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Abstract

The amount of recyclable material being processed worldwide is increasing. There

is a demand for new technologies that can quickly sort these materials for maxi-

mum purity while maintaining high throughput. This thesis proposes a method to

automatically sort two materials: Polycoat containers and Polyethylene terephtha-

late (PET) bottles. This method utilizes a visible light camera and does not rely

on Near-Infrared spectrometry. A high-speed method to automatically locate re-

gions that likely contain these materials within the image and remove them from the

background is presented. These regions are merged into whole containers and are

classified as either a Polycoat container or PET bottle. This is accomplished using a

linear support vector machine (SVM) trained on the histogram of pixel intensities. A

novel graph theoretic based region growing technique is proposed and experimental

results are provided to characterize the system. The proposed method obtained a

93% recognition rate while running in real-time on an FPGA.

iv



Acknowledgements

First and foremost, I would like to acknowledge the tireless work of my supervisors

Dr. David Capson and Dr. Derek Schuurman. Without their guidance, knowledge,

support and endless patience, this thesis would have never been possible. I owe them

a great deal of gratitude that I could not hope to express in such few words.

I would also like to thank my colleagues of the Computer Vision Lab for endless

thought provoking conversations, midnight coffee runs and most of all, their friend-

ship. Without them, my time spent completing my Masters would have not been

nearly as enjoyable.

Finally I would like to thank everyone who has helped me throughout this process

but are far too many to enumerate. Your kindness will not be forgotten.

v



Notation and abbreviations

α Lagrange Multiplier
ALM Adaptive Logic Module
b bias
C(X, Y, F (X)) Cost function
EPIC Environment and Plastics Industry Council
F (X) Classifier
FPGA Field Programmable Gate Array
FPS Frames per second
h VC dimension
H(X, Y, F (X)) Hinge-Loss function
HDL Hardware Description Language
HDPE High-density polyethylene
k Region merging parameter
K() Kernel function
KKT KarushKuhnTucker conditions
LE Logic Element
LUT Look-up-Table
M Margin
MRF Material Recovery Facility
N Dimensional of feature vectors
nbits Number of bits used to represent a pixel
NIR Near-Infared
Φ(X) Non-linear mapping
PET Polyethelne terephaleate
R2 2 Dimensional Euclidean Space
R3 3 Dimensional Euclidean Space
Remp Empirical Risk
SPI Society of Plastics Industries
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SVM Support Vector Machine
T (R) Threshold function
w Normal vector
wij Edge weight between node i and j
X Feature vector
X− Feature point on negative hyperplane
X+ Feature point on positive hyperplane
Y Label
(Xi, Yi) Set of feature vectors and labels
ζ Slack variables
Z(X, Y, F (X)) Zero-One loss function
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Chapter 1

Introduction and Problem

Statement

1.1 The Importance of Accurate Sorting in Recy-

cling Plastics

The primary goal of the recycling process, with respect to plastics, is to divert material

that would otherwise be disposed of and convert it into a polymer that can be reused

in consumer products and packaging. By using recycled polymers, instead of virgin

material, the energy required in the manufacturing process can be reduced which

lowers costs and mitigates the environmental footprint. It is a known fact that the

purity of the reprocessed material determines what applications that it can be used

in. Highly pure reprocessed material can offset the most virgin material and has the

highest savings in cost and energy, while less pure material must be used for lower

grade products. Thus one of the primary concerns of a reprocessor is to produce
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material of the highest purity. Additionally it is of significant financial importance

that the material be as pure as possible, and command the highest selling price. Thus

the separation of plastic materials from would-be contaminates (which often include

other types of plastics) is critical. Currently several methods have been proposed and

working examples are employed in Material Recovery Facilities (MRFs) around the

world. However these methods are not without their drawbacks and limitations.

The amount of recycling is increasing worldwide with an increase in population.

There is also increased awareness and willingness to participate in recycling programs.

This is helped by initiatives such as single-stream or dual-stream recycling, which are

less demanding on households but offsets the sorting burden onto the reprocessors.

The extra sorting effort can be helped by the adoption of fast and accurate sorting

techniques that allow the MRFs to produce the highest quality recycled plastics while

maintaining the required throughput.

In addition to the increased amount of recycling, new packaging, in the form

of novel polymers or hybrid containers composed of several different materials, are

beginning to find their way into common use and inevitably into the recycle stream.

These new packages require novel techniques for optimal sorting such that they do

not end up contaminating existing material streams, but are themselves reprocessed

or disposed of properly.

1.1.1 Recycling Of Plastics

The recycling of plastics has become a common practice and is in line with the mantra

of sustainability and green living. It has become almost synonymous with the new

green age, being one of the famous three Rs (Reduce, Reuse, and Recycle). However

2
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the process from being left on the curb side to being incorporated into a new container

is still only vaguely understood by and mostly hidden from the common person. There

is still much confusion over what is recyclable or what can be processed by a local

MRF, despite efforts such as resin codes and increased educational information. This

confusion requires that great care is taken to sort the waste so as not to contaminate

the supply of new materials.

Recycling is a required step towards sustainability. It allows for the recovery of

raw materials that would otherwise be wasted, and to recoup the energy associated

with the transportation, extraction, and manufacturing in transforming raw materials

into a consumer packaging. It has been estimated that recycling of PET bottles can

reduce greenhouse gas emissions by 0.42 metric tonnes of carbon dioxide and save 53

million BTUs of energy per tonne of recycled material (Morawski, 2009).

The biggest benefit to the environment is when the material can be upcycled

which means it can be used as feed material in a manufacturing process that was

of the same style as the orginal product. This directly displaces the virgin material

from the process and reduces the overall amount of material required. Plastics can

often have a life cycle of 15-20 products before they have to be downcycled to a lower

grade product (Morawski, 2009). Downcycling is when a plastic is recycled into a

product that is of lesser quality and that is eventually not meant to be recycled. An

example of this downcycling is when PET bottles are recycled into plastic carpet

or filler in sleeping bags. These products are not intended to be recycled and are

ultimately disposed of in landfills or incinerators. This is an inevitable step due to

the accumulation of microscopic defects within the plastic (Selke, 2006). Figure 1.1

shows sorted and packaged bales of PET at the Hamilton, ON MRF.

3
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Figure 1.1: Bales of sorted PET bottles packed for selling

A large determining factor of where a recycled material ends up is its purity and

chemical properties. Often, contamination results in undesirable changes to the chem-

ical and physical properties of the polymer (Morawski, 2009),(Selke, 2006). When

different polymers are mixed together they do not, in general, form a solution, but

will separate into different regions (Selke, 2006). Microscopically this manifests as

separate domains or pockets of one plastic in another, which has a detrimental effect

on the mechanical and chemical properties of the plastics (Selke, 2006).

One such classic example of contamination that must be avoided is PVC in re-

cycled PET plastic. Small quantities of PVC in PET (or vice versa) in the range

of 4-10 ppm can have a large detrimental effect on the batch to be recycled (Selke,

4
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2006). When the material is recycled, the contaminant will often turn into visible

black flakes within the desired material (Selke, 2006). These black flakes significantly

reduce the quality of the produced polymer and thus limit its application and selling

price.

Not only are the largest environmental effects realized when pure material is ob-

tained from the recycling process, but there is an economic incentive to produce high

purity materials. Market price is directly proportional to material purity with the

purest materials demanding the highest selling prices (Morawski, 2009). Since MRFs

end goal is to sell the reprocessed materials that they produce, which either offsets

the cost of running the recycling program for local municipalities or produce a profit

for privately contracted firms, the highest price per quantity of material is desired.

Materials with physical and chemical properties closer to virgin material will fetch the

highest prices due to their ability to be substituted as feed material in many different

products.

1.1.2 Recycling Rates

It has been a general trend over past decades that the amount of solid waste produced,

and accordingly, the amount of material that is being processed for recycling has

increased. The total amount of solid waste produced by Canadians in 2006 was

35 mega tonnes up from 30 mega tonnes in 2002 (Smith, 2009). Of all the solid

waste produced, 7.7 mega tonnes (22% of the produced material) were processed for

recycling in 2006, compared to 6.64 mega tonnes since 2002 (Smith, 2009). Although

the percentage of recycled material has stayed relatively constant, the amount of

material has grown by 9%.

5
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Not only has the amount of material increased over the years, but more house-

holds have access to and are recycling than in the past. The availability of recycling

programs of every type and the percentage of those who take advantage of them has

risen dramatically in recent years within Canada. This reflects a changing attitude

and greater education of the importance of recycling. This will have a significant

impact on MRFs, as they will have to process larger quantities of solid waste and at

higher speeds to keep up with the demand. This is where the use of novel technologies

can ease the burden and help MRFs deal with the challenge of reprocessing the ever

increasing volume solid waste.

In Canada, the percentage of households that had access to at least one type of

recycling program (paper, metal, or plastic) was just over 70% in 1994 (Marshall,

2006),(A. Babooram, 2007). As of 2006 this number had increased to 93% of house-

holds with access to at least one form of recycling (Smith, 2009). Also the number of

household that are taking advantage of these facilities has risen as well. Previously

only 85% of households that had access to recycling facilities used them in 1994. The

number has since grown to 97% in 2006 (Marshall, 2006),(A. Babooram, 2007).

In the USA, the numbers are similar in terms of growth. The amount of solid

waste produced in 2003 was 236 million tons, which has grown to 250 million tons

in 2008 (Selke, 2006),(Enviromental Protection Agency , 2009) ,(Enviromental Pro-

tection Agency, 2003). This is substantially more waste then the amount produced

in Canada, which can be explained by the difference in population. The recycling

rate for all materials is 33.2% up from just 29.0% in 2000 (Enviromental Protection

Agency , 2009),(Enviromental Protection Agency, 2003).

Despite the growing trends of increased recycling, there is still room for increased

6
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amounts for recycling of plastics. Of the material processed for recycling in 2002, only

0.144 mega tonnes was plastic recyclables(Morawski, 2002). An EPIC (Environment

Plastic Industry Council) study in 2002 (Morawski, 2002) estimates that 0.085 mega

tonnes of this was comprised of plastic bottles. This represents a recycling rate of

only 36% of the total 0.235 mega tonnes of plastic bottles that were produced in that

year. The recycling rate taking into account all plastics will be much lower.

Again a similar situation can be found in the USA where the overall recycling rate

of plastics was 5.2% in 2003, but for containers and bottles the rate was 38.6% in the

same year (Selke, 2006). Its hard to compare with other countries due to differences

in definitions of solid waste, but in western Europe, the recycling rate of plastic varies

from 2.2% in Greece to 27.1% in Germany (Selke, 2006).

It is clear that not only the amount of material has increased, but also the number

of people who are recycling. However, there is still considerable room for growth,

especially in the area of plastic recycling. In order to encourage more participation,

and to reduce cost to the municipalities, new curb side collection programs are starting

to be implemented. Single-stream or commingled recycling is now being offered in

more places. These programs allow the home owners to place all recycled goods

within one receptacle. This has been shown to increase participation and reduce

upfront collection costs. However much of the upfront savings are reduced by the

increased workload of the reprocessors.

1.1.3 Collection

There are several ways in which the material can be collected at the curb, which is

mainly decided by the municipality or the agency collecting the solid waste. The most

7
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restrictive is source separation which requires that each of the materials be sorted at

the curb-side before pick up. The opposite end of the spectrum is single stream in

which all materials are placed in the same receptacle. Many places fall in between the

two extremes by employing dual stream systems with certain materials being lumped

together. A common example is paper separated from containers, usually plastic,

metal and glass.

Source separation can be expensive from a municipality point of view if they are

only concerned with the collection (Selke, 2006),(Morawski, 2009),(Eureka Recycling,

2002). This is because either different trucks are required for different materials, or

trucks with different compartments for keeping the materials separated. Processing

the material is generally cheaper however due to the fact that most contaminants

have already been sorted out by the time the trucks arrive at the MRFs. In addition,

the material produced is often more pure than other methods, so it can be sold for a

higher price. This collection style generally sees the least participation rates due to the

required effort on the part of the community (Selke, 2006),(Morawski, 2009),(Eureka

Recycling, 2002).

Single stream systems are much less restrictive; all materials that are able to be

processed are collected together in a single receptacle. This reduces collection costs

because the same trucks can be used for all materials, and no division is required

(Selke, 2006),(Eureka Recycling, 2002). However the overall cost of the processing is

significantly higher due to the extra sorting that is required (Morawski, 2009),(Eureka

Recycling, 2002). Home owners are more likely to rate themselves as satisfied with

this method and overall recycling participation rates are higher due to the ease of

sorting. However, the chance of materials ending up contaminated or improperly

8
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sorted as garbage are much higher, and thus profits are less for the MRFs compared

to dual streams (Selke, 2006),(Morawski, 2009),(Eureka Recycling, 2002).

Single Stream Recycling is on the rise; in the USA there were 160 single stream

municipalities as of 2009, up from just 70 in 2005 (Morawski, 2009). This will put

further burden on the MRFs to deal with the extra sorting required to ensure that

top quality polymers are produced. The secondary effects will be to increase the

recycling rate and therefore the amount of material to sort. This leaves the MRFs

in the position with more material to sort through at higher contamination rates.

Automatic sorting will need to be used in order to allow the MRFs to maintain a

high purity material and maintain the throughput to deal with the increase in solid

waste.

1.2 Sorting

1.2.1 Resin Codes

The first line of sorting happens at the curb-side either in the form of source separation

where the home owner will do an initial sort and/or in terms of rules in what can and

cannot be recycled. To aid the common person in identifying what the local MRF is

able to process, the SPI (Society of Plastic Industries) developed a resin code system.

This code was designed to help quickly determine what is recyclable without having

to memorize the individual products and packaging. Figure 1.2 shows the different

resin codes.

All the recyclable plastics are given a number which must be present on the

packaging. This number identifies which resin type the plastic container is made of.
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Figure 1.2: Resin codes as identified by the Society of the Plastics Industry (SPI)

The MRF will then outline which numbers of resin codes should be placed in the bins

for recycling.

The resin code system is not perfect though, as materials with the same resin

codes cannot always be mixed together in the final sorting. This is often because

of differing additives required in the manufacturing process. Several containers are

made of composites of more than one type of resin, which means they are marked by

two or more numbers. The resin code 7 is merely a catch all for all other types of

plastics. This means that it is impossible to tell what type of plastic it is made of by

using the resin codes only. These container types are generally not recycled.

At the MRF another sort must be done to remove contamination in the form

of dirt and debris, as well as to sort the plastics by resin. Each plastic must be

sorted by the resin type and generally cannot be mixed (Selke, 2006). However,

there are additional considerations when the materials are grouped together. Simply

having the same resin code does not guarantee that they can be processed together.
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Different manufacturing methods or working environments often requires polymers

with different chemical or physical properties. These properties can be controlled by

the use of additives. These additives will often contaminate the recycling process

within the same polymers.

Not only must each resin must be sorted from each other, but they must also be

sorted by colour within a resin code (Selke, 2006). This is because the colour will

often remain after the recycling process and be visible in the new product. This can

be mitigated by using mechanical recycling, where a layer of off-colour material is

sandwiched between two virgin material layers (Selke, 2006). However, to obtain the

highest price and purity the materials must be sorted by colours.

Other additives are used in the manufacturing process to give strength or other

desirable properties to the material. For example black microwave dinner trays are

injection molded and must have a working temperature range from well below freezing

to the operating temperatures produced in a microwave oven. The additives required

to make the polymer work in such environments makes them incompatible with PET

that is blow-molded into plastic bottles (Selke, 2006). It also makes them opaque and

black, which makes them difficult to sort (Selke, 2006).

Despite recent technological advancements, a large proportion of the overall sort-

ing is done by humans (Selke, 2006),(Bruno, 2000). Manual sorting of plastics is done

by trained workers that either identify the type of material by memorizing products

or by the resin code. Generally the workers will take the object off a conveyor belt

and place it into the proper receptacle. Manual sorting suffers from high turnover rate

among employees, which makes it difficult to keep properly trained sorters available.

This makes automatic sorting more attractive from a MRF’s point of view, because
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fewer sorters are needed and a large cost savings can be realized (Bruno, 2000). The

process will inevitably go through some form of human quality control despite the

presence of automatic sorting (Selke, 2006),(Bruno, 2000).

1.2.2 Automatic Sorting

Automatic sorting machines are becoming more common in MRFs due to the reduc-

tion in cost and time required to sort materials. There are a variety of types that

use a wide range of technologies depending on the type of material to be sorted. The

emphasis of this chapter and the thesis as a whole will be on macrosorting techniques.

Another class of automatic sorting techniques is microsorting, in which the material

is usually cut or ground into flakes and subjected to density based separation to

mechanically separate the plastics types. These methods are rarely used in practice

(Selke, 2006).

Macrosorting is applied to the material as it comes into the facility, either after or

before a wash is performed. The material is usually loaded onto a conveyor belt and

it is tested using one of the methods described below. Some rejection method, such as

air knife or trap door, is used to remove material that is classified as the wrong type,

or to move it onto another line for further processing. The cost of setting up these

machines depends on the type of technology employed, throughput, and number of

items to sort. The set-up cost is generally much higher than a manual sort but this is

offset by both the reduction of reoccurring costs (wages, benefits, retraining, etc) and

the increase of sale prices due to higher-levels of purity (Selke, 2006),(Bruno, 2000).

Some of the different technologies for automatic macrosorting are listed below.

All of these methods have current working examples around the world.
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X-Ray Fluorescence Spectroscopy

X-Ray fluorescence can be used to detect different functional groups (specific com-

binations of atoms) within a polymer. Certain functional groups will absorb certain

wavelengths in the X-ray spectrum, thus by measuring the amount of X-rays passing

through; one can tell if a particular wavelength of X-ray has been absorbed. By com-

paring the results to precompiled charts, the presence of specific functional groups

can be determined (Selke, 2006),(Bruno, 2000).

This method is mainly used for detection of PVC due to the chlorine atoms re-

sponse to X-rays frequencies. It is an important detection method because it is used

to keep the PVC from contaminating PET which is an important recycled plastic.

As mentioned earlier, even small quantities of PVC will contaminate large quantities

of PET or vice versa (Selke, 2006),(Bruno, 2000).

Due to the use of X-rays, these machine require special training to use them along

with bulky safety equipment (Selke, 2006),(Bruno, 2000). This makes them relatively

expensive in light of the fact that they only are able to sort out one type of plastic.

Near-Infrared Spectroscopy

Near-Infrared (NIR) spectroscopy is similar to X-ray fluorescence in that it also ex-

amines the absorption of a specific type radiation by the material. The infrared

radiation causes the atoms within the polymers to vibrate (Hsu, 1997). Since each

of the resin’s atomic structure varies, different vibrational modes are observed. If an

incident photon has a similar frequency to a mode of vibration, or is a multiple of the

fundamental frequency, then it will be absorbed (Hsu, 1997).

The result is that certain wavelengths will be noticeably attenuated when observed
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with an appropriate sensor. This results in a pattern that can easily distinguish

different types of polymers. In academic literature several methods for discrimi-

nating these spectra have been proposed. LDA (Linear Discriminant Analysis) and

QDA (Quadratic Discriminant Analysis) (R. Leitner, 2003), artificial neural networks

(D.M. Scott, 1995) and SVMs (Support Vector Machines) (A. I. Belousov, 2002) have

been suggested as possible methods of discriminating between different types of plas-

tics using NIR spectroscopy.

NIR spectroscopy is the most widely used technology to distinguish between differ-

ent polymers (EPIC, 2008). In most commercial system this technology is employed

either by itself or with the aid of machine vision systems utilizing NIR cameras. This

approach is preferred because of its accuracy and speed; several scans can be taken

of an object as it passes in order to increase the probably of correct identification

(Bruno, 2000).

There are however, a few drawbacks to NIR systems. One is that black coloured

plastics are almost impossible to detect using these systems. This is because the

black colouring has good absorption in the NIR region, which results in a flattened

absorption spectrum (Selke, 2006). Common black plastic containers include motor

oil containers, as well as injection moulded microwave dinner containers. The flat-

tened spectrum then contains relatively little information for the classification of the

polymer.

Since the spectrum is obtained by the absorption of different wavelengths, if two

or more materials are overlapping completely then they cannot be correctly identified

because the absorption profile produced will be a combination of both materials

(Bruno, 2000),(Selke, 2006). As long as some of the material is exposed this method
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will work, so labels and debris do not impede this method. However this requires

that material generally be fed in such a way as to ensure that the material is in a

single layer. By arranging the items in a single layer, it is guaranteed that one item

will not be completely covered by another object.

Certain other types of containers consisting of two materials are also troublesome

for this method. Polycoat or aseptic containers are cardboard coated with a thin layer

of high density polyethylene (HDPE) or aluminum foil to make them able to hold

liquids. Since the NIR radiation is absorbed by both materials, the spectra produced

is hard to sort from existing spectrum and the material is often incorrectly identified.

Other types of containers have only started to be tested against this detection

method. New biodegradable polymers that will decompose under special conditions

have been produced in recent years. Polylactic acid (PLA) has started to show up in a

few commercial products, and in some cases it is visually indistinguishable from other

plastics types, specifically when it is in clear bottle form. Nature Works, a company

that produces PLA bottles, has performed a few tests on how this will impact the

recycling stream, with some preliminary success (Sawyer, 2009).

Machine Vision

A recent study by Environment and Plastic Industrial Counsel (EPIC) (EPIC, 2008)

has shown several manufactures that incorporate some form of a machine vision sys-

tem into their processing. The exact details of the algorithms are proprietary, but

they are often used to detect coloured bottles along with aiding in identification us-

ing shape, size, and texture analysis. These methods are sometimes performed using

special cameras and/or filters to examine different wavelengths of the NIR spectrum.
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The academic literature in the area of computer vision to aid in the recycling

process is lacking. Several approaches have been suggested; (Ramli et al., 2007)

suggests using boundary to describe the plastic bottle types. In (Ramli et al., 2010),

partial erosion is introduced as a method to describe the boundary of plastic bottles,

and Shahbudin et al. (2010) develops this into a feature that an SVM is trained on

to sort PET bottles. In (Ramli et al., 2008), the idea of using histograms of different

sections of the bottle to identify the material is proposed.

1.3 Problem Statement

The problem this thesis addresses is the design of a process to sort two types of

containers in a mixed stream. The two materials to be sorted are Polycoat containers

and PET plastic bottles. Polycoat containers are constructed of a layer of paperboard

between two layers of HDPE film. Due to their composite structure they are difficult

to detect in a PET stream and some facilities still hand sort these products.

Previous work in this area has focused on the shape and size variation between

different bottle types. However these features are deemed to be of limited usefulness

in a practical system because shape is not necessarily constant, as bottles can arrive

crushed or cut up which limits the usefulness of this feature.

Instead, optical properties of the materials are used because they will remain rel-

atively constant despite the state of the container. The two main optical properties

that are examined to classify the container are transparency and reflectivity. Trans-

parency can be measured by imaging against a black background, while reflectivity

is measured by illuminating the containers with a high-intensity light. By examining

the pixels that make up the image, and constructing a histogram of pixel intensities,
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Figure 1.3: Process for recyclable classification

these material properties can be measured indirectly.

Previous work on this subject was presented in (Nawrocky et al., 2010) where

histogram of pixel intensities were used as inputs to a linear SVM for classification

purposes. The main limitation with this work was that only single bottles could be

classified at a time because a simple bounding box segmentation algorithm was used.

This works extends the ideas presented in (Nawrocky et al., 2010) by removing the

unrealistic constraint of classifying single bottles. The proposed method utilizes novel

background removal and segmentation methods to achieve this result. By identifying

regions that are not part of the background and then growing these regions into

different containers, many bottles can be imaged at once and classified by using their

histograms. Ideally this would be part of a system which is able to remove Polycoat

containers from a stream of PET bottles.

Of considerable importance to MRFs would be the throughput of such a system.

Thus the proposed algorithm will be implemented in hardware to allow for real time

operation with high frame rates. The developed hardware accelerator will accept

visible light image data and classify the containers based on the optical properties of

the two materials.
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Figure 1.3 shows the setup of the machine. Several machines can be cascaded

together to allow for a more complete sorting or non-classified bottles could be added

back to the stream for reclassification. In this way each pass would become more

accurate as less bottles are present to add clutter.

1.4 Thesis Contributions

The two main problems that were dealt with in this thesis were the extension of

the classification algorithm to multiple containers within one image and high speed

recognition. The first problem was solved by implementing a novel graph based

segmentation method to extract multiple container regions within an image. The

segmentation method uses the histograms of smaller blocks as a similarity metric to

group regions together. The second problem of speed was addressed by implementing

the entire algorithm in an FPGA. This allowed for the parallel nature of the algorithm

to be exploited and a real time implementation to be achieved.

1.5 Chapter Summary

Recycling is an efficient means to recover spent manufacturing energy and materials

from consumer goods that would otherwise go to waste. However, to be economical

these materials must be sorted to a high degree of accuracy. Chapter 1 introduced

the importance of fast, accurate sorting of recyclables and why this is a pressing

problems. It demonstrated the requirement for high speed accurate sorting due to

the large volumes of recyclables that need to be processed and the many materials

that can end up in the processing stream. Previous work in this area has been found to
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be lacking in academia, although many examples of industrial machines are currently

operating. This thesis grows off other work that is similar in scope, but extends the

problem one step closer to a real-world implementation by increasing the speed of

processing and the number of containers that can simultaneously be processed.

Chapter 2 will build the concepts required to understand the processing tools and

implementations of the solution to this problem. Pattern recognition is introduced,

with the specific example of the Support Vector Machine (SVM). The underlying

mechanics of this classification tool are explained and justifications for its use are

presented. A brief introduction to FPGAs and how they will be used to obtain real-

time results is also included.
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Chapter 2

Background

This chapter introduces the background subject matter from which this thesis draws.

The first section provides some important concepts in supervised pattern recognition.

It also introduces the powerful tool of the support vector machine which is used

for classification in this thesis. The second section briefly introduces FPGAs and

demonstrates their utility in computer vision and machine learning tasks.

2.1 Supervised Pattern Recognition

Supervised pattern recognition deals with developing methods to classify new data

by generalizing from existing data. More formally, given a pattern Xnew the goal is to

assign a label Ynew by finding a mapping of F (X) 7→ Y . In supervised learning this is

done by using previous data Xi with known labels Yi ∀i. This set of data (Xi, Yi) is

referred to as the training set. When there are only two possible labels, the pattern

classification is called binary. For mathematical simplicity these are given values of

(-1,1). An example is presented in Figure 2.1 of the same class with two different sets
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Figure 2.1: Two examples of features used to separate two classes in an arbitrary
feature space. In a) the features allow for the separation of the data into two distinct
classes. b) the features do not allow for the separation into different classes

of features in an arbitrary feature space. Unless it is stated otherwise, all examples

use this generic feature space.

To allow for data to be classifiable, features have to be chosen that allow for a

unique description of the data. Figure 2.1a shows an example in which the data

points are readily separated and the two classes are obvious and distinct. In Figure

2.1b they are merged and there is considerable overlap, no obvious classifier exists

for this data. Even in the case of Figure 2.1a, a mapping needs to be found that

will correctly and consistently classify new data. The boundaries of three candidate

functions are presented below in Figure 2.2.

Each of these classifiers has their strengths and weaknesses. While the first classi-

fier example is linear in nature and relatively simple, it misclassified the most points.

The second classifier is more complicated than the first, but correctly classifies points

that the first classifier misses. The third classifier correctly classifies every point in

the training set however does not appear to fit the distribution of points. To discuss
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Figure 2.2: Three examples of potential classifiers for data in Figures 2.1a). a) a
simple classifier which might not generalize well. b) a more complex classifier that
appears to follow the data. c) a complex classifier that makes no mistakes but appears
to over fit the data

how these effects can be quantified, a few concepts are introduced.

2.1.1 Risk

The risk of a classifier can intuitively be defined as the probability of a misclassification

weighted by the cost or penalty associated with that mistake. Therefore some error

can be tolerated in the classification if the penalty associated with that particular

error is small, or conversely, points for which a mistake carries a heavy penalty are

forced to be correctly classified to minimize the risk.

The risk of classifier F is simply the cost of assigning a label F (X) to pattern X

with true label Y , weighted by the probability of obtaining the combination (X,Y).

The total risk is the sum of all such risk and can be calculated by integrating a cost

function C(X, Y, F (X)) over the joint probability of X and Y (B. Scholkopf, 2002):

R(F ) =
∫
C(X, Y, F (X))dP (X, Y ) (2.1)
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where the cost function is simply the cost of assigning pattern X a label F (X) where

the true label is Y . Many standard cost functions exist and the particular use of

one depends upon the scenario in question. If all mistakes carry an equal weight and

correctly classified points have no penalty, then the zero-one loss function can be used

(B. Scholkopf, 2002),(Burges, 1998):

(2.2)

Z(X, Y, F (X)) =


0 F (X) = Y

1 F (X) 6= Y

The zero-one loss function is equal to 1 for incorrectly classified points and 0 for

correctly classified points. Therefore all points have equal weight and only the fact

that they are misclassified is important.

A common assumption in such a problem is the previous data is independently

drawn from an identical underlying distribution P (X, Y ). If P (X, Y ) is known ahead

of time or can be accurately approximated, then it is possible to classify the incoming

data using Bayes rules. Assuming that the zero-one loss rule is used (every mistake

is equally as costly and carries the same penalty), then the risk is minimized by

assigning pattern Xnew the label Yi which maximizes the probability (B. Scholkopf,

2002) :

G(X) = Yi|maxP (Yi|Xnew) (2.3)

where :

P (Yi|Xnew) =
P (Yi)P (Xnew|Yi)

P (Xnew)
(2.4)

However the underlying distributions are rarely known a priori. The goal is then

to find a function F (X) such that F : X 7→ Y . Ideally the desired F (X) will
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correctly classify all future data. In practice, this is generally impossible due to noise

or overlap of the underlying distribution, and limitations on a function’s ability to

classify data. The best that can be accomplished is to find F (X) that minimizes the

risk of classification.

It is the realm of machine learning to take previous examples of inputs and labels

(X,Y) and use this previous data to develop a method to classify new inputs with a

label Ynew that minimizes the total risk without knowing the underlying distributions.

Several algorithms exist in order to either estimate the distribution, or minimize the

risk through training data. Since the probabilities are unknown, a bound on the risk

is all that can be found.

Re-examining the example presented earlier, a classifier can be trained with the

given data. This data then becomes the training set in supervised learning. For the

training set, all the labels are correctly known ahead of time for their given inputs.

Presented in Figure 2.3 are two examples of classifiers each with a different linear

decision boundary.

The two classifiers presented above classify the data differently and it is clear that

the second classifier correctly classifies more data. Intuitively this would be the better

classier, all else being equal. The risk associated with the training set is referred to

as the Empirical Risk (Burges, 1998),(B. Scholkopf, 2002). This is defined as:

Remp(F ) =
1

n

n∑
i=0

C(Xi, Yi, F (Xi)) (2.5)

which is the average value of the cost function on a particular set of training data,

given a classifier F (X). The Empirical Risk is a measure of how well the classifier

performs on the training data. It is an approximation of the test risk, when the
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Figure 2.3: Two examples of linear classifiers for data presented in Figures 2.1a). b)
correctly classifies more points than a)

probability is estimated from the training set. One way to attempt to minimize the

total error is to minimize the test error.

However the empirical error is only an approximation and there are other effects

that need to be considered when dealing with classifiers of different complexity. It is

easy to construct an example such that given a training set (Xi, Yi) and a second set

of data (Xk, Yk) where a classifier predicts exactly F (Xi) = Yi ∀i and minimizes the

empirical error, but F (Xk) 6= Yk ∀k. An example of this is shown in the regression

in Figure 2.4. In one case the training data is fitted with a linear relation, and in

a second case with a sinusoidal function. Due to the distribution of points both

regressions fit the data exactly, however for no other values do they agree. Thus they

have successfully fit the data, but one is clearly wrong for all other values.

In statistical learning theory, a bound on the total risk can be found which is

the sum of two terms(Burges, 1998). As discussed earlier the first term is the risk
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Figure 2.4: Underlying structure can influence the data. Two regressions are shown
for the data in this feature space. Both regressions are exactly correct on the training
data but both are clearly not right and predict very different future values

associated with the ability to classify the training set, namely the empirical risk

(Remp). Thus one way to reduce the total risk is by minimizing training error by a

classifier of the same complexity. This makes intuitive sense as a function that has

a small training error would probably continue to explain new data correctly, while

one that cannot classify the training set would likely not generalize well to new data,

all else being equal.

As shown above, this does not guarantee that a classifier approximates the un-

derlying model. In fact, as shown in Figure 2.4, this can lead to disastrous results if

this were to be the only criteria for selecting a classifier. When selecting classifiers,

it is important to select one that has the right power or complexity that matches the

underlying model. However the model is rarely known and thus a bound on the total

risk is sought.
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The bound for the risk is :

R(f) ≤ Remp(f) +

√
h(log(2m

h
+ 1)− log(η

4
)

m
(2.6)

which holds with probability of at least 1−η (Burges, 1998),(B. Scholkopf, 2002) and

h < m, where m is the dimension of the classifier f . The second term is a complexity

term. It is proportional to h which is a non-negative integer that can be thought

of in some respects as a measure of the complexity of the classifier. This h is the

VapnikChervonenkis (VC)(B. Scholkopf, 2002) dimension of a classifier. It represents

the complexity or power of a classifier to separate data. A high VC dimension allows

a classifier to separate large amounts of data in a fairly complex arrangement but

will have a large probability to overfit the data unless a classifier of such complexity

accurately fits the underlying model. Classifiers that have a small VC dimension

cannot divide complex data but will be less likely to overfit.

2.1.2 Shattering

A more formal definition requires the notion of shattering. A learning machine is said

to shatter n points if for all possible sets of labels (Xi, Yik) all points can be correctly

labeled for all sets k. An example is shown for a line in R2 with three points in Figure

2.5. All configurations of labels can be learned with 100% success rate by a linear

classifier. However there are examples using four points, for which there is always one

set of labels such that at least one point must be misclassified. The VC dimension for

a machine is then just the maximum number of points a machine can shatter for a

particular dimensional vector. For the case of a line in R2 the VC dimension is then

three.
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Figure 2.5: All 8 possible labels are shown for 3 points and how they can be classified
with a linear classifier.

Therefore it makes sense to choose a classifier with a small VC dimension while

still correctly classify the training set. Vapnik (Vapnik, 1998) has shown that for a

linear classifier the VC dimension of the classifier decreases as the margin (distance

to the closest points) of the classifier is increased if certain criteria are met (Burges,

1998).

2.2 Support Vector Machines

2.2.1 Hyperplanes

A hyper plane is an N dimensional generalization of a plane in R3 and a line in R2. It

is defined by the characteristic of being linearly dependent in each dimension. That is

to mean that every dimension appears linearly in its equation. The general equation
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for a hyperplane is:

a1x1 + a2x2...anxn + c = 0 (2.7)

which can be succinctly written using a normal vector w and the distance to the plane

from the origin. The normal vector is a vector perpendicular to the hyperplane and

defines a family of hyperplanes, while the distance uniquely defines the plane in that

family:

wTX + b = 0 (2.8)

To classify using a hyperplane in a binary classification problem, the hyperplane is

used to divide the space into two regions. Each of these regions corresponds to one of

the two classes. Everything on one side is assigned a negative value and on the other,

a positive value. The choice of sign is arbitrary and can easily be switched simply by

multiplying through by −1. The classification is then simply to find which part of the

space the feature vector is on. This is accomplished, for an unknown feature vector,

by taking the dot product with the normal of the hyperplane and adding the bias.

This gives the distance along the direction of the normal (the shortest path to the

hyperplane). Then the sign of this result will tell which side of the space the input

feature vector is on. Mathematically this can be represented as:

Y = sign(wTX + b) (2.9)

2.2.2 Maximum Margin Hyperplanes

The question still remains as to which hyperplane to use. Justifications have been

stated for using hyperplanes and how to classify with the result but do not include
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an algorithm to find a hyperplane which will act as a classifier.

One way to do this is to find a hyperplane that maximizes the margin. The margin

is the perpendicular distance from the closest feature point to the hyperplane in both

directions. By maximizing the margin, small errors in the feature vectors’ positions

will not result in a large change in the hyperplanes location. Since the maximum

margin is desired, this can be formulated as an optimization problem. In certain

forms, optimization problems can be solved quickly and can be guaranteed to be a

global maximum. It is assumed that the data is linearly separable for this derivation,

and the derivation will be generalized to non-linearly separable cases later on in this

chapter. To maximize the margin, the problem can be formalized mathematically

as an optimization problem in terms of the normal vector w. As mentioned earlier,

to classify a point, the dot product with w is taken and the bias added in order to

determine the sign. If the value is positive it is one side, and negative if it is on the

other:

wTX + b (2.10)

Two additional planes can be defined, which will be referred to as the positive and

negative planes. These planes are parallel to the hyperplane and intersect points that

are closest to the hyperplane in the dot product sense. For mathematical simplicity,

the distance to these planes can be forced to be -1 and +1 for the positive and

negative plane respectively. Any value greater than or equal to 1 could be used, but

it is mathematically convenient to use -1 and 1. Taking one point on each plane (X−

on the negative plane and X+ on the positive plane) that both lay on a line defined

by the normal vector, w, and evaluating the classifier:
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Figure 2.6: Two parallel plane next to the hyperplane

wTX− + b = −1 (2.11)

wTX+ + b = +1 (2.12)

The margin, M , is simply the distance between these two planes. This can be found

by taking the difference between the two vectors and taking the vector norm. The

margin can be found as:

|X− −X+| = M (2.13)

since these points lie on the same line, and the vector defining this line is w, one point

can be expressed as the first point plus a multiple of the w.

X+ = X− + λw (2.14)
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where lambda is an unknown multiple. To find the margin in terms of w, Equation

2.12 can be combined with Equation 2.14 to give:

wT (X− + λw) + b = 1 (2.15)

wTX− + b+ λwTw = 1 (2.16)

but wTX− + b = −1:

−1 + λwTw = 1 (2.17)

λ =
2

wTw
(2.18)

The margin can be written in terms of w by using Equation 2.13:

M = |X+ −X−| = |λw| = 2|w|
wTw

=
2√
wTw

(2.19)

This allows for the margin to be expressed in terms of w. Since margin is inversely

proportional to w, it can be maximized by minimizing w while requiring all points to

be labeled correctly. This can be expressed mathematically as:

minimize:

1

2
wTw (2.20)

subject to:

yk.(w
TXk − b) ≥ 1 ∀ k (2.21)

using Lagrange multipliers, αi this can be written in the primal form as:

Lp =
1

2
||w||2 −

∑
αiyi(w

TXi − b) +
∑

αi (2.22)
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2.2.3 KKT and Optimization

The Karush Kuhn Tucker conditions is a set of conditions in non-linear programming

that are necessary for a point to be an maxima point (B. Scholkopf, 2002). In convex

optimization they are not only necessary but sufficient for a point to be a maximum.

The maximum-margin hyperplane problem is a convex problem, and there is guar-

anteed to be one minimum at which the KKT conditions will be satisfied. The KKT

conditions for the maximum margin hyperplane derivation above can be stated as

(B. Scholkopf, 2002):

∂

∂w
Lp = w −

∑
αiyiXi = 0 (2.23)

∂

∂b
Lp =

∑
αiyi = 0 (2.24)

yi.(w
TXi − b)− 1 ≥ 0 ∀i (2.25)

αi > 0 ∀i (2.26)

αi(yi.(w
TXi − b)− 1) = 0 ∀i (2.27)

Equation 2.25 is a condition that every point must be correctly classified, and falls

either outside or on the positive or negative hyperplane. Equation 2.26 is required;

otherwise the minimization could be accomplished by sending the values to negative

infinity.

The last condition (Equation 2.27) requires that either the corresponding multi-

plier be equal to 0 or else yk.(w
TXk − b)− 1 = 0. However if yk.(w

TXk − b)− 1 = 0,

then Xk must lie on the either the positive or negative hyperplanes. Thus only points

that lie on the margin will have non-zero Lagrange multipliers. The solution to this
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Figure 2.7: Final hyperplane and the support vectors

problem has the form:

w =
n∑
i=0

αiYiXi (2.28)

However, this sum only needs to be over the non-zero terms. Only the vectors that

lie on the margin will be included in the sum. These vectors are referred to as the

support vectors and they uniquely define the hyperplane.

Once w is determined the bias, b, can be determined from the support vectors

using the fact that yk.(w
TXk − b)− 1 = 0. In practice, this is usually taken either as

an average over all support vectors or determined using the support vector with the

largest αi (Burges, 1998).
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Figure 2.8: This data is non-linearly separable due to the overlap of the two sets of
points. This data set will cause the previous derivation to fail since no solution can
satisfy all constraints

2.2.4 Non-Linearly Separable Data

This derivation only works due to the assumption that the data is linearly separable.

It is easy to see if the training data would be similar to Figure 2.8, then there will be

no w such that yk(w
TXk − b)− 1 ≥ 0 is true for every point.

The assumption of being linearly independent is not always a practical assumption

due to several factors. Noise in the measurements can result in the feature points not

being in their true location, which can cause the data to become linearly insepara-

ble. In addition, the underlying distribution may have a highly non-linear boundary,

resulting in features that are not linearly separable by construction.

To deal with features that are not linearly separable, a similar derivation can be

constructed as for the linearly separable case. The main difference is that a cost
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function, C(X, Y, F (X)), for each error needs to be introduced and added to the

function to be minimized. By adjusting the cost function, the weight of errors can be

adjusted.

If the zero-one loss function is used, then the problem can be formulated as:

1

2
wTw + C

∑
Z(Xk, Xk, F (Xk)) (2.29)

where F (Xk) is sign(wTXk + b) and C is the cost associated with misclassifying a

point.

The problem with this formulation is that it cannot be expressed as a quadratic

programming problem and all errors are handled the same, regardless of the amount

of misclassification.

To combat this issue, the hinge loss function can be used instead. The hinge

loss function is defined as 0 for correctly classified points and increases linearly for

misclassified data, proportional to the degree misclassified.

(2.30)

H(X, Y, F (X)) =


0 F (X)Y > 1

1− Y F (X) otherwise

where F (X) is wTX+b and real valued. By adding slack variables ζk which are equal

to H(X, Y, F (X)) (as shown in Figure 2.9), the goal now is to minimize the function

(B. Scholkopf, 2002):

1

2
wTw + C

∑
ζk (2.31)
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Figure 2.9: Using a slack variable, the requirement can be eased such that every point
must be classified correctly. It now becomes a problem of minimizing the normal
vector,w, and the slack variables

subject to the constraints:

yk.(w
Txk − b) ≥ 1− ζk (2.32)

ζk ≥ 0 (2.33)

The first constraint is similar to the constraint in the original construction of the

problem, except the error term is subtracted from the constant. Thus it is propor-

tional to the amount of misclassification of that particular feature vector. Since these

terms appear in the minimization problem, the ideal value should be 0, unless they

are required because the points are misclassified.

The second set of constraints is required, otherwise the ζk can be sent to negative

infinity to minimize the problem. This changes the final condition of the KKT criteria
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to be:

0 < αi < C (2.34)

This helps the problem by limiting the effect of any one feature point on the posi-

tion of the hyperplane so that mistakes can be accounted for. This new formulation

requires an additional N constraints where N is the number of feature vectors in the

training set.

2.2.5 Kernel Functions

Despite the ability to deal with data that has some overlap, there are still examples

where these derivations cannot be applied, or their results are meaningless. These

are cases where the data, by construction, has a boundary that is highly non-linear.

A simple 1D example of this is shown in Figure 2.10 where one group of features is

surrounded by another in a non-linear fashion.

This can be dealt with by allowing non-linear basis functions in the construction

of the optimization problem. This is equivalent to projecting the data into a new,

higher dimensional feature space where the goal is that the data will become linearly

separable in the new space. By applying a quadratic mapping to the points of Figure

2.10 the data becomes linearly separable as shown in Figure 2.11. The new dimension

is simply the square of the distance from the origin. It is important to note that no

additional information is created; the new dimensions are determined purely based

on the existing data.

Thus by applying a mapping Φ(X) which maps X onto an M>N dimensional fea-

ture space, non-linearly separable data now becomes separable. The only constraint

on Φ(X) is that the dot product in this space must exist. Thus the formulation is
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Figure 2.10: Data can be arranged in 1D to be non-linearly separable. There is no
meaningful linear classifier for this data

identical, except every vector is now mapped onto this space. The set of constraints

yk.(w
TXk − b) − 1 ≥ 0 become yk.(w

TΦ(xk) − b) − 1 ≥ 0 instead and the solution

takes the form:

w =
∑

αiYiΦ(Xi) (2.35)

To classify a new pattern Xnew, the equation becomes:

Ynew = sign(
∑

αiYiΦ(Xi)
TΦ(Xnew) + b) (2.36)

Although this approach has allowed for non-linear data to be separated, it has come

at a great cost. The new dot products are M dimensional which requires M oper-

ations. In practice the number of dimensions M will be much greater than the the

original dimension of the vector, N. This can be demonstrated for a simple polynomial
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Figure 2.11: By allowing non-linear basis function the previous data now become
linearly separable. No new data was added; the data is merely projected into a new
higher dimensional space

mapping.

For an N dimensional vector X, let the mapping Φ(X) be defined as:

Φ(X) = [1, x1, x2, x3...xn,
√

(2)x1ẋ2....x1
2, x2

2...xn
2] (2.37)

For this simple quadratic mapping, there are still N linear and square terms but

now N2 cross terms of the form
√

(2)xixk. The computation of the dot product in

this space is now O(N2) instead of O(N) previously. This makes directly calculating

the mappings time consuming and quickly becomes infeasible for increasingly larger

vectors.

The goal is to find kernel functions K(X1, X2) = Φ(X1)
TΦ(X2). In this way

no mapping is explicitly done, but is instead implicitly done in the kernel function.
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For the example presented above with the polynomial basis function, an appropriate

function would be K(X1, X2) = (XT
1 X2 + 1)2. The main difference between these

two functions is the number of operations, but the results are equivalent. With the

explicit mapping, it takes O(N2) to perform the dot product, while with the kernel

function the computational complexity is still only O(N). The kernel function can

also map vectors into much larger dimensional space, or even infinite dimensional

spaces. Some common kernel functions are presented below in Table 2.1:

Polynomial K(X1, X2) = (XT
1 X2 + 1)k

Radial Basis Function K(X1, X2) = e−γ||X1−X2||

Hyperbolic Tangent K(X1, X2) = tanh(κXT
1 X2 + C)

Table 2.1: Common Kernel Functions

2.2.6 Support Vector Machines and Computer Vision

Support vector machines and classification pattern recognition algorithms in general

are best suited when a descriptive set of features is known but the variation in the

features is only vaguely understood or difficult to express numerically. Instead of rely-

ing on an algebraic thresholding for features, SVM relies on past data to classify new

data. Another key for the successful use of classification algorithms is the abundance

of consistent past data which clearly illustrates the variation within a feature set.

This is the case with many computer vision problems, where there are several ex-

amples of previous data but where exact numeric thresholds are difficult to establish.

One classic example of this is optical character recognition (OCR) (Chanda et al.,
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2007) (Chen et al., 2001). Where it is difficult to numerically describe all the vari-

ations of what a nine may look like when handwritten, it is instead much easier to

produce many examples to train a classifier on.

This is well suited for the problem of classifying PET and Polycoat containers.

Each container type has a characteristic set of pixels that make up the image. Images

of PET containers are made up of predominantly black pixels, while Polycoat con-

tainers show a large degree of variation in pixel intensities. However it is difficult to

quantify exactly what this means consistently. PET bottles can have labels which will

increase the variation of pixel intensities, and Polycoat containers can have regions

with black or with bright reflections which make thresholding difficult.

However examples images are relatively easy to obtain, and can be used to train

a classifier. These factors make this problem ideally suited for a machine learning

algorithm. A feature is known that can distinguish the two container types, which is

difficult to express numerically, but where many past examples are available.

2.3 Field Programable Gate Arrays (FPGA)

Field programmable gate arrays (FPGA) are essentially a reconfigurable integrated

circuit that allow for the construction of custom digital circuits by programming the

interconnection of smaller logic blocks. Starting off as mere glue logic chips, FPGAs

are now used as standalone embedded systems often for real-time performance and

even replacing ASICs (Application Specific Integrated Circuits) in areas with lower

volume sales. The main feature of an FPGA over ASIC is the reprogramability that

allows updating with firmware.

Figure 2.12 shows the simplified architecture of an FPGA. The basic element of
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Figure 2.12: Typical FGPA architectue with logic blocks, I/O, and interconnects

an FPGA is the logic element (LE). These are the building blocks of all the logic

circuitry. In general, a logic block consists of a few logical elements. The logic

blocks are connected by programmable interconnects, which connect the logic blocks

together in such a way to form the desired output. These outputs then can be routed

to various I/O blocks to communicate to the external world.

In most modern FPGAs, logic elements contain one or more LUTs (Look Up

Table) that can be programmed to implement any logic function provided the LUT

has enough inputs. Figure 2.13 shows how a typical LE looks in Altera Arria II FPGA.

These LEs have eight inputs to two separate four-input LUTs, although a variety of

configurations are possible. The outputs of the logic element can be programmed to

be either buffered in a flip-flop, to provide sequential logic circuits, or to be taken
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Figure 2.13: Typical LE configuration in an Altera Arria II GX device

straight out of the LUT for combinational circuits.

To create complex logic circuits, the LEs are connected via programmable inter-

connects. The contents of the LUTs in the LE and the connections between LEs are

controlled by SRAM cells which are programmed by downloading a bit stream into

the device. The bit stream is generated by compiling an HDL (Hardware Description

Language) description of the desired behavior. The compiler will attempt to minimize

area and maximize speed as much as possible.

In addition to LEs and their connections, modern FPGAs have many additional

features. Often a small subset of the total LEs can be programed to provide ad-

ditional functionality such as predefined arithmetic circuits or additional memory

blocks. Prefabricated dedicated hardware blocks can provide often used functionality
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for less space and faster clock speeds then can be made by connecting LEs. Typically

100s - 1000s of hardwired multipliers are provided to perform quick multiplications

and are implemented with commonly used DSP functionality. Large prefabricated

multi-port memory blocks that can be used for fast on-chip storage that can in the

100s of Kb to 10s of Mb range.

By allowing for custom circuits to be implemented in the FPGA fabric, many

types of computations can be sped up by incorporating large degrees of parallelization.

Common strategies for speeding up algorithms can take advantage of the nature of

the computations required, and implement several concurrent calculations to happen

at once. Often algorithms can be implanted in stages which are independent from

each other further increasing the number of computations performed in a given time

period.

The overall computational ability of an FPGA can be measured in number of

hardware blocks consumed. It is desirable to consume the least possible amount of

area while still meeting throughput requirements. In general, the speed of a block

and its size are inversely related. It is possible to create fast blocks that make many

computations in parallel but take up a large area, while creating a circuit that per-

forms the exact same calculations in more clock cycles will in general be smaller.

Thus there is a design trade-off between speed and area.

A main drawback of using such devices is the limited ability to use floating point

arithmetic. New devices are showing more custom blocks to deal with this disad-

vantage but floating point arithmetic is still much slower than the fixed point com-

putations within FPGAs. This means designers are often forced to use fixed point

computations to be able to obtain the highest speed up. Often this limitation can
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be overcome by the use of appropriate scaling; however in applications requiring a

large dynamic range, the lack of floating point compatibility can be a significant

disadvantage.

2.3.1 FPGAs in Computer Vision

The use of FPGAs in computer vision is well documented. (MacLean, 2005) studied

the effectiveness of using FPGAs in embedded vision systems, and concluded that

they were a promising technology. It was also noted that the main problem were the

fixed point algorithms, design tools, and device sizes. All of these improve with time,

making the case for FPGAs stronger as time goes on.

There are several common traits of computer vision problems that lend themselves

well to parallel computations and FPGAs specifically. The first is the large amount of

data that needs to be processed when dealing with images. Secondly, many computer

vision algorithms tend to be divided into stages, where low-level data is translated

in to a higher level, such as taking raw pixel data and translating it into facial data.

Finally, there is often a need for real time processing in many systems.

Practically all computer vision tasks start with the examining of an image or

a set of images. An image represents a large amount of data to process, usually

hundreds of thousands to millions of pixels. Each pixel or neighborhood of pixels

is often subjected to the same set of operation which can be done in parallel with

each other. This is especially true for so called low-level tasks such as edge detection,

filtering, and thresholding. This is ideally suited for hardware implementation and

can greatly simplify logic circuits, due to the lack of complicated control logic as the

same operations are repeated.
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Many algorithms, as described above, can be easily pipelined. Often low-level

computer vision tasks are used as preprocessing for higher level ones. The higher level

tasks can operate on the output from lower levels as it becomes available allowing

for the two stages to operate independently which allows for a significant speed up

in computation time. Additional levels of parallelism can often be found within the

various stages of an algorithm.

In (Goshorn et al., 2010) an FPGA implementation of a parts-based object recog-

nition system is presented that demonstrates many of the features mentioned above.

For low level extraction of candidate parts they first start with a simple Harris-corner

detector. From the corners, windows are extracted and are compared against refer-

ence windows for each part. Once all the parts are identified each part votes to where

the object is located. This shows the heavily pipelined nature of the algorithm. In

addition many stages of the algorithm exhibit large degrees of parallelism such as

computing the SAD (Sum of Absolute Difference) of each window with the reference

part. By doing this, a 266 FPS realization of their algorithm was achieved.

Lastly many applications require that data be processed in real-time such as in

navigation, visual-servoing, and many industrial inspection techniques. By using the

parallel nature of FPGA real-time performance can be obtained in a relatively small

package often with a small energy foot print.

Sorting of Polycoat and PET containers using visible light cameras will have

many of these properties. As a system there are many vision functions that need

to be performed. The containers need to be extracted from the image and then

classified using an SVM. SVM themselves have many aspects that lend themselves

nicely for parallel computation. Since the goal is to sort as fast as possible, an FPGA
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implementation is a natural choice.

2.4 Chapter Summary

Chapter 2 introduced the concepts of pattern recognition with the specific example

of an SVM and described in detail what an FPGA is and how they are used for

fast computation. It was shown how machine learning algorithms like support vector

machines can be used in computer vision tasks, and why they are suitable for the

problems dealt with in this thesis. A brief introduction to FPGA and their archi-

tecture was also presented. Examples of previous computer vision work that have

taken advantage of FPGAs were presented, and the current sorting task is naturally

adapted to this style of implementation.

Chapter 3 describes the exact details of the algorithm and the hardware imple-

mentation. The algorithm is broken down into several sections, such as background

removal and classifications, and each subsection is explained. The implementation

of the algorithm in hardware is then presented. Each of the major blocks and their

functionality are demonstrated.
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Chapter 3

Algorithm Overview and Hardware

Implementation

3.1 Introduction

This chapter introduces the inner workings of the algorithm. Each major section of

the algorithm is explained in detail as well the general intuition behind the approach.

The FPGA implementation is also described. Descriptions are given of how the ma-

jor algorithmic functions are translated into hardware and the low-level interactions

between hardware blocks. Parts of this chapter were published in the IEEE Inter-

national Symposium on Sustainable Systems and Technology (ISSST) (House et al.,

2011).

The goal of the algorithm is to be able to correctly and consistently locate and

classify containers in an unknown scene. The containers belong to one of two classes:

PET bottles or Polycoat containers. The PET bottles are predominately transparent

while the Polycoat are opaque. By illuminating the scene with a high power light,
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the reflective properties of the materials can be observed by the presence or absence

of specular reflections. Once the containers have been isolated from the background,

they are classified as a Polycoat or a PET container. In this chapter an overview of

the developed algorithm and its implementation in an FPGA are demonstrated.

The proposed method for segmentation of the containers starts with the division

of the image into many non-overlapping equally sized blocks. A histogram of pixel in-

tensities is constructed from the pixels contained within each block. These histograms

are used to differentiate between blocks that contain background pixels and those that

contain container pixels. The non-background blocks are grouped together based on

similarity to form regions with similar histograms. The histogram over the entire

region is used to classify the region as either a PET bottle or a Polycoat container.

An FPGA is used to accelerate the algorithm to allow maximum throughput of

image data and real time performance. There are many aspects of the algorithm that

can be implemented in such a way as to exploit the parallel nature of computations

on an FPGA. The first is the ability to break the algorithm in an efficient pipeline

structure. Each stage operates independently and in parallel of the previous block. By

stretching out the pipeline many calculations can be performed at once. In addition

many independent calculations can be trivially performed in parallel to increase speed.

3.2 Experimental Setup

The experimental setup consists of a high speed GiG-E Vision camera that images the

containers against a black cloth background as shown in Figure 3.1. The black back-

ground is used to aid in the segmentation process and transparency measurements.

A 300W work light provides intense intense illumination to create many specular
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Figure 3.1: Experimental Setup (PC not shown)

reflections. The amount of specular reflections, and correspondingly the amount of

white pixels, is an indicator of the reflectivity of the package. The images acquired

are sent to the PC using Gigabit Ethernet. This allows for a frame rate of up to

120FPS for a 640×480 image. The image data is streamed to an FPGA daughter

card for processing via the PCI-E bus. The FPGA daughter card has an Altera Arria

II GX device where the data is processed and the results are returned to the PC via

the PCI-E bus.

3.3 Algorithm

An overview of the proposed algorithm is shown in Figure 3.2. There are four main

sections to the algorithm: Histogram Construction, background removal, Region

Growing, and Region Classification. Histogram construction divides the image into
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small blocks and the histogram of each block is constructed. Blocks are determined to

be part of the background by using a linear SVM, trained on background histograms.

Region growing joins together non-background blocks based on the similarity of their

histograms to form regions that are likely one type of container. Finally each region is

then classified based on it histograms and assigned to one of the two container types.

The proposed method of classifying bottles uses the histogram of pixel intensities

of black and white images. Histograms provide many ideal properties that make

them well suited to the task of classifying different containers. Since the recyclables

can arrive in any condition at an MRF, a desirable feature of the histogram is the

robustness against transformation in scale, size, rotation and deformation. Even

under extreme transformation, deformations and small amounts of occlusions the

histogram of an object is very repeatable.

Histograms provide a large dimensionality feature vector that can be scaled for

a balance between computational cost and accuracy. For an 8 bit greyscale image,

the histogram has 256 (28) dimensions. By reducing the number of dimensions, a

reduction in the overall computation effort can be achieved, at the expense of accuracy.

By only using the first most significant n bits, the dimensionality is reduced to 2n.

Histograms are useful because it allows for an indirect method of measuring the

optical properties of the two materials. Since the PET plastics are in general much

more reflective and provide more reflective surfaces, specular reflection shows up as

bright white areas. However PET is also transparent, and by using a black back-

ground, most of the pixels of a PET bottle are imaged as black. Polycoat containers

on the other hand are in general opaque and end up with a histogram that is more

spread out in the central regions. Two histograms are presented in Figures 3.3 and
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Figure 3.2: Overview of Proposed Algorithm
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Figure 3.3: Typical Polycoat container and histogram

3.4:

The PET histogram has a large spike in the black regions, which is the background

showing through the transparent PET bottle. There is also a much smaller peak at

high intensities which correspondent to the specular reflections, and very few pixel

counts in the central regions. The Polycoat container histogram has a much more

spread out histogram in the central pixels with a much smaller peak in the black due

to some background pixels being included in the histogram at the boundary.

Although these properties hold globally over the two container types, there can

be much variation locally. Polycoat containers can exhibit specular reflections, which

contributes to a similar peak to PET bottles in the high pixel ranges. PET bottles

often have labels attached to them, which have very similar optical properties to

Polycoat containers.
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Figure 3.4: Typical PET bottle and histogram

3.3.1 Block Construction

Although globally the histogram details are well defined, locally it can be difficult to

determine which pixels belong to the background, and can be subsequently ignored,

and which are part of an object to be classified. For a Polycoat bottle the difference

is trivial and a simple threshold could be set. However for the PET containers this is

not the case. PET bottles are transparent and allow the black background to show

through. The transparent sections have similar intensity values as compared with the

background, meaning that a simple threshold will likely cause regions of PET to be

incorrectly labeled as part of the background. Figure 3.5 shows a close up on two

areas: one of a PET bottle, and the other is part of the background.

By examining Figure 3.5 it is apparent that the only indicator that this particular

region belongs to a PET bottle, as oppose to the background, is the presence of near-

by specular reflections. Thus the proposed solution is to sub-divide the image into

small N×N blocks and using the intensities contained within each block, to make a
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Figure 3.5: Enlarged Boundary Region of a PET Bottle. The red box contains similar
pixels to the blue box, the only difference is the presence of the specular reflection

decision as to whether or not it belongs to an object or the background.

The goal is to include regions that have specular reflections, with black pixels.

Blocks that are purely part of the background will have histograms which contain

mostly black regions, while those that have histograms with a significant peak at high

intensities will likely not be part of the background. These blocks will then contain

both black pixels and white pixels for the PET, while Polycoat containers have almost

no fully black pixels and are readily distinguishable from the background.

In addition to be being a way of aiding in removing the background, the block

construction acts as a method of data reduction. By only storing the histograms

of each block a significant savings on memory requirements can be obtained. For an

N×N block, there are a maximum of N2 pixels that belong to one bin of the histogram.

Therefore there are at most needed log2(N
2) bits allocated for each bin. If there are

nbits per pixel then there are a total of 2nbits bins. The total memory requirement to

represent a histogram is 2log2(N
2)2nbits . This compared to the original requirement

of N2nbit, a significant savings for even moderate N by reducing the number of bits

used to construct the bins.

In essence the reduction in data is due to the loss of spatial information. In a
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histogram only the pixel intensities are known, and not their distribution in space.

This is unimportant in the overall algorithm because the end result is to construct a

histogram over only a single bottle. Although the spatial distribution within a block

is discarded, the only fact that is relevant is which container is each block a part of.

This is addressed further on, the first step of which is to remove the background.

3.3.2 Background Removal

Background removal is accomplished by determining if a block is likely to be part

of the background or belong to a container. A block is classified as part of the

background based on the histogram. To remove the background, each block needs

to be classified as either a background block or a container block. Each individual

block is classified using a support vector machine trained against the background

and PET bottles histograms. Polycoat were not required because they are readily

distinguishable from the background, and their histograms were found to put them

far into the container sections whether they were included in the training set or not.

Using the histogram blocks constructed in the last section, each block is subject

to classification by using the SVM. The SVM used in background removal is trained

against blocks obtained from a background only image and a set of PET bottle images.

The background only image is an image with the same the lighting conditions, but

with no containers present. The same block construction method is applied to the

background only image to obtain histogram vectors of containerless blocks.

A sample of PET bottles was then chosen and the PET bottles are extracted using

a simply bounding box procedure. A Canny (Canny, 1986) mask is applied to each

image and the edge pixels at the extremes are identified. A bounding box is then
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applied and only pixels within that region are formed into the histogram vectors to

train the SVM.

Only PET bottles are used to form vectors of non-background examples, not Poly-

coat containers. This is because Polycoat containers very rarely have dark pixels in

them, and even then they are almost never the same intensity level as the background.

Using only the PET saves on possible support vectors and simplifies the calculations.

The output value of the SVM goes through one more filtering stage in order to fill

in holes caused by blocks that do not have many specular reflections in them, but are

close to blocks that do. An averaging 3x3 smoothing filter is applied to the output,

which averages the output of the SVM with its 8 closest neighbours. The output of

the filter is then used to classify the block where the standard check of the sign is

required.

3.3.3 Region Growing

Once the background is removed only blocks that are likely to be part of a container

remain. These blocks need to be further grouped into whole containers. This is done

by combining blocks that are similar in nature into regions. These regions will then

be used for the final SVM to determine what type of material the region is likely

made out of.

The method proposed is a modified version of the local variation as shown in

(Felzenszwalb and Huttenlocher, 1998). Each pixel is considered a node in a graph,

which is connected to its 4 nearest neighbours. The edge weights are based on the

degree of similarity to the pixels. Regions are constructed by finding subgraphs that

contain the smallest edge weights.
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Figure 3.6: Graph used in region growing technique. Each node N corresponds to a
10×10 pixel block, with edges connected to the four neighboring blocks. Each edge
has weight wij equal to the dot product between the histograms of node i and node j

In (Felzenszwalb and Huttenlocher, 1998), the difference between neighboring

pixel intensities are used to measure the similarity of two adjacent pixels. This thesis

uses a modification to this approach by considering the similarity of two blocks by the

value of the dot product between the block histograms. The change requires slight

modifications to the existing formulation because the difference in pixel intensities in-

creases as two pixels become more dissimilar, while the dot product of the histograms

decreases with increasing dissimilarity.

The first step is to consider each block as a node in a graph. Each node is connected

to its 4 nearest neighbors by edges. These edges have weight equal to the dot product

between the histograms of the connected block. The goal is to find subgraphs that

represent the minimum spanning tree of each region. Figure 3.6 shows an example of

such a graph constructed using 10× 10 blocks on a 640×480 image.

All the edges are created for each block, then are removed from the graph. The
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edges are sorted by value and added to the graph one at a time, starting with the

highest value. There are three cases when an edge is added to the graph:

1. When an edge is added between two nodes, where neither node is assigned to a

region. The two nodes are then assigned the next highest unassigned region number.

2. If an edge is added between a node within region i, but the other node is not

assigned to a region. The unassigned node is then added to region i.

3. If an edge is added between two nodes that are already assigned to two separate

regions Ri and Rj. The two regions Ri and Rj will be merged if:

w(Ecur) > min(T (Ri), T (Rj)) (3.1)

where w(Ecur) is the weight of the current edge (Ecur) that is being added to the

graph, and T (Ri) is a threshold function defined for each region as:

T (Ri) = wmin(Ri)−
k

|Ri|
(3.2)

where wmin(Ri) is the minimum similarity edge (the edge with the smallest weight

added to region Ri), k is a constant that is chosen to control the degree of merging,

and |Ri| is the number of nodes contained in Ri.

If the two regions are not merged then the edge is ignored. An edge is also ignored

if it is between two nodes that are assigned to the same regions. The parameter k is

chosen to control the size of the regions. While the number of nodes in a region is

small, the T (R) function will be dominated by the k term, allowing the merging of all

but the most dissimilar regions. As the number of nodes increases T (R) approaches

wmin(R), so only blocks that are as similar as the least similar edge will be added.
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3.3.4 SVM Training

All the support vector machines were trained using the LibSVM package (Chang

and Lin, 2001). To construct training images, individual containers were imaged and

a bounding box was used to segment the container from the background. These

histograms of the segmented containers were used as input to the training to classify

PET and Polycoat containers. For the background removal SVM, several images

of the background were taken and divided into blocks. These blocks were used as

positive background examples, while blocks taken from PET bottle images were used

as negative examples.

3.4 Hardware Implementation

The algorithm is implemented on an Altera Arria II GX development board. The

development board has embedded circuitry to interface to a computer’s PCI-E bus.

Image data is sent to the computer via Gig-E camera. Image data is sent to be

processed on the FPGA via the PCI-E bus. An overview of the FPGA architecture

is shown in Figure 3.7.

Image data arrives through the PCI-E express bus and is placed into a FIFO 8

bytes at a time. The image data is sent one line at a time starting at the top left

corner. A wrapper then extracts 8 bytes (8 pixel) per clock cycle and passes it onto

the block construction module. These are then serialized via a finite state machine

and sent off to the next stage for processing.

The Sub-Block Creation Module extracts the data from the serializer and builds

the histograms for one image line of blocks at a time. In parallel to block construction
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Figure 3.7: Overview of the FPGA implementation

is the background classifier stage. This stage classifies each block as either being part

of the background, or a container. Once all the blocks are created, and background

blocks removed, the blocks must be assembled into regions

3.4.1 Data Serializer

The Data Serilizer Module is part of the PCI-E interface. Data on the PCI-E bus is

sent to the FPGA cards in packets of 64 bits (8 pixels) at a time. A simple finite state

machine (FSM) parses the 8 pixels, and places them into packets which correspond to

one line of each block (N pixels for an N×N block). These packets are passed onto the

block construction module. A data available signal is used to signal the availability
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of a data packet. If the signal is asserted, then a data packet is ready, otherwise no

packet is present and the block construction is paused until data becomes available.

3.4.2 Sub-Block Creation

The data packet from the data serializer is broken up into individual pixels, and the

most significant n bits of each pixel are used to construct the histogram of each block.

All the data for one line of each block arrives in one packet, and is used to add to

the blocks histogram. The total number of clock cycles required to construct a block

depends the block size, since only 8 pixels values are available each clock cycle.

The pixel values are used to construct the histogram vector for each block. The

histogram vector is a vector where each dimension contains the number of occurrences

of each pixel value within the current block. For an n bit vector there are a total of 2n

values that a pixel can take. Thus there are 2n dimensions or bins in each histogram

vector.

Each histogram vector is stored in one location of a dual-port RAM, with a total

size of up to 256 bits per location. The entire histogram vector is stored in one

location of the RAM allowing it to be read out in one clock cycle for quick updating

and processing.

The most significant n bits of the pixel value are used as an address input to a

look-up table (LUT). Each LUT contains a bin vector. The bin vector has the same

dimensionality as the histogram vector but contains only a single one in the position

that corresponds to the pixel value e.g., if the input is 13, the one will appear in the

13th position, with all other values equal to 0.The histogram vector for a block is

then the sum of all the bin vectors corresponding to the pixel values in that block.
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Figure 3.8: Histogram Construction Hardware Implementation

Dual-port ROMs that are embedded in the FPGA are used for the look-up tables.

Dual-port ROMs are used because they allow for two values to be read out at once

and they are already implemented on the FPGA. For a N×N block, a total of N/2

ROMs are required to read out one line of a block at once. Each of the N bin vectors

that are read out are summed, and added back to the current histogram. This is

shown if Figure 3.8.

3.4.3 Background Classifier

The background classifier process runs concurrently to the sub-block creation. This

hardware module uses the second port of the dual port RAM used to store the his-

togram information for each block. The data is sent off to the SVM module for

classification and the result returned is used to classify the block. The real valued

output of the SVM is averaged by the surrounding block output values in order to

decrease the likelihood of a false positive on the background pixel.
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Figure 3.9: Background Averaging Filter

The filter is simply an averaging filter using the nearest 8 points surrounding the

block being classified. The filter block consists of three RAMs, that contain the real

valued classification results for a row of blocks. Each value is read out and is also

read into the next RAM. Once an entire row is finished, row n becomes row n-1 and

is already in the correct location. Since only the sign is important, the value does not

need to be divided by 9, thus saving hardware area. The hardware implementation

is shown in Figure 3.9.

3.4.4 SVM

The SVM classifier was presented earlier in Chapter 2. The main components of the

classifier are the support vectors. The dot product is taken between the input vector

and every support vector, multiplied by the corresponding Lagrange multiplier and
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Figure 3.10: Block diagram of the SVM module

the result is summed together.

Figure 3.10 shows the overview of the SVM module. Each dot product is performed

independently. Results are multiplied by the corresponding α, and accumulated for

classification. The only limitation is the speed at which the support vector can be

fetched from memory. For a small number of support vectors such as used in this

implementation, the fastest throughput can be obtained when the support vector

data is stored on-chip.

The SVM module accepts one vector and a signal to tell which set of support

vector to use, either those for background classification, or those for classifying PET

bottles from Polycoat containers. This input is simply used as a switch that selects

which half of the memory to use. The background classification values are stored in
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the lower half, while the recyclables classifier values are stored in the upper half of the

memory. The implementation is identical for the corresponding Lagrange multipliers.

An FSM is used for data control, which loops through the address space to read

out all the required data. Dual Port ROMs are used to increase available bandwidth,

allowing double the throughput of data. Two entire support vectors are read out at

the same time and are presented as input to the dot product module along with the

input histogram vector.

Once the result is returned from the two dot product modules, they are multiplied

by their corresponding Lagrange multiplier values and added to the cumulative total.

The Lagrange multiplier and support vector data are scaled by a factor of 216 to

allow for fast fixed point math, while still maintaining accuracy. For large amounts

of support vectors this error may accumulate, however the largest number of support

vectors observed for any classifier was no more than 30.

Polynomial kernel functions were also tested by applying the following to the

output:

(XTY + 1)d (3.3)

for various d. This was computed by successive multiplications of the result to obtain

the correct power. It was found that the number of bits required to accurately

represent the result slowed down the overall clock speed, and were not justified in

the marginal increase in classification results, especially for large d.

3.4.5 Dot Product Module

The dot product module accepts two vectors as inputs and returns the dot product

of the two vectors as an output. The summation of the dot product takes a total of
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Figure 3.11: Dot product hardware module

3 clock cycles, but the design is pipelined to allow input of new vectors every clock

cycle.

The structure of the module is straight forward and is shown in Figure 3.11. Each

dimension of vector A is multiplied by the corresponding value of Vector B. The results

of these multiplications are summed together in an adder tree with intermediate

storage to allow for pipelining.

3.4.6 Region Growth

The region growing module is the module that consumes the most time to process due

to its lack of parallelization. The region growth as described above takes the block

histograms and converts them into values based on similarities to the neighbour.

Similar regions are added together to form container regions.
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Figure 3.12: Block diagram of the region growing module

The first step is to use take the dot product between adjacent block histograms.

Because there are two dot-product modules from the SVM that are idle when the

Region Growth Module is active, they can be reused to save on resources. Dual-Port

RAMs are also used to facilitate the bandwidth require to keep both Dot Product

modules in use. The hardware module that performs this function is shown in Figure

3.12.

The results of the dot product are packed together with position information to

form a packet of data. The packet contains the position of the current block, which

direction the dot product (either to the right or down) was taken in, and the result

of the dot product which represents the edge weight. The first bit of the packet

determines direction, 1 indicating the dot product was between the current node and

the one below it, while 0 indicates that the dot product was taken between the current

node and the node to the right. The next 15 bits contain the block address of the

current block. The last 16 bits are used to store the edge weight information. Once

the edges are sorted by edge weight, the position information allows for determining
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Figure 3.13: Hardware Module that computes edge weights for region growing

Figure 3.14: Packet structure

the beginning and end node. The start node address is simply stored in the packet,

while the second address is start node address+1 if the first bit of the package is 0,

else it is first node address + number of blocks per line if the first bit is a one. The

structure of these packets are shown in Figure 3.14.

These packets are then sorted by edge value from highest to lowest. The method

used for sorting is a radix sort, which sorts data by iteratively grouping values by

examining individual bits, starting at the least significant and finishing at the most

significant. At each iteration of the sort, the data is arranged based on the current

bit. If the current bit is a one it is places ahead of all values that have a zero. In the

case of ties order is maintained from previous iterations.

The hardware implementation of the radix sort involves a Sorting RAM and a

Sorting FIFO. Values that have the current bit equal to one are read directly into the

RAM, while if they have a zero they are placed in the FIFO. Once an iteration is over
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Figure 3.15: Example Radix Sort

all the data currently located in the RAM is read out and placed accordingly (1-back

into RAM, 0- FIFO). Once all the data stored in the RAM is sorted, the remaining

edges in the FIFO are placed in the remaining address space of the RAM. To simplify

hardware, at each iteration the edge value is rotated to the right so only the last bit

is ever checked. At the last iteration all the sorted data is placed in the RAM. An

example radix sort is presented in Figure 3.15.

Once sorted, the values are ready to be grouped into regions. Edges are fetched

with the highest weights first. The location data are used to determine the location

of the two nodes and both nodes are read out at the same time. The regions are built

by the rules described earlier in this chapter. To assign a node to a region, the region

number is simply written to the address of that block in the Region RAM. To merge

two regions, the region RAM is searched through to replace all entries of the region
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to be replaced by the region that is taking over the blocks.

A second RAM is used to aid in region merging. This Region Information RAM

stores the first and last block of the region. This is used when regions are to be merged,

by allowing the search to start at the first block, and to terminate to early once the

last block is written. These values are updated every time a new node is added to

a region or two regions are merged. In addition this RAM stores the minimum edge

weight and number of nodes in that region for computing the threshold function.

After the regions are fully constructed the Region Ram is used to fetch all his-

togram vectors associated with a region number. These histogram vectors are added

together to form complete histogram vector for that region. This vector is renormal-

ized by dividing by the number of blocks in the region and then passed to classification.

Once classified the classification results and block numbers are returned to the PC

for each region.

3.5 Chapter Summary

Chapter 3 presented the algorithm and the implementation details. This showed how

using a novel background removing method that classified blocks of the images using

a SVM could be used to classifiy several containers at once. Blocks were assembled

into regions that were likely containers, and these were used to classify the regions.

The details of the FPGA implementation were also examined. The pipeline structure

of the algorithm lends itself well to this platform of computation.

The next chapter will examine the results of the presented algorithm on real

and synthetic image data. Throughput (frames per second), logic utilization, and

accuracy will be measured. Parameters that effect these quantities will be examined
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to determine optimal values to use.
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Chapter 4

Results and System Performance

This chapter examines the results for the algorithm presented in Chapter 3. Factors

that affect both the algorithm performance and the hardware implementation are

identified. The primary performance characteristics that were measured were recog-

nition rate, false positive rate, and throughput in frames per second. From a hardware

perspective, the primary concern is resource utilization in LEs, hardware multipliers,

and RAM blocks. These were examined by varying key algorithmic parameters such

as block size, k and the number of bins in the histograms. Parts of this chapter

were published in the IEEE International Symposium on Sustainable Systems and

Technology (ISSST) (House et al., 2011).

4.1 Implementation and Testing

The algorithm presented in chapter 3 was implemented in SystemVerilog, with the

accuracy and speed tested on an Arria II GX device and simulated using ModelSim.

A total of 38 Polycoat and 49 PET images make up the training set, while the testing
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set is made up of 17 Polycoat and 32 PET images. 500 images were generated in

MATLAB by using the extracted PET and Polycoat containers from the testing set.

To generate a test image, a random number of containers were selected to be added to

the image, evenly distributed between two and five inclusive. Each container that was

chosen to be added underwent a rotation and translation placing it at some part of

the new generated image. Small amounts of overlap between containers were allowed

to simulate items touching on a conveyor system. The background for the synthetic

images was the same background used to image the containers but with no containers

present. A small subset of the testing images is shown in Figure 4.1. The bottom

right image is the background which was used as the background in the synthetic

images and to train the background classifier.

These images were used as input to the ModelSim package, to simulate the hard-

ware implementation of the algorithm. During the simulation process only the algo-

rithm section was tested. To allow for quick simulation times only the outputs of the

PCI-E block function were simulated and interactions with the bus were not modeled.

4.2 Results

The parameters that provided the best performance were found to be a block size of

8× 8 using 5 bits to create the histogram, and using a k value of 0.2. This setup was

tested on an Altera Arria II GX device and simulated using ModelSim. The hardware

implementation’s resource utilization is shown below in Table 4.1.

The RAM required is the bottleneck for the FPGA implementation. It is the

highest used resource at 74.5% but can still fit successfully on the chip with a margin

of over 25%. The total logic elements (LEs) required to implement the design is only
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Figure 4.1: Example images
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ALMs 18-bit Multipliers M9K RAM Blocks
Total 17998 289 544
Precentage 18% 50.1% 74.5%

Table 4.1: FPGA resource utilization

18% of the total LEs on the device. This leaves room for additional logic that could

be implemented for increased performance or interfacing to peripherals in a real world

system, such as a bottle rejection mechanism. The design uses 289 of the 576 available

multipliers, with many still available for additional feature that could be added on.

Throughput was tested using 500 synthetically generated images. For the param-

eters given above, using 640×480 pixel images an average throughput of 85.27 FPS

was achieved. The worst case run time allowed was 12.8 ms corresponding to a fram-

erate of 78.12 FPS, while the best runtime of 11.0ms allows for a maximum framerate

of 90.13 FPS.

Figure 4.2a)-d) shows the results of the algorithm applied to various non-synthetic

images containing examples PET and Polycoat containers in various arrangements

and states of proximity. These images were sent to the FPGA daughter card for

processing.

Figure 4.2a) demonstrates for separated objects the region growing algorithm

produces accurate segmentation, without too much fragmentation of the regions.

Figure 4.2b) demonstrates the difficulty in finding certain bottles. The areas that

do not have many specular reflections tend to be classified as the background and the

label gets classified as a Polycoat container. Despite significant portions of the PET

bottle being segmented out or mislabeled, enough of the bottle is present such that

most of it is correctly classified.
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Figure 4.2: Results of the region growing method and classifier for several test images.
The first column shows input image. The second column contains the result of the
region growing (shade indicates region). The third column contains the result of the
classifier. White regions indicates PET bottles and grey regions indicate Polycoat
containers. This Figure is reproduced from work published in the IEEE International
Symposium on Sustainable Systems and Technology(House et al., 2011)

Figure 4.2c) demonstrates an example of a Polycoat and a PET bottle touching in

an image. Because the label has similar optical properties to Polycoat material, there

is a tendency for the region growing algorithm to merge the label with a neighbouring

Polycoat container. This can be controlled by decreasing k in the threshold function,

but this results in a fragmented segmentation. Despite the merging of the label with

the Polycoat, there is still enough information for the classifier to correctly identify

parts of the PET bottle. Figure 4.2d) demonstrates closely spaced Polycoat will in
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general be merged into one region.

The success rate of the classifier is shown in Table 4.2. The classifier is able to

successfully identify the material with an accuracy of just over 93%. The test data

consisted of 500 synthetic images with varying number and types of containers. An

object was considered successfully classified if the majority of the region contained

within the original image was correctly classified.

%
Correctly Labelled PET 92.15
Correctly Labelled Polycoat 94.19
Falsely Labelled PET 5.81
Falsely Labelled Polycoat 7.85
Average Accuracy 93.07

Table 4.2: Classification Results

Although this result is somewhat low compared with similar results from (Nawrocky

et al., 2010) , which can most likely be attributed to the extra segmentation that is

done, due to the nature of the problem and the high speed implementation of the

algorithm many passes could be allowed over the same bottles. As the containers

are identified, containers with a high degree of confidence could be ejected from the

conveyor and the remaining bottles could enter another round of classification or

possibly placed into the original stream for another pass at the sorting. Since one

of the primary causes of container misclassification is due to the overlap of multiple

containers, by making successive passes, fewer containers would be present at each

step, which would translate into better rejection rates in later stages. By operating

at high speeds, multiple passes over the containers could be done without sacrificing

throughput of the MRF.
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Figure 4.3: Simulation results with timing information for each section of the algo-
rithm

4.2.1 Timing

Figure 4.3 shows the results of a simulation with timing information for the different

sections of the algorithm. The runtime parameters are for an 8× 8 block size. From

the diagram the total runtime is 11.7 ms.

The histogram construction takes a constant amount of time, which is the total

time it takes to transfer the image from the PCI-E bus. Since pixel data is sent

eight pixels at a time from the PCI-E bus, for a 640×480 image the total number of

clock cycles to read in the image is 38400 or 0.307 ms with a 125 MHz clock. The

background removal is completed in parallel with the histogram construction and so

adds an insignificant amount of time in the order of 1000 clock cycles or roughly 0.008

ms.

The edge construction (see Figure 3.12) module is able to produce two edges every

clock cycle with a few lead in and lead out cycles for each row. The total time taken
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is then proportional to the number of blocks. For a block size of 8 × 8 there are

4800 blocks which takes approximately 0.039 ms. The radix sort time requirement is

proportional to the number of blocks required to sort. Since the total number of bits

used for the dot product result is 16, 16 passes over each edge is required to sort all

the values. The total number of edges to sort is proportional to the number of blocks,

which is proportional to the inverse of the square of the block size. In this example

the total time to sort the blocks is 0.124 ms which corresponds to 20% of the blocks

not being removed as background.

The region growing section is the most time consuming module and the run time

depends on the input to the region and is not a fixed quantity. The time grows as the

square of the block size. The total time taken in this run is 10.6 ms which is by far

the largest amount of time. The main reason for this time is the poor parallelization

of the region growing algorithm and the large amounts of memory accesses required.

4.3 Effect of Block Size

The block size affects many important aspects of the algorithm itself and the hardware

implementation. Its effects were examined by using the synthetic images of the testing

set. In genera,l by breaking the image into blocks the spatial data is compressed. For

large block sizes much of the spatial distribution of the data is lost, and results that

depend on accurate spatial information are degraded. Conversely, smaller blocks

preserve spatial data but only a small section of an image is considered at one time.

Results that require the consideration of larger areas, such as the region growth of a

very colourful Polycoat container, suffers.
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Figure 4.4: Input Image

4.3.1 Region Growth

Figures 4.4 shows an example input image and Figure 4.5 shows the effect of varying

the block sizes has on the region growth (left column) and classification results (right

column) using optimal k values.

For a block size of 5x5 pixels, the segmentation is very sparse with many disjoint

regions. This is due to the small block size only considering very local pixel intensities.

If the container has an area which is highly distinct from other regions then these

regions are in general not merged. As block size is increased, data is considered from

a wider area and the overall effect is larger regions. There is a much larger probability
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Figure 4.5: Results for block size 5x5,8x8,10x10,16x16, and 20x20
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Figure 4.6: The True Positive rate for classification of PET bottles for 3 different
histogram sizes

that a larger block will overlap dissimilar regions and contain pixels similar enough

to each of its neighbours that it will likely be joined to both of those regions.

As block sized is increased further, the regions become much larger. The extreme

of what is mentioned above, is that every region now has overlapping blocks and only

regions that contain very different pixels will not be merged. For a block size of 20x20

the region of the Polycoat milk container absorbs the label of the one PET bottle

and then merges with the entire second PET bottle. This does not happen for lower

block sizes.
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Figure 4.7: The True positive rate for classification of Polycoat bottles for 3 different
histogram sizes

4.3.2 Classification

Figures 4.6 and 4.7 shows how the classification accuracy varies with block size for the

two materials. For PET classification, the 8x8 performs best with the performance

falling off for both ends as block size deviates from this value. The falling off at

the larger sized blocks can be explained by the tendency for large blocks to group

together dissimilar regions. The works well when a PET bottle is not touching another

container. However, with large blocks, PET regions are much more likely to be merged

with neighbouring Polycoat regions, especially if a label is present.

For the 5×5 block size there are two main issues why the PET classification

rate drops: background misclassification and label regions. With small blocks the

region growth cannot merge dissimilar regions effectively. Since labels tend to look
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Figure 4.8: True and false positive rates vs. block size for background classifier

very different from the rest of the PET bottle, small block sizes often separate these

regions. For certain PET bottles this is enough to cause the majority of the region

to be classified incorrectly and register as a mislabeled container. The problem is

compounded when a PET label is touching a Polycoat container that has similar

characteristics to the PET label. The region is likely to be grouped together and for

large labels can result in complete misclassification of the region.

The other major factor that influences the high error rate for small block sizes on

PET bottles is the amount of background misclassification. The result of background

classification as a function of block size is shown in Figure 4.8. Small block sizes are

much more likely to incorrectly classify non-background blocks as background, while

larger blocks almost always classify them correctly. This is predominantly a problem
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Figure 4.9: Number of LEs Required vs. Block Size

only for PET bottles, as Polycoat containers rarely have sections on them with pixels

dark enough to resemble the background.

For Polycoat containers the correct classification rate increases with block size.

This is expected because larger blocks are likely to merge many regions together.

The histograms of Polycoat containers have their pixel intensities spread over many

values, so by merging many regions together, a regional histogram is formed that

tends towards resembling a Polycoat container. This results in a large bias towards

Polycoats for large block sizes, which can be seen in the decrease in correct classifi-

cations for PET bottles and a high false positive rate for Polycoat containers.
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Figure 4.10: The amount of embedded RAM required to implement the design vs.
block size. The red dotted line is the amount of RAM available on the Arria II GX
chip and thus anything over this value will not fit on the FPGA but can still be
simulated

4.3.3 Hardware Implementation

The effect of block size on the resource utilization of the hardware implementation

is presented in Figure 4.9 and 4.10. Each of these shows the different effects the

block size has on a particular hardware resource. The effect on the number of logic

elements required to implement the design is mostly independent of block size with

a slight increase for increasing block size. A jump is evident at the 20×20 block

size due to histogram vector requiring 9 bits to represent each dimension instead of

8 for smaller blocks. Similarly a slight reduction in logic elements is observed when

decreasing from 10×10 to 8×8 for the same reason. The slight variations of the logic
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element requirement could be explained by slightly larger multiplexers, adders, and

surrounding logic.

The number of logic elements required increases as the number of significant bits

taken to construct the histogram increases. This can be attributed to the amount of

histogram vector arithmetic that takes place. The construction of the vectors, the

support vector calculation, and the dot products all require the histogram vector to be

buffered and manipulated. A change in size of the vector directly affects the amount

and size of registers, adders and switching logic used in these operations. Using 6

instead of 5 bits results in a histogram vector that is 64 dimensional instead of 32.

Due to the large increase in the number of logic elements, this implies that most of

the logic elements are used in the histogram vector creation and manipulation. When

the number of significant bits is reduced from 5 to 4, a less dramatic change is noticed,

which implies that the histogram vector construction and manipulation is no longer

the dominating factor in the LE usage.

The on-chip RAM resource is one of the overall bottle necks for the FPGA im-

plementation. Large amounts of RAM are required for the implementation of the

algorithm in hardware due to the requirement that the histograms for each block be

stored on chip. In addition, RAMs are used to store support vector data, speed up

logic functions and act as FIFO in the sorting sections.

The RAM requirement for the different block sizes is shown in Figure 4.10. By

dividing the image into blocks, the effective resolution of the image is reduced by N

in each dimension for an overall reduction of N2. The diagram shows for implemen-

tations that require large amounts of RAM that this relation holds. However due to

the addition RAM required mentioned above the trend does not continue for large
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block sizes and the required number of RAM bits flattens out.

As with the logic elements, when the number of bits used to construct the his-

togram is increased, a proportional increase in overall RAM usage is noted. For small

blocks, the number of blocks to store dominates the RAM requirement. By increasing

or decreasing the number of bits used in the histogram construction (and thus dou-

bling or halving the vector size), a corresponding doubling or halving of the required

RAM is observed. This is what would be expected when the histogram vector storage

is the determining factor for the amount of RAM required. In the sections that are

relatively flat, changing the number of bits used to construct the histogram does not

have as large as an effect, which implies that the RAM that is being used for other

tasks makes up the most significant portion of the used RAM.

The red dotted line is Figure 4.10 shows the total amount of RAM contained in

M9K blocks on the FPGA. By using specially designed ALMs which can be converted

into RAM, all but the 5×5 block size with 6 and 5 bit histograms can fit on chip,

albeit at the expense of more LEs usage.

The on-chip RAM utilization could be greatly eased if off chip storage is used. In

general this would reduce the overall throughput as additional time would be required

to fetch the off-chip data. The exact effect would depend on memory access patterns.

4.3.4 Throughput

Lastly the block size affects the throughput of the hardware implementation. While

the histogram construction section takes approximately a constant amount of time,

the region growth sections and radix sort depends heavily on the number of blocks,

and thus the block size. Figure 4.11 shows the dependence of frames per second
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Figure 4.11: Frame rate vs. block size

and block size. Larger block sizes divides the image into fewer blocks, decreasing

the required amount of time spent in the region growing section, while more blocks

requires additional time spent.

The worst case performance, based on the region growing method growing the

whole image in the slowest way possible (contains the most merge), is shown in

Figure 4.11. Since the observed FPS follow a similar structure to the worst case

where the region growing method dominates, it is clear that this module is the main

bottle neck, and thus the main influence on the system’s frame rate.

The maximum combined accuracy of the classifiers is 93.07% using an 8×8 block

size. If a 10×10 block size is used a large gain in frame rate can be obtained. Current

the average frame rate is 85.27 FPS with the smaller block, but by using the larger
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Figure 4.12: Average accuracy vs. block size and number of histogram bits

block size the average frame rate increases to 127.86 FPS with a small decrease in

overall accuracy to 92.85%.

4.3.5 Overall Classification and Number of Significant Pixel

Bits

Figure 4.12 shows the averaged classifier accuracy, which is the total number of cor-

rectly classified containers divided by the total number of containers. The number

of significant bits used to construct the histograms has a significant impact on the

overall classification rate. All three histogram types have a peak at 8×8 block size,

which quickly decays as the block size is increased, except for the 6 bit histogram

which levels off and then decreases near the end. This is likely due to the increase
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in correct classification rate of the Polycoat, which makes up the difference when the

PET classification rate starts to fall at larger block sizes. In all cases the performance

of the classifier is significantly reduced by using 5×5 block size. This is because of

the poor segmentation that results from using this block size.

From Figure 4.12 it is clear that using more bits favours larger block sizes, while

smaller block sizes favour fewer bits used to construct the histograms. This is likely

due to the sparsity of the resulting histogram blocks. Having many dimensions makes

it harder for dissimilar regions to merge, because they will be even less like each other

in the dot product sense. This is a problem for large block sizes and would explain

why increasing the dimensionality of the histogram would mitigate the effect. Dis-

couraging merges actually helps large blocks form coherent regions instead of grouping

everything together into one giant region.

4.4 Effect of k

The parameter k controls the size of regions that are formed in the region growing

algorithm. A smaller value of k will create smaller regions that are similar in pixel

intensities, while a larger k value will allow regions to grow much larger with some

degree of difference within the region. Choosing the correct value of k is important

for accurate segmentation and classification.

4.4.1 Segmentation Results

Figures 4.13 shows which value of k produces the best classification results based on

block size. Several trends continue from the effects of block sizes on region sizes.
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Figure 4.13: Optimum k value vs. block size

Small block sizes produce small regions due to the number of blocks, and the limited

similarity to neighbouring blocks. To address this issue, k can be increased to allow

for more merges and decrease the number of regions. This allows for whole containers

to be grouped together instead of being fragmented and having a larger chance of

misclassification. Thus smaller block sizes need larger k to produce accurate results.

Large blocks have the opposite effect; they tend to group large regions together which

encompasses many containers. This has a bias towards Polycoat containers due to

the nature of their histograms. By decreasing k, the ability for the regions to grow

very large and diverse is reduced. This biases the results to smaller regions. This

trend appears in the data as the optimum k value is small for larger block sizes.

Figure 4.14 shows the effects on the classification results by changing the value

of k using a block size of 8×8. Note the results are similar for different block sizes,

as the results are similar in structure, just translated. From Figure 4.14 it is clear

that there is only a small range of k values that are useful for a particular block size.
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Figure 4.14: Recognition rate vs. k for an 8× 8 block size

Deviation from these ideal values results in a steep decline in classification rate which

is directly related to the quality of segmentation. Using a k value that is too large of

a block size will result in over segmentation, while a value that is too small results in

many separate regions.

4.4.2 Throughput

The value of k also weakly affects the throughput of the implementation. Since merg-

ing regions is a time consuming process in the hardware implemented, the amount

of regions to be merged directly affects the frame rate. Lowering k results in fewer

merges and thus a higher throughput is observed. The opposite is true for increasing

k, the throughput is decreased. These results are presented in Figure 4.15 which

shows FPS for different values of k vs. block size. From the graph it is clear that k

only weakly affects frame rate, and block size has a much larger impact.

95



M.A.Sc. Thesis - Bryan House McMaster - Electrical Engineering

Figure 4.15: Fps vs. block size for different values of k

4.4.3 Chapter Summary

The results of the algorithm’s implementation were examined. It was determined that

the highest classification rate was obtained when using a block size of 8×8, however

a block size of 10×10 has similar performance but is almost 50% faster on average.

Other block sizes were found to be not useful based on degraded performance, slower

speeds or increased logic usage.

The optimal number of bits to use for the histograms was the 5 most significant

bits. This results in a histogram that has 32 bins. Other values negatively impacted

the recognition rate and in some cases increased the logic utilization. The value of k

was found to be less important but had a very specific range that was useful in terms

of recognition rate. The k value was found to only weakly effect throughput and has

no effect on logic utilization.
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Chapter 5

Conclusions and Future Work

As the amount of recycling grows worldwide, the importance of fast and accurate sort-

ing of recycled plastics increases, to maintain high purity without sacrificing through-

put. This thesis addresses this problem by demonstrating a novel sorting algorithm

that can correctly identify the resin type over 90% of the time, and is able to run in

real time. It utilities a standard visible light camera and off the shelf components as

oppose to expensive specialized equipment often found in current sorting machines.

The algorithm presented is able to sort two container types: PET and Polycoat

containers. A linear support vector machine was trained to distinguish the two con-

tainer types using the difference in their optical properties. Both reflectivity and

transparency are used to distinguish the container, which is measured using the his-

togram of pixel intensities.

This work extends previous work in this area by allowing multiple containers to

be imaged at the same time. By making use of novel segmentation algorithms, the

method was shown to accurately identify container regions from background regions

and find individual containers within the images. The background is removed by
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subdividing the image into small blocks and removing blocks that are found to be

part of the background. The remaining blocks are grouped into regions based on their

similarity. In addition the algorithm is implemented in an FPGA which allows for

high frame rates. However, the process suffers a small degradation in overall accuracy

compared to some previous work due to the extra segmentation that is performed.

The method was shown to have a peek identification rate of 93% while being able

to run at 87 fps using images that were 640×480 pixels in size. This was accomplished

by dividing the image into 8×8 blocks. A slightly less accurate version (92.9%) was

demonstrated to be able to run at 127 fps by using 10× 10 blocks An efficient FPGA

implementation of the proposed method was also presented. Through heavy logic

reuse, only 19% of the available adaptive logic modules of the device was required.

Several factors were examined that affect the operation characteristics of the al-

gorithm. The largest effect was observed when adjusting the size of the blocks that

the images were divided into. It was found that the accuracy suffers significantly by

adjusting the block size, and only a few values produced usable results. In addition,

block size has the largest effect on throughput. By subdividing the image into larger

blocks, fewer overall blocks are present and the algorithm can run faster. It was

determined that the relationship between throughput and block size is quadratic in

nature, with speed increasing with the square of the block size.

The block size also impacts the hardware implementation where larger block sizes

require slightly more LEs but significantly less RAM. While the LE usage is approx-

imately constant, the RAM usage heavily depends on the block size. This again is

due to the fact that the number of blocks grows quadratically by decreasing the block

size.
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The number of bins in the histogram was also found to heavily effect the recog-

nition rate. The optimum number of bins was found to be 32 bins, corresponding

to using the five most significant bits of the pixel data. Deviation from this value

decreases the overall recognition rate. Increasing the bin size significantly increases

the FPGA resources required to implement the design, and the opposite is true for

reducing the number of bins.

The region merging parameter, k was also examined, though it was found to have

a weaker effect on the algorithm. However, the value of k does have to be properly

tuned relative to the chosen block size to achieve maximum recognition rate. As the

blocks sizes is increased the value of k needs to decrease to stop regions from growing

too large. The parameter k was found to have only a slight impact on the frame rate,

though not nearly as significant as block size and k has no bearing on the hardware

implementation.

5.1 Future Work

Future work will focus on extending this method to the classification of multiple

plastic resins types and improving the recognition rate. This work could focus on

making more direct measurement of material properties through the application of

multispectral imaging. By directly observing the NIR spectra of the imaged material

a more accurate segmentation could be obtained. Higher recognition rates would

be obtainable by using the improved segmentation and spectra information in the

classification process. A multiclass SVM could be trained using by combining the

visible light data with NIR spectra to allow the classification of several common

plastic resins.
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