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A UNIFIED APPROACH TO GENERALIZED POWER SYSTEM SENSITIVITIES



.-ABSTRACT -
This thesis presents a new methodology for describing adjoint

network approaches to sensitivity calculations performed in various

————

f o

power system analysis and-planning studies. Difficulties observed by
devious workers regarding the exact modelling of some powerlnetwork
.elements are overcome by proper téchniqués employed with'special.compléx
notation, A generalized version of the-Telleg;n's theorem-based
approach_ is developed .whiéh provides the required seﬁsitivities based on
the é;act a.c. load flow model for any chosen set of real and/or complex
variables qf practical interest. A theoretical consistency sﬁudy is
perforﬁed ‘to allow proper modelling of adjoint elements for direct
trea&pent of general coﬁplex functions. A simplified version with many
AeSirable features is described for real funection sensitivitieé: It
employs a simple adjoint network. - General sensitivity expressions
‘common to‘all rglevant power system studies are derived and tabulated.
A new method for solving e load flow problem using Tellegen's theorem
is described with several advantages claimed. A 3special elimiﬁation
technidue'is used-to describe the Newton-Raphsen method for load flow

solution in a compaét complgx mode, A complex version of éhe Lagrange
multiplier.approach is developed and aﬁpligd‘to llow a general ﬁumber
of complex dependent vartables to be defined in 3 pafpicular problem. A
generalized version gf the class bf m;thods of sensitivity calculation;

Which expleoit the Jacobian matrix of the load flow analysis in

formulating the adjoint equations is developed. Generallzed sénsitivity

i,

A,



-

expressions common to differeat modes of formulating power flow

equations, e.g., cartesian and polar, are dgrived and tabulated for

-

direct programming use. A unified congprehensi've comparison between the

/ ‘ .
Lagrange multiplier and Tellegen's theorem approaches to sensitivity

-

calculations in electrical networks is presented.

»
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INTRODUCTION

In the context of steady-state‘computér-éided pbwer system
analysis and planning, functions of] system vari#bles are routinely
defined- in various studies fo incorporate cost criteria, security
assessment, reliability in&ices. etc.- The system variables are relat;d
through a set of equality constraints representing{ for example, power
flow equatio&s. Inequality constraints ma} also be defined to indicate.
for example, physical limitations on prqctical variables,

The ratio between_a small change Af in a function f which may
denote a dependent variable and a related small .change -Auj in an
independent variable uJ 1nd1cates-the sensitivity oflf with respect to

uj. This ratioc is generally a function of bther system variables. It

.1s very valuable in numerous power system analysis and planning

[

problems, Using the Taylor series expansion,- which relates af to

increasing powers of Au

3 the change in f may be calculated to any

degree of accuracy.*

hFirst-grder changes of functions of inéerest play é very
important role in sensitivity ealculations. not only becau;e they are
relatively easy to calculate but also due to their direcf contribution

to gradient evaluations required by most optimization techniques used in

different planning studies,.

The use of second-order sensitivities, although requiring more

. ¥



elaborate calculation, also finds applicat;ons in investigations of the
s$nsitivity cf a function w.r.t. certain variables at an optimal
soluti;h'rel-arese‘nted _tgry a stationary pbint of the function w.r.t. these
variables.

Tﬁis_thesis'employs a suitable notation and proper techniques to
develop, unify, describe, ‘improve and compare methods of evaluating
first-order changes and gradients of functions of interest subjgct'to
equality constraints which may represent power flow equations.. The term

' - ”
sensitivity calculations-is used to indicate both first-order changes

and gradient evaluation. N

In Chapter 2 important approaches to seEsitivity calculé&ions in
power system analysis anr:I des.ign problems are classified and geﬁerally
described., Their contribution*to solving some practical problems is
outlined. The material presented in this chapter provides an adequate

background for some of the studies presented in the subsequent chapters.

In Chapter 3 a generalized version of’ the Tellegen's

'theorgmlbased.approach is developed. Using a special complex notation

and proper techniques, the diff‘icul.ties encountered In treating exact
component models of powpr networks are overcome. This generalized
version provides a methodology for handling complex -funections,
Sensitivity expressions which are common to all relevant power system
studies are derived and tabulated. |

o A special class'of the family of adjoint systems of ChapESr 3 1is
considered in Chapter 4. A simpiified version possessing many desirable

features -is described where a simpler adjoint network 1is obtained,

f

2
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Sensitivity expressions for this simplified version are derived and
!fabulated for direct prograumiqg.purpoées for a wide variety of -feal

functions. L '

The material presented in Chapter 5 provides'a useful theoretical

investigation f&r consistent definition of the adjoint .system whi :
providés complex- function sensakivities, directly, as in typicZ:
electronic ecircuits. A unified ;tudy for .consistent selection of
arbitrary adjoining coefficients introduced in the gene;alizednversion

of Chapter 3 is presented where the restrictions imposed by the number

and type of elements of the network as well as the function considered

are‘investigated.

In Cﬁapter 6, some neﬁ concepts are 1ntfcduced and utilized for
presenting and stﬁdy}g& several special tqpics in the context of cbmplex
analygis of power nE£works. A new Tellegen's theorem-based methed for
solving the load flow prﬁblem is proposed. This method gmploys a simple
and mosily constant adjoint ﬁatrix of coefficients and enjoys the same
rate of convergence as the Newtoﬁ;ﬂaphson method. Using a special
complex notat}on. the Newton-Raphson method for solQing the load flow

- problem has been interpreted formally in terms of firsteorder -changes of
problem variables and, hence, described in a compact cpmplex form using
a special elimination technique._. The Lagrange multiplier approach
described and applied in the reafl case is formulated in the complex mode
to handle general complex function§ and variables, Applications to

power system sensitivity analysis are presented.

A unified study of the class of adjoint network approaches to

S
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pdﬁer system sensitivity analysis which exploit ;ﬁéfiaégbian matrix of
the load flow Solution is presented in Chaﬁter 7. ~Generalized
sensitiviﬁy expressions common to different modes of . formulating the
power flow equations, e.g., 'carteéian and polar are easiiy derived,
compactly described and tabulated énd effectivély used for Soth real and
complex forms of performance functions as well as cont}ol variables
;iefined in a particular study. - g

' "A comprehensive comparison between the cdé;only used Lagrange
multiplier and Teliegen's theorem apprﬁached to sensgitivity calculations
in eleectrital networks is presented ih Chapter 8 -where the two

approaches are described on a unified basis.
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SENSITIVITY CALCULATIONS IN POWER NETWORKS ™~
@ -

2.1 INTRODUCTION | : L

Techniques for evaluating first-order changes and derﬂyativeé of
performance functions subject to power ﬁetwork equations have been
descr;bed in the context of applications in .optimal 1aadr flow and

~

planging problems (Sasson and ‘Merrill- 1974),
-]

power system analysis and design prcoblems are classified and described

.in general. - The notation used and the modes of formulation which. ..

contribute to developing a successful sensitivity approach are

prgsented. Applications ‘to some practical power system problems are

also discussed.

2.2 EFFICIENT TECHNIQUES FOR SENSITIVITY CALCULATIONS
2.2.17 Requirements for" a Successful Sensitlvity Approach

Due to ;ﬁe inherently large size of power networks with various
6ranch types, simplicity of derivation and formulation, flexibility in
modelling different components of the power system and efficiency in
coﬁputations répresent ba;ic requiremerits for a successful sensitivity

approach.

" ) ) | ] ﬁ\\“

~

. ‘ . Sy
In this chapter, important methods of sensitivity calculations in.

{
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2.2.2 TGeneral Survey

Some techniques (Fischl and Puntel 1972, Irisarri, Levner and
Sasson 1979, Puttgen and Sullivan 1978, Wu and Sullivaﬁ %976) address
the brevious requirements by approximating the a.c., load flowrmodel
describing thg'Steady sﬁ’gte behaviour of the power system. Other
methods (Bandler and El—kédy 1979, Bandler and El-Kady 1960a, 1980b and
1980d, Dommel and Tinney 1968, Fischl and Wasley 1978) employ the exact
a.c.'load flow mbdel._ In some applications (Ejebe and Wollenberg 1979)
tzoth exact and E;pproximated models have been used. The elements 61‘ sthe

—

J:acobian matrix of\the \\lgad flow solution are exploited in some
" approaches (Bandler and El-Kady 1980f, Dommel and Tinney 1668, Fischl
and wasléy 1978) while the flexibility in modelling different power
system elements provided by using suitable network theorems is gained in

others (Bandler and El-Kady 1980a, Clements and Ringlee 1977, Mittgen

and Sullivan 1978).

2.3 NOTATION ck
The different ‘1'nt.erpr'etation of the variables used to describe
- . ;
various .power system components in equations pc;)es a difficulty in

choosing a suitable notation which facilitates the derivation and

subsequent formulation of equations and expressio}(pl:yed (Peschon,

Piercy, Tinney and Tvelt 1968).

2.3.1 State Variable Notation

The most successful notation used in describing the power flow



v

eqhations and other phyéical constraints and interpreting the
Felationships between different variables is the sjate variable notation
(Bandler and El-Kady 1980g, Dommel and Tinney 1968, Rechon etlal. 1968)

’
'

comnbnly used in. control theory. Tﬁroughout the thesis this notation,

7~

[
which contributes significantly to an easier understanding of the
. . - \ - .

equations, will be used.
: : ——

The controi or design‘varfgbles are denoted by the column vector
u of nu components. We also denote by the nx - component vector X the
staFe variables or' the deperdent variables to bé determined by solving
the set of:equality constrainﬁs, denoted by b(f-E) = 0, deseribing the

steady~state behaviour of a particular power system.

S~

/

2.3.2 Classificati;n of Independent : :iebles

In the literature, the vecto u may be either classified further
(Bandler and Ei;Kady 1980a) into suﬁvectors associated with different
bus and line branches in the power network or restricted (Dommel apd.
Tinney 1968) to represent only.the practically controlable variabléi.
€.g., the real power Pg at £ generator bus while some other variables,
called fixed parameters, are assigned other symbols.

In general, we shal® use u to denote the independent variables to

be specified in the equations deseribing a particular system. We may

classify u and x, whenever necessary, into appropriate subvectors

associated with different power system steady-state component models

(Sullivan 1977). -
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2.4 GENERAL FORMULATION
2.4.1 Power Flow Equations

Most of the literaturé_in the area of power system analysis and
design employs ;he real mode of formulation to describe the powér flow
equations and to der'-iv « Subsequently, the seqsitivity expressions
reqﬁired in a partféular study:

The power flow equations (Van Ness and Griffin 1961} are
basically expressed in the compléx form | |

»

#
v

™y

. L
_1_(Ymi Vm) = Sm' m=1, ..., n, (2.1}

n Mo

where Vm is the mth bus \roli:age. Y

mi is an element of the bus admittance

matrix (Stagg and El-Abiad 19€8), Sm = Pm + ij is the mth bus power, Pm
and.Qm dénoting, respectively, the’TE}ected real and reactive ﬁowers. J
= /=1, n denotes tl;le number of busl.es ,and * denotes the complex
conjugate.

The variables in (2.1) ére. Benerally speaking, functions of the
state x and control u variables of the system. Equations (2.1), whether
written ;n the rectangu;ar og in the polar form (Van Ness and Griffin
1961), are usuallyﬁéeba;atéd into real and iméginary parts in solviné
the load flow problem.

'-;:j‘_ _ . .

2.4.2 The Real Mode of Formulation

-~

The real mode of formulation has been suggested upon the

\

application (Van Ness and Griffin 1961, Tinney and Hart 1967) of the

well-known Newton-Raphson method, which 1is, superior in 1ts quadratic
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J
convergenge and ability to' solve ili-conditioned problems, to 'the
solutioh of the load flow problem. The reason (Stott 1574) is that the
Newton-Raphson methodiis a derivative-based method and, mathematically
speaking, the complex load flow equations are nonanalytic and cannot_be
differentiated in complex form, See;Bandler and El-Kady (1980e).

The shbsequent sensitivity calculations have been automatically

performed in most of the literature in the same real mode.

*

27433 Firsi-Order Changes of Functions and Constraints
In' general, we write the first-order change of a continuous
function f in the form

n, e n,
§f= ¢ ( T

1=1 i k=1

6x) + 1 ( %ﬁ;ath). (2.2)

L3

where § denotes first - order changé. x, 1s the ith state variable and

i
uk is the kth control variable. We ‘also write the first-order changes

of the set of equality constraints h(x,u) = 0 in the form

- o -

Oy an s 3h
shy = 3 (splex,) + ¢ ( 331 sud =0, 3= e, ny, (2.3)
121 % k=1 Y% -

where hJ denotes the jth equrlity constraint.

The basic forms (2.2) and (2.3) are essential for the techniques

employed to evaluate total derivatives of f w.r.t. u by expressing ¢f

solely in terms of the Su, .
: ¥
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2.5 METHODS OF SENSITIVITY CALCULATIONS

Excluding tﬁe method Sased onlapproximate explicit expression of
% in terms of u (Galiana and Banakar 1980) there are basically three
methods for eliminating 6§-from (2.2) and (3.3): the sengitivity matrix
method, thé édjoint or Lagrange multiplier method and the method based

on Tellegen's theorem (Tellegen 1952, Director and Rohrer 1969a, 1969b) .

2.5.1 The Sensitivity Matrix Method \\~\
In the sensitivity matrix method (Dommel and Tinney 1968, Peschon’

et al. 1968), the sensitivity matriz S is defined by

A ahT T -1 agT T _
§ z - [(‘5;“ )] { P Y, . (2.9)

- ~ ~

where (ahT/ax)T and (ahT/au)T are the Jacobian matrices of h w.r.t. x
and -u, respectively. Hence, from (2.3)

5x = S du,  (2.5)

where 6x and Su are column vectors of 6xi and su,

(2.2). Substituting (2.5) into (2.2), we get

respectively, of

_r 3f  oT 3f T
sr = [ 3£, sTA T 4y, | (2.6)
from which s
df _ af oT of
.dnt_.l 'a—u +-§ 3% (2.7

L4

The application of the sensitivity matrix method requires nu
repeat solutions of a system of linear equations formed from (2.4) for
the elements of S. This task usually makes thig method less preferable

{Dommel .and Tihney 1968, Fischl and Wasley 1978) unless the sensitivity

S



matrix is needed for other purposes.

2.5.2 The flethod of Lagrange Multipliers
| The method of Lagrange multipiiers (Dommel and Tinney 1968) is
the Tost comhon£pne not only because it requires only one solution of a
set of linear adjoint equations (as ;ompared with the sensitivity matrix
method) but alsoc because .it utilizes, 1in various applications, the
elements of the Jacobian matrix available from the basic load flow
solution. ’
The Lagrange multiplier method is.commonly referred to for al
general set of’equality constraints (Director and Sullivan 1978). When
the equaiity constraints represent power flow equations..the méthod may
~be interpreted as an adjoint network method (Bandler and El-Kady 1980f,

e
*Fisehl and Wasley 1978).

The Lagrange multipliers are defined by

T
ah )
s 21 ar :
z\-.- (i'x—') 2% * (2.8)‘
hence, from (2.2) and (2.3) - .
T _,f\—‘
3t ah T
-Gf = {Eﬁ - (_ETI_ ) t]- su, . {2.9)
from which
T
ah )
.g.-i:. ___Q_E'_._._— A. ' (2.10)

du au au L

In practice, the set of linear equations formed by (2.8) is

solved for the Lagrange multipliers 1 ‘and the first-order change and
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total dgrivatives of f are then calculated from (2.9) and (2.10),
respectively. .
AWhen the set of equality constraints h(x,u) = 0 represents the
power flow eguations (2.1), the 2n x 2n matrix of coefficients (agT /Bg)
of (2.8) may constitute the transpose of the Jacobian matrix of the load
flow solution by the Newton-Raphson method. The éxploitation of this
fact necessitates expressingl f in terms of .5 which, in this case,
represents 2n bus quantities (the unknown vériables in power flow
equations). Transformations are required to handle funections of other
variables, e.g., line yariables..
| ‘We remark that an extended vector X which contains all varilables
“of interest can be defined (Director and Sullivan 1978) so that general
functions of line quantities may be ﬁirectiy handled. In this case, the
size of the matrix of coefficients in (2.8) is determined by the total

number of states considered,

2.5.3 Method Based on Tellegen's Theorem
The methad based on Tellegen's theorem exploits the powerful
featufes of the thecrem to achieve both the compactness of the adjoint

system of equations to be solved and the flexibility in handling line

1

quantities,
Tellegen's theorem, see Fig. 2.1, which depends sdlely upon
.Kirchhoff{'s laws and the topology of the network, states that

v I =20, (2.11)

= 0 and b b

r IV L
b b b b
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Fig. 2,1 Illustration of Tellegen's theorem

_wWhere Ib and Vb are, respectively, the curreng'aﬁd voltage of branch b

~

of the network and distinguishes the corresponding variables

associated ﬁith the ﬁopologically similar adjoint network. The
summations in (2.11) are taken over all branches. In addition to the
current and voltage variables, the inclusion of the power variables Sb

f
is required to accommodate the power flow ?odel, Hence, we may use

f | Sp = ¥y Ty 2.12
Tellegenfs theorem has been successfully applied to power system
analysis and design problems since Fischl and Puntel (1972). In the
begiﬁning, the approximated d.c. load flow model was used, .This found
apblications in transmission system planning prbblems (Fischl™8nd Puntel-
1972, Puntel, Reppen, Ringlee, Platts, Ryan and P.J. Sullivan 1973) in

which the .d.c. model may be considered of sufficient accuracy. The d.c.

L -

I
—
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lpad flow model 1is, however, characterized by the restrictive
assumpticns of negleéting transmission losses, excluding reactive power
flows and considering flat veltage piofiies which make it 1inadequate
(Bandler and El-Kady 1979) for other studies requiring a more accurate
modgl and more information.

Different versions of improved, approximate a.c. load flow models
have been successively déveloped {or application to different power
system studies. The relatively difficult steady-state component models
in power networks impose an cobserved difficulty in applying Téllegen's
theorem to the exact a.c. load flow model. A proper methodology has
been required to overcome this difficulty.

In general, a method of sensitivity calculations based on

|
Tellegen's theorem inco}gorabes the following steps. A perturbed.
Tellegen sum is formulated as |
| A7 6x + Ez su = 0, (2.13)

’

yhere the state x and control u variables are defined 1in accordance with
the power flow model cbnsidered énd the vectoré ﬁx and ﬁu are, in
general, linear functions of the formulated adjoint network current and
voltage variables. Hence, the ﬁx and ﬁu of (2.13) are reiaéed through
Kirchhoff's current and voltage laws formulating a set of linear network
equations to be solved for the unknown adjoint variables. The adjoint

network is defined by setting

s - AL (2.14)
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hence, from (2.2} and (2.13), we get

6f =

35~ Nyl &U. (2.15)
from which ‘ ’
df 3 - ’
Ty, ‘ . (2,16)

In practice, the ad joint network is defined_for a given function
by (2.14) and solved for the variables ﬁu which are then substituted
into (2.15) and (2.16) to obtain first-order change anq total
derivatives of f w.r.t. control variables.

The matrix of coefficieqts of the adjoint systéﬁ'of equations has
to be caltculated at a base-case point. The LU factors of this métri*

may be stored and different functions can be treated by repeat forward

and backward substitutions.

2.5.4 Discussion

Based upon the foregoing description, we may conclude that the
Tellegen theorem-based method - has the advantage over the method of
Lagrange multipliers regarding the flexibility of modelling the
different elements of the network. It has, however, the disadvantage
that the adjoint matrix of coefficients has to be calculated at a load
.flow solution.

It isr important to notice that when optimal solutions are
required upon alt ;ing one or more system parameters from the base-case
ppint. the adjoint matrix of coefficients in both methods ﬁas to be

calculated at different iterations of the load flow solution included in



16

each of the main optimization iterations towards the optimum.

The choice of a sultable methed for sensitivity caleulations
depends on various factors .such as the kind of application considered,
the types of elements defined in the power system and the available

storage and facilitles in computations.

2.6  APPLICATIONS OF FIRST-ORDER CHANGE

Eff‘icient. sensitivity calculations may be performed to evaluate
first-order changes of functicns of interest corresponding to certain
variations in the control qariébles defined in a particular .study.

These first-crder changes are valuable in estimating the effects of

transmission system contingencies and rankipg them (Ejebe and Wollenberg

- 1979, Irisarri, Levner and Sasson 1979), generation outages, device

mal functions and otber defects expected in power systems operation which
may result?in subsequent service deterioration.

In contingency analysis the changes in system performances, upon
3u§taining sane ofl the above contingencies, are calculated using the
d.c., the approximate a.c. cr the exact a.c, load flow model. As
illustrated before, the a.c. load flow models have the advantage of both
éccurat:;a contingency evaluation and inclusion of the_reacﬁive power

flows. Fig. 2.2 (Happ‘i976) illustrates the contingency evaluation for

line or generator 1loss,
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Fig. 2.2 1Illustration of contingency evaluation
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2/ ‘rAPPll.I.CATIIONS TO PRACTICAL DESIGNK PROBLEMS

' As stated before?% sensitivity calculations are performed to
evaluate gradients of functions of interest subject to équality
‘constraints relating the state and control variables of the system.
These gradients may be supplied to optimization routines employed 1in
different power sygtem design problems.

Ih-practice.‘functional inequality constraints as well as upper

and lower 1imits on the control variables must be considered in

optimization to reflect the physical limitations on different system.

-
components.

2.7.1 Power System Design Problem

A typlcal power sys eh design problem may be stated as the

general noniingg;/ ro ng problem
Minimize £(x, u) (2.17)
-
subject to
?(5. E) = 9 . (2.18)
and
N glx, w >0, L (2.19)

where the column vector g(f, g) represents n8 inequality constraints.

- Considering the general formulation of the problem (2.17)-(2.19)
with continuous real variables and assuming proper convexity, the
Kuhn-Tucker -relations (Kuhn and Tucker 1951) provide a set of necessary
conditions which the soclution must satisfy at the minimum of f.

Techniques of constrained optimization (Gill and Murray 1974, Wilde and

N
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Beightler 1967) are employed.

2.7.2 Comments

A wide variety of problems in computerized operation and planning

of power 3ystems falls into the form (2.17)-(2.19). Theltype of the
~

objective fuhétion f-as well as the existence and the nature of both
equality and in;quality constraints depend on the study pé?fofmed.

ISeveral approaches have been described and successfully applied
to handle functional inequality constraints in many power system
problems. For example, some of the approaches (Carpentier 1973,
Peschon, Bree and Hajdu 1971) utilize the generalized reduced gradient
(GRG) method. Others (Sasson 1969a, 1969b, Fischl and Wasley 1978)
employ penalty function methods. Features of both methods may be
incorporated (Wu, Gross, Luini and Look 1979).

In these approaches, the total derivatives (called the reduceq

gradient) of a formulated objective function w.r.t. control variables
may be evaluated by methods of sensitivity calculqtions described
before.
2.7.3 The Optimal Load Flow Problem

In the optimal power flow problem (Dommel and Tinney 1968), a
feasible power flow solution w.r.t. constraints on both control and
state variables is found which minimizes some cost criterion.

In generi}. the adjustgblg c;ntrol var{gbles a;signed include the

. real power Pg from generating plants available for adjustable dispatch,



voltage magnitude |Vg| at P, V-buses,'tap transformer and phase shifter
ratios and parameters of shunt control elements.;:\\

- Some of the inequality con;traints regresent limits on the
capability of _adjustable control devices, e.g., real and imaginar}
transformer tap ratios, and other equipment capacihies such as the
Eenerating capacity. The others represent the system security
requirements which iﬁc;ude line flow current and power constraints under
normal and contingency conditions. The violation of inequélitx
constraints may lead to inadequate service due to comﬁonent outages.

A number of problems can be défined by a different choice of the
objective function of (2.17) and constraints (2.18) and (2.19). The
economic dispatch and minimum loss problems (Dommel and Tinney 1968,
Happ 1977, Sasson 196%a), optimal 1load curtailment under emergency
conditions (Peschon et\al. 1971) and VAR flow control (Sullivan 1972)

are examples,

2.7.4 Power System Planning Studies
| Many power system planning problems can be formulated as
nonlinear programming problems in the form (2.17)-(2.19). The objective
"function f, the design variables and the constraints are defined in a
pafticular planning study to reflect economy, reliability, security and
efficiency requirements, .
The power flow model which simulates the steady-state power flows
and voltages in the network under planning considerations is described

either_exactly or approximately according to accuracy requirements,
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In automated power network design problems (Director and Sullivan
1978, Fischl and Puntel 1972, Puntel et al. 19?3). for example, the
objective function f may;be formulated to represent line overlodding.
The control variables to b;'adjustegﬁare line admittances reﬁresenting
the required additions to support the existing transmission capacity.
The inclusion of inequality constraints imposed on the design variables
by, for example, the right-of-ways may be included.

A contingency énalysis ma§ be required after‘Qesigning a nominal
network. .In this kind of study, first-order changes of functions of
interest simulating line overloading due to assigned parameter chiﬁE;;ﬁ
and line or generator outages are employed in the adequacy checks!r

Many other applications of the methods of sensitivit§ eva&uatiop
described before can be identified in which either first-order changes

or teotal derivatives of functions of ingsrest are concerned.

1
v



APPROACH BASED ON TELLEGEN'S THEOREM:
A GENERALIZED VERSION

3.1 INTRODUCTION

In trying to apply the powerful features of Tellegen's theorem to
power sysﬁem sensitivity calculations, previous workers approximated the
a.c. load flow model to allow direct application of Tellegen's theorem,
Moreover, the theoretical possibility of obtaining sengitivities of
complex functions via oA: adjoint analysis as in typical electrénic
circuits has not been previously investigated. ®

In this chapter, a generalized version of Ehe Tellegen's
theorem—based ;pproéch is developed whieh, using a special complex
notation, overcomes the difficulties obserlved (Puttgen 1976) in treating
exact steady-state component models of poﬁer netwerks and provides a

theoretical basis for treating complex functions,

3.2 PERTURBED STEADY~STATE' COMPONENT MODELS
3.2.1 Component Models of Typical Electronic Clrcuits

, A simple, exact application of Tellegen's theorem is possible in

typical linear electronic circuits. This is essentially because cof the

relatively simpler component models used, The -steady-state component

I~
models representing typical so?iﬁgl and passive elements -are shown,

".respectively, in Fig. 3.1 and Fig. 3.2. (Observe that the current I,

22
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.node m ncde m

+ . branch b ‘ branch b
Vb Vb = constant.- Ib = constant
- o] =6Vb 6Ib=0
constant voltage source constant current source

Fig. 3.1 Modelling of typical sources in electronic circuits

branch t
—
Lo=Y vy o
GIt = Yt GVt + Vt dYt

Fig. 3.2 Modelling of typlcal passive element

voltage V and admittance Y variables appear in perturbed component
models as complex quanﬁities. iThe conjugate of a complex variable dies
not appear iq the perturbed component ﬁ%del that might require

separation into real and imsginary parts in subsequent analysis.

ry

ol wiha s S
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3.2.2 Typical Elect;onic Network Equations

In general, phesg simple‘models of network elements lead to a
compact set of complex 1igear equations, e.g., the nodal equations,
which is -~usually’ solved in the complex mode without the need for
sepérating real and imaginary pa;ts. which wouid require (Stewart 1973)
about twice the computer ﬁemory.

Basically, we canl arrive at a compact set of complex linear

equations to analyze a network as long as the branch models have the

perturbed form

‘ S
) % GIb =T GVb + wb. (3.1?
where Ib and Vb are branch current and voltage‘variables, respectively,
and Ob' Tb and Hg are coefficients associated with branch type.

3.2.3 Component Models of Power Networks

In power networks, the steady-state models of some components do

v

not fall into the perturbed form™(3.1). Examples of modelling load
branch and generator branch conné;ted to a yoltage controlled bus are
shown, respeétively. in Fig. 3.3 and Fig. 3.4, Note that the complex
conjugate of the current and voltage: variables are used to express

a
C

element moqels.

T
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* ' ' .
Sz = VL Iz = constant IL'
GS!':O + a
or branch % VL
‘ |
V2 SIL = -Il SVZ -

~

Fig. 3.3 Load branch modelling

' Wgll 8 '
PB' lVg = constant :
P = 0
g

or

VST 4 V. &I eV -1 v
g8  's "8 "8 '8 8 8

Vi =
5] gi 0
*or
» - * . £
0 =V_ sV v_ sV . .
g gt g Vg

Fig. 3.4 Modelling of generator branch connected to P, V-type bﬁs

3.2.4 Modelling of Power Transformers with Complex Turns Ratio .

It is known (Sullivan 1977) that power tiransformers with complex
turns ratio (phase shifting transformers) cannot be médeiled by an
equivalent tlnetwork using the ordinary passive elements of Fig. 3.2.
Houevef} as shown in Fig. 3.5, a construction of an equibalent T-network

is possible using more general branch models., The model of Fig. 3.5 !

represents a member of possible constructions derived in Appendix A.

-
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t z a
t
{ -
Fig. 3.5 Modelling of transformers with complex turns ratio

3.2.5 General Perturbed Form of Component Models

In conclusion, we deal with poyer network component models of the
more general perturbed form

- L +3 8T VeI sV e W ‘ )
ab6b+ub61b-tb6b+r sV, + (3.2

and in this chaéter and throughout most of the thesis we manage to use

Y : .
both the theory and techniques which can handle these general element

models without approximation.

3.3 THE CONJUGATE NOTATION

In order to perform the sensitivity calculations based on the

. exact element models of different power system components in a simple

and straightforward way, we employ a special complex notation described

”
1

B
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in this section.

3.3.1 Formal Partial Derivatives

We denote by C and R, respectively, the field of complex numbers
and the field of real numbers. The vector space over C, of n-tuples
(t1. sess &40y 1, € C is denoted by C". Similarly, R” stands for the

vector space over R, of n-tuples (c1m' ), m= 1, 2 and Ty € R,

- Lom

" Also, we write

L=y + j o (3.3)
where ¢ is a column vector of components ci given b§ ‘ '
7 . .
ny
ET' 526R|C11| CieeR. i = 1, 2. cay N

For a continuouély differentiable complex valued function f on an
dpen set g Cn, we define the formal (Fuks 1963) or symbolic (Ahlfors

1966) partial derivatives

M2 _ G, (3.5)
L 3Ty L,
and
ey 3 + fat )72, (3.6)

where 3f/ag, af/ac®, af‘/a;.I and at‘/ac2 are column vectd}s.
Note that in formal derivatives, the Cauchy-Riemann differential

equations may be written (Fuks 1963) as
W,
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af _
_3? = 9. (3.7
3.3.2 First-Order Change.in Terms of Formal Derivatives

We consider the nonsingular transformation

: 3] I I K
= "2' n n ’ (3.8)
52 -J J c*

n .
where 17 is the identity matrix of order n and

na .. .m

NN (3.9)

Equation (3.8) may'be written in the perturbed form

6:1 1" 1" [ X4
- ] - - ot
=3z (3.10)
- L) F T8 Le
Note that d
55' = (5?*. (3.11)
rd
The first-order change of f is given by
. af T af \T
§f = _( v ) 651 + (F ) .652 (3.12)
-1 2
or, using (3.10),
1., f T af T .n 1., 3f T Af T Na. w
6f = ?[( 351‘) ( 352 ) 2 ] GE + 5{( 3, 3T+ | 3c, ) g ]657. (3.13)
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Hence, from (3.5) and (3.6)

af T af T, '
_ ¢ 8t 14
§f = ( y ) 8¢ + (-EE; ) sg*. (3.14)

Equation (3.14) expresses &f in terms of the variations in ¢ and

. R
t* using the formal deéivatives 3f/3z and af/a3g* of (3.5) and (3.6),

respectively.

3.3.3 Pure Real and Pure Imaginary Functions

It can be shown that, for arbitrary ¢, if

— » . —_— 'l
uTc + uT: = u ?c +u Tc . (3.15)

’where'u. E. w and y are appropriate vectors of complex scalars, then

TR aws\K = ;.. (3.16)
)
For a pure real function T, we write
| §F = of = (§77 , (3.17)
or, using (3.14),
' * »
BT gp v (AT " CEHT g™ L (AT s, e
- 14 - ] 14 -
hence, from (3.15) and (3.16) \
A AR, (3.19)
aE T ' .

Also, for a pure imaginary function f.\we write

. > » » ) ;
(V  &f = = &f = — (&) _ (3.20)

Ay



30

or

T * Caf (T _ # af (T
2 g z ( T )y s - (—x ) &g, (3.2}

~
S
=3
+
—
|*
L
s
[= ]
n
§

hence, from (3.15) and (3.16)

Qr
L)

tl
|
-~

af_ ¥, (3.22)

ar
oy

at,

3.3.4 Remark

We remark {(Fuks 1§63) that the terminology of formal derivatives
arises because of the possibility of obtaining them formally using the
ordinary differentiation rules, The use of the conjugate notation
facilitates the derivations and subsequent formuiation of the equations
to be solved.

»

3.4 AUGMENTED FORM OF TELLEGEN'S THEOREM
3.4.1 Tellegen Tefﬁs and Group Terms for A.C. Power Model

The expressions of (2.15) represent the basic form of Tellegen's
theorem. Since the V _ and Gb of (2.11) satisfy Kirchhoff's voltage law
(KVL), the V; and G; also satisfy KVL. Similarly, since the Ib and Eb
of (2.11) satisfy Kirchhoff's current law (KCL), the I; and E; also

satisfy KCL. Hence, in addition to (2.f1) the following wvalid

variatidhs of Tellegen's theorem éan be considered (Penfield, Spence and

-

Duinker 1970)
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™ v' 0 ' ‘
g Ib b - A ] (3023)
~% Il
b .
I v =0
. LI Vy,=0 (3.25)
b .
I Vb Ib = 0, (3.26)
b
i ]
I Ib Vb = 0, (3.27)
b
i Vb_ Ib = 0, ) (3.28)

Note that, in the case of identical original and ad joint networks, we

set Vb = Vb and Ib = Ib'

-In addition to the Tellegen terms (2.17) and (3.23)-(3.28) we
also consider valid expressions in terms of certain groups of elements

in the form

: oo (3.29)
beB b : T s
. k
and ‘
‘ K
o~ I Cb = 0, ’ (3.30)
\\_ N bGBk
k k# : '
where Cb and Cb are complex functions of the variables V, and I and

n ]
their complex conjugate Vb and Ib' and Bk is the set of branch elements
forming the'kth Eroup. An example of the group terms is the KVL for a

local loop of the network,

=

Vs
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3.4.2 Extended Tellegen Sum and Adjoining Coefficients

The extended Tellegen sum 1s now written as

[ E V _"I"* * ~ — "% * ~ * _ "

i a l Vo + b Vb - B Vb Ib -8 Vb Ib + £ Ib Vb + £ Ib Vb
VoI "G'& ck T ck*

“’bb“’bb*f(rk"bk b*irk"bk p 3 =0, (33D

where the Tellegen terms and group terms have been adjoined in an

appropriate sequence via the complex coefficients'd: a, B, B, E, &, Vv,

v, I and T,

k k .
0 if b« Bk
Abk = N (3-32)
1 if b ¢ Bk
ﬁote that in cases where
- *
Com o= da (3.33}
— 3
8 =8 , (3-3‘4)
- *
E =E ., (3.35)
— »
v o= v (3.36)
and _ " .
I‘k = rk for all k, (3.37)

the extended Tellegen's sum (3.31).is a real quantity.

3.4,3 Perturbed Tellegen Sum
The sum (3.31).is written in terms of first-order changes in v

and I as
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~ -~

[ - in » G — "% _a : "%
i a Ib GVb.+ a I GVb -8V GIb -8 Vb 6Ib +g I 6Vb + E Ib 5Vb

L, K -« % X
S UV Sl v Uy sl s ® Tic Mok Coy SVp+ Cpy 8V, + Cpy 8T,
—& * - Kc* X # K —® _*
+ Cbi GIb) + i Fk Abk(cbv GVb + va GVb + Cbi GIb +‘Cbi 6Ib)] =0
{3.38)
or .
- — "y k — Kk*
Ella Ty v g I+ 2y Ay Coy ¥ 2T A Cp) 8V
b K
- E A TF T, Ek*) v'
r (e Iy +8 I+ i Ty vk Sbv * i Tk *ok Cpy’ &Y
-8V —7 v ck T ck¥y 61
MR i P *bk “b1 ¥ i T "ok “pi? ¢
50 v \. TS T % 611 = 0, (3.39)
+ BV - vV ﬁ Ty *pk “bs ¥ i Ty *bk Cpy’ 8Lpd = 00 (3.3
; k k¥ =k C ek K k¥ k., %
where Cbu' cbu' Cbu and Cbu stand for aCb/aU. aCb /3lU, aCb/aU '

» #* .
aC: /3U , respectively, u denoting v or i and U denoting V or I.

3.5 ELEMENT VARIABLES VIA BASIC VARIABLES
3.5.1 Element Jacobian Matrices

The perturbed Tellegen sum (3.39) has been written in terms of

] % .
first-order changes of Vb. Vb' I. and Ibﬂ"We shall call these variables

b
the basic variables and denote them by the vector

r"V'W

. b,
! »
Yoy Yy ! _
Wz fe—) &) (3.50)
¥bi Iy
Iy
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-
Now, ‘for each element, and according to its type, another set of
variables called the element variables is of practical interest. The

element variables will be denoted by the vector z, of four components

~b
describing the practical state xb and control ub variables associated
with element b as

2y = |y ' (3.41)

where Eb and ub are two component vectors. sz can be expressed in

terms of ng in the form

| 8%y
Lo | T b e
.b
where e
T . '
3z
4  =b T
fb 2 { T ) (3.43)
is a2 Jacobian matrizx.
3.5.2 Transformed Form of Extended Tellegen Sum
From (3.42)
=1
W, J (3.44)

o5 b 9%

A term of (3.39) associated with the bth branch is written in the more

convenient form

AT -
fb Gfb' (3.45)



35

where
T I +T e a. cX T, A, k7
@ty rE A ifk bk bv+fcrk bk “bv
- — s ° —k - o*
uIb-l-EIb-l-EI‘kkbkav-t-ZI‘k.\bk by
- ~bi A k k
fb: — =
- " s oo oK =~ ok*
Ty "B“'b"’vb*irk"bk bi ¥ Tie Api Cpy
[ -~ _.k — _k‘l
_TB Vb -V Vb + i Pk lbk Cbi + ﬁ rk Abk CbiJ
hence (3.39) is written as
=T
I £ &aw_ =0
b b ".b
or, using (3.44), as
2T -1 _
Z fy Jp 6z = 0
b
or
-1.,T % .T
b ((fb ) fb) §2, = 0.
b
3.6 TRANSFORMED ADJOINT VARIABLES AND NETWORK SENSITIVITIES

Let

I

4

~ ~

Mbx

-
"bu

T

-1
Wy " 1

be tnansformed adjoint variables associated with the bth

Mpx 3nd n,  are two component vectors. Then from (3.49)

;]

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

branch, where



et oy P e e

S

ey a8 ———

36
y_ [
Ihg 62 %0 : (3.51)
b =% -
or, from (3.41)
$ (o ax, + 7L sd:) = 0. : - (3.52)
bEb b7 Tbu b7 T Y _ y

Now, for a general complex function f of all state vectors x and
all control vectors u, we set

ﬁbx =?)_(-_ ’ (3-53)

hence

1]

. ar T 3f T :
6fF = £ [( ) 8x, + f 5 ) GEb]

-z [aT 2f T \
g (A 8xy + ( ) GEb]. (3.54)
~b
Then, from (3.52)
1
_ af T _
§f = i[( 2% ) nbulsu (3.55)
b .
so that
df _af _ .
du_ - su_ _ Mby” ' - (3.36)

b b

In the case when Uy, is a funetion of some real design variables we write
Bub

§uy = & o T Agyys (3.57)

where Ehi is the ith design variable associated with Uy and Acbi denotes

the change in Cbi' In practice, :bi represent, for example, -the
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parameters of shunt dontrol elements. From (3.55}

o au
~ -b
R SRR R (3.58)
Shi ot ~ ‘bi

Note that (3.53) defines the adjoint elements while (3.56) or {3.58)-

) ~
provides the required gradients. ‘ :E’
3.7 GENERAL ADJOINT FORMULATION
We define an adjoint vector analogous to Wy of (3.40) as
" T
Vb
n Zbv , e
‘:b = - = = {3.59)
"bi |- Iy
~n
b
and write the matrix (J;1)T of (3.50) in a partitioned form
b b
- i1 M2
eI RN I (3.60)
to1 Z22 '

. where §$1. §?2. §g1 and 522 are 2x2 matrices,

Using (3.46) and (3.60) the vectors n-; and "bu of (3.50) are

given by ‘

w

M T M1 fpg M2 Ty ((3.60)

‘P
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and »
n oW P o E .
Mu = Moy fpg & Mo Ty (3.62)
The vectors Ebi and fbv are written in terms of vy 3nd fb as
AN
Ly = Ay i, w :’ 63)
fpg T Ay Wy Ay Wy 3.63
and &
Fy = Ay ¥y + By W (3.64)
Tov T Ay Yhy Ay Wpye .
b b - : _ 5
where A,, A,, A and A_ are 2x2 matrices. The elements of A and &
-1 -1 ~V -y : Ay -i

consist of the adjoint coefficients a, a, £, %, 8, B, v and V.

For the set of terms considered in Tellegen sum (3.31) the

matrices Q? A

K
bv/Ib

) DAL, O /T

k "bk "bv' Db

C

[y

T bk

= o

1>=|
[

k
Ty 2ok “biVb

[}

=k
Te bk %1Vp

[}

k

Ao A: and K; are given. from (3.46) by

- K

k

i k *bk “bv /Ib .
’ (3.65)
[ ]
Ty Ay Cgv/lb
K
3 |
_ 1. = (3.66)
a
- Kt #
Tk bk “b1 Vb
{3.67)
ke
Ty *bk bi/V
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and

A, = - . _ (3.68)

Note that if Ck of (3.29) has the form

b
Kov T | (3.69)
b~ 'b b ‘ .
where
v, =Yy . (szO)
and
Ib = th,- : ?(3.71)

the elements of A? and é: consi8t solely of the adjoining coefficients

r, and T . MNote also that V= %1 in (3.65) and I = +1 in (3.67) lead
to corresponding zero matrices.

For use later we now define

YL e

N?b =Ty Cgv + Ty va- (3.72)

ﬁgb = Tk Elgv + Ty El:::- | (3.73)

N':b =0y Gy + Ty C{:; | o (3.74)
“and v -

Ry = I Ty * Ty Foge o (3.75)
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Using (3.63) and (3.64), equation (3.61) is written as

-~ -~

i ¥bi = fbv Hbv * fb (3.76)

where the 2x2 matrices 6 _, and 6. are given by

~bi ~bv
5. =M. % (3.77)
Zbi T 211 84 - .
and
5. = -MP 7% (3.78)
Zbv T2 Ay .
and the vector Bb is given by
~ Y b b b b
8 = Npx = Myq Ay g - Mip Ay Wy, \(3/'19)

Note that the choice of the coefficients a, :, etc., is subject to the

consistency of (3.76).

3.8 POWER SYSTEM ELEMENT VARIABLES

3.8.1 Notation

We consider the total number of branches to be g

nL loads, nG generators..?ne-slack generator and nT = nB - nL - nG -1

consisting of

other branch elements.

The buses are orderédd such that subseripts ¢ = 1, 2y eeey n

r [

identify load branches, g = n +1, ..., n +n. identify generator branches )

and n = n o+ 0.+ 1 identifies the slack generator branch. Subscripts t

=n+ 1, ..., ng are used to identify other branches, <

~



m

3.8.2 Element Variablés of System Compconents

The element variables for a load are usually defined as

or, for example, as

— -

- % 1/2 '
RGAN W

Ty —v Yy v
tan L3OV -V 17OV +V,

(V1I1+V£I£)/2
» » )
LQ(VR_IZ-VLII)Q | J

%)
» »
vl Vl

= B

s leL
2

L_SJZ..J "N LV!,I!,J

(3.80)

(3.81)

The element variables for a generator are usually defined as

tan~ [ veoy Y/ v v')]
~ Can J(S-g S+8 -

' (V'I v I')/a
WL Velg

' * 172
(VEVS)

VT ))2
CVelgtVelg .

(3.82)



b2
v
.of, for example, as
— = o
v v
g r B
- I I -
z &) & =| 8 . (3.83)
~g 2 v*
v
IVSI g E
» #* »
S +5 V I+ IJ
_ g £ L 88 B 8§

The element variables for the slack generator are usually defined

as
- A = % 4 ' n
P, LT /2
- 1 v
_ *n- s % IV VT,
zn = —_— = ——— = (3.8”‘)
) u v (v yhy172
~h n nn
et ")
g Gn_J Ltan [J(Vn-Vn)/(Vn+Vn J
or, for example, as
- -
.In
I .
: z, 41, . L (3.85)
; - n
%
L )

For other branches the element variables are defined acgording to

the element type. The element variables for a transmission element, for

4

1
il

- example, may be defined as J
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~ - r »
Re{I,} (T +T,) /2
*
_ X, . Im{It} j(It—It)/.?
Zt: = - \..-.\ - ' " (3.86)
u, G, \ (T N +I V) /2
|~
nt )72
[ By (@@ v 2
or, for example, as
B I ) / -
L E ]
-, Iy Iy
z, & - X (3.87)
S R b 2
] # #*
Yol eV

A

. Real and/or complex element-variables of any branch type can Pe
" defined and claésified in the same way. We shall only consider,. without
loss of generality, the above most important branch types. Other branch

types can be treated in a similar straightforward manner.

We shall use z, to denote ., gg. z, and 2, of (3.803.‘ {3.82),

(3.84) and (3.86), respectively. Also, we use ?b to, denote Z,» zg, z

and %t of (3.81), (3.83), (3.85)-aﬁd (3.87), respectively.

3.8.3 Standard Tabulated Expressions

Using the results of Appendix B'the corresponding matrices Bgi

and gbv and vector Q\b- for different power system elements are shown in

Table 3.1 for the set of element variables z

b and in Table 3.2 for the

set of element variables zb.
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TABLE 3.2b
ELEMENTS OF B4 gbv AND Eb USING ELEMENT VARIABLES z,
f
Slack Generator Transmission Elements
0 0 a/Y, s
®bi
# .
0 0 E/Yt c:/Yt
B v B v
Ebv
v B. v B.
" af k [(af K k -]
—— <L A N W —— - L A, [N, /YT +N ]
3 n K nk “vn ' : t K tk-it 't vt
/
. /
%
af =k . af =k LA
L~ N : ) — - &\, [NT /Y _+N ]
¥ . *
LaIn K nk vn-d Lalt K tk it Tt vt_

It is important to notice that Egi' of Tables 3.1 and

9. - nd 6
ebv a ~b

3.2 are common to all relevant power system studies as long as the

element variables considered are zb and zb, respectively.
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3.9 THE ADJOINT EQUATIONS

3.9.1 General Derivation

We write the matrices e and E£v and vector 8, of {(3.76) in the.

bi b
form !
& (=1 1]
- ¢y &
ebi = b b ’ (3-88)
N - -2 =2
O ¢bJ
— -
g
) . oy = b b (3.89)
- =Vt =2
' ¥ ¥
_'P b
and AL
w§1
" Bb = R (3.90)
- ~g2
Wy

hence, the adjoint current-voltage relationship for element b has, from

(3.76), the form

-

~n nSk

e ~ . K " ~k

where k = 1, 2 denotes the first and second complex equation of (3.76),

Ay
Vo + ¥y

respectively, or, when separzted into real and imaginary parts,

i -1 =i .7 “{ - 7 - =i . ~si
(0hy*0p 0 Tpy + om0, = “’mf“"m”m * by )V + WL,

' i = 1' 2 (3092)
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and
—J —J _oerd =] A I B oS
(°b2*¢b2)1b1 *+ (“’b1‘¢ )I = (‘“bz*“’bzwm + gyt Wyo + W
' B j=1,2, (3.93)
where
“k _ “k "k .
« _ % &
¢b - ¢b1 + j?bzl :\ (3-95)
“k "~k ~k
¢b = ¢b1 + Jwba, {3.96)
—% =k —k
LN IUNE I TR (3.97}
Vo = Vo Voo ~(3.98)
and
“Sk _ ASk ~Sk _
wb =W . ngz, k=1, 2. (3.100)

*

3.9.2 General Adjoint Element Modelling

In order to uniquely'define the adjoint currents Eb in terms of
the adjoint voltages ;b the system of four linear equations (3.92) and
(3.93) has rank 2. Two of the four equations are used to describe the

adjoint element. We write these two equations in the form
2 b I _ b 7 b" s “

M1 Tor * 012 Doz T ¥y Vo P V2 Ve * W (3.10%)
and
b ‘~ b -~ _ b L) b - AS
21 Tog * 455 Tpp = ¥py Vg * ¥pp Vpp * Wippr @ (3.102)
where
b _ 71 -1
~ b -t i :
I ¢b2 (3.104)
b1
*11 - ¢b1 + ¢b1' (3-105)



and

22

¥o1

b
Yoo
~3

Hb2

50

=i

3.9.3 AdJjoint Modelling of Transmission

Equations (3,.,101) and (3.102)

elements in the form

and

where

“and

1

J

Iy = §t1 Ver ™ Yoo Vo *
Lo = Yoo Veq * Yyq Veo *
= | “t t
Yo P I PP
1
~ n
3 S L t
1) 21 *11
+S t" t
el %32 202
-
12
. t
s t t
Tia 51 1

= 1or2

= 1or 2.

Elements

are written for

S
t1

{3.106)

(3.107)

(3.108)
(3.109)
(3.110)
(3.111)
(3.112)

transmission

(3.113)

(3.114)

(3.115)

(3.116)
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_and where

e
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A

t
22

-4

t ot
12 21

We define the complex quantities

ne>

and

y B

Equations (3.113) and (3.114) are

=P =P
I I
p ~p
Itz YT1

t1

~

Vot

12

+ JYtz.

% 0.

Ipe - Iy
- [ 4

”~ AS

fre - I

written in the matrix form

(3.117)

(3.118)

(3.119)

(3.120)

7P 0 '
where ¥T1' T2' Ypq @nd ¥T2 are diag??al matrices consisting of the Yt1'
T1' T2'
AS-

Y

vectors of components Vt1. Vtz'

For later use, let

I
-

[k}
o
[~

£2" Yt1 and Y £2* respectively. and V

It1

- ~T1

and

ASA
Ir °

33
I

+ JY

C 1,

“p . =P
Irq + 2o

~ra2:

I

”~

I P

1 and I

o

=T1’ ~T2'

3S

I and I

=T1

ir2 @

o0 respectively.

'S

(3.121)

(3.122)
(3.123)

(3.124)

(3.125)
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3.9.4 Adjoint Mcdelling of Bus Elements

We define the 2nx2n matrices

. 041 %12 A
¢ =
%21 %22
5 @
and .
-~ .
¥ ¥
g = |-11 212 N
¥or Yoo
where
A m
9qq = diag Lo},
A m
%90 = dias.{¢12}.
4 m
25, § diag (4] ),
A m
955 = diag {¢221.
A m
211-4ﬁ§g{¢”}-
A m
. ¥ip-= diag (v},
A, s+ ..m
and

A v
Yo = diﬁz'}ﬂ o

are nxn diagonal matrices, m can be &, g or n.

Equations (3.101) and (3.102) are written for the bus elements i}

using (3.128)-(3.135) in the matrix form
]

(3.126)

(3.127)

(3.128)
(3.129)
(3.130)
(3.131)
(3.132)
(3.133)
(3.138)

(3.135)

ml1’

B " 128 ~SB
1 %127 |Im Y11 Y127 | Yu W1
PSP I N TN B N 1 et
~21 ~22 ~M2] ~21 22 ~M2 ~M2
8 ‘B (B B [SB ~SB ' -
where IM1T EHEL Yy YH2‘ W1 anq,HMQ.are vectors of components I
Im2' Vm1, Vma. Hi1 and wﬁa, respec?ively. We let



and

KCL is written as

where

A

~

LM

53¢

BAZB \ 3B
Iy # 4 v 4o
+Ba 2B B
Yy = Yyp * Wy
“SB & °SB  SB
Ma = Wyp + W
. AB
\ EM
Ar ] .o

I

A

is the reduced incidence matrix

whose elements aij

a

iJ

i3

a

iJ

Now we define

1

0

are given by

if branch j is

it,

1=

(A ! A7)

(3.137)

(3.138)

(3.139)

(3. 140)

(3.121)

of dimension nxny (n buses, ng branches)

incident at bus i1 and oriented away from

L

if branch j is incident at bus i and oriedted toward

it and

if branch J is not incident at bus 1.

~

Yrq + Jpo

7 Z A
In Y ¥

1
=]

ne .
|

(3.142)

(3.143)

TSy S —

Bk e
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~ \'- ~ ~ é ~ ‘
. IS ot Wy A T (3. 144)
and
AS - J\S ~ é ~ B .
W = Mge W S Ay Wy (3-1"5_)
\ Also the bus voltages ot
A S . (3. 146)
=M ~M1 M2 T IM M : ;
\ . :
are related to YT through the relationship
RELE - ' (3.147) .
~T =T M .

3.9.5 Formulation of Adjoint Equaticns
£liminating I and 13 from (3.120), (3.136) and (3.140) and using

- (3.742)-(3.147) we arrive at the final set of adjoint equations to be

solved in the form

~ ~ AS

Y Y -2 Y Y v J _+HW
ol T 2 a2l ) [V 1131 * 8 120m2* s
_' - L . pu— ~ ~ ~ aS
(21 p ¥ 0ot rotT0y)  (=05q Yy o0 #5500 | [V, 12212m1* 2 225u2* W2
:;1‘-7

| (3. 148)
~ Note that multiplying (3.120) from left by the matrix '
As O

~T (3.149)

I
]

‘substituting VT from (3.747) and using (3.140), (3.142), (3.143) and

(3.144) we get

(W)
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e

71 - "I VM1, Iy * 9w
y - i (3.150)
Tro Trq Ve Iyo * w2
where
Iy = Ty + Jyp = By Iy -(3.15M)

The form of (3.150f is that of the conventional nodal equations. It can
be used for solution purposes if the RHS is voltage lndependent, e.g.,

as for typical linear electronic ecircuit cases.

3.10  GRADIENT EVALUATION

The solution of the adjoint system (3.148) provides the adjoint

~

variables “b of (3.59). The required gradients are then caleulated

uéing (3.56) or (3.58). The vector Moy

fbi and fbv are calculated from (3.63), (3.68) and-(3.65)-(3.68). Using

is obtained from (3.62) where

the results of Appendix B matrices Mg1 and H22
power system elements are shown in Table 3.3 for the set of element

of (3.62) for different
variables E; and in Table 3.4 for the set of element variables zﬁ.

3.11 .CONCLUSIONS _ .

In thi=s chapter, the foundation of an exact adjoint network
approach to general power system sensitivity analysis and \planning
problems has been laid, A famlly of adjoint asystems of equations has

been‘Herived so that a wide variety of special problems can be handled.
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TABLE 3.3a
b b - ~
MATRICES M, AND M,, USING ELEMENT VARIABLES z,
Load Elements Generator Elements:
0 0 | /v v'/ v
v
M : g1Vl ¢'1'gl
.21
0 0 0 0
e 1/ LSV Y =S v v )
b L £ , g gl gl ¢ g' sl
Moo ow , At
—J/VL J Vz /Vg‘ 1/Yg

Instead of approximating the a.c. load flow model to cope with the form
of Tellegen's theorem and t?chnique usually employed in typleal -
electronic circuit analysis, we use an augmented form of Tellegen's
theorem and embloy a proper technique to 'deal_ with the relatively
difficult element models which exist in power networks,

The approach has been described via a generalized version ;n
whicﬁ the'concepts of arbitrary complex adjoining coefficients and group
terms are'introduced. The exploitation of these conceptis provide, as
shown later, the theoretical methodglogy of handling the complex
functioﬁs directly, as iﬁ typical electronic circuits. We have derived
and tabulated standard sensitivity expressions common to all relevant
power syste; studies.

The concepts stated in this chapter are general. While they have
been applied with power systems in mind, they are gpplicagle to other

systems as well.
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TABLE 3.3b
b b
Mo AND Moy

MATRICES M

.

USING ELEMENT

VARIABKES 7,

Slack Generator

Transmission Elements

v »* * #*
vV Vn/IVn‘ {-ve1, -V /Y,
b ~ k
M1 |
v WY . 1
jvn J n A t/°t 1
» -v' : |
o Vol Vo1 :sn/(vn|vh{) 0 0 ;
b |
.22 !
'/V' S /v 0 0
an n =J nn
¢ TABLE 3.4 -
MATRICES M;I AND M:2 USING ELEMENT VARIABLES zb
- -
, _ Slack . |
Load Elements _Generator Elements Generator Transmission Elements o
0 0 0 1/\!g 0 "Vt;/Yt 0
b
M2
0 I'/' *
0 o o} 1 4] -‘Jt Yt
o 1nnro st 0 0 0
\ L E g B
Hb .
22 -
%
1,(\:’. 0 0 1/‘.’g 0 0 0




SPECTAL CLASS OF ADJOINT SYSTEMS . ,

4.1°  INTRODUCTION

A generalized version of a Tellegen's theorem-based épproach to
power network sensitivity calculations has been developed in Chapter 3,
where %‘famfly of adjoinﬁ systems based on‘the exact a.c. power flow
model was described. Theoretically speaking, this generalized version
provides the pbssibility of handling complex functions via one adjoint
énalysis. For practical purposes, however, a ‘simplified Version may be
required, although restrictéd to real functions, where a relatively
simple adjoint‘system aﬁd sénsitivity expressioﬁs are employed,

In this chapter, we consider a claés of the family of_adjoint
systems in which the extended Tellegen sum is a real quantity. " We
discuss in detail.an important practical case in which the ad joining
complex coefficizﬁts are set to parficular values which result in an
‘adjoint system of a simplified sfructure.alloding a wide variety of real
functions to be handled, Numerical: resﬁlts.are also presented for a

6~bus sample power system.

%.2  REAL EXTENDED TELLEGEN SUM- | e~

4.2.1 General Form of Real Tellegen Sum

Equation (3.31) describes the general form of the extended

Tellegen sum. To obtain a real extended Tellegen sum, it is sufficient

58
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for the adjoining complex coefficients to satisfy the conditions

— = —_ % — #* p— *
a=za,B=8 4 85=EF +v=w (4.1
and I ‘
»
Ty = rk for all k. (4.2)

Hence, the extended Tellegen sum is written as

[aI V vt _ev 1 RN B
PlalyVp+e p Vp — BV I -8 Ve e IV e LYy
" ~ -~
N eh T e O
vV I - Vb*b*irk"bkcb*ﬁrk*bkcb] C. (”'3)(5

Expreasing (4.3) in terms of first-order changes in V anﬁ I, the
resulting perturbed sim is also a real quantity and equations (3.76) are
consistent for all values‘of a, B, £, v and rk‘

Equation_.(u.35 describes a class of adjoint networks
corresponding to differeht values of the arbitrary complex coefficients

a, 8, £, v and rk.-

o

/

N.Z.é A Member of the Class
One member of this class (Bandler and El-Kady 1980c) may be

defined by setting

u:B:ﬂr‘;I:'l _ (4.4)
and '
E = :'rk =0, k#1, . (4.5)
where the group term of (3.29) associated with r, is given by
I Gl =S =0 (4.6)
beB b . . .

1

representing power conservation in the network.
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4.3 AN IMPORTANT SPECIAL CASE

We consider the special case (Piittgen 1976)

a =B =1 4.7)
E=zv=20 (4.8)
and
- <
rk = 0 for all k (4.9)

which, as we shall see, provides a special structure of the adjoint
network.

The matrices Q?. K&. As and &_ of (3.65)-(3.68) are given by

- v

A= =0, (4.10)

ok S R ‘ :

&y o= 1, {411

b

A, = A, = 9 (4.12)
and - :

‘...\..V = -10 ‘ (4.13)
where 1 is a unity matrix of order 2, hence, the matrices Eﬁi' Ebv'and
vector eb of (3.76) are simply

- _.b

Opy = §11. (4,143

oy = M, (4.15)

and - - -
8 F Dpx* » (8.16)

Tables 4.1 and #.2 show the corresponding matrices LIVE and '55v and

vector 8 for different power system elements considering the sets of

b
element variables E£ and Eb' respéctively,
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4,4 MODELLING OF SYSTEM ADJOINT ELEMENTS

Using the results outlined in Table 4.1, the equations defining

the adjeint elements for the set of element variables z

2y, are, for a load
- 2,08 af . af
I = -(8 —_—— . — y,
TSV LV L iy - g 17029y, (4.17)
2 L
! TAELE 4.1a ~ §
- LN
ELEMENTS OF 6. ., o, . AND &, FOR SIMPLIFIED WERSION
-bi’ Zbv "L b
o USING ELEMENT VARIABLES zy
Load Elements Generator Elements
v /v v'/ v ] v v
A /1y g =
i
v v' 0 o}
v, -3V,
* » #* *
=S /(V |V, ) =8,/ (V, [V, |) \CA -i8,/,
Ebv
| *r ® v *
s, /v, -35,/V, T—J/Vg jrv
[ ar ar )
3|V, | 38 g
4
af af
: | %% g |
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TABLE 4,1b

ELEMENTS OF 651' Ebv AKD 8y FOR SIMPLIFIED VERSION

USING ELEMENT VARIABLES z,

b
(
Slack Generator Transmission Elements
»—
/ ‘ 3%
»/\ 0 0 1Y, 1Y,
b1 " .
) e
0 0 j/Yt -] t
/v /v 1 1
- n
Ebv .
» .-
-J/Vn J/v J -J
. [(af (_af
aP, . aRe{It}
%
af ' af
Laqn4 baIm{IE{J
for a generator
- #."8 s & ~% iF
-V = (SN )YV = (S/NV)IV - F—F (4.18)
vsIs sIs (s s)s (s s)s 3858
' and -
d
~ % "8 * af
Yy V. -V V ==-3jV VvV —/—, (4.19)
g B g € J g & aQ8 '

i

where each of (4.18) and (4.19) represents only one condition, for the

g b AL st e T e
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Vo= vt AL, 3—)/2 (4.20)
n n .aP *

and for a transmission element o

af
L Retz,y ~ /mt} 172.

Similarly, using the results outlined in Table 4.2, the equations

=Y V. +Y

g = L Yy t (4.21)

defining the adjoint elements using the set of element variables Eb are,

for a load - : »

T af .
. Iz = - (S /V ) V + —_— aV . {4,22)

for a generator

~ * "% . ~ % ar
- Vg Ig - Vg Ig = -j2 Qg Vjﬂ/‘f\g-ﬁ Vg W; . (3.23)
and ‘ : (:--\\\
— -,
-~ \\. -\..‘ 3f ,
v8 vg__ vg ug = —vg Ef; . (4,24)

where each of (4.23) and (4,24) represents only one condition, for the

slack generator

& -
v = __%fr (4.25)
- n -
and for a transmission element -’H
7 .. y af '

Note - incidentally that, for transmission elements, equations

(4.21) and (4,26) have the form

I =Y V +1I

T S t.27)

FaY
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ELEMENTS OF §

TABLE 4.2

%1t Zov 2 2
USING ELEMENT VARIABLES z,

and 8_FOR SIMPLIFED VERSION

- Slack Transmission
Load Elements Generator Elements Generator Elements
1 0 1 vy 0 oy f1/Y. 0
g g b t
i
»{<
0 1 0 0 0 0 e
0 -3 /V2 0 =-j2Q N 1 0 1 0
| R 3 g gl
Ebv
WK 0 *n
=5,/ 1 _—Vg g 0 1 0 1
Caf ) Car af ) pr‘
= e |5 L a2
| aVl an aIn ?It
%
af af af i |-
' * [ ] [
KA 3lg )1, I,
- ] — - - . - -t _ -

«

Comparing (3.113) and (3.114) with (ﬂ.2f). we get

and

where

& Top = Y 7 Yy
t2 © Ty2 v

Y Y -
Y, =Y, + Y

t2*

L2’

(4.28)
(4.29)
(.30

hence, the line admittances of both original and adjoift systems are the

same, and (3.150) has the. form
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| t by = =Gy + 3 U
~\\\\\ where &, 1s the symmetrical bus admittance matrix of the original .
et .

system. Moreover, since the matrices °£J' vij' 1, j.= 1, 2 of (3.126) .
- ' ~

"and (3.127) are dlagenal matrices._the adjoint matrix of ceoefficients is

of the same sparsity as the Jacobilan matrix of the original network.

’
e

4,5, SIMPLIFIED ADJOINT EQUATIONS

4,5.1 Case of General Element Varlables . \

We write equation (4.31) in the form

o hd ) [ N otk ‘ |
Y./ Yo Yon Yol = | % * Jof » - (432
IﬂL .ZNG : Ynn L Vn I'n +

. wherglthe nxn, bus admittance matrix has been partitioned ‘into blocks

associated with the sets of load, generator and slack buses of -

apﬁropriate:dimé“§1°“' and !H' IH and }" have béen partitioned
v ‘correspondingly. "

We also write the diagonal ‘matrices °ij and'!ij. i, 1 = 1, 2 and _ A

Thoee T .

R

e -~ ) L. - §
the vector Hﬁ of {3.148) in the corresponding partitioned forms R :
o - L ’ m -, ‘ . ) :
. Lo g 00 . Co
’ . ‘ I G , :
9% | 2 *1 A LI (4.33) ;
. n i l
» 0 0. - 8 =
‘ - . - - h ..13‘4’ ’ l
b ol “ 0 3 '
Y13 ¢ v 2 Co S ;
) G 8 | AN ' ?
, IR TRl 1 91 (h.30) ., -
n i
, ¢ 0 Y13
‘L G L G = = s
where'gij.ngij. ;13 and !13 are diagonaf submatrifes, and‘. ’
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(4.35)

Using the forms (4.32)-(4.35) it is straightforward to show _that

the adjoint system of equations (3.148) can be written in the form

rL L L, L L DL L L i L. .L a
SSLL* 2Bty 09166 1286 i AR A RSP ARSETY 'fn?m*fmgm
»__ : __} ‘ i :
.G G I G G. .G1 .G G Yl 6L G G
RECASIELCR Mleettileeting Hiletiafa  %Beetio%e iz
, L 1 !
L Lol L b L L " L
.‘?2191.1,*.?22?.1.1.*';"151 3 3218167 %228 6 | %2 1ELL.+322ELL+$2 i 0518622016
| 1 [N '
G G s . 6. 6! ¢ G g G G
(22101 %2280 | %21866*®22Bas 21! ~%2185L 220 | 8218662296+ 2)
. B m l
N - — L ”~ L -~ ~ - -
. ST 120 o
v
YL L. oL ~n g L -
- G 12BN 17 @1 1By ® 125 Yo
G -~ ! G A~ ~
. 311£G1+312‘.I.G2+H§1
5
LT S R G ~ G: .G « s
S EnSantti2Ben?Yar 21 1Ban 2 128 Vo2
| == -] — — - (4.36)
. a1l 1*222‘11.2?“&52 ‘ -
: : : | |
‘L2 L L - L L -
(854G 228 Vi~ (32BN 208 Vo
. G -~ G - -~
321301*322‘162*‘f22
Vo2 G G ~ G .
| L 9218 ant®22Ban Va1 22BN 228w Va2 |

- - -22-GN nl

r
»

—
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where - ‘ T
¢ .
Y15 % Gy * 3 By (4.37)
Ve = Vg v 3 Vg (4.38)
J = i 4,
Fnd % 2%t ke (84.39)
it TS TP
EK = !K1 + 3 522, (4.40)

I, Jand K cén be G, L, N or n.

Note that the form (4.36) is general for any set of element

variables. The adjoint matrix of coefficients has dimension 2(n-1) x 

2(n-1), where the slack bus equations have been substituted.

Tase of Practical Element Variables

Tables 4.3 and 4.4 show the parameters of the adjoint system
(4.36) for the sets of element variables E£ and Zy respectively. For
simplieity, onlﬁ general elements of the diagonal matrices and of the

vectors\are shown.

cture of the adjoint system .(4.36) for any of the two

* cases is simplified to - '

258 4% 1-e%8 48 w0

G G G G
1%+ 286! 211966 212866% 11 | 21 2e 020w | ~HZee* 12066 02

~11.GL L12.GL1 J11.G6G .12

L i L
- Bl * ¥ | Bg Gy + ¥ i G g
I
1. G . 1 G
L 0 . T21 I 0 a2 - ]

N At s B AT T

E AT
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!
r-f\ —“ r_‘a\ ~ ~ -~ —1
S
i Je1 * ¥y * S Vnr 7 By Ve
" o0 (5 4GV BV 1+ o0 [0 4B .V 4GV .1+HW
61 211 61* % a1 Ben n2? * 212562 BonYn1*%en"na" * Mo+
G 3 + ﬁS + B G + G G
M) Jp2 *¥Wio * By Var * Gy Vo
Vo ’f‘.éz’
Bl L a

(4.u41)
Observe that the majority of elements of the adjoint matrix of

coefficients of (4.41) are constant and are not required to be updated

at different base-case points. Moreover, they simply constitute
elements of the bus admittance matrix representing basic data of the

problem available and already stored in computer memcry.

3

4.6 CALCULATION OF TOTAL DER,&ZVATIVES

The derivatives of the function f w.r.t. the control variables

are calculated from (3.58) or (3.58). The vector Ty is obtained from

]

(3.62) where the vector fy is given, for the considered case, by

. B E T
o~ T ' ~%
fbi Ib
fb = —— = — {4,42)

Lfb v Yy

{;!
)

- " A

NP SO

Tyt

L

’ﬁ. LN T T SUITTY STLR TSNS S
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TABLE 4,3
PARAMETERS OF ADJOINT SYSTEM USING ELEMENT VARIABLES 'z'b
-Load Elements
£ L 2
& = 1 ¥ = Re{-8 /V°} -
i " RN, = Rl | i 3 3 y/cav )
. > 2 L' oaf Ll as, £
¢?2 =0 V5 = Im{=S /V7)
Lo L 2 |
. = Im{ (|V, | -] 1/7(2V,) }
L2 Lboalv | EXS [}
LSNP t = Rels, /v * *
$22 = Va2 = RelS, /¥y ‘
. Generator Elements
8% = 2miv ) Bz 2Imis AV} .
11 £ 11~ g e wS _ af
g g . 818
$95 = 2Re{Vg} Vo = ERe{Sg/Vg}
g _ g _
951 = 0 Y2y = 2Imtv ) oSy 2 af
= |V ¢ =5
g g g2 g an
¢22 = 0 ‘ ‘ "’22 = 2R9{vg} .
Slack Generator
5 . * 3f af
Vn--vn(ﬁ,—n-l-jwn)/z

Transmission Elements

s . af af T
Iy =Y ( 3Re(I J TTmiT ] )/2, hence J , =

=S
I a. Re{It} and
t
3 =L a Imifs} ms=g or g.
m2 t mt t!

The a . are elements of the reduced incidence matrix of (3.141).

|
|
}
{
1
1
i
|
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o TABLE 4.4

PARAMETERS OF ADJOINT SYSTEM USING ELEMENT VARIABLES z,

\
Load Elements

oF =1 oF = Ref-s,/V2}
11 11 LR ~g af
'\' W11 = Re{ EV: 1
Lo L 2
15 = 0 | PP Im{-SLIVI}
L [ _ 2
b5, =0 vy, = In{-S, V7). . e
w!..? = Im{ 3—‘)‘; }
L L 2
¢22 =1 ¢22 = RE{SL/VL}
Generator Elements
g E _ .
¢11 = 2Im{Vg} ¢11 = Im{-j2Qg/Vg} ~ "
Wg1 = Im{Vg SF; }
g _ : g _
#95 = 2Re{Vg} ¥yo = Re{jEQE/Vg} -
g _- ' g _
by = 0 _ ¥ 7 2Im{V8} ~y "
ngz Im[Vg SEf'}
g g : g
¢22 =0 ¢22 = 2Re{Vg} ) .
Slack Generator
v = -3

Transm;ssion Elementﬁ‘

It ='Yt 3—:, hence Jm1 = i amt'Re{It} and Jm2 t Im{It}.m £ or g.

=% a
t "

]
i

The g , are elements of the reduced incidence matrix of (3.141),

4B
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and the matrices @21 and Mgz are given in Tables 3.3 and 3.4.

Tables 4.5 and 4.6 show the vector IS for different power system
elements in the conaidered special case using the sets of element

variables gb and 'ib, respectively. '
S ‘ »
4.7 NUMERICAL EXAMPLES

4.7.1 A 6-Bus Sample Power System

In this section, we present'soqe numerical results to ;11ustrate
the use of the derived formulas. . A 6-bus sample power system(Bandler
and El-Kady 1979, Garver 1970 ) shown in Fig. 4.1 is considered.

Required data for the problem is shown in Tabies 4.7 and 4.8.
Powers injected into buses-are shown. The corresponding a.c. load flow
solution is shown in Table 4.9. Tables 4.10 and 4.11 show the
coefficient matrices of the adjoint systems corresponding to element

variables Z, and ib' respectively. These matrices are common to all the

—

sensitivity ca;culations.

So as not to be restric.ted. to any particular application, we !
consider the following examples where we éonsider, wi'thout loss of
" generality, the sensitivities o;‘ some 3ystem ;tates and a function'
representing the total transmission losses in th.e system. The control

. variables associatet_:l with the transmiasion elem_énts are taken as the

line conductances G, and susceptances B
L]

t 1

The results presented have been . checked by small perturbations

-

about the base point,
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TABLE 4.5a
THE VECTOR Mbu USING ELEMENT VARIABLES Eb
i ’ ~
L Load Elements Generator Elements
T VI W0 T as Y /v es \;’./V IV
A T T | “eg"ee &g 88 g |8
Tbu ‘
~ /V* A‘ : ~ . ﬁ.
sz &) - ng./vL . . -Vg/vg-vglvg B
TABLE 4.5b
THE VECTOR nbu'USING ELEMENT VARIABLES ;b
Slack Ge.nerator Transmission Elements
. R ! TR o T . Ty E 2~ & 7
[ nIn+VnIn+SnVn{Vn+SnVn/Vn]/|an Ve t/Yt_vﬁIt/Yt
Tbu . -
[V IV I =SV /N4 V7V ] SV, T /Y 4V T
Jun_nn an 'nnn’'nt ] R 2 e A A g

T '5‘ A e e

b
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TABLE 4.6 : -
THE VECTOR nbu USING ELEMENT VARIABLES zb‘
. Slack Transmission
Load Elements Generator Elements Generator Elements.
G./V E‘/V .S'G'/(V.‘Jz) E v E Y
- EEA . g''s * g'g Vgs n ¢ 1e/Y
Ebu . _
v vy I vt
VY, g g “n g T/Y
TABLE 4.7
BUS DATA FOR 6-BUS POWER SYSTEM:
Py %Y vyl Ley
Bus
Index, 1 Bus Type (pu) (pu) (pu)
1 load -2.40 0 7 /-
2 ' load -2.40 0 - /-
3 load -1.60" -0, 40 -
£ 4 : generator -0.30 - 1.02 /-
-5 generator 1.25 - 1.04 /-
6 slack - - 1.04 0
~ -

Pabaic S5 ik a1



S

T4

bus 4

Fig. 4.1

~—y
6-bus sample power system

J

R

Bt St
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TABLE 4.8

LINE DATA FOR 6-BUS POWER SYSTEM

Branch Terminal Resistance Reactance

Number of

Index, t Buses Rt (puw) Xt (pu) Lines
7 1,4 0.05 0.20 1
8 ,5 0.025 0.10 2
9 2,3 " 0.10 " 0.40 1
10 2,4 0.10 0.40 1
m . . 25 " 0.05 0.20 1
12 2,6 0..01875 0.075 4
13 3,4 0.15 - | 0.60 1
14 3,6 0.0375 | 0.15 2

TABLE 4.9

LOAD FLOW SOLUTION OF 6-BUS POWER SYSTEM

Load'Buqes

-
n

1 0.9‘787 / =0.6602

V2 =_0.9?33 / =0.2978
‘ V3 = 0.9032 / =0.3036 |
Generator Buk ) .
Qu = 007866. . Gu = "0&5566
- QS = 0.9780. 65 = -0-”7“0
Slack Bus ‘ (
. P6 = 6.1298, Q6 = T1.3546
. 3 ]
-

AL Dt
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4.7.2 Example 4.1

In this example, .we consider the states associ_ated with. the load
bus number 3. Element variables ?b are used. Table 4,12 shows the RHS
vectdr of the adjoint equations for .both states and the adjolint voltages

resulting from the solution of -(h.41)}., “Table 4.13 shows the derivatives

calculated by our approach.

4,7.3 Example 4.2

Now, we consider the states associated with the generator ‘bus

number 5. Element variables ?b

equations for both states and the adjoint voltages resulting from the

are used. The RHS vector of the adjoint .

solution of (4.41) are shown in Table 4,14, +Table 4.15 shows the

derivatives calculated by our approach. — A ] |

Q;j\ng element variables Z,, the derivatives w.r.t. §,» for

example, are shown in Table 4.16. Note that from (3.19)

af af | ® " 1

3s L i

L . ]

! .

. ) l

. 4,7.4 Example 4.3 i
In this example, we consider the ﬁmction' . ,

- r I.1%g | SRR

_-i‘ltlft_ . ' S 1

' which represents the total transmission losses in the power network. ‘

-

Table 4,17 shows the RHS vector of t’he adjoir'it_ equations for this 4
. . ] . P
, function and the adjoint voltages resulting from the solution of (14.141)..

Table 4.18 shows the derivatives calculated by our, approach. Element '

f\ . - variables ;b are used. e ‘ P

* ’ T ) -

y-

r
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TABLE 4.12
RHS AND SOLUTON VECTORS OF THE ADJOINT

NET.wcyMOH THE STATES OF BUS 3 -

Element
No.,

£ [ - -

£ = V] '. £2 4,

RHS Vector Sclution Vector RHS Vector Selution Vector

' ]
o "o =0,0102 ) _ 0- =0,0223

1 *

2 0 -0.0053 0 Coo.0t2 - Lo
3\-/ -0.4771 . =0.0087 -0.1655 ., . =0.0570 /
y 0 . —0.0130 / 0 -0.0287 - |
5 0 -0.0100 ' 0 -0.0220

6 0 -0.0082 0 ~0.0180

7 0 -0.6092 0 ~0.0082

8 ~0. 1495 0.0587% 0.5283 " -0.0188

9 0 ~  -0.0081 0 © —0.0178
10 0 ~0,0051 0 -0.0113

R
- ' »

L\

e e e e e- . S e ———— e - e —— e,
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TABLE 4,13

RESULTS OF EXAMPLE 4.1

Line Quantities

-

/

Derivatives w.r.t. Gt

Derivatives w.r.t. Bt

Line . g
f = |v3| f= 5, f = |v3| f = 53
1,4 ~-0,000544 -0.001205 0.000329 0.000743
1,5 -0,000729 ~0.001595 -0.000962 -0.002133
2,3 0.001664 0.005312 -0.005748 -0.000166
2,48 0.001407 -0.003359 -0.003853 -0.008465
2,5 0.001507 ~0.,001260 -0.001870 -0.002965
2,6 -0.003937 =0, 001242 -0,005161 -0.00g986
3,4 0.027165 0.000744 -0.002716 0.074820
3,6 -0.028570 0.010158 T -0.02%622 -0.037461

Load Bus Quantities

Derivatives w.r.t. PL

Derivatives'w.r.t. Ql

Bus ]
f:!V3|_ f=53 f=|V3| f:53
¢
1 0.026681 + 0.058622 0.000512 0.001132
2 0.016034 0.033200 0.015022 0.0075b6
3 0.057311 0.001969

0.132854

0.118208

General Bus Quéntities

Derivatives w.r.t. |V

Derivatives w.r.t. P

gl g
Bus L7\\
f = IVBK f= 84 , I = |V3| f = 53
y 0.194810 =0,008082 0.030046 + 0, 066205
5 0.079778 0.056708 0.021688 0.047554
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TABLE 4,14

RHS AND SOLUTION "VECTORS OF THE ADJOINT NETWORKS

FOR THE STATES OF BUS 5

Element ‘e 65 'f ) QS'
- No.
RHS Vector Solution Vector RHS Vector _Solution-Vector
- »
1 0 7 _0.0947 0 0.0600
2 0 -0.0365 \ 0 0.0275°
3 0 © -0.0205 0 0.0328
4 0 '_'0,07145 0 © 0.1354
5 . 1.0 -0.1171 0 -0.0240
6 0 _0.0746 "0 0.4884
7 0 -0.0247 0 0.1466
8 0 -0.0180 0 0.0584
9 0 . -0.086k _ 0 0.0843
.10 0 -0.0601 0.5721




82

TABLE 4.]5

RESULTS OF EXAMPLE 4.2

Line Quantities

.

Derivatives w.r.t. Gt

0.253086

Derivatives w.r.t, Bt'
Line - ]
f.=55 f:QS f=65 f-'-Qs
T,4 0.000289 0.063610 -0.,007712 0.065953
1,5 -0,010462 -0.046596 0.001216 -0.004421
2,3 -0.00205& 0.001612 0.000375 -0.010535
2,4 . =0.006958 - -0,043764 -0.021878 0.048458
2,5 =0.014328 0. 163046 =0.030654 =0,023595
2,6 -0.005245 0.076308 -0.026501 0.050501
© 3,4 -0.015685 0.014771 -0.028828 0.054970
2,6 =0.002444 0.019837 -0.017490 0.038517
Load Bus Quantities
Derivatiﬁes w.r.t. Pl Derivatives w.r.t. QL
Bus
f=65 f=Q5 f=65 szS
‘ .' .
. 1 0.246249 ~ -0.709070 0.001696 -0.71316%
2. 0.08Tu446 . =0,143975 0.026717 -0.274202
3 . 0.055239 =0. 107990 0.024564 -0.101658
Generator Bus Quantities ,
' De}ivatives w.r.t. |VE| Derivatives w.r.t, Pg
Bus
f=65 f=Q5 f=65-' f=Q5
i} 0.17362% ~4.51867 0.172132 =0.312777
7.58088

5  -0.088393

. -0.1461239
")

o B 2
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. " TABLE 4.16 D
DERIVATIVES W.R.T. \COMPLEX LOAD POWERS OF EXAMPLE 4.2 -
Derivatives w.r.t. Sz
Bus - -
) f= 85 f = 05
1 0.123125 - j0.000848 ~0.354535 + J0.356583
2 0.043723 - j0,013359 ~0.071988 + j0.137101
3 0.027620 .- J0.012282 ~0.053995 +}0.050829
~ TABLE 4,17
‘ / RHS AND SOLUTION VECTORS OF THE ADJOINT
NETWORK OF EXAMPLE 4.3
Elément No. RHS. Vector Solution Vector
1 0.4678 0.1692
2 0.3121 - 0.0852
3 0.3157 0.0828
4 -0.2337 0.1627 &
5 0.4732 R '
6 ~0.3673 0. 1440 | .
7 -0.5174 0.0534
8 -0.3106 0.0707
9 0 0.1053_ t
10 o 0.0743

%3
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TABLE 4.18

RESULTS OF EXAMPLE 4.3

Line Quantities | g - .
Line Derivatives WoTabo Gt. Derivatives w.r.t. B,
1,4 0.075462 ‘ 0.008741
1,5 0.048977 - 0.027370
2,3 . 0.003490 0.002102 >
2,4 0,084665 0.0u4u4962
2,5 0.045468° _ 0.022680 .
2,6 0.1Q3966 N -0.060904
3,4 0,089397 0.042758
3,6 0.113314. 0. 069869
Load Bus Quantities ’
Bus, ‘ Derivatives w.r.t. Pl . Derivatives w.r.t. QL
-1 -0.453538 . -0.020390
2 -0,201703 _ ~0,054098
3 -0,221666 ' - =0,098646

Generator Bus Quantities

) s ( . . \,.,.
~ Bus Derivatives w.r.t. |Vgh Derivatives w.r.t. Pg
4 -0.373561 | -0.375812
5 -0, 184047 ' -0.312838

=y = ~

[
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4,7.5 Example 4.4
A
In this example, .we investigate line removals by considering
functions of .the form
2
f = IItl .
The control variables associated with generator, “and load buses are

-
maintained at their base-case values. Tableau.19 shows some results of

different contingencies.

E; ) o~
-

4.8 CONCLUSIONS

w?J have considered a clas; of adjoint systems .in which the
extendé; Tellegen sum is a‘real gquantity. A detailed discussion of an
important case in which the selection of the adjoining cqmplex.
coefficients leads.to am adjoint system of a special structure has beeﬁ
presented., The Era;smission line admittances of b;th the original and
the adjoint systems turn out to be identical..  The adjoiﬁt matrix of
coefficients is of the same size and sparsity as the Jacoblan matrix of
the load flow analysis of thélériginal poweF netwWork. Moreover, most of

its elements are constant and represent basic data of the problem

available and already stored for computerized analysis.
The required sensitivity expressions for this special case have
been derived and tabulated for direct use in sensitivity analysis and

gradient--evaluation. These sensitivity expressiohs are common to all

- v .
relevant power aysté&J@tudies employing real functions. A number of

"
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TABLE 4,19

3

Fun&tion Removed Caiculated Exact
Line Index -';inj’ Index Function Change Function Change.
1,4 2, u/“ -0.200 -0.224
2,3 1,5% 0.002 0.005 .
2,3 2,3 -o.ng —0.021
. 2,4 2,4 -0.470 -0.404"

* Only one line of branch 1,5 is removed.

' “

L

relevant problems have been numerically explored for a 6-bus sample

power system., The application of the formulas, which have been derived

"for two impor'tént sets of variables, tas been i1lustrated.

.
O
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- \’OCONSISFG SELECTION OF ADJOINING COEFFICIENTS

w

L]

h Y

5.1 INTRODUCTION

The approach described in Chapter 3 udtilizes a generalized

adjoint network concept with 'complex adjoining coefficients set to

proper values which permit the required sensitivity qvaluétion for a

general complex funetion.

The thedretical investigation of the consistent aefinition of the
adjoint system is of particular importance because. it provides the
possibility of obtaining complex function sensitivities d;rectly as in
typical electroniec circuits.

In this .chapter, we present a unified study for consistent

[N

selection of the adjolning coefficients whére the restrictiohs imposed
by the number and type of elements of the network as well as the
function considered are investigated. The study, hence, justifies the

" f
use of the approach described 1in Chapter 3-as a general network

épproach.

5.2 ° HEﬁARKS ON THE CONJUGATE NOTATION
We have described and utilized the;conjugate notation in Chapter
3. In classical complex zalgebra, the variables of a sydtem of complex

linear equations are defined independently (Stewart 1973}, e.g., Xq1 %o,

etc., and this is the case in real algebra. Since the ﬁse.of conjugate

87
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-

o
,notatiﬁn implies in sSome cases a set of complex variaélés‘§;:f their
complex conjugate- po appear in the same linear equations, a special
analwysis is required to reveal the properties of such systgﬁs of linear
equat{ons regarding, for example, rank, consistency conditions, ete.
Throughout Chapters 3 and 4, the\f:plication of conjugate

notation has been performed In a straightforward manne?\ since the

assumption of consistency Gi (3.76) was made when defining the adjdint

elements. In this chapter, the consistency of {3.76) is discussed for a
suitable selec}{bn of the adjoining coefficients, In order to
facilitate the consistency study performed in the following sections, we

state here the following theorems. . '

¢
5.2.1 Theorem 5.1 ) ’
L4 .
Let 0, 8 C™P | where ) ’
. - ~ -
0 =0, +Jj8 (5.1)
. el -2
and
E = 21 + ] 92. | (5.2)
0.1 85, 8., 6, ¢ R™". Then the two matrices o° ¢ CZ™*20 4pq p" ¢ REMXEN
defined as - _
e .
, % 1-, -, (5.3)
4 ot ,
and -
' — — tl
(e, +9,) {6, ~ 8,)
9r A1 :1 ~2 :? (5.4)
(05 +98;) (8 -8

have the same rank. . , .

2

et e b
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~ Proof

Let ll be the-identity matrix of order_l and

[ 2
Fran,
.and ‘define the two unitary matrices
m m-
. ~L /5 1II'| _jm
and
. n
8 1. 1 J
U = — n n
SO S J

Since UL and UR are nonsingular (Stewart 1973),

rank[U, 8" U_] = rankie ).

L. R
But - v
T r c
Up® Yp=2o
hence

raqk[er] = rank(s®]

5.2.2 -Theorenm 5.2 - \;h</ . \.

Let o, 8 « ™0 given by (5.1) .and (5,2), and let o ¢ c™

¥

n
we C', where

@ 9.1&“.’.2

and '
Ww=w, + ] w.,
9., 6. ¢ R™ and w , w, € R'. Then the system of complex linear
Sav 2 Hi» ¥o \ o .
. ,] I -
equations ' : "

|

i['

{
{

H

!

/,

and

(5.5)

(5.6)

(5.7)

(5.8)

(5.9
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Pl = e g .

-~

/

s \
' 90
i - 3
-
o "y
. 8 W+go wht =p-
has a solution w 'if and only if -

rank{ (e€, 61 = rank[ec3.
where

8¢ ¢ cen is defined as

~

i ]
) ec 4 - -
N . - e * '
Ind 8 14 given by (5.3).

Proof

géparating (5.10) into real and imaginar
- |

(5.2),/(5.8) ‘and (5.9), we get

/

r

[ < 5 _ )
/. O +8) wy+ (8, -08,) W, =8,
and | o _
b o B8 w8y 8wy =k,
orffusing (5.4), '
/ ‘ 4 - ér H’rzﬁr,
) -~ - -
vhere .
(w
R
) "
and . . * \
' . ' — . .‘b
' © - 8 ..
o NN
| i
2 L
‘We define the nonsingular matrix
' L.
foo $

y parts. using

(5,11}

(5.1),

(5.42)

\
-~

(5.13)

(5.14)

(5.15)

(5.16)
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J v 4R L *
/ 1 i 0 &
= 4 1 n n -
U, 2 — | -3 J 0 . (5.17)
= A
-
‘ . L
0 } 2 ~
hence
~ ro.r,=: ! ro.r
rank[UL(B , 8 )_UR] = rankﬁ(e .8 )1,
where U 1is given by (5.6). But -
- ' 3 L . .
g ,UL(e'?. 07 Tp = 0%, 0%,
" hence : . 0
, ' y - .
.rank[(®", 87 ) = rank[(a®, 8%)1. (5.18)

Now, the system of equations (5.M) has a solution if and only irf
P : rank [(e", 6")] = rankle"1,
’

hence the theorem is proved using (5.18) and Theorem 5.1 .

L

—

. ~ - - o - '
5.3 CRITERIA FOR 'SELECTING QPJOINING'COEFFIGIENTS

' In fhis section, we derive the required conditions which (3.76)

_must' satisfy for proper definition of the adjoint "system. First,

equation (3. 76) must be consistent. The results of the previous section

L.

allqw. us to. state the following- corolléry. ) ' o
'/ -
5.3.1 .Corollary 5.1 - _ (7 o

Equation (3.76) is consistent if and only if

L3

Yankl (8, 8.1 = rankl(s,)], . (5.19)
" N '
where N

e q——

G e e e

o e
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and

Proof

Since
and

hence

Lepd

Hence from Theorem

92

/

4
* ‘}

. 5.3.2 General Consistency Criterion B

_ - )
s, 4 | WV ), (5.20)
-bvl Ebil
]
oot |- ¢ (5.21)
o
o 1
14 [ J . (5.22)
- 1 ‘0
The éonjugate of (3.76) is written as
T | Y | * o
Ot Yot = Opy Mpy * &y (5.23)
. + . v '
' GI -
Wy =] E’bi (5.24)
R ;'Q
"oy = 1 by (5.25)
5. 76, =8 74 ' (5.26)
k b1 1 ¥b1 T Zov ! By * &y (5.26)
Eqdations (3.76) and (5.26) are ‘written together. as
. - c . -
. gb Eb =0, (5.27)
. When the variables ﬁb and ‘the corresponding columns of Bb are rearranged
such that (3.76) has the same form as (5.10), the rank of .§b is
5.2, the corollary is proved .

In order to uniquely define the adjoint elements with proper

}elationS'between adjoint variables{ we also require..in addition to

b

Bt T T T LR S U

— o —

S S Y- U

I T T YU G g,
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(5.19», that the system of four real equations (3.76) has rank 2.
Hence, from Theorem 5.1 and the previou.?; corollary, the }rtatrix Eb of
(5.20) nust be of‘\rank 2. In summary, the conditions which (3.76) must

satisfy are

rank[ (8, 8;)] = rank[ eTb ]l = 2, -,,(5.28)

5.3.3 Remarks on the Adjoining Coefficients
Note that the elements of the matrices Mb and [4?2 of (3.61) and

-1

the complex adjoining coefficients form the matrix gb' The matrices

b b b b .
bj”. @12' §21 and _11122 of (3.60) depend solely_ upon the element-type
modelling. Moreover, the vector 8 contains the derivatives of the

~-b

f_uncti’on f w.r.t. the stat_es associaﬁed wi.th element b, Thus we require
a proper selection of the adjoining coeff‘iciénts which satisfy (5.28)
for; a pa'r;iculaqr element-type ‘modelling and .for a givgn function f,

Since the set of adjoining coefficients a, a, 8, B, E, T, wand
is common to all element types described in a particular system, we
expect that the more element types in a system, the more restrictions,
hence, the more difficulty there 'ﬁil_l _be in selectiné these adjqi;'ning
coefficients to satisfy (5.28). On .-the other h;';\nd. the adjoining -
-coefficients I‘k and- Fk are only common to those elements vﬁthin certain
group terms which may- include a few elementv types. Consequently, we
expect more flexibility in adjusting th;zse coefficients ;;o satisfy
(5.28) for certain elements. .

Examples of element tybes of pa.rticu.'_Lar systems are shown in

. Tables 5.1, 5.2 and 5.3. Tables 5.1 and 5.2 represent typical linear
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elecg}onic cifcuits. Two element types are described for each system,
namely, the node elements (e.g., soﬁrce elements) and the line eléments.
One representation of the power system qonsiderea in Chapter 3 is shown
in Table 5.3 in which four element types desc;ibing the load, “the
generator, the slack generator and the transmission branches are

Il

considered.

5.3:“ 'Diff{culties due to Source Elements

A comparison between the electronic system of Tables 5.1 or 5.2
and the power ;ystem of Table 5.3 is of particulér interest. The stape
and control variables associated with the sqﬁrce elements of an
electronic system are simply the basic variables‘ W of (3.40) which
.cléssify them as either current'éources {Table 5.1) or voltage sources
(Tab;e'5.2). In a power system, the situation is différgnt. The state
and control variables assoclated with the source ele@gﬂés are nonlinear

functions of the basic variables Wy which results in nonlinear load flow
equations, and also difficulty with respect to the consistent selection

of the adjoining coefficients as we shall see later on,

5.3.5 Alternative Consistency Conditions
At the end of this section we state some important forms of
equation (3.76) which satisfy condition (5.28). As shown in Chapter 3,

equation (3,76) has the form.
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&>

A TYPICAL LINEAR ELECTRONIC CIRCUIT WITH CURRENT SQURCES

~.

TABLE 5.1

b b
Element Type Symbol Xy uy ﬁﬂ !12
vl (z.] .-r1 0 0 0
J .
Node Elements J
| vl |t 0 1 0
0
i)
C 7
It Yt 1/Yt 0 1 0
Line Elements t
I' Y. 0 1/Y* 0 1
L t—a L t.J

Yt = ItNt 13 the admittance of line t.

TABLE 5.2

A TYPICAL LINEAR ELECTRONIC CIRCUIT WITH VOLTAGE SOURCES

b b
Element Type .Symbol fb Uy, 511 §‘|2
-~
1.1 [v.] 0 0 1 0
J 3 .
Node Elements J
o » » ’
I v 0 0 0 1
\ Ju -
— - -
r— - ~ =
| I, .'ft(* fiy, o 1 0
Line Elements t .
I. Y* Y ;l/Y' | ) 0 1
Lt Lt
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. TABLE 5.3
A REPRESENTATION OF A POWER SYSTEM
Element T Symbol  x u M2 Mo
ement lype ym Y% 11 . 212
r_V‘- S ) 1 0 ‘/V
L L _ o LY
Load Elements 2
V' S 0 1 I /V' 0]
3 y [ )
~ #*
v){iv,2 1 VoV 0 ~joq /v°
Elements g g € g g g
Generator g
' L ]
I 2P 0 0 1 -V /V
g g g
_ -
-
In rwn ) 0 1 . 0
Slack 7
Generator " n t
I' V' 0 0 0 1
L QJ L n _
'n-- T— — ™
It Yt 1/‘!t 0 1 0
Transmission
Elements t
| I' Y' 0 1/Y' 0 1
L QJ _ 5 t .
Sm = Pm + ij is the power of elément m, m can be L, g or n.

o



97

~k ~k 2t "k Kk °® “Skg .
¢b b+ 4y Ib = ¢b vb + Yy ?b + W .-’1 {(5.29)

I + b
where k = 1, 2 denotes the first and second complex;equation of (3.76),
respectively. It can be shown that each of the following conditions is
equivalent to (5.28}.

Klternative Condition 1

- “2 -1 _=2 _ 2. =1 =2 '
¢b = ¢b' ¢b = ¢b' wb = ¢b' *b = ¢b ) (5.30)
and "
.31 - ~82
wb = Hb ' (5.31)

in which the two complex equations of (5.29) are identical.

Alternative Condition 2

c1_ 2% -1 _T2® <1 ok o

¢b=¢b.¢b=¢b-¢b=wb.$b=¢b - (5.32)
and
51 _ ~sow
Hb = Hb . (56.33)

in which the first complex equation of (5.29) is the conjugate of the

sSecond one.

Alternative Condition 3

=1 _ 1% 1 -1 "5y
I NN AT wﬁ is real | (5.34)
or
- T 1% ~
¢1 = _¢; . @1 = —¢; . w§1 1s imaginary (5.35)

and

2 _—2% T2 2% 25p
¢b =4, vy = Yy wﬁ is real : .(5-36)
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or

~2 2% ~3 %

in ,which. each of the two equations of (5,29) represents one real

and Hﬁz is imaginary, (5.37)

equation.

rObserve, -for example, that for a real function f and under
conditions (3.33)—(3.37), Tablg 3.1 éhogs a proper adjoint system by
conditions (5.34) and (5.36) for all elements while Table 3.2 shows a
proper adjoint system by conditions (5.32) and (5.33) for the load,
slack'generator. and transmission elements. ‘

5.4 A SFECIAL CONSISTENCY CRITERION
In the previous section, we have 'derived the required conditions
for proﬁer definition of the adjoint system to be solved. Since we are

Searching for proper adjolning coefficients which satisfy condition

- (5.28) rather than checking the condition itself, the form (5.28) may

not be adequate for direct use in selecting the various ad joining
coefficients. . |

In this section, we s“ate a speecial technique for selecting the
adjoining coefficients. The technique presented is based on ; few
assumptions regafdiﬁg the coefficients and hence it satisfies a somewhat
more restricted criterion than (5.28). The technique, however, allogs
fasf and easy selection‘of proper adjoining coefficients for different

systems of different element typeé.

b o]
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5.4.1 Description of -Criterion

We write (3.46) in the form

ib’

-
* Ebi
@/ = ———
%
.
where we have defined
1.4, .51
- Ib + & I +D
b a Ib + £ Ib + D
G Q‘B G + ; G + D
b b
T AT aui ob
p = B b * v_V + D
A k
Dip = I Apy Nypo
k -
Dip = I Apy Nipe
k
N A k
Dyp = 'i ‘b Yvb
and
= A <k
Dyp = =X Ay Nope
k
where A 15-given by (3.32).
Under the assumptions
Y ™
EE =—aa #0

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.144)

(5.45)

(5.46)

(5.47)

s o W 4 s
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and
JE—— * .
vy «BB8 #0, {5.48)
one may uwrite
oy - jog ) h"' .
- I 21
b= A Iy« 8 T +Aib (5.,49)
and
Ub = Av Ub + AV Ub + Avb' (5.50)
where
X8
- _ » .
L I ~(5.51)
EE —aa
‘-\ ) : -A-i é P ~ 2 u.. * (5-52)
£EE ~aa
i, 4D D, -% D (5.53)
Aib = Dip = A4 Dyp = A4 Dy .
— _ '
L eI (5.54)
vv =88
R (5.55)
vv —B B
and
A 4% D, -&E D (5.56)
vo - Ovb = Ay Dyp ~ Ay Dyp- 5.56)

Now, according to the element types used in a particular systen,

the gross coefficients A, Ki

A, of (5.58)-(5.56) have to satisfy certain relationships to fulfil

and Aib of (5.51)-(5.53) land A, Av and

condition (5.28). The more element types used to describe a certain
system, the more those relationships will be. *
The impact of using the gross coefficients is obvious. Instead

of dealing directly with the numerous coefficiemts a, a, etc., while
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. searching for a proper adjoint systéﬁfurepfésentatibn. we only

investigate conditions on fewer gross coefficients. Moreover, in the

absence of group terms, A

-

ib and AVb are automatically zero and only Ai'

A, A and A are left for study.
i° v v i

We illustrate the use of the gross coefficients by the following

examples. \\“

5.4,2 Example 5.1
For the electronic system described in Table 5.1, and using

(5.38), (5;#9) and (5.50), equation (3.76) is written, for node

elements, as . %
af _ °
3‘75 = IJ . (:5.57)
and ‘
M el ch 1, 4K, 1 +a - (5.58)
LIS s SR A SRS & '
J -
and, for line elements; as
af  _ 2 o
and
# 3F : l: I R ¥ “_"‘I"') (5.60)
Yy i To=YyUp = AyT +A T #hj =Y, (A U +R U +A, ). 5.60
t
Now, for a real function f, we have
#
af__ af “¥(5.61)
a¥v
J an

L]
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and

af .
— = (=) (5.62)
aIt

so that (5.57) and (5.58) are consistent if

g = 1 and Aij = 0. - (5.63)

Using (5.63), equations (5.59) and C5.60)qare also consistent if

[

A, = p. ﬁv = 1 and Aét = Aip = Q. (5.64)

Ai =0, A

Under condifions (5.63) and (5.64), ‘either (5.57) or (5.58) can be used
to define the ad joint node elements. Also, either (5.59) or (5.60) can

be used to define the adjoint ‘line elements.

-

In terms of the adjoining coefficients a, :. eéc.. it is obvious

' L] . ) . J -

L ¥ ' S " - »
a=a ,B8=8,E=E andv = v, N (5.65)
- * —_ » '
Dip = Dib and Dy =D (5.66)

are sufficient to satisfy (5.28). Note that (5.66) 13 an alternative

cqndition to (3.37).

5.4.3 Example 5.2

For the power system described in Table 5.3, and follqwiqg a
similar procedure to that of Ekample 5.1 for the Qifferent element types
of the system, it is a straightforward to show that, for a real function .

f, conditions (5.65) and (5.66) are also sufficient to' satisfy (5.28).

5.4.4 Example 5.3

Consider, agaln, the electronic system of Table 5.1. Let
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f = ‘vk' . (5.67)

where Vk is a certain complex node veltage., With no group terms and

using (5.38), (5.49) and (5.50), equation (3.76) is written, for the
' nods element j £ k, as -
0=1 | (5.68)

and

- — ~w .
0= Ij = A I+ Ay I _ (5.69) _

which }equires no restrictions on Ai or K;, and for the node ‘element k,

as
1 = Ik , (5.70)
and
& - A g
O:Ik:Ai Ik-o-Ai K (5.7.1)
which requires
Ai = _—Ai. ) (5072)
Also, for line elements, we write
0 = It - Yt Ut (5.73)
and '
| ' 0 7 f) n-Yao +x0" 7
. 0 = Ai I, + Ai It_- tﬁﬁv g AvUt) (5.74)
which requires '
=
-Ath S Ath for all t. (5.75)
" Hence
}:’1 -: AV = 0. | ’ (5.76)
Also N
. A, =R (5.77)

rem e
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Conditions (5.72), (5.76 .77) are simply .
A, = A = A =& (5.78)
or, from (5.51)-(5.56) -
EE=aa, . (5.79)
, “vv =88, (5.80)
L »
£ ¢ =fa (5.81)
and
- - -
v B =vf . , (5.82)

Oﬁserve that any member of the family of adjoining coefficients

satisfying (5.79)-(5.82) can lead to the required sensitivities of V.

In particular, the member

2 =8 = 1 ' (5.83)
and : 3 ) ‘
@ =F=f=F=v=y=o0, . - (5.84)

or
E=v=1 (5.85)

and
@=a=8z=B=£zvz=0 . {(5.86)

may be used. For the member (5.83) and (5.84), the adjoint system is

defined, using (5.68), (5.70) and (5.73), as

~

Ij =0 for J #k, (5.87)
Ik =1 . {5.88)

and .
It = Yt Vt. '(5.89)

e ]

~
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while, for the member (5.85) and (5.86), the adjoint system is defined

as
IJ =0 for j # k, - (5.90)
' ' Ik = 1 ' : ‘ (5.91?
and
L=y v '
¢ = Yt £ (5.92)

5.4.5 Discussion

As 1llustrated by the foregoing examples, the technique described

" in this section allowsldirect selectlion of proper. adjoining coefficients

for a given system and for a certain function. In this respect,

sensitivities of some of the complex functions of practical interest can
be obtained directly by appropriate adjustmeﬁt-of these coefficients.

On the c:;ther.hand. the adjoinirné coefficients play an important
role in the adjoint network formulation, The freedom acquired by
defining a family of possible adjoining coéfficients can be utilized to
alter ‘Fhe modelling of the adjoint elements. In sohe cases, it 1is
posaible to achieve certain modelling for a paryicular ad joint element.

In the ne'xt. sect;ion. more freedom 1in selecting the adjoining
coefficients- is afforded by considering the more general case of

functional adjoining coefficients.

5.5 FUNCTIONAL ADJQINING COEFFICIENTS
In the analysis so far, we have considered the case of cbnstant

adjoining coefficients in (3.31). S8ince these adjoining coefficients
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*

are basically mulbtpjiers of zero quanbities. the restriction of

constant adjoining coefficients can be relaxed, L oo

5.5.1 Cases of Formulation

In'fact, the adjoining coefficients can be functions of the basic

variables wb of ,(3.40). Moreover, since

t{w) ¢h(¥) = h(w) &c(w) = 0, {5.93)

where T(w) stands for any of adjoining coefficients, W denotes a

vector of the basic varlables wb and /

h(w) = 0 - - (5.98)

represents any of the Tellegen or group terms, the adjoining

_ﬂcoefficients' are not required to be perturbed in (3.39). Hence, the

‘sensitivity expressions derived so far ape still valid even when the
adjoining coefficients are functions of the basic variables.
On the other "hand, the adjoining coefficlents can be also

functions of the adjoint variables @ of (5.59). The case when the set

of adjoining coefficients a, u, B, B, £, E, v and v are functions of the

adjoint variables usually results in nonlinear adjoint equations to be
solved. The case when the adjoining,coefficients r, and Fk are linear
gunctions of the adjoint variables is ;ndeéd of ﬁarticular interest.

We consider the case in which the adqoinipg coefficients rk and

T, are linear functions of the adjoint variables A contained in.the kth

group term in the forms -

b b| b be ;‘"

T = Yot I (v, V * Yy vb * Ve Ib * Vet Ib) (5.95)

fRTE S~ N N



different systems and different classes of functions. Insteéd. we

107

and
i - = ~b oo gF o =b [ =be 7R
rk = YkO + I (ka b. + Yy V + Yieq, Ib + Yy Ib)' (5.96)
beB
k
. where Bk is the set of eleme forming the kth group term, and as

indicated before, the coefficients Yyo! Yiv' etc., are In general

functions of the basic variables Wy

It 1s straightforward to show that the forms (5.95) and (5.96)

still lead to a linear, although less Sparse. adjoint system to be

solved. In the resulting form of adjoint system, the diagonal matrices

§ij and vij‘ i,j = 1, 2 of (3.126) and (Bﬂj27)-ére replaced by the

equivalent matrices ¢?j
In general, the matrices Qij and wij are no longer diagonal

matrices.‘ The more adjoint variables appearing in (5.95) and (5.96),

and ?ij' respectively /

the more will be the off diagonal elements of °iJ and fij'

Since the number and type of group terms to be considered in a
part;cular problem are entirely dictated by the type of the system -and
the functicn f, we shall not proceed towards general aerivations for

-

illustrate by a simple example the concepts stéféd'in this section.

o

Ky

5.5.2 Example 5.4

Consider the simple é-bus system of Fig. 5.1. The ‘systém
consists of a load, é slack generator and three transmission elements.
Heqdired éata‘in pu for the problem is shouwn. Table 5.4 shows the
currents aqd voltages of differeht elements resulting from the a.c. load

»

flow solution.
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bus 2 bus 1

Y_=6-1
: 5 6-j20 l
<:: ) 2 ff
5
V,=1+30
§,=5+}3
11
1
I 13*
. ' .
¥,=33 Y =j2 oo
AT TR T T T TR T TR RS L AR RS
Fig. 5.1 2-bus system of Example 5.4
TABLE 5.4
SOLUTION OF EXAMPLE 5.4

b Iy b
1 5.2623-~35.5411 0.7352-30.2041
2 . ~5.6705+31.0706 C 1.0+30.0 '
3 0, 4082+31.4705 0.7352-3.2041
y 0.0+j3.0 " 1.0+30.0
5 -5, 6705+ 3j4. 0706 ~0. 2648~ 30.2041

Suppose we are in;:erested in. the ser!sit.'!.vities of the complex
load bus voltage. The adjoining coefficients may be set éccord;ng to
the special case described in Chapter_ﬁ in whiéh_we may define the two
réél"‘f‘unetioné '

#*
f1 = Re {VI} = (V1 + V1)/2
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and

2
The sensitivities \Qf f‘1 and f

#*
f \i Im {VT} = J(V1'— V1)/2.
> are obtained in the same way
described in Chapter 4. The adjoint matrix of coefficients and the RHS

vectors for both f1 and fé are. shown in Table 5.5.

TABLE 5.5

ADJOINT SYSTEM OF EXAMPLE 5.4 WITH CONSTANT ADJOINING COEFFICIENTS

- RHS Vector RHS Vector

Adjoint Matrix of Coefficients T f = Re{V1} f = Im{V1}
1.2972 - 6.0 9.1581 -20.0 -0.5 " .0
0.0 1.0 " 0.0 0.0 0.0 0.0
~26.8419 20,07, 10.7283 . - 6.0 0.0 | 0.5

0.0 0.0 0.0 1.0 0.0 0.0

Alternatively, we may utilize the functional adjoining
coefficients to obtain the sensitivities of the'complex function
f.= V1,
directly, while altering the modelling of the adjoint system. For
simplicity, we let ,
. s
| I

E = E = v = ; =0
and

Iy = Fk =0 for all k # 1,
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where we have considered the group ‘terms

( V1 - VE - VS

and ' p

1
o

v ovt oo | )
, 17 27 s © ™

adjoined via coefficients r, and'F1, respectively.

With various adjoint élements modelled’according to (3.61), it is
a straightforward to show that the_gqnsistent selection of the adjoining
coefficients requires, for example,

—_ *
a =B = I1/[V1(Y

3
~ —%
= -I1 - 1/(88 - 1)

+Y5)]|

and

e %
r,=-8 I -8/ - 1.

Observe that this selection of the functional adJjoining coefficients

leads to modelling the load element in the adjoint system as a voltage

source in the form

~ —
V1 = 1/{(Bg =~ 1)(Y3 + Ys

. 'l .
The derivatives of the complex load bus voltage shown in Table

1.

5.6 are calculated from (3.56) using the solution of the resulting

| :
simple adjoint network.

N
—

5.6 CONCLUSIONS
A unified theoretical consistency study which* "allows proper
. selection of the adjoining coefficients introduced.in the generalized

version of Chapter 3 has been presented.

£
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TABLE 5.6

DERIVATIVES OF V1 OF EXAMPLE 5.4

b ’ Associated Derivatives
L S = -0.0348+0.0366 and a4 - _0.0535-40.0794
1 : ds
1
2 ' %— = 1.5248-30.0462 and- d—f, = 0.7896+30,1579
e . v
' df dr ’
3 a7 = -0.0311-30.0462 and ~—¥ = -0.0203+30.0213
3 dY )
- 3
4 4 - 0.0 . and a0 \
dY *
4 dy,
! -
“n
5 —33(‘ = -0.0080+j0.0231 - and d—f, = =0.0022-30.0127

The freedom acquired by exploit‘:ing‘both constant and t‘unctiongl
adjoining coefficients has been 1investigated so that complex function
sensitivities for different systems of different element types may be
evaluated using a properly defined adjoint system.

The theoretical foundation of consistent modelling of different
adjoint elements has been established by deriv_ing sﬁitaﬁle consistency
eriteria. These gonsistency criteria may. bte used to handle the . more
general branch modelling of power networks as distinct from thatl of

typical electronic circuits,
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COMPLEX ANALYSIS OF POWER NETWORKS:
SPECTAL TOPICS

6.1  INTRODUCTION
The use of the conjugate notation has facilitated the derivation

and subé.equent formulation of the required sensitivity expressions in

"the Tellegen's theorem-based approach described in Chapter 3.  The

utilization of the same notation méy 1ead'to a special methodology for
complex analysis of —‘power networks regardiﬁ% both the- power flow
solution énd subsequent sensitivity calculations by other appfoaches.

In this chapter, some new concepts arel introduced based upon

which several special topics in complex analysis of power networks are

presented and discussed.
6.2 SOLUTION OF POWER FLOW EQUATIONS USING TELLEGEN'S THEOREM

In this section, an important application of the approach
presented in Chaptérs 3 and 4 is considered. We describe a new method
for solving the load flow ﬁroblem using Tellegen's thecrem. Although

the method can be described based on the generalized version of Chapter

- 3 where complex function sensitivities may be obtained, the method finds

16

more useful features based on the simplified verison presented in

Chapter 4,

112
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6.2.1 Adjoint Matrix vs Jacobian Matrix

The adjoint matrix of eoefficients of (4,41, although\of the
same size and sparsity as the Jacob}an matrix of the load flew analysis
by the Newton-Raphson method, is difééient from‘it.

The comparison between the adjoint matrix of coefficients of
(H.lﬂ)‘ and the Jacobian matrix of the load flow problem is indeed of
pérticular,interest. As has been pointed out in Chapter 4, our ad joint
matrix of coefficients is more fundamental than the Jécobian matrix.
éractically spéaking, most of the elements of t'he adjoint matrix
regresent line conduéfances and susceptances which are constants
representing basic qata of the-problem. On the otﬁer hand, the elements
of the Jacobian matrix reflect mainly partial qerivatives of bus powers
w.r.t. bus voltages, These elements are voltage dependent and they have
to be recalculated whenever the bus voltages are altered.

We remark that the adjoint matrix of coefficients has been bﬁilt
up.to accommodate functions of genéral network -variables, ineluding both
bus ahd line wvariables, whfch are represented in the RHS of adjoint
eqyations. On the othe} hand, the Jacobian matrix, whose transpose is
uééq as the adjoint matrix in the methods based on Lagrange multiplier
approach, can only accommodate functions expressed' in terms of bus -

variables which appear as dependent (or unknown) variables in the load

flow equations.

6.2.2 Tellegen's Theorem and Load Flow Anaiysis

Since the sensifivity calculations are performed at a loeal load
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flow solution, the availability of the Jacobian matrix from the last

load flow 1terat10n is obviously advantageous. In this respect, it

appears that a real challenge for Tellegen's theorem is its possible

contribytign in the solution of the load flow probYem itself so that

this simple and mostly constant adjoint matrix of coefficients of (4.41)_

may be used in both load flow .analysis and subsequent sensitivity

caleulations.

The solution of the load flow problem by the proposed method

baSed'on Tellegen's theorem is performed simply by defining a number of

real, functions representing the unknown variables in power flow

equations and treating them by successive forward and backward

substituticns using the LU .factors of the adjoint matrix of (4.41) at

different load flow iterations,

6.2.3 Tellegen's Theorem-Based Method vs Newton-Raphson Method

Consider the set of real power flow equations in the general form

(V) = S, o - (6.1)

-~ .

where V is a vector' of unknown real variables. Using k to denote the

.iteration number, the Newton-Raphson method incorporates Eﬁe following

main steps.

(1)

(11)

Set k + 0.
Calculate

£ive), (6.2)

] m,l_‘
i

 where VO is assumed.
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|
\

(ii#) Evaluate the Jacobian matrix

P

237 T
k -
d - ( I )k.
- av

(iv)  Solve the set of linear equations

Jk §V% = 5§k,

where
. =k
6§ - §(scheduled) - § ’
{v) Calculate
. - vk-l-‘l = vk +, le{'
S - - -

C A

(6.3)

(6.4)

(6.5)

(6.6)

(vi) If convergence is attained stop, otherwisefset k « k+1 and go to

(ii).

On the other hand, the Tellegen's theorem-based method incorporates the

following stepa;

(1) Set k+ 0.

(11  calculate S* from (6.2).

(1iii) Evaluate those elements of the adjoint matrix Ik of (4.41) which

are required to be updated.

(iv) Using the LU factors of 'Tk. solve the sets of linear adjoint

equations
Tk Vk = bk.

~ I ~M

where m denotes different elements of the vector V.

6.7



(v)

(vi)

6.2.4
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Calculate

T LT, (—d-iE . 55%, (6.8)
s k ~ -
where the total dérivatiyes of Vﬁ W.r.t, .g are obtained, as
described in Chapter 4, from corresponding sensitivity
expressions. . |

If convergence is atthined stop, otherwise set k + k+1 and go to

(ii).

Discussion

We notice that, although the Tellegen's theorem—-based method

enjoys less storage and a 3maller number of recalculated elements of the.

adjoint matrix in each iteration, it requires several forward and

backward substitutions to update those variables w.r.t. which

convergence 18 not attained in one iteration.

Since both methods are based on first-order changes of the power

flow equations for the exact a.c. load flow model, one can show that

both methods create fhe 3ame 3zequence of solution points, hence, they

have the same rate of convergence.

6.2.5

Example 6.1

For ‘the simple 2-bus power system of Example 5.4, equations

(4,41) have, from Table L. 4, the form

18 - 9, V11 Re{af/aV1}

-~ e
’

-18 - 9, 6 + a4 V12 , Im{af/aV1}

6 -0
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where

_ 2
g =0, %+ J o, = .'31/‘1,|

and I is given by

=
-t
1]

1 Y
11 22+ Y,
-and
4 =4 -
. 2V =5 -V,

Tahle 6.1 shows the results at successive iterations obtained
from the Tellegen's theorem-based method described before. The initial
value of V1 is

V0=1+j0.
1
It can be shown that these results are identical to those obtained by

applying the Newton-Raphson method.
! I

6.3 COMPLEX SOLUTION OF POWER FLOW EQUATIONS

A variety of iterative numerical ﬁechniques for solving the load
flow problem have been described (Stott 1974) . The mode of formulation
and solution used in these te&hniques is baséd on direct implementation
of the method used. While Gauss—Seidel and other non derivative-based
methods are described in the complex mode, the Newton-Raphscen method has
been described in the real mode. Using the conjugate notation, the
Newton-Raphson méthod, however, can be interpreted forma;ly in terms of
fiést-order changes of problen variébles. In this secfion. we 1invoke
this interpretation to describe the Newton-Raphson method in the more

compact complex mode, and we utilize some theoretical derivations glven

Y
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TABLE 6.1 N

LOAD FLOW SOLUTION CF EXAMPLE.5.4 USING TELLEGEN'S THEOREM

r~
Ed ——
y f

: Tteraticn
Quantity N
1 2 3 4

5P, 5.0 0.3776 0.0598 0.0032
sQ, 1.0 1.1328 0.1794 0.0096
dv,,/dP, ~0.0169 -0.0540 -0.0784 -0.0876
av, . /dQ, -0.0562 -0.0701 -0.1028 -0.1152
6V, 0. 1404 -0.0998 -0.0231 _0.0014
dv, ,/dP, ~0.0449 -0.0438 -0.0431 -0.0428
av,,/de, 10.0169 0.0173 - 0.0183 .  0.0186
SV, -0.2079  0.0030 0.0007 0.0000
v, 0.8596 0.7598 0.7366 0.7352
Vi . =0.2079 ~0.2048 ~0.2041 -0.2041

-

in Chapter 5 to relate analytical aspects of the resulting form of

~

. equations to those of other familiar forms.

This section is concerned mainly with the fundamental formulation -

and .resulting elimination technique. All expected asubsequent
improvements regarding efficient sparsity programmed ordered elimination

(Tinney and Walker 1967), however, can follow.

oF



119

6.3.17 Problem Formulation
The power network performance equations (Stagg and El-Abiad 1968)

are written, using the bus frame of reference, in the admittance form

. (6.9)
wheére
(6.10)
is the bus admittfnce matrix off the network,
(6,11)
is a eclumn vector of the bus voltages, and
=Ty + 3Ly (6.12)
is 2 vector of bus currents.
The bus loading equations are_ also written in the matrix form
* ]
Ev Tn = Sy (6.13)

where §H is a diagonql matrix of components of YH in corresponding

- . -~
order, i.e,,

EH Z = !M' : , . (6.]‘4‘)

v is defined as ¢

-

<
Hues
—

(6.15)

-

- s @

and SM is a2 vector of the bus.powers given by
| SV b oo o '
| $° Py + 9y (6.16)
Substituting (6.9) into (6.13), we get
I‘ v * . .
_ lrde=S%, 6D
The system of nonlinear - equations (6.17) represents the typical load
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flow problem,

We write (6.17) in the perturbed fofm
~

Sev. + B 6V = a5 (6.18
E Vy + K7 8V, = 83, .18}
where SYM GVM and GSM represent first-order changes of Vi YM and §H’
respectively,

S4 % ‘

K™ = Ey L& | . (6.19)

and ES is a diagonal gatrix of components of IH' i.e.,
S

t

v= I ‘ ' (6.20)

The form (6.18) rigorously represent& a set of linear equations

to be Solved in the Newton-Raphson iterative method. The form (6.18).

and related forms will be used while -bearing in migd that the equation

corresponding to the slack bus may be eliminated.

6.3.2 Newton-Raphson Iteration in Complex Mode

The familiar form of the Newton-Raphson iteration in thé—feal
mode is obtained Ey separating {6.18) into Eeal and imaginary parts and
collecting the terms, appropriately, using the perturbed forms of (6.11)

and (6.16), to get

5, %S S =S
CKy+ Ky ) ( -K3+K) V1 8Py
| | - . (6.21)
S - S =S
- (K e K0 C-KP+ K7D |- (e, 89, —
where we have set”™ . o .
' a s _ .8 S
K™ =Ky + J K . (6.22)
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and

% =ES+J§2.‘ (6.23)

The 2n x 2n matrix of coefficients in (6.21), n denoting the
number of buses in the power network, constitutes the Jacobian matrix of
the load flow problem.

On the other hand, equation (6.18) can be written in the

éonsistent form

— %
S sV sS
~ - M ~M .
—_S# SH » = : (6.24)
S N ) J PP

From TheoremsI5.1 énd 5.2 1t éan be shown that the matrix of
coefficients of (6.24) has the same rank as that of (56.21) ‘and the
system of equations (6.24) is consiste;t if and only if the system
(6.21) 1s consistent.

Now, the system of comple# equations (6.24) is equivalent to the

more compact system of complex equations .

‘ ¥
- ES 8V, = és.' . (6.25)
where we have'defined . J
= - @S (6.26)
amd '
Es = 85, - K> ®) 5§;. (6.27)

In the jth iteration of the Newton-Raphson methed in the complex

mode, we solve the system of equations (6.25) with

R, % R B
s ' Sy =V ~ Yy ' (6.28)
' * st Syl (6.29)
. . 854 = Sy(scheduled) ~ X Vi -



' 122

and the matrices KS and ES are calculated at Vﬂ.

6.3.3 Sparsity Considerations
& trade off between the direct use of forms (6.21) and (6.25)

must take into account the sparsity of the matrix of coefficients.

S.

"While the matrix of (6.22) has the same sparsity as the bus

K
oS
admittance matrix Y ‘the matrix of coefficients K~ of (6.25) is as

T'
sparse as the matrix

-~

4
Top = I g (6.30)

In other words, the advantage of the direct use of the compact

nxn cémplex matrix ES rather than the 2nx2n real matrix of coefficients
of (6.21) may be restricted by the relative sparsity of the matrices Y
and ¥TT' the factor which obviously depends on the graph of the network.
To 1illustrate this point, we consider, in Fig. 6.1, three special

-~

structures for which the sparsity coefficients (Brameller, Allan and

Hamam 1976) of Yo and ¥TT are comégfed.

6.3.4 ‘A Conjugate Elimination Technique

In this section, we present an alternative appreoach to the
pfoblem. Instead §f appl&ing the ordinary elimination methods fg the
more dense matrix of coefficients %S of (6,25), we use a special
technique in order to handle, directly, the original form (6.18).

In order to facllitate the derivations, we introduce the

foilowing notation, First, we define.the term

— #*
Cotk, ., ko x, Yk x (6.31)
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/‘n

e

(a) Simple chain

(¢) Simple tree

o
(b) Simple star
) ' node
branch
Sparsity Coefficient .
Network -
ET . ETT
2 e
(a) 1 = (3n - 2)/n 1 -~ (5n - 6)/n
(b) 1 - (3n - 2)/n° 0
2 a2
(¢l 1 = (3n- 2)n T = (6n - B8)/n
n = number of nodes = order of ET or ET‘I‘

Fig. 6.1 Sparsity coefficients of Y, and Y.. for simple networks

where ‘kij and ;ij stand, {or example, for general elements. of the

matrices K- and K°. We call the set of. elements a of {a,b} the basic
set and the set of elements b the conjugate set. Then we state the

following basic rules which .can be easily verified,

v
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Rule 1
— — ]
Rule 2 )
k, L E.1x) sk LK) xRk x (6.33)
(leggr Bygh X = Uy kgl xg= th g ky b xg. :
Rule 3 :
ok, ., k, .} x, = fuk .,un ¥, x = } (u x.), (6.34)

13" 1y 7y g0 ® g Xy e ey k 3

where u is a complex scalar,
Rule 4

-{kij'kiJ} xJ + U [kzj LJ j = {(kij+“ klj)' (kij+u kmj)} xj. (6.35)

The above notation may be exploited in de#eloping _suitable
methods for sqlving systems of the form (6.18). Here, we invoke this
notation to describe a technique which allows the forward Ga;ssian
elimination process to be directly applied to the form (6.18).

The system of equations (6.]8) is written, using (6.315. as

noMg
s

J=1 Kygo Kygh xg=Bpa 27, i, (6.36)

i ’ .
where xd and bi are elements of x = GVM and b = GSM. respectively. Since

E&J =0, for i # j, . (6.3T)
equations (6.%6) can be written as
— n ‘
{kii' kii} xXg + ji kij' 0} xJ =bjy 1 =1, ..., n. (6.38)
Ji _ ' . ’ o

We assume thak the order of elimination has been taken into account by

applying suitable permutations to (6.38).

g et e =
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At the first iteration, we write the first equation (6.38) as

no.
{k11. k11} X, * E {k1j' 0} xJ = b.l (§.39)
j=2
.or, using (6.33), .
e ko) n“( "3 b (6.40)
{k11, 11 Xy + £ 0, k1j xj = b.. .
j=2 _
(1)#
Multiplying (6.40) by My , Where
(1) & o —
by = - k.1i/kii (6.41)
and adding to (6.39), we get, using (6.35),
LI ° (1)%  * 3 (1) *
{0, k11+u1 k11} Xy + jiz {k1j' Ip k1j} Xy = b1+u1 b1 (6.42)
or, using (3.33), -
—n (1) () * ()
{k11 + 0y k11. 0} X, +Jia-{u1 k1j' k1J} Xy = b1 +u, b1. {(6.43)
- (1)

Multiplying equation i of (6.38), { = 2, ..
(6.41) and adding to (6.43), we get

n

(1 (1)
= b

1 '[k1j ' 0} xJ 1 ]

[r]

where
' (M _ = T
k11 1t Eowg o Kiqe
i=1
(1) N
k I w k... =2, ...,
1] i=1 i i3
and
n
b(1) = b, + L u(1) b,.
.1 1 i=1 i i

.; n, by My of

(6.44)

(6.45)

(6.46)

(6.47)
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Equation (6.44) together with equations 2, 3y «us, n of {6.38)
represent a set of equations ready for applying the first iteration of a
forward Gaussian elimination to the matrix K-\ ) which is obtained by
replacing the elements of the first row of gs by the elecents of (6.45)
and (6.46). Observe that we have evacuated the conjugate set of the

first equation.

. 1
In general, at the mth fiteration and with kim ) and bim"’

denoting the current elements of K and p, respectively, we replace the

hY

elements of the mth row of KS by the elements

n .
k(m) = '}""' + z (m) (m-‘l) (6.”‘8)
mm mm i=m i im
and
n
K™ ooop = (6.59)
mJj {=m i- ij .
= Y
(m=1)
and we replace b by
n
b(m) - b(m—1)' + 3 ‘u(mJb(m-1)' (6.50)
m m i i
i=m
where
(m) § _ g (m-1)®
My 2 mi /kii' {6.51)

We shall call the special elimination process described by (6.48)
*
-(6. 50) the conjugate elimination in which the coefficients of the

conjugate variables are successively eliminated.

6.3.5 Example 6.2
A tableau representation of the combined elimination process is
b

shown in Table 6.2 for n=3, and corresponding numerical results are
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TABLE 6.2

THE COMBINED ELIMINATION TECHNIQUE

Iteration ‘ :I‘ype of
. No. ' Basic Tableau Conjugate Tableau b Elimination
k k k k,. 0 ) b
‘ 11 12 13 11 _ 1 Original ‘
0 k k k 0 k o) b
21 22 23 .22 _ 2 tableau
k31 k32 k33 0 0 k33 b3
kgl) kgé) kS;) 0 0 0 bﬁ”
_ ' Conjugate
1a K., k k 0 k 0 b
21 e2 e3 e2 _ o 2 elimination
k31 k32 k33‘ o 10 S k33 b3
l_{(1)' k(1) k(1) 0- 0 0 b(l)
11 12 13 1 G i
(1), (D - (M ausstan
1b 0 » k22 k23 0 k22 0 b2 forward
(1) (1) , _ * (1) e:l.if_nination
0 k k 0 0 k b
32 33 33 3
(1 0 0 0o b |
n 12 13+ ! Conjugate ‘ :
23 0 k(2) k(2) 0 0 0 b(2) ;
22 23 : 2
(1) (1) _ (1) elimination
o] k k 0 o] k b
32 33 ) 33 3 j
k(” k(‘i) k(l) 0 0 0 b(1)
11 12 13 1 G i ;
' 2y (2 (2) auss-an |
2b -0 k22 k23 0 0 0 b2 forward o
0 0 k 0 0 k.. " b .
33 33 3
(D (D (D) 0 0 o M
il 12 13 . 1
| (2)  (2) (2)  Conjugate
3a 0 k22 k23 0 0 - 0 b2 _
(3) (3) e limination
0 0 k 0 0 0 b ‘

33, 3 o




shown in Table 6.3 where the solution of the arbiirary system of

128

equations
e *

X, = jx2 + 2x3 + 2x1 =5

jx1 - x2 + jx3 - ; = J

2x1 + jx2'— x3 + ; =0

TABLE 6.3
ELIMINATION TABLEAU OF EXAMPLE 6.2
Iteration . Flements of b
No. Basic Tableau Conjugate Tableau -
1. -3 - 2 2 5
0 J -1 J -1 J
2 3 -1 1 0
7 R 0 SR -3
1 0 -2/7 J -1 J1os7
0 331 -1 1 Y
: -

7. 5 0 0 -3
2 ‘ 0 12/7 Jos2 0 jaust
0 0 =17/8 1 "0
P J5 0 0 -3
3 0 12/7 . .J9/2 0 Jaurs7
0 0 ~225/136 0 0
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is investigated. The backward substitution results in the solution
17.
X = _j2] .
- 0 Fo) -

6.3.6 Complex Formulation of Practical Systems
“In the system of equations of form (6.18). it is assumed that all
buses other than the slack bus are of the same type, namely a load bus
type for which the active and reactive powers are kno. . In the
following, we present a special technique of formulat&on{j;ich allows
the generator-type buses, as well, to be represented while preserving
the complex mode of (6.18).
Consider the equation of (6.18) corresponding to a generator bus

g. We define the complex quantiﬁy

04 i
, Sg = Pg.+ J ]Vgl. . (6.52)
hence Q o
ls)
csg = 6P, + § 5!Vg| - (6.53)
Since
B
2P = v I, .54
g v Ig + g (6.54)
then
26P =V 61" w1 sV 2 v eI s 1 v (6.55)
g g gt g flgtVgslg gV, -3
s\ J3thg (6.9), we write I8 in the form
N _ T ! R

where gg represents the corresponding row of. the bus admittance matrix
XT' hence

§I y &V, : v (6.57)

i

PO ——
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Aiso. sV =stv v o v svt vt sv sy ) (6.58)
g -~ °Yg'g = g 8¥g + Vg 8V )72V ) ¥

Using (6.55)-(6.58) it is straightforward to show that csg of

(6.53) is given by

-0 0T =0T ®
§5, = K77 8V, + kT gV, : (6.
g g8 M _g .M °9)

where ggT which replaces the row of KS of (6.18) corresponding to the

[ 3
generator bus g has elements defined as

0O a . *

K. AV Y /2, 14¢g (6.60)
and gd g & ’
0 A #* E ] *
k =3IV /QIV )+ (V.Y +1I)/2, (6.61)
EE B 24 g €8 g : .
Yij denoting elements of YT' and EET which replaces the row of K" of

(6.18) corresponding'to the Benerator bus g has elements defined as

‘-_O A ) » ' -
k .=V Y /2, 3% ‘ 6.62
gd g "8J J %8 ¢ )
and
=0 A #* | .
= 3 v .72V i) vV Y I )/2. 6.6
kgg = 3 Vg IV + (VYo 1) (6.63)

The above formulation results in an equation of (6.38) for i =g of the

form ' L
}x, =b, . (6.64)
0 0
where b_ stands for §S_,
g g
In order to prepare the original conjugate tableau of (6.18) to

be suitable for applying the technique described in the previous

subsection, we multiply equation {1, i#g, of (6.38) by the factor

¢y 0 -+
My 2 - kgi/kii (6.65)
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and sum all together to (6.6#) to obtain, putting Eég = igg.
{kgg. kgg} xg + ji] {ng. 0} Xj = bg. .(6.66)
j#g
where
a0 1 o
k .=k . I’ K,., =1, 2, <oy 6.6
iZg
and
n
s 0 0, -
bg = bg + 12 My by. (6.68)
ifg

Equation (6.66), hence, represents the gth equation of (6.38).

Note that |Vg| of (6.52) could be replaced, for example, by

|Vg|2. Moreover. one could equally well replace (Van Ness and Griffin

1961) the elements of GV and GVM. namely. avi and cv i= 1, ....n by
the relative quantities GVi/]Vi and 6V /|V | , respectively. 1In this
case, the elements kiJ and 'Eii' of the ith row of the coefficient

matrices are replaced by lvjlkij and |V3f; respectively.

13’

-

6.4 METHOD OF COMPLEX LAGRANGE MULTIPLIERS WITH APPLICATIONS

In the real case, the Lagrangian approach has been successfully
applied to power system analysis and design problems (Director and
Sullivan 1978) where Lagrange multipliers obtained by solving a set of
adjoint equations are used to relate first-order .chanébs of a real
function and control variables, |

In some cases, the set of equality constraints 13 described
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)

basicalﬁ}'in the compact complex form. Moreover, first-order change of
a complex function may be required. The application of the Lagrangian
épproach requires separation of real and imaginary parts of the equality
constrainté as well as the function of interest which may alter the ease
and compactness of formulation. |

The study. presented in this section exploits the conjugate
notation to describe and formulate the Lagrangian approach 'in the
complex form so that conplex functions and constréihﬁs may be directly
handled. The complex formulation of the Lagrangian approach and some
important applications to power system sensitivity. analysis are

presented successively in this section.

6.4.1 The Complex Lagrangian Concept

We consider, as before, a complex function f of a set of complex

- #*
variables { and their complex conjugate ¢ . We write

x

L= .. (6.69)
- ‘u |

where the variables ¢ have been classified into n; state variables Sy

-

and nu control variables :u' ,The state and control variables are

related through the set of nx complex equality constraints

h (C.C') = 0. ' (6.70)



/ ?
- J .
S : . 133 .
. <2
LY Sty
- T =T ) T =T .
sf= L6 T ] + 0, Ty . (6.71) ;
. ® .- » :
STy 6Ly
A o .

—-— — »
where gcx' fﬁx' ch and {;u stand for (af/agx). (3f/3Ex)' (af/aEu) and

-
(ar/agu). respectively.

We write (6.70) in the perturbed form

l . .
$h ¢,z ) =0 ) ) (56.72) j
or . . ) |
5% ' (8%« :
[}ji:x !.{a;x] ' + [Equ Ecu] = 9‘
[ ] ]
8¢ 8ty

where.H 5., H and El stand for ( thsc )TA (ahT/a '}T
Lkt gx' gu ~gu 2 RS P

*
and (a lacu)T, respectively.

Using the complex conjugate of (6.73), we ﬁay write

s, | 1 H H =T [y

‘ H s ;
~£X X U  gu Zu
- . . - : (6.74)
* —# * — * 1
Gc-x H H H Ecu EU

X rx LU

Using the theorems of Chapter 5, it can be shown that the . inverted

matrix in (6.74) has full rank if and only if the system of equations

(6.72) represents 2nx independent conditions.

Using (6.74), &f of (6.71) is written in the form
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=u
Lo _ T =T T —T
s §f‘ = ([ fufu T-0a a1l y  (6.75)
— % * * ’
Bou By 82y
where mt e
— ©
e w5 [ £ A
L X ~LX - ~L X <
= . (6.76)
’ o By T g
X TX ~ - X

" Hence, the total formal derivatives of f are given, from (6.75), by

df T =T —

-&-C-—-zfcu..gcu:\-il{u; ' {(6.77)
--u * - - - )
and
df = =T e ‘
. ? - f;u - Ecu - Ecu' A. (6.78)
Tu

The complex Lagrange multipliers A and ? ‘of (6.77) and (6.78) are

obtained by solving “the 3¢t of complex adjoint equations (6.76),

- -
Note that in the case when the function f and constrainkts h are

all pure real, the application of (-3.'19) results in the complex

- .. - * ‘
conjugate relationships E:x = fzx and t‘cx = E;x and (6.76) r_educes to a

system of nx. complex equations in_ ‘the real variables (5 + }). The

solution of f:his system of equations is then substituted into (6.77) and

. ‘ - L
(6.78) which form a complex conjugate pair since, from (3.19), f:u = fcu
- » . -
and !.'.l;u = }.icu'

We hav'e stated the Lagrangian appro"ach. in the complex form and

derived the corrésponding adjoint equations to be solved for the
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el i:/

- .
Lagrange multipliers so that the required formal derivatives (6.77) and

(6.78) may be obtained. 1In the fol%owi 0 Subsections, we consider

some applications of the complex Lagrangian approach in power system
analysis and design. N
. A p
.6.4.2 Application to Power Network Analysis
The complex Lagrangian approach described in the previous section
can be applied, for example, to power network éensitivity calculations,
The set of complex equality constraints (6.70) may represent the power
flow equations of the form (6.17) or
* * .
[} = - -
‘ P=Sy-EyYpVy=0 (6.79)
The vectors ¢, and ¢z of (6.69) are defined as

~U
(v ]
. T30 ol B , (6.80)
g .
LT
and » )
. o
S .
T had I (6.81)
- v
n—J

" where we have classified, for simplicity, the buses as load-type buses

of voltages VL‘and powers SL and a slack bus of voltage Vn and power Sn.

We write (6.79) in the corresponding partiticned form

: " »
A 0 e ] [V |

= » - - T v ’ (5.82)
hn _ Sn ° vn XLN Ynn n ~

where the symmg}ric bus admittance matrix has been partitioned into YLL'

L XL; and Y of appropriate dimensions.

gus

PRRESPITE.S SRR Rl
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L4

T T * T T »
The matrices (ag /acx), (ah /acx). (ah /asu) and (ab /agu) are

give;i. respectively, by

_ : _ T A
- ah; ifﬂ
aht v AV
. {6.83)
’
aix ahT ah
~L: n
, _ - )
T ;
aEL ahn i
¥ ) - |
/ ohT av 3V
— = T , (6.84) -
aix 3EL ahn
Y %
._asn aSrL
R . T 7 )
aEL ahn
2h’ 3%, 2% _
—_— = - {(6.85)
g -T
~u EEL ahn
LaVn 3an
. and *
{en.  em
: =3 — &
ahT g, 5
=g = T . 6.86)
' 3Eu aEL ahn i :
: =% —
_wﬂ aV'L

¥

Using (6.82)-(6.86) the matrices gcx. ?cx, gcu and gcu.of (6.73)

are g;ven, respecti#ely. by
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- €'y )y o
H o - -~L -LL ~1, (6.87)
al ve yT 0 '
- ¢ a Iy’
_ (- diag {I, } of
H « = - = . {(6.88)
-t 0 1
B ~
- ~
. 0 - {E Y )
- L _LN
H = - 6.
Hu . (6.89)
0 -V Y
~ n nn
and
_ 1 0
H = - -~ . (6.90)
~u VIR
- n
v .
where the bus currents
I
' L
Iy = | (6.91)
' I
n

are given by (6.9).

Hence, for a glven function f with the formal derivatives fcx and

f

" the adjoint system of equations (6.76) is f‘_ohfed using (6.87) and

(6.88) and solved for the Lagrénge multipliers X and x. The total
formal der‘ivatives- .of; f w.r.t. the cont.rol variables are then calculated
from (6.77) and (6.78) using (6.89) and (6.90).

We r'e.mark. that the choice of YL-apd Sn as the only control
variables g, has been made for si:r;pligity. We could equallyowell define
other control variables, e.g., line admittances. Note also. that the

#
voltage-controlled buses or generator-type buses can be included, as

-
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befcre, by defining complex state variables, e.g.,

Bl vy, ©(6.92)
and control variables, e.g..

SR SR Vgl - (6.93)
The modification required to include these control and state variables
¢an be performed in a straightforward manner.'

)
6.4.3 The Element-Local Lagrangian Technique
In this section, Qe consider an important application of the

complex Lagrangian concept stated before. This application is concerned
with the Tellegen's theorem-based ;pproach presented in Chapter 3 for
sensitivity calculations in electrical networks. By this approach, only
two sta?e variables X and two control ~ariables u, are defined for each
element, The funétion f must be expressed solely in terms'of the f and
u- In some cases, however, the function f may be expressed basically
in terms of the Xy andlgb as well as other dependent var;gbles 28 which,

'by themselves, are functions of x, and u . The variables o, may be

related to Xy and Eb through a set of complicated equality constraints

-b

s0 that the direct expression of Py in terms of Xy and u,_ may be

difficult or impossible.

In what fgllows, we show how the complex Lagrangian concept
stated before éan 1be applied to _handle any number of the complex
depfndent variables fb‘ in .terms of which the function f may be

expressed.

We assume that tﬁe npb variables Ph assoclated with element b are
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3

related to the element variables z, by the set of n equality

pb
coﬁstraints

~b (xb, Uy pb) = 9 {6.94)
and we denote by Gfb the change in f due to changes in Xyr Uy and P

-

hence

8f = I 8§, . : (6.95)
b

: 5]
Now, we apply the element-local Lagrangian concept as follows.

We write Gfb as
§f, = fT §x, + fT su  + f 5p (6.96)
b~ xb %% Y-lup St L Sey
_yhere {xb' fub and gbb denote af/agb. af/agb and af/afb. respectively,

Alsgo, we write Ghb as

6hb H xb 6x + H -b + gob 8oy = 9, (6.97)

, T, T T T T T
where gxb‘ yub and gpb stand for (abb/afb) . (ag /agb) and (apb/agb)

respectively. Hence

- |
b % 7 Hop Hyp Xy + Hup 60), L (6.98)

where H , 13 a full rank matrix.

Substituting (6.98) into (6.96), we get

T T
L34 b (fxb -pb H b) 6xb + (f _pb ) 6u (6.99)
where the element-local Lagrange multipliers 59b are cbtained by solving

- T - ’
pr tpb - fpb' , (6'109)

Equation (6.99) instead of (3.54) expresses Gfb. We therefore

define the adjoint netwofk by setting
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- T
\ "bx = fxb = Hyp obe (6.101)
hence, from (3.52)) (6.95) and (6.99)
‘ - T T ‘
§f = g ub = Tbu = Hup Apn? SYp» (6.102)
from which
df - T :
'agb = Tub ” by~ Bup Aobe (6.103)

wnich gives the required formal derivatives of f w.r.t. the complex

b

control variables u_. 2

6.5 CONCLUSIONS

‘In this chapter, some new aspects of power network analysis have
been ;;resented'. |

A new method for- solving the load flow problem has been

deseribed. The method exploits the usef‘ul features of the simplified

o

[

version of the Tellegen 8 theorem-based method fory sensitivity
calculations deseribed in Chapter 4, The method employs a simple and
mostly constant adjoint matrix and provides the same rate of convergence
és the Newton-=Raphson method. VIn' this method,” sensitivities of the
dependent variables are _readily available at the load f’low'solutiori
without performing an additional adjoint analysis. Moreover, most of
the interme-diatg computations do not involve trigonometric function
evaluations.

%\ .

flow -problem by the Newton-Raphson method has been presented. The

A_ suitable technique for solving, in the complex mode, the load

advantage of retaining the compact complex mode of the power flow

-

&
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equations has been achieved via a proper elimination technique by which

the non-familiar form of the resulting complex equations can bg directly

handled,

. ’ /
The far reaching consequences gained by using the compact

. . : e
conjugate notation have been exploited in formulating the Lagrangian

appreach in the complex form. First-order changes and formal
derivatives of complex functions of intengst subject to general complex
equality constraints can bé evaluated, directly, while keeping the
origir;al compact complex mode of formulation. Some important
applications to (power network sensitivii:y énalysis have been studied.
The possibility of defining a general number of states éésbciated with a
particular branch in the approach of .-Chapter 3 ha'—s been éff‘orded by

describing an element-local Lagrangian technique.

o
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GENERALIZED POWElé .NET[UORK SENSITIVITIES:
A COMPLEX ADJOINT VERSION

7.1 INTRODUCTION

.The study of Chapters 3, 4 and 5 shows that the adjoint network
approaches based on Tellegen's theorem with suitgble extensions provide
the flexibility of defining and modelling each adjoint network element
associated with the corresponding element of the original network. The
adjoint m;trix of coefficients, although of the same size and sparsity

. @8 the Jacobian matrix of the original load flow problem, has to be

4 .
calculated at the load flow solution.

-~

The other class of adjoint network approaches (Dommel and Tinney
1968, ?ischl and .;:sley 19785 provides the advantage of using the
transpose of the Jacobian matrix of the load flowlproblgm ag an adjoint
matrix of coefficients. These approaches, however, handle functions of
' non-bus quantities through soﬁe transformaticns.

When describing adjoint network approaches which exploit the
Jacdbian of the load flow problem, the sensitivity expressions for
different elements have been derived according to the mode of
formulation used, e.g., polar. or cartesian. Different forms of

sensitivity expressions have been presented for different applications.

A unified sensitivity study for this class of adjoint network approaches

is performed in this chapter.

142
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The conjugate notation, which describes first-order changes of
general complex functions in terms of formal derivatives w.r.t. complex
system variablesl provides a useful tool for describing a generaliied
adjoint network sensitivity approach. As presented in this chapter,
generalized sensitivity expressions are easily derived, compactly
described and effectively used‘subject to any mode of formulation. The
adjoint matrix of coefficients is always the transpose of the Jacobian
of the original load flow problem and, regardless of the formulatien,
these generaliéed sensitivity expfessions can be used.

To 1illustrate Ehe concepts developed, two e;amples of the

simplest 2-bus sample power system are employed. The formulas derived,

however, are general and can be directly programmed for a general power

system of practical size. . ’

7.2 BASIC FORMULATION

The system of equations (6.17) is writtén in the perturbed form

4

-~

s s _® o ‘ 7.1
£ 60+ K 6hy = 65y - By sYy Yy '
# »

where, agains, GVH. BVH. GSH and GET represent first-order changes of YM'

. #
M SH and ¥T' respectively, and Ks and'gS are given, respectively, by

(6.19) and (6.20).

We write (7.1) in the form °

S o =S . *_ S
Sop Poges @2
where we have defined )
S_é % * . .
d- = 6§H B EH $¥r Vy- (7.3

.,



144

: »
Note that for constant YT‘ ¢ of (7.3) is simply GSM and (7.2)

rigorously represents a set of linear equations to be solved by the

Newton-Raphson method.

The form (7.2) must be é&justed for practical considerations.

The equation of (7.2) correspondiné to the slack bus is replacéd by

. - * #*
kT V.. + kT sV = 8V , (7.4
~n M _°n .M n

where we have assigned the last bus, namely the nth bus, as a slack bus,

En = 9 (7.5
and
_ 0
ko= |. . (7.6)
1
, — J
Also, for generator-type buses and using (6.52)-(6.56),
T T
8 = [ .
Ig Zg GEH + Y Zg (7.7)

~oR - et
and (6.58)—t is straightforward to show that dsg , written' as 658. is

-,

given by
T —T __® T B S
ng - Eg GgM M Eg GEH M vg !H 6!3/2 * Vg !H 6!3/2' - (1.8
where . . .
¢ vtz vtz - WiV ) (7.9)
ke 2OV /2y y v Ly Yy W RV g |
and
 dwv ey g Eyt v v /(Zlv'l)] (7.10)
Sg - gl Yg g Twa = V@IV g -
- and where u_ 18 a column vector of unity gth element and zero other

-8
elements. \Using (7.8), the equation of (7.2) corresponding to the gth
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bus ié replaced by

T T
kg SV + Ky oV = dg (7.11)

where

T *T

»
= - V V /2 - V /2.
d - j aw | Vi ng 2 V Ggg 2 (7.12)

24
We write (7.2), including (7.4) for the slack bus and (7.12) for

generator buses, in the form

§ s!M + K GVM = g. (7.13)

7.3 MODES OF FORMULATION

In the previous section, we have considered' the complex
formulation of power system equations. We shall; exploit this
formulation to derive compact forms of sensitivity expressions. In this

o
section, we investigate, via suitable transformations, the relationship

,f’y/\\hetween the complex formulation and other formulations. This
investigation provides the possibility of formulating the adjoint
equations to be solved in the same mode as the original load flow

problem. Hence, the available Jacobian of the load flow may be used in

‘solvins the adjoint system.

7.3.1 Transformation for Rectangular Formulation

We define the transfbrmation matrix.

]
s |1 Ly [
LS R IS 3 I - m

) 2 b [
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1
hence
1 1n Jn
wH-' - o Tl : {7.15)
: - 17 -

n denoting the number of buses in the power network. It follows, using

(3.8) and (6.11), that_’

- (7.16)

t
»”
=

hence
v . LMy
s 3
M1 1L l|8Vy
= =l (7.17)
Vo L, =2 %%y

Using the perturbed -form (7.17), it is straightforward to show

that (7.13) can be written in the form

K, +K,) (K. + K. |sv d
1 :T -2 :? <M1 - 1 ' (7.18)
~Ky + Ky (K K[ feV, [ |-,
where we have set .
K - K1 -+ J K2| . (7019)
E = §1 + J 52. (7.20)
and *
d = d1 + Jd.. {1.21)

The 2n x 2n matrix of coefficients n (7.18), denoted by [(crt.
constitutes the well-known Jacobian matrix of the load flow problem in
rectangular .form. Moreover, writ'i.ng (7.13) in the form

¥y

(k K1 | ~,|=d, _ (7.22)
B
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it follows that

S Ly L
K¥=Ixd)~' -1, . (7.23).
P -~ e L2 L2 * . -

where K% and K9 are formed directly from the Jacobian of (7.18) as

k? = K, + ) + J&, + K ' (7.24)

and

K= +K) - JK, +E) . . . (7.25)

-Observe that (7.23) relates the Jacobian of the complex

formulgtion (7.13) to the Jacobian of the rectangular formulation
(7.18).

7.3.2 Transformation for Polar Formulatign

For the polar formulation, we set

Vi = IVl L8y o 4=, s, (7.26)
where v, are elements of Vyyo
vl .
(v &1 . | L (7.27)
’ e B -
-
. IVnU
and » ' .
8
s 4. . . (7.28)
-~ 8, N
-

e e e e e
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Then, we define the transformation matrix

4

»
where L LG , L

5 = ~v

the formal partial derivatives aai/évi. 38

&
3|V;1/aV,, respectively, hence

and

where

and

The inverse of LP is giveﬁaby

~ "~

where EG. Ls, I..v and L¢ are diagonai matrices wh

~

) L L
~8 a8 -

P &=t 1,
Ly Ly

(7.29)

%
and Ed.are diagonal matrices whose elements represent

f

i

A
Eé = diag {Lﬁi}

= diag {Lvi}'_

I

L4

»
Lvi = Vi/(PIV1| ).‘

i

»

L L L
A Lo LS L I
K o ) I:-G [..:V
.x-- oo k

~

T, * ‘-f N 3
partial derivatives avi/asff'avi (asi. avi/a|vi|

respectively, hence

and

Lt

é‘diag {Eai}

) ol
n

& atag (L,

»*
73V, 8|V /8, and

(7.30)

(7.31)

(7.32)

(7.33) .

(7.3

7%g elements are the

»
and avi/alvil.

(7.35)

(7.36)

S TG Y

e
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where
- - LGi-é‘jvi _ - (7.37)

wi | N

| L,y = Vi/|Vi|. (7.38)
Similarly to (7.17), we may write

<>
. "
N o 56 Lo L] {ev, )
‘ I S B P (7.39)
anf  {re ) o

Using the perturbed form (7.35). it is straightforward to show

N

that (7.13) can:'also be written in the form

K': K| ss d,
‘p z =17 - (7.40)
: Ko K el 42 ' | a
wheré we have set ) ' / ! (
' - KP = kP + j kP (7.41)
~ -1 -2 .
and ) L
—- . =P TP T -

r_g = 51 + J [52_ ] : _ (7.82)
and where the ices kP and XP are relgted to K and K through the "
relationship a .

) ¥ )
- o | Ls Ly
K Kl=(kP ®P1.[~% -3 | . (7.83)
- - - L L
~V -~V

The 2n x 2n matrix of coefficients in (7.40), denoted by. Kplr'~

constitutes the ﬁ@ll—knowg Jacobian matrix of the load flow problem in
polar form.
Observe that (7.43) relates the Jacobian of the complex

" formulation (7.13) to the Jacobian of the polar formulation (7,40),

‘
»

«
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A

where KP and XP are formed directly from the Jacobian of (7.40).

At the end of this section, we illustrate the foregoing concepts

by two simple examples.

7.3.3 Example 7.1

Consider, first, the 2-bus sample power system of Fig. 7.1 which

: bus 2 ¥, ,=6-120 - bus 1 §,==5-33
A\ I“ : -—l‘
V,=1.040 | ' “ '
’
yzo’j;u - - [P10732
A A \\\\\\\\\.\\\ \l\\.\\\\\\\\\\\\\\\\\\\ AN

Fig. 7.1 2-bus load-slack sample power system

-

has been considered in: Example 5.4. The solution of the load flow

= equations (6.17), is given,by _ - -

v, = 0.7352 -~ j 0.2041

and

= 5.6705 + J 1.0706.

n
[}

-

. O
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Note that 32 is the injected power at bus 2. The matrices K and E of
(7.22) are glven by

\_/K

(8.0852 - j 12.0097) (-8.493% + j 13.4802)

0 <0

and(

(=5.2623 + 3 5.5411) a

=
n

0 ' |
Hence, using cartesian coordinates, the matrix of coefficients of (7.18)

“has, using (7.19) and (7.20), the form

2.8229 -8.4934 17.5508 -13.4802 |
ert 0 b 0 0
K -
~ 6.4686 . —13.4802 -13.3475 8.4934
r
o 0 0 1

which is the Jacobian of the load flow problem in cartesian coordinates

when the slack bus equations are included.

For the polar formulation, the matrices L6 and L, of {7.34) are

given by
+ = 70.20“1 + j 0.7352) 0
Ly = :
L 0 i
and
r -
- (0.9636 - j 0.2675) 0
L = .
~v 0 1]

Hence. using (7.29),

by

U

rac - i S8 i
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r—

> (13.4802 + j 8.4934) (~13.4802 - j 8.4934)
K¥ = ] .
- 0 -1 J
and
(-1.9745 ~ j 9.8031) (~8.4934 + j 13.4802)
R‘P = : - ’
- 0 1 J
from which the matrix of coefficients of {(7.40) has the form
(13. 14802 ~13. 4802 -1.9745 -8.4934 |
o _ 0 0 0 1
~ -8.4934 8.4934 9.8031 -13.4802
o 1 0 0

¢

which is the Jacobian of the load flow problem in polar coordinates when

the slack bus equations are included.

7.3.4 Example 7.2-

\

Now, consider the 2-bus sample power system of Fig. 7.2 which

consists of a generator bus abd a slack bus. The solution of the load

flow equations (6.17) is given by
. - 84 = =0.1995 rad,

..Q.] = -1.9929

and
S, = B.2T42 -~ j 1.7131.

The matfices K and K of (7.22) are given by

(2.3920 - j 9.4199) (-4, 4300

K =

~\ E 5

+ J 8.2864)

0
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bu s. 2 y12
U

v,=1.0/0

y20=j3

y10=32

AR NI N A N R S R R L N A A L A AR LR LR R LAY

T -

Fig. 7.2 <2-bus generator-slack sample power system

and

(2.1938 + j 8.4398) . - (-4.4300 -"j 8.2864)

=y
u .

0 ' 1

-

‘Hence, using cartesian coordinates, the matrix of coefficients of (7.18)

has, using (7.19) and {7.20), the form

A
4.5858  -8.8600  17.8597  -16.5729 ]
»
crt 0 : 1 0 o
K = '
~ 0.9802 0 -0.1982 | 0
L o 0 0 1

which is the Jacobian of the load flow problem in cartesian coordinates -

when the slack bus equations are included.

i\

j; | |
T S it Wt = S T T e
- . ”




For the polar formulation,

given by
~ " |(0.1784
Ls =
and
- {0.9802
L =
~V
Hence, using (7.29), (7.34) and
by - -
116.5
Kp =
- 0
and

KP =

-~
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the matrices L

+ j 0.8822)

\

the matrices

p
0

-~ § 0.1982)
0

(7.43);
729

0

8

-~

and ‘L

v of (7@9) are

-

0
1

kP and XP are given

-16.5729

~8.8600

1

from which the matrix of coefficients of (7.40) has the fo;mt

. | (16,5729
0
Kplr -
~ 0
L 0

which is the Jacobian of the load flow problem in polar

the slack bus equétions are ine

{

-16.5729
0

0

1

luded.

0.9556
0

1

0

~8.8600 |

2
0

0

b

coordiﬁates when

e et

L

N ‘s“,'-_u."‘ LY
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T.4  SENSITIVITY CALCULATIONS

QIn this sectioh. we derive the required sensitivity expressions
using the compact‘complex form (7.13). We exploit the relationships
derived in the previous éection to provide the flexibility of éolving

the resulting adjoint system of equations in other modes of formulation.

7.4.1 Adjoint System for g Standard Complex Form

We write {(7.13) in the form .
K ||ev d J
- ..M - .

. " = af + (7.4u)
K 6VM d

As shown before the matrix of coefficients of (7. uu) denoted by K p

& =

has the Same: rank as that.of (7.18) and the system of equations (7.u44)
is consistent 1f‘and only if the system (7.18) is consistent.

For a real function f, we may, using (3.14), write

. ~ sv.| .
8f = [uT u';]_ "E + Gfp, C:C . (7.45)
- - GVM . ™ .
~“where we have defined
~ A af
n = (7.46)
~ Ay
and used -
af
= ALY (7.47)
T ~M aVH :

dfp denoting the change in f due to changes in ot;;:\;EFIESTEE‘ih terms

of which f may be explicitly expressed. Hence, from (7.44)

S e
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=7 -1
~r ~op | KK d
6 = [u w717, ~, a| + oF (7.48>
-~ —~ K K ) d D [l
Qr . ’
”~, -~ d
¥
5 = V5, V1] {', v o, - (7.49)
-~ . d P
where : :
KT K T v ! Q
= “aml| = =i (7.50)
- E | # *
KT K T v M . .
or, simply, R
T T v -
K K 1|2, =w. (7.51)
. . v -

Hence, .the first-order change of the real function f and cdrresponding

gradients can be evaluated by solving (7.50) and substituting into
(7T.49).

7.4.2 Adjoint System for Rectangular Formulation

Similarly to (7.45), we may write, using the rectangular

formulation .
A A 5V T .
sf = Wl uty M. er (7.52)
~T ~87| ey g
_ ~M2
where we ha&e defined
- éag_f . (7.53)
= M1 ) : ' ‘

R

SR TR O

KLl
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and
~ g af -
u - U . (7-5“)
=8 AWy,
Hence.'from (7.18)
§€ = [V V]| | +8f , (7.55)
~r .8 o
-d
-2
where .
- T = T o e
(Ei+§1) —(E2+E2) !r Er
- T * - T -~ = ~ (7-56)
Rt T V)

Observe that the matrix of coefficients of (7.56) is the transpose of

the Jacobian matrix of the load flow problem in the rectangular form

(7.18).

7.4.3 Theorem 7.1

(a)  The solution vectors V. and V_‘3 of the adjoint system of equations

(7.56) are given by

El" = ERE{E}
and
23 = ZIm{z}.

* where V is given from (7.50).

-~

(b) ‘The RHS vectors M. and gs of the adjoint system of equations

{(7.56) are given by .

k= ET o EE Hse

where fi 1s given by (7.46) and L} and L, are given by (7.14)

- T
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-~
Proof

Comparing (7.49) and (7.55).‘and using (7.21), we get-

! = (Er + jys)/E. (7.57)

From (7.57), the first part of the theorem is proved, Now, multiplying

(7.56) from the left by the transpose of L9

relation
— — »
(K, +K1)T &, + K0 [T ahyT Ty
2 - = - "T = =1, (7.58)
L w4\ T 7 T =T —q
(K72 Ky (X, + K KUK L
it follows from (7.23) and (7.57) that
k' (v L b
SR I RS P -, (7.59)
., ~ 8 & -~
KT K'T v L:T L2T HS
Y
hence, from (7.50)
- o T T ~
u L u
~ =T =2} (7.60)
~% aT *T ~
5 EJ Eg Us
or, simply
A u :
T T I
w= (L7 L] - B (7.61)

3

The relationship (7.61) could also be derived by applying, formally, the

chain rule of differentiation using the definitions (7.46), (7.53) and
(7.54). |

Observe that equation (7.57) relates the solution of the adjoint .

of (7.14) and using the

ST

s ——

PRI,
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system {7.56) to that of (7.51), and equation (7.61) relastes the RHS of

(7.56) to that of (7.51). /w

-4

7.4.4% Adjoint System for Polar Formulation

Using the polar formulation, we may write

Ao A, Y]
§f = [ug uT] 1+ Gfp, . (7.62)
where we have defined
. EG - '3_6' (7.63)
and
] ~ oA af ’ :
= ETVT . . (7.64)
Hence, from (7.40) .
T - d '
of = [vz VI [ " . sr (7.65)
. =0~V g e :
-2
where
PT _PT > "
1K | Y| v ,
- . (7,66)
=T <=PT o ~ . '
51 -52 Xv EV

The matrix of coefficients of (7.66) is the transpose of the Jacobian

matrix of the load flow problem in the polar form.

- T7.4.5 Theorem 7.2

-~ ~

(a) The solution vectors V6 and Vv of the adjolnt system of equations

Coin il i b st e e -
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(7.66) are given by R

1 =s)> .
n

2Re{;}

and ‘ : v

yv 2Im{E}.

'

where V is given from (7.50).
o . T

P

(b) ~ The RHS vectors s and ﬁv of the adjoint system of equations

* (7.66) are given by , .
T T
W= Lgug Ly

where {i is giver by (7.46) and Ls; and Lv are giﬁen by (7.30) and

(7.31).
[\
Proof .
o .
Compar g (??49) and (7.65), and using (7.21), we gete
' V=V, + V)2, et (7.67)

F}um (7.67), the first part of the theorem is proved. ‘Now. multiplying

(7.66) from left by the transpose of LP of (7729) and using the relation

[
@ ) K1PT _Kgr kT PR
2 | - = - - -~ v (7.68)
g‘r "’S-ST- BT @hTll,
P
g -
it follows.from Y7.43) and (7.67) that
KT E'T v L.: LE My
- - “ =~ - . (7.69)
=t _®T|] *» aT _*T|| "
KK JLy Ls LuJlyy

——

v
e Al e e e ko -

cins Saief SRR PR T U SO
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e el L

hence, from (7.50)

¥ Eg LE 'us ) 1

-— ~% = L.T L'T ~ ] ] (7-70) !
u -5 v Yy |

|

— i
or, simply. ]
&> ~ oy : n :
Cow=lL L8 B RN 4P g

. Ev - ;

i

Again, the relationship (7.71) could also be derived by applying,-

formally, the chain _rule of differentiation using the definitions

- ' 1
(7.46), (7.63) and (7.64). \ . ' ' ‘ - # , l

Equation (7.67) relates the solution of the adjoint system (7.66)

to that of (7.51), and equation (7.71) relates the RHS of (7.66) to that > |
of (7.51),

7.4.6 Remarks _ _ ' ; o .

We remark that using (7.57) or (7.67), the adjoint system can be
q L] .

formulated and solved in a convenient mode, preferably the same

formulation as the original load flow problem, while the first—order

change of f and correSpondigg gradients are derived compactly using the
adjoint -variables U On the other hand, the relations (7.61) and (7.71)
allow the use of more elegant formal derivatives which, 1h many cases,

—~——

f‘acilitai} the formulation. For example, consider the function
- Cf=afV, -V [2=o(v -\r)cv v, " (7.72)
i 173 o
where Vi and VJ are the ith and jth components of VH respectively, and

¢ is real. Note that f of (7.72) may represent, for example, the power
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-~

loss in 1line 1j, For the polar formulation, ﬁs and ﬁv_of (7.66) are.
. . - A

calculated as follows, The ith and jth components °f'"3 and EQ are -

8iven by (all other components are Zero) : :

a
L]

ol=2 (JV | cos 61'-.LV3F cos 53) [V, ] sin s . ;

Mot = i
‘ . v

+2 (V.| sin 8 - [VJl sin GJ) [V,] cos 811.
Mgy = al2 (JV4] cos fi - |VJI coa“dj) |le sin 8y

, .
=2 ([Vi| sin 5y = LVJI sin 6J) [VJI cos §,],

J

v

al2 (IVil cos §, - IVJI cos §.) cos &

vi ¥
L +2 (TY1|,319 8, - IVJJ sin GJ) sin 61]. hk\ ,
- . - - . N

.JJ

ol2 (vl cos‘ei "*IVJ[ cos GJ) cos §

j .

*
e e b e o e e e A+ e e e a_.

-2 (Jv,| in s, - |VJ| sin ﬁj) sin GJ].
Alteqnatively. one may calculate
_ ‘ - . - .
“ *
’ »

]
.
L N L S U

and use (7.70) to’ obtain ﬁ;‘and iy, where (!_:plr)_1 is the transpoge of

-4’
(Epl-1 of (7.34)., In this example, the derivation of. the formal

.

- = derivatives is clearly easier.:
We also remark that other forms®of power fldéw equations can be

handled 1q; a ‘similar - way. " The ‘previoua theorems can be easily
L] N ‘

‘_. . - ' . " N
-, L 3
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generalized for other ‘formulations provided that transformations similar

to (7.14) and (7.29) are defined. ' -

At the end of this section, we illustrate the foregoling concepts

by the two simple examples considered in the previous section. .

7.4.7 Example 7.3

> @ '
# . For the first system, consider the function F)
: n ’ N .
f -\[V1| = Y1V1 .
From (7.46),
* . ] *
a v 0.7352 + j0.2041
U = T: "'""—'
b = jo . .o

0.0562 + 3j0.0892
1.6788 + 0.0

Aléo. for the polaf fbﬁmulation. we have from (7.63) and (7.64)

L Tl
and |
-
S A N 1.5261
- _,ll = = »
sy T
| - o] Lo
‘and (7.66) has *the "solution
” «  foinz3
Vc,:
B 3.357T
B
and :
. 0.1783 ' :
V- = - ) (
"

Q

e

T S YIS
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Note that the Ys and YV obtained for the polar formulation and V satisfy
(7.67). . , ' |

7.4.8 Example 7.4 _ \\\'““~\__,ﬁ

'~

For the second system, consider the function

» ?
V., +V |
f= §, = t',an-1 [——l;fl——]. %
J(VI—V1) ?
From (7.46), \ /
N\
~ —j/(2VT) 0.1101 - jO.5445 o {
u = = .
- 0 0
and (7.51) has the solution ' é
~ |0.0302 - 30,0288
V= . - ;

0.2673 + J0.5 S
Also, for tﬁe'polar formulation, we have from (7.63) and (7.64)

1

W, =
-8 0 3
‘ [
and
iy® 2 X
and (7.66) has the solution ) - '_ . i
~ 0.0603
VG =
- 0.5346
. 23 -
anq
- 4
~ |-0.0577 :
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Note that the V6 and Vv obtained for the polar formulation and V satisfy
(7.67).

7.5 GRADIENT EVALUATION

In the previgus section, we have derived the adjolint éystems in
different modes of formulation and investigated the relationships
between the corresponding excitation and solution. vectors. The

first-order change &f can be calculated from (7.49), (7.55) and (7.65).

In this section, we derive and tabulate standard expressions for the .

derivatives of f w.r.t. control variables.

7.5.1 General Derivation

We consider the buses to be ordered in the -same way as in Chapter

3, l.e., subseripts =1, 2, ..., nL identify load buses, g = nL+1. ceny

n + ng identify generator buses and n = n, + n.+1 identifies the slack
/ .

bus.

The vector d of (7.22) is now partitioned into subvectors

associated yith the sets of load, generator and -slack buses of

appropriate dimension in the form:

o
d = de 1 s - ' (7.73)
dnJ ) -
where d, has elements d, given, from (7.3), by ¢
- . % # ") B -
d’. - GS'. - v!' -..H 6!!'. . (707 )

'Yz representing the corresponding row of the bus admittance matrix YT'

¥

- . 2 o [
. E'-‘.ﬁ-‘ b I SPAPL PO st
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\ .
dG has elements dg glven by (7.12) and d, is GVn from (7.4).. Also, the

vector V of (7.49) is partitioned correspondingly in the form

-~

HL v '

Vel - (7.7%)

|
LA ;

=<
1]

Note that the above formulation leads to expressing the vector d

solely in terms of variations in control variables. The gradients can

be obtained by writing (7.49) in the form

-~ Py ~ ' T .
_ ul ‘ T af
0=V A e Vg dp e Vodp s ) de

~ ) Cad 'T

T # " » af, LW :

ol EL + V. dg + Vd, +. (E) 6o . (7.7.5)
¢ B

e e e o e ettt L

The first term”of (7.76) 1s given, using (7.7#).‘by

AT L -
Vodo= £,V d
=1 —
., Lon ., o ' ,
= ¢ (V §5)~- ¢t ¢ (Vv V. V_ sy ), (7.77)
e=t P b ey 2t M em

-

where Yzm is an element of Y which 1is assumed, without 1loss of . !
generality, to be a symmetric admittance matrix, or - ;

h n ' . ;

v d = [ V 5. ) + g I Vv - 8y y
~L L 5 =1 L L t=1m=1 % % m g am ‘
m#y, 3

.‘1‘

e ' b

- z§1 ) v; vz 6yg0) " ‘ (7.78) i

where Yom denotes the admittance of line im connecting load bus 2 with

¢

e —— Y C . v wrn =+ e e . .
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'l

bus m (=g, g or n), and ¥,0 is the shunt admittance at bus 2. The

Second term of (7.76) is given, using (7.12) by

o T n-1 o ~y
Vg dg = & 1 v dg
g nL+
n-1 ~
= I Vv (P - j &IV ])
S="L+1 8 B g
n-1 no . . '
- I, I V_Re{l V_V &Y 1} (7.79)
g_nL+1 m=1 & g mogn
. R
or
3 .
ap n-1 s n .
G dG = I V (&P —JG[V 17+ ¢ T v Re{V (V -V ) Gy }
.- g=n_+1 g g=n +1 m=1
L L
mig
n-1 T
. - V R V , . .
L g el g V EO} _ (7.80)

g=ny +1

where ygm denotes the admittance of line gm connecting generator bus g

with bus m (=2, g or n), and ygo 13 the shunt admittaﬁce at bus g. The
~third term of (7.76) is given, using (7.4) by

asiowt (r.en

The: fourth term of (7.76) is simply'the first-order change of f due to

changes in other variables g in termq"of yhiéh the fuﬁcpion f may be

explicitly'expressed.
Equations (7.78), (7.80) and (7. 81) provide useful Jnformation
for gradient evaluation 3ince they provide direct expressions in terms

of variations in control variables of intergst. The derivatives of the

function f w.r.t. ‘the control variables are obtained as follows, where
«

—r
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we temporarily assume that p does not contain such control variables.

7.5.2 Derivatives of Real Function w.r.t. Bus-Type Variables

From (7.78) and its complex conjugate, the derivatives of f

*
Ww.r.t. the demand S, and S, at load bus ¢ is given by "
df o '
-z V} . (7.82)
dSl 2,‘ . -‘ :
and .i
~ N . ' S~
do v, - (7.83)
L
ds
L
From (7.80) and its'complex conjugate, the derivatives of f w.r.t. the
real generated power Pg and the voltage magnitude IVSI at generator bus
g are given by
i .
. “
af  _ ¢’ | . (7.8%)
ds g :
8
and _ ‘
i - P& . Vo _ (7.85)
- ' ds ' -
\\ g
-\ _ .
where Sé is given by . _ i
Sg:P +J|V[. - . (7.86)
From (7.81) and its complex conjugate. the derivatives of f w.r.t. the
slack bus voltage V and V are given by -
ar__ on . T
= Vn o (7.87)
s n .

Vs

S U S P,

[ PR

K e
_
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and

- L=v. - (7.88)

In practice, the phase angle of the slack bus voltage is set to
Zero as a reference angle. Hence, the slack bus has only one practiéal

real cbntrol variable. d - .

7.5.3 Derivgtives of Real Funetion w.r.t. Line Variables

~ can be

. 1]
obtained from (7.78) and (7.80) and their complex conjugate as follows,

The ‘derivatives of f w.r.t. line control “variables y

For Y,o~+ between load buses & and %", we have from (7.78) and its

complex conjugate

@ . w vV-ov.ovh o V)
dy < - We Vg Vs Vo ') (7.89)
25
and
df " ~% S » .
el AR I A I UE I ~(7.90)
Yor '

For Ye0 between load bus % and ground, we have from (7.78) and 1its

complex conjugate

df I .
—— -V VvV V - (7.91)
d -
Y,0 R
.and
v ol | »
. N S 7 o (7.92)
gy R T ) _
1] : lo ]

—

For ygg\-betueen generator buses g and g ,'we have from (7.80) and its

complex -conjugate -

S ala .......-..-.-cL..)..._ -——‘-Q._»... s e

il ey -
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. » ' : ;

= (V. V, =V . V) (VW =V . :

dygg‘ ( a1 Vg &1 'g ) ( g g) (7.93) !

and ‘

df o - I -

= -V .,V V.=V s .94) .

?—‘- (VS1 Vg 1 Vg Y ( 2 g) (7.9 ;

A G 244 : :
wherefﬂg‘ \\\ . ' : 8

Vm = Vm1 + jvm2 (7.95) '

and m is a bus index. For ygo between generator bus g and ground, we

have from (7.80)

! SRR : R T A N (7.96)
dy gl g 8
g0 dygo

" For yzg between load bus t and generator bls g, we have from (7.78) and

(7.80).and their complex conjugate

LG e Y -y (7.97)
E;:—, = ( gl Vg -V, v o, - g) 7.97)
g ‘
and '
dfr ~ ~n » "
;—1— = (vg1 Vg -V, vy o, VE) . (7.98)
Yig

For Yin between load bua‘z-and the slack bus n, We have from (7.78) and

——. et e+ ——

its complex conjugate

~
¢ _ 37 "
3y = Vl VL (Vn-VL) . (7.99)
n : K
»
and
- -
— daf _ L ] - % @
‘ ‘;;3- = Vl Vl (Vn-Vz) . (7.100)
Ln
7/

Finally, for ygn between generator bus ¢ and the slack bus n; we have

from (7.80) aﬁd~1ps complex conjugate .
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df _ v v v (7.101)
dy gl '8 “'n'g .

gn

and

df ~ * *
Pl v81 Ve _(vn«-vg) . (7.102)
y

o

‘7.5.4 Special Considerations

If p of (7.76) eontains some of the above control variables, the
- )

partial derivatives of f w.r.t. appropriate control variables must be

~

added to the expressions obtained.

- .
When any of the control variables g is a function of some real

- design variables, we write

auk
U S L —— Afp:s (7.103)
k i 3‘k1 ki .

- Wwhere 8hi 1s the ith design variable associated with U and Acki denotes

the change in cki’ Hence,

3uk

K ki

df _ df
d;ki du

Equations (7.82)-(7.85), (7.87)-(7.94) and (7.96)=(7.102)
compactly define the required formal derivétives of the real function f
W.r.t. complex contrbi variables. In practice, gradients w.r.t. real

v .
-and imaginary parts of the .defined con‘trol‘ variables are of direct

interest. These gradients ar;e simply cobtained from

L = apetdly (7.105)
T L
~

- o (7.10”‘)
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and

duk2

L. omidly,
k
where the complex control variable uk is given by

U =0t .

(7.106)

(7.107)

Table 7.1 summarizes the derived expressions of real function

gradients w.r.t. real control variables of practical interest.

*

At the end of this seégtion, we apply'the formulas derived for

gradient evaluation to the 2-bus examples considered before,

7.5.5 Example 7.5

Using the valugd of V obtained, we have for the first system

df o
E = 2V, = 0.1123,
af _ .0 |
‘ aq; 2v,, = 0,1783,
. ¢ dr -
-d-TJ_ = 2V21 = 3-3577-
‘21
df 22
& = 2V |€ Vv, = 0.1038,
/"'\ ' “_“f-}- 2Re {V.V. (V.=V.)} = -0 0192
‘ 4G, = 11 Y2 170 T T
\ 4f | om v v (V.V.)} = -0.0502
dB, 171 Y'2™ ' '

G v A

[P S T

bl e
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""’EKEL£-7.1

DERIVATIVES OF A REAL FUNCTION £ W.R.T. CONTROL VARIABLES

Variable Description - Derivative
. f ~
P demand real poser 2V,
QL demand reactive power X 2 Vza
Pg generator real power 2 Vg]
|vg| generator bus voltage 2V
magnitude . ge
Vn1 real component of 2 VnT‘ -
slack bus voltage
-~ » ~ » . ’
G . conductance between 2 Re{(V,V -V .V .}V =V )}
1L two load buses b o
R e »
B .+ - susceptance between =2 Im{(V V -V .V )V .=V )}
o two load buses oA o
_ "
Gﬂ'0 load shunt conductance -2 ’V£| V£1
B shunt susceptance of 2 |V |2 v
L0 L L2
a load bus
G« conductance between 2 Ref(V_.V =V . V .)(V .=V )}
&g two generator buses 81'g .g e g 8
R e »
B . susceptance between =2 Im{(V_,V <V . ¥V )(V .=V )}
g8 two generator buses gl g 'glg & 8
G80 shunt conductance of -2 lv |2 Vol
a generator bus g g
) >
B shunt susceptance of ' 0 '
a generator bus
) ~ ol .
G conductance between a 2 Re{(V_.V =V V X}(V -V )}
g load and a generator buses gl'g 1't" g
‘ ~ -~ 8
Bw susceptance between a -2 Im{ (VS.IVS-V’,.VL)(V!’—Vg)}‘

load and a generator buses

-

} *
V
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} ke . -
TABLE 7.1 (continued) '

" ‘
DERIV&TIVES OF A REAL FUNCTION £ W.R.T. CONTROL VARIABLES

Variable Description g Derivative
- ~ .
G!.n conductance between a _ 2 Re{VLV’.(Vn—VL)}
load and slack buses '
~ u
B susceptance between a -2 Im{v,V (V -V )}
n
o load and slack buses Lor .
~ &
G conductance between a . 2av_, Re{v_(V -v )}
- &n generator and slack gl g n g
buses
._B/n susceptance between a -2V 1 Im{V*Vn} \Q
g generator and slack g 8
buses :
-

where Gmm‘ and Bmm' denote, respectively, the conductance and
' susceptance of line mm' connecti'ng buses m and m', m'=0 denotes the

ground.

7.5.6 Example 7.6

Also, for the second system, we have

d—PT - 11 = 0.0603.
i ) *
daf _ % -
) GV = Fg = 00577, .
-
af o
= 2, = 0.5346, B
] 21 . ,
> df
T 0.0'
| B0
—) -
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-
L S RelV' (v__v Y} = 0.0044
4G 11 - B R
12
.and o
df e . ' : .
dBm = -2V Im{V,V,} = -0.0108, | : :

The 'gradients obtained can be easily checked bdy small
perturbations about the base-case values., Note that the derivatives of

the function f w.r.t. nonexisting parameters, e.g., G10. can be

.evaluated as well.

7.6 SENSITIVITY OF COMPLEX FUNCTIONS

-
-~

In the previous seciions. we -have derived the . required:
_sensitivity expressions and grad%ents for a general real funétion. _The
relationships between dirferent'podes of formulation have been
investigated and expressions relating the RHS and solution vector of
corresponding adjoint systems have been derived.

The sensitivities of .a general complex function can be obtained
using the previous formulas derived, simply. by codsidering the real and
imaginary parts separately. " In this case, only the RHS of the adJoint °
system of equations has to be changed In other words, onlx_one forward
£nd one backward substitutions sre required for éach reel 'funeiion.'%‘
provided that the LU factors -of the formed matrdx of coefficients are
stored and thet the base—case point remains unchanged.’

In this section.fue show how the compact complex.formulation can
be exploited to formulate the adjoint system corresponding to a general

complex functio? and to derive the required sensiﬁ}vities. The,'
e , . .

-
]

R T OIS R A

A e
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relationships between different modes of formulaticn are, again,
. investigated for the complex function case.
7.6.1 General Derivation ' . :

For a complex function f, we may write, using (3.14)

' ~, ~ 6V
i = L w1 | Y. st (7.108)
| Y
where we have defined
\/ ~ A af .
, - (7.109)
) W aEH i _ ﬁ 4
and - S
yaar (7.110)
BEH .

1]

6fp being the change in f due.to changes in other dariables in terms of:

which f may be explicitly expressed. l}ence, from (7.u4)

o 2o [x T4 |
€=M wl |2, "a “at + &f « (T.111)
- K d P
. e - .
or -
LY . d ) ‘ ‘r - .
68 = VI VEI =] + e, (7.112)
b9 ‘- - d p
Me
®T x|V, [u o
A [ 4 M BN S (r.113)
S ""- KT K'T v 1]

ey

which repre’_:ggnts the adjoint system of equations to be solved. The

first-order change'bf the compleisznctioh f can -be evaluated by solving

..

TS R

P

I PRI P

e

[ NCRRER
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© (7.113) and substituting inte (7.112).

7.6;2 Theory of Adjoint Relationships .

. The relationships between the adjoint solution of different medes

~

of formulation are derived'as follows. Let

f = f1 + j f2 y (7.114)
hence

8 = 8f + § 81, (7.115) °
and let V: and Y; be the solution of the adjoint system (7.56) using

cartesiaﬂ coordinates for the real function f1. Similarly, 1let Vi and

Vi be the solution of (7.56) for the real function f2. Hence, using

(7.55) and (7.112), one may write

'
ST ST * AT AT 3T AT
v+ vid - Wpo dy = Vg 90 + 30010 dy - vEndy), (7.116)
hence, from (7.21)
I ~1 2
Vel - vi)/z «3al « V32 (7.117)
and )
V= + 7372 s (=¥ + V)2, (7.118)
~ . o ~3 ~3 ~T

Equations (7.117) and (7.118) relate the solutions of the adjoirit system

(7.56) for both f‘1 and f2 to the solution of (7.113) for the compTex

*

funetion f.

*

1

Similarly, let Vl and . V. be the solution of the adjoint system

v
(7.66) using polar coordinates for the real function‘f1. Also, let Vi
and V3 be the solution of (7.66) for the real function fz. Hence, using

. . 3
(7.65) and (7.112), one may write .



°T =T ® - °1T 21T -2T -2T g
Vids Vi = (Xa dy -V §2)~+ J(YB d, -V, fa)' (7.119)
hence, from (7.21)
St B~ Mt2
Vo= (Ve -Vo)/2 « JV e Ve (7.120)
. and
IR vf,)/z . J(—Vl + vi)/z. (7.121)

Equations (7,120} and

178 . p .

(7.121) relate the solutions of the adjoint syétem

(7.66) for both f., and f2 to the solution of (7.113)\fon_§he compleXx

1
function f.

(/f?ra?gﬁkaradient Calculations

For gradient calculations, we - proceed 4ds before and use the

»~ L]

>

partitioned forms (7.73), (7.75) and. .

and we write (7.49) in the form

sf

o

- [~ ]
YL
"~ -~ ‘ . .
v=IlV .122
V=V, (7.122)
v
L N
~T ) AT abT
=V d* Vo dt Vndn+ G ¢
* T % 2 & ap T _
af ‘ 1
EL + 3G SG + Vn dn + (=) 65 . J ‘(7 23)
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13
$

third terms of-j7.123) areﬁgiven 5} t?.?Bj;

H

The first, second ;;d
< : : .
(7.80). and (7.81), respectively. The fifth term of (7.123) is given,
using (7.74), by ‘

n

. n
v L(§\S) " vov vty syt
= I .88 )y +£ L - I ~- y
~L L 0 =1 L L 221 m=1 L 2 m g am
m£y
n :. * * . ' ; 128
- E VL Vz VL §Y,0 - : - (T7.128)
=1
. N
The sixth term.of (7.123) is given, using (7.12), by
: ‘ o )
27 w1 A ' -1 'n . ]
Vid,.= ¢ V (P + 38|V _|) + = £ V_Relv (Vv -V ) 6y }
- G g=n; +1 8 & 8 ganf1 m=1 & g n s am
' m#g
n-1 .o~ » .
- L V_ RefV Y sy .}. ‘ (7.125)
gz=zn, +1 g8 go .
L . !
-The sevehth term of (7.123). is given, using (7.4) by
> oow Z
Vn dn = Vr:l Gvn- (70126)

Equationd (7.78), (7.80), (7.81), (7.124)~(7.126) provide useful '

information for gradient evaluation of the complex function f w.r.t. the

control variables of interest. Under the assumption that 4 does not
contain such control variables, the derivatives of the complex fUnct%Pn
f are obtained as follows.
7.6.4 Derivatives of Complex Fuﬁctioﬁ w.r.t, Bus=Type Vafiables

From (7.78) and (7.124), the derivatives of f w.r.t. the demand

»
SE and Sg at load bus £ is given by




ds

and

df
¥

ds
» L

From (7.80) and (7.125), the

control variables are given by
4 _ df

and
df
- %
dsS
g

where Sg is given -by (7.86). From

of f w.r.t. the slack bus voltage Vn

' df
. ) * d
_ n

and

dr
.

dv
n

’

oo
A "
180 )
=V£ - (7‘.‘1~27)
—_— ,
z VL. (1.128)

derivatives of f w.r.t. the génerator

= Vg . (7.129)

(7.130)

(7.81) and (7.126}, the derivatives

*
and Vn are given by

= Vn ‘ B (7.13‘1)'

n (7.132)

7.6.5 .Derivatives of Complex Funetion w.r.t. Line Variables

The derivatives of f Wor.t.

line control variables ygy can be

obtained from (7.78)._ (7780) .' (7.124) and (7.125) as follows, For yu.\‘

between load buses L and £, we have from (7.78) and (7.124)

df

dy_ -
L

SOV -V V) V)
LR TR PR PRI PR

(7.133)

B e e

f et mnm L e A
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(7.80), (7.128) and (7.125) *\ -

a
181 |
.l

! ° N
and. ) e

i .df T v -Tvo %y (7.134)

. "‘;‘ 4 * - L I3 _— !" !“ (Vz‘ - V-!' . ' 7- 3 .
L Y, i ;

h ]

For Y10 between load bus‘fl and ground, we have from (7.78) and (7.124)

> df 5oyt ' -
Loy vV . (7.135)
| dyzo [ R . | o
T
and
oA »
LA R (7.136)
%0

For ‘Ygg‘ between generator buses g and g, we have from (7.80) and

A

(7.125)
df 1 e T m W s T WRIWe - V) (7.13D)
dygg* 2 g g8 8 g g8 g g :
and .
6 1 h sV e e TovaIw Y. 1389
dygss'2 g g8 8 g g e g’ -

For Y0 between generator bus g and ground, we ha«é? from (7.80) and

(7.125)
o~ = * )
af 4t lw ey, (7.139)
dy 2 ''g g’ '8'8

For y!.g between load bus. ¢ and generator,bus g, we have froﬂm (7.783,

N,

A A a ‘n
W+ T vg -V, V1@, -vp (720
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and
X .
df [1 E{; '\:7 Y v T v' ' y
dy. - 2 B. + g .g —,.V-!' V!‘] ( z\ - Vg)- (7-1 1)
- . lg

For y, , Petween load bus t and the slack bus n, we have from (7.78) and

(7.124)

-

df _ v v ) (7.142)
dy | n g < *
oen
and .
- [ ]
daf 2 .
S, (Vo-v)), (7.143)
v , _
- wn

o

Finally, for an between generator bus g and the slack bus n, we have

from (7.80) and (7.125)

9 1w +V v V) | (7.144)
- dy, 2 8 8" '8 n8" *
and -
. _ df -l‘ 2 L I A
- T (Vo + V) Vo (V=Vp) (7.145)
1 gn

7.6.6 Special Considerations

If p of (7.123) contains any of the foregoing control variables,

il

the partial derivatives of f ﬁ.rét. appropriate control vériables must

be added to the expressions (7.1275—(7.1&5).

Equations (7.127)=(7.145) compactly define the required formal

derivatives of the coumplex fUnctioan w.r.t. complex control variables,

The gradients of f w.r.t.' real 'aﬁq imaginary parts of the control

variables érq\obtained using \

by

PSPPI, ST B

PR
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[. el - (7.116)
¥ ’ 7 ki k  du '
a - '
and . P
. , ¢ _ ., df _ df -
Sy gL, (7, 147)

/ ’ ' ’ k2 . k duk
where u,. is given by {(7.10T). Expressféﬁs of forms (7.146) and (771"7)

can be directly obtained from (7.127)-(7.145).

-

L

7.5.7 Example T.é .

Now, we consider the first 2-bus example and the complex functicn

vr-v. -
FeVy=V,« iV,

- B .
Using cartesian codrdinates, the adjoint system soclutions for V11 and

V12 are given, respectively, by

' "
,£ .y [o.0883 )
. v = s
=T 12.3144
-4 bl 4
[ - -
- 0.1161
Vs = '
- ~ 0.2041 )
- E
< (0. 0428
A V2 = .‘ I
~T o7 _ -
\. o
i arid
1 -
2 -0.0187
| vs = [
. ~ 0.735%
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—— .
hence, from (7.117) and (TM18) _ -

~

@

and

1 =b

L

\

0.0535 + j 0.0794
0.7896 + j 0.1579

" |0.0348 - j 0.0366] - - N

1.5248 - j 0.0862|
000

\

The derivatives of f w.r.t. control variables “dre calculated,

using the derived expressicns, as follows. For S.,

df
dS1

and

df
~ as,

1‘

1

n
1

0.0348 - j 0{0366

n
<>
1]

1 0.0535 + J 0.0794,

1

hence, from (7.746) and (7.147).

df
dP1

and

a

T

dQ1

For-fé .
- df
. dvz

and .
: df -
-

dv
N 2

hence, from (7.146)

df

di21

=, 0.0883 - J 0.0428

= 0.1161 = j 0.0187.

rl

= 1.5248 - j 0.0462

<>
'

<)
1

= 0-7896 +'J 0.1579|

= 2.3144 + J 0.1117,

PR PO S
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For y10 ',
daf 27 -
ol |V{1€ v, ='= 0.0311 = j 0.0462
and \\ . ’
df 22 o
_ . = - |V1| V, = - 0.0203 + j 0.0213,
de N »
hence, from (7.146) and (7.147) ' h\\\\\
-ng_ = - 0.0514 — j %}2119 '
10 SRR S
and _‘ - ' ) '
=L = 0.0676 - j.0.0109.
10 .
For Yio v
‘—d—f—-Gvicv-“V)- 0.0080 0.0231 -
dy, " 1V Wl = -0 + J 0.023
and ,
= 5 » )
=T, U, (5D = - 0.0022 - N0.0127, .
992 . .
hence, from (7.146) and (7,147)"
; i
. 3 agg = = 0.0102 + j 0.0104
and ; )
df o 0.0358 - § 0.0059
a'rz - - " -
s '
7.7  CONCLUSIONS .

+

A unified study for ﬁhe class of adjoiﬁ; network approaches tq
power system sensitivity analysis which exploits the Jacobiaq matrix of
the load flow solutioﬁ has been _presente&.- Generalized seﬁsitivity
expressions which are easify derived, compactly described and
effeciively qéed for calculating first—order chanses and gradients of

functions of interest have been obﬁainedf‘ These generalized sensitivity

E 1
- 3

ey b e
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expressions are common Eo all modes of formulation, e.g.,” polat and

cartesian.
L)

A first step toward%w\deriving these , generalized sensitivity
N .
expressions has been performed where we have utilized a special complex

notation to compaétly describe the transformations relating different

ways of formul@mting power network equations to a standard complex form..

This special notation and the derived transformations have been used tb

.

-effeétively derive the required sensitivity expressions only by matrix
manipulations. l

The use of éhése generalized sensitivity expressions requires

only the solution of an\sdjoin; system of 1inear.equqtions. the matrix

of coefficienﬁé which is simply the transpose of theAJécobian matrix

of the load flow solution in any mode of formulatioh. These genera;}zed

sensitivity expressions are applicable to both real Jand complex modes of

performance functions as well as the control variables defined in a

particular atudy. .'l

4
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LAGRANGTAN US TELLEGEN APPRDACHES TO

MNETWORK SENSITIVITY ANALYSIS: S -
\' (A UNTFTED COMPREHENSIVE COMPARTSON ‘

8.1 INTRODUCTION

Two approaches, namely the Lagrange multiplfer .approach and

Tellegen's theorem approach are ‘widely used for sensitivity calculations

CN
in both electron{c and power networks. Methods based on the two,_

approaches have bBeen. descrw and applied on an individual basis. A

combination\gf the two approaches has been proposed in Chapter 6.

\_

The mdterial presented in this chapter ains at investigating -

relationships between the two approachesi This investigation is

i *

- accomplished by emﬁloying‘ comuon basges of description and analysis

g

through which the requireq aspects of comparison can be clearly stated.

v

n

8.2 ° BASIC FORMULATION :

IR

. As stated in Chapter 2. we denote by f a single valued continuous®

v real or complex function of nx system state, variables X and n, control .
: variables u uhich may be real or comple; ' We also denote by h a set of
<! nx real or comelfx equality constraints relating X to u.
The first-order change of £ is HriFten as N -
. 6f=,4_t:£6.x_-+'_f_‘: 52.-' “ (8.1)
where £y and fu denote 3f/23y and af/ag. reepeetlvely. * Also, the.
.4 :

first—order chAnge of h is written as

$ 187 '. i

A
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™

sh = Hx6x+H su = 0, 4 (8.2)

~ -~ -~

where H and I-I {tand for (ah /ax) ~and (ahT/au) ' reSpectively o

In the case of complex variables. X and u may contain complex

conjugate pairs and f‘x,' t‘;j, Hx.and Hu of (8.1) and (8.2) may represent

formal partial derivatives w.r.t. the complex variables’x end u.

- —

As describ_ed in previous chapters, when dealing with electrical

networks, X and u may be classified irto 2-component subvectors xb' and
=T

-9. respectively. associated wi.th diff‘erent element (braneh) types In

general 'xt') and gb constitute node variablels X and un and _line'’

-

variables X, and u, . For example, X p%y represent node voltages in a'

~e

‘typichl linear electronic network: In this case the components of x’

" . :
are, e-.g.. 'Vm1 and 2 or Vm and. Vm, ut}ere Vm1 and sz are‘.

respectively, _t.he‘.?eahl and imaginary parts of Vm. In power networks X
g . -

and um arr}_ further classif_‘ied into vectors: associated with load (xl.

1::’"), genergtor (J_(.g.‘ "_‘g) and slack‘,g_enerator (an. ‘fn) branches.

- "In genkral, we write ) \ . B
S~ .- o x= {)-:b} = {Em, Et} - - (8.3)
and g ’ . - : ] v
: : u = {Eb} = {um. ut} : ” (8.4)

In the above formulation, we have assumed that . the number K of ' state

variables defined isru2nB. LY denoting numb‘e'r of branches in the network.'
This assumption is made t‘.o simplify the comparison between Lagrangﬁj
multiplier and‘*"fé‘l:legen s theorem approaches performed in the following
sections. Both. of these approaches can, hdwever. be applied for a

general number of state variables (Bandler and El-Kady 19803)
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8.37 DESCRIPTION OF LAGRANGE MULTIPLIER APPROACH

In this approach, and as described in Chapter 2, we use (8.2) to

write the first-order change éf of (8.1) in the forn
T .
of = (£, ~H 0 e, (8.5)

where A is a vector of the n, Lagrange multipliers obtained by solving

the adjoint equations

[ ]

H A = £ . (8.6) -
. ~X ~ %" .
ence, from (8.5) . ¢
df _ T o e
‘du Lo= g re 8.7

For use later, we now describe .the approach 1in a slightly

-

different way. We employ the classifications. of (8.3)_5@d (8.4) to

define the element-local Lagrangian term as

AT o T IR
sy 8 T B exy + 0T B sy, 8.8
where "
By = [H, ..o B ] (8.9)
. . : B .
and
oy , .
- ] Eu = [l:l‘1u .o EnBujg (8.10)
H  and H__ béing 2n_x2 submatrices. We also define
DX T Cbu "B .
TosL dpep, : (8.11)
- b b ' ;
. . T .
hence, from (8.2) and (8.8) R . ‘
| 5L = 0. .. 1 (8.12)
Using (8.8), (8.12) and -
| T .0 T N
y - . &fF = é (fxb sfb + gu ﬁgb). . o (8.13)
- ‘ - .

S 8,

—— -

R e s SR R
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we-may write, from (8711)

-

6[___ = ﬁg‘xﬂj"i[(f:b - XT be) ﬁxb + (fib - )tT Hbu) 6Ub].
y b ST T

Observe that when A of (8.14) satisfies (8.6). namely '
T

.. B i = fxb' for all_b.
H\Ehen (8.14) reduces to
T T
e R Sl R
hence, from (8.12)
_ - T _.T
- 8f = I (£, = H 27 U,
b ) . P
so that ’ -,
df T
du, = fub -'Ebu A

.-
o -

which iz a form of ' (8.7).

< .

S.Q DESCRIPTION OF TELLEGEN'S THEOREM APPROACH

{8,14)

(8.15)

(8.16)

(8.17)

(8.18)

In this approach, the application of Tellbgen's theorem results

in the identity

§T = 0,
where

4

. 5T GT_b'

z -
b ¥

the element-local Tellegen'fefm"éT is defined as
> . rs

AT
b * Mbu ng

b
4 T

78Ty = o X

(8.19)

© (8.20)

(8.21)

and the 2-component vectors ﬁbx and ﬁbu are linear. functions of the

‘formulated adjoint network current variables Ib'

and voltage variables V

b

A aee e
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(and their complex conjugate). Using (8.21) and (8.13), we_may write,

from (8.20)
§7 = 8f - £ [(£), - Al ) ox, + (£5 - 82 ) su ) (8.22)
b axb Tbx ’b ~ub _.b P .
The adjoint network is defined by setting . 7
L | Tox = fxp? (8.23)
hencé (8.22) reduces to
- - [ -
. o T
6T = 6f - i (fub - ?.bu) dgb. (8.24)
Thus, from (8.19) -
df.  _ _=z '
au. - fub T Mpye (8.25)

8.5 ANALOGY AND C.OHPAHISON 5

In the last two sectionﬁ, we have described, on“f unified basis,
both the 'Lagrange multiplier and Tellegen's theorem approaches to
sensitiviey-calculatibns in electrical networks. In this section, we
investigate-the analogous features of the two approaches and state 2

general comparison between them.

First, we remark on the resemblance between the element-local

Lagrangian term GLb of (8.8) -and the element-local Tellegen term §T. of

b
(8.21). We also remark on the resemblance between equation (8.12)

‘formed to satisfy (8.2), namely. the network equa@ions and equation
(8.19) formed by applying'Tellegen's theorem. The §f of (8. 14) and
(8. 22) is expressed solely in terms of variations of control variables
via defining, respectively, the adjoint systems (8 15) and (8.23). The

solution of the adjoint network is then used 'to obtain the total

S

bmrlithan & damm Fa R an mTo
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derivatives df/dgb-from (8.18) and (8.25), fesﬁéctively.

In the‘ Lagrange multiplier approéch, the adjoint system of
equations to be solved for the adjoint variables (Lagrange multipliers)
é cénstitutes a 2nB X 2nB matrix of coefficients. -Iq general, when
other state variables ére defined the order of the matrix of
coefficients is determined by the total number of state, variables
considered. On the other hand, the adjoint system of‘equatidns in the

Tellegen's theorem approach represents a éet of network equations and
'constitutes enly a 2n x 2n matrix of coefficients. The compactness of
the adjcint system formulation in the Tellegen's theorem approach is
afforded in essence by realizing, when formulating the adjoint’
equations, Kirchhoff's relations between the different adjoint variables
which constitute a fictitious electrical network.

Assuming that‘the effort required is divided into formulation and
solution parts of the adjoint system, we 1mmediatély see that the
Tellegen's theorem approach sweeps thelmajor effort into the formulatipp
part anﬁ results in only 2n agjoint equations to be solved. In
contrast, the Lagrange multiplier approach requires almost nothing to
;ormulate the adjoint system which Fhen constitutex n. adjoint eqﬁations

to be solved.

Note that if we formulate'the vectors I and V to contain all

L

\ .
branch current and voltage variables,respectively, and consider (Wu

1980) the perturbed relatioﬁships

(8.26)

-(8.27) _

/ ‘
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AsI =0 - (8.28)
and (8.1), where A is a form of incidence matrix and Vi contains node
(bus) voltage varlables, it is straightforward to show that a vector ﬁu.

which contains all the i, ~of (8.21), is given by

a _ ol T
u = Evu ii M giu EV' ‘ ' (8.29)
where Ai and lv satisfy KCL and KVL, respectively, and the relationship
i ) T T, N
ﬁvx ii * ?ix Av - fx' (8.30

8.6 CONCLUSIONS

The two widely used™ approaches to sensitivity caleculations in
electrical networks, namely the Lagrange multiplier and Tellegen's
theorem  approaches, have been describedﬁghd.compared.r Tﬁé description
has been performed on’'a unified basis where we have defined and employed
element-local terms in formulating the two approaches so that different
aspects of comparison are clearly investigated. The resemblance in

formulating and analyzing the adjoint systems of the twq_approaches has

been discussed.

-
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CONCLUSTONS

The material presented in this thesis has laid the foundation of
A

‘a new methodology for adjoint network approaches to sensitivity

[

calculations performed in a wide variety of power system analysis and

-

pia'nning problems. This'mf.ethodology overcomes modelling difficulties
observed‘ by previous workers and leads to new teohniques for network
sensitivity evaluation..

The new methodology utilizes a 'usei‘{]l complex notation which
éllows the exact power.system‘l stea&y—state component models to. be
considered. The notation has been described, theoretically Justii‘:ie"d
and practically applied to. seieral problgms intolving power flow

analysis as well as efficient and.compéct computation of power network

sensitivities.

We have presented a new appf‘oach to sensitivity calculations in

—

power networks. The approach exploits the powerful features of

Tellegen's theorem in an augmented form. It allows power network

sensitivities to be calculated based on the a.c. power flow model

general and without any approximations. The generalized versitn of
/ -

Chapter' 3 utilizes the specj..al' complex n_of.ation and the concept of

_basic/elément variables and their mutual transformations so that the

194
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required sensitivities may be obtained for any chosen set of real and/or

complex variables of practical interest. ,The flexibility of modelling

" the adjoint elements ‘has Dbeen afforded via complex adjoining

coeffiejents set to proper values. We have derived and tabulated
general sensitivity Expres;ions which are common to all relevant power
systeﬁ studies. The approach‘ althbugh applied to power networks, has
been justified as a gengral network aﬁﬁroach. |

A simplified version imbiued wiph‘many desirable features has been
described in Chapteﬁ 4, In this version the ad joining coefficients.are
set to parﬁicular values allowing ﬁhe. sensitivities of general real
functioﬁs to be effectiyely calculaﬁed. This version enjoys a simpie
adjoint system and sensitivity expressions.

Introducing and applying ﬁhe concepts of functional adjoining'
coefficients and appropriate group terms, a valuable capability of the
adjoint ‘approach has been exploited in Chapter ;. The derivativeslof a
ébmplex function may be supplied via -one ‘adjoint analysis as in typical

linear ‘electronic circuits. A theoretical foundation has been

established and a unifie& consistency study for proper selection of the

-ad joining coefficients has been performed.

The fiy—reaching consequences of the methodology have been
exploited further in Chapter 6.. We have utilized the useful features of
the simplified version of Chaptér 4 to describe a new method for solving

the load flow problem. The method employs a sparse'and mestly constant

matrix of coefficients and provides the same rate of converggncé as the

Newton-Raphson method. It directly supplies sensitivities of the
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!
dependent variables at the load flow solution without further adjoint
simulation,
The Newton-Raphson method for solving the load f-‘l-c:)w equations has
been interpreted, formally, in terms of variations in complex variablés
anq their complex conjugate and described in the compact complex form.

We have employed a special elimination technique to handle the resulting

form of equations. . ’ ‘,

The possibility | andling a general nunb;:r of complex depeﬁdent
variables defined in a particula“r:-.pr.oblem has been afforded by
deﬁeloping a compléx version 61‘ p{!’e Lagrahge"n;ultiplier approach. Based
on this _compiex version, |.< have stated a useful element-local
Lagran\gian c°ncep_1:" whif:h haS led to a combined Tellegen/Lagrange
technique, In this context, the a'ssump’tion of only two states
associated with a branch in.the approach 6f Chapter 3 has been relaxed.

The expel:ience ‘gained =0 f‘ar ailoyed us, 1in Chapter 7". to
describe a generalized version of the class of metho-ds of sensitivity
calculat:ions which exploit the Jacobian matrix, already available from
t'he load flow solutionm, in formulating the adjoint equations. We have
defined a standard compact complex form of the power flow eq'uations' and
derived transformations to other forms. These transformafions; have been
used to establish a theoretical foundation for sténdard relé_tionships

between the solutions of adjoint networks of different formulation.

With these standard relationships, generalized selasitivity expressions

for real functions -have been derived and tabulated, The more general

case of complex f‘L_mctions 'has also been studied and corresponding
. P :

O
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sensitivity formulas have been derived.
A unified comprehensive comparison between .the Lagrangian and
Tellegen's theorem methods of sensztivity evaluation has been presented

in Chapter 8. It highiights some analytic features of the techniques

employed in Chapterks\3-7.

~ The simplicity}E‘h‘e/examples employed throughout the thesis, we

- feel, contributes signif‘ioant_.ly to an easier understanding of the

theory. Qur sensitivity expressions are, however.' general and
applicable to networks of practical size. =
. The work presented in this thesis is believed to provide some

promising research directions for the future in the general area of

modelling and analysis of power networks. In particular, all previous

Tellegen's theorem-based applications which hav; been perf‘ormed for

lack of suitable methodology, based on approximated power flow models

can be performed based on the exact a.c. power flow model . For

instance, some transmission planning' methods (Puttgen 1976) can be

) ] . A
utilized for short term planning where actual control modéls are nmiore

important. Moreover, since ouri methpdology affords a very convenient

way of treating exact element mo&els i power networks, applications to

multi area structures can be do‘ne in a. similarly-oomp'act' and simple
manner. Diakoptical-based sensitivity methods which exploit Tellegen's

theore‘m to handle large power networl;s may be developed where the

- extended Tellegen's sum is partitioned to distinguish the elehths

associated with each part of the main network and common variables

simulating the tie lines. . \

<
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PPENDIX A

DERIVATION OF w-EQUIVALENT NETWORKS FOR PHASE SHIFTING TRANSFORMERS

For the structure shown in Fig. 3.5, we have the rglatiohships

(Stagg and El-Abiad 1968)

and ”J

\;)

where I_ and I_ are,
P q

and q, or simply

and

where

=
n

I
q

' .

A - av)
Z.aa P a
t

- {aV . - V)
Z a q p"

£

L

r~R.1)

(4.2)

respectively, the injected currents jinto buses p ’

199

i

(4.3)

(A.4)

(A.5)

(A.6)

(A.7)

‘)
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and R
\ - " ’ R )
h = 7 : (3.3)
t . - -
Als;o, we have - ‘ ) T
. > Ip = IA + IB . . (A.9)
and
Iq = - IA + IC. (A.10)

where IA' IB and IC are the branch currents of the t-network of Fig.

3.5.

We consider the general branch modelling of the m-network

I, +a I: : a'(vp - v +'E'(v; - v;). S A
R - * . . . )
R Ig+ 8 IB = B Vp + B Vp (A.12)
and B
- % e s '
Io+v I, =Y Vo +y Ve (A.13)

Substituting (A.3)-(A.10) into (A.11)-(A.13), it 1s. straightforward to

show that the coefficients in (A.11)=(A.13) can be chosen to satisfy

a = -h , : (a.14)
B =g +h | (A.15)
and
Y =g +h. (1.16)
Also,
_I - ® .. .
[+ ] = - B h ' (A.17)

‘a =8, . (A.18)
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APPENDIX B

df,;3.80) is given by
v

DERIVATION OF STANDARD ELEMENT MATRICES
.

s * 172 LI V7~ . n
v /T20V V) S vlztaﬁvlvz) 1 1 o 0
e - #*
-7 q@v,) jravy) 0 0
J, = :
. 172 /2 ry
I . I, | V72 v, /2
» - *
_ —jIlf? jIE/EJ’> v, /2 ~JVL/QJ
hence N -
B *1/2 ]
w1 W, 1 oo - o ]
. ' 1
: w12 oV 1 0 0
377 = L L . L ] 3
pf § _ 1/2 i 1
I,/00V,) i, i 7V, -3,
» % 1/2 » |
RNAAN -1, 1, i, |
s0 that
-
r * 3 1/2 - =¥ ®.1/2
. (“VL+EV1)’(VLYL) \ (EV£+0V£)/(V£V£)
E’.i - L] ‘ — — B ]
_ J(aVl—Evﬂy? J(EVl-uVL)
™ . *.1/2 — o ® %1720
_— —(BI£+vIL)/(VLVL) =(vI,+81 )/(V V)
j(s L—UIL . j(vIL—BIL) B
: K 172 =% , 172,
. BE: AN, (V, V) + N, (V) e]
Mig A Wy = . oKy oy
K J L1 S ¥ - N, Y d B
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e

For a load the Jacobian J,,using the set of element varigbIQElEEﬁﬁq

(B.1)"

(8.2)

(B.3)

(B.%)

(B.5)
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where 8 , 8 ,y andy are
a vy (88 £
The cholice
Y
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% . - .
= (g +h )B (4.19)
- — e . 5
= (g + h )Y ] (A.ZO)
related by B
E ~e e ey . . ;
-1 =-ag y vy =1, (A.21)
[
. - e .
maadp =-a  (A.22)

shown in Fig. 3.5.
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Using the set of element variables z, of (3.81) the Jacobian is

given by
hencet
-
Iy
s0 that~

<3

—12 By Wy T

z
k
I
k

203

k ' *1/2. =k _*
Azk[-Nlez/(val) - Nvllll(vlv

=K

[NX ¥
jkzk szI£ - N Iz]

vi

-~

2)‘

2 3 0 | 0 0
1
0 1 E 0 0
I, = | -3 L
1, o i 0 v,
|
| #*
O Lo Ve 0
F 1 L0 ‘0 0
B ]
0 1 | 0 0
| o T 0 Ny
By AR !
% ) [
-1, 7Y, 0 ; 1V, 0
N - [ T
. 5 - '
*/V - 'N
_ ) —vIL . -BIL .
S 0l
' LN VY
KAz
- LA N
L Lk i
ﬁ1 Ay Wt ® '; T
k. tk @z
- T I./V
¥ X tk ve T g
-M AL W = ’4 .
12 2v Div o N LA
‘ K Rk Tve T e
i i

1/2
.(8.6)

1

' (B.8)

(B.9)
(B.10)
(B.11)

“(B.12)

] r

L pe e e e F e e« o 2 i 2 e A

Tt s St o o et T e 1o
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Generators

—
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For a generator the Jacobian Jg using the set of element

variables Eg of (3.82) is given by

#
u —j/(2Vg) j/(zvg) r’J,/o 0 ™
» ) T 1 % . '
=3I /2 I PV o/ -jv /2
;- J g J 8/2 i J g 3 g/ (B.13)
-8 " VosL2(v Y Y e v';TIEJ Py ' )
g g8 -8 - 8g Lo
2 I /2 I v s2 v /2
L I/ g i 'g g2
hence :
v 0 vy v 172 0
1 g ! g (Vg g) | .
.. | * *1/2
~jv 0 vV 0
-1 g i g 88
= 1 N T vy i72 el R
- 1 -
J J ; g ''g'g g
31 A PR AT ML 17V
- _ ' 8 ‘88 ' gJ
30 that
- (V -V 5V —av"
I R R ©* (B.15)
i v )
~8 0 0
JBT —vI™) 151" |
= . BIg=vI, ol -8I,
Oy ° 5 | . (B.16)
BV ) J(-u(Vg Y
o IN Y -7 v'iﬁ
My A8 w = |k TEKTiEe T Tig gt (B.T7)
-1 ni ~g1 0 5 -
’
—k
M A8y - |k ;O [N"SIS “ve'e . (B,18)
=12 v .gv 7 | ¢ By NN vl '
: K vg g vg''g

Using the set of element variables zg of (3.83) the Jacobian is

given by
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1 0. 1 o 0 O
]
0 0 i 1 0
Ig= | - : : (B.19)
v v | o 0
. g g !
I v v
. s L'g g g g_]
hence
B 1 0 ! 0 o
* . }
VY 0 . /v 0 .
-1
g ° g8 : g . (B.20)
- 0 1 ! 0 0
(1 v /v2 /v ) I S R I
1'ee g8 8 g'g I Ty gJ

" so that - | ﬁ>\

* U )
_ (a=EV 7V ) (E—aV /v )
0g1 * s B 8 g 8 . (B.21)
~ 0 0
(IV/V I/V) B(IV'NB l'/V) C
- v S,
o = 88 8 535. ~TB.22)
~8v B=uV AV C9=BV /V
g 8 : g g
. Z A k[ 11‘ ﬁl; v'/v ]
MB A8, - K gk 1g g 8.8 (B.23)
=11 21 ..gi o
zxgk (IV/V-I/V)
E n8 u ik VE B & . (B.24)
=le ~V ~gv zx[kﬁkV/vJ
‘ K Bk-'vg vg g g

Slack Generator

For the.slack generator the Jacobian J,, using the ‘set of element

variables E; of (3.84) is given by’

Ly e

IR
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~ » ® -
: I/2 I /2 P Vo2 v /2
n n : n n
#* l »
. -31,72 jI /2 N ! JVn/Z =3V 72
vz vh TRy T2V Y )"72]‘\: 0 5 0
1
1
3 i
( jzeav ) J/(2Vn) i 0 o |
hence \
r * 1/2 n
0 0 E vV V) S
i * ® 172 *
R BT L AR -3,
S S 1 a7 31
: n n i n nn n
i L * 1/2 *
v \AM S IAURIY -3
sc that
_ 0
8 =
Zni 0
* — * -
- (B/Vn+U/Vn) (v/Vn+B/Vn)
Snv * ?V' — % _ ’
J(-8 n-l-v/Vn) J(—v/Vn+B/Vn)
n 0
Mig Ay ¥y = ol °
. 4y 0 - Mk [an/vn anN )
12 A, wnv - =k
e g [ N /v N /Y]

Using the set of element variables En

given by

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

of (3.85) the Jacébian is
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~— —
0 o 1 0
I
0 0 i 0 1 .
“nl = N , (B.31)
1 0- 1 0 0
]
0 1 i 9 0
hence
fo o 1 0]
|
] _1 0 '0 i 0 1
Jn = : 4 - . (B.32)
- 1 o 1 o 0
]
0 T T 0
so that
_ o 0 :
5 . = , (B.33)
ni 0 0 '
‘_ _ 8 v
v =~ A, @ =1 (B.34)
v 8
‘ n -n 0
M1 Ay Yng = ' . (B.35)
: 0
f
k .
T, N°).
N nk “vn |-
» -
P12 A Yoy g o (B.36)
K nk “vn

. Transmission Elements

For a transmission elemenf the Jacobian J using the set of

element variables Et of (3.86) is given by
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— -
0 0 E 1/2 1/2
| :
0 0 : -j/2 jr2
Ie = 72 Lppoen 2o mne - | . (B.3D)
-1, /(avp) -I./(2v,) boo1/G@vy) 17(2v,)
i1/ (2v) v 1 Sy '
_ JTrCave -JT eV, | -aav) gV
hence
- : 2 2 .
vV /1, /T,y VT : -thgIt
VT JV'/I' : v 2/I Jv' /I
-1 . - A t
T t' 7t t' "t % t Tt t  (8.38)
- 1 j { 0 0
I
L -1 R ! 0 o
so that
( » ® . — - »
_ th/It+EVt/It) (EVt/It+th/It)
8,y = . . _ e . ,  (B.39)
JCaV /T -V /) JCEV /T —aV /T )
\
N -
_ (B+v) (v+B) _
%) = . . (B.u40)
BRI IETC IR B Teae
. ko SN
t ot LAy gy V/Tp + Ny V/L1 Y
e Mg Ap Py = K K X L *, | (B.41)
i gy NGy VT, - Ny Ve/T]
kK =k
t LA [Ny + Mol .
M. Acw, =] k . (B.u2)
e A R TR TV ¢ o I
tk- vt ~ vt '
Kk
Using the set of element variables zy of (3.87) the Jacobian is
given by
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0 0 i 1 o |
0 0 | 0 1 |
Iy * - ' . (B.43)
-t -‘It/"i 0 i 1V, 0
0 I*N'E i 0 *
- et | 1/V'1;_
hence
~ » .
Vt/It 0 l -Vt/It 0
0 AN ! o V'Z/I'
| -
- t
J.r,1 N .t : ¢ . (B.uy)
= 1 0 | 0 0
]
|
L -0 1 I 0 o
30 that
a V. /1 EV /I A~ .
- t/ ¢ £/t .
9¢1 ¢ ¥ a — % % | (B.U5)
E \ft/It a V /T,
_ 8 v
Sy T - | (B.46)
v B
E A, N VoI
Wb E . | e tk it E E ' (BAT)
T I Y R OV -
LMtk it Tt
N
Kk
LA, N
t t _ tk vt.
-!12 By Vey = | K N "ﬁk . ' (B.48)
Aok Tt
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