DELETION ANALYSIS OF THE *SINORHIZOBIUM MELILOTI* GENOME
DELETION ANALYSIS OF THE *SINORHIZOBIUM MELILOTI* GENOME

By

BRANISLAVA MILUNOVIC, B.Sc.,M.Sc.

A Thesis

Submitted to the School of Graduate Studies

In Partial Fulfillment of the Requirements

For the Degree

Doctor of Philosophy

McMaster University

© Copyright by Branislava Milunovic, 2011
DOCTOR OF PHILOSOPHY (2011) McMaster University
(Biology) Hamilton, Ontario

TITLE: Deletion Analysis of the Sinorhizobium meliloti genome

AUTHOR: Branislava Milunovic, B.Sc., M.Sc. (University of Western Ontario)

SUPervisor: Professor Turlough M. Finan

PAGES: xv, 300
PREFACE

As chapters 3, 4, and 5 were prepared as manuscripts, some of the work described was done by others. I have acted as the primary author in each case and with input from my supervisor and colleagues in the laboratory. I wrote the material for manuscripts that will be submitted for publication. In Chapter 4 and 5 Tim Soh confirmed deletion structures by PCR as part of his summer project that I designed and principally supervised. In Chapter 4 George diCenzo built certain genetic constructs and tested these in plant assays as part of his summer project that I designed and principally supervised. I repeated experiments that yielded useful data and the data that appears in this thesis is my own.
The Sinorhizobium meliloti genome consists of 6204 predicted protein-coding regions of which approximately 2000 are proteins of unknown function (PUFs). To identify functions of S. meliloti PUFs, we employed the FRT/Flp recombination system to delete large gene clusters and then screened for phenotypes. Large-scale deletions have been mainly used to define minimal gene sets that contain only those genes that are essential and sufficient to sustain a functioning cell. To adapt FRT/Flp for use in S. meliloti, we used an already constructed pTH1522-derived integration gene library of the S. meliloti genome (pTH1522 carries a single FRT site). A second FRT site was inserted at defined locations in the genome through integration of a second plasmid (pTH1937) that also carries a single FRT site. Here we outline how this Flp/FRT system was used to delete defined regions and hence generate multiple gene knock-out mutants. This system was used to delete 32 and 56 defined regions from the 1340 Kb pSymA and 1678 Kb pSymB megaplasmid, respectively. The structures of the resulting megaplasmid deletion mutants were confirmed by PCR analysis. Carbohydrate and nitrogen utilization phenotypes were associated with the deletion of specific regions. Deleting large, regions of the genome helped us to identify phenotypes such as inability to grow on minimal media with fucose, maltotriose, maltitol, trehalose, palatinose, lactulose and galactosamine as sole carbon source. For several FRT-flanked regions, few or no recombinants were recovered which suggested the presence of essential genes. Through this strategy, two essential genes tRNA^[arg] and engA located on the pSymB and three
toxin/antitoxin-like systems, *sma0471/sma0473, sma2105* and *sma2230/sma2231* on pSymA megaplasmid were identified.
ACKNOWLEDGMENTS

I would like to give my sincere thanks to my supervisor Professor Turlough M. Finan for his guidance, support and the opportunity to work in his lab. I am also grateful to members of my advisory committee Dr. Marie Elliot, Dr. Brian Golding and Dr. Christian Baron for their valuable discussion on the project, guidance and support.

Dr. Richard Morton and members of the Finan Lab also deserve many thanks. Dr. Rahat Zaheer, Dr. Cathy White, Dr. Allyson MacLean, Dr. J. Cheng, Dr. Shawn MacLellan, Ye Zhang, Laura Smallbone, Katerine Kibitkin, Alison Cowie, Jane Fowler and all undergraduate and summer students make this an enjoyable experience.

A special thank goes to the members of the Poduska family, my parents and brother for constant help and support.

Finally, I would like to thank my husband Milan and our boys David and Matia, as nothing would be possible without their constant encouragement and support.
TABLE OF CONTENTS

PREFACE ... iv
ABSTRACT .. v
ACKNOWLEDGMENTS ... vii
LIST OF FIGURES ... xi
LIST OF TABLES ... xiv
LIST OF ABBREVIATIONS .. xvi
CHAPTER 1 .. 1

Literature Review ... 1

Rhizobia ... 1

The Rhizobium Plant Associations .. 2

Nitrogen fixation in Rhizobium .. 3

The Rhizobium Genome ... 4

Megaplasmids ... 6

Large genomic deletions .. 11

Composite transposons ... 12

λ – Red type mediated recombination method ... 13

CRS cassette method ... 13

Cre/LoxP excision system .. 14

Flp/FRT recombination system .. 15

Minimal genome ... 16

Why Make Minimal Genome? .. 19

Toxin Antitoxin Systems in Bacteria .. 20

This work ... 25

References .. 27

viii
LIST OF FIGURES

FIGURE 1.1. Composite transposons as deletion strategy .. 41
FIGURE 1.2. λ – Red type mediated recombination method ... 43
FIGURE 1.3. The construction of deletion units by the CRS cassette method 45
FIGURE 1.4. Cre/LoxP site-specific recombination system is used in genomic deletions ... 47
FIGURE 1.5. Flp/FRT site-specific recombination system ... 49
FIGURE 3.1. Targeting vector pTH1937 used in this study .. 117
FIGURE 3.2. Targeting vector pTH1522 used in this study ... 119
FIGURE 3.3. Flp delivery vector pTH1944 .. 121
FIGURE 3.4. Flp-testing strains of S. meliloti RmH940 and RmH939 123
FIGURE 3.5. Two alternate FRT-directed phenotypes/genotypes resulting from pTH1937 integrants on either side of a single pTH1522 integrant in the genome 125
FIGURE 4.1. Circular map of pSymB megaplasmid of S. meliloti, showing FRT-flanked regions, defined on pSymB (B) generated in this study 162
FIGURE 4.2. Schematic outline of PCR-amplification method used to examine deletion structure ... 164
FIGURE 4.3. The region 49,523 - 60,148 nt on pSymB which harbor origin of replication ... 166
FIGURE 4.4. A 8.6 Kb region on the pSymB megaplasmid which harbor an ABC transport system .. 168
FIGURE 4.5. Growth of ΔB152 - Δ, ΔB152 complemented by a cosmid clone pTH2651 – Δ + cos3 and wild type strain RmP110 – P110 on LB medium (A) and LB medium supplemented with CoCl₂ (2 ng/ml) (B) ... 170
FIGURE 4.6. A 9 Kb region on the pSymB megaplasmid which harbours the engA gene ... 172
FIGURE 4.7. A 14.3 Kb region on the pSymB megaplasmid which harbors the arginine tRNA gene .. 174
FIGURE 4.8. A) Growth of deletion strain ΔB146 and wild type strain RmP110 on D-(+)-fucose as sole carbon source. B) Growth of deletion strain ΔB141 and wild type strain RmP110 on trans-4-hydroxy-L-proline as sole carbon source 176

FIGURE 4.9. Growth of deletion strain ΔB141 and wild type strain RmP110 on maltotriose (A), maltitol (B) and palatinose (C) as sole carbon source 178

FIGURE 4.10. Growth of deletion strain ΔB124 and wild type strain RmP110 on D-(+)-raffinose (A) and α-D-(+)-melibiose (B) as sole carbon source 180

FIGURE 4.11. Growth of deletion strain RmP863 (ΔB133), double integrant strain RmP864 (B133) and RmP110 (wild type) strains in LBmc 182

FIGURE 4.12. Growth of ΔB122 (fix delay) and RmP110 (WT) strains in LBmc, M9 – glucose (15 mM) and M9 – succinate (15 mM)................................. 186

FIGURE 4.13. Delineated 7.5 kb (1,536,790 - 1,544,317 nt) gene region containing the Fix – locus .. 189

FIGURE 4.14. Fix phenotype of plants grown under nitrogen deficient conditions in Leonard assemblies and examined 28 days post inoculation 191

FIGURE 4.15. Nodulation kinetic for strain RmP798 (ΔB122) .. 193

FIGURE 4.16. Alignments of the EngA homologues found by BLAST searches... 196

FIGURE 5.1. FRT-directed phenotype/genotype .. 255

FIGURE 5.2. Circular map (1) of pSymA megaplasmid of S. meliloti, showing FRT-flanked regions, defined on pSymA (A) generated in this study 258

FIGURE 5.3. Circular map (2) of pSymA megaplasmid of S. meliloti, showing FRT-flanked regions, defined on pSymA (A) generated in this study 260

FIGURE 5.4. Transduction of deletions (ΔA) from transconjugant deletion strains into the wild type (WT) recipient using phage ΦM12 .. 262

FIGURE 5.5. Circular maps of pSymA megaplasmid of S. meliloti, showing FRT-flanked regions, defined on pSymA (A) used to narrow down region with predicted TA system 265

FIGURE 5.6. A 9 Kb region from the pSymA region with the predicted toxin/antitoxin gene pair sma0471/sma0473 ... 271

FIGURE 5.7. Alignments of the RelB and RelE homologues found by BLAST...... 273

FIGURE 5.8. The sma0471/sma0473 genes of S. meliloti constitute a TA locus 278

FIGURE 5.9. Part of the 40 Kb A131 region harboring the predicted toxin
FIGURE 5.10. The Sma2105 gene of S. meliloti encodes a toxin

FIGURE 5.11. Part of the 40 Kb A132 region harboring the predicted antitoxin/toxin pair sma2230/sma2231

FIGURE 5.12. Alignments of the Sma2230 and Sma2231 homologues found by BLAST searches

FIGURE 5.13. The sma2230/sma2231 genes of S. meliloti constitute a TA locus

FIGURE 5.14. Domains organization within predicted toxins and antitoxins like systems sma0471/sma0473 (A), sma2105 (B) and sma2230/sma2231 (C)
LIST OF TABLES

TABLE 1.1. Megaplasmids present in different organisms and genes associated with these plasmids ... 51

TABLE 1.2. Summary of results obtained in genome reduction strategies 53

TABLE 1.3. The eight typical toxin antitoxin (TA) families based on protein homology (Gerdes et al., 2005) ... 54

TABLE 2.1. Bacterial strains used in this study ... 65

TABLE 2.2. Bacterial strains and plasmids used in this study 81

TABLE 2.3. Antibiotic concentrations and stocks .. 94

TABLE 2.4. Primers used in this study .. 95

TABLE 4.1. Primer sequences used for construction of pTH2172 – pTH2185 vectors as well as locations of primers on pSymB megaplasmid ... 161

TABLE 4.2. Symbiotic phenotype of pSymB deletions ... 184

TABLE 4.3. Symbiotic phenotype of pSymB deletions within region responsible for the Fix delay phenotype .. 185

TABLE 4.4. Expression of seven genes, localized within Fix-delay region on pSymB megaplasmid, in young alfalfa root nodules and under different free living conditions. 195

TABLE 5.1. The list of predicted solo toxin and antitoxin genes as well as TA pairs on the Sinorhizobium meliloti chromosome identified by Makarova et al., 2009 247

TABLE 5.2. The list of predicted solo toxin and antitoxin genes as well as TA pairs on the Sinorhizobium meliloti pSymA megaplasmid identified by Makarova et al., 2009 250

TABLE 5.3. The list of predicted solo toxin and antitoxin genes as well as TA pairs or triplets on the Sinorhizobium meliloti pSymB megaplasmid ... 253

TABLE 5.4. Construction of RmP1099 (ΔA150), RmP1092 (A151), RmP1408 (ΔA152) and RmP (ΔA160) strains .. 254
TABLE 5.5. Primer sequences used for construction of pTH2563, pTH2622, pTH2623, pTH2624, pTH2625, pTH2646 and pTH2647 plasmids as well as locations of primers on pSymA megaplasmid..257

TABLE 5.6. Transduction of ΔA130, ΔA131, ΔA132, ΔA133 ΔA150, ΔA152 and ΔA160 into wild type (WT) S. meliloti P110 using phage ΦM12.................................264

TABLE 5.7. FRT- directed deletion of the A257 region in the presence of putative toxin - antitoxin genes sma0471/sma0473 ...276

TABLE 5.8. Transduction of ΔA257 into wild type (WT) S. meliloti P110 with or without sma0471/sma0473 genes in trans on the replicating pTH1931 plasmid.....277

TABLE 5.9. FRT- directed deletion of the A131 region in the presence of putative toxin - antitoxin genes sma2105, sma2133 and sma2151 ..282

TABLE 5.10. Transduction of ΔA131 into S. meliloti P110 (WT, wild type) with plasmid pTH1931 containing sma2105, or sma2133 or sma2151283

TABLE 5.11. FRT - directed deletion of the A132 region in the presence of putative toxin - antitoxin genes sma2230/31, sma2253 and sma2275/sma2277..............288

TABLE 5.12. Transduction of ΔA132 into S. meliloti P110 (WT, wild type) with plasmid pTH1931 containing sma2230/31, or sma2253 or sma2275/73289

TABLE 5.13. Symbiotic phenotype of pSymA deletions...295
ABBREVIATIONS USED

bp base pairs
CFU colony forming units
DMSO dimethyl sulfoxide
dNTPs deoxyribonucleotide triphosphate dATP, dCTP, dGTP and dTTP
DTT dithiothreitol
EDTA ethylenedinitrilotetraacetic acid
IPTG isopropyl – β – D - thiogalactopyranosid
LB Luria broth
LBmc Luria broth supplemented with 2.5 mM MgSO₄ and 2.5 mM CaCl₂
MCS multiple cloning site
MOI multiplicity of infection
MOPS 3-(N-morpholino) propanesulfonic acid
mRNA messenger RNA
nt nucleotides
OD optical density
ORF open reading frame
oriT origin of transfer
PCR polymerase chain reaction
PFU plaque forming units
PSK post segregational killing
rpm revolutions per minute
TA toxin antitoxin
tRNA transfer RNA