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ABSTRACT

THOMAS JAMES RRIS: T0p1cs in Stochastic Contro] with

This thegis represents part of an ongoing stday‘oq the

mode]]ihg and conhtrol of a pilot scale packed bed tubular' .~

reactbr caﬁryin the hydrogenolysis of n—bufane; The use
of -time series modelling and stochastic control to analyze and -
. develop control strategies for this process was investigated.

The mass and energy balances describing the hydrogepo]ysis\
of n-butane in this tubular reactor are a:set of nonlinear
. partial differential equations in time and two spafial
co-ordinates. In spite of. their complexity, an analytical solution
to these equations exists for certain linear combinations of
the reaction species. These linear combinations, known as . =
reaction fnvariants. define -the reaction stoichiometﬁ}.

A dynamic model of the‘process suitéb1e for on-line computey
control had previously been developed from the material and ™' .
energy balancgs. This dynamic model, and.a stochastic mode?
for the inherent process disturbances, were used to investigaté
the optimal Tocation of thermgcouples along the‘central afis of
the reactor. The results of 'this analysis indicated that good

- state estimation and control of thé temperéture profiTe, and

effiuent concentrations, tdﬁ]d be achieved when one or two
) . - .

-—
s
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thermocouples were located in the vicinity of the hot spot
(maximum) temperature. The location of the thermocouples was
jnsensitive to the statistical properties of the disturbanpes.
A canonica1-vaﬁthte apalysis of the‘reactor temperatures using * -
this model indicated that the uariation of the hot spot -
tempgrature and averaue temperature had significant
gredictable components. (Qther 1inear_combiuatiuns qf’the axial
temberatures were eesentia11y uhite noise probésses. and
d!;theretor:e unpredictable. Control of the hot. spot temperature
and average temperature would control most of the pred1ctab1e
var1at1on in the temperatureaprof1]e and as a re;u;t most of
E?the predictable variation in the effluent concentrat1ons. .
Univariate stochast1c ‘controllers designed for. processes
w1th deadt1me have some very unusuil spectra1 charact%r1st1cs
The spectral characteristics of these control]ers-depends on
the procéss deadtime'?nd the'structure'and parémeters of<tﬁe;‘
stochastic disturbance model. . ’

A number of univariate self-tuning regulators were =~

implemented. to control the hot spot temperature. The self-

'tun1ng contrgﬂler gave good control over the het spot- temperature
when comuzred to digital proportional plus integral type
controllers. This a1gurithm quiéklu tuned the contro11ér parameters'
and was robust to the aseumption in its derivation.

Linear quadratic.contro11ers designed for stochastic

disturbances are identical to those designed to compensate for

iv.



18

an 'equivalent' class of deterministic disturbances. When the

controller structures are identfcal, it i$ the manner in' ‘which.

“the state variables are reconstructed that determines how we]i

a.control strategy will perform. Although controliers can be
readily designed to'compensate prdcesses subject to deterministic
and stocﬁggkgg.d1Sturbances. reconstruction of the state

variables in sugh instances is complicated by the presence of

both types of disturbances.

")
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affecting Ehe process._ In the process industries, disturbances

1-:-"

are often of a randsm nature. when a suitable mathematical
lsFructure for these disturbances can be postulated, or estimated
from expérimental data, this édditioha] information cén be
incorporated in'thq design of the controller. Hopéfui]y, by
designing the controller to guaFd against the iﬁherent process - R

disturbances, one obtains improved control. Time series modelling

and stochastic contr o e, in theory at least, a powerful

framework for the modelling and control of"processes subject to

disturbances of a random nature.

.

The app]1cab111ty of time series modelling and stochastic
contro] as a means of reguiating a comp]ex process is 1nvest1gated
in this thesis. This work represents part of an ongoing study ,
on the modelling and control of tubular reactors. Many top%cs
considered in this thesis are motivated by questions unresolved
from previous theoreticaﬁ and‘experimgntal studies on modelling
and confrol o7 a pilot scale catalytic packed bed tubuiar '
reactor carry%ng out the hydfogenolysis of n-butane. Control of
the temperature profi]é or éff1uent concentrations has proveﬁ to
be difficult. As a result, there has been an incentive to-
exﬁlore the use of advanced control schemes to regulate this
?/pcess In almost all cases, the problems a1scussed and their
solutions are jllustrated with exper1menta1 data co]1ected by
previous. experimentalists, or by application of stochastic

control to regulate this pilot scale reactor. The use of real



CHAPTER 1
INTRODUCTION

The control ef cata]ytic packed bed tubular reactors
carrying out highly exothermit gas phase reactions répresents one
of the most challenging control problems in the chemical industry.
These reactors are highly non-linear, distributed parameter,
multivariabie processee- A]though 1t 15 usua11y desired to

achieve control over the final conversion and product selectivities,

. on-]1ne measurement af these via gas chromatographs, etc. is

!’ .
often too sTow to be of any use in a direct feedback control

scheme. Therefore, in the control of industrial reactors one
usually reliés on temperature measurements throughout the catalyst /
bed; '‘a comman s1tu;t1on being simple feedback from ‘some measure of
the hek:spot (maximum) temperature in the bed. This provides'an
indirect stabiTiiation of the exitlconversion and safeguards
against &angerous temperature excursions. For more direct control
over the exit tonversien and product sejectivities one must rely
upan some form of inferentia1 control based on complex multi-
variable models of the reactor. - o ¢

The availability of these models does mot insure that
one will be able to exert satis¥actory control over the variables
of interest®. 'The‘performance of a contreller is influenced by"'

the adequacy of the dvnamic mode1 and the tybes of disturbances

N
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data and verification_of theory on a difficult process to control,
demonstrate the usefulness of time series modelling and stochastic
control. A synopsis of the thesis fallows.

In Chapter 2,.the model1jfig of the pilot scale reactor

. studied in this project is reviewed. Attention is focused on

' the concept of 1ndependence of reaction. In spite of the

complex1ty of the mass and energy balances describing this

‘process, certain linear combinations of the concentrations within

the reactor are found to be constanEf These linear combinations
define the reaction stoichio tfy: Phe_sensitivity of the steady
state temperature profile toT;erturbations in the in]et’f]owrafes
is examined. The results of this ana]ysis help exp]a%n some

of* the d1ff1cu1t1es prev1ous]y encountered in contro111ng this

reactor. :

. The basjic control theory used throughout this thesis is

‘presented in Chapter 3. Exgefimental and theoretical applications

of modern control theory on chemical reactors are reviewed. A

number of extensions'to the model develobed by Jutan (19768) for
the reactor studied in this work are put forth These results

are used in subsequent chapters

The optimal Tocation of measurement sensors is examined

‘in Chapter 4. The Tocation and number of measurement Sensors

influences the quality of control in.Processes subject to

stochastic disturbances. The theory proposed 1n the 11terature
to 1ocate measurement sensors is cr1t1ca]1y rev1ewed and a number

T
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of modifications' proposed. Thig theory is illustrated with an'
app]fcation.of the optimal location 5{ teﬁperature Sensors
along the central axis of the butane h}droéenolysis}reactor: The
results in tﬁis chapter were not experimeﬁtally verified, but
_ratheer relieﬁ on the dynamic model of the procesﬁ-developed by
Jutan (1976). | . : | o y S
.Many fimeé a dynamic'hode1 develgped %rom mechanistic
arguments, ‘that fs suitable for contrp] ‘fs,unavailab]e. This
may be due to‘the time_and.effort required to obtain fhis model.
An empir%ca1 model oIFihe process may be conétructed from input/
~output data collected from a designed experiment.‘ The use of
multivariate qutoreéressive models as a means of obtaining a
model suitable for'controllis invéstigated iﬁ Chapter 5. 1In a
model fit to reactor data there are seven outpdts (temperatUreS
long the central axis of the reactor) and two ﬂnputs (flow rates
Flﬂlflbutane and hydrogen). Since the temperatures must sat1sfy tHe
mass a}H\energy balances, we wouldahot ant1c1pate that perturbat1ons
in‘the manipulated variables would result in 1ndependent varation
in all the temperatures. Nor wou]d we suppose that al1 thes \\\v/
‘temperatures can be’ predicted equally well. Principal component
analysis is used to establish the number of degrees of freedom
Iin the reactor temperature Profi]e. Canonical variate,analysis .
of time series is used to discover which temperatures can be’ "’
“’bredicted the most accurately. The use of autoregressive modef

b

fitting in conjection with these mu]tivariatq‘gfét{stica1

)

~
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techniques are powerfu1 methode of analyzing dynamic data.' ~ . \c
There  is 'f\ considerable 1ntepest i the design and

implementation of contro]lers for single input, s1ng1e output

dynamic stochastic systems This stems in part from the

relative ease (compared to multivariate systems) for- wh1ch the

structure and p&rameters of the model can be est1mated The

resu1t1ng controliers have some very unusual spectra] character-

istics and tHese are examined in Chapter 6. The manner in which
. . Q -

these stochastic controllers compensate for deadtime arising

from process transport delay is compared to e]assica1 techniques

for deadtime compensation.

Of all the modern'control theories, those whieh have
perhaps the most indpstrial applicatioir$ are adaptive\versiohs of
thé_cpntro]lers discussed in Chapter 6. These adaptive controllers
are known as self:tUning reéu]ators In Chapter 7, the pert1nent -
theory for 1ndustr1a1 appllication of these regulators is
reviewed. A number of different self-tuning algorithms are

app]ied to control a pi]ot scale chemical reator Additional’

theory is developed to exp1a1n a number of exper1menta]

_obsérvations.

. In Chapter 8, an attempt is made to unify many of the:
concepts 1nvo1ved in contr01 .0f stochastic and deterministic
processes The use of stochastic difference equations to model

deterministic‘and random disturbances are investigated. Problems

in controllihg processes subject to both stochaetic anq deter—



=

s < ' =
4 . _ .t

,

ministic disturbances, a common industrial situation, are*

discussed. A number of solutions are-proposgd but these are of

o

_ theoretical interest only, as they are too complex "to imh]ement:
Conclusions and reLommendatith'are discussed in q, .
- Chapter 9 | |

A]though at first g1ance, the topics may appear to i
be unrelated, the central theme is the app]icat1on o"statistfcs
and stochastic contro] in the design'and analysis of control“ e
schemes. Throughout th1s work, the merit of mechan1st1c models
and emp1r1ca1 models are comggred The overr1d1ng conélus1on
“from the work is that the successfu]ness of a control scheme
depends on adequate]y mode111ng the dynam1cs and dxsturbances

affecting the prptess
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CHAPTER 2
TOPICS IN REACTOR MODELLING

Zil Introduct?ﬁnj_ : . . i'¢=_\
In this chapter, the stoichiometry for,the'ﬁydrogéno1ysis
of n-butane on a si]éca on nickel gel catalyst is reviewed.
Particutar attention is paid to the concept of independence of
feactior;. The mass and energy balances used inﬁviqus
modelling studies for a packed ‘bed reactor are reexamined. An
) express1on is derived to explain the t1me and spat1a1 behaviour

of certain linear comb1nations of the chemica] species in the

reactor. As a result of this analysis, it is Qpparent that it is

' Inot'necessary to include all species in the material balance.

’,

- Thg'éensitivity of the temperature profile in the reactor to

perturbétions in inlet flow rates is also ttudied for. the
existing reactor geometry.. This'ana]ysié-he]ps explain some of
the difficulties encountered in previous control studies on
this reactor. Finally, a modification to the reactor to reduce

. this parametric sensitivity is proposed.

*

2.2 - Reaction Scheme a - A

The reaction studied is the hydrogenolysis of n-butane
-over a nickel on silica gel catalyst in a tubular packed bed

reactor. The reaction mechanism has been studied by Orlickas

7
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I(1970 1972), and Shaw (1972, 1974), and’ the following reactions

were proposed to represent this hydrogenolysis.

F
MTRLENPY, ' " (2.2
Catyg 2 " ol - (2.2)
\ CoHe Hy —— 2CH, . (2.§)

. The following assumptiqné'were made :

1) Butane and propane are adsorbed on-thezcata1¥st
surface whereon a,surface catalyzed reaction
occurs; |

"2) The reactiop products from these reactions may
desorb or react further;

3) Reactions converting butane and propane to
'methan;}are presumed not to occur due to the
Tow probability of Qreaking two or three:
carbon bon&s simultaneously.

Mode]s for the net rates of production of each of the:

_ components' have been bu11t Orlickas (1972), "and areLzresented in

Append1x-1. The kinetic parameters associated with hese rate
expressions were calculated from experimental data and are

also reported in this appendix.
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Examination of thes} reactions reveals that the

étoichiometry of the foqrté reaction may- be expressed as a

"linear combination of the stoichibmetry of the first three. (It

1s incorrect though to say that the fourth redction rate is a
11near combination of the first three reaction rates\) One
usua]]y th\*jsays that there are three 1ndependent reactions. _
However, it was assumed in studying the reaction k1net1cs, that
the rate of reactions (2.1) and (2.2) were in a constant
proportisn, F/1-F. 1In general, there may be restrictions
among the reactions due to kinetic constraints, reaction QESsel
configuration, electromagnetic effects, etc. It is desirable,

therefore, to clarify our definition of independence of reaction.

2. 3 Reaction Stoichiometry and Independence Qf Reaction

The concept of 1ndependence of reactions has been

studied by a number of peoﬁ\E? Aris and Mah (1962), Denbigh

(1971). Reacting systems 1nvqﬂv1ng isomers have been studied
by Schubert (1974). In this gect1on we will try té distinguish
between two types of reaction 1ndependence.

It is assymed that there are s chemical species,
r chemical reactiony and n elements. The extent of reaction

i, £, is defined 4s Denbigh (1971)

g, = —al o = L L==hS ha o L (s
s i,1 Vi,2 Vi,s I
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&n; . is the change in mgles of species j in reaction i. The
15J v

sto1chhometr1c coefficient of species J in react1on i, v i is

3

usually taken pos1t1ve for products of reaction and negative for
reactants. It is only ’!’1ned to a scaling factor. Using

(2.5), the total change in moles of species j is therefore

h
given by . . E;
;(:E " .

o
ans = iZ V5,550 3 = 1,2, .. .5 (2.6)

1
Define the rxs stoichiﬁmetric matrix S as
S=ivyshislz, e, é, coes o (2.7)
The changes in moles for all species can bé written cpmpact]y'as
.

¥ am o= S't (E.é)

For the reactions 1nvo1v1ng the hydrogeno]ys1s of n- butgge, we'

e

have L .
B%Wo ‘:y-l-o O-Z“_ﬁ-
8C3Hg 1 0 1 o £,
an = | aCyHe = 6 2 1 -1} ° ] & (2.9)_)
| acHy 10 1 2 &
oty _:i” EERR | o
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If (2.8) were differentiated, with respect to time, one would
have an expression for the net rate of reaction for all the
species in terms of the rates of reaction i, i=1,2,...r.

The number of stoichiometrically independent reactions is
the minimal* humber of reactions that witl represent the complete
stoichiometry of the reacting system; Denbigh (1971). The
number of stoichiometrically independent reactions is definea
as the number bf linearly independent rows of S, Te» i.e., the
ranks of S, Aris and Mah (1962), Denbigh (1971). It is
important to realize that no constraints due to kinetics,
electroneutrality, etc. have been introduced.

) The terminology 'stoichiometrically independent reactions'
is somewhat of a misnomer in that it implies that there may be
‘dependent reactions'. Thelextent of these 'dependent reactions’
" would then appear to be linéar functions of the independent
extents. The true meaning is apparent from (2.8}. When the
rank of S is 1ess than the number of reactions, the mole changes
. are not explained by a unique set of extents. If we arbitrarily
assign values to r-r. extents, the mole changes can then pe
explained uniqﬁe]y by the remaining r. extents. (If r-re extents
are..assigned the value iefo, the remaining reactions are a set

of ‘maximal independent reactions', Schneider and Reklaitis
(1975).) The arbitrary assignment of r-r. extents to exp1qin

the change in moles of the species does‘not iﬁply that these
extents of react1on are dependent on the extents of the )

remaining rg react1ons
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Define the nxs elemental matrix E as
E=fe, .J,e=1,2,...n3=1,2,...s (2.10)

' The elemental coefficient & 3 is the number of atomic units

L in species j. Con;ervation of atoms requires that
ES* = 0 - (2.11)
Therefore by combining (2.8) and (2.10) we have

EAn = 0 (2.12)

(_. -_ -_—

. 4 3 2 1 0
E = (2.13)
10 8 6 4 .2 '
Using (2.12) the change in moles of methane and hydrogen can be

found fyrom the chandes in moles of the remaining species ‘as

BHy = 38C4H., + 280 Hg + aC,He (2.15)

'In a closed system atlchemica1 equilibrium, the raﬁk'of E, Fa» is
\\\\known as the number of components (Brinkley {1946)), the minimum
number of species which must be used to prepare the equilibrium”
mixture, Denbigh (1971). For a perfectly mixed, closed reaction
vessel, (2.12) indicates that n-r, component mass balances must

be solved to determine the composition of the reacting mixture.
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Equation (2.11) can be used to give an upper bound on the
number of stoichiometrically independent reactions. The co]umns
of $' are in the null space of E, which is of dimension n-r,
Noble (1969). Since the colums of §' are therefore spanned by

the null space of E, the rank of S is less than or equal
- T

~

to n-re. _

Equations (2.8), (2.11) and (2.12£rapbly to composition -
changes in a finite;'or elemental volume that are due solely to .
chemical react%on. ,

It may be observed exper1menta1]y that the change in
moles of react1hg species can be explained by fewer reactions
than predicted fromdhe rank of the stoichiometric matrix. This
1ndicate§ that some reactions do not occur, or that they occur
in direct proportion to other reactions. Thése additional
re]ationsh#ps arise from kinetic, electroneutra1it} Festrictions,
etc. If is conveﬁient then_to define‘the number of kinetically
independent reactions as the minimal set of reactions that will

explain the stoichiomexry and kinetics of the reactihg system.

The s kinetic r;str1ct1ons .on the extents may be

-~

- [AI‘:AJ[Q*J =0 s

wr1tten as:

where £** denotes the set of extents among which no I1near

re]at1onsh1ps ex1st A is of rank ry- Using (2.16) with (2.8),
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we may write for the change in moles

1 Ao, pan o (2.17)
, &

The matrix

S e - (2.18)
may be considered as our new seoichiometric matrix. The rank of

, the matrix S* is the number of kinetically independent reactions..
If S is of full column rank, the effect of tﬁe r, additional

" constraints is to reduce the number of react1ons required to
represent the stoichiometry and k1net1cs of the reacting System to
rer,- However, when $ 15-not of full co]umn rank, the number of
kineticel]y independent reactioﬂs is not always less than the
number of stoichiometrically independent reactions.

With reference to the n-butane hydrogenolysis reactions,
we have observed that'there are three stoichiometrically
independent reactions. However, the kinetic model developed for
this reection assumes that of the Qutane that reacts, a fraction

F reacts to form propane, and a fraction 1-F reacts to form

ethane. The matrix of kinetic restrictions A is, therefore,

given by

A =(-F) F 0 o) {2.19)

L}
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2.4 Description of the Packed Bed Tubular Reactor

N
The stoichiometry of the reacting mixture is then g{Veﬂ by
, [ -1/01-F) 0 o] e
F/(1-F) -1 0 £3
n = 2 [ v =1 54’_'0 (2.20)
N F/(1-F) 1 .2
-1/{(1-F) -1 -1
- Reactions two, three and four have been chosen as our reaction
bgsis. The rank of S* in (2.20) is three. Thus, the kinetic
consfraint has not reduced the number of reactions feduired to
‘—comp]ete1y specify the reaction stoichiometry and kinetics. . :)

The hydrogeno}ys%s reaction was carried out by Jutan

(1976) and Tremblay (1977) in a bench scale tubular packet bed

coolin

reacto;k,ﬁgée to the highly éxothermic nature of the reactions,

at the tube wall is necessary to prevent large
'l .

temperéture excursions. This gives rise to radial temperature

gradiénts and consequently radial concentration gradients.

Axial dispersion of heat and mass have been neglected as these

effects are negligible compared to the convective terms: The

reactor is operated at pressures of 100-200 kPa, with a pressure

drop of 20-kPa.

obey the ideal

At these pressures, the gases are assumed to

gas law.

{

The small catalyst particles, 1 mm,

: are'assumed to be isothermal and at the same temperature as the
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surrounding gas. The velocity profile is presumed to be flat,

and not a function of axial distance.. F1na1]y, the reactor is

treated as a pseudohomogenous mixture because of the large

tube to particle d1ameter ratio, 400/1. Jutan (1977a) g1ves

detalled Justificdtions for these assumpt1ons

The mass and energy- balances describing the process are

- (Jutan (1977a))

aC ~v, 3¢ D, afraC| e S'
— = __..|. er _( —_)+O£ -
at 9z eR°r ar\ oar €
~ and
4
aT _-vp ol 3T ; ler 3 raT .Z shijeg
_ at ai- R2r ar ar 1T
The boundary conditions are
BE L]
r=0 = =0, {symmetry)
ar -
a7 _
F - 0
al  _
r=1. — =0,
ar {,/
al  _
r = Bi(TyT)

bl

(2.21)

(2.22)

(2.23) .

(2.24)
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¢+ z =0: T = T, for allr
- ¢ =Clt,r,0) . :  (2.25)
t=0: T=T(0,r,z)
- \
£=c0,rz) ° (2.26)

There has been a‘s1ight departure from the notation of Jutan in
that the mass balance has b en‘written in'vectot notation. All
species are included in tH_ vector of conéentratibns €. Jutan
(1972a) included only thrde componenté in his mass balance. The .
concentratibns of the remaining'two componenfs were calculated from
(2.12). Howéver, this is only correct fon_the steady state
versions of (2.21) and (2.22). This 1s‘q15cussed further in the
next section. ‘

In the heat generation term, the summation includes all™
reactions and not only those ehich are 'independent'.' In Jutan

(1977a), the summation extended over the first, se§ond and

fourth reaction in (2.1 - 2.4). The heat of reaction for ‘the

. ’*
production of ethane from_propang_was omitted. This probably .did

not affect the results of his work sfgnificant]y because the
extent of this reaction was very:small in his work. At higher

temperatures, however, the extent of this reaction inarqbses.

2.5 Stoichiometry in Tubular Reactors

In-secticn 2.2, we investigated independence of reaction,

and reagtion stoichiometry for a closed reaction vessel. The
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emphasis there was to investigate tqspe topics withouf the need
to- introduce reactor models. In this section, we will see how-
the particular choice of reactor modeT modifies our reaction

[" ]

stoichiometry. * *

- To)determine the reaction stoichiometry, multiply the

mass balance (2.21) by the elemental matrix E. The term’
S'ng/e is the net rate of production of all the species at a
particular point, or in an infinitesimal volume in the reactor.

By the conservation of atoms (2.11),_ES' vanishes and we obtain
R _

8L -v 3EC D, -1 3 fr 3EC -
—- — =T —— —-) (2.271) -
at 3z "R r ar ar . -
The boundary conditions associated with (2.27) are

-1 \ .
r=0: —=0 (symmetry) . (2.28)

ar _ .

aEC ‘ .
r=1 —=0 , (2.29)

ar
z=0: EC = EC(t,r,0) (2.30)
: ) |

t=0: EC = EC(O,r,2) (2.31)

The solution of the vector linear partial differential equation
(2.27) defines the reaction stoichiometry for all time and

spatial-co-ordinates in the tubular reactor. The solytion of
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[

(2.27) is-€E§§113§:jh Appendix 2. We find that if the feed is

distributed across the reactor entrance such that o

3EC (t,r,0)
— =0 (2.32)
ar ,

- ]
e

then the reactionvstoichiometry as derived in Appendix 2 is given

by o o a

CE(C(t,r,2) = 6(0,,2)) = E(Clt-2/v_ar,0) - C(0,r0))  (2.33)

where ' \ T

€

’ 1) ¢{0,r,z) is the feed composition at t=0. This

:corresponds to having the reactor initially filled

with gas;

L

“or

2) c(o,r,z) is the steady state solution to (2.21) and
(2.22). N ‘

If the feed is'distributed evenly across the reactor inlet then

- {2.32) is satisfied. This would be the case in most reactor

systems.

The results are independent of the dispersion coefficient
Dgp The expression z/vc is the.;ime requ;red by the gas to
travel the distance i. The significance of the result (2.32) is
thaf we can compute the complete reaction stoichiometry without
havjng_to include in the mass and energy balances all s SBEcies.

Instead, we need only include -1y species. It may be no more -

-



difficult to solve the d1fferent1a] equat1on for all  species.
The most t1me consuming step in so1v1ng the pa 1 d1fferentia1
equat1ons 15 the eva]uat1on of the rate expression) j{However the
Tocal rate express1ons ‘for the-dependent species are linear
comanat1ons of those for the 1ndependent spec1es The most
important drawback to the 1nc]u51on of all species in the
materTa] balance is the extra memory required to solve the
additional d1fferent1a] equatTOns
"~ To compute the response ‘of the process to changes in
the feed composition, we need only 'remember' past values of
the feed composition for the reactor residence time. In most gas
phase reactions, this transport lag is much less than the time '2
requ1red to cobserve a s1gn1f1cant thermal response In this -
instance, one might be inclined to use the steady state version
of (2.33), that is
U TR
EC(=,r,z) = EC(0,r,z) _ . (2;34)
where C(0,r,z) is the -feed concentration in the reactor at t=0.
~In the butane hydrogeno1y51s reactor, VT/ve v SOQ/]. and so the
ﬁtuse of (2 33) was Just1f1ed In 11qu1d phase systems, the
temperature and concentrat1on waves are of_ comparab]e 31ze and
significant errors can result if the steady state version (2. 34)
~is used instead of (2.33)..
| Gould (1969) AsbJornsen ind Fjeld (1970), Field

et a? (1974).. and more. recently Hammarstrom (1979) have studied

[

r
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a8/similar topic known as reaction invariants. Their objectives

3
are to f1nd linear subspaces (reaction 1nvar1antg) of the non-

i \\\\‘J Tinear mass .and energy ba]an;es descr1b1ng the behav1our of

continuous stirred tantv/eactors If these subspaces exist, it
may be possible to eliminate some variables from ‘the ordinary
d1fferent1a1\;aaht1ons describing the process. Equat1on (2.33)
describes a true gﬁ5ct1on 1nvar1ant for a tubu]ar reactor. The
L _implication of reect1on invariants in stability and control

of stirred taﬁk reactors is disucssed ﬁy Fijeld et al (1974)~

+ and Hammarstrom (1979). However, the extension of the1r work to
tubu]ar reactors is beyond the scope of th1s proj ct. It is
obv1ous though that 1t is imposs?ble to control ajl S species

at arbitrary values when the changes in moles of some of the

//// _ species are constrained by changes in moles of the remaining

species. . ’
| The eesults in this section have been derived for a
. tubu]er‘reactor with radial dispg?sjon of mass. and energy.
;§ince§(2 33) is independent of these transport terms, this result
~also app11es to isothermal and adiabatic tubu]ar reactors This
.result does not apply to tubular reactors W1th axial dispers1on

In reictors w1th axial dispersion, one doesn’ _t find an expression

}" f)’//ﬁf for the react1on st01ch1ometry that 1s pQ‘t1cu1arly useful (see
.

-\ Appendix 2)." It is necessary in the unsteady state, then, to
,///' _ Jno%ude all species in the mass balancaw® The steady state reaction
~,

‘
\4
C
"

vy
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g T
stoichiometry is given by (2.34), with the radial dependence

4

omitted, Appendix 2.

2.6 Temperature Sensitivity and Reactor Runawaj\

In a nonadi tatic nonisotherﬁa1°tUbu]ar\kesctor, one

usually observes a/'hot spot' or maximum -in the téhperature

~— profile. It is pot des1rab]e to have a 'dramatic’ hot spot

, (1967)) ‘as this can lead to cata]yst s%ﬁtering, and

- increase the ptoduction of undesired side-productﬁi The -
opetating conditions should not be suip that sma]] changes in
the reactant flow rates,Jcon“lntngt%un or temperature,

propagate into large changes in the reactor temperature profile.
Previous experimental studies on this reactor exhibitee this
latter prob]eg. To gain some insight into the causes, and
'possible soletions to this'phenomenon,the parametric sensitivity

of the reactor model is examined in this section.

-

55,

Parametric sensitivity here refers to the sensitivity of
the temperature.prd?i1e to changes in theropg;ating conditions
and not to changes resulting from variations in the kinetic or

- mass transfer coefficients.

L

» )
~ Barkelew (1959) and Van Welsenaere and Froment {1970)

discussed parametric seqijtivity and reactor runaway for kinetica]]y
simple react1ons and reactor mode]s involving no radial grad1ents
The essence of their papers is that one observes two fundamenta]]y

'different types of temperature profiles in a nonadiabatic,

.
AN

L | ‘ | : , | . \\\

w
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nonisothermal reactor, Figure 2.1. One is bow] shaped. The
other is more peaked, having an inflection point in the
temperatife profile prior to the hot spot. .This latter profile
is more sensitive to small changes in flow, composition and
temperature of the feed stream. The operating conditions whYch
did not give rise to inflection points were deemed feasible
steady state operating conditions. The envelope of these
desirable dperating conditions is also affected by—%hengmensions
of the reactor and activity of the catalyst. _ \ '

Due to the simplicity of the reactor model and kinetics,
studied in these pagfhs, changes in the configuration of the
process could be ané]ytica]]y investigated. To study the
effect of brocesé cﬁénées witﬁ ﬁur model-and kinetics, requires
the steady state solution of (2.21) and (2.22), a set of .
coupled, highly nonlinear differential equations in two spatial
co-ordinates. |

In the next section, we outline the solution of these
equations by the‘technique of orthoéona] co]Tocat%on In the
section Fo1]ow1ng that, the sensitivity of the reactor temperature
‘to changes in feed rates is examined. The resulits of that section
help to explain many of the difficulties encountered in contr0]11ng

this reactor.
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{1) Conversion 89%.

(2) Conversion 49%

1

0.5 QLJ.O

NORMALIZED REACTOR
LENGTH

Figure 2.1: Temperature Profiles for Sensitive'
and Insensitive Reactors.
Jutan (1976) o '
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2.6.1 Solution of the Partial Differential Equations by
Orthogonal Collocation ) .

The steady state versions of (2.21) and (2.22) do not
have an analytic solution, and it is necessary to use a numerical
technique to find the‘;olution of these equations. In the _
orthoéonal collocation technique, the first step in solving the
partial differential'equations is to approximate the radial
profiles of tégbérature and concentration by orthogonal'fqnctions.
. This results‘in aflg;]arged set of o;dinary differential ‘/~”\\

equationms which can~then be solved by orthogonal collocation

in thé axial direction or by numerical techniques for the solution
of ordinary differential equations. Jutan (1976) outlines the
use of.orthoéonal collocation and reviews the application of

this technique to chemicdal reactors. _Howevéf, certain aspects
were not well described, and no‘numeficak(resu1t§ were given,

In this section, the ideas of orthagonal collocation will be
hbrief]y sketched.

Experimental evidence suggests that the radial
temperature profile is nearly quadratic. One might then

approximate the radial profile by
T(r.z) = T(1,2) + a(z)(r2-1) ‘ - (2.35)

where a(z) is oefficient yet to be determined. Substituting

(2.35) into the steadg state energy balance, we obtain
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- vr aT{1,2) . ax_. a(z) 4 ah.i.p
paq. TN er .y A8 (2.36).
3z “CR . i=} c
and ﬁgﬂ _ ‘
o VI a(T(1,2) + a(z)) _ 4Aer a{z)
¥4 ERZ
4 sh.E.p
Sy B (2.37)
i=] c

The partial differeptial equations have been transformed to
simultaneous ordinary d1fferent1al equat1ons in T(1,z) and a(z)
The radial concentration profile is nearly quartic. This is the
lowest degree pofynpmia]f excent fdr zefo. which satisfies
" the boundary conditions. The maaf balance is also transformed to
an @n]arged set of ordinary differential equations by choosing
a sJ?Eab]e approximating function, |

The approximating polynomial chosen may not be very good. .
It may distribute the error between the true.solution (if it'weje-
known) and the approximate solution very poorly. An excellent I
discussion of approximating polynomials is given by Vi]]adsenl
and Michelson (1977). They consiﬁgr examples where the dif?Zrential
equation has an analytic solution. Several approximating methods
are compared. The maximum error and distributiqn of the error
over the interval of interest are examined. For the particular

examples chosen, orthogonal polynomials Fdrmed an excellent class
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of approximating polynomials. They do not recommend using (1,
sinx, sin2x,. . .) since these are usuaily approximated by
polynomials. ,

) | . Consider approximgting avradia'i.temperature profile by %
the Nth order polynomial (in r2) )

. : N—] .
1M (r2) = 1M(1,2) + (1.02) I 2@ p00?) (239

where Pﬁa’ﬁ)(rzl is a suitably chosen Jacobi polynomial.
Substitution of‘k2.38) into the energy balance results in an
en]#rged set of ordinary differentié] equations 1in T(N)(1,z) and
a,(z). The solution is inconvenient in that it is expressed in
terms of the coefficients ak(z) and not in terms of temperatures
in the reactor. If one restricts attention to the zeroes of the
Nth order Jacob¥ polynomial (in rz), which are known as tﬂe interior ~
collocation poiﬁts, and r=1; then the derivafives of (2.38]!

/)
at these points can be expressed as (Villadsen and Stewart (1967))

aT(N)(ri,;) N+ET - (N) :
———= I ALT(rs 2), 21,2, 040 (2.39)
ar =1 /

| and o : _/#/
13 (r aT(N)(rigi))_ N+]

-1 BijT(N)(rj,z), i=1,2,...N1 . (2.40)
J= ' T

r ar ar -

| \“\\w L -~

-
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An algorithm for evaluating (Aij’ Bij) is given in Villadsen and
Stewart (1967). The derivation of (2.38) and (2.40) is not clear
though.

CoI]oquion techniques have beén traditionally used to
numerically eva1u§te I?tegra1§ of the form

1
) é T(r,2)(r2)B(1-r2)%rdr (2.41)

Given a trial function for T(N)(r,z), the gxpression

'I \‘;‘f - .
I = [ (T(r2) - T™(r,2))(r2)B(1-r2)%rdr # (2.42)
0 (i:> .
is a measure of the accuracy of the approximation. The parameters
in the approximating polynomial are chosen typically so that the
intégrand in (2.42) vanishes at a certain number of points in the .

interval (0,1), or that the integrated error is distributed

evenly, etc. Suppos the appeoximating func?ion is“chosen as the

Lagrange interpolating polynomial

N+1 N+1 r -

, ™y = _ ‘Z—iﬂ"m(r (2.43)
— If the interpolation points rf, i=1,2,...N are chosen 3s the §

zeroes of the Nth order Jacobi polynomial P(“’B), and rN+] 1, then

‘the integral 12 van1shes if T(r z) is an even po]ynom1a1 of. degree

Ly

y o
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less than 4N, Villadsen and Michelsen (1977). If one differentiates
(2.43) and evaluates the darivatives at the collocation points,

the coefficients (Aij, Bjj) in Villadsen and Stewart (1963}'are

obtained.

. We achievea greater insight into the orthogonal

collocation techrique when it is rea]ized-that a Lagrange inter-
polating poly omiaT is bging used to approximate the unknown
function. The manner in.which the derivative expressions (2.39
and 2.40) are obtained is now appirent. The function, in our
case temperature, can easily be evaluated at other spatial
co-ordinatks using (2.43):
2.642 A 11cat1on of Orthogonal Collocation to the Tubular
Reactor Equations
Jacobi - po1ynom1als P(1 09(r ) were used by Jutan (1977b) '
‘to reduce the s&t of partial differential equations to ordinary
differential equations. The radial profile is observed to be
nearly quadratic. The appropriate Lagrange interpolating

po]ynoﬁial is

Wrzy = 3021 (3 L - 101-32) 101 ,2)  (2.40)
Z ‘ \/— Z ' ”\{3 '
The interpolation points'are taken as r=1 and the zero of
P(]’o)(rz). The radial concentration profile is nearly quartic.

The appropriate Lagrange interpolating polynomial is
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N
2 2,2 2
C(z)(r z) = r - rB)(r _ rc) C(Z)(r ,Z)
(r = r5)(ry - rd) A
(ré - rﬁ)(r2 - rg) (2) _
e v R SO
B~ "a/rg - vl \/—\

2 2y, 2 2
;} . (r® - ra)(r rg) C(?)(

o ‘(rg- (s )

rc,z) ‘(2.45)

where ry = 1, rg = .803, re = .393, are the zeroes of Pél’g)(rz).
Extensive use was m;de of the boundary conditiéns (2.23), (2.24)
and (2.25) to find additional linear re]a;ionships among the
tehperatures and concentrations, Jﬁtan et al (1977b). The f%nal

result ié that one must solve the following ordinary differential

X

P

equations ngv
v 3C(0,2) Dy (-8C(0,2) + 8C(1,2))

c
3z Rae 4

( pgS'E . A
ot f = , (2.46)

7 vy 3T(0,2) A 4x_ B ,'(Tw - 3}04533

“Certi

T"—'O: Ny " - 2—
: 3z - R c(Bi+2)

(2.47)

T

B o o S U
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v, 3€(1,2) Dy, (8C(0,z) - 8C(1,z2))

r=1: =
; J ¥4 Rze - ‘ |
”_/ p Slé . . '
B = (2.48)
rs
s.
2 T(0,z) B, T, T(1,2) :

r = + (2.49)
; B. + 2 B_i + 2

L) *

» The superscript on C(r,z) and T(r,z) has been dropped. Since

\\i\\\q numerical values were not repbrted by Jutan (19 7&), all

\\\\ calculations outlined in his work were repeated.

‘-

Collocation can also be used to approximate the axial
derivatives, Finlayson (1971), Jutan (1977b). One then finds
that the axial temperatures and concentrations satisfy a set of .
nonlinear algebraic expréssions. Since the solution of non--
linear algebraic equations is difficult, the non]inéar
differential equations were solved using a high order Runge- P

Kutta method.
i — ’ . .
2.6.3 Solution to Ordinary Differential Equations

&

Typical tempefature profi]ég\dre shown in Figure 2.1.
These results were obtained by Jutan 1976) and closely matched

experimenta] data. There {s_an inflektion in the centreline

temperaturé in one of the profiles indicating that this is a

B

sensitive operating poinf:‘Barkelew (1959}.
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To further investigate. the sensitivity of thd reactor

> ordinary differentia]_equations (2.46-2. )fwere

syst
integratgd in the region where butane and hydrogen dould be

.The wall temperature was held constant. THe simulation

parameters are listed in Table 2.1.

Biot Number, B, = 43.5
Bulk density of catalyst, g = 72 g/cm
Cq;é%yst activity =
- Effective radial thermal conductivity:
N = 3.78 x 1070 4 (18 - 1%0,2))
 x13x10P cal/(g-mole%k)
Reactor Rad1us, R = 2.045 cm

Reactor Pressure, P = 1. 67 kPa

4.64

Table 2.1; Steady State Simulation
Parameters
Reference Jutan (1976)

The max imum temperature rise above the wall temperature

= 512%¢ s shown in Figure 2.2 and the conversion of

e is shown in Figure 2.3,

Define the selectivity of propane as

-

- Change in moles of propane N :
Sp = Change TnmoTer of Biteae - (2.50)

is plotted in Figure 2.4.

-

We immediately notice the c¢liff

/'\
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in the upper right hand portion of Figure 2.2. f} is in this
region, dlong a contour of nearly constant propane selectivity,
Figure 2.4, that the reactor has been traditionally operated.
Most control strategies are based on linearized modeas (Chapter 3),
and small ehanges in the flowrates wt]l.certainly change the prdcess
description from that of the linearized modei.' Although the
‘selectivity is eot as sensitive to changes in the flowrates,
the bredUCtion rate of propane is obviously affected by these
changes. ‘ <§{
.o The effect of increasing the length five fold and
decreas1ng the catalyst act1v1ty by 20% is. exam1ned as a means
of reduc1ng this parameter's sensit1v1ty The L/D ratio is nou-——ae
nearly comparable to that of a commercial reactor (Hlavacek and
Votruba (1977)), where &t is typica11y.in excess of thirty. Part
of the motivation for such tong react:rs is that the profile can S
be moved down the length of the reactor as eetelyst Leact1vates, _
preventing costly Shutdowns. As well, exper1menta1 operat1on of '
the ex15t1ng react;;\has shown that when the hot spot is near the
end of ?f;e reactor, large changes in the flow rate sometimes push
the temperature profile down and out the end of the reactor.
This resu]ts in Targe upsets in production rates and select1v1t1es
' Typical temperature profiles for this new conf1gurat1on

are shown in Figure 2.5. The hot spot temperature is now much
‘ . L

closer t0 the front of the reactor. The maximum rise above the

," * ’ ’ . ) o
( i C o/
- 3
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Flowrate Flowrate Conversion 1/8.
Butane Hydrogen
16 100 .68 1.93 (1)
12 - 100 .52 1.82 (2)
9 100 . .44 1.65 (3}
-
!
530/ .
525
520
515
510 |
0 5 1.0

Figd%e‘z.s: Temperature Profiles for

Normalized Reactgr Length -

Modified Reactor
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wall temperature, conversion of butane and inverse of propane

i .
selectivity are shown in Figures 2.6, 2.7 and. 2.8 for the new

configuration. The Cliff obeerved in Figure 2.2 is still
present in Figure 2.6. If we now desired a propane selectivity
of 1/1.7, it would not be necessany to operate the reactor as

closely to the cliff as in the original configurations, Figures

2.4 and 2.8. In addition, the conversion of butane is much

higher ih the new configuration. Do

2.7 Summary

In this chapter, the reaction sto1ch10metry for the

hydrogeno]ys1s of n-butane has been presented. The concepts of
independence of reaction were reviewed. This then formed the
basis for a study of reactidn'inyariants in tubular reacfdrs.
Finally the sensitivitquf the steady state temperature profile
to changes in flow rate of reactants was examined. The extreme
nonlinearity of the hot spot temperature to these changes helps

to explain some of the preerus difficulties encountered in

controlling this reactor.

!



CHAPTER 3
STATE SPACE MODELLING AND CONTROL OF TUBULAR REACTORS

-3.1 Introduction

The mathematics used for estimation and control of
Tinear(igzed) finite dimensional procésses are presented in the
 first section of this chapter.. Extensive use of th{s_materia1 will
be made in this and Subsequént chapters. Receﬁt]y there have been
a number of experimental -and theoretical studies on modelling and
contfo] of tubular reactors. These‘papers will be briefly revieweg,
and their contributions examined. Finally, a number of modifi-

cat1ons to the reactor model studied in this work are cons1dered

3.2 Review of Linear Quadratic Control Theory

Tubular reactors are highly, non]qnear "distributed
parameter processes. A]though control of such processes to minimize .
some arbitraryxebjective function is theoretica]ly possibie, Sage
and White (1977), Pell and Aris (1970), difficulties in computation
‘of these optimal control policies usually precludes théir use.
Furtherhbre, these policies are usually not of a feedback naturé,
which s a requirement for most dndustrial processes. At this time, ////,/// .
the 9n1y tractable approach appears to be that of obta1n1ng a ‘ /

linearized, f1n1te dimensional (Tumped) approx1mat1on to the

original process. (Methods of obtaining this w111 bé discussed

38

S
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in section 3.4.) The appraximation to the original process is

then described by a linear vector differentiél equation of the

_form

X(t) = A(t) + Gu(t) | (3.1)

.

The ﬁ-statesﬂg(t), are{g;ua]1y temperatures and.concentratioﬁs at
various points within the reactor. These positions are determined
4@L£f§ lumping procedure. There are r manipulated variables, g(t){
qyich may be flow rates, cooling oil tempenature, etc. Ac and B
may be functions of time, although this is usﬂa]]y-not the case.

In most processes, 6n1y a few stafes or variables related
to these states are measured. These m meaéured variables, or
outputs, are denoted by y(t). The measurement equation is given.

by

2(t) = Hx(t) (3.2)

A1l variabies afe deviations from their steady state values.

The émphasis in this wbrk will be on the use of linear
quadratic control'(LQ) strategies. This is one of the few modern
control theories for which a tractable, and appealing solution
exists. Here one is interested in finding the control u(t); in
the interval 0 2 t £ T to transfer the state frcm x(0) to-the
origin while m1n1miz1ng the objective funct1on

(x' (t)Qx(tY)\ (t)Ru(t))dt  (3.3)

Ji(x,u) = x' (¢ )SX(fr) +

O~

i
AN



40

.

where Q,R,S are positive definite matrices. The solution to this

“‘problem is well knawn, Sage and Nhite (1977), Kwakernaak and

Sivan (1972), and is given by

u(t) = -‘L(t)a(t) | (3.4)

where L{t) satisfies a certain system of equations. It is
e
- important to realize that the control problem is formulated as one

~ in which there are no external disturbances affecting the process

in the intérva] 0 <t sT. However, the initial departure of the
state from the origin at t=0,x(0), can be considered due to an {mf/’\
impulse disturbance at this time. If it is desired to design a’
controller to guard against the «effect of distﬁrbances, such as
steps, ramps, etc., the mathematical structure of these must be
included in the process description. This topic is-discussed at
length in Chapter 8.
There are a mu1t1tu;e of other techniques that might be
used £o control tubular reactors, such as pole placement. "Of the
few<@xperimental and theoretical control studies of tubular
reactors, most have used LQ cdntrol, Vakil et al (1973}, .
Sorensen (1977), Jutan et al (1977&), Wong (1977). Georgakis

et al (1977a,b,c) haverpfoposed pole placement as another technique

for tubular reactor control, and this will Ee discqssed in the

next section.

Many times the model (3.1) is a linearized approximation

to a nonlinear modal. The'ﬁse.:?\the quadratic objective function (3.3)
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reduces the influence of second order terms neglected in this
11£9annzed approximation, Athans (1971). The ability of the
11near1zed model to represent the true nonlinear process is then
better than might norma]ly be expected.

Implementation of LQ strategies requires computer N,

' kY

assistance. We, therefore consider only changing the man1pulated
variable at equispaced time intervals, k, k+1,k+2,. . .. The
d]fference in time between k and k+1 is the time interval 4T, over

which .the manipulated variables is held constant. The process

_

description at the samp11ng instants is now g1ven by
x(k+1) = Ax(k) + Gu(k) (3.5)

and

y(k) = Hx(k) . (3.5)

The double (A,G) is obtained from (AC,G ) by 1ntegrat1ng (3.1) over
tpe.1nterva1 (t, t+aT).

The process description (3.5), (3.6) may not be exact
due'to.disturbances affectinglthe process.. In chemical reactors
these may be due to f1qptuetion in wall temperature, catalyst
activity, measurement uncerfainty, or modeliing errors. If these -
disturbances are of a random nature, they'can be mdde11ed'as

stochastic processes. The most common representation is

x(k+1) = Ax(k) + Bu(k) + w(k) (3.1)
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apd _ - ~ ~

. y(k) = Hx(k) + v(k) C (3.8)

where'ydk) and v(k) are process and measurement noise, respectively.
. ~
They are usually modelled as Gaussian white noise with mean 0

and covariances R and'Rv. ¥(k) and w(k) are usually uncorrelated

with each other.

The cont1nuous representation ( (3. 2) need not be
cons1dered as limiting representations of (3.7) and (3.8) as
whdpp observati ons

AT » 0. To do so may be mean1ngless espec1 11
are obtained at discrete intervals of t1me CL”

We now wish to find the sequence of controls u(k),

k=1, 2, . . , N-1 to minimize the objective function

' N-1 _
JF N E(x" (N)Qpx(N) + kzl' (x'(k)Qx(Kk) + u'(k-1)Ru(k-1))}  (3.9)

A B .

where E denotes the mathematical expectation and 6f“;;<% are

positive sem1def1n1te matrices. The soTutjon is readily der1ved

VA
using dynam1c programming, Astrom (1970), Sorensoﬁ’ (1968) ani\u/’J,/’

‘ - +
1s given by kga

o
-f k) = -L00x) ~ (370
where the ga1n matrix L(k) is computed from ///jﬂm
- L(k): = (R + GfS(kﬂ)G)" : &(H)A ‘ ,(‘3.11)_-
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The matrix S(k) jatisfies the patrix Riccati equation

(k) = A'SQ)(A - GL(K)) * Q (\ (3.12)
Q- -

with initial conditions S(N) =

In regulatory control, as opposed to trajectory control,
one is usually interested in the solut1on to (3 9}.as N + =, In

th1s _instance, the control policy is given by

. -(——-"
\\‘\\\ _ u(k) = -Lox(k)

-

where L. is the steady state solution of (3.11) and (3.12).

steady state controller gain may be preboﬁputed as it does Apf
depend on the daté. This-disjunction is known as the separa;ion
principle. A thorougp discussion on the prOpérties“of the ’
gptimal controller, and.convergence of the matrix Riccgti equation
_ ére given by Kwakefnaak and Sivan (1972). The controller (3.13)
reqﬁjres exact knowledge of allotherprocess states. Since we |
very seldom measure all the states and those that we do are never

measured pe(ts:fly, this strategy is not achievable.
states may be reconstrnsfed us1ng a Kalman filter,

Kalwa (1960) he estimate of the state at time k+1 based on

~

information to and including k,q&&iiI/k), is computed from
. + | .

X(k+1/k) = A;_(k/{() + Gu(k)  (3.14) -
Y - »

and the state estimate at time k given information up to time k

by the filter

s

v/
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/ X(k/k) s (k1) + RO (k) - BR(k/K-1)) (3.15)

~—The Kalman gain K(k) sat}§t13§,/

K(k) P(k/k- 1)H (HP(k/k DH'+R ) (3.16) )
where
\ e P(k+1/k) = AP(k/k-T)A' + R_ (3.17)
' A N ) “y
aé; ‘
P(k/K) = P(k/k-1) - K(K)HP(k/k-1) (3.18)

g -

i P(k/k-f} is- the covariance of the state predict%on error, that is

P(K/k-1) = EC(x(K) - 2(k/k=-1 YRR 2(k/k-1))'F (3.19)

wHereas.P(k/k) is the covariance of the filtered estimate
P(k/k)-mx(k)-x(k/k))(x(k) SO (3.20)

. . The covariances P{k/k-1) and P(k/k} directly réfiect the uncertainty
in the predicted and filtered state estimates. .
The équations (3.14 - 3 18) can be derived from algebraic
or stat1st1cal argdhents Astrom (1970). 51k/k) is the conditional
mean of x(k) given (xﬁk) y(k-1}, . yﬁd)) The condit{onal

é ' . mean m1n1m1zes the mean square error of the state estimate. It
% ) . also minimizes the de;;;;?;;;;\éfﬂﬂ{k/k-ll, and minimizes the joint v
@ | confidefice region of the state estimates since w(k) and v(k) have

.

: " a Gaussian distribtuion. - o . ‘ o
NL’: . \ .
t . - o Y
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The recursive equations are solved in time from k=1
/ onwards, assuming an initial distribution for x(0). Conditions
for P(k/K-1) to converge to a unique positive definite value L

P*(k/k-1) are summarized in Kwakernaak and Sivan (1972).
We now seek a contral strategy to minimize our objective
function {3.9)- (as N - «) but only allowing our control to be .

) y
a function of the information available up to time“ga? e

. e, y(k),
‘\\\\\\\ ! y{k-1},. . .). The solution is given by Astrom (1970) \\\\\\\\‘\;//

» (k) = LX(k/K) - (3.21)
/o ;"

where the ga1n sat1sf1es (3 11) and (3.12), and the simultaneous
estimate x(k/k), is computed frém (3. 14) and (3.15f. This .« °
|- . remarkab]e result, known as the certainty equivalence property,

| says that the optimal contro] polfzy, using the conditional mean
- for the state estimate, is 1dent1c§i,to the oﬁ§1ma1 control

[ - policy using the true value of the .state. (The value of the

———

AN

h.) The certainty equivalence

objective function is differen

\5\\\\ o “property applies without qualifigation to quadrat1c controj} of
Tlinear systems subject to add?; ve d1stquances, Root (19 9

In this section; most of “the control theory tolbe u ed in

this and subsequent Chépters has been presented. 1In the

-
section, the most pert1nent literature on tubular reactor .control
i
is reviewed.

dooepes
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3.3 State Space Formulation of Tubu]ar Reactors

| . To employ the tractable control theory presenté&“?\ the -

previous section, one must obtain a 11nearized;1umped approximation

to’the partial differential equation descr1b1ng the process.

_grthogonal collocation has been used succes§\911y to reduce the N
partial differential \equations to an enlarged set of ordinary

" differential equat1o:S\?h\t1me, Finlayson (1971), Michelsen

et-al (1973), Sorensen (1977), Jutan et al (1977a),‘Georgakis

et al (1977a). In the previous chapter, we saw how symmetric

trial functions were usdd\to approi}ma qpial temperature and

concentration gradients. In a 1mi1a; ashion, nonsmmmetrié

trial functions are used to approximate the\axial profiles. If

need be, boundary conditions can g]so be apéiziimatedl\{iqud§en .
and Stewart (1967), Georgakis et al (1977a). The axial
-derivatives are then evaluated at a number of interior collocation

points. The resu1t 1s that the nonlinear -partial differential

equat1ons 1n t1me and distance are approximated by a set of/ron- g&)

linear, ordinary differential equations of the form
' )

-'\' | | X = f(x,u) 3 -'& | (3.8\-/

. -
r ) - . ! \__If—;,

The state vector x, is composedfgg;températﬁres and-concent tions
at the collocation points. The tremendous advantage of using this
tecﬁiféue is that low ord%/,ipprox1mat1ons, typically 5-10

interior collocation points, accurately characterize the dominant
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~ dynamics of the process. This contrasts with the tanks in

series approx{mat1on which require 1000 ce]]s -to achieye

comparab1e accuracy, Finlayson (1971), Micéeléen et al’ (1973)
Georgakis et al (1977a).

The nonlinear equat]ﬁns are then linearized by a first
order Taylor series expansion cbout a ﬁeference profiTe,
either the steady state solutions of the ortginal nonlinear -

partial differential equations, Michelsen et al (1977j, or a

profile constructed from operating cecords, Jutan et al (1977a).
#  The result is a set of linear, ordinary differential equations of

the form

\. i:A_x_-[»G

« - e . '_//

The states are devia:lgg; from their reﬁizcnce values. For
ki

;vn ‘////processes with comp
: | order kinetic models and mu1t1p1e reactiofs, the 1inearization
.
step is a very tedious and time consuming task: Implfc?txlﬁ\fhis ‘

. technique is that all of the transpont and kingtic parameters \‘\\\
| N

(3.23)

netics, i.e., other than first or second

are known. P T

R A -
/ 3.4 Control of Tubular Reactors ’
<: There have been very few reported applicatipns of m°<EEEr

problem of formu1ating a dynamic mode

suitable for conpfoT purposes. Micaslsen et al-

“ /\

- " —
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Vakil et aT (1973) approached the mode111ng of tubular reactors‘* )
1th the control obaectdves in mind, The hypothetical 4rocess |

was a packed bed tubular ‘reactor with a Tiquid phase reoction.

Rad{al gradients and diffusion effects were neglected. In the

first paper, a state space formulation of the reactor d&n;m1cs

was obtained.using the technique of. orthogonal collocation A

number of tragsfer functions, for this process had previous]y

P
‘been deve]o d, Strangeldhd and Foss (1970), and these were used

/ .
to examine thet:fﬁfct1veness of the collocation technique in

approxfmating the major dynamic response of, the process I't was
~concluded that the dominant rgsponses ofthe process were well
represented by low order state space models.

' In the second paper, Yakil et al (1973), the use of
11near quadratic controls and Kalman filtering was evaIuated
The control objective was-to maintain theﬁgff1uent temperature and
concentration near the1r steady state values in the prese e of
1n1et disturbances having a known mathematica] structure. The
control. variable was the temperature or composition of a sideii -
stream, injected at some position .aleng the reactor. _Igg,sttes | '
were reconstructed using a Ka1man filter. The only tempereture .
measurementuﬁés at the sidestream indection po1nt It was found .
“that as the injection point moved towards the end of the reactor,-v
more accurate state estimates were obta1ned However, unacceptably
large manipu]ations of the contro1 variable were requ1red to

[’
minimize the effect of the 1n1et disturbance’ in tée remaining
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- length of the reactor. A compromise was thus required.

. . . ,d' __v
Although not studied, the use of additional temperature measure-

ments would have increased the aCCUracy of the state estimates.

It was concluded that Kalman fTItering and Lq contro]

were an effective means of controlling tuﬁu]ar reactors. However,

‘one must quest1on the need for these techniques since 1t was

shown that exdel]ent control resu1ted from a control \strategy

based ona.51mp1e transfer function, The contribut1on 0 se

‘ papers was to out11ne an approach to the modelIing and control

of tubular reactors where conventional control schemes may give

unsatisfactory performarice. ' | R 4

-a_F
]

L The modelltng and control of\ag;gmpty tube-{no cata]yst
part1c1es) reactor was studieg by Georgakis et al (1972a b,c}.
The manipulated variable was the temperature of ‘an o0il cooling

network jacketir{g the reactor. - The effﬁds of axial diffusion -

13 . ) .
. were included in the reactor model/ Radial gradients were

jgnored, a1though the reactor was controIied by7adjust1ng\’gg
temperature of the tube wall. By choosing an empty tube reactor,
the thermal and concentration wave velocities are identical. -
However, uXNy of the problems 14’controll1ng tubular’ réﬁctors~
stem from the difference in thermal and waye ve1oc1t1es Aue t
the thermal capac1ty of the packind, M1che1sen et al (1973) |
In the first paper, the reactor model was descv{éed and

»

orthogona] ¢ollocation used to phtatn a 1umped 1inearized ;ﬂ,'

approximation to the part1a1 aﬁfferentia1 equation degcrihaqg‘
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the process. The.effect'of the particular choice of Jacobi

polynomials; and the order of appraximation were examined. Again,

\ h‘ﬁi' Tow order approximations (N=7) were found to eccurately describe
: { ‘the 1mportant dynamic characteristtts of the process.
a i Control of the simulated reactor was studied in the
second paper. By a careful choice of the ‘model parameters, the 15&

. reactor system had a number of steady states. The steady state
temperature profile about which the reactor was to be controHed
" ‘was unstable. Modal control was then used to stabilize this
‘ unstable process. However, only one mode (1acking phystcel
4nterpr9tation, Michelsen et al  (1973)), of the 14 used to -
approximate the Lrocess was unstable. The dynamic cheracterfgt;;;/\\\\

1]

Y

. ~of the controller were also examined. '
In the last pé%er, a filter was used to reconstruct the
- températures and concentrations at the collocation points from a
single t&mperature" measurement by using a reduced order, observer
fleasurement was noise -free. As well, there were no d1sterbances
(://h a ectlng the process. ﬁfhe 1mportance of measurement accuracy
and placement is thus not cons1dered
These papers do not give near1y the 1n51ght’d?Eo the
~ problems of control]ing tubular reactors, as do those of
‘Michelsen et al (1973), and Vakil et al (1973) This is pr1mar11y
) '#’_,,«4_ due ‘to the absence of pack1ng, rad1a] grad1ents, process and

kméEiSurement uncertainties. Rather, these papers are an example

+ o Of the use of modern control theory on a hypothetical process
o . - . x



")

\ s
which may net reflect conditions encountered in industry.

The dynamics and optimal controls of laboratory
tubular reacegrs'have been studied by Sorensen (1976, 1977). The
process was a aearly‘adiabatic ﬁﬁbu]ar reactor in which hydrogen
(> 99 mole/% d oxygen reacted on an alumina supported

platinum cakalyst.” The kinetic rate expression included a term

to account for changes in catalyst activity due to changing

temperature conditions along the reactor. The reactor model
accounted for.axial dispers;;;-and radial variations in tempera-
ture, although not in composition. The radial gradients were
very-small, arising from imperfect 1nsu1a£ion at the tube wall.
Orthogonal collocation was used to obtain a,]umped/1inearized
approximation to the original model. A number of'parameters
were estimated from Operating data. The manner in which the
parameters were estimated deéerves some comment. The thermal
and kinetic parameters were estimated separately. The transient
behaviour of the reactor was studied when no chemical reaction
occurred and the heat transfer parameters determined from this ‘
experiment. The kinetic parameters were then determined from
ogerating data when the reaction occurrsd. The difficulties
encountered by Jutan et al (19775) ie simu]ta;eOUS1y estimating .

the heat and mass transfer parameters m1ght have been alleviated

by th1s approach.

To collect the data the reactor was allowed to reach

steady state by exc]ud1ng the flow of oxygen. A constant flow of
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this reactant was then added, and the process allowed to achieve
a new steady state. Data collected during this transient was
used to estimate a number of transport paraméters. Since the
process was open 1oop s&able, a feedback controller was not

required to stabilize the reactar during the data collection. .
-~ 7

- Problems encountered in ident%fying parameters under feedback -

control were thus avoided.

In the second paper, Sorenson (1977), the use of Kalman

filtering and LQ control was evaluated. The contro]]é} and
filter were designed to compensate for inlet disturbances,
modelled as the output of a linear s%ochastic difference equation

of the form ? ‘

N(t) = o) ¥ a(t) (3.24)

As the process had no ig BLE turbances, the performance of
the controller B jecting the inlet to step -

disturbances in tempe} omposition. e_gbi]ity of the
Kalman filter to estimate™: ’
' N

effect on the témperature'and composition at the process output-m

’ s .‘.". .
e;gﬁsturbances and minimize their A

. was examined. As expected; as the elements of the shaping

matrix ¢ in (3.24) increased, the bffsqp in the filter and
boptro]led variablés were reduced. This occurred at the expense
of a more o§cf11ator; response. The particular problems df,
estimating and, 6ontro11ing deterministic disturbances in the
presence of stochastjc disturbances is!discussed in Chapter 8 of

this thesis. S : R
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It was concluded that the use of Kalman filtering and *

Tinear quadrat1c control was an excellent method of contro]11ng'

thefr reactor Prior to undertak1ng the time corisuming task of

modelling a tubular reactor for control purposes, one must be
sure that there is a requirement for tﬁis Comparison with a
more conventional controller, i. €. a proportional 1ntegra] o
contro]ler would verify th1s need it it ex1sted

‘The most recent-experimental study using many of the
techniques was by Jutan et %1 (1977a,b;c). The reactions and
reactor have aIread}’been discussed in chapter 2. Difffculties in
controlling tﬁe reactor by corventional means were well . .
dehoﬁsfrated andg:hgzsf?re considerable work was put into
modelling its dyhamic;. The dyﬁamic model of the process was
obtained by again using the technique of orthogonal collocation.
Several mass and heat transfer parameters, and a stochastic model.
of the process disturbances ﬁére idenfified'from dynémic data.

The reactor model was expressed in discrete foim (at 60 second

time intervals), sincéxtemperature data was only availab]e at

discrete time intervals. ' The fin su]E/wE‘ a model of.the
form . S : - -

x{R+1) = Ax(k) + Gu(k} - -_-" | '(3.25)
and f
vl -
y(k) =% (k) + N(k) | (3.26)
N 4 ‘
T A
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The states were temgeratyres ét the collocation-points, and the
controlf - Fhe flow rates of&putanefand hydrogen. N(k) represents
éhe total "effect on the process 6utputs of all disturbances not~
accounted for by the reactbr model. N(k) was modelled-4% a mﬁ?£1-

variate aut€regressive process.

- : «
N(k) = oN(R-1) + a(k) | (3.27)

where a(k) is‘a white nojse Gaussian process.‘The radially averaged

N
~ concentrations at the outlet were obtained from

gav(k) = Cx(k) + Du(k-1) T (3.28)
\
There is no time derivative in this concentration equation because

£
a pseudo steady state assumption was made, Jutan Ef’%] (1977a}. ‘

Linear.quadratic control with Kalman filtering was
experimﬁhtaiﬁy demonstrated to be an excellent means of contro111ng
this process when compared to more conventiona1.techniques.
However, this improvement in control must be reconciled against
the treméndous time and effort required to obtain a dynamig Tgffl_u
of the process. The.complexity of the modelling procedur was
/,/ increased very mygf the 1nc1us1on of radial grad1ents 1n the

reactor model. By comparison, the 1nc1us1on of axial dispersion
L\’/,ﬁ/’_——5¥%ects is not a major task. A less rigorous and time consuming

approach would have been to ignore radial gradiénts,‘and to ..
evaluate the:contro] from this-simp]ified model and only proceed

with the more detailed model if there was a nEéd.

]
¢
-
*
P

.g\.

«
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This concludes the Titerature review on reactor.control .

via-dynamic modelling. A;'has been seen, orthoﬁbona}'co110cation
has.been-used successfully ;n/ﬁgde111ng packed bed reactors.
Several exper1menta1 app11cat1ons have succeséfull E/ﬂjpstrated
the use of Kd?man f11ter1ngfhnq Tinear qugdr tic control. In the
'next section, a number of extensions to the work o%.EDtan (1976)

are exam1ned.
.-

3.5 Deve]opment of the State Space Model in Ratio and Total Flow
. variabTes '

) ﬁb the modelling stage, the nonlinear model is tinearized
about an ope;et1ng temperature prof11e an;v’%b average flow rates.
Rather than linearize about the average flow rates,/wf"}y be
q;s1rab1e to Tinearize about e function of these, say.tptal .
flow and the ratio of the flejﬁletes IOne method of iﬁg is §s -

‘to express the model in terms of tota1af10w and rat1o, and then
T1nearfke with respect to these new varjables.. A much eas1er ‘
approach is to use the chain rule for decivat1ves Denoting the

f\sgfl?w rates of butane and hydrogen by u] and U, then th total f1ow

ur’ and f]ow ratio uR are g1ven by 'f?‘

y .uT =up tu, . ' (3.29)

and
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N e uy and u, are\the butane and hydrogen fiows. Using the

, " chain rule, we find ?brhi function f(u],uzl that

J 1

- — - g Sy o —

N
aup | N au1 QU
=] S I I (3.31)
af EEI. - Bup aof
auy . 3, . ETE; au, | - .
. L C

A This is of course only defined ifu #0.°
& - If we have 1inearized our model about some steaHP\yTJLe

e .
.
B SR ~.

u1,u2, we can eas{/y obta1n the model linearized about ”R’”T o
from (3.31). Examination of the algebra used to obtain the
d{screte feprésentation'(B:ES and 3.28),4q’tan et al .(1977b),
‘indtCatgs that one simp]y repiace_ Gu(k) and Du(k-1) by GJu*{k)

- anerJgf(k-l). J is the-matrix of/ﬁartial derivatives in (3.31)

| .eva1uated at'ﬁ1,'ﬁz; and u*(k) is the vector of controls
(uR.; ER,uTQﬁf)'4 This simple techhique-a11ows'us to easiTj
‘ 11near1#e our.nonlinear model in variables we‘ﬁight'not otherwise

have ppnsﬁderéd. |

-_—
/ff’f‘\ + . 3.6 Wall Temperature Effects

-

EXperimentaT 0pération of the reactor has shown that the
. wall temperature is an imporfant operating variable. It has heen
~ used to compensate for changes in catalyst activity

resu1t1ng from shutdown of the reactor. In several experimental
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studies, Jutan et al (1977c) Wong (1977) the wall temperature

. has also-been used to test the ability of the1r control algorithms

to compensate for major load upsets. The reactor model deve1oped

by Jutan’ et al (1977a) did not include explicitly the wall

_teméerature, as it was assumed to be constant. The wall temperature,

effects are obtained by 1inearizing the nonlinear mass and energy
balances at the interior collocation points. The continuous -~

equations are then integrated over the sixty second coptrol

interval to obtain a discrete representation. The final result is -
LS L | . _ -
that one obtains a model of the form > o

x(k+1). = Ax(k) + Gu(k) + Fz(k) o (3.32)
and_ 

(‘,\} _av(k) = Cx(k) + Du(k-1) + Ez(k-1) (3.33)

l_'

z(k) is the deviation of the wall temperature from its steady state
va1ue\ The vectors (E.F) are presented, in Appendix 3. We have
assumed, as did Jutan et a] (1977a), that the heating oil and tube
::S¥~are at the same tempergture. Models of the form of (3.32) (//
(3.33) will be used in Chapter 8 where the design of controllers

to compensate for load changes will be studied.

. - 2 '
3.7 Estimation of Rw S A _ :
The development of state space models represent

e —— TN

siderable 1nvestment in t1me This effort should not be com

4
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by the use of poor statistical techniques to estimate\;él model
parameters. To obtain accurate estimates of the-transport
parameters, it is alsq-necessary to model the process disturbances.
Since the effect of process disturbaeces can bn]y be observed
at the measured outputs, it is appropriate then to use timeé;i ' N
ser1es models to represent these diéturbances. We may, hoﬁever, .
obtain more~1nsighf into the nature of the disturbances affecting,
the processtif we can 1dent1fy two coﬂtributions, measurement and
tate noise. We seek then a state representation of the form
33.7) and (3.8) where (v(k), w(k)) are Gaussian white noise
processésewith covariances R, .and Rw.

Several techniques havé been proposed to estimate R and

Rys Mehra (1970), Carew and Belanger (1473), Sinila and Tom (1978).

- The essence of these techniques is that Rv and‘Rw can be expressed

as linear functions of the autocovariance matrices §
. ‘ ‘ R .

r = E(Q(k)_'- Hx® (k-1))Yy (k) - Hf(k/k-_n)) (3.34)

A

where XS(k/k-1) is subopt1ma1 estimate of the state vector based
on erroneous estimates for R and Rw Considerable manipu efTbn of
the autocovariance matrices and state equations s requirdd to .
obtain this linear dependence. In the original paper, Mehya (1970)

claims that Rv and Rw can be uniquely estimated from the observations

of y alone. However, unique values for R, and R cannot be

obtained from-an analysis of y alone. Rather, a unique value of
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the steady state Kalman gain can be estimated, Alspach (1972).

These techniques could still be used to estimate Rw if Rv

~ were known. A number of shortcomings of these methods have been

outlined by Neethling and Young (1974). As they point out, since

the sampled autocovarian&e matrices are themselves autocorrelated,

- observed autocorrelations in théxéampled estimates cannot be

- , ’
attributed solely to an improper choice for'-RV or R,-

In addition to these drawbacks, there are computation

objections to this method. For.a seven dimensional state process,

_ where all the states are meaé:j;d, the method of Mehra requires

computation of the generalized inverse of a matrix of dimension

49 x 7. Using a modification 5ugge5ted by Neethling and Young -

(1974), this matrix would be replaced by a matrix of dimensicn _

98 x 7.
For these reasons, an alternative approach was taken.
Instead of assuming a general structure for Rw, in which case

28 parameters would have to be identified, the following two

parameter structure was proposed.

1 5 pz.i.‘ o
Ry = Rw(° p) =0 - 1 - _ (3.35)
| w0
- o :

This structure will allow for a simple correlation structure
’ ]

among the:process disturbances. If the states were of mixed units

-
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the common variance term would have to be replaced by individual

variances in order to retain the same correlation structure. It
was known from experimental observations-that the temperature
measurements are uncorrelated, with common variance 02 =4 . C°2

Jutan (1976).

3

The parameters (oz,p) were estimated by minimizing the

generalized prediction error variance (or the volume of the joint .

confidence region of the prediction errors).

NOB . | .
1 | TG00 - B e - Him (3.36)

In (3.36), x(k/k-1) is the Kalman filter estimate for
51k)'eva1uated with R = RW(GZ,B). The parameter estimates (g,p)
N . ‘ . ' o
tHEf/ﬁinimized (3.35) were found to be 02 = 3.0 and p = .1.

The Tow value of the correlation coefficient implies that the

. N
disturbances in the reactor are of a local nature.

© 3.8 Summary
5{fx In this chaptér, most of the control theory that will be

uéeq in subsequent chapters has'beeﬁ presented. The more recent
applications of modern control theory to tubular reactors have
been reviewed. Orthogonal collocation has been used successfully
to obtain a lumped approximation to partial differential
equations which describe the mass and energy balances. Once a

Tinearized, finite dimensional model is obtained ip this manner,
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many control theories can be applied. The estimation of mass —~———

and heat transfer parameters from operating d a 1§_Hjse\stra1ght-
forward when the process model is expressed in dis e fonm,
In the last part of th1s chapter, a number of extens1ons to -

Jutan's work were gonsidered. a%hgse kesu1ts w111 be used in

- subsequent chapters.

S pr—

%
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\ OPTIMAL SENSOR LOCATION IN TUBULAR REACTORS .
4‘:1\';1 ntroduction . " '
o O

; Invprocesses it is not feasiblig to measure all the

. 4

process variables of interest. This may be'dué to ;.\conomic ‘
) constraints, lack of on-tine detectors, or stile environ-
¢—\ments in which the sensors are 1ocated./%:::):, only a certain
subset of these variables, or variab%s/r?elated to these prc’:ce'ss -
¢ ‘¢ or sfafé variabies are measured. If all the states are to 1%
’ 1nfer'red from such measurements the\?\emswn of the state
estwmates will depend on wh}qh subset of the states, or auxiliary
) \l  varidbles are meagred and »upon the prec151on of the &asurements.
Adsuming that one has chosen the type of easuggqjents and the +
< . measurements to be used, thereby fixing their precjsion, then ‘it
' would be desirable to select the 1oE;tionv-of these sensors in some _
optimal mannerrj{(' " - : ., )
If the purpose 1&to obtain the best estimate of the
state vector, then this problem is just the dual of that whicﬁ _-i
ariges in the optima] design of regression experiments. * In that
pr;blewne is 1nterested in choosing the settings b(the |
. independent variables in a number of ex eriments to maximize the -
\ amount of in‘fomat'ion that will be obt ined on the 2 para ameters in
\“ -the regression equafwn The stahshcal Yiterature contains an -

abundance of theory on this subJect and ®his provides a basis Fe&
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the sensor location problem. Some of'dhe thegretic aspects of N

, theseltechniques and their potentia] app]ications to “sensor
location probiems have been exan;oed by Mehra :(1976).

\ P#bvious studies on -semsor Tocations in tubular reactors,
.Coiantuoni and Padmanabhan (1977), and'Kumar and Seinfeld (1978b),
lggied at the otate-estimation problem, using a chosen optimality
' criterion, by retaininﬁ‘the—continuoos time models for simple
”,reaction systems. In<this study, we review,a nuober of differeot

design criteria, and apply some of them to the discrete time
_ model of .a highly exothenmic packed bed tubular reactor carrving
out the muitiple reactions of the hydrogen01y51s of n-butane.

_ Con51der a process which can be described by the discrete
linear (1ineari;ed)-state variable equation |

x(kH) = Ax(k) + k) pulk) (. U/’

where x(k) is an (nx]) vector of state variables, u(k) is an .

(rx1} vector of mapipulated inputs, and w(k) is a vector af

Gaussian white noioe-disturbances‘with covarianceAmatrix, Ry

. The process variables that are measured, y(k), an (mx1) vector.

are related to the state vector x(k) by the measurement equation
(“‘-sa

where v(k) is an (mx]) vector of measurement noise with covariance

-

5 #{k) = Hx(k) + v(k) o . (4.2)

matrix, Rv; Provided that the system (4.1) and (4.2) is

'observable then the entire state vector,;jk) can be estimated from

p A I O | . {/
I oy S | ~

LY
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\

the measurements of y(k) by the use of a fi]%er equation. -
Obviously, the precision of the state will depend upon the
precision of the measurements, Rv’ as well as upon the 1ocatibn
of_thgse measurements, that is, upon H. Assuming thaf'one has
chosen the number and type of measurements to be used (Rv is
_ therefore fixéd); then it may be desirable to ge]ect, in some

optimal manner which variables should be measured (that is, to

specify H).

4.2 Theory on the Optimal Locat%:;r?ﬁbikﬂﬁugzi_ap\_—/)

Ql\' The placement of sensors must obviously depend upon one's

L ~.optimality criterion, and there have been‘a-number of different
( ‘

¥

4:2.1 Optimizing an Observability Inde | o

. One of the earliest appfoaéhes Z;n;;:\sensor location )
problem was suggested by Johnson (1969) for the nonstocﬁastic.
state reconstruction problem (w(k) = 0, v(k) = 0}. He suggested

'that as a measure of the observabili y f the system, one use the

~ determinant of the generalized obs rvability matrix.

, W _z (HAd) (nad) \ (8.3)
- - J "} .
- %ohnson (1969) and Muller and Weber (1972)'£hen sugg
maximizing*lwl through a‘ choice e_gf the sensor locations in order _

<0 1mbrove tﬁa&gegree of complete observabi]1tx;}’

.- o : a * . . "
N 2o SR
- T T - - .
T o, |
I~ 4, -
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4.2,2 Obtaining "Best" State Estimates

When stochastic disturbances are present, unmeasured

states can be estimated with the Kalman Filter.

x(kH1/K) = AX(k/K) + Gu(k)

(4.4)

x(k/k) = iﬂkjk-l) + k(k)(xﬁk) - Hx(k/k-1))  (4.5)

K(k) = P(k/k-1)H" (HP(k/k-T)H" + R )7

P(k+1/k) = AP(k/k)A' +‘.Rw

P(k/k) = P(k/k 1) - K(k)HP(k/k-l)

\

A

with P(0/0) = Po-

(4.6)
(4.7)

(4.8)

P{k/k-1) is the covariance matrix of the state pred%ction

error (x{k} - i(k/k-]))and P(k/k) is the covariancepgatr1x of the

filter error (x(k) - §(k/k)) These covariance matrices provide a

direct measure of the precision of the state estimates (x(k/k 1),

given explicitly in equations (4.6), (4.7) and {4.8).

‘ x(k/k)) and their dependence upon the sensor location matrix H is

Since these

the} can be evaluated for ki.= 1, 2,...N and -examined f any given

choiee of th# sefisor locations. However, the number of elements in

-

matrices are independent of the obeervations; (y(k) K = 1, 2..., N}

»
thefé“éovariance matrices makes 1t d1fficu1t to assess the precision

of the state estimateq in. each* case, and therefore a siffj% scalar

function of one of tﬂese 15 usually chosen.

et
3

¢ One such overall criterion 1s to m1n1mize, by the choice

of H, the function . . - v -
‘ :r__,
- . %

N\
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This is an extension of the usual A-optimality criterion in the

trace P(k/k-1) ' (4.9D', >

"statistical Titerature in which the average variance of the state
estimates over the first N observation periods is minimized. This
~ Ccriterion was suggested by Mier (1967). Athans (1972) used this

criterion to détermine the selection of one measurement from

a number of possible measurements. Herring and Melsa (1974)
extended this to the optimal selectio; of 3 set of measuremegzg.
Both methods require finding switching functions to determine the
'best time at which to change to a different sensor or set of
senSOrs. .One drawback of this criterion is that it isnot ~
invariant with respect to 11near transformations and its m1n1mum
will“therefore depend on the units in which the states are
expressed This becomes a problem when ‘the states are of mixed
L -

units say temperatures and concentridtions.

Another overall criterion is to minimize, by choice of H,

the quantity - . . o

-:.' "Z, ‘ . ) .\h-). e
J{ ' | “ \ ot

g Vo ) {P(k/k=1)] : (4.10) | '
< ™ '

o '

' . Th1s 1s an extension of the comonly used D-opt1ma11ty criterion

k LY

% in the statistical Titerature. It can be shown that, by min1miz1né

this one is m1n1mizing the average vo1ume of the joint confgdence '

“regian of the states ove;\rhe first N steps. Since tQF determ1nant_

- . - ) -

I N
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is invariant for linear transformations, the minimum of this

of the units employed for the various
v

criterion is Yn

states.

In many.i stances, one is interested in the steady-state
Ka1maﬁ filter equatﬁons (4.7) and (4.8). These
'eguations wil1 converge to unique posjtive définite'so]utiﬁns
P (k/k 1} and P ®(k/k) 1f the pair (A,H) is-observable (A Rw is
. controllable and |pl>0, Kushner (1971).  The A- optimality
criteriqn for sensor location then becomes that of minimizing

V3 = trace P™(k/k+1) . .. g (&)

t

and D-optimality invelves minimizing

« ‘ v \ pL
3 = [P(k/k-1)| | |
; -

Although we have used P(k/k-1) throughout in these criteria one
could use the covariance hatr\x\('lt/k) oi the fﬂtered estimate

if that was of most interestn Furthermore, 1f‘0n1y a subset of

(4.12)

the state vector (say the first nq elementsd)is o fﬁn(é?est tﬂgn
the critenga (4.11) and (4. 12) can'be applied to the upper left .

)
“

;o L ‘

. B - . .
‘ :- 4.2.3 Detection of Load Disturbances
: - -

Attention has been focussed on the placement of sensors to

detect load disturbantes;actﬁng on the system. Jorgensen and

* Clement (1977) considergg the placement of temperature and con-

A

N t t ;
ceqtration {é;%OTS in a tubular reactor to best detect inlet flow,
) ‘ ¥ |
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temperature and concentration disturbances as well as estimating

-

\

the states of the original system. These inlet disturbances

were assumed to be modelled by the autoregressive model
- x*(k+1) = ¢x*(k) +'§jk) (4.13)

These authors usedfa simulation approag? to evaluate the reactor
concentration and temberature profile fﬁg&bnses to such load
d1§turbances'5¥ considering one disturbance at a time. A quali-
tative analysis of these results led them to their choicetnf

w

sensor locations. When many 1oai disturbances are simultaneously

s
operating on the system such an intuitive ppp;%ach mzx/be-——~“~ ~

difficult. Howeve{:/the‘optimality criteria (4.11) and (4.12)

can easily be applied to this situation. Defining the augmented
state model |

1] " . » /
x(k+1) A Fll x(k) G|.u(k) [w(k)

o = (4.14)
x*(k+1) 0 ¢ || x*(k) 0 afk)

the D-optimal design would be to choose the sensor locations to

RS

i‘\) .

minimize the determinant of the augmentid covariance matrix'

P 7 (k/k-1) - v Pk,

ypmal(k/k-])% ‘ szzsk/k-l) i".'-

If only the getectio?;n;IOAQ_dis rbances was of interest one
'* . . i
would minimize |P°"22 k/k-1)1.

/'\I
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4;2.? Ldfg;ion for Optimal Control
Since control of a process is often the objective behind
the installation of sensors, it is lbgical that. one try ko
improve the control as much as, possib]e by- selecting the Tocation
of the sensors, Mier (1967), . and Mellefont and Sargent (1977,
| 1978) considered such an approach for the case of linear

quadratic control. The control strategy minimizing the abjective

function

o S o
'5 = BN + T x () + 6@)%&-1)} (4.15

is given by
B(k) = -L(K)x(k/k) - (4.16)
where L(k) satisfies the equation

L(k) = (0, + 6'S(k+1)8)™! G'S(k+1)A o (47)

S(k) = A'S(k+)A + Q - A'S(k+)L(K) - (8.18)

with initial condition S(1) = q;, Astrom (1970). If this. control
law is substituted into the objective fuﬁctibn, one obtains

o N -
C;F= m'S{1)m-+ trace (S(1)R)) + L{] trace (S(k+1)R ) '
| e | ' (4.19)
N-1 2
* L track (P(k/K-T)L (k) (B'SEk+1)8 + QLK) - /
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where_R0 is the initial covariance of ahe state, add m is the |

iniaial state estimate. The only contrib®tion to the objective . ®
function vs,that'arises from the state estimator is‘through tae

lTast term in (4.19). Mellefont and Sargent (1977) found

switching funct1ons which determrined how sensor location should

be changed to minimize (4.19). However, such an ana]ys1svassumes

-

<"

that the matrices Q; and Q, in the quadratic cost functions (4 14) {,frj
«wou'ld be the’ same for a11 sensor arrangements and age known —in

advance. Th1s usua]]y is not the case. In Fact they may be

considered as design: parameters which are to be varied. until the
variances of X and u are jointly acceptable.

[

- In regulatory contro1 where one is usually 1nterested ,in

; ’the steady-state solution L of (4. 17) the fo]low1ng approaeh

Var(y) = v, = (A-GL_)V, (A-6L_)' + (A-GL,)P (k/k)LLG" (0.20
+GL, P (k/k)(A-GL)" + GL_ P (k/K)L! §' + R, -
Var(u) = v, = Lw(vx - P2(k/K))L! - (4.'2,1,1"

r

 could be used to evaluate the effeci of sensor locations on L Q.

contrpl. The covariance matrices of the state and control _ '_" A

var1ab1e vectors under opt1ma1 steady-state L.qQ. contro] are

given by;MacGregor (1973)

L4

*

For a given chojce of Q] in the objective function and any choice

of the sensor 1ocation, one can eva1uate the trace or the



p

" 71

- . . ) »
' :
determinant of the state covariance matrix (4.20). Q, 1S then

bused as a design matrix to find the control which yields acceptable
" variances for the manipulated variables, u.

Thus, for any cho1ce of the sensor locations, one can
eva]uate the performance of the L. Q contro]ter as 1nd1cated by
the elements of the covariance matrix of the state vector, X,

This provides a means~of'either'se]ecting sensor Iocaﬁions
directly or of evaluating the perf&rmance of the qontro]]ef for
sensor locations chosen by ‘other means. This;is applied to the .

catalytic reactor in the present work. o - ,

LY

o
Note that since the optimal control (4.16) is-a 11near

function of the state est1mate, Ejk/k), the D-optimal design Py
procedure discussed earlier should provide good control since it
selects sensor Tocé%ions which provide fhe “best" estimate of the
entire étate vector. However, since only a Zeduced m-dimensional
subspace of the state estimates (L(k);(k/k)) is used in control,

_ one could’ use the D-opt1ma11ty criterion directly on this sub- '
space, that is minimize, by choice of the sensor 1ocations. the

detenn1nant o : »

=|L,P“(k/k)L;l S S (4.22)

Th1s would direct]y prov1de the best sensor 1ocat1ons i'? evalu-

space determined by L_ depend§ on the choige of Q] and Q2 in the -

. '—- .
A . . .
. : , N L \v//)

at1ng the*L.q. control actioqg\ However, agafn s1nce this 5#9
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%

- performance index, this probably should involve some iteration

on Q, {as discussed above) in order to make comparisons under

]

conditions for the same Var{u).

-

i \ ’
4.3 Distributed Parameter Systems and Tubular Reactors:

Sensor location for linear distributed parameter systems
" 'has been studied by Yu and Seinfeld (1973), Kumar and Seinfeld .
(1978a), Aidarous et al (1975), and Omatu et al (1978).
attention is directed towards the use 9f the estimated states for

oL

control purposes. Due to the nonlinear nature of the distributed
parameter Riccglf equat1oﬁ a function of the upper boénd dn the

error covariance matrix ‘s minimized. Most of thesé methods

require knowledge of the Green's function for the system and
4approxjmate the sblution of the differential equation by some. . .
orthogoﬁa] function. Tubuﬂar reactors are usuh11y described by
coupled non-linear partial differential equations in s@veral.- a
:spatial co-ordinates if significant temperaturd and concentration
gradients exist. The above methods are difficult to apply to such
ﬁrocesses.

.Sensor allocation in tubular reactor systems has -been

studied by Kumar and Seinfeld (1978b), Jorgensen and C?%ment (1977)
and Coiantuoni and" Padmanabhan (1977) for a sing]e react1on In .

the first tﬁ. cases, orthogona col1ocat10n was used to obtain a
1umped approximation to the orig1na1 dis ibuted parameter

‘sysfém. ’he prGEkss models were not d1s:2Ltized MeaSurements _ Zf?rf

» . L
. of~concentrations and temperatures were assumed to be ava11ab1e

! o o ’ 7D
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continuously. Kumar and Seinfeld (1978b) consider placement of
rconcentration and/or temperature sehsoré by minimizing the
contiﬁuous equivalent of criterion vy using an algorithm
suggestéd_by Athans (1@72). Their cq::]hsion as to the optimal
location of the temperature sensors using this criterion are

seen to corregpond to that obtained in this chapter:for the ~
1nfini§§ time qgéimation problem. However, their comment that
for non-optimally located senSors,.the trace P(k(kﬂ %s in general:
not a’monétonical]y decreasing function of time deserves some
qualifications. If the system (A,H) is observable and (A,R)
contro11ablé, then the trace P(k/k) indeed may not converge mono-
toﬁical]y to its steady state value.. Using an expression
developed in Bucy and. Joseph (1968), pagé 77, it‘can be shown '
1F [P, - P™(k/K)| > 0. -
When\PO is chosen as cI, this conditjion is sat%sfied if ¢ is
P™(k/k)

rintial choice of the covariance matrix P, it could be S;ssib]é

that P(k/k) s monotone non-increasi

: Depending on the

greater than the largest eigenvalue

. hY
for P(k/k)- to converge in & non-monotonic fashion to it steady

. e . «
state value for any choice of sensor locations.

. . <
Colantuoni and Padmanabhan (1977) retained the partial

differentfa}‘equations (1inearized) in time and a§1a1 distance,
' and minimi;ed the integral trace of thé prggictién-error covariance
matrix over the spatial domain and over the time elapsing

between discrete measuremegggx’\ﬂﬁgﬂfzkktﬂ%ir procedure is very

{ T

- ’ ‘-‘a.



" complicated, and it is difficult to- imagine-~employing it for the
case of tiple reactions or when radial gradients exist.

The present work considers‘the~pfecement of temperature
sensors/in a catalytic packed bed tubular reactor involving. the
myTtiple reactions of the hydrogenolysis of@nébutane. The.
criterion used here for sensor location is that of D-optimaltty
on'the steady-state filter equations (4.12). A simple method is
used to check the sensitivity of the criterion to the order of -
the Tumped model apprdximat1pn. The -effect of the sensor 1ocations\'~

on the performance of LQ control strategies is examined.

. A | .

4.4 Description of the Tubular Reactor System and Model
TN

- As we recall, the temperature dynamics were represented
- by the state equations: ,
: . _ ) . ~ S
- o i -x_(k*"') = Ai(k) +Gy_(k) - (4-23)

Lyt
' P

The' states, x(kJ, represent the temperatures at the*interior ’filﬁ /*\h/.
"collocation points used in' obtaining the 1§ﬁped approximation to - t/
the partial differential equations. Jutan et al (1977a) found .
thathevenlja:rrior collocation point;ledequate1y described the

> axial temperature profile. The manipulated input u{k) comprises N
~ ‘the hydrogen and butane eedrate to the reactor An experimenta]_

, ﬂ - rofile 15 shown in Figure 4.1. The concentratxons at -
gg the exit are g1ven by an a]gebra1c re]at1onsh1p (resul 1ng from °

T the quasi-steady state assumption) :
. : | o N
J . o ,
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e(k).= Cx(K) + Dulkel) - (4.24)

———
]

The model (4,23) does not ‘exactly describe the dynamic behaviour
of the reactor. Disturbances due in part to quctuaE;eﬁs in
flow rates, crifta'lyst activity and packing, wall temperature and

£

with mean zero and covariance, Q‘

5(k+1)‘= Ax(k) + Bg(k) + !(k.) S ".“- ‘ ,(4.25)
) “ , X .

~

Rather than try t’\tify a full matr1x R, from operating data,

. the following two parameter covarfance structure was used

- e
% 4] | pz 93 .. s .
~ | pr . _"l"'p 92 ¢ . )
R (050 =% | B P . (4.26)
) ’ + \ _
{ . 7 ’ _ Sym -
— - ’ . '
- ,

Theira1ue502=3andp=01gavethe stfj; IR S

|
Temperatures were measured by therné:couples at nine

4

points along the reactor. central axis. Since these positions dici ez

not exactly co‘inci? with the co‘llocation points, quadratw )

_ .interpo1ation was usedto est'imate the temperature at the seven

'coﬂocation pomts. The measurement equatmn was

local hot spots, were modelled as édd'ltive Gaussian white ngise -
3 ‘ S ' o -
3\ o

/"‘
L_-
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y(K) = Hx(k) + v(k) | (4.27)

——

“where H = I implies that thl full state vector was measured. The
» - measurement error vector was a mean zero Gaussian process with
covariance matrix Rv=031; g = 2°C. The variance 02 was independent

of the frequency’at which the measurements were taken.

4.5 The Optimal Logation of Reactor Thermocouples

Lo ' Although our ultimate objec;ive for reactor control studies
’ g ’ was to maintain-the xit concentrations at specified levels so@e
'*T\T> ! “practical problems precluded this. The effluent chromatographic
'anafysis was available hnly inf;equently (;Qery 6 minutes) which X
i§'inadequaté for control of this reactor. ‘Therefore, control 1;
decisiong were based upoﬁ temperaturés measured aioﬁg the axis.
of the }eactpr, The interesting problems in looking at- optimal
thermocouple 1oc;tions were: (i) to see which locations prov1ded
thg.greatest amount  of information on the temperature profite,
Qﬁgyd (ii) to see how much the opt1ma] stochastic control scheme
Studied by Jutanet al (1977b) could be expected to degrade if
on]y one or two thermocouples had been used instead of the full
set as in equation (4.27)., L - {
| The}efore, consider tﬁe measurement equation to be of the f/

form
y(k} = Hx(k) + v(k) . (4.28)

Qﬁa(:.each of the m rows of H consists only of one non-zero element
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whose value is 1.0. To determine the sensor locations which

best estimate the temperatures g1ven by equat1on (4. 23)

usg the D-optimality criterion, and minimize with respect to
theﬁ;hoice of‘theothermocoupie locations, the determinant, Vg+
When thege.are a finite number of time invariant sensor
locations, the m1n1m1zat10n of v4 is stra1g tforward One method

is to s1mp1y evaluate Vq for all seven possibl

comb1nat1on§'of
locating m sensors. Aiternatively a Tess timg. consuming apprdach )
"is to proceed SEquent1a11y and -to’ choose the second sensor to ‘
minimize the obJective function cond1t10na1 uptin the Tocation of
the first sensor and so on. This latter approach does not
insure that tne‘gensors' Tocations will ‘be optimal as in the
simultaneous approach, although this approximation may often be
‘trué in practiée. When the number of possible locations is 1arge,
one should resort to using any of a number of efficient aTgor1thms
ifhat exist-in the statistical literature for adding and dropping
13cat10ns in order to arrive at a globally D-optimum design. (Seg
for example Wynn (1970) and Mitchell (1974)). ' P
Excluding, for the moment, the possibi]ify of having
lmuTtiple,_indEpendent measurements at the same position,.the
IOCAtions'of sengors_were picked sequential]& using the D-
(L‘optima1ity.criferion (4{12) for three ranges of the covariance
matrices (Rw’Rv)° The résuits'of this optimal selection are

Ehowip;;r{able 4.1. For the first- thermocoup]e we see that it

*. appears in ]opat1on 5 ror all cases. The second thermocoup]e;
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Sequential Thermocouple Location ConditiSnal on Preceding

Additions + - _Selection
Number R .= 101 TR, =41 ' R, = 1
of CRo=T ' #20) . 2 101
Sensors R ’ Rw_ \ ' R
_ . “(Equation 4.26) "
1 5 5 . 5 &
2 4 o4 2
3 6 (6 6
4 3 3 3
5, 2 2 2
6 7 7
7 }' ) 1 1-
- s
Table 4.1: Sequential Sensor Location s
- (Refer to Figure 4.1- for
' Thermocouple Ppsitions)
Séquentia] Thermocouple Location Conditional on Pfeceding
Addition's Se]ectﬁpn
ggmber ; Rv = 101 | Rv = %; Rv = 1 ‘
Sensors Ry = 1. R = o%le) Ry = 101

“(Equation 4.26),

1 5 5 5 5
2 4 ’ 4 T4
3 5 ) 6
4 4 3 3
5 5 5 2
6 \j\ 6 2 7
7 ' -5 4 1
Table 4.2: Sequential Sensor Location Multiple
B Sensors at the same position
permitted. _
(Refer to Figure 4.1 for Thermocoupie
Positions) : ;

8
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.given the first, is located a¥ positidn 4 and so on. The
| preferential sé]eétion of Sensors at 10c$%ibn 5, 4 and 6 which
bracket the hot spot Tocation of the prof11e was. not surprls1ng.
This is what any chemical- eng1neer w0u1d have guessed apriori.
However, 1t does show that the sensor 10cat1on procedures do
Tead to sensrb]e results In other, s1tuat1ons where the
optimal 1ocat1§ns are JZF at all obvious, the procedures wj]l
\?rovide a‘logical basis for their se]ect{on. Tha'insens{tivity‘
of the cho1ce of (Rw R ) 1nd1cates that the reactor dynam1cs,
* rather than the stochasqlshglifurbanfes, 1nf1uence the optimal
location of the;sensors. ot : ' \\\
Figure 4.2 sﬁows the effect that sequeritially ddding sensors
in the optimal manner has on the determinaﬁt P*(k/k-1) for-%he
case with the identified reactor stochast1cs R = 4] and Rw =
(o). Forsuccessive sensors, the dotted lines indicate the
value of the4fétenninant across ‘the reactor The minimum on
each curve g1ves the opt1mum sensor 1ocat10n (as shown in Tab]e | '
4.1}). As we increase the number of thermocoup1es the determ1nant
[P"(k/k-1)|, will decrease continually. However, one can see
that most of the information about the temperatures is obtained
after the first few thermocouples have been chosen.
The simultaneous location of 3 sensors was investigated.
- The thermocopple locations were ident%cal_to thosg placed in the

sequential fashioq for the covaﬁiance.matrices considered.

-
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The reactor model (4.25) is d1screte and expresses the ’
temperatures at the collocation points only Having p1aced the
first thermocouple near tﬁ’Fhot spot, we cannot deci&e how - -
}1ose the next thermocouﬁ]e should be placed since we have
restricted our ihermocouplé locations to the collocation poiﬁfs,

A 1abqrious approach would be to increase.the number of
collocation points and examine thg sensor location for this new -
model. An easier approéch is to allow muItib]e independent
sensors’ at the same collocation point. Although this may not be
appealing from an operating viewpoint, it does allow us to |
exam1ne the sens1t1v1ty of sensor 1ocat10ns to the number of .
col]ocat1on points.

Table 4.2 shows the.resu1ts allowing for mu]t%p1e sensors
at the same collocation point. Only when the signal to no1se
ratio is low do we find c]uster1ng of sensors

To assess the extent to which the optimal stochastic
contr&l scheme of Jutan et al (1977b) might be expected to degrade'
if fewer thermocouples were used,‘the procedure outline in Section
2.4 was applied. Using the\optima1 one sensor, two sensor, and
three sensor locations obtained by minimizing vq form =1, 2, and
3. The trace of the state variable covariance matr1x (trace, Var(x)) -

was evaluated for each se cases under the L. Q control

using Q1 = I in the performance index (4.15) and us1ng a 02 wh1ch
gave essentially the same Varf{u) in each case. The resu]ts are

shown in Table 4.3 together wi e obtained for one non-optimal



Thermocouples
Used :

83

- trace Var (x)
{Var{u) constant)

None-{open Toop) 59.6
-5 £ 44.0
, ' a,s. ' 42.9
4,5.6 - 42.8
. @ *
all ) 42.6
* - 1, 4
(non-optimal) a5 . 51.9*

-

*when theFmocoup]es 1( 4 are usid it was impossible to . .
W

reduce the tragg
Var{u) was used. .

Var{x) below this value no matter what

Table 4.3: Effect of ThermocoupTe position on controller

-

performance R, = 4, Ry =02(p)(Equation 4.26),
Q; = I {For thermocouple Tocations refer

to Figure{l.])
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placement of the thermocouples, for comp]ehe measurement. (a1l 7
positions], and for the predicted open—loop process. (The
open-1oop variance predicted is.only entered here for comparative
purposes and it is not accurate since the 'extreme non11near1t1es

in the reaction system 1ead to reactor 1nstab1]1ty in this
situation. The pred1cted results under the closed-loop conditions,
however, agree W w1th exp r1menta1 resu1tsi§fiﬂge can‘c05c1Ude
from these resu]t hat by using only one or at most two

optimally located thermocouples one should .be able to achieve

esséntia11y the same quality of control as with hhe entire

temperature profile (all seven measurements). However, the same

conclusion cannot be said for the situatio

“whare thﬁf;hQQTEJ
e kno '

operating experience that a variance as 1arge7és ‘9 appears to

chuples.are-poor]y located. For this rea

prec]ude(étable operation.

If one‘i§’1nterestéd in cbncentrations rather than
temperatures ne can lccate therchohples to obtain gobd eStimahes
of the eff]uent concentrat1on. fn'this case we minimize, by the

cho1ce of H; the obJect1ve function

=IGP°’(k/k?1)C'| Cy | L "(4.-29)

»

For the covariances of Rw and R prev1qys?’_’bnsidered the first

optimally Tocated sensor was always at pos1t1on 5. Additional
sensors located in a sequential fashion did not.co1ncide with

those positions found by minimizing 64. However, most of thg

L e
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information about the effluent ‘concentrations was obtained from
the first thermocouple and additional thermocouples had only a

small effect on the value.of the objective funtion.

4.6 Summary . : -
Theory for the optimal location of sensors c]osely
parallels theory on the optimal design of regression experiments
in the stat1s;[ca1 11terature. This theory was applied to the
aptfmal locgtion of thermocouples along a packed bed tubu]ar.
reactor cdrrying'od§$§;h}gh]y exdthermic_series-parallel |
|reactJon f%e results of this analysis revea]ed that very
efficient spate est1mat1on can be accomplished using on1y one or‘
two thsymocoup]es located in the region of the hot spot. The .
effect of sensor location on the performance of ‘a linear quad-
.ratic controller wa; also studied.” The variation in the
tempe;ature prqfile using linear quadratic control based on only
one or two optimail cated ‘thermocouples was shown to be -
a]mogt identical to thqz\gbtained using complete state measurements.

-This was not true for non-optimally located thermocouples.. -

’ - . 2
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CHAPTER 5/

FORECASTING AND DIMENSIONALITY REDUCTION OF
'MULTIPLE TIME SERIES

5.1 Introduction

a

In the p/év1ous sections, we 1nvest1gated some topics in
reactor contrd] and modelling. The reactor model was obtained
% . .
from an analysis and simplification of the mas$ and energy balances.

The ise of such a mechanistjé model gives tremendous understanding

_into the ma&ger in which the prycess operates. This insight must

be reconc11eraga1nst the cons1derable effort requ1red to formu-

"-
1ate ,Such a dynamic model and s1mp11fy it into a form su1tab1e

1

for contro]. Dynamic models of a prqpess can aIso‘be obtained

- by fitting empirical models to input/output data. For multi-

variable processes, these models usually haée a large numbér'of.
parameters to be.estimdted The’ estimation and d1agnost1c
checking for pars1mon1ous multivariate time ser1es modzqs are not
trivial extensions of the techniques outlined in Bex and Jenk1ns

\

(1970) for univariatéﬁﬁime series. . ‘ ot
In this chapter, we will investigate the use of a multi-

" variate autorégressive structure as a means of obta1n1ng a dynam1c/

stochastic model of the process. As well, the aquwcat1on of
some mu1fiVariate'staiistica1 techniques to reduce the

dimensioﬁa]ity of the-process‘output will be explored.

- , 86
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5.2 Time Series Models

. a .
A linear dynamic stochastic model of a ‘process can be

. rBpresented as

10 = ¥laThuk) + Mk BRI

{v,,ks-tbe backward shmf;uhferator such that z'bY(k) Y(k b).

V(z']) is an mxr transfer function matrix. Each element of .
V(z'1), Vs (z ) is the transfer_fun;t1on re]atihg the ith output
to the jth input. vijjz']) is of the form
/
£t 4
‘ ' . ‘g
' Wy - W - w2z -b
\ | Vi) s S (5.2)
. ) - : T - 84z .':"'Grz
{0 | N s
) The number of whole periods of delay b is - &
g N | _
X b=1+ modu1u5'(:ii)~ . " (5.3)
T ) .
' :\\\ .where'r$j is the transport.delay between the ith input and Ehe
jthioutput. Although not indicated in the notation, the orders of
the transfer function (r,s) are dependent on the 1nd1ces iand j.
Thé stochasf1c d1sturbances may be represented by an ~:b/
d ’AEIMA model of the fonm . o ~ i
(I-¢1Z-1 - ... -.¢pi'p)(1-z'1)dIN15) = (I-.'slz'1 T aqz'q)gjk)
' / -, -‘. " ' (5‘_4)5
o
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. o
a(k) is a multivariate white noise sequence with mean 0 and

covariagce matrix f,. ; - L

The structure (r,s,b), (p,d,q) and parameters of (5.2) and

. (5 4) must be determined from input/output data. In multivariate

processes, the spectrum of N(k) does not have a unique ‘ARIMA
representation, Whittle (1963). A tanonicalh from for ‘N(k) must
therefore be specified. :

A suitable canonical structdte (r,s,b), (p,d,q) may be

[ IO

‘tentativeTy specified using cross correlation techniques, Wilson.

{1970). The parameters may fhen be estimated'by minimizing the

“N . o -‘\ ’
Jy= [ 1. aldda'(d)] | (5.5)
o 3=l ,

This 1s_equiva]enn'to maximizihg the appro&imate likelihood function,

wilsoh (1970). wong (1977) emp]oyed this techn1que to fit the

efquent concentrations (three. outputs) to the f]ownatEﬂ of butane

and hydrog%n. for data collected from the butpne-hydrogepo]ysss

reactor. The entire procedure is far from trivial. Complications
arise if the stochastic disturbances qffécting the process'are not

of full dimension. In this c:'ase,'d.I is %hearetical]y zero for

LA

all values of the parametérs. Hheh.thq data.is collected wfth a

feedback controller in use, structuraj identificatibn is more

involved.
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'Téﬁtircumvent these difficulties, Akaike (1971) has
promoted the'nse of'pure.autoregre§si¥eum0dels'as a means ofi
representing dynamic/stochastic systéms. The autoregressive -
models of unspec1f1ed order p represents one poss1ble choice
lof a canon1ca1 form for represent1ng mu]tivartate time series.
Although this form could usua]]y-not beparsimoniousin its use of
. parameters, the parameters do enter 11nearﬂy'thereby adm1tt1ng
11near least squares est1mat1on This latter advantage has
often argued to iverr1de any obJectlons to the former dis- =~ = ’

-
advantage.

Cons1der the process mode] where the 1nput-output

" - . R “ ‘
behaviour- is g1ven by : : ‘

.

4T U(k 1)+ ...+ rmg(k-l-m) +-_g](k) . (5.6)

-

Y(k) = H]Y(k-l) + HZY(k 2 + ...+ I Y(k-z)

or equivalently

K = n(z")_v;(k-ne {‘(z")g(k-1)+_a_1(k)- (5.7

~

The parameters (n r ) 1nc1ude the effect of the process- | ‘”f;_
dynamlcs and autoregress1ve terms from the stochast1c model. |
This representation is certa1n1y not pars1mon1ou£ Due to the. ‘
large humber of terms, and confbunding o; terms, *ﬁt s d1ff1cu1t
to g1ve a phys1ca1 1qterpretat1on to the parameters. ‘Lf the

objective in.model building is to desién a stochastic controller

LIt : -t
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~

this procedure Mas some merits: The design of multivariable

stochastic coptrollers is most readily accomplished wheﬁ the_
~1nput/out /behaviour is expressed-in state space form. b
here are a number of ways to obtain a state space
representation for{a dynamic stochastic model of the form (5.1).

_ A
One method, MacGregor (1973) ,41s to first write (5.1} in the

form (5.7). A statejt. Eegentatiqn can then be written down by
inspection. Since, in this method, it is necessary to obtain
an input/output moqe] of the form (5.7),s it is not unreasonable
then to direct]y‘estimate the parameters of this model.

| The structure of (5.7) is such that the paréme%ers can
_ bé eff1c1ent1y est1mated by 1east squares The detefmination 6f
the orders {2,m) is the only uncertain aspect of this model
building procedure. Akaike (1974, 1978a, 1978b) has investigated

“order determination for autoregressive models of the form

_g(k) = ¢,1£(.k-1) +[... + ¢p_z_(k—p) + _a_(k). (5.8)
c - - Ly
The order of the autoregression is taken.as that value of p which

minimizes the statistic’
AIC = Nen [f, [+ 2k . (5.9)

N is the length of the datij?ecord and k* is the number of free
parameters estimated. ia is the maximum 11ke11hood est1mate of t
As more terms are added to the model” [i | decreases. The AIC
stat1st1c represents 3 comprom1se between a mode] |

that fits the data .better and the increased numberr,qa
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of parameters required to obtain this fit. Tﬁé AIC criterion
has a theoretical justification, and this is discussed 1n
Akaike. (1974). |

To use this techn1que for dynamic models whose 1nput/
output behav1our is descr1bed by (5.6), z(k) is defined as
2'(k) = (¥(k),U(k))'. If it is suspected that the disturbances
are nonstationary in their mean, the input and output should
be differenced, Box and Jenkins (1970}, - By including the manipu-_
lated variable in the autoregressive mode] (5.8), it is obviou§
that the model order p which minimizes (5.9) is a compromise
between that fequired to adequately représent the process
mode]l (5.7) and that required to fit the input sequence.

The inﬁut sequence can be generated in a number of ways.
IT ‘'no feedback controller is employed during the.period of data

collection, the U(k) will be of the form
o(z”)u(k) = _z(k) (5.10)

where @(z ) is a matr1x po]yn0m1a1 in the backward shift operator.
In this instance, (5.7) and (5.10) are in forms that can be
_represented by &n autoregressiye mbde].

In many instapces, due to safety or economic considerations,
the-data must. be col{icted while the output is under feedbéck ‘
-,contro].- Duriﬁg thé period of data co11ection; let us suppose

that the feedback controller is of the form

Uk} = K1(z'])_Y_'_](k) + Kz(z‘1)g(k-1) + a(k) (5.15)‘

[\ -

®
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K](z']) and Kz(z']) are matrix po]ynomials.in the backward shifit
operator. a(k) is a mean zero process, uncorrelated in time.

We notice that the manipulated variable U(k) is-a function of the
current value of Y(k). Howevef, the autoregressive structure.
(5.8) does not admit contemporaneous relationships among the

variables z(k). Substituting (5.7) into (5.11) we obtain
Uk) = K (DY) ¢ 0 (2 + (2T uke)
+ K (27 )ay (k) + a(k) (5.12)

or

E-(k)'-= ¢"|]-(z-])i(‘k']) + 4’12(‘24 )Q(k‘l)."' é_a(k) (5.13)

We note that gjk) in'(5.13) will be autocorrelated unless the
feedback controler is.proportional to Xjk); i.e., K](z'l) = K].
Equations (5.7) and (5.13) are a joint autoregressive model of
the form (5.8). Depending on the order of the polynomials in the
various equations, the joint-autoregressive model {5.7) and
(5.13) might be of higher ofder than required to separately fit
the process model (5.7) and the controller equation (5.}1).

A lower order 5;t0r$gression mighttbe_optained if~Tmodel

“of the form

WE(K) = Bf2(1) + L+ gxalkep) + 2¥K) L (5.10)

were fit to the data. a*(k) is a mu1tivarigte mgan zero white

noise process with variance I. The matrix ¢6 must be at Teast
]

.
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lower triangular, Quenocuille (1957). The usual procedure for

estimating ¢? is to estimate ., in (5.8), factor fa as

3

£20 = sates (5.15)

-

and thén multiply (5.8).By &6 to obtain (5.14). Since using the
model structure (5.74) may lead to a Tower order model in the
presence of feedback, a better approach would be to simu?taneous]y
fdentify the ¢$'s directly, although this was not investigated.

In spite gf some di?ficulties, the AR representatfon§
provide a convenient means of identifying models when the data is
collected under feedback opefation, Akaike (1978b). The feedback,
however, cannot be noise free. If there is nearly perfect
feedback then the parameters N1]1 be h1gh1y correlated. They
will also be sensitive to the accumu]at1on of round off errors
in the1r‘ca1cu]at1on since a near]y singular matrix must be
inverted. To avoid these problem;, fhere mustTeither be noise in
the feedback Ioop;IQ noniinear feedback controller in use during
the period of data coT]eétion (or switches between several linear
qges), ofﬁa ’dithér'égﬂg;al, uncorrelated with the process output,
artificially introducéd Ento the feedback loop, Akaike (1967),
Box and MacGregor (1973), Gustavsson et al (1977). ‘The dctual
value of the dither signq] nge&not be recorded, as it is not
used explicitly to determine the structure of the input/output
model. | | _

The autoreifessive model fitting proposéd by Akaike

h

eliminates mahy 0 e difficulties in fitting multivariate time
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series model to input/output data. The parameters of the model
. are VEry.easiiy estimated but one must avoid the pitfall of not
carefu11y examining the data. Autoregressive'modél fittiné'is
; well suited for the case where we wish to quickly obtain a
| state space representation of the process, Akaike (1978a).
5.2.1 Application of AutoRegressive Fitting to Reactor ¢ =+ '+
‘Data , °
Let us consider an app]icatiqn of these ideas to the
butane hydrogenolysis reactor. In a pr;;)ous experimental
study (Wong '(1978)) the flowrates of hydragen and butane. were
perturbed, and temperatures among the central axis of the

reactor measured. The flow rate of hydrogen was a stochastic

. : process. To stabilize the reactor, the hot spot (the maximum
; : temperature) was cdntro]ied by manipulating the butane flow
: : rate. A ‘dither' signal uncorrelated with the hot spot tempera-
| ture or hydrogen flow rate, was superimposed on the butane flow.
= This had the éffect of reducing the correlation between the "
‘hotspotltempefature and butane flow rate that resulted from the
presence of the feedback contro1]ér, Three-hundred énd Sixty-
_nine sets of temperature versus flowrates were obtained. The.l
average temperature profile for this data collection experiment
is shown in Figure 5.1. ' ' :
Let us define the vector Y(k) as the set of mean
corrected temperﬁtures alopg the reactor. gjg) is the mean °

F corrected vector of hydrogen fnd butane Ffowrates. When plotted,



Centerline Reactor
Temperature Ox

0 ) .5 1.0
Normalized Reactor Length

Figure 5.1: Aveﬁ%ge Temperature Profile
- “Circles denote measurement
positions. Reference, Wong (1977)
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‘appeared to be stationary. The individual

autocorretation functions of the temperatures damped out quickly

also- indicating

stationarity. The variable z'(k) = (Y(k}u(k))'

was fit as an autoregression using the sequential estimation

procedure of Whittle (1963b). The AIC statistic versus model

order is shown in Table 5.1. Using the AIC criterion, a second

order model was .selected as representing the data adequatply.

AIC. Order of AutoRegression )
4883 0 \
3788 1

- 3670 2
3694 3
4651 ' 4

Table 5.1: AIC Statistic for Reactor
- Data

1

The variance-covariance matrix of the estimated parameters is

cumbersgme to ev

- sym

aluate. Let us define A as

N N N |
1.z(k)z' (k) T z(k)z'(k-1) T z(k)z'(k-2)
- k=1 k=2 k=3 _

z(k)z'(k-1)

-

» .
T t~1 2
(AN

~
th 12

z{k)z' (k)
1

12

} 2(k)z' (k)
k=1 '
: 4

(5.16)
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o

(In general, A will be nk* x nk* where n is the dimension of

z(k).) The variance-covariance matrix of the parameters is

given by, Anderson (1957)

)

® A

- '[&

where @ dénotes the kronecker product.

i
'

~

’

“(5.17)

The determ1nant of this

matrix is a measure of the correlation among ;be parameters It

can be shown that Anderson (1957)

3, ® &

]l = |3,

. IA-] np

(5.18)

1

: . : '
If there is perfect feedback between the elements of Y(k) and

U(k), then A will be nearly singular, and the parameters will be

highly correlafed.

A state model is conveniently .obtained from the input/

o .
output model

*

o)
X I
11
Y(k) =y

« x(k) +

= (17

r‘
$

(1)
12

,(2).
12 |

u(k) (5.19)

0)x(k) + v(k) (5.20)

I7 denotes the 7 x 7 identity matrix. ¢

" (3)

(3)

1] ,¢12 'ané obtained from.

' '(5.21)“
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- r ;

The covariance of v(k) is given by the 7 xi;‘upper left hand
submatrix.of “the (9 x 9) covarianée matrix ia‘ ) F

| The state model’ (5.19) has fourteen states. However,
there may be models of small order, which can give the same.
input/output behaviour. The state model, of Towest dimeﬁsion,
is both controliable and observable, and is known as a minimal
realization. The realization (5.19) and (5.20),can'bé used as
a starting«ggint to find such a representation, Rissaﬁen (1976). - °
' ‘ The temﬁg}atqres along the reactor must satisfy the non-
linear mass and eﬁérgy balances. We might suspect, therefore,
that not all the temperatures can move freely, And that there
mdﬁ?bnly be several degrees of freedom in the movement of the
temperature profile. For example, the temperature profile may
be constrained to move up and down or.shift a]oﬁg the reactor.
The model fit°using the autoregréssive approac( of Akaike is a ;
" linear appfoximation to the process dxnamics. Using this mbde];
we should be able to establish the dimensionality or degrees
of freedom of the linearized process.

The mbde1 can also be used for Forecasting_?nd control.

We might anticipate that not all the temperatures can be equai]y
well predicted from'observations of past history. As Qeen in the
previous chapter, contrgf of a stochastic variable is heavily
-dependent on the predictability of this variable. It is of

nterest, therefore, to estabiish which variables are the most

‘ ” . . : ‘
predictable. These topics will be explored in the next section.
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5.3 Dimensionality Reduction of the Output Space

In the previous section, we used a simple technique to
build an fnput/output model for the bufane hydrogenolysis reactor.
In this section, some multivariable stafistica] tecﬁnfques are
used to further analyze the results.

) - finear procésses'can be represented by models, of the

farm
-

Y(K) = Y(k/k-1) + a(k) - (5.22)

3\
Tﬁe:prediction of the process output, given information at time
k-1, ijk/k-l), includes past values of the :nﬁut and OQtput, and
exogenous variables. a(k) represents that part of the process
outpu% at time k which is unpredictable and uncon;ro]lable.at

time 'k-1. The predictor is the conditional mean of Y{k) given -
. - &

information to time k-1: Since a(k) is uncorrelated with

f(k/k-l), the variance-covariance matrix of Y(k), ty, can be

written as )

b=ty + 4] LT (5.23)

Anal$%is of the covariance matrices will indicate fundamental

~

relationship; among the variables. The results of this
analysis can be used to éstablish the dimensionality of the’
outputs, and the most predictable outputs. The sample covariéncef
matrices f§ and ia for reactor temperature data are giveﬁ in _
Tabies 5.2 and 5.3. Extensive use will be madé of these matrices

in the next sections.



.3583
.3133
1416
1531
-.1116
-.451]
-.5159

3.7081
1.5962
1019
1.7738
1.7614
-.0396

-.2489

.4810 Y-
3030 1.1930
. .4519 1.8813
.2337  2.1670
-.1206  2.0307
-.3228  1.3029"
.
Table 5.2:
at
3.1623 °
.2913  4.1573
1.2901  1.0605
1.4153 751
-.1084  2.5410
-.2797  2.6046

" Table 5.3:

//,_,/

100

3.8047
5.0437

5.1198
3.8846

. /—'“'
o /
7.7915

8.2424 | 9.3221
16:6935 7.8855 6.9124

-

Covariance Matrix f? for AR(2) Model

3.7780

' 1.1047
.7431
5493

sym
3.5579
1.7714  4.6917 _
1.0727° 4.220% 5.1210 }J

Covariance Matrix i; for AR(2) Model
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5.3.1 Principal .Component Ana]ys}s ‘ ’ x\
Pr1nc1pal component ana]ys1s is a convehient means of
establishing the existence of contemporaneous T1near relationships
among a set of var1ab1es. This analysis can then 1nd1cate the
dimensionality of a set of variates. Anderson (1957) gives the
‘classical! 1nterpretat1on of this method A different w
\?1nterpretat1on is offered by Box et al (1973) To summarize the
latter briefly, let us Suppose that we have a-mean corrected set

of variables Y of dimension m, that is o !

F. v m ) -
Y=y -y (5.23a)

? ‘where iw is the mean of the variables Y*. The covariance mgtrix
of ¥ is taken as f,. '

The trace offy, can be written as

trfy = E((y* - Y '(Xf‘§k¥T)} SAp Ayt +‘An,) (5.24)

whefg:the Ai'S'are the eiQenvalues of tY arranged in decreasing
order of magnitude. For each eigenvalue there is a correspondind
eigenvector ;- Since tY is a symmetric p051t1ve definite matr1x,
it 1s always possible to construct an orthogonal set of e1gen-
vectors, even when there are eigenvalues of mu1tip1icity,-Nob1e
(1969). If we scale the eigenvalues so that ajay = 1, (5.24)

can be written as ;0 : -

Y

triy = o) byay + a5 fyap ¥ .. 4 a :an- - (5.25)
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The magnitude of the e1genva1ues of tY can be partitioned rough]y
into three sizes, Box et al (1970). These groupings correspond
to three different kinds of relationships among the var1ables

Suppose there are r, restrictions on the var1ab1es Y*,

of the form SRR

Ay s - (5.26)

~where €y is a vector of constants. The matrix Ap isr o xn
n .

and is of rank rqy- When these restrictions are present, then s
eigenvalues of *Y will be zero. S1nce one usually only has a

Eamp]ed est1mate of th1s covar1ance matrix, these e1genva1ues

will be Zzero except for roundoff error. This type of restriction

can arise in a number of ways For example, an ana]yt1ca1
1nstrument ‘may not give 1ndependent measurements on all
components, i.e., a chromatograph "These depenienc1es are alsb
found when some of the variables’ are computed as linear .‘
comb1nat1ons of the other variables, i.e., from the reaction
stoichiometry. ' ' |

Let us suppose that there are ry linear comb1nat1ons of °

the Y's unaffected by 1ts past history, or by the sett1ngs of

~ the manipulated var1ab]es w1th reference to (5. 22), we see

"that.the covariance of tY for these varxables w111 be of the
order of magnitude of the correspond1ng elements of i As
shown in Bax et al (1973), this type of behaviour occurs when
there are restrictions on the expected values of the Y*'s of

-

the form ..



E{@exr} - (5.27)

Restr1ct1ons oﬁ;th1s form reflect fundamental linear
re]at1onsh1ps among the Qhr1ab1es If there were no res1dual
“or measurement error in the var1ab1es ry e1genva1ues of ;Y
would be zero. ' However, the process or measurement no1se

obscures these re]at1onsh1ps The e1genva1ues of ;Y will

flect these re]at1onships. If there are ry, restrictions of

the_form (5.27), r/ elgenvalues of tY will be of the order of

(5.28)

of the measuremeént errors.

The remainina n=r,-ry eigenvalues- Ty 11 be Targer
as they 1nc1ude the effect of the measurem:£t noise t , and the
var1atﬁon caused by the perturbat1on of the aanipulated var1ab1es,
tﬁ- The var1at1on in the outputs as measured by the trace of

ty, due to the Pprocess variation, and not only the measurement or
res1dua1 process noise, can be attr1buted to n-ry -7y e1genva]ues
of ty, or equ1va1ent1y, n-r,-ry linear combinations of the Y's. -

Thus the dimension

ality of the process outputs is N=ra-ry. 7
From~aq‘ana $is of the eigenvectore, it is u§ua11y not’
poss1b1e to calcul te the matrices Aq- and'Az. Box et al (1973).

It-is poss1b1e hough to decide from wh1ch group.an arb1trary
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Tinear combinatioh of Y, of the form a'Y belongs. To do so we

must briefly review the classical interpretation of principal

't //‘ /
components. - I - '
p / ‘\

Suppose we were to find the \ii;ar comb1nat1?//gf

Y, a]Y that has the maximum Variance 3 ong all pﬁ’§1b1e Tinear
comb1nat1ons subJect to the sca]1ng constraint that a1a1 =1,

- This is equ1vaTent to finding the unconstra1ned maximum of

< \‘ . )
ooake | o —ﬁ
It _ (5.29)

..It‘tfn be ‘shown, AndEr;on'(1957); that é] is the eigenvector of

tY gortespondiné-to the Iargestretgenva1ue of Iy which we have

,q?ffned<to be 1, gé!;,éé!.:..‘gﬁr are those linear coﬁbinétipns N

'of-x,havjng the magim;m‘variance subject to the additional

: restrictioqs that g%f and 33! be orthogonaﬁ for i#j. The variances

of the 1inear;cqmbinations are Ay Ay ... Ap. _
Can any physicat interprétation be giVen'to the transformed

variables aiY? If any interpretation is p0551b1e, it can on1y

be ass1gned to. the 1inear comb1nat1on corresponding to the

Targest eigenvalue (or the smallest, if we first sought the

Yinear comb1nat10n having the smallest varianee). The reasdh - ,

fgr this is that drthogonality constraints have been imposed ;

on all but the first linear combination. For example, AGIRE

the=}inean combination Af'Y ofthogona1 to “iY having maximum

variance These ort gona11ty constraints will mask phys1ca11y

_ meaningful re]at1onsh1ps among the variables.
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EyEE/;ESE;;'the transformed variables may not be

physiéa11y meaningful, one can still make use of the eigenvectors.

Le suppose that there are no zero eigenvalues. There will

then be ry linear combinétions of X'whose_expectétions are constant,
and n-ry 1inear combinations of Z‘which éxhibit true process.
variation. Thexgigenvectors~of tY from an 6rthonorma1 basis
(in the algebraic ;ense) focrﬁhe n-dimensional space of Y. In
other words, any 1{near combination o%\i_can be deséribeﬁ by a
weighted sum of fﬁ%se’eigenvectors. Thé\rb eigpnvectors,
correspq ding to tﬁe Alpropriate eigenvaTues;'are a basis for'
an ry, dime siqp§1'subspace of the Y's which hgveﬁ}o process
Qariatipn. We shall cé]] this subspace the nuli space of Y.
Tﬁe rehaining n-%b eigenvectors form a basis for those linear
éombinations of Y for which there is process variation. It is
possib1e then, {;<%bst whether a certain linear combination of
variables lies in thé null space.

~To illustrate this, Tet Y be of dimension three. We
wish to test whether the vector a' = (a],aé,aa) Ties in the plane
spanned by two of the normalized eigeﬁvectors of iy, % and 35
One means 6?\§g§£1ng this is to compute the angle between the f ’
vectdr a and the plane (call this the n-plane) spanned by |
91'and'92, see F{gure 5.2. Let the vector g'be orthdgona} to
a1 and o, n is also orthogonal tb the n-plane. The parametric

equation of a line orthogonal to the plane spanned by % and
' Y

N
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Figure 5.2: Geometry of Principal Components
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r=a+sn (5.30)
Any point in the &-plane can be represented ai
P=8g * Bya, ' (5.31)

=
The point of intersectjon g‘f' the =-plane and the Tine (5‘.30)9

is given by (5.31) with )
W
rB i 1 ] '1 i— I—; a
1 EA ) I B
= . (5.32)
B2l 2 3 2 '

Since 4 and a, are orthogonal (5.32) reduces to .
. . r
B ql- 2
* , (5.33)

B ol
2| - |2 | )

The cosine of the angle between the m-plane and the vector a is

therefore given by

Cose = —%.—R— (5.34)
. lal 1p] '

The values of 8, and B, in (5.32) and (5.33) are identical

" to those obtained by fitting a linear regression model of the

- form

R - (5.35)
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dﬁere z = gf1; X' = (gi!, as¥) and ¢ is a white noise sequence.

We recognize coss as the square root of the ratio of the sum of
| squares due to regréssion to the sume.of'squares of z. 2z can be
defined as z = a'(Y - Y.) with no loss of generality, where Yo is
a vector of constants. A Jevel term must be included in the
regression equation (5.35) in this instance.
5.3.2 Principal Compbnents Analysis of Reacter Temperature

"~ Data
The eigenvalues and eigenvectors of EY are shown in

Table 5.4 for the axial temperature data analyzed -in section {5.2.1).
_ There are no efgenvalues that are nearly zero. This is not

unexpected since the temperatures weré'méa;ufed indépendently.
lSubstituting GZI, with ¢=2, for the'approximate variance-
covariance hatrix of.ta, we WOuld-expeét that those eigenvalues
aris%ng,from Tinear relationships of the form (5.27) would have
' 'an_EXpeqted value of 4.0. On this basis we would conclude that
the dimensionality of the temperatures along the reaétor axis is
two. Using the model built in section 5.2.1, a more precise
estimate of.ta is avaitable. Using this matrix, the expected
values for the eigenvalues are showg 16 Table 5.5. Again we
would conclude that the dﬁmensiona]ity of tHe process fs two, or
perhaps three. For the reactor temperatures,:this result is
perhaps not surpri;ing.' If there were no internal disturbances Ja
in the reactor, we would not expect the temperatures to vary

independently, as they must satisfy the energy balance which is



108 ) .

Eigen-

values Eigenvectors

37.51 | .025 .032 .220 317 .482 .592 516
9.25 .523 .467 .036 467 . .307 -.238 -.370
4.26 -.055 .049 .841 .238  -.478 -.058 .008

_2.56 -.310 -.477 ~.262° .,754 -.098 -.040 -.169
2.12 662 -.147 -.268 124 -.496 .023 .454
1.80 -.418 723 -.307 L1960 -.320 .024 .259
<§753 -J117 0 .082  -.091] -.052 -.294 .766  -.544

: |

Table 5.4: Eigenvalues '3nd Eigenvectors of iY

Eigenvalues 37.52 9.25  4.26 2.5 2.12 1.80 .53

- Expected _ '
Values - 111 6.25 ) 3.28  2.33  2.19 1.68 .48

v Table 5.5: Expected VJ;ues of the Eigenvalues of by
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a nonlinear partial differential equation.’ There would probably
be nonlinear relationshipﬁ among the temperatures. The principal
component analysis can'on]y uncover linear dependencies in the
data.

The dimensionality of the temperature profile aﬁpears to
be two. The transformed variables a1Y and a;Y may not have | o
physical significance. Two important operating variables are !
the area between the axial temperature and wall temperature,
end the hotspot temperature. The former represents the net
energy release in the redctor, or it can be 1nterpreted as the
average temperature rise above the w)]] temperature. It is of
interest to decide whether these two varfibles lie in the null
space of the temperature profile. The average temperature rise

above the wall temperature can be approximated by

z=a'(Y+a) ' (5.36)

where A is the difference between the average temperature profile

~and ‘the wall temperature, see Figure 5.1. ‘The vector a is

- taken as ' )

= ]%r . (5.37)

In the experiment of Wong (1975) the average wall temperature was

‘SIZbK. a is calculated as

= (.04, .075, .254, .34, .48, .56, .511)
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The vector a nearly coincides with the eigenvector ¢y. The Tine
passing through {a'(Y + a), a'a} subtends an angle of 9.2°
with the Tine passing thfough {aY, 0}.

The maximum temperature rise above the wall temperature

is also given by (5.36) with a taken as
=(0 0000 1 0)

The line passing through {a'(y + 4), gjg}'subtends an angle of
9.6% with the plane spanned by the vectors “iY and qu By
contrast the 1ine passing through {a'(Y +a).a A}, subtends an

ang1e of 37.5° with this plane when a is taken as
a'=(1 000 00 0)

We would conclude that the hotspot temperature and ne{_ehergy .
release in the reactor are variables with real process
variation.

A more rjgorous ana1ysis.is to test the hypothesis that
the regression model (5.35) adequately fits the data. The tese
of this hypothesis is a standard F-test. Using gffag-as an
estimete of the residual-process variation (with the appropriate -
va]ue of a), the hotspot temperature and net energy release were
found to statistically lie in the vector ‘space spanned by
“TY and aZY at a significance level of .05. The hypothesis
that (1000000 )“X_was spanned by this vector spaee was |

rejected at this significance level.

S
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‘.

- If one were to build a parsimonious dynamiq/st&éhastic
model of the reactor, the Qariablesrg{! and gé! would be a
sensible selection of variables to consider as process outputs.
Since these variables are contemporaneousty independent, )
‘correlation among the paramefé?s of tﬁe model fif to input/

output data is reduced.

5.3.3 Other Approaches to Dimensionality Reduction

 The use of\principal components in the frequency domain
to reduce the-dimen ionality of process outputs has been studied
by Priestley et al ( 974a,~1974b), Haggan and Priestly (1975},
and Haggan (1975). 1In addition to several limitations noted by
these authors, the frequency domain analysis obscures what is

ye

actually’ being studied in the time domain. Their.work is

briefly‘described below.

EQ['Y} can be decompdé;;\;nto its frequency components as
E{Y'Y} = lj trace (Fyyi(u))da (5.38)
™ 0
-FYY;(m) is the spectral density of the output at frequency w.
| Expressing the trace FYY'(“) in terms of its eigenvalues, E{Y'Y}
can be written as = o

: T n
E{L'Y}=l_,f ; (a3 ' (w) YY.(w)a (0))dw (5.39)

The eigenvalues q#(m) are the solutions to
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Fyylwleflu) = alo)ate) - 0 o (5.40)

At each frequency, a decision is made as . to whether i, (m) i
stat1st1ca11y zero. If this is found to be true, a¥(w) is taken'
as the null Vector. After the eigenvectors a*(m) have been
computed for 0 € y < 1, the t1me domain coefficients are
caiculated. The essent1a1 result is that we can obta1n a

transformed variable that has the largest variance. However,

this variable is of the form
zi(k) = T aj(dM(k-3) . (5.41)
J=- .

o (j) is the t1me doma1n vector corresponding to u*(m) The
: transfonmed variable 1nvo1ves past present and ¥uture values of
the process output. As such, it is physically unrea]izab]e. If
gi(j) were zero for j < 0, then we would not have this problem. ,
However, one has no assurance that. these values will be non-zero
when they are computed from their corresponding spectral est1mates,
Priestley'et al (1974b). -

Parzen (1969) has pointed out that spectral methods
cannot be used to construct predictors whose memory depends
on;; en present and past information. Causal relations can only
be fitted through “innovations" yhich-are obtained by Iiﬁting.

dels in the time domain. .

We should not interpret the linear combinations of

variables ffaving the largest variability {or any variables spanned
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by the corresponding eigenvectors of tY) as those variables most
in need of control.” If any of the responses are under feedback

coﬁtrof, the variabili in these variables will have been reduced.

--_»The linear combine€ions” having the most variability will change\1f '

-

the feedback controller is altered. Collect1ng the data in an
open loop exper1ment where the inputs are art1f1c1a1ly perturbed
introduces var1at1on in the process not encountere in normal
operation. As a final po1nt to note, the pr1nc1p 1 components
ere sgale or unit dependent: Thus a large eigentaflie may arise
froﬁﬁ%he units in which the responses are measured. This is of.
particular importance when the outputs have mixed eklfs. say
temperatures and concentrat1ons. .

Rao (1975) has used the autoregressive model technlque
of Aka1ke to examine the d1mens1ona11ty of a(k). The frace of
*a is decomposed, as per equation (5.25). The variables g%!(k), B
gé!(k),... are then assumed to be iariables in most need of '
control. If the fipst few eigenvalues account for most of uﬁ%L// o
~ variation in the trace of *a’ contral of the Qariab1es g%!(k) i
2o¥(k) will contrél most of the variation in the process. This
is not true, as the variation in the outputs arises from the
predictor and the driving force a(k). .
. Principal component analysis is readily appTied %A iY
as a dynamic/stochastic model of the process is not required to
estibate this natrix. * The eigenvé]ues of the matrix can be

grouped roqgh]y with knowledge of the measurement variability.
L
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Bfganalyzing\\\ alone, it is 1mp0551b1e to d1st1ngu1sh B@iween
the variability due to the ud/red1ctab1e component a(k), and -

the variability due to the\predictable part of the process Iq

5.4 Canonical Variate Analysis of Time Series

'ff" the previous section, a variance decompositign of the
covariance matrix of the oﬁtputs was studied.‘ In this section,
a correlation analysis of the time series is examined. Let us
consider a time series model of the form (5.22). We seek a’
Tinear combination of Y, a;¥(k), and a linear combination of B - _

the predictors, oY Y(k/k-1), to max1mize the rat1o

ltYa

1R

. E;[

(5.42)

C
e

AT Tné'objective function can be interpretéd as f%nding'tﬁe linear
| combination of the outputs, Qﬁbse variance is most predictab]é
(or forecastabie). Box and Tiao (1977) call this canonical
variate analysis of time series.. Minimigatfcn of (5;#2) )
,_—zsgLires'solution of a generalized eigenvalue brob1em. Subsequent
| linear combinations of‘}(k) are found that are the next most

" ‘ forecastable subject to the constraint that they be orthogonal

to‘{he previous linear combinations. If the denominator in (5.42)

°
. is changed to g'tag, then the same results will be

. .
obtained, but the objective function is C:%erpreted as
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finding the Tinear combination of::hé/a;;znctors that maximize

the.signa] to noise ratio. The results of the most forecastable
variate analysis are not dependent on the‘units in which the
responoesare measured. e

This analysis is not intended to reduce the dimensionality
of the output space. Rather, tt is to indicate which 1inear

mbin

igns of the outputs Y(k) can be best pred}cted given
Informatign.to time k-1. Those linear combinations that are

poorly predicted, are essential]y white noise, Box end Tiao

. -The space defined by these white noise vectors aiY(k)
s u 'orecastable and therefore can be dropped in further
forecast1ng analysis. Not be1ng forecastable they are also
probably not control1ab1e _

Jutan et ail (1977c) used this techn1que to analyze the

corre1at1on styucture of the 7-dimensional model '
. )
N(k) = ¢N(k-1) + a(k) (5.43)

.This model was identified as adequately characterizing the

disturbances affecting the reactor. Their analysis indicated
that two or three of the d1sturbances were forecastable, and
the rema1nder were white noise. One can look upon this'techniqoe
as a dimensionality.reduction of the ¢ matrix in (5.43).

The results of the cangnical variate analysis'and prinoipal
component ana'l_ys1s will chan% if. any part of the process

configuration is altered.  If a different feedback controller

e

(
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is implemented, the most forecastable variates can be eXpecﬁ;d
io change. Of what Jalue are these tééﬁniques?‘ For dafa
collected under ngrma] operating conditions, these techniqugsz

can be used to explain the source of variation in the process

outpdts, i.e., is it mostly white noise, and thereforefuncqntrol1f.

able. The results of the most forecastable varfate analysis
indicate wﬁich variables are the most effective predictors of
the process outputs. . | ~ : i ,
In §ome instances, the ihputs are.artificja11y perturbed.
.'The intentﬁqp may be to buiId;a model of the process and perhaps
 design a more effective coﬁtro]]er. In a designéd experiment,

ché manipulated variables should have sufficient variability to

. elicit a process response. Inferences about the dimenéionality 6f'

the output space should not be altered if the structure of the
input sequence is changed. The results of the candnical
variate analysis would appear to be more succeptih e to

changes in the structure of the feedbaek controller. |
5.4.1 Canonical Variates and Canonica] Correlation Analysis

tf:v,_;h\~\\\ Anderson (1957) discusses a multivariate statistical .
N . /" - -
: technique known as canonical correlation analysis. When.a(k)

. . Vo
and  Y(k/k-1) i$ normal, with mean 0 g covariance

comes from a normal distribution, the joint distriéﬁtion bf ijk)

i+ 4y Y |
N ' - (5.48)
IS | L & o

~
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. , . )
Caqonical correlation apalysis of the variables Y(k) and

the results is somewhat different though. o~
. | | thf
| 5.4.2 Canonical Variate Analysis qj\Epe Reactor Data
‘  ; Canonicel - variate analysis was Fpp]ied'to the reactor
data. Maximation of (5.42) requires solution of the deter-

. “
« 'Minental equation

L

> - o By - akyl=0 | - (5.9)

For each eigehvalue‘xi, there '1s an associated eigenvector %
2 N ,

J B G SR 12 > Ap» then the variable most predictable is &iY(k)
. The best predictor of this variable is o Y(k/k 1). The next

* most pred1ctab]e variable, orthogonal to aiY(k) and a Y(k/k-])
.- . ng(k), and so on. It is easy. to show that

-
- [}

: I ~ ,&_ ‘o ty‘l‘i
‘.! i ’ . A.i - Effvai

'i

'///)"( that 15. the rat1o of the predictable var1ance to the total
G ~ variance ;j;;he/hew canonical variates. Thas Ai is always

in the ra'ge 0 s A b 1.7 The e1genvéfﬁés of (5.45) for the =

, reéctor data gre shown {in Table 5.6.. As we can see on]y'two
. 3 - .

. : ]
linear combfnations can be forecasted.. Even so, fifty-nine

t
F percent of the variation in the second variable asY is white

*

(5.46)

; lgads to the same analysis and results as the ca§%n1c31 ‘
_vanjate analysis of Box and Tiao (1977). The intgrgggtation of
o

If the eigenvalues are arranged in decreasing order of magnitude

~

7
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: P _ ,
: - \
Eigen- ]
value Evgenvectors } : \
‘ ) _ -
.820 -.121 058 -.075 ~ 122 .182 040  .043 | N
405 -.088 -.065  .378 o
.095 Bre— 035 . -.183 .15 097 e
.065 150 -.110 -.033 -.270  .508 -.375 .084 i
.046 .498 .363 . .038 143 =127 -1 - .185 ’
017 | -.210 J12° -.289 2395 . 107 -.378 .136 .
-.008* .21 .064 -.259 -.056 -.223° .905 -.717 -
. L !
Table 5.6: Eigenvalues and Eigenvectors from s
—_N Canonical Analysis of Reactor -
.. Data e
(* eigenvalue negative due to |
numerical procedure) -
- &
A
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noise. The variables oY and @,Y are taken as a basis for

variables that can be forecasted. As in section 5.3, it is

' %g:i;:le to test whether.an arbitrary linear combination of the

outputs is spanned by these vectors. Alternative]y, the

ratio (5.46) with a replacing oy is a measure of the predictability
of the Tinear combination a'Y. The predictability of the average
temperature rise above the wall temperature is .68, and the
predictability of the hotspoﬁ temperature js .66.:'However,
these‘Variables‘aré not the most predictable variables. The

1iﬁear combination which has the most prediﬁtab1e variation a;Y,
appears to have no physical signifiﬁance.

In this section, the relative predictability of a time

serigs from its past behaviour has been examined. The connection

betwien this technique and the method of canonical correlation
analysis has been noted. In the next section, the use of

var1ate analysis to match up man1pu1ated variables

and output variables will be exp?ored

5.5 Input/Output Pairing

. =

In some instances, it is not known which manipulated

- variables can be most effectively used to control which output

-

variables: A technique, prOposed'bnyristol (1966). can' be used
to select input/output pairs. -This analysis, however, selects
the input/output pair that are decoupled best inrghg,steady

state. In this section, we tentatively look at the bossibtlity

.of using canonical correlation analysis on tronsient response
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_déta taken from a system in order to accomplish a decoupling on

\
A reasonable criterior is to search for a linear

a dynamic basis.

combination of the output variables gi!(k) that is most highly
correlated with a linear combination of the manipulated variance
gigjk), err some period of time. We therefore seek to maximize

by choice of @y and g, the objective function?

L
J=ai 1 E(!jk)gjk-j)gﬂ ' "~ (5.47)
J=1

subject to the scaling restrictions

!
—
o

ejbyay = (5.48)

and

(5.49)

(1=}
— -
xa
[ e
[ 102t
=
I
—

A Tow value of L, indicates that we wish to find those 1iﬁear
combinations of ;af}ables that,arg most correlated over the
fairly recent pqst. Having found the first pairing of variables,
we Took for a second pa1r1ng that have maximum correlat1on,

but ayre ;rthogonal to a1Y(k) and B]U(k) over the interval

jr1,2,. L._ This leads to a standard canon1ca1 corre!at1on, or

cannonical variate ana]ys1s. The logical result then is that

we should control giY(k) with giu(k), a5Y(k) with g5U(k) and so

“on. Furthermore, o5 Y(k) and 8;U(k) are uncorrelated with

{ ~
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a;¥(k) and giU(k), i#j, over the interval k=1,2,...L. This '
decoupling wouid aliow the use of multiple loop simpie control
algorithms, such as proportional integral controllers.

Let us suppose that the process output can be repreéented

as ..

Y(k) = 2 VU(k-3) & N(k) (5.50)
J_

Vj'is the impulse response of the proce :}9 Let us assume that
(k) ds a white noise seguence \uncorrelated with N(k)) Then

‘m1n1m1zatfon of (5.47) subject to (5.48) and (5.49) 1s\$qu1va1ent

to maximizing, by choice of ay» the ratio

. | -‘ , )

- 3n(v0 FV Lt VN)tu(V0 + VY +\T\k + VN) )2y (5.51) -
T, ¢ . . '

. o Eova iy IOV o+ e |

=1 j=0 Jju j=0 J N‘=1 _ < 

«
We can view the numerator'in (5.51) as the predictable variation

in the outputs dqe to the transfer function éTéne and not due to
tﬁe predictors, which include contributions from N(k). We
notice that the'maximizing 1inear combinations wii]“debend on
the control effort, {,, we are willing to use.

When the transfer Tumction is not known, the covariances
and variances in (5.48-5.49)\5re replaced'by their sampled
estimates. Nheﬁ there is pure muitivariate feedback, the
estimated cross covariances between the input and output do

not contain information about the forward transfer function,
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which is what we want. Réthgr, these covariances contain
information only abgut the feedback controller, Box and
MacGregor (1973). 1In the case of an aSEEH dither

ﬁignal, (or impéF?ect feedback) iﬁformation about the fofward
transfer function is obtained_by cross correlating the added
dither signal and the outputs. As previously noted,

Akaike's method does not give us information about the forward

- transfer function alone and we cannot use the results of the

autoregressive model building to esEimate the transfer function.
When the open-loop data is avai]ag]e, or the addf? !
dither signal has been recorded, the sémp]ed'estimates of the
" covariance matrices can be substituted jnto'(5.47-5.49). It is
important to note that when the input’sequence is not white
noise, the estimates of the cross correlations are themdelves
autocorrelated, Box and Jéngjns (1970).
To get a feel for the technique, the process was assumed

to be represented by

Y](k) 1 1 U1(k) + a(k)
= . (5.52)
Yz(k) o 1 qz(k)

) - . o Vet .
. wheve ta¢= I. In the first example, the inputs were a white

noise sequence with covariance = I. The objective function
. l U ’

was taken as

-

2
J = g_]'{.{] EQY(k)U'(k-3)18 (5.53)
J= '

~
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(5.52) was minimized subject to the constraints (5.48) and
'(5.49) by evaluating the theoretical autocorrelations. The

‘results are summarjzeé)in Table 5.7.

4 -
a1¥(k) h 447, (-Yl(k) + 1.62Y,(k))
- ao¥(k) = 455 ( Y, (k) + 0.58Y,(k})
BjU(k) = .89 (-Uy(k) + 0.52U,(k))
BU(k) = - .5 (U(K) +1570,(K) |
\t:7 Table 5.7: Canonical Variate Analysis

for White Noise Input

In the second example, U](k) was a white noise sequence. However,

‘yz(k) was a positively correlated input sequenée modeled by
Up(k) = .8U,(k-1) + a,(k) " (5.54)

The variance of a(k) was adjusted so that the vargfnce of the input
was the same as the previous example. The covariance of the
a(k) remained unchanged. { The results for the minimization of

(5.51) are shown in Table 5.8.

a + |
S¥(K) =85 (=Y (k) + 1.13Y,(k))
as¥(k) = - .318 (¥ (k) +1.42Y,(k))
BUKK) = - .978 (-Uj(k) + .230,(k)) |-
) BU(K) = % 224 (U k) + 4.350,(k))

Table 5.8: Canonical Variate Analysis "‘\,\ %4’
for Autocorrelated Input )

[ N T I



123

The results of this siﬁple example are difficult to interpret.

The structure of the input sequence has a large infiuence on

the results. This suggests that if the structure of the input

sequence changes, the variables g%!(k), g%g(k) will no longer

have the desired orthogonality properties. ‘
The matching of input and output, using a criterion

. such és (5.47) woul& be of value when there are more variables

to be controlled than manipulated inputs. In this section, some

e,
preliminary ideas have been presented and a few potential
problems noted. , N
5.6 Summary

The yse of an autoregressive strﬁcture to fit dyn;;)c/
stochastic models has been briefly discussed in this chapter. A
. State space model -of the procesé is readily obtained using thfs
method. However, the transfer fumction of tﬁe process is not
difectly available from this analysis.

The result of the autoregressive model fitting can be
used to investigate the diﬁensiona]ity of thelprocess outputs,
and therelative forecastability of the outputﬁ. Additioffiil
insigﬁz‘knto the prdcess operation is obtained if it is possible
to find a physicat-explanation for the resd]fs of the principal
component and canonical variate analysis. If one intends to
bui]d‘a E:rsimonious dynamic/stochastié mode} of the process,.
the results of the autoregressive mode} fitﬁ&nglcan be used fof

- preliminary analysis of the data. The use of these techniques was

(o
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illustrated from operating data cb]]écted from'theubutane
hydrogeno]ysig reactor.

In the next chapter, some properties of univariate
stochastic controllers are iﬁyestigated. Experimental application

of adaptive versions of these regulators to control the hot

spot temperature in a pilot scale reagtor are studied in a

subsequent chapter.
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R : CHAPTER 6
FREQUENCY RESPONSE OF STOCHASTIC CONTROLLERS

5.1 Introduction

-~

The synthesis of digital filters has been studied extensively

icatiohs literature. These filters are used to
eghance vbice and pictorial daéa'trénsmitted by electronic means.

An excellent presentation of these techniques is given by

Oppenheim and Schafer (1975). There are bésically two approaches <i
to the design of digital filters. With a suitable selection of

the sampling interval, one may design digital filters to fmitate'

the spectral characteristics of an ana1og'%i1ter. Alternatively,
~one may take advaptgge of the special features of digital

filters, the higgfgié%ée of accuracy in filter realization, the

unique structures possible, and the ease with which time-varying
coefficients aré incorporateds to obt;in spectra]'gharacte?istfcs

not obtainable by analog dgzj;es,_Rader and Gold (1967).

In the control 11tér€ture,\rare1y doés(ohe-find design _ \
techniques for digital control a]gg;ithms that take advantqgé'of -:3

;“ these features. Tou-(1967) has:examined.the addition of real ’
‘ zeroes and poles in digital a]goritﬁms to Shépe the spectral
characteristics of processes with no transpbrt delay. The ..
spectra} charactéristics of centinuous proportional, derjviéive_

and intégral controllers are well known. Many digital control

125
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algorithms are designed to-imitate contj uous controllers,
Tuning charts for continuous conthgllggznare employed, with a

pséuda delay of Qne-half.the control interva],'used to account
for the effect of the %ampie and hold, Smith (1972). )
¢ | The spectral charadteristics of some discrete stochastic
controllers will be examinéd in this chapter. As observed 1n“
Chapters 3 and 4, the synthestis of these controllers is not
based ehp]igit?y qh\frequency domain considerations. It is of

interest then to

udy their spectral properties. The manner in

whch these controller campensate for transport delay will be

‘examined and compared to more classical techhiques of controlling

deadtime.

6.2 Sampling of a Continuous Signal

When one samples a continuous signal at equispaced
intervals of time, it is impossible to determine frequency
components in the sampled signal whose period is less than twice
the sampling interval. If the sampling 1nterva1 is, T seconds, the

highest frequency we can detect in the sampled signal is o /2

whierdug s 21/T rad/sec. wg/2 is comonly referred to as the
Nyquist Frequency (The s]owest frequency we can detect has a
period of one-ha]f the length of the sampled data rec d.) the
cont1nuous signal has no frequencreg-greater than the Nyquist

frequency, the spectrum of the continuous signal {h‘?he range

" 05w s wg/2 can be theoretically recovered from the spectrum of

\

N
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the sampled signal. In prac i ;one‘s ability to reconstruct the
spectrﬁm of the input signagf;;g;ffected by the résolution of the
fsémp]ing device, and quantization of the computations, Rader and
Gold (1967). whenﬁfhe input signal contains frequencies greater
than che Nyqdist frequency, oné observes a "fold over" effect in
the-spectrum of the sampied signal. [he spectrums of the sampled
e and continuous signal may differ apE/§k1ab1y To obtain the

_spectrum of the input signal in the range 0 < » < wS/Z from the

sampled signal, it is necessary to filter the continuous signal with

. an analog filter to remove the frequency components greater than

_the Nyquist frequency ‘
. \ Time series models have been used by BcQ and Jehkids {1970)

‘and Astrom (1970), to model process disturbances. These stochastic

' hode1s can be viewed.as a parametric representation of the
spectral densfty function of the disturbances. If we have a “fold

- cver" effect in our sampled signal (which can pever be determined
from the sampled signel a1one) the stochastic model will not be a
true representation of the process d1sturbances As will be shown
‘in the next sect1on the Spectrum of a d1sturbance is ea511y
computed if we have a model for it. The presence of a .

sfgnificant frequency component néar the Nyquist_ frequency suggests

that the\gcftinuous signal was not adequately filtered.

6.3 Frequency Response of Digital Filcers

The response of a-&igita] filter to an input U{k) can

frequently be described by linear difference equations of the form

£
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Y(k) = G]Y(k-1) oo+ 5 Y (ker) + mOU(k) - ..

- ugl(k-s) " (6.1)

/y//’—?“\\\\\h‘-’// If we define the backward shift operator z'T, such that szY(k) =

Y(k-b),. then (6.1). can be written more compactly as

-1 -s
waA~w1Z -, . .~u._Z

Yk) = H(z (k) = 2 -
' 1-612 -, . . =82

Alternatively, we mif write (6.2) as the convolution sum
Y(k) = ( T h(mz"™Mu(k) = T hén)u(k-n) . (§.3)
_ n=0 . n=0 i
if H(z']) can be expanded in a convergent series in_z']. The
particular representation we use is a matter of cpnvenience;
To determine the frequggc& respgnse of this filter, let
the input U(k) be the sampled cosine wave shown in Figure 6.0.

At any of the equispaced points k, k-1, the input is given by

- U(k) = %_ (ejukT + e-jwkT) . (6.4)

-

A is the amplitude and , the radian frequency of this periodic
input. Substituting this into (6.3), we obtain g

HK) = 5 (e 3oKT 7 p(npedonT 4 o#IkT T poyamdunTy g o)
2 n=0 _ n=0

xS ' ‘ . -‘
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,\;g//herecognizeY(k) in (6.5) as the particular solution to the

ence equation (6.1}, that is, the solution after

linear di

y the trangients due'to the initial conditions of Y have died out.
' Y

‘He might suspect.that if the input is a periodic functfon, then ]
Y(k) is also a periodic funct;on. This is stated in‘a number of
refarences, Raggazin{ and Franklin (1958), Kuo {1967), Oppenheim
aﬁE\Scﬁgfér (1975). To establish this, Y(k), k=1, 2 |

| is decomposed into its frequency components using the;discrete’
Fourier transform. One finds that Y(k) is a beriggjc function
with the same radian frequency as the input.l Thus Y(k) can be

represented as

Y(K) = Ar(ed (k)T Siluk)Ty (6.6)

-

where Ar is the magnitude and ¢ t‘e phase shift of the output.
I .

Comparing (6.6).to (6.5) we identify _ 'l
A Inzo h(n)?-émnn | ' | f6-7)
and-
¢ =‘-argﬁnzoh(n)e-jﬁﬁr} - " J(;.B)

1 |q] denotes the magnitude and arg (q) the phase angle of.the compiex
number q.- As we can see, .the phase and gain characteristics can
. | =3 . .

far ]
4
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be obtained by substituting i e~JduT in (6.2) or (6.3). Sub-

stitufion of z:1=e'Jtho determine the frequency response is only

meaningful if the particular solution to (6.1) does not grow in

time; ital filter of the form

N 1-a1.z']

-1
H(z™') = 1 —— ~ (6.9)
i=1 ]+B-iZ-
,/P‘
D
will be stable if all poles are inside or on the unit circle in z,

.This means that ]si] $ 1, i=1,2,. . .N.
Initially e ihtroduced ztlﬁgs a cbnvenience to facilitate

writing our filter equations. To evaluate the'frequeney\rgsponse
-jmT

though, we let z'] take on the cgmplex value e It is - N

usually assumed, Raggazini- and Franklin (1958), Kuo (1967)

that 27! is the complex number e'ST

R where ) he comp]ex argu-
ment associated with the Lap]acg transform. It must be emphasized
. that.in‘these latter developments, Et is assumed' that we are
samp]ing,lat equispaced time intervals, a continuous functiﬁn,
which has a Laplace transform, Raggazini and Franklin (1958)
this case, it is assumed that the discrete difference equat1on
(6.1) represents the sampled version of this underlying
2 ésnt1nuous process. If one wants to find the discrete equivaleﬁt
#”  of an analog filfer,'or the discrete equivalent of a continuous
,_;,.;\\ process, such an approach is'appropriate. ;Horever, the

representation (6.1) is justified in its own right as a discrete *
: - L m v




132
\ .

L]

filter, or process transfer function, without assumihg the
existence of an underlying continuous process. In this instance,
271 does not represent a mappfng of the complex variable S from
the cont{euous domain, and it is incorrect to think of it as

such.

6.3.1. Geometric Intefpretation of Frequency Response

Consider the digital filter

Hz=1) = 1 - a2l (6.10)

We will allow ay to be complex valued. The frequency character-
istics of this expression are obtained by evaluating (6.7) or (6
The geometric interpretation of (6.7) or (6.8} is snown in
Figure 6.1. This is obta1ned by Tetting z-1 = e~JuT apd us1n§_tne .
de_Moivre‘expeesion For e~JuT The phase angle is y-uT, and the
amplitude tatio is the distance PQ. The angle subténded by "0PQ
is ~(y-uwT). ?or zeroes lying inside the unit eircie\ |p-uwT| £ 900,
A resonance effect is observed as the zeroes approach the un1t
circle. , . |

Digital filters may have zeroes ljing outside -the unit
circle. In this c#se, the phase angle is not longer restricted to

900, ¢

must\b& taken when the phase character1st1cs are deter-
mined themat1ca11y as the phase ang]e is not confined to 1ts princi-
paT values. In such cases, it 1s,more convenient to factor the. M

. Tilter into two components. One term has all its. zeroes inside



" the unit circle, a minimum phase function, and the other term is
N (W . .
known as an all pass filter. The Tatter has the following

properties, Oppenheim and Schafer (1975),

i) amplitude ratio is 1.0
i1} phase angle <0, 0 2 wT S =
Consider the digital e]ement‘H(z']) having a pair.of

L

complex conjugate zeroes lying outside the unit'circle at
z = 1/q and z = 1/g* (the complex conjugate of 1/q). By simple

algebraic manipu]ation,.H(z']) may be written as

H(z™ 1)

(1-qz” ) (1-g*2" 1) + (2-1/q)(z-1/q%)
' (z-q){z-q*)

sH . (7)) - H (27]) _' (6.11)

min ap

where Hmin(i-1) = (1-qz'])(1-q*z']), The all pass filter
constructed from a pair of complex conjugate zeroces lying outside

the unit circle is linear in.the phase angle, Oppenheim ‘and

Schafer {1975). Thus, H(z']) has the same spectral representation

as the filter
. (z71y . 22 e (6.12)

The subscript s has beeh used to emphasize that we are considering

equivalent spectral characterisfics, as the transient responses

-

of the filter H(z'll'and HS(Z-T) are much different.
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If H(z‘]) is a polynomial of order N, and all N zeroes
lie;outsidésihe unit circle, then H(z’]) is referred to as a
maximum phase function, Oppenheim and Schafer (1975). H(z']) then

has the equivalent spectral representation

H (z71) = z°N  Hpintz-1) (6.13)

Hmin(;']) is formed by reflecting the zeroes of H(z-1) through the

unit circles. It wil] be seen that some stochastic controllers
involve maximum'phase function.

‘
Consider the digital filter
H(z™T) = (1-(-.5+.68)27 V) (1-(-.5-.68)z" 1) ' (6.14)

The frequency response of this filter <is shown in Figure 6.2. The

resonance effect is due to the pair of comp]ex conJugate zgroes.
\.,

and this resonance becomes more pronounced as these zeroes

approach the unit circle. Now consider the case where the zeraes

~are at their reflected values, z = }/(-.5+.68j) and z=1/(-.5-.685)"

H(z']) has the same spectral characteristics as

Ho(z71) = 272(1-(-.5+.683)2" 1) (1-(-.5-.68§)2"1) (6.15)

- 1

The spectral Characteristics of this filter are obtained by adding

-2muT radians to the phase angie in Figure 6.2.

6.4 Process Dynamic and~Disturbance Models

Many processes can be described by linear difference

equat1ons of the form
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mo'_ufz-] “if"(_:ﬂ'-wsz-s
Y(k) = —— —— U(k-b) + N(k) (6.16)
1—612 - . . .-Grz

Y(k} and U(k) are deviations from their steady state values. N(k)

represents the total effect on . the process output of all unobserved

. disturbances acting within the system, which in the absence of

some comﬁgnsating action would cause the process output to drift

" away from its target value. When these disturbances are of a

random nature, they can be mode]L@d by autoregressive moving ‘

average time series of the form

N(k) = g——

i

o
TR
[es]
™
I '
i
o
——
-~
L
———
o
——
~
p

The a(k)'s are a normally distributed sequence of independent
random variables with mean 0 and variance 02 The moving average

term e(z ), J;\“the autoregress1ve term ¢(z~ ) have all their roots

inside the un1t circle, in z, 7 is a shorthand notat1on for l-z 1;

'Non-stat1onary disturbances are modelled with-d > 0. The number

of whole periodsiof delay is denoted by b and it has the value
A .

b =1+ modulus ( %9 ) - (6.18) -
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whege 1, is the process deadtime. Techniques for estimating the
orders (r,s,b), (p,d,q) and the parameters of the difference
equations are discussed in Box and Jenkins (1970) and Astrom

(1967, 1970).
Y .

6.5 Spectral Characteristics of Stochastic CbntroIlers_

The spectral characteristics of controllers designed to

minimize the objective function

L

. N S
= mle T 02+ et - (
SRS
= var Y + avar vdU - | (6.19)

will be examined in this section. The prdcess'mode] can be
reﬁresented in state spacg fqrm, MacGregor {1973}, and dynamic‘
prograrming used to find tﬁe optimal controller. A}ternatively,
the optimal controller can be found by gbectral factorization of -
thé cévari&nce gengrating function, wilson'(1970). This latter |

approach gives far more insight into the manner in which these

-

. - :
stochastic controllers regulate proceéiﬁf with deadtime. The{:j’/r\

frequency'responsé is also moriféasily evaluated when the controller 7

| 1
is expressed as an explicit function of the dynamic and stochastic - 2
, Co o , — -
model parameters. It is not intended to.present anlexhasiiive _ /Zf
analysis of these controllers with respect to stability, | ( o

3 - - * 3 - "‘ ’ N -
sensitivity and parameter variation. The conclusion drawn from

“such work tends to be very'example‘ofiented.
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6.5.1 Unconstrained Controllers: a =

For processes where no additighal constraints on the
control action are required, the ‘controller that minimizes
(6.19) is given by Box andJenkins (1970, Astrom (1970),

2

U(k)

sz (T 1

oG
; s j;;‘)Y(k). S (6.20)

*Y(k)

1]

T(z'l) and w(z;]) are determined by factoring the disturbance . .

Yor

- transfer function as

| a(z™)) = w(z;1) + T(z NP ' \\\\\ )
_?_QTYT% | -l_:Tl_a_ (6.21)

¢(z ')v o(z”')v"

. . > , )
,ﬂSTgle w(z']) and T(z']) are functions only of z'i, i=0,1,2. . .,

and not functions of Z, they are uniquely determined.. The

-expansion (6.21) has a physical interpretation. The expression

N(k+b/k) /

FEL T Y s
v

- A .
is a prediction for N(k+b) given g;};ifg;;;#it1on to t1méa§\\‘0ne

could form many predictions for N(k+b) but th1s one has the

w,

smallest prediction error among all DOSQ{:;e predictions, Box and

Jenkins (1970). The structure of this pradictor can be

determ1ned from algebraic arguments, Box and Jenk1ns (1970)

\ +
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N(k+b/k) in (6.22) isil@cl the .ébml mean

for N(k+b) given only information available to time k. Since the

trom (1970).

a(k)'s are normally distributed, N(k+b/k) is also the most probable

estimate for N(k+b). ﬁ(k+b/k) also, corresponds to the complimentary

solution of the difference equation {6.17) at originzk; The

particular solution is given by w(z'1)a(k+b) and is the error

in predicting N‘k+b) given only information to time k. As we can

see, there afe'a number of interpretations for the expansion in

’ P e
(6.21). These arg’aiscussed further in Chapter 8.
Stochastic disturbances affecting industrial prgcesses.

~are modelled often by Tow’ drdeF’ARIMA'(p,d,q) models, Box and

Jenkins (1970). Two common forms are: the ARIMA (0,1,1) and

. !

ARIMA (1,1,0) model. For the former, it can be shown that

Tz 1-e
oz e 1-(1-8)270

(6.23)

The exbression 1-(1ae)z'b has b roots EE, k=0,1...b-1,
. - o t .\

located at

-~

b ik/b)
2, =J1-s  o(ZWK/D) =(o, 1. . . b-1 (6.24)

When g < 0, all roots are 1ocated.outside the unit ¢ircle and

¢(z'])v has the same spectral characteristicd—as — ™\

A} . B

B —
'(w(z'])v)S = ej“’TbU-'Jb'(]-';) e 39Dy 0 < jy 5 21 (6.25)

A P - L.
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A negagive value of g indicates that the spectrum of N(k) has more

Tow firequency components than white noise. A.positive value of

ives rise to more frequency cdmponents near the Nyquist .
Frequency. |

When the ARIMA (1,1,0) model is expanded via (6.21), we
annot teil by inspection where the robtg of w(z']) are located.

However, bounds on these roots may be found. For convenience

- e
]) as ‘ . ' )
- w(z"1) =1+ ¢1z'] + ... % ¢b_13' fj) (6.26)
(/_/ . ) ’ -
If
Vand
Yo_q > Wh o > . . > P > 1 (6.27)
b-1 b.2 | 1 v

then a1l the roots of (6.26) Tie outside the unittcircie,‘ésrezin
and Zhidkow (1966)." For ARIMA (1,1,0) disturbances with

0 < ¢ <1, we can use thiE‘Fésult‘tn show thét"aiT the zerges of

indicates that the spectrum N(k) has predominantly']ow requency.

ance is

positively correlated at low Tags. We anticipate that for

stochastic mode]s of these strdctures, m1n1mum variance contro]lers

_.w111 have 51gn1f1cant phase Tead

o~ The forward_transfer function 1§ defined as_

lt b



in the processrﬁ}namics. Substithting tHE\iiTtr0]]er equation
(6.20) into (6.28) we obtaip ' |

1

-T -1 -1
=1y _ w*{z 6(z T(z™") pd
H( )--—i-jl-. -1——rl . 9)
: SR C b BT PR v o \“‘2\

The effect of the inverse of the process dynamics 1n) the controller

is to cancel the phase contribution of the process dynamics.

If w*(z_]) and 6*(2']) have all their roots inside the unit circle
in z, then small changes betyeed the assumed and trye pfocess
transfer function are not of coﬁcern. If, however, m*(Z-]), or
6*(2']) have roots outside the ynit circie; then the minimum
variance strategy is sensitive to discﬁépaﬁcieQ between the

~ assumed and trye Process transfer function, Astrom (1970), -

| Kwakernaak and Sivan (1972}, Strategies,ﬁhich are less sensitive vjr
to parameter variatigns can be obtained by using the objective
fUnctibn'(G.lg) with a non-zero value of. 3. These coﬁtr' Ter;‘
will be examined in the next section. Let ys assume that

| m*(z"])=¥u(z']), and 5?(2']4\% 5(2']). EquationJL6}29) reduces to

S

b

' ' : v . . ) .

: - o
« - . . +

!’ . - »

i
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S ‘
-y oz T(Z27).
H = 6.30

SRS v s (60

The minimum variance contro]]er results in a close loop sy§tem
which has all its poles 1ns1JL the un1t circle. OE; might
suspect that the term T(z' )/(¢(27])¢(z' )v ) in (6.30) contriby
_phase lead to cancel the Tag introduced by”thg process deadtime.
To see this, let us considerian example. Let N(k) be an

- ARIMA (0,1,1) process with -1 <o < 0, U§ing(6.23), the forward

&
transfer function is given by

»

| H(z']) - (T-B)Z-bs

i (6.3
) - 1'-(’1-15’)/2'b A ())

~t

For -1 <6 <0, ¢(2° ) is unstab]e, i.e, has poles lying outside

the unite circ]eiiu/f/fa1though the c]osed Toop is stable ‘The o
frequencyfresponse of H(z~ }) and the cqntrol1er c(z” )-is'not

| _strict]y_ﬁefined since the‘tomp]emenfary solution of the asspciate
difference equation grows in tiﬁe However, if we weré.to only

consider the term 1- (1- a)z , in (6.31), e would. ffnd that its -

frequency response ig equivalent to . - .

(- (-e)zP)_ - zb(L- -y1-e) 0

The right hand side of (6.32) has tremendous phased advance in.

the region 0 < uT < w, due to the fermé%gjﬁxThus,-in a heurfstic
- manner, we can see how ¢(z'1) introduces phasé'lead to“caﬁEET/;;;

phase lag arising from the transport delay.

o
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y Not a11stochastit|n0dets result in a factorization for
- w(z']) that has all its roots outside the unit %1rc1e In these
1nstance? the phase lead contr1but1on of w(z~ ) is smaller than
when the zeroes lie outside the unit circle. It must be emphas1zed.
\\~ though that the stochastic controllers are designed to compensate
for the inheﬁent proceiffdistdrbanc modelled by N(k). If the
(:;Z:urbance were\a 5 mp]ed cosine w e, then the resu1t1ng

roller woul'

give adequate phase lead. Th; two disturbance
[ '_/—\/

- models consider d in the examp]es are¥§231ca1 of those encountered
{
4 (’t/ﬂﬂh\\\\gn/1ndustr1a1 process, Box and Jenkins (]970) A part1cu]ar

choice of

i§turbance, not unlike a periodic input [t is perhaps not
surprising then that .the m1n1mum var1ange control1ers give good
phase Ieaflfor these d1stur‘bances ' .
6.5.2 Constrained Cbntrol]ers A A0 !
It may happen that the variance of the Tnput v U(k) for
'_L;;;(/ the unconstrained contro]ler is. too 1arge In this case, ong_
- ‘seeks to find. a ontrol]en for wh1ch the variances of Y(k) and
v U(k) are J01 tly acceptab]e (Although the controller C(z ) is
unstable, the variance of v U(k) ag(f1n1te when w(z” ) has,no
‘zeroes lying outside the unit c1rc1e To calculate the var1ance
of v U(k)i the controller must be expressed in terms of the
a(k)'s and not=the)4's. When this is done, the term w(zfl) does
L

- not appear in controller trahsfer function.) One solution is to . %

S
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cast the dynamic and stochastic model into state space form and
~ * . .

find the control policy by sdlving the appropriate Riccati

equations.

In this formulation, the control law is exﬁressed

as a linear combination of states, which may have no pﬁysica1

interpretation

o

Howéver more insight into the structure of the -

§

controllers is obtained when the so1ut1on is found by spectral

factor1zat1on of the covar1ance generating function.

. past_inputs and outputs. . g
.Jnput _

LY

The

manwpu1ated variable is now expressed as a linear cqmbinafﬁqq'of

hEN

-

The spectral factoriéation-solution to (6.19) is outlined

by Witson (1970).
© and whittle (1963).

(a)

(b)

" express

5

e
-l

Ce(z7ly =+ z'g. HCN
.jgir%T— . i

olz ) w(z7)

to obtain w(z']) and'T(z']). |

f
“form y(z"] )’S‘r‘mm ~
. § !
v(z)y(z™") = m(Z )m(Z)
+ \(1oz ‘)da(z )(1-2)%(2)
.expressif [

. : ’ . - .
It is based 0n'qpe work of Weiner (1949),&
The following operations are requingdixi}??_

(W
ﬁ6.33-)

.(6.34)
D
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al(z7]) ol(z‘l) lz)

. T : ' (6.35)
< y .;fh(z y(z) - V¢(z ) v(z)
',\iib cbtain Q](z"l). | - 4\\
Y '

The control that minimjzes the objection funct1on (6 19)

is then g1ven by

| - S (- N o |
N o )¢ »’)" 1(27) :
“ S | vdu 1 Y(k) (6.36)
: - ez )01(2 N2 sy (2 N)e(2T)
-Theldenominator in G6.36) has v9 as a factor.” Certain precautions
" must be taken to insure that the factorizations are unique, and

these are out?ined by Wilson (1970). -

. ’ ' To examine the spectral characteristics of this control]er,

Iwe suppose that the process 1s described by :

- -1 .
Y(k) = ”“"3’ + 2 | (6.37)
- _

The variance of 1{;2;‘VU are shown in Table 6.1 as a funct1on of
' Af There is a sign1£1cant decrease in the variance.of vU with
little 1ncrease in .the variance of Y However, the spectral

-

character1st1cs of the contro]ler will change significantly as
: 15 increased. - _IE:E’Q?n be explained with reference to ‘equation
(6 36) when A =0, Ehfdcenom1nator contains y(z~ ) as‘a factor.

This max1mum phase function contr1butes tremendous phase 1ead

* S ™
. C. :

~
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. var Y _var. U
0 4.92 N..  3:55
.05 4.94 - 2.52
.10  4.98 2,00
15 . 5.02 . 1.70
.20 5.06 1.45
.25 5.10 /,/’79 1.32
.40 5.19 (/ 1.0
¢ -

Table 6.1: The Effect of Constraining
' - . on the Variance
of Y- and v4-

—

~ As the variance of)vdU(k) is constréined, we eventually reach
a point where the denomina?pr‘iﬁ (6.36)‘15 no 1onger a maximum
. phase function. At this point, theicontrol]er wiiT nﬁ longer
give significant phase advance. _

The lqrge re&ucfionin the variance of yU, with
coﬁresponding]y little inérgase in the varianbe of?x can be
explained by examining the spectral density functioh. 'If the

control equation is of the form

- ‘ .
L](z ) .

VU(k) = — a(k) . (6.38)
L(z ") | S
L] . . w
then the variance of vU(k) is given by, Astrom (1970) .
1“ i .
var {W(k)} == [ ¢ (uT)duT. © . (6.39)
m g uu o .

- J ' .
where the spectral density function ¢uu(uT) is defined as

R T b e R s T U

I



by (0T) = l—— 6.40
uu Lz(e JmT)

The spectral density funcfion of the contro]]er (6.36) fqr the
process (6.37) iy in Figure 6.3 for x= O and Af""E The 4
largest contr1BﬁZ:;:niz the variance of wU, for ) = D, is from
the high frequency components. Th1s occurs because the minimum

variance controller tries to cancel the forecast of the disturbance

in three control invervals.

Even if the unconstrained variance of vU were acceq}able,
there is stil] incentive to examine the spectral density function .
" of yU for various levels of constraining. In the example just

-considered, the effect of constraining the variance of vU is to

) ‘ . .
-reduce the influence of high frequency components in -the controller.

This is important as the controller;
frequency noise that might en'™

" By contrast, the variance % :'- inated by Tow . éis 5
frequehcy components, Figure 6.4.- The effect qf coné%ra1n1ng |
the variance vU, has 1ittle effect on changing the spectral
density function at these low frequencigs: ‘

The dynémic and stochastic models ér; seldom exact. By
preventing Targe changes in the manipulated variable,. we reduce
the effect of proceés ndn]inearitiés that might be'encoﬁhtered‘

when thé‘operating variables are far removed from. their mean

value. From (6.36) we can see that there is less reliance on
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Y

the inverse of the process dynamics. Constraining the manipulated

variable essentfh]]y'desensittiéi/the control scheme b o

r

inaccuracies in the process model.
TN N o
: ~ 6.5.3 Other Design Techniques S
There are numerous filter’design techniques proposed in

" the communications literature, Oppenheim and Schafer (1975), to
-~
minimize expressions of the form T : \
‘4 ~ \ .

3

- . ' -

W) (M) - H(T NPT (6.41)

=1
™

O3

V3
o Hd(e“J“T)‘

function specified by the designer. These techniques couid be , ~

is the desired spectral shape, and w(jm)'is;a weighting

used to design controllers to give the c]osedlloop specific
spectral characteristics. To yse hese techniques, one must have

a model for the process dynamics and disturbanées. . a

6.6 Stochastic Controllers and Discrete Otto Smith Requlators

A techQique.propdsed_tS compensate,fof pﬁocess deadtimes

requency ‘domain k‘"LH\

e been analyzed by

is the Smith regulator, Smith (1957)\

propertiés ef;QAnfinuous Smith regulat ‘5
Astrom (1977). The difficu]ty in impiementing a cont%nuous Smith
compensator\j e requirement to simulate a pure delay. This 15
easily accomplished though, with a digital algorithm. °_

. " Consider the block diagram shown in Figure 6.5. . The
control element C(z']) is désigned to control the process as if

LN IS
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there wereno tranEporEiﬁé]ay. We remember that in a digital . '

system there is at 1kast one period of delay. If C(z"]) were

chosen as .
-2 ¢ ’ . . "
_ 6y(z7") = ﬂ%"-j))- (z7! - 27by | (6.42)
* §(z *) : : :

the closed loop transfer function from the set pbfnt.to the
output would be - -
'o ‘ - .

d n

-C(z )G (z ) .

]+G(z hetr

6.(z7) =

c (6.43)

" where Gp(z'])'= w(z'])/a(z'] . 'The effect of the prqﬂ‘ls deadtime
has apparently been rémoé%é/i)om the characteristic equation and
should not causestability problems.. The gbntrﬁller in Figﬁre 6.5,

‘may ?e written as R
R ‘ - C(z'?) .

- o(z” ez ) (2" -27D)
W )

Y(k}) ~ (  (6.44)
'/f’;ﬁ\ -
= . _Are there any stochastic controllers which have this

structure? Consider an IMA (1,1) disturbance. For this model an

‘unconstrained minimum variance controller for b=1 is

. N . . -1 )
uk) = -clz7 (k) = 2 08) vy pagy -
A 3(z )‘ v-
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Substituting this expression for C(z'1) in (6.44) we Obtain

(k) ~ °(z] . — 1“"5) = Y(k) (6.46)
' w(z™ ") 1+ (1-e)z' + ...+ (1-8)z ~—

. ¢ , - )
We recognize (6.46) as the minimum variance controller for an

—_— _ .
. ,IMA(T,]f_disturbance and a process dynamic model with b whole periods

_of delay. A Smith compensator is an unconstrained minimum variance

controlier for an IMA (1,1} disturbance. The special property of
this class of disturbancesyis -that the 1 step-éhead forecast and

N(k+#b/k) are identical. This is the ohTy class of ARIMA (p,d,q)

models for which this is.true.

The manned in which stochastic controllers -and Smith
“compensators hapdle deadtime is Qery similar. Both involve
making a forecast of #he fufure behaviour of the pfocess oﬁtput.
The_differenée betw ‘n the me $ is the manner in which the
forecésts are made. i'Zneﬁa1 :g?:}"disturbané65 have more st;;cture“
to the forecast and th refose Tead to s]1ght1y different deadtime
compensat1on The Smith compensator although rem;v1ng the
delay from the charatteristic equation, is not opt/yal in the
sense of m1n1m1z1ng the/iifiance of Y.

» ] The phase character1st1cs of a d1screte Smith compensator
were exaaned in section 6.4.1. If -1 < ;-< 0, the controller
has the inverse of a maximum phase future which'contribﬁtes ﬂ
significant phase lead up to'thé*N;quist frequency. The phase

e s el .
characteristics of continuous Smith compensators have been



analyzed by Astrom (1977). For the examples considered in that
paper, the controller also gave significant phase advance. However,
the control1ers were stab1e, unlike the example considered in

sect10n 6.4.1.

6.7 Summary -

In this chapter, the mathematics required to analyze the
frequency response of digital con%ro] algorithms was presented.
A particular emphasis was placed on the computation'of'the |
frequency response of maximum phase functions: The spectral
characteristics of some gtochascic concnnllers were analyzed.

-

The structure and parameter values of the stochastic. models

primarily determines the phase characteristics of these contrgllers.

A

For a particular class of stochastic models, it was shown that
the.stochastic cnntrol1er has significant phase advance The
- use of frequency response techr1ques complements the time

‘ omain analyses of these contro]lers and shou]d give: greater
understanding as to how they control processes with deadtime.
Finally, a brief analysis of the Smith regulator showed that
it is a minimum variance controllen for a particular choice of
etochéstfc disturbance model. As will Be'seen.in Chapter 8, this
stochastic model can be thought of as a randomly occurring

deterministic step’ type disturbance.
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CHAPTER 7

» ) SELF-TUNING AND ADAPTIVE CONTROLLERS

/17; Introduétion

N

Of many-flodern control theories, one which has had a
__gngéi impact on the process -industries is that of optimal
| stochaspﬁc_control. The basic theory is oﬁtlinéd-in books by Box
and Jenkiﬁs { 7q) and Astrom (1970). A number of steps are
usﬁa]{y jnviéyed in phe developmeht of such ;ontfo] schemes:
(i) plant experimentation to collect data on the system,
(ii) identification of a suitable dynamic-stoéhastic mo&el and
(i11) design of the controller using this model. Ofterd one of
~sthe main benefits froh performing sul% an exercise comes frdm
imbroved unaerstanding gaihed about the behaviour of the process.
and the nature of its disturbances. However, as .a procedure for
developing a controiler, the above steﬁs can be t{me consuming and
demand a level of expertise sometimes not available in industry.
'Furthermore, if the process changes with time (for examp1e, due
to brodﬁction rate ﬁhanges, catalyst activity changes ih a reacto;:
etc) then the process model pa?ametefs must be periodically-
reestimated and the qgﬁtrel]er parameters readjusté#f
The attempt to overcome thegg latter difficulties Ted to

the idea of self-tuning controllers, that is control schemes as

depicted in Figure 7.1 whereby the controller is coupled with an
T 183
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on-line esfimator which is capable of using thetinput-output
1nf0nma£ionlon the process to tune the controller directly. \%;:::fi:}
Much of the theor&_on these‘regu1a§prs was deve]oﬁed by Astrom
and Wittenmark (1973) and their coworkers, Wittenmark (1973},
Astrom (1974}, Astrom et al (1977}, and Ljung and Wittfehmark
(1974;, 1974b). A number of industrial applications have beeﬁ
reported; on paper machines, Cegrel] qnd Hedqvist (1975),
Wittenmark k1974), an ore crusher, Borissor and Syding (1976),- o
and T1-02 kiln Dumont and Belanger k1978). 1ts rapid qgséptance.
has no doubt been due to its simplicity and robustness, and to the
ease with whicﬁrit can be implemented.

| In this chapter, & dj;gussion unifying much of.the fheory?
re]eéént to industrial applications is presented, and it is |
applied in varidus forms to the control of & highly exothermic

packed bed tubular reactor carrying out the hydrogenolysis of » .

n-butane. . s

7.2 Self-Tuning Control

Assume that the dynamics of the process to be controlled
can be described by a linear transfer function model and that-the
. f ) ’
effect of the stochastic disturbances on the output can be

represented byfan autoregrfgyﬁvelintégrated-moving-average

(ARIMA) modeT e | R N

/
= .
. . _] . .
Y(k#b) = 3(2—1% U(k)"+ N(kb) (7.1) v

5(z

"
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r | .
N(k+b) = —(ﬁle 2 a(k+b) (7.2)
©¢(z7")vd o
~
Y(k) is the output deviation from its target va]ue at time k and U(k)

is the input deviation from-a corresponding steady-state value.

The terms w(z-1) and 5(2"1) in tho\oj;crete trapsfer function [Qb

‘represent polynomié1s of order s and r, respectively, in the'

backward shift operator, z-1, and b (2 1) “represents the number | :
~ of whole periods d?f%lms delay in the system. The stpchastic_///”\fuﬂﬂ

disturbance N(k) represents the total effect at tho output of_aTl .

- _ . - .

unobserved gdisturbances acting within the system, and in the . S
. : Y : o -

absence of some compensating action would lead to deviationdef R

Y(k) from its target value. In the ARIMA mode] (a(k)i_is.a_/

whit® noise sequence, -the md¥ing-avdragernumerator ﬁ(i") s a

polynomﬁol with all rootalyipg inside the unit circle in ghe f

z-p]ane, and the au;oregnessive denominator 8(z-1)vd is a poly:ﬁ;ﬁx\\}ﬂk_‘f
nomial of order (p+d) with p roots inside the unit circle 4id . f
d roots equal fto unity. (v = (1- z']) the backwards difference
operator ) Th allowance for d roots equal to quty (usually
d=20or1) eéﬁbles one to model the type of non-stationary

(stochastic and-determ1n¥c§bc) disturbances often found to occur

in practice; As will be seeniﬂb value of d > 0 always leads ; <
natura11y to integra] action in the con;nol]er._ gf

el ? !

- ' » - &) - i

L ) ‘ ¢
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7.2.1 Minimum Variance Contr&leIth Recurs1ve Least Squares - :S .
Estimations, A‘ S

The distuer;cé mode] (7 2) can be reexpressed as .

N{k+b) = 9 Z_ a(k+b)

'] .
o(z-Na(k+b) -sz—)—&‘a@ e (7.3)

whére_w(z'1) is a polynomial of order b-1. ‘The first term on the
o : ;1ght contains pnly'the&effect of future ‘disturbances and,
fepreggpts the minimum QarianCé‘%o:Fcast error aF time k, whereas
the second term represents. the forecast. Multiplying (7.1) by
w(;‘1}¢(z-1)vd'6(z‘1) and substituting (Z.Q)'intb the resuit
.-y'i.e'ldS-.‘) -

..,;;‘6.(2‘-1)e(z‘])(rv(k.pb)_w(z-‘l )a(k'l'b)) = 5.(2-1 )T(Z-1 )Y(k).

-~
N

e i LN SR
s .

[

w2 e etz k)

8 ot o Siliey
&

“ _' | (7.4)
? | which 1s of the form N . ;Y :
EV N )a(z")(v(m) - e(k+b)) \}/(45 )Y(k) s s(z“)vdu(k) (7 5)
f o | ) {f:fre . - o, f
i | - ‘ , . . ) - G(Z-1) =-.‘30 + O.]‘ z-] +-. .oa amo Z;mo | (7 5)
s - ' ’ ‘
B | . - o




OFR

R N

T A O R SO Y S e v

.form . ' ‘ ~

w0 -
O" ' 158
B(z_]»-) = 8y * B z,'] + .., .48, z°H0 (7.7)

and e{k+b) is the b-step ahead forecast error w(z'l)a(k+b).

The orders my and % are

-

J

my < r + max (q-b, p+d=1) (7.8)

2p=stptDb - Co (7.9)

If the pnrameters of {7.5) were known, the control action -

R Ay | ,
vA(k) = %ﬁz—'}ﬂ){ Y(k) = 'ZEZ_];. T(z ) Ty V) (7.10)

b w(z” )e(z
N ’

would minimize E(Y2{k+b)). - .
§ubpose'that.6(2-1)9(2'1)==,1.0. It is seen from-(7.€;-*\\

- Ahat the process oﬁtput is now expressed as a direct function of:

the minimum nariance'contro11er parameters. If these parameters

were unknown one might try to identify them from a mode1 of
1 .

(7.1}

Y(k#b) = a(z”1)¥(k) + a(z")edU(K) + e(k+b)
. . ) . -
where - S ' /,\\ g

| (27 T) g+ a1z L, . .. amz’m (7.1éx;
. S R -

and" ;9?\\ . - . ‘}a
. . "O.a-. 2 '

 ‘-- ' of\*_,\‘_\:pt__‘y% o

Con / Y - e -‘ '
”2?a§*;>“ | SR . o
RN . - e\ R L 1
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4 ’ -

-1y - -1 -2 :
8(z )—80+s1z IR 7 A (7.13)

The number of whole per{ods of_de1ay (b) and the order of the
pole (g) lying on the unit c¢ircle in the disturbance model are
presumed kﬁown. Equation (7.11) admits linear least squares
estimatioﬁ which may be expressed recuréive]y.‘ The estimates of

these controller parameters will be unbiased since e(k+b) =

:nw(Z‘l)a(k+b) is uncorrelated with the regressor variables -

Y

(Y{k), ¥Y(k-1), . . . v4U(k=1), . . .) but they may not be’
efficient estimates because of the lack of independence of the
e(k)'s. The pggaéeters can be updated at every sampling interval

and used in the control law

| | L= - -
, vdU(k)a————Tl'?(z_ Y(k) . (7.18)
o - B{z') ‘ v
¥ e
as if they were exact]y known., Note that one is not trying to
1dent1fy the process dynamic and stochastic moder] parameters but
only those combinations which appear in the minimum variance
contr011er. X | | .
The restriction that 8z L"e(z = 1.0 apbears to limit
U SN '
the usefu]ness of th1s ¢oheme. . However, Astrom and Wittenmark
(1973) proved twoAtheorems‘which sho@ that ;his'a1gorithm has
desirable asymptot1c propert1es 1rrespectibe of the product =

-5(z7 1)9(2‘1). If the parameter estimates converge then Jthe

 scheme reduces certa1n‘autocorrelat1ons of the outﬂht and” certaine

e

L 2N

S ——

\

¢
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Cross-correlations between the input and output to-zero. Further-
more, if the correct minimum variance controller structure i;,,i’
used; the parameters will converge to those of the true minimum
variance controller. This latter result was somewhat surprising
(for s(z-T)e(z~1) # 1.) siﬁce thé estimation equation (7.5)

is no longer a funct1on only of the minimum variance contro11er
parameters However, ‘the follow1ng ana1y515 gives an 1ntu1t1ve
expTanat1jp as to why this is reasonable and why in fact the
process may behave as though it were being generated by a moded )
of the form(7.11) even though §(z-1)e(z-1) # 1.

-,

The system (7.5) may be written as

Y(kb) = (14 w2l + w2 v L L (el ¥(k)

l'“

+ 8(z7)vR(K)) + e(keb) (78

where L

-

wu‘mu n“ T e N R T

equation (7.11) and the control action ) is) taken at every

interval. If the contro1(7 14} is theref\ e substituted into

>
(7.15) then o
—~ \ ~



Y(k+b) = a(z”!

+

k-2, z

uz{‘a(z )Y (k-2) [ﬂ(k—z—"]l “yy(k-2)3 o

+ ...+ e(k+b) | - | (7.17)

L

Note that upon convergence of the parameters the extra terms in

 the square, brackets tend to zero due to the control action (7. 14) M
being taken at every 1nterva1 Furthennore, if the process is
opeh loop stable (i.e., &{(z” ) ha£/L\1‘1ts roots 1y1ng inside A
the unit circle) theﬁ,u(z;]) is a convergent series in z-1 and |
_ the uj weights [decrease with increasing i, thereby further
reducing the.influence of the extra terms in the cu?\(‘\?macketg

The process output therefore is wel1 approx1mated by the L3
‘\

' " regression model (7.11). . ‘ ‘ /;;L_.,/’/

Extension of this tQ%ory to include feedforward control

WAl is strajghtfqnward, w1ccenmark'(1973), Cegrell and-Hegqvist (1975)
. and Astrom:efifl (1977).. ~ ' .

‘*Most of the properties vf these regulators are conditional

Il

upon‘ccnvergence‘of the parameter estimates. Ljung and
S * Wittenmark (1974a) have shown that a set of deterministic non-

linear differentiai-equations can\ii>essociated with the'recﬁrsjve

.
=

< S .
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-

estimation and contro1 equations. The so]ut1on of these -
differential equat1ons gives the expected trajectories of the
parameter est1mates, and proving convergence of the estimation
algorithm is equivalent to proving stab111ty of the
differential equat1ons. Although convergence is not’ assured in
all cases, simulations and process app]ications have shown tha$
good control is uéua]]y achieved fairly rapidly even iﬁ‘the
parameter estimates have not reached their final values,

/g 7.2. 2 Constramed Input Control and Non-mim’mum Phase ‘
Processes /

Minimum var1ance control sometimes calls for excessively-

: \_
| Aérge variations in the manipuiated var1abié/ particularly when ~

N

the control 1nterva1 is chosen to be very short relative to the
magor time constant. This results from its attempt to cancel

out the entire effect of the forecas:ed disturbance over b control
intervals. In situations where this manipulation is too severe,
1t is dbmmon‘practice to caicu1ate'contro1 laws which minimize
"the variance of Y subqect to a constraint on the variance of
vdu(k), that is, to minimize

.(. ~ L P
]

% o |
Note that if the disturbances aregnon-stationa y (d=1) 1

variance ofvdu(k)that must be constrained iﬁﬁck tha¥ of -

1ndef1nite]y large. The ca]cu]at1ons required to solve this

; . 0N
I 2 E(Y(k)2  g(vdu(k)2y 7, (7.18)

3
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o
linear quadratic control problem are well known and require

‘ spectral factorization, Wilson (1970), Whittle (1963), or the
steady-state solution of a matrix Riccati equation Astrom (1970).
Self- ~tuning versions of these controllers, Astrom (1@74) involve
the use of an efficient recursive est1mat10n method (preferabTy
recursive maximum 1ikelthoqd), Soderstrom et al (1978), t

update the estimates of the procdess transfer function and

stochastic noise model parameters t each interval followed by
the on-1ine solution of the disglete spectral factorization
problem or solution of the equivalent Riccati equations. Non-

minimum phase systems (that is, systemS‘wi . discrete models

having roots of ﬂ?z']) lying outside ynit'circle) such as

thééis,arf_ilggﬁeonveniéntly

handled by minimizing the criterion (7.18) with " > 0. For =

- the chemical reagtor treated™

" ;Jof one obtains the controller which has’ minimum variance
among all controllers with finite variance for vdU(k) as
opposed to the m1n1mu% var1ance algor1thm which would g1ve a
g;ntrol1er with infinite variance for vdu(k). The spectral
factorTzaﬁion solution in this case y1e1ds,a ralatively simple
set of-d]gebraic identities, Peterka (1972). For z" > 0, the
solution is. somewhat(Tore involved as we saw 1n the. previous
chapter. ‘ _ ‘
An a]ternatlve and much s1mp1er approach to constra1ning

the var1at1ons .in the man1pu1ated v able has been proposed by

Clarke and Hast?ngs James (1971) and C]arke and Gawthrop (1975)

}

» _ ' B -

L]
:.,‘- -
. - .

N



164

Rather than minimizing (7.18), they treat the simpler problem,
MacGregor and Tidwell (1978), of minimiziﬁg an instantaneous

index

1

* I, = {Y(keb/k) + ¢'(vu(k))%) " (7.19)

where f{ +b/k) is the minimuh variance fotecgst of Y(k+b)-mad§ at

time.k Thie-criterion usually resolts in contro]lers which, for

the same constraint on the variance of’ vdU(?) have dnly slightly

1arger variance for the output MacGregor and Tidwell (1977).

The resu]t1ng controller, however, can be expressed as a d1rect
\\express1on of. the process mode] parameters and. the constra1n1ng

" parameter ¢'. By showing that m1n1m1z1ng (7.19) is equivalent

. -
» - . N - 5 . =N
to minimizing - : : \

= E(Y(k+b) {';v"u(k)}2 - lf:w(k%b)}z (7. 20)

wheFe L = /wo, Clarke and GawthrOp (1975) were able, by a d1rect

exten51on of Astrom and w1ttenmark S work to develop a self-
tuning controller to minimize (7.20). Using the definition of

o(k+b) from (7.20) the system equation (7.4) may be expressed as

8(27o(z™1) a(k#b) = efk#b)}

a(z"1)¥(k)

- ¥ (B(z:]) + cq!z'])e(z']))VdU(k)

, o ' - (7.21)

f
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(
where 3(2_1)- and- B(z"”’ar'e previously defined. If the parameters
were known, the ;ontro]-action .
vz Vywdu(k) = -o(z-N)¥(k) (7.22)

would minimize (7.20) where v(z=1) = (8(z-1) + cs(z=1)e(z=1)}.
By direc%(ana1ogy a se]f-tuning algorithm with the estimation

mode]

¢(k+b) = ;(Z'])Y(k) + y(z71)9du(k) + e(ksb) (7.23)

-

and the control equation (7.22) w{1T have the same proﬁertﬁes_as
derived by Astt&p and wfttenmark for the minimum variance case.

%hé order of 7(2‘1) may be larger than that of B(z’l) in the

minimum variance case, and if the proﬁéss‘dynamic-stochastic quels
are unknown, the, value of ¢ that will redu;e the variance of . Of

vdU(k) by a given amount will be unknown, but can easily be found

by on-]ine'tuning. Note that ¢ ='C'/w0 and since ¢' is pos%tive, -

the sign of ¢ must be-that of wy. Another point to note is that
unlife cF_in the criterion (ZtTB) a finite, non-zero value of
z is needed to ensure that one dogs not have parETE;lic '

sensitivity or instability ?or non-minimum phaSe systems.

7.3 Application to the Control*of a Catalytic-Ehemical Reactor

The control of'téta1ytia packed bed tubular reactors A
carrying out highly exothermic gas .phase feactions'{izresents one

. . . . : -
of the mose challenging control probiems in the chemical industry.
» ’ . £a -t



0

<

166

/T\;hese reactors are highly non-linear, distributed barameter,

multivariable processes-and often exhibit non-minimum phase
characteristics. Although it is usually desired to achieve
control over the final conversion and product selectivities,

on-1ine\measurement of these via gas chromatogfaphs, etc. is

‘often 'too slow to be of any use in-a direct feedback control .
L

scheme. Therefore, in the control of industrial reactors one
usually re]ies on temberature measurements throughout the catgﬁyst
bed; a common iituat1on being s1mp1e feedback from some measure
of the hot-spot (maximum) temperature 1n the bed. This prov1des
an 1nd1rect stabilization of the exit convers1od and safeguards
against dangerous temperature’ excurs1ons For more direct control ’
over the exit conversion and ptoduct se]ectivit{es one must rely
upon some form of ﬁnfereht{a1 cohtroi based on~éoﬁt]ex multi-
variable mode]s of the_reactor (see, for example, Ju;an et al

(1977a,b,c), Wong (1977) and wright et a1 (1977)). thermore,

“due to the extreme non- 11near1t1es in the process, either non-

.'11near control schemes or else 11near adaptives schemes, Tremb]ay

and wr1ght.(1977), are desirabTe if the operating qegion is to
be chanéed, or, as is often true, the catalyst aqtivity changes

L

over time.

. A schematic diagram ?f the butane hydrogenol ys‘fwactor

is shown in Figure 7:2. It c/nsists of a §1ngle 4 cm diameter tube
Wy,

: 28 cm 1ong<ggi;ed ith finely divided ca®alyst part1ces (nicke]

, on silica gel) he reactor wa]] temperature is contro11ed by’ the

) J : -
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i LN
countercurrent flow of heat transfer oil through the annulus of

a cooling jacket. The flow rdtes of the two feed streams, ¥

hydrogen and butane, are cont-"11ed by a direct digital control

)

algorithm once per second, and the self- tun1ng regu]ator manipu-
lates the set -point qf the butane flow 1oop on a 48 second %
interval. Temperatures measured at equispaced points along the
central axis provide the pr1mary measurements for control
purposes. Ex1t congentrat1on measurements obta1ned every b ]
minutes using an on-line. process chrdmatograph are too infreqnent
for d1rect use in a feedback contrh1 scheme. The reactor has
been observed to have temperatu(\jrunaways or to quench in a
matter of minutes if left uncontrolled. Details of the reactorg
design, control software package and proceas computer interfacing '
-are‘avaﬁiab1e e]sewhere, Tremblay (19772; ' }\ - N

-

7.3.1 Minimum Variance and Constrained Control 09 the Hot
Spot Temperature Run 1. P <,

Preliminary 1nvestigat10ns into the feasibility of using
a se]fytuning regulator (STR) for reactor control involved univariate
control of the reactqj?E&t spot temperature hy manipulating.

the butane flow rate. MNo attempt was made to control the

pos1t1on of the hot spot only its ma nitude a5 determined from

‘ the_thermocoug]e 1gna]s. The Aot spot temperature used jgn the ¢

estimation and ¢ontrol algorithm was smoothed by a-first order

digital filter from tenperature data collected everiutnelze_-ﬂ///f

seconds;)}
. - . ~ C Y %.1
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+In Run 1, the estiflation model (7.23) was used with
t=m=3amb=d=1, that is

| _ , A
f2 L
d{k+1) =_uOY(k) + a]Y(k-]) + azY(k-Z) + sovU(k)

+ By WU(k-1) + 8,9U(k-2) + e(k+1) *

= x'(k)e + g(k+])- B . //’d/
~ where . )

o(k+1) ={(:+1) + gyU(k) - | q<5) -
= (C!Osa-' ’Bz‘sﬁoaB'l"Bz).‘. . . (7-26)

and ' . = 7 —

X0 = (Y(K), ¥(keT), ¥(k-2); WU(K), W) 0(5-2) (7.27)

‘The orders g, m, b and d were chdsen by postulating a structure for '
a dynam1c-stochast12;ﬁ;del that ould account for previously observed
process response although no pre]im1nary 1dent1f1cat1on was A

actqally carried out.

.- N

The controller parameter vector g was estimated us1ng

' the exponentia\;: d1§counted recursive least squares algorithm

Soderstrom et.all (1978). “ . .
',.\¥f:\\h_gﬁﬁ} = a(k-1) + K(k)(a(k) J\a‘(kf1)§13-1j) . (7.28) -
— | - ' C .'_' S — s '

M
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and where_k(f 1.0) is the exponenfiaf.discouotfng factor in the =

~ least squares function . : ’

t . o
I AT, ) | ¥ (3
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The resu]ts of one contrel run are summar1zed in Figures 7.3, .
7.4, and 7.5, wh1ch have been divided - 1nto sections 4%r ease of

d1scuss1on " Each section represents a change in ¢ trol]er o

1 .
operation and will be discussed in order Above gach section 1w

_,,Figure 7.3 are some summé&y statistics and a_p]ot of the estimated

autocorre]ation function for the data of that section

. Section A: Proportiona1-1ntegra1 Control| The performance'of a

digital proportional:p]us 1ntegra1 (PI) a]gorithm with a control

interva1 of 48 seconds provided the basis of comparison for the

'se1f-tun1ng regu1ator Because of the inverse response

characteristics of the reactor (at samp]ing 1ntervels less than

»

| B ’

. {P(k-L,) - P(k=T) x (k~1)x' (k-1)P(k=1)}  {7.30) .

)= P(k-Dx(k-1/0r 4 (RPGReTx(ke)) (7.29)

¢

3 about 30 seconds). more frequent act1on did not appear- to improve '

b

T
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the control. The respons§ of the PI algorithm is shown in

section A for 100 intervals. It should he mentioned that a

.~
N

considerable effort was required-to tune this controller. The "\\
)

flow rate of the bﬁtane feed” was constrained to the range 7 to

- 25 cm3/s fhroughout most of the run. It is obvious from the

-

controller performance and the plot of the estimated auto-
correlation function for the hot spot temperature that. the

controller is not optimal in a minimum variance sense.

Section B: Minimum Variance STR: At sample number 101, the -

estimatio the parameters in (7.24) was started, but with

the PI . troller still opeFative. Although this activation

of the estimation a]gofithm prior to that of thg STR contro1]er_

ensures that the parameter estimates are non-zero when first

used to compute the control signal, it is not recommended that
»

%his period extend. too long since one will not be converging to

tqf correct values. (Th?s is evident upon substituting the

-
‘ L1

fixed PI controller equation into (7.15) and comparing with

(7.17).)} The initial conditions for the estimation algorithm

were P(0) = 10001, 8(0) = 0, A = 0.95 and £ = 0.0. '
At sample number 111, the minimum vafiance STR-{z = 0)

was started using the estimated parameters avai]ab1e-at-that time.

(The vaiue of the estimation discounting,parameter‘k was also.

changed to 0.98). The traﬁsition over from PI,control to the STR

is reasonably smooth. The hot spot temperature variance was very
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. [

quickly reduced to a level consistent with measuremeg;/E;;;;ixfe

N ¢
(02 = 30C) and the estimates of the controller parameters

appear to have almost converged to stegay values within about
26 intervals. The autocorrelation function of Y and the
apprg;iﬁate 95%§Q0nfidence bands (for white noise, Box and
Jenkins (]970)) were calculated for the samp]es in the interval
125 to 210 and are shown above Section B in F1gure 7.3. For
optimality, 95% of-the sample autocorrelation sh0u1d.1ie wittin
these 1imits. This plot reveals that the parameter estimatee
appear to have converged to the minimum variance controller
parameters. Only one sample autocorrelation value lies near the

2

confidence 11m1t and a y“-test on these indicates that the hot

spot temperature sequence in this period is essent1a11y white
noise.

Howeﬁer, this control oder the hot spot temperature calls
for large alternating changes in the ﬁanipulated éutane feedrate
(see Figure 7.3). This is due to roots of the minimum variance
controller lying outside the unit circle. (See the plot of the
magnitude of these roots in section B of Fjgure 7.4.) Sinee‘
b=1 (that is, less than one whole period.of erocess dead time),
we can say that t@is is the result of the discrete transfer
fupction model beirg non- invertib]e The control over the hot
spot temperature remains nearly opt1ma] in spite of the bang-bang

type action on the manipulated butane flow rate, because Timits

are imposed on the flow rate actually allowed. However, these
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excessive variations in the butane flow rate upset the production
rate of the desired products of reaction (propane and ethane)

and therefore are unacceptable.

Sections C and D: Clarke's Constrained STR: In order to reduce

these variations -in the manipulated variable Clarke's alge;ﬁth '
(equations 7.22 and 7.23) which minimizes the performance index
in (7.19) was used. This chanée is readily accomplished on-ijne
by simp]y'changing the value of the constraining parameter ¢
* from zero to a finite ta]ue. At the beginning of Section C
(samp]e’number 211) the value of z was set.equal to 0.4. The
controller parameter estiﬁates A (Figu}e 7;4) maKe an immediate
~ change tfrom those oflg) resulting in a corresponding‘move of
the controller roots (Figure 7.5) towards new locations inside
the unit circle. The variance of the manipuﬁated flow rate4is
1mmed1ate1y reduced while that of the hot spot temperatlre

—

.remains aimost unchanged. Note that the pattern ‘of the hot spot

variations has changed somewhat, being more autocorrelatéd than

before. The large autocorrelation estimate of ¢ at lag one in
the plot above Section C (Figure 7.3) tends to indicate th:t\“\\\_

the barameter estimates have nbt converged in the‘period of
Section C. A more rigorous analysis for convergence %n the case
of exponentially discounted 1east squres is treated in (7.8)
and reveals that this is indeed the case. This is also apparent
from the continued slow drift in the estimates after the initial

more rapid change. This slow convérgence was due to the

%

‘N

Al
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continued use of relatively slow updating (1 = 0.98) in the
estimation algoritﬁm over this period. In the equivalent period
of an almost idenfica]_run the value of A was changed on-line

to 0.95 at the same tiﬁ;.as r was changed to 0.4. The v
parameters converged much more rapidly to their new values. (See

?igure 7.6 and comparé with Section C of Figure 7.4).

. In Section D, starting at sample number 311, the constraint

on the-manipulated butane feed rate was increased by setting

z = 1.0, This effectively pulls Fhe roots of the coht%o]]er
further inside the unit circle (Figure 7.5), and reduces the
variabiiity'in the butane flowrate furtﬁer but.at the expense
of {ncreased variation in the hot spot temperature. Again,'the

discounting factqr (1 = 0.98) was not changed in this section.

Section E: A.Sfep Disturbance in Reactor Wall Tempefature:

1)

The same'controf algorithm %rom the'precedfng éectjon .
{z = 1.0) was continued throu;hout Section E but at sample number
A]Ti&h extreme step load disturbance of 5°C in the reactor wall
temperature was introduced aﬁq maintajned for 50 intervals. The
STR handles this 10?d change\extreme]y well with no visible upset-
nor offset in thgghot spot temperature. Furthermpre, the plot
of the sampie autocorrelation function r§¢(k).over Section E
(Figure 7.3) reveals that the controller is optimal for

performance index I, or I3 in this period. An identical load

disturbance during PI control resulted in severe temperature .
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excursions to over 315°C and very slow recovery. In still other
runs ; Jutan et al (1977c), the PI controller was seen to

. quench the reaction during such an upset.

-

Comments: For the constrained controller (¢ = 0;4), the variance
of the hot spot temperature is almost identical to that of the
unconstrained controller (see the summary statistiés above

Figuré 7.3). This was_not surprising in this application s%nce,

- by constraining the manipulated input, we put Tégs stress on

‘\‘ Y the accuracy of the 1iheq:\::del (i.e., reduce parameter '
o - - -
E;;\\f sensitivity) and minimize the effect of the severe non-linearities

‘ -
(éan,the reactor.

,‘ /)-‘ " Section F: Operation at Extreme Conditions: At a later point.

in this experiment, the set point of?%hefhot spot temperature
‘was stepped over 50 control intervals to 295°C, and held
‘fhefe for 50 control intervals. The 40 é%gree-Ce]ciUs rise
above the wall temperature in an extremely difficdlt region ih
~ which to operate the reactor. From Figure 7.6, we can see
. that the STR is able to stabilize the reactor-in fhis regioh.
‘ ‘-ﬁe note the nonlinear behgviour of the hot spot temperature. )

After 50 control intervals at this new set point} the contral

'

NS

J//// algorithm is switchéd~to the PI algorithm. The oscillations
in the PI algorithm are much larger than the STR. Since the

STR is able to stabilize the process in this region, it would

[
L
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now be possible to collect.operating data in order to identify
a complete dynam1c/stochast1c mode] of the process Wong
(1977), or est1mate transport parameters for a mechanistic
model, Jutan et al (1977¢).

7.2.2 Run 2: Minimum Variance and Constra1ned Control of the
Hot Spot Temperature Run 2~

The!q5$1ma;1on model used in the previous secpisp was

. again used in this run. The set point of the hot spot

e

temperatere was reduced from 280°C to 275°C, and the set point

of the.oil reduced from 250°C to 248°C. The results of this

identification period was five intervals, Figure 7.8. Good,

~ Section 8, Figure 7.8. As in run 1, this occurred af the

expense of Iarge changes in the man1pu1ated variable. At
=

control interval 140, the d1scount1ng factor was changed from

i . “

.98 to .95. Twenty 1ntervals Jater the constraining factor was °

increased from 0 to .2. The controlled parameters immediately
shifted to new values, Figure 7.9, Section C. The poles of
the controller were also brought inside the unit circle very

quickly, Figure 7.10, Section C. At sfmple number 205, the

constraining factor was further increaspd'to .4, As in Run 1,

there was very'1jtt1e increase’ in thg_variance of thé*ﬂgt spot

temperature as the 1nput_manipu1ations'were constrained. In

~ .

.
[ .
.. . .

. ‘run are summarizee in Figure 7.8, 7.9 and 7.10. The preliminary

confrol over the_hot‘spot temperature was obtained very quickly,

+

(3
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Section A of Figure 7.8, start up of the reactor is shown,
and this figure gives an indicatianof how quickly the
_temperaturé can 1ncre$se.

The se1f~tuning nature of these regulators was ideal
for temperature. contral in the catalytic reactor app1icatioﬁ.
The cdfa]yst activity was obserQed to change signific;nt1y
after shutdowns and when changes were madé to moré extreme
conditions. The STR was aB]e to retune the controller in these

situations.

7.3.3 Tuning a PI Controller o .
A self~-tuning algorithm was used to try to see if it
* could tune the obviously non-optimal PI controller form by

using the regression model
Y{k+1) = c:OY(k) + a1Y(k-T) * 84 U(k) + e{k+1) (7.32)

The a1gor1thm was never able to tune this controller satisfactorily
and usually became unstab1e before usefuyl results could be <7
obtained. Some of ‘the problems undoubtediy resulted from the
inverse response characteristics of the,process The parameter

BO was Sblerved to change sign at severa1 points causing

1nmed1ate instabilities. Other problems resu]ted from a

"parameter windup" phenomenon discussed in Sect1on 7.4.7.
However, the majority of the problems probably resulted from the

simple fact that the PI controller structure is poor and will
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only stabilize this high]y exothermic reactor system for a very

narrow range of parameter settings.

~ . 7.3.4 Control Qver Effluent Propane'Production'

Attempts were also made to use a STR to obfain direct
control over the eff]uent propgne production réfe. Since on-
T1ine measurements of tﬂe product production rates were |
ava%]abié only every 6 mihutes, an inferential estimator of
propane production rate which used the available reactor
tempefatures and feedrate measurements was employed every 48
seconds. This estimator was then periodically updated on-line
when the chromatographic data became available. This procedure
‘was.used successfully in other nonadaptive multivariable ‘
control studies on the reactor, Wong.{1977). However, ip a self-
tuning or adaptive mode, this scheme did ‘not work satisfactomfly
because the inferential estimator, Jutan et al (1977¢), Wright
et al (1977}, contains the manipulated butane flowrate as one
of the predictor variables. The values to which the |
parameters of the inferential estimator converge will therefore
depend.oﬁ the structure and parameters of the controller and
will change if the contro]ler.do;s. (This is;aglated to fhe
classical ideﬁ%%fiabi]ity problem in tﬁe‘presence of feedback.)
These two parts of the algorithm (the STR and the 1nferentiai,

estimator) were highly interactive and led to instabilities.
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7.4 Discussion

Based on,experience obtained from this and a number of
other appliications, webdiscu;s below some practical considerations
" that one may find useful when trying to implemeﬁt one of these

self-tuning regulators.

7.4.1 Integfa] Action and Cont;011er Structure

, In the linear process'tfﬁasfer function model (7.1) and
the corresponding estimation models (7.11) or (7.23), the
mapipu]ﬁted and controlled variables (U,Y) are deviation
variables. The reference level of the controlled variabie Y
will be the desired set point. The corresponding reference
level of the manipulated variaﬁle necessary'to maintain the
output at its set point ﬁay not be known and will change if the
set point of the controlled variable is altered. Therefore,
if the disturbance (7.;) is assumed to be stationary (d=0), the
estimation equation (7f11) should contain an additidna1 Tevel

il

.paréﬁgter v to be éstimd%ed, that is
@Ru+b) = az-)Y(K) + 8(z71)U(K) + v + e(keb)  (7.33)

Tﬁe parameger v reflects the difference between a chosen
referénce value for the manipulated variable and its true steady-
state value thaf‘éorresponds to the set point of Y. If the °*
steady-state value is not known exactly and the'extra parameter

v is not ESti&Qi?d’ the confro11ed variable will have offset.
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For non-stationary load disturbances or set point changes, the
parameter u can be estimated to provide reset for the reference
value of the manipulated variable in this proportional type of
controller. If v is nof included the self-tuning algorithm will
attempt to eliminate this off§h¢ by forcing a root of é(Z'])
towards unity therby creating integral action indiregtly. (See
%igure 7 of éastry et al (1977).) However, this eanﬂ1ead to
i11-conéitioning of the estimétionrspace as well as parameter
sensitivity, which occur whenéve? parameters 1ie near stabi1ity
boundaries. A more rea]istié treaﬁmentlof the control probiem
is to admit that non-stationary disturbances (deterministiq‘or
stochasfic) are presenthin the system, in which’cése the
disturbance model (7.2) will have a rqot equal to unity (i.e.,A
d=1). The optimal controller structure then must contain
integral action anq is expressable in terms of vU(k) only. The
additional v parameter is then unnecessary..

' The orders of the polynomials (m,%) in the optimal
estimator and controller are given by (7.8) and (7.9) for the
minimum variance case or by an equiva]ent expression resu{;ing
from (7.21) in the case of Clarke's constrained algorithm. Many
processes can be characterized by relatively simple discrete
transfer functions. By assumiq&_a éimple non-stationary )

disturbance structure

N(k) = =0z Ly (7.36)
(1 - 27h '
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-

one can tﬁen make a tentative.choice of.éhe controller order... '
This stochastic model (7.34) is often capable of representing
quite well the type of non-stationary disturbances arjsing in
industry, Box and Jenkins (1970). After sufficient data have
been collected, it {s,then possibie to test forlpptima1ity and
modify the structure if necessary;l
If the number of/périods of delay (b) in the proces§

is large, then the opfgma1 order (2} of the B(z']) polynomial

(7.9) will be Targe in order to provide dead timé compenéation.
‘A'1arge number of parameters might then have to be'estimateﬂ.'
In this case, one-might consider using a longer control -interval.

If this is undesirable, one could reduce the number of

parameters by using models of the form

(7.35)

ra——"

Y(ktb) = a(z7)¥(k) + GTTXU(K) < (1-8)U(k-b))

-
.

An estimate of @ would be required. As observed in the previous
chapter, this regulator structure results when one assumes a
disturbance model of the form (7.34) since w(i'?)vu(k) can be

expressed.as U(k) - (1-g)U(k-b).

7.4.2 Detepministic Disturbances

"Minimum variance (dead-beat) and linear quadratic

controllers for deterministic (e.g., step) load and set point

disturbances can be shown to be identical to those desighed for
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the equivalent stochastic disturbances when the sto;hastic
disturbance model rational polynomial ¢(z-1)/¢(z-1)vd is the
genérating function of the deterministic disturbance, Chapter8.
_For example, an optimal controller designed for a random walk

type of stochastic disturbance

N(k) = T:;:T a(k) , (7.36)
is identical to the optimal controller for a gtep load disturbance
(at the output).whibh has a generating function}1/(1-z-1).
Therefore, the self-tuning regu]atofxwi11 natunally converge to -
the optimal deadbeat or 1ine§r qﬁadratic contro] algorithm for
determinist{E disturbances in the pracess if these -are dominant,
Wittenmark (1973). The only major additionaT cdhcern in this
case is that the disturbances must be frequent enough to excite
the systemdso that the parameter ég¥imates can be obtained and
the P matrix does not become excessive]y‘f;rge due.to lack of
information. The most satisfactory mode of'hsing the STR in
these situations is to allow tuning of the controller over a

few periods where such disturbances ‘are present and then turn
Cﬂ

off the estimator portion of the regulator.

Choice of the Control Interval

The_choice, of the control interval is ane of the most
5 which affects the performancé of the self-

s, and yet is’the one consideration on which
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there is 1ipt1e theory of guidance offeréd in the Titerature. T2
Noée that a distinction is made between the sampling and the .
control interval. The former can be much shorter with the \\fi>'
controller working on filtered values of the measurements ’ |
obtained‘bézween the control intervals. MacGregor {1976, 19%7)

has shown how a theoretical analysis can be used to prédict the

effect of changing the control ié}erva] on the performance of

stochastic cantrollers. Egr these stochastic distﬁrbancesi'it —
Qgs noted that.little is to bg/gained by sémp]ﬁng faster thamy jf \
the process dead time. However, general rules are difficult to ,"
formuTate. It is probably safe td state that in industry the «@ !
control frequency i ge&eral]y much, faster than is necessary for
good control. Con rdﬁling and'updating too rapidly can have a
number of adverse effects on self-tuning regulators: The order
qf the opFimaI controller often increases.. Heavy constraining .
on the.manipulated variable may be necessary, MacGregor (1976).

From a parameter estimation point of view, at some point the
extra information obta1ned by sampling faster is marginal.

Est1mat1on d1ff1cu1t1es then ‘could resu]t from i11-conditioning

f the estimation space and 1nstab111ty of the P matrix when
discounting is use&. Furthermorgi if -the process dead time
- changes, the discrete parameter b may change. \'his has been
- shown to cause problems with stability of the ;l1f-tuning requ-

/

lators, Wittenmark (1973).
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7.4.4 Parameter [dentifiability

-

) It is well known that -parameter identifiability problems
may arise gnder fixed linear feedback control with no added-input
signal, Gustavsson‘ et al (1977). In fact, in such a situation,
the paraﬁpters in the estimation model {7.11) cannot all be-
uniquely estimated. However, if the dead time is known, the

- minimum variance coptroller parameters (“1/50’ 51/80) can be
uniquely identified, Bohlin (1971).: A frequent solution in

many applications has been to fix the'sD parameter fn"thq ‘
estjmatﬁon model (7.11). Since the self-tuning regulator is

time varying, one can usually estimate all the parameters as we
have done in the reactor applications. Once the parameters

' have e?Séntia]]y converged, one can easily fix By = éO at this
point to avoid potential problems if the updéting algorithm is

to be continued. By estimating By in this way one can also

avoid the potential problems of ﬁtabiTity and slow convergence

resulting from a poor choice of a fixed_BO, Wittenmark (1973).

7.4.5 Initial Choice of the Parameters
Initi}j fstimaes 8(0) and P(0) are needed to start the
recursive estimation scheme (7.28), (7.30). From a Bayesian
viewpoint Ejo) represents the prior expectation of 8 and P(0)
represents a matrix proportional to thé covariance matrix of
the prior distribution of g.' Therefore, one can either achieve

“very rapid updatfng in the situation of 1ittle prior knowledge

r
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(iarge values for P(0)) or very slow but smooth updating in
the situation of substantial prior knowledge.

A common practice‘in the case of poor prior knowledge
is to startvthe parameter estimation algorithm using the modei
(7.11) during the time that a fixed controller, say a PI
algorithm, is still operating, and subsequently to activate the,
controller (7.14). This procedure was used in the reactor runs
as noted earlier. However, it is important to recognize that.
during the time that the PI controiler is opera@ing; the
pérameter estimates (&, ) will not be convérging towards the
true parameter values approprigte for the controller (7.14).
This is evident in the developméﬁt andldiscussion—of eqthion
(7.17) where it is apparent that convergencé depends upon esti- .
mating the minimum vériénce controller parameters and simultaneosly
implementing the controller. Therefore, this initial period
should nat be too Tengthy especially if no discounting factor

{x = 1.0) is used in the least squares algorithm.

-

7.4.6 RLS Discounting Factor, 5 '

The exponentia{1y disﬁounted leést squares algorithm in
equations (7.é8) and (7.30) with a va]ue“of A < 1.0 is very
ugéful for tracking the parameters in time.varyingzsystems and
during the initial transient period of tuning. In fact, values

of & < 1.0 have been used in almost all STR app]ications. Since

the asymptotic window length or the effective number qf
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observations included in the estimates is (1-1)-1, the usual
range of A is between 0.95 and 1.0. In choosing A one 15
effegtively trying to trade off tne;speed of adaptation against .
the amountﬁof variation in the estimatesf//;t is usﬁal]y
possible to improye the overall performance of the self-tuning
controiler by periodice]iy cnanqing the value of X on-line,
decreaéing it when known changes.ig,g., in set point or in the
constraining paramefer z) are being made and then increasing it
again when the parameters have nearly converged.to their new

values.

7.4.7 Parameter Windup .

e Buring this study and in at least one industrial study,

~a probTem wes encountered which we term "paramster windup" by
analogy wieh the similar phenomenon of reset windup in
‘conventinna1 PI:control. If this situetion is encountered and
adequate precautions not taken it can lead to rapid deterioretion
of the regular performance.

This problem occurs in the‘recursive estimation
algorithm of the minimum vaniance and Clarke type ;elf-tuning
controllers whenever tne manipulefed variable saturates at one
of 1ts Timits (due to actual or ﬁmposed constraints). Obviously
it fs important to account for this saturation-in the.estimation °

equations (7.11) and (7.23) so that the parameter estimates do

not change in response to vU{k) values called for by the

»
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controller but not actually implemented. Tﬁe usual procedure
for dealing with this has been to insert on} the actually
implemented contro1 action into the estimation:equation.
However, this does not solve the windup phenomenon in which?
the controller parameter estimates begin to diverge from their
desired values. This‘divergence is particularly pronoupcgﬁ
whenever U(k) hits apd remains at a 1imit for several'periods;
In the above s1tuat1on two tthgs happen First, since
no new 1nformat10n’1s being gathered on the s(or y) ‘parameters
in the estimation model dur1qg-th1s period, it could ‘lead to
problems when using recursive least squares estimation with
rapid discounting (sayiA = ,90 to .95): Thqses elements of the
P matrix associated with the 8 parameters could increase rapidly
leading to a jump in the est1mates whenever the s1tuat1on
returng _to normal. Secondly, the more serious problem occurs
with the o parameters. As the past VU's are set to zero
(because of the\jnabi]ity to implement the desired control
action‘duping the-period of saturation}, the true system model

of equation (7.15) becomes

V() = =32 ) y(k) + e(ko)
s{z "Ye(z ") _ :

1]

Wz Na(zVY(K) +iclkeb)  (7.37)

that is, the estimation equation (7.11) is no Tonger,va1i¢."The

Ny



: Aterms in u(Z-f)a(Z-l)Y(k3j) and u(z-1)8(z"1)vU(k-7) for

- did in equation (7.17) when control action was being taken at

</
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J=1,%, . .. no longer serve to cancel one another as the

each 1nterva1._ The estimates of the o parameters will therefore
start to Eon&erge towards the Teading coefficents of u(z-!) -
a(z-1) = T(z-T)/8(z+1). iﬁ other words, the estimation model
(7.11) ahd'the‘theorems‘s.] and 5.2 of Astrom and Nitténmark
which relate to it are no 1oﬁger.va1id_because control action
is not being taken at every interval due to the saturation. '
Clearly the same arguments apply to Clarke's algorithm
given in (7.21) and (7.23) except that én additional prablem
arises which cbﬁ]d aggravaté'this parameter windup. Upon
saturation, the dependent variable s{k+b) = (Y(k+b) + ¢vdu(k))

\

in the regression equation becomes equal to Y(k+b) (if d = 1).

~ The algorithm will then behave just as the minimum variance

algorithm under saturation since ths constraining ‘term has
disappeared. If this zVU(k) term is being ré}ied upon to
stabilize a non-minimum phase system the shift in the parameter
value could have a rather pfonounéeq effecf_on the controller
pérformance. ‘ ‘ |

If saturation of the manipﬁléted variable might be’ a

common occurrence in a given application one should probably

- avoid use of the minimum variance and Clarke algorithms that are

based on direct estimation of controller parameters. If these

are used, one might consider distontinuing the parameter estimation ~

- —
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upon reaching -a limit. until such time as the situation has
returned to normal and the x(k) vector contains only elements of

Y(k-j) and vU(k-j) which resulted from normal controller

operation. This simplistic approachhdoes not entirely so1ve§

the problem since the effect of the controller saturation on
the true process mode] (7.11) can be séen to reach further back
than just the elements in the x(k) vector. As-a result,@bne

usually observes a bump in the parameter estimates when the

estimator is turned back on.

—

-———/-
"One can avoid the parameter w1ndup phenomenon altogether

by using those schemes which re}y upon d1rect on-line estimation
of the process transfer function and stochastic noise model

parameters.  The contro]]er parameters are caiculated/d1rect1y

»on-line from the minimum var1ance 1dent1ty or solution of on-

Tine R1ccat1-equat10ns using the mode] parameters at each
interva] Th1s potent1a11y ra1ses the prob]em of identifiability
under closed Toop as the parameters converge Note that -although
the process parameters may not_be_unique]y identified .in such
cases, the‘tontr011Er parameters, which are & nonlinear subset” |

of these, are usual]y‘identjfiable, Boh1in (1971).

r

7.4.8 «Test1ng for Parameter Convergence ‘and Controller
" Optimality

Theorems 5.1 and 5.2 of Astrom and Wittenmark (1973)
provide a method of testing for convergence of the parameter

estimates and for optimality of the controller by perfarming

L

S -
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hypathesis tests oﬂ'certa1n autocorrelations of the output,

p¢¢(k), and cross corre1at1;\s\between the 1nput and output,

ou¢(k) _ \>

/

If the contro]\(:ﬁ:g opt1ma1, then, Astrom and HwttenmarE”

(1973) he
: \

k) =0, k 2 b (7.38)

Bartlett (1946), has shown that for a stationary normal process,

the sample autocorrelations ' 'ﬁ

: N-k .
Foplk) ='f]¢-j£1 o{3)e(3+k) o (7.39)
B

are asymg;otica]Ty normal1¥ distributed with variance given by

" If the controller is optimal implying that {7.38) is

true, this reduces to

b-1 .
Var(r, (k) = Fr“ $2 )j p ‘k;b (7.41)

As suggested by Box and Jenkins (1970), the b~1 nonzero, p5's can

be replaced by their estimates r¢$(k) and then each of the

r?¢(k)§\k_2 b can be compared with tﬁeir two standard deviation

- ("‘ ' :
N
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1ifits to test the hypothesis that théy are zero. Box and
Jenkins also given an overall Chi-squared test for this hypothesis.
If the parameters have converged then for the case of

ordinary non-discounted recursive least squares theorem 5.1 of

Astrom and wittenmark_shows that .
- o¢¢(k) = 0 k = b, . . ., btm
( : (7.42)
byolk) = 0 k = by .., b '

Thereque, using Bartlett's varighce formulae the same tests

described above can be used to test for convergence of the

”~~

paraﬁeters.

[f exponentially discounted least squafes is used to
estimate the parameters, a rederivation of‘ Astrom and Wittenmark's
Eﬁgg:em 5.1 shows that if the parameters have converged the
expectations of the following autocorrelations and cross-corre-

Tations should be zero {Appendix 4) instead of those in (7.42).

0 ot k=b, .. ., btm

£(Fyq (k)
(7.43)

1]
o
-~

n

E(F,4(k) by . . ., b

. \

N\

where

i] AT a(1)a(i+k) (7.44)

with n = (1-0)N/(1-1) this provides amunbiased estimate of

R

o¢¢(k2. 7 (k) is similarly defined.

ud
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Following Bartlett's apprﬁaéh the asymptotic variance

of these sample autocovariances are'given by (Appendix 4)

”

a

1

G0y -5 ’
Var(r (k)) =
e n jg-n+]
' 2 : 2 2
(Oj + pj'l'kpj-k - 4°kpj+kpj + Zpkpj) :

-

;\Ijlﬂ:lz_"l, o | (7.45)

(1-9/
-
For values of A suﬁggéntia]1y less than 1.0, this variance can

be much larégr than that given by (7.39). _

| This test for convergence was applied to sections C and
D of reactor run 1. The sample weighted autocorrelations
ﬁa¢(k) are b]otted‘pdgether with their approximate two standard '
deviation TimTf;-Z}élcu1ated on the assumption that (7.38) is true,"
Figure 7.11. These limits are much larger than those for the
unweighted sample autocorrelations (2/ \f§§; vs 2/.J90 ) shown
above sectioqs C and D of Figure 7.3. From this ana1ys{g‘ﬁe wou'ld
-conclude that the parameter estimates have not converged in

section C, while in .sectipon D.they appeared to have converged.

7.5 Summary . . !

The self-tuning control theory discussed in this paper
provides a direct on-line means of implementing univariate

stochastic controllers. This is an alternative to the usual .
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procedure of developing dynamic-stochastic models off-line using
@ set of data collected from the process and designing the
controller from there. The strategy is easily implemented and
it can be used in an adéptive mode allowing the controller to
track changing process éonditions.

Various forms of these controllers were impiemented on
a pilot scale packed bed catalytic reactor. The algorithm was
shown to tune itself rapidly, and to adapt to changing catalyst
activity and operating levels. Constraint on the variation in
the manipulated variable was easily handled by Clarke's modificafion
+ of the basic STR algorithm. The quality of control of the
reactor hot sﬁbt'temperature wég considerably better than that
achievable by conventional PI controi. Although better contro]
over the more economically meaningful production rates can be
achievéd using modern multivariable stochastic control theory,
Jutan et al (1977a,b,c), the simﬁ1icity and adaptive nature
~of these STR schemes in comparison with the latter approach

makes them very attractive,
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CHAPTER 8

MODELLING AND CONTROL OF DETERMINISTIC AND
STOCHASTIC PROCESSES

8.1 Introduction

One of the most appealing aspects of the linear quadratic
.approach, is thé ease with which additive stochastic disturbances
are incorporated in the filtering and control algorithms. Not
all disturbances aff ing processes are of a stochastic nature.
Steps, ramps, exponentiai rises to a new level, and periodic
disturbances such as sinusoids, are examples of deterministic
Toad disturbances that might be encountered. To detect and
control these disturbances, they must be modelled and included
in the description of the process. In this chapter, attention
will be focused dn the modelling and control of processes
subject to deterministic and stochastic disturbances. Optimal
control algorithms desighed for stochastic processes, are seen
to be optimal control algorithms for deterministic processes of
"equivalent" structure. Difficulties in the control of processes
.subject to both types of disturbances are investigated.
To‘motivate some of these ideas, consider the following

_simple example. A process transfer funcfion is described by

- 1-42
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where 2! is the backward shift operator. It is desired to find

a linear feedback cont)o]ler, D(z']), so that when the process

(8.1) is subject to a sudden constant‘load disturbance of

unknown magnitude, a,s at the process input? the process ouput, »
Y(k), is brought to zero and held there in the fewest number of
control intervals. The controller that will accomplish this is
known as a minimal prototype or deadbeat controller. '\ block

diagram of this process is shown in Figure 8.1. The load variable

‘has the transfer function, Raggazinji and Franklin (1958),

N(k) = —2(0-3)alk) - | (8.2)
(1-52"1)(1-2" ")

- oy
a(k) is zero for all time, except at the instant when the Toad

disturbance first affects the process, at which point it has the
value ag. (This is_equivalent to the z-transform of the effect of
an input step at time k=0 ‘on the process oufput.) Using the
method of undetermined coefficients (a purely algebraic

approach), the controller that.accomplishes this is, Smith (1967);

) = (el + aon)e
(1-z7 ) (1+(1+s)z7 ")

Y(k) (8.3)

Now suppose that we designed a minimum variance ‘controliler
for the process (8.7) and noise model (8.2), under the different

assumption that the a(k)'s were from a normal population. The

_ resulting controller is identical to (8.3). _In this example, the
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" control for deterministic and stochastic disturbances can be
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structure of the controller did not depend‘én the statistical

properties of ‘the a(k)'s. Furthermore, this same duality between

L
shown to hold for the more general case of Linear-Quadratic-

Control (LQC), that is, where one minimizes the output variance

subject to a restriction on the input variance. Wilson (1970)

“gives a clear presentation of this duality using the spectral

-factorization (or more correctlyscovariance generating function

factor zatién in discrete cases) approach of Wiener (1949) and
Whittle\(1963). '

As we observed in Chapter 6, a minimum variance controller
is designed to.cancel out the minimum variance forecast of

N(k+b) given only information to time k, that is
w(z™!) U(k) + Mk+b/k) = 0  (8.0)
§(z7") -

The structure of the éontr911er obviously depénds on the forecast.
An important point in the duality of stochastic and.deterministic
controT[ers is that for linear forecasts, the structure of the

forecast is independent of the distribution from which the

L

a{k).'s come. To construct this 1linear forecast from a statistical

. argument, the a(k)'s need only be from a mean zero process with

finite variance, Box and Jenkins (1970). \

He can consider both the deterministic and stochastic

. disturbances to be modelled by linear difference equations. -The

solution of these difference equations consists of a complimentary

.

o~
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s@]utiogﬁ:ﬁf}}b/k) and a particular solution, P(k), that is

"

N(k+b) = P(k) + C(k;b/k) | (8.5)

Thé complimentary sb]ution involves initial Conditions and as such
utilizes information available to time K. The particu}ar solution
is the forced solution and incorporates the information (a(k)'s)
that enter the process from time k+1 to k+b. For stochastic
distquances, it is well known that C(k+b/k) is the linear minimum
variance forecast ﬂ(k+b/k), Box and Jenkins (1970). For deterministic
disturbances‘of the form (8.2), N(k+b/k) in (8.5) is the compli-
mentary solution for this d1fference equat1on with the initial
conditions determined from a(k), a(k-T). . . Therefore, the
same minimum variance, or minimal prototype controller will result
from dist&rbances of the same structure (transfer functjon)'
irrespective of fhe distribution of the shocks a(k).

The notion that process disturbances can be represented
as di?fefence equations, having complimentary and particular
solutions,.is fundamental to theqmode]]ing and control of v
processes subject to both stochastic and/or deterministic N

disturbances. This topic is explored in more detail in the next

section.

8.2 Modelling of Stochastic and Randomly Occurring
) Deterministic Disturbances \
~.J
Multivariate disturbances of a random nature can often

be modelled by \yector stochgstic difference equations of the form
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ez hd(k) = ez a(k) (8.6)

or equivalently

. P _
/ ez hd(k) = sz alk) - (8.7)

The (a(k}'s) are really a sequente of normally distributed random
variables or shocks, uncorrelated in time. ¥ %s an abbreviation
for (1-2'])1. é(z']) and @(z']) are matrix ponnomialsldﬁ order
p and-q. The modulus of the determinant of these polynomials is
assumed to be tess than one. In khe univariate case, this
\;corrésponds to the polynomials having.all‘their zeroes inside the
- unit éirclg in z. The dimension of t;l\gisturbanqe Ts taken as
nq. Equation (8.6) is a parametric representation of the
- disturbances affectiﬁg the process. Box ?Baqdenkins (1970) and
Astrom (1970) discuss techniques for estimation (p,d,d) and the
parameters of the model for univariate time series. Md]tip]e
time series are d{scussed by Quenouille (1957) and Kashyap ahd
Rao (1976). .
| in this section, we examine in more deta%T the difference
equation representations for stochastic and deterministic
disturbances introduced in section 8.1. This motivates a
discussion on the model1in§ and contfo1 of F{oceSSes sﬁbject to®.
stochastic and deterministic disturbances.
To introduce these ideas, considér the univariate

stochastic difference equatijon

~«
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d(k) - d(k-f) =‘a(k) (8.8)

%i

he solution of this difference equdtion at time origin'ko consists

of a complimentary and parficular solution, and is given by
LY

k. ‘
E a(d), k> kq (8.9)

b(ko) is obtained from the initial conditions and with no loss of

generality may taken as

kg

blkg) = § a(i) - (8.10)

j:-oa

The complimentary solution b(ko) is a prediction for-d(k) using

0 This -
prediction, denoted by d(k/ko) wilT be in error by thg amount

k

} a(j). The complimentary solution is the condttional mean
J=kg+1 '

of d(k) given only information to time kg» Box and Jenkins (197Q),
and as such minimizes the variance of the prediction error. The

prediction error is the particular sqlutibn to (8.8). '

[f the origin of the projection changes from ko to k0+]
‘ )
then . ‘ /
) ko |
d(k} = blky*1) + 1 -a(d), k > ky*T (8.11)

J=k0+2 —->

where the coefficient b(k0+1) is given by /

4
S (:: ‘ : \

S
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b b(k0+1) = b&ko) + a(k0+

The effect of the shock a(k0+1) is to 1£er the level of the

disturbanceé d{k). Using (8.12) the drigima] stochastic

difference equation may be written in the form

d(k) = z(k) S . (8.13)
where ‘.’¢ﬁ7‘~/ P
2(k+1) = z(k) + a(k+1) . (8.14)

These two equations rgpresent a state space description for a
‘sequence of shocks entering the level of the disturbance process
" at_each time interval. \

Let us consider another exampie. The stochdstic difference

equation is

t

- ’\ d(k)'- (1+6)d(k-1) + 6d(k-2) = a(k) - ea(k-1)  (8.15)

~a¢4th -1 59, ¢ 1. The left hand side of (8.15) describes the
exponential rise of d(k) to a new level. The solution to (8.15)

is given by

. K C
d(k) = by(kg) + bylkg)e 0+ T T2+ F2 K Ijas) (su6)
, - J=kqyt]

k > ko

Using the same approach as in the previous example, one can\Q%E;in
p
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the following state space description of the stocﬁéi;:\_ :

disturbance
7~ -
i : . J .
d(k+1) = by (k) + b,(k) N ok (8.17)
wher:a
' S byl = by (k) F T (k) (8.18)
and
oy _ '
b2(k+1) by(k) + a(k+T) (8.19)

The effect of the shock }s to alter the time evolution of
d(k) from what would be calculated hsing the complimentary
solution. The shocks enter as an additive term to this so1ut1on
The moving average and autoregress1ve parameters determ1ne how the
shocks filter through to the -difference equat1ons for b (k) and-
b2(k). The variance of the a(k)'s de*erm1nes the magn1tude of .

the changes inb (k) and bz(k) arising from the forced solution.

The term by (k )+ ¢k kob (k ) in (8.16) is the comp11mentary

solution, C(k/ko) to (8.15)." From (8.16) we see that it is ayso
the conditional mean for d(k) given information'up to and including'
time k0 However, 1in Chapters 6 and 7, the cond1t1ona1 mean was

obtained as the term T(z~ )a(k )/t ( )) in the expans1on

'l

12627]) d(k) = y(z7ak) + 270K ,’_ T(z”h) " a(k) (séo)

(1-0z2 ") -, ‘ 7(1-82 ')

(-

P~
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/ , _ ) ‘
. , | .
<<::::j\\\zre two expressions for the conditional mean must be equal.
1 Ll - .
\\\;J 3 This equivalence is obtained by using (8.18)‘%nd (8.194)to

express by (kg) and b,(ky) in terms of—the shocks a(kg), alky-1)....

. If this is done we find«g;;t § "
o W/
¥ k-k
) . 0
Clk/kg) = dlk/kg) = 128 L gy + 828 0 0y
“1-e (1-277) -9 (1-¢27)

r‘

C B 5 : (8.21)7
For any value 5% k >'k0; it is stréight%orward to show that
T(z'])a(ko)/(V(1-¢zfi)) can be written in the form (8.21).

. From the examp1es just considered, we have seen that the
" minifum variance forecast, a(k(ko), for d{X) can be obtained as
} the solution to a homogenous difference equation. This construction,
as opposed to the factorization approacﬁ of Box and Jenkins (1970)
*and Astrom (1970), g1ves us a greater 1ns1ght into the structure
of the forecast and explicitly 1nd1cates what effect the lead
t1me'§k-k0)‘hae on the forecast. Other emep]es of stoghast1c
| difference equations are discussed’in Box and.Jenkins (1970)
. 'and Abraham and Box (1978). ‘ .

The difference equations (8 6) or (8.7) can always be

wr1tten in the form

| \ -
: ]////’J dk) = (Ing 0 .~ . o)g}k)ﬂv ~ (8.22)

\ J///%nd \ < . | . .
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0 S
\
j t
z(k) + a(l*{)
\
} ' A
I J
...... ndl , /—’.
S N 0 o Lep+d ’,
* .{8.23)
x
ot more compactly as
. 5‘ . haud .\-
d{k) = Cz(k) (8.24)
,/// and
z(k+1) = Dz(k) + ra(k+1) | (8.25)

We no;e that the matrix D involves only the coeffi;iggts of the
autoregressive equation.‘

The shocks in (8.6) enter at every interval. Let us suppose’
that th;\géﬁ)'s do not;enter at every time interval, but rather
appear oc£;51 ly, if at a11}ﬁﬁjo cTear]y_diétinguish‘the
a(k)'s from these octasional spocks, the latter will be denoted by
afk). If the moving Everﬁgé/:erm gjz'])=I,.the description of

the. process disturbance is given by

N

T .
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¢(Z_T)_d_(k) = g(k)' | (8.26)

If a(k) were zerGE?Pr all time, the disturbance would evolve from
its initial Eonditions. Given p+d starting values d(k),
d(k+1). . . d(k+p+d), the future behaviour of the disturbance
could be exactly predicted if no shocks a(k) were to affect the
procesé. With an appropriate choice of the autoregressive
parameters, Tevel changes, and exponential rises to a new level
could be described. If ¢(z"1) is allowed to have roots on the
unitAcirc]e, periodic disturbances such as sinusoids can be
modelled.. Since there is no uncertainty in predicting the future
value of these processes, once the starting values have been
determined, such eqﬁations describe deterministic disturbances.
In most processes, however, neither the time at which the
disturbance affects the process nor its magnitude are kndwn prior
to the occurrence of this event. Therefore, to allow for these
types of disturbances, which we sha]]hca11 randomly occurrjng
deterministic disturbances, it is essential that we acknowledge
in the mathematica{tmodel, non zero va]des of the shocks a(k).
For most of the time when there are no disturbances a{k) = 0.
When a shock occurs, the disturbance evolves according to its"
difference eﬁuation until a new shock again affects the process.
For example, if we were to model an exponential rise to
a new level, the staté equations'woulghgg

Al
- - <
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dk) = (1 0) [z (k) “T8.21)
Zz(k)]
and
r(kﬂ) ] [¢+1 1][21(k)]+[1‘ a{k+1) (8.28)
22(k+1) -3 0 zz(k) 0 -
These randomly occurring disturbances can be:mode]]ed by the state
equations | ‘
(k) = cz(k) - . | (8.29)
and‘
2(k+1) = Dz(k) + ra(k+1) (\‘8>30)

We immediately notice the similarity between the equations, and
those used to model stochastic disturbances (8.24) and (8.25). The
fundamental différencé between modelling stochastic and randomly |
occurring deterministic disturbances s in the distribution and
frgquency of the shocks affecting Fhe process. The continuous
aﬁolog of such disturbances are differential equétions. Johnson C;

(1971, 1972a, 1974a) discusses these representations in detail.

8.3 Control of Processes Subject to Deterministic Disturbances

The key to controlling processes subject to deterministic

or stochastic disturbances is to inctude a proper mathematical

. description of the disturbance in the-prdcess model. The effect

\J
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of the disturbances on the state equations are assumed to be

described by

x(k+1) = Ax(K) + Gu(k-f) + Fd(k) (8.31)

The disturbances are modelled by the equations (8.29) and (8.30);
There.are n states; r manipulated variablés; f (f20) pure periods
of transport delay, and na\EiEEUrbances. As well, we may have a

measurement equation of‘diménsion m,

YR Hx(k) - © o (8.32)

1

The process disturbances have been modelled as an additive term.
This corresponds to a linear(ized) representation of the process
plus disturbanceé._ If need be,ﬁhi can also include the effect of
the disturbances in the measured dutputs. _

The control problem is to detect the preseﬁge of a
disturbance and to eliminate, or minimize its influence on either
the states 65 the process outputs if possible. There have been a

number of studies of\this problem. Most attention has been

focused on the case of ‘continuous dynamics where F in (8.31) is

- of rank n (the number of \states), Davison and Smith (1979),

Davison (1972 : he - s by Davison are very difficuft to read
and the coptro1‘§trategies are not well motivated. One aimo
ﬁeeds to know the final result before cbntemplating'the conﬁrol]er
desfgn. Necessary and sufficient conditions for the existence of

a controller to asymptotically eliminate the effect of disturbances
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on the process outputs are given, but they lack an intuitive
interpretation. Little guiqance is offered on how to proceed if
it is impossible to satisﬁe the necessary and sufficient
conditions. _

In maﬁy process applications, we do'not have independent

disturbances affecting all the states. In the reactor study,

l'a major load variable is the wall temperature. As shown in {
Chapter 3, this affects all the states (temperatures along the
reactor) simultaneously. The conditions for the existence‘of”
solutions to the control p¥0b1em in the é[?#mentionedpapers do
not appear to be readi]} extended to the more general case when
the rank of F is less than n. Furthermore, the 'robustness' <
properties of the conttrollers are not applicable when the rank gf
'F is.less than n, Davison (1972).- v\ —

Johgion (1968, 1970a,‘1970b, 1971, 1972a, 19725f/}973,
1974a) has developed an approach to contral prbcesses subject to
deterministicldisturbances. Oneconsiders controlling the |
process described by (8.31) as if the states x(k), dnd disturbances !
d{k) were e;§c£1y known .. Thisbimplies that o(k) is zero for all
time. An observer is thgn‘consfructed for these variables. A )
certainty equivalencé theorem is provenﬁ;e‘show that one can
in fact control the process using the estimated states instead of
the true values. Johnson's 1971 paper is a nice exposition of the
meﬁpod. Unfortunately reduced order observers were used to recon-

struct the states, and this detracts from the insight that is



N

obtained when fuTT.order observers are used. The 1973 paper,
presented at a University of Waterloo symposium, although not
widely avgilable, is perhaps the clearest explanation of his .

work. ::3 technique was developed for conzinuous systems, but is

‘ . —-'E‘ . .
readily extended ‘to the discrete time case.

8.3.1 Elimination of the DisturbaMces on the Statas

For the moment, let us assume‘that C#I, i.e., we are
primarily interested in ¢ ntrolling deterministic disturbances
entering directly into-some of the states. As proposed by

Johnson, one can partition the control action into two components
= R D
u(k) = u™(k) + u”(k) (8.33)

u (k) 15 to regulate the states and uD(k) is used to counteract
the effect of the disturbances. If uD(k) is chosen so that
(k) + Fez(kef) =0 (8.34)

v , : P
then the d1sFurbanee will have no effect on the or191na] process. ‘
(Since d(k) is presumed known, “and its time evo]ut10n is also known,
we are able to predfdt its value at time  k+f)., The fecessary
conditions needed to accompiish this, regard}ess of the value of ~//
d(k), are that, Johnson (1971) ’

-~ 3

rank (G|FC) = rank(G) . (8.35)

In other words, in order to colldpse Gu(k-f) ontouﬁggfk). g must o

)

-
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. are not unique as claimed by Johnson (1971},
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span the vector space in which the disturbance affects the process.
If there are as many disturbances as there are states, then there
must also be as many controls as there are states. For (8.35) to
hold, it is ﬁecessary, bg§ not always sufficient, tﬁét the numbér
of controls equal the number.ofigisturbances affecting thé

process. If (8.35) holds, the control is given by

u(k) = =Ly (k)x(K) = Ly(k)z(k+f) (8.36)

L](k) is designed to regulate the sfates %x(k), as if go-disturbances
were present. Techniques such as pole placement or lifear quad-
ratic strategies can be used to accompiiéh this. When G is of &
maximal rank (the‘rank equal to the number of controls), Lz(k) is
given b&

| Ly(k) = (6'we)~'a'WFC © (8.37)

where W is any nonsinqgular weighting matrix. The elements of Lz(k)

I

When (8.35) does not hold, Johnson (1971) sugé;;ts that
one minimize some norm éf Ggp(k-f) + Fd(k). If the Eucli.ian
norm is used, IIGEP(k-f) + Fd(k}||, the p@udoinverse of G minimizes
this quantity, and the control gP(k), when G is of maximal rank,
is_gjven by (8.37) with W=I. It is important to realize that ia
this case, we cannot remove the total effect of the distdrbgnge&“
on all the states, and special care must be taken in specif&gng
L1(k). This is discussed in mgfe de?éi] in sectign 8.5.

S —
i) .
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8.3.2 Elimination of the Disiurbance on the Qutputs
| In some instances, one is iﬁférested in e1imin§ting the
effect of the disturbances on the ﬁeasured outputs, whf1e at the
sahe time ensuring that the states are bounded for 911 bounded
disturbances. The solution is somewhat more complicated in this
case. There is a fundamental error in thnson's (1974b) paper.
A Tater paper, Johnson (1975), exganded on the topics presented
in the 1974b paper but did not entirely cifne§t the fault. The

correction will be shown.

-

From (8.31) and (8.32) we see that the effect of the

process disturbances on the ouputs call this xp(k), is given by

X k-1 |
k) = H _ZO AV (@D (k-1-F-3) + FCz(k-1-3)) (8.38)
J: . >

A

We recall that the null space of a matrix P is the set of vectors g

such that Pg=0. If we seek a time-invariant controller of the

»

form

W(k) = -L,z(ksf) (8.39)

&

then -GL2 + FC must 1ie in the null space of:HAj if'(8.38) is to
anish for all j, Johnson (1974), Wonhom (1974). A necessary and
sufficient condition for this to ‘occur is that, Johnson (1974),

Wonhom (1974) ‘ 7

Mgy -

rank(Y'(G|FC)) = rank (Y'G) - (3-405.
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P

where Y is given by
s Y o= (H'[ATHTAZH]. . LA™ L) (8.41)

When H is a square nxn noné?ngu1ar matrix condition (8.40} is
identical to (8.35). If condition (8.40) holds, a time-invariant
matrix which ensures that -Gly + FC remains in the null space of

HA is given, by Johnson (1974b) - . (™

Ly(k) = (Y'&)y Fe | Kif;fz)

To guarantee that the states are bounded for all bounded

where (Y'G)” denotes the pseudoinverse of {Y'G).

_disturﬁancesf LI(k) is designed so that A-GL&(k) has its eigenva]ues
inside the unit circle. Td’arbitrari]y assign these (A,G) must be } Y,
controllable, (' e
. . However, having now designed a controller to stabilize
the states, it may not be pbssible to eliminate the effect of the
disturbances on the process outputs eveﬁ'if gdndition (8.40)
holds. To see this, we note that the effect of the process - "}h-//L

- disturbances on the outputs is npw given by
o ‘ RN ' 7 . 5
* 5 kA 2O
: y (k) =H ] (A-GL, (J)) (- GL2 + FC)d(k I-J) (8.43)
j=0

Thg controller L, was de51gned S0 that ~GL, + FC was in the null ~

: space of HAJ for j=0,1,2,.... This does not ensure that -GL2
g? is in the null space of H(A-GLl(k)yjN To seEjéiﬁs, consider the

N
+ FC .
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following example, Let the state equation be

k+1) = [1 1 x(k ol u(k) + 1 « d(k) (8.44)
;(+) [0 ]] x(k) + []]u( ) + [1]

d{k+1) = d(k) + a{k+1) {8.45)

| yky = Vxk) (8.45)

It is,obvious that the effect of the disturbances on the output can

be ;Emoved with the control gp(k) = -d(k). As expected, condition

f

(8.40) holds. If we now design a time-invariant control’!?, L],‘
to place on botheigenvalues of A-GL, at .707, it is easy to _
verify that the disturbance d(k) propogates to the measured output
in spite of the action of gp(k). |

The obvious modification to Johnson'‘s (1974b) work, when
the state controller is time-invariant, {s fo design the
stabilizing coritroller for the states, and then examine whether
it is possible to remove tﬁe effect of the disturbances on the
process outputs by examining condition‘(8.40) With A-GL] replacing
A. This is somewhat unsatisfactory as it is not apparent under
what conditions a solution exiéts. |

To pursue this briefly, we: can posé the problem in the

,following manner. Suppose it is pb;;?Ble to find an L2 such that

‘H(-GLZ +FC) =0 (8.47)

is satisfied. Then what are the restrictions on the time invariant .

state controller L] such that . ' . \t>
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_done then

3 .

H(A-GL) (-6L,7+FC) = 0, §=1,2,. . .\ (8.48)

holids? We recall from Iinear algebra that if h; is a 14ft eigen-

vector of A-GL] and Ay the corresponding eigenvector th

BjA-Ly) = by

For (A-GL])J to be in the null space of H, L] must be chosén s

that the m rows of H are m eigenvectors of A-GL If this can be

].n'

-

H(A-GL )L, +FC) = mESL, + FC) (8.50)

»

This éxpressiop vapishes if we can fjnd'an L2 such that (8.47) holds.
A is an mxm diagonal matrix whose elements afe the eigenvaiues of.
A-GL, having the eigenvec%ofs H. If (A,G) is.contro]1able, the

n e%genva]ues of (A-GL{) can be arbitrarily assigned: It would be
‘unlikely though that using a linear quadratic strategy, they would
be chosen so that (8.50) holds. Rather than arbitréri]y specify

n eigenvalues of (A~GL1), (8.49) indicates that we may be able to

L]

arbitrarily specify m eigenvalues by choosing Ly such that
HGL, = HA - A H . (8.51)

The m prescribed eigenvalues of A-GL] are denoted by Am‘ Equation
(8.51)-1513 set of mn equations in nr unknowns (L,). For a solution

to exist, there cannot be more equations than unknowns. -A necessary

condition for a solution is that

;o 9
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(number of unknowns) r 2 m (outputs to be controllied) {8.52)

This result is not unexpected. As well, we require (8.47) to

vanish. A necessary and sufficient condition for this is that

‘l

rank (HG|HFC) = rank (HG) {8.53)

From this discussion, we can see that if we are to drive m ouputs
" to zero, it is not possible to insure the stability of all the
states un]esé_there are r=n controls.

‘ & For the example (8.44-8.46), it can be shown, using (8.47)

and (8.51), that the controllers uP{k) = -d(k) and uP(k) = -(0,1-3), __

Will eliminate the disturbance in the outputs fér all time, while
: ¥

~at the same time p]écing one eigenvalue of (A-GL1) at A». The second

eigenvalue is fixed at one, and cannot be altered if we are to
eliminate the disturbance in the outpuf for all time.
8.3.3 Alternate Approaches to. Disturbance Minimization
¢
Before concluding this section, we comment on two other
approaches. To control a discrete system subject to a step

disturbance in all the statesq Bradshaw and Porter (1978) took

the fo]}owing approach. Since\jit is 'known' that integral action

is required to eliminate the offfset, the sfructure of the controller

is o

u(k) = - Lyx(k) - Log(k) (8.54)

a(k+1) = g(F + y(k) ' (8.55)

«

.

-
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&

v

The controlier 9ains are chosen so that the controller

process -

“ x(k+1) A-6L, -GL2] x(k) [I] d(k)
= +
) [g(k+1) Ho- 4] q(k) 0 :

is asymptotically stable, . If this can be acéomplished,

plus

L

(8.55)

-

“and certain&

a]ternate rank conditions hold, then y(k) + g_asymptotica11y.

Necessary and sufficient conditions for the existence ¢

controller are given. It is also assumed that FC is of

f this

rank n.

Is this approach fundamenta]]y different from the more general

approach of Johnson? The keyword to note is that in th

the effect of the disj”::ance on y(k} is brought to zero

asymptotically. This’ me ns that (A-GL])j(-GL2‘+ FC) is

required to be in the null space of H for all j. From

-

is method,

no longer

(8.43),

we see instead, that (I;A+GL])]1I-GL2+FC) must 1ie in the nulj

' space of H. Given 3 state}contfo]ler L], 2 necessary ahd

v . et
sufficient condition for this is that : / E
i ~—

rank(H(I-A+GLi{BIG) = rank (H(I-A+6L,)"7 . (qprc
e ) |
When' FC is of ‘rank n, (8.57) becames

rank (H(f—A+GL])']G) s m

\ «-Since the bracketed: term in (8.58) s an mxr matrix, a
condition for (8.58) to hold is that the number of cont
, » //’ '
O) ' ( . \’/\-:

e
[}

) (8.57)

(8.58)

necessary

rols must

v
/

AN

s
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.

equal or exceed the number of variables to be asymptotdically driven
to zero. The ‘more general approach of Jgpniéﬁ_EﬁEBmpa’aQiffggzﬁf
specific method of Bradshaw and Porter (1978). For examp
(8.44-8.46), it is possible to arbitrarily assign the eigenvalues
of (AQGLT) and aéymptotjcally eliminate the effect of the
disturbance d(k) (if it does not grow in time). Although it is
possible to reimove the offset asymptotically, it is impossible, as
we have seen, to eliminate the offset in a short (one stage) time
frame-and st&]i arbitrarily assign the eigenvalue of A-GL].
Several'commentsxcan‘bé made on the appro;ch of Bradéhaw
and Porter (1978), nyv'stm and Smith (1970), Davison (1972). It

js assumed that all the states are measured.  If they are not,

then tﬁey must be reconstrucfed uéing an observer. To obtain

meaningful estimates of the states, the disturbances must be
included in the observer design. Once we obtain estimates of the

diéturbances, why not then use them directly in the controller. -

design? Furthermore, it is not obvious what the controller (55?\

structure should be for, as an example, an exponential rise to.-

a new level. The structure of the controller evolves in a straight

forward fashion dﬁce'a matﬁemati;a] model of the disturbance has:

-
L}

been-formulated.
Another technique Eroposed to guard against step’ !
disturbances, Johnson (1968), Tomizuka and Rosenthal {1979), is to

re-arrange the state model and express the control in terms of

Vka).i'One then ijiggns the\qegfzilifr to minimize an objective
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3

function of the form

-

;N
Jy = % Po(x'(k}Qx(k) + wu'(k-f-1)Rvu(k-f-1))  (8.59)
k=0 - .

his appﬁoach always assumes that there is a step disturbance
affecting the process, ang can lTead to poor performance when no

disturbance is present, Liou et al (1973).

8.3.4 Applications .to the Butane Hydroge;oljsis Reéctor
In Chapter 3, wall temperature effects were included in the

reactor model. The ¢i};jces (A,G,F) are fgported in Appendix 3.
Using {8.35), we find that it is impossible to totally eliminate’
the effect of a wa]l temperature disturbance on the temperatures

at the interior collocation points by manipuiating the flow rates
of butgne and hydroge;. Can the effect on the effluent
concentrations of a wall temperature disturbance be eliminated?

The concentrations at the reactor exit are expressed as

™

c(k) = Hpx(k) + Dpu(k-1) + Frd(k-1) (8.60)

The matrices of parameters (HI,DI,FI) arél?eported in Appendix 3.
Although (8.60) is not of the form examined thus far, conditions
for the removal of the effect of the disturbance a%e readily
obtained. A necessary condition to eliminate the effect of a wall
temperature disturbance on the‘éff1uent concentratioﬁs, for all
‘time, is that (8.53) hold with HG replaced by HG + D;, C=1 and

- B ‘ . - ' r,

- | ‘
\_’_’gxafaC:;,
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HF replaced by HF + FI' Examination of this rank condition shows
that it does not hold.

" The next step is to examine whether it is bossib]e to
remove the effect of a step disturbance asymptotically, using
time invariant feedback contro]]ers'i.1 and-Lz. Substituting the
control equation_(8.36) into the state'qqdation (8.31), with =0,

and (8.60}, we find that for a step disturbance at k=0,

Cle) = (A-GL))7x(0) + (H{-D/Ly)(I-A+GL;) " (-6L,*F)d(0)

+ (F=DL,)d(0) _ : - (8.81)

If L]'is‘designed to insure stability of the temperé¥ures along

the reactor, then Eae first term in (8.61) approaches zero
asympfotica11y. Let P = (HI - DIL])(I -A+ GL])'I. To asymptoti-
cally eiiminate the effecﬁ of the disturbance.on the effluent

concentrations, L, must satisfy (for ény value of d(0)),

(PG + D)L, = PF + F (8.62)

A necessary and sufficient conditfoh fér a solution to (8.62) is

that the
rank(PG.+ Dy |PF + F[) = rank(PG + D) (8%63)

In a previous study, Jufan et al {1977¢), a time invariant
~ feedback contr011er, LI’ was designed using an infinite time linear

quadratic technigue to regulate the eff]uent concentrations.

-
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Hﬁgjng‘now designed a state feedback controller to compensate for
impulse type disturbances (or equivaTent1y, initial value
departure§ of the state from an equi]ibrium'va1de), is it possible
to find an L, to asymptotically eliminate the offset in the.
effluent concentrations arising from a step disturbance in the

wall temperature? Using L, given in Appendix 3, we find that

064 - -022 .279

(PG+D,[F+PF) = |.106 -.035 .908
.019 -.008 1.191

The rank of this matrix is three. Thus (8.63) does not,holq and
it is impossible to eliminate (given the choice for Lj),.the
offset in all three effluent concentratiﬁns, It jé, howevér,
possible to totally eliminate the offset in two of\the species

- and minimize the offset in the third species by 'choosihg
JuPk) =\=(Pa+P )T (F +PF)d(K) (8.64)

-Since the matrices (A,G,F,HI,DI,FI) are obtained from a linearization,
~and d%stretization technique, it is doubtful that the rank '
conditions wou{d ever exactly hold.

This cbncludes a rather 1éngthy discussion on the design
of controllers to compensate for deterministic disturbances. As
we have seen, once, the disturbance has béen modelled, the gtructure

of the controller that will compensate to this type of upset is
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immediately specified. The important aspect in the design of these
< .
-controllers is, therefore, to adequately model the process .

"disturbances.

8.4 Design of the Feedback Gains Usigg'a Quadratic Criterion

The feedback gontroller gains L](k) and Lz(k) must be
specified. Johnson {1971) suggests that L1(k) be chosen to
regu]ate the undisturbed process and L (k) be chosen to satisfy
(8 34). ;E\Ts of interest to examine the specification of
these gains by minimizing a quadratic performance criterion.

The dynamic model of the process and disturbances (8.-29-

8.32) can be written more compactly as

x{k+1) A FCl | x(k) 6l u(k-f) + 69_‘(k+1)‘

aen)| o oo lzw| T Lo r
3
8.65
y { )
and
y(k) =

[H 0] [x(k) |
: "[g(k)  (8.66)

x*(k+1) = Axx(K) + G*u(k-f) + r*a(k#1) - © (8.67)

or

and

R
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)

(k) = Hexr(k) | (8.68)

We wish to find the sequence of controls {u(l), u(2). . .

-

u(N-1)} to minimize the objective function

: N-1 '
Jp = G QN (W) + - § (e (k)@ (k) x ()

=|—

+ u' (k-f-1)Ru(k-£-1))} (8.69)

We recogniie that the disturbances are uncontrollable states in our
process and a feedback controller can only try and 90mpenéate
. for their effects on the process. Thus Q*(k) should have the

. following structure

' (k) © -
Q*(k) = F ’ :] (8.70)
. 0 0 ‘

-

where Q(k) is an nxn positive semidefinite matrix. When d(k) is
“time invariant, we find that, by making use of the partitioned

structuré of GA*,EL,Q*), the solution which minimizes (8.69) is

given by
u(k) = Ly (Kx(k+F) = Ly(k)z(k+F) p (8.71)
with N - |
Ly (k) = (R+G'S11(k;i)G)"lG'ST](k+156 , (8.72)

‘\P

and ' : | L\\ |

S ]
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. o N
Lz(k) = (R+G S]]}$+I)G)

G'(SI](k+1)FC+S12(k+1)D) (8.73)

The nxn matrix 511(k+1) satisfies the matrix Riccati equation
517(K) = A'Sy (k+1(A-6L (k) + Q T N 75 B>

with starting‘value S(N) = Q(N).

This is the Riccati equation one would solve for the
process with no disturbances. After some manipulation, one finds
that the nxnd‘métrix S1z(k+1) satisfies the matrix difference

equation
S1o(k) = (A<GLy(K))' (S (k#1)FC + S;,(k+1)D) (8.75)

with starting value 512(N) = 0. As we can see, there is no need to
solve the complete matrig Riccati equation associated with the
augmented sysfem (8.67). | f

In most appliéatipns, one is interested in the steady
sfate so]d%ion for thé controller gains, that is, the limiting
so}ution of (8.69)“as N+, Some care must be taken to insure

that this limit exists. Solutions of the matrix Riccati equations

have been studieé, and Kwaakernak and Sivap (1972) summarize the

results. A sufficient condition)for Epe matrix Riccati equation

~

to converge to a unique positive definite value, Sf](w), is that

the'pair (ASG)_be controllable and |S(N}] > 0. When these

" conditions are satisfied, A-GL](mj has all its eigenvalues inside

the unit circle. The condition of controllability can be.re1axed'fo



is taken as H'Q**H, where Q** is a we1ght1ng ngF¥x\\é{ the

process outputs, then (A H) must be observable \in addﬁt1on to

the above requirements. Observability can be replaced’by
detectabi]ity it the unobservable states are stable. We will
assume that these conditions are’ sat1sf1ed

If S]](k+1) converges to a steady state value, then (8.75)
can be considered at some point in time to be a coAstan
coefficient.qifference equafion with non-zero initial con{itions.
If the modulus of the eigenva]ueé of D are less {ha\n one, 8.-?9)
will Qonvérge to unique value. If the eigenvalues 6f 'have
modu]us greater than or equal to one, . 12(k) may st111 converge,
a]though the solution must be exam1ned for the part1cu1ar choice
of D.

The cohvergence of S1z(k) does not insure that we

eliminate the effect of the distufbancés in the states (or proces

| ' ' N _
- outputs), ar insure that our objective function (8.69) is bounded. ///"
If we have used a time invariant feedback controller, the soluthor~—o""""'

to the state equations (8.E§g,when alk) is zero for all time ?s .

P
P

-

x(k) = (A-GLﬁLﬂWK_&Hﬁ'\ |
P .

y Pl . |
; o+ (=309 (8L, (=)+FC)DK-1-dz(0) (8.76)

;_ The first rm aﬁproaches zero asymptot1ca]1y, 1f<%;_\\

contro]]able IT D has its eigenvalues inside the ufit
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x{k) -0 as k gefs largk regardless of the choice for Lz(m). This
may aﬁbear to be an uninteresting example since the state l
regulator portion of the control gﬁ(k) will eventually return
the state to fhe origin without the help o% gp(k). The effect of
C}the latter component is to\?edgce the influence of the disturbance
ovér the tge_4interval in which it,affects the'process.
if the disturbance is nonstationary, the offset in the ‘
N staté;‘Eﬁq?ot be removed by using the infinite time objectiv;ﬂ\u
function (8.69) because the deviations of the manipulated variables
f{om fixedllev?ls are pené]ized. (One of the techniques pfoposed
e by béQison (1972) to compensate for éxternal disturbances involves
minimization df an objective function where u“RD\iE constrained.)
The offset can be removed when R=0, in which case it éaﬁ bg'shown

that ~

Ly(k) = (6'511(k+i)G)']G's]1(k+1)Fc (8.77)

,‘g?ihis é&uation is of the form (8.37) with N=S1](k+1). However, if

< the disturbances do not grow in time fStep djsturbances are

included in this class), the objective function) (8.69) will be
bounded for all R,*|R|.i-0, since we have divided by N.

For all nonstationary disturbances, u(k-f-1) in the
. . |
objective function (8.69) must be replaced by a function of the form

Ef(k-f-1)-='¢(2'])gﬁk-f-1)‘ ;' (8.78)

where ¢(z”]) is a matrix polynomial in the backward shift operator

"4
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,gf/f ;;;—;;::éiure of W(z 1) is 03{;:;23 by noting that if the -~

offset is to be e11m1nated,fthe variable wGu(k), where W is the

r/‘
generallzei inverse of F, must satisfy the same difference

equation as the disturbance d(k). ‘To use the linear quadraticr
criterion directly, the process mode];must be expressed in terms
of the manipulated variable u*(k). It fs not always straigh£
forward to express the model in the variable u*(k). Important

f} exceptions occur when the rank of F is n, when there is a single
ménipulated variable and disturbance, or when we wish to guard
against step &isturbances. If the diﬁturbance contains stationary
and nonstafionary components, only the qonstatidhggx,nomponen}s
musﬁ be included in the definition of u*(k). Theimanner in which
this is accomplished is pot obvious.

Penaliiing the geviatiansrfrom fixed Tevels (u'(k-f-1)Ru -
(k-f-1), or changes in the control aétion (vu'(k-f-1)Rvu(k-f-1)
may be meaningful. However, when we replace gf{k-f—])jok-f—l)
in (8.69} by an arbitraLy function of the manipulated variable,

*hjt‘iS'difficult to give $5physica1 interpretation to the-
objective function.

In this section, we have explored the use of a 1inear‘

- quadratic critér?on to specify the controller gains. If the
disturbances are nonstationary, the{r effect cannot be eliminated -
using an infinite time linear qﬁadratic criterion when a constraint

v s p1§ced on the magnitude of the actual level of the control.

What is the advantage of using an LQ strategy to specify L2? In

S
N

- *@ _

I
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instances where it is impossible to eliminate the effect of the
disturbances using an algebraic technique, i.e., the rank conditions

do not hold, we caﬁjuée an LQ strategy to minimize the effect of

the disturbances:j Although the discussion referred to state

control, similar~Comments épp]y to output control where one

-

rep]aces Q by H'Q**H, .

i

8.4 Reconstruction of the States and Disturbances by Obsefggég

The problem was ofiginally posed as one where the

,/} “disturbances were unmeasurable.réfbr determinigtic process, the
states and disturbances can be reconstructed using an observer,

Luenberger (1964). Observers for tﬁe augmented system (8.65) and

(8.66) can be constructed as, Johnson (1970a)
, : y
x*(k+1) = Axx*(K) + Gru(k-f) + K(x(kty_(k)) L (879
and 7 -

~N « o ylk)= W (k)T - (8.80)

" x*(k) denotes the estimate of our process\SfE disgerbance states.

The matrix K is chosen so that the system of equations

x*(kH1) - x*(kH1) = (AR+KH) (x*(K)-x*(k)) + r*a(k+1) (8.81)

are_asymptotica11y stable, and have desired transient behaviour.
To reconstruct tge states and disturbances, the pair

(A*,H*) must be completely observable: O'Reilly (1979) has fhown

<4
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that necessary and sufficient conditions for the pair (A*,Hf) to

be completely observable are: - /f/f\\

1. (A,H) be completely observable;
2. (C,D) be completely observable;

3. rank [A F ' . (8.82)
' . .= n+ng N g
H o 0

N

A necessary condition for (8.82) to hold is

atm 2 Ny i.e.,. the

number of outputs must equal or exceed the dj ensk\? of the
b

unmeasured disturbances. \\T
. Instead of using x(k) and w(k) 1

ei:)the controller, x(k) and
éﬂk);‘as determined by the observer are—sUbstituted. It is

straight forward, as Johnson (1970a) has shown, to %ro&é a

"‘_-.

certainty equivalence pr1nc1p1e for this system. This guarantee;\

that the poles of the closed loop system can be assigned arbil” -

' trarily using the estimated values instead of the true values of

the state and disturbance. ' - }r’/
It is'instructive to substitute the equation for the
observer into_the con§r01_equ;tion (8.36). We bbtain*dS
ulk) = - Lyx(k) - L;,:z;"(._k+f/k) T - 8
— o el /*p ‘ . - - e-\\‘

J_

s ) s

is theymatrix of elements from X that correspond to the

= LK), - Lof(0%z(0) + i DIy ()-3(5)))  (8.83)

where KD

4
-

- .
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disturbance observer. i(k+f) has been‘replaced by a forecast
£(k+f/k), and this has been taken as Dfi(k). Assume for the
moment that we wish‘to guard against a step, and that ;jO)=0.

~Then the control is given by

- . 0 k-]}’ R

u(k) = -Lyx(k) = LK™ 7' (¥(3)-y(3)) (8.84)
We recognize this as a multivariable proportional plus integral

tyhé controller.

. The key to designing a controller to guard against.a

&
particular form of disturbance is to model the disturbance
correctly and include it in the description of the process. =~
)

8.5 Thes Certainty Equivafgnce Property in Stochastic Control

In section 8.2, we saw that both stochastgc and deterministic
distu:E;ﬂées could be represented by equations (8.29) and (8.30).
The essent1a1 difference between the stochast1c and“deterministic

is repi‘tmi:j\\\\%ﬁh“_’

by a sequence of shocks a(k)} occurring at every contnol interval.

representations is that the 'occasional’ shock a(k),

The '"infrequent' impulises a(k) were comp1ete1y ignored, in both ‘\\

-y
the coc}ro]]er design and construction of the observer. \ The
ratioég] for this, is that if the impulses are far enough apart
in time then we can effectively reconstruct the states the \*'<i;"

process and compensdfé for the qjsturbance bafore the next

impulse arrives.
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. (i%here E{ } is the mathematical expectation, L(k) is the solution
’ 9
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For Tinear ‘processes subject to additive disturbances of ~

the form (8.29) and (8.30), controllers designed to minimize the
( -
~objective function }

)

N-1
3= ELes (N)Q* (N DX+ T (a0 (k)xr(k) + u' (k-f-1)Ru(k-f-1)1 -
N k=0 ) ’ ,‘/
| ; | (8.85)
are of the form @ o 3
/ , o
u(k) =S (k)x*(k/) . (8.86)

t0 the determ1n1st1c regu]ator problem (8.69), x*(k/r) is the
cond1t1ona] mean of the state vector and E(x*(k)/YT). Yt = (y(7),
y(=-1), . xjo)), is the data available for comput1ng the ~
Fontfo] action®at time K. Equat1on (8.86) is knowﬁ‘a; the certa1nty
equiva]énce theorem. This result is va11d regardless of the
d1str1but1on of the a(k)' S, ‘Root (1969). "' o /,;_\;
—~If tﬁ% disturbances, stochastic or determ1n1st1c can be
moddlled by the equations of the form (8.29) apd4(8.30), a 2,
cofitrolter designed using 1inearﬁguadratic techniques will . '
depend on the C qnd DAGatrjbes and not the I matrix. As we recall, .
if C and D are a staté represen;ation.of the diﬁturbance differeﬁce
equations (8.6) or (8.7), these matrices depend only an the auto-
rggrgséive terms. Thus the structure of a line;:iquadratic con- - ]

$
troller designed to guard against disturbances of the fogg“(&.?)- ' e

A
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will be 1dent1ca1 to that des1gned to guard against d1sturbances
modelled by (8.26), where there are no mov1ng average parameters.
As we sha]? see, the moving average parameters are required to"
compute the conditional mean x*(k/t). However, computation of

the conditional mean is usually_ only tractable when.the shocks ,

: ‘ - , : 4 :
are from a Gaussfan distribuqion. In this case, the equations

describing the time evolution of the conditional mean i?ﬁ :

common]y referred to as the Kalman f11ter equations. _ . (:T\

. a
' 8.6 Control of Processes SubJect to Both Determ1n1st1c and
Stochastic D1sturbances

o

L4

A§‘has'beeﬁ o&t]ined {n the previous settions, the tontrol
of processealsubject to only stochastic di§%u?5§ﬁ::s or to only
: determinist%c disturbances is ;traightforward and the two problems
are the duals of one another iau%hat their structfres and
so1ut1ons are identical. The sté;E estimatipn®roblem 1§1a1§’J
'stra1ghtforward for both of these cases. The Kalman Filter for. . A\,Ej

Luen L
the stochast1c case and the _Leunburger type observers for the

detérministic probTem are straightforward.goth in a theoretical

"and a\j?Hctical sense. The kgy to éli apﬁ?ﬁaches is'tb. A '; o

ingprporate.into the model of the sy§tem an adeqdaté mode]s' } S J’?"

describing the b&havjour of the disturbancess « | | '
It will soﬁn become apparent in thjs secfion.that the \JJ>" .

' éoluggonfof the state estimation problem for pF;;ésseg éupject to m(?l/ ' ‘

both stochastic and randomly occurring deterministic disturbances
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" is much more‘difficult from both a theoretical and practical
viewpoint: These. difficulties will be seen to resul}/%rom the

faﬁ%g!hat with both types of disturbances?'the system is no

.\
N

' %;nger Gaussian, nor is it unperturbed for sigﬁificant lengths of
A ' , -
time, conditions which eliminate the linear Kalman filter or the

deterministic observers as efficient methods for state estimation.

Example - '
Consider the following process
x(k+1)

<z{k+1)
y(k)

5x(k) + z{k) + w(k) .
2(6) +alk) o (8.87)
x(k) & v{k) - - (3-88)-—~'““'/f”fﬂ\\

&

1

w(k) and v(k) are from a normally distributed population, -each
with mean 0 and'variance 1.0, N(O,3&u z(k) has been {ncluded tﬁ
- - detect occasibnai s}ep disturbénces. We must specify the dis-
tribution of a( ) in order to deve]op a filter. One approéch, o .
o which fght gégé‘reasonab1e, is to\assumelthat‘a(k)-is normally
diségii;;ed, with mean 0 and variance proportiona]lto'the antici-
,:pate& wggnitude of the step disturbancg; To see how effective
this téchpique is, the process (8.87-8.88) was simulated twenty
times; for dné hundred time steps. To generate the process
. ?EEEEE)qthe distribution of J(k) was N(O,]). a{k) was zerd for
all time stéﬁg except at k=50 where «(50)=1. To gstimate the
N . states (x(k); z(ki), w(k) and a{k) were each assumed to be

»  distributéd as N(0,1). .
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The ability 0% the Kalman filter (Equations 3.14-3.18) to
reconstruct the states is shown in Figu?b 8.2. The step is
detected very quick]y.*~However, the estimate of this state is
very noisy. As the var{aﬁce of a(k) used in the filter decreases,
the estimate of z(k}, beﬁomes smoother at the expense of mucﬁ “
slower estimation of z(k) and poorér estimation of ;(k).
Reconstruction of the states for variance of ao(k) = .00] is.
shown inhFigure'8.3. One might seek a compromise by adjusting the
variance of a(k). ’ﬂ“

The specificatien of a{k) as having a normal distribution
is the cause of thése problems. For the approx1mat1on,
var {a(k)} = .001 most of the mass in the probab111ty density
function for ok} is concentrated about 0. Large excursions in
y(k) - ;(k), (the driving force for the Kalman Filter) do not
result in quick changes in the state ;stimate for z(k), due to
the 10w'probabi]jty that these departurgs'orjginate from a non-
zero value of a(k). Whereas this Teads to good estimates of
x{k) and ;(k), when no step has occurred (k < 50 in Figure 8.3),
it results in poor estimates whenla step occurs. When we approxi-
mate var {a(k)} =1.0, the mass of the probab111ty density funct1on
for a(k) is not as concentrated about 0 as before This, the
" estimates of z(k) and x(k) are more sens1t1ve to excurs10ns in
y(k) - y(k), and this explains why the Katman Filter quickly
detects the step change in z(k). The penalty paid is in poor

estimates for z(k), when a(k) 1s'zero,
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This example has been presented to i1lustrate some of the
Ez_k1em§ that cah be encountered in gtate estimation of procvesses
subject to both sto;hastic and detefministic disturbances. In'Xhe
next few sections, we will examine ;everal approaches that might be
used to obtain bgtté?"state estimafeﬁ% In the firsf;'é more
reasonable probability distribﬁtion for afk) is.proposed and this
is used to develop a nonlinear filtering aigorithm to estimate
the states. In the secbnd‘&pproach, the occﬁrrence of a
deterministic disturbance .is treated as a transition between
models generating thé process output. ~If we can detect‘a

transition, it is possible to switch to a different Kalman Filter.

This technique is known as ‘jump' or ‘'event' detection.
A S

8.6.2 A Distribution for a(k)

In the pq?yigﬁs section, we saw that the accuracy and
variance of the state estimates depended .on the assumed normal
distribytion of a(k) and its variance. .In this sectibn, we
éiémine'théfusé of a more reasonable distribution for «(k) and
odiline a techhiéue for estiﬁating states iﬁvthe_gyesence of
. Stochastic and deterministi df turbances.

Determingstic disturbances occur when there is a non-

L\EEEQ/VETGE’Bf a(k). If we suppose that these disturbances only

affect thj;process occasionally, then a{k) is zero most df the
time. However, there is a small probability that a(k) is non-

zero, and it is these occasional non-zero values. we wish to

=



|

¥{k) ?r{yﬂk), y(k-1),. . . y{0)}, is a parameter estimation

" x(k) and Y(k)>

246 .
3 . ' )
» \‘ _ ____\\
detect. The distribution for a(k) is highly concentrated about

-

zero, with long tails, Figure'8.4. ThisNdjstribution for"a(k) ~

" might be represented as P

p(a(K)) = BS(a(k)) + (1-B)ex(a(k),c5) (?/89\1 ‘

where S(t-a)'islthe delta function, which is zero é@erywhere ‘*\\
except at t = a. ¢*(§~b,02) is a shorthand notation for the \ o

probability density function of the normal distribution with mean

b, and variance cz.

Y

magnitude of an exRected step. Thekparameter B, 0 £B= ],‘is,the ’

In (8.89),,6% is proportional to the -

weight we assign to each distribution based on thecfelagive

frequency of the deterministic disturbances. -If we thoughf™that
- ] . ’ /e

a step entered one time in twenty, B would have the va}pé g5.

The double exponential distributipn might adequately

-

describe the distribution of a{k) since it also is very concenz at
about.ifs‘megn w%th long tail areas. - In eithgr!;ase, we no;é
that the distribution fqr ;ak) is highly no?énormal. '

_ \Llff;reconsxruction of the states x(k) from obServations, s

probTem. The ;tatiética] properties‘of these-estimates, i.e.,

expected values and vari;nces:'depend on the distribution of

" The conditional distribution p(ﬁﬂf)/Y(k)) contatns
all the infopmation about x(k) coming from the data set (k). |

A point estiate of x(k) can be obtained fromthis distribution
“* hd - .
. . ‘ B

|- ZR
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" pla(k))

.

~

a(k)“ .

-Figure 8.4: A Distribution for x(k)

v

S -

1. Mode of p(x(k)/Y(k))
2. Mean of p{(x(k)/Y(k))

3. Median of p(x(k)/Y(k))

1 :
T~




- x(k) = mode of p(x(k)/Y(k}). This maximizes
the probability that x(k) = x(k), and is
known as the most probabie estimate;

- i1) éﬁk) = me&h of p(x(k)/Y(k)). This minimizes 5
the mean square error E{(X{k)-x(k))'(x(k) - _ £

- X(k))}, and is known as the conditional .
mean; )

and 1 g //F\\\\H_,)

iii) £_= median of p{(x(k}/Y(k)). This minimizes
: the maximum |x(k] - X(k)|, and is known as
| o the mini - max estimate.

<

T When the process and measurement statistics are Gaussian,
these dstimates coincide. The Kalman Filter equations can be

derived from an algebraic argument (see Astrom (1970), without
L o i . . - X

having\ to exp]iciﬂizjgemputg p(x(k)/Y(K)), if w(k) and v(k) have

finite secdnafmoménts. The Kalman Filter is the best linear
. . . L4 N

; predictor for x(k), in the sense of minimizing the mean,square

error, Ast (1970). Even in the dase "where w(k) and v(k) 7
afe non-p;§::l - |

, we can justify the use of a Kalman Filter simply
as a measure of closeness pf fit. However, when w(k) and v(k)
-are not” Gaussian, there exist other esn%ﬁators which have a

t
smaller mean square prediction error, i.e., the cdﬁdition mean

/' ' . -
of the non-normal p{x{k)|Y(k)). Thus, there is an incentive't;\h\‘z:;§> ‘
. ‘ ~ _ 3 .

T
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L

seek other state estimators when the disturbances have highly f_/s

nen-Gaussian distribution.

The proposed density function for w(k) in (8.89) is not
a purely continuous or discrete.density function. It is, however,
a propér]y defined density function of the _.general type, Gnedenko
(1962). The moments of this distribution are defined in the usual

manner

-]

uy = f (a(k)plalk))dalk) (8.90)

-

~ To integrate. the-delta function, we must interpret the right hand

side of (8.90) as a Stiltjes integral, Gnedenko (1962), Neuts (1973).

When the integrand is a smooth function, a Stiltjes integral is

jdentisal to a Riemann integral, the 'usual' interpretation of

T . ) .
iptegration. Functions- or transformations of random variaples
- ! ] i
having such a general pdf are difficult to evaluate, and are most -

readily computed using the distribution function of the random

¥

variable. If it were possible toapproximate the delta function

for which transformations of variables are easily evaluated.
" ’ : M e——

The pdf of a normally distributed variable approaches the

delta function as the variance approaches zero. The distribution

shown in Figure 8.4 can be very closely approximated by

plalk) = Bov(a(k),ad) + (1-B)ex(alk),ad)  (8.91)™
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where u? is small relative to cg, but not zero. This distribution
for a(k) is known as a Gaussian sum, Sorenson and Alspach (1971),

or a mixture of Gaussians. Having described a distribution for

a(k), we can now try to evaluate the conditional distribution

p{x(k)/Y(k)).
-\‘,,/7 The conditional pdf of (§f(k)/Y(HT) can be derived -
. N . - '
from a Bayesian argument, Ho and Lee (1964). If at time Kk,
_,_/ Yy g ( )

Y p(x(k}/Y(k)) is known, p(51k+1)/Y(k+1)) is given by, Sorenson
"~~__and Alspach (1971) '

\ : R k+1)/Y(k k+1 k+1 :
& “p(x(k+1)/Y(k+1)) = platin)/Y np(,ﬂ /0] (8.92)
py{k+1)/Y(k))

where

et

- _. PO (kH1)/Y(K)) = [p(x(K)/Y(K))p(x(k+1)/x(K))dx(k)  (8.93)
The ﬁorma]izing constant p(x(kfl)/Y(k)) is given bj
PY(k+1I/Y(K)) = fp(x(kH1)/¥(K))p(ytk+13/x(k+1)dx(k+1)  (8.94)

The initial density p(x(0)/y(0)) is

p(¥(0)/x(0))p(x(0)) ‘

p(5(0)>/ (0)) = — — (8.95)
x. p(y_(O)) . &/’

ATl 1ntegrat1ons are n3fold over the doma1n\of x(k), or x(k+1).

p(x(k+1)/Y(k)) is the distribution kor:&(k+])g1ven only
1nformat1on to time k, and can be thougﬁ/ﬁhf as the apriori,
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or prior distribution for x(k+1). New information about:51k+1) is

provided bk the measurement y(k+1}. The posterior distribution
for x(k+1}, p(gjk+1)/Y(k+1)), is obtained by weighting the
prior distribution wiéh this new information via'the Tikelihood
%unction.p(xjk+1)/x(k+l)). |

| For nonlinear processes, or processes with non-Gaussian
process and measurement noise, it is difficult, if not impossible
to obtain a closed form so]utjoh to (8.92-8.94). However, these
density functions can be evaiuated explicitly for linear processes
subject to Gaussian sum disturbances, Sorenson and A1§pach~ngz1).
These authors used Gaussian sums to approximate'arbitrary‘density
functions such as rectangular distributions, as one meané of

‘eva1uat1ng (8.92-8.94) for. such non-normal disfributions. Although

they evaluated their equations for a sing], and one measure-
ment, evaluation of thése density functions for multfyivariate

processes is a straightforward, but tedious extensyon of_ their

work.
" Consider the process
4 et |
- x(k+1) ="Ax(k) +w(k) - (8.96)
and
. y(K) = Hx(K) + v(k) (8.97)

w(k) has the Gaussian.sum pdf
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p(u(k)) z B o+ (w(K).1, ~a.98) .

‘]ﬂ

where ¢(Z-u,}) is an abbreviation for theéka?’a?)an n-variate

normal random variable z, that is

™

AN
p*(z-u,i) = W exp.{-%{z-u)}'t ](_Z_-E))} (8.99)
. . - ‘ w-’/;s
The measurement noise v(k) has the pdf |
p(v(k)) = e*(v(k).t,) " (8.100)
The controls u{k) have been temporarily omitted from the state ¥ 4
description (8.96) without Toss of generality.,
Let us assume for the moment that at time k, p(gjk)/Y(ﬁb?
can be represented by the Gaussian sum
n{k) > . -
LI/ = ] 6y(K)en(x(kh-py()o45(k)) - (8101
-~ is |

wheré‘gi(k) js the weight assigned the ith normal distribution at

time k. These weights must sum to 1.0. The mean Hd(k) and ‘\\ ;“>
ti(k) are as yet unspeéffied. The g;acketed term (k) emphasizes

that these quantities may change withvtime. The ptior‘distribution'
for 5}k+1) is‘9$mpdfed from (8.93). Evaluating this exbression
we find tha@,p(i(k+1)/Y(k)) is also-a Gaussian sum With the

pdf 8
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plx(k+1)/Y(K)) = _% ; ¥ (k Bso*(x( k+1)-p

L Wi t j) *. (8.102)
where ) ™
L .
;4,j = Ay (k) (8.103)
N s
and Cou o ‘
\-//\l v - i
By g = Afy(RA" + g 5 - {8.104)
The pogsteriortdensity function p(x(k+1)}/Y(k+1)) Ji _computed from
_ (8:92) and (8.94). We find that it is also é“ﬁaﬁgiian'ﬁum'with
e pdf * g
. ™ \
“n(k) 2 - . | |
Plx(k+1)/Y(k+1)) = D) ej,5% ¥ (X(k+1) uq . f ) (8.105)
&N _ - \ 1=%r¢b=1
b TR " \\
with ir‘“-!; »
- Al A.\\\‘ .
/ T oa .

-
-

B TIN I I ii,jH'(Hti;jH'+tv)'](xIE:j)-Hﬁj’j)‘ "7 (8.106) _
@d | V‘é . - - .;a'-
IR TI IR b VAN B (8.107)

'Thé weighting coefficient éi j is determined f}om

¥
R
N——
\’/\
/
E
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with Ei,j def1ned\95 . \ ‘ .
. - ‘( r
\
[ s . . e
. L i,
9,5 Ei(k)aj 3 | 3 . . ’
-+ exp(-{{y (k1 )-Hy, x +E; SHO (k1) - Hyg () (8.109)
.. . . /_\ ) ) . . . |
The conditional mean, gjk+1)/k+]) is given by e ™
. o : ,
p mk) 2 . . :
x(k+1/k+1) = % Loes sl 3 _ (8.110)
=1 g DI

In sp1te of Eheapparentcomp]ex1ty of these equat1ons, the
cond1t1ona1 mean, (8.110) has a nice interpretation. It is the
we1ghted sum of a grow1ng number of individual estImEfi?afor
the conditional mean of each term in 'the Gaussian sum. Each of.

these individual estimates evolves in the same fashion as the

"Kalman filter estiméte, Equations (3;14-3.38). The weight

attached to each estimate, (8.108) and (8.109) depends on the
data. The %fponentia1 in-(8.109) is prbportiona] to the Tikelihood

that the (k+1)st observation;'xﬁk+1)‘is generated from a state f"w\\;";/ﬁ/”

space model with mean x(k+l) = Hu cand covariance t + Ht

-

Due. to’ the growing number of terms, it is 1mposs1b1e to

' \ }
use this appr#ach directly. Sorenson and Alspach (1971) have . . (

. »
proposed that the conditional density function p(x({(k+1)/Y(k+1)), i

(8.105), be apprdximated by a Gaussian sum involving fewer terms.
. - . . ‘ . -

T \‘\ .} ' ‘ ‘ ._ ) . ‘..-‘..‘._-_ \\:"__D.
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1

The barameters of this approximate distribution arerobtained by

minimizing some méasure_qf closeness between the two distributions.
For multivariate diétributions these techniques involve adjusting
for too many parameters*to be of practical use unless most of

the paraheters describing the approximated distribution are

. preselected.

A simple technique would be to approximate the poster10r
by a single, norma] distribution of each stage. The posterior at

the next time step would be described as a sum of two Gaussians.

“This a?;;? would be appr0x1mated by a s1ng1e Gaussian whose

rmean anicovariance would be the weighted average of the individual

meansfaﬁd covarjances. The state estimate would then evolve

from a set of equations whose mathematical structure was identical

to the Kalman filter equations. The difference s that the Kalman

gain K(k) would now be a function of the data. This approacﬁ

was tried and the results were very disappointing. Exsellent

state estimates were obtained when there was no, step. When a

step occurred, the behaviour of the state estimates was very

similar to that shown in Figufe 8.3. It waq felt that this poor
performance was due to approximating the posterior by a single
normal distributipn. '

, 5]
As a last remark in\this section, we note'that had we -
e,

retained the orug1nd1 descr1pt1on for the d1str1but1on of ,~4r,—\\~1

p(a(k)) in (8.89), we w}:ld have found‘tha% the poster1or T

o . .
"'/\;__._u.\ — ‘3‘_’? . 7 x
“% ’& " a ‘ -
- A o JPURERS
8 A &

. |
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distribution was also described by a Gaussian sum. Thus, the
approximation of (8.89) by (8.91) does not change the essential

featuresﬁsf the time evolution of the posterior distribution.

8.6.3 Robust Estimation of the Conditional Mean
Masreliez (1975), and Masreliez and Martin (1977) con-

siderered 'robustifing the Kalman filterd. Their intentions
were to improve estimation of the process states, when E(k), was
more heavily tailed than the normal distribution. In this way,
they hoped to obtain better State estimates‘when the .process was
subjegct to occasional step or impq]se disturbances. Tﬁe process
d1stﬁrbance was modelled as a Gaﬁssian sum. A stochastic
approximation algorithm involving a nonlinear gain was usgd to
estimate the states. The nonlinear gaiﬁ was determined from™the .
influence function; which plays a role in robust estimation
theory. Unfortunately, the algorithm requires that H'RyH be
qf full rank and this is not the case when the disturbances
affecting the process are not ﬁeasured. If, however, a measured

state is subject to an occasional step change {and (H' RyH')™ -1

ex1sts), their a]gorTEpm provides an alternative means oﬁ-_~h///f.
estimating th€ €tates. ~—_

8.6.4 An "Event" Détection Apptroach _ '-/)
Ina prev1ous sect1on, the pdf of the a(k)'s was —

5

modelled as 'the sum of two normals. _A]ternqt1ve1y, the occurence
of a deterministic disturbance could be* ought of aa charge

; . could b€ 1p
N <
~ _

Lo

‘. _
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_'be expeéted in’the process.
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in the probability density function of the process disturbance.

L)

From an analysis of the observations, one woﬁlq_pppe to quickly
detect this transition, and then switch to ah estimation algorithm

more appropriate for the new environment. When no deterministic

disturbances are present, a(k) is presumed to be distributed as

N(gjto). The covariance matrix to is 'small' enough, that the
pdf of é(k) is nearly a delta function. When a deterministic

disturbance occurs, the distribution of a(k) is assumed to

- change. The direction o% the disturbance is usqa]ly'not known in

H .
advance. A reasonable assumption, therefore, is that «(k) is

normally distributed with mean zero and covariance‘$]. The
covariance matrix t] is now ‘large’ enough so as to admit the
possibility of non-zero a(k)'s of a magnitude that might reasonably
Ackerson and Fu (1970) have investigated state estimation

in switching envivonments. The transition‘betgéen Gaussian

. noise models is assumed to be a Markov jump ‘process.. To each®

"noise model a probability is assigned, based on one's.degfee of

belief in its occurren;i;lzlhe conditional mean of the state is
. ~ [ ::\ -

[t
the
\

computed, realizing that océss output could have been

generated from a number of modg]s. The result is that the\\
conditional mean is the w ightedcghm 6f an expanding number of
Kalman Filters. -The recursion equations are almost identical

- n
to those developed in section 8.6.2. However, the motivation

for the'two~aQProaches'{s much difijrent. The growing number of

-
terms precludes practical implementdtion. |
: » : e

D
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A different approach was taken by Nil]fsky and Jones
{(1976). Rather thanefiode

the occurrenceyof a large non- -

zero value of a(k) as a~change in its distribution, the prggess

ig-motlelled as

x(k) + S(a, k+1)y + w(k) S {8.1M)

- /

and
LY

y(k) = Hx(k) + v(K) (8.112)

S(a,k+1} is an impulse which is non-zero for all time except k=8,
when it has the va]ue.T. y is the magnitude of the Jump. K 1F§e~

lihood ratio is formulated to detect jthe occurrence of an impuise,
‘when one has been défiﬁtgd, the states are estimated by'mo&%fying
the original Kalman Filter equations.

[ How does one distinguish between ag\ﬁﬁbulse and the shocks
w(k) occurring at every time stepz: TheXaporoach §ssumes that -.
y{k) is much larger than the variance'of the proéegs ndise.

Willisky and Jones {1976) claim that their method 153Au\/abT”J("‘

for cases wheE§ the magnitude of y(k) is only ten times the _

average variance of the process noise. -Their method was deve]gped

—

.Eror_aerospéCe applications, where large impulses represent a

-

dramatic shift iﬁﬁalti;ude of an aircraft or satellite. In the

_ reactor, large changes'in the major load variables such as the .

0i1 temperatyre would not be this Ia;ge and could also result in

jgnificant changes in“the matrices (A,G), since we have a -

lineariZed state modei. .

) X
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In this sectioe, a number of different approaches for
esfimation of randomly occurring eeterministic disturbances have
been examined. The theoretical solutions preclude practical
implementation. To use a filter to reconstruct the states
when %here ere both stochastic end deterministic disturbances
present, it is.necessary to epecify a.distrjbutfan for the

;deterministic disturbances. ‘The only tractable apﬁloach is to
mode]l thesefas from a multivariate norm;%“W1th mean zero and -\\\7~
covariance tO In this case the states can be estimated using

) the KaIman/F lter equations (3.74-3.18). ‘he covamamﬁ matr1x

, would hév to be chosen so as to represent a compromise between

\

the speed of detection of the/determ1n1st1c disturbance, and the
Se——— .
degradation in state estimation that occurs when no deterministic

+- disturbances are -present. - ==
L

8.7 Summary’

In this chapterz the modelling and control of processes
:subjecf to randomly occurring deterministic disturbances have been
examined. As observed, stochastic disturbances can be modelled
as detefministi%bdﬁsturbances'with adaptive coefficients. The
duality between the‘control of detérministic and st&Ehastic

disturbances was outTined An

f soﬁut1ons to detec;&en of-

determ1n1st1c changes in the presence of tochast1c d1sturbances
- * X,
were also stud1ed. . (/~\ e
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An important conclusion from this chapter, is that if one

wants to design a controller to compensate for a particular process

disturbance, the mathematical description of this di'sturbance,
stochastic or deterministic, must be ing]ﬁded»in the process

description. If this is done, the estimation and control of the

process is readily accomplished in the framework of existing theory.

However, when both types of disturbances are present, the state

estimation prob]eﬁ is more difficult from both-a practical and

\

theoretical viewpoint.

—y



CHAPTER 9
CONCLUSIONS

The focus in this thesis has been on the use of time -
series modelling and stochastic control as a means of analyzing,
and designing control systems for a éomp]ex hulqjvariate p?ocesé.
Specific topics were studied and these are briefly suTmafized.

The concept of inaependence of reaction was studied in
Chapter 2. An‘attempt was made to distinguish between |
stochiometric and kinetic independence of reaction. An expressfon
was developed to explain the reaction stoichiometry iﬁ a tubular 7
reactor;' Dependiﬁg on the choice of the, reactor model, the - |
nuﬁbef df;species included in the materiafxga1ance for the
' :~pfocess may be reduced by the use of this result. The use df
reactor invariants in stabi]ity'aﬁa1ysis of tubular reactors is
an area for which future investigatioﬁ‘is required. Previous
difficulties encountered in coﬁtro11ing a piiot sca]g tubular
reacfhr can be attributed, in part, to the extreme sensitivity of
the températurg profile to perturbations in the reactant flow-

rates. This sensitivity emphasizes the need for powerful

control strategies to regulate this process. >
The material and energy balances descriping the dynamics
of a tpbular‘reactor-are.a set of coupled nonlinear partial

differential equations. The manner in which fhése equations are

261
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l—" . N .
put in a form suitable for control purposes was reviewed in

. Chapter 3. The control theory used in subsequent chapters was

L

also reviewed. .

On processes subject to stochastic disturbances,'the.

Jocation and number of measurement sensors influences the degree

of control that can be exerted.over the variables of 1hterESt.

The optimal location of sensors was studied in Chapter 4. The

theory for locating sensors in some optimal fashion close]y

paral]e]s the design of experiments in the stat1st1ca1 11terature

An app11cat1on of this theory to locate thermocoup]es in a . !

eked bed tubular redctor indicated that good state\E§%1metion g

zné control could be obtained with one or two strategica11y

1ocatea thermocoup]es. An essential requirement to use this

theory is that a theoret1ca1'model of the process dynam1cs and
',d1sturbances be available.

: When such a model caﬁnot be obtained from mechanistic

arguments, an empirical model can be estimated from input/outppt
;ﬁdata coIiected from a designed experiment. For multivariate
processes, a cahbnieaI structure f:;/ﬁfe dyﬁEmic/stochastit . ;
mode] must Be specified. Although not a parsimonious -
reP}esentation, a joint auto?regressive structhre fe; the input
and outpﬁt variaB]es is a quick means of obtaining a dynamic/
stochasticlmode1 of the processs Due to the large nuriber ofs ~

L
parameters that must be 1dent1f1ed whep an emp1r1cal model 1is

.ot

fit to data, relat1onsh1ps among the variables may be obscured \;//)
’ L
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The use of principal componéht analysis and canoni§a1 variate
analysis to time series were shown to be powerful methods'for
analyzingacomplex 1inear(j;ed) dynamic systéms. Aﬁp]icétiqn of
: tﬁése techniques to experimental data reveaied.fhat«the
0ariabi1it} ih the reactor temperature profile (as reconstructeq
from seven in ependently measured axial temperatures) could be

attributed to tyo orthogonal linear combinations of the axial

Pemperatures. Although these two linear combina;;ons lacked
Ehysic meaning, it was demonstrated that the hot spot 7
tgnp ature and average teﬁperature in the reactor were
vériab]es thgt had predictabie varfatioh. Some preliminary
analysis on the matching of inputs and output variables for
‘stochastig procgsses was p#oposed. A number of pdtentia]
probjems with‘thi%‘techniqué were nofed. Further analysis into
the feasibility of this method is required.

Tﬁe frequency response of some univariate stochastic
cpntrol1ers was examined in Chapter 6.~ For proceﬁses with
transport delay, ﬁhe frequency characteristics of these
regulators are primarily dictated by thé étructure of thg
disturbances affecting the processes. The manner in which =

" stochastic controllers compensate for process feadtime was

compared to aWnore traditional technique\tgi‘d adtime compensation.

~ : ‘ .
confroller for a particuﬂiﬁ choice of disturbanc
| 4

vy : -

The Smith regulator was seen to correspond to :fthastib

odel.
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. The application of self-tuning regu]afors to control a ‘
pilot scale tubular reactor was investigated in CHapter 7. ?he
self-tuning regulator gave good 'control over the hot spot
temperature. A]though it is usha11y desired to control the
?ffluent condéntrations,/;his requires an infé:;ntiaI estimator,
usually obtained from & complex mode] of the process. The -
applicability of se f-:Ln1ng regu]ators as a means for reactor
coné:; must be recohciled aga1n§t the d1ff1cu1t1es 1nvo1v%g in
obta1n1ng such a mode]

Aside from the question of appllcability of using se]f—
tun1ng regu]ators for reactor control, these were shown to give
good control of a process which has proven diff1cu1t to contro]
by conventional means. The se]ﬁ-tun1ng algor1thm was robust to
the assumptions in its development. The controller readily '
retuned 1tse1f when changes were made in the operating conditions,
_or when changes in the process occurred due to catalys§§de6a¥.
Seif—tuning regulators are most applicable to multiple input[
single output process. Although the theory for multivariate . ‘5 t
processes is not difficult to derive, complications arféé‘from* .
the large number of parameters that need to Sé.estimated! and_;“ -
this precludés‘mpsf'multivariate applications. ,
" The duality between the control of detgfmiq;stic and

'apter 8. It was shown

stochastic processes was explored in

that stochastic dffference equatidhs:ar cdpable of?hode]]ing

/ - .
random distu ces, and randomly occurring deterministic

-, - -.,\.,-



disturbances. As a consequence, linear quadratic~controllers

designed to gd against a particular class of stochastic

. 4oy 0 .
disturbances, have the same structure as controllers designed

to guard agai st an ‘equivalent class' of determinjstic.
disturbanctes. A number of practical and theoret15§1 problems
‘encountered in controlling processes subject to Eoth types of
disturbances were observed. Proposed noniinear filtering
. solutiofis to alleviate these difficulties were too complex to
be of practical use. |
The nature of the process d1sturbances play a large role
in the perfonnancexof a contro] system Modelling of a process
* is never comp1/¥eJWhen a dynam1c model is only available. It is
important th;t the disturbances be.modelled and included+in the
, descrippion of the process. When a dynami§ model of the process 7
“cannot be obtained from.fundamental arguments, a'modgl can still
be obtaihgd by fitting_?hpht/éutégk data to an empirical mpde]..
. Although thi§'qué1 m;y not give the insight and&ynderﬁtandiﬁgf'_A
into the operation of the pro&esg it still provides a route to
iis. designing a controi1ér. The use of émpirica] models in
8 « conjunctions with multivariate statistical'iechniqyes, such. as
\Pringipa]-componentsland caannical variates éna]ysiﬁ Bf time
series allows one dyhxhe)strucuture of the process. In
é@f%nsiances wheré the design of a controlldk is only of interest,
adaptijve controllers afe—a convenient means of proceeding toiXhls

stage direct1y.

P
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" APPENDIX 1

RATE EXPRESSIONS FOR THE HYDROGENOLYSIS OF N-BUTANE

1

Al.1 Reaction Scheme

The fo11ow1ng reactions have been proposed (Orlickas (1970,

1972)% §h!';.' (1972, 1974)) to represént

niﬁutane{q
. F'L

C4H10 + H2 —_— Q3H8 + CH4 ‘

: 1-F °

LJ

=

the hydrogenolysis of

Al1.2 Reaction Rates of the3Beact10n Species

Net rate of disappearance of butane

where . ' e
.4 - S
A=k exp(-AEB/RT) -

-»

- . Net rate of appeé;énce of propane

{ o | 278

(A1.1)

(A1.2)

(A1.3)

(A].ﬁ)

(A1.5)

- (A1.6)
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it
F - R - k/ - ph
. ) kO C3H8 sz
Re Hy = :
38 1+ C.
where ,
' ‘ . \
C = kP2 :.exp(-AEPZ/RT)
N - @ v
Net’ rate of appearance of ethare
nt
(2 F) - -Rey - Kkfky oD - PT L
. i} C4H10 C3H8 0 - GHg” TH
CoMlg 14 6
where
D= kE] . exp(ﬁ@EE1/RT)
A"} J '
Net rate of-appearance of metﬂsne -~
Y .

=4 . R

., -3-R
s - Gty

2

~ Rey

Net*rate of- disappearance .of hydrogen

RH =3 - R -2-+R

2 CqHyg

A

»

. - .R'
Cafg CoHg

. - R.
CaHg — "CoHg

(A1

(A1.

(A1.

(A1

(A1.

.7i

.10)

1)

.12)

.13)

14)
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v

where

5 .
n

Foo. = fraction of butane which reacts to propane
\r\-‘l ' p p

k/tO ~‘=Leata1yst‘act1vity (diﬁensﬁon]essl _

kB ) - frequency factor for butane {moles- -sec -1 pm -
cata]yst (m ') | v

AﬁB ' = act1vat1on energy, for rate of butane cracklng

(ca] gm mole 1)

o

exponent on butane partial pressure P
n' s exponent on hydrogen partial pressure in the.
butane rate express1on :
b o “
L = partial'pressure of butane (atm).
Py Y = partial pressure of h&drogen (atm)
2 . :
| Kpq = pre-exponential factor in propane rate .
‘ . -] (m“+n")
expression (moles-sec™ -gm Cata1yst -atm~
sz' ‘= pre-exponential factor in propane rate expression

(dimension]ess)
AEPI;AEPZ = act1vat1on energies 1in propane rate express1on.
{cal-gm mo]e ])

"exponent‘on.propane partia]_pres§ure

2.
1]

n". = exponent on hydrogen partial pressure in the
A -propane rate expression
Pe g. = partial pressure of propane (atm)
38 ' . :

it
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kE1 - = pre-exponential factor in ethane.rate
expression (MOles-seg'1—gm cata1yst-]-afm(m"‘+n"l))
k = pre-exponential factor in ethane rate expression
(dimensiqpless)
(ﬂ AEEl’ﬁEEZ ‘= activation energijes in ethane rate expression
' (cal-gm mole™) ™ .
.m"' ' =(éxpopent on ethane partial pfessure
n"! = exponent on hydrogen partial- pressure in the
ethane rate expression ﬂ. .
:\k\ifész ' = partial pressyre of ethane {atm)
Ri = rate of disappearance or eppearance of component
i {gm mo]es-sec']-gm caFa]yst']) |
. - T ‘ = reattiﬁg temperature (%K) :
R = universal gas law constant (cal-gm mole™) -
OKJ])
_ Y
" Al.3 Values of Kinetic Parameters Shaw (1974) \“x\\\

(a) Butane rate

S o ae1 o/

aEy = 5.1 x 10* n' = - 2.34 (or -2.15)

{(b) Propane rate expression
\\: '
_110.6

k =3.0x 10

»
m
O
o
]

P1

L
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L1212 .
koo = 10 m" = 1.0
AEP1 = 4.0 x 10% n" = -2.15 (or -2.08)
(c) Ethane rate expression
- 104.52 _ 4
kep = 10 | 3gp = 1,6 x 10
_ ..6.81 o .
kEz_.lO ITI *].0
aE.. = 2.6 x 10% At o= 2.2
g1 = ¢ 2.

L)

Al.4 Heats of Reaction (Units cal/gmole) Jutan (1976)

-

- Reaction 1: ahy = -12,560

n

5.0 (T-298)

L

" Reaction 2: shy = -10,322 - 6.3 .(T-298)

Reaction 3:  sh, = -13,305 - 3.28 (T-298)

Reaction 4: Ah4 = -15,54?2

—
’

2.52 (T-298)"
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APPENDIX 2
REACTION STOICHIOMETRY IN TUBULAR REACTORS

A2.1 Intreduction : o

In this Appen&ix an expressioq for the reaction stoichio-
metry in tubular reactors with no axial dispersion, and with
axial dispersion are derived. The basié assumptions in each
mode] are that the velocity profile is constant, there is\ ~
negligible pressuée drop across the reactor and the radial and

axial diffusivities are identical for all components,

A2.2 Tubular Reactor with no Axial Dispersion

The mass balance in a tubular reactor, with radial

gradients, is S
3C o Der 3 ac  egS'E
—=-v. . —+ L —{r=)+ (A2.7)
ot .3z  eR*r- ar ar E
The boundary conditions are:
r =0 aC
&= =0 (symmetry) - _ (A2.2)
S ’
Tret:oag _
= = 0 | (A2.3)
z =0: C = C(t,r,0) _ (A2.4)
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t=0: C-=¢(0,r,z) I (A2.5)

s

Multiplyng (A2.1) by the element by species matiix E,'and‘?ﬁing- '

the fact that -

-

et = 0 (A2.6)
we obtain
3EC 3EC D, 3 3EC :
“— = Ve——t—— . —(r__) (AR2.7)
at 3z R%er 3r ar

Yy

. , 4 :
The boundary conditions are obtained by multipiying (AZ.é&?\FZ.S)

by E. 'Let us define a variable EC* = EC(0,r,z) which satisfies

the differential equation (A2.7), and the associated boundary
conditions (A2.2).and (A2.3). There are several possibilities

for C*, but selection of a particular choice will be deferred for

the moment. Define

W= EC - EC* i (A2.8)
E_sétisfies the differential eqhation
®

BN |
The apprdﬁriate boundary conditions are ‘ ' .

LS
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awW .

r=0: - =0 (symmetry) (A2.10)
ar : :
W -

r=171 __ = g (AZ.]])
ar .

z2=0: W = w(t,r,0) | (A2.12)

/ t=0: w =0 _ (A2.13)

Equation (A2.9) is a set of linear partial differential equations.
Since the equations are uncoupled, we need only consider the
solution of the partial differential equation

oW W Dyp L

— = eV — + 5 .____(r——) ' (A2.14)
at - Az Rr ar ar )

Taking the time domain Laplace transform of (A2.14), and
using the initial condition (A2€13)', we obtain

aw(r,z) Doy 3 aw(r,z)
sw(r,z) = -V, - + o —; (r “—;r_”) (A2.15)

The time domain Laplace transform of w(t,r,z) has been denoted by-
ﬁ(r',z). We now contemplate a separation of variables solution to -

(A2.15). Let ° .,

wig,r) = f(z)9(r) - (A2.16)

<7
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-

Substituting this into (A2.15) and separating, variables we

obtain

D 2
- sa(r) - (—- — (rg'(r)))
fi(z) R2 r ar "
-V _ = = = -2 (A2.17)
¢ f(z) -

where A is the separation constant. Following the usual method

for separation of'variab1es, Jenson and Jeffreys (1963), we

obtain
g (r) + 18 (r) - R% (s+A)3(r) = 0 . (A2.18) .
r D, . o
| —
and ,‘ _ . T N
v.F'(2) - AF(z) = 0 ' (A2.19)

Equation (A2.18) is complex Bessel equation of order zero, and

has the so]ution, Jenson and Jeffré}ﬁ (1963),

g(r) = AJO(er/(s+A)RZe/Der) + BYo(er/(5+l)R2€/Der) (A2.20)

J, 1s’a Bessel of the first kind of order zé}o, and Y, is the
'second 301ution'. A and B are constants of integration. -The

solution of g(r) must be bounded at r =-0. Since YO(O

JO(O) =1, B must be equal to zero. The Laplace transform of t

boundary conditions. (A2.10) and (A2.171) require that

\
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»

¥(i)§'(r) =0, r=0, r=1 - (A2.21)

U

Suppose ?(z) does not vanish at r = Q, or r = 1. Substituting
for the derivative of a zero order Bessel function (A2.21)

implies that

A (s+0R2e/Dgr - 31 (inf(s PR Der) = 0 (A2.22)
L .

The solutions to this equation are the zeroes of Jys denétedfby
Bi’ 1i=1,2, ... and s = -3. _For epch of the zeroes By, there
is a corresponding value of \s xj. For™pach value of A and 2

A =5, (A2.19) has the solution

Flz) = ¢qe?M/Ve : - (A2.23)

where cj is a constant of integration. If c; # 0, our assumptjon
that f(z) is not zero is valid. The total solution to (A2.15) is

-
given by a superpostion of individual solutions, that is

w(r,z) = aoez§/Vc + 7 aieki;/vc Jo(B1) (A2.24)
- =1 -
4

The aj, i =0, 1, . . . are combinations of the integration
constants ffqm (A2.23) and (A2.20). The solution (A2.24) must hold
for all values of (r,z}, and so it certafn1y holds for z = 0.

-

Letting z = 0 in (A2.24) we obtain



~

s 1 .
» : " \ '
_ = . t:::;p TN
wir,o) = aé + .§1aido(81) . (AZ-ZS)\f;>
i= -

' | . >
Using the integral properties of thé Bessel function, it is

straightforward to verify that

1 - .
3g =2 f ﬁ(r,o)rq; ‘ o (A2.26)
0 i : . -
and
1) , '\1
2 [ w r,0)Jy(Bs)rdr ‘
aj = O ——i=1,2,... (A2.27)
. JO(Bj)

£,
We can never hope to evaluate the a;'s for an arbitrary w(r;o),
as we would then need to kn?w the complete set of zeroes for
JI’ of which theré are an infinite number. Suppose though that
w(r,0) is not a fﬁnction of r, that is -

//

aw(r,o)

= 0 S , (A2.28)
ar

- The aj's are then given by

ag = W(r,o) -(A2.29)

d . ’
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a; =0, i=1,2,... __{A2.30)

Using {A2.29) and (A2.30), and taking the inverse Laplaﬁe transform
of (A2.24) we have | |

baed

w(t,r,z) = w(t-z/ve, r,0) (A2.31)

W was an arbitray element of the vegﬁ;;\

. . L
w = E(C(t,r,z) - C*(t,r,z)).

Thus . - \) )

E(C(t,r,2) = C*(0,r,2)) = E(C(t-2/vgur0) - C*(0,r0))  (A2.32)

'Qf(o,r,z) is_the concentration of the components in the reactor
initially and C*(0,r,0) is the concentration of the components

initially_at the reactor entfance. The restrictions on

EC*(0,f,z) are %hat it sati(fy the_different1a1 equation (A2.2)
and the associated boundary conditions. If Cc*{0,r,z) is taken
as the steady state so]ution'qf the mass balance (A2.1), it
certainly satisfies the partial differential equation (A2.7).
Initially, the reactor may be filled with feed mixture. If the

initial feed is such that
3EC*(0,r,0)

S

then Qf(O,r;O) satisfies the differential equation (A2.7).

=0 | (A2.33)
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As well, we require, from the restriction (A2.28)
that '

3E(C*(z,r,0) - C¥(0,r,0)) = O ' (A2.34)

ar

’

Both'theée conditions are satisfied if the feed is distributed
uniformly across the entrance of the reactor. This would be the
case in most reactor installations.

To summarize these results, we.find that:

Theorem-1: The reactiom stoichiometry is given‘byl(A2.32)

wheré C*{0,r,z) is chosen as i) the steady state %olution to the
mass balance (A2.1), or ii) the concentration of reactants in the
feed at t = O.. In both cases, the feed must be suéh that at

z =0, (A2.34) holds. Furthermore, if the reference value
Qfgo,r,z) is chosen as the concentrations of reactants at t = 0, l

(A2.33) must also hold.
. . '

Corollary 1: i\fufficient condition for (A2.33) and (A2.34) to
hold is that the feed be distributed uniformly across the

entrance.

Coroliary 2: The results do not depend on the dispersion
coefficient Dgy. This arises from the assumption of a uniform
velocitxéprofi]e. Conseqqéntly, the main Fesu1t also holds for

-
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L
adiabatic and isothermal "tubular reactors with constant velocity

- profiles. It does not apply to reactors with axial dispersion.

&
Corgllary 3: To determine the st:?gy"gféte solution, gf(d,r;z)

is taken as the concentration of fhe reactants at t = 0. In this

instance (A2.31) reduces to

EC(=yraz) = £C(O,1,0) (A@k .34a)

-

'A2.3 Tubular Reactors with Adial Dispersion

The mass balance in a tubular reactor with a Fonstant

velocity profile, no radial gradients and axial dﬁsﬁérsion is

o L Deg 3°C op S (A2.35)
—_—= ey — + -, + = = - ) .
at ¢ 3Z ¢ 8_22- €, . '
I
~ The boundary conditions are
“Deg € | = (C(t,0) - C(t,04)) (A2.36)
z=0 — = - .
€ 3 7.0+
o
z=L: — =90 (A2.37)
8z T :
. s |
t=0: C-=¢(0,2) , (A2.38)

The boundary condition (A2.36) is a statement of the mass balance

‘at the reactor entrance. The boundary condition (A2.37) is only

-~

true at steady state, although it 1; used for transient analysis
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because an éxﬁrgssion is not avai]ab]en\fee‘seorgakis et al

)
by E, we obtain

2 S

(1977a).
Multiplying (A2.36)
SEC JEC
= =y +_
st C ez

= ¥ (A2.39)

-

- ' . : v /' .
The boundary conditions are obtained by_mglfjfﬂying (A2,36 -

.A2.38) by E. Introduce a reference variable g}(o,z) = Q(O,z)

such that EC*(0,z) satisfies the boundary conditions (A2.36),

(A2.37) and the differential equation (A2.39). ‘
Define .
W = E(C(t,z) - €*(0,2)) (A2.40)
-¥ .
Then w satisfies the linear partial differentialkgqUation
. z - W Dgy 32w ®
R, — o — — o
st oz e ’ (A2.41)
with boundary conditions S ':\\\J/
. ~
~Dyy W | | . )
z =0: D = vc(yjt,o) - w(t,0+)) (A2.42)
Y € az Z:0+ . .
oW ' ’ _ S
z=01: — =20 { (A2.43)
: 3z : N
t=.0: "w(0,2) = ~—  (A2,40)
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~ Taking thénLapiace transform of (A2.42) and using
(A2.44) we obtain ‘

w*(z2) Dy 32 wH(z) |
c + 5 (A2.45)
9Z £ 9z

- : ﬁ"

_sw*(z) = -v

where w* denotes the Laplace transform of w(t,z). Equation (A2.45)

is a second order linedar differential having the solution \
' ' A .
w*(z) = quuiz + gaefzz | , (A2.46)

with

ve T S V.2 + 4sDgy/e
$ ¢ (A2.47)

a = \ .
12 2Dga/ ¢ .

The constan 3 and.a, are determined from the Laplace transform

of the boundary conditions SA2.42) and (A2.43). Substituting forgklu

w*(z), we obtain the following equatioﬁs for the cénstants of

integration
Dea ™1 - Ve Daa “2.7 Vel [ 21] frve™@

- ) =1 (A2.48)

'a L qQ L ) ' ] . . . )
[ape T \ ae & LY, 0 o

The' coefficients of integration are readily obtained. Howevef;

they are complicated functions of thér¥§riab1e S, and-ths nverse
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i .
1S - -

4 . 2
.Lap1ace transform of (AZ 46} does not have an analytic expre§s1on
For reactors with axial disperion then, 1t is necessary to lnclude ‘

all {ompodents in the mater1a1 ba]ance as a s1mp]e expression

l’l

L

for the\r act1on sto1ch10metry does not ex1st
An express1on for the steady state reaction stoc1h1o- _

metry is obtalned by solving the steady state version of (A2.41),

The react1on sto1ch1ometry 1s given by (AZ 34a) with the radial

+

dependence omitted. ‘ i.c;&

W0
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~, APPENDIX 3 s
PARAMETERS FOR LINEARIZ\b FINITE DIMENSIONAL REACTOR MODEL/—
A3.1 Parameters\{prxéhe Continuous Model
, o . ‘
The Tinearized lumped model of the dynamics of the
‘butane hydrogenolysis reactor is
X = Acg(t) + Gcg(t) + Fcz(t) (53.])
where

x(t) - 7 x T vector of mean cgrrected tempera
at the interior collocation points;
o/ u(t) -‘2 x 1 vector of mean corrected flowrates
(butane and hy&rogen);
z(t) - deviation of the wall temperature from its

steady state value.

. The radially averdged concentration of the reaction species at the

Y
exit’of the reactor is given by )

€t) = Hyx(t) + Dyu(t) + Frz(t) | (A3.2)

' where . -

c(t) - 3 x1 vector of mean corrected concentrations

. ‘ at the reactor exit (butane, hydrogen and propane).

- 295
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‘-///’///#;rom the September 23 data of Jutan (1976), the following average

values were used in the linearization.

Average. temperature profile, °K: T\\\

EéV.= (522.9, 526.6, 533.5, 541.7, 543.6, 538.7, 536 .4)

The mean flow rates of butane and hydrogen in cc/sec

) at #P: | | l

\".- .| =
d\gav = (16.1, 87.4) J
' S

Td compute the controls gff) the flow FafEQ/;;st be converted to
- reactor inlet conditions where the pressure equé]s 167 kPa

(1;65 atmospheres) and the teﬁperaturzjgdﬁh]s the steady wall

temperature.

~ !
~ [

The steady value of the wall temﬁé?atqre, O/

""ﬂ —~

Lo 0
v " 5227k

The radially averaged steady state values of the
effluent coﬁtentrqtions {(obtained by integrating‘the'steady state

mass and energy balances) in gzmole/cc X 10'6. \\

‘gév = (1.237, 2.260{ 0.592)

The matrices (Ac’ G.» Fc; His Dps Fp) are given on .the following

pages.

5

%

— )
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A3.2 Parameters for the Disc}ete Model

g

. The continuous mode] was 1ntegrated over a sixty second

”

contro] interval, to obtain

L4 »

x(k+1) = Ax(K) + Gu(k) + Fd(k) ©~ - (A3.3)

]

The effluent concentrations are-stili given by (A3.2) but the

time increment is changed to
c{k) = Hyx(k) + Dpu(k-1) + Frd(k-1) (A3.4)
In Chapter 8, a steady state controller of the fonﬁ

u(k) = -Lx(k) : (A3.5)

was used. The matrix L, from Jutan (1976) is also reported here.

/ . :
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SAMPLING PROPERTIES OF AUTQCORRELATION FUNCTIONS \\

APPENDIX 4 -

Ad4.1 Introduction

The theoretical sampling properties of a 'discounted’
autocorrelation function are derived in this:aﬂpendixa The
theoretical variances of the sampled estimate of the 'discounted'
autocorrelation function are found to be larger than those:
cé1cu1ated assuming no discounting. The discounted autocorre1étion
function can be used to test for parameter convergence %ﬁ selfe

tuning regulators. o

Ad4.2 Weighted Least Squares Estimation -
g

To implement a self-tuning regulator fSTR), one estimates

Fad

the paramefers of the model.

Y(t#b) = ag¥(t) + . . . + a;?g;-m) + BU(t) + .

T+ 8,U(t-2) + e(t+d) . (A4.1)
, -
by minimizing
N o,
V1(_q) = § e“(t+b) - (A4.2)
t=1

bl

by a recursive least squares technique. 9§ is the victor of-

parameterS'(ai;Bi). These estimates are then used to épmpute the

2
301

/
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control signal

PN
o

0(t) = - 22 Y(t) - oo - () - u(eN) - L.
- §1 '
—= U{t-2) : ) (A4.3)
8 .

If the parameter estimates of (A4,1) converge, and if the proceSs
dynamics may be described by a linear transfer function, and the
effect of the disturbances acting on tﬁe output by a lTinear

stochastic difference equatiqd, Astrom and Wittenmark (1973)

- have shown that the closed loop has the follewing properties:

EY(£+)V(t) = vy (2) = 0, © = b, bl,. . bim
and
\ o _
EY(t+t)U(t) = P;E{{l;j_P;/i? = b, b+1,. . . bt (A4.4)

Furthermore, if the orders 2 & m are the same as those of the

minimum variance controller then

n
o
-
~
W
o

ol B ( | (A4.5)
r,.(t) = .
yu?

1
o
-
.
WV
o

{
4

\\.
It is seen that equation (A4.4) provides a convenient means of

tésting for parameter convergence. Box and Jenkins (1970) suggest

|

DIrT oN Copy
PAGE TACHEE \

,,J
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one rep]éce ryy(r) by its sampled value, and compare this aga1n§t
its two standard deviation 1imits to see if these values are'
zero. Barlett (1946) has shown that the sample autocorrelation of

a stationary normal process is asymptotisa]ly normally distributed

with variance given by

2 2 &

~ '~ 2
| var (ryy(k)) = (p.] + pj‘*‘k.pj-k + 4pkpj0j+k + ZDJ Pk ) (A4.5)

ne=18

If the theoretical autocorrelation is deemed to have died out
. beyond lag k then (A4.6) reduces to
w ] kf"—_z ’ ,
(::;j/;> var (r (1)) = N'(] + 'Z P5 )s T >k (A4 .7)

If the cross correlation between Y and U is zero beyond a certain
lag, then a simﬁlar'exp?ession to (A4.7) is obtained, Bartlett (1956).
The use of discounted least squares is sometimes pre-

ferred when implementing a STR. One estimates the parameters of

the model (A4.1) by minimizing

V,(e) = ? Nt 2(t+b) . - (A4.8)
t=1 : _
4
- The discounting factor x, is usually chosen to lie in the range
9 <x 2, o ‘ \

The model (A4.1) may be expressed as

o\

2
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~

V(t#h) = X'(1)e + (tsb) | - (A4.9)

\ thre : {r\§ﬁk.

A
XP0e) = (Y0 Y(e=1),. o ov(e-m), UM, U(t-1)5. . LU(t-2)) (A4.10)

.and @ is the vector of unknown parameters. Introducing the

diagonal matrix

S = diag (1,47, 2%y (A4.11)
we se€ that {A4.8) may be expressed as
Vo(8) = e'(t+b)Se(t+b) , (A4.12)
R . ‘
A becessary condition for a minimum is that
av,(e) i
- =0 (A4.13)
38 . ‘ : . :
and this leads to the equation ,‘
‘ > 4
X¥SX8 = X'SY(t+h) A T (A4.14)
where
3 ) ‘
X'(t) v
]
x = | X'(t-1) ) . (A4.15)
X'(1)
=] ‘-‘
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and
Y'(t4h) = (Y(th),Y(t4b-1),. . . Y(B)) (A4.15a)

v ' :
/oéppose that the control law (A4.3) converges to constant values,
implying X 8 = 0. SubStituting this into (A4.14) we see

X'SY(t+b) =0 ., - . (A4.16)

i Fl .

The elements of this vector are given by

1
~

b, b+1 . . . b#m

" |
) AN_tY(t+k)y(t) =0, k

t=1 \

=0, k

If the control has been frnp]emented for a sufficient Ienﬁh

" .
T At (esk)v(t) b, bl . . . b+ (A2.17)
£41 g

of time for the process oui:put to be covariance stationary, the

sums in (A4.17) will approach constant values. Tak{ng expectations

. of (A4.17) we obtain ’ =
' 4
1 -0 r..{t) =0, T =nb, b+, . 'b+m
1 -1 yy » » 3 e . i
and ) ‘ a B
l B
N
1-A r. (1) =0, «t=b, btl, . . . b+ (A4.18) <L-

%
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Even though the expected value of (A4.17) is the same as
the expected value when A = 1,0, the variances of the two estimates
will be d1fferent In the next section, we show how one ohtains
the approximate variances of (A4.17). This work closely follows

the original work of Bartlett (1946).

<

Ad.3 agprox1mate Variances of the wexghted Autocorrelation
Funct1on .

Define

=

k .
: 25254k

-1
1
[

(A4.19)

3| -
[N .
ne=1=Z N~ 1
—h

.

[
-

when f>>k, we may ignore initial effects and define -

N -

1§ N
) - .Z]A 2525,k Ck .
P — _ 2 (A4.20)
/K\\\ 1 ? S v

- 2.2, .

n 3=1 J ] ‘

If we choose v
N | ) ;
- 1 =2 . J

n- = 1—_T’ - ) (A4.2])

we find that Ck and V are unbjased estimates of T and °z2

2 2

Expanding r, in a truncated Taylor series about the'eiﬁ%?ted
X ’ T,
values of Ck and V, C;\(gz and g, we obtain

/
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s Lz (G - o) 2y %7
"~ "z ° 2 - (V-et,) 1 (Ad.22)
vz oz -9, :

Squaring (A4.22) 3nd taking expectations we obtain

W‘ .
R =\var(Ck) Zbk SR pk2 :
var (rk) T T - cov(V, Ck) o var(V) (A4.23)
UZ G'z C'z _J—"

'He\r111 in turn evaluate the varia Qg and covariance terms of

(A4.23).. First though we state /the result, Anderson (1957) that

iflgijVN(g, 1), with identical/ variances then

A4.3.71. Evaluation of var(V)

1 N-b 2
=1 22,0}

var(V) = cov (%-E AN-a Z,2.5
. . a _\,.._5
- S1 BTN g2 (EE TN 2292 (a2
;?' a

Assuming that N-a = N-b = N then

7oA NaNb

. E(z. Za%p%) - | . AA4.26)
2,

var(V) = —%?
n

Using (A4.24) With s=t=0 we find _

- l ‘ ¥ / |
/\/ !
N ] _ 4 .
o , E(z32,452 beset) = 9, (pgPgyy * °b-a pb-aft'+°b-a+s+t°b-a-53 (A4.24)
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gt e (6,2 + 2pb3a)._ 4
var(V) = —5 a,b
n
) : ) R LY . Y N
. : : ok,
The summation may be expanded as follows
N-a N-b 2
YA, = N 5
a,b b-a
N-1 2 N 1 2 2 .0
A (p0 + o AM+....,...+QN]A)+
N-2 2N 2 N-2 , 2. .0
A (le *pg A + 0., +pN2J\)+
2 N1 o
L CIRVIC A OO . +‘po A)
‘ L
"The N terms involving p02 sum to
\
1 - 2N 2
1 -2 %0
. . 2 ’
The (N-1) terms involving Py~ sum to ‘
. \ --i - AZ(N—]) 2
A —T_ - A
and those invol(ng p ]2 sum to
J2(N- 1) Val

L /ﬁ \

Collecting all. the terms of (A4.28) we find'

.

/}(AQ.ZB)
N
(A4.29)
R
(A4.30) E
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~

- o ' . r\\ e~ T
309
poaNaNb 2 ”51 0.2+, 2 12
ash R I I
r . NEI ; %;?§T~ 1 2(N |J!)

therefore
w2 oy \Ni1 2 50 1 - 20130
var(y) = . ps A .
' o gena 1-)°

PR

sincé Py = 1.

F

_ 1 N-a 1
cov(V,Ckz = cov(ﬁrg e 3¢ ﬁ-g szb+k)

4
_ o2 N -a N b
v AR (F’o*’k * 20y aPp-aek! 7O

The last result was obtained by using (A4.34) with s
Simplifying (A4:34) we find |

4 )
20 N- . 2(N-1j1)
, . : 1 -2
cov(V,0) ) = —5 . Y opips A[Jl
k) - n2 " jengy 3R 1,—'12 .
- ' ~ < —
\.é w
. : —

b

- (A4.33)

OODk

0, t

(A4,34)

= k.

(A4.35)
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«F
A4.3.3 Evaluation of var(C,) -
1 -a 1 ¢ . N-b
Var‘(‘Ck) = Za2a+k, H z A szb+k) \
b ¢
. -~ \\
- N-a.N-b, 25 2 Co \\x 42 :
. ) MU e * ey * Py aekPbea-k!) TPz Pk (A4.36)
- \ /
) A

where we have used (A4.24) with s = k, t = 0. | .

Proceeding in a similar manner as before we obtain -

-

IR L EIR. (WY
var(C, ) = — . E (0:" + payrls )2 J IEESRE '
T ety B3 T Pk Y (A4.37)

A -

Substituting these results into (A4.23) we obtain finally

N-1 '
o1 2 2 2
arlfd = ey (i Pk Thiegues t 2oy )

ok

A LA - ‘ (A4.38)

: _ ‘
— /(0 +2 ] ijAJ) ; (A4.39)





