2 {——) (Vv - - +
(=% a’r) () (V> 7y ) ¢ a’r(v Y ),e a’r(V Lf )'¢

_ (e,t1 , 1 _ _ e b i | .
a'rcotOV X -fr(y'r a'r (a,r+Y,r)e IVity (46a)
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- t
Vr(lre )_2( )(V[ Yr]) t+_Y r(v[aYr]) 9+Y r(v[d)Yr]) 6 +
+ Y rcotGV[B r] (46b)
1l .8 ‘ 1 2 1 1 1 _
2 v (Y,rr + E(Y,r) AN T Ea,rY,r) -
|
o - ’ '
,r o[t 8] s [, 8] 1 2_1 {¢,0), |
- (V'Y )'t+ (V' "y )’ +(Y'rr+2(Y' ) Ea,rY,r) (V7Y )"H
1 2 1 1 {r o] (46c)
4+ = — = - = 1
r (Y,rr4-2(Y,r) + r Y,r 2 Ol,.rY,r)V bt ;
e !
f
l
19 1 2 1 1 ! _
2V(Yrr+2wﬂﬂ YEY T FYx iagﬁm)_ ;
|
a i
_ I [t 9] I (r,¢] 1 2_1, (6,91, ¢
(v ) o F (v ) o+ (Y,rr+'2' (Y'r) 7 % r Y (VYT €
1 1 2 1 _ 1 [x,9]
+ r (Y,rr * 2 (Y,r) + r Y,r 2 a,r )V +
1 2 _ 1 [6,9])
+ COte(Y,rr + 5 (Y,r) 5 a,rY,r)v Y . (464}

-

'The restriction (37) has not been applied to (46) as it results

in no great simplification. So given V, any solution to (46)

for Y will generate a potential'from {42) and (38) ensuring the

conservation of Jv'in an arbitrary static, spherical space-time.

Only the potentials for matter currents of the vector

fields

_ 0 ?
Dt = 3 ! - (47) ‘
_ 9
pz = '3—(-5 P (48)
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anq Dz and Bz given in (35), (36) with the condition .{(37), need

be found from (46). This is because the épheriéal symmetry

forces
) P, =P, = , 49
—~ ¢z by Pox (49)
Ppz ~ PDy = Ppx ! . (50)
Ppy = PBy = Pp. - (51}
Starting with Dt and substituting (47) for V into (46)
yields
e T T N OISV (S PR e gt
r s r ;T 2r 2 Y,r Y r
1 9. ¢ B
= +
5 a’r(Y .8 + Y " cotfYy ") ,
r ¢ o0
O=Y =Y =YX .
.t P t

o

—or, ¥ =2 (@ 4y ) (1-e%)cots . (52)
x ,xr ', r

Substituting (52) into (42), and the result into (38), gives

Ot after some simplification with (30}, &s

Y+o
1 2 - r ¢
= - + -
Opt Ter © (u’r Y,r)(e l)rcosbwaw’™ +
oty .
+ é? e 2 (e-a-l)rsinemehm¢ .

Although Ye is badly behaved when sinf or o . vanish, the offen-

I
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ding factors are vitiated by the Yg in n and by € respectively
in the calculation of Bbt: Unfortunately this eDt is not defined
at 8 = 0 or m as its r¢ component does not vanish there and w¢

is undefined there. However, imposing (37) removes the problem,

leaving at+y

Op = g; e 2 (e_a—l)rsianQNm¢ . (53)

It is surprising that this simple ad hoc method of finding poten-
tials requires (37) to obtain a curvature dependent potential

ensuring

P -=-M. (54)

Consider the vector field

which although not a Killing vector field does have a conserved

matter current. Using (11), (29), (31), (32} and (33) its con-

served quantity is

f
Ppt =

N =
"
1]

!
i
o
H

I

1
=

for all static spherical isolated bodieSSl. Applying the same

method to find its curvature dependent potential yields

t 2 r
y=y=y¢=0 ’ y = -r
_ _ 1 -a_ . 8, ¢ .
eDt = (e l);51n6w Aw’ .

Remarkably the vector field Y agrees with the remains of (52)
after imposing (37). Although GD—‘differs from (53) only the me-

t
tric symmetries52 have been used to find it. Thus the exterior
solution either encloses a mass M or a two dimensional hole. This

has nothing to do with coordinate singularities .and happens because
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the potential BDE.iS closed, but nct exact, in the absence of

matter. The important fact that eDE is curvature dependent will

be used again in the next chapter.

When ¢z from (48) is put in (46), it reduc o
t r ‘ 3]
=Y = Y T Y
r¢ l¢' '¢ !
1 2 1 1 1 *r.t  Y,ro.r
= = -= -= = - +
Y,rr'+2 (Y,r) +T Y,r r a,r 2 a,rY,r r ¥ o r b , T
1 2 1 ] 8
+ (Y,rr + 5 (Y’r) -5 a,rY,r)(Y 8 + cotfYy ) +
1 1 2 YT r_ 1 r
x (Y,rr ) (Y,r) oy 2 a,rY,r)Y d

With these values for Y and (30), the potential found from (42)

and (38) is:

hhl | Y=o
! 2 . .t 8 1 2 . . r B
B¢z"IE? e T,rr sinfw aw + Ter © (o r+Y r)§r51n8w PR

r r

Here the potential is well defined and the matter has only been
restricted by the metric symmetries. The integral of this po-
tential over any constant r,t surface S obviously vanishes,

turning (49) into

(55)

b 4 e e ————— v

P
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So an arbitrary, static, spherical star has no General Rela-

tivistic angular momentum about the origin in agreement with

.

the linearized theory.

Continuing with Dz and substituting (35) into {(46)

gives

0=2(1-e% c'orse Yt,r+a,r S—i:'g Yt,e"‘ (a'r+f’r) (1-e%) Corse vt
—2‘cosB(Y’r + ____(1-§“)) = 2(1-¢%) 859 Yt't +
N . sire Yr'e + Y,rCOSB(Ye,g + Y¢'¢) +
* 2Y,r cﬁfe v+ o g%%%ﬂ ¥0

Si?e ( , XY * % (Y,r)2 * % Y,r =~ ia,r - % a,rY,r)

= - . Sige Yt,t + . Eigg Yr'r + . czfa YG'r +
+ Sige ( et % (Y’r)z-% a,rY,r)(qu),qb + %) +
* (Y.rr +2_2t. (Y,r)2+% Y,r—% a,rY,r)corse YB

©=¥,r c:ge ( Y¢,r + ) -2 (Y’rr'*'%- (\r'r).2 +

- % u,rY,r)(Sin9Y¢,e + cosBY¢) .

There can be no solution to these equations without imposing

(56)

(57b)

(57¢c)

{574}
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(37). Invoking (37}, merely changes (56) to

' : o, cosf _t sinf® _t
= — + 222 .
0] 2(1 e’) - Y r a,r = Y 8 (57a)

2

Now the four equations (57) have the simple solution

These values of Y lead to the well-behaved potential-

Y-a y-o
_ 1 2.0t ¢, 1 T2 P
eDz = Tew © Y'rr51n Buw AW -PIE;e a'rt51n Quwraw™ +
oty
1 2 -a_ . B b
%7 © (e 1)tsin20w 'Aaw’ ,
giving a momentum )
_ Mt . 8. ¢ _
PDz = 87r J sin26w Aw’ = 0.
S D
So (50) becomes
0 =P, = PDy = Ppy (58)

and the General Relativistic linear momentum for a static,

spherical source subject to (37) agrees with the corresponding

-

flat space limit.

Finally Bz in (36) is substituted into (46) giving

~3 ' Ao

- e— e e

| L IR -
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LY
a t r ro tsinf _t
—a - - _— +
(l-e™) (tY T rY ,r YT) +u'r - ‘Y .6

2cose(l—ea—ra

) = 2cos0
, T r

ro cosB(Ye B+Y¢ +200t26YB)+2cosea rYr +

; T ’ '

tla 4y ) (1-e%) 2928 (eybopy) (59)
cosd .o e _9(1_2 Ccosh t t T +
2 = (l-e 7+rY,r)t_ 2(l-e )—-—-—r (tY~.,’t+Y ry ,t) a@
-y t (sinBYf +2c056Yr) + ‘ | |
P A o 0 \
- v _teoso(¥? +¥? ) + 2y cotzey® | (60b)
Ir le '¢ 'r
‘/
. 1 2 .1 1 1 _
tSlne(Y,rr * 3 (Y,r) TrYr T Cr T3 a,rY,r)
sinb -t t B 3] - tgsinb _r
+Y "y - - Lsindy
r o r tYy t ¥™) cgs@(ra'rY ,t tY'rY ,\r)+Y,r - Y ,r +
. 1 2 1 9 1l .r
+ 8 = -z = C+
tsin (\r'rr+2 (Y,r) 5 a’rY’r) (Y " YY)
1 2 1 1 ‘ & :
+ = = - =
+ tcosG(Y'rr 5 (Y,r) tZ Y ¢ 5 a,rY,r)Y (60c)
= - ¢ ¢ 1 04y _ 1 2
0 a’rrcosBY ot + y’rtcose(Y r + Y ) t(Y'rri-i (Y,r) +
-1 gy ?® ¢
3 a'rY'r)(SlnﬂY 'e+coseY ) | (60d)

Again the imposition of (37) merely removes a term from (59)

leaving . _ ' -

Mot st bt e B il = - B
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A
)
a ", _ 2cos® _a t r _,r,. £t . t
ZcosB‘l e ra’r) = (1 e‘)(tY 'r,rY r Y )+<1'r L Siney o +
8 y 8, .9 ) r
ra _cosb (¥ +2cot20Y +Y )+2cosba Y {(60a)
Ir 18 l¢ lr

The equations (60) now have the solution

t 2412 -/ '
vt - - r r 8
2¢

¢ ’
N
which gives rise to the potential

Y- Y- )
_ 1 Tz 2.t ¢, 1 2 2,2, ... 2,1 ¢
eBz = 15 ¢ Y ,rtr51n Bw AW g+32“ e a,r(t +r“)sin“fwAaw’ +
Coaty
1. 2 -a_ 2_ 2, . 5,0 ¢ . 13
- 357 © {e "-1)(t"-r")sin2fw Aw o
and momentum ' e
'S
t -
. M - 2 2 . O o _ .
PBz T (t"-xr™) [ sin28w aw’ = 0 .
S
rd

Combining this result with (51) yields

O=p. =P. =P . . (61)

-~
v

TQg'role of these "boosﬁ momenta® is to specify‘the.position of
the centroid at t=0, as can be seen.ﬁfgh (26). They also pérmit‘
a &ﬂ‘_ul decompositidp of the total angular momentum into a
rotational and orbital part, which describes the frame dependenée

»

‘of the centroid curve@?ithin a Poincaré family of special frames® .

~

R
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The vanishing spatial and boost momenta of this spe-

cial frame give its centroid curve (26) the simple form
cu = (t,0,0,0) . - (62)

Since both the éngular momenta (55) and Bdost momenta (61)

are zero; (62) is a unfque cﬁrve for this Poincaré family of
special framesl . It is very satisfying that the centroid (62)
éoincides with the r=0 centre of symmetry curve. The spheri-

cal symmetry forces this r=0 curve to be geodesic. For the

rate of change of its tangent vector U may be written as

VU = AU + W,

where X is some function and W is perpendicular to U.  The
spherical symmetry requires that all vectors perpendicular to

U be‘"equivalent, so W muStlvanish'leaving

which is juét the géodesic equation.for the r=0 curve. Thus

if the Schwarzchild time t that parametérizes the centroid (62)

were linearly related to the proper time of the central geo-

de51c, one would have a uglque geodesic centroid for this Poincaré

family of special frames.

Using only sphéricél symmetry and the field equations

Synge47 gives the rélation between the Schwarzchild time t and

the proper time t' of the central geodesic in the notation of

this paper as

1
P
'
i
i
{
1
1
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£+y'r)dr]dt' (63)

where x(t') describes the boundary of the star. Remarkably on

imposing (37), (63) reduces to
t =t (64)

and (37) is both necessary and sufficient for the Schwarzchild
time to be the proper time of the central geodesic. Thus
condition (37) which was necessary and sufficient to obtain
the special frame also assures that the centroid (62) is geo-
desic. . R

Although geodesic motion has been shown for this
Poipcaré family -of special frames, (64) shows how unsatisfac-
-téry (37) is from a physical point of view. Condition (37) is
logically equivalent to (64) and (64), by equating the proper
time on the central geodesic to that on a geodesic at infinity,
7is also equatiﬁg the gravitational potential et at tﬁese places

g,. = lim g = =1 .
tt r=0 - tt. ,

Thus a photon emitted from the centre of a star sitisfying (%7)
would not show any gravitational red shift - in fact such a
photon observed in the Schwarzchild vacuum would appear blue

shifted.  Similarly any test body falling radially through the

star could not penetrate r=0 unless it had an initial radial .

L]
velocity at infinity. -

2

e b
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b Y

It was symmetries which motivated the choice of (34) as
a candidate for a special frame and it seems quite likely that
there will be many other frames not linearly related to (34)
which will be special for.equations of state different than (37).
Of considerable interest is whether there are special frames
which can éive geodesic motion for all isolated static spherical
perfect fluids. Although four of the ten momenta for (34) arise
from metric symmetries, six do not. This feature of momenta

without symmetries is crucial to a kinematics based on conserved

o

matter currents. In fact it was shoﬁn that only under (37) does
the time translation symmetfy gepe;ate the expected energy. So
for both arbTsrary and symmetric space-times Killing vector ”
fields cannot be relied upon to generate the correct momenta.
To link the purely mechanical momenta to the gravitational
field réquires curvature dependent potentials and the simple
method embodied in (43) may be of more general use. 0ddly enouéh

the vector field Y almost always has the form (Oy—r,O,g). Under-
standing this feature and why the non-Killing vector field DE

generates the correct energy may shed light on the special . ‘
frames for perfect fluids 6r.the kinematics of other space-times.
Nevertheless a non-trivial special frame with curvature depen-

dent potentials and geodesic centroids has been shown to exist

and only further research can answer the questions raised here.

14



CHAPTER V

CUTLOCK

5.1 Curvature Dependent Potentials

This section elaborates some of the features of the
potentialé introduced in the last chapter. There it was shown
that a mechanical potential would exist for every conserved
matéer current in a phyéically reasonable space-time. It was
also suggested that the potential ought to be linear in the
full Riemann curvature and this was shown to be the case for
the kinematically useful matter currents for the static.spheri—
. cal stars. Aé yet one does not know how to characterise the
kinematically useful matter currents for arbitrary space-time,
but one might hope that a better understanding of the poten-
tialé would help in this matter.

It is not clear whether or-not the requirement for the
potential‘to be linear in the full curvature would éliminate
too many conserved.currents. The following argument shows that
the previously assumed structure of the potential is rather

——

general. Let *J be an exact three-form so that

*J = dxa (1)

where a is dual to some potential two-form. Passing to local

coordinates with basis forms wa, one asks if there is a tensor

A satisfying

- 77
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— 1 ,oB TORAY)
*J = dx(3 A Sypuyt AW ) o (2)
giving *J a potential linear in the full curvature €. Equa-
ting (1) and (2) and noting that the indices occur in antisymme-
tric blocks allows the result to be written in terms of 6 vec-

tors and 6x6 matrices as

A _ ,
B, = ay . (3)

If det GAB does not vanish, the € has an inverse~§BC

AB
~BC c
-GABG = GA

Using this inverse allows the solution to (3) as

aC = agéBc ) (4)

Thus a sufficient condition on the space—-time that all conserved
matter currents have potentials linear in the full curvature
is that det 6,  not vanish. This is a very weak condition, but

its violation poses some interesting questions.

Before examining them it is worth looking at another res-

triction imposed on the potential in the previous chapter. For
mathematical simplicity it was suggested that the potential be
linear in the vector field V which generated the conserved

mitter current. This is accomplished by merely setting

a%k - BaBYVY ' (5)

BT N |

R
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where there is considerable freedom in the choice of B. To see

this 'go to the frame where V is a basis vector, say

v = 0
_——-(—}'_
dx
Then in this frame set ' ’
aB _ ,uB
B0 = A
Bgs arbitrary a #0 .

So B is unique up to any third rank tensor K satisfying

k*® vY = ¢ . (6)
Y

Thus combining (5) and (2), every conserved matter current has

a potential of the form

_ 1l .,y .oB SR
*Jy —_ dx (3 V'B Y'GaBuvw AW )

provided det €,, is non-vanishing. Finally the ad hoc form used

for the potentials in section 4.5

. 1l .a. B u,o v
*Jv = d*(i vy GGBuUw Aw )

can be obtained, if V is an eigen-vector of B

VYBaBY = yOyB (7)

Whether there is enough freedom in the gauée .or in B due to (6),

to always obtain (7) is not yet known.

i
-t
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Physically it is not clear what the vanishing of det GAB

means; however, before dismissing it as a non-generic condition,

it must be remembered that the existence of a vacuum region (Ric- ;
ci flatness) is also non-generic but necessary for isolated |
bodies. Thus if the space-time could alwaYs be changed a little N
bit to prevent the vanishing of det €,  without altering the i
vacuum regions one would have a good argument for always being
able to find curvature dependent potentials.

The most drastic way of permitting ﬁhe vanishing of
det-GAB is to give the space-time Riemann flat regions. Al-
'though this contradicts the idea that the gravitational field
should reach ocut everywhere, Riemann flat regions are not pro-
hibited by causality, properties of the matter tensor or the
field equationSSB.In fact a solution due to Ehlers and Kundt
which is a Ricci flat region ézopagating through a Riemann flat
space is used to discuss exact gravitational waves48. It is

accomplished by allowing the metric to be non-analytic at the

boundary between the two regions and perhaps this is an argument .

for demanding analyticity.

Using c” functions such. as partitions of unity49 instend-
of the more usually required C3 or-C4 functions permits one
to patch together two metrices g,g each describing a separate

region, into a single metric g for the manifold by

g =Ag.+ (1-A)F 0 <A <1 -

N
b P
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where A is a partition of unity equal to 1 in the region where
§ holds and passing smoothly to zero in the region where a.ap—
plies. The boundary region where )\ is between zero and one may
be made as small as one pleases, but of course cannot vanish.
The metrics g and g may be taken as solutions to Einstein's
equations and then if the;e was just the right amount of physi-
cal matter in the boundary region so that g was a solution to
the field equations there as well, the patching would be complete.
Altﬁough it may not always be possible to patch two given me-
trics together with physical ‘matter, the possibility is raised
of gravitatidnally hiding largg amounts of matter in_this wéy.

The first thing one might try is to construct a static
spherical shell of matter for the boundary region enclosing an
exterior Schwarzchlld solutlon w1th curvature parameter M and
having Riemann flat space-time outside this boundary shell.
Thus the.shell and the star giving the Schwarzchild solution
would be gravitationally invisible in thg flat region. How-
ever, consideration of the system's Genefé% Relativistic ener-
gy shows that the shell must have an energy\bpﬁosite in sign to
that of the star, so that the matter in .the shell must violate

D ‘

the energy condition. To see this'note that becéﬁse.the system
is static and spherical all the ﬁachinery of the previous chap-
ter fof the mechanical potential of the time;like DE vector

field's matter current remains valid. Even though det € is
‘ »
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zero in the Riemann flat region the mechanical potential is
still linear in the curvature by conétruction and so the poten-
tial vanishes there too. Thus the energy of the whole system
caléulated from a flux integral in the flat reéion vanishes.

On the other hand the energy of the star calculated from a

flux integral iq the exterior Schwarzchild region i; -M which
is negative by conventian. To find the energy of the shell one
merely subtracts the intqrior integral from the exterior one

to obtain +M which can never be obtained by integrating a
negative TOO through the shell.

Another example due to Jeésupso takes a static, spheri-
cal metric which is not analytic‘on a constant r surface in
curvature coordinates so that the space is flat outside and
inside the metric functions approach the flat values smoothly.
For any choice of such an interior metric and there are many,
one simply evaluates the Einstein tensor.(4.5;31) to check for
physicality. Although his choicé gave a physical matter tensor
for some distance into the "star";’it had a singularity at-
the opigin. ‘Probably one can pigk a metric with a physical

matter tensor arbitrarily close to the origin, but the Singu—

larity is absolutely necessary for the following reason. Again

using the curvature dependent potential one tries to calculate the

- B . .
"star's" energy with a flux integral in the flat vacuum- the energy

is then zero.  However, integrating the negative T0 through

0
the star must give ‘some number less than zero. The contradic-

tion can only be resolved if the compact three-surface of
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integration through the staf has a disjoint boundary - one piece
in the flat vacuum giving no contribution to the energy and

one piece inside the star covering the singuiarity and giving
the total energy.

These two examples show the power and utility of curva-
ture dependent.mechanical potentials. Without invoking analy-
ticity they can express the long range character of the gravi-
tational field and their mere existeﬂee~£o¥ces certain pathologies
such as energy condition violation and singularities in odd
situations. For this reason alone and apart from any kinematical
desiderata, curvature dependent potentials should become an im-

portant feature in General Relativity.

5.2 Questions

The purpose of this section is to concisely review the .
work of previous chapters pointing out some of the questions
.which will have to be'answergd to obtain a General Relativistic
kinematics for arbitrary space-times with the assumptions made

here. . -

'Assumption I: The conserved guantities of kiLematic interest

arise as integrals of conserved matter currents

from a matter tensor which satisfies Einstein's
equations )

As pointed out in section 2.5, this assumption takes into account
the ngciél nature of the gravitational field and avoids the
problem of motion without matter. Thus one would like to know

if there is any simple geometric characterization of the vector

"
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fields X satisfying Manoff's condition

TERY vV w1
(X X -3

H =
v - M) =0 (8)

so that Iy is conserved. _ ;

Assumption II: The interesting conserved matter currents should ‘
have mechanical potentials which depend linearly ;
on the full Riemann curvature and the vector . §
field which generates the current T

In section 4.3 it was observed that a potential will always exist

provided H3(M,H2) vanishes for the manifold and in 5.1 that one

can always find a potential linear in the full curvature, pro-

vided det-GAB does not vanish. As remarked in section 4.1 this

would give a very strong form of the "equivalence principle" as

the purely mechanical properties of a body would be determined

by the body's vacuum gravitational field. Although Komar's
botential (section 2.5) for the Ricci current of a Killing
vector field is well known, oge;does not even know yet what the
potential is for the Einstein current of a Killing vector field,
let alone the vector fields-satisfying (8).. _ i

Assumption .III: The kinematics requires a special coordinate
system xH determined by the -matter distribution

- by demanding the four basis vectors Du to obey
(8). Causaiity reguirements are satisfied if ;
‘D0 is time-like. U -

This assumption contains a version of "Mach's principle" in that
if the matter distribution changes, then so must the special R
frame in order that.the basis vectors still satisfy (8). -

though these basis vectors would generate conserved linéar- momen-

~

7

AR S
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tum it is not yet known under which condi@ions one can find

four commuting vector fields

[Du,Dv] =0 (9}

which satisfy (8). The imposition of kinematic constraints
such as (9) (and those below) restricts the vectoé fields fé:'
which one wants curvature dependent potentials and these con-
straints will probably figure significantly in obtaining the
final form of the mechanical potentialsl Demanding‘that DO

be time-like

g(D0,D0) < 0 o (10)
4

ensures that.constant xo'surfaces suitable for integration will
exist for isolated bodies enjoying causal motion. As mentidnéd
in section 4.4, the weak Wnergy conditiqe and the metric con-
vention force the General Relativistic energy Pp, to be nega-
tive. . E

Assumption‘IV: The equations of motion for an extended body aré

the equations of the centroid world line and
when the three Boost vectors

Ba = x°D0 + xODa a# 0 11y - -

_ for the special frame satisfy (8), the centroid
world line has a constant slope in the special
- frame (cf. eqg. 4.4.26)

© As pointed out in Chapter 3 and section 4.4 the weak energy con-
dition ensures thaﬁ a convex body contain the centroid. But

6f all the World'lines inside a body's world tube why pick thig

one? At this point one is beginning to pay dearly for-the lack,

of knowledge about conserved matter currents and the special

~
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frames. The reasons for picking it are essentially that it
is most simply defined; it works in flat space theories; and
until further research can prove otherwise, it is a physiéally
reagbnable candidate. It should be realised that conserved
angular momenta P¢ahgge not needed to obtain the linear charac—'
ter of the centr?id, as only the PDu and Ppy figure in the
derivation of‘(4;4.26). From the PDu and the centroid one-can
obtain a conserved orbital angular momentﬁm as.was done explicit-
ly for Special Rélativistic kinematics in Chapter 3. Also as
shown in Chaptexr 3 the kinematic use of conserved angular momen-
tum P¢a is‘thaf it aliows the definition of a conserved spin
’égrrotati?nal angular momenEHnghich specifies the non-uniqueness
of the centroid (3.2.14).: fﬂe frame dependence of the centroid
intimately links the guestion of its uniquen?ss to‘the unique-
ness of speéial frames. One would.expect the transformations
between the special frames to form a group and the smallest
group cbntaining both displacements and boosts is the Poinca;é

',

group. ‘ ' »

- -

Assunmption V: The special frame's”rotation vectors
¢c = x>Db-x"pa - (12)
where (a,b,c) is-a' cyclic permutation of (1,2,3),
also satisfy (8). :

This completes the desiderata for special frames as outlined in
section 4.4 and ensures that-the Poincaré group is a subgrouﬁéof

thé transformation group relating special frames. Although a

I
&
s



87 H\.
non-trivial example of special frames has séen shown to exist
(section 4.5), general questions of. their exiétence, let alone
uniqueness, reguire further research. It should be painted out "”’_hx\\
that a General Relativistic Kinematics inherits the Special
Relativistic problem of massless radiation treated in CTapter 3,
if the transformation groﬁp between special frames contains the
Poincaré group. For if é.massless body with spin satisfying
Einstein's equations admits a Poincaré family of special frames,
then the coordinate values for the possible centroids in a
constant time surface are unbounded (section“3.3). ;Even so, one
cannot help wondering whether the added richnegs 6f the trans-
formation group between special frames (if it is larger than

the Poincaré group) could account for the observed angular momen-

tum equivalent of light.

Assumption VI: Geodesic posEPlate

Fox the sake of Newton's first law one would like an extended
.body to travel a geodesic. As mentioned in section 4.4 one does
not yet know enough about special frames to demand that all
centroids be geodesics or that the tube ‘of centroids contain a
geodesic. Remarkably in the example of section 4.5 the same
condition (4.5.37) which gave the existence o;?special frames
also ensured that the centroid was a geodesic. It might turn
out that there are many special'frames which are not linearly
related to one another and that only one or.some of these would

haVE\Feodesic centroids. In this regard one might note the

simplifications which result if one looks for divergence-free

.
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special frames whose basis vectors satisfy

DivDuy = 0 . ' {14)

¥
Inertial frames have this constant volume character and it is a
very weak condition. Any divergence-free vector field U can

be rescaled to another divergence-free vector field fU if and

only if the function f satisfies

Vuf =0

This fact ensures_ that Ba (11) and ¢a (12) are divergence-
free if the Dy satisfy (14). For divergence-free vector fields

U Manoff's condition (8) simplifies to

pivi JU = % v R ' (15)

.

where E] is the D'Alembertian operator. The special frame
found in section 4.5 does satisfy (14} and in fact the condition
(4.5.37) on the matter which made it special is equivalent to

(14) .
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APPENDIX I

CALCULATION-OF'JB _and J”
\ z,

First the divergence of an

is simplified.

o mH Y .
JV;U“(? Wi by J, =
r
= H Vv ' b f“ = j
= T v Y 2 v
U U v oo . . ,
= T v(V + I'" V") by introducing connection coef-
' Al GH ficient T

il

z T“u(vIJ + Pz pVa) by diagonality of T

u, "o
TR W U ? a . .
J" . =L T (V + == (enY/]g__[) V) by diagonality of g.
Viu U H Pl Bxa 13V )

Substitute Dz

|
0
0
1]
[ae]

3} _ cosb, | H
JDz;u ( '??*) r T U
- 2
On usin 2 - -eYdt2 + e%ar” + r2d82 + rzsin28d¢2, one has
u 8 cosf@ .1  t r 6 2 2
= =T = + T + £ = +
Dz;yu 6 r + Z(T_tY,r ra,r T 8 r T T ¢ r)cose
5 .
_ T¢ (cos )(51n8)

$'sind’ " r

1 .t
= = + T
Z(T tY,r r ,r
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. . : _ €.
With Einstein's equations, Ttt = é? Gtt =-—}—§ (e %[1-ra r]—l) and
Bnr !
r 1 r 1 -a M - X
= —_— = + -
T . 87 G r ﬁg;;z (e "[1 ;Y’r] 1}, qu;u can now be written
U cosd - —a
J = e l-ro -1 + l+r -1
bz ;1 16“r2[( [ ) )Y,r e Tilvry I-D)a ]
H cosb - -
Top.y = ——= (& " =1)(a +y ),
DZ;U lGTI'r I '
. b ;
Finally to calculate J -
) Y Bz;u’ Uan
P
- d 3 sinf 3 N
= _— —_— - — N
Bz rcosB 3T tcoso AT t T 59 N2
is substituted into Jv?u’ yielding

- -

« 3] tcosH u 3
= -—) + = /] +
JBz;u T 8( - ) i T u[at (&n gl‘lu ) rcos8
«’—‘_’""5‘£3 2 (¢n/{g  [)tcose - 2 (ln/T;-T) tsing,
) _9r guu a8 guu r "
The above expression for ds? permits the reduction of J;z_u to
U N R r
JBz;u = 2('I' tY,r + T ra'r)tcose . S i

and using Einstein's equations as before gives

u _ " tcos®

JBZ;H-—lGﬁf

—a .
(-1 (a 4y ) . g

J
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APPENDIX II

. D N R THARY pA * _ -
The equ*valence ?f G uV (V7Y );DS v to Jv = d*?v

The equivalence rests on a local coordinate expression

for *d*y ywhere o is any two-form

in local coordinates. Applying *d* to a gives
)
*dxa = *d*[% aukunmv1

[ .
_ 1,1 pv a B L . _
j?*d[i(f o )nuvaﬂw aw~ ] by the local coordinate action of -*

- % LY BYR N\+aPY

;Y uva nuvaB;YwY)“wu“wB] '

. L
As o and n are tensor quantities: QHékproduct rule requires d
to act as a covariant derivative. /siﬁce the volume element is \

paCaijfl transported, the covagagpt derivative of n vanishes, I:
L.owv B

*xdxq E*[u i wh w Y]

T Y uvaB -
= =x[a"Y 6§50 w By w A8 ''by merely inserting §

4 ;E uvaB Y Y
h

= Le(aPY E 5% wBnY ;
4*[a :enuv[aSGY}w ~w aw']l by the antliymmetry of three forms
S uv € £
24 * [ (npvuﬁay+"uvya66 HVBY «a
-n )w.\wBAmY)]

UVGY B




(%Y

3

A&

e Ny a8 551 w% wiauY)

€
+
uvap uvya68 quvBY a

c
aBgye+n YGgBE+n

By ae
12 ;E(npv pv pv 9

)naBYﬁm

(n“vgsn

YE, UVYQ Be uUVBY
12 “pv;e Yéng +n 9

nBSya +n Na

__ 1 MY _yE UV BE, MV 0E, & pA
= z auv;e(ayég +686g +6a69 Jw” by GHV

Be GE) 8

YE g PA _
(a g +a86;eg Teys;e9 )W by 6uv'_6

¥8;¢€
3 8
__a(S;Ew

So *dxa has¢ the local mordinate expression

- *Ax0t = —~0

B A
AY -

Taking duals of *J, ='d*8v gives

b
JV = *d*Bv p

b

S . ‘ '
v is the onejform assoclated with the matter

. where J

With the local coordinatquﬁpressions
j— _

2 =

TER S
v Auv W r

_ and

1 M.V P A
BV—WYV‘GU\)DAN AW .

The equation for Js becomes

&

f/

92 1 -

-

by the antiéiﬁmetf?x
of n -

E%’

by the action of «

ae, 4
68Yg Y |
]
1l plaB - |

T2 L nuUaB
PgA_oPrA 7
udv GVGU _
™~
current.
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A = L L ugy Pr oo
TV o g *dx(5 vV Guvplw Aw' ],

Using Einstein's equations and the above result for the ac:ion

of xgx allows

Ho_ LMV p
‘ GAuV = (y"v Guv >\)

Raising the index A and using the block symmetry of € gives

d%uv“ - -(y“v"),pepA - YWty

HV HV ;:p . \

The second term on the right hand side vanishes by Bianchgﬁs

second identity and the antisymmetry of € finally permits

¥ v = vV &P
u ip v

R SN
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- \\
APPENDIX III :
CALCULATIONS SHOWING df = xJ o (TN
" f{} . W‘ e
d a d
a) V=Dt =g =2 J, =T —
- at Dt t Bxa .
: _ 1 o B v
*JDt = T tnaBYﬁw AW AW
_ 1t B vy & . . . .
=% T tntByéw AW AW as T is diagonal from field equations
= Ttt Yg wEa menw¢ by definition of n
_ Y+a g
= Ttt e rzsianra A w¢ by substitution of /g
y+a _
= 'Bl_n Gtt-e 2 rzsineerwBA w? by field equations
) Y+a
= '81_11 (e—a[l—ra.'r]—l)e siqemruqeamq’ by stébstitution
of G £
y+a y+a 5 ¢
. § 2 —-a_ r ¢ 1 2 -a_.)rsinfwaw
eDt = TET ©. (a'r+*(’r) (e l)rcosuw aw' + g7 © (e 1
Yre
_ 1 2 -a . 6 r ¢
deDt = &7 © (a,r+Y,r) (e "=l)rsinfuw aw srw +
yta (Y _+a ) y+o y+o
g 62 —Ef (%) )rae 2 e ¥(-a Jr+e 2 (e7%1)1sin8uRe®au?
yt+a -
_ .1 2 - . 8 r & r 8 ¢
= Tex e (a,r+Y,r) (e Lirsinf(w'awaw’ + 0 awaw’) +
Yia
T (e %[l-xa c-le 2 5inBwFawth w? ;
r

= *Jpe
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b) V=ot¢z=-2=g, =71% 2 &
- - an ¢Z ¢ 3 a s
X
_ 1.0 B vy 6
*J¢z z T ¢nGBY5w Al AW
R B y. 8
3 T ¢’n¢BY5m AW AW -
= —T¢¢ Vg wawaw
' +a
_ 1 -a . 1 2,1 _1 1 2. ot r 8
= -Ter © (Y'rr-i--z-('y’r) + 2 y'r r %3 a,rY,r)e r"sinfw aw aw
Y-a Yoo |
B ~_——£— e Y rzsinewtﬁme+—-‘l— e 2 (a _+y )trsinE}t,lurf\me
¢z 16w ' T lemw ,r ', r
-0 -0
vy -a ) e '
_ 1 ,E ., T 2 2 2 o
<:‘I.8¢z_:|_6TT (e — Y,rr +e Y,rrr +
Y-c
2 . r
+ e Y r(2r)151n6m AW A+
—a -
1 . t ;]
+ Ter © (a' +y r)rs:.nem AW AW
Y-a
__ 1 7T 2.1 21 - 2 1 1 t r 8
== 7g7 © risindlzly [)7-3 a ¥ rFY pprty Y,r T a,r’EY,r}m AWTAW
' Yta
1 -a, - 2.1 1 1 2 2 . t. r 6
“"Tem © ("',:t:'r*-*z-(Y e tT Yr'r %,r732 @Y, 0e risinfutawtaw
= 3, d
o _sinf 3 _. _ (e _ m $iné 3
c) V=D_= cosf— +— 38 7 JYpg = (T rcose T = ) -
_ 1 a _m® sinb B .Y, .08
*JDz = € (T rcc:sB T 5 -—r—-—)naBYGu\ rwlaw
_1 r = : 8 sing B vy &
= 6( T I._cos(s’anYG T 8 % nBBYG)w AWLTAW

=-TrrCOSB/§ wtawe(\o,)qJ - Tee _S__l;r_l_g g wtl\(urhw¢
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a+y
Dz -i%? [e_a(l+rY,r)—l]eT sin20wu’sw® +
y+a
- I%? e-u(Y,rr z(Y,r)z-k% Y,r-'% a,r-_% a,rY,r)e 2 rSin26wtﬁwr“w¢
~o Yoo
eDz=1_Je-? elr Y'rrsinzewta w? + 1—2? e—?'_ a'rtsinzewrhw(b +
gty
- I%E'e 2 (e—a-l)tsinZBweaw¢
1 l"'5-0_‘(Yz:_°‘r) L—ZE Y_%E . 2. r t ¢
deDz=m [e ——-f—z—L-——-y’rr+e Y et te Y’r]Sln fuw aw A w® +
Y-c ZY‘_“‘ .
+ Tjé-?f e ? Y'rrSinzewen wta w¢+-llﬁ e ? a'rsinzeiut:\wrnw‘b +
Yy-a : oty
+. %TT e G,rtsin28wen w w¢ - % e 2 (e_a-l)Sinzewtﬂwe'\ “’¢ +
a+y o at+y :
- 1% [e_z_.‘_ --—-'-——-—(a r;Y,r) (e”%-1) - eT e-aa’r]tSin29w1;~ w¥a w?
N 2
dép,, = _I%F e_a(%(y,r)z —% a,rY,r+Y,rr+; Y,r_}]: a,r)e ? rsineuSuha’
- I%F e (1+ ry’r)—l]e 2 gin2ewtaw®a w¢ + N
o+y
- .3‘;'—“ (a,r+Y,r) (e_a-l)eT tsinZerAweA w¢
oty
dbp, = *Jp, - ‘3’%1?" (o +y L) (e™%De ° tsin20u% uw?
But d*JDz =0 ; if énd only if, a'r +Y,r = 0.
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3 3 sin6 3§ .
d) Vv = Bz = -— + —_ - 2= 4
) Z=rxcosh 7E tcoss 3L t T 30 }
s
= (™ a . _ m@ . Sing 3
JBz = | trc:osei-T rtcose T et = ) ;;F

_nf _sind By &

’

1
*JBz‘E(T z:cos.entB 6+T tcosen

- Ny
Tttrcose/E wx wla -t tcosdvg thwBAm¢—Tee 51n6 /3wt ow Am$‘

R K

Y+

_ 1 aTe 2 . r 8 ¢
= T&r (e "[1 ra'r]-l)e rsin2fw aw aw® +
Y+

1 - 2 . t B
16w {e [l+ry’r]—1)e tsin26w aw Aw¢ +

a at+y
o —%a Y )e2 trsifbuwte wha w?

—a o
2 | 2.t ¢ 1 2 N 2,2 .2, r ¢ +
' X r

i
|-
)

dae —tI T r4e 2 2 260Tnwtnw® +

Bz l6n 2 Y f T r‘Y,rr+e Y, r ]t51n

\

¢, 1 2 ¢

t .
Tew e Y trs:_nzeme.\w AW +I6_‘i’? e a rtSlnzemtA‘erw

+
B
=

+

re  aty ;
* 3:2L'rr e?a r(t2+r2’51“28“’0“mr'\w¢- Ll e 2 (&% 1) tdin200tawd A 0d 4
’ ‘ -

o) aty ) _
_ —l—[e 2 —.x a_l)(tZ_rZ)_e 2 e~ % r(tzﬂrz) ; -/“\\__l:;

\\
\\ a+y ' . s
E -— ]
f//) - 2e (e a—l)r]sinfzeml:'»menm¢ ‘
A ' ' - ‘
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Y+
_ 1l - -0,1 2 1 1 21 2 :
deBz-__lGTr € (E(Y,r) ) a,rY,r+Y,rr-+r Y,r r a’r)e trsinzewtawram¢ﬂ
4
Ytra - ;
- _ 2 . t 6 ¢ i
- Ter (e [l+rY,r] l}e tsin28w Aw A w' + A J
a4y y-a
1 2 -a 2 2 1 S T2 2.2 .2 2 -,
+(~ a7 (@ +y e (e 7-1) (£°-r%) *3am ¢ .© (t-r"=t"-r") + ,
a+y. , ' '
+ L e 2 (e %1)r]sin26uwn u’h w?
lew H
a+y .
_ _1 2 —o_ 2_.2, . r 9 ¢ '
dBBz — *JBz s (a,r+-Y,r)e (e' 1) (t%-r )s:.n29.m AW AW .
.r‘ .
But d*JBz = 0; if and only if « r+y = 0.

r !
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