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Abstract

With the advance of technology, the collection and storage of data has become routine.

Huge amount of data are increasingly produced from biological experiments. the

advent of DNA microarray technologies has enabled scientists to measure expressions

of tens of thousands of genes simultaneously. Single nucleotide polymorphism (SNP)

are being used in genetic association with a wide range of phenotypes, for example,

complex diseases. These high-dimensional problems are becoming more and more

common. The “large p, small n” problem, in which there are more variables than

samples, currently a challenge that many statisticians face. The penalized variable

selection method is an effective method to deal with “large p, small n” problem.

In particular, The Lasso (least absolute selection and shrinkage operator) proposed

by Tibshirani has become an effective method to deal with this type of problem.

the Lasso works well for the covariates which can be treated individually. When

the covariates are grouped, it does not work well. Elastic net, group lasso, group

MCP and group bridge are extensions of the Lasso. Group lasso enforces sparsity at

the group level, rather than at the level of the individual covariates. Group bridge,

group MCP produces sparse solutions both at the group level and at the level of the

individual covariates within a group. Our simulation study shows that the group

lasso forces complete grouping, group MCP encourages grouping to a rather slight
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extent, and group bridge is somewhere in between. If one expects that the proportion

of nonzero group members to be greater than one-half, group lasso maybe a good

choice; otherwise group MCP would be preferred. If one expects this proportion to

be close to one-half, one may wish to use group bridge. A real data analysis example is

also conducted for genetic variation (SNPs) data to find out the associations between

SNPs and West Nile disease.
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Chapter 1

Introduction and Problem

Statement

1.1 Background

In recent years, there has been a huge development of comprehensive, high-througput

methods for molecular biology experimentation. The advent of DNA microarray

technologies has enabled scientists to measure the expressions of tens of thousands

of genes simultaneously. High-density DNA microarray technology allows researchers

to monitor the interactions among thousands of gene transcripts in an organism on

a single experimental medium. Prior to this technology, researchers were limited to

examinations of much smaller numbers of genetic units per experiment and were able

to assess interactions among genes under changing conditions on a much smaller scale.

Single nucleotide polymorphism (SNP) based association studies aim at identi-

fying SNPs associated with phenotypes, for example, complex diseases. The SNPs

may associate with disease individually as main effects or behave jointly as epistatic
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interactions.

For the analysis of high throughout data, the main difficulty is that the number of

variables, for example, SNPs or genes far exceeds the number of samples due to the

high cost of microarray experimens. This difficulty is amplified if we want to identify

interactions. We need to eliminate the non-important variables and retain a subset

of variables that explain the most important effects. West et. al (2001) defined it as

the “large p, small n” problem in their paper. As the number of samples n is usually

about tens or hundreds but the number of variables, p is usually about thousands or

ten thousands, problems arise when fitting regression models.

1. infinitely many solutions : if p > n, there will be more unknowns than equa-

tions,and there maybe infinitely many solutions.

2. model over-fitting : the model will fit the training data well but not the testing

data.

3. multicollinearity : many genes will show nearly identical patterns across the

samples, so they supply no new information; some gene profiles can be linear

combinations of the other gene profiles.

Variable selection methods have been studied extensively in the literature. See

George and McCulloch, 1993; Foster and George, 1994; Breiman, 1995; Tibshirani,

1996; George and Foster, 2000; Fan and Li, 2001; Shen and Ye, 2002; Efron, Hastie,

Johnstone and Tibshirani, 2004; Zou and Hastie, 2005; Lin and Zhang, 2006; and Wu,

Boos and Stefanski, 2007. In particular, the Lasso proposed by Tibshirani has gained

much attention in the past few years. The problem that we described above can

be addressed by introducing a penalty into the regression model. Tibshirani (1996)
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proposed a new method for estimation in linear models. The Lasso minimizes the

residual sum of squares subject to the sum of the absolute value of the coefficients

being less than a constant. Because of the nature of this constraint, it forces some

coefficients to be exactly 0 and hence eliminate the irrelevant genes or SNPs in the

model. The `1-type penalty of the Lasso can also be applied to other models as

for example Cox regression (Tibshirani, 1997), logistic regression (Lokhorst, 1999;

Roth, 2004; Shevade and Keerthi, 2003; Genkin et al., 2007) or multinomial logistic

regression (Krishnapuram et al., 2005) by replacing the residual sum of squares by

the corresponding negative log-likelihood function.

Another problem encountered by researchers is that in practical problems, some-

times the predictors are dependent with each other and thus are “grouped”. For

example, in ANOVA factor analysis, a factor may have several levels and can be ex-

pressed via several dummy variables. The dummy variables of the factor become a

group. Also, in additive models, each original predictors may be expanded into dif-

ferent order polynomials or a set of basis functions, then these polynomials (or basis

functions) corresponding to the same original prediction variable become a “group”

as well. In biological applications, genes that share a common biological function or

participate in the same metabolic pathway have a high pairwise correlation with each

other. So genes that share a common biological functions or participate in the same

biological pathways become a group.

When genes are grouped, it is usually sub-optimal to ignore the group structure

and apply the penalized regression. For example, suppose the kth group is unimpor-

tant to the response, by using the lasso method, only the individual coefficient in

the kth group will be set to 0, rather than the whole group to be zero. So the lasso

3
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performs variable selection to the individual variable rather than to the group, often

resulting in selecting more unimportant variables.

The group lasso (Bakin, 1999; Cai, 2001; Antoniadis and Fan, 2001; Yuan and

Lin, 2006) overcomes these problems by introducing a suitable extension. Yuan &

Lin (2006) proposed a group lasso which is an extension of the lasso to do variable

selection on (predefined) groups of variables in linear regression models. The penalty

function is comprised of `2 norms of the groups. This has the effect of encouraging

sparsity at the group level while applying ridge regression-like penalty within a group.

The group lasso has its weakness in that it is unable to do variable selection at the

individual level and heavily shrinks large coefficients. Meier et al.(2008) extended this

idea to logistic regression, and Zhao et al. (2006) extended the idea to hierarchical

groups and overlapping cases.

Other methods that have been proposed and accommodate selection at the group

level include: bridge (Frank and Friedman, 1993), smoothly clipped absolute deviation

penalty (SCAD, Fan and Li (2001)) and minimax concave penalty (MCP, Zhang

(2007)). These approaches all perform variable selection at group level but not at

individual level.

Huang et al. (2009), in contrast, proposed a group bridge approach performing

variable selection by encouraging sparse solutions at both the group and individual

levels. The group bridge applies a bridge penalty to the `1 norm of the groups.

Breheny and Huang (2009) defined selecting important groups as well as identifying

important members of these groups as bi-level selection. They proposed a new method

called group MCP which also performs variable selection at both the group and

individual levels. They investigated the group lasso, group bridge and group MCP
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and introduced a new framework for thinking about group penalties. They also used

the idea of a locally approximated coordinate descent to develop algorithms which are

fast and stable for the three methods. The algorithms are included in the R package

“grpreg” as “gMCP, gBridge and gLasso”.

The recent successes in association mapping of disease genes have been propelled

by logistic regression using cases and controls. Many researchers have applied pe-

nalized method to logistic regression. Park and Hastie (2007) used penalized logistic

regression for detecting gene interactions. They used logistic regression with ridge reg-

ularization to fit gene-gene and gene-environment interaction models. Studies have

shown that many common diseases are influenced by interaction of certain genes.

Logistic regression models with ridge penalization not only can correctly character-

ize the influential genes along with their interaction structures, but also are good

at handling high-dimensional, binary outcome data. Wu, Chen and Hastie (2009)

did a genomewide association analysis by the lasso penalized regression. They evalu-

ated the performance of lasso penalized logistic regression in case-control disease gene

mapping with large number of SNP predictors. Recently, Meier, Geer and Bühlmann

(2008) extended the group lasso to logistic regression and created an efficient algo-

rithm for the method. Breheny and Huang (2009) extended the group lasso, group

bridge, group MCP to logistic regression under their algorithm as well.

1.2 Scope of the Project

In the next few chapters, we will discuss the underlying theory and applications of

the Lasso, elastic net, group lasso, group bridge, group MCP with logistic regression.

Figure 1.1 is a graph describing the framework of different variable selection methods
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Figure 1.1: Framework of different variable selection methods

that we are going to discuss in this thesis.

Specifically, in Chapter 2, we conduct a literature review on penalized regression

methods including the Lasso, elastic net, group lasso, group MCP, group bridge and

hierarchical lasso. We describe each of them in terms of their penalties, penalty pa-

rameter selection and algorithm. We also discuss about advantages and disadvantages

when they perform variable selection.

In chapter 3, we carry out a simulation study to compare the different variable

selection methods. We compare them across a wide range of scenarios: Non-grouped

and grouped variable cases with different correlation, magnitude of effects, grouping

structure and sample sizes are considered. We find out that the group lasso, group

6



M.Sc. Thesis - XIAO DI YANG McMaster - Mathematics & Statistics

bridge and group MCP are optimal for grouped variables selection and should be used

depending on grouping structures of data.

In chapter 4, a real data analysis using the Lasso logistic regression is conducted

for genetic variation (SNPs) data. We detect SNPs that are associated with West

Nile virus disease.

Finally, in chapter 5, discussions and conclusions are given. Suggestions for further

research are outlined.

7



Chapter 2

Preliminary Theory

2.1 Ordinary Least Squares

Suppose we have an input vector XT = (X1, X2, ..., Xp), and want to predict a real-

valued output Y . The linear regression model has the form:

f(X) = β0 +
∑p
j=1Xjβj.

Here the βj’s are unknown parameters which can be estimated. The linear model

either assumes that the regression function E(Y |X) is linear, or that the linear model

is a reasonable approximation.

Typically we have a set of data (x1, y1)...(xn, yn) from which we have to estimate

the parameters β. Each xi = (xi1, xi2, ..., xip)
T is a vector of feature measurements

for the ith case. The most popular estimation method is least squares, in which we

choose the coefficients β = (β0, β1, ..., βp)
T to minimize the residual sum of squares

RSS(β) =
∑n
i=1(yi − f(xi))

2 =
∑n
i=1(yi − β0 −

∑p
j=1 xijβj)

2

8
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From a statistical point of view, this criterion is reasonable if the training observa-

tions (xi, yi) represent independent random draws from their population. Even if the

xi’s were not drawn randomly, the criterion is still valid if the yi’s are conditionally

independent given the inputs xi.

To minimize RSS, we denote by X the N× (p+1) matrix with each row an input

vector (with a 1 in the first position), and similarly let y be the N-vector of outputs

in the data set. Then we can write the residual sum-of-squares as

RSS(β) = (y −Xβ)T (y −Xβ) (2.1)

This is a quadratic function in the p + 1 parameters. Differentiating with respect to

β we obtain

∂RSS
∂β

= −2XT (y −Xβ)

∂2RSS
∂β∂βT

= 2XTX

Assuming (for the moment) that X has full column rank, and hence XTX is positive

definite, we set the first derivative to zero

XT (y −Xβ) = 0

to obtain the unique solution

β̂ = (XTX)−1XTy

2.1.1 The Bias-Variance Tradeoff

To fit a group of data, we usually come up with the model:

9
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y = f(x) + ε, ε ∼ (0, σ2)

In regression analysis, we want to find a good regression model f̂(x) = xT β̂. We

usually use least squares estimate for parameters: β̂ls. The predicted model is a good

model if it satisfies two conditions:

1. β̂ is close to the true β

2. f̂(x) fit future observations well

For the first condition, let’s consider the mean squared error of our estimate β̂.

i.e. consider the squared distance of β̂ to the true β

MSE(β̂) = E[‖β̂ − β‖2] = E[(β̂ − β)T (β̂ − β)]

For example, in least squares(LS), we have:

E[(β̂ls − β)T (β̂ls − β)] = σ2tr[(XTX)−1]

Knowing that the model fits the current data well is not enough. We also need to

know whether the model fits a new group of data well. So if f̂(.) is a good model, f̂(.)

should be close to the new data yi’s. This is the second condition and it’s denoted by

prediction error (PE). So good estimators should, on average, have small prediction

errors.

The PE at a particular target point x0 is:

PE(x0) = EY |X=x0((Y − f̂(X))2|X = x0)

= σ2
ε +Bias2(f(x0)) + V ar(f̂(x0))

This is called bias-variance tradeoff. As model becomes more complex (more terms

included), local structure/curvature can be picked up. However, as more terms in-

cluded in the model, the coefficient estimates suffer from high variance. We can

10
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introduce a little bias in our estimate for β to reduce the variance and hence reduce

the overall PE.

Figure 2.1: Bias-Variance Tradeoff.

[Source: adapted from “Ridge regression and the Lasso”, by Rudy Angeles, 2006,

retrieved from website: http://www-stat.stanford.edu/ owen/courses/305/]

There are two challenges when we use the OLS estimates.

• prediction accuracy : We would like our model to accurately predict future data.

The least squares estimates often have low bias but large variance. Prediction

accuracy can often be improved by shrinking the regression coefficients. Shrink-

age sacrifices some bias to reduce the variance of the predicted value and hence

may improve the overall prediction.

• interpretation: With a large number of prediction variables, we would like to

determine a small subset of variables that exhibits the strongest effects.

11
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2.2 Subset Selection

2.2.1 Best-Subset Selection

In this section we describe a number of approaches to variable subset selection with

linear regression. With subset selection we retain only a subset of the variables,

and eliminate the rest from the model. Least squares regression is used to estimate

the coefficients of the inputs that are retained. There are a number of different

strategies for choosing the subset. In later sections we discuss shrinkage approaches

for controlling variance.

Best subset selection regression finds for each k ∈ {0, 1, 2, ..., p} the subset of size k

that gives smallest residual sum of squares (RSS). This method uses the algorithm of

leap-and-bound procedure of Furnival and Wilson (1974). This method is feasible for

as many as 40 parameters. To determine k, we need to consider the tradeoff between

bias and variance, along with the more subjective desire for parsimony. Typically,

we choose the smallest model that minimizes an estimate of the expected prediction

error.

2.2.2 Forward- and Backward-Stepwise Selection

The best-subset selection search through all possible subsets, becomes infeasible for

p larger than 40. Instead of searching through all possible subsets, forward-stepwise

selection starts with the intercept, and then sequentially adds into the model the

predictor that most improves the fit. Like best-subset regression, forward-stepwise

produces a sequence of models indexed by k, the subset size, which must be deter-

mined.

12
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Forward-stepwise selection is a greedy algorithm, producing a nested sequence of

models. In this sense it might seem sub-optimal compared to best-subset selection.

However, it always can be computed even if the number of parameters is greater than

observations(p > n). Forward-stepwise is a more constrained search than best-subset

selection in terms of selecting the best subset of each size. It will have low variance

but perhaps more bias.

Backward-stepwise selection starts with the full model, and sequentially deletes

the variables that are least important to the response. The candidate for dropping

is the variable with the smallest Z-score. Backward selection can only be used when

n > p, while forward-stepwise can always be used.

Some software packages implement hybrid stepwise-selection strategies that con-

sider both forward and backward moves at each step, and select the “best” of the

two. For example in the R package the step function uses the AIC criteria to select

the “best” of the two in each step.

2.2.3 Forward-Stagewise Regression

Forward-stagewise regression is even more constrained than forward-stepwise regres-

sion. It starts like forward-stepwise regression, with an intercept equal to y, and

centered predictors with coefficients initially all 0. At each step, the algorithm iden-

tifies the variable most correlated with the current residual. It then computes the

simple linear regression coefficient of the residual on this chosen variable, and then

adds it to the current coefficient for that variable. This is continued till none of the

variables have correlation with the residuals. i.e. the least-squares fit when n > p.

Unlike forward-stepwise regression, none of the other variables are adjusted when

13
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a term is added to the model. As a result, forward-stagewise regression can take

more than p steps to reach the least squares fit, and historically has been dismissed

as being inefficient.

2.3 Shrinkage Methods

By retaining a subset of the important predictors, subset selection produces a model

that has low prediction error and is interpretable. However, it has a high variance due

to its discrete process of either eliminating or retaining the variable. So it does not

reduce the prediction error of the full model. Shrinkage methods are more continuous

and do not suffer as much from high variability.

2.3.1 Ridge Regression

Ridge regression shrinks the regression coefficient by imposing a penalty parameter

on them. The ridge regression minimize the sum of squares,

minimize
∑n
i=1(yi − βTxi)2 s.t.

∑p
j=1 βj

2 ≤ t

which is equivalent to

minimize (y −Xβ)T (y −Xβ) s.t.
∑p
j=1 βj

2 ≤ t

We can write the ridge constraint as the following residual sum of squares(SS):

PRSS(β)`2 =
∑n
i=1(yi − xTi β)2 + λ

∑p
j=1 βj

2

= (y −Xβ)T (y −Xβ) + λ‖β‖2

The ridge solution have smaller average PE than β̂ls. Since PRSS(β)`2 is convex, it

hence has a unique solution. To find the solution, we take derivative to PRSS(β)`2 :

14
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∂PRSS(β)`2
∂β

= −2XT (y −Xβ) + 2λβ

The solution to PRSS(β̂)`2 can be written as

β̂λ
ridge

= (XTX + λIp)
−1XTy

where X is standardized, and y is centered.

The parameter λ is the penalty parameter that controls the size of coefficients and

amount of regularization. The λ forces coefficients to go to zero (but not equal to

zero). The larger the penalty enforced, the smaller the coefficient will. As λ goes to

zero, we obtain the least squares solutions. As λ goes to infinity, we have β̂ridgeλ=∞ = 0

(intercept-only model). For each λ, there is a solution. Hence, the λ’s trace out a

path of solutions.

Ridge regression is a continuous process that shrinks coefficients and hence is more

stable: however, it does not set any coefficients to 0 and hence does not give an easily

interpretable model.

2.3.2 The Lasso

Tibshirani (1996) proposed a new technique, called the Lasso, for ’least absolute

shrinkage and selection operator’. It shrinks coefficients towards 0 and sets some

of the coefficients exactly to 0. It tries to retain the good features of both subset

selection and ridge regression. Lasso coefficients are solutions to the `1 optimization

problem:

minimize (y −Xβ)T (y −Xβ) s.t. Σp
j=1|βj| ≤ t

We can write the Lasso constraint as the following penalized residual sum of

squares (PRSS):

15
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PRSS(β)`1 =
∑n
i=1(yi − xTi β)2 + λ

∑p
j=1 |βj|

= (y −Xβ)T (y −Xβ) + λ‖β‖1

Quadratic programming techniques from convex optimization can be used to solve

for values of β̂lassoλ . β̂λ has no closed form solution. The tuning parameter λ is the

shrinkage parameter that controls the amount of regularization. If t0 =
∑p
j=1 |β̂j|,

(equivalently, λ = 0), there is no penalty put on the coefficients and hence we ob-

tain the least squares solutions. If λ → ∞, the penalty is infinitely large and thus

forces all of the coefficients to be zero. Hence, we obtain a intercept-only model.

Since Σp
j=1|βj| ≤ t, a path of solution is traced out by index t. Figure 2.2 below

shows a Lasso coefficients paths for the brown fat data set which is publicly avail-

able at http://www.ssc.ca/en/education/archived-case-studies/ssc-case-studies-2011-

fat#Data for identifying the factors that determine the existence and the volume of

brown fat in humans.

Figure 2.2: the Lasso coefficients paths for the brown fat data set
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The tuning parameter λ controls the strength of penalty, which shrinks each βj

towards zero. Often, we believe that many of the β′js should be 0. Hence, the Lasso

produces sparse solutions. Large enough λ will set some coefficients exactly equal to

0. So the Lasso will perform model selection. A ridge penalty λ
∑p
j=1 β

2
j also shrinks

parameter estimates towards zero, but it never set coefficients exactly equal to 0. So

it is not actually performing variable selection as it is not forcing many estimates to

vanish. This defect of the ridge penalty reflects the fact that |β| is much larger than

β2 for small β.

2.3.3 Cross-Validation

We need a disciplined way of choosing the tuning parameter λ. Obviously, we want to

choose λ that minimizes the mean squared error. We compute our statistical model

as f̂(∗) from training set. The model f̂(∗) is tested on a new independent set of data

named test set. The prediction should be good if we have a good model. Ideally, we

would separate our data set to training set and test sets. However, this is not always

possible, for example, a data set with only a few observations will not allow one to

divide the data into a training and test sets.

The tuning parameter λ can be determined by cross-validation method. The

most common approach used is K-fold cross validation. In K-fold cross-validation,

we randomly partition our data into K sub-sets, i.e. D = (D1, D2, ..., DK). Usually,

K = 5 or K = 10. One of the sub-set from K sub-sets is retained as test set and the

remaining K − 1 sub-set are used as training set. We fit our statistical model f̂
(λ)
−K(x)

to the training set D′ = D1, D2, ...DK−1. Then we compute the fitted values of the

model f̂
(λ)
−K(x) to the data of test set DK . We also compute the cross-validation (CV)
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error of test set DK . The cross-validation (CV) error for the Kth fold is

(CV Error)
(λ)
K = |DK |−1

∑
(x,y)∈DK (y − f̂λ−K(x))2

Therefore, the overall cross-validation error for the model is

(CV Error)λ = K−1
∑K
k=1(CV Error)

λ
k

We select λcv as the one with minimum (CV Error)λ. Then, we can compute the

chosen model f̂(x)λ
cv

on the entire training set D = (D1, D2, ...DK) and apply f̂(x)λ

to the test set to assess test error and prediction. Figure 2.3 is a plot of CV errors

and standard error bands on the brown fat data set.

Figure 2.3: Cross-validation errors from a Lasso regression example on brown fat data
set

2.3.4 Grouping Effect

In the “large p, small n” problem (West et al., 2001), the “grouped variables” situation

is a particular concern. In some problems, the predictors belong to pre-defined groups.
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For example, genes that belong to the same biological pathway, or collections of

indicator (dummy) variables for representing the levels of a categorical predictor.

In this situation it may be desirable to shrink and select the members of a group

together.

Suppose we have data (x1, y1), ..., (xi, yi), ..., (xn, yn), where xi = (xi1, ..., xip) are

the predictors and yi is the response. The linear regression to model the response y

in terms of the predictors x1, ...xp is:

y = β0 + β1x1 + ...+ βpxp + ε,

where ε is the error term. We now describe the cases where the variables are grouped.

Suppose the predictor variables can be divided into K groups and the kth group

contains pk variables. So the linear regression model becomes:

yi = β0 + ΣK
k=1Σ

pk
j=1βkjxi,kj + εi.

So we are interested in finding which group of variables and individual variables have

an important effect on the response. For example, (x11, ..., x1p1), ..., (xK1, ..., xKpk) may

represent different biological roles for grouped genes and the response y may represent

a certain disease. We want to find the association between genes and grouped genes

with the disease.

Lasso (Tibshirani 1996) is an effective variable selection approach for “large p,

small n” problem. We apply the Lasso to the “grouped” case. The lasso criterion

penalizes the `1-norm of the regression coefficients:

maxβ0,βkj − 1
2

∑n
i=1(yi −

∑K
k=1

∑pk
j=1 βkjxi,kj)

2 − λ∑K
k=1

∑pk
j=1 |βkj|,

where λ ≥ 0 is a tuning parameter.
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Lasso works well for the variables which can be treated individually. When the

variables are grouped, the lasso does not work well. For example, suppose the kth

group is unimportant, lasso will only force individual coefficient in the kth group to

be zero. However, the whole group coefficients should be zero altogether because the

kth group is unimportant. Lasso tends to make selection based on the strength of

individual variables rather than the strength of the group. It may result in selecting

more groups than necessary. Therefore, for the grouped cases, it maybe desirable to

shrink and select the members of a group together.

2.3.5 Elastic Net

Zou and Hastie (2003) proposed the elastic net which is also a penalized variable se-

lection method. They found out that the elastic net often outperforms the lasso, while

enjoying a similar sparsity of representation. In addition, the elastic net encourages

a grouping effect, where strongly correlated predictors tend to be in or out of the

model together. The elastic net is particularly useful when the number of predictors

p is much bigger than the number of observations n.

2.4 Group Variable Selection Methods

2.4.1 Group Lasso

Yuan and Lin (2006) proposed the group lasso to address the grouping problem.

They extended the lasso to group variable selection. Suppose that the p predictors

are divided into K groups, with number of predictors pk in group k. We use a matrix

Xk to denote the predictors corresponding to the kth group and coefficient vector βk.
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The group lasso minimizes the convex criterion

minimize ‖Y −∑K
k=1Xkβk‖22 + λ

∑K
k=1

√
pk ‖ βk ‖2

Yuan and Lin (2006) chose to penalize the `2 norm of the coefficients within each

group, i.e. ΣK
k=1 ‖ βk ‖2, where

‖ βk ‖=
√
β2
k1 + ...+ β2

kpk

where λ ≥ 0 is a tuning parameter and the term
√
pk represent the varying group

sizes. The penalty function used is intermediate between the `1 penalty used in the

Lasso and `2 penalty used in ridge regression. The ‖· ‖ is the Euclidean norm (not

squared). Since the Euclidean norm of a vector βk is zero only if all of its components

are zero, this procedure encourages sparsity at both the group and individual levels.

That is, for some values of λ, certain tuning parameter λ can set the whole coefficient

vector βk = 0. So the kth group is removed from the fitted model. If the group sizes

are all equals to 1, it reduces to the regular lasso.

This procedure was first proposed by Bakin (1999) as an extension of the Lasso for

selecting groups of variables for which he also proposed a computational algorithm.

Yuan and Lin generalized it. Generalizations include more general `2 norm ‖ η ‖K=

(ηTKη)1/2, as well as allowing overlapping groups of predictors (Zhao et al., 2008).

There are also connections to methods for fitting sparse additive models (Lin and

Zhang, 2006; Ravikumar et al., 2008).
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2.4.2 Group Lasso, Group MCP, Group Bridge

Breheny and Huang (2009) considered the regression problems in which the covariates

can be grouped. They are interested in selecting important groups as well as identify-

ing important members of these groups. They define this as bi-level selection. They

mentioned, the group lasso proposed by Yuan & Lin (2006) has its penalty function as

comprised of `2 norms of the groups. This has the effect of encouraging sparsity at the

group level while applying ridge regression-like shrinkage within a group. The group

lasso performs variable selection at group level but not at individual level. However,

the group bridge proposed by Huang et al. (2007) applies a bridge penalty to the `1

norm of the groups, performing variable selection by encouraging sparse solutions at

both the group and individual level.

Group lasso and group bridge also have their own shortcomings. Group lasso

is incapable of variable selection at the individual level and heavily shrinks large

coefficients. Group bridge suffers from some practical difficulties because it is not

everywhere differentiable. Furthermore, both methods make inflexible grouping as-

sumptions that can cause the methods to suffer when groups are misspecified or

sparsely represented.

The algorithms that have been proposed to fit models with grouped penalties

are either inefficient for models with large number of predictors or limited to linear

regression models, models with orthogonal group members. Therefore, Breheny and

Huang (2009) felt there is a need to develop tools that perform bi-level group variable

selection. In their paper, they proposed a new framework to better understand the

behavior of group penalties. They also proposed a new method, group MCP which

perform variable selection at both group and individual level and develop a fast
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algorithm called “grpreg” to fit group lasso,group bridge and group MCP.

Framework for Group Penalized Methods

Suppose we have data (x1, y1), ..., (xi, yi), ..., (xn, yn), i = 1, 2, ..., n, where xi = (xi1, ..., xip)

is a p-dimensional predictor and yi is the response variable. xi contain an unpenalized

intercept and J groups xij, with Kj be the size of group j. Covariates that do not

belong to a group are considered as a group of one. We want to find a sparse estimates

of coefficients of β by a loss function L which quantifies the discrepancy between an

observation yi and a linear predictor ηi = x′iβ = β0 + Σj
j=1x

′
ijβj, where βj is the coef-

ficients in the jth group. The covariates are standardized to make Σn
i=1xijk = 0 and

1
n
Σn
i=1x

2
ijk = 1 to make the penalty applied equally. The covarties are standardized

without loss of generality during the model fitting process and are transformed back

to the original scale after model fitting.

The effect of a penalty on the coefficients are subject to the penalty’s gradient.

Penalties have their forms as λβγ. The ridge regression has γ = 2, so its rate of

penalization increases with increase of β. The ridge penalty applies little to no pe-

nalization near 0 and large penalization to large coefficients. The lasso has its γ = 1,

so its rate of penalization is constant. If γ = 1/2, the rate of penalization is very high

near 0 but diminishes as β grows larger.

The group lasso minimizes the following objective function and β is the solution

to the function

Q(β) =
1

2n
‖y−Xβ‖2 + λΣJ

j=1

√
Kj‖βj‖, (2.2)
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where ‖ · ‖ is the `2 norm. The group bridge estimate minimizes

Q(β) =
1

2n
‖y−Xβ‖2 + λΣJ

j=1K
γ
j ‖βj‖

γ
1 , (2.3)

where ‖ · ‖1 is the `1 norm. Throughout their paper, the group bridge has γ = 1/2.

To better understand the effect of penalties, the grouped penalties can be consid-

ered having a form of an outer penalty fo applied to a sum of inner penalties fI . So

the penalty applied to a group of covariates is

fo(
Kj∑
k=1

fI(|βjk|)) (2.4)

and the partial derivative with respect to the jkth covariate is

f ′o(
Kj∑
k=1

fI |βjk|)f ′I(|βjk|). (2.5)

Both group lasso and group bridge fit into this framework. The group lasso has

an outer bridge and inner ridge penalty. The group bridge has an outer bridge and

inner lasso penalty. From (2.4), we can understand that the group penalization

apply a rate of penalization to covariate that consist of two terms: one carrying

the information about the group, and the other carrying the information about the

individual. Variables can enter the model either by having a strong individual effect

to the response or in a group with strong collective effects. Conversely, a variable with

a strong individual effect can be excluded from a model through its association with a

preponderance of weak group members. This framework is helpful in understanding

the gradient and effect of a group penalty. However, casually combining penalties

will lead to meaningless group penalization. For example, using the lasso as both
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inner and outer penalty is actually conventional lasso and make no use of grouping

structure. Properties may emerge from combinations of these two penalties. The

group lasso has a convex penalty even though the outer bridge penalty is nonconvex.

Zhang (2007) proposed a nonconvex penalty called MCP. The MCP penalty and

its derivative are defined on [0,∞) by

fλ,a(θ) =


λθ − θ2

2a
, if θ ≤ aλ;

1/2aλ2, if θ > aλ.

f ′λ,a(θ) =


λ− θ

a
, if θ ≤ aλ;

0, if θ > aλ.

for λ ≥ 0. The MCP penalty applies the same rate of penalization as the lasso when

θ ≤ aλ, and it continues to reduce the penalization to 0 when θ > aλ. MCP is mo-

tivated by and rather similar to SCAD. The connections between MCP and SCAD

are investigated by Zhang (2007). Both penalties perform variable selection by elim-

inating unimportant variables from the model while leaving the important variables

in the model. This is the so-called “oracle” property which fitting an unpenalized

model in which the truly nonzero variables are known in advance.

For the MCP penalty, the λ is the regularization parameter that controls the

amount of penalization and a is a turning parameter that affects the range over which

the penalty is applied. When a is small, the region in which MCP is not constant is

small; when a is large, MCP penalty has a broader influence. So small values of a are

best at retaining the unbiasedness of the MCP penalty for large coefficients, but they

may create nonconvexity objective function that is difficult to optimize and in turn

generate discontinuous solution with respect to λ. So it is better to choose an a that
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is large enough to avoid problems but not too large. For linear regression models,

when the response and covariates are standardized to have standard deviation 1, they

recommend using a = 3. As practical advice, they recommend always standardizing

the variables and using a = 3.

The group MCP estimate minimizes

Q(β) = 1
2n
‖y −Xβ‖2 + ΣJ

j=1fλ,b(Σ
Kj
k=1fλ,a | βjk |),

where b, the tuning parameter of the outer penalty, is set to Kjaλ/2 to ensure that

the group level penalty reaches its maximum if and only if each of its components are

at their maximum. This means that the derivative of the outer penalty reaches 0 if

and only if |βjk| ≥ aλ, for k =∈ 1, ..., Kj.

Figure 2.4: Penalties applied to a two-covariate group by the group lasso, group
bridge, and group MCP methods

[Source: adapted from “Penalized methods for bi-level variable selection”, by P.

Breheny and J. Huang, 2009, Statistics And Its Interface, 2(1), p.369-380. ]

Figure 2.4 plots the penalties applied to a two-covariate group by the group lasso,

group bridge, and group MCP methods. Note that where the penalty comes to a

point or edge, there is a possibility that the solution will take on a sparse value;

all penalties come to a point at 0, encouraging group-level sparsity, but only group

bridge and group MCP allow for bi-level selection. From Figure 2.4, the group MCP
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penalty is capped at both the individual covariate and group levels, while the group

lasso and group bridge penalties are not. This illustrates the two rationales of group

MCP: (1) to avoid over shrinkage by allowing covariates to grow large. (2) to allow

groups to remain sparse internally. Group bridge allows the presence of a single large

predictor to continually lower the entry threshold of the other variables in its group.

This property, whereby a single strong predictor drags others into the model, pre-

vents group bridge from achieving consistency for the selection of individual variables.

Group MCP, on the other hand, limits the amount of signal that a single predictor

can contribute towards the reduction of the penalty applied to the other member of

the groups.

Local Coordinate Descent for Group MCP, Group Bridge, Group Lasso

Coordinate descent algorithms optimize a target function with respect to a single

parameter at a time, iteratively cycling through all parameters until convergence is

reached. The power of coordinate descent algorithms for optimizing penalized regres-

sion problems been gained much attention recently.

The procedure of the local group coordinate descent (LCD) algorithm is as follows:

Let β̃ represents the current estimate of β,

1. Choose an initial estimate β̃ = β(0)

2. Approximate loss function, if necessary

3. Update covariates:

(a) Update β̃0
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(b) For j ∈ 1, ..., J , update β̃j

4. Repeat steps 2 and 3 until convergence

First, Breheny and Huang (2009) consider the updating of the intercept in step

3a. The partial residual for updating β̃0 is ỹ = y −X−0β̃−0, where the −0 subscript

refers to what remains of X or β̃ after the 0th column or element has been removed,

respectively. The updated value of β̃0 is therefore the simple linear regression solution

β̃0 ←− x′0ỹ

x′0x0
= 1

n
x′0ỹ.

They also use an equivalent approach with residuals for updating β̃0 which is more

efficient. They update β̃0 by taking advantage of the current residuals r̃ = y − xβ̃.

Since ỹ = r̃ + x0β̃0, the update becomes

β̃0 ←−
1

n
x′0r̃ + β̃0 (2.6)

Updating β̃0 in this way only need 2n operations: n operations to calculate x′0r̃ and

n operations to update r̃. In contrast, obtaining ỹ requires n × (p − 1) operations.

Meanwhile, for iteratively reweighed optimization, the updating step is

β̃0x
′
0Wr̃/x′0Wx0 + β̃0, (2.7)

requiring 3n operations. Updating β̃j in step 3b depends on the type of penalties. In

the next, the updating steps for different group penalties, group bridge, group MCP

and group lasso are being discussed.
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Group MCP

Breheny and Huang (2009) begin by looking at the solutions of the Lasso. When

the penalty being applied to a single parameter is λ|β|, the solution to the Lasso

(Tibshirani, 1996) is

β = S(1/nx′y,λ)
1/nx′x

= S(1/nx′y, λ),

where S(z, c) is the soft-thresholding operator (Donoho and Johnstone,1994) defined

for positive c by

S(z, c) =


z − c, if z > c;

0, if |z| ≤ c;

z + c, if z < −c.

Group MCP does not have a similarly convenient form for updating individual pa-

rameters. However, by taking the first order Taylor series approximation about β̃j,

the penalty as a function of βjk is approximately proportional to λ̃jk|βjk|, where

λ̃jk = f ′λ,b(
Kj∑
m=1

fλ,a(|β̃jm|))f ′λ,a(|β̃jk|) (2.8)

and f , f ′ were defined in group MCP penalty previously. Thus, in the local region

where the penalty is well-approximated by a linear function, step 3b consists of simple

updating steps based on the soft-thresholding cutoff λ̃jk for k ∈ 1, ..., Kj.

β̃jk ←− S(1/nx′jkr̃ + β̃jk, λ̃jk) (2.9)

or with weights,

β̃jk ←−
S(1/nx′jkWr̃ + 1/nx′jkWxjkβ̃jk, λ̃jk)

1/nx′jkWxjk
(2.10)
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Group Bridge

The local coordinate descent algorithm for group bridge is similar to that for group

MCP, but with

λ̃jk = λγK
γ
j ‖ β̃j ‖γ−1 (2.11)

The difficulty in group bridge is that since the bridge penalty is not everywhere

differentiable, λ̃jk is undefined at β̃j = 0 for y < 1. 0 create a fundamental problem

with the penalty itself. For any positive value of λ, 0 is a local minimum of the group

bridge penalty and therefore complicates optimization.

To address this problem, they choose to begin with an initial value away from

0. If β̃j reaches 0 at any point during the iteration, they restrain β̃j at 0 thereafter.

This causes the potential drawback of dropping groups that actually is nonzero when

the solution converges. There are other approaches to address this problem such as

adding a small constant to β̃j in (2.11) However, it would prevent the algorithm from

taking advantage of sparsity and greatly reduce computational efficiency for large,

sparse problems.

Group Lasso

Updating is more complicated in the group lasso because of its properties that grouped

variables go to 0 all at once or not at all. Breheny and Huang (2009) choose to update

β̃j at step 3b in two steps: (1) check whether β̃j = 0; (2) if β̃ 6= 0, update β̃jk for

k ∈ 1, ..., Kj. Step (1) is performed under the condition that β̃j 6= 0 if and only if

1/n ‖ X ′j r̃ +X ′jXjβ̃j ‖>
√
Kjλ (2.12)
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The conditions above are the Karush-Kuhn-Tucker conditions for this problem, and

were point out by Yuan and Lin (2006) first. The reason to do these is that if βj

cannot move in any direction away from 0 without increasing the penalty more than

the movement improves the fit, then 0 is a local minimum. Since the group lasso

penalty is convex, 0 is also the unique global minimum.

If this condition does not hold, then they set β̃j = 0 and move on. Otherwise,

they make a local approximation to the penalty and update the members of group j.

However, instead of approximating the penalty as a function of |βjk|, they can obtain

a better approximation by considering the penalty as a function of β2
jk. Therefore,

the penalty applied to βjk can be approximated by λ̃jkβ
2
jk/2, where

λ̃jk =
λ
√
Kj

‖β̃j‖
(2.13)

This approach yields a shrinkage updating step instead of a soft-thresholding step

β̃jk ←−
1/nx′jkr̃ + β̃jk

1 + λ̃jk
(2.14)

or for weighted optimization,

β̃jk ←−
1/nx′jkWr̃ + 1/nx′jkWxjkβ̃jk

1/nx′jkWxjk + λ̃jk
(2.15)

Note that, like (2.11), (2.13) is undefined at 0. However, this is merely a minor

algorithmic inconvenience in group lasso. The penalty is differentiable but with its

partial derivatives having a different form at 0. This issue can be avoided by adding

a small positive quantity δ to the denominator in (2.10).

Meier et al. (2008) have also proposed a coordinate descent algorithm for fitting
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group lasso models. However, Meier et al. (2008) consider only the special case in

which groups are orthonormal.

2.4.3 The Group Lasso for Logistic Regression

Suppose that we have data (xi, yi), i = 1, ..., n, of a p-dimensional vector xi of G pre-

dictors. yi ∈ (0, 1) is the binary outcome. Both categorical and continuous predictors

are allowed. Let dfp be the degrees of freedom of the gth predictor. For example,

the main effect of a factor with four levels has df = 3 and a continuous predictor has

df = 1 only.

Linear logistic regression models the probability pi = P (Y = 1|xi) by

η(xi) = log(
pi

1− pi
) = β0 +

G∑
g=1

xTi,gβg (2.16)

where β0 is the intercept and βg is the parameter vector corresponding to the gth

predictor. We denote the whole parameter vector by β = (β0, β
T
1 , ..., β

T
G)T . The

logistic group lasso estimator β̂λ is given by the minimizer of the convex fucntion

Sλ(β) = −`(β) + λΣG
g=1s(dfg)‖βg‖2 (2.17)

where `(·) is the log-likelihood function, i.e.

`(β) = Σn
i=1yiη(xi)− log[1 + exp{η(xi)}]. (2.18)

The tuning parameter λ ≥ 0 controls the amount of penalization. We do not

penalize the intercept. The minimum in equation (2.17) is attained. The function

s(·) is used to rescale the penalty with respect to the dimensionality of the parameter
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vector βg. They use s(dfg) = df 1/2
g to ensure that the penalty term is of the order of

the number of parameters dfg. The same rescaling was used in Yuan and Lin (2006).

The “groupwise” `2-norm in equation (2.17) is an intermediate between the lasso and

the ridge penalty function.

Yuan and Lin (2006) proposed an algorithm to solve a system of non-linear equa-

tions which corresponds to a groupwise minimization of the penalized residual sum

of squares. They did not give a numerical convergence. The algorithm that they

proposed is a revision of block co-ordinate descent algorithm. In this group Lasso

for logistic regression paper, Meier, Geer and Bühlmann (2008) also used the block

co-ordinate descent algorithm to solve more complicated logistic regression models.

2.5 Hierarchical Lasso

The existing successful group variable selection methods such as Antoniadis and Fan

(2001), Yuan and Lin (2006) and Zhao, Rocha and Yu (2009) have the limitation of

selecting variables in an “all-in-all-out” fashion, i.e. when one variable in a group

is selected, all other variables in the same group are also selected. Zhou and Zhu

(2010) realized this problem and proposed an extension of group lasso for group

variable selection, which they call it hierarchical lasso (HLasso). This method not

only removes unimportant groups, but also selects variables within a group. They

also showed that the new method has the potential to achieve the theoretical “oracle”

property as in Fan and Li (2001) and Fan and Peng (2004).

The original lasso (Tibshirani, 1996) penalizes the `1-norm of the regression coef-

ficients:
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maxβ0,βkj − 1/2
∑n
i=1(yi −

∑K
k=1

∑pk
j=1 βkjxi,kj)

2 − λ∑K
k=1

∑pk
j=1 |βkj|

Due to the singularity at βkj = 0, the `1-norm penalty can shrink some of the fitted

coefficients to be zero when the penalty is large enough. The Lasso works well for the

variables that can be treated individually. When the variables are grouped, the lasso

does not work well. For example, suppose the kth group is unimportant, lasso will

only force individual coefficient in the kth group to be zero. However, the whole group

coefficients should be zero altogether because the kth group is unimportant. The Lasso

tends to make selection based on the strength of individual variables rather than the

strength of the group. Therefore, for the grouped cases, it maybe desirable to shrink

and select the members of a group together.

Antoniadis and Fan (2001), Yuan and Lin (2006) and Zhao, Rocha and Yu (2009)

have proposed methods to solve the group variable selection problem. Antoniadis

and Fan (2001) proposed to use a blockwise additive penalty in the setting of wavelet

approximations. To increase the estimation precision, empirical wavelet coefficients

were thresholded or shrunken in blocks (or groups) rather than individually.

Yuan and Lin (2006) and Zhao, Rocha and Yu (2009) extended the Lasso for

group variable selection. Yuan and Lin (2006) chose to penalize the `2-norm of the

coefficients within each group, i.e.,
∑K
k=1 ||βk||2, where

||βk||2 =
√
β2
k1 + ...+ β2

kpk

Unlike Yuan and Lin (2006) using the `2-norm penalty, Zhao, Rocha and Yu (2009)

used the `∞-norm penalty, i.e.,
∑K
k=1 ||βk||∞, where

||βk||∞ = max(|βk1|, ..., |βkpk |)
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Because of the singularity of ||βk||2 at βk = 0, appropriate tuning parameter λ can

make the whole coefficient vector βk = 0, hence the kth group is unimportant and

removed from the fitted model.

Similar to the `2-norm, the ||βk||∞ is also singular at βk = 0; hence when λ is

appropriately tuned, the `∞-norm can also effectively remove unimportant groups.

Both the `2-norm penalty and the `∞-norm penalty have the problem of selecting

variables in an “all-in-all-out” fashion, i.e., when one variable in a group is selected,

all other variables in the same group are also selected. The reason is that both

||βk||2 and ||β∞|| are singular only when the whole vector βk = 0. Once a component

of βk is non-zero, the two norm functions are no longer singular. For the `2-norm,

it is the ridge penalty that is under the square root. Since the ridge penalty can

not do variable selection (as in ridge regression), once the `2-norm is non-zero (or

the corresponding group is selected), all components will be non-zero. For the `∞-

norm, if the “max(·)”is non-zero, there is no increase in the penalty for letting all

the individual components move away from zero. Hence if one variable in a group is

selected, all other variables are also automatically selected.

In many practical problems, however, we may want to keep the flexibility of se-

lecting variables within a group. For example, genes in the same biological pathway

form a group and the group maybe related to a certain biological process. However,

not all genes in the group maybe related to biological process, we want to identify

the genes that are important to the biological process.

To solve this problem, Zhou and Zhu (2009) proposed the hierarchical lasso which

they reparameterize βkj as

βkj = dkαkj, k = 1, ..., K; j = 1, ..., pk,
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where dk ≥ 0 (for identifiability reasons). In this case, βkj, j = 1, ..., pk, all belong

to the kth group. The βkj are comprised of dk and αkj. dk is at the first level of the

hierarchy, controlling βkj, j = 1, ..., pk, as a group; αkj’s are at the second level of the

hierarchy, reflecting differences within the kth group.

So they consider the penalized least squares criterion

max− 1
2

∑n
i=1(yi −

∑K
k=1 dk

∑pk
j=1 αkjxi,kj)

2 − λ1
∑K
k=1 dk − λ2

∑K
k=1

∑pk
j=1 |αkj|

subject to dk ≥ 0, k = 1, ..., K,

where λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters. λ1 controls the estimates at the

group level, and it can effectively remove unimportant groups: if dk is shrunken to

zero, all βkj in the kth group will be set to zero. λ2 controls the estimates at the

variable-specific level: if dk is not equal to zero, some of the αkj and βkj, j = 1, ..., pk,

still have the chances of being zero. So the hierarchical penalty keeps the flexibility

of the `1 norm penalty.

From the above, the hierarchical penalty seems complicated to implement in prac-

tice. However, the λ1 and λ2 can be combined into one penalty. Let λ = λ1 ∗ λ2, the

above function showed by a Lemma to be is equivalent to, but maybe with different

dk and αkj:

maxdk,αkj − 1
2

∑n
i=1(yi −

∑K
k=1 dk

∑pk
j=1 αkjxi,kj)

2 −∑K
k=1 dk − λ

∑K
k=1

∑pk
j=1 |αkj|

subject to dk ≥ 0, k = 1, ..., K.

2.5.1 Adaptive Hierarchical Lasso

Zhou and Zhu (2009) also applied the adaptive idea which has been used in Breiman

(1995), Wang, Li and Tsai (2006), Zhang and Lu (2007), and Zou (2006) as an
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extension to hierarchical lasso method. This function penalizes different coefficients

differently:

maxβn,kj − 1
2

∑n
i=1(yni −

∑Kn
k=1

∑pk
j=1 xni,kjβn,kj)

2 −

nλn
∑Kn
k=1

√
ωn,k1|βn,k1|+ ωn,k2|βn,k2|+ ...+ ωn,kpk |βn,kpnk |

where ωn,kj are pre-specified weights. In this case, if the effect of a variable is strong,

the corresponding weight is set to be small, hence the coefficient is slightly penalized.

If the effect of a variable is weak, the corresponding weight is set to be large and

hence the corresponding coefficient is heavily penalized. In practise, the weight is

computed by ordinary least squares estimates or the ridge regression estimates, such

as

ωn,kj = 1
|β̂ols
n,kj
|γ or ωn,kj = 1

|β̂ridge
n,kj

|γ

where γ is a positive constant. They also showed that the adaptive hierarchical lasso

enjoys an “Oracle” property. i.e. it performs as if the true sub-model is known in

advance.

They conducted simulation studies to compare hierarchical lasso with the `2-norm

group lasso and the `∞-norm group lasso. They also compared the adaptive hierar-

chical lasso with other “Oracle” property but not group selection methods: SCAD

and the adaptive lasso.

They found out that all shrinkage methods are better than OLS. Therefore, the

regularization is necessary for prediction accuracy. In terms of prediction accuracy,

they found that when variables in a group follow the “all-in-all-out” pattern, where

all the variables in a group are important or non-important to the response, the group

lasso performs slightly better than the hierarchical lasso. However, when variables
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in a group do not follow the “all-in-all-out” pattern, the hierarchical lasso method

performs slightly better than the group lasso. In terms of variable selection, they

look at it by percentage of correctly identified important variables. The lasso, the

group lasso, and the hierarchical lasso all perform similarly. However, the group lasso

and the hierarchical lasso are more effective at removing unimportant variables than

lasso.

They also assessed the performance of adaptive hierarchical lasso where they used

the adaptive weights. They compared the adaptive hierarchical lasso with other Or-

acle properties but not group variable selection methods: SCAD and adaptive lasso.

From the results, in the “all-in-all-out” case, the adaptive hierarchical lasso removes

unimportant variables more effectively than SCAD and adaptive lasso; the adap-

tive hierarchical lasso outperforms SCAD and adaptive lasso significantly in terms

of prediction accuracy. In the “not-all-in-all-out” case, the advantage of knowing

the grouping structure information is reduced, but the adaptive hierarchical lasso

still performs slightly better than SCAD and adaptive lasso, especially in terms of

removing unimportant variables.

The hierarchical lasso method not only effectively removes unimportant groups,

but also keeps the flexibility of selecting variables within a group. They also showed

that the improved hierarchical lasso method enjoys an “Oracle property”. Numerical

results indicate that their methods works well, especially when variables in a group

are associated with the response in a “not-all-in-all-out” fashion.
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Chapter 3

A Simulation Study

The purpose of this simulation study is to compare the variable selection methods:

the Lasso, elastic net, group lasso, group bridge, group MCP. We tested these five

methods in the logistic regression setting with binary outcome. We measured the

performance of each method in terms of prediction accuracy and number of correctly

identified important or non-important variables. The simulated data are generated

from the logistic regression model:

logit(Pi) = log( Pi
1−Pi ) = α + β ∗X

where X ′is are the predictors generated from standard normal distribution with mean

0, Yi’s are the binomially distributed data where Yi ∼ Binomial(ni, Pi) for i = 1...n.

The simulation examples are conducted based on following criterions: see Table 3.1

For the criterion of different sizes of effect, we considered odds ratio. For example,

let Xi be a binary outcome with Xi = 1 indicating female, while Xi = 0 indicating

male, we have:

log(oddsF ) = log( PiF
1−PiF

) = β0 + β1 ∗ 1
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Table 3.1: Simulation criterions for different examples
simulation criterions levels numeric values

effect large log(1.8)
medium log(1.6)
low log(1.2)

grouping structure all-in-all-out
not-all-in-all-out

large p, small n p is greater than n p=40 n=20
p is less than n p=40 n=100

correlation high 0.8
medium 0.6
low 0.2

log(oddsM) = log( PiM
1−PiM

) = β0 + β1 ∗ 0

Thus, log( oddsF
oddsM

) = β1

odds ratio = oddsF
oddsM

= exp(β1)

β1 = log(odds ratio)

In the logistic regression setting, odds ratio between 1.1 to 1.5 is considered to be

small effect, 1.6 to 1.7 is considered to be medium effect, 1.8 to 2 is considered to be

large effect. So we used log(1.2), log(1.6), log(1.8) for small, medium and large effect

in our case.

Four examples are presented here. The first was used in the original lasso paper

(Tibshirani, 1996), to compare the prediction performance of the lasso and ridge

regression systematically. The second and fourth examples were adopted from a paper

about group variable selection methods (Xie and Zeng, 2008). The third example

was adopted from a paper about elastic net (Zou and Hastie, 2003). The last three

examples created a grouped variable situation which we intend to compare the original

lasso and group methods. We also created several extended examples for comparison.
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For each example, we simulated 100 data sets. Each data set consists of a training

set and a test set. The training set was used to select tuning parameter. Models then

fit to the test set and the median squared error is computed on the test set. We also

recorded how frequently the important variables were selected and how frequently the

unimportant variables were removed. The results are summarized in tables below.

The first criteria to test different method is the prediction. We used three different

measures to quantify the error of the prediction:

(1) The amount of the median mean squared error which is defined as:

MSE = (β̂ − β(0))T (β̂ − β(0))

(2) The model errors is:

ME = E(E(Y |x)− µ̂)2,

where E(Y |x) = p(x) = exp(xβ)
1+expxβ

and µ̂(x) = p̂(x) = exp(xβ̂)

1+expxβ̂
.

(3) The classification or counting error:

CE = 1 if Ynew = 1 and p̂ < 1/2 or Ynew = 0 and p̂ > 1/2,

CE = 1/2 if p̂ = 1/2

CE = 0 otherwise.

The second criteria of testing a method is the percentage of correctly removed

unimportant variables and percentage of correctly identified important variables.

The four examples are given by:

• Example 1. We simulated 100 data sets consisting of 100 and 200 observations

in the training and test sets respectively and 8 predictors. We let the true

parameter β = (log(1.8), log(1.2), 0, 0, log(1.6), 0, 0, 0). The pairwise correlation
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between xi and xj was set to be corr(i, j) = 0.5(|i−j|). So the covariates have a

first-order autoregressive correlation.

• Example 2. We simulated 100 data sets consisting of 100 and 400 observations

in the training and test sets respectively and 40 predictors. We set

β = (log(1.6), ..., log(1.6)︸ ︷︷ ︸
15

, log(1.2), ..., log(1.2)︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
20

)

This example created one group with highly correlated 15 variables. The within

group correlation is set to be high as 0.8. The between group correlations of

variables are 0. The 5 variables with coefficient 1.5 are independent to others

and have a small effect to the response. The rest of 20 variables are independent

to others and have no effect on the response.

• Example 3.1 We simulated 100 data sets consisting of 100 and 400 observations

in the training and test sets and 40 predictors. We chose

β = (log(1.2), ..., log(1.2)︸ ︷︷ ︸
5

, log(1.2), ..., log(1.2)︸ ︷︷ ︸
5

, log(1.2), ..., log(1.2)︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
25

)

This example created three groups with highly correlated 5 variables in each

group. The effects of grouped variables are set to small in each group. The

within group correlation is set to be high as 0.8. The between group correlations

of variables are 0. The variables in each group are equally important to the

response. There are also 25 variables with non-important effects to the response.

• Example 3.2 Same as Example 3.1 except grouped variables have medium ef-

fects. We chose
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β = (log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
25

)

• Example 3.3 Same as Example 3.1 except grouped variables have large effects.

We chose

β = (log(1.8), ..., log(1.8)︸ ︷︷ ︸
5

, log(1.8), ..., log(1.8)︸ ︷︷ ︸
5

, log(1.8), ..., log(1.8)︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
25

)

• Example 3.4 Same as Example 3.2 except grouped correlation is set to be low

as 0.2. We chose

β = (log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
25

)

• Example 3.5 Same as Example 3.2 except grouped correlation is set to be

medium as 0.4. We chose

β = (log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
25

)

• Example 3.6 Same as Example 3.2 except the number of observations is set to

20 to create a case that p > n. We chose

β = (log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, log(1.6), ..., log(1.6)︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
25

)

• Example 4.1 We simulated 100 data sets consisting of 100 and 200 observations

in the training and test sets and 40 predictors. We set

β =

(log(1.2), ..., log(1.2), 0, 0,︸ ︷︷ ︸
5

log(1.2), ..., log(1.2), 0, 0,︸ ︷︷ ︸
5

log(1.2), ..., log(1.2), 0, 0,︸ ︷︷ ︸
5

0, ..., 0︸ ︷︷ ︸
25

)
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This example also created three groups with highly correlated variables. The

effects of grouped variables are set to small in each group. The within group

correlation is set to be high as 0.8. However, in each group there are three

important variables and two zero-effect variables. The rest of 25 variables are

independent zero-effect variables.

• Example 4.2. Same as Example 4.1 except grouped variables have medium

effects. We set

β =

(log(1.6), ..., log(1.6), 0, 0,︸ ︷︷ ︸
5

log(1.6), ..., log(1.6), 0, 0,︸ ︷︷ ︸
5

log(1.6), ..., log(1.6), 0, 0,︸ ︷︷ ︸
5

0, ..., 0︸ ︷︷ ︸
25

)

• Example 4.3. Same as Example 4.1 except grouped variables have large effects.

We set

β =

(log(1.8), ..., log(1.8), 0, 0,︸ ︷︷ ︸
5

log(1.8), ..., log(1.8), 0, 0,︸ ︷︷ ︸
5

log(1.8), ..., log(1.8), 0, 0,︸ ︷︷ ︸
5

0, ..., 0︸ ︷︷ ︸
25

)

• Example 4.4. Same as Example 4.1 except that there are only two variables

having large effects and the rest having zero effect. We set

β =

(log(1.8), ..., log(1.8), 0, 0, 0,︸ ︷︷ ︸
5

log(1.8), ..., log(1.8), 0, 0, 0,︸ ︷︷ ︸
5

log(1.8), ..., log(1.8), 0, 0, 0,︸ ︷︷ ︸
5

0, ..., 0︸ ︷︷ ︸
25

)

Table 3.2 shows the median (mean) squared-error from 100 simulations. We notice

that the elastic net has smaller MSE than the lasso in all examples. So the elastic

net is more accurate in estimating coefficients than the lasso under collinearity. The
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group variable selection methods: group lasso and group MCP perform significantly

better than both the lasso and the elastic net in all examples, although the group

MCP does not work well for the “large p, small n” example. The group bridge has

very large MSE in some examples (example 2, 3, 4), so it is not a very good method.

The group lasso is even more accurate than group MCP and thus is the most accurate

method in estimating coefficients for grouped variable selection. Its performance is

very stable across all examples. The reductions of group lasso compared to lasso in

MSE in examples 1, 2.1, 3.1, and 4.1 are 62.82%, 58.32%, 67.78%, 24.12%. Table 3.4

shows the model error (ME) from 100 simulations. The group lasso still perform best

and has the smallest ME in most examples. Table 3.6 shows the misclassification

error (MCE). The group lasso has smallest MCE than other methods.

Table 3.8 shows the number of correctly identified important variables and number

of correctly removed non-important variables. Lasso produces very sparse model but

does not work for collinearity. Elastic net improves the Lasso when predictors are

correlated. But elastic net misses the five important effects with the small coefficients

log(1.2) in example 2. In example 2, group lasso improves elastic net in terms of

number of correctly identified important variables.

Example 3 is a case in which all the variables in a group are important. This

shows an “all-in-all-out” fashion, i.e., when one variable in a group is selected, all

other variables in the same group should also be selected. The group lasso selected

all of important variables, while lasso, group MCP, group Bridge, all missed out some

of the variables in a group. Therefore, we can see that the group lasso forces complete

grouping, group MCP encourages grouping to a rather slight extent, and group bridge

is somewhere in between. In example 3, we compared how the small, medium and
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large effect affect the group variable selection. In example 3.3, where we have five

collective small effects within a group, the group lasso successful selects all of the

small effects while lasso only selects two, elastic net, group bridge and group MCP

select three. Therefore, the group lasso is the best method for complete grouping. It

works well for the collective small effects within a group contributing to a large effect.

Example 4 creates a sparse situation where there are 5 variables in a group and 3

of them are important effects. This shows an “not-all-in-all-out” fashion. The group

lasso selects all of the variables from each group even some of them are zero effects.

For group MCP, approximately 2 variables are selected per group while group bridge

selects 4 variables per group. As well as in example 4.4, although there are 5 variables

in a group and 2 of them are large effects with log(2), the group lasso selects all 5

variables. It selects variables based on group level but not on individual level. The

group MCP selects the 3 groups and also identifies the 3 important variables of the

group.

Since group MCP makes rather cautious assumptions about grouping, the method

works well if there are larger number of rather sparse groups. It works well when the

underlying model has less grouping. However, when the important effects are tightly

clustered into groups, the group MCP tends to select too many groups and does not

use the grouping information sufficiently. Group lasso, which is opposite to group

MCP, tends to over shrink individual coefficients when group are sparsely populated.

Therefore, when applying the group penalization method, the data structure need

to be considered. If one expects that the proportion of nonzero group members to be

greater than one-half, use group lasso; otherwise use group MCP. If one expects this

proportion to be close to one-half, one may wish to use group bridge.
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We also tested the methods with different grouped correlation and sample size.

The results are shown in the subsequent tables. From example 3.4 and 3.5 where

correlations are set small and medium, we found out that there is no big difference

for different methods in terms of prediction accuracy and number of variables correctly

selected. However, if we set the sample size to small as in example 3.6. The prediction

accuracy significantly reduced for each method. In terms of number of correctly

selected variables, we can see that the collinearity issue for lasso is more obvious.

The group lasso only select 1 important variable from group while group MCP select

3 and group lasso select 5. Therefore, the group lasso still outperformed the rest of

the methods in “all-in-all-out”, large p, small n situation.
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Table 3.2: MSE: Median, mean, first and third quartiles of mean-squared error from
100 simulations

examples methods median mean Q1(25%) Q3(75%)

1.1 lasso 0.39 0.41 0.32 0.54
elastic net 0.38 0.40 0.30 0.52
group MCP 0.18 0.20 0.11 0.27
group Bridge 0.12 0.19 0.07 0.27
group Lasso 0.15 0.17 0.09 0.25

2.1 lasso 1.96 1.94 1.75 2.09
elastic net 1.48 1.49 1.26 1.68
group MCP 2.13 2.40 1.82 2.86
group Bridge 12.82 28.85 8.18 25.32
group Lasso 0.82 1.14 0.69 1.06

3.1 lasso 0.38 0.37 0.33 0.42
elastic net 0.31 0.32 0.27 0.35
group MCP 0.35 0.37 0.30 0.39
group Bridge 0.40 0.69 0.32 0.72
group Lasso 0.11 0.13 0.09 0.14

3.2 lasso 1.73 1.75 1.54 1.99
elastic net 1.44 1.45 1.20 1.64
group MCP 1.56 1.64 1.26 1.80
group Bridge 3.99 4.38 2.66 5.37
group Lasso 0.67 0.85 0.56 0.85

3.3 lasso 2.65 2.64 2.29 2.96
elastic net 2.35 2.26 1.97 2.61
group MCP 2.01 2.15 1.69 2.38
group Bridge 5.99 6.59 3.90 7.44
group Lasso 1.23 1.37 0.93 1.58

3.4 lasso 2.22 2.25 1.95 2.58
elastic net 2.10 2.06 1.75 2.33
group MCP 1.79 1.63 1.34 2.03
group Bridge 1.33 1.44 1.08 1.72
group Lasso 0.83 0.82 0.59 0.99
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Table 3.3: MSE: Median, mean, first and third quartiles of mean-squared error from
100 simulations (Continued...)

examples methods median mean Q1(25%) Q3(75%)

3.5 lasso 1.89 1.92 1.68 2.21
elastic net 1.71 1.73 1.45 1.98
group MCP 1.39 1.28 0.81 1.64
group Bridge 1.64 1.83 1.27 2.24
group Lasso 0.72 0.78 0.58 0.89

3.6 lasso 3.18 3.90 3.05 3.31
elastic net 3.04 3.10 2.76 3.26
group MCP 21.51 40.37 12.54 45.45
group Bridge 7.48 9.85 5.38 11.58
group Lasso 3.55 4.72 2.52 6.23

4.1 lasso 0.29 0.28 0.27 0.30
elastic net 0.28 0.27 0.25 0.30
group MCP 0.25 0.27 0.23 0.30
group Bridge 0.31 0.40 0.30 0.37
group Lasso 0.22 0.23 0.18 0.25

4.2 lasso 1.25 1.27 1.12 1.44
elastic net 1.13 1.15 1.02 1.31
group MCP 1.21 1.40 0.98 1.53
group Bridge 6.38 8.70 1.45 10.81
group Lasso 0.95 1.48 0.84 1.09

4.3 lasso 1.78 1.85 1.59 2.10
elastic net 1.72 1.73 1.54 1.94
group MCP 1.82 2.31 1.51 2.66
group Bridge 13.00 17.53 7.34 19.11
group Lasso 1.37 1.75 1.26 1.50

4.4 lasso 1.33 1.37 1.19 1.57
elastic net 1.33 1.33 1.18 1.48
group MCP 1.13 1.38 0.93 1.47
group Bridge 1.73 6.18 1.03 7.49
group Lasso 1.25 1.32 1.16 1.37
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Table 3.4: ME: Median, mean, first and third quartiles of Model Error from 100
simulations

examples methods median mean Q1(25%) Q3(75%)

1.1 lasso 4.17 4.44 3.17 6.00
elastic net 4.01 4.21 2.83 5.83
group MCP 1.44 1.77 0.92 2.34
group Bridge 1.03 1.51 0.55 2.28
group Lasso 1.11 1.34 0.66 1.88

2.1 lasso 7.80 7.82 5.07 10.32
elastic net 6.26 6.55 4.26 8.29
group MCP 3.59 3.80 3.09 4.27
group Bridge 7.64 7.85 6.65 8.82
group Lasso 2.47 2.74 1.90 3.42

3.1 lasso 13.45 15.20 10.59 19.44
elastic net 12.75 13.57 10.07 15.78
group MCP 7.22 7.21 5.61 8.86
group Bridge 7.29 9.40 5.25 11.92
group Lasso 3.39 3.74 2.26 4.50

3.2 lasso 11.82 12.48 9.08 15.88
elastic net 10.03 10.67 7.16 13.19
group MCP 4.24 5.08 3.22 5.61
group Bridge 7.21 7.37 6.09 8.47
group Lasso 3.42 3.71 2.46 4.60

3.3 lasso 10.89 11.69 8.65 14.37
elastic net 10.04 9.93 7.31 12.42
group MCP 3.68 4.19 3.22 4.63
group Bridge 7.11 7.32 6.00 8.42
group Lasso 3.75 4.09 2.68 5.21

3.4 lasso 23.16 24.19 18.72 29.08
elastic net 20.57 20.92 15.72 24.65
group MCP 16.47 15.24 11.07 19.97
group Bridge 8.17 9.51 6.58 9.94
group Lasso 5.68 5.93 4.03 7.09
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Table 3.5: ME: Median, mean, first and third quartile of model error from 100 simu-
lations (Continued...)

examples methods median mean Q1(25%) Q3(75%)

3.5 lasso 17.92 18.75 14.28 22.75
elastic net 14.64 15.88 11.35 18.83
group MCP 10.71 10.07 4.93 13.80
group Bridge 7.61 8.44 6.52 8.87
group Lasso 4.32 4.81 3.47 5.77

3.6 lasso 2.11 2.06 1.32 2.70
elastic net 1.99 1.96 1.35 2.59
group MCP 1.48 1.60 1.06 2.13
group Bridge 1.34 1.50 0.98 1.91
group Lasso 1.92 1.24 0.79 1.58

4.1 lasso 6.23 5.83 5.06 6.89
elastic net 5.99 5.73 4.91 6.89
group MCP 3.45 3.55 2.53 4.46
group Bridge 5.75 5.61 4.19 6.96
group Lasso 2.61 2.87 1.92 3.86

4.2 lasso 6.75 6.79 4.95 8.67
elastic net 5.99 6.10 4.47 7.78
group MCP 3.54 3.74 2.86 4.63
group Bridge 6.87 6.44 4.28 8.11
group Lasso 2.71 3.08 2.06 3.58

4.3 lasso 6.40 6.70 5.06 8.23
elastic net 5.79 6.09 4.56 7.24
group MCP 3.53 3.80 2.95 4.62
group Bridge 7.28 7.29 6.02 8.89
group Lasso 2.58 2.87 2.02 3.22

4.4 lasso 7.01 7.24 4.96 8.82
elastic net 6.39 6.67 5.09 7.81
group MCP 3.68 3.90 2.86 4.73
group Bridge 6.70 5.95 2.77 8.49
group Lasso 3.11 3.38 2.66 3.96
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Table 3.6: MCE: Median, mean, first and third quartile of misclassification error from
100 simulations

examples methods median mean Q1(25%) Q3(75%)

1.1 lasso 0.1900 0.1856 0.1500 0.22125
elastic net 0.1800 0.1787 0.1500 0.2125
group MCP 0.1700 0.1713 0.1400 0.2000
group Bridge 0.1700 0.1756 0.1475 0.2100
group Lasso 0.1700 0.1686 0.1400 0.2000

2.1 lasso 0.0400 0.0403 0.0350 0.0475
elastic net 0.0400 0.0397 0.0325 0.0475
group MCP 0.0375 0.0368 0.0300 0.0425
group Bridge 0.0300 0.0285 0.0200 0.0375
group Lasso 0.0375 0.0374 0.0300 0.0450

3.1 lasso 0.1375 0.1430 0.1269 0.1575
elastic net 0.1325 0.1374 0.1225 0.1475
group MCP 0.1325 0.1327 0.1200 0.1425
group Bridge 0.1325 0.1401 0.1200 0.1525
group Lasso 0.1313 0.1300 0.1169 0.1425

3.2 lasso 0.0650 0.0670 0.0575 0.0731
elastic net 0.0650 0.0660 0.0575 0.0725
group MCP 0.0600 0.0619 0.0525 0.0700
group Bridge 0.0550 0.0561 0.0450 0.0656
group Lasso 0.0638 0.6333 0.0525 0.0725

3.3 lasso 0.0550 0.0541 0.0469 0.0625
elastic net 0.0550 0.0532 0.0469 0.0600
group MCP 0.0500 0.0489 0.0400 0.0575
group Bridge 0.0438 0.0442 0.0350 0.0550
group Lasso 0.0500 0.0507 0.0450 0.0575

3.4 lasso 0.1125 0.1144 0.0950 0.1275
elastic net 0.1025 0.1031 0.0900 0.1150
group MCP 0.1013 0.1002 0.0875 0.1150
group Bridge 0.0875 0.0891 0.0750 0.1025
group Lasso 0.0900 0.0890 0.0794 0.1000
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Table 3.7: MCE: Median, mean, first and third quartile of misclassification error from
100 simulations (Continued...)

examples methods median mean Q1(25%) Q3(75%)

3.5 lasso 0.0875 0.8898 0.0769 0.1000
elastic net 0.0838 0.0832 0.0725 0.0950
group MCP 0.0825 0.0815 0.0694 0.0925
group Bridge 0.0750 0.0751 0.0600 0.0875
group Lasso 0.0775 0.0771 0.0650 0.0881

3.6 lasso 0.0500 0.0770 0.0000 0.1500
elastic net 0.0500 0.0595 0.0000 0.1000
group MCP 0.0000 0.0085 0.0000 0.0000
group Bridge 0.0000 0.0020 0.0000 0.0000
group Lasso 0.0000 0.0070 0.0000 0.0000

4.1 lasso 0.1950 0.1973 0.1650 0.2325
elastic net 0.1800 0.1943 0.1650 0.2263
group MCP 0.1650 0.1682 0.1500 0.1850
group Bridge 0.1950 0.1988 0.1650 0.2400
group Lasso 0.1600 0.1623 0.1400 0.1850

4.2 lasso 0.0950 0.0976 0.0800 0.1113
elastic net 0.0950 0.0950 0.0800 0.1100
group MCP 0.0875 0.0901 0.0750 0.1063
group Bridge 0.0800 0.0772 0.0550 0.0950
group Lasso 0.0875 0.0894 0.0750 0.1013

4.3 lasso 0.0800 0.0793 0.0650 0.0900
elastic net 0.0800 0.0792 0.0650 0.0900
group MCP 0.0700 0.0705 0.0600 0.0850
group Bridge 0.0600 0.0593 0.0400 0.0750
group Lasso 0.0700 0.0736 0.0600 0.0850

4.4 lasso 0.1100 0.1116 0.0950 0.1313
elastic net 0.0104 0.1086 0.0900 0.1263
group MCP 0.1050 0.1028 0.0850 0.1250
group Bridge 0.0850 0.0935 0.0750 0.1163
group Lasso 0.1050 0.1023 0.0850 0.1163
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Table 3.8: Percentage of correctly identified important variables and correctly re-
moved unimportant variables

examples methods non-zero var.(%) zero var.(%)

1.1 lasso 2(66.7%) 5(100%)
elastic net 2(66.7%) 5(100%)
group mcp 2(66.7%) 5(100%)
group bridge 2(66.7%) 5(100%)
group lasso 2(66.7%) 4(80%)

2.1 lasso 11,0 (55%) 20(100%)
elastic net 15,0 (75%) 20(100%)
group mcp 11,1 (60%) 18(90%)
group bridge 15,4 (95%) 4(20%)
group lasso 15,2 (85%) 16 (80%)

3.1 lasso 2,2,2,(40%) 25 (100%)
elastic net 4,4,4,(80%) 25 (100%)
group mcp 2,3,3,(53%) 25 (100%)
group bridge 3,3,3,(60%) 25 (100%)
group lasso 5,5,5,(100%) 24 (96%)

3.2 lasso 4,4,4, (80%) 25 (100%)
elastic net 5,5,5, (100%) 25 (100%)
group mcp 4,4,4, (80%) 18 (72%)
group bridge 5,5,5, (100%) 6 (24%)
group lasso 5,5,5, (100%) 22 (88%)

3.3 lasso 4,4,4, (80%) 25(100%)
elastic net 5,5,5 (100%) 25(100%)
group mcp 4,4,5, (87%) 19(76%)
group bridge 5,5,5 (100%) 7(28%)
group lasso 5,5,5 (100%) 22(88%)

3.4 lasso 4,4,4, (80%) 25(100%)
elastic net 5,5,5 (100%) 25(100%)
group mcp 5,5,5,(100%) 25(100%)
group bridge 5,5,5 (100%) 5(20%)
group lasso 5,5,5 (100%) 22(88%)
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Table 3.9: Percentage of correctly identified important variables and correctly re-
moved unimportant variables (Continued...)

examples methods non-zero var.(%) zero var.(%)

3.5 lasso 4,5,4, (87%) 25(100%)
elastic net 5,5,5 (100%) 25(100%)
group mcp 5,5,5,(100%) 25(100%)
group bridge 5,5,5 (100%) 4(16%)
group lasso 5,5,5 (100%) 21(84%)

3.6 lasso 1,1,1,(20%) 25(100%)
elastic net 1,2,1,(27%) 24(96%)
group mcp 1,1,1,(20%) 23(92%)
group bridge 3,3,3,(60%) 19(76%)
group lasso 5,5,5,(100%) 18(72%)

4.1 lasso 0,0,0, (0%) 2,2,2, + 25 = 31 (100%)
elastic net 1,0,0, (0%) 2,2,2, + 25 = 31 (100%)
group mcp 1,1,1, (33%) 2,2,2, + 24 = 30 (97%)
group bridge 0,0,0, (0%) 2,2,2, + 25 = 31 (100%)
group lasso 3,3,3, (100%) 0,0,0, + 21 = 21 (68%)

4.2 lasso 2,2,2, (67%) 2,1,2, + 25 = 30 (97%)
elastic net 3,3,3, (100%) 1,1,1, + 25 = 28 (90%)
group mcp 2,2,2, (33.33%) 2,1,2, + 24 = 29 (94%)
group bridge 3,3,3, (100%) 0,0,0, + 6 = 6 (20%)
group lasso 3,3,3, (100%) 0,0,0, + 20 = 20 (65%)

4.3 lasso 2,2,2, (68%) 2,1,2,+ 25 = 30 (98%)
elastic net 3,3,3, (100%) 1,1,1, +25= 28 (90%)
group mcp 2,2,2, (68%) 1,1,2, +22= 26 (84%)
group bridge 3,3,3, (100%) 0,0,0, + 6= 6 (20%)
group lasso 3,3,3, (100%) 0,0,0, +19= 19 (61%)

4.4 lasso 2,1,2, (83.33%) 3,2,3, +25=33 (97%)
elastic net 2,2,2, (100%) 1,2,2, +25=30 (88%)
group mcp 2,2,2, (100%) 2,2,2, +24=30 (88%)
group bridge 2,2,2 (100%) 1,1,1, +24=27 (79%)
group lasso 2,2,2 (100%) 0,0,0, +21=21 (62%)
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Table 3.10: Number of variables selected per group in different examples
examples methods number of variables selected per group

4.1 lasso 0, 0, 0
elastic net 1, 0, 0
group mcp 1, 1, 1
group bridge 0, 0, 0
group lasso 5, 5, 5

4.2 lasso 2, 3, 2
elastic net 4, 4, 4
group mcp 2, 3, 2
group bridge 5, 5, 5
group lasso 5, 5, 5

4.3 lasso 2, 3, 2
elastic net 4, 4, 4
group mcp 3, 3, 2
group bridge 5, 5, 5
group lasso 5, 5, 5

4.4 lasso 2, 2, 2
elastic net 4, 3, 3
group mcp 3, 3, 3
group bridge 4, 4, 4
group lasso 5, 5, 5
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Chapter 4

A Real Data Example

4.1 Application to SNP Data Analysis

The methods that we introduced are particularly useful in high-dimensional data, for

instance, genome-wide association studies. Genome-wide association studies are a

method used to identify genes involved in human disease. This method searches the

genome for small variations, called single nucleotide polymorphisms or SNPs, that

occur more frequently in people with a particular disease than in people without the

disease. Each study can look at hundreds or thousands of SNPs at the same time.

Researchers use data from this type of study to pinpoint genes that may contribute

to a person’s risk of developing a certain disease.

Since genome-wide association studies examine SNPs across the genome, they

represent a promising way to study complex, common diseases in which many genetic

variations contribute to a person’s risk. This method has already identified SNPs

related to some diseases including diabetes, heart abnormalities, Parkinson disease.

Researchers hope that future genome-wide association studies will identify more SNPs
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associated with chronic diseases, as well as variations that affect a persons response to

certain drugs and influence interactions between a persons genes and the environment.

The example we use here to demonstrate our methods involves genetic variation

(SNPs) data from a case-control study of West Nile virus disease with 177 cases and

262 controls. We want to find the possible associations between certain SNPs and

West Nile virus disease. The data is collected at Nabraska center with all individuals

being white Caucasian. There are 439 individuals participated in the study and 500

SNP markers genotyped for individuals.

We code each SNP as 0, 1, 2 for homozygous (“AA”), heterozygous (“Aa”), and

mutation (rare) homozygous (“aa”) genotypes respectively according to the genotype

frequency. We first screen data to exclude SNPs that have a call rate less than 95%

(missing rate greater than 5%) or minor allele frequency less than 5%. The number

of SNP markers left is reduced to 407 after screening. Our response variable is the

case-control binary outcome of West Nile virus infection status. Our predictors are

the 407 SNP markers. We first performed linkage disequilibrium test to look at the

dependence structure of SNP markers between each other. Since the test result shows

that the correlation between loci are relatively low (from 0.01-0.1), we choose to apply

the lasso method to relatively independent SNP markers instead of grouping them and

applying group variable selection methods. Our model is fitted by the Lasso Logistic

regression with binary outcome. The choice of tuning parameter is determined by

cross-validation method based on area of ROC curve.

Results from applying the Lasso logistic regression were obtained. 18 out of 407

SNPs were detected as associated with West Nile virus disease. The Lasso forces

the rest of the irrelevant SNP markers’ coefficients to be 0’s. The coefficients of
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Table 4.1: the predictor estimates by lasso logistic
SNP Gene Symbol Locus ID Chromosome Chromosome Position Estimate

rs10036567 KIAA0141 9812 5 141307833 -0.1394971
rs1007863 PARVB 29780 22 44395451 0.01348572
rs10129889 DYNC1H1 1778 14 102508056 -0.1951717
rs10131813 HOMEZ 57594 14 23745533 -0.05694708
rs10282929 EEF1D 1936 8 144681777 0.008469059
rs1031257 LOC100420743 9842 6 127945594 0.08571146
rs10403787 C3P1 388503 19 10166375 0.09808576
rs10407445 ZIM3 114026 19 57649962 -0.0985149
rs10410943 ACTL9 284382 19 8808900 0.02246633
rs1043620 HSPA1L 3305 6 31783755 -0.2422276
rs1044240 ALCAM 214 3 105258861 0.09130686
rs10445686 RAB3GAP1 22930 2 135893372 -0.01607454
rs1046480 TMEM159 57146 16 21185384 0.0722214
rs10466026 CDH23 64072 10 73550969 0.0414965
rs1046844 SLC25A26 115286 3 66428282 0.05953302
rs1048369 GPC4 2239 X 132437337 -0.02237237
rs1050348 LAMA4 3910 6 112493872 -0.05538143

the relevant SNP markers are given in Table 4.1. The coefficient estimators of all

SNP markers are very small, in the scale of 0.1, suggesting small effects of SNPs to

West Nile virus disease. rs1044240 which lies on gene ALCAM (activated leukocyte

cell adhesion molecule) has coefficient 0.091, by taking exp(0.091)= 1.095, having a

minor allele “a” result in an increase in the odds of having West Nile virus disease

to exp(0.081) = 1.095 times than without having one. rs1043620 which lies on gene

HSPA1L (heat shock 70kDa protein 1-like) has coefficient -0.24, by taking exp(-0.24),

having a minor allele “a” result in a decrease in the odds of having West Nile virus

disease to exp(-0.24)=0.79 times than without having one.
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Chapter 5

Conclusions and Discussion

5.1 Discussion

With the advance of technology, the collection and storage of data become easy to

obtain. Huge amount of data are produced from biological experiment for statistician

to analyze. The high-dimensional problems is becoming more and more common.

The ”large p, small n” problem, in which there are more number of variables than

samples, is the main difficulty. Traditional approaches to regression breaks down

and new method is in need. The penalized variable selection method is an effective

method. In particular, the Lasso proposed by Tibshirani has gained much attention

in the past few years.

Lasso works well for the variables which can be treated individually. When the

variables are grouped, the lasso does not work well. For example, suppose the kth

group is unimportant, lasso will only force individual coefficient in the kth group to

be zero. However, the whole group coefficients should be zero altogether because the

kth group is unimportant. Lasso tends to make selection based on the strength of
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individual variables rather than the strength of the group. Therefore, lasso works

well when variables are have low correlation with each other. It does not work well

for the situation of collinearity.

Breheny and Huang introduce a framework that sheds light on the behavior of

grouped penalization methods. Methods that take into account grouping information

have recently begun to appear in the penalized regression literature. The group

lasso enforces sparsity at the group level, rather than at the level of the individual

covariates. Within a group, the covariates are either all equal to zero or else all

nonzero. The group lasso has some attractive qualities, such as the fact that its

objective function is convex (i.e., there are no local minima, only a single global

minimum). However, the group lasso also has disadvantages. It produces a strong bias

towards zero, over selects the true number of groups, and it is incapable of selecting

important elements within a group. The group bridge produces sparse solutions both

at the group level and at the level of the individual covariates within a group. Its

solutions tend to exhibit less bias than those of the group lasso and have been shown

to be asymptotically consistent for group selection. Unlike the group lasso, however,

the group bridge objective function is nonconvex and not differentiable at |βj| = 0,

which in practice can lead to problems with model fitting. They also develop a

new group penalty, group MCP, which its grouping assumptions are less severe than

those of group lasso and group bridge. It also performs better than those competing

methods in situations with substantial (greater than 50%) within-group sparsity.

The difference between the methods is the extent to which the form of the penalty

enforces grouping: group lasso forces complete grouping, group MCP encourages
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grouping to a rather slight extent, and group bridge is somewhere in between. There-

fore, when applying the group penalization method, the data structure need to be

considered. Therefore, under real data analysis situation, if one expects that the

proportion of nonzero group members to be greater than one-half, use group lasso;

otherwise use group MCP. If one expects this proportion to be close to one-half, one

may wish to use group bridge.

5.2 Future Research

There is still many future research can be pursued in this field of study. Firstly, a

limitation of the current group variables methods is that they does not consider the

situation where grouped variables overlap to each other. This may cause problem

in gene expression studies where genes may be grouped by pathways that are not

mutually exclusive. Therefore, a future research area would include overlap groups

for variable selection. Secondly, Group lasso, group bridge and group MCP work well

in certain situations and not in others. The future research area would be to develop

a more robust method that performs well across a variety of situations. Thirdly, the

statistical inference research on penalized regression models other than the lasso is

also valuable. Fourthly, the applications of grouped penalization methods to specific

field of study needs to be conducted. One application of particular interest is genome-

wide association studies, where the SNPs are in groups by the gene they belong to

or with high correlation to each other. Further study is needed regarding the impact

of issues inherent in genetics (such as linkage, penetrance, and the genetic basis of

the disease) upon the performance of penalized regression and other approaches of

analyzing these data. In summary, there is still plenty of statistical challenges that
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need to be addressed by researchers in this field.
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